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Preface

This thesis summarizes my research in the field of multi-omics data integration as a Ph.D.
student at the Department of Mathematics of the University of Trento and at The Microsoft
Research - University of Trento Centre for Computational and Systems Biology (COSBI).
Multi-omics data integration is a multi-disciplinary field, which revolutionised Bioinfor-
matics in the last decades. Its aim is analysing and interpreting information coming from
multiple molecular layers, namely genomics, epigenomics, transcriptomics, proteomics,
metabolomics and microbiomics, comprehensively called "omics". The accumulation of
these data, generated with advanced high-throughput techniques, provides information on
important biological processes. For instance, multi-omics diagnostics is nowadays considered
crucial for the improvement of medical and healthcare services and for the implementation
of preventive and precision medicine. The biological and medical relevance of studying
multiple molecular layers together is proved by the elevate number of articles which contain
the text "multi omics" in their abstract. From the PubMed repository for biomedical literature,
more than 1000 papers referred to "multi omics" in the last ten years, with more than 300 of
them also linked, for instance, to "cancer". However, the huge quantity of available omics
data must be analysed with comprehensive systems: statistical and computational techniques
are essential tools to obtain prognostic, diagnostic, and therapeutic information [248]. Addi-
tionally, mathematical approaches have been developed in the last years to simultaneously
model information based on not evident/not yet studied inter-omics interactions. Those
methods have proven to be powerful to combine omics data, although they do not use prior
information on omics relationships.
For this reason, this thesis mainly focuses on the interplay of mathematical tools and prior
knowledge about omics interactions, which are essential in the development of the multi-
omics integration field and its applications. Specifically, the goal of the work described here
is to show that, at least on simulated datasets, statistical multi-omics integration has better
performances when both known and unknown inter-omics interactions are included in the
analysis. Since prior knowledge of inter-omics interactions is not always available, we will
compute it from the data with the use of multivariate statistics and networks. This thesis
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deals in particular with three-omics data integration but the methodologies developed here
can be easily applied to an higher number of omics.
The thesis is organized in chapters which explore increasingly complex approaches to
multi-omics data integration. Specifically, I will present: a three-omics integration where
inter-omics interactions are known, a study on completely unsupervised simultaneous inte-
gration and, finally, a model where known and unknown interactions are considered together.
Although the biological questions addressed in the chapters of the thesis are different, it is im-
portant to consider that the biological phenomena are connected: increased knowledge about
molecular mechanisms, for example, can lead to more accurate separation of patients/samples
with similar medical responses. Chapters 2, 3 and 4 detail projects I contributed to during the
last years and that resulted in publication or manuscripts in preparation.

Chapter 1: we provide here an overview of the main hypothesis (linear and simultaneous)
of biological interactions between omics data. Additionally, this Chapter presents the state of
the art statistical approaches developed to solve multi-omics integration.

Chapter 2: we test here the importance of considering known linear inter-omics relations.
We combine DNA methylation, gene expression and protein levels to study adipogenesis,
the process of creation and growth of adipocytes. Prior knowledge about biomolecule
connections reduce the amount of data to be analysed. This leads to the observation of
coordinated changes at the epigenomic, transcriptomic and proteomic levels, showing how
information flows from one molecular layer to the others. Although this biological linear
integration provides new insights in the adipogenic process, we consider only known omics
interactions to perform it. The content of this Chapter was developed in collaboration with
the Nestlé Institute of Health Science and the U.S. Food and Drug Administration, and is
part of a paper under preparation:

• G. Tini, V. Varma, R. Lombardo, G. Lefebvre, P. Descombes, S. Métairon, C. Priami,
J. Kaput, M.P. Scott-Boyer, "DNA methylation during human adipogenesis and the
impact of fructose", preprint.

Chapter 3: here we move to a simultaneous perspective of multi-omics integration. We
focus on unsupervised methodologies, which are able to model also unknown interactions
between different data types. To understand more about this approach, we compare differ-
ent unsupervised methodologies on sample classification problem. We consider both real
and simulated datasets. We explore the impact of several factors that are shown to affect
simultaneous integration results (method choice, presence of noise, number of integrated
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data, applied pre-processing). The content of this Chapter has been published in the journal
Briefings in Bioinformatics:

• G. Tini, L. Marchetti, C. Priami, M.P. Scott-Boyer, "Multi-omics integration - a
comparison of unsupervised clustering methodologies", Briefings in Bioinformatics,
November 2017.

Chapter 4: we present here a pipeline whose aim is to combine the strengths of the simulta-
neous and the linear approaches, in order to solve sample classification. While the use of prior
knowledge is useful to focus on known biological interactions, simultaneous methods allow
the inclusion in the analysis of unknown omics relations that would be missed otherwise. The
accuracy of simultaneous multi-omics data integration is improved, on simulated datasets,
by the prioritization of important features. This step is performed with a multivariate linear
regression method followed by the creation of a prior-knowledge network. The results
obtained in this Chapter indicate that the inclusion of prior knowledge increases the power of
integration methodologies.

• This work is the result of my internship at the Nestlé Institute of Health Science in
Lausanne, Switzerland.

Chapter 5: in this Chapter we summarize the main results of the thesis and discuss possible
future directions.





Chapter 1

Introductıon

In this Chapter we introduce the problem of multi-omics data integration. We first provide
a brief overview of the different types of omics data, with a more detailed focus on DNA
methylation, type of data discussed in Chapter 2. We present the different hypotheses of inter-
omics interplay that will be used throughout the thesis, together with the main approaches
to multi-omics data integration that are based on those hypotheses. We finally provide the
state-of-the-art models that have been developed to solve the main questions and challenges
of multi-omics data integration.

1.1 The "Omics Revolution"

The addition of the suffix "omics" to a molecular term connotes the comprehensive assessment
of a set of molecules (like genes or proteins) [73] which contain part of the information
related to the biological system under study. In their work, Hasin et. al well summarized the
different omics data that can be assessed for the same experiment [73], namely genomics,
epigenomics, transcriptomics, proteomics, metabolomics and microbiomics (see Table 1.1
for a more detailed description of those data).
In early studies, the omics collected in Table 1.1 have been investigated in isolation to look
for their association with a phenotypic trait of interest. This approach, however, does not
consider the interactions between different biomolecules, acknowledged by the central dogma
of molecular biology. This theory, proposed by Francis Crick in 1970 [39] describes the flow
of genetic information from DNA to RNA to proteins that occurs in a biological system and
leads to the determination of cellular phenotypes (Figure 1.1).
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Fig. 1.1 Genetic information flow as described by the central dogma of molecular biology
(from [151]). Instructions on DNA are transcribed into messenger RNA (mRNA) and then
translated into proteins. Metabolites are the end-product of biological processes, obtained by
dynamical interactions with proteins.

The central dogma of molecular biology can be thought as the first theoretical step towards
multi-omics data integration. However, the importance of this field in Bioinformatics has
increased only in the last decades, with the sequencing if entire human genome in 2001, with
the Human Genome Project [82].
Improvements in high-throughput techniques (e.g. Next Generation Sequencing [217],
Mass Spectrometry [54]) also permitted cost-efficient access to measurements of multiple
molecular levels. These technological improvements, coupled with the availability of several
repositories of accessible data, such as The Cancer Genome Atlas Project (TCGA) [204] or
The Encyclopedia of DNA Elements Project (ENCODE) [51], lead to what can be called
"Omics Revolution" [91]. However, there is now a need for adequate analytical methods
namely improving multi-omics integration [156] to unleash the full potential of this ever-
increasing amount of massive data.
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1.2 Linear and simultaneous integration: challenging the
central dogma of biology

The growing availability of data describing complex traits has challenged the central dogma
of molecular biology. The alternative theories that were proposed gave new perspectives to
the multi-omics integration field.
Deeper investigation of biochemical processes, allowed by the advent of recent technologies,
has uncovered molecular activities which were not taken into account by Crick. Examples
are: reverse transcription (copying of DNA into RNA [21, 22]), post-transcription RNA
processing [77] and post-translation protein modification (e.g. protein methylation [109], cis-
and trans-splicing [182]).
On the basis of those discoveries, in 2009, James Shapiro re-formulated the central dogma
by stating, for example, that the flow of information from one molecular layer to the others is
not unidirectional. Shapiro also stated that every element of the genome interacts directly
or indirectly with many other genomics components [190]. Few years later, in 2012, Denis
Noble proposed a theory of no privileged level of causation in biological systems, that is
it cannot be assumed that an organism is completely defined by its genome alone [160].
Starting from the example of the cardiac rhythm, Noble showed that feedback cycles among
molecular layers not only exist, but are necessary parts of biological processes.

Following the hypotheses of omics interplay provided by the central dogma of molecular
biology and by its alternative theories, two main approaches to multi-omics data integration
can be distinguished: linear or simultaneous integration [175]. In Figure 1.2 we provide a
graphical representation of the two different hypotheses of interplay: the hypothesis of linear
interaction is referred as "Hypothesis A", while "Hypothesis B" describes the simultaneous
interaction of omics.

1.2.1 Linear multi-omics integration

The first approach to multi-omics data integration that we will discuss in this thesis, assumes
linear and hierarchical interactions between omics data (based on the Hypothesis A, Figure
1.2). Following the central dogma of molecular biology (Figure 1.1), variations in the DNA
lead to gene expression changes, which in turn are responsible of level of protein production
and thus of different phenotypes appearance [39]. Although, as pointed out before, this view
of biology has proved to be oversimplified, the linear integration ensures to obtain biological
meaningful results, since it is based on already known biological processes.
Multivariate regression and variable selection methods are common tools used to mathemati-
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Fig. 1.2 Alternative hypotheses of interactions between molecular layers (from [175]). Hy-
pothesis A (grey arrows) suggests a linear view of phenotype emergency. Hypothesis B
(black arrows) assumes that the phenotype is given by simultaneous changes in the omics
data.

cally solve this type of integration. This is especially true when only two data are considered:
those models can predict cause-and-effect links between different data types. For example, in
the work by Tapp et al. [202], methods such as Partial Least Squares (PLS) [132, 241], Least
absolute shrinkage and selection operator (Lasso) [206] and Elastic net [254], were used to
predict the concentration of proteins related to obesity. Protein concentrations were then
integrated with the hepatic transcriptome, in order to elucidate the molecular mechanisms
associated to adiposity and inflammation in high-fat fed mice.

1.2.2 Simultaneous multi-omics integration

Linear integration has the limitation that unknown inter-omics relationships are not consid-
ered: only assessed directions of interaction are explored. Moreover, in general, only part of
the total inter-omics interactions are known from literature.
The complexity of the phenotypes suggests that phenotypic traits can be more exhaustively
explored by the combination of simultaneous changes across all omics data. This view of
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inter-omics interactions, described by Hypothesis B in Figure 1.2, is also at the basis of
alternative theories of the central dogma.
Multi-omics data integration based on Hypothesis B does not need prior knowledge to be
included. Additionally, following this approach several omics data (i.e. three or more) can be
combined at the same time, providing a more complete and realistic view of the problem at
hand.
As pointed out by Huang et. al [79], the inter-omics interactions are major concerns for data
integration strategies: this is why the more recent progresses in multi-omics data integration
focus on the simultaneous approach, with the help of computational and mathematical tools.

1.3 Statistical multi-omics data integration

The field of multi-omics integration is developing from a linear to a simultaneous point of
view. Statistical methodologies are improving to include more than two omics data types and
to take into account inter-omics relationships.
In this section, we give an overview of the classical statistical methodologies that are at the
basis of simultaneous integration techniques. Those methodologies were usually proposed to
meet the requirements of pairwise omics integration. This implies the importance of linear
integration, based on biological knowledge, in the improvement of the multi-omics data
integration field.
Another important aspect to consider is whether information about the phenotype is used
during the integration. With this in mind, statistical methodologies can be divided into either
supervised or unsupervised approaches.
Supervised integration approaches consider the phenotype labels of samples (e.g. dis-
ease/normal, control/treatment) [79] and use this information to discover genotype-phenotype
interactions [230] and to learn something more about the studied biological process.
Conversely, unsupervised integration approaches aim at drawing an inference from the con-
sidered omics data without having access to the labels of the response variables [79].
From the mathematical point of view, the k omics data measured from the same experiment
are considered as matrices X1, . . . ,Xk of dimension n× pk. n represents the number of com-
mon subjects while pi i = 1 . . .k is the number of biological features collected for omics Xi.
Latent variable factorization and networks are mathematical tools often used as a starting
point for the developments of integrative methods.
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1.3.1 Latent variable factorization

Latent variable factorization focuses on projecting variations occurring across different
biological layers in a low-dimensional space. This goal is obtained by factorization of the
matrices X1, . . . ,Xk into the product of loadings Fi (of dimension n× r) and factors Qi (of
dimension pi × r and called latent variables) added to an error term:

Xi = FiQT
i +E i = 1 . . .k (1.1)

The number of columns of Fi and Qi, r < pi, represents the number of latent components
used to build the new low-dimensional space. Starting from this model, different methods
can be developed accordingly to the inter-omics relationship that are searched. How these
interactions are computed and which constraints should be imposed have to be considered in
order to build a model.
Among all the possible methodologies developed starting from the model described in
Equation 1.1, Partial Least Squares and Canonical Correlation Analysis have been largely
used and ameliorated along the years to respond to new questions.

Partial Least Squares

Partial Least Squares (PLS) [107, 241] is a standard regression technique. It is used to
identify a small set of features working as predictors for the response dataset [11] and
strongly associated with them. Following Equation 1.1, two omics data, X and Y can be
decomposed as:

X = FxQT
x +E

Y = FyQT
y +E

(1.2)

For each latent component j = 1 . . .r, PLS finds the loading factors (q j
x and q j

y, respectively
columns of Qx and Qy) maximizing the covariance between Fx and Fy. This is done by
solving the equivalent problem:

max
||q j

x||=1,||q j
y||=1

cov(X j−1q j
x,Y q j

y) j = 1 . . .r (1.3)

where X j−1 is the residual matrix for each component [107]. To respond to the new challenges
brought by technological advances, the method has been extended in 2012 to integrate more
than two omics data by Li et al.. They proposed Multi-block PLS [114], which implies that
different layers jointly contributes to a unique dataset used as a response.
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Additionally, to focus only on important biomolecules and discard the others, sparsity has
been introduced in the PLS model, for example adding to the maximization problem a Lasso
penalty term [206], defined on the vector x = (x1 . . .xn) as PL(x) = ∑ |xi|.

Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) [67, 76] is another standard method to inspect inter-
actions occurring between two data types. Differently to the PLS approach, for CCA it is
not necessary to define which of the integrated omics data contains response variables. This
makes the method more suitable for a total unsupervised integration.
Similarly to PLS, CCA searches for linear combinations of features. To find loading factors
(Fx and Fy, from Equation 1.1), for each latent component j = 1 . . .r, Canonical Correlation
Analysis maximizes the correlation among Xq j

x and Y q j
y, by solving

max
||q j

x||=1,||q j
y||=1

corr(Xq j
x,Y q j

y) j = 1 . . .r (1.4)

The dimension of the maximization problem can be reduced also in the Canonical Correlation
Analysis case, by applying regularization and penalization terms, such as the Lasso or the
Elastic net (PE(x) = ∑ |xi|+∑ |xi|2), to create sparse solutions.
To account for information coming from more than two omics data, in 2009 Witten and Tib-
shirani extended the sparse CCA version [239], by proposing Multiple Canonical Correlation
Analysis: a detailed description of this method is given in Appendix A.

1.3.2 Network-based methods

Networks represent a powerful tool in the context of multi-omics data integration, since they
are able to contain heterogeneous and high-dimensional information.
A network G is defined by the couple G = (V,E), where V = (v1, . . .vn) is a set of nodes
while E =

{
ei j, i, j = 1 . . .n

}
, is a set of edges connecting nodes in V , where ei j represents

the connection between nodes vi and v j. A weight wi j can be associated to the edge ei j to
describe the importance of the link.
Networks can characterize complex interactions, thus identifying mechanism linked to differ-
ent types of information [79] and associated to the phenotype of interest.
Networks can also be employed as a source of prior knowledge, describing biological
processes and functions [230], helping in data interpretation. To this extent, databases of
annotated pathways, such as KEGG [92] or Reactome [40], as well as gene networks or
protein-protein interaction networks (PPI), have been collected to store inter-omics infor-
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mation obtained from literature. Omics datasets can be mapped to those databases to study
over-representation or enrichment of molecules coming from different molecular layers.
Alternatively, networks can be generated on the basis of the omics data at hand. In this case,
network-based approaches to multi-omics data integration take advantage of algorithms from
graph theory, such as diffusion processes [42, 229] or sub-network extraction [115, 149].
According to what nodes and edges represent, as well as the type of inter-omics interactions
searched, edges can be built in different ways [231]. Bayesian networks, for example, allow
the use of informative priors to capture conditional dependencies between probabilistic events
[167]: probabilities are used to define the relationships between nodes [6]. Text-mining
approaches instead, build networks based on scientific publications, on the assumption that
molecules likely to interact share contextual information [56, 215]. Finally, correlation
networks such as those generated by the Weighted Correlation Network Analysis method
(WGCNA) [103] are based on the correlation (or on significance of correlation) between
nodes.
Bersanelli et al. in their review of statistical integration methods [11], distinguish two kinds
of network formalism (heterogeneous and multiplex) to describe multiple layers of biological
information and their interactions.
Given k omics data X1 . . .Xk, heterogeneous networks consider k types of nodes, with each of
them corresponding to a different omics. Edges are built to represent intra and inter-layers
connections. This allows to extract information about the problem at hand from the same
unique graph. An example of the use of heterogeneous network in multi-omics data integra-
tion is provided by Li and Patra [116]. They propose a random walk with restart algorithm
to connect a gene network and a phenotype one: edges between genes and phenotypes
represent the probability of the gene to be relevant for the phenotype. The gene network
is built considering the PPI data from the Human Protein Reference Database [168], while
genes-phenotype relations are obtained from the OMIM database [70]. Another approach
based on heterogeneous networks is Lemon-Tree [16], which finds modules of co-expressed
genes before combining them with one type of regulator data (such as methylation or miRNA)
to infer regulatory scores, on the basis on decision trees assigned to regulators.
Multiplex networks [141] are instead defined as k different networks which store biological
information on the same set of vertices (e.g. the samples/patients under study). In this case,
an edge between two nodes in one of the networks represents the strength of intra-omics
association among the two samples, such as their correlation or their similarity. To combine
knowledge form the k data types, inter-omics links can be built. For instance, it can be
determined, through degree correlation, if a hub in one of the considered layers has the same
role in others [144]. Another example of use of multiplex networks in multi-omics data
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integration is provided by the algorithm developed by Wang et al. [229], called Similarity
Network Fusion. Through an information diffusion-based strategy (described in details in
Appendix A) the algorithm retrieves the strongest and most informative sample similarities
across different omics.

1.4 Application of multi-omics integration to real data

On the basis of the two main approaches (latent variable factorization and networks) described
in the previous sections, statistical methods have been proposed overcome the challenges of
multi-omics data integration and to solve real biological questions.

1.4.1 Multi-omics data integration challenges

The main challenges of multi-omics data integration are data heterogeneity and the complex-
ity of the inter/intra-omics interactions. Data heterogeneity refers to measurements from
different platforms that are usually not taken on the same scale or have different distributions.
Statistical methods should thus ensure that results are not biased towards the omics with
larger dimension or larger variance. This issue can be overcome by scaling data or by
reducing them to the most informative ones by means of feature selection approaches [74].
Inter-omics interactions and co-variations should be revealed without discarding relevant
single omics patterns (intra-omics changes). Biologically significant results can be both
supported by weaker signals involving more omics or strongly induced by a single data type.
Thus multi-omics integration algorithms should be able to model either the significant intra
and inter-omics relationships, to provide a complete view of the problem at hand.
The relevance of these challenges is intensified when integration methods are extended to
support more than two omics data, cases that will be considered through this dissertation.
Despite combining more biological levels implies that a more complete picture of the bio-
logical system under study is drawn [11], it also increases the amount of noise added to the
model, intensifying false positive discovery and difficulties in interpretation.

Dealing with common and complementary information

One of the goals of multi-omics data integration is to reinforce the common signal coming
from different platforms (Table 1.1), such as genomics and transcriptomics [62, 183], miRNA
and transcriptomics [120, 233], transcriptomics and proteomics [202, 208], or proteomics and
metabolomics [13, 152]. Several studies are available for the integration of these omics types.
For example Wang et al. [233] integrated miRNAs and gene expression by meaningfully
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associating with Bayesian model analysis networks between the two omics and clinical
outcomes in glioblastoma. Blanchet et al. [13] combined rat metabolomics and proteomics
to divide samples at the onset of Experimental Autoimmune Encephalomyelitis, peripheral
inflamed and healthy ones. A latent variable approach, Extended Canonical Variate Analysis
[162], was separately applied to the data to reduce their dimension and extract relevant
proteins and metabolites, which were then merged in a unique matrix and analysed through
Principal Component Analysis (PCA) [85].
Strengthening common signal, however, is not the sole multi-omics data integration goal,
since some levels like transcriptomics and metabolomics, do not interact directly. Their
integration, however, could potentially bring complementary information [31, 36, 225].
Conesa et al. [36] integrated mice mRNAs and metabolites, measured on multiple time
points and treatments, by N-PLS [19]. This method associates omics with a regression model
on the latent space with maximum covariance between data and is an extension of the PLS
algorithm to support structures with more factors (e.g., different time points). Results were
compared to those obtained from transcriptomics data with Tucker3 [194], an algorithm able
to decompose multi-factorial data and study within-block relationships. This study revealed
that, despite the high overlap of selected genes, those found by integration described the
response to treatments more closely. Furthermore, N-PLS integration showed differences in
time response between genes and metabolites, suggesting that this algorithm can be used for
time course experimental design (e.g., Dynamic Time Warping [30]).

1.4.2 Biological questions approached by multi-omics integration

The common or complementary information gained by multi-omics data integration can
be used to solve several types of biological questions including the analysis of molecular
mechanisms, sample classification and biomarker identification.

Exploring multilevel molecular mechanisms

To better understand molecular mechanisms underlying complex traits, interactions between
biomolecules from different platforms and biological pathways are sought, especially by
means of networks [32, 63, 102, 170, 209, 232]. In a study about breast cancer by Wang et
al. [232], three sets of genes coming from pairwise integration of gene expression with one
among somatic mutation, DNA copy number and DNA methylation were used to build a
cross-talk network of risk pathways by random walk with restart [100] on a human protein
interaction network. Networks were also built by the tool 3Omics [102] to unveil connections
between transcriptomics, proteomics and metabolomics data under different experimental
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conditions. In such a case, the edge creation between biomolecules and the new node
addition when information was missing were performed by correlation analysis and literature
text-mining.

Sample classification

One of the biological questions more addressed by multi-omics data integration is to rec-
ognize, or correctly classify, different subtypes of the phenotype under study. For example,
in studies concerning the effect of a treatment, responding subjects can be separated from
those not responding to treatment. When dealing with diseases, it would be interesting to
distinguish patients from healthy control subjects, for instance, to improve diagnosis and
disease prognosis; or, in a more complex situation, to classify different subtypes of the
same disease (like cancer). Because of the diversity in tumour types and the availability of
patients, sample classification has been widely applied to oncology [118, 139, 147, 191, 252].
A method developed to solve this question is iCluster [191] which, after an initial estima-
tion based on an optimized K-means clustering [250], computes integrated clusters with a
likelihood-based solution of a joint Gaussian latent variable model. Applied to DNA copy
number, methylation and gene expression, iCluster recognized three glioblastoma subtypes
(i.e., Proneural, Classical and Mesenchymal) [192].

Biomarker identification

Another important goal of multi-omics data integration is the identification of biomolecules
characterizing a phenotype. Omics integration could be more effective than single omics anal-
ysis [16, 33, 97, 220, 225]: the interactions between biomolecules from different omics data
cannot be modelled by separated analysis, leading to fragmented and incomplete information
[231]. In a study on human metabolic disorders [225], metabolites and gene expression were
clustered by means of WGCNA [103], which computes modules of highly correlated features
through topological measures on correlation networks. The identified metabolite and gene
clusters were then associated to external phenotypes such as variations of body weight, which
revealed their connection with obesity and mitochondrial dysfunction.

1.5 DNA methylation

This section will provide an overview of epigenetics and DNA methylation main characteris-
tics, as they will be the main focus of Chapter 2.
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Epigenetics refers to any DNA modification that does not change its sequence of nucleic basis
but regulates its transcription [84, 90, 198]. Although not directly discussed in the central
dogma of molecular biology, epigenomics, which refers to the genome-wide distribution
of epigenetic changes (Table 1.1), always played an important role in biology. In the last
decades, great efforts have been made to characterize the epigenome, its regulation and its
changes during the development of cells in normal and disease state [87]. In particular, it is
well known that epigenetic is essential for developmental process and cellular differentiation,
but can also occur randomly in mature cells, following environmental exposure [84].
The best known epigenetic process is perhaps DNA methylation. DNA methylation (see Fig-
ure 1.3 for a schematic representation) is the addition by DNA methyltransferases (DNMTs)
of a methyl group (CH3) to the 5 position of the cytosine in CpG dinucleotides (CpG sites),
thus forming 5-methylcytosine [90].

Fig. 1.3 Schematic representation of DNA methylation, from [249]: methylation usually
occurs when cytosine is followed by guanine (CpG site). Cytosine is methylated by DNA
methyltransferase (DNMT) through the addition of a methyl group CH3, donated by S-
adenosylmethionine (SAM).

The methyl group is donated by S-adenosylmethionine (SAM), which after the methyl
transfer reaction forms S-adenosyl homocysteine (SAH), a potent DNMT inhibitor [249].
Methylation usually occurs in genomic regions with a high content of guanine and cytosine
and rich of CpG dinucleotides, which are called CpG islands. The importance of DNA
methylation is emphasized by the growing number of human diseases that occur when
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methylation is not properly established or maintained [177]. For example, in cancer cells,
methylation of CpG islands is known to contribute to silence tumor suppressor genes, while
during carcinogenesis a genome-wide hypomethylation (low methylation levels) can be seen
across the genome [84].
Methylation in CpG enriched regions provides regulatory mechanisms of gene expression:
its effect on gene expression depends on where it occurs. High methylation levels (hyper-
methylation) in CpG islands associated with promoters normally repress gene transcription
[112], although an increasing number of exceptions are identified [197]. Methylation within
intronic and exonic regions of a gene body is instead positively correlated with expression
[89]. Epigenetic changes, like DNA methylation, are thought to be involved in aging pro-
cess and can be mediated by environmental factors, such as exposure to pollutants or diet
and lifestyle. For example, methylation of CpG islands associated with estrogen receptor,
undetectable in young individuals becomes progressively detectable with age [83]. Similarly,
hypermethylation has been linked with atherosclerosis [235]. Also diet is known to affect
variations in methylation levels: supplements of folate and vitamins affect the activity of the
enzymes producing the methyl group [46], while methyl deficient diet induces liver cancer
through hypomethylation and consequent higher expression of oncogenes [227]. Moreover,
investigation on maternal diet in mice proved that feeding pregnant females with methyl
donors induces changes in the offspring phenotypes (e.g. coat colour) [242]. Interestingly,
such DNA modifications are for the most part reversible and can thus be modulated by opti-
mizing, for instance, environments and daily habits. It is thus important to study modification
in the DNA methylation connected with changes at other molecular layers, as well as to
better study the impact of factors such as nutrition.

The hypotheses of linear and simultaneous omics interplay described in Figure 1.2 are
tested in this thesis to take into account the challenges and the biological problem described
above. We focus on differences and strengths of performing linear supervised and simul-
taneous unsupervised omics integration. More than two data types are always considered.
The two methodologies extract different kind of information from the data: respectively,
information based only on prior knowledge and that based on not evident/not yet studied
interactions. Under these considerations, we first want to test the effect of considering only
known inter-omics relationships. We want also to test which factors influence unsupervised
three-omics integration and to prove that network-based methods are the best in recovering
information from unknown interactions. Simultaneous integration is known to be a pow-
erful statistical tool to combine omics data, but it is usually considered in its unsupervised
version. In this thesis, we thus want to include prior knowledge to simultaneous methods,
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to improve their performances. In particular, since prior knowledge of interaction is not al-
ways available, we focus on computing it from the data with the help of multivariate statistics.





Chapter 2

A linear supervised three-omics
integration study on human adipogenesis

In this Chapter we study the molecular mechanisms underlying adipogenesis, the biological
process of creation and growth of adipocytes. Following the Hypothesis A (Figure 1.2), we
perform a linear and supervised three-omics integration. We aim of the study is to inspect the
role of DNA methylation (see Table 1.1 and Section 1.5) in the regulation gene expression
during adipogenesis. DNA methylation levels, gene expression, and protein abundances were
measured from adipocytes cultured along 16 days and with the addition of different doses of
fructose. These omics are integrated with classical statistical tools. In this thesis framework,
the novelty of this integration consists in the use of prior knowledge to reduce the amount of
data to focus on. Indeed, integration is here performed by considering only genomic regions
that encode differentially expressed genes (already known from a previous work [157]).
This step assures to focus on methylated DNA regions that are likely to affect gene expression.
The result is a list of genes changing both at transcriptomic and epigenomic level. Those
genes are involved in different biological processes linked to adipogenesis that were not
found when only the transcriptomic level was analysed [157].
Additionally, some of the methylated/expressed genes change coordinately also at the pro-
teomic level. This result highlights the importance of considering available inter-omics
interactions when biomarkers are searched for the studied biological process.
The content of this chapter is the result of a collaboration with Nestlé Institute of Health
Science (NIHS) and the U.S. Food and Drug Administration (FDA) and is included in a
paper in preparation.
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2.1 Introduction

Obesity and its comorbidities are growing worldwide epidemics [255]. A major hallmark of
modern, westernised nutrition is increased consumption of highly refined sugar [154] that
has been associated to the increasing incidence of metabolic disorders [94, 145]. Fructose
consumption, as part of sugar-sweetened beverages and other processed foods, affects gut-
and adipocyte-secreted hormones as well as the innate immune system [255]. Additionally,
fructose causes deregulation of metabolic pathways in the hypothalamus and adipose tissue,
both involved in mediation and regulation of the homeostatic maintenance of host energy
balance resulting in the promotion of the development of metabolic syndrome [24].
Adipose tissue stores excess energy in the form of triglyceride through i) an increase of
adipocyte size (hypertrophy) and ii) the promotion of differentiation or adipogenesis of
pre-existing adipocytes (hyperplasia) [29]. Obesity occurs as consequence of a chronic
positive energy intake which brings hypertrophy to a plateau resulting in the promotion of
hyperplasia to cope with unbalance energy intakes [29].
Adipocyte differentiation mechanisms are regulated by a complex network of transcription
factors responsible for expression of key proteins that induce mature adipocytes [157]. The
main regulators of the early adipocyte differentiation process are the peroxisome proliferator-
activated receptor (PPAR) and the CCAAT/enhancer binding proteins (C/EBPs) [111]. In
the later stages, the process is regulated through the fatty acid binding protein 4 (FABP4),
adiponectin, and fatty acid synthase (FAS) [201]. The understanding of adipogenesis was
previously expanded and enriched by analyzing systems-wide transcriptomic profiles at
specific time points from progenitor to mature adipocyte using a novel analytical tool for bio-
logical network activity, the Network Activity Score Finder (NASFinder) [157]. NASFinder
identified high scoring networks in signaling pathways, transcription factors, metabolic,
energy production, and membrane and cell structure functions that change simultaneously
across the differentiation process.
Epigenetic modifications such as DNA methylation contribute to the control of gene ex-
pression and therefore participate in regulating these processes. For example, the promoter
of lipoprotein lipase (LPL) that is expressed during adipose stem cell differentiation in
culture [124] contains a hypomethylated PPAR responsive element [161]. Activation of LPL
ultimately leads to induction of FABP4 whose promoter harbors a C/EBPα site [142, 210].
Additionally, the promoter of PPARγ2 was hypermethylated in 3T3-L1 mice preadipocytes
and was progressively demethylated following the induction of differentiation with a con-
comitant increase of expression of its mRNA [58].
Methylation in CpG islands provides regulatory mechanisms of gene expression and is
essential for cell differentiation and tissue integrity [4]. The effect of methylation on gene
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expression depends on where methylation occurs: high methylation levels in promoters nor-
mally repress gene transcription [112], while methylation within intronic and exonic regions
of a gene body is positively correlated with expression [89]. Moreover, DNA methylation
can be affected by environmental factors such as lifestyle and diet, particularly since choline,
betaine, folate, riboflavin and vitamin B12 participate in the one carbon cycle that produces
S-adenosylmethionine, the methyl donor [25].
Differential methylation has been associated with chronic diseases associated with improper
diets such as obesity [4, 222] and increased BMI [48]. Changes in methylation of FASN in
rats is associated with liver steatosis [37]. In addition, a relationship between methylation of
genes involved in the circadian clock system and obesity, metabolic syndrome, and weight
loss has been shown [143].
The controversial link between increased consumption of fructose in human diets and the obe-
sity epidemic [18] stimulated research that tested the detrimental impact of this carbohydrate
on insulin resistance and adipocyte differentiation, key processes to maintain metabolic health
[105, 126]. The role of DNA methylation status in fructose-induced metabolic syndrome and
DNA methylation status has not been well characterized. Consumption of high fructose has
been shown to induce DNA methylation in PPARα and CPT1A in rat liver [164], leading to
reduced expression of these genes and then to a hepatic lipid accumulation. Fructose may
alter adipocyte differentiation by increasing levels of PPARγ , C/EBPα , and FABP4, at least
in murine cells in culture [50]. Both fructose and glucose are substrates utilized to increase
adiposity, but fructose contributes more to weight gain in humans [200].
Stable isotope tracer methods were used to show that fructose was metabolized to glutamate
and fatty acids [218, 219] and it diverts glucose metabolites to the serine oxidative pathway
producing additional metabolic energy [219]. To further characterize the effects of fructose
on adipocyte biology, genome-wide transcriptomic and DNA methylation data were ana-
lyzed at multiple time-points during differentiation of the human Simpson-Golabi-Behmel
Syndrome (SGBS) euploid progenitor cells.
We identified genomic regions of differentially expressed genes where methylation of CpG
sites differed compared to undifferentiated adipocytes. The integrative DNA modification,
transcriptomic, and proteomic analysis reported here revealed that adipocyte methylation
changes are influenced by time and the state of differentiation, with the largest differences
detected at 384 hours following the initiation of differentiation, when the adipocytes are in
the fully differentiated state. Furthermore, a 1:2 ratio of fructose (2.5mM) to glucose (5mM)
demonstrated the most altered DNA methylation patterns among the different concentrations
of fructose examined. An overview of all the performed single omics analysis and of the
consequent omics integration is represented in Figure 2.1.
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Fig. 2.1 Overview of the integration analysis of the three available omics data: methylation,
gene expression and protein abundances. For each omics data, coloured dots indicate the
different fructose/glucose doses available (0F, 2.5F, 5F, 10F, 5G) at each time point. To
represent the significant integration among two different omics, for each fructose/glucose
dose, a coloured thick line is drawn to connect the corresponding axes. The contrasts
within the same omics providing the results are displayed as grey lines. Integration of gene
expression and methylation resulted significant at 192 and 384 hours for control condition
(0F) and for 2.5mM of fructose. Concordant integration results with protein abundances
were found only at 384 hours in control condition.
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2.2 Methods

2.2.1 Study design

Human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes, kindly provided by Mar-
tin Wabitsch, were used and cultured as described in [218]. The study design is summarized
in Table 2.1. Triplicates of cells in culture were harvested for DNA methylation or transcrip-
tomics assays at specific time points including 24, 48, 96, 192 and 384 hours for control
adipocytes (six replicates were harvested at 0 hours). Cultures treated with different concen-
trations of fructose: 2.5, 5 and 10mM were harvested at 192 and 384 hours following the
initiation of differentiation, as described in section 2.2.2. Importantly, samples for RNA and
DNA platform were measured on cells plated at the same time and treated similarly.
For proteomic Somascan assays, cell lysates were obtained from 0, 96, 192, 384 hours
following the induction of differentiation grown in 0, 2.5, 5, 10mM fructose.

Table 2.1 DNA methylation and gene expression were assayed at 6 different time points
for control adipocytes, proteomics only at 4 time points (day 1 and day 2 excluded). DNA
methylation, gene expression and proteins changes in the fructose-treated adipocytes were
examined at 192 and 384 hours, following the addition of three different doses of fructose
(2.5mM, 5mM, 10mM).

Hours Glucose
(mM)

Fructose
(mM) Methylation Gene

Expression Proteomics

0 5 0
24 (1 day) 5 0 −
48 (2 days) 5 0 −
96 (4 days) 5 0

192 (8 days) 5 0, 2.5, 5, 10
384 (16 days) 5 0, 2.5, 5, 10

2.2.2 Fructose treatment of SGBS cells

For gene expression and DNA methylation studies, SGBS preadipocytes were plated at 2×
105 cells in 100 mm dishes, supplemented with 10 ml growth medium, grown to confluence
and initiated to differentiate as per [218]. All media used for the growth, differentiation and
maintenance of adipocytes contained a basal amount of 5 mM glucose, equivalent to the
normal blood glucose concentration. Cells were fully differentiated by day 8 (by oil red O
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staining, not shown). Cells for RNA and DNA isolations were collected at different time
points across differentiation at 24, 48, 96, 192 and 384 hours. Fructose doses were based on
reports found in the systemic circulation following exposure to fructose-rich food [80]. At
the initiation of differentiation, 2.5, 5 and 10 mM fructose concentrations were added and
maintained in the medium until the collection of cells and medium at end points of either day
8 (192 hours) or until day 16 (384 hours) of differentiation. Cell lysates from the control or
fructose-treated adipocytes were collected for DNA and RNA isolations.
For RNA isolation, media was completely aspirated from cells and a total of 700 ul of
QIAzol lysis reagent was added to the cells, and the lysed cells were scraped, collected in an
Eppendorf vial, sheer disrupted by passing through a tuberculin syringe about 6 time, and
the lysates flash frozen.
For obtaining samples for DNA isolation, media was removed and cells were washed with
PBS and aspirated to remove all PBS. The cells were gently scraped in the presence of a
total of 400 ul of PBS, collected using a pipette fitted with a wide mouth tip, transferred to
an eppendorf vial, and flash frozen. Cells from triplicate wells were used for both RNA and
DNA isolation respectively.

2.2.3 Adipocytes omics data analysis

DNA methylation data

Genome-wide methylation was assessed using Illumina Infinium HumanMethylation450k
array platform (Illumina, San Diego, CA. USA) that contains a total of 485,512 CpG sites.
Samples were distributed over four different BeadChips. CpG sites were then annotated
with the R package ilmn12.hg.19 [72], which identified the gene and the region on the
chromosome. Illumina GenomeStudio software was used to extract the raw signal intensities.
Methylation data preprocessing was performed with the function preprocessIllumina from
the R package Minfi [7]. This method was applied to reduce Infinium I/II type bias and
correct for background. Absolute percentages of methylation (β -values) were then extracted
and normalized with SWAN method [128].For each CpG site, averaged βvalues across the
cell triplicates were considered for the following analysis.
Minfi package was used to detect differentially methylated positions (DMPs). Statistical
significance of CpG sites was assessed with a moderated F-statistic implemented in the
function dmpFinder. Since DMPs were used as starting point for further analysis, a loose
FDR adjusted p-value threshold of 0.1 was chosen.
In addition to DMPs, differentially methylated regions (DMRs) were identified with R
package COHCAP [234]. COHCAP functions take as input a list of annotated DMPs to
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compute average signals from CpG sites in the same region. A t-test with a FDR threshold of
0.05 was applied to find DMRs. The minimum number of sites needed to create a region was
set at 1.

Transcriptomic data

The transcriptomic dataset was generated with 4 Illumina Human HT-12 v-4 BeadChips
(Ilumina, Inc., San Diego, CA) hybridized with the RNA from 46 cell-cultures at different
time points (0, 24, 48, 96, 192, 384 hours) and for different fructose concentration (0, 2.5mM,
5mM, 10mM). The RNA labeling and microarray hybridization was performed according to
the manufacturer’s recommendations.
The scanned data was acquired in R using the package illiminaio [195]. The non-normalized
summarized bead-level data was then annotated with R package illuminaHumanv4.db [52].
Other labeling and analysis methods were performed with the preprocessing pipeline previ-
ously described in [157].
Differential expression analysis was carried out using the limma [196] R package. The probes
were ranked by their log-odds scores given by empirical Bayesian moderation of sample
variances with an FDR threshold of 0.01. The DEGs of fully differentiated adipocytes at 384h
in controls were further processed to identify clusters of co-expressed genes. The clusters
were decomposed according to the functional categories of their genes related to biological
functions and pathways (DEG modules). The details of the procedures are described in [157]

Proteomic data

Regariding proteomics data, SGBS preadipocytes were plated at 1×105 cells/well in a 6-well
plate and allowed to reach near confluence before adding differentiation medium. Samples
were harvested from three replicate wells at 4 different time points including day 0 just
before induction of differentiation, and then 96, 192 and 384 hours after the induction of
differentiation.
The spent culture medium (supernatant) from respective wells was pipetted into an eppen-
dorf vial, centrifuged at 13,000 RPM for 10 minutes at 4°C to pellet the cell debris. The
supernatant was transferred to a fresh vial and stored at -80°C until used. Cells were then
washed three times with ice cold PBS and then lysed by the addition of 125 µl Mammalian
Protein Extraction Reagent M-PER® (Pierce biotechnology cat # 78503) containing sup-
plemented with halt protease inhibitors (with EDTA) Pierce biotechnology cat # 87786) at
1x concentration and incubated for 5 minutes. Cell lysates were scraped and transferred to
a microcentrifuge tube, centrifuged at 13,000 RPM for 10 minutes at 4°C to pellet the cell
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debris. The clarified supernatant (lysate) obtained was transferred to a fresh tube and stored
at -80°C. Protein concentrations in the supernatant and cell lysates were estimated using the
micro BCA kit (Pierce biotechnology cat # 23235) as per the recommended protocol.
Cells lysates in triplicates were analysed with the SOMAscan platform (SomaLogic, Inc.,
Boulder, CO) consisting of 1,12909 aptamers at different time-points (0, 96, 192 and 384
hours) and for different doses of fructose (0, 2.5, 5 and 10mM). SomaLogic Inc. (Boulder,
CO) performed all proteomic assessments and was blinded to the clinical characteristics of
participants in this study. Samples were analysed as previously described [20, 64, 65, 165].
Differentially expressed proteins were found with robust linear model from R package limma
[196]. A threshold of 0.05 on moderated empirical Bayesian FDR was set to select significant
proteins.

2.2.4 Multi-omics data integration

Genome-wide methylation, transcriptomic and proteomic data were collected and analyzed
as described above. Differentially methylated regions (DMRs), differentially expressed genes
(DEGs) and significantly expressed proteins were searched for each time point and each
different fructose concentration.
Integrative analysis of methylation and gene expression was then performed by determining
the DMRs that were associated with differentially expressed genes, for each of the considered
analysis. These genes show significant changes in both methylation and gene expression.
The location of the DMRs in the corresponding gene (promoter, exon, intron or intergenic)
were annotated with genomation R package [2]. Figure 2.2 illustrates the different steps used
to perform the integration of these two omics data types.
Integration with protein expression was performed by determining the methylated/expressed
genes that also associated with significantly expressed proteins. These genes show significant
changes in methylation, gene and protein expression.

Transcription Factors binding sites analysis

Binding sites of transcription factors (TFs) in DMRs were identified with the function
get.enriched.motif of the R package ELMER [245, 246]. Binding sites were searched on 181
transcription factors identified in the ENCODE database 1. The CpG sites of all DMPs were
used as background. Motifs occurring at least 10 times and with an odd ratio higher than 1
in the 95% CI were considered significant. Significant motifs from the same family were
summarized with the function motif.relevant.TFs data from the ELMER.data package [247].

1http://amp.pharm.mssm.edu/Harmonizome/dataset/ENCODE+Transcription+Factor+Targets
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Fig. 2.2 Pipeline used to perform integration of DNA methylation and gene expression for
each of the considered contrast. Starting from a given list of genes known to be differentially
expressed (DEGs), CpG sites close to them are retrieved. DMPs are searched through the
usage of F-test. The signal of DMPs found in the same genomic region are averaged, and a
t-test is used to found differentially methylated genomic regions (DMRs). Those correspond
to a sublist of the starting list f genes.

Pathway analysis

Pathways analysis was performed with NASFinder [157]. NASFinder identifies and scores
statistically significant sub-networks of an interactome network connecting functionally
related genes to its main regulator (e.g. receptors or transcription factors). The analysis
described here were adipose-specific using transcription factors as regulators and transcripts
that mapped to differentially methylated genes to find the most active pathways influenced by
methylation. The p-value threshold used to select significant pathway was < 0.05. Functional
pathway enrichment analysis was also performed with DAVID [47], using default parameters
and a p-value threshold < 0.05 to analyse the fructose data.
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2.3 Results

2.3.1 Integration of DNA methylation and gene expression during adipocyte
differentiation

Genome-wide DNA methylation was measured using the Illumina 450K BeadChip at differ-
ent time points during adipocyte differentiation to determine the changes in DNA methylation
accompanying adipocyte differentiation compared to the baseline (0 hours in the absence of
fructose without fructose). A total of 2, 2 ,4, 607 and 155,573 genome-wide DMRs were
found at 24, 48, 96, 192 and 384 hours, respectively. The corresponding differential tran-
scriptomic analysis identified 2007, 2473, 4977, 6594 and 5237 genes at the same respective
time points.
The integration of DNA methylation and transcriptomic data identified DMRs in genes which
were differentially expressed during adipocyte differentiation. The majority of methylation
sites analysed did not change between pre-induction (0 hour) and 24, 48, and 96 hours after
induction (Figure 2.3A). However, a large number of changes in methylation were apparent
at 192 hours and 384 hours versus baseline (Figure 2.3 and Table 2.2).

Table 2.2 Differentially methylated regions (DMRs) and differentially expressed genes
(DEGs) at different time points across adipocyte differentiation in control adipocytes. The
number of genes differentially expressed used for the integration, and the number of re-
gions with a significant change in methylation levels (both genome-wide and on DEGs) are
displayed for each comparison. DMRs on DEGs are detected only at 192 and 384 hours
following the initiation of differentiation.

Time-point
(hours) No. DEGs Genome-wide

DMRs
No. DMRs
on DEGs

24 2007 2 −
48 2473 2 −
96 4977 4 −

192 6594 607 57
384 5237 155573 1437

At 192 hours, 57 of the 6,594 (0.8% of the DEG) differentially expressed genes showed
significant changes also in methylation levels. At 384 hours, methylation changed in 1437
genomic regions (DMRs), in 1,254 of the 5,237 differentially expressed genes (23.95% of
the DEGs). 130 of those 1,254 genes were differentially methylated in multiple regions.
Hereafter, the differentially methylated/expressed genes (or regions) will be referred to as
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Fig. 2.3 DNA Methylation levels for probes in control adipocytes, reveals a general decreasing
in DNA methylation. Different time-points across differentiation are represented by different
colors. A) Methylation patterns during differentiation. Dots define averaged β -values for
each time-point. 798 differentially methylated genes present the decreasing trend, but β -
values for 639 genes increase with time. The biggest changes happen between 192 and
384 hours. B) Change of methylation levels during differentiation for the gene FASN. Dots
represent the different replicates available for each time-point.

DMRs.
20 of the 57 genes DMRs at 192 hours maintained their methylation status at 384 hours
(Figure 2.4), suggesting that methylation occurred before 192 hours and lasted at least until
384 hours. Gene enrichment analysis revealed that the top-ranked KEGG pathway was
glyoxylate and dicarboxylate metabolism (e.g., SHMT1, GLUL) and GO terms involved in
morphogenesis, adhesion, and developmental process not corrected for multiple comparisons
(Table 2.3), although none of these pathways was significant after correction for multiple
comparisons. Eight (BCOR, EBF3, ETS2, GLI2, ITGA7, NPC1, PDXK, SPON2) of the 20
genes have been shown to be involved in adipocyte differentiation or function and all but
four (GLUL, PLEKHG6, SHMT1, TPD52L2) are in involved in other types (e.g., neurite,
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intestinal, cardiac and other) of differentiation or development processes (see Table 2.10 in
supplementary material section).
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Fig. 2.4 Methylation patterns during differentiation for the 20 genes showing significant
methylation/expression changes both at 192 and 384 hours. To better inspect the patterns,
gene results are separated in four panels. Dots define averaged β -values for each time-point,
while different colours represent different genes.
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Table 2.3 Enriched pathways from the DAVID analysis of the 20 DMRs found to be signifi-
cantly methylated/expressed both at 192 and 384 hours. P-value and pathway genes are also
provided.

Category Term P-value Genes

GOTERM_BP_FAT
GO:0007389∼pattern
specification process 0.009

ETS2, GLI2,
BCOR, LFNG

GOTERM_BP_FAT
GO:0009790∼embryo

development 0.014
ETS2,

ITGA7, MFAP2,
GLI2, LFNG

GOTERM_BP_FAT
GO:0009952∼anterior/

posterior pattern
specification

0.018
ETS2,

GLI2, LFNG

GOTERM_BP_FAT
GO:0048598∼embryonic

morphogenesis 0.019
ETS2, ITGA7,
MFAP2, GLI2

GOTERM_BP_FAT
GO:0022603∼regulation of

anatomical structure
morphogenesis

0.020
ITGA7,

FGF13, AKAP13,
BCOR, LFNG

GOTERM_BP_FAT
GO:0045165∼cell fate

commitment 0.025
ETS2,

FGF13, GLI2

KEGG_PATHWAY
hsa00630: Glyoxylate

and dicarboxylate
metabolism

0.035 SHMT1, GLUL

GOTERM_BP_FAT
GO:0016337∼single
organismal cell-cell

adhesion
0.036

MAD1L1, ITGA7,
GLI2, LFNG

GOTERM_BP_FAT
GO:0051093∼negative

regulation of
developmental process

0.039
FGF13, GLI2,
BCOR, LFNG

GOTERM_BP_FAT
GO:0010639∼negative

regulation of
organelle organization

0.04
MAD1L1,

FGF13, BCOR

GOTERM_BP_FAT GO:0003002∼regionalization 0.043
ETS2,

GLI2, LFNG

GOTERM_BP_FAT
GO:0098602∼single

organism cell adhesion 0.043
MAD1L1, ITGA7,

GLI2, LFNG
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Another group of 20 DMRs were differentially methylated/expressed only at 192 hours
(Figure 2.5) and returned to the baseline level at 384 hours suggesting that these were de-
methylated between these two time points. These genes are enriched in GO term for cell
morphogenesis involved in differentiation processes (SPINT2, EFNA3, FN1, MBP) (Table
2.4)) although CTDSP2 and LSS have been individually studied for roles in neuronal or
differentiation processes, respectively (supplementary material, Table 2.11).
The remaining 17 DMRs were differently methylated/expressed at 192 hours but were not
significantly expressed or methylated at 384 hours.
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Fig. 2.5 Methylation patterns during differentiation for the 20 genes significantly methy-
lated/expressed at 192 hours (but not at 384 hours) which methylation levels return to the
baseline at 384 hours. For each panel, mean beta-values at each time point are represented
by dots. Different colours represent different genes.
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Table 2.4 Enriched pathways from the DAVID analysis of the 20 DMRs found to be signifi-
cantly methylated/expressed both at 192 and returning to the baseline at 384 hours. P-value
and pathway genes are also provided.

Category Term P-value Genes

GOTERM_BP_FAT
GO:0046689 ∼response

to mercury ion 0.017 FN1, MBP

GOTERM_BP_FAT
GO:0051293 ∼establishment

of spindle localization 0.037 SPRY1, SPIRE2

GOTERM_BP_FAT
GO:0051653 ∼spindle

localization 0.042 SPRY1, SPIRE2

GOTERM_BP_FAT
GO:0000904∼cell

morphogenesis involved
in differentiation

0.047
SPINT2, EFNA3,

FN1, MBP

2.3.2 Gene location of methylated regions

The location in the gene where DNA methylation occurs differentially may influence gene
expression [90]. At 192 hours, the majority of the changes in DNA methylation occurred in
the promoter region (31 out of 57 DMRs (54.4%)), 18 (31.6%) were methylated in exons, and
8 (14.0%) in introns (Table 2.5A). At 384 hours, 987 DMRs (68.7% of the total) were found
in the promoter of the genes, 272 (18.9%) in exons, 159 (11.1%) in introns, and 19 (1.3%) in
intergenic regions of the genes (Table 2.5B). The majority of the genes with differentially
methylated promoter regions had an opposite effect on gene expression (e.g. up-methylation
of promoter region relative to 0 hour was associated with reduced gene expression), while
most cases of methylation in exons or introns affected gene expression in the same direction
at 384 hours.

One mechanism by which methylation can influence gene expression is by either positively
or negatively altering access of transcription factor (TFs) to their binding sites [134]. Binding
sites of differentially expressed transcription factors in promoter of differentially expressed
genes were analyzed by data mining methods. Among the 181 transcription factors identified
in the ENCODE database, 61 were found differentially expressed at 192 hours, and 56 at 384
hours. No consistent or significant binding motif in the promotors DMRs at 192 hours were
found. However, 24 motifs were enriched in the differently methylated promoters at 384
hours. Of those, nine were binding sites for differentially expressed TFs (TFAP2A, ELF1,
ETS1, E2F4, E2F1, NR2C2, NR2F2, RXRA, FLI1) which are involved in a large number of
intracellular processes, such as E2F4 [78] role in suppression of anti-proliferation associated
genes and E2F1 [180] mediated induction of the transcription factor PPARγ . The binding



32 A linear supervised three-omics integration study on human adipogenesis

Table 2.5 Differentially methylated regions can be separated by region within or near the
gene and into four groups depending on gene expression (G) and methylation changes (M),
which can be increasing (↑) or decreasing (↓). Most of the DMRs for A) 192 hours and
B) 384 hours were found in the promoter of the genes. At 384 hours, the most common
trend is decreasing gene expression and methylation. A combination of decreasing level of
methylation and increased gene expression was observed at 192 hours.

A) 192 hours versus 0 hours

Location M↓ G↑ M↑ G↓ M↑ G↑ M↓ G↓ TOTAL
Promoter 15 3 6 7 31

Exon 10 − 4 4 18
Intron 3 1 1 3 8

TOTAL 28 4 11 14 57

B) 384 hours versus 0 hours

Location M↓ G↑ M↑ G↓ M↑ G↑ M↓ G↓ TOTAL
Promoter 218 386 171 230 987

Exon 63 48 16 145 272
Intron 40 25 7 87 159

Intergenic 8 1 3 7 19
TOTAL 329 442 197 469 1437

sites motifs for those TFs were found in a total set of 486 DMRs. Mapping these 486 DMRs
to GO terms and pathways is however problematic since individual genes are regulated by
multiple transcription factors.

2.3.3 Integration of methylation, gene and protein expression changes
in fully differentiated adipocytes

Levels of 84 proteins were analysed at 384 hours, the only time point that had overlap
between DMRs and these proteins in the SomaLogic Somscan V1.0 panel (total of 1,129
proteins). 73 of these proteins showed a significant change in amounts between baseline
and 384 hours, consistent with promoter, intron, and exon methylation status. Eight proteins
were up-regulated and 76 down-regulated. 63 of the down regulated proteins coordinated
with the typical pattern of methylation up-regulation and down-regulation of gene expression.
Thirteen of the down regulated proteins and 8 of the up-regulated proteins were however,
found to to have up-regulated methylation and up-regulation of gene expression. DNA
methylation in promoter regions typically silences genes while gene body methylation is
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reported to positively correlate to gene expression [244]. Analysis of the pathways of these
proteins will be biased since the Somascan platform is based on primarily on secreted and
membrane proteins found in the blood with subset derived from cellular contents.

Linked transcripts and proteins but not DMRs

Some genes (219) showed corresponding abundance changes at the protein and transcript
level but not at the methylation level at 384 hours. DMRs at these sites were likely maintained
at time points which were not analyzed in this study. Subsets of these genes mapped to 312
pathways (p-value< 0.05) with the secretory, membrane, and extracellular processes the
most significant (p-value< 10e−25) (see Table 2.12 in Supplementary material).

2.3.4 Pathways enrichment analysis

To investigate how pathways involved in converting a pre-adipocyte to a mature adipocyte are
influenced by methylation changes, network activity scores were calculated with NASFinder
[157] for all DMRs at 384 hours. This tool identifies sub-networks by connecting a list of
differently expressed genes to key regulators (in this case, transcription factors). NASFinder
analysis revealed 29 significant pathways (shown in Table 2.6). For the transcription factors
(TFs) analysis, the pathway with the highest activity score was phospholipase C D1 in
phospholipid associated cell signaling. Several of the identified pathways are hallmarks of
adipogenesis or function in adipocytes (e.g., RXR and RAR heterodimerization, FXR and LCR
regulation) but others contribute new information on the differentiation process. Four of the
18 DMRs (ICAM1, PRKCA, RAC1, RAN) involved in these 29 TFs pathways were shown to
significantly change also at the protein level. ICAM1 maps to the integrin signaling pathway
and may contribute to priming inflammatory processes if misregulated [135]. PRKCA is
involved in 11 of the 29 pathways demonstrating its central role in cell signaling. RAC1
mapped to the semaphoring signaling and is a key signaling component for translocation of
GLUT4 to the cell surface [98]. RAN is in the noncanonical WNT signaling pathway and this
GTPase is also involved in several intracellular transport processes necessary for cell fate
determination, death, proliferation, differentiation, and transformation [155].
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Table 2.6 Significant pathways of gene expression using NASFinder receptor analysis on the
1437 differentially methylated regions found at 384 hours. The p-value, the Network Activity
Score (NAS), the DMRs involved in each pathway, and the receptor found by NASFinder are
displayed. Genes in bold are up-regulated.

Pathways NAS P-value
DMRs in the

pathway
TF

BIOCARTA PHOSPHOLIPASE C D1
IN PHOSPHOLIPID ASSOCIATED

CELL SIGNALING

0.322 0.005 PRKCA JUNB

BIOCARTA CBL MEDIATED
LIGAND INDUCED DOWNREGULATION

OF EGF RECEPTORS

0.191 0.008 PRKCA MET

BIOCARTA ACTIVATION OF
PKC THROUGH G PROTEIN

COUPLED RECEPTOR

0.186 0.003 PRKCA NFKBIA

BIOCARTA APOPTOTIC
SIGNALING IN RESPONSE

TO DNA DAMAGE

0.167 0.011
APAF1, BID,

PRKCA
TP53

BIOCARTA ROLE
OF MEF2D IN

T CELL APOPTOSIS

0.163 0.018
MEF2D,
PRKCA

EP300

BIOCARTA GROWTH HORMONE
SIGNALING PATHWAY

0.154 0.032 PRKCA SRF

REACTOME SEMA4D IN
SEMAPHORIN SIGNALING

0.149 0.038 ROCK1, RAC1 MET

PID NONCANONICAL WNT
SIGNALING PATHWAY

0.144 0.045 ROCK1 MAPK9

PID RXR AND RAR
HETERODIMERIZATION

WITH OTHER NUCLEAR RECEPTOR

0.122 0.037
SREBF1, NR1H3,
ABCA1, NCOR2

RXRA

BIOCARTA FXR AND
LXR REGULATION OF

CHOLESTEROL METABOLISM

0.115 0.010 ABCA1, NR1H3 RXRA

PID CANONICAL
NF KAPPAB PATHWAY

0.107 0.033 RAN NFKBIA

BIOCARTA P53
SIGNALING PATHWAY

0.101 0.030 PCNA PCNA

Continued on next page
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Table 2.6 – Continued from previous page
BIOCARTA OXIDATIVE

STRESS INDUCED GENE
EXPRESSION VIA NRF2

0.095 0.032 HMOX1 CREB1

BIOCARTA CADMIUM
INDUCES DNA SYNTHESIS
AND PROLIFERATION IN

MACROPHAGES

0.088 0.013 PRKCA MYC

BIOCARTA THE PRC2
COMPLEX SETS LONG TERM

GENE SILENCING
THROUGH MODIFICATION OF

HISTONE TAILS

0.072 0.022 - YY1

BIOCARTA KERATINOCYTE
DIFFERENTIATION

0.069 0.046 PRKCA, ETS2 ETS1

BIOCARTA TPO
SIGNALING PATHWAY

0.064 0.029
PRKCA,
STAT5A

STAT3

PID AMB2 INTEGRIN
SIGNALING

0.063 0.044 ROCK1, ICAM1 NFKB1

BIOCARTA REGULATION OF
CELL CYCLE PROGRESSION

BY PLK3

0.061 0.014 - TP53

BIOCARTA EFFECTS
OF CALCINEURIN IN

KERATINOCYTE DIFFERENTIATION

0.060 0.022 PRKCA SP3

BIOCARTA VEGF
HYPOXIA AND ANGIOGENESIS

0.060 0.030 PRKCA EIF2B1

REACTOME REGULATION OF
GENE EXPRESSION BY

HYPOXIA INDUCIBLE FACTOR

0.056 0.012 CITED2 HIF1A

BIOCARTA TUMOR SUPPRESSOR
ARF INHIBITS RIBOSOMAL

BIOGENESIS

0.059 0.034 RAC1 TWIST1

PID HIF 2 ALPHA
TRANSCRIPTION FACTOR

NETWORK

0.049 0.047 CITED2 ELK1

Continued on next page
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Table 2.6 – Continued from previous page
REACTOME SYNTHESIS OF BILE

ACIDS AND BILE SALTS VIA
7ALPHA HYDROXYCHOLESTEROL

0.018 0.033 HSD17B4 RXRA

BIOCARTA OVERVIEW OF
TELOMERASE PROTEIN

COMPONENT GENE HTERT
TRANSCRIPTIONAL REGULATION

0 0.014 - TP53

BIOCARTA PHOSPHORYLATION
OF MEK1 BY CDK5 P35

DOWN REGULATES THE
MAP KINASE PATHWAY

0 0.021 - EGR1

BIOCARTA NO2 DEPENDENT
IL 12 PATHWAY IN NK CELLS

0 0.022 - STAT4

BIOCARTA ROLE OF TOB
IN T CELL ACTIVATION

0 0.032 - SMAD3

2.3.5 Influence of fructose on DNA methylation

The status of DNA methylation sites was also assessed in SGBS adipocytes exposed to
different concentrations of fructose (2.5, 5 and 10 mM) at 192 and 384 hours after induction.
Methylation status of the same genes at each fructose concentration at both time points
was compared to the control at both time points (without fructose at the same time point).
Only 3 DMRs (EDEM1, RNF145 and SLC3A2) had genes differentially expressed in 2.5mM
fructose at 384 hours.
Since so few DMRs were found in genes differentially expressed at these time points and
fructose concentrations, genome-wide analysis of DMRs was performed to find general effect
of fructose on methylation. At 192 hours, three significant genome-wide DMRs were found
only for the highest dose of fructose (10 mM). At 384 hours (Table 2.7) 26 genome-wide
DMRs were detected with 2.5mM of fructose (Figure 2.6) and 7 genome-wide DMRs were
detected with 5mM of fructose. Most of the genome-wide DMRs obtained in 2.5mM fructose
at 384 hours occurred in the promoter regions of the genes (22 of the 26 DMRs). The addition
of fructose resulted in up-methylation of the majority of these gene promoters (18 of the 22
DMRs) (Table 2.8). Functional analysis of these 26 significant DMRs resulted in 9 enriched
pathways, for example, branched-chain amino acid metabolic process and oxoacid metabolic
process (Table 2.9).
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Table 2.7 A) Number of genome-wide differentially methylated regions (DMRs) identified at
different doses of fructose at 192 and 384 hours. A fructose effect was found at 384 hours
for 2.5mM and 5mM. A small effect at 192 hours was found for the highest dose of fructose
(10mM), with 3 DMRs.

Fructose
dose (mM)

Time-point
(hours)

Genome-wide
DMRs

2.5 vs 0 192
384

−
26

5 vs 0 192
384

−
7

10 vs 0 192
384

3
−
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Fig. 2.6 Changes in methylation levels for the 26 DMRs most affected by addition of 2.5mM
of fructose at 384 hours. Different colors represent different genes, while dots represent
mean β -values without fructose and with 2.5mM fructose.
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Table 2.8 Location on the genes and regulation of the 26 DMRs found at 384 hours for 2.5
mM fructose addition.

Location M↓ M↑ TOTAL
Promoter 7 15 22

Exon − 1 1
Intron 1 2 3

TOTAL 8 18 26

Table 2.9 Enriched pathways from the DAVID analysis of the significant 26 DMRs found in
2.5mM of fructose addition at 384 hours with p-value and pathway genes.

Category Term P-value Genes

REACTOME_PATHWAY
R-HSA-70895:

Branched-chain amino
acid catabolism

0.023 BCAT1, DBT

GOTERM_BP_FAT
GO:0006367 ∼ transcription

initiation from RNA
polymerase II promoter

0.024
STON1-GTF2A1L,
GTF2A1L, TAF7L

GOTERM_BP_FAT
GO:0019752 ∼ carboxylic

acid metabolic process 0.025
BCAT1,

DBT, NARS,
LDHAL6B, PHYH

GOTERM_BP_FAT
GO:0043436 ∼ oxoacid

metabolic process 0.026
BCAT1,

DBT, NARS,
LDHAL6B, PHYH

GOTERM_BP_FAT
GO:0009083 ∼ branched-

chain amino acid
catabolic process

0.026 BCAT1, DBT

GOTERM_BP_FAT
GO:0009081 ∼ branched-

chain amino acid
metabolic process

0.030 BCAT1, DBT

GOTERM_BP_FAT
GO:0006082 ∼ organic
acid metabolic process 0.035

BCAT1,
DBT, NARS,

LDHAL6B, PHYH

GOTERM_BP_FAT
GO:0016054 ∼ organic
acid catabolic process 0.037

BCAT1,
DBT, PHYH

GOTERM_BP_FAT
GO:0006352 ∼ DNA-templated

transcription, initiation 0.039
STON1-GTF2A1L,
GTF2A1L, TAF7L
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2.4 Discussion

Genome wide changes in DNA methylation of pre-adipocytes cells induced to differentiate
into mature adipocytes were analysed to determine the role of DNA methylation in regulating
gene and subsequently protein expression in control (5mM glucose) cells. The effect of
varying concentrations of fructose on methylation status and transcriptional regulation was
also analysed since fructose stimulates anabolic processes of glutamate and de novo fatty
acid synthesis [218] and alters glucose metabolism to induce more energy [219].

2.4.1 DMRs in control conditions

A previous work [213] concluded that DNA methylation of 84 genes was relatively stable
between 0 and 240 hours during adipocyte (hMSC cells) differentiation and that changes
in DNA methylation were not an underlying mechanism regulating gene expression during
adipocyte differentiation. Our results largely confirm these findings since DNA methylation
did not change appreciably at 24, 48, and 96 hours with less than 1% at 192 hours. The
majority of methylation regions at 192 hours were conserved at 384 hours. The subset
of genes with transient methylation (methylated at 192, not at 384, Figure 2.5) occurred
in genes associated to cell morphogenesis involved in the differentiation process (SPINT2,
EFNA3, FN1, MBP, see Table 2.4). In addition, significant changes in methylation linked to
changes in gene expression occurred almost 25% (1,254 of 5,237) of the sites analysed at
384 hours compared to pre-induction. These results are consistent with previous metabolic
[218, 219] and transcriptomic analysis [157] that showed adipocyte specific metabolism and
gene regulation at 192 hours (8 days) of differentiation which became more “robust” between
192 and 384 hours. That is, a complex set of interactions between metabolic pathways,
transcriptional regulation, and DNA methylation finalizes maturation of the adipocyte and/or
“locks” in its fully differentiated state.
Changes in DNA methylation occurred in genes and pathways known to be involved in
adipogenesis (e.g., a PPARG receptor linked to RAR and RXR ), as well as pathways not
previously associated with adipogenesis (Table 2.6). In addition, pathways identified by
DAVID functional annotation of genes with all genes with DMRs down methylated but tran-
scriptionally up regulated (the expected pattern) were similar to those genes that had DMRs
up methylated with genes up-regulated (the unexpected pattern). That is, the up-regulated
genes mapped to lipid metabolism, mitochondria, oxidoreductase and other pathways re-
gardless of the state of methylation. Similar observations were found for genes that were
down regulated regardless of methylation status. Down regulated genes mapped to cell
adhesion, cell cycle, cell division, and cytoskeleton (among others) pathways. These results
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suggest that methylation is a consequence and not a driver of the final maturation stage of
adipogenesis. Genes and pathways identified in this in vitro study play roles in obesity and
related conditions. An epigenome-wide association study has recently shown that body mass
index was associated with widespread changes in DNA methylation in 210 candidate genes
in blood cells. Twenty-five of those candidate genes [226] were also differentially methylated
at 384 hours in the results presented here. Among these DMRs, SREBF1, HOXA5, CPT1A,
LPIN1 and PHGDH have established roles in adipose tissue biology and insulin resistance.

2.4.2 Fructose effect on methylation

Fructose has been implicated in the obesity epidemic and specifically in altering the physi-
ology of adipocytes. Methylation changes of differentiating and differentiated adipocytes
under the exposition to different fructose concentration can help to better understand the link
between fructose and metabolic syndrome. Indeed, modifications in DNA methylation levels
are for the most part reversible and can be modulated by optimizing daily habits, such as
diet. Although studying the effects of nutrients in cell culture experiments is controversial
because concentrations have to be estimated, the doses used in this in vitro experiment (2.5,
5 and 10mM) were modelled on levels following fructose ingestion in humans [153, 224]
and considered that local concentrations (e.g., adipose tissue associated with the intestinal
tract) could be higher than reported plasma levels. Moreover, the different concentrations of
fructose were added to a medium containing 5mM glucose, to better resemble the normal
physiological blood glucose concentration [218].
An inverse correlation was found between the number of DMRs assayed and fructose levels
(Table 2.7). At 384 hours, 26 genome-wide DMRs were detected in cells grown in 2.5mM
of fructose in the presence of 5mM glucose. Pathway analysis mapped these genes to tran-
scription factor processes and branched-chain amino acid (BCAA) catabolism at uncorrected
p-values of < 0.05. BCAA catabolism has a functional role in adipocyte differentiation
[68] and decreased catabolism of BCAA may be related to insulin resistance, impairment
of sub-cutaneous adipocyte hypertrophy, and associated pathologies [169, 236]. Higher
circulating BCAA levels were observed in obese and diabetic patients [169].
Only 7 and 3 DMRs were found at 5mM and 10mM fructose in the presence of 5mM glucose
at 384 hours post-induction. These small number of genes precluded pathway analysis but
no apparent pattern was observed. Individual genes can be annotated and associated with
whole body phenotypes. For example, the endoplasmic reticulum degradation-enhancing
alphamannosidase-likeprotein1 (EDEM1) found to be differentially methylated at 10mM
fructose is an endoplasmic reticulum stress (ERS) marker [179]. Acute ERS can weaken
the capacity of mature adipocytes to store lipids and chronic ERS can impair the adipogenic
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potential of preadipocytes [99]. Disruption of these pathways could contribute to obesity-
associated morbidities such as lipid spillover, ectopic fat deposition and ultimately insulin
resistance [29]. Epigenetic modifications in ring finger protein 145 (RNF145, a metal binding
proteins), also found at 10mM fructose were associated with BMI, waist circumference and
changes in BMI in African American adults [45].
The results presented here suggest that fructose has moderate effects on methylation lev-
els at 2.5mM fructose, a 1:2 ratio with the 5mM glucose in the culture media. However,
changes in methylation decreased at equimolar doses (5mM fructose added to basal 5mM
glucose) or 2:1 (10mM fructose with 5mM glucose). We speculate that fructose may play a
regulatory role at doses less than 1:1 fructose to glucose, but at equimolar or greater levels,
fructose is “shunted” to metabolic pathways to produce stored (oleate) and released fatty
acids (palmitate) as demonstrated by Varma et al. in their previous work [218]. A study in
sheep indicated that hepatic DNMT3A mRNA levels decreased with increasing consumption
of high-fat-sucrose diets [38] consistent with the observations at high fructose described for
adipocytes in culture.

2.4.3 Integration of methylation, gene expression and proteomics

A novel feature of this study was the analysis of DNA methylation, mRNA levels, and
selected proteins at 384 hours after differentiation. Seventy-three of the DMRs (out of the
84 SomaLogic proteins with corresponding DMRs) showed significant proteomic changes
indicating that DNA methylation changes were transmitted to protein levels. Of the 63
down-regulated proteins and genes, DNA methylation of majority of genes occurred in the
promoter region. Methylation occurred at more than one region in some genes, for example,
up-methylation of COL18A1 occurred both in the intronic and exonic regions of the gene.
On the other hand, methylation of some genes including MRC2, CRLF1, RAC1 occurred
in the promoter or either intronic/exonic regions. DKK [69] and other genes that have
well established roles in adipogenesis have been shown to have methylation consistent with
direction of expression [214].
More than half of the 73 genes that were methylated and coordinated with protein have
been identified as methylated regions in clinical samples of human tissue adipose tissue that
have been previously linked to obesity and diabetes [159]. Although identified to occur in
adipose tissue, many of these genes still remain to be fully characterized in adipose tissue
and a functional role in the adipogenic process, remains to be defined (e.g. CRLF1) [253].
Methylation of several genes and their protein changes are here reported for the first time
and no literature exists describing their expression in adipose tissue (e.g., RPS7, COLEC12)
or rolein adipogenesis. The integration of gene methylation, and their mRNA and protein
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levels make these likely targets and biomarkers of adipocytes differentiation and contribute
to improving our understanding of this process.
A limitation of this analysis was the use of somamers (e.g., Somalogic platform) that is based
on a subset of proteins that necessarily need to be found in blood. Nevertheless, these diverse
high throughput methods allow for identifying and linking changes at the chromosome level
through protein levels. The integration of these diverse data types was possible by the use of
a highly characterized euploid cell line, as to more complex adipose tissue which would have
multiple cell types.
To be noted, the transcriptomic and methylation data used for this analysis were obtained
from different cells plates cultured at the same time and under identical conditions. We also
analyzed the integration of methylation data with a gene expression dataset obtained from an
experiment conducted on a different day but under identical conditions [157]. This secondary
analysis led to similar but less significant results. For example, significant DMRs were
found only at 384 hours for a total of 198 genes compared with the 8279 DEGs described
here. Sixty-eight of these genes were found to be differentially methylated when using data
from the same experiment. This replication study highlights the difficulties that could be
encountered when integrating data produced under similar conditions but not collected at the
same time, as suggested by Cavill et. al [31].

2.5 Conclusion

In summary, the results presented in this Chapter provide additional insight into the molecular
process of preadipocyte differentiation to mature adipocytes, through the use of supervised
linear omics integration. To reduce the size of the problem, with respect to the genome-wide
study, we used prior knowledge to focus only on genomic regions known to contain differen-
tially expressed genes.
The transcriptomic and methylation data integration indicated that DNA methylation and
resultant gene expression patterns are “pre-programmed” since up or down gene regulation
overlap DMRs that could have the expected (down methylation, up gene expression) or the
reverse (up methylation up gene regulation) pattern.
Importantly, three-omics integration (methylation, gene expression and protein concentra-
tions) identified coordinated changes across the omics data in several genes, indicating that
DNA methylation changes were transmitted to protein levels.

2.6 Supplementary material
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Table 2.12 Most significant enriched pathways from the DAVID analysis of the 218 genes
found to be significantly expressed at the proteomic and transcriptomic level at 384 hours.
Those genes di not show methylation changes. The number of genes in the pathway, the
p-value and FDR are shown in the table.

Category Term No. Genes P-value FDR
UP_KEYWORDS Secreted 116 1.07e-59 1.43e-56

UP_SEQ_FEATURE signal peptide 141 1.57e-56 2.48e-53

GOTERM_CC_DIRECT
GO:0005615∼

extracellular space 99 3.91e-53 5.28e-50

UP_KEYWORDS Disulfide bond 136 9.95e-52 1.33e-48

GOTERM_CC_DIRECT
GO:0005576∼

extracellular region 102 5.39e-49 7.29e-46

UP_KEYWORDS Signal 144 1.08e-48 1.44e-45
UP_SEQ_FEATURE disulfide bond 120 3.99e-44 6.31e-41

UP_KEYWORDS Glycoprotein 129 3.94e-32 5.28e-29

UP_SEQ_FEATURE
glycosylation site:
N-linked (GlcNAc) 121 1.28e-28 2.03e-25



Chapter 3

Comparison of simultaneous and
unsupervised clustering methodologies

The complexity of multi-omics data integration increases as far as more than two molecular
layers are considered. The addition of an higher number of omics data implies more
interactions to be modelled. Those relationships can moreover occur simultaneously, as
stated by the Hypothesis B of interaction (Figure 1.2). To take this into account, multi-
omics integration is approached by the use of specific statistical and mathematical tools.
Recently, there has been an advancement in the development of mathematical methodologies
to simultaneously combine more than two data types. With respect to biological (linear)
integration, simultaneous methods allow researchers to use more information, but have as a
counterpart an increase in their complexity.
In this Chapter, we thus study the impact of several factors on unsupervised simultaneous
integration. We consider the problem of correctly separating sample subtypes. We categorized
those methods with regards to how they handle data before combining them, then we study
the influence of this classification on simulated and real world datasets. Additionally, to
better understand the general problem of multi-omics integration, we study how integration
performance is affected by the data at hand. We consider the number of omics integrated, the
number of subtypes to be recovered, presence of noise and signal strength across different
data types. Finally, since not all the biomolecules in a molecular layer are related to the
phenotype of interest, we study the effect of data pre-processing, such as feature selection,
and show that noise reduction can improve the quality of the retrieved information.
The content of this chapter has been published in 2017 in Briefings in Bionformatics [207].
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3.1 Introduction

Technological advances in high-throughput biological data generation such as Next Gener-
ation Sequencing [217], Mass Spectrometry [54] and Nuclear Magnetic Resonance Spec-
troscopy [59], now allow the simultaneous collection of information from multiple molecular
levels and biological systems. Usually, molecular levels (i.e., -omics) have been investigated
in isolation for their association with a phenotypic trait of interest. This concept is, however,
challenged by many since it views biology linearly and does not consider the interactions
between different molecular levels at the basis of the central dogma of biology [39]. Denis
Noble recently proposed a multi-level causality theory with feedback cycles among biochem-
ical layers [160] where interactions within and across different omics are acknowledged. The
growing availability of multi-omics data and the emerging biological phenotypes originating
from complex traits and interactions increased the need for adequate multi-omics integration
methods [156].
Some reviews and theoretical classifications have recently defined general pipelines to com-
bine omics data. They focused on specific data types or biological systems [28, 31, 152, 175]
and computational differences among methods [11, 230]. In this work we will focus on
statistical methods that simultaneously combine more than two different omics [53, 66],
which is in line with the hypothesis that multiple biomolecular levels interact non-linearly
to contribute to a given phenotype [175]. We will provide a classification of those methods
based on how data are handled before performing integration, and we will explore the effects
of factors such as data pre-processing, number of considered omics, signal strength on
resulting omics integration.
Statistical integration methods can be used to solve several types of biological questions
by reinforcing common signal from different platforms (e.g. genomics and transcrip-
tomics, miRNA and transcriptomics, transcriptomics and proteomics, or proteomics and
metabolomics) or by combining complementary information potentially carried by data
that do not interact directly (e.g. transcriptomics and metabolomics). Multi-omics integra-
tion has been used for the discovery of molecular mechanisms [63, 170, 232], biomarkers
[33, 193, 220, 225] and sample/patient classification [118, 140, 147, 191, 192, 252]. New
methods are constantly developed to challenge these biological questions: recently, Singh
et al. have introduced DIABLO [193], an expansion to more than two data types of the
integrOmics supervised integration method [108], which found biomarkers for three different
Breast Cancer subtypes (Basal, Her2, Luminal A).
This chapter will focus on the sample classification case by comparing statistical unsuper-
vised multi-omics integration methods that deal simultaneously with more than two data
types.
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Rewiev of statistical multi-omics integration approaches

Statistical integration approaches can be classified as multivariate, concatenation-based, and
transformation-based methods according to how data are manipulated before applying the
algorithm.
Multivariate methods [31] are usually based on Partial Least Squares (PLS) [107, 241] or
Canonical Correlation Analysis (CCA) [67, 76] and they treat different omics separately to
find associations between them. We focus here on CCA-based approaches [108, 117, 239],
which, differently to PLS-based methods [17, 36, 108, 114, 121, 122, 193], do not imply any
hierarchy between data. An example of multivariate CCA-based approach is the Multiple
Canonical Correlation Analysis (MCCA) [239], an extended sparse CCA [240].
Concatenation-based integration [175] is performed by combining omics data in a single
matrix, used as input for low-rank based approximation [131] or latent factor analysis [88] in
order to combine the data into a single low-dimensional space [120, 138, 139, 186, 191, 243].
Lock et al. proposed Joint and Individual Variation Explained (JIVE) [120], a method based
on the decomposition of omics data in the sum of three terms: a low-rank joint variation
matrix, a low-rank individual matrix and the residual noise. This method applied to gene
expression and miRNA from Glioblastoma Multiforme (GBM) samples, revealed differences
in GBM subtypes involving both miRNA and gene expression. Another concatenation-
based method is the Multiple Co-Inertia Analysis (MCIA) [138], an extension of Co-Inertia
Analysis [41] to more than two data types. Following covariance optimization between the
global score derived from the concatenated matrix and single omics scores, this method was
applied to mRNA, miRNA and proteomics data and succeeded in distinguishing profiles
from melanoma, leukemia and CNS cell lines [140]. Furthermore, Multiple Factor Analysis
(MFA) [44, 166] is a concatenation-based method whose strategy is instead based on the
principal component analysis (PCA) of the concatenated matrix. MFA was applied in [44] to
copy-number measurements and gene expression from a glioma dataset to study differences
between different tumor subtypes.
Finally, the transformation-based methods integrate omics data after their transformation into
an intermediate and common form, like a graph or a kernel matrix [33, 43, 115, 130, 199, 229].
The main advantage of a transformation step is to preserve individual omics characteristics
that can be lost otherwise [175]. For example, the Similarity Network Fusion (SNF), de-
scribed by Wang et al. [229], creates patient similarity networks from the omics data of
interest. The method recognized three GBM subtypes with different survival profiles from
the integration of DNA methylation, mRNA and miRNA expression.
The methods selected for the comparison are Multiple Canonical Correlation Analysis
(MCCA) [239], Joint and Individual Variation Explained (JIVE) [120], Multiple Co-Inertia
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Analysis (MCIA) [138], Multiple Factor Analysis (MFA) [44] and Similarity Network Fusion
(SNF) [229] (see Table 3.1 and Appendix A for a more detailed description of the methods).

Table 3.1 Summary of the multi-omics integration methods reviewed. The column “Data
scaling” indicates which scaling has been applied to data before integration.

Method Integration
Approach Description Data

Scaling R package

MCCA [239] Multivariate

Seeks linear
combination of

correlated features
from different data

Columns
normalization

(mean=0; sd=1)
PMA

JIVE [120] Concatenation
Separates signal

common to all data
from individual one

Columns
normalization

(mean=0; sd=1)
r.jive

MCIA [138] Concatenation
Projects data on
a common lower

dimensional space

Non-symmetric
correspondence

analysis
omicade4

MFA [44] Concatenation
Projects data on
a common lower

dimensional space

Columns
normalization

(mean=0; sd=1)
FactoMineR

SNF [229] Transformation
Builds a fused
network from
single ones

Columns
normalization

(mean=0; sd=1)
SNFtool

These chosen methods are well-known unsupervised algorithms, representative of the differ-
ent classes of statistical integration approaches and already considered in reviews focused
on specific theoretical characteristics of the methods (unsupervised/supervised [79], use of
networks [11], cluster computation [230], dimension reduction [140]). Our classification,
based on how methods handle data, take into account all these aspects by providing a di-
rect comparison of the methodologies, which, although suggested in [79], has never been
presented in literature. Moreover, these methods can be applied to different types of omics
without any required previous knowledge about the phenotype of interest. Interestingly
as well, these methods are all provided as R packages, making them suitable for a direct
comparison inside the same computing environment. Finally, this paper will also address the
impact of experimental design, data pre-processing and parameter training on the multi-omics
integration outcomes.
A graphical overview of the chapter structure is presented in Figure 3.1 describing the
comparison pipeline, method classification, the tested datasets and result organization.
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3.2 Datasets

Methods were tested on three real datasets and on several simulated dataset, each composed
by three different data types. Pre-processing on the former and generation of the latter are
described in the sections 3.2.1 and 3.2.2.

3.2.1 Real datasets

Methods were tested on three real datasets (murine liver (BXD) [238], platelet reactivity
[256] and Breast Cancer (BRCA) [203] datasets), each one composed by three different data
types including transcriptomics, proteomics, metabolomics, miRNA and epigenomics (see
details in Table 3.2; PCA data visualization and correlation analysis in Figures 3.6-3.8 and
Tables 3.4-3.6).

Table 3.2 Overview of the three real datasets used to compare integration methods. Columns
provide the studied phenotype, the number of subjects (total and for each subtype) and the
omics data included in each dataset.

Dataset Phenotype No.
Subjects Subtypes Omics Platform

BXD
[238]

Mitochondrial
metabolism 66

High Fat
Diet (31)

Chow Diet (35)

Transcriptomics

Proteomics

Metabolomic

Affymetrix
Mouse Gene

1.0 ST
microarrays
SWATH-MS
quantification
MS signatures

Platelet
[256]

Platelet
Reactivity 12

High (6)
Low (6)

Transcriptomics

Proteomics
miRNA

Affymetrix
GeneChip

Human Genome
U133 Plus 2.0

arrays
MS quantification

NanoString

BRCA
[203]

Breast
Cancer 491

Luminal A (225)
Luminal B (120)

HER2
enriched (56)

Basal-like (90)

Epigenomics
Transcriptomics

miRNA

Illumina Infinium
Agilent

microarrays
Illumina

sequencing
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Some data pre-processing was performed prior to integration. The averaged values across
the measured probes of the BXD dataset were retained for each gene. Missing values for
proteins and metabolites measurements were substituted by their median over all the cohorts.
To obtain the proteomics data for the Platelet dataset, the averaged ratio of all peptides for
a given protein was considered (available for download from the Omics Discovery Index,
http://www.omicsdi.org/). Then, quantile normalization was applied to reduce the batch
effect (function normalizeBetweenArrays from limma R package [196]).
For the BRCA dataset [203], the 8 subjects with a Normal-like cancer subtype were excluded
from the analysis, due to the small number of samples. Moreover, 80 randomly selected
subjects were considered for the two largest subtypes, Luminal A and B, to avoid a bias with
respect to these cancer subtypes: missing values for gene expression and methylation data
were then substituted with their median values across the subjects.

3.2.2 Simulated datasets

Several simulated datasets (Figure 3.2), composed of three matrices 60×500 (60 subjects
and 500 features), were created to evaluate the performances of the considered algorithms
in a more controlled context. In each dataset, sample profiles were generated following
normal distributions with mean (m1 . . .m500) and standard deviation (sd1 . . .sd500) derived
from randomly selected gene expressions, methylation levels and miRNA from the Breast
Cancer dataset [203].
Samples were then associated to a class and their profiles were generated according to the
following normal distributions:

• ∼ N (mi,sdi) if the sample belonged to the first class;

• ∼ N (mi −
mi

2
,sdi) if it was assumed to belong to the second one;

• ∼ N (mi +
mi

2
,sdi +

sdi

10
) if it belonged to the third one.

The parameters used in the second and third distributions were chosen to generate well
separated groups of samples. Independent noise ∼ N (0,0.4) was also added to the data
matrices during the generation.
Finally, since not all the molecules in a system usually contribute to a significant signal, the
considered methods were also tested after adding noisy columns to the matrices. Sample
profiles on those columns were again generated as normal distributions with means derived
from the Breast Cancer dataset features and standard deviation equal to 2. To reproduce the
diverse quantity of noise that different omics data often exhibit in real studies, 100 features
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A
C1 (30)

C2 (30)

500 100500 20 500 20

500 100500 20500 20

E C2 (20)
C1(20)

C3 (20)

C

500 100500 20500 20

C2 (20)
C1 (20)

C3 (20)

500 100500 20500 20

D C2 (20)
C1 (20)

C3 (20)

B C2 (20)
C1 (20)

C3 (20)

500 100500 20 500 20

Clear signal Mixed signal Additional noise

data type 1

data type 1

data type 1

data type 1

data type 1

data type 2

data type 2

data type 2

data type 2

data type 2

data type 3

data type 3

data type 3

data type 3

data type 3

A)

Fig. 3.2 Visualization of the simulated scenarios: for each of them, three data types (d1, d2
and d3) of 500 features were generated by creating 60 samples divided in two (case A) or
three groups (cases B-E). When the group is colored in white, it has been generated to be
clearly detectable in the data matrix; otherwise it is colored in gray. 20 (d1 and d2) or 100
(d3) columns of noise were also added to the data.

(the 20% of the total feature number in a single data matrix) were generated for one matrix,
while 20 extra features (the 4%) were generated for the others. This allowed decreasing the
uncertainty of the simulated scenarios since the number of noisy features was reduced in two
over three matrices. This does not affect the accuracy of the work since three real datasets,
whose noise was not under control, were also considered.
Samples have been generated to reproduce the following scenarios, represented in Figure 3.2:
A) two groups of 30 samples clearly distinguishable in each data matrix; B) three groups
of 20 samples clearly distinguishable in each data matrix; C) three groups of 20 samples,
with only one matrix over three generated to distinguish all of them. One group is created
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to be detectable in all the three matrices; D) two groups over three clearly distinguishable
in each matrix, with one of them common to the three matrices. One group is created to
be detectable only in one matrix; E) two groups over three clearly distinguishable in each
matrix, without a common detectable one. PCA data visualization and correlation analysis
can be found in Figures 3.9-3.13 and Tables 3.7-3.11).

3.3 Methods

As input for statistical methods, omics data measured on a common set of n samples, are
thought as matrices Xi, i >= 2, of dimensions n× pi, where pi is the number of features of
omics i (for example, the number of genes, proteins, etc.).

Feature selection

To check the effect of pre-processing on integration accuracy, a feature selection step was
performed for each dataset. The features showing a coefficient of variation (CV) [113] lower
than a selected threshold, were removed from the analysis (see Table 3.3). Coefficient of
variation is a standard way to compare variability in different data types since it is independent
from the scaling. According to [113] the coefficient of variation has been computed by

CV (x) =
sd(x+ k)

mean(x+ k)
, k =

|min(x)|, ifmin(x)< 0

0,otherwise

where x represents the values of a feature across the samples without its maximum and
minimum value. The sum x+ k in the formula makes all feature values positive [57], when
the minimum value of a feature is negative. To remove only features carrying less variation,
a threshold common to the different data types was selected for each dataset. The threshold
for a given dataset was chosen according to the omics-specific distributions of the coefficient
of variation. The common CV value describing low variation across all the omics was
selected. In some cases (BXD dataset) the selected value does not remove features from all
the available omics, however the selection of a greater threshold was observed to cause the
deletion of features carrying signals.
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Table 3.3 Number of features for each dataset before (Complete) and after (Filtered) feature
selection step, with the corresponding threshold on the coefficient of variation (CV) used to
filter the data.

Dataset Omics Complete
(No. features) CV threshold Filtered

(No. features)

BXD
Transcriptomics

Proteomics
Metabolomic

21836
976

2607
0.015

17036
976

2607

Platelet
Transcriptomics

Proteomics
miRNA

54675
663
490

0.02
39888
661
407

BRCA
Epigenomics

Transcriptomics
miRNA

14443
17814
1010

0.2
12474
16419
942

Dataset multi-omics integration

Default parameters were selected to apply integration methods to the data matrices of the
selected datasets. For SNF, the parameter σ of the function affinityMatrix was set to 0.5.
The number of neighbours for each sample, K, was set to n/C, where C is the number of
expected clusters [229], corresponding to the number of real subtypes. In the PMA function
MultiCCA, the parameter ncomponents was set to 3 to compute the first three canonical
variates that can still show high correlation between features. The parameters “penalty” and
“ws” were set respectively to the values “bestpenalties” and “ws.init “previously computed
by the function perm.out. Three-omics and pairwise integration for all the different omics
couples were then computed for each dataset with the five considered methods, both before
and after the feature selection step.

Spectral clustering analysis

After performing integration, similarity matrices have been computed to cluster samples
by spectral clustering, a method known to outperform other clustering algorithms[223].
Similarity matrices were obtained in all cases by means of the affinityMatrix function of the
SNFtool R package [229], with parameters selected according to those of the SNF method.
The function spectralClustering (SNFtool package), was applied to the obtained similarity
matrices to perform samples clustering.
Since the functions used to compute samples clustering are included in the SNFtool, the SNF
algorithm natively supports this analysis. For the other considered methods, the following
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preliminary operations have been performed before applying the affinityMatrix function. (i)
JIVE: the function was applied to the joint matrix produced by the method. (ii) MCCA: the
vectors providing feature weights for each canonical variate are put one after the other to
obtain a matrix of dimension n_variates× total_feature_number. The affinityMatrix function
was applied to the product of this matrix by the concatenated dataset. (iii-iv) MCIA and MFA:
the function was applied to the subject coordinates on the bi-dimensional space computed by
the method.

Clustering evaluation

Once clusters were identified, their agreement with real subtypes was computed with the
F-score index [216]:

Fscore = 2
P∗R
P+R

∈ [0,1]

with P =
TruePositives

TruePositives+FalsePositives
; R =

TruePositives
TruePositives+FalseNegatives

a standard measure assessing the optimality in binary classifications [104, 188]. Real subtypes
were matched with the cluster giving the highest F-score, by avoiding assigning the same
cluster to more than one subtype. A 0 F-score was assigned to subtypes for which no cluster
has been identified. To assess the performance of the overall classification, both the minimum
F-score (worst case) and the averaged F-score were considered.
Although F-score is a more sensible index, also accuracy

Acc =
TruePositives+TrueNegatives

total o f samples

is used in the literature to assess the performance of the methods. Barplots with the resulting
averaged accuracies are reported in Figures 3.14 and 3.15.

Tuning parameters with a training/validation procedure

The SNF method has also been applied after performing a training/validation procedure on
its parameters, to explore the gain of this procedure on the classification performances. Here
the value of SNF parameters σ and K were trained to obtain the highest minimum F-score
on 80% of the samples. The trained parameters were then validated on the remaining 20%
of subjects. F-scores from integration performances before and after feature selection with
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default parameters were also computed on the validation set. Due to the small number of
subjects (12), this analysis was not applied to the Platelet reactivity dataset.

3.4 Results

3.4.1 Simulated scenarios

Influence of signal strength

Regarding the influence of signal strength, we observed a general decrease in classification
performance in all the simulated scenarios when the signal strength across the data types
diminished (Figure 3.3, from A to E, light-shaded bars without noise addition). As expected,
all methods obtained the highest classification accuracy in scenario A (easiest situation,
see Figures 3.2 and 3.9), with averaged F-scores ranging from a minimum of 0.833 to the
best value of 1 obtained by MFA. Classification performances decreased step by step in
scenarios from B to E, where only SNF was able to distinguish all the sample groups in all
the considered scenarios (see Figure 3.3: only SNF has minimum F-score (solid black lines)
higher than zero). The method with the worst performance resulted to be JIVE, especially in
scenario E where no clear signal was common to the three data matrices and therefore no
joint pattern was found by the method.

Influence of noise addition

All methods exhibited a general decrease in performance when noise has been added to the
datasets without applying a feature selection step (Figure 3.3, from A to E, light-shaded bars
with noise addition). MFA was the method less affected by noise in the simpler scenarios,
however, in the most complex case (scenario E), only SNF was still able to distinguish all the
sample groups). JIVE resulted to be the method most affected by noise due to its inability to
detect common signal in scenarios B, C and E. As discussed in [120], noise can overwhelm
the low-rank signal, affecting the permutation testing approach employed by JIVE.

Influence of feature selection

To understand the impact of data pre-processing on multi-omics integration, a preliminary
feature selection step was also applied to all the simulated scenarios with and without noise
addition (Figure 3.3, from A to E, dark-shaded bars). After feature selection, 25 out of the 50
considered trials did not change F-score; 19 improved and 6 diminished. Feature selection did
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Fig. 3.3 Comparison of the integration methods (JIVE, MCCA, MCIA, MFA, SNF) applied
to the simulated scenarios, with and without noise addition. Light and dark-shaded bars rep-
resent the averaged F-scores obtained before and after the feature selection step, respectively.
The solid black lines represent the minimum F-scores. A minimum F-score equal to 0 means
that not all the groups have been recognized. The number of subtypes recognized for each
trial is added above the bars.

not improve the accuracy for JIVE, in line with the method description, because its strategy
is natively able to separate residual noise in an additional matrix without influencing the joint
signal. Conversely, performances of MCCA were the most positively affected by feature
selection, with 6 improved trials over 10. This result is in line with the paper by Witten and
Tibshirani [239], where a fused lasso penalty has been employed to reduce samples noise
before applying MCCA. Although not all the performances benefited from feature sections,
the classification accuracy lost by adding noise to the dataset have been generally recovered
by applying this pre-processing step.
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3.4.2 Real datasets

Three-omics integration versus pairwise integration

Methods comparison was repeated on the real datasets described in Table 3.2: the BXD
(Figure 3.4A), the Platelet (Figure 3.4B) and the Breast Cancer (Figure 3.4C) datasets. The
best classifications were obtained by three-omics integration in all the three datasets even if
this result was obtained by different methods (MCCA for BXD, SNF for Platelet and BRCA).
This highlights the importance of considering additional omics when possible. Interestingly,
we also observed a sort of general agreement on the omics couple more difficult to integrate:
proteins and metabolites for the BXD dataset; gene expression and proteins for the Platelet;
miRNA and methylation for the BRCA.
Applied to the BXD dataset, three-omics integration allowed a good separation of mice with
different diets (Figure 3.4A) with an averaged F-score ranging from a minimum of 0.727 to
the best value of 0.985 obtained by MCCA. JIVE obtained the best classification result by
considering the omics couple genes-proteins (F-score= 0.939) while SNF, MCIA and MFA
by considering genes-metabolites (F-scores of 0.925, 0.97 and 0.97, respectively). The omics
couple proteins-metabolites was the most difficult to integrate for all the approaches except
for MCCA. This result could be related to the fact that some cross-dimensional correlations
have been observed between metabolites and adjacent enzymes in known metabolic pathways
(e.g. TCA cycle) [238].
SNF resulted the method performing better (Figure 3.4B) in the Platelet dataset. It reached
the same F-score of 0.748 both with three-omics integration and with the omics couple
genes-miRNAs. SNF obtained the worst performance with the omics couple genes-proteins.
This could be explained by the weak Spearman correlation observed between the platelet
transcriptome and proteome [123]. MFA obtained the highest F-score of 0.657 for three-
omics integration. Except for genes-proteins integration, MCIA always obtained the same
F-score of 0.657, while MCCA reached the highest F-score by integrating miRNAs and
proteins (F-score= 0.667). JIVE could not recognize common signal in any of the tested
omics sets. This indicates that the amount of signal dividing the two extreme phenotypes
across the different data types is not strong, in line with what observed by Zufferey et al.
[256].
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Fig. 3.4 Comparison of the different integration methods (JIVE, MCCA, MCIA, MFA and
SNF) applied to the real datasets on all the possible omics combinations (provided in the
x-axis). The light and dark-shaded bars represent the averaged F-scores obtained before
and after feature selection, respectively. For each method, the first two bars represent the
results from three-omics integration. The thick black lines represent the minimum F-score
obtained for each trial: a minimum value equal to zero means that not all the subtypes have
been recognized. The number of subtypes recognized for each trial is added above the bars.
The horizontal dashed lines give the highest F-scores reached for the dataset. Panel A) BXD
dataset (G: gene expression, P: proteins, M: metabolites. Panel B) Platelet dataset (G: gene
expression, Mi: miRNA, P: proteins). Panel C) BRCA dataset (G: gene expression, Mi:
miRNA, Me: methylation).
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Differently to previous cases, where a binary classification was required, samples of the
BRCA dataet have been classified in four clinical subtypes: Luminal A, Luminal B, Basal-
like and HER2-enriched (Figure 3.4C). As expected, the obtained F-scores were generally
lower than those of the other studies, confirming the increased level of uncertainty with
respect to binary classification.
As for the Platelet dataset, SNF was the method providing the highest performance (best
result with three-omics integration, F-score= 0.631). SNF was also the only method able to
recognize all the four clinical subtypes. The classification accuracy of MCIA, the second-best
method after SNF, was also highest in three-omics integration (averaged F-score of 0.516),
but the method failed to recognize the HER2-enriched subtype, which resulted to be the
most difficult subtype to recognize, in line with [203]. Also MFA recognized three subtypes
(HER2-enriched excluded), but with lower F-scores: the highest (0.507) was obtained for
genes-miRNA and genes-methylation integration. The latter case provided the highest, but
indeed very low, F-scores for JIVE and MCCA, which could distinguish only Basal-like and
Luminal A. The poor result obtained with JIVE could be motivated by the fact that, since the
HER2-enriched subtype does not provide a signal common to the three omics, the method
could not recognize a shared pattern. This is also in agreement with [163], where JIVE
applied on mRNA, methylation and miRNA from another breast cancer dataset, separated
Basal-like and Luminal A samples from the others.
Basal-like and Luminal A subtypes were recognized by all the methods, especially with
three-omics integration. This agrees with the literature, since the Basal-like subtype is known
to be clearly separated from the Luminal one [203].

Influence of feature selection

The effect of feature selection on the real datasets was also evaluated (Figure 3.4 A, B and C,
dark-shaded bars). A different threshold for the coefficient of variation was selected for each
dataset (see Table 3.3), to reduce data dimensions without losing too much signal. Three-
omics integration performances were not diminished by feature selection (BXD dataset, due
to the mild filtering which reduced only transcriptomic features), and in some cases were
improved by it, as in the Platelet and BRCA datasets (Figure 3.4 B and C). In the latter case,
although, F-scores were only slightly improved.

3.4.3 Influence of parameter training

All classification results presented so far have been computed by applying the reviewed
methods with default parameters. Here we investigate the gain in classification accuracy
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obtained by training parameters according to the training/validation procedure described
in Section 3.3. In this analysis, all classification results have been computed by SNF, the
method that performed better, on average, in all previous results.
The training procedure was applied to all the datasets (Figure 3.5), both simulated and real,
with the exception of the Platelet dataset, where the very limited number of samples prevents
the reliability of the analysis.

Fig. 3.5 Comparison of SNF results on the validation sets by using default parameters
before and after feature selection and by using trained parameters without feature selection.
Averaged F-scores obtained from the three analyses are represented with light, dark and
medium-shaded bars respectively. Minimum F-scores are represented with black lines. A
minimum F-score equal to zero indicates that not all the subtypes have been recognized. The
number of subtypes recognized for each trial is added above the bars. Panel A) Simulated
scenarios. Panel B) BXD dataset (G: gene expression, P: proteins, M: metabolites). Panel
C) BRCA dataset (G: gene expression, Mi: miRNA, Me: methylation).
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According to the literature, all classification results refer to the sample subset devoted to
validation (20% of the dataset samples). This is an important aspect to consider, because in
all the considered scenarios the classification performances obtained by training parameters
outperformed the one obtained by using default parameters when the samples included in
the training set have been also considered (data not shown). This result, however, has been
rarely confirmed in the validation set. Indeed, the training/validation procedure demonstrated
an obvious advantage with respect to the standard unsupervised procedure only in simulated
scenario D.
Integration with default parameters on the simulated datasets outperformed training/validation
in cases A, B and C (Figure 3.5A). An effective gain in training parameters was observed
in scenario D, emphasizing the advantage of training parameters when the signal in the
dataset becomes weak (see Supplementary Figure 7). Such a result has not been confirmed
in scenario E, but this could be motivated by the high complexity of classifying samples
when a clear common signal is missing between the three data matrices (see Figure 3.2 and
Supplementary Figure 8).
On real datasets, integration with default parameters outperformed training/validation in
all cases (Figure 3.5B and C). On the validation set of the BXD dataset (7 CD and 6 HFD
samples), three-omics and genes-metabolites integration after parameter training (K = 12,
σ = 0.59 and K = 7, σ = 0.8 respectively) reached the same averaged F-score (0.923) of
integration with default parameters (Figure 3.5B). Training parameters for the other omics
couples resulted in lower accuracies. On the validation set of the BRCA dataset (11 HER2-
enriched, 45 Luminal A, 24 Luminal B and 18 Basal-like samples), training parameters never
improved integration results (Figure 3.5C), but here the analysis could be influenced by the
different number of samples of the clinical subtypes, which can affect the estimation of some
parameters of the method.

3.4.4 Influence of multiclass classification and experimental design

The results presented so far indicate that data characteristics, such as the number of sample
subtypes and the experimental design, could influence multi-omics integration performances.

Multiclass classification

When samples belong to two subtypes (simulated scenario A, BXD and Platelet datasets) all
the methods, excluded JIVE for Platelet, identified the two sample groups. This confirms
the relative simplicity of recovering information when the signal is given by two phenotypes
and strong across all the data. Similarly, the two different diets in the BXD dataset induced
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a strong signal when single omics were individually assessed for significance. Conversely,
multi-omics integration of datasets with multiple subtypes (BRCA dataset and simulated
scenarios from B to E) resulted more challenging, with generally low F-scores.

Experimental design

The high classification performances observed for the BXD samples can also be explained
in terms of experimental design. In fact, transcriptomics, proteomics and metabolomics
were assessed on the same mice livers, with a split-sample study, which Cavill et al. [31]
suggested being the best experimental design for multi-omics integration. Also in the Platelet
dataset, the omics couple providing the best classification performance was genes-miRNAs
and this could be motivated by the fact that both gene expression and miRNAs were assessed
from the same RNA. This provides an important advantage with respect to the way in which
proteomics data have been obtained: proteins were quantified with different preparations and
three technical replicates for each patient. Moreover, they were separated in two groups, thus
presenting a batch effect on sampling timing that needed to be corrected, and which could
have negatively influenced proteomics integration with the other omics.

3.5 Discussion

Five multi omics integration methods, representative of multivariate, concatenation-based and
transformation-based approaches, were selected for comparison of their ability to integrate
more than two omics data in unsupervised way.
In general, our analysis showed that the integration of three different omics results in better
sample classification than pairwise omics integration. This demonstrates that the additional
knowledge brought by considering multiple omics data at once is essential to increase the
understanding of the mechanisms underlying the characteristics of sample subtypes. Further-
more, F-scores obtained with SNF, the transformation-based method, were the highest in 9
of the 22 trials considered and among the highest in the other cases. MFA performed the best
in 6 trials (simulated datasets), MCIA and MCCA in 3 and JIVE only in one. Additionally,
by also considering the accuracy index (Figures 3.14 and 3.15), SNF demonstrated to be the
best method when the dataset complexity increases.
In addition, the comparisons revealed that the outcome of multi-omics integration is data-
dependent and influenced by the experimental design as suggested by Cavill et al. [31]. This
could thus warrant some preliminary examination of the data at hand to determine the appro-
priate integration method to use. Omics data should be separately analysed and visualized
(e.g. with PCA) to quantify how much signal is carried by each omics and how much of it is
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shared across omics types. Recently, Ciucci et al. [35] proposed an algorithm able to detect
the optimal normalization method to be applied and the most discriminative dimensions. In
cases where PCA is not powerful enough to segregate samples, more advanced techniques
(such as Minimum Curvilinear Embedding [26, 27]) based on non-linear dimension reduction
can be tested to inspect each omics data type at a time [3]. Computing correlation between
the omics could also help in evaluating the strength of inter-omics relationships.
If preliminary analysis reveals shared signals across data (simulated scenario A), a method
like JIVE able to separate noise and to provide the common pattern in an already computed
matrix could be a good choice. The multivariate method MCCA could instead reinforce
visible intra-omics signal, when no evident inter-omics signal (necessary for JIVE) is present
(simulated scenarios C, D). Since MCCA is correlation-based, it could also be applied when
datasets show well correlated features across omics: it obtained the most precise sample clas-
sification for the BXD dataset, where 25% of transcript-proteins pairs correlated significantly
in the CD subtypes (P-value< 0.05), 137 of those with Spearman’s ρ = |0.65| ([238]).
For more complex cases, like simulated scenario E (multiple subtypes and noisy dataset),
SNF, MCIA and MFA, methods based on subjects’ similarities and dissimilarities, can be
better options. Indeed, these methods recognized all the subtypes demonstrating their ability
to recover not only shared but also complementary signals across omics. Moreover, the data
transformation step applied by SNF succeeded in distinguishing all the tumour subtypes of
the BRCA dataset, including the HER2-enriched (weakest signal), while MCIA and MFA
could distinguish three of the four subtypes.
The method comparison performed in this Chapter highlighted the strengths and the weak-
nesses of the selected methods.
As said above, the concatenation method JIVE is, for instance, able to provide the common
signal across omics data in a computed matrix and to separate noise from the data signal.
Thus JIVE resulted useful to integrate omics sharing common patterns (such as genes and
proteins in the BXD dataset). However, in general, this integration method performed worse
than the others. This is probably due to the fact that PCA is used for matrix factorization,
which makes the method suffering from the presence of outliers [79]. Moreover, JIVE can
deal only with Gaussian distributed data. Similar concatenation methods present in literature,
such as iCluster [191] are instead able to integrate also binary and sequential data, but they
require a strong pre-selection of features critical for clustering, which is not a necessary step
for JIVE.
Methods like the multivariate MCCA and the concatenation-based MCIA do not factorize the
input matrices using Principal Component Analysis. To reduce the dimension of the problem
they rely on other approaches namely canonical correlation and co-inertia. With respect to
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JIVE, those methods were shown to be more robust to noise addition and complexity of the
datasets. Despite MCCA obtained the highest performance in classifying the samples of
the BXD dataset, this approach is based on the level of correlation across the omics data:
low levels of correlation would not make it a good choice. In particular, when dealing with
more than two omics data types, only some of them could show high correlation. This
makes difficult for MCCA to gain good three-omics classification: for the real Platelet and
BRCA datasets, three-omics MCCA integration obtained lower precision than some pairwise
integration.
The method comparison presented in this Chapter revealed that MCIA is able to recover not
only shared but also complementary signals across omics. Indeed, the strength of MCIA
relies on the computation of the similarity of sample profiles in the new low-dimensional
space. The MCIA optimization of the covariance among the omics data types, instead of
the optimization of the correlation, allows to obtain more precise information of complex
datasets. It is important to notice that other approaches, based on covariance optimization,
have been recently proposed. One of those method is MINT [178] which however needs
to select a response matrix among the integrated ones. However, with respect to MCIA, it
considers a penalty term in the optimization problem. This additional term, missing in MCIA
could decrease the unwanted systematic variation (e.g. batch effect) that can be present when
integrating data coming from different platforms.
The concatenation method MFA is also based on Principal Component Analysis, which
is used to weight the single omics matrices prior to integration. The method comparison
shows that this use of the PCA is better than the one considered for JIVE. Moreover, MFA
obtained results comparable to MCIA and MCCA in the simulated scenarios, as well as
in the BXD and BRCA real datasets. This is due to the main characteristic of the method:
providing a higher weight to data in the most informative matrices, for example those sharing
more information with the others. Concerning SNF, it resulted the overall best method in
the comparison. However, it was not always able to correctly classify the samples. This is
probably due to the parameter selection: default parameters were chosen to perform all the
omics integration. A more specific choice would have improved the overall classification.
Moreover, one of the SNF parameters is the number of sample neighbours, important for
clustering. Cases with subtypes showing great differences in the number of samples may
suffer from the wrong choice of this parameter. Instead, the transformation of the matrices
in graphs and the use of an information passing algorithms are the main strengths of the
method: they makes possible to reinforce weak, but important, signals across omics. SNF
was indeed the only method able to recognize all the subtypes in both the most complex
simulated dataset (case E) and in the BRCA real dataset. Interestingly, the strengths of
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SNF and MFA (transforming the input matrices in intermediate forms and providing them a
weight) are used in combination by methods mostly based on multiple kernel learning. A
recent example is proposed in [129] where, after transforming omics data in kernels, these
are weighed to obtain the best consensus kernel. Weights provided to the kernels are instead
optimized to preserve the topology of the data in the feature space, making the method well
designed to integrate also sparse omics data.
Another aspect that we studied was feature selection. Feature selection is a popular pre-
processing step and, according to our analysis, it can be useful to integrate omics not showing
a strongly shared signal. However, the thresholds for feature selection need to be selected
carefully. Features can carry signals not detected in single omics analysis but that can make
the difference when more omics types are integrated. To be able to define a unique threshold
of low variability across data types, we used a general method to filter out noise. This can
be substituted by more specific methods considering the data and the problem at hand (e.g.
supervised/unsupervised) or whether the relationships among features should be considered
important while filtering (see [74] for a review of feature selection methods).

3.6 Conclusion

The addition of biological knowledge obtained by considering multiple molecular levels
(omics) to the analysis increases the knowledge extracted from the available data, in the
present case, sample classification precision. Simultaneous omics integration should thus
be considered in future studies with more omics data available. Noise was also shown to
influence integration results; an effect that can be mitigated by adding a feature selection
step before proceeding with data integration. This is especially recommended when dealing
with complex design (such as those having more than two different omics data, or with
low signal strength, or multiple cellular subtypes). However, we believe that statistical
integration methods could still be improved, for example by adding a priori information
about relationships between the different omics data, which could diminish false positive
results, while enhancing the relevance of true molecular interactions.

3.7 Supplementary material

Dataset exploration

To have a better insight into the real and the simulated datasets used for the multi-omics data
integration methods comparison, we visualized the PCA of the single data types with the
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analytical tool PC_corr [35] (Figures 3.6-3.8).
To obtain a better sample segregation, this tool suggests the best normalization methodology
to be applied, together with the most discriminative component. In each of the figures
representing the single omics visualization, black colour is always assigned to the sample
group more to the left, red colour is assigned to the class more on the right.
Additionally, for each dataset we computed Spearman correlation among all the possible
data pairs and their corresponding False Discovery Rate (FDR) with the function corr.test
(R package psych [174]). Real omics datasets were previously filtered due to their high
dimensionality by retaining only features with variance within the fourth quartile. This
allowed the correlation analysis to be also performed on the real datasets. The number of
features from real datasets with Spearman’s |ρ| > 0.5 are listed in Tables 3.4-3.6 of this
section.
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BXD dataset 
Genes Proteins 

Metabolites 

Fig. 3.6 PCA visualization of the omics data composing the BXD dataset. Each block
represents a different omics type: transcriptomic, proteomics and metabolomics. Dots
represent the 66 mice samples with colors representing the Chow Fat Diet (CFD, 35) and
the High Fat Diet (HFD, 31) subtypes. The normalization methods selected are respectively
ZSCORE, QUANTILE and LOG

Table 3.4 Spearman correlation among different omics in the BXD dataset. The percentage
of pairs with Spearman’s |ρ| > 0.5 with respect to the total number of correlated pairs is
shown in parenthesis.

Omics (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Genes (5459) - Metabolites (244) 1331996
26249

(1.97 %)
26249

(100 %)

Genes (5459) – Proteins (652) 3559268
10625
(0.3 %)

10625
(100 %)

Proteins (652) – Metabolites (244) 159088
255

(0.16 %)
255

(100 %)
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Platelet Dataset 
Genes miRNA 

Proteins 

Fig. 3.7 PCA visualization of the omics data composing the Platelet dataset. Each block
represents a different omics type: transcriptomics, miRNA and proteomics. Points correspond
to the high platelet reactivity patients (HPR) and low platelet reactivity patients (LPR). The
selected normalization method is displayed on the top (ZSCORE, ZSCORE and QUANTILE
respectively).

Table 3.5 Spearman correlation among different omics in the Platelet dataset. The percentage
of pairs with Spearman’s |ρ| > 0.5 with respect to the total number of correlated pairs is
shown in parenthesis.

Omics (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Genes (13669) – miRNA (123) 1681287
189345

(11.24 %) 0

Genes (13669) - Proteins (166) 2269054
221657
(9.75 %)

3
(0.001 %)

Proteins (166) – miRNA (123) 20418
2314

(11.33 %)
2 (0.086 %)



3.7 Supplementary material 77

BRCA dataset 
Genes Methylation 

miRNA 

Fig. 3.8 PCA visualization of the omics data in the BRCA dataset. Each block represents
a different omics type: gene expression, methylation and miRNA. Dots represent the 491
patients and are coloured according to their subtype. The normalization methods used to find
the best separation are ZSCORE, QUANTILE and LOG.

Table 3.6 Spearman correlation among different omics in the BRCA dataset. The percentage
of pairs with Spearman’s |ρ| > 0.5 with respect to the total number of correlated pairs is
shown in parenthesis.

Omics (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Genes (4454) – Methylation (3611) 16083394
15395

(0.096 %)
15395

(100 %)

Genes (4454) – miRNA (253) 1126862
2895

(0.26 %)
2895

(100 %)

miRNA (253) – Methylation (3611) 913583
391

(0.04 %)
391

(100 %)
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Simulated case A 
Data Type 1 Data Type 2 

Data Type 3 

Fig. 3.9 PCA visualization of the data types generated for the simulated scenario A. Blocks
represent different data types. Dots represent the 60 generated samples, which were divided
in two groups (of 30 samples), coloured in black and red. Only data type 2 and 3 were
normalized, both with ZSCORE.

Table 3.7 Spearman correlation among different omics in the simualted scenario A. The
percentage of pairs with Spearman’s |ρ|> 0.5 with respect to the total number of correlated
pairs is shown in parenthesis.

Data (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Data Type 1 (500) - Data Type 2 (500) 250000
17

(0.007 %) 0

Data Type 1 (500) - Data Type 3 (500) 250000
405

(0.162 %)
405

(100 %)

Data Type 2 (500) - Data Type 3 (500) 250000
36

(0.014 %) 0
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Simulated case B 
Data Type 1 Data Type 2 

Data Type 3 

Fig. 3.10 PCA visualization of the data types generated for the simulated scenario B. Blocks
represent PCA for the different data types. Dots represent the 60 generated samples, that
were divided in three groups, and represented by different colours. Normalization methods
selected were PARETO SCALING for data type 1 and ZSCORE for the others.

Table 3.8 Spearman correlation among different omics in the BXD dataset. The percentage
of pairs with Spearman’s |ρ| > 0.5 with respect to the total number of correlated pairs is
shown in parenthesis.

Data (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Data Type 1 (500) - Data Type 2 (500) 250000
94

(0.038 %)
67

(71.3 %)

Data Type 1 (500) - Data Type 3 (500) 250000
230

(0.092 %)
228

(99.1 %)

Data Type 2 (500) - Data Type 3 (500) 250000
213

(0.085 %)
208

(97.7 %)
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Simulated case C 
Data Type 1 Data Type 2 

Data Type 3 

Fig. 3.11 PCA visualization of the data types generated for the simulated scenario C. The
PCA of the different data types are shown in different blocks. The 60 generated samples are
represented by different colours. PLUS(ABS(MIN)), PARETO SCALING and ZSCORE
were used to normalize the data.

Table 3.9 Spearman correlation among different omics in the simulated scenario C. The
percentage of pairs with Spearman’s |ρ|> 0.5 with respect to the total number of correlated
pairs is shown in parenthesis.

Data (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Data Type 1 (500) - Data Type 2 (500) 250000
92

(0.037 %)
72

(78.3 %)

Data Type 1 (500) - Data Type 3 (500) 250000
10

(0.004 %) 0

Data Type 2 (500) - Data Type 3 (500) 250000
23

(0.009 %) 0
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Simulated case D 
Data Type 1 Data Type 2 

Data Type 3 

Fig. 3.12 PCA visualization of the data types generated for the simulated scenario D. Blocks
represent different data types while dots represent the 60 generated samples. They were gen-
erated in three groups, and coloured accordingly. PLUS(ABS(MIN)) was used to normalize
data type 1, QUANTILE was used in the other cases.

Table 3.10 Spearman correlation among different omics in the simulated scenario D. The
percentage of pairs with Spearman’s |ρ|> 0.5 with respect to the total number of correlated
pairs is shown in parenthesis.

Data (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Data Type 1 (500) - Data Type 2 (500) 250000
163

(0.065 %)
153

(93.9 %)

Data Type 1 (500) - Data Type 3 (500) 250000
225

(0.09 %)
223

(99.1 %)

Data Type 2 (500) - Data Type 3 (500) 250000
207

(0.083 %)
205

(99 %)
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Simulated case E 
Data Type 1 Data Type 2 

Data Type 3 

Fig. 3.13 PCA visualization of the data types generated for the simulated scenario E. Blocks
represent PCA of the different data types. The 60 generated samples were divided into three
groups, and are represented by differently colored dots. Normalization methods selected
from PC_corr were respectively PLUS(ABS(MIN)), PARETO SCALING and QUANTILE.

Table 3.11 Spearman correlation among different omics in the simulated scenario E. The
percentage of pairs with Spearman’s |ρ|> 0.5 with respect to the total number of correlated
pairs is shown in parenthesis.

Data (No. considered features) No. of total
Features pairs

No. pairs with
|ρ|> 0.5

No. pairs with
FDR < 0.05

Data Type 1 (500) - Data Type 2 (500) 250000
92

(0.037 %)
72

(78.3 %)

Data Type 1 (500) - Data Type 3 (500) 250000
225

(0.09 %)
223

(99.1 %)

Data Type 2 (500) - Data Type 3 (500) 250000
207

(0.083 %)
204

(98.6 %)
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Accuracy results

To better characterize the obtained results, in this section we provide barplots showing the
averaged accuracy of the different methods (Figures 3.14 and 3.15). Similarly to F-score, a
null accuracy was assigned to classes for which no cluster has been identified, as stated in
the Method section (3.3).

Fig. 3.14 Comparison of accuracy of the integration methods (JIVE, MCCA, MCIA, MFA,
SNF) applied to the simulated scenarios, with and without noise addition. Light and dark-
shaded bars represent the averaged accuracies obtained before and after the feature selection
step, respectively. The solid black lines represent the minimum accuracy. A minimum
accuracy equal to 0 means that not all the groups have been recognized. The number of
subtypes recognized for each trial is added above the bars.
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Fig. 3.15 Comparison of accuracy of the integration methods (JIVE, MCCA, MCIA, MFA
and SNF) applied to the real datasets on all the possible omics combinations (provided in
the x-axis). The light and dark-shaded bars represent the averaged accuracy obtained before
and after feature selection, respectively. For each method, the first two bars represent the
results from three-omics integration. The thick black lines represent the minimum accuracy
obtained for each trial: a minimum value equal to zero means that not all the subtypes have
been recognized. The number of subtypes recognized for each trial is added above the bars.
The horizontal dashed lines give the highest accuracy reached for the dataset. Panel A) BXD
dataset (G: gene expression, P: proteins, M: metabolites. Panel B) Platelet dataset (G: gene
expression, Mi: miRNA, P: proteins). Panel C) BRCA dataset (G: gene expression, Mi:
miRNA, Me: methylation).





Chapter 4

Addition of prior knowledge for
multi-omics sample classification

To take advantage of the main strengths of the approaches discussed in the previous chapters
those methodologies can be joined in a unique framework. On one hand, the use of prior
knowledge from linear supervised integration, is beneficial to include information from
recognized biological interactions. Unsupervised simultaneous integration, on the other hand,
allows to inform on unknown omics relations, that would be missed otherwise.
Following these considerations, we propose in this Chapter a strategy aimed at simultaneously
integrate multi-omics data after retrieving information on inter-omics interactions. Building
on the ability of networks to contain high-dimensional information, a prior-knowledge net-
work is generated. Links between the features (e.g. genes, proteins, metabolites) composing
the datasets are derived by a sparse multivariate regression model, which is able to compute
the probabilities of association among variables of two different data types. The algorithm
that obtained best results for sample classification in Chapter 3, SNF, is then used to integrate
the data. We address the problem of correctly classify sample subtypes, to be able to assess
the accuracy of the obtained results by comparing them with the real sample labels.
Moreover, since we previously showed that addition of molecular layers provides more
accurate classifications, we focus on datasets composed by more than two omics data. The
results obtained in this Chapter on simulated datasets indicate that the inclusion of inter-omics
relationships can improve the classification accuracy of unsupervised simultaneous methods,
which simultaneously combine omics data without having access to the sample labels.
The content of this Chapter has been developed during my internship at the Nestlé Institute
of Health Science (NIHS) in Lausanne, under the supervision and help of Dr. Jorg Hager and
Hélène Ruffieux.
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4.1 Introduction

The emergence of a disease is often due to a complex interplay of different molecular layers
(for instance, genome, transcriptome, proteome) [176]. In the last decades, several studies
[34, 110] have started to incorporate in their models prior biological knowledge, such as
known protein-protein interactions or assessed molecular pathways information to increase
accuracy and reliability. With prior biological knowledge, the predictive power of gene
expression data was increased with respect to classical studies [95] and this enhanced the
understanding of the mechanisms of the studied process [176], for instance the presence
of different disease subtypes. As suggested in the recent work by Boluki et al., [15], the
integration of prior knowledge with omics data is critical to classify samples. Genes and
proteins connected to diseases with similar phenotypes are more likely to interact with
each other [61]: without considering these interactions, analysis would yield biased results
and lead to a fragmented picture of the sample classification [257]. The relevance of prior
biological knowledge inclusion is especially useful for classification of subtypes with weak
signal, such as those composed by a low number of samples [15].
Prior knowledge inclusion is also used in multi-omics integration. For example, Multiple
Factor Analysis (MFA) [166], described in Appendix A, was extended to include informa-
tion external to the data [44]. To ease the interpretation of the performed analysis, Gene
Ontology terms [205] are used to assemble modules of genes, which are then superimposed
on the low-dimensional space obtained by the standard algorithm. Applied to copy-number
measurements and gene expression from brain cancer datasets, the method found reliable
markers for glioma diagnostic. The multi-omics integration algorithm proposed by Kim et
al. [96] extends instead a previous approach focused only on gene expression [95]. Its aim
is to search for meta-dimensional knowledge-driven genomic interactions (MKGIs) associ-
ated with clinical outcomes in cancer. Omics are transformed in pathway-based datasets,
composed of patients-pathways matrices, which are then used as input for grammatical
neural networks [150]. Integrated knowledge-based model for clinical response prediction
are finally extracted. Applied to copy number alteration, methylation and gene expression
data from ovarian cancer, the method found pathways associated with cancer prognosis and
with the potential development of therapies targeting the genes in the pathways [96].
Prior knowledge inclusion could help to focus on important dataset features (such as genes,
proteins and other molecules) and on their relationships during the analysis [79], thus reduc-
ing the complexity of the problem at hand. It can moreover reduce the presence of noise
and the number of false positive results. Additionally, inclusion of inter-omics relationships
can simplify the interpretation of the integration results by retaining only findings that are
biologically meaningful. Nevertheless, some issues have to be overcome to include prior



4.1 Introduction 89

knowledge in multi-omics integration algorithms, such as: i) differences in the type of infor-
mation given by measurement and knowledge (quantitative and qualitative, respectively);
ii) amount of data added to already high-dimensional problems; iii) reliability of the source
considered to retrieve prior knowledge.
Networks-based approaches provide a natural way to solve the first two issues. Informa-
tion related to inter-omics interactions can be collected in a prior-knowledge network, and
successively, investigated and included into multi-omics integration models. To describe
the inter-omics connections, nodes of the network can represent the features of the datasets,
while edges can be weighted according to the strength of the relationship. This step allows to
transform the qualitative nature of prior knowledge to quantitative information.
We previously demonstrated that integration is highly data-dependent [207]. Therefore, to
solve the problem of source reliability, relationships between features can be inferred from
the data themselves. Interactions coming from databases can in fact be specific to a certain
disease, not always reflecting the population/species/tissue under study [257]. Data-driven
information can be retrieved by multivariate regression models. Among those model, locus,
a sparse multivariate regression model, allows simultaneous selection of predictors and
associated responses belonging to two different omics data [181]. The output of locus are
the posterior probabilities of association γst , which describe the likelihood that two features
s and t are associated. One of the advantages of this method compared to other similar
methodologies is that it avoids sampling by implementing a deterministic variational infer-
ence strategy. Moreover, regression and variance parameters are exchangeable: features
considered predictors and those used as responses have the same prior probability to be in-
volved in the associations [181] computed by the method.Applied to a metabolite quantitative
trait locus (mQTL) analysis, it successfully recovered both known and new SNPs-metabolite
associations [181].
In this Chapter we thus propose a strategy to improve multi-omics sample classification by
including information about inter-omics interactions in the analysis. The pipeline is based
on the SNF method [229], indicated as the best one for clustering [207], and includes the
sparse multivariate regression model locus to integrate the prior knowledge coming from
inter-omics relationships. This prior knowledge is then used to identify biomolecules more
related to the phenotype under study. The pipeline was tested on simulated datasets and
results show that including in the analysis features more associated with the phenotype has a
positive effect on classification. To obtain more precise classification, we also studied the
impact on integration of tuning parameters used by the SNF algorithm.
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4.2 Methods

The pipeline for multi-omics sample classification consists in two main steps: i) the inves-
tigation of inter-omics associations (see section 4.2.1); ii) the inclusion of the computed
inter-omics relationships in the three-omics integration, to find the features more related
to the phenotype at hand (section 4.2.2). Figure 4.1 provides an overview of the general
pipeline.
The first step of the pipeline uses a multivariate statistical method to find pairwise omics
interactions. Those are then used to build a prior-knowledge network (see section 4.2.1).
In the second step, features are weighted according to their importance in the network.
The qualitative nature of prior knowledge is thus transformed in a quantitative value. The
measurements of each feature are multiplied by the correspondent weight. The unsupervised
Similarity Network Fusion (SNF) method is finally applied to the weighted datasets to
retrieve subtype classification.

4.2.1 Prior knowledge computation

Multivariate and linear pairwise integration

Let’s consider a dataset X = (X1,X2,X3) composed of three different data types Xi. The
sparse multivariate regression model locus [181] was applied to all the possible data couples
(that is, (X1,X2), (X1,X3) and (X2,X3)). Three matrices Γi =

{
γst

i} , i = 1,2,3 were obtained,
where γst

i represents the posterior probabilities of association between features s and t, which
belong to two different data types.
To obtain more reliable feature interactions we computed False Discovery Rates (FDR).
FDRs also allow to avoid too many false positive associations. As pointed out by Efron
[55], False Discovery Rates (firstly introduced by Benjamini and Hochberg in 1995 [8]),
represent an important tool to solve the large-scale hypothesis testing situations, intensified
by the high-throughput technologies development. The Bayesian interpretation of the False
Discovery Rate proposed by Efron [55] and recalled in [181], was used here.
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On this basis, for each matrix Γi, we computed empirical False Discovery Rates. Given a
threshold τ ∈ [0,1], the FDR takes into account the likelihood that associations with posterior
probability γst

i ≥ τ are not active:

FDR(τ) =
∑s,t(1− γst

i)1
{

γst
i ≥ τ

}
∑s,t 1{γst i ≥ τ}

, i = 1,2,3 (4.1)

where

1
{

γst
i ≥ τ

}
=

1 if γst
i ≥ τ, 0 ≤ τ ≤ 1

0 otherwise

Given a False Discovery Rate value T (for example 5%), the formula in 4.1 can be computed
for a grid of probabilities τ ∈ [0,1], in order to select the τ̄i which provides only associations
with FDR(τ̄i)≤ T .
However, the dimensions of the different data types could influence the selection of the
different value of τ̄i i = 1,2,3. If the same grid of τ values is used, a significant larger
number of links giving the FDR value T will come from the highest-dimension data types.
Links obtained by other data would be penalized. To avoid these calibration issues, for each
couple of features s′ and t ′ belonging to two different data types, we computed:

FDR
(
γs′t ′

i)= ∑s,t(1− γst
i)1
{

γst
i ≥ γs′t ′

i}
∑s,t 1{γst i ≥ γs′t ′

i} , i = 1,2,3 (4.2)

where

1
{

γst
i ≥ γs′t ′

i}=
1 if γst

i ≥ γs′t ′
i

0 otherwise

The threshold term τ in Equation 4.1 is substituted by each single probability of posterior
association γs′t ′ . It is thus possible to consider each feature couple independently from all
the others. The term 1

{
γst

i ≥ γs′t ′
i} in equation 4.2 counts how many associations γst

i are
more likely to exist with respect to the one under study, γs′t ′

i. The term (1− γst
i) provides

the probability that the two elements s and t are not connected. In this way, for each matrix
Γi =

{
γst

i}, False Discovery Rate computation is tailored on its own elements. This still
allows the selection of a final general FDR value T , but the posterior probabilities considered
do not suffer from the effect of data dimension.
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Creation of the prior-knowledge network

Once the FDR
(
γs′t ′

i) have been computed for all the data type couples, it is possible to
generate a network G = (V,E). Nodes in V represent the features, while the edges in E
describe the connections between features coming from different data types. As pointed
out in Chapter 1, an edge can be weighted according to the importance of the connection it
represents. In this case, the weight wst of the link connecting the features s and t is given by

wst =
1

FDR(γst i)
. In this way, associations with a low False Discovery Rate (more reliable)

are considered more important in the network.
The network G = (V,E), generated following the rules above, contains information about
inter-omics connections, and can be considered as another layer of knowledge to be integrated.
The prior-knowledge network can be visualized (with tools such as Cytoscape [189]) to study
relationships between features from different data types. To improve network visualization
and results interpretation, a threshold can be set on the FDRs (e.g. T = 5%): only edges
describing False Discovery Rate lower than the selected value T will be visualized. This step
can also be useful to perform feature selection, an important step to remove unwanted noise
(see Chapter 3 and [207]).

4.2.2 Prior knowledge inclusion

Feature weights assignment

Once that the prior-knowledge network G = (V,E) is generated, the aim of the pipeline is to
assign a weight to the nodes (i.e, the features), rather than to the edges.
For each node s ∈ V , the posterior probability γ̃s

i that the node s is connected to at least
another element t ∈V is given by:

γ̃s
i = P

(⋃
t
{γst

i > 0}

)
=

= 1−∏
t
P
(
γs,t

i = 0
)
=

= 1−∏
t

(
1− γs,t

i)
(4.3)

where the index i refers to the matrix Γi = {γst
i}, which stores information about connections

between the data types containing s and t.
A higher value of γ̃s

i is assigned to the nodes more likely to connect to other nodes. Impor-
tantly, we should remember that the edges considered in this case are built across different
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data types: inter-omics relationships are modelled.
As previously done for the network generation, a False Discovery Rate FDR(s′) was com-
puted with equation 4.2 for each node s′ ∈V to avoid calibration issues.

To give more importance to the features showing low False Discovery Rate, feature weights

were computed as ω ′
s =

1
FDR(s′)

, ∀s′ ∈V . Weights computed for the same feature s′ but

obtained from different matrices were summed to a obtain a unique value. Weights were then
normalized with the following formula to lay in the range (0,1]:

x̄ =
x−minx+0.01

maxx−minx+0.01
(4.4)

where the addition of 0.01 helps avoiding weights exactly equal to 0. The inverse of the
assigned weights are then considered as multiplying factor. This shrinks the distance between
samples with similar profiles. Features more related to the subtype provide higher effect in
the SNF similarity matrix (see Appendix A).

Three-omics and prior knowledge integration

The Similarity Network Fusion (SNF) method [229] has been considered to perform the
three-omics integration step of the pipeline, since results obtained in Chapter 3 indicate it as
the best unsupervised clustering method [207].
As described in the Appendix 1, the first step of SNF is the construction of a similarity
matrix W i =

{
wi

h j

}
for each single data type Xi. Those matrices are obtained by computing a

kernel in Gaussian form, which is known to automatically provide a vectorial representation
of the data in the feature space. Gaussian kernels, moreover are among the most used in
classification algorithms, thanks to their ability to generate non-parametric classification
functions [185]. Given two samples xh and x j, the kernel used in the SNF method is computed
as describe in [228]:

wi
h j =

e−ρ2(xh,x j)

σεh j
(4.5)

where ρ represents a metric (e.g. the Euclidean distance) between the samples xh and x j.
The term εh j in the denominator is instead given by:

εh j =
ρ(xh,Nh)+ρ(x j,N j)+ρ(xh,x j)

3
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where ρ(xi,Ni) is the averaged metric between the sample xi and its K nearest neighbours,
Ni. K and σ ∈ [0.3,0.8] are input parameters of the method. The number of neighbours K
was always set to n/C, where n is the number of samples and C is the number of searched
subtypes.
Despite the default metric suggested in the work by Wang et al. [229] is the Euclidean
distance, also correlation or other types of distances can be used as ρ . This is due to the fact
that the input of the SNF method can be feature vectors, sample pairwise distances, or sample
pairwise similarities [229]. The used distance can influence integration results: we explored
the use of generalized Euclidean metric in computing the pairwise distances in equation 4.5.
With this aim, we applied the SNF method to the simulated datasets by substituting the
Euclidean distance with the more general Minkowski distance.
Given two vectors in Rn, X = (x1, . . . ,xn) and Y = (y1, . . . ,yn), the Miknowski distance of
order p is defined as:

ρp(X ,Y ) =

(
n

∑
i=1

|xi − yi|p
)1/p

It is possible to notice that, when p = 2, the Minkowski distance coincides with the Euclidean
distance.
As already did in Chapter 3, integration performances of the SNF method, before and after
weighting the features, were evaluated by applying spectral clustering. The obtained clusters
were compared to the real subtypes: their agreement was evaluated with the F-score. The
averaged F-score across the subtypes was used as index of integration accuracy.
We used the paired Wilcoxon signed-rank test [237] to understand whether the classification
abilities of the unsupervised method are improved by weighting the features. The Wilcoxon
signed-rank test is a non-parametric statistical hypothesis test. It is used to check the
significance of the difference between distributions of results obtained by two methodologies.
We tested the alternative hypothesis of obtaining higher F-scores after that feature weights
were provided. Results with p-value≤ 0.05 were considered statistically significant.

4.2.3 Datasets and simulations

The pipeline presented in the previous sections was tested on simulated datasets. We
generated them with an increasing level of complexity, given by the number of subtypes to
be recognized and by the signal strength across omics.
Since we showed that the integration of more layers increases multi-omics integration
performances [207], we always generated datasets composed by three different data types.
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Simulation 1: assigned feature weights

As a first analysis, we wanted to test the second step of the pipeline. We wanted to understand
if assigning an higher weight to features that are important for the phenotype emergence
provides useful information. With this aim, we run a simulation on a set of simulated datasets.
We generated 100 datasets

Xj = (X j
1 ,X

j
2 ,X

j
3 ), j = 1, . . . ,100

composed by three different data types, X j
i , i = 1,2,3, built as matrices of dimension n× pi.

The data types had the same number of rows (n = 200), representing samples, but different
numbers of columns, respectively p1 = 300, p2 = 1000 and p3 = 700.
The data types were created with R package echoseq [181], which allows the generation of a
response matrix associated to the predictors used as input. As response matrix, we produced a
binary vector y = (y1, . . . ,yn) of dimension n = 200. Each element yh, h = 1 . . .n represents
the subtype (0 or 1) associated to the corresponding sample.
Additionally, for each dataset Xj j = 1 . . .100, a fixed number of "active" features (p0 = 30)
was generated to be responsible of the different states of the response vector. Those features
were randomly selected across the three data types composing the dataset.
To be consistent with the simulated datasets considered in the previous chapters, the functions
of the echoseq package, created to reproduce SNPs values, were modified to generate Gaus-
sian distributed features. The input parameter max_tot_pve (maximum phenotypic variance
explained by all active molecules) was set to 0.9.
For each dataset Xj = (X j

1 ,X
j

2 ,X
j

3 ), j = 1, . . . ,100, weights ω i = (ω i
1, . . . ,ω

i
pi
) were gener-

ated for the pi features contained in Xi i = 1,2,3. For this analysis, weights were assigned
to features according to their role in the subtype emergence. Weights were drawn from two
different Beta distributions, which are frequently used in Bayesian analysis to describe the
initial knowledge regarding the probability of success [127]. Weights for the 30 features that
had been associated to the phenotype were drawn from Beta(α1, β1) with 50 ≤ α1 ≤ 200 and
2 ≤ β1 ≤ 15, in order to obtain values close to 1. On the other hand, weights for the other
features were taken from Beta(α2, β2) with 2 ≤ α2 ≤ 15 and 50 ≤ β2 ≤ 200. This choice
allowed to obtain positive weights distributed close to 0.
Parameters (α1,β1,α2,β2) for the Beta distributions were randomly selected in the specified
ranges. The ranges were chosen to draw values for the important/not important features from
clearly separated distributions.
Once that weights ω i = (ω i

1, . . . ,ω
i
pi
) were drawn, feature values belonging to X j

i were
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multiplied by the factor
1

ω i
h
, h = 1 . . . pi.

The 100 generated datasets Xj were integrated with SNF, before and after weighting the
features. In this case, the Minkowski distances ρp with p = 1,2 were considered.

Simulation 2: feature weights from inter-omics relationships

To test the complete pipeline on datasets with more reliable inter-omics relationships, we
considered the simulated scenarios C, D and E. As described in Chapter 3, they come from
Breast Cancer dataset [203]. They have three subtypes to be recognized and an increased
level of complexity (see Figure 3.2). SNF was applied to those simulated scenarios before
and after the computation of the feature weights from the prior-knowledge network (section
4.2.1). For this analysis we considered the Minkowski distances ρp for 1 ≤ p ≤ 5, in order to
study the effect of the selected metric.
To validate the results obtained for datasets C, D and E, we additionally generated 100
datasets (composed of three data types of dimension 60× 900). For each of them, we
randomly selected a total of 900 features from the Breast Cancer dataset used in Chapter 3.
Profiles of 60 samples, divided in three subtypes, were generated following the creation of
simulated scenario C (for each dataset, three different subtypes were generated, with only one
data type able to distinguish all of them, see Figure 3.2). In this simulation, the Minkowski
distance with p = 1 was used to compute the SNF similarity matrices for the data types, since
results on datasets C, D and E indicate it as the most powerful (see Section 4.3.2).

4.3 Results and Discussion

4.3.1 Effect of prior-knowledge inclusion

We first tested the effect of prior knowledge inclusion to unsupervised multi-omics integration
methods, with a simulation on 100 datasets (Simulation 1).
In Figure 4.2 the distribution of the simulated weights for one of the generated data types is
presented. To better reflect real biological cases, where only a small number of biomolecules
(with respect to the total number of measurements) are responsible for the emergence of the
phenotype, only 1.5% of the generated features has been assigned a high weight (close to 1).
This percentage is represented by the right peak in Figure 4.2. The lower weights, close to 0,
which were assigned to the remaining elements, are instead represented in the peak on the
left.
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Fig. 4.2 Example of weight distribution for one of the 100 generated datasets (Simulation 1).
Weights were drawn from beta distributions: only few elements (related to the phenotype)
had been assigned to a weight close to 1 (right peak). The majority of the features was
instead assigned to a weight close to 0 (left peak), since they were not related to the generated
phenotype.

The 100 generated datasets from Simulation 1 were analysed with the SNF algorithm, with
the aim to correctly classify the 200 samples, which were divided in two subtypes. SNF was
applied both before and after weighting the dataset features.
The performed analysis provided higher F-scores when weighted features were integrated.
This result was obtained not only with the classical Euclidean distance (Minkowski distance
of order p = 2), but also when the similarity matrix (equation 4.5) were computed with
Minkowski distances of different orders.
More in detail, results of the simulation for the Minkowski distance of order p = 1 are
presented in Figure 4.3. With respect to the classical Similarity Network Fusion method
(orange boxplot), SNF integration of weighted datasets (distribution of average F-score in
the green boxplot) provided, on average, more accurate classification.



4.3 Results and Discussion 99

0.3

0.4

0.5

0.6

0.7

Weighted Classic

Method

A
ve

ra
ge

 F
-s

co
re

Fig. 4.3 Boxplots of the averaged F-scores obtained for the Simulation 1. The orange and
green boxplots represents results obtained before (orange) and after (green) weighting the
features. The statistical significance of this result was p-value=10−5.

The statistical significance of this result was assessed with the paired Wilcoxon signed-rank
test. We tested the alternative hypothesis of obtaining higher values in the F-scores distri-
bution when considering weighted data types. The Wilcoxon test provided a significant
p-value= 10−5, which allowed to accept the alternative hypothesis. The statistical signifi-
cance of the result indicate that prioritizing features known to be related to the phenotype
improves the precision of unsupervised integration methods.

4.3.2 Effect of data-driven computation of inter-omics relationship

We then tested the impact of computing the feature weights according to the inter-omics
relationships occurring between the features. With this aim, we applied the complete pipeline
to the simulated scenarios described in Chapter 3. Thus, the relationships between features
belonging to different data types were already established, while those occurring between
features and subtypes were built during the datasets creation.
For each tested dataset, we generated the prior-knowledge network and assigned weights to
features as described in section 4.2.1 and 4.2.2. We then classified samples from the weighted
and not-weighted datasets with SNF.
For this analysis, we computed the kernel matrix described in equation 4.5 starting from
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Minkowski distances of different orders. For each distance we computed the F-score for
values of the SNF parameter σ in the range [0.3,0.8], as suggested in [229]. Results of
this analysis for the simulated scenario C, D and E are shown in Figures 4.4, 4.5 and 4.6
respectively.
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Fig. 4.4 Classification results using SNF data integration on simulated scenario C before
(solid lines) and after (dashed lines) weighting the data. Colours represent Minkowski
distances of different order. On the x-axis there are the values for the parameter σ (sigma) of
the SNF method, on the y-axis the averaged F-score obtained for each considered case.
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Fig. 4.5 Classification results using SNF data integration on simulated scenario D before
(solid lines) and after (dashed lines) weighting the data. Colours represent Minkowski
distances of different order. On the x-axis there are the values for the parameter σ (sigma) of
the SNF method, on the y-axis the averaged F-score obtained for each considered case.
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Fig. 4.6 Classification results using SNF data integration on simulated scenario E before
(solid lines) and after (dashed lines) weighting the data. Colours represent Minkowski
distances of different order. On the x-axis there are the values for the parameter σ (sigma) of
the SNF method, on the y-axis the averaged F-score obtained for each considered case.
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For the simplest among the considered cases, scenario C (Figure 4.4), the same maximum
F-scores (0.967) were obtained for Minkowski distance of order p = 1 and p = 2. Distances
of higher orders obtained lower accuracies. The use of Minkowski distance of order p = 1
provided instead the highest accuracies in cases D and E. In particular, it performed better
than the Euclidean distance (p = 2). The maximum F-score obtained for scenario D (Figure
4.5) was equal to 0.88 (p = 1, weighted data). In the same case, for p = 2, the maximum
F-score for not-weighted data was equal to 0.83. Similarly, for case E (Figure 4.6), the
distance of order p = 1 provided the highest F-scores either in the weighted (0.866) and
not-weighted (0.634) case. This is confirmed also by the literature: low values of the distance
order p are preferable when similarity between objects coming from high-dimensional data
[1] is measured. Additionally, increasing p was proved to make similarities more susceptible
to the problem dimension. In particular, when p ≥ 1, the Minkowski distance of order p = 1,
(also called Manhattan Distance metric) was shown to perform better than the Euclidean one
[1].
Moreover, from Figures 4.4, 4.5 and 4.6, it is possible to notice that integration performed on
weighted data (dashed lines), resulted on average more robust against the changes of the SNF
parameter σ , with respect to the classic SNF method (solid lines). This trend can be seen also
for Minkowski distances that did not reach the maximum F-score (with F-scores never being
lower than 0.6 for case D and on average close to 0.75 for case E), especially with the standard
Euclidean distance. This suggests that the inclusion of prior knowledge in the integration
pipeline increases the stability of the method. Indeed, in this case, integration relies on more
information. Since σ is an input parameter of the SNF method, an improved stability against
its choice is useful especially when complex datasets are integrated: optimization on the
parameter value, that requires more time for complex data, could be avoided or simplified.
In agreement with the results obtained in section 4.3.1, weighting the features provided
F-scores higher than those gained with the completely unsupervised approach. However,
it should be noted that the feature weights here considered were obtained the retrieved
inter-omics relationships (see section 4.2.1). The importance of prior-knowledge inclusion
in multi-omics integration is underlined by the fact that classification accuracy obtained on
weighted datasets increased together with the datasets complexity (from C to E). In simulated
scenario C, for example, the obtained F-scores are similar for the two approaches. In case
D weighted data obtained higher classification for some of the considered distances. On
the other hand, the application of the complete pipeline to case E (the most complex case,
generated with a low shared signal), had an high impact on classification results. F-scores
computed for weighed data were, on average, higher than those obtained with not weighted
data.
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To statistically confirm the results obtained for these three datasets, we applied the integration
pipeline to a set of 100 datasets (Simulation 2). These datasets were generated as simulated
scenario C (see Figure 3.2).
The distribution of the weights obtained for one of those datasets is presented in Figure 4.7:
similarly to the distribution of the simulated weights (see Figure 4.2), a high number of
features was assigned to a low value, while a decreasing number of elements was assigned to
high weights. On the other hand, the transition between high-weighted and low-weighted
features is smoother with respect to the previous case (Figure 4.2). This can be justified by
the fact that the data used to generate weights displayed in Figure 4.7 come from real omics
measurements: features can be connected to the phenotype emergence with several levels of
strength.
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Fig. 4.7 Distribution of the feature weights obtained by the use of the prior-knowledge
network (Simulation 2). These weights were computed for one of the 100 generated datasets.
The majority of the features obtained a weight close to 0, while less elements obtained higher
weights.
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Moreover, the simulated weights considered in section 4.2.3 were provided individually for
each feature. For this analysis, feature weights were instead computed taking into account
relationships with elements coming from other data types.
The results obtained for simulated case C, D and E by the use of a prior-knowledge network
to compute feature weights were confirmed by Simulation 2. Following the results from the
three datasets, Minkowski distance of order p = 1 was used in the simulation, both for the
weighted and not weighted data. As presented in Figure 4.8, weighted data resulted in an
improved classification precision.
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Fig. 4.8 Boxplots of the averaged F-scores obtained for Simulation 2. The different boxplots
represent the results obtained before (orange) and after (green) weighting the features
belonging to the different datasets. The distribution of F-scores with weighted data is higher
than the other with a statistical significance of p-value=4.95×10−14

The distribution of the averaged F-scores obtained after weighting the features on the basis
of the prior-knowledge networks is represented as a green boxplot in Figure 4.8. F-scores
resulted significantly higher with respect to the distribution of those obtained with not
weighted data (orange boxplot, Figure 4.8).
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The averaged F-scores computed by the use of simulated weights (green boxplot in Figure
4.3) obtained a maximum value of 0.73, with a median of the distribution close to 0.57. On
the other hand, when weights were computed on the basis of feature interactions, integration
obtained higher F-scores (green boxplot in Figure 4.8), with a maximum of 1 (perfect
classification) and a median of the distribution equal to 0.72. The statistical significance
of the results described in Figure 4.8 was again assessed with the paired Wilcoxon signed-
rank test, which provided a p-value equal to 4.95×10−14. While only two subtypes were
generated for the previous case (4.3), it should be considered that, in this case, samples were
divided in three subtypes (more complex case). Additionally, with respect to the case where
weights were simulated (Figure 4.3), computation of weights from observed inter-omics
interactions provided not only higher F-scores, but also higher statistical significance. This
indicated that, at least on simulated datasets, the inclusion of knowledge about inter-omics
relationships is beneficial for unsupervised simultaneous methods.

4.4 Conclusion

In this Chapter we tested the effect of the inclusion of prior knowledge to unsupervised
simultaneous integration methods using simulated datasets. We computed inter-omics re-
lationships by the use of a sparse multivariate statistical model, which helped us to build
a prior-knowledge network. Features were then weighted according to their importance in
the network. Weighting the features of simulated datasets improved the precision of the
multi-omics integration method to classify samples. This suggests that integration meth-
ods should consider inter-omics connections, such as those coming from linear integration
methodologies, to increase their power. We should underline that we considered knowledge
retrieved from the data themselves: including into the analysis external prior knowledge,
such as that coming from pathways repositories or protein-protein interactions may strongly
bias the results: other experiments and simulations should be conducted in the future to better
understand the effects of adding external knowledge. We also tested the influence of the type
of distance used to compute the similarity network in the unsupervised method. Although
the Euclidean distance is often selected, other distances such as the Manhattan one should
be considered when dealing with high-dimensional spaces. In general, our results suggest
to carefully select the metric used to measure sample distance. Importantly, on the tested
datasets, prior knowledge inclusion showed a high positive effect on the classification of sam-
ples from complex datasets (e.g. lower signal strength). This suggests that the combination
of unknown interactions (modelled by unsupervised methods) and of statistically significant
computed relations coming from the data themselves can provide a better description of the
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subtypes under study. The results on simulated datasets here described should be considered
as an indication for further research on the importance of prior biological knowledge addition
to multi-omics integration models.



Chapter 5

Discussion

Mathematical and statistical models are necessary tools in the development of accurate meth-
ods to perform multi-omics data integration. The results summarized in this thesis highlight
the differences and strengths of different mathematical approaches to tackle particular biolog-
ical problems involving inter-omics interactions. In particular, we focused on the influence
of the inclusion of linear prior knowledge in simultaneous unsupervised integration of three
different omics data. The models and studies we described here may be further extended: in
the following paragraphs we discuss some of those possible developments that could improve
the understanding of multi-omics data integration methods and their application.
The results presented in Chapter 2 were obtained by applying a linear supervised approach to
real data. The multi-omics integration of methylation, gene expression and protein levels per-
formed in this study provides additional insights into the molecular process of preadipocyte
differentiation to mature adipocytes. It focuses in particular on the influence of DNA methy-
lation changes on the other omics during the adipogenetic process. The impact of the addition
of different doses of fructose was also explored.
The transcriptomic and methylation data integration indicated that DNA methylation and
resultant gene expression patterns are “pre-programmed” since up or down gene regulation
overlap differently methylated regions (DMRs) that could have the expected (down methy-
lation, up gene expression) or the reverse (up methylation up gene regulation) pattern. In
addition, the differentiation program over-rides differences in type and level of nutrients
(fructose versus glucose) consistent with previous studies of the metabolic fate of fructose
[218] and the effect of fructose on glucose metabolism [219] in these cells.
One important result of the study is that, for a set of genes, we observed related changes of
methylation, gene expression and protein levels. This ensures that the integration of more
omics data provides a deeper understanding of biological processes. This fact should also
be considered when addressing other biological problems. Since obesity and its related
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comorbidities are among the major problems caused by westernization of diet, the results that
we obtained suggest to further research on how nutrients affect methylation, gene expression
and protein levels.
Additionally, the influence of the experimental design (factor also addressed in Chapter 3)
on this three-omics integration suggests that, whenever different omics come from exper-
iments taken at the same time and under identical conditions, their combination provides
stronger results, with higher statistical significance. This is in accordance with the study of
experimental design of Cavill et al. [31], and reflects the practical importance of this factor:
researchers should pay attention when designing the study, if the final aim is to integrate
datasets. Moreover, this factor should always be considered when interpreting the results of
integration.
Results obtained by the linear three-omics integration performed in Chapter 2 highlight the
ability of the linear approach of solving molecular mechanism discovery problems in a super-
vised way. This approach can also easily model direct and causal inter-omics associations
and thus describe related changes across the different molecular layers (e.g. genes varying at
the epigenomic, transcriptomic and proteomic level). However, the relationships considered
by linear approaches may not reflect the complete set of biological interactions underneath
the process under study. Indeed, only known relationships are taken into account, forgetting
the unknown, but potentially relevant, inter-omics interactions. Moreover, linear approaches
often model only one direction of causality and are not able to describe changes happening
at the same time in different molecular layers.
The simultaneous unsupervised approach, able to deal with the limitations of linear method-
ologies, was instead studied in deeper in Chapter 3. Several factors that could influence
multi-omics data integration, such as pre-processing, number of omics integrated, and, as
already pointed out, experimental design were explored. We investigated and compared
results related to only one of the possible applications of multi-omics data integration (sam-
ple classification) due to the possibility to clearly assess classification results against real
subtypes. It has to be underlined that the methodologies tested in this Chapter can be applied
to solve other questions with potentially different outcomes. For example, they can be used
to identify biomarkers, which are biomolecules characterizing the considered phenotype. In
this framework, it would be interesting to compare the set sets of biomarkers found by the
different methodologies. This, however, would require quantitative methods able to assess
the power of a selected set of biomolecules to describe the phenotype under study.
With regard to the biological question studied in Chapter 3, instead, considering multiple
molecular levels (more than two), increased the amount of knowledge extracted from the
available data and resulted in a more accurate sample classification. Nevertheless, it should
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be considered that the available omics data are not always suitable for integration: one of
the data types could, for instance, display a high level of noise. Thus, pre-processing and
visualization of the data are important steps to be performed prior than integration. If the
level of noise is too high, the noisy omic data should be removed from the analysis, not
to bias the results. To expand the research on how much multi-omics integration is data
dependent, a possibility would be to consider not only gaussian distributed data, as we did
through this dissertation, but also more heterogeneous data (e.g. microbiome). This would
require the study of more specific methods (like the recent one proposed by Gabasova et al.
in [60]), able to deal with differences in data distributions and inter-omics cluster agreement.
We tested methods in situations known to potentially affect results of multi-omics data
integration such as when considering omics that bring reinforced or complementary signal,
with increasing numbers of subtypes, when noise is present. Among the tested factors, we
found that noise influences integration results; an effect that can be mitigated by the addition
of a feature selection step before proceeding with data integration. The results of our study
especially recommends it when dealing with complex design (such as those having more
than two different omics data, or with low signal strength, or multiple cellular subtypes).
However, we tested the influence of a general type of noise that could affect omics data
(that is, gaussian distributed noise with fixed standard deviation) and of a general feature
selection approach. Thus, a further step to better understand the problem of multi-omics data
integration, could be to test the influence of other types of noise and filtering methods. For
example, it would be interesting to consider datasets generated with different levels of noise,
such as with an increasing number of noisy features or generated with diverse variances.
Noise could also be generated following different distributions (e.g. gaussian, binormal) to
better reflect the distribution of real omics measurements. Similarly, specific filtering method
should be considered for each of the considered data types (like those proposed in [74]) and
to compare the effects of ad hoc feature selection and feature prioritization methods.
The study and results presented in Chapter 3 suggest that simultaneous omics integration
should be considered in future studies with more omics data available. This is due to their
ability to deal with unknown relationships not in a hierarchical way. However, from the
methodology comparison, we also realized that statistical integration methods could still be
improved, for example by the addition of prior information about inter-omics relationships.
This step could diminish false positive results, while enhancing the relevance of true molecu-
lar interactions.
For this reason, we proposed in Chapter 4, a combined pipeline to take advantage of the main
characteristics of the linear supervised and simultaneous unsupervised methodologies. Both
of them can extract useful information from the data, respectively by: i) relying on known
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interactions between different omics data and ii) modelling relationships without considering
whether they are already present in the literature.
We tested the effect of adding prior knowledge to a unsupervised integration methodology
by focusing on sample classification. We computed relationships among elements coming
from different data types by the use of a sparse multivariate statistical model, and weighted
features according to the importance of their connections. On simulated datasets, this last step
improved the classification precision of the multi-omics data integration. This fact suggests
that multi-omics integration methods should consider inter-omics relationships, coming from
linear multi-omics data integration methodologies, to increase their power. Interestingly, the
positive effect of adding prior-knowledge to the simulated scenarios increased together with
the datasets complexity (e.g. lower signal strength). However, further research should be
done to better understand to which extent prior biological knowledge addition is necessary
in multi-omics integration. For example, it would be important to test the effect of prior
knowledge inclusion when dealing with complex scenarios, such as noisy datasets, or when
samples are divided in heterogeneous clusters and not in clusters consistent across the omics.
Despite the classification accuracy obtained with the proposed pipeline were higher than those
gained with the unsupervised methodology alone, some additional steps could be explored.
For example, we only considered interactions computed from the data themselves. Although
this can help in the extraction of data-driven relationships, still the use of already established
connections is missing. Thus, a further step in studying the influence of prior-knowledge
on multi-omics data integration could be the inclusion of information about inter-omics
relationships coming both from the data themselves and from external sources of knowledge,
such as pathways repositories.
However, it should be taken into account that external knowledge external to the experimental
data, for example information coming from protein-protein interactions, is usually tissue or
disease specific. Thus, its inclusion in the analysis may strongly bias the results, leading
to false or incorrect conclusions. As an example, although some cancers share genetic
signatures across individuals, driver mutations are highly diverse: considering information
coming from the wrong tissue could lead to differences in prognosis and therapies [93]. This
suggests that further research should be done to quantify the strength of the bias generated
by the inclusion of external sources of information. Moreover, the origin and the phenotype
described by the prior konwledge should be clearly assessed before its inclusion.
The correct use of external sources of knowledge could instead further decrease the false
discovery rates while increasing the power of knowledge inclusion. To this end, the use of
networks, will still be desirable. An interesting approach in this direction is provided by
weighted multiplex networks [141]: specific indices developed to describe across-omics links
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and their weights can be used to evaluate network properties. In particular, entropy can be
considered to quantify the amount of information encoded in the inter-layers connections.
The indices suggested by this method could give a deeper insight also in other aspects of the
biological problem of sample classification, that is, it would be possible not only to compute
clusters of patients but also to understand the molecular mechanisms underlying the obtained
classification.
Related to the prior-knowledge network computation, we explored methods able to find
a linear predictor/response relationship between two omics data. However, it would be
interesting to test other statistical methods to weight biomolecules and their connections, like
methods relating biomolecules without imposing a hierarchical direction.
In this dissertation we explored some of the most relevant aspects of multi-omics data in-
tegration when considering more than two data types. We focused especially on the effect
of simultaneous and linear combination of data to solve different problems and we pro-
posed a pipeline to combine them. Among the other factor, we also evaluated the effect of
biomolecule selection and the impact of the experimental design on the results reliability.
The topics studied in this thesis and the obtained results are on the cutting edge of research
in multi-omics integration. Several reviews published in the last years pointed out the im-
portance of better understanding the existing integration algorithms [11, 31] and to critically
compare them [79]. The results obtained with the methodology comparison, which as main
result indicate network-based approaches as the most appropriate to perform sample classifi-
cation, are in line with these requests and might aid decisions of researchers working with
omics data.
At the same time, the need to include biological knowledge when combining different
molecular layers is constantly remarked in literature [79, 93, 156]. In this framework, the
importance of our study relies in the positive effect which the inclusion of knowledge was
shown to have, both in multi-omics discovery of mechanisms underlying biological processes
and in subtype classification. In particular, the integration of prior knowledge coming from
the data themselves responds to the need of considering interactions less well described in
the literature.
This aspect acquires relevance since omics data measured from the patients or the samples at
hand could not always be comparable to existing reference datasets. Those are in fact usually
developed for a specific disease or tissue. For example, if applied to real omics data, our
approach could be useful to help the diagnosis of diseases whose genetic aetiology (genetic
factors causing a specific condition) is not well known [93].
Additionally, the use of heterogeneous networks (which consider a different types of nodes
for each type of elements and inter-layers connections), provide a valuable indication to
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overcome the problem of having information from diverse sources, as it is with molecular
layers. Indeed, those networks collect signals that may come from fundamentally different
data, such as discrete genetic variation or continuous gene expression measurements.
Moreover, the linear modelling of two-omics interactions that we used to build the network
gives evidence to support the signals and takes already into account dimensionality problems.
One of the advantages of using networks to collect and study those inter-omics connections
is that, through visualization and further analysis, modules of biomolecules can be found
which may explain the differences in the retrieved subtypes. From this point of view, these
aspects of our approach can be important especially applied to research in cancer profiling
and diagnosis. It is well known that tumor subtypes may have varying survival prognoses and
therapeutic strategies [93]: a more precise subtype classification, together with information
on causal groups of biomolecules, could help researchers and physicians to recommend or
develop more specific therapies.
Nevertheless, high-throughput technologies able to collect and measure different biological
layers keep improving, together with the awareness of strengths, weakness and challenges of
combining data. In the next future, this will lead research towards exploration of possible
new questions to be answered and to not yet considered perspectives. For example, being
able to use results obtained by multi-omics data integration to perform prediction and missing
data imputation would be useful to relate theoretical and data-based discoveries to preventive
medicine, nutrition and other sciences important for improving the quality of life.



Appendix A

Overview of multi-omics integration
statistical methods

Details about the statistical methods used in Chapter 3 to perform multi-omics integration
wll be provided in this Appendix.
The k different omics included in a given dataset (e.g., gene expression or protein abundances)
can be represented as matrices X1 . . .Xk, of dimensions n× pi, (i = 1 . . .k), where n is the
number of subjects while pi is the number of variables measured in the i-th matrix.

The first two methods considered for the performed comparison, Multiple Canonical Correla-
tion Analysis and Multiple Co-Inertia Analysis (see following sections), are based on a latent
factor decomposition to reduce the problem of high-dimensional data [140].
Following this approach, each omics data Xi can be decomposed by means of r latent
components (r < pi) as:

Xi = FQi
T +Ei, i = 1 . . .k

where F is an n× r matrix whose columns contain the co-structures between the different
omics data; Qi is a pi × r matrix whose columns (q1

i . . .q
r
i ) contain the loadings of the pi

variables on the r latent components; Ei is an n× pi matrix storing error terms [140]. The
constraints imposed to find the latent components, and the procedure to compute them, are
different in the two methods (MCCA and MCIA).

Multiple Canonical Correlation Analysis (MCCA)

Multiple Canonical Correlation Analysis [239] is a multivariate based method, implemented
in the R package PMA [240]. Before integration, data columns are scaled to have mean equal



114 Overview of multi-omics integration statistical methods

to zero and standard deviation equal to one.
The method computes h = 1 . . .r latent components, where r is an input parameter of the
algorithm, by searching for linear combinations of maximally correlated canonical variates
from multiple omics, defined as Xiqh

i (i = 1 . . .k and h = 1 . . .r). The maximization problem
to be solved for the first latent component (h = 1) is the following:

max
q1

1...q
1
k

∑
i< j

cor(Xiq1
i ,X jq1

j), with ||q1
i ||2 < 1 ∀= 1 . . .k

where q1
1 . . .q

1
k are the k vectors providing the first column of the matrices Qi (i = 1 . . .k). To

compute the other latent components (h = 2 . . .r), the maximization problem above is solved
again, but in such cases, the omics data X1 . . .Xk are replaced by ad hoc matrices that are
orthogonal to the canonical variates computed in the previous steps. This allows discarding
the already processed information.

The implementation of MCCA we considered [240], extends to more than two omics data a
sparse CCA implementation, computed by adding a lasso penalty term ||qh

i ||1 to the maxi-
mization problem defined above. This allows setting to zero the loadings of the biomolecules
not showing correlation across the data.

Multiple Co-Inertia Analysis (MCIA)

Multiple Co-Inertia Analysis [138] is a concatenation-based method that projects different
omics data in the same lower dimensional space, where similar subjects are located close to
each other. The algorithm is implemented in the R package omicade4 [138].

MCIA first pre-processes the omics data by non-symmetric correspondence analysis [101]
to scale the measurements xi j of each omics data X1 . . .Xk. Each xi j is firstly made positive
by adding the absolute value of the smallest element in the correspondent matrix. Then, for

each xi j the method computes three values: (i) the relative contribution ri =
∑ j xi j

∑i j xi j
of row i

over the total variation in the matrix; (ii) the relative contribution c j =
∑i xi j

∑i j xi j
of column j

over the total variation and (iii) the single element contribution pi j =
xi j

∑i j xi j
. Finally, omics

data elements are scaled as xi j =
pi j

ri
− c j.
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Once the dataset has been preprocessed, the omics data matrices are concatenated to obtain
the matrix X = [X1 . . .Xk]. The algorithm computes, as for MCCA, the h = . . .r latent
components, where r is an input parameter of the method. With this aim, a maximization
problem is solved by extending co-inertia analysis [41]. For the first latent component the
problem is defined as:

max
q1

1...q
1
k

k

∑
i=1

cov2(Xiq1
i ,Xq1), with ||q1

i ||= 1 ∀= 1 . . .k

where the obtained Xiq1
i are called “block scores”. To compute the other latent components,

the maximization problem above is solved for h = 2 . . .r. In those cases, the problem is
applied to residual matrices computed by subtracting, from the matrices Xi, the variance
induced by the loadings of the block scores computed in the previous iteration. As for MCCA,
this step allows discarding the already processed information.

Multiple Factor Analysis (MFA)

Multiple Factor Analysis [44] is another concatenation-based method, whose aim, similarly
to MCIA, is to project data in a lower dimensional space. It is implemented in the Fac-
toMineR [106] R package.

Data columns are firstly scaled to have mean equal to zero and standard deviation equal
to one. Separate analyses are then performed by using PCA on each single omics data
Xi, i = 1 . . .k to obtain the eigenvalues of the matrix of covariance-variance associated to
each Xi. The first eigenvalue λ i

1 of Xi is finally used to scale the corresponding omics matrix

according to the weight
1
λ i

1
in such a way that the information included in each omics matrix

becomes comparable between different omics. Once the single omics data have been scaled,
omics matrices are concatenated to obtain the matrix X = [X1 . . .Xk], which is used as input
of the final global analysis, again based on PCA, that projects the concatenated data in a
lower dimensional space.

Joint and Individual Variation Explained (JIVE)

Joint and Individual Variation Explained [120] is a concatenation-based method, which
assumes that the different k omics data X1 . . .Xk can be defined in terms of a joint variation
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structure plus individual patterns. JIVE is implemented in the R package r.jive [163].

Data are firstly scaled to have mean equal to zero and standard deviation equal to one.
Then, the concatenated matrix X = [X1 . . .Xk] of dimension n× p, with p = p1+ . . .+ pk is
computed. Finally, the method decomposes each omics data Xi in the sum of three terms:

Xi = Ji +Ai + εi, i = 1 . . .k

where J is the matrix storing the joint variation structure (Ji is the n× pi submatrix of J
related to the i-th omics), Ai is the individual pattern of Xi and εi gives the residual noise.

JIVE decomposes data by an iterative procedure: at each step, it firstly estimates the rank
of J and ai (i = 1 . . .k) and then computes those matrices by low-rank approximations [131]
of the concatenated matrix. This step requires minimizing the sum of squared errors of the
residuals εi with the additional constraint JAT

i = 0 to maintain the orthogonality between the
joint and the individual structures. The iterative process ends when convergence is reached,
that is, when the estimated ranks of J and Ai (i = 1 . . .k) remain equal in two consecutive
iterations.

Similarity Network Fusion (SNF)

Similarity Network Fusion [229] is a transformation-based approach implemented in the R
package SNFtool [229].
After normalizing data columns to have mean equal to zero and standard deviation equal to
one, omics data X1 . . .Xk are separately transformed in similarity graphs W i =V,E. For each
W i, the vertices V correspond to the samples x1,x2 . . .xn.
The weight of the edge in E between two subjects xh and x j is computed by scaled exponential
kernels (symmetrical and positive semi-definite matrices) as

wi
h j =

e−ρ2(xh,x j)

σεh j

In the formula, ρ represents the Euclidean distance between the subjects and εh j depends
on the average distance of xh and x j from their K (input parameter of the method) closest
neighbors. The parameter σ is another input of the method, taken in the range [0.3,0.8].
A global similarity matrix Pi,0, and a local one Si, are then derived from the W i. Starting
from the k different Pi,0, the SNF iterative procedure computes, at each step t, an updated set
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of global matrices:

Pi,t = Si ×
(

∑ j ̸=i Pj,t−1

k−1

)
×ST

i ∀i = 1 . . .k

After T iterations (input of the method), the weighted adjacency matrix of the similarity

fused network is computed as
∑i Pi,T

k
. The usage of global similarity matrices allows the

computed fused network to also include edges with low weight when they are represented in
several similarity graphs W i.
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