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The sun came up with no conclusion

Flowers sleeping in their beds

This city’s cemetery’s humming

I’m wide-awake, it’s morning

Road to Joy

Bright Eyes
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Thesis Overview

“So, what should I do?” is the big question this thesis is concerned with. Indeed,

this is the query each player asks himself when in the middle of a game he has to make

his move, as in Part I. And then, again, this is the question that one needs to answer

in Part II when considering a stochastic optimal control problem in the framework of

stochastic volatility modeling.

Part I. A class of mean field games with state dynamics governed by jump-

diffusion processes with controlled jumps

In a nutshell, game theory studies the behaviour of a bunch of decision makers,

called players or agents, when interacting in strategic situations. This means that the

outcome of this interaction, which may be different for every participant, depends not

only on one’s individual choices but also on the decisions taken by the other players.

This connection ties together all the players, meaning that each agent cannot choose the

strategy which maximises its preferences without considering the choices made by the

others. Initially formalized by Von Neumann and Morgenstern in [VNM], over the past

seven decades game theory results have been deeply and widely applied and extended

to represent different situations in countless contexts. And the reason is straightforward

since, as social animals, human beings are required to confront themselves into strategic

decisions on a daily basis.

The distinctive trait of the class of non-cooperative, symmetric games with mean-

field interactions we focus on is the fact that the state evolution of any player is given

by a jump-diffusion process, where the size of the jumps is controlled by the player

itself. Mean-field interaction refers to the fact that, by construction, both the dynamics

of the private state and the possible outcomes of each player depend on the opposing

players only through their overall distribution. This class of games is presented in

Chapter 1. Considering non-cooperative games, the aim is to discuss the existence of

a Nash equilibrium for them, and possibly to compute it. A Nash equilibrium, firstly

introduced by Nash in [Nas+50; Nas51], is a set of strategies, one for each player, that

are optimal for each of them when they are simultaneously played. In other words, none

of the players has an incentive to unilaterally deviate from it, since no other strategy can

improve his outcome if the strategies of the others remain unchanged. Unfortunately, this

is easier said than done, being the computation of Nash equilibria a quite hard problem
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in general. However, since the games studied here are symmetric and charachterised by

an interaction of mean-field type, it is possible to overcome (some of) these issues by

considering their limiting game, that is the game arising when the number of players

grows to infinity, which is in general easier to study. This is the main subject of the

mean-field game theory, introduced by Lasry and Lions in [LL06a; LL06b; LL07] and,

independently, by Huang, Malhamé, and Caines in [HMC06] combining ideas from the

interacting particle system theory and results from the game theory. The key idea is that

when the number of the intervening (homogeneous) players is large enough, the impact

of one particular individual becomes morally negligible compared to the impact due to

the overall population, and therefore it is possible to develop an efficient decision-rule by

paying particular attention on the aggregate behaviour rather than on each individual

player’s choice. Chapter 2 studies the existence of a mean-field game solution for the

class of games introduced in the previous chapter by means of relaxed controls, introduced

by Lacker in [Lac15a] and, independently, by Fischer in [Fis+17]. A mean-field game

solution of the limiting game provides useful information also regarding the finite-player

games and indeed it can be exploited to compute an approximate Nash equilibrium for

them, at least when the number of agents is big enough, as examined in Chapter 3.

Lastly, Chapter 4 presents a possible economic application of the class of games

previously introduced: financial institutions, that are the players of this game, interact on

an interbank lending market, aiming at controlling their level of reserves to balance their

investment portfolio and, at the same time, to meet regulatory requirements. Assuming

that this market is illiquid, each bank can access to it and therefore adjust its reserve

level by borrowing or lending money only at some exogenously given instants, modeled

as jump times of a Poisson process with constant intensity, which in turn represents a

health indicator of the whole system.

Part II. An optimal control approach to stochastic volatility models

Stochastic control theory concerns dynamical systems whose evolution is modeled

by stochastic differential equations depending on a control input which is chosen to

reach the best possible outcome. Chapter 5 presents a (very short) introduction to

stochastic optimal control theory in the case of continuous-time Markov diffusion pro-

cesses, collecting well-known results which are used in the subsequent chapter. If the

deterministic case has been a classical topic since the 1600s, optimal control in stochas-

tic systems is a more recent theory: introduced by Bellman in the mid ‘50s in [Bel58],

it has been widely applied in finance since the late ‘60s, when Merton formulated his

portfolio-consumption model in [Mer69; Mer75] and then Black and Scholes presented

their mathematical model, which bears their names, representing a financial market con-

taining derivative instruments and leading to determine the fair price of a European call

option. Starting from this single query, the results in stochastic optimal control were

used to solve several problems and to answer to disparate questions in different economic

fields.

Chapter 6 formulates and discusses the stochastic optimization problem that is
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the main scope of Part II characterised by a system whose state evolves accordingly to

a diffusion process with (partially) controlled stochastic volatility. Stochastic volatility

models were introduced in the late ‘80s to overcome some biases of the most used models

at that time, inter alia, the Black and Scholes pricing equation which nonetheless is still

daily used, and therefore to better describe financial data series. The model considered

here is a modification of the Heston model, presented in [Hes93]. Indeed, the state is

described by a Heston process, except that a multiplicative control is added into its

volatility component. The main objective is to consider the possible role of an external

actor, whose exogenous contribution is summarised in the control itself.



Part I

A class of mean field games with

state dynamics governed by

jump-diffusion processes with

controlled jumps



Chapter 1

A class of mean field games with

controlled jumps in the state

dynamics

Every human being faces the surrounding world everyday by taking decisions and

making choices based on their personal preferences and values. Being in a social environ-

ment, their behaviuors and their choices cannot ignore the social and cultural structure

where they take place. Reservations in fancy hotels depend on the feedback read on

review sites, the car one decides to buy is conditioned by advertising and by the car

models driven by their neighbours, political preferences depend on the education one

receives, on the discussions with the coworkers, on the opinion polls reported in the

media and much more. We all are affected by the choices made by our families, by our

friends and by our colleagues.

But at the same time, we write reviews about the hotels where we have stayed

overnight, we zip around the city on our brand-new cars and we try to convince our office

mates that our political opinion is, quite obviously, the right one. So, even if affected,

we influence the choices made by our families, by our friends and by our colleagues as

well.

Furthermore, one’s own behaviour and the one of other people influence not only

the choices that every person makes, but also the outcomes of different situations one is

in: which party will run the country after the next round of election? How much will

the new Audi cost? Since, in principle, different people may have different wishes and

preferences, the desired outcome may converge towards a same result or may diverge

leading to a conflicting situation.

It would seem that as members of a economical, political and social life, each of us

is actively playing a game whenever making a choice.

Consider, as an example, a number of firms producing a similar good and therefore

competing in the same market (as in [GLL11],[CS15]). Each producer chooses its level of
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production knowing that the resulting aggregate supply, and therefore the resulting price,

depends not only on his choice but also on the strategies adopted by its competitors. If

the aim is to maximise one’s own gain, which is the proper level each producer has to

choose?

Or, consider the consensus problem (as in [OSFM07], [Nou+13]). A group of people

is required to agree on a final decision concerning a certain subject. Clearly, regarding

one’s own preferences, each person would prefer an outcome rather than another ending

and may try to convince the others of the goodness of its own beliefs. Then, the final

agreement depends upon the preferences and the persuasive skills of all the people.

Decision-makers’ interaction is the main subject of game theory, and in particular

mean field game theory studies a class of differential decision problems characterised by

a large (say huge, or better infinite) number of small and similar (say identical) players

which are coupled together through their empirical average. Models with too many

agents who mutually interact may be inefficient from a mathematical point of view,

since it is not possible to consider simultaneously the dynamics of all the players, all

their possible choices and all the ways these choices reflect on the other participants.

Indeed, it would mean considering too many coupled equations and too many constraints

at the same time, which may be not feasible. Actually, such a model would describe

every detail of the reality, but it would be humanly and, even worse, computationally

impossible to be solved. Therefore, the aim of mean field game theory is to simplify

a (specific) class of large population games to make them more tractable, but without

losing their meaning. Somehow, mean field games look at the big picture.

Mean Field Games (MFGs, henceforth) were introduced by Lasry and Lions in

[LL06a; LL06b; LL07] and, independently, by Huang, Malhamé, and Caines in [HMC06]

combining ideas from the interacting particle system theory and results from the game

theory. Interacting particles become here interacting decision makers, i.e. rational play-

ers provided with preferences and goals who interact in a strategic situation, meaning

that the outcome of the game for each of them depends on its own actions as well as

on the strategies chosen by all the other players. Therefore, the behaviour of the peers

becomes a crucial variable in computing one’s own optimal strategy. Then, considering

again the analogy with an interacting particle system, the outcome of a game is not the

sum of the forces as in a physics model, but it is the sum of rational choices made by the

players. In [GLL11], the authors strongly support that the primary purpose of MFGs is

not (or not only) to compute and describe the inevitable result of a strategic game but it

is to explain why the inevitable emergent phenomenon is a natural response of coherent

behaviours.

The purpose of this chapter is to introduce the class of MFGs we will study in the

following. Section 1.1 presents Gn: a non cooperative, symmetric, n-player game with

mean-field interaction. Here we define how the state of each player evolves in time, what

is his own personal objective and how the other participants may influence both his

dynamics and his outcome. Particular attention will be paid to the characteristics of
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these games which guarantee the possibility of introducing the corresponding theoretical

limiting game. This is the mean field game G∞ arising when the number of players n

grows to infinity, which is introduced in Section 1.2 along with the concept of mean field

game solution.

1.1 The n-player game Gn

We present here the n-player game Gn, a non cooperative, symmetric game with

mean-field coupling that is the main interest of the Part I of this Thesis.

Let T > 0 be a fixed and finite time horizon and let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered

probability space, supporting n independent Brownian motions W i, for i = 1, . . . , n,

and n independent Poisson processes N i, for i = 1, . . . , n with the same time-dependent

intensity function ν(t).The filtration (Ft)t∈[0,T ] is assumed to satisfy the usual conditions,

meaning that it is complete, i.e. F0 contains all the P -null sets, and it is right-continuous,

i.e.

Ft =
⋂
s>t

Fs for all t ∈ [0, T ] .

The state of each player i in the game, denoted by Xi,n
t and belonging to the real

space, evolves in time accordingly to the following stochastic differential equation

dXi,n
t = b(t,Xi,n

t , µnt ) dt+ σ(t,Xi,n
t ) dW i

t + β(t,Xi,n
t− , µ

n
t−, γ

i
t) dÑ

i
t , (1.1)

subjected to a given initial condition

Xi,n
0 = ξi.

Here, Ñ i
t denotes the compensated Poisson process Ñ i

t = Ñ i
t −

∫ t
0 ν(s) ds and µn stands

for the empirical measure of the system Xn = (X1,n, . . . , Xn,n), which is defined for any

time t ∈ [0, T ] as

µnt =
1

n

n∑
i=1

δ
Xi,n
t
, (1.2)

where δx denotes the Dirac delta measure at the point x. In addition we assume that

the initial conditions ξi, i = 1, . . . , n, are mutually independent real-valued random

variables, all distributed according to the same distribution χ and that they are also

independent from the noises W i, N i introduced before.

Observe that the functions b, σ and β appearing in the SDEs (1.1) do not depend on

the specific player i, meaning that they are equal for any agent even if computed relative

to the different players’ positions/strategies.

Each player i has the chance to control his position, or better the dynamics defining

his state, by choosing at any time t ∈ [0, T ] a control input γit . Each control process

γi = (γit)t∈[0,T ], also called the strategy chosen by player i, takes values in the action

space A ⊂ R and it is assumed to be predictable and regular enough to assure the well
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definition of the SDE (1.1). This class of strategies is called the set of the admissible

control processes and it is termed Ai. We assume that the admissibility of a control does

not depend on which specific agent is going to play it, i.e. Ai = A for all i = 1, . . . , n.

Then, an admissible strategy profile γ for the game Gn, also called simply an admissible

strategy, is an n-tuple (γ1, . . . , γn) of admissible controls γi ∈ A for all i = 1, . . . , n,

collecting the control processes chosen by each player.

Observe that strategies can be distinguished between open-loop strategies, if they

depend only on the time variable, i.e. γi = γi(t), and feedback strategies, if the decision

rule selects an action as a function also of the current state of the system x, i.e. γi =

γi(t, x). The more appropriate type depends on the context and in particular it is due to

the information each player has: if any player has knowledge only of the initial state of

the system and he cannot observe either the state of the system or the strategies chosen

by the other players, it is natural to consider open-loop strategies, whereas, it is more

suitable to consider feedback strategies if the players can observe the state of the system

at any time.

Remark 1.1.1. In the following, we will require precise regularity conditions, both on the

dynamics (1.1) and on the admissible strategies A, so as to guarantee the existence of a

unique strong solution to the SDEs (1.1).

Compared to the setting introduced in [Lac15a], which is a key reference for this

Part I, the dynamics of all players in this game are given by jump-diffusion processes

rather than continuous-time diffusion processes. This provides greater flexibility in the

modeling of the players’ dynamics.

In equation (1.1), the control of each player γi appears in the function β which

multiplies the corresponding compensated Poisson Process Ñ i, meaning that player i can

affect the magnitude of the jumps appearing in his dynamics whereas, as formulated, no

control is set on when these jumps occur. Indeed, the intensity function of the Poisson

processes, ν(t), which is the same for all players, is not influenced by any control.

Remark 1.1.2. It should be pointed out that a control component could be also applied

to the drift term b and to the diffusive component σ. This problem is already faced,

and solved, in [Lac15a] and this is the main reason we skip it here. However, a more

complete study is presented in [BCDP17a].

The dynamics of the n players are explicitly coupled together through the empirical

distribution of their positions, µn. Although no strategy appears in the dynamics of

player i but its own, the whole strategy profile (γ1, . . . , γn) has an implicit impact on

the dynamics Xi,n, i.e. Xi,n = Xi,n(γ). Indeed, Xi,n depends on the measure flow

µn = (µnt )t∈[0,T ], whose evolution is in turn affected by the choices made by all the

players in the game, since it depends on the state of all the agents. It will be relevant in

the following observing that the empirical distribution is the only source of interaction

among the evolution of the players’ states, since this is the only way Xj,n and γj may

influence Xi,n if i 6= j.
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Each player takes part in the game in the hope of optimizing his outcome. The result

of Gn relative to player i is given by the expected cost J i,n, defined as

J i,n = E
[∫ T

0
f(t,Xi,n

t , µnt , γ
i
t) dt+ g(Xi,n

T , µnT )

]
, (1.3)

and therefore player i aims to minimise it. As for the dynamics, also in the cost criterion,

both the running cost function f and the terminal cost function g, which depend on the

state and the strategy of the player and on the empirical distribution, are equal for each

player, but then computed with respect to the different players’ positions/strategies.

Furthermore, by its definition, the expected cost faced by player i, J i,n, depends on the

opponents’ choices, i.e. J i,n = J i,n(γ1, . . . , γn), due to (and only through) the empirical

measure µn.

As pointed out before, by construction, both the dynamics of the private state, given

in equation (1.1), and the cost functions, in equation (1.3), of each player depend on

the opposing players only through the distribution of all the participants, µn. This kind

of coupling is said to be of mean-field type. Inter alia, mean field interaction implies

that the dependence on the opponents is anonymous: for each agent it is irrelevant

which other particular player chooses which specific control but he cares only about the

resulting aggregate state position. In other words, considering player i, a permutation

of the other players’ identities would lead unchanged the population distribution µn and

therefore would not modify the game from his point of view since both his dynamics and

his cost functions are invariant under such a permutation.

As defined, Gn is a non cooperative game, meaning that each agent pursues his own

interest which in principle may conflict with the goals of the other players. In multi-

person decision making problem, the meaning of optimality is not univocal, and in the

following we will always consider Nash optimality.

Notation. Given an admissible strategy profile γ = (γ1, . . . , γn) ∈ An and any admissible

control η ∈ A, (η, γ−i) denotes a further admissible strategy where player i deviates from

γ by playing η, wheres all the other players continue playing γj , j 6= i, i.e.

(η, γ−i) = (γ1, . . . , γi−1, η, γi+1, . . . , γn) .

Then,

Definition 1.1.1. An admissible strategy profile γ = (γ1, . . . , γn) ∈ An is a Nash equi-

librium of the n-player game Gn if for each i = 1, . . . , n and for any admissible strategy

η ∈ A
J i,n(η, γ−i) ≥ J i,n(γ) . (1.4)

This definition states that a strategy profile γ = (γ1, . . . , γn) is a Nash equilibrium for

the game Gn if no player has the incentive to unilaterally deviate from it by playing any
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different admissible strategy. Indeed, considering any i, γi is a best response of player i

if his opponents play accordingly to γ, i.e.

γi = arg min
η∈A

J i,n(η, γ−i)

and a unilateral change would lead to a higher (or at least not lower) expected cost.

Sometimes, explicitly computing a Nash equilibrium of a game, or even proving its

existence, is a too difficult task and therefore a slightly weaker equilibrium concept is

introduced. Namely,

Definition 1.1.2. For a given ε ≥ 0, an admissible strategy profile γ = (γ1, . . . , γn) ∈
An is an ε-Nash equilibrium of the n-player game Gn if for each i = 1, . . . , n and for

any admissible strategy η ∈ A

J i,n(η, γ−i) ≥ J i,n(γ)− ε . (1.5)

Naturally, a Nash equilibrium of the game Gn is a 0-Nash equilibrium.

In other words, a strategy profile (γ1, . . . , γn) is an ε-Nash equilibrium if for each player

in the game an unilateral change of his strategy when the others remain unchanged may

lower the expected cost, but providing a maximum saving of ε.

Remark 1.1.3. In the two previous definitions, both Nash and ε-Nash equilibrium are

defined with respect to open loop strategies. Analogously, these definitions can also be

rewritten considering feedback strategies, but a clarification is necessary. Let γi(t, x)

be the feedback rule of player i 6= 1 and consider what happen when player 1 deviates:

since the state processes depend on the mean measure of the system, they depend on the

control of the deviating player and then, even if the feedback function γi is kept fixed,

the resulting strategy γi(t,Xi,n
t ) differs form the one in the initial scenario, violating

the Definitions 1.1.1 and 1.1.2. In this case a different notion of equilibrium may be

consider, the so called feedback Nash equilibrium.

By its definition, searching for a Nash equilibrium means solving, simultaneously, n

optimization problems which are coupled together and, in turn, rely on n dynamic state

processes that are also coupled together. Then, the difficulty of such a task is clear.

Moreover, the complexity of this problem becomes larger and larger as the number of

players increases. However MFG theory is a powerful tool to investigate the existence

of a (approximate) Nash equilibrium at least for particular symmetric games when the

number of the intervening agents is pretty large and the impact of one particular indi-

vidual may be negligible compared to the influence of the overall population. We briefly

present the fundamental underlying idea of this theory in the following section.

A crucial characteristic of these games Gn, which will allow tractability for the cor-

responding limiting game and it is a common requirement in MFG theory, is their

symmetry. First, the population in the game is required to be of homogeneous players,

meaning that the dynamics and the objectives of all the agents are provided by the same
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functions. This is our case since the functions b, σ and β appearing in the dynamics (1.1)

and the cost functions f and g in equation (1.3) do not depend on the specific player,

although then they are evaluated at the state of the related player. Second, as pointed

out before, the interaction between the players is of mean-field type and therefore the

opponents are anonymous since, for each player, a permutation of the other agents’

identity does not modify the game.

1.2 The limiting game G∞

In a game with a small number of players the position, and thus the strategy, of

one single agent can significantly affect the distribution of the state across the players,

µn, and therefore the outcome of the game. On the contrary, when the number of in-

tervening agents in a homogeneous population grows to infinity, the behaviour of just

one single player becomes morally negligible in the aggregate. In this case, large popu-

lation condition can be exploited to develop efficient decision-rules by paying particular

attention on the population behaviour rather than on each individual player’s choice.

See [HMC06]. Indeed, assuming that the population is distributed according to a given

distribution, if the number of players is big enough, when a singular player deviates

from his position in favor to a different one the population distribution does not move

significantly. Therefore the deviation of just one player is not substantially felt by the

other participants. This is the so called decoupling effect. Clearly, what has been said

strongly depends on the fact that the interaction among the agents is of mean field type,

otherwise this would not be true.

Therefore, in a symmetric game with a large homogeneous population and mean

field interaction, it is possible to focus on just one representative player, say player p,

and summarize the contribution of all his opponents through the population distribution,

that is a measure flow µ = (µt)t∈[0,T ], where µt is a probability distribution over the state

space, in our case µt ∈ P(R). The crucial point is that, since (at least theoretically) the

impact of the choice of player p does not influence the population distribution, he can

consider µ as a fixed deterministic function µ : [0, T ] → P(R) when he searches for his

optimal control among all the possible admissible strategies.

In the following we consider the naive, theoretical generalization of the previous game

Gn to the the case when the number of players is infinite. We refer to this game as G∞.

Let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space satisfying the usual conditions,

supporting a Brownian motion W and a Poisson process N with intensity ν(t). The

state of the representative player p, X = (Xt)t∈[0,T ], moves accordingly to

dXt = b(t,Xt, µt) dt+ σ(t,Xt) dWt + β(t,Xt−, µt−, γt) dÑt , (1.6)

subjected to the initial condition

X0 = ξ ∼ χ .
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As before, assumptions granting the existence of a unique strong solution to the SDE (1.6)

will be given in the following and for now we denote by A the admissible strategies that

player p can choose from. Since different choices for the control process γ leads to dif-

ferent controlled dynamics, we will sometime stress this dependence by writing X(γ) or

Xγ to denote the solution to the SDE (1.6) under γ ∈ A.

The effectiveness of an admissible strategy γ is evaluated accordingly to the expected

cost of the game J = J(γ), which is defined by

J = E
[∫ T

0
f(t,Xγ

t , µt, γt) dt+ g(Xγ
T , µT )

]
. (1.7)

The definition of the expected cost J is equal to the one in the game Gn. However, since

at this point the impact of the choice of player p no longer influences the population

distribution being µ considered as fixed, then the outcome J depends directly only on

the strategy γ chosen by the representative player p. Therefore, player p now faces a

single-agent optimization problem and thus an admissible strategy γ̂ ∈ A is optimal if

it attains the minimum of the expected cost, i.e.

J(γ̂) = inf
γ∈A

J(γ) .

Clearly, an optimal strategy γ̂ depends by definition on the population distribution µ

which is selected at the beginning. Therefore, it still depends on the choices of all the

opponents that are summarised in this measure flow µ, but nevertheless, contrary to the

previous case, they are kept fixed in this optimization step.

The subsequent step regards consistency for the choice of the measure flow µ that

player p considers when optimizing. In a nutshell, due to the symmetry of the pre-limit

game Gn the statistical properties of the representative player should approximate the

empirical distribution generated by all the participants. Indeed, since all the infinite

players in the game are identical (their dynamics solve the same SDE (1.6), their objec-

tives matches and they interact symmetrically), being in the same situation, they would

all act in the same way, meaning that they would all choose the same strategy. This

means that an optimal strategy γ̂ for player p is optimal also for all the other players

when they are in place of p. Consequently, also the statistical distribution of the opti-

mally controlled state X γ̂ would be the same for all the players, and therefore it must

coincide with the population distribution, i.e.

L(X γ̂) = µ . (1.8)

In other words, a fixed measure flow µ is consistent if the optimal behaviour of the

representative player computed with respect to it, i.e. γ̂(µ), generates this exactly

measure flow µ. In economics, this is called the rational expectation hypothesis, here,

in this game framework, we refer to condition (1.8) as the MFG consistency condition.

Therefore,
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Definition 1.2.1. A mean field game solution for the game G∞ is an admissible process

γ̂ ∈ A that is optimal, meaning that γ̂ ∈ arg minγ∈A J(γ), and, at the same time, it is

such that the related controlled dynamics X γ̂ satisfies the MFG consistency condition

µt = L(X γ̂
t ) for all t ∈ [0, T ].

A mean field game solution γ̂ of G∞ is said to be Markovian if there exists a mea-

surable function γ̂ : [0, T ]× R→ A such that γ̂t = γ̂(t,Xt−).

So, a MFG solution represents an equilibrium relationship between the individual strate-

gies, required to be best responses to the infinite population behaviour, and the overall

population distribution, required to be collectively determined by the players’ strategies.

The existence of a mean field game solution for this game G∞ is the main subject of

Chapter 2.

In Chapter 3 we look for an approximate Nash equilibrium for the n-player game Gn,

for any n large enough. The construction of these equilibria will strongly depend on the

existence of a (regular enough) MFG solution of the limiting game G∞. Indeed, there

are two different ways to justify why G∞ may be intended as the limit of the games

Gn and therefore why we refer to G∞ as limiting game: convergence or approximation

results. The latter refers to the fact that a Markovian MFG solution for G∞ may

allow to construct approximate Nash equilibria for the corresponding n-player games,

at least if the number of players n is large enough. In particular, we will show that

if there exists a Markovian MFG solution γ̂ = γ̂(t,Xt−) for G∞, then the strategy

profile (γ̂(t,X1,n
t− (γ̂)), . . . , γ̂(t,Xn,n

t− (γ̂))) is a εn-Nash equilibrium for the corresponding

game Gn, with the sequence εn satisfying εn → 0 as n → ∞. This approximation

result is also practically relevant since a direct verification of the existence of Nash

equilibria for n-player games when n is very large is usually not feasible. Furthermore,

the computation of these possible equilibria is not even numerically feasible, due to the

curse of dimensionality. See, e.g., [HMC06], [KLY11], [CD13a], [CD13b], [CL15] as well

as the recent book [Car16] for further details.

On the other hand, the key question in the convergence approach is if and in which

sense a sequence of Nash equilibria for the n-player games Gn converges towards a MFG

solution of a limiting game. Assuming that for each n the game Gn admits a Nash

equilibrium γ̂ = (γ̂1, . . . , γ̂n) then we expect that, at least heuristically, the empirical

measure µn computed with respect to the optimally controlled processes Xi,n(γ̂) con-

verges to a deterministic measure flow µ and that, in the light of the above observations,

this measure µ coincides with the distribution of the optimally controlled state X γ̂ . In

other words, a mean field game solution γ̂ for the game G∞ should minimise

J = E
[∫ T

0
f(t,X γ̂

t ,L(X γ̂
t ), γ̂t) dt+ g(X γ̂

T ,L(X γ̂
T ))

]
,

subjected to X γ̂ solving the McKean-Vlasov SDE{
dX γ̂

t = b(t,X γ̂
t ,L(X γ̂

t )) + σ(t,X γ̂
t ) dWt + β(t−, X γ̂

t−,L(X γ̂
t−, γ̂t−)) dÑt ,

X0 = ξ .
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These results are collected under the name propagation of chaos, see, e.g., [Szn91]. While

the uncontrolled counter-part of MFG, that is particle systems and propagation of chaos

for jump processes, has been thoroughly studied in the probabilistic literature (see, e.g.,

[Gra92; JMW08; ADPF]), MFGs with jumps have not attracted much attention so far.

Indeed, most of the existing literature focuses on non-linear dynamics with continuous

paths, with the exception of few papers such as [HAA14], [KLY11] and the more recent

[CF17]. We do not address this problem for games Gn in the present work.



Chapter 2

Existence of a solution for the

mean field game G∞

In this chapter we study the stochastic differential game G∞ introduced in the pre-

vious Chapter 1. Section 2.1 briefly recalls the mean field game G∞, highlighting its

main characteristics and the main difficulties involved in its study. To overcome these

issues, the previous game is modified and re-written from the perspective of the relaxed

controls. Section 2.2 contains the main result of this chapter, that is the existence of

a relaxed mean field game solution for G∞ whereas Section 2.3 investigates conditions

guaranteeing that a relaxed Markovian mean field game solution can be built.

The novel contributions of what presented here are contained in [BCDP17a]. The

main reference for this chapter is [Lac15a].

2.1 The relaxed MFG problem G∞

As introduced in Chapter 1, the MFG G∞ we are interest in is the following. Fixed a

finite time horizon T > 0, let (Ω,F , (Ft)t∈[0,T ], P ) be a filtered probability space, which

satisfies the usual conditions and supports a standard Brownian motion W and a Poisson

process N with intensity function ν(t). These two processes W and N are assumed to be

independent. The real-valued state variable X, which is controlled through the process

γ, i.e. X = Xγ , follows the dynamics

dXt = b(t,Xt, µt) dt+ σ(t,Xt) dWt + β(t,Xt−, µt−, γt) dÑt, t ∈ [0, T ], (2.1)

with initial condition X0 = ξ distributed according to a real-valued probability distribu-

tion χ ∈ P(R). Here, µ represents a measure flow, meaning that µ : [0, T ]→ µt ∈ P(R) is

a given deterministic function, whose precise meaning will be explained in what follows.

An admissible control process, called also an admissible strategy, is any predictable

control process γ = (γt)t∈[0,T ] taking values in a fixed action space A ⊂ R and guaran-

teeing that the SDE (2.1) admits a unique strong solution. The set of all the admissible
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controls is denoted by A. Then, a control process is chosen in order to minimise the

expected cost

J(γ) = E
[∫ T

0
f(t,Xt, µt, γt)dt+ g(XT , µT )

]
,

and therefore γ̂ ∈ A is said to be optimal if

J(γ̂) = inf
γ∈A

J(γ) . (2.2)

According to Definition 1.2.1, an optimal strategy γ̂ is a MFG solution for the game G∞
if the related controlled state X̂ = X(γ̂) satisfies the MFG consistency condition (1.8),

that is L(X̂t) = µt for all t ∈ [0, T ]. Our aim is to prove the existence of such a solution.

The own definition of mean field game solution, Definition 1.2.1, provides a (possible)

constructive algorithm to build a solution for the MFG G∞. Indeed, this problem can

be solved by splitting it into two parts:

1. Optimization problem. Consider a fixed measure flow µ and solve the stochastic

minimisation problem infγ∈A J(γ) finding the set of all the optimal strategies γ̂ =

γ̂(µ), say Â(µ), which attain the minimum expected cost. Since µ is treated as an

exogenous parameter, it is non affected by the choice of the control strategy γ̂.

Clearly, the existence of an optimal control is not granted for free and existence

analysis has to be developed;

2. Fixed point problem. Find, if there exists, a fixed point of the correspondence

Φ: µ 7→ {L(X γ̂
t )t∈[0,T ] : γ̂ ∈ Â(µ)} . (2.3)

If it exists, then the optimal control process γ∗ ∈ Â(µ) which provides the fixed

point condition L(Xγ∗) = µ is a MFG solution of the game G∞.

Observe that, at least theoretically, the optimization problem in the previous step

should be solved for any measure flow µ.

The main difficulty in the present approach is to show the existence of a fixed point

for the mapping Φ. Indeed, classical results require the continuity of Φ, which is hard

to prove. Lacker in [Lac15a] and, independently, Fischer in [Fis+17] introduce a new

powerful approach, the martingale approach, to avoid the direct study of the regularity

of the correspondence Φ by means of the so called relaxed controls. The basic idea is to

re-define the state variable and the controls on a suitable canonical space supporting all

the randomness sources involved in the SDE (2.1), and identify the solution to the MFG

G∞ no longer with a stochastic process γ but with a probability measure P that can be

seen as the joint law of the control-state pair. Therefore, finding a relaxed solution to

the MFG above will boil down to finding a fixed point for a different suitably defined

set-valued map, easier to study.

The rest of this section introduces the notation used throughout the chapter and

sets up the main assumptions on the state variable and the cost functions as well as the

precise definition of the relaxed mean field game G∞.
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2.1.1 Notation

A real-valued function defined on the time interval [0, T ], x : [0, T ]→ R, is said to be

càdlàg if it is continuous from the right at all t ∈ [0, T ) and with finite left limit for all

t ∈ (0, T ]. The set of all real-valued càdlàg functions defined on [0, T ] will be denoted

by D = D([0, T ];R). Then, it is well known that

Theorem 2.1.1. Each x ∈ D is a bounded, Borel measurable function with either finite

or countably infinite discontinuities.

Proof. See, e.g., [Whi07].

This space D can be endowed with the Skorohod topology J1. Let Λ be the set of

strictly increasing functions ι : [0, T ] → [0, T ] such that ι, along with its inverse ι−1, is

continuous. Then for any x, y ∈ D, J1-metric on D is defined by

dJ1(x, y) = inf
ι∈Λ
{‖x ◦ ι− y‖∞ ∨ ‖ι− I‖∞} ,

where I denotes the identity map. J1 denotes the topology induced by this metric. A

peculiar property of the Skorohod J1 topology is that whenever xn → x with respect

to J1 then both the magnitudes and the locations of the jumps of xn converge to those

of x. Moreover, the space (D,J1) is Polish. See [Whi07, Chapter 3-11-12] for further

details on the càdlàg space and the Skorohod topology J1.

Given any metric space (S, d), B(S) denotes the Borel σ-field of S induced by d.

Then P(S) stands for the set of all probability measures defined on the measurable space

(S,B(S)). Furthermore, for any p ≥ 1, Pp(S) ⊂ P(S) denotes the set all probabilities

on S such that
∫
S d(x, x0)pP (dx) <∞ for some (hence for all) x0 ∈ S. The space Pp(S)

will be endowed with the Wasserstein metric dW,p that is defined for any µ, η ∈ Pp(S)

by

dW,p(µ, η) = inf
π∈Π(µ,η)

(∫
S×S
|x− y|p π(dx, dy)

) 1
p

, (2.4)

where

Π(µ, η) = {π ∈ P(S × S) : π has marginals µ, η} .

More details on the Wasserstein metric can be found in [Vil08, Chapter 6].

For any measure µ ∈ Pp(S) for S being either R or D we will use the notation

|µ|p =

∫
R
|x|pµ(dx),

‖µ‖pt =

∫
D

(|x|∗t )pµ(dx), |x|∗t := sup
s∈[0,t]

|x(s)| .

Moreover, unless otherwise stated, given two measurable spaces (S1,Σ1) and (S2,Σ2),

the product space S1 × S2 will always be endowed with the product σ-fields Σ1 × Σ2 =

σ({B1 ×B2 : B1 ∈ Σ1 , B2 ∈ Σ2}).
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2.1.2 Assumptions

In order to prove the existence of a solution for the MFG G∞ the coefficient functions

b, σ, β, the costs f, g, the initial distribution χ of the state process X and the intensity

measure ν are required to be regular enough, that is to satisfy the following assumptions.

Assumption A. Let p′ > p ≥ 1 be given real numbers.

(A.1) The initial distribution χ belongs to Pp′(R).

(A.2) The intensity measure of the Poisson process ν : [0, T ]→ R+ is bounded, meaning

that there exists a positive constant cν such that for all t ∈ [0, T ]

|ν(t)| ≤ cν .

(A.3) The coefficient functions b : [0, T ] × R × Pp(R) → R, σ : [0, T ] × R → R and

β : [0, T ]×R×Pp(R)×A→ R, as well as the costs f : [0, T ]×R×Pp(R)×A→ R
and g : R× Pp(R)→ R are (jointly) continuous functions in all their variables.

(A.4) The functions b, σ and β are Lipschitz continuous with respect to the state variable

and the mean measure, meaning that there exists a constant c1 > 0 such that for

all t ∈ [0, T ], x, y ∈ R, µ, η ∈ Pp(R) and α ∈ A

|b(t, x, µ)− b(t, y, η)|+ |σ(t, x)− σ(t, y)|+ |β(t, x, µ, α)− β(t, y, η, α)|
≤ c1 (|x− y|+ dW,p(µ, η))

and in their whole domain satisfy the growth condition

|b(t, x, µ)|+
∣∣σ2(t, x)

∣∣+ |β(t, x, µ, α)| ≤ c1

(
1 + |x|+

(∫
R
|z|p µ(dz)

) 1
p

+ |α|

)
.

(A.5) The cost functions f and g satisfy the following growth conditions

−c2 (1 + |x|p + |µ|p) + c3 |α|p
′
≤ f(t, x, µ, α) ≤ c2

(
1 + |x|p + |µ|p + |α|p

′
)
,

|g(x, µ)| ≤ c2 (1 + |x|p + |µ|p) ,

for each t ∈ [0, T ], x ∈ R, µ ∈ Pp(R) and α ∈ A for some positive constant c2 > 0.

Without loss of generality we can assume c1 = c2 = cν .

(A.6) The control space A is a closed subset of R.

The reason why Assumption A is required will be more clear in the proofs. How-

ever it is worth noting that conditions (A.2), (A.3) and (A.4) ensure the existence of

a unique strong solution of the SDE (2.1) governing the evolution of the state vari-

able. Furthermore, the (Lipschitz) continuity and the growth conditions are widely used

in Lemma 2.2.1 and Lemma 2.2.2, which establish good compactness and continuity

properties needed in the fixed point argument when the action space A is compact. Fur-

thermore, along with Assumption (A.6), they are needed when extending the existence

of a MFG solution to the unbounded case.
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2.1.3 Relaxed controls and admissible laws

Let Γ be a measure on the set [0, T ]×A equipped with the product σ-field B([0, T ]×A)

such that its first marginal is given by the Lebesgue measure, meaning that Γ([s, t]×A) =

t− s for all 0 ≤ s ≤ t ≤ T , and its second marginal is a probability distribution over A.

The set of all measures of this type and satisfying∫ T

0

∫
A
|α|p Γ(dt, dα) <∞

will be denoted by V, which is endowed with the normalized Wasserstein metric dV
defined by

dV(Γ,Γ′) = dW,p

(
Γ

T
,
Γ′

T

)
.

Observe that, as soon as the action space A is compact, then also the complete separable

metric space V is compact.

Let ΩD denote the càdlàg space D([0, T ];R) and FD the Borel σ-algebra induced on

D by the Skorohod norm dJ1 . Then, the canonical map from this space (ΩD,FD) into

itself, which is given by

X : ΩD → D

ω → X(ω) = ω ,

generates the canonical filtration FXt = σ (Xs, 0 ≤ s ≤ t). In the same way, the canonical

map on (ΩV ,B([0, T ]×A)) = (V,B([0, T ]×A)), defined as

Γ: ΩV → V
ω → Γ(ω) = Γ ,

provides the canonical filtration FΓ
t = σ(Γ(F ) : F ∈ B([0, T ] × A)). From now on, we

refer to the product space V × D endowed with the product σ-field FXt ⊗ FΓ
t as the

canonical filtered measurable space (Ω̂, F̂ , (F̂t)t∈[0,T ]). Then, a generic element of Ω̂ is

a couple (Γ, X), and, with a slight abuse of notation, its projections onto V and D will

still be denoted respectively by Γ and X.

Let L be the linear integro-differential operator defined on C∞0 (R), i.e. the set of all

infinitely differentiable functions φ : R→ R having compact support, by

Lφ(t, x, µ,Γ) = b(t, x, µ)φ′(x) +
1

2
σ2(t, x)φ′′(x)

+

∫
A

[φ(x+ β(t, x, µ, α))− φ(x)− β(t, x, µ, α)φ′(x)]ν(t)Γ(dα) (2.5)

for each (t, x, µ,Γ) ∈ [0, T ]× R× Pp(R)× P(A). Moreover, for any φ ∈ C∞0 (R) and for

any measure µ ∈ Pp(D), let the operator Mµ,φ
t : Ω̂→ R be defined by

Mµ,φ
t (Γ, X) = φ(Xt)−

∫ t

0
Lφ(s,Xs−, µs−,Γs) ds , t ∈ [0, T ] . (2.6)
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Here µt− = µ ◦ π−1
t− with πt− : D → Rd defined as πt−(x) = xt− for x ∈ D. Notice that

a.e. under the Lebesgue measure we have µt− = µt, where µt is defined similarly as the

image of µ via the mapping πt : D → Rd given by πt(x) = xt, x ∈ D.

Definition 2.1.1. Let µ be a measure in (Pp(D), dW,p) and P be a probability measure

in Pp(Ω̂) over the canonical filtered space (Ω̂, F̂ , F̂t). P is an admissible law with respect

to µ if it satisfies the following conditions:

1. P ◦X−1
0 = χ;

2. EP [
∫ T

0 |Γt|
p dt] <∞;

3. Mµ,φ = (Mµ,φ
t )t∈[0,T ] is a P -martingale for each φ ∈ C∞0 (R).

The set of all the admissible laws computed with respect to µ will be denoted by R(µ).

Notation. Being X any random variable on the probability space (Ω,F , P ) with values

in a measurable space (S,B(S)), P ◦ X−1 represents the measure on (S,B(S)) defined

by

P ◦X−1(B) = P (X ∈ B) ∀B ∈ B(S) .

Remark 2.1.1. According to Definition 2.1.1, R represents a correspondence which maps

each probability measure µ ∈ Pp(D) into the admissible probability measures P over Ω̂

which are consistent with it, i.e.

R : Pp(D) � Pp(Ω̂)

µ� R(µ) = {P : P is an admissible law with respect to µ} .
(2.7)

Given any measure flow µ, R(µ) is nonempty if the martingale problem (2.6) admits at

least one solution. The latter is guaranteed by the fact that the SDE (2.1) has one strong

solution due to the regularity Assumption A. Moreover, R(µ) is a convex set. In fact, if

Q is any convex combination of probability measures inR(µ), that is Q = aP1+(1−a)P2

with a ∈ [0, 1] and P1, P2 ∈ R(µ), then Q is still an element of R(µ). Indeed,

Q ◦X−1
0 = (aP1 + (1− a)P2) ◦X−1

0

= aP1 ◦X−1
0 + (1− a)P2 ◦X−1

0

= aχ+ (1− a)χ = χ ,

and by linearity of the expectation, for any 0 ≤ s ≤ t ≤ T

EQ
[
Mµ,φ

t |Fs
]

= aEP1

[
Mµ,φ

t |Fs
]

+ (1− a)EP2

[
Mµ,φ

t |Fs
]

= aMµ,φ
s + (1− a)Mµ,φ

s =Mµ,φ
s .

Since the elements of R(µ) are defined as solutions of the martingale problem as-

sociated to the operator L, an application of [EKM90, Theorem III-10] and [EKL77,

Théorème 13] provides the following equivalent characterisation of P being an element

of R(µ).
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Lemma 2.1.1. Given a measure µ ∈ Pp(D), the space of the admissible laws R(µ) is

the set of all probability measures Q on some filtered measurable space (Ω′,F ′, (F ′t)t∈[0,T ])

satisfying the usual conditions and supporting an F ′t-adapted process X, an F ′t-adapted

Brownian motion B and a Poisson random measure N on [0, T ]×A with mean measure

ν(t) dt× Γt(dα), such that

Q ◦X−1
0 = χ

and the state process X satisfies the following equation

Xt = X0 +

∫ t

0
b(s,Xs, µs)ds+

∫ t

0
σ(s,Xs)dBs +

∫ t

0

∫
A
β(s,Xs−, µs−, α)Ñ(ds, dα),

(2.8)

where, as usual, Ñ denotes the compensated Poisson random measure, i.e. Ñ(dt, dα) =

N(dt, dα)− ν(t)Γt(dα) dt.

Remark 2.1.2. In Lemma 2.1.1, the measurable space (Ω′,F ′) and the filtration (F ′t)t∈[0,T ]

are not specified in advance. However, by definition, Γ is an element in V and the solution

process X to equation (2.8) has càdlàg paths. Therefore, by considering the measurable

map

Ω′ 3 ω 7→ (Γ(ω), X(ω)) ∈ Ω̂ = V ×D

we can induce a measure P ′ on the canonical space such that (Γ, X) has the same law

under P ′ as it does under P . Thus, in the following, when we consider a P ∈ R(µ), we

may always assume that P is defined on the canonical space (Ω̂, F̂).

Any element Γ ∈ V is called a relaxed control. Indeed, in view of the previous lemma,

choosing a probability P ∈ R(µ) means choosing an intensity measure Γ for the Poisson

random measure N . So, roughly speaking, the control is no longer a process γ in the

function multiplying the Poisson Process in the state dynamics as in the classical game

G∞, see equation (2.1), but it is directly the intensity measure Γ of a Poisson measure,

see equation (2.8). Hence the name relaxed control. Furthermore, a control Γ ∈ V is

said to be strict if Γt = δγ(t) for some A-valued measurable stochastic process γt for

t ∈ [0, T ], where δx denotes the Dirac delta function at the point x.

2.1.4 Relaxed mean-field game solutions

The next step is to generalize the optimization problem (2.2) to the new relaxed

framework. For any measure µ ∈ Pp(D), the corresponding cost function Cµ : Ω̂→ R is

re-defined as

Cµ(Γ, X) =

∫ T

0

∫
A
f(t,Xt, µt, α)Γ(dt, dα) + g(XT , µT ) . (2.9)



2.1 The relaxed MFG problem G∞ 19

Since at this point the measure µ is considered as fixed, the relaxed optimization problem

consists in finding, for any µ ∈ Pp(D), all the consistent admissible law P ∗ ∈ R(µ) so

that the expected cost under P ∗ is minimal, i.e.∫
Ω̂
Cµ dP ∗ = inf

P∈R(µ)

∫
Ω̂
Cµ dP .

Then, in view of the previous discussion, an optimal measure P ∗ ∈ R(µ) is a MFG

relaxed solution if it guarantees that the corresponding state process X is distributed

according to µ, that is the MFG consistency condition P ∗ ◦X−1 = µ.

As for the classical setting, any relaxed MFG solution can be defined by a fixed point

argument. Given a probability distribution µ ∈ Pp(D), let the expected cost related to

µ under P ∈ P(Ω̂), J(µ, P ), be defined by

J : P p(D)× P(Ω̂)→ R ∪ {∞}

(µ, P ) 7→ J(µ, P ) = EP [Cµ] =

∫
Ω̂
Cµ dP , (2.10)

and let R∗ be the correspondence which maps a measure flow µ into the set of the

minimising probabilities consisted with it, i.e.

R∗ : P p(D) � P(Ω̂)

µ� R∗(µ) = arg min
P∈R(µ)

J(µ, P ) . (2.11)

Remark 2.1.3. Observe that R∗(µ) ⊂ Pp(Ω̂) whenever µ ∈ Pp(D). Indeed, by definition

of the set R, any P ∈ R satisfies E[
∫ T

0 |Γt|
p dt] <∞, hence EP [(|X|∗T )p] <∞ in view of

Lemma 2.2.3. Therefore P ∈ Pp(Ω[A]) and being R∗ ⊂ R the conclusion holds.

Therefore,

Definition 2.1.2. A relaxed mean field game solution is a probability distribution P ∈
P(Ω̂) providing a fixed point for the set-valued map

E : Pp(D) � P(D)

µ� E(µ) = {P ◦X−1 : P ∈ R∗(µ) } .
(2.12)

Or, in a more compact form, a relaxed MFG solution is any P ∈ Pp(Ω̂) which satisfies

P ∈ R∗(P ◦X−1) .

A relaxed MFG solution is said to be Markovian if the V-marginal of P , i.e. Γ, sat-

isfies P (Γ(dt, dα) = dtΓ̂(t,Xt−)(dα)) = 1 for a measurable function Γ̂ : [0, T ] × R →
P(A), whereas a relaxed MFG solution is said to be strict Markovian if P (Γ(dt, dα) =

dtδγ̂(t,Xt−)(dα)) = 1 for a measurable process γ̂ : [0, T ]× R→ A.

Remark 2.1.4. The previous game can be generalized to the multidimensional case,

meaning that the state X, the Brownian motion W and the Poisson N can be modeled

as multidimensional processes. We present here the one dimensional case for simplicity.
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2.2 Existence of a relaxed MFG solution

2.2.1 The bounded case

After introducing the relaxed setting, we are ready to prove the existence of such a

relaxed solution for the limiting MFG G∞ under the additional assumption of bound-

edness of the coefficients and compactness of the action space A. Namely,

Assumption B. The coefficients b, σ, β are bounded and the space of actions A is

compact.

Then,

Theorem 2.2.1. Under Assumptions A and B, there exists a relaxed solution for the

relaxed mean field game G∞.

Due to Definition 2.1.2, proving the existence of a relaxed MFG solution to the relaxed

MFG G∞ means exhibiting a fixed point for the correspondence

E : Pp(D) � Pp(D)

µ� E(µ) = {P ◦X−1 : P ∈ R∗(µ) } .
(2.13)

To this end, we will make use of the Kakutani-Fan-Glicksberg Theorem.

Theorem 2.2.2 (Kakutani-Fan-Glicksberg Theorem). Let K be a nonempty compact

convex subset of a locally convex Hausdorff space, and let the correspondence ϕ : K � K

have closed graph and nonempty convex values. Then the set of fixed points of ϕ is

compact and nonempty.

Proof. See, e.g., [AB06, Theorem 17.55].

In order to make the proof of Theorem 2.2.1 more readable, we break it into several

parts. Some more technical results are collect in Subsection 2.2.3 at the end of this

section.

As first step, we prove that

Lemma 2.2.1. Under Assumption A and B, the set-valued correspondence R given in

Definition 2.1.1 is continuous with relatively compact image R(P(D)) =
⋃
µ∈P(D)R(µ)

in P(Ω̂).

Recall that

Definition 2.2.1. A correspondence ϕ : X � Y between topological spaces is

• upper hemicontinuous at x if for every neighborhood U of ϕ(x), there is a neigh-

borhood V of x such that for each z ∈ V , ϕ(z) ⊂ U ;
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• lower hemicontinuous at x if for every open set U such that ϕ(x) ∩ U 6= ∅ there is

a neighborhood V of x such that if z ∈ V , then ϕ(z) ∩ U 6= ∅;

• continuous at x if it is both upper and lower hemicontinuous at x. ϕ is continuous

if it is continuous at each point x ∈ X.

For further details see, e.g., [AB06, Chapter 17].

Before proving Lemma 2.2.1, we first show the relative compactness of a suitable

set of probability measures which in turn will guarantee the relative compactness of the

pushforward measures {P ◦X−1 : P ∈ R(µ)}, for any µ ∈ P(D).

Proposition 2.2.1. Let c > 0 be a given positive constant, p′ > p ≥ 1 and χ a probability

law. Qc ⊂ Pp(Ω̂) is defined as the set of laws Q = P ◦ (X,Γ)−1 of Ω̂-valued random

variables defined on some filtered probability space (Ω,F , {Ft}t∈[0,T ], P ) such that:

1. dXt = b(t,Xt)dt+ σ(t,Xt)dWt +
∫
A β(t,Xt−, α)Ñ(dt, dα), for a Brownian motion

W and a random measure N with intensity Γt(dα)ν(t)dt, where ν is measurable

and bounded by a constant c;

2. P ◦X−1
0 ∼ χ;

3. b : [0, T ] × R → R, σ : [0, T ] × R → R and β : [0, T ] × R × A → R are measurable

functions such that

|b(t, x)|+
∣∣σ2(t, x)

∣∣+ |β(t, x, α)| ≤ c(1 + |x|+ |α|) , (2.14)

for all (t, x, α) ∈ [0, T ]× R×A;

4. E
[
|X0|p

′
+
∫ T

0 |Γt|
p′ dt

]
≤ c.

Then Qc is relatively compact in Pp(Ω̂).

Proof. Since D is a Polish space under J1 metric, Prokhorov’s theorem (cf. [Bil13, The-

orem 5.1, Theorem 5.2]) ensures that a family of probability measures on D is relatively

compact if and only if it is tight. In order to prove the tightness, we will use the Aldous’s

criterion provided in [Bil13, Theorem 16.10]. By proceeding as in Lemma 2.2.3, there

exists a constant C = C(T, c, χ) such that

EQ
[
(|X|∗T )

2
]
≤ CEQ

[
1 + |X0|p

′
+

∫ T

0
|Γt|p

′
dt

]
,

which means that EQ
[
(|X|∗T )

2
]

is bounded by a constant which depends upon Q only

through the initial distribution χ, which is the same for all Q ∈ Qc. Therefore

sup
Q∈Qc

EQ[(|X|∗T )
p
] <∞ . (2.15)
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Then we are left with proving that

lim
δ↓0

sup
Q∈Qc

sup
τ∈TT

EP
[∣∣X(τ+δ)∧T −Xτ

∣∣p] = 0 , (2.16)

where TT denotes the family of all stopping times with values in [0, T ] almost surely. For

each Q ∈ Qc and each stopping time τ ∈ TT , there exists a constant C̃ such that

EQ
[∣∣X(τ+δ)∧T −Xτ

∣∣p] ≤ C̃EQ [∣∣∣∣∣
∫ (τ+δ)∧T

τ
b(t,Xt) dt

∣∣∣∣∣
p]

+ C̃EQ
[∣∣∣∣∣
∫ (τ+δ)∧T

τ
σ(t,Xt) dWt

∣∣∣∣∣
p]

+ C̃EQ
[∣∣∣∣∣
∫ τ+δ)∧T

τ

∫
A
β(t,Xt−, α)Ñ(dt, dα)

∣∣∣∣∣
p]
.

(2.17)

By applying Burkholder-Davis-Gundy inequality as in the proof of Lemma 2.2.3, there

exists a constant C̄ such that for any Q ∈ Qc and τ ∈ TT

EQ
[∣∣X(τ+δ)∧T −Xτ

∣∣p] ≤ C̄EQ [(∫ (τ+δ)∧T

τ
(1 + |X|∗T )dt

)p]

+ C̄EQ
(∫ (τ+δ)∧T

τ
(1 + |X|∗T )dt

) p
2


+ C̄EQ

(∫
A

∫ (τ+δ)∧T

τ
(1 + |X|∗T + |α|)ν(t)Γt(dα)dt

) p
2

 .
(2.18)

From this point onwards one can proceed as in the proof of [Lac15a, Proposition B.4],

and exploiting the boundeded of the intensity ν and of supQ∈Qc E
Q[(|X|∗T )

p
], see equa-

tion (2.15), and the regularity of Γ as assumed by condition (4) one has

lim
δ↓0

sup
Q∈Qc

sup
τ∈TT

EQ
[∣∣X(τ+δ)∧T −Xτ

∣∣p] = 0 .

Hence Aldous’ criterion applies and the proof is completed.

Proof of Lemma 2.2.1. This proof is divided into three parts.

The image of R is relatively compact. Using [Lac15a, Lemma A.2], we prove that

the range of the correspondence R, i.e. R(Pp(D)), is relatively compact in Pp(Ω̂) by

proving that both {P ◦ Γ−1 : P ∈ R(Pp(Ω̂))} and {P ◦ X−1 : P ∈ R(Pp(Ω̂))} are

relatively compact sets in Pp(V) and Pp(D) respectively. The compactness of {P ◦Γ−1 :

P ∈ R(Pp(Ω̂))} in Pp(V) equipped with the p-Wasserstein metric dW,p follows from

the compactness of A, and therefore of V. On the other hand, the compactness of

{P ◦X−1 : P ∈ Pp(Ω̂)} is due to Proposition 2.2.1 and the boundedness of b, σ and β.
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R is upper hemicontinuous. In order to show that R is upper hemicontinuous, we

prove that R is closed, i.e. its graph

GrR = {(µ,R(µ)) : µ ∈ Pp(D)}

is closed. Indeed, by the closed graph theorem, see, e.g., [AB06, Theorem 17.11], being

closed and being upper hemicontinuous are equivalent properties for R. By definition,

R is closed if for each µn → µ ∈ Pp(D) and for each convergent sequence Pn → P

with Pn ∈ R(µn), then P ∈ R(µ). According to Definition 2.1.1, we have to show that

P ◦ X−1
0 = χ and that Mµ,φ, defined as in (2.6) on the canonical filtered probability

space (Ω̂, F̂ , F̂t∈[0,T ], P ), is a P -martingale for all φ ∈ C∞0 (R).

The first condition is satisfied since convergence in probability implies convergence

in distribution and therefore X0
d
= limn→∞X

n
0 , whose law is given by χ.

Regarding the second condition, let s, t ∈ [0, T ] be such that 0 ≤ s ≤ t ≤ T , and

let h be any continuous, F̂s-measurable, bounded function. Since for all n Pn belongs

to R(µn), Mµn,φ is a Pn-martingale on (Ω̂, F̂ , F̂t∈[0,T ]) by construction, and therefore

EPn [(Mµn,φ
t − Mµn,φ

s )h] = 0. Hence to prove that Mµ,φ is a P -martingale for all

φ ∈ C∞0 (R) it suffices to prove that the following limit

lim
n→∞

EP
n
[(Mµn,φ

t −Mµn,φ
s )h] = EP [(Mµ,φ

t −Mµ,φ
s )h] (2.19)

holds true for any h as before. By Taylor’s theorem, the operator Lφ is bounded on

C∞0 (R), since

‖Lφ(t, x, µ,Γ)‖∞ ≤
∥∥φ′(x)b(t, x, µ)

∥∥
∞ +

∥∥∥∥1

2
σ2(t, x)φ′′(x)

∥∥∥∥
∞

+

∥∥∥∥∫
A

|φ′′(x+ ξβ(t, x, µ, α))|
2

β2(t, x, µ, α)ν(t) Γ(dα)

∥∥∥∥
∞

≤ C(φ′, φ′′)

(
‖b‖∞ + ‖σ‖2∞ +

∫
A
‖β‖2∞ ‖ν‖∞ Γ(dα)

)
≤ C(c1, φ

′, φ′′) = Cφ ,

where ξ is a suitable parameter belonging [0, 1]. This implies in turn that also Mµn,φ

can be bounded, uniformly on n as∥∥∥Mµn,φ
∥∥∥
∞
≤ max

x∈R
|φ(x)|+ TCφ = C̄φ .

Furthermore, the global continuity of the functions b, σ, β and ν guarantees that also

the function Lφ is globally continuous for all test functions φ ∈ C∞0 (R), and , since,

according to Assumptions A and B, all such coefficients are bounded, and b and β are

Lipschitz continuous with respect to the variable µ uniformly in (t, x,Γ), then also Lφ
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is Lipschitz with respect to µ ∈ P(R). Indeed

|Lφ(t, x, µ,Γ)− Lφ(t, x, η,Γ)|
≤ |b(t, x, µ)− b(t, x, η)|

∣∣φ′(x)
∣∣

+

∫
A

[
φ(x+ β(t, x, µ, α))− φ(x)− β(t, x, µ, α)

∣∣φ′(x)
∣∣

− φ(x+ β(t, x, η, α)) + φ(x) + β(t, x, η, α)
∣∣φ′(x)

∣∣ ]Γ(dα)ν(t)

≤ |b(t, x, µ)− b(t, x, η)|
∣∣φ′(x)

∣∣
+

∫
A

[
c1 |φ(x+ β(t, x, µ, α))− φ(x+ β(t, x, η, α))|

+ c1 |β(t, x, µ, α)− β(t, x, η, α)|
∣∣φ′(x)

∣∣ ]Γ(dα)

≤ |b(t, x, µ, α)− b(t, x, η, α)|
∣∣φ′(x)

∣∣
+c1

∫
A
|β(t, x, µ, α)− β(t, x, η, α)|

(∣∣φ′(x+ ξβ(t, x, µ, α))
∣∣+
∣∣φ′(x)

∣∣)Γ(dα)

≤ Cφ′dW,p(µ, η) + 2c1Cφ′dW,p(µ, η) ≤ C(c1, Cφ′)dW,p(µ, η)

where ξ ∈ [0, 1]. Therefore we can conclude that

(µ,X,Γ) 7→
∫
Lφ(t,Xt, µt,Γt) dt

is continuous. Indeed, the continuity with respect to (X,Γ) is provided by Lemma 2.2.4,

whereas the continuity with respect to µ is an application of Lemma 2.2.5 since by the

previous computation it follows that

|Lφ(t,Xt, µt,Γt)− Lφ(t,Xt, ηt,Γt)| ≤ CdW,p(µt, ηt) .

Therefore for each continuous, F̂s-measurable, bounded function h

lim
n→∞

EP
n

[(∫
Lφ(s,Xn

s , µ
n
s , α)Γns (dα)ds

)
h

]
= EP

[(∫
Lφ(s,Xs, µs, α)Γs(dα)ds

)
h

]
and moreover, since Pn → P by construction and φ is bounded and continuous, Pnφ→
Pφ. Thus, we can conclude that for each continuous, F̂s-measurable, bounded function

h

EP [(Mµ,φ
t −Mµ,φ

s )h] = lim
n→∞

EP [(Mµn,φ
t −Mµn,φ

s )h] = 0,

which implies that EP [Mµ,φ
t − Mµ,φ

s ] = 0, or, in other words, that Mµ,φ is a P -

martingale.

Therefore, satisfying Definition 2.1.1 we can conclude that P is an admissible law

with respect to µ, i.e. P ∈ R(µ) and thus R has closed graph as requested.

R is lower hemicontinuous. Let µ ∈ Pp(D) and µn be a sequence in the same space

converging to µ. Then, to show that R is lower hemicontinuous, we need to exhibit
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a sequence Pn ∈ R(µn) such that Pn → P in Pp(Ω̂) for every P ∈ R(µ). Consider

any P ∈ R(µ), than Lemma 2.1.1 ensures that there exist a filtered probability space

(Ω′,F ′, {F ′t}t∈[0,T ], P
′), a F ′-Brownian motion W and a Poisson random measure N on

[0, T ]×A with intensity measure Γt(dα) ν(t) dt such that P ′ ◦ (Γ, X)−1 = P , where X is

the unique strong solution of the following SDE:

dXt = b(t,Xt, µt) dt+ σ(t,Xt) dWt +

∫
A
β(t,Xt−, µt−, α) Ñ(dt, dα) (2.20)

subjected to an initial condition X0. The existence and uniqueness of strong solution of

equation (2.20) is once again guaranteed by Assumption A.

Then, for each n, let Xn be the process solving

dXn
t = b(t,Xn

t , µ
n
t ) dt+ σ(t,Xn

t ) dWt +

∫
A
β(t,Xn

t−, µ
n
t−, α), Xn

0 = X0 ,

and define Pn as Pn = P ◦ (Γ, Xn)−1. We want to show that R(µn) 3 Pn → P . To this

end, since convergence in Lp implies convergence in distribution, we will prove that

EP
′ [

(|Xn −X|∗t )
p]→ 0 . (2.21)

Let p̄ = max{2, p}. Then, for a suitable positive constant C > 0 we have

|Xn
t −Xt|p̄ ≤ C

∣∣∣∣∫ t

0
|b(s,Xn

s , µ
n
s )− b(s,Xs, µs)| ds

∣∣∣∣p̄ + C

∣∣∣∣∫ t

0
|σ(s,Xn

s )− σ(s,Xs)| dWs

∣∣∣∣p̄
+ C

∣∣∣∣∫ t

0

∫
A

∣∣β(s,Xn
s−, µ

n
s−, α)− β(s,Xs−, µs−, α)

∣∣ Ñ(ds, dα)

∣∣∣∣p̄ .
(2.22)

Being b Lipschitz continuous in x and µ due to Ass. (A.4), it holds

EP
′
[∫ t

0
|b(s,Xn

s , µ
n
s )− b(s,Xs, µs)|p̄ ds

]
≤ C(c1, p̄, t)

(∫ t

0
EP
′
[
(|Xn −X|∗s)

p̄
]
ds

+

∫ t

0
dp̄W,p(µ

n
s , µs)ds

)
.

Regarding the stochastic integrals in (2.22), we can apply Jensen and Burkholder-Davis-

Gundy inequalities to obtain

EP
′

[∣∣∣∣∣∣∣∣∫ u

0
|σ(s,Xn

s )− σ(s,Xs)| dWs

∣∣∣∣p̄∣∣∣∣∗
t

]
≤ kEP ′

[∫ t

0
c1 |Xn

s −Xs|2 ds
]

≤ C(c1, p̄)

∫ t

0
EP
′
[
(|Xn −X|∗s)

2
]
ds.
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and

EP
′

[(∣∣∣∣∫ ·
0

∫
A

∣∣β(t,Xn
t−, µ

n
t−, α)− β(t,Xt−, µt−, α)

∣∣ Ñ (dt, dα)

∣∣∣∣∗
t

)p̄]

≤ C(p̄)E
[∫ t

0

∫
A

∣∣β(s,Xn
s−, µ

n
s−, α)− β(s,Xs−, µs−, α)

∣∣p̄ ν(s)Γs(dα)

]
≤ C(p̄, c1)

(∫ t

0
EP
′
[
(|Xn −X|∗s)

p̄
]
ds+

∫ t

0
dp̄W,p(µ

n
s , µs)

p̄ds

)
,

where we used also the boundedness assumption over ν and the Lipschitz continuity of

σ and β. Notice that the integral
∫ t

0 d
p̄
W,p(µ

n
s , µs)ds in the estimates above converges

to zero as n → ∞ due to Lemma 2.2.5. Therefore, combining the previous results and

applying the Gronwall’s inequality, the validity of equation (2.21) follows.

At this point we have found a sequence such that Pn → P in Pp(Ω̂), and to conclude,

we have to show that, for each n, Pn is an element of R(µn). Pn satisfies condition (1) in

Definition 2.1.1 by construction, and condition (3), by applying Itô’s formula to φ(Xn),

for each φ ∈ C∞0 (R).

A crucial hypothesis to apply Kakutani-Fan-Glicksberg Theorem is the closed graph

property for the correspondence E . Berge’s Theorem states that

Theorem 2.2.3 (Berge Maximum Theorem). Let ϕ : X � Y be a continuous corre-

spondence between topological spaces with nonempty compact values, and suppose that

φ : Grϕ→ R is continuous. Let the real-valued function m : X → R be defined by

m(x) = max
y∈ϕ(x)

φ(x, y)

and the correspondence η : X � Y by

η(x) = {y ∈ ϕ(x) : φ(x, y) = m(x)} .

Then, m is continuous and η has nonempty compact values. Furthermore, if Y is Haus-

dorff, then η is upper hemicontinuous.

Therefore, since we have already proved that R is a closed continuous correspondence

with relatively compact range, and thus with compact values, the continuity of the

expected cost J would ensure that alsoR∗ is a continuous correspondence with nonempty

values, and that E is upper hemicontinuous, which means that E has closed graph, see,

once again, [AB06, Theorem 17.11].

Lemma 2.2.2. The operator J

J : P (D)× Pp(Ω̂)→ R ∪ {∞}

(µ, P ) 7→ J(µ, P ) = EP [Cµ] =

∫
Ω̂
Cµ dP

is upper hemicontinuous under Assumption A. If Assumption B is also in force, then J

is continuous.
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Proof. The upper hemicontinuity is an easy consequence of Lemmas 2.2.4 and 2.2.5,

while the continuity follows from the compactness of A. More precisely, Lemma 2.2.4 is

used to prove the hemicontinuity of Cµ(X,Γ) in (X,Γ), while the one in µ is granted by

Lemma 2.2.5.

We are now ready to prove the existence of a relaxed MFG solution for the relaxed

mean field game G∞.

Proof of Theorem 2.2.1. The existence of a relaxed MFG solution for G∞ is proved by

showing that the correspondence E defined in equation (2.13) admits a fixed point. To

apply the Kakutani-Fan-Glicksberg fixed point theorem, we need to consider a restriction

of E to a suitably nonempty, compact, convex domain. Therefore we look for a convex

compact subset D ⊂ Pp(D) containing E(D), and then we consider the restriction of E
on D, which will be denoted by ED.

To construct such a domain D, define Q as the set of the probability measures P in

Pp(Ω̂) such that:

(i) X0 ∼ χ;

(ii) EP
[
(|X|∗T )

p] ≤ C, where C = C(T, c1, χ) denotes the constant appearing in equa-

tion (2.28) of Lemma 2.2.3, which depends upon P only through the initial distri-

bution χ;

(iii) X is adapted to a filtration F = (Ft)t∈[0,T ] and satisfies

EP
[(
X(t+u)∧T −Xt

)p |Ft] ≤ C̄δ (2.23)

for t ∈ [0, T ] and u ∈ [0, δ], with C̄ defined in equation (2.18), independently of P .

Convexity of Q follows by construction: consider P̃ = aP1 + (1− a)P2 for a ∈ [0, 1]

where P1, P2 ∈ Q with corresponding filtration F1 and F2 as in condition (iii) above.

Conditions (i) and (ii) are easily satisfied by P̃ since the initial distribution χ is the

same for all the probabilities and the constant C depends on them only through χ.

Condition (iii) for P̃ also holds with the same constant C̄ as in equation (2.23) and the

filtration F̃ = F1 ∧ F2. Clearly, being Q convex, also Q is convex.

Furthermore, Q is relatively compact in Pp(Ω[A]). Observe that Q is tight since it

satisfies the sufficient criterion for tightness given in [Whi07, Lemma 3.11]. Indeed since

the constant C̄ in (2.23) is independent of P , it suffices to choose (in the notation of

[Whi07]) Z(δ) = C̄δ, and the tightness follows. Therefore Q is relatively compact, and

hence its closure Q for the p-Wasserstein metric is compact in Pp(Ω[A]).

We can now define D as

D = { η ∈ Pp(D) : there exists P ∈ Q such that η = P ◦X−1 }
= { η = P ◦X−1 : P ∈ Q} ⊂ Pp(D).
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Since Q is compact and convex and P 7→ P ◦X−1 is a continuous function, linear with

respect to convex combinations, also D turns out to be a convex, compact set.

In order to prove that the range of ED is contained inD we show thatR(µ) ⊂ P(Q) for

each µ ∈ Pp(D), so that E(µ) ⊂ D for all measures µ and therefore ED(Pp(D)) ⊂ D. Let

P ∈ R(µ), then it satisfies conditions (i) and (ii) by construction, see Definition 2.1.1 and

Lemma 2.2.3. The validity of condition (iii) can be proved arguing as in Proposition 2.2.1.

Indeed, using the same notation therein, we have that for each u ∈ [0, δ]

EP
[(
X(t+u)∧T −Xt

)2 | Ft] ≤ C̄u ≤ C̄δ ,
giving the same bound as in (2.23) with constant C̄, which does not depend on P . Since

R(µ) is nonempty, as shown in Remark 2.1.1, then also Q and therefore D are nonempty

sets.

The last condition to apply the Kakutani-Fan-Glicksberg Theorem is to show that E
is an upper hemicontinuous correspondence with non-empty convex values. As pointed

out above, since Lemma 2.2.2 implies the joint continuity of function J , as defined in

(2.10), and Lemma 2.2.1 assures that R is continuous and has nonempty compact val-

ues, the Berge Maximum Theorem provides that the correspondence R∗ is indeed upper

hemicontinuous with nonempty compact values. By continuity and linearity with respect

to convex combinations of Pp(Ω̂) 3 P 7→ P ◦ X−1 ∈ Pp(D) also E is an upper hemi-

continuous correspondence with nonempty compact values. Moreover, by Remark 2.1.1,

R(µ) is a convex set for each µ ∈ P(D), and hence by linearity with respect to convex

combinations and continuity of P 7→ J(µ, P ) and of P 7→ P ◦X−1, also R∗(µ) and E(µ)

are convex sets.

Since all the hypotheses of the Kakutani-Fan-Glicksberg fixed point theorem are

satisfied, we can conclude that there exists a fixed point for the correspondence ED, and

therefore for E , meaning that there exists a relaxed MFG solution for the relaxed game

G∞, given in Section 2.1.3.

2.2.2 The unbounded case

In the previous Section 2.2.1, the existence of a MFG solution when b, σ and β are

bounded and the action space A is compact is proven. Then, the next goal is to prove

the same result under weaker hypotheses, namely when the coefficient functions b, σ and

β have linear growth and the action space A is not necessarily compact. Namely,

Theorem 2.2.4. Under Assumption A, there exists a relaxed MFG solution.

As in [Lac15a, Section 5], the basic idea is to work with a bounded approximation of

the coefficient functions, their truncated version, and then, by a convergence argument,

to show that the limit of the mean field game solutions found in the truncated setting

is indeed a solution for the unbounded case.
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Notation. For any n ≥ 1, let (bn, σn, βn) be the truncated version of the coefficients

(b, σ, β), i.e. bn = min{b, n} and analogously for σn and βn. Moreover, we denote An the

intersection of A with the interval centered at the origin with length 2rn = 2
√
n/2c1,

where we recall that c1 is the constant appearing in Ass. (A.4) granting Lipschitz con-

tinuity as well as growth conditions on the coefficients of the state variable. Since A is

closed by assumption, there exists n0 such that for all n ≥ n0 the set An is nonempty

and compact, hence the truncated data set (bn, σn, βn, f, g, An) satisfies Assumptions A

and B with the same constants ci (i = 1, 2, 3) independent of n.

Let V[An] be the set of measures satisfying the same requirements as the measures

belonging to V, as in Section 2.1.3, but with An replacing A, and then let Ω[An] be

the product space V[An]×D, endowed with the corresponding product σ-field. Due to

Theorem 2.2.1 in the previous section, for all n ≥ 1 there exists a relaxed MFG solution

corresponding to the data set (bn, σn, βn, f, g, An), which can be viewed as a probability

measure on Ω̂ = Ω[A] since P(Ω[An]) can be naturally embedded in P(Ω[A]) due to the

inclusion An ⊂ A.

Let Ln be the operator defined as L in equation (2.5) with the truncated data

(bn, σn, βn) replacing (b, σ, β). Now, for any n, we can define the set of admissible

laws Rn(µ) as the set of all measures P ∈ P(Ω̂) such that

1. P (Γ([0, T ]×Acn) = 0) = 1;

2. P ◦X−1
0 = χ;

3. for all functions φ ∈ C∞0 (R), the process

Mµ,φ,n
t := φ(Xt)−

∫ t

0
Lnφ(s,Xs−, µs−,Γs)ds, t ∈ [0, T ],

is a P -martingale.

Likewise, we also define R∗n(µ) = arg maxP∈Rn(µ) J(µ, P ). Due to the embedding of

P(Ω[An]) in P(Ω̂), we can identify Rn(µ) and R∗n(µ) with the set of admissible laws

and optimal laws of the MFG with data (bn, σn, βn, f, g, An), respectively. Finally, any

relaxed MFG solution for the n-truncated data can be viewed as a probability Pn ∈
R∗n(µn) with µn ∈ Pp(D) satisfying the mean-field condition µn = Pn ◦X−1.

We are now ready to give the proof of Theorem 2.2.4.

Proof of Theorem 2.2.4. This proof follows closely [Lac15a, Section 5], hence we give

more details only on those parts which are jump-specific whereas sketching the main

arguments. As previously said, the basic idea is to show that the limit of the MFG

solutions found in the truncated setting, whose existence is granted by Theorem 2.2.1,

is indeed a solution for the unbounded case.

Let (Pn)n≥1 be a sequence of relaxed MFG solutions for the corresponding game

with data (bn, σn, βn, f, g, An). Proposition 2.2.1 ensures that this sequence (Pn)n≥1 is
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relatively compact in Pp(Ω̂). Firstly we prove that any P ∈ Pp(Ω̂) limit of a convergent

subsequence (Pnk)k≥1 of (Pn)n≥1 is an admissible law for µ, i.e. P ∈ R(µ), where

µ = P ◦X−1. By construction one has µ = limk µ
nk = limk Pnk ◦X−1 = P ◦X−1, and

then, in order to prove that P ∈ R(µ), we need to show that Mµ,φ is a P -martingale

for all φ ∈ C∞0 (R). For all t ∈ [0, T ], consider

Mµn,φ,n
t (Γ, X)−Mµn,φ

t (Γ, X) =

∫ t

0
(bn(s,Xs, µ

n
s )− b(s,Xs, µ

n
s ))φ′(Xs)

+
1

2

(
σ2
n(s,Xs)− σ2(s,Xs)

)
φ′′(Xs)

+

(∫
A

[φ(Xs + βn(s,Xs, µ
n
s , α))

− φ(Xs + β(s,Xs, µ
n
s , α))

− βn(s,Xs, µ
n
s , α)φ′(Xs)

+ β(s,Xs, µ
n
s , α)φ′(Xs)

]
dα

)
ν(s)ds.

Exploiting the linear growth of the involved functions and arguing as in [Lac15a, Lemma

5.2], we obtain the following bounds. Regarding the term containg b, one has∫ t

0
(bn(s,Xs, µ

n
s )− b(s,Xs, µ

n
s ))φ′(Xs)ds ≤ 2

∥∥φ′∥∥∞ c1tZ11{2c1Z1>n}

where

Z1 = 1 + |X|∗T +

(
sup
n≥1

∫
D

(|z|∗T )pµn(dz)

)1/p

, (2.24)

and analogously∫ t

0

(
σ2
n(s,Xs)− σ2(s,Xs)

)
φ′′(Xs)ds ≤ 2

∥∥φ′′∥∥∞ c1tZ11{2c1Z1>n} .

Lastly, regarding the term coming from the jump part, we have the following estimates∣∣φ(Xs + βn(s,Xs, µ
n
s , α))− φ(Xs + β(s,Xs, µ

n
s , α))− (βn − β)(s,Xs, µ

n
s , α)φ′(Xs)

∣∣
≤ |φ(Xs + βn(s,Xs, µ

n
s , α))− φ(Xs + β(s,Xs, µ

n
s , α))|

+
∣∣(βn(s,Xs, µ

n
s , α)− β(s,Xs, µ

n
s , α))φ′(Xs)

∣∣
≤ C (2 + |βn(s,Xs, µ

n
s , α)− β(s,Xs, µ

n
s , α)|) 1{|β(s,Xs,µns ,α)|>n},

for some constant C ≥ ‖φ‖∞ + ‖φ′‖∞. Then, due to Ass. (A.4) and by definition of Z1
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in (2.24), taking n ≥ 2c1 yields that Pn-a.s.∫ t

0

∫
A
C (2 + |βn(s,Xs, µ

n
s , α)− β(s,Xs, µ

n
s , α)|) 1{|β(s,Xs,µns ,α)|>n}Γs(dα)ds

≤ 2C

∫ t

0

∫
A

(1 + c1(Z1 + |α|)) 1{c1(Z1+|α|)>n}Γs(dα)ds

≤ 2Cc̃1

∫ t

0

∫
A

(1 + Z1 + |α|)) 1{2c1Z1>n}Γs(dα)ds

≤ 2Cc̃1

(
t(1 + Z1) +

∫ t

0
|Γs|ds

)
1{2c1Z1>n},

where we set c̃1 = c1 ∨ 1. Therefore, combining the bounds above we obtain that for all

t ∈ [0, T ] and Pn-a.s.∣∣∣Mµn,φ,n
t (Γ, X)−Mµn,φ

t (Γ, X)
∣∣∣ ≤ 6Cc̃1

(
t(1 + Z1) +

∫ t

0
|Γs|ds

)
1{2c1Z1>n}

for some constant C ≥ ‖φ‖∞ + ‖φ′‖∞ + ‖φ′′‖∞. Since, arguing as in [Lac15a, Lemma

5.1], one has

sup
n

EPn
[∫ T

0
|Γt|p

′
dt

]
<∞, sup

n
EPn

[
(|X|∗T )p

′
]

= sup
n
‖µn‖p

′

T <∞ (2.25)

a standard application of Fatou’s lemma implies that

EP
[∫ T

0
|Γt|p

′
dt

]
<∞. (2.26)

Then, the estimates above implies the convergence

EPn
[∣∣∣Mµn,φ,n

t (Γ, X)−Mµn,φ
t (Γ, X)

∣∣∣]→ 0, n→∞.

Finally using the continuity of Mµ,φ
t (Γ, X) in (µ,Γ, X), granted by Lemma 2.2.4 and

Lemma 2.2.5, the previous convergence result implies that

EP
[(
Mµ,φ

t (Γ, X)−Mµ,φ
t (Γ, X)

)
h
]

= lim
n→∞

EPn
[(
Mµn,φ,n

t (Γ, X)−Mµn,φ,n
t (Γ, X)

)
h
]

= 0

for any continuous, bounded and F̂s-measurable function h, which in turn implies that

Mµ,φ is a P-martingale, and therefore P ∈ R(µ) as requested.

Lastly, to conclude the proof, we need to show that the limit point P is optimal, i.e.

P ∈ R∗(µ). First of all, let P ′ be any element of R(µ) with J(µ, P ′) < ∞. Then, one

can show that there exists a sequence of probabilities P ′n ∈ Rn(µn) such that

Jnk(µnk , P ′nk)→ J(µ, P ′), k →∞, (2.27)
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where Jn denotes the objective corresponding to the truncated data. Indeed, this can

be shown as in the proof of [Lac15a, Lemma 5.3] by using Burkholder-Davis-Gundy

inequalities and Ass. (A.4) to estimate the jump part. Therefore, since Pn is optimal for

each n we have

Jn(µn, P ′n) ≥ Jn(µn, Pn),

so that thanks to (2.27) and to the fact that J is lower hemicontinuous (see Lemma

2.2.2) we obtain

J(µ, P ) ≤ lim inf
k→∞

Jnk(µnk , Pnk) ≤ lim
k→∞

Jnk(µnk , P ′nk) = J(µ, P ′).

The optimality of P follows since P ′ is arbitrary.

Then, the proof is completed since we have exhibited an admissible law P satisfying

the mean-field condition which is optimal. Hence P is a relaxed MFG solution.

2.2.3 Technical results

In the following, |Y |∗t is used as a shortcut for sups∈[0,t] |Ys|. Then, we study the

moments of the controlled state process X, given as a solution to the SDE (2.8).

Lemma 2.2.3. Let p̄ ∈ [p, p′]. Under Assumption A, there exists a constant C =

C(T, c1, χ, p̄) such that for any µ ∈ Pp(D) and P ∈ R(µ)

EP
[
(|X|∗T )

p̄
]
≤ C

(
1 + ‖µ‖p̄T + EP

∫ T

0
|Γt|p̄ dt

)
. (2.28)

As a consequence, P ∈ Pp(Ω̂). Furthermore, if µ = P ◦X−1, we have

‖µ‖p̄T = EP
[
(|X|∗T )

p̄
]
≤ C

(
1 + EP

[∫ T

0
|Γt|p̄dt

])
.

Proof. In what follows, the value of the constant C may change from line to line, however

we will indicate what it depends on.

Consider a given measure µ ∈ Pp(D) and any related admissible law P ∈ R(µ). By

Lemma 2.1.1,

|Xt|p̄ ≤ Cp̄ |X0|p̄ + Cp̄

∣∣∣∣∫ t

0
b(s,Xs, µs) ds

∣∣∣∣p̄ + Cp̄

∣∣∣∣∫ t

0
σ(s,Xs)dBs

∣∣∣∣p̄
+ Cp̄

∣∣∣∣∫ t

0

∫
A
β(s,Xs−, µs−, α)Ñ(ds, dα)

∣∣∣∣p̄ . (2.29)

Assume that p̄ ≥ 2. Then, by Jensen’s inequality and boundedness of function b, see

Ass. (A.4), for all t ∈ [0, T ],∣∣∣∣∫ t

0
b(s,Xs, µs) ds

∣∣∣∣p̄ ≤ Ct,p̄ ∫ t

0
sup
u∈[0,s]

|b(u,Xu, µu)|p̄ ds

≤ Ct,p̄
∫ t

0
sup

0≤u≤s
cp̄1

(
1 + (|X|∗s)

p̄
+ ‖µ‖p̄s

)
ds .
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Burkholder-Davis-Gundy inequality, see e.g. [Pro90, Theorem 48, Ch. IV.4], ensures

that there exists a positive constant Cp̄, not depending on X , such that the expected

supremum of the Itô integral in (2.29) can be bounded as follows

E

[(∣∣∣∣∫ u

0
σ(s,Xs) dBs

∣∣∣∣∗
t

)p̄]
≤ Cp̄ E

[(∫ t

0

∣∣σ2(s,Xs)
∣∣ ds) p̄

2

]

≤ Ct,p̄ E
[∫ t

0
c
p̄
2
1 (1 + |X|∗s)

p̄
2

]
,

where the last inequality is due to the growth condition of the function σ, see Ass. (A.4).

Lastly, we have to take into account the integral It =
∫

[0,t]×A β(s,Xs−, µs−, α)Ñ(ds, dα)

appearing in (2.29). Using again the Burkholder-Davis-Gundy inequality, it follows that

E
[(∣∣∣∣∫ ·

0

∫
A
β(s,Xs−, µs−, α)Ñ(ds, dα)

∣∣∣∣)p̄]

≤ Cp̄E

(∫ t

0

∫
A

sup
u∈[0,s]

|β(u,Xu−, µu−, α)|2 ν(s) Γs(dα) ds

) p̄
2


and since β has linear growth in (x, µ, α) uniformly in t, see Ass. (A.4), and ν is bounded,

see Ass. (A.2), it is found that

EP
[
(|I|∗t )

p̄
]
≤ CE

∫ t

0

∫
A
c
p̄
2

+1

1

(
1 + |X|∗s +

(∫
D

(|z|∗s)pµ(dz)

) 1
p

+ |α|

) p̄
2

Γs(dα) ds

 .
Observe that, if p̄ ∈ [1, 2), the conclusion still holds since |y|p̄/2 ≤ 1 + |y|p̄ and then

arguing as before.

Combining all the previous estimates, we get that there exists a positive constant

C = C(t, c1, χ, p̄) such that

EP
[
(|X|∗t )

p̄
]
≤ CEP

[
1 + |X0|p̄ +

∫ t

0

(
1 + ‖µ‖p̄s + |Γs|p̄

)
ds

]
, t ∈ [0, T ].

Hence the estimates (2.28) follows from an application of Gronwall’s lemma. As a

consequence, when µ = P ◦X−1, we have

‖µ‖p̄t = EP [(|X|∗t )
p̄] ≤ CEP

[
|X0|p̄ +

∫ t

0
(1 + 2 ‖µ‖p̄s + |Γs|p̄)ds

]
,

so that another application of Gronwall’s lemma gives the second estimate.

For completeness, we provide some continuity results. Lemma 2.2.4 is an extension

of [Lac15a, Corollary A.5], where the space of continuous functions is replaced with the

Skorokhod space D([0, T ], E) of all càdlàg functions taking values in some metric space

(E, ρ).
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Lemma 2.2.4. Let (E, ρ) be a complete separable metric space. Let φ : [0, T ]×E×A→ R
be a jointly measurable function in all its variables and jointly continuous in (x, α) ∈
E × A for each t ∈ [0, T ]. Assume that for some constant c > 0 and some x0 ∈ E one

of the following two properties is satisfied

1. φ(t, x, α) ≤ c(1 + ρp(x, x0) + |α|p), for all (t, x, α) ∈ [0, T ]× E ×A;

2. |φ(t, x, α)| ≤ c(1 + ρp(x, x0) + |α|p), for all (t, x, α) ∈ [0, T ]× E ×A.

Hence, if (1) (resp. (2)) is fulfilled, the following function

D([0, T ];E)× V 3 (x, q) 7→
∫ T

0

∫
A
φ(t, x(t), α)q(dt, dα) (2.30)

is upper hemicontinuous (resp. continuous).

Proof. We prove first that the function

D([0, T ];E)× V 3 (x, q) 7→ η(dt, dα, de) :=
1

T
q(dt, dα)δx(t)(de) ∈ Pp([0, T ]× E ×A)

(2.31)

is jointly continuous. Using [Lac15a, Prop. A.1] it suffices to show that when (xn, qn)→
(x, q) in D([0, T ];E) × V[A] as n → ∞, we have

∫
φdηn →

∫
φdη for all continuous

functions φ : [0, T ] × E × A → R such that |φ(t, x, α)| ≤ c(1 + ρp(x, x0) + |α|p), for all

(t, x, α) ∈ [0, T ]×E ×A. We use the notation ηn for the measure associated to (xn, qn)

as in (2.31). Since D([0, T ];E)× V is equipped with the product topology, it suffices to

prove separately the continuity in x and q. Both are consequences of an application of

dominated convergence theorem. We consider the continuity in x, the one in q can be

easily showed using similar arguments. Let xn → x in D([0, T ];E), hence xn(t) → x(t)

for all t ∈ [0, T ] where the limit function x is continuous (see [EK09, Proposition 5.2]),

hence for a.e. t ∈ [0, T ] with respect to the Lebesgue measure and hence for q(dt, A) as

well. Therefore, since φ is jointly continuous, we have φ(t, xn(t), α) → φ(t, x(t), α) for

a.e. (t, α) ∈ [0, T ]× A with respect to the measure q(dt, dα). Moreover, notice that for

some (hence for all) x0 ∈ E there exists a constant C > 0, that might change from line

to line, such that

|φ(t, xn(t), α)| ≤ C(1 + ρp(x0, x
n(t)) + |α|p)

≤ C (1 + ρp(x0, x(t)) + ρp(x(t), xn(t)) + |α|p) .

Moreover by [EK09, Proposition 5.3] there exists a sequence of time changes τn(t), i.e.

strictly increasing continuous functions mapping [0, T ] onto [0, T ], such that

lim
n→∞

sup
t∈[0,T ]

ρ(xn(t), x(τn(t))) = 0.
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Hence for all ε > 0 we can choose n large enough so that for all t ∈ [0, T ]

|φ(t, xn(t), α)| ≤ C (1 + ρp(x0, x(t)) + ρp(x(t), x(τn(t))) + ρp(x(τn(t)), xn(t)) + |α|p)

≤ C

(
1 + sup

s∈[0,T ]
ρp(x0, x(s)) + sup

s∈[0,T ]
ρp(x(s), x(τn(s))) + ε+ |α|p

)

≤ C

(
1 + 3 sup

s∈[0,T ]
ρp(x0, x(s)) + ε+ |α|p

)
.

Therefore, since sups∈[0,T ] ρ
p(x0, x(s)) is bounded, uniformly in n, we can apply domi-

nated convergence and conclude that∫
φ(t, xn(t), α)q(dt, dα)→

∫
φ(t, x(t), α)q(dt, dα), n→∞.

Similarly we have the continuity with respect to q, which gives the announced joint con-

tinuity of the function η in (2.31). Finally, the upper hemicontinuity (resp. continuity)

of the function in equation (2.30) is obtained by applying [Lac15a, Corollary A.4] (resp.

[Lac15a, Lemma A.3]).

Lemma 2.2.5. Let {µn} ⊆ Pp(D) a convergent sequence to µ ∈ Pp(D). Then, for any

q ≥ 1 ∫ T

0
dW,p(µ

n
t , µt)

q dt→ 0, n→∞.

Proof. Since convergence with respect to dW,p implies also weak convergence, Skorokhod’s

representation theorem ensures that there exist D-valued random variables Xn and X,

defined on a common probability space (Ω,F , P ) such that

µn = P ◦ (Xn)−1 and µ = P ◦X−1 ,

with

dJ1(Xn, X)→ 0, P a.s.

By triangular inequality

|Xn
t −Xt|p ≤ 2p(dJ1(Xn, 0)p + dJ1(X, 0)p)

and

dJ1(Xn, 0)p + dJ1(X, 0)p → 2dJ1(X, 0)p , n→∞,

where dJ1(X, 0)p = (|X|∗T )
p ∈ L1(P ), which does not depend on t. Then, since con-

vergence Xn → X in J1 implies convergence a.e t ∈ [0, T ], by applying a slightly more

general version of dominated convergence (e.g. [Kal06, Theorem 1.21]), we have

E [|Xn
t −Xt|p]→ 0 a.e. t ∈ [0, T ] .
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Then, by applying dominated convergence once again in view of

EP [dJ1(Xn, 0)p + dJ1(X, 0)p]→ 2

∫
D
dJ1(x, 0)pµ(dx) <∞ ,

it is found that ∫ T

0
(E [|Xn

t −Xt|p])q dt→ 0 , n→∞.

2.3 Existence of a relaxed Markovian MFG solution

In the previous section, Theorem 2.2.4 ensures that, under suitable assumptions,

there exists a relaxed MFG solution for the relaxed game G∞. The following step is

to prove that for any admissible law P ∈ R(µ) it is possible to define a Markovian

control P ∗ ∈ R(µ) with a lower cost than P . This would imply that G∞ admits also a

Markovian MFG solution. To this end some further assumptions on the function β is

required. Namely,

Theorem 2.3.1. Assume that Assumption A holds true and that β satisfies for all

(t, x, µ, α) ∈ [0, T ]× R× Pp(R)×A

|β(t, x, µ, α)| ≤ c(1 + ψ(α)), (2.32)

for some continuous function ψ : A → (0,∞) and constant c > 0. Then there exists a

relaxed Markovian MFG solution to the relaxed game G∞.

Proof. Let P ∈ R(µ) be a relaxed MFG solution for G∞, whose existence under As-

sumption A is guaranteed by Theorem 2.2.4. To show the existence of a Markovian

MFG solution we build a (possibly different) probability measure P ∗ ∈ R(µ), for the

same measure flow µ ∈ P(D), satisfying the following three properties:

Property MP. (MP.1) J(µ, P ∗) ≤ J(µ, P );

(MP.2) P ∗ ◦X−1
t = P ◦X−1

t for all t ∈ [0, T ];

(MP.3) P ∗(Γ(dt, dα) = Γ̂(t,Xt−)(dα)dt) = 1 for a measurable function Γ̂ : [0, T ]× R→
V.

Being P optimal, i.e. P ∈ R∗(µ), J(µ, P ) is the minimum of the expected cost J(µ, ·)
related to the flow measure µ, and therefore condition (MP.1) implies that also P ∗

attains its minimum, meaning that also P ∗ is an optimal admissible law, i.e. P ∗ ∈ R∗(µ).

The second property (MP.2) ensures that P ∗ satisfies the MFG consistency condition

µ = P ∗ ◦X−1, and thus along with the previous one guarantees that also P ∗ is a relaxed

MFG solution for G∞. Condition (MP.3) is indeed the Markovian property for P ∗.

The assumption (2.32) assures that the operator L defined in (2.5) satisfies assump-

tions (i)-(vi) in [KS98, pp. 611-612]. In [KS98], the authors establish that under these
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conditions for any solution to the controlled martingale problem for the generator L

there exists another solution having a Markov control which has the same state and con-

trol distribution as the initially given one. Therefore, since by Definition 2.1.1 P ∈ R(µ)

means that P is a solution to the martingale problem for L, then [KS98, Corollary

4.9] guarantees the existence of a process Z, defined on some filtered probability space

(Ω̃, F̃ , (F̃t)t∈[0,T ], Q) and a measurable function Γ̂ : [0, T ]× R→ V such that

Mµ,φ
t (Γ̂, Z) = φ(Z)−

∫ t

0
Lφ(s, Zs−, µs−, Γ̂(s, Zs−)) ds

is a F̃t-adapted Q-martingale for all φ ∈ C∞0 (R), and for all t ∈ [0, T ] it holds that

Q ◦ (Zt, Γ̂(t, Zt))
−1 = P ◦ (Xt,EP [Γt|Xt])

−1 . (2.33)

Define P ∗ = Q ◦ (Γ̂(t, Zt)dt, Z)−1. By construction, P ∗ belongs to R(µ) and it

satisfies conditions (MP.2) and (MP.3). Moreover it holds that

J(µ, P ∗) = EQ
[∫ T

0

∫
A
f(t, Zt, µt, α)Γ̂(t, Zt)(dα)dt+ g(ZT , µT )

]
(a)
= EP

[∫ T

0

∫
A
f(t,Xt, µt, α)EP [Γt(dα)|Xt]dt+ g(XT , µT )

]
(b)
= EP

[∫ T

0

∫
A
f(t,Xt, µt, α)Γt(dα)dt+ g(XT , µT )

]
= J(µ, P )

Equality (a) follows from the equivalent distribution of the processes involved, i.e.

Q ◦ Z−1
t = P ◦ X−1

t and Q ◦ Γ̂(t, Zt)
−1 = P ◦ EP [Γt|Xt]

−1 for any time t ∈ [0, T ],

see equation (2.33), whereas equality (b) is just the tower property of conditional expec-

tations. Therefore P ∗ satisfies also condition (MP.1) and the proof is complete.

Theorem 2.2.4 and Theorem 2.3.1 guarantee the existence of a relaxed MFG solution

and of a Markovian relaxed MFG solution, respectively, for the relaxed MFG G∞ under

suitable assumptions, namely Assumption A. Assume that, in addition to Assumption A,

it is verified that

Assumption C. For all (t, x, µ) ∈ [0, T ]× R× P(R), the set

K(t, x, µ) = {(β(t, x, µ, α), z) : α ∈ A, z ≤ f(t, x, µ, α)} ⊂ R× R

is convex.

Then it is possible to prove the existence also of a strict (strict Markovian, respectively)

relaxed MFG by applying the same arguments as in the [Lac15a, Theorem 3.7]. More

details on the jump-specific parts can be found in [BCDP17a].



Chapter 3

Existence of an ε-Nash

equilibrium for the game Gn

In this chapter we exploit the existence of a MFG solution for the game G∞, ad-

dressed in Chapter 2, to build ε-Nash equilibria for the corresponding prelimit games Gn.

Denoting by γ(t, x) a Markovian MFG solution for the limiting game G∞, an εn-Nash

equilibrium for the game Gn is obtained when each player i follows the same strategy γ

but computed with respect his own state γ(t,Xi,n
t− ), and this sequence approximates a

(true) Nash equilibrium as n→∞, meaning that the sequence εn vanishes as n→∞.

In Section 3.1 we briefly recall how the gamesGn are defined, introducing the notation

and the main assumptions used throughout the whole chapter, whereas in Section 3.2

we prove the existence of an εn-Nash equilibrium to any Gn, with εn → 0 as n→∞.

The original contributions of this chapter may be found in [BCDP17b]. The approx-

imation scheme is inspired by [CF17].

3.1 Notation and Assumptions

As introduced more in details in Chapter 1, we recall the definition of the mean-

field interaction game with n-player Gn and the infinite-player version G∞ under study.

Differently by the setting introduced in the previous chapters, here we assume that

β(t, x, µ, γ) = β(µ, γ) to simplify the computation in what follows.

The mean-field interaction game Gn. Each player i = 1, . . . , n solves the optimiza-

tion problem

inf
γ∈A

{
J i,n(γ) = E

[∫ T

0
f(t,Xi,n

t (γ), µnt (γ), γit) dt+ g(Xi,n
T (γ), µnT (γ))

]}
, (3.1)

s.t.

{
dXi,n

t (γ) = b(t,Xi,n
t , µnt ) dt+ σ(t,Xi,n

t ) dW i
t + β(µnt−, γ

i
t) dÑ

i
t ,

Xi,n
0 = ξi ∼ χ ,

(3.2)
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where the n Brownian motions, the n Poisson processes with the same intensity

function ν(t) and the initial conditions ξi are mutually independent. γi represents

the strategy of player i which is required to belong to the set of the admissible pro-

cesses A, that is the set of the A-valued predictable processes. Then, an admissible

strategy profile γ for the game Gn is any n-tuple of admissible controls γi ∈ A for

all i, i.e. (γ1, . . . , γn) ∈ An. Furthermore, µn stands for the empirical distribution

of the state Xn = (X1,n, . . . , Xn,n), meaning that at any time t ∈ [0, T ]

µnt (γ) =
n∑
i=1

1

n
δ
Xi,n
t (γ)

. (3.3)

We sometimes write Xi,n(γ), µn(γ) and J i,n(γ) to stress that the state, and thus

the empirical distribution of the system and the expected cost of the game Gn of

each player i depend not only on his own control γi but also on the decision rule

of the other participants.

The mean field game G∞. A process γ̂ ∈ A is a MFG solution to G∞ if

γ̂ = arg min
γ∈A

{
J(γ) = E

[∫ T

0
f(t, Yt(γ), µ̂t, γt) dt+ g(YT (γ), µ̂T )

]}
(3.4)

s.t.

{
dYt(γ) = b(t, Yt, µ̂t) dt+ σ(t, Yt) dWt + β(µ̂t−, γt) dÑt

Y0 = ξ ∼ χ
(3.5)

and, at the same time, γ̂ satisfies the MFG consistency condition

µ̂t = L(Yt(γ̂)) (3.6)

at any time t ∈ [0, T ]. Furthermore, as stated in Definition 2.1.2, a mean-field

solution γ̂ of G∞ is said to be Markovian if γ̂t = γ̂(t, Yt−) for a measurable function

γ̂ : [0, T ]× R→ R.

For the games to be well-defined and to find an approximate Nash equilibrium for

the n-player game Gn we have to require some integrability of the initial conditions of

the state processes as well as some regularity on the functions

b : [0, T ]× R× P2(R)→ R , σ : [0, T ]× R→ R , β : P2(R)×A→ R , ν : [0, T ]→ R+,

f : [0, T ]× R× P2(R)×A→ R , g : R× P2(R)→ R .

Assumption D. (D.1) The initial distribution χ belongs to Pq(R) for some q > 2,

q 6= 4.

(D.2) A is a compact subset of R. supa∈A |a| will be denoted by αM <∞.

(D.3) The intensity function ν is bounded, i.e. there exists a positive constant Mν

satisfying ‖ν‖∞ ≤Mν .
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(D.4) b is a Lipschitz function both in x and µ, σ is Lipschitz in x, and β is Lipschitz in

µ and γ. Namely, there exist positive constants Lb, Lσ and Lβ such that for all

x, y ∈ R, µ, η ∈ P2(R), γ, λ ∈ A and t ∈ [0, T ] ,

|b(t, x, µ)− b(t, y, η)| ≤ Lb |x− y|+ Lb dW,2(µ, η) ,

|σ(t, x)− σ(t, y)| ≤ Lσ |x− y| ,
|β(µ, γ)− β(η, λ)| ≤ Lβ dW,2(µ, η) + Lβ |γ − λ| .

Moreover, b, σ and β are bounded, i.e. there exists a positive constantM satisfying

‖b‖∞ + ‖σ‖∞ + ‖β‖∞ ≤M1 .

Without loss of generality, we can assume Lb = Lσ = Lβ = L and Mν = M1 = M .

(D.5) f and g are Lipschitz functions in both x and µ, i.e. there exist two positive

constants Lf , Lg such that for all x, y ∈ R, µ, η ∈ P2(R) and t ∈ [0, T ]

|f(t, x, µ)− f(t, y, η)| ≤ Lf |x− y|+ Lf dW,2(µ, η) ,

|g(x, µ)− g(y, η)| ≤ Lg |x− y|+ Lg dW,2(µ, η) .

From now on, we shortly write dW for the squared Wasserstein distance dW,2, as defined

in (2.4), and P(R) for P2(R).

Remark 3.1.1. The technical assumption q 6= 4 is required to guarantee the applicability

of [FG15, Theorem 1] to obtain the rate of convergence.

Remark 3.1.2. Ass. (D.1)-(D.4) will be used to construct approximate equilibria for the

n-player game Gn under some further hypotheses on the existence and the regularity of

a Markovian solution to the MFG G∞. Sufficient conditions ensuring the existence of

these Markovian MFG solutions are discussed in previous Chapter 2.

3.2 Markovian ε-Nash equilibrium

All the results of this section are proved under the following standing assumption on

the limiting mean-field game G∞:

Assumption E. Assume that there exists a Markovian MFG solution γ̂t = γ̂(t, Yt−) for

the game G∞, for some measurable function γ̂ : [0, T ]×R→ A. Moreover, the function

γ̂(t, x) is Lipschitz continuous in the state variable x, i.e.

|γ̂(t, x)− γ̂(t, y)| ≤ Cγ̂ |x− y| ∀x, y ∈ R ,∀t ∈ [0, T ], (3.7)

for some suitable constant Cγ̂ > 0.

Without loss of generality we can assume that Cγ̂ = L as in Assumption D.
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Consider the game Gn in the event that each agent i plays strategy γ̂ = γ̂(t, X̂i,n
t− ), i.e.

each player follows the optimal (relative to game G∞) strategy function (t, x) 7→ γ̂(t, x)

evaluated at the left-limit of his own state process X̂i,n
t− . In this case the state dynamics

is the n-tuple X̂n = (X̂1,n, . . . , X̂n,n), defined as solution of the following system{
dX̂i,n

t = b(t, X̂i,n
t , µnt ) dt+ σ(t, X̂i,n

t ) dW i
t + β(µnt−, γ̂(t, X̂i,n

t− )) dÑ i
t ,

X̂i,n
0 = ξi ,

(3.8)

where µn is the empirical measure of X̂n. Assumption D ensures that there exists a

unique strong solution to the previous SDEs. Moreover, for each player the strategy

γ̂(t, X̂i,n
t− ) is admissible, i.e (γ̂(t, X̂i,n

t− ))t∈[0,T ] ∈ A, being γ̂ a (Borel)-measurable function

by construction and Xi,n
t− a predictable process as solution of the stochastic differential

equation (3.8).

Then, the strategy profile (γ̂(t, X̂1,n
t− ), . . . , γ̂(t, X̂n,n

t− )) is an ε-Nash equilibrium for

the corresponding game Gn which approximates a (true) Nash equilibrium as n → ∞.

Namely,

Theorem 3.2.1. Let Assumptions D and E be fulfilled. If X̂n is the solution of the

system (3.8), the n-tuple (γ̂(t, X̂1,n
t− ), . . . , γ̂(t, X̂n,n

t− )) is an εn-Nash equilibrium for the

n-player game Gn, with εn = O
(
n−α/2

)
→ 0 as n→∞, where α = min

{
1
2 ,

q−2
2

}
.

As previously noted, all the players taking part in the game Gn are symmetric in

their behaviour. For this reason in the following we will prove Theorem 3.2.1 considering

without loss of generality deviations of player 1 only. Indeed the same arguments would

apply to every other player in the game.

In the proof of Theorem 3.2.1, we will focus on two different scenarios: the case when

all the players choose to play according to the optimal recipe suggested by G∞, i.e. they

all play γ̂(t, X̂i,n
t− ) as explained above, and the case when player 1 deviates by choosing

any different strategy η ∈ A, i.e.

(η, γ̂X̂
n

−1 ) = (ηt, γ̂(t, X̂2,n
t− ), . . . , γ̂(t, X̂n,n

t− ))t∈[0,T ] .

Notation. From now on, the strategy profile (γ̂(t, X̂1,n
t− ), . . . , γ̂(t, X̂n,n

t− )), t ∈ [0, T ], will

be shortly denoted by γ̂X̂
n

whereas strategy (η, γ̂X̂
n

−1 ) by ηγ̂ . The corresponding state

processes, that are the solutions of equation (3.2) under γ̂X̂
n

and ηγ̂ , will be denoted by

X̂ and X̃, respectively.

Remark 3.2.1. Concerning Remark 1.1.3, observe that in the following the deviating

player is allowed to choose any admissible open-loop strategy η ∈ A, whereas the (feed-

back) strategies of the other players are given by γ̂i = γ̂(t, X̂i,n
t ), i.e. they are computed

considering the state of the system as described in equation (3.8) and therefore under-

stood as the related open-loop controls. Therefore, in order to prove Theorem 3.2.1 we

will show that

J i,n(γ̂) ≤ J i,n((η, γ̂X̂
n

−i )) + εn
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for each i ∈ 1, . . . , n and η ∈ A, and εn as requested.

In the following we will also make use of the auxiliary processes Y i,n, with i =

1, . . . , n, and Ỹ 1,n, given as solutions of

dY i,n
t (γ̂) = b(t, Y i,n

t , µ̂t) dt+ σ(t, Y i,n
t ) dW i

t + β(µ̂t−, γ̂(t, Y i,n
t− )) dÑ i

t , Y i,n
0 = ξi (3.9)

and of

dỸ 1,n
t (η) = b(t, Ỹ 1,n

t , µ̂t) dt+ σ(t, Ỹ 1,n
t ) dW 1

t + β(µ̂t−, ηt) dÑ
1
t , Ỹ 1,n

0 = ξ1 , (3.10)

respectively. Here µ̂t represents the distribution law of the state process (optimally)

controlled by γ̂ in the limiting game G∞ , i.e. Y (γ̂), solution to the SDE (3.5) under

γ̂(t, Yt), and therefore µ̂ = L(Yt(γ̂)).

Remark 3.2.2. For each i = 1, . . . , n, the process Y i,n is defined as the dynamics of a

representative player in G∞, given in equation (3.5), when the optimal strategy function

γ̂, given in Assumption E, is chosen as control process. Then, by definition, Y i,n satisfies

the MFG consistency condition (3.6), meaning that Y i,n is distributed accordingly to µ̂,

i.e.

L(Y i,n
t ) = µ̂t , ∀t ∈ [0, T ] . (3.11)

Remark 3.2.3. The definition of processes Y i,n and Ỹ 1,n differs from the one of X̂i,n and

X̃1,n due to the different measure flow considered in the stochastic differential equations.

Indeed in (3.2), the dynamics of X̂i,n and X̃1,n are computed taking into account the

associated empirical distribution of the system X̂n and X̃n, respectively, as defined in

equation (3.3), while the dynamics of Y i,n and Ỹ 1,n in (3.9) and (3.10) are computed

with respect to µ̂. In particular, this implies that Y i,n and Ỹ 1,n do no longer depend

on the other players’ choices (we will say that they do not depend on n for short) and

therefore their dynamics are easier to study.

3.2.1 L2-estimates for the state processes and the empirical mean pro-
cess in Gn

The following lemma provides an estimate for the second moment of the processes

Xi,n, defined as in equation (3.2).

Lemma 3.2.1. Assume that Assumption D holds. Then, for each admissible strategy

profile γ ∈ An the related controlled processes Xi,n(γ) for i = 1, . . . , n, solving the related

SDEs (3.2), satisfy

E

[
sup
t∈[0,T ]

|Xi,n
t |2

]
≤ Ĉ(χ, T,M) , (3.12)

where the constant Ĉ is independent of n and γ.
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Proof. The proof follows the same steps as that of Lemma 2.2.3. By the equation (3.2),∣∣∣Xi,n
t

∣∣∣2 ≤ 4 |ξi|2 + 4

∣∣∣∣∫ t

0
b(s,Xi,n

s , µns ) ds

∣∣∣∣2
+ 4

∣∣∣∣∫ t

0
σ(s,Xi,n

s ) dW i
s

∣∣∣∣2 + 4

∣∣∣∣∫ t

0
β(µns−, γ

i
s) dÑ

i
s

∣∣∣∣2 .
Applying Jensen’s and Burkholder-Davis-Gundy’s inequalities, it follows that for a con-

stant C (which may change from line to line)

E

[
sup
t∈[0,T ]

∣∣∣Xi,n
t

∣∣∣2] ≤ CE [|ξi|2]+ CtE

[∫ t

0
sup
u∈[0,s]

∣∣b(s,Xi,n
s , µns )

∣∣2 ds]

+ CE
[∫ t

0
σ(s,Xi,n

s )2 ds

]
+ CE

[∫ t

0
β2(µns , γ

i
s)ν(s) ds

]
≤ C(χ) + C ‖b‖2∞ t

2 + C ‖σ‖2∞ t+ C ‖β‖2∞ ‖ν‖∞ t
≤ Ĉ(χ, T,M),

where we have used Ass. (D.1), (D.2) and (D.4) for the second inequality.

An analogous result can be proved for the empirical distribution µn of the system

Xn, given in equation (3.3).

Lemma 3.2.2. Assume that Assumption D holds. Then, for any admissible strategy γ ∈
An, the empirical distribution µn = µn(γ) of the system Xn, solution of the SDE (3.2),

satisfies

E

[
sup
t∈[0,T ]

d2
W (µnt , δ0)

]
≤ Ĉ(χ, T,M) (3.13)

for a constant Ĉ independent of n and γ.

Proof. The constant Ĉ appearing in Lemma 3.2.1 provides the required bound, since

E

[
sup
t∈[0,T ]

d2
W (µnt , δ0)

]
≤ E

[
sup
t∈[0,T ]

1

n

n∑
i=1

∣∣∣Xi,n
t

∣∣∣2]

≤ 1

n

n∑
i=1

E

[
sup
t∈[0,T ]

∣∣∣Xi,n
t

∣∣∣2] ≤ Ĉ .
Arguing as in the previous Lemmas, or as in Lemma 2.2.3, but exploiting the stronger

hypothesis on the initial distribution χ ∈ Pq(R) with q > 2, we can prove that each

solution Y to the SDE (3.5) satisfies

E

[
sup
t∈[0,T ]

|Yt|q
]
≤ Ĉ2(χ, T,M) .
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Furthermore, considering its distribution law at time t ∈ [0, T ], that is µ̂t, the previous

estimate guarantees that∫
R
|y|q µ̂t(dy) < Ĉ2 <∞ for all t ∈ [0, T ]. (3.14)

3.2.2 Approximation results

Let Y n = (Y 1,n, . . . , Y n,n) be the system defined as in equation (3.9) and µY,n its

empirical measure, namely

µY,nt =
1

n

n∑
i=1

δ
Y i,nt

for all t ∈ [0, T ].

As first step we show that this measure µY,n converges to µ̂ with respect to the squared

Wasserstein distance as n → ∞. Being Y i,n
t independent and identically distributed

random variables with distribution µ̂t, see Remark 3.2.2, [FG15, Theorem 1] ensures

that

E
[
d2
W (µ̂t, µ̂

Y,n
t )

]
≤ C(q)M

2
q
q (µ̂)

(
1

n
1
2

+
1

n
q−2
q

)
where C is a positive constant depending on q, and Mq is defined as

Mq(µ) =

∫
R
|x|q µ(dx) .

Since by previous considerations Mq(µ̂) is finite, see equation (3.14),

dW (µ̂t, µ
Y,n
t )2 = O

(
n−α

)
(3.15)

where α = min
{

1
2 ,

q−2
q

}
, and being q > 2, this implies that

lim
n→∞

E
[
d2
W (µ̂t, µ

Y,n
t )

]
= 0 (3.16)

uniformly in time.

Now, we want to show that the process Y i,n(γ̂) approximates X̂i,n as n grows to

infinity, in a sense that will be specified later. In both the systems X̂n and Y n, all

the n players choose the same strategy, or more precisely the same strategy form, i.e.

γ̂(t, X̂i,n
t− ) and γ̂(t, Y i,n

t− ), respectively, but the dynamics in X̂n depend on the actual

empirical distribution of this system, while the evolution of the state processes Y i,n are

computed with respect to the measure flow µ̂.

Proposition 3.2.1. Let X̂i,n and Y i,n be defined as in equation (3.8) and (3.9), respec-

tively, and µn the empirical distribution of the system X̂n. Then we have

sup
t∈[0,T ]

E
[
d2
W (µnt , µ̂t)

]
= O

(
n−α

)
, (3.17)

sup
t∈[0,T ]

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2] = O
(
n−α

)
. (3.18)
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Proof. For each t ∈ [0, T ]

∣∣∣X̂i,n
t − Y

i,n
t

∣∣∣2 ≤ 3

(∫ t

0
b(s, X̂i,n

s , µns )− b(s, Y i,n
s , µ̂s) ds

)2

+ 3

(∫ t

0
σ(s, X̂i,n

s )− σ(s, Y i,n
s ) dW i

s

)2

+ 3

(∫ t

0
β(µns−, γ̂(s, X̂i,n

s−))− β(µ̂s−, γ̂(s, Y i,n
s− ))dÑ i

s

)2

.

Then,

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2] ≤ 3tE
[∫ t

0

∣∣∣b(s, X̂i,n
s , µns )− b(s, Y i,n

s , µ̂s)
∣∣∣2 ds]

+ 3E
[∫ t

0

∣∣∣σ(s, X̂i,n
s )− σ(s, Y i,n

s )
∣∣∣2 ds]

+ 3E
[∫ t

0

(
β(µns−, γ̂(s, X̂i,n

s−))− β(µ̂s−, γ̂(s, Y i,n
s− ))

)2
ν(s)ds

]
,

where we used again Jensen’s and Burkholder-Davis-Gundy’s inequalities. Using the

Lipschitz continuity of functions b, σ and β, given by Ass. (D.4), and of γ̂(·, x), as ex-

plained in equation (3.7), as well as the finiteness of E[supt∈[0,T ] dW (µnt , δ0)2], as in (3.13),

we obtain

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2] ≤ 6tL2

∫ t

0
E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2] + E
[
d2
W (µns , µ̂s)

]
ds

+ 3L2

∫ t

0
E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2] ds
+ 6L2 ‖ν‖∞

∫ t

0
E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2]+ E
[
d2
W (µns , µ̂s)

]
ds

≤ C̃(T, L,M)

∫ t

0
E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2]+ E
[
d2
W (µns , µ̂s)

]
ds

(3.19)

for a suitable constant C̃. Moreover, by the previous inequality (3.19), we get

E
[
d2
W (µnt , µ

Y,n
t )

]
≤ 1

n

n∑
i=1

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2]

≤ C̃
∫ t

0

1

n

n∑
i=1

E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2]+ E
[
d2
W (µns , µ̂s)

]
ds .
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Then, it holds that

E
[
d2
W (µnt , µ̂t)

]
+

1

n

n∑
i=1

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2]

≤ 2E
[
d2
W (µnt , µ

Y,n
t )

]
+ 2E

[
d2
W (µY,nt , µ̂t)

]
+

1

n

n∑
i=1

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2]

≤ 2E
[
d2
W (µY,nt , µ̂t)

]
+ 3C̃

(∫ t

0
E
[
d2
W (µns , µ̂s)

]
+

1

n

n∑
i=1

E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2] ds) .
(3.20)

Therefore, by equation (3.16), we have

E
[
d2
W (µnt , µ̂t)

]
+

1

n

n∑
i=1

E
[∣∣∣X̂i,n

t − Y
i,n
t

∣∣∣2]

≤ O
(
n−α

)
+ 2C̃

(∫ t

0
E
[
d2
W (µns , µ̂s)

]
+

1

n

n∑
i=1

E
[∣∣∣X̂i,n

s − Y i,n
s

∣∣∣2] ds)

and an application of the Gronwall’s inequality implies the desired results, i.e. equa-

tions (3.17) and (3.18).

In the previous estimates, we have considered the case when all the n players are

choosing the same strategic plan, γ̂(t, x). We now investigate what happen to the players’

dynamics when one of them, namely player 1, deviates from the strategy profile γ̂X̂
n

by

playing any other admissible strategy η ∈ A. In this case the strategy profile adopted

in the game Gn becomes ηγ̂ and the dynamics of each player in Gn are given by X̃i,n.

The following proposition shows that the empirical distributions of the two systems X̂

and X̃ converge with respect to dW as the number of players grows to infinity and that

the dynamics of the deviating player X̃1,n can be approximated by Ỹ 1,n, which does not

depend on n as pointed out in Remark 3.2.3.

Proposition 3.2.2. Let X̂ and X̃ be the solutions of the system (3.2) when the strategy

profile is given by γ̂X̂
n

and by ηγ̂, respectively. We denote by µn and µ̃n the empirical

measure of the two systems. Then,

sup
t∈[0,T ]

E
[
d2
W (µnt , µ̃

n
t )
]

= O
(
n−1

)
.

Moreover, considering Ỹ 1,n, as defined in equation (3.10), it holds that

sup
t∈[0,T ], η∈A

E
[∣∣∣X̃1,n

t − Ỹ 1,n
t

∣∣∣2] = O
(
n−α

)
. (3.21)
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Proof. Firstly, we compare the dynamics of player 1 in the two different settings. Letting

Ĉ be the constant appearing in Lemma 3.2.1, that is independent of n, Ass. (D.4) implies

E
[∣∣∣X̂1,n

t − X̃1,n
t

∣∣∣2] ≤ 6tL2

∫ t

0
E
[∣∣∣X̂1,n

s − X̃1,n
s

∣∣∣2]+ E
[
d2
W (µns , µ̃

n
s )
]
ds

+ 3L2

∫ t

0
E
[∣∣∣X̂1,n

s − X̃1,n
s

∣∣∣2] ds
+ 3E

[∫ t

0

(
LdW (µns , µ̃

n
s ) + L

∣∣∣γ̂(s, X̂1,n
s )− η

∣∣∣)2
ν(s)ds

]
≤ 12L2Ĉ(2t2 + t+ 2 ‖ν‖∞ t) + 12L2α2

M ‖ν‖∞ t
≤ 12L2Ĉ(2T 2 + T + 2MT ) + 12L2α2

MMT = C1

where C1 is again independent of n, and furthermore, by construction, does not depend

on η either.

On the other hand, the other players for i = 2, . . . , n play the strategy γ̂(t, ·) in

both cases, even if computed with respect to the different states, and then to estimate

E
[∣∣∣X̂i,n

t − X̃
i,n
t

∣∣∣2] we can argue as in (3.19).

Finally, following the same idea as to obtain (3.20) but taking into account the

different role of player 1, we have that

E
[
d2
W (µnt , µ̃

n
t )
]
≤ 1

n
E
[∣∣∣X̂1,n

t − X̃1,n
t

∣∣∣2]+
1

n

n∑
i=2

E
[∣∣∣X̂i,n

t − X̃
i,n
t

∣∣∣2]

≤ C1

n
+
C̃

n

n∑
i=2

∫ t

0
E
[∣∣∣X̂i,n

s − X̃i,n
s

∣∣∣2]+ E
[
d2
W (µns , µ̃

n
s )
]
ds

and therefore

E
[
d2
W (µnt , µ̃

n
t )
]

+
1

n

n∑
i=2

E
[∣∣∣X̂i,n

t − X̃
i,n
t

∣∣∣2]

≤ C1

n
+

2C̃

n

n∑
i=2

∫ t

0
E
[∣∣∣X̂i,n

s − X̃i,n
s

∣∣∣2]+ E
[
d2
W (µns , µ̃

n
s )
]
ds .

Applying again Gronwall’s lemma, it is found that

E
[
d2
W (µnt , µ̃

n
t )
]

+
1

n

n∑
i=2

E
[∣∣∣X̂i,n

t − X̃
i,n
t

∣∣∣2] ≤ 1

n
K1(Ĉ, C1) , (3.22)

with K1 independent of n, t and η since Ĉ and C1 are so. Therefore,

sup
t∈[0,T ] ,η∈A

E
[
d2
W (µnt , µ̃

n
t )
]

= O
(
n−1

)
.
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This, together with (3.17), implies also that

sup
t∈[0,T ] ,η∈A

E
[
d2
W (µ̂t, µ̃

n
t )
]

= O
(
n−α

)
. (3.23)

Lastly, considering Ỹ 1,n as defined in equation (3.10) and arguing as in the proof of

Proposition 3.2.1, we have

E
[∣∣∣X̃1,n

t − Ỹ 1,n
t

∣∣∣2] ≤ 3(2t+ 1)L2

∫ t

0
E
[∣∣∣X̃i,n

s − Ỹ i,n
s

∣∣∣2] ds
+ 3(2t+ ‖ν‖∞)L2

∫ t

0
E
[
d2
W (µ̃ns , µ̂s)

]
ds

≤ K̃(T, L,M)

∫ t

0
E
[∣∣∣X̃1,n

s − Ỹ 1,n
s

∣∣∣2]+ E
[
d2
W (µ̃ns , µ̂s)

]
ds

so that by the previous convergence result (3.23)

E
[∣∣∣X̃1,n

t − Ỹ 1,n
t

∣∣∣2] ≤ K̃(T, L,M)

∫ t

0
E
[∣∣∣X̃1,n

s − Ỹ 1,n
s

∣∣∣2] ds+ TK̃(T, L,M)O
(
n−α

)
.

Hence Gronwall’s lemma implies

E
[∣∣∣X̃1,n

t − Ỹ 1,n
t

∣∣∣2] ≤ K̄(T, L,M)O
(
n−α

)
(3.24)

for a suitable constant K̄ independent of n, t and η, and therefore

sup
t∈[0,T ], η∈A

E
[∣∣∣X̃1,n

t − Ỹ 1,n
t

∣∣∣2] = O
(
n−α

)
.

Remark 3.2.4. It is crucial here and in what follows that the two constants K1 and K̄

appearing in the estimates (3.22) and (3.24) do not depend on how player 1 deviates

from the strategy profile γ̂X̂
n
.

In order to prove Theorem 3.2.1, we will make use of the following two operators:

J̃n : An → R and J̃ : A → R, defined by

J̃n(γ) = E
[∫ T

0
f(t,X1,n

t (γ), µ̂t, γ
1
t ) dt+ g(X1,n

T (γ), µ̂T )

]
(3.25)

and

J̃(η) = E
[∫ T

0
f(t, Y 1,n

t , µ̂t, ηt) dt+ g(Y 1,n
T , µ̂T )

]
(3.26)

respectively, where X1,n(γ) and Y 1,n(η) are given as in (3.2) and (3.10). It is worth

observing that since both Y 1,n and µ̂ do not depend on the number of players in the

game, then also J̃ does not depend on n. Furthermore, since Y 1,n follows the dynamics
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of a representative player in the mean-field game G∞, J̃ is exactly the expected cost

of the strategy η in G∞ with respect to the measure flow µ̂, as given in equation (3.4).

Therefore, since γ̂(t, Y 1,n
t ) is by construction one of the minimising strategies, i.e. γ̂ ∈

arg minγ∈A J(γ), we have that

J̃((γ̂(t, Y 1,n
t− ))t∈[0,T ]) ≤ J̃(η) , (3.27)

for any admissible strategy η ∈ A.

As first step, we show that the value of player 1 in the game Gn when he deviates from

the candidate approximate Nash equilibrium γ̂X̂
n

to any different admissible strategy

η ∈ A, that is J1,n(ηγ̂) given in equation (3.1), can be approximated (when n is large)

with J̃n(ηγ̂), that is the expected cost computed under the same strategy profile ηγ̂ , but

evaluated with respect to the measure µ̂.

Proposition 3.2.3. Let (t, x) 7→ γ̂(t, x) be as in Assumption E. Consider the strategy

profile

γ̂X̂
n

t = (γ̂(t, X̂1,n
t− ), . . . , γ̂(t, X̂n,n

t− )), t ∈ [0, T ],

and let η be an admissible strategy in A. Then

sup
η∈A

∣∣∣J1,n(ηγ̂)− J̃n(ηγ̂)
∣∣∣ = O

(
n−

α
2

)
. (3.28)

Proof. By definition (3.25)-(3.26) and Ass. (D.5), the distance between the two operators

J1,n and J̃n can be bounded as follows:∣∣∣J1,n(ηγ̂)− J̃n(ηγ̂)
∣∣∣ ≤ E

[∫ T

0

∣∣∣f(t, X̃1,n
t , µ̃nt , ηt)− f(t, X̃1,n

t , µ̂t, ηt)
∣∣∣ dt]

+ E
[∣∣∣g(X̃1,n

T , µ̃nT )− g(X̃1,n
T , µ̂T )

∣∣∣]
≤ L

∫ T

0
E [dW (µ̃nt , µ̂t)] dt+ LE [dW (µ̃nT , µ̂T )] .

Then, previous results in Proposition 3.2.1 and in Proposition 3.2.2 imply that

E [dW (µ̃nt , µ̂t)] ≤
(
E
[
dW (µ̃nt , µ̂t)

2
]) 1

2 = O
(
n−

α
2

)
,

and by Lemma 3.2.2 and the dominate convergence theorem, the limit in equation (3.28)

is obtained.

As second step, we approximate J̃n(ηγ̂) with J̃(η), that is the expected cost for

playing η in the MFG G∞.

Proposition 3.2.4. Let (t, x) 7→ γ̂(t, x) represent the Markovian structure of a mean-

field game solution of the game G∞, γ̂X̂
n

t = (γ̂(t, X̂1,n
t− ), . . . , γ̂(t, X̂n,n

t− )), for t ∈ [0, T ],

and let η ∈ A be any admissible strategy. It holds that

sup
η∈A

∣∣∣J̃n(ηγ̂)− J̃(η)
∣∣∣ = O

(
n−

α
2

)
. (3.29)
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Proof. Arguing as in Proposition 3.2.3, we have that∣∣∣J̃n(ηγ̂)− J̃(η)
∣∣∣ ≤ E

[∫ T

0

∣∣∣f(t, X̃1,n
t , µ̂t, ηt)− f(t, Ỹ 1,n

t , µ̂t, ηt)
∣∣∣ dt]

+ E
[∣∣∣g(X̃1,n

T , µ̂T )− g(Ỹ 1,n
T , µ̂T )

∣∣∣]
≤ L

∫ T

0
E
[∣∣∣X̃1,n

t − Ỹ 1,n
t

∣∣∣] dt+ LE
[∣∣∣X̃1,n

T − Ỹ 1,n
T

∣∣∣] .
Since by Proposition 3.2.2, E

[∣∣∣X̃1,n
t (ηγ̂)− Ỹ 1,n

t (η)
∣∣∣] = O

(
n−

α
2

)
, then

sup
η∈A

∣∣∣J̃n(ηγ̂)− J̃(η)
∣∣∣ = O

(
n−

α
2

)
, (3.30)

as claimed.

Thanks to all the previous approximation results, we are ready to prove Theo-

rem 3.2.1.

Proof of Theorem 3.2.1. Given any admissible strategy η ∈ A, let

ε1,n = 4 sup
η∈A

∣∣∣J1,n(ηγ̂)− J̃n(ηγ̂)
∣∣∣ , ε2,n = 4 sup

η∈A

∣∣∣J̃n(ηγ̂)− J̃(η)
∣∣∣ and εn = ε1,n + ε2,n.

Then

J1,n(ηγ̂) ≥ −εn
2

+ J̃(η) ≥ −εn
2

+ J̃(γ̂) ≥ −εn + J1,n(γ̂),

meaning that the deviating player saves at most εn. More in detail, the first and the

third inequalities are guaranteed by Proposition 3.2.3 and Proposition 3.2.4 respectively,

whereas the second inequality is justified in equation (3.27). The symmetry of Gn
guarantees that (γ̂(t,X1,n

t− ), . . . , γ̂(t,Xn,n
t− )), for t ∈ [0, T ], is an ε-Nash equilibrium of

this game. See Definition 1.1.2.

The rate convergence, i.e. εn = O
(
n−

α
2

)
, is also granted by the previous approxi-

mations in Propositions 3.2.3 and 3.2.4.



Chapter 4

An illiquid interbank market

model

We illustrate the relevance of the class of mean field games introduced in the previous

Chapter 1 by means of an illiquid interbank market model. Inspired by the systemic risk

model proposed by Carmona and co-authors in [CFS15], we consider n banks interacting

in an illiquid interbank lending market. Each bank controls its level of reserves to meet

its financial obligations and its reserve requirements. However, being this market illiquid,

the banks can access it only at some exogenously given instants, modeled as jump times

of a Poisson process. The intensity ν of these Poisson processes, which does not depend

on the specific bank, can be viewed as a health indicator of the whole system: the lower

the intensity, hence the lower the probability of controlling the reserves, the higher the

illiquidity of the system.

In Section 4.1, the mathematical structure of this game is introduced and an open-

loop Nash equilibrium is computed explicitly, whereas in Section 4.2 the resulting limiting

MFG is investigated. Furthermore, we perform some numerical experiments showing the

role of illiquidity in driving the evolution over time of the optimal controls and the related

state variables. These results are summarised in Section 4.3.

The original results are collected in [BCDP17a].

4.1 The n-bank case

Consider n banks, the players of this game, which lend to and borrow from a central

bank in an interbank lending market. This is the market where banks can ask or extend

loans to one another and therefore it is their primary source to manage liquidity. Deter-

mining an appropriate level for its reserves is a crucial task for any financial institutions

since after the financial crisis of 2008, they are required to store an adequate amount of

liquid assets, like cash, to manage possible market stress by international regulations,

like Basel III or Solvency II. But at the same time, also holding more cash than needed
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is costly due to its low return.

We model illiquidity phenomenon by not allowing the banks to control their reserves

continuously over time. On the contrary, each bank can adjust its reserve level by

borrowing or lending money only at some exogenous random instants modeled as jump

times of a Poisson process.

Let n be a strictly positive natural number, representing the number of banks in-

tervening in the interbank market under study, and let Xi = (Xi
t)t∈[0,T ] denote the

monetary log-reserves of each bank i, for i = 1, . . . n, over the finite time interval [0, T ],

with 0 < T <∞. The evolution of these processes is given by

dXi
t =

a

n

n∑
j=1

(Xj
t −Xi

t) dt+ σ dW i
t + γit−dP

i
t , i = 1, . . . , n, (4.1)

subjected to an initial condition Xi
0 = ξi for all i = 1, . . . , n. Here (W 1, . . . ,Wn) is an

n-dimensional Brownian motion and (P 1, . . . , Pn) is an n-dimensional Poisson process,

each component with a constant intensity ν > 0. ξi are i.i.d. random variables such that

E[ξi] = 0 for all i = 1, . . . , n. Furthermore, initial conditions, Brownian motions W i and

Poisson processes P i are all mutually independent.

Each bank can control its reserves by means of the control γi, which multiplies

the corresponding Poisson Process P i. This implies that the institution i actively, or

deliberately, modifies its state only at the jump times of P i.

Through the parameter ν, that is the intensity of each independent Poisson process

P i, we represent the market liquidity, like it is an health indicator of the whole system.

For instance, when ν is low, the system becomes very illiquid, meaning that each bank

can intervene in the market, and therefore adjust its reserve level, more rarely. Observe

that while the banks can borrow or lend money at different times, since the processes P i

are mutually independent, ν does not depend on the particular bank i, since it measures

the depth of the market and not a specific characteristic of each bank.

In the following, let X = (X1, . . . , Xn) and γ = (γ1, . . . , γn). We denote by X̄t the

empirical mean of the monetary log-reserves X at time t, that is

X̄t =
1

n

n∑
i=1

Xi
t . (4.2)

Therefore, the dynamics given in the previous SDE (4.1) can be rewritten in the mean

field form as

dXi
t = [a(X̄t −Xi

t) + νγit ]dt+ σ dW i
t + γit−dP̃

i
t , i = 1, . . . , n ,

which clearly show that the dynamics of the monetary reserves are coupled together

through their drifts by means of the average state of the system. Differentiating the

formula (4.2), the dynamics of the average state X̄t follows

dX̄t =
1

n

n∑
k=1

dXk
t =

ν

n

n∑
k=1

γkt dt+
σ

n

n∑
k=1

dW k
t +

1

n

n∑
k=1

γkt− dP̃
k
t . (4.3)
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Any bank i controls its level of reserves through the control process γi in order to

minimise the cost functional J i, defined by

J i(γ) = J i(γ1, . . . , γn) = E
[ ∫ T

0
νf i(Xt, γ

i
t) dt+ gi(XT )

]
.

This cost J i depends directly on the strategy chosen by player i, and indirectly also on

the choices of the opponents, since X does. The running cost f i : Rn × R→ R and the

terminal cost gi : Rn → R are the following quadratic functions

f i(x, γi) =
1

2
(γi)2 − θγi(x̄− xi) +

ε

2
(x̄− xi)2 , (4.4)

gi(x) =
c

2
(x̄− xi)2 , (4.5)

where x̄ = 1
n

∑n
i=1 x

i. Note that both the cost functions of player i depend on the other

players’ strategies only through the mean of the states x̄, i.e. f i(x, γi) = f(x̄, xi, γi)

and gi(x) = g(x̄, xi) and that these cost functions are the same for each player, even if

computed with respect to the own strategy/state.

As mention before, if, on the one hand, banks need to maintain a certain level of

reserves due to regulators, on the other hand, holding too much cash is costly. Then we

assume that banks try to keep their reserve level away from critical values, both from

above and from below, by using as a benchmark the average value of reserves in the

system. With this reason in mind, both the cost functions penalize departures from the

average x̄. Then, the parameter θ > 0 is to control the incentive to borrowing or lending:

each bank i wants to increase its reserves (i.e. borrow: γit > 0) if its state Xi
t is smaller

than the empirical mean X̄t and decrease them (i.e. lend: γit < 0) if Xi
t is greater than

X̄t. Also the parameters ε and c are strictly grater than 0, so that the quadratic term

(x̄− xi)2 in both costs punishes deviations from the average. Moreover we assume that

θ2 ≤ ε ,

which guarantees the convexity of f i(x, γ) in (x, γ).

Remark 4.1.1. Differently from what we have studied in the previous chapters, both the

dynamics and the cost functions depend on the empirical state distribution only through

its first moment, that is the empirical mean of the system.

4.1.1 The open-loop problem

We look for a Nash equilibrium among all admissible open-loop strategies γt =

{γit , i = 1, . . . , n}. A game is open-loop if no player obtains any dynamic informa-

tion during the decision process. Therefore an open-loop strategy is any adapted and

càdlàg process η = (ηt)t∈[0,T ] with values in a fixed action set A ⊂ R satisfying the

integrability condition E
[ ∫ T

0 |ηt|
2 dt
]
< ∞. We denote the set of all these admissible

open-loop controls by A and we will consider as control space A the whole real line R.



4.1 The n-bank case 54

Since due to the formulation of the model the game under study is symmetric, we

can focus on a representative player, say player i, implying that the following holds for

each player i = 1, . . . , n.

Let γ̂ = (γ̂i, . . . , γ̂n) be an admissible strategy profile. To prove that it is a Nash

equilibrium for this game, we need to show that, when all the opponents j, with j 6= i,

are following γ̂j , γ̂i is a best response for player i, meaning that γ̂i is a minimising

control. We will solve the optimization problem faced by player i via the Pontryagin’s

maximum principle, developed in the stochastic framework in [ØS05]. The Hamiltonian

related to the minimisation problem of bank i is the function

H i(t, x, γ, yi, qi, ri) : [0, T ]× Rn ×An × Rn × Rn×n × Rn×n → R

defined by

H i(t, x, γ, yi, qi, ri) = νf i(x, γ) + (a(x̄− x) + νγ) · yi + σtr(qi) + γ · diag(ri)

= ν

(
(γi)2

2
− θ(x̄− xi)γi +

ε

2
(x̄− xi)2

)
+

n∑
k=1

[
a(x̄− xk) + νγk

]
yi,k

+ σ

n∑
k=1

qi,k,k +

n∑
k=1

γkri,k,k.

(4.6)

The processes Y i
t = {Y i,k

t : k = 1, . . . , n}, Qit = {Qi,k,jt : k, j = 1, . . . , n} and Rit =

{Ri,k,jt : k, j = 1, . . . , n} appearing in the definition of the Hamiltonian H i are the so

called adjoint processes, which are defined as the solutions of the following BSDEs with

jumps (see, e.g., [Del13, Theorem 3.1.1]){
dY i,k

t = −∂Hi(t,Xt,γt,Y it ,Q
i
t,R

i
t)

∂xk
dt+

∑n
j=1Q

i,k,j
t dW j

t +
∑n

j=1R
i,k,j
t− dP̃ jt

Y i,k
T = ∂gi

∂xk
(XT ) ,

(4.7)

for k = 1, . . . , n.

To compute an optimal strategy, we will exploit the following Theorem.

Theorem 4.1.1. Let γ̂ = (γ̂1, . . . , γ̂n) be an admissible strategy profile, γ̂ ∈ An, and

X̂ = X γ̂ the corresponding controlled state. Suppose that there exists a solution (ŷi, q̂i, r̂i)

of the corresponding adjoint SDE (4.7) such that

E

∫ T

0
q̂it(q̂

i
t)
> +

n∑
j,k=1

∣∣∣r̂i,j,kt

∣∣∣2 dt
 <∞ . (4.8)

Moreover, suppose that for all t ∈ [0, T ]

H i(t, X̂t, γ̂t, ŷ
i
t, q̂

i
t, r̂

i
t) = inf

α∈A
H i(t, X̂t, γ̂

1
t , . . . , γ̂

i−1
t , α, γ̂i+1

t , . . . , γ̂nt , ŷ
i
t, q̂

i
t, r̂

i
t)
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and that

Ĥ i(x) = min
α∈A

H i(t, x, ŷ1
t , . . . , γ̂

i−1
t , α, γ̂i+1

t , . . . , γ̂nt , ŷ
i, q̂i, r̂i)

is a well-defined convex function, for all t ∈ [0, T ]. Then, γ̂i is optimal, meaning that it

minimises J i.

Proof. See Theorem 3.4 in [ØS05]

The previous theorem suggests to consider as candidate for the optimal control γ̂i the

process which minimise the Hamiltonian H i with respect to all possible control values,

that is

γ̂i = θ(x̄− xi)− yi,i − 1

ν
ri,i,i . (4.9)

Observe that the convexity of f i in (x, γ) provides convexity also for H i and Ĥ i in (x, γ)

and x, respectively. Then, the following step is to explicitly solve the BSDEs given in

equation (4.7).

Note that the drift term in the definition of process Y i as adjoint process, that is

equation (4.7), is given by

−∂H
i(t, x, γ, yi, qi, ri)

∂xk
= νθ

(
1

n
− δi,k

)
γit − νε

(
1

n
− δi,k

)
(x̄− xi)− a

n

n∑
j=1

(yi,j − yi,k) .

Due to its linearity with respect to
(

1
n − δi,k

)
(x̄−xi), it is natural to consider as ansatz

for Y i,k
t a linear process in the same difference, i.e.

Y i,k
t =

(
1

n
− δi,k

)
(X̄t −Xi

t)φt, (4.10)

where δi,j is the Kronecker delta and φ is a deterministic scalar function of class C1([0, T ]).

To guarantee the final condition of process Y i,k as requested in (4.7), that is

Y i,k
T = c

(
1

n
− δi,k

)(
X̄T −Xi

T

) ∂gi
∂xk

(XT ) ,

we require that φ satisfies the terminal condition φT = c. By applying Itô’s Lemma to

the ansatz (4.10) and exploiting the SDEs (4.1) and (4.3), it is found that Y i,k solves

the following SDE:

dY i,k
t =

(
1

n
− δi,k

)
d(X̄t −Xi

t)φt +

(
1

n
− δi,k

)
(X̄t −Xi

t)φ̇t dt

=

(
1

n
− δi,k

)[
νφt(γ̄t − γit) + (φ̇t − aφt)(X̄t −Xi

t)
]
dt

+

(
1

n
− δi,k

)
φtσ

n

n∑
j=1

(
dW j

t − dW i
t

)
(4.11)

+

(
1

n
− δi,k

)
φt
n

n∑
j=1

(
γjt− dP̃

j
t − γit− dP̃ it

)
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where γ̄t = 1
n

∑n
k=1 γ

k
t denotes the average value of all control processes at time t.

Comparing (4.7) and (4.11) under the ansatz (4.10) yields

Qi,k,jt = σ

(
1

n
− δi,k

)(
1

n
− δi,j

)
φt, (4.12)

Ri,k,jt =

(
1

n
− δi,k

)(
1

n
− δi,j

)
φtγ

j
t , (4.13)

for all indeces k, j = 1, . . . , n. Being φ a bounded function and γj ∈ A for all j, these

processes satisfy the desired regularity condition (4.8).

Moreover, by (4.10) and (4.13), it follows that the optimal process γ̂i given in (4.9)

solves

γ̂it = θ(X̄t −Xi
t)−

(
1

n
− 1

)
φt(X̄t −Xi

t)−
1

ν

(
1

n
− 1

)2

φtγ̂
i
t ,

and therefore the optimal best response γ̂i turns out to be

γ̂it =
θ +

(
1− 1

n

)
φt

1 + 1
ν

(
1− 1

n

)2
φt

(X̄t −Xi
t) . (4.14)

Then, at any time t ∈ [0, T ], the optimal strategy of player i is proportional to the

distance between his state position and the average state with rate

ψt =
θ +

(
1− 1

n

)
φt

1 + 1
ν

(
1− 1

n

)2
φt
. (4.15)

Furthermore, it should be noted that even if in principle we were looking for an open-loop

optimal strategy, it turned out to have a closed-loop structure, since γ̂it = γ̂i(t,Xt).

To complete the description of the optimal open-loop strategy γ̂i, we need to provide

a characterisation of the function φ appearing in the definition of the adjoint process

Y i,k, given in equation (4.10). From the definition of the Hamiltonian H i, equation (4.6),

the ansatz (4.10) and the related implications, the SDE (4.7) becomes

dY i,k
t =

(
1

n
− δi,k

)
[νθψt − νε+ aφt] (X̄t −Xi

t) dt+

n∑
j=1

(
Qi,k,jt dW j

t +Ri,j,kt− dP̃ jt

)
.

(4.16)

Since both equations (4.11) and (4.16) hold simultaneously, we have that the following

equality must hold

φ̇− aφ− νψtφ = νθψt − νε+ aφt

and in turn this implies that φt need to solve the ODE(
1 +

1

ν

(
1− 1

n

)2

φt

)
φ̇t =

[
ν +

2a

ν

(
1− 1

n

)](
1− 1

n

)
φ2
t

+

[
νθ

(
2− 1

n

)
− ε

(
1− 1

n

)2

+ 2a

]
φt + ν(θ2 − ε) , (4.17)
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with terminal condition φT = c.

Remark 4.1.2. Observe that a solution φ to the ODE (4.17) exists and it can be computed

at least in implicit form.

φ solves the following final value Cauchy problem{
φ̇(t) = F (φ(t)) ,

φ(T ) = c > 0 ,

where F is given by

F (u) =
Au2 +Bu+ C

1 + ku
,

and k, A, B and C are fixed constants depending on the model parameters, namely

k =
1

ν

(
1− 1

n

)2

,

A =

(
ν +

2a

ν

(
1− 1

n

))(
1− 1

n

)
> 0 ,

B = νθ

(
2− 1

n

)
− ε

(
1− 1

n

)2

+ 2a ,

C = ν(θ2 − ε) < 0 .

The parameter k is strictly positive as soon as ν > 0 and n ≥ 2, which we can safely

assume to rule out trivialities. Performing the time reversal τ = T − t we can consider

the equivalent Cauchy problem {
φ̇(τ) = −F (φ(τ))

φ(0) = c > 0 ,
(4.18)

which is uniquely solvable in the domain Dk = [0, T ]×
(
− 1
k ,∞

)
. Indeed, since −F and

−Ḟ are continuous functions in this domain Dk, standard results assures the existence

of a unique C1 solutions to problem (4.18) for any initial condition c > − 1
k .

4.2 The limiting game

We continue the study of this model by computing the solution of the MFG obtained

from the game introduced in Section 4.1 when the number of players grows to infinity.

In particular, we will study the convergence of the n-player Nash equilibria towards

the related MFG solution. Clearly, this is a theoretical argument since the financial

interpretation of the model gets lost, being the participants of a lending market finite

and rather few.

Firstly, we introduce the corresponding limiting game as explained in Chapter 1.

Let m : [0, T ] → R be a given càdlàg function, m ∈ D, representing a candidate for the
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evolution of the expected average state of the system, that is E[X̄t(n)], when n → ∞.

In this limit case, a representative player aims at minimising the expected cost

J(γ) = E
[∫ T

0
ν

(
γ2
t

2
− θγt(m(t)−Xt) +

ε

2
(m(t)−Xt)

2

)
dt+

c

2
(m(T )−XT )2

]
among all the admissible strategies γ ∈ A, subject to the dynamics

dXt = [a(m(t)−Xt) + νγt] dt+ σ dWt + γt− dP̃t, X0 = ξ. (4.19)

As before, A represents the set of the càdlàg and adapted processes with values in

A and such that E
[∫ T

0 |γt|
2 dt
]
< ∞, W and P denote a standard Brownian motion

and a Poisson process with constant intensity ν > 0, respectively, and ξ is the initial

condition of the state process. W , P and ξ are assumed to be independent. In view of

Definition 1.2.1, a MFG solution is any admissible strategy γ̂ ∈ A which minimises the

objective function J , i.e.

γ̂ = arg inf
γ∈A

J(γ) ,

and at the same time satisfies the MFG consistency condition (1.8), that in this case

reduces to

E[X γ̂
t ] = mt ∀t ∈ [0, T ] .

As for the game with a finite number of players, the problem is solved via the Pon-

tryagin maximum principle. In this case, the Hamiltonian turns out to be

H(t, x, γ, y, q, r) = ν

(
γ2

2
−θγ(m(t)−x) +

ε

2
(m(t)−x)2

)
+ [a(m(t)−x) +νγ]y+σq+γr

where (y, q, r) are the adjoint processes, defined as the triple (Y,Q,R) solving{
dYt = −∂H(t,Xt,Yt,Qt,Rt,γt)

∂x dt+Qt dWt +Rt− dP̃t ,

YT = c(XT −m(T )) .
(4.20)

Note that this time, contrary to what happen in the n-player game, the optimization

problem is one-dimensional and therefore Y , Q and R are real-valued stochastic pro-

cesses. Then, the Hamiltonian H(t, x, ·, y, q, r) attains its minimum when

γ̂ = θ(m(t)− x)− y − 1

ν
r .

In this case the dynamics of the related control state X = X γ̂ is given by
dXt = [(a+ νθ)(m(t)−Xt)− νYt −Rt] dt+ σ dWt + [θ(m(t−)−Xt−)

−Yt− −
1

ν
Rt−)] dP̃t

X0 = ξ ,

(4.21)
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whereas the triple (Y,Q,R) solves{
dYt =

[
(a+ νθ)Yt + θRt + ν(ε− θ2)(m(t)−Xt)

]
dt+Qt dWt +Rt− dP̃t ,

YT = c(XT −m(T )) .
(4.22)

The two stochastic differential equations (4.21)-(4.22) are linear in X and Y , and there-

fore we can firstly solve for their expected value, i.e. E[Xt] and E[Yt]. In fact, by taking

expectation in both sides of equation (4.21) and using the martingale property of the

integrals with respect to Brownian motion and compensated Poisson process, it is found

that E[Xt] solves

dE[Xt] = [(a+ νθ)(m(t)− E[Xt])− νE[Yt] + E[Rt]] dt.

Since a MFG solution γ̂ is required to guarantee the consistency condition E[X γ̂
t ] = mt,

to find a solution it must be the case that m evolves according to

dm(t) = −νE[Yt] + E[Rt] dt . (4.23)

Now, in order to solve the BSDE (4.22) and therefore to find explicitly the adjoint

processes, we make the usual ansatzes, namely

Yt = −φt(m(t)−Xt) , Qt = σφt , Rt =
θ + φt

1 + 1
νφt

φt(m(t)−Xt) , (4.24)

for some deterministic function φ of class C1([0, T ]) with final value φT = c. As before,

this final condition over φ assures that YT = c(XT −m(T )) as requested. Observe that,

defined as in equation (4.24), the adjoint processes Y , R and Q are the limit of the

processes consider in the n-bank case given in equations (4.10), (4.12) and (4.13), when

n tends to infinity.

Due to the fact that both processes Q and R are proportional to the difference

m(t)− E[Xt] and that m(t) = E[Xt] for all t ∈ [0, T ] when a MFG solution is chosen as

control process, it follows that in the optimal case E[Qt] = E[Rt] = 0 for all t ∈ [0, T ].

By plugging the ansatzes in the BSDE (4.22), it is found that the process Y solves

dYt =

(
−(a+ νθ)φt + θ

θ + φt

1 + 1
νφt

φt + ν(ε− θ2)

)
(m(t)−Xt)dt+ σφt dWt

+
θ + φt

1 + 1
νφt

φt(m(t−)−Xt−) dP̃t

(4.25)
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and, at the same time, by differentiating its definition, we have that

dYt =
(
−φ̇t(m(t)−Xt) + φt ((a+ νθ)(m(t)−Xt)− νYt −Rt + νE[Yt] + E[Rt])

)
dt

+ σφt dWt +
θ + φt

1 + 1
νφt

φt(m(t−)−Xt−) dP̃t

=

(
−φ̇t + φt

(
a+ νθ + νφt −

θ + φt

1 + 1
νφt

φt

))
(m(t)−Xt) dt+ σφt dWt

+
θ + φt

1 + 1
νφt

φt(m(t−)−Xt−) dP̃t,

where once again we used the identity m(t) = E[Xt] and its implications, namely E[Yt] =

E[Rt] = 0 and equation (4.23).

Therefore (Y,Q,R) as defined in equation (4.24) is the solution to the BSDE (4.22)

as soon as φt solves the following Cauchy problem{(
1 + 1

νφt
)
φ̇t =

(
ν + 2a

ν

)
φ2
t + (2(a+ νθ)− ε)φt − ν(ε− θ2) ,

φ(T ) = c ,
(4.26)

and then the optimal control strategy turns out to be

γ̂t =
θ + φt

1 + 1
νφt

(E[Xt]−Xt) .

Observe that this can also be obtained as limit for n → ∞ of the Nash equilibrium

computed before in the n-player game (see equations (4.14) and (4.17)). Figure 4.1

displays the behaviour of φ, solution of the ODE (4.17), for different values of players’

number n. As n increases, the graph of φ = φ(n) quickly converges to the solution we

found in the game with an infinite number of players, given in equation (4.26).

4.3 Simulations

We conclude this chapter by performing some numerical analysis on the n-player

game introduced in the Section 4.1. In particular, we examine the dependence of the

open-loop Nash equilibrium on the intensity of the Poisson processes, ν.

First, in Figure 4.2, we consider a general possible scenario of the model. Figure 4.2a

shows the dynamic of each bank, with the one of player 1 marked in bold, and the

evolution of the average level of the reserves in red, whereas Figure 4.2b shows the

corresponding optimal strategy for player 1. This optimal strategy is such that at each

jump time in his own dynamic, that is when bank 1 can adjust its reserves by borrowing

or lending money, the corresponding state process moves closer to the average level X̄.

This is clearly expected due to the form of the cost functions, being such an average a

benchmark for each bank. Then, since both the cost functions penalize each deviation
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Figure 4.1: Plots of φ, solution of the ODE (4.17) for different values of n. Model’s

parameter: T = 2, a = 1, θ = 1, ε = 10, ν = 0.7, c = 0

of the players’ state from the average state X̄, each player try to replicate X̄ for its own

reserve level. Therefore, as it can be seen in the figures, when the reserve level of bank

1 is below the average value X̄, the optimal strategy is positive, meaning that bank 1

wishes to raise its reserves up, and on the contrary when X1 is above X̄, the optimal

strategy is negative, meaning that bank 1 wants to decrease its reserves.

It could be noted that, even if after a jump, the state of player 1 moves closer

to the benchmark X̄t, these two values do not (always) match exactly. This depends

on two reasons. First, reaching X̄ can be too costly due to the quadratic cost of the

control in the running cost function. Second, the choice of each bank, say bank 1, at

time t− depends on the difference between its reserve X1
t− and the average reserves X̄t−

computed immediately before the jump time t. But at the same time, X̄ might have a

jump at the same time t, as a consequence of the jump in the reserves of bank 1. So

even if X1
t = X̄t−, it may occur that X1

t 6= X̄t.

Now, we focus on the variation of the equilibrium strategy due to changes in the

intensity ν of the Poisson processes, representing the liquidity parameter of the inter-

bank market. It is more convenient for the analysis to consider the function ψ : [0, T ]→
R, as defined in equation (4.15), so that the open-loop optimal strategy can be expressed

as γ̂it = ψt(X̄t −Xi
t), for t ∈ [0, T ]. Hence, whenever one of the Poisson processes, say

P i, jumps, bank i would modify its reserves by an amount γ̂it which is proportional to

the difference X̄t−−Xi
t− just before the jump, with a proportionality factor ψt. Routine
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Figure 4.2: Possible scenario. Model’s parameters: n = 10, T = 2, a = 1, σ = 0.8,

X0 = 0, θ = 1, ε = 10, c = 0, ν = 0.7.
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computation shows that ψ solves the following ODE(
1− 1

ν

(
1− 1

n

)
θ

)2

ψ̇t =

[
ν +

2a

ν

(
1− 1

n

)](
1− 1

ν

(
1− 1

n

)
ψt

)
(ψt − θ)2

+

[
νθ

(
2− 1

n

)
− ε

(
1− 1

n

)2

+ 2a

](
1− 1

ν

(
1− 1

n

)
ψt

)2

(ψt − θ)

+

[(
1− 1

n

)
ν(θ2 − ε)

](
1− 1

ν

(
1− 1

n

)
ψt

)3

,

with final value ψT =
θ +

(
1− 1

n

)
c

1 + 1
ν

(
1− 1

n

)2
c
, which is increasing in ν.

All our numerical experiments revealed that such a monotonicity behaviour propa-

gates to the whole time interval, i.e. the proportionality factor ψt is increasing in the

intensity ν for all t ∈ [0, T ]. Here, in figures 4.3 and 4.4, we show only the behaviour

of ψ as function of time t ∈ [0, T ] with T = 2, n ∈ {10, 100}, c ∈ {0, 1}, and more

importantly for different values of ν. Moreover, observe that (see Fig 4.4) the final value

ψT depends on the parameter ν whenever c is different than zero.

In the Nash equilibrium we have found, when ν is small, hence the interbank market

is very illiquid in the sense that banks will have (in expectation) very few possibilities to

change their reserves, the reserves will change very little proportionally to (X̄t−−Xi
t−).

On the other hand, when ν is large, so that in expectation banks will have many occasions

to lend/borrow money from the central bank, changes in their reserves will be very big

proportionally to (X̄t− − Xi
t−). Therefore, focusing on the first case, we notice that

instead of compensating the lack of liquidity (ν small), banks seem to amplify it by

borrowing and lending very little.

Another interesting feature one can notice from the figures is that when ν is small,

the proportionality factor ψt is increasing in time. When the market is very illiquid,

there are very few possibility for the banks to change their reserves during the time

period, so that when the maturity T is approaching, the banks knowing that they are

running out of time to move their reserves closer to the average reserve X̄, amplify their

efforts, whence an increasing ψt. An analogue interpretation can be provided for the

opposite situation of a time-decreasing ψt when ν is large.
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Figure 4.3: Evolution of ψ for different values of ν. Model’s parameters: T = 2, a = 1,

θ = 1, ε = 10, c = 0.
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Figure 4.4: Evolution of ψ for different values of ν. Model’s parameters: T = 2, a = 1,

θ = 1, ε = 10, c = 1.



Part II

An optimal control approach to

stochastic volatility models



Chapter 5

Stochastic optimal control theory

The objective of this chapter is to collect some useful results on stochastic optimal

control theory, needed in Chapter 6. Stochastic control theory concerns controlled dy-

namical systems when subjected to random perturbations. In the following we consider

diffusion models, meaning that the state of the system evolves over time according to

an Itô’s stochastic differential equation, which depends on a controlled input chosen to

achieve the best possible outcome.

Here the presentation is restricted to the key results, but a more general and detailed

study of these topics can be found in [Pha09; FR12; Tou12; YZ99] which are the main

references for this chapter.

5.1 Stochastic optimal control problems

Let t0 and T be two fixed times in the interval (0,∞) such that t0 < T and let

(Ω,F , {Ft}t∈[t0,T ], P ) be a filtered probability space. Consider a dynamical system whose

random state X = X(ω) ∈ Rn evolves according to the stochastic differential equation

dXt = b(t,Xt, u(t)) dt+ σ(t,Xt, u(t))dWt , t ∈ [t0, T ] , (5.1)

subjected to an initial condition Xt0 = x, where Wt stands for a d-dimensional Brownian

motion. The dynamic t 7→ Xt depends on the controlled input u, where the value u(t)

represents the control applied in the system at time t, chosen with respect to the available

information.

The drift function b : [t0, T ] × Rn × U → Rn and the diffusion function σ : [t0, T ] ×
Rn×U → Rn×d are assumed to be continuous and Lipschitz continuous with respect to

the state variable x, that is for all x, y ∈ Rn, t ∈ [t0, T ] and v ∈ U , it holds that

|b(t, x, v)− b(t, y, v)|+ |σ(t, x, v)− σ(t, y, v)| ≤ C |x− y|

for a suitable positive constant C.
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To be admissible, a control u = {u(t) : t0 ≤ t ≤ T} is required to be an Ft-adapted

process, taking values in a given set of U ⊂ Rk, and such that

E
[∫ T

t0

|b(t, 0, u(t))|2 + |σ(t, 0, u(t))|2 dt
]
<∞ .

In the following, the set of all admissible control processes will be denoted by U(t0, x).

Furthermore, an admissible control u ∈ U(t, x) is called feedback (or Markov) control if

it is adapted to the natural filtration generated by the state process and can be written

as us = ν(s,Xt,x
s ) for a measurable function ν : [t, T ]× Rn → U .

Given the previous assumptions regarding the drift and the diffusion function, u being

in U ensures that there exists a unique strong solution to the stochastic differential

equation (5.1) for each initial data (t, x) ∈ [t0, T ] × Rn. Given an admissible control

process u ∈ U(t, x), the unique solution of equation (5.1) starting at time t from value x

will be denoted with Xt,x,u = {Xt,x,u
s }s∈[t,T ], or simply with Xt,x = {Xt,x

s }s∈[t,T ] if there

is no ambiguity.

The performance of any control process is measured by a given cost criterion J , and

the objective is to minimise it. Considering a finite horizon problem, given an initial

data (t, x) ∈ [t0, T ]× Rn, the functional J is defined as

J(t, x; ·) : U → R

u→ J(t, x;u) = E
[∫ T

t
f(s,Xt,x,u

s , u(s)) ds+ g(T,Xt,x,u(T ))

]
,

where f and g are two measurable functions. We refer to J(t, x;u) as the expected cost

associated to the control u. In order to be J well defined, U(t, x) is restricted to the

admissible processes providing E
[ ∫ T

t |f(s,Xt,x,u
s , u(s))| ds

]
<∞ and g is required to be

is lower-bounded or of sub-quadratic growth.

Therefore, given an initial data (t, x) ∈ [t0, T ] × Rn for the state process X, the

stochastic control problem (P) considered here is to find (if it exists) an admissible

control process u∗ attaining the minimum of J(t, x; ·) over all the admissible control

processes U(t, x):

(P) Search u∗ ∈ U(t, x) such that J(t, x;u∗) = minu∈U(t,x) J(t, x;u).

5.2 The Hamilton-Jacobi-Bellman equation

Let V (t, x) be the value function associated to the minimisation problem (P), that

is the infimum value of the objective function J given as a function of the initial data

(t, x). Then, for all (t, x) ∈ [t0, T ]× Rn, V (t, x) is defined as

V (t, x) = inf
u∈U(t,x)

J(t, x;u) . (5.2)
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Thus, a control u∗ is optimal for problem (P) if u∗ ∈ U(t, x) and V (t, x) equals the

expected cost corresponding to u∗, that is V (t, x) = J(t, x;u∗).

The bahaviour of the value function V (t, x) is studied in the dynamic programming

principle (DPP), a fundamental result in stochastic control theory. The DPP states that

Theorem 5.2.1 (Dynamic programming principle). Let Tt,T be a family of finite stop-

ping times with value in [t, T ]. Then,

V (t, x) = inf
u∈U

sup
θ∈Tt,T

E
[∫ θ

t
f(s,Xt,x

s , u(s)) ds+ V (θ,Xt,x(θ))

]
= inf

u∈U
inf

θ∈Tt,T
E
[∫ θ

t
f(s,Xt,x

s , u(s)) ds+ V (θ,Xt,x(θ))

]
.

(5.3)

The DPP asserts that the optimization problem (P), which takes under consideration

the whole time interval [t, T ], can be split into two (or more) minimisation problems:

Let θ ∈ [t, T ]. First, look for an admissible control process u∗ which is optimal

over the (possibly) shorter time window [θ, T ] when the state process X starts

at time θ from value Xt,x
θ , meaning that

V (θ,Xt,x
θ ) = J(θ,Xt,x

θ ;u∗) .

Secondly, search for an admissible control process u ∈ U(t, x) which attains

the minimum of the expectation

E
[∫ θ

t
f(s,Xt,x

s , u(s)) ds+ V (θ,Xt,x
θ )

]
.

Naively, this is an analogous minimisation problem to (P) on the time interval

[t, θ] when the terminal cost is given by V (θ,Xt,x
θ ). This counts the infimum

expected cost on the remaining time [θ, T ] when the initial state is Xt,x,u
θ .

From the DPP, also the local behaviour of the value function V can be derived, and

it is described in the so called dynamic programming equation, better known as the

Hamilton-Jacobi-Bellman (HJB) equation. We shortly, and heuristically, recall how the

HJB equation can be essentialy obtained by the DPP.

Let h > 0 and consider the optimization problem (P) over the time window [t, t+h] ⊂
[t0, T ]. Considering the constant control process ν(s) = ν for all s ∈ [t, t+h], with ν ∈ U ,

and the corresponding state process Xt,x,ν , it holds that

V (t, x) ≤ E
[∫ t+h

t
f(s,Xt,x,ν

s , ν) ds+ V (t+ h,Xt,x,ν
t+h )

]
, (5.4)

being the value function V , by definition, the infimum over all the admissible processes

of the expected value in the RHS of the previous inequality. If V is a smooth enough
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function, let say V ∈ C1,2([t0, T ]× Rn), applying Itô’s Lemma to the stochastic process

V (s,Xt,x,ν
s ) with s ∈ [t, t+ h], it follows that

V (t+ h,Xt,x
t+h) = V (t, x) +

∫ t+h

t

(
∂V

∂t
+ LνV

)
(s,Xt,x

s ) ds+Qt . (5.5)

Here Qt =
∫ t+h
t σ(s,Xt,x,ν

s , ν) · DxV (s,Xt,x,ν
s ) dWs is a (local) martingale, whereas the

linear second order operator Lν associated to the controlled process Xν , where ν is the

constant control process ν(s) ≡ ν, is defined by

LνV = b(t, x, ν) ·DxV +
1

2
tr
[
a(t, x, ν) ·D2

xV
]
.

Moreover Dx and D2
x stand respectively for the gradient and the Hessian operator with

respect to x, the trace operator tr[·], which is defined on the set of symmetric, positive

semidefinite m×m matrices Sm, is given by

tr[M ] =

m∑
i=1

Mii , for all M ∈ Sm ,

and a(t, x, u) = σ(t, x, u)σ′(t, x, u). Substituting equation (5.5) into the inequality (5.4)

implies

E
[∫ t+h

t

(
∂V

∂t
+ LνV

)
(s,Xt,x,ν

s ) + f(s,Xt,x,ν
s , ν) ds

]
≥ 0

and letting h→ 0, the mean value Theorem ensures that(
∂V

∂t
+ LνV

)
(t, x) + f(t, x, ν) ≥ 0 . (5.6)

Here we strongly use the continuity of the value function V and of its derivatives ∂tV ,

DxV and D2
xV . Since equation (5.6) holds for each constant admissible control ν ∈ U ,

that is for each ν ∈ U , then

∂V

∂t
(t, x) + inf

ν∈U
{LνV (t, x) + f(t, x, ν)} ≥ 0 . (5.7)

At the same time, by definition, an optimal control process u∗ satisfies

V (t, x) = E
[∫ t+h

t
f(s,Xt,x,u∗

s , u∗(s)) ds+ V (t+ h,Xt,x,u∗

t+h )

]
and, arguing as before, this time it is found that

∂V

∂t
(t, x) + Lu∗(t)V (t, x) + f(t, x, u∗(t)) = 0 .



5.2 The Hamilton-Jacobi-Bellman equation 71

Combining the two equations (5.6) and (5.7), the value function V (t, x) is required to

satisfy the following partial differential equation

∂V

∂t
(t, x) + inf

ν∈U
{LνV (t, x) + f(t, x, ν)} = 0 , (5.8)

called the Hamilton-Jacobi-Bellman equation associated to the optimization problem (P).

Furthermore, considering the final horizon T , the definition of the value function implies

that its natural terminal condition is

V (T, x) = g(x) , ∀x ∈ Rn .

Usually, the HJB equation (5.8) is shortly written as{
−∂V

∂s (s, x)−H(s, x,DxV (s, x), D2
xV (s, x)) = 0 , ∀(s, x) ∈ [t, T )× Rn ,

V (T, x) = g(x) , ∀x ∈ Rn
(5.9)

where, for (t, x, p,M) ∈ [t0, T ] × Rn × Rn × Sn, the Hamiltonian function H is defined

by

H(t, x, p,M) = inf
u∈U

[
b(t, x, u) · p+

1

2
tr [a(t, x, u)M ] + f(t, x, u)

]
. (5.10)

5.2.1 The verification Theorem

Therefore, if the value function V exists smooth enough, it solves the HJB equa-

tion (5.9). Then, the following natural and crucial question is if also the converse holds

true, that is when, or under which conditions, a solution to the HJB equation coincides

with the value function of the corresponding optimization problem. An answer to this

query is provided by the Verification Theorem.

Theorem 5.2.2 (Verification Theorem). Let v be a function in C1,2([t0, T ) × Rn) ∩
C0([t0, T ]× Rn) satisfying for a suitable constant C the quadratic growth condition

|v(t, x)| ≤ C(1 + |x|2) , for all (t, x) ∈ [t0, T )× Rn.

Assume that v is a classical solution to the HJB equation{
−∂v
∂s (s, x)− infu∈U

[
b(t, x, u) ·Dxv + 1

2tr [a(t, x, u)D2
xv] + f(t, x, u)

]
= 0 ,

V (T, x) = g(x) ,

for all (s, x) ∈ [t, T )× Rn. Then, v ≤ V on [0, T ]× Rn.

Assume further that there exists a process u∗ = u∗(t, x) ∈ U for a measurable function

u∗ : [0, T ]×Rn → U , which along with the related controlled state X∗ = Xt,x,u∗ satisfies

inf
u∈U

[
b(t,X∗t , u) ·Dxv +

1

2
tr[a(t,X∗t , u)D2

xv] + f(t,X∗t , u)

]
= b(t,X∗t , u

∗) ·Dxv +
1

2
tr(a(t,X∗t , u

∗)D2
xv) + f(t,X∗t , u

∗) .
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Then, v coincides with the value function V , v(t, x) = V (t, x), and therefore u∗ = u∗(t, x)

is an optimal feedback control process.

Remark 5.2.1. Here, we have assume for simplicity that the SDE (5.1) admits a unique

strong solution. However, the optimization problem (P) can be solves analogously if

the state equation admits a unique weak solution. Indeed, in this case, the optimization

problem can be analogously solved by re-defining the control as the 5-tupla (Ω̃, F̃ , P̃ , w, u)

where

(i) (Ω̃, F̃ , P̃ ) is a complete probability space;

(ii) w = (wt)t∈[t0,T ] is a Brownian motion defined on the previous probability space,

whose natural filtration augmented by the P̃ -null sets is denoted by (F̃wt )t∈[t0,T ];

(iii) u is a F̃wt -adapted process such that the SDE (5.1) admits a unique solution, for

any initial data.

See [YZ99] for further details.

5.2.2 Weak generalized solutions

In the previous, we consider a smooth enough value function V to ensure that it is a

classical solution of the Hamilton-Jacobi-Bellman equation (5.9). When this is not the

case, to still apply this methodology a weak formulation of solution is required. For this

purpose, Crandall and Lions introduced in [CL83] the concept of viscosity solution, which

properly suits for a large class of control problems since the value function V is indeed

the unique viscosity solution of equation (5.9) under weaker assumptions regarding its

regularity relative to the classical setting.

Another possibility is to describe the value functions as a weak generalized solution

to the HJB equation, see [FS06, Chapter IV.10]. In this case Vx ∈ L1
loc([t0, T ] × R) is

said to be a generalized partial derivative of V with respect to variable x if∫
[t0,T ]×R

Vxψ dxdt = −
∫

[t0,T ]×R
V ψx dxdt ,

and analogously the generalized partial derivative of Vt and Vxx are given, if they exists,

as the L1
loc([t0, T ]× R) functions such that∫

[t0,T ]×R
Vtψ dxdt = −

∫
[t0,T ]×R

V ψt dxdt ,∫
[t0,T ]×R

Vxxψ dxdt =

∫
[t0,T ]×R

V ψxx dxdt .

Then the value function V is proved to be a generalized subsolution to the HJB equa-

tion (5.9).

This is the concept of weak solution we will use in the following chapter. See Defini-

tion 6.3.1 for further details.



Chapter 6

Optimality in a controlled Heston

model

This chapter studies a stochastic optimization problem where the evolution of the

state process is modeled as in the Heston model, but with a further multiplicative control

input in the volatility of the state. The basics of the stochastic volatility models, with

particular attention on the Heston model, are presented in Section 6.1. Section 6.2

formally introduces the stochastic optimal control problem under investigation, whereas

in Section 6.3 the Hamilton-Jacobi-Bellman equation associated to this optimal control

problem is introduced and the existence of solutions is discussed. Lastly, in Section 6.4

we construct optimal feedback controls for a class of problems which approximates the

original one.

The results of this chapter are collected in [BBDP17a].

6.1 The Heston model

Stochastic volatility models (SVMs) are widely used in a large number of different

financial settings, as in the risk sector, in the interest rate policy or in insurance problems.

In fact, SVMs allow for a careful analysis of relevant time series as they appear in the real

financial world. Daily return data series show two peculiarities among different types

of assets in different markets and in different periods, namely the volatility clustering

phenomenon and the fat-tailed and highly peaked distribution relative to the normal

distribution. Volatility clustering refers to the fact that large changes in prices tend to

be followed by large changes, regardless of their sign, whereas small changes tend to be

followed by small changes, see [Man97]. This means that, over a significant time window,

it can be observed the presence of both high volatility periods and low volatility ones,

separately, rather than a constant average level of volatility persisting over time.

The two above-mentioned peculiarities can be captured by the so called SVMs, a

class of models characterised by the fact that the volatility of the state is a stochastic
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process itself.

One of the most popular SVMs is the Heston model, which we shortly introduce here

recalling its main properties. The Heston model, named after his inventor, was firstly

introduced in [Hes93] to price European bond and currency options, aiming at generalize

and overcome (some of) the biases of the Black and Scholes model, starting with the

assumption of normal distributed returns. In this case, the asset price moves according

to the diffusive dynamics
dSt
St

= µdt+
√
νtdW1(t) , (6.1)

subjected to an initial condition S0 = s, where the volatility νt is modeled by a stochastic

process satisfying

d
√
νt = −β

√
νt dt+ δdW2(t) ,

with ν0 ≥ 0. Then, the volatility of the price is no longer a deterministic function of S,

but it is itself randomly distributed. Here, W1 and W2 are two Brownian motions which

may be possibly correlated, and in the following their correlation will be denoted by ρ.

By applying Itô’s Lemma, it follows that ν solves the Ornstein-Uhlenbeck SDE

dνt = 2β

(
δ2

2β
− νt

)
dt+ 2δ

√
νt dW2(t) . (6.2)

As a matter of fact, the Heston model generalizes the Black and Scholes one, since if

δ is identically zero, then ν becomes a deterministic function of time and the latter

model is recovered. Furthermore, a crucial advantage of the Heston model is that there

exists a closed-form option pricing formula for a European call written on an asset whose

dynamics is given by (6.1)-(6.2).

Different choices for modeling the volatility ν allow for a multitude of models that

properly represent different financial data, see, e.g, [BNS02; CIJR05; HW87; Sco87;

Wig87].

Beside the fact that the volatility of returns of the underlying asset S varies stochas-

tically over time, the key difference between the Heston and the Black and Scholes model

is the correlation between the volatility of the price, ν, and the price itself, S. The nat-

ural consequence of this correlation has an impact in the skewness of the asset return

distribution. Indeed a positive correlation ρ > 0 provides a higher variance when the

asset price rises and therefore it leads to a fat right-tailed distribution. Moreover, the

mean reversion of the volatility ν can explain the clustering effect: even in periods of

high volatility, ν is expected to eventually return to normal values.

In the following of this chapter we study an optimization problem where the state

dynamics is modeled by an Heston model when a multiplicative control component is

added into its volatility term. Details on the mathematical setting will be specified

in Section 6.2. The aim is to take under consideration the possible exogenous role of

an external actor. Consider, as an example, a market sector where a relevant number

of banks are exposed simultaneously. Then, to preserve stability, a Central Bank may
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intend to prevent abrupt changes in this market by actively intervening. Recently, a

similar measure has been implemented by the European Central Bank with the so called

quantitative easing monetary policy. Buying a predetermined amount of financial assets

emitted mainly from (national) commercial banks, the ECB managed to rise the price of

(some) interested financial assets, lower their yield and increase the money supply and

therefore it provides a radical reduction of the volatility as a final result.

6.2 The controlled Heston model

Let T ∈ (0,∞) be a fixed time horizon and let (Ω,F , (Ft)t∈[0,T ],P) be a filtered

probability space. Let X = (X1, X2) ∈ R2 be a stochastic process defined by
dX1 = µX1 dt+X1

√
uX2 dW1 , t ∈ (0, T ) ,

dX2 = k(θ −X2) dt+ σ
√
X2 dW2 , t ∈ (0, T ) ,

X1(0) = X0
1 , X2(0) = X0

2 ,

(6.3)

where the initial conditions X0
1 , X0

2 are both positive. Here W1 and W2 are two Ft-
adapted Brownian motions, whereas µ, κ, σ and θ are fixed positive parameters. This

system (6.3) extends the classical Heston model introduced in the previous section in

equations (6.1)-(6.2) by adding a control u in the volatility term of the stochastic process

X1.

Let U denote the real interval [a, b], with 0 < a < b < ∞. Then, an admissible

control process u is any Ft-adapted stochastic process u : [0, T ] → R, taking values in

U . The class of all these stochastic processes will be denoted by U . The effectiveness of

any control u ∈ U is measured by the cost criterion J defined by

J(X0
1 , X

0
2 ;u) = E

[∫ T

0
X2

1 (t)f(X1(t), u(t)) dt+ g(X1(T ))

]
. (6.4)

whose form is mainly inspired by [FP11]. The function f : R × U → R is required to

satisfy the following hypotheses.

(i) f is a continuous function on R × U . Moreover, for each x ∈ R, u 7→ f(x, u) is

convex and inf{f(x, u);u ∈ [a, b]} = 0.

Then, the stochastic optimal control problem (P) we consider here is:

(P) Minimise J(X0
1 , X

0
2 ;u) over the set of all admissible control processes u ∈ U .

A first problem regards the well-posedness of the state system (6.3), that is the

existence of a solution X to this system for any admissible process u ∈ U . It is clear

that by its definition a solution X2, if exists, should be found in the class of non negative

processes on [0, T ]. However since the diffusion term in the SDE of X2 x 7→ σ
√
x is not
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Lipschitz, it is not clear if such a solution exists for any initial data X0
2 ≥ 0. The following

theorem states suitable conditions on the model parameters to ensure the existence of a

weak solution X = (X1, X2) to the system (6.3).

Theorem 6.2.1. Assume that

kθ ≥ 1

2
σ2 . (6.5)

Then, there is at least one weak solution X = (X1, X2) for the system (6.3) belonging to

(L2(Ω;C([0, T ])))2 such that X is non negative almost surely, i.e.

X1(t) ≥ 0 , X2(t) ≥ 0 , ∀t ∈ [0, T ] , P-a.s. (6.6)

Moreover

E

[
sup
t∈[0,T ]

(
|X1(t)|2 + |X2(t)|2

)]
≤ C̄

(∣∣X0
1

∣∣2 +
∣∣X0

2

∣∣2)+ CT (6.7)

for suitable positive constants C̄ and C.

Proof. As first step, to show the positiveness of X2, we approximate the second equation

in (6.3) by a different SDE, namely
dXε

2 = k(θ −Xε
2) dt+ σ

Xε
2√

|Xε
2 |+ ε

dW2 , t ∈ (0, T ) ,

Xε
2(0) = X2

0 ,

(6.8)

where ε is an arbitrary positive constant. Since for each fixed ε > 0 the map x 7→ x√
|x|+ε

is Lipschitz continuous, standard results, see, e.g. [Pha09, Theorem 1.3.15], ensures that

the SDE (6.8) has a unique strong solution Xε
2 ∈ L2(Ω;C([0, T ])). After proving that

the solution process Xε
2(t) is non negative for all t ∈ [0, T ], we will show that also X2 is

non negative by approximation results.

Assume that the assumption (6.5) holds, then the solution to (6.8) satisfies

Xε
2(t) ≥ 0 , ∀t ∈ [0, T ] , P-a.s. (6.9)

Indeed, consider the function ϕ : R → R+ defined by ϕ(x) = 1
2(x−)2, where x− is the

negative part of x, namely x− = max { 0,−x }, and its essential derivatives

ϕ′(x) = −x− , ϕ′′(x) = H(−x), ∀x ∈ R ,

where H is the Heaviside function, i.e. H(x) = 1(0,∞)(x). Applying the Itô’s Lemma,

or better, a generalization for convex function of the Itô’s Lemma, see [KS12, theorem

6.22], to ϕ(Xε
2(t)) and exploiting the equality x−x = −(x−)2 , it follows that

1

2
d
∣∣(Xε

2)−(t)
∣∣2 = −k

∣∣(Xε
2)−(t)

∣∣2 dt− kθ(Xε
2)−(t) dt+ σ

(Xε
2(t)−)2√
|Xε

2(t)|+ ε
dW2(t)

+
σ2

2

((Xε
2)−(t))2

(Xε
2)−(t) + ε

H(−Xε
2(t)) dt .
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Since (Xε
2)− is non negative by definition and x2

x+ε ≤ x for all x ≥ 0 and ε > 0, the

previous SDE implies that

1

2
E
[∣∣(Xε

2)−(t)
∣∣2 + k

∫ t

0

∣∣(Xε
2)−(s)

∣∣2 ds] ≤ E
[∫ t

0

(
σ2

2
− kθ

)
(Xε

2)−(t) ds

]
≤ 0

for all t ∈ [0, T ], where the last inequality is an immediate result of condition (6.5).

Therefore, (Xε
2)−(t) = 0 on (0, T )× Ω which implies (6.9) as claimed.

As second step, we associate to each equation (6.8), the SDE{
dXε

1 = µXε
1 dt+Xε

1

√
uXε

2 dW1 , t ∈ (0, T ) ,

Xε
1(0) = X0

1 ,
(6.10)

for the corresponding value of ε, and we study its solvability. Given a fixed ε > 0, let

Xε
2 be the strong, non negative solution to equation (6.8), then Xε

1 can be represented

as

Xε
1(t) = exp

(∫ t

0

√
u(s)Xε

2(s)dW1(s)

)
yε(t) .

Under this representation, by Itô’s formula, Xε
1 solves the following SDE

dXε
1(t) = exp

(∫ t

0

√
u(s)Xε

2(s)dW1(s)

)
dyε(t)

+
√
u(t)Xε

2(t) exp

(∫ t

0

√
u(s)Xε

2(s)dW1(s)

)
yε(t) dW1(t)

+
1

2
u(t)Xε

2(t) exp

(∫ t

0

√
u(s)Xε

2(s)dW1(s)

)
yε(t)dt

= exp

(∫ t

0

√
u(s)Xε

2(s)dW1(s)

)
dyε(t) +

1

2
u(t)Xε

2(t)Xε
1dt

+
√
u(t)Xε

2(t)Xε
1 dW1(t)

which coincides with (6.10) when yε solves the random differential equation

dyε
dt

=

(
µ− 1

2
uXε

2

)
yε , t ∈ (0, T )

y(0) = X0
1 ,

which has a unique Ft-adapted solution yε, namely

yε(t) = X0
1 exp

(∫ t

0

(
µ− 1

2
u(s)Xε

2(s)

)
ds

)
.

Therefore,

Xε
1(t) = X0

1 exp

(∫ t

0

(
µ− 1

2
u(s)Xε

2(s)

)
ds+

∫ t

0

√
u(s)Xε

2(s)dW1(s)

)
(6.11)
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together with Xε
2 , is a strong solution to the system (6.8)-(6.10). The uniqueness of such

a solution is immediate by construction. Moreover, by its definition in equation (6.11),

also Xε
1 ≥ 0 for each ε > 0, as claimed.

Regarding the bound given in equation (6.7), it follows by Itô’s formula that

1

2
|Xε

2(t)|2 =
1

2

∣∣X0
2

∣∣2 +

∫ t

0
k(θ −Xε

2(s))Xε
2(s) ds+

σ2

2

∫ t

0

|Xε
2(s)|2

Xε
2(s) + ε

ds

+

∫ t

0

σ |Xε
2(s)|2√

Xε
2(s) + ε

dW2(s) .

Applying Burkholder-Davis-Gundy Theorem (see e.g. [DPZ14]) to the martingale

It =

∫ t

0

σ(Xε
2(s))2√

Xε
2(s) + ε

dW2(s) ,

it is found

E

[
sup
t∈[0,T ]

It

]
≤ c1E

(∫ T

0

σ2(Xε
2(s))4

Xε
2(s) + ε

ds

) 1
2


≤ E

( sup
t∈[0,T ]

|Xε
2(t)|2

∫ T

0
c2

1σ
2Xε

2(s) ds

) 1
2


≤ 1

4
E

[
sup
t∈[0,T ]

|Xε
2(t)|2

]
+ E

[∫ T

0
c2

1σ
2Xε

2(s) ds

]

≤ 1

4
E

[
sup
t∈[0,T ]

|Xε
2(t)|2

]
+ E

[∫ T

0
c2

1

(
1 + σ2 |Xε

2(s)|2
)
ds

]

≤ 1

4
E

[
sup
t∈[0,T ]

|Xε
2(t)|2

]
+ E

[∫ T

0
c2

1

(
1 + σ2 sup

u∈[0,s]
|Xε

2(u)|2
)
ds

]
.

Moreover,

sup
t∈[0,T ]

∫ t

0
k(θ −Xε

2(s))Xε
2(s) +

σ2

2

(Xε
2(s))2

Xε
2(s) + ε

ds ≤
∫ T

0
c̄(1 + |Xε

2(s)|2) ds

≤ c̄ T +

∫ T

0
c̄ sup
u∈[0,s]

|Xε
2(u)|2 ds ,

where c̄ = max
{
k(θ + 1), σ

2

2

}
. Summing up the previous estimates,

E

[
sup
t∈[0,T ]

|Xε
2(t)|2

]
≤ c̄1 + c̄2

∫ T

0
E

[
sup
u∈[0,s]

|Xε
2(s)|2

]
ds
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and applying Gronwall’s Lemma it follows that for each ε > 0

E

[
sup
t∈[0,T ]

|Xε
2(t)|2

]
≤ C1

(
1 +

∣∣X0
2

∣∣2) ,
for a suitable constant C1. This is the desired bound (6.7) for the process Xε

2 . Further-

more, thanks to Jensen’s inequality and Itô isometry, the SDE (6.8) provides that

E [Xε
2(t)−Xε

2(s)]2 = E

(∫ t

s
k(θ −Xε

2(r)) dr + σ
Xε

2(r)√
|Xε

2(r)|+ ε
dW2(r)

)2


≤ 2T E
[∫ t

s
k2(θ −Xε

2(r))2 dr

]
+ 2σ2E

[∫ t

s

|Xε
2(r)|2

Xε
2(r) + ε

dr

]

for all s ≤ t belonging to [0, T ]. Then, arguing as before, for suitable constants C and

C2

E
[
|Xε

2(t)−Xε
2(s)|2

]
≤ C E

[∫ t

s
(1 + |Xε

2(r)|2) dr

]
≤ C2(t− s) ∀s ≤ t ∈ [0, T ] .

The previous consideration can be analogously repeated for process Xε
1 , solution to

the SDE (6.10), obtaining that

E

[
sup
t∈[0,T ]

|Xε
1(t)|2

]
≤ C3

(
1 +

∣∣X0
1

∣∣2) ,
E
[
|Xε

1(t)−Xε
1(s)|2

]
≤ C4(t− s) ∀s, t ∈ [0, T ] .

Hence, combining the previous estimation, it is found that

E

[
sup
t∈[0,T ]

|Xε(t)|2
]
≤ C5

(
1 +

∣∣X0
1

∣∣2 +
∣∣X0

2

∣∣2) , (6.12)

E
[
|Xε(t)−Xε(s)|2

]
≤ C6(t− s) ∀s, t ∈ [0, T ] , (6.13)

for any Xε = (Xε
1 , X

ε
2).

Let νε = L(Xε), that is νε(Γ) = P(Xε ∈ Γ) for each Borel set Γ ⊂ (C([0, T ];R))2.

Then, the sequence {νε}ε>0 is tight in C([0, T ];R2). To prove its tightness, we need to

exhibit for each δ > 0 a compact set Γ ⊂ (C([0, T ];R2)) such that νε(Γ
c) ≤ δ for all

ε > 0. Consider the set Γr,γ defined as

Γr,γ =
{
y ∈ C

(
[0, T ];R2

)
: |y(t)| ≤ r , ∀t ∈ [0, T ] ,

|y(t)− y(s)| ≤ γ |t− s|
1
2 ,∀t, s ∈ [0, T ]

}
,
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which is compact in C([0, T ];R2) in view of the Ascoli-Arzela theorem. Then, due to

the bounds given in equations (6.12)-(6.13) and the well known inequality

ρP(|Y | ≥ ρ) ≤ E |Y | , ∀ρ > 0 ,

it follows that there exist two constants r and γ independent of ε such that νε(Γ
c
r,γ) ≤ δ

as claimed.

Therefore, being {νε}ε tight and thus relatively compact, by the Skorohod’s theorem

there exists a probability space (Ω̃, F̃ , P̃) and random variables X̃, X̃ε such that L(X̃ε) =

L(Xε) and satisfying

X̃ε → X̃ in C([0, T ];R2), P̃-a.e. ω ∈ Ω̃.

Then we may pass to limit in (6.8)-(6.10) and observe that X̃ = (X̃1, X̃2) satisfies

system (6.15) in the space (Ω̃, F̃ , P̃) for a new pair W̃ = (W̃1, W̃2) of Wiener processes

in this space, see [BBT16]. This completes the proof of existence of a weak solution.

Clearly the bounds given in equations (6.6) and (6.7) hold also for this solution

X̃ = (X̃1, X̃2)

6.3 The dynamic programming equation

The following step in order to compute an optimal control for problem (P) is to study

the solvability of the corresponding HJB equation.

Let V : [0, T ]×R×R→ R be the optimal value function associated to problem (P),

see equations (5.2) and (6.4), that is

V (t, x, y) = inf
u∈U

{
E
[∫ T

t
X2

1 (s)f(X1(s), u(s)) ds+ g(X1(T ))

]}
(6.14)

subject to the controlled system
dX1(s) = µX1(s) ds+X1

√
u(s)X2(s) dW1(s) , s ∈ (t, T ) ,

dX2(s) = k(θ −X2(s)) ds+ σ
√
X2(s) dW2(s) , s ∈ (t, T ) ,

X1(t) = x , X2(t) = y .

(6.15)

We shall assume that the initial value of the system is positive, namely x ≥ 0 and y ≥ 0,

and that conditions (6.5) holds, so that Theorem 6.2.1 ensures the existence of a weak

solution X = (X1, X2) to the SDEs (6.15) such that X1(s) and X2(s) are non negative

processes for all s ∈ [t, T ], P-a.s. The HJB equation associated with problem (P), as

defined in (5.8), becomes
−ϕt(t, x, y)− inf

u∈U

{
µxϕx(t, x, y) + k(θ − y)ϕy(t, x, y) +

1

2
σ2yϕyy(t, x, y)

+
1

2
x2uyϕxx(t, x, y) + x2f(x, u)

}
= 0 , t ∈ [0, T ], x, y ∈ R

ϕ(T, x, y) = g(x) , ∀x, y ∈ R ,
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which can be rewritten as
ϕt(t, x, y) + µxϕx(t, x, y) + k(θ − y)ϕy(t, x, y) +

1

2
σ2yϕyy(t, x, y)

+x2G(x, y, ϕxx(t, x, y)) = 0 , t ∈ [0, T ], x, y ∈ R ,
ϕ(T, x, y) = g(x) , ∀x, y ∈ R ,

(6.16)

where G : R× R× R→ R is given by

G(x, y, z) = min
u∈[a,b]

{
1

2
uyz + f(x, u)

}
, ∀x, y, z ∈ R . (6.17)

For all t ∈ [0, T ] and x, y ∈ R, let p be defined as

p(t, x, y) = ϕx(t, x, y) . (6.18)

Then, differentiating with respect to x equation (6.16), it is found that, if ϕ is solution

to the previous partial differential equation (6.16), p solves
pt(t, x, y) + µ(xp(t, x, y))x + k(θ − y)py(t, x, y) +

1

2
σ2ypyy(t, x, y)

+(x2G(x, y, px(t, x, y)))x = 0 , ∀t ∈ [0, T ], x, y ∈ R ,
p(T, x, y) = gx(x) , ∀x, y ∈ R ,

(6.19)

with natural boundary conditions at x = ±∞ and y = ±∞. Therefore, the HJB

equation (6.16) can be reduced to a second order nonlinear parabolic equation. Of

course, the two equations (6.16) and (6.19) are not equivalent since in general the former

has not a strong smooth solution ϕ, and thus p may be not well-defined. However, if the

PDE (6.19) is well posed we can recover a solution ϕ to (6.16) by the solution to (6.19)

as better explained in the following.

Taking into account that by (6.6) the state X2 is in the positive half plane {y ≥ 0},
we see that the flow t 7→ (X1(t), X2(t)) leaves invariant the domain

Q0 = { (x, y) ∈ R2; 0 ≤ y <∞}

and so equation (6.19) can be treated on this narrow domain. For simplicity we shall

restrict the domain Q0 to

Q = {x ∈ R, ρ < y < M } = R× (ρ,M)

where M is sufficient large, but finite, and ρ is arbitrarily small but strictly positive.

In other words, we shall consider the equation (6.19) on the domain (0, T ) × Q with

boundary value condition on ∂Q given by

p(t, x, ρ) = 0 and p(t, x,M) = 0 ∀x ∈ R , t ∈ [0, T ] . (6.20)
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The domain Q is not invariant for the stochastic flow t → (X1(t), X2(t)), but we infer

that, for M large enough and ρ extremely small, this is a convenient approximation for

problem (6.19) on Q0.

We set H = L2(Q) with the standard norm ‖·‖H and define the space V as

V = { z ∈ H ∩H1
loc(Q) ; xzx, zy ∈ L2(Q) ; z(x, ρ) = z(x,M) = 0 , ∀x ∈ R } (6.21)

where derivatives zx, zy are taken in sense of distributions on Q. This space V is an

Hilbert space with the norm

‖z‖V =

(∫
Q
z2 + x2z2

x + z2
y dxdy

) 1
2

, ∀z ∈ V

such that V ⊂ H algebraically and topologically. Moreover we denote by V ? the dual

space of V having H as pivot space and by ‖·‖V ? the dual norm of V ?. Then,

Definition 6.3.1. A function p defined on [0, T ]×Q is called weak solution to problem

(6.19)-(6.20) if the following conditions hold

p ∈ C([0, T ];H) ∩ L2([0, T ];V ) ,
dp

dt
∈ L2([0, T ];V ?) ,

d

dt

∫
Q
p(t, x, y)ψ(x, y) dx dy +

∫
Q

(µ(xp(t, x, y))x + k(θ − y)py(t, x, y))ψ(x, y) dx dy

− σ2

2

∫
Q
py(t, x, y)(yψ(x, y))y dx dy

−
∫
Q
x2G(x, y, px(t, x, y))ψx(x, y) dx dy = 0 ∀ψ ∈ V , a.e. t ∈ [0, T ] ,

p(T, x, y) = gx(x) , ∀(x, y) ∈ Q .

Considering the relation between ϕ and p, given by equation (6.18) and the previous

Definition 6.3.1, we say that

Definition 6.3.2. A function ϕ is a weak solution to (6.16) on [0, T ]×Q if

ϕ ∈ L2([0, T ];L2
loc(R× R)), ϕx ∈ C([0, T ];H) ∩ L2([0, T ];V ) ,

dϕx
dt
∈ L2([0, T ];V ?) ,

d

dt

∫
Q
ϕx(t, x, y)ψ(x, y) dx dy +

∫
Q

(µ(xϕx(t, x, y))x + k(θ − y)ϕxy(t, x, y))ψ(x, y) dx dy

− σ2

2

∫
Q
ϕxy(t, x, y)(yψ(x, y))y dx dy

−
∫
Q
x2G(x, y, ϕxx(t, x, y))ψx(x, y) dx dy = 0 ∀ψ ∈ V , a.e. t ∈ [0, T ] ,

ϕ(T, x, y) = g(x) , ∀(x, y) ∈ Q ,
ϕx(t, x, ρ) = ϕx(t, x,M) = 0 ∀x ∈ R , t ∈ [0, T ] .
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Clearly, if p is a weak solution to (6.19)-(6.20) then by equation (6.18) the function

ϕ(t, x, y) =

∫ x

−∞
p(t, ξ, y) dξ , (t, x, y) ∈ [0, T ]× R× [0,M ]

is a weak solution to (6.16). Conversely, when ϕ is a weak solution to (6.16) then p, as

defined in equation (6.18) is a weak solution to (6.19). It should be said that ϕ is unique

up to an additive function ϕ̃ = ϕ̃(t, y).

Under some conditions on the regularity of gx, the existence of a weak solution to

problem (6.19)-(6.20) is ensured. In particular,

Theorem 6.3.1. Let gx ∈ L2(R). Then, there is a unique weak solution p to problem

(6.19)-(6.20).

Proof. Let A,

A : V → V ?

z → Az ,

be the nonlinear operator defined by

(Az, ψ) = −
∫
Q

(µ(xz)x + k(θ − y)zy)ψ(x, y) dx dy +
σ2

2

∫
Q
zy(yψ(x, y))y dx dy

+

∫
Q
x2G(x, y, zx)ψx(x, y) dx dy , t ∈ [0, T ] , z, ψ ∈ V .

(6.22)

Here V ? is the dual space of V , whereas (v?, v) denotes the value of a functional v? ∈ V ?

at point v ∈ V . Then, problem (6.19)-(6.20) can be shortly rewritten as the backward

infinite dimensional Cauchy problem{
d
dtp(t)−Ap(t) = 0 , a.e. t ∈ (0, T ) ,

p(T ) = gx .
(6.23)

In order to apply standard results on the existence of solutions for the Cauchy problem

(6.23) we need to show that the operator A satisfies the three following properties.

(I) There exists α1 ≥ 0 such that

(Az −Az̄, z − z̄) ≥ −α1 ‖z − z̄‖2H , ∀z, z̄ ∈ V . (6.24)

(II) There exists α2 > 0 such that

‖Az‖V ? ≤ α2 ‖z‖V , ∀z ∈ V. (6.25)

(III) There exist α3 > 0 and α4 ≥ 0 such that

(Az, z) ≥ α3 ‖z‖2V − α4 ‖z‖2H , ∀z ∈ V . (6.26)
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Property (I).

Let z and z̄ be two elements in V . We want to provide a lower bound for (Az −
Az̄, z − z̄) = (Az, z − z̄)− (Az̄, z − z̄). We consider the three integrals appearing in the

definition of the operator A, equation (6.22), separately.

First consider

−
∫
Q

(µ ((xz)x − (xz̄)x) + k(θ − y)(zy − z̄y)) (z − z̄) dxdy .

The integral

−
∫
Q
kθ(zy − z̄y)(z − z̄) dxdy = −kθ

2

∫
Q

(
(z − z̄)2

)
y
dxdy

= −kθ
2

∫
R

(z(x, ·)− z̄(x, ·))2|Mρ dx = 0

in view of the boundary conditions (6.21). For the same reason, by integration by parts∫
Q
ky(zy − z̄y)(z − z̄) dxdy =

k

2

∫
Q
y
(
(z − z̄)2

)
y
dxdy

= −k
2

∫
Q

(z − z̄)2 dxdy = −k
2
‖z − z̄‖2H

and

−
∫
Q
µ (x(z − z̄))x dxdy = −µ

∫
Q

(z − z̄)2 dxdy − µ
∫
Q
x(z − z̄)(z − z̄)x dxdy

= −µ
2
‖z − z̄‖2H ,

where the previous equalities hold in the sense of distributions.

Moreover, the second component satisfies

σ2

2

∫
Q
zy(y(z − z̄))y − z̄y(y(z − z̄))y dxdy =

σ2

2

∫
Q

(zy − z̄y)(y(z − z̄))y dxdy

=
σ2

2

∫
Q

1

2

(
(z − z̄)2

)
y

+ y ((z − z̄)y)2 dxdy ≥ 0

since for all (x, y) ∈ Q,
∫
Q y ((z − z̄)y)2 dxdy ≥ 0 due to the fact that y > 0 in Q, and,

as before,
∫
Q

1
2

(
(z − z̄)2

)
y
dxdy = 0.

Lastly, recalling its definition in equation (6.17) that is

G(x, y, z) = − sup
u∈[a,b]

{
−1

2
uyz − f(x, u)

}
,

the function G can be equivalently written as

G(x, y, z) = −f̃?
(
x,−1

2
yz

)
∀(x, y) ∈ Q, z ∈ R , (6.27)
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where f̃?(x, v) is the convex conjugate of function v
f̃−→ f(x, v)+I[a,b](v), that is f̃?(x, q) =

supv { qv − f̃(x, v); v ∈ [a, b] }. Here I[a,b] represents the characteristic function of the

interval U = [a, b], i.e.

I[a,b](v) :=

{
0 if v ∈ [a, b],

+∞ if v ∈]−∞, a[∪ ]b,+∞[.

Given a convex, lower semicontinuous function h : R →] −∞,+∞], the subdifferential

∂h(v) of h at v is the set

∂h(v) = { η ∈ R : η(v − v̄) ≥ h(v)− h(v̄) ∀v̄ ∈ R } ,

which we will simply denote as hv(v). Since ∂ [h(αv)] = α∂h(αv) for all α, v ∈ R, it

follows that the subdifferential of function z 7→ G(x, y, z), i.e. Gz, satisfies

Gz(x, y, z) =
1

2
yf̃?v

(
x,−1

2
yz

)
, ∀(x, y) ∈ Q, z ∈ R , (6.28)

Moreover, if h? is the conjugate of h, then its subdifferential is the inverse of ∂h in the

sense of multivalued mappings, i.e. ∂h?(q) = (∂h)−1(q), ∀q ∈ R. See [Roc15] for further

details. Then, for all v ∈ R we have

f̃?v (x, v) =
(
f̃u(x, ·)

)−1
(v)

=
(
fu(x, ·) + ∂I[a,b](·)

)−1
(v)

=
(
fu(x, ·) +N[a,b](·)

)−1
(v) ,

(6.29)

where N[a,b](v) ⊂ 2R is the normal cone to [a, b] in v, that is

N[a,b](v) =


R− if v = a,

0 if a < v < b,

R+ if v = b,

and therefore, for all x, v ∈ R
f̃?v (x, v) ∈ [a, b] . (6.30)

Since y ∈ [ρ,M ] and a > 0, Gz(x, y, z) ≥ 1
2aρ > 0 whenever (x, y) ∈ Q, meaning that

the function z → G(x, y, z) is monotonically increasing. This provides∫
Q
x2G(x, y, zx)(z − z̄x)− x2G(x, y, z̄x)(zx − z̄x) dxdy =

=

∫
Q
x2 (G(x, y, zx)−G(x, y, z̄x)) (zx − z̄x) dxdy ≥ 0 .
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Summing up all the previous estimates, it is found

(Az −Az̄, z − z̄) ≥ −k + µ

2
‖z − z̄‖2H ,

that is the desired bound given in equation (6.24).

Property (II).

Let z ∈ V . By definition of the dual norm ‖·‖V ? ,

‖Az‖V ∗ = sup {|(Az, ψ)| : ‖ψ‖V = 1} .

Then, considering any ψ ∈ V , Hölder’s inequality implies∫
Q
x2G(x, y, zx)ψx(x, y) dx dy ≤

(∫
Q
x2ψ2

x dx dy

) 1
2
(∫

Q
x2G(x, y, z)2 dx dy

) 1
2

≤ ‖ψ‖V
(∫

Q
|xG(x, y, x)|2 dx dy

) 1
2

.

Hypothesis (i) over the function f implies that G(x, y, 0) = infu f(x, u) = 0 for all

x ∈ R. Therefore, |G(x, y, v)| = |vGz(x, y, ξv)| for a suitable ξv ∈ [0, v], and the previous

estimates (6.28) and (6.30) guarantee that

|G(x, y, v)| ≤ 1

2
Mb |v| ,

for all (x, y) ∈ Q and v ∈ R. Hence for all z, ψ ∈ V∣∣∣∣∫
Q
x2G(x, y, zx)ψx(x, y) dx dy

∣∣∣∣ ≤ 1

2
Mb ‖ψ‖V

(∫
Q
x2 |zx|2 dx dy

) 1
2

≤ 1

2
Mb ‖ψ‖V ‖z‖V .

Similarly, we have that for all z, ψ ∈ V∣∣∣∣∫
Q
zy(yψ)y dx dy

∣∣∣∣ ≤ ∫
Q
|zy(ψ + yψy)| dx dy

≤
(∫

Q
z2
y dx dy

) 1
2

[(∫
Q
ψ2 dxdy

) 1
2

+

(∫
Q
y2ψ2

y dx dy

) 1
2

]
≤ (1 +M) ‖ψ‖V ‖z‖V

and∣∣∣∣∫
Q

(µ(xz)x + k(θ − y)zy)ψ dx dy

∣∣∣∣ ≤ (∫
Q
ψ2 dx dy

) 1
2

[
√

2µ

(∫
Q
z2 + x2z2

x dx dy

) 1
2

+kθ̄

(∫
Q
z2
y dx dy

) 1
2

]
≤ (
√

2µ+ kθ̄) ‖ψ‖V ‖z‖V ,
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where θ̄ = max{θ, |θ −M |}. Therefore, combining the previous considerations, for all z

and ψ ∈ V
|(Az, ψ)| ≤ C ‖ψ‖V ‖z‖V

where C =
(

1
2Mb+ σ2

2 (M + 1) +
√

2µ+ kθ̄
)

, that is Property (II) given in equation (6.25).

Property (III).

As before, by previous considerations on G, i.e. equations (6.28)-(6.30), Gz(x, y, z) ≥
1
2ay >

1
2aρ on Q× R. Therefore,∫

Q
x2G(x, y, zx)zx dx dy =

∫
Q
x2Gz(x, y, ξz)z

2
x dx dy

for some ξz and thus∫
Q
x2G(x, y, zx)zx dx dy ≥

1

2
aρ

∫
Q
x2z2

x dx dy . (6.31)

Moreover, by integration by parts∫
Q
zy(yz)y dx dy =

∫
Q

(
y|zy|2 +

1

2
(z2)y

)
dx dy

≥ ρ
∫
Q
|zy|2 dx dy

and

−
∫
Q

(µ(xz)x + k(θ − y)zy) z dx dy = −
∫
Q

µ

2
x(z2)x + µz2 +

k

2
(θ − y)(z2)y dx dy

= −µ+ k

2
‖z‖2H .

Together with (6.31) the latter implies

(Az, z) ≥ 1

2
aρ

(∫
Q
x2z2

x dxdy

)
+ ρ

(∫
Q
z2
y dxdy

)
−
(
µ+ k

2

)
‖z‖2H

≥ α3

(∫
Q
z2 + x2z2

x + z2
y dxdy

)
−
(
α3 +

µ+ k

2

)
‖z‖2H ,

where α3 = min
{

1
2aρ, ρ

}
> 0, that is the bound (6.26) required by Property (III).

Then we infer, see e.g. [Bar10, Theorem 4.10], that the Cauchy problem (6.23) has a

unique solution p as in Definition 6.3.1 and this completes the proof of the theorem.

6.3.1 Semigroup approach

An alternative methodology to study the Cauchy Problem given in equation (6.23)

is the semigroup approach.
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Let q : [0, T ] → H be the function defined by q(t) = p(T − t). Then, the previous

problem (6.23) can be rewritten as the forward Cauchy problem{
dq
dt +Aq = 0 , t ∈ (0, T ) ,

q(0) = gx ,
(6.32)

where A is the same operator introduced before in equation (6.22).

Let AH be the restriction of the operator A over the functions q ∈ V such that

Aq ∈ H, namely D(AH) = {q ∈ V : Aq ∈ H} ⊂ H and

AH : D(AH)→ H

q → AHq = Aq .

AH is quasi-m-accretive in H × H, meaning that there exists a real parameter η0 ∈ R
such that

(AHq −AH q̄, q − q̄) ≥ −η0 ‖q − q̄‖2H , ∀q, q̄ ∈ D(AH) .

Indeed, AH still satisfies Property (I), given in (6.24), and therefore by choosing η0 > α1

the previous inequality follows straightforwardly. Moreover Property (III), given in

equation (6.26), implies that

((ηI +AH)q, q) = (AHq, q) + η ‖q‖2H ≥ α3 ‖q‖2V + (η − α4) ‖q‖2H > (η − α4) ‖q‖2H

since α3 > 0, and therefore, if η ≥ α4, ηI + AH is coercive. Here I denotes the identity

operator. Therefore, via Minty-Browder theory, see e.g. [Bar10, Theorem 2.2], it follows

that ηI +AH : D(AH)→ H is surjective for all η > η0 = max{α0, α3}, meaning that its

range R(ηI +AH) coincides with the space H, i.e.

R(ηI +AH) = H , ∀η > η0 .

The existence theorem for the Cauchy problem associated with non-linear quasi-

m-accretive operators in Hilbert spaces [Bar10, Theorem 4.5] ensures that when gx ∈
D(AH) Problem (6.32) admits a unique strong solution

q ∈W 1,∞([0, T ];H) =

{
q ∈ L∞([0, T ], H);

dq

dt
∈ L∞([0, T ], H)

}
,

that is
q ∈ L2([0, T ], V ) , Aq(t) ∈ L∞([0, T ];H) ,

d+

dt
q(t) +AH(q(t)) = 0 , t ∈ [0, T [ ,

q(0) = gx .

And this means,

Corollary 6.3.1. Let gx ∈ L2(R). Then equation (6.19)-(6.20) has a unique solution

in the sense of Definition 6.3.1.



6.4 A sub-optimal feedback control 89

Moreover, this unique solution q is given by the Crandall-Liggett exponential formula,

that is

q(t) = lim
n→∞

(
1 +

t

n
A

)−n
q0 , (6.33)

where the limit is uniformly in t over [0, T ]. See, e.g., [Bar10, Theorem 4.3]. Let q0 = gx
and qh be an h-approximate solution to the previous Cauchy problem given by the

following finite difference scheme:

qh(t) = qih ∈ R if t ∈ [ih, (i+ 1)h)

where {
q0
h = q0 ,

qi+1
h + hAqi+1

h = qih , i = 0, 1, 2, . . . , N =
[
T
h

]
− 1 .

Then, the Crandall-Liggett formula (6.33) means that q is given as the limit of these

approximate solution qh, i.e.

q(t) = lim
h→0

qh(t) ∀t ∈ [0, T ] .

This scheme may be useful to numerically compute an approximation of the solution to

equation (6.19). Moreover, this reveals that under regular assumptions over the terminal

function g, the solution p of equation (6.19) is locally in H2(Q).

Then, coming back to the equation (6.16),

Corollary 6.3.2. Let gx ∈ L2(R). Then, equation (6.16) has a weak solution in the

sense of Definition 6.3.2. This solution is unique up to an additive function ϕ̃ ≡ ϕ̃(t, y).

Remark 6.3.1. The main advantage of Theorem 6.3.1 and respectively of Corollary 6.3.2

is the regularity properties of a weak solution ϕ.

6.4 A sub-optimal feedback control

In the previous Section 6.3, we have found suitable conditions to ensure the existence

of a weak solution to the HJB equation (6.16) related to the optimization problem (P).

Such a solution may be exploited to construct an optimal control in feedback form.

Indeed, Theorem 5.2.2 suggests that the feedback controller u? defined by

u?(t) = φ(t,X1(t), X2(t)) t ∈ (0, T ) ,

where

φ(t, x, y) = arg min
u∈[a,b]

{
1

2
uypx(t, x, y) + f(x, u)

}
, ∀(x, y) ∈ Q
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and p is a weak solution to equation (6.19)-(6.20), may be optimal in problem (P) for

(X1, X2) ∈ (0, T ) × Q. In order to conclude, one should consider the regularity of the

system under this candidate optimal control.

Let gx ∈ L2(R), then Corollary 6.3.1 ensures that the exists a unique weak solution

p, as in Definition 6.3.1, to the PDE (6.19). Then, in view of equations (6.27) and (6.29),

the map φ is defined by

φ(t, x, y) =
(
fu(x, ·) +N[a,b]

)−1
(
−1

2
ypx(t, x, y)

)
, ∀t ∈ [0, T ] , (x, y) ∈ Q (6.34)

where fu(x, ·) is the subdifferential of function u 7→ f(x, u). Function φ is well defined

since [LSU88, Theorem 6.1] provides a bound for px, as solution of a quasilinear parabolic

equation. Thus, the corresponding closed loop system (6.3) becomes
dX1 = µX1 dt+X1

√
φ(t,X1, X2)X2 dW1 , t ∈ (0, T ) ,

dX2 = k(θ −X2) dt+ σ
√
X2 dW2 , t ∈ (0, T ) ,

X1(0) = X0
1 , X2(0) = X0

2 .

(6.35)

The existence of a strong solution (X1, X2) to (6.35) would imply by standard com-

putations that the map u? = φ(t,X1, X2) is indeed an optimal feedback controller for

problem (P). However the existence of a strong solution for (6.35) is a delicate problem

and the best one can expect in this case is a martingale solution.

Assume in addition to the above hypotheses that

(ii) u 7→ fu(x, u) is strictly monotone, for all x ∈ R.

Then,

Theorem 6.4.1. Assume that (i),(ii) and (6.5) hold. Then there is a weak solution

(X1, X2) to stochastic system (6.35).

Proof. The proof follows similarly to the one of Theorem 6.2.1.

Consider the random map ψ : [0, T ]× R→ R given by

ψ(t, x) = x
√
φ(t, x,X2(t))X2(t) , t ∈ [0, T ], x ∈ R .

By construction, the control φ(t, x, y) given in equation (6.34) belongs to the real interval

[a, b] for all (t, x, y) ∈ [0, T ]×Q, with a > 0, and X2(t) ≥ 0 for all t ∈ [0, T ], and thus ψ

is well defined. Moreover, ψ is upper bounded by

|ψ(t, x)| ≤ |x|
√
bX2(t) . (6.36)

By hypothesis (ii), fu is monotone, and therefore invertible. Moreover, the map(
fu(x, ·) +N[a,b]

)−1
is Lipschitz continuous on R in x, i.e. |φ(t, x, y)− φ(t, x̄, y)| ≤
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Lφ |x− x̄| for a suitable constant Lφ. Also px is Lipschitz in x on [0, T ] × QR, where

QR = (0, R)× (ρ,M), namely

|px(t, x, y)− px(t, x̄, y)| ≤ LR |x− x̄| , for |x|+ |x̄| ≤ R ,

for a suitable constant LR. The latter is a consequence of high order regularity of

solutions to quasilinear parabolic equation (see again [LSU88, Theorem 6.1]). Therefore,

it follows that for all R > 0, |x|+ |x̄| ≤ R, P-a.s.

|ψ(t, x)−ψ(t, x̄)| =
∣∣∣x√φ(t, x,X2(t))X2(t)− x̄

√
φ(t, x̄,X2(t))X2(t)

∣∣∣
≤
√
X2(t)

(
|x− x̄|

√
φ(t, x,X2(t))+|x̄|

√
|φ(t, x,X2(t))−φ(t, x̄,X2(t))|

)
≤
√
bX2(t) |x− x̄|+ 1

2
RX2(t)

√
Lφ |px(t, x,X2(t))− px(t, x̄,X2(t))|

≤
√
bX2(t) |x− x̄|+ 1

2
RX2(t)

√
LφLR |x− x̄| .

(6.37)

Then, let 
dXε

1 = µXε
1 dt+Xε

1

√
φ(t,Xε

1 , X
ε
2)Xε

2 dW1 ,

dXε
2 = k(θ −Xε

2) dt+ σ
Xε

2√
|Xε

2 |+ε
dW2 ,

Xε
1(0) = X0

1 , Xε
2(0) = X0

2 ,

(6.38)

approximate the original system (6.35). Arguing as in the proof of Theorem 6.2.1 it

follows by (6.36)-(6.37) that (6.38) has a unique solution (Xε
1 , X

ε
2), Xε

1 , X
ε
2 ≥ 0, P-a.s.,

for any ε > 0. Moreover, one obtains also in this case estimates (6.12)-(6.13) and so

by the Skorohod theorem it follows as above the existence of a weak solution (X̃1, X̃2)

satisfying system (6.35) in a probability space (Ω̃, F̃ , P̃, W̃1, W̃2).

Remark 6.4.1. Roughly speaking Theorem 6.4.1 amounts to saying that there is a proba-

bility space (Ω̃, F̃ , P̃, W̃1, W̃2) where the closed loop system (6.35) has a solution (X̃1, X̃2).

This means that the feedback controller u∗ is admissible in problem (P) though it is not

clear if it is optimal. However this is a suboptimal feedback controller. Indeed, if one

constructs in a similar way the feedback controller u∗ε = φε(X
ε
1 , X

ε
2) for problem (P),

but with state system (6.38), then u∗ε is optimal for the approximating optimal control

problem and it is convergent in law to a controller u∗ as found above.

We conclude this section considering two possible examples.

Example 1. Consider the simple case when f(x, u) = 0 for all x ∈ R and u ∈ U . Then

equation (6.19) reduces to
pt + µ(xp)x + k(θ − y)py +

σ2

2
ypyy + y

(
x2(aH(px) + bH(−px))

)
x

= 0 ,

x ∈ R , y ∈ (ρ,M) ,

p(T, x, y) = gx(x) , ∀x ∈ R.

(6.39)
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where H is the Heaviside function. Therefore, in this case the optimal feedback control

u?, given in equation (6.34), becomes

u?(t) =


a if px(t,X1(t), X2(t)) > 0,

∈ (a, b) if px(t,X1(t), X2(t)) = 0,

b if px(t,X1(t), X2(t)) < 0.

However, in this case Theorem 6.4.1 does not apply since hypothesis (ii) is not verified

by a constant function. Therefore, even if the parabolic equation (6.39) admits a weak

solution p in the sense of Definition 6.3.1, p is not sufficiently regular to assume the

existence of a solution to the closed loop system (6.39) even in the weak sense.

Nevertheless, observe that if for almost all ω ∈ Ω the set

Σ = { t : px(t,X?
1 (t), X?

2 (t)) = 0 }

is finite, then the control u? is a bang-bang controller with Σ as set of switch points.

This fact might be lead to a simplification of control problem (P) by replacing the set

U of admissible control process u : [0, T ]→ R by

Ũ0 = {u : [0, T ]→ R ,Ft − adapted, u(t) =
N−1∑
i=0

viχ[ti,ti+1](t) } .

Here t0 = 0 < t1 < t2 < · · · < tN = T is a given partition of interval [0, T ] while

vi : Ω→ R are Fti-measurable functions.

Example 2. Now, let f : R× R→ R be

f(x, u) = f(u) =
1

2
(u− u0)2 ,

where u0 ∈ [a, b]. The function f satisfies hypotheses (i) and (ii), since f is continuous

and convex, minu f = 0 and fu = (u − u0) is strictly increasing. Then Theorem 6.4.1

ensures that there exists a candidate optimal feedback control u?(t) = φ(t,X1(t), X2(t)),

where φ is given by

φ(t, x, y) =
(
I(·)− u0 +N[a,b](·)

)−1
(

1

2
ypx(t, x, y)

)
, ∀t ∈ [0, T ] , (x, y) ∈ R ,

where p is the solution to (6.19)-(6.20). In this case u? reads as

u?(t) =


a if X2(t)px(t,X1(t), X2(t)) > 2(b− u0)

b if X2(t)px(t,X1(t), X2(t)) < 2(a− u0)

u0 − X2(t)
2 px(t,X1(t), X2(t)) ∈ (a, b) otherwise.
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stochastic differential equation”. In: The Annals of Applied Probability 23.4

(2013), pp. 1584–1628.

[BS73] Fischer Black and Myron Scholes. “The pricing of options and corporate

liabilities”. In: Journal of political economy 81.3 (1973), pp. 637–654.

[Car16] R. Carmona. Lectures on BSDEs, Stochastic Control, and Stochastic Dif-

ferential Games with Financial Applications. Vol. 1. SIAM, 2016.

[CD13a] R. Carmona and F. Delarue. “Mean field forward-backward stochastic dif-

ferential equations”. In: Electron. Commun. Probab 18.68 (2013), p. 15.

[CD13b] R. Carmona and F. Delarue. “Probabilistic analysis of mean-field games”.

In: SIAM Journal on Control and Optimization 51.4 (2013), pp. 2705–

2734.

[CDL13] R. Carmona, F. Delarue, and A. Lachapelle. “Control of McKean–Vlasov

dynamics versus mean field games”. In: Mathematics and Financial Eco-

nomics 7.2 (2013), pp. 131–166.

[CF16] Luciano Campi and Markus Fischer. “N -player games and mean field

games with absorption”. In: arXiv preprint arXiv:1612.03816 (2016).

[CF17] A. Cecchin and M. Fischer. “Probabilistic approach to finite state mean

field games”. In: arXiv preprint arXiv:1704.00984 (2017).

[CFS15] R. Carmona, J.-P. Fouque, and L.-H. Sun. “Mean field games and systemic

risk”. In: Communications in Mathematical Sciences 13.4 (2015), pp. 911–

933.



Bibliography 95

[CIJR05] John C Cox, Jonathan E Ingersoll Jr, and Stephen A Ross. “A theory

of the term structure of interest rates”. In: Theory of Valuation. World

Scientific, 2005, pp. 129–164.

[CIL92] Michael G Crandall, Hitoshi Ishii, and Pierre-Louis Lions. “Users guide

to viscosity solutions of second order partial differential equations”. In:

Bulletin of the American Mathematical Society 27.1 (1992), pp. 1–67.

[CL15] R. Carmona and D. Lacker. “A probabilistic weak formulation of mean

field games and applications”. In: The Annals of Applied Probability 25.3

(2015), pp. 1189–1231.

[CL83] Michael G Crandall and Pierre-Louis Lions. “Viscosity solutions of Hamilton-

Jacobi equations”. In: Transactions of the American Mathematical Society

277.1 (1983), pp. 1–42.

[CS15] Patrick Chan and Ronnie Sircar. “Bertrand and Cournot mean field games”.

In: Applied Mathematics & Optimization 71.3 (2015), pp. 533–569.

[Del13]  L. Delong. Backward stochastic differential equations with jumps and their

actuarial and financial applications. Vol. 201. 3. Springer, 2013.

[DPZ14] Giuseppe Da Prato and Jerzy Zabczyk. Stochastic equations in infinite

dimensions. Cambridge university press, 2014.

[EK09] S. N. Ethier and T. G. Kurtz. Markov processes: characterization and con-

vergence. Vol. 282. John Wiley & Sons, 2009.

[EKL77] N. El Karoui and J.-P. Lepeltier. “Représentation des processus ponctuels
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