
Dipartimento di Ingegneria e Scienza dell’Informazione

Ph.D. Dissertation

Enabling Novel Interactions between

Applications and Software-Defined

Networks

Ph.D. Candidate:

Antonio Marsico

Advisor:

Domenico Siracusa, Ph.D.

Abstract

Over the last few decades the pervasive diffusion of software has greatly

simplified the introduction of new functionalities: updates that used to re-

quire complex and expensive re-engineering of physical devices can now be

accomplished almost at the push of a button. In the context of telecommu-

nications networks, recently modernized by the emergence of the Software-

Defined Networking (SDN) paradigm, software has manifested in the form

of self-contained applications driving the behavior of the control plane of the

network. Such SDN controller applications can introduce profound changes

and novel functionalities to large deployed networks without requiring down-

time or any changes to deployed boxes, a revolutionary approach compared

to current best practices, and which greatly simplifies, perhaps even enables,

solving the challenges in the provisioning of network resources imposed by

modern distributed business applications consuming a network’s services

(e.g., bank communication systems, smart cities, remote surgery, etc.).

This thesis studies three types of interaction between business applica-

tions, SDN controller applications and networks with the aim of optimizing

the network response to a consumer’s needs.

First, a novel interaction paradigm between SDN controller applications

and networks is proposed in order to solve a potential configuration problem

of SDN networks, which is caused by the limited memory capacity of SDN

devices. An algorithm that offers a virtual memory to the network devices

is designed and implemented in a SDN application. This interaction shows

ii

an increase of the amount of traffic that a SDN device can process in the

case of memory overflows.

Second, an interaction between business applications and SDN networks

shows how it is possible to reduce the blocking probability of service re-

quests in application-centric networks. A negotiation scheme based on an

Intent paradigm is presented. Business applications can request connectiv-

ity service, receive several alternative solutions from the network based on

a degradation of requirements and provide a feedback.

Last, an interaction between business applications, SDN controller ap-

plications and networks is defined in order to increase the number of ad-hoc

connectivity services offered by network operators to customers. Several

service providers can implement a connectivity service in the form of SDN

applications and offer them via a SDN App Store on top of a SDN network

controller. The App Store demonstrates a lower overhead for the introduc-

tion of customized connectivity services.

Acknowledgments

I would like to thank my colleagues for their collaboration in projects and

scientific discussions during the last four years. They helped me to find new

ideas and learn new technical skills. A special thanks goes to my advisor

Domenico, who helped me to grow professionally and personally. Finally,

I would like to thank my family, in particular Marianna and Matteo, for

providing me the motivation to continue in this scientific career.

Contents

1 Introduction 1

1.1 Structure of the thesis . 4

2 Background 6

2.1 SDN generic architecture . 6

2.1.1 Modern SDN network controllers 8

3 Interactions between Software-Defined Networking (SDN)

controller applications and networks 11

3.1 A SDN application for the Memory Management of SDN devices 12

3.2 Related Work . 16

3.3 Memory swapping design . 17

3.3.1 Swap out . 18

3.3.2 Swap in . 21

3.4 Software architecture . 21

3.4.1 Interaction with the controller 22

3.4.2 Building blocks . 24

3.5 Performance Evaluation . 25

3.5.1 Test methodology . 25

3.5.2 Results and discussion 28

4 Interactions between business applications and SDN net-

Contents v

works 32

4.1 An Intent-based Negotiation Scheme

for Application-centric Networks 33

4.2 Related Work . 36

4.3 Service Negotiation . 38

4.3.1 Negotiation Algorithm 39

4.3.2 Application-Aware Service Provisioning Algorithm . . 41

4.3.3 Alternative Solution Selection Algorithm 43

4.4 Software Architecture . 45

4.4.1 ONOS Services and APIs 46

4.4.2 Negotiation in ONOS 48

4.5 Performance Evaluation . 50

4.5.1 Simulation Setup . 51

4.5.2 Sensitivity Test Methodology 52

5 Interactions between business applications, SDN controller

applications and networks 60

5.1 An SDN App Store for Network Connectivity Services 61

5.2 Related Work . 63

5.3 The App Store Model . 64

5.3.1 Offer generation and negotiation 67

5.4 Software Architecture . 69

5.4.1 Extending the DISMI intent interface 69

5.4.2 ONOS Intent Framework and Services 71

5.4.3 Implementation of the Network Intent Primitives . . . 73

5.4.4 The negotiation phase 74

5.5 Performance Evaluation . 75

5.5.1 Test methodology . 75

5.5.2 Results and discussion 76

Contents vi

6 Conclusions 80

Bibliography 82

List of Figures

2.1 SDN General Architecture. 7

3.1 The memory swapping in the context of the ONOS platform. 22

3.2 Experiment setups for the evaluation. 26

3.3 Number of installed rules without memory swapping at dif-

ferent flow table sizes. 28

3.4 Number of installed rules with memory swapping at different

flow table sizes. 30

3.5 Throughput comparison with and without memory swapping

at different flow table sizes. 31

4.1 Current network traffic aggregation. 33

4.2 Application-centric network. 34

4.3 Negotiation interaction between orchestrator and application

negotiation-specific algorithms. 39

4.4 Negotiation architecture of the ONOS controller. 45

4.5 (Experiment 1) Evaluation of SR blocking probability (a),

negotiation probability (b) and negotiation failure probability

(c). 53

4.6 (Experiment 1) Evaluation of the average degradation of band-

width (a), latency (b) and availability (c) experienced by SRs. 54

List of Figures viii

4.7 (Experiment 2) Evaluation of SR blocking probability (a),

negotiation probability (b) and negotiation failure probability

(c). 55

4.8 (Experiment 3) Evaluation of SR blocking probability (a),

average parameter degradation (b) and average parameter

degradation at NL3 (c). 57

4.9 (Experiment 3) Negotiation probability. 58

5.1 App Store generic model. 64

5.2 Software architecture for the ONOS controller. 68

5.3 Experiment setup for the evaluation. 75

5.4 DISMI processing time for decomposing the SD-WAN appli-

cation request. 77

5.5 Processing time for generating an offer from the SD-WAN

compilers. 77

5.6 Processing time required by the compiler to generate the for-

warding rules. 78

5.7 Overall time required to install an application in the network. 79

Chapter 1

Introduction

In the last years, software has driven innovation in many different fields

with a direct impact on society [1]. Cloud, Internet of Things, and Net-

working are important examples of how software has rapidly brought novel

functionalities, in tight cooperation with hardware advancements.

A particular type of software, the self-contained application package,

can be seen as a key enabler for efficiently introducing novel functionalities,

even among different technological domains. Applications are computer pro-

grams designed to perform different types of functions and activities. An

application can receive inputs from users, other applications or hardware,

and elaborate an answer (i.e. output) through specific algorithms. They

can exploit a modular architecture, which offers the possibility to develop

applications as independent and interchangeable modules, and executed on

top of an Operating System (OS), which provides a consistent, abstracted

view of the underlying hardware. In this way, applications can be easily

modified and updated with novel functions when required.

In the context of Software-Defined Networking, which foresees the de-

coupling between the control and infrastructure layers, the network can take

advantage of several software characteristics, such as programmability, sim-

plified development and modularity. In particular, the control layer, which

Chapter 1. Introduction 2

represents the traffic forwarding intelligence of a network, has been sub-

jected to a deep change towards an application-based architecture. Indeed,

novel SDN network controllers offer features similar to OSs. They provide

abstraction with respect to the infrastructure layer by offering many differ-

ent Application Programming Interfaces (APIs), which can be exploited by

external software modules to interact with network devices. These mod-

ules are defined as SDN controller applications. Every SDN application can

provide specific functionalities to SDN networks, such as firewalling, load

balancing, customized traffic routing, etc.

On top of the control layer, novel business applications for industry ver-

ticals, such as trading platforms for banks, e-commerce, video streaming

services, etc., pose specific challenges on the network management and ser-

vice provisioning. They generate a multitude of diverse traffic patterns,

which are characterized by many different requirements, such as bandwidth,

latency, availability, etc. These multitude of traffic patterns are usually ig-

nored during the provisioning of a connectivity service. Thus, this implies

that traffic with diverse requirements is eventually groomed in same net-

work connections. For instance, a distributed database application, based

on a strict consistency model, requires low traffic latency. If the network

cannot provide this requirement, the database application may experience

synchronization issues.

The main objective of this thesis is to study how business applications

and SDN controller applications can improve the performance of SDN net-

works by means of interactions between them. Every interaction tackles a

specific network problem and shows one possible solution. Three different

type of interactions are analyzed:

• Interaction between SDN controller applications and net-

works: This first type of interaction aims at showing how the SDN

applications can be used to modify the network behavior in the case

Chapter 1. Introduction 3

of potential issues, such as misconfigurations. SDN applications re-

ceive network events, such as traffic statics, topology information, etc.

and they perform actions into the network. In particular, this inter-

action shows how SDN applications can be exploited to mitigate the

limited memory of SDN network devices. This issues may potentially

cause delays in accessing distributed services, since a device with a

full memory cannot accept anymore the installation of new forwarding

rules [2].

• Interaction between business applications and SDN networks:

Business applications can interact with the network by exploiting an

application-centric paradigm, which proposes the provisioning of con-

nectivity services based on application-specific requirements. An ap-

plication can communicate to a SDN controller its requirements and,

whether the network can satisfy all of them, the application request

can be provisioned otherwise blocked. In order to reduce the request

blocking probability, we propose a novel interaction between business

applications and SDN networks, defined as the application-aware ser-

vice negotiation. In the case of the network cannot provide all the

requirements, it calculates a set of alternative solutions based on the

degradation of requirements. The applications analyze the alternatives

and provide a feedback to the network.

• Interaction between business applications, SDN controller

applications and networks: This last type of interaction shows how

business and SDN controller applications can enable a novel model for

the selection of connectivity services. We propose a SDN App Store,

which offers a multi-service selection model for business applications

and users. Several providers can develop a customized version of a

connectivity service (e.g., SD-WAN, VPN, etc.) in the form of SDN

Chapter 1. Introduction 4

controller applications.

1.1 Structure of the thesis

The thesis structure is organized as follows:

Chapter 2 proposes a general description of two paradigms that are

exploited in this thesis: the SDN and application-centric paradigms. In par-

ticular, the former section presents an overview of the SDN technologies,

with a focus on the OpenFlow control protocol [3]. While the latter de-

scribes an approach for the provisioning of connectivity services based on

application-specific requirements.

Chapter 3 analyzes the first form of interaction proposed in this the-

sis, the interactions between SDN controller applications and networks. In

particular, this Chapter is based on the following joint work:

• A. Marsico, R. Doriguzzi-Corin e D. Siracusa. An effective swapping

mechanism to overcome the memory limitation of SDN devices. In:

2017 IFIP/IEEE Symposium on Integrated Network and Service Man-

agement (IM), mag. 2017.

Chapter 4 describes the interactions between business applications and

SDN networks. This Chapter collects contributions from the following joint

work:

• A. Marsico, M. Savi, D. Siracusa, An Automated Service-downgrade

Negotiation Scheme for Application-centric Networks. In press: 2018

The Optical Networking and Communication Conference & Exhibition

(OFC).

Chapter 5 offers an overview on the interactions between business ap-

plications, SDN controller applications and networks. This Chapter is based

on the following joint work:

Chapter 1. Introduction 5

• A. Marsico, M. Chamania, D. Siracusa, Empowering Users with Multi-

service Selection: Towards an SDN App Store for Network Services.

Submitted to IFIP Networking 2018.

Chapter 2

Background

This section provides an overview of the Software-Defined Networking (SDN)

paradigm exploited in this thesis. In particular, we propose an overview of

modern SDN controller architectures, which provides functionalities similar

to computer OSs.

2.1 SDN generic architecture

Inside every network device, such as switches or routers, two different logical

parts coexist: the control plane and the data plane. The control plane is

the intelligence of the system. It is responsible for taking decisions on how

packets should be forwarded between the different input/output ports. On

the other hand, the data plane represents the hardware part of the device,

where decision on packets from the control plane are physically applied (e.g.

send the packet out of a specific hardware port).

The SDN paradigm proposes the decoupling between the control plane

and the data plane of the network devices. The Open Networking Founda-

tion (ONF) [4], a standardization body for open source networking, defines

the general SDN architecture based on layers in order to guarantee interop-

erability between the different components through well-known APIs. It is

Chapter 2. Background 7

C
o

n
tr

o
l l

ay
er

(S
D

N
 c

o
n

tr
o

lle
r)

Northbound APIs (RESTful APIs)

Controller Core APIs
and Services

Device
Management

Path Computation
Element

...
Topology

Information

Southbound
APIs

NETCONF OpenFlow ...

SDN controller
Applications Firewalling Routing ...

Infrastructure
layer

Application
layer

Figure 2.1: SDN General Architecture.

composed of three main parts: Application layer, Control layer and Infras-

tructure layer (Fig. 2.1).

The Application layer represents all the applications that exploit a SDN

network infrastructure to transmit data traffic. In particular, this thesis con-

siders novel business applications for industry verticals, such as live stream-

ing video, security systems, on-line trading platforms, etc. The second layer,

the Control layer, is the main part of the architecture, where all the man-

agement and provisioning decisions for a network are made. This layer is

represented by SDN network controllers. They are compound software pack-

ages that configure networks’ behavior by exploiting a centralized view and

several Southbound APIs to configure network devices. Finally, the Infras-

trucure layer represents all the physical network devices. They have limited

intelligence and only apply the decisions coming from a SDN controller.

Chapter 2. Background 8

2.1.1 Modern SDN network controllers

In the last years, SDN network controllers have evolved to provide abstrac-

tion with respect to the Infrastructure layer similar to computer OSs. The

configurations that should be performed on a device, the network events,

such as failures, topology changes, etc., can be managed and processed by

exploiting several APIs of a SDN controller, which define a generic and high

level language to interact with a network infrastructure.

In general, SDN controller architectures are designed based on a layered

structure. Higher layers provide higher abstraction with respect to a network

infrastructure, while the bottom layers implement the specific communica-

tion protocols required to interact with a network infrastructure. Starting

from the top, SDN controllers provide Northbound APIs to let applications,

such as external software for network provisioning, to gather network infor-

mation and to interact with them. Usually, these APIs are implemented by

exploiting HTTP RESTful APIs, such as Swagger [5], an editor for defining

REST APIs and translating them to a programming language. In order

to increase the abstraction of Northbound APIs, a new paradigm, called

Intent-based networking [6], has been proposed. It offers a higher level of

abstraction than specific network commands (e.g., send a packet out of port

2). This paradigm can be used to express network requests in the form of

high level intentions, which specify what it is required by a network rather

than how this should be accomplished. For instance, an application can

request “I want to connect host A to host B with 10 Gbps of bandwidth”.

Then, a SDN controller is responsible to translate this intent into commands

understandable by network devices.

Beyond the Northbound APIs, a SDN controller can host several SDN

controller applications, each one providing a particular network functional-

ity. For example, one application can offer traffic forwarding, another one

firewalling, etc. SDN applications are based on the modular architecture

Chapter 2. Background 9

of self-contained software applications. They can be installed, updated and

uninstalled as computer applications without requiring major modifications

to a SDN controller.

SDN applications exploit the Controller Core APIs and Services to in-

teract with a network infrastructure. Every API represents a particular

network service, which offers a set of functionalities to SDN controller appli-

cations. The most important generic services that a SDN controller offers are

the Device Management, the Path Computation Element and the Topology

Information. The first service provides all the operations required to inter-

act with a network device (e.g. installation of forwarding rules, forwarding

table status, etc.). The second service, the Path Computation Element, can

be exploited to calculate the shortest paths between different endpoints in a

network. Finally, the Topology Information service exploits the centralized

view of SDN controllers to provide all the data about the network topology,

such as devices, links, etc., and the network events, such as failures.

The bottom layer is represented by the Southbound APIs. These APIs

offer a communication interface between a SDN controller and network de-

vices. Every API implements a specific communication protocol and the

commands required to interact with a network device. Since the SDN envi-

ronment is composed by many different communication protocols, the mod-

ern SDN controllers implement the APIs as software modules, which can be

added or removed at runtime, like the SDN applications.

On of the most well-known Southbound API for SDN is OpenFlow [3].

It is an API that uses an encrypted connection, based on Secure Socket Lay-

er/Transport Layer Secure (SSL/TLS), to exchange messages between the

SDN controller and every network device. The most important command is

the FLOW MOD, which defines the installation, the modification, and the dele-

tion of forwarding rules in a network device. A forwarding rule (i.e., a Flow

Rule) is composed of three main parts: the Flow Match, the Actions and

Chapter 2. Background 10

the Stats. The Flow Match represents the matching structure, thus which

are the header field (and their values) of a packet where the Actions should

be applied. The concept of Flow is borrowed from the TCP protocol, which

creates virtual and reliable connections between hosts for a data transfer

in the network. OpenFlow extends and generalizes this concept to all the

traffic inside the network. A traffic Flow is a set of packets between a source

and a destination that shares the same characteristics with respect to the

transport connection (i.e. TCP/UDP), the carried information, etc. For ex-

ample, a Flow can be defined by a set of packets sharing the same IP source

or destination and TCP/UDP source and destination ports. The Action

field represents what the network device has to perform on the data traffic

(e.g. exit from port 2, drop a packet, etc.). The Stats are the statistics, i.e.,

number of packets that have matched a particular Flow.

Another important Southbound API is NETCONF [7]. Different from

OpenFlow, it defines a set of operations to configure network devices based

on the YANG data model [8]. The NETCONF protocol can be exploited

to edit device configurations and receive events from network devices. In

particular, this protocol implements transactions based on the ACID prop-

erties: Atomicy, Consistency, Independence and Durability. In this way,

every transaction provides a predictable outcome. Indeed, this language is

mainly exploited into devices for transport networks, such as routers.

In the state of the art, the most significant examples of SDN controllers

providing high levels of abstractions and modularity are ONOS [9] and Open-

DayLight [10]. They are open source controllers which are supported by

important vendors, such as Cisco and Huawei.

Chapter 3

Interactions between SDN

controller applications and

networks

In this chapter we analyze the effect of the interaction between SDN con-

troller applications and networks. In particular, we show how this interac-

tion can overcome the memory limitation of SDN network devices that are

usually based on Ternary Content Addressable Memory (TCAM). Unfor-

tunately, in many network scenarios, TCAMs can quickly fill due to their

limited memory size, thus preventing the installation of new flow-rules and

leading to inefficient traffic forwarding. This issue has already been ad-

dressed in computer programming, where Virtual Memory is offered to ap-

plications to mimic a much larger physical memory, by swapping memory

pages to disk.

We propose a memory swapping mechanism for SDN controllers, which

gives SDN applications the illusion of unlimited memory space in the for-

warding devices, without requiring any hardware modification or changes in

the control protocol. This algorithm is implemented in the Memory Man-

Chapter 3. A SDN application for the Device Memory Management 12

agement System (MMS), a SDN controller application for optimizing the

memory usage of network devices. We discuss the memory swapping mech-

anism design, its implementation; furthermore, we prove its quality using

real traffic traces, demonstrating lower TCAM memory utilization and po-

tentially increased network performance in terms of end-to-end throughput.

A prototype of the MMS is available for testing as an open source project

on GitHub [11].

3.1 A SDN application for the Memory Manage-

ment of SDN devices

In SDN, network applications rely on SDN controllers to handle the incoming

traffic, via instructions that are executed by network devices. This piece of

information is commonly saved in the memory of the devices and it is called

flow entry. In the OpenFlow protocol, a widely used standard for SDN

[3], flow entries can be of variable length/size according to the specificity

of the action that is requested to the networking device (e.g. L3 routing,

L4 firewalling, etc.). With respect to traditional L2 and L3 forwarding,

OpenFlow allows a much finer control of the network traffic, but, at the

same time, it requires more memory space for each flow entry. For instance,

recent versions of OpenFlow require up to 773 bits for each entry1, while

60 bits are sufficient to identify a flow for L2 forwarding (destination MAC

address plus VLAN identifier).

Modern network switches are usually equipped with two different types

of memory in which forwarding instructions are stored: Binary and Ternary

Content Addressable Memory (BCAM and TCAM). Both memory types can

do lookups in one clock cycle and in parallel fashion, therefore they are very

efficient when matching the incoming traffic with the forwarding rules they

1OpenFlow Switch specification v1.5.1 [12], including optional fields.

Chapter 3. A SDN application for the Device Memory Management 13

store. However, BCAMs only provide binary lookups, so they can store only

information represented by 0 or 1 bits. They are most useful for building

tables that search on exact-matches such as MAC address tables. On the

other hand, TCAMs can store three bit states (0, 1, and “don’t care”) and

are the most commonly used mainly because they can store IP prefixes.

TCAMs work very well in conjunction with OpenFlow, where the flow table

entries foresee a wildcard bit, used to inform the switch to ignore the value of

the specified header field. Unfortunately, TCAMs are very expensive, power

hungry and have a considerable footprint size with respect to the number of

supported flow entries. Therefore, vendors tend to install TCAMs with very

limited capacity, which can quickly get full, leading to inefficient forwarding

operations.

This problem is partially mitigated in the switches’ firmware, which com-

bine Random Access Memories (SRAM, DRAM, etc.) and TCAM to build

the flow table: RAM for exact-match entries, the TCAM for wildcard en-

tries [13]. However, this strategy is not suitable for SDN-enabled switches,

where exact-match rules are rarely used.

Starting from specification 1.4.0, OpenFlow introduces two mechanisms

to allow the SDN developer to handle the lack of memory space available

on network devices: eviction and vacancy events. The first one enables the

switch to automatically delete the flow entries with lower importance. The

degree of importance of each single flow entry is set by the SDN applica-

tions. The second mechanism enables the controller to get an early warning

based on a capacity threshold set by the SDN application. However, such

approaches force the SDN developers (and the SDN applications) to take

care of the memory utilization.

In literature, several works have been proposed to tackle the problem

of the limited TCAM memory space, all with very different approaches.

However, as reported in Section 3.2, they impose significant constraints on

Chapter 3. A SDN application for the Device Memory Management 14

the network architecture, changes of the switches’ software or hardware,

modifications of the control protocol, or the usage of exact-match rules in

BCAMs to save TCAM space.

In our work, we advocate that SDN controllers shall grant their appli-

cations a reliable access to network devices’ memory. To this purpose, we

propose a Memory Management System (MMS) for SDN that aims at im-

proving the TCAM usage and, consequently, the robustness of the network.

Compared to the existing approaches, the MMS transparently optimizes the

usage of the available memory by exploiting two different functions: (i) the

memory de-allocation and the memory swapping.

The first one offers automatically removal of the flow entries installed

by applications that are no longer running. We found that most of network

controllers do not automatically remove the flow entries associated to a

deactivated application [14].

The second one, the memory swapping, recalls a technique used in com-

puter OSs to exchange memory pages between the fast but limited in size

Random Access Memory (RAM) and the slow but much larger hard disk.

Especially in the past, when the RAM capacity was often not sufficient for

multi-tasking environments, memory swapping was the only way to make

the applications seamlessly run even in low memory space conditions. In

this context, the OS moves (swaps out) the least used memory pages to a

pre-configured space on the hard disk called paging file, swap file or swap

partition, and makes the memory available to those applications that need

it in that particular moment. Swap in is the opposite operation executed

by the OS to restore the memory pages back to the RAM, when they are

required by the applications. Even though the swapping technique permits

software application to use more memory than the physically available, mov-

ing memory pages back and forth from RAM to hard disk generally slows

down the system execution.

Chapter 3. A SDN application for the Device Memory Management 15

In the SDN context, the fast/size-limited memory is represented by the

B/TCAMs of the network elements and the slow/large memory can be im-

plemented as a database maintained by the SDN controller in the RAM

memory of the computer where it is running. Our rationale is to maintain

the most matched flow rules in the switches’ memory and move the other

rules to the database, in a completely transparent way for the network ap-

plications running on top of the controller.

We can summarize the contributions of this work as follows:

• Design of a platform-independent memory swapping mechanism for

SDN controllers, as part of a more powerful Memory Management Sys-

tem, whose aim is to optimize the usage of switches’ memory, trans-

parently to SDN network applications.

• Implementation of the swapping mechanism for the ONOS plat-

form [9]. ONOS is an advanced SDN controller that provides the

required services and APIs for the implementation of the swapping

mechanism, as identified in [14]. Unlike other controllers like Ryu [15],

where the table full condition must be handled by the SDN applica-

tions, ONOS hides these low-level details and holds the flow rules that

cannot be installed in a pending add state until there is enough mem-

ory space in the switches. We compare the ONOS mechanism against

our memory swapping.

• Validation of the memory swapping mechanism using real traffic

traces. We demonstrate that our prototype optimizes the usage of

switches’ TCAM memory in terms of free space available for new flow

wildcard entries and, therefore, it improves the performance of the

network in terms of throughput.

Chapter 3. A SDN application for the Device Memory Management 16

3.2 Related Work

There is a vast array of work related to the TCAM memory utilization

and optimization in SDN. We classify the most relevant techniques in five

categories:

Flow rule Caching: Like the MMS, CacheFlow [16] is a Virtual Mem-

ory mechanism that gives SDN applications the illusion of an arbitrarily

large switch memory. In CacheFlow, the additional memory is provided

by software SDN switches which are attached to the datapath and imple-

mented as software agents in commodity server-class hardware or directly in

the hardware switches. However, while the latter approach requires modifi-

cations of the switches’ firmware, the first imposes strict constraints to the

network, as CacheMaster, the component that hosts the software switches,

must communicate with the hardware switches via either single-hop Layer-1

connectivity or Layer-2 tunnels. Moreover, CacheFlow does not tackle the

table full case, i.e. the critical situation when the TCAM of one or more

hardware switches is full, which the MMS covers by design.

Exact match rules: Authors of DomainFlow [17] leverage exact match

rules to overcome the limited capacities of the TCAM memories, as exact

match rules are saved in binary memories (like briefly explained in the Intro-

duction). DomainFlow keys ideas are: (i) use exact matching where possible

and (ii) split the network into sections to allow exact matches to be used

more often. DevoFlow [18] propose a modification of the OpenFlow model

by introducing a new action type in form of the clone flag. If the flag is

set, the switch clones wildcard rules with exact match rules that are saved

in the exact match flow table, i.e. saving TCAM memory space. However,

DevoFlow imposes modifications of both OpenFlow protocol and switches’

firmware and, like DomainFlow, it does not address the limitations imposed

by the size of the TCAM.

Idle timeouts: SmartTime [19] uses adaptive heuristic to compute idle

Chapter 3. A SDN application for the Device Memory Management 17

timeouts for the flow rules which results in optimal utilization of the TCAM

memory. SmartTime pro-actively evicts flow rules with finite timeout in a

random manner when the TCAM utilization crosses a pre-defined threshold.

However, SmartTime does not cover the common case in which pro-active

rules with infinite timeouts are used to control the traffic (e.g. cloud orches-

trators like Open-Stack/Neutron pro-actively install all the rules to create

the virtual network topologies).

Flow table compression: Tag-in-Tag [20] proposes a technique to re-

place the OpenFlow entries stored in the TCAM memories with two layers

of simpler and shorter tags. However, Tag-in-Tag requires changes in the

packet header and in the switches’ firmware to correctly handle the tags.

Authors of [21] leverage OpenFlow’s wildcards to reduce the memory uti-

lization in the specific scenario of Border Gateway Protocol (BGP) routing

tables.

Flow rule placement optimization: Several recent works propose

algorithms or mechanisms for an optimal rule placement across the network,

with the aim of saving TCAM memory space ([22], [23], [24], [25]). However,

none of them tackles the table full case.

3.3 Memory swapping design

The memory swapping mechanism automatically frees the TCAM memory

of the switches from the least used wildcard flow entries by temporarily

moving them to a slower memory. The swapping process consists of two

different operations. The first, called swap out, is performed when the SDN

controller detects that the flow tables are full. In this case the mechanism

swaps out the least used wildcard rules to free up TCAM memory space

for new entries. Vice-versa, the swap in operation restores the swapped

out rules when they are needed again by the network device to forward the

traffic.

Chapter 3. A SDN application for the Device Memory Management 18

3.3.1 Swap out

By default, the swap out operation is executed when the SDN controller

detects that one or more switches are operating in table full condition. In

case of OpenFlow-enabled switches, that condition is notified to the SDN

controller via a TABLE FULL error message. From OpenFlow 1.4.0 or higher,

the swapping mechanism can be also configured to react to TABLE STATUS

events with reason VACANCY DOWN, meaning that the remaining space in the

flow table has decreased to less than a pre-defined threshold.

Unlike a traditional computer OS virtual memory system, where a page

is either allowed to be swapped out or not, the removal of a flow rule from the

TCAM may change the semantic of the network. This problem may happen

because high priority rules may be dependent on low priority ones. As a

trivial example, consider a rule set where the default rule drops any packet

and any allowed communication is handled with higher priority rules. When

the MMS swaps out an entry of this rule set because of resource pressure,

any further packet matching this rule will be then caught by the default rule

and dropped, which is an undesirable result. So, whenever we consider a rule

as a candidate to swap out, we have to build the (transitive) set of (lower

priority) rules which are also affected. The analysis of the rule-dependency

problem, which is outside the scope of this work, has already been tackled

by other works such as CacheFlow [16].

Authors of CacheFlow propose an algorithm to incrementally analyze and

maintaining rule dependencies. In such a work, a dependency between a

child rule C and a parent rule R is defined as follows: if C is removed from

the flow table, packets that are supposed to hit C will hit rule P.

The current design of the MMS leverages on CacheFlow’s algorithms to cor-

rectly compute the dependencies between rules and, consequently, to swap

out/in the wildcard entries between TCAM and MMS databases. Please

note that, the memory swapping mechanism focuses on wildcard entries to

Chapter 3. A SDN application for the Device Memory Management 19

free TCAM memory space. Thus, it does not take into consideration the

rarely used exact match rules (which are likely stored in other memories

such as DRAM or SRAM), to avoid the risk freeing the wrong memory.

1 function installFlowRule(flow_rule fr):

2 if check_wildcards(fr) is True:

3 dep_chain=compute_dependencies(fr ,flow_db)

4 fr.addDependencies(dep_chain)

5 flow_db.add(fr)

6 swap_chain=get_dependencies(fr ,swap_db)

7

8 while install_rules(fr ,swap_chain) is False:

9 swapOut ()

10

11 function swapOut ():

12 least_used_fr=get_least_used_fr(flow_db ,quota)

13 for fr in least_used_fr:

14 dep_chain=get_dependencies(fr ,flow_db)

15 for dep_fr in dep_chain:

16 if dep_fr.timeout is 0:

17 swap_db.add(dep_fr)

18 remove dep_fr

Listing 3.1: Flow rule installation process.

The pseudo-code in Listing 3.1 illustrates how the swap out process is

executed. We assume that the SDN/OpenFlow switch is set up to generate

new flow messages (e.g. an OpenFlow PACKET IN), in the case of an unknown

destination of a packet, and SDN applications may request the installation

of flow rules both reactively and proactively (i.e. with/without a new flow

message).

When an SDN application requests for a flow rule installation, the MMS

intercepts the rule, it checks whether the rule contains any wildcard and

computes the dependencies with the other wildcard rules already installed

in the network and saved in the flow db (lines 2-4 in the Listing). Then, the

Chapter 3. A SDN application for the Device Memory Management 20

rule is stored in the flow db database (line 5) along with the dependency

chain. Before installing the flow rule, we retrieve the dependency chain

of the new rule from the swap db (which stores the rules that have been

previously swapped out), to avoid network inconsistencies (line 6). The

actual installation of the new rule onto the device is performed at line 8. If

the operation returns either a TABLE FULL error or a VACANCY DOWN event,

the swapOut function is called to free up some space in the switch flow table

(line 9) and then the rule is finally installed.

The swapOut function gets the least used flow entries from the flow db

(line 12), based on traffic statistics collected periodically (as described below

in this section). quota is the percentage of the installed rules to be swapped

out. By default, its value is 20% for all the switches, but this threshold can

be tuned dynamically based on the performance of the network. Swapped

out flow entries are removed from the TCAM of the devices and from the

flow db. Entries with infinite timeout are saved in the swap db (line 17)

and automatically restored by the MMS when necessary. Entries with finite

timeout are just dropped, based on the assumption that network applications

can autonomously restore them, exactly how they would do if those flow

entries were naturally expired due to the lack of matching traffic.

A network application may need to uninstall a flow rule. In this case,

the MMS automatically deletes the corresponding entry from the flow db

and from the swap db (if necessary) and updates the dependency chains of

the child entries in those databases.

The ranking of the least used rules is determined by periodically col-

lecting traffic statistics, such as packet and byte counters, for each wildcard

rule. For each rule, the complete history of the collected samples is kept in

the flow db until the rule is deleted. The classification of the rules is com-

puted with the Exponential Weighted Moving Average (EWMA) algorithm

[26], which weights the statistics in geometrically decreasing order so that

Chapter 3. A SDN application for the Device Memory Management 21

the most recent samples are weighted more than the oldest samples. This

approach avoids erroneous classifications where, for instance, a flow entry

periodically matched by a micro-flow has more chances to be swapped out

than an entry matched by an elephant flow far in the past, i.e. no more

active.

3.3.2 Swap in

Swapped out flow rules are automatically re-installed by the MMS onto the

network when the switches need them again to forward the traffic, transpar-

ently to the SDN applications running atop the SDN controller.

The mechanism is fairly simple: when a switch does not find a match for

an incoming flow inside its flow tables, it sends a new flow message (e.g.

an OpenFlow PACKET IN) to the SDN controller. The MMS intercepts the

message before it arrives to the applications and checks whether the flow

matches any of the swapped out rules in the swap db database (line 2 in

Listing 3.2). If the MMS finds a match, it automatically reinstalls the rule

along with its dependency chain into the switch’s memory (lines 3-5), oth-

erwise the new flow message is released to the other processes of the SDN

controller, which eventually relays it to all the listening applications.

1 function swapIn(packet pkt):

2 fr=swap_db.get_rule(pkt)

3 if fr is True:

4 swap_chain=get_dependencies(fr,swap_db)

5 install_rules(fr , swap_chain)

Listing 3.2: Swap in process.

3.4 Software architecture

In [14] we presented the concepts behind the MMS and we listed the require-

ments for its implementation as a component for a generic SDN controller.

Chapter 3. A SDN application for the Device Memory Management 22

Specifically, the MMS requires a number of services and interfaces to inter-

act with the network devices and to accomplish the memory management

operations. Since not all the SDN controllers meet the requirements, we

started our development work by implementing the memory deallocation

function for ONOS [27]. In this section, we recall the building blocks of the

MMS architecture and we map them into ONOS with specific focus on the

requirements for the memory swapping.

Figure 3.1: The memory swapping in the context of the ONOS platform.

3.4.1 Interaction with the controller

The memory swapping requires read/write access to the flow tables of the

switches. It must keep track of all the flow entries installed in the network

along with their statistic counters. Moreover, it must be able to intercept

some events generated by the network, such as the TABLE FULL error and

the TABLE STATUS event with reason VACANCY DOWN, used to trigger the swap

out process, and the notification of new flows (i.e., PACKET IN in Open-

Flow), used by the swap in process to re-install any previously swapped

out entry matching the new flow with all its dependencies (as explained in

Section 3.3.2).

As shown in Figure 3.1, in ONOS such functions are accomplished by

four different interfaces called: OpenFlowController, FlowRuleservice, Stor-

ageService and PacketService. Hereafter, a description is provided of such

Chapter 3. A SDN application for the Device Memory Management 23

interfaces and how they are used by the memory swapping mechanism.

FlowRuleService [28]. Interface for installing/removing flow rules

into/from the network and for obtaining updates on those already installed.

The MMS is also registered as a listener to this interface to: (i) intercept

all the flow rules installed by the SDN applications and (ii) get the statistic

counters of the installed flow entries, as soon as such statistics are made

available by ONOS which collects them every 5 seconds. This information

is used by the memory swapping mechanism to recognize the least matched

entries which are swapped out in case of full TCAM.

OpenFlowController [29]. Abstraction of the OpenFlow controller.

It is used for obtaining OpenFlow devices, for sending OpenFlow messages to

them and to register/unregister listeners on OpenFlow events. Specifically,

in the current version the MMS registers as a listener to this interface to

get the TABLE FULL error message. We plan to add the support for TABLE -

STATUS events in the next releases.

StorageService [30]. ONOS is a distributed SDN controller platform.

An ONOS cluster comprises one or more ONOS instances, running the same

set of modules and sharing network state with each other. In that respect,

MMS internal databases are based on the StorageService interface which

ensures a consistent state of the databases across all the instances of a ONOS

cluster.

PacketService [31]. Service for intercepting the control messages gen-

erated by the switches in case of table miss events. As part of the registra-

tion process to this service, listeners (SDN applications as well as the MMS)

specify a priority value which determines the order for processing the event.

Lowest is the value, earliest the listener receives the message. The MMS reg-

isters with priority value 0 (the lowest), as required for the implementation

of the swap in function.

Chapter 3. A SDN application for the Device Memory Management 24

3.4.2 Building blocks

Flow Database: The MMS implements an internal Flow Database to repli-

cate the information contained in the flow tables of network devices. To do

so, the MMS is registered as a listener to the FlowRuleService to intercept

and collect the new rules installed by the network applications. The database

is implemented using the EventuallyConsistentMap [32] distributed primi-

tive, a data structure provided by ONOS StorageService which provides high

read/write performance. The structure of the data stored in the database

extends the ONOS FlowRule to contain: (i) current statistics counters of

each flows rule, (ii) the whole history of statistic counters and (iii) the list

of parent rules, based on the computation of the CacheFlow algorithm [16].

Swap Database: It is implemented as an EventuallyConsistentMap

containing all the swapped out flow rules. In the first prototypes, the Swap

Database was obtained with just a flag in the Flow Database indicating

whether the flow rule was swapped out from the switches’ memory. However,

as the number of swapped out rules is low compared to the total amount

of entries in the Flow Database, we realized that a dedicated database for

the swapped out rules was a better idea to minimize the lookup time and to

reduce the latency introduced by the swap in process when inspecting the

new flow messages.

Blocks Swap OUT and Swap IN in Figure 3.1 represent the two main

processes of the memory swapping mechanism.

The swap out process is in charge of freeing the switch’s TCAM by moving

the least matched flow entries to the RAM memory of the machine where the

SDN controller is running. This process is configured to react to TABLE FULL

errors received via the OpenFlowController interface. In our ongoing work,

we plan to add support for VACANCY DOWN table status notifications, which

will allow the MMS to get an early warning and to execute the swapping

process before getting the table full.

Chapter 3. A SDN application for the Device Memory Management 25

The swap out process is divided into the following steps: (i) the MMS re-

trieves from the Flow Database all the wildcard entries associated to the

switch that generated the TABLE FULL alarm, (ii) the flow entries are sorted

based on the average number of matching flows as computed by the EWMA

algorithm, (iii) finally the least matched rules are removed from the TCAM

with all their dependent rules. The copies of such rules maintained in the

Flow Database are moved to the Swap Database.

Based on our experiments (cf. Section 3.5), we swap out the 20% of the

whole TCAM content. However, this value can be tuned switch by switch

at runtime based on the performance of the network, i.e. it should be in-

creased in case of frequent TABLE FULL events or decreased in case of too

many rules re-installed into the network by the swap in process after being

swapped out.

3.5 Performance Evaluation

We evaluate the memory swapping mechanism by considering two metrics:

(i) average end-to-end throughput and (ii) TCAM space available for new

flow entries. The effectiveness of the proposed approach is measured by

comparing the results observed with and without the memory swapping

using flow table of different sizes.

3.5.1 Test methodology

Experimental setup. For the experiments, we use both hardware and

software OpenFlow-enabled switches. In the first case we use the NEC

IP8800 [33] (Figure 3.2a), while in the second, Mininet [34] and Open

vSwitch (OVS) [35] switches (Figure 3.2b).

We run ONOS and the MMS on a commodity PC equipped with a Intel

i7-5600U quad-core CPU running at 2.60GHz and 16GB of DDR3 memory

Chapter 3. A SDN application for the Device Memory Management 26

working at 1600Mhz. This machine is connected to the NEC switch via

Gigabit Ethernet for the OpenFlow control channel. Two physical hosts are

connected to the switch via Gigabit Ethernet to inject network traffic during

the evaluation. For the test with software switches, the commodity PC also

hosts Mininet configured with a single OVS-based switch and two virtual

hosts attached to it.

We use publicly available SMTP and HTTP traffic traces from [36]. The

first one produces 23 new flows per second on average when considering

Layer 3 fields, while the second trace produces 65 new flows per second on

average.

Figure 3.2: Experiment setups for the evaluation.

Context. The result of the evaluation depends on three main aspects:

(i) the flow table size of the switch, (ii) the flow rate of the traffic trace,

i.e., number of new flows per second, and (iii) how fast the corresponding

flow entries expire. Thus, we expect our memory swapping mechanism to be

more effective with small flow tables and high rate of flows controlled using

flow entries with high expiry timeouts.

To stress the memory swapping, we started with the HTTP trace, but un-

fortunately we experienced many disconnections of the OpenFlow channel

due to CPU overload of our NEC switch. Due to this, we were forced to

Chapter 3. A SDN application for the Device Memory Management 27

limit the evaluation with the hardware switch to just the SMTP trace.

The TCAM of our NEC IP8800 can host up to 1500 flow entries, but we are

interested to understand the effectiveness of the memory swapping mecha-

nism when varying the size of the flow table. For this reason, we move to

the OVS switch, since it can be set up to have different flow table sizes. We

configured it from 1500 entries (like our NEC), to 2000 entries like a HP

8200/5400 [37]. In this case, we use the HTTP traffic trace.

Methodology. We compare the memory swapping implementation for

ONOS described in Section 3.4 with the default ONOS memory management

system. By default, ONOS holds in pending add state the flow rules that

cannot be installed until there is enough memory space in the switches. We

demonstrate that our mechanism is better in terms of (i) memory space

available in the switches for the new entries, and (ii) performance of the

network measured in terms of end-to-end throughput.

The experiments are executed under the following conditions:

• At time 0, one of the hosts (e.g., Host1 in Figure 3.2) starts injecting

the traffic trace into the switch (either hardware or software). At this

point in time, the flow table of the switch is empty.

• The switch is controlled by ONOS via the ReactiveForwarding applica-

tion [38]. This application reactively installs a flow entry in the switch

for each incoming new flow.

• The application is configured to generate wildcard flow entries with the

only IP source and destination addresses specified. The application

also randomly assigns either infinite or 10 seconds idle timeouts to the

flow entries.

• Dependencies between flow table entries are synthetically generated

based on pairs of random IP subnet masks and priorities. Thus, we

Chapter 3. A SDN application for the Device Memory Management 28

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

flo

w
s

Time [s]

MMS inactive
TABLE_FULL event

(a) Flow Table size: 1500 rules.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

flo

w
s

Time [s]

MMS inactive
TABLE_FULL event

(b) Flow Table size: 1750 rules.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

flo

w
s

Time [s]

MMS inactive
TABLE_FULL event

(c) Flow Table size: 2000 rules.

Figure 3.3: Number of installed rules without memory swapping at different flow

table sizes.

configured the forwarding application to randomly apply different lev-

els of priorities combined with different submasks by following the

longest prefix match principle, where the longer the subnet mask, the

higher the priority.

3.5.2 Results and discussion

When a network device runs out of memory, it starts refusing the installation

of new forwarding rules. Eventually, the buffer of the network device, which

holds the packets waiting for forwarding instructions, becomes full and starts

dropping the buffered packets. This will lead to a degradation of the user’s

quality of the experience in terms of low throughput and high delays For

Chapter 3. A SDN application for the Device Memory Management 29

example, when accessing an online service provided by a data center, such as

on-demand video streaming, the service performance may drastically drop

down [2].

One of the possible criteria to evaluate the loss of performance is the

end-to-end throughput measured at the destination host (e.g., Host2 in Fig-

ure 3.2). In this way, we demonstrate the effects of a device with a full flow

table on the network traffic. Table 3.1 summarizes the results obtained with

the NEC hardware switch using the SMTP traffic trace (23 new flows per

second), and with the OVS software switch using the HTTP trace (65 new

flows per second).

Table 3.1: Average throughput (90 sec. test).

Flow Table Size
Traffic

trace

Throughput MMS

Active [Kbps]

Throughput MMS

Inactive [Kbps]

1500 (NEC) SMTP 19.85 15.81

1500 (OVS) HTTP 80.17 58.97

1750 (OVS) HTTP 85.63 72.38

2000 (OVS) HTTP 86.54 81.13

Specifically, when using the memory swapping we measure a throughput

increase from 15.81 Kbps to 19.85 Kbps (21% on average) with the NEC

switch and the SMTP trace. When using the software switch and the HTTP

trace, we observe different performance depending on the size of the flow

table. We measure throughput increases of 26%, 15% and 6% with flow

table sizes of 1500, 1750 and 2000 flow entries respectively.

Results obtained with the OVS-based software switch are also reported

in Figures 3.3, 3.4 and 3.5. Vertical blue lines in Figures 3.3 and 3.4 rep-

resent the TABLE FULL error messages sent by the switch operating in full

table condition to ONOS, when ONOS tries to install the pending rules. By

default, this installation process is automatically performed every 5 seconds

if the pending add queue is not empty. Please note that, for the sake of

Chapter 3. A SDN application for the Device Memory Management 30

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

flo

w
s

Time [s]

MMS active
TABLE_FULL event

(a) Flow Table size: 1500 rules.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

flo

w
s

Time [s]

MMS active
TABLE_FULL event

(b) Flow Table size: 1750 rules.

 0

 500

 1000

 1500

 2000

 2500

 0 10 20 30 40 50 60 70 80 90

flo

w
s

Time [s]

MMS active
TABLE_FULL event

(c) Flow Table size: 2000 rules.

Figure 3.4: Number of installed rules with memory swapping at different flow table

sizes.

readability, we represent only one error message for each attempt.

Without the memory swapping, the flow table is constantly full and every

time ONOS tries to empty the pending add queue, it gets a TABLE FULL

error (Figures 3.3a and 3.3b). The problem is partially mitigated when the

software switch is configured with a larger flow table (Figure 3.3c). In this

case, the number of flow rules which are evicted for expiring timeout is of-

ten sufficient to make space for the rules waiting in the pending add queue.

Conversely, the memory swapping process frees the 20% of the TCAM ca-

pacity in reaction to TABLE FULL errors (Figure 3.4). More precisely, the

least matched entries are moved to the Swap Database and the free space in

the TCAM is used by ONOS to install the rules in pending add state and,

possibly, the new rules the ReactiveForwarding application generates to con-

Chapter 3. A SDN application for the Device Memory Management 31

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

Th
ro

ug
hp

ut
 [K

bp
s]

Time [s]

MMS active
MMS inactive

(a) Flow Table size: 1500 rules.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

Th
ro

ug
hp

ut
 [K

bp
s]

Time [s]

MMS active
MMS inactive

(b) Flow Table size: 1750 rules.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90

Th
ro

ug
hp

ut
 [K

bp
s]

Time [s]

MMS active
MMS Inactive

(c) Flow Table size: 2000 rules.

Figure 3.5: Throughput comparison with and without memory swapping at differ-

ent flow table sizes.

trol new flows. The benefits of the memory swapping are demonstrated by

the reduced number of TABLE FULL errors, as shown in Figure 3.4, and by

the increased performance in terms of end-to-end throughput at different

flow table sizes, as shown in Figure 3.5 and also summarized in Table 3.1.

Finally, we observe that the effectiveness of our mechanism increases

when the ratio between the flow rate and the flow table size increases. In

this respect, recall that SDN platforms like ONOS are designed to scale to

large networks, where the flow arrival at the switches can be in the order

of thousands flows/sec [18]. Thus, we conclude that a memory management

mechanism like the one presented and validated in this section, can help such

SDN environments to operate efficiently without requiring network devices

mounting large, expensive and power hungry TCAMs.

Chapter 4

Interactions between

business applications and

SDN networks

Novel business applications for industry verticals with specific and stringent

service requirements are expected to represent one of the key challenges for

the future transport networks, forcing network operators to design multiple

services to cope with these requirements. By exploiting an application-

centric paradigm, the operators can provide connectivity service differentia-

tion to business applications. However, maintaining all the requirements is

not always possible and application requests can experience higher service

blocking probability.

This chapter discusses a novel interaction between business application

and SDN networks. We propose a model for the negotiation of application-

aware connectivity services by extending an existing application-aware pro-

visioning algorithm. An application can communicate its connectivity re-

quirements and, whether the network is not able to respect all of them,

can offer several alternative solutions based on a degradation of service re-

Chapter 4. A Negotiation Scheme for Application-centric Networks 33

quirements. The application can provide a feedback to the network, based

on an autonomous interaction. We prove the effectiveness of our approach

by showing how it leads to a lower blocking probability of service requests

with respect to the case no negotiation scheme is adopted, without in turn

causing significant service degradation to the applications.

4.1 An Intent-based Negotiation Scheme

for Application-centric Networks

Today’s transport networks are composed by a three layer architecture in

which on top sits the application layer, a grooming layer and the transport

layer (Figure 4.1). The application layer is composed by a multitude of

diverse applications, characterized by their own requirements in terms of

bandwidth, latency, availability, etc. These parameters define the type of

connectivity service that an application requires from the network. For

instance, distributed databases running between several data centers require

low latency, guaranteed bandwidth and minimum packet losses in order to

avoid synchronization issues [39]. The grooming layer, usually IP/MPLS,

aggregates all the application flows into large optical connections at the

transport layer.

Aggregate
requirements

App3
req.

App2
req.

App1
req.

Today’s Transport Network

Application layer

Grooming layer

Fixed transport layer

App specific
requirements

Aggregate requirements

Low
bandwidth

High bandwidth

Figure 4.1: Current network traffic aggregation.

Chapter 4. A Negotiation Scheme for Application-centric Networks 34

However, the existence of a grooming layer implies that applications

with different requirements are always subjected to the same treatment in

the transport layer. All the applications are aggregated in the same optical

connections, thus, this implies an inefficient use of network resources and a

static model for traffic treatment. Indeed, the network traffic generated by

applications with diverse requirements is always groomed in the same large

optical connection pipes.

Application-aware transport layer

App specific
requirements

Grooming layer

Application layer

Low
bandwidth

Medium / High
bandwidth

App-class
requirements

Application-Centric Transport Networks

Figure 4.2: Application-centric network.

To this end, the Application-centric (or application-aware) networking

is an emerging paradigm that aims at catering to multiple requirements

(e.g. bandwidth, latency, availability, security, etc.) when serving the traf-

fic generated by business applications (e.g. live video streaming, financial

transactions, remote control of drones, etc.). This paradigm enables a novel

network model, which offers a more fine-grained traffic control for the pro-

visioning of connectivity services. The application-specific requirements are

mapped into the lower network layers, either into pre-defined traffic classes

or directly into the transport layer (Figure 4.2). A generic Network Provi-

sioning and Management plane, based on a SDN paradigm, is in charge of

receiving the application requirements and the modification of the network

configuration accordingly.

Chapter 4. A Negotiation Scheme for Application-centric Networks 35

Recent studies (e.g. [40, 41]) show how application-centric networking

can be pursued in multi-layer transport networks by means of joint config-

uration/optimization of IP/MPLS and optical layers, in order to provide

a tailored service throughout the network stack. Specifically, in [41] we

showed the advantages of considering a number of application requirements

(ARs) in addition to simple bandwidth when applications’ service requests

(SRs) must be provisioned. We proved that it is possible to achieve service

blocking probabilities similar to an application-unaware scheme, while also

ensuring that application needs are met. In this way, the network can ulti-

mately deliver added-value services to customers at roughly the same cost.

However, when facing high network utilizations, the service acceptance ra-

tio experiences a reduction that negatively impacts on the revenues of both

network operators, which cannot accommodate new SRs while meeting all

the ARs, and customers, which have their service blocked.

In this section, we propose the concept of application-aware service ne-

gotiation. The negotiation offers the possibility to find an agreement be-

tween applications and networks for the provisioning of a service with looser

requirements. The algorithm offers several alternative solutions to the ap-

plication, based on the current status of the network. The application can

analyze the solutions and provide a feedback to the network. In this way,

the application can receive a predictable service degradation and avoid a

block of its request. We propose an architecture and a fully working proof

of concept on top of the ONOS network controller [9]. The communication

between the applications and the SDN orchestrator is performed by means

of a Northbound Interface (NBI) based on an Intent paradigm.

The contributions of this chapter can be summarize as follows:

• Extension of a multi-layer provisioning algorithm for Application-

Aware (AA) services. We extend this algorithm in order to support

the negotiation mechanism and to search for alternative provisioning

Chapter 4. A Negotiation Scheme for Application-centric Networks 36

solutions for applications.

• Definition of a negotiation scheme between applications and net-

works. We propose a negotiation scheme based on the degradation

of application requirements. In addition, we propose an algorithm

to let the applications automatically select or reject the alternative

solutions offered by the network.

• Implementation of the intent-based negotiation scheme on top of the

ONOS network controller. We modified the ONOS Intent Framework

[42] and adapt the REST API to support the negotiation. The software

has been released as open source project [43].

• Validation of the performance of the application-aware negotiation

system on both the network and the application sides. On the net-

work side, we demonstrate a lower service blocking probability with

respect to the AA provisioning algorithm without the negotiation. On

the application side, we show that the service degradation with re-

spect bandwidth and latency constraints can be kept below a certain

threshold.

4.2 Related Work

The negotiation of application-centric service requests requires (i) an inter-

action between applications and control planes, (ii) a negotiation scheme

and (iii) a technique to offer the alternative solutions when the provision-

ing cannot be performed. In the state of the art several works have been

proposed on these topics and we divide them into three different categories:

Interaction between applications and SDN controllers: It offers

the possibility to modify in real time the SDN network configuration in to

improve the Quality of Service (QOS) of application traffic by exploiting an

Chapter 4. A Negotiation Scheme for Application-centric Networks 37

interaction between applications and SDN network controllers. An applica-

tion (or a user) may inform the network of either what are the connectivity

requirements or provide feedbacks on the traffic treatment experienced. For

instance, Jarschel et al. [44] shows that a video streaming application bene-

fits of a high performance improvement, in the case of network congestion, if

the application provides feedbacks about the amount left of the video buffer.

In [45], the authors presented a system where the users can directly inter-

act with a browser-based Graphical User Interface (GUI) and choose which

application, within several pre-configured ones, they want to prioritize. The

SDN controller receives the requests from the user and it translates them

into forwarding rules for the network. Ferguson et al. [46] proposes a frame-

work to request network policies by the users, such as bandwidth limitation

or access control (e.g., firewalling) on traffic, and the possibility to schedule

a request for a certain amount of time. However, these works do not consider

a possible solution when the application request cannot be satisfied.

Negotiation models: In the state of the art there are a few exam-

ples of negotiation mechanisms between a generic control and management

plane and a user or an application. These models are not only related

to networks but also to cloud computing. In [47], the authors propose a

negotiation mechanism based on a price/service trade-off based on the net-

work congestion. The application chooses the alternative based on an utility

function. However, this work does not provide an evaluation of other pa-

rameters rather than the bandwidth. Another type of negotiation is the

auction [48, 49]. The users can create economical offers to request the pro-

visioning of computational resources in public clouds. When the time for

bidding is concluded, the cloud controller decides which are the best offers

to be provisioned based on the current resource status. Another type of ne-

gotiation mechanism is presented in [50]. In this work, the authors propose

a mechanism for negotiating computational resources based on the Alternate

Chapter 4. A Negotiation Scheme for Application-centric Networks 38

Offers Protocol [51]. Specifically, the requesters can make a counter offer to

the resource manager. The negotiation finishes when the application and

the resource manager find an agreement for the execution of the requested

task.

Degradation of service requirements: This technique has been pro-

posed to increase the number of service request that can be accommodated

in a network. The application requirements can be degraded to looser values

than the initial request. For example, [52] and [53] propose the admission of

services with a bandwidth requirement degradation in the case of network

failures and/or network congestions. However, all these works propose a

degradation that is unilaterally decided by the network without any feed-

back from applications. In addition, they evaluate only the degradation of

the bandwidth without considering other application specific requirements.

4.3 Service Negotiation

This section presents our scheme for the application-aware negotiation of

network services. As general model, the negotiation is based on the degra-

dation of the service requirements. The application requests a connectivity

service to the network and, in the case of the service cannot be provisioned,

the application receives several alternatives from the network. The applica-

tion analyzes the alternatives and provides a feedback based on an algorithm

that selects the best alternative solution for the service provisioning.

As general networking model, we consider a 2-layer physical network

composed of a transparent Dense Wavelength-Division Multiplexing (DWDM)

optical layer and an IP/MPLS packet layer. The optical layer is composed

of ROADM nodes (i.e., reconfigurable optical add-drop multiplexers) that

are interconnected by fiber links supporting multiple wavelength. At the

IP/MPLS layer, the nodes (i.e., IP/MPLS routers) are interconnected by

IP adjacencies that are realized through lightpaths, i.e., transparent optical

Chapter 4. A Negotiation Scheme for Application-centric Networks 39

connections.

4.3.1 Negotiation Algorithm

Figure 4.3: Negotiation interaction between orchestrator and application

negotiation-specific algorithms.

The negotiation system is divided into two algorithmic blocks (Fig. 4.3).

On the network side, we rely on an extended version of the Application-

Aware Service Provisioning Algorithm [41], including the negotiation fea-

tures. The algorithm is implemented as part of a generic Control and Man-

agement plane that controls the multi-layer network, e.g. a hierarchical

SDN controller. On the application side, an algorithm is designed to au-

tonomously decide among multiple solutions with degraded service offered

by the network in the negotiation process (Alternative Solution Selection

Algorithm). The communication between the two blocks can be provided

by a well-designed intent-based northbound interface[54].

We define the application requests to the network as Service Requests,

SR (i.e., intents). Every SR is represented as a tuple SR = {s, d, b, l, a}, in

which s and d represent the source node and the destination node IDs, b

is the minimum required bandwidth, l the maximum allowed latency and

a is the minimum tolerable path availability. b, l and a are the service

requirements. The Application-Aware Service Provisioning Algorithm eval-

uates the service requirements for each SR on the network side, i.e., in the

Chapter 4. A Negotiation Scheme for Application-centric Networks 40

network orchestrator. The provisioning algorithm aims at finding a path

meeting all the service requirements, i.e. an application-aware path. If an

application-aware path can be provisioned without requirement violations,

the SR is accepted. This happens when the network has enough resources

to provision an application-aware path. Otherwise the SR is blocked.

In this section, we extend the features of [41]. In fact, in our new scheme

there is a new outcome in this interaction between the application and the

network. When it is not possible to provision an application-aware path,

since some of the requested service requirements cannot be guaranteed, a

negotiation phase for the SR is started. This can happen because a network

has limited resources that have already been provisioned to meet other SRs

with strict requirements. After the negotiation phase, a new negotiated SR

can be accepted, or the negotiation is aborted and the original SR blocked.

For example, a SR generated by an application with stringent latency

requirements may find the shortest paths busy because of traffic generated

by other applications, but may be willing to negotiate a lower requirement

instead of having its request blocked. In this way, the application can achieve

a predefined service degradation and it can modify its behavior based to the

new service requirements. In order to inform the network that an application

is willing to negotiate, the SR tuple reported above is extended to carry also

the information on which requirements of a SR are negotiable. In particular,

the new considered tuple is SR = {s, d, b, l, a, nb, nl, na}, where the flags nb,

nl, na are associated to b, l and a, respectively. They can be set to true or

false to inform the provisioning algorithm of which service constraint can

be negotiated.

The provisioning algorithm offers a set of Alternative Solutions (AS)

to the application, in which the negotiable requirements have looser values

than the original SR. For example, if a SR requires a particular value of l

with nl = true, the provisioning algorithm can offer a new value ln > l,

Chapter 4. A Negotiation Scheme for Application-centric Networks 41

meaning that it can provide an application-aware path meeting such looser

latency requirement, as in the example above. The application evaluates the

new solutions and accepts one of them or rejects all. If all the alternative

solutions are rejected, the SR is blocked.

Note that, since the Provisioning Algorithm does not have any knowledge

on the threshold values for the service constraints, it cannot bias its choice

to provide the least acceptable constraints to the application. In this way,

the application can potentially experience a lower downgrade than the least-

acceptable one, if there are enough available resources in the network. This

assumption is valid if there is no a pricing model applied in the system. The

application can have a more complex decision process in which evaluates all

the alternatives based on an utility function. On the other side, also the

network can have an utility function which can try to maximize both the

resource occupation and the revenues.

4.3.2 Application-Aware Service Provisioning Algorithm

The Application-Aware Service Provisioning Algorithm presented in this

section extends the algorithm presented in [41]. Such algorithm offers the

provisioning of application-aware services on top of multi-layer IP/optical

networks. For every SR, the algorithm attempts to find an application-

aware path between the existing lightpaths, i.e., IP adjacenices, first and

then, if no application-aware path is found, by considering also the potential

lightpaths (i.e., lightpaths that have not been established yet, but that could

be established if needed). This increases the chance of finding a solution at

the expense of resorting to new optical resources. The algorithm exploits

an Auxiliary Graph (AG) model [55]. The algorithm works as follows, and

is executed for every SR:

1. All the existing lightpaths (i.e., edges) are added to an AG, where the

added nodes are IP/MPLS nodes. The edges not meeting the bandwidth

Chapter 4. A Negotiation Scheme for Application-centric Networks 42

requirements of the SR are pruned from the AG.

2. The Kip-Shortest Path (SP) algorithm is executed on the AG between s

and d of the SR. The weight for each edge is the physical length of the

corresponding lightpath.

3. Up to Kip candidate paths are returned, all meeting the b requirement.

4. Then, the algorithm prunes all the candidates paths not meeting l and a,

and returns the first in the list (i.e., the shortest).

5. If the list of candidate paths is empty after step 4, the algorithm augments

the AG by including the potential lightpaths and steps 2, 3 and 4 are

executed again. In the original version of the algorithm, if no cadidate

path is found at this point, the request is blocked. For more details on

the algorithm implementation see [41].

Then, we extended the Application-Aware Service Provisioning Algo-

rithm described above to support the negotiation phase for the SRs in case

no application-aware path can be found. The Provisioning Algorithm thus

computes a set of M ASs, in which the negotiable service requirements can

have looser and network-achievable values than the ones specified in the SR.

In particular, the Provisioning Algorithm in the negotiation phase works as

follows:

1. A copy of the initial SR is created and all the negotiable parameters are

neglected.

2. Such modified SR is used as input for the Application-Aware Service

Provisioning Algorithm described above.

3. If the algorithm does not output any path, the SR is blocked. Other-

wise, it stores the guaranteed requirements for each computed alternative

Chapter 4. A Negotiation Scheme for Application-centric Networks 43

candidate path (e.g., the minimum available bandwidth, the maximum

latency, etc.).

4. The number of candidate paths can be high, if there are many negotiable

parameters and a high value of Kip is used. The algorithm thus keeps

only the best path for each of the negotiable requirements. For example,

if b and l are negotiable, the provisioning algorithm offers two alternative

solutions to the application: the one corresponding to the path with

maximum residual bandwidth and the one corresponding to the path

with minimum guaranteed latency.

5. The alternative solutions selected in step 4 are sent to the application,

that can thus run the Alternative Solution Selection Algorithm, which is

described in the next section.

4.3.3 Alternative Solution Selection Algorithm

On the application side, the AS needs to be analyzed in order to find which is

the best one for the application. In our model, every application has a set of

preferable values SRp = (bp, lp, ap) and a set of least acceptable values SRt =

(bt, lt, at), represented as tuples. The former indicates the preferable values

that the application wants to obtain from the network, while the second

represents the threshold values that the application is willing to accept in

the case of a negotiation is needed. If the preferable and minimum value

for a service requirement is the same, it means that such requirement is

not negotiable. The application communicates only the values included

in SRp when it sends the SR to the orchestrator. For example, a VoIP

application, according to the ITU-T G.114, requires a maximum latency of

150 ms. However, this is not a preferable value but the maximum allowed.

A VoIP call with 150 ms of latency have a really bad quality. A preferable

value could be less than 50 ms. Potentially, the VoIP application can thus

Chapter 4. A Negotiation Scheme for Application-centric Networks 44

request a SR where SRp has lp = 50 ms and set a SRmin with l = 150 ms.

The application can is thus flexible in accepting an alternative solution with

reduced quality but with a predictable degradation.

The Alternative Solution Selection Algorithm is in charge of automat-

ically selecting the best AS for each application. The algorithm works as

follows:

1. The application receives M ASs in the form of reduced SR tuples (i.e.,

without negotiation flags). Each tuple is defined as ASj = {bnj , lnj , anj},

in which bnj , lnj , anj represent the values, for each AS j, as computed by

the orchestrator in the negotiation phase.

2. The algorithm prunes all the solutions that have requirement lower than

the values specified in the SRt tuple (e.g., if bnj < bt, prune the solution

j).

3. If there is no alternative solution meeting all the requirements specified

in SRmin, the SR is blocked. Conversely, the algorithm calculates the

weighted Euclidean distance dj between SRp and every ASj , as defined

in Eq. 4.1.

dj(SRp, ASj) =

√√√√ N∑
i=1

wi(SRpi −ASji)
2 (4.1)

where the index i refers to each one of the N service requirements included

in SRp and ASj and wi represent the weight for the service requirements

i. By properly tuning the weights wi, the application can specify a dif-

ferent preference for every service requirement. For example, in the case

of an application has a more stringent latency requirement among the

negotiable ones, the weight wl will be higher than the weights of other

requirements.

Chapter 4. A Negotiation Scheme for Application-centric Networks 45

4. After evaluating every Euclidean distance, the algorithm selects the al-

ternative solution leading to the minimum Euclidean distance to SRp:

ASbest = ASj : j = arg min(d1, · · · , dM) (4.2)

5. ASbest is sent to the orchestrator, which allocate resources on the associ-

ated path.

4.4 Software Architecture

Resource
Service

IntentInstaller
ONOS Intent Framework

REST API

O
N

O
S

ACI IntentACI IntentACiIntent
ACiIntent

Network
Config

IntentService Path
Service

Network Substrate

ACiIntentCompiler
2

3

4 1

Service Requester

Figure 4.4: Negotiation architecture of the ONOS controller.

The negotiation algorithm requires several services from a SDN con-

troller: (i) a RESTful API to simplify the submission of the intents from

the users or applications, (ii) the translation of the intents in forwarding

rules, i.e. the intent compilers, and, (iii) a network resource manager, which

keeps track of the available resources in the network.

To this end, we chose ONOS [9] as SDN controller for the implementation

of the negotiation algorithm. It offers a modular architecture in which ex-

ternal software modules, i.e. OSGi bundles [56], can be added and removed

at runtime. The modules can exploit many Services, based on Java APIs, to

Chapter 4. A Negotiation Scheme for Application-centric Networks 46

interact with the controller core and the underlying network substrate. The

negotiation algorithm is implemented as a ONOS module, which exploits

several Services and relative APIs to work.

In this section, we describe the implementation of the negotiation module

for ONOS. We describe the ONOS Services used, how they are mapped to

the negotiation module and how the negotiation works in ONOS.

4.4.1 ONOS Services and APIs

The negotiation module exploits the following Services from the ONOS con-

troller:

ONOS Intent Framework. The ONOS controller provides a compre-

hensive intent framework, which manages the intent submission, compilation

and the installation of the corresponding forwarding rules in the network de-

vices. The intents can be submitted via the IntentService, which exposes

the Java APIs for interacting with the service. It is composed of several

intent compilers, each one compiling a specific type of intent. The intent

compilers interact with the other ONOS Services in order to obtain the in-

formation required for the intent translation in specific forwarding rules. For

example, ONOS provides a set of pre-defined intents representing a network

connectivity action, such as the HostToHostIntent. This intent represents a

point-to-point connection between two host in the network. The only com-

piler responsible for the translation in forwarding rules is the HostToHostIn-

tentCompiler, which interacts with the other ONOS Services to define the

associated forwarding rules. When a compiler defines the forwarding rules,

it requests to the IntentInstaller the installation. The negotiation module

exploits the ONOS intent framework since it implements the ACiIntent-

Compiler for the Application-Centric Intents (ACiIntents). This type of

intent represents the request for an Point-To-Point connection between two

endpoints in a network with a specific set of application-centric constraints,

Chapter 4. A Negotiation Scheme for Application-centric Networks 47

such as bandwidth, latency, availability, etc.

PathService. It represents the Path Computation Element (PCE) of

ONOS. All the modules can query this service to obtain the shortest path

(i.e. a set of links) between two endpoints of a network (e.g., devices, hosts,

etc.). The ACiIntentCompiler exploits this service to get the shortest path

between the two network endpoints defined in the ACiIntent.

ResourceService. This service provides a database to keep track of

all the available network resources (e.g., links, the ports of a device, etc.),

their characteristics (e.g., latency, capacity, etc.) and consumption. The

ONOS modules can use the APIs to interact with the service both to query

or update the consumption of a resource. Only particular type of resources

can be consumed, such as the capacity of a device port or the number of a

VLAN. For example, an intent requires a bandwidth constraint of 100 Mbps

between two host in a network. The IntentCompiler queries the PathSer-

vice and receives the shortest path connecting the two hosts. Then, the

IntentCompiler checks if all the devices’ ports associated to the path can

support the requested capacity. Finally, if allowed, it associates the intent

as a resource consumer of all the ports’ capacity in the ResourceService.

Thus, on a port of 1000 Mbps, the capacity left is 900 Mbps. The ACiIn-

tent compiler queries this service in order to check if a path can provide the

specific application-centric constraints and calculate the possible alternative

solutions.

NetworkConfig. ONOS provides a service for configuring the charac-

teristics of the network device and links with custom values. For example,

it can be used to configure the capacity of a device port or to annotate on

a link its features, such as the latency or the availability. These informa-

tion are then provided to the ONOS ResourceService to be queried by other

modules.

Chapter 4. A Negotiation Scheme for Application-centric Networks 48

4.4.2 Negotiation in ONOS

The negotiation algorithm in ONOS is implemented in the following way:

Service Request submission. The Service Requester, either an ap-

plication or a user, submits an ACiIntent with several constraints via the

REST API. The request is converted to an ACiIntent Java class and it is

submitted to the IntentService for the compilation (arrow 1).

Intent Compilation. The ACiIntentCompiler starts the compilation

of the ACiIntent. First, it requests to the PathService all the possible short-

est path between the two intent Endpoints (arrow 2). Then, for every

path found, the compiler queries the ResourceService to check if the in-

tent constraints can be satisfied (arrow 4). The paths that do not satisfy

the constraints are excluded from the list. If at least one path is found,

it is converted in forwarding rules and they are sent to the IntentInstaller.

Otherwise, if all the paths are excluded, the negotiation phase starts.

Intent Negotiation. The paths that were previously found by the

PathService are analyzed again. The ACiIntentCompiler queries the Re-

sourceService in order to find the minimum constraints that the paths can

allow. For example, if the bandwidth constraint is too high with respect to

the current path provisioning, the ACiIntentCompiler calculates the maxi-

mum allowed constraint for the path. Then, all the new constraints associ-

ated to the paths are associated to a set of alternative ACiIntents. Finally,

they are submitted to the REST API to let the Service Requester to choose

an alternative solution.

Solution Selection Algorithm Implementation. After a service re-

quest to the network with several negotiable constraints, an application can

receive back several alternative solution. The solutions received from the

SDN controller should be analyzed in order to understand which is the best

one. Listing 4.1 shows the algorithm for the selection of the best solution

proposed by the SDN controller. First, the Intent Adapter creates a Solu-

Chapter 4. A Negotiation Scheme for Application-centric Networks 49

tionVector from the Service Requirements Model. The SolutionVector is a

data structure composed of all the constraints, the preferable and the ac-

ceptable values. The same is performed for the solutions proposed by the

SDN controller. In this case, the minimum/maximum acceptable values are

set to zero and ignored. Second, from line 8, the solutions coming from the

network are iterated in order to check if they are within the minimum/max-

imum acceptable values. Every solution that does not respect the minimum

value of a constraint is removed from the possible solutions. Then, in line

25 is calculated the Euclidean distance between the preferable solution and

the current solution and this value is updated inside the solution proposed

by the SDN controller. Finally, from the solutionList is chosen the solution

with the mimimum Euclidean distance, thus the one closer to the preferable

solution (lines 31-32). Then, the answer is notified to the SDN controller.

In case of an empty list, the negotiation is aborted (line 34), since there are

no solutions that can be accepted by the application.

1

2 SolutionVector preferableVector =

3 buildPreferableVectorFromModel ();

4 List <SolutionVector > solutionList =

5 buildSolutionListFromJson ();

6 Long intentID = getIntentIDFromJson ();

7

8 for(SolutionVector solution : solutionList){

9

10 if(solution.latency >

11 preferableVector.maxAllowedLatency){

12 solutionList.remove(solution);

13 continue;

14 }

15 if(solution.bandwidth <

16 preferableVector.minAllowedBandwidth){

17 solutionList.remove(solution);

Chapter 4. A Negotiation Scheme for Application-centric Networks 50

18 continue;

19 }

20

21 ...

22

23 // Update the Euclidean distance

24 //for the proposed solution

25 calculateEuclideanDistance(preferableVector ,

26 solution)

27 }

28

29 if (! solutionList.empty ()) {

30 SolutionVector bestSolution =

31 Collections.min(solutionList);

32 sendAcceptedMessageToController(bestSolution);

33 } else {

34 sendNotAcceptedMessageToController(intentID);

35 }

Listing 4.1: Algorithm for solution selection on the application side

4.5 Performance Evaluation

In this section, we present the experimental results on the negotiation al-

gorithm. The network sensitivity tests are performed on Net2Plan [57], an

open source tool for network planning and simulation. Both the Application-

Aware Provisioning Algorithm and the Solution Selection Algorithm are im-

plemented on Net2Plan.

The sensitivity tests allowed us to demonstrate the influence of the ne-

gotiation on both the network and the applications in different scenarios.

In particular, the sensitivity tests evaluate the SR blocking probability, i.e.

the amount of blocked SRs caused by constraint violations, and the average

SR degradation experienced by applications with respect to the (bp, lp, ap)

Chapter 4. A Negotiation Scheme for Application-centric Networks 51

constraints of every SR negotiated.

Although the sensitivity tests are performed on a network simulator, they

are based on a real network topology and a traffic matrix provided by the

ISP Telefónica Spain. This offers the possibility to evaluate the negotiation

algorithm on a network environment comparable to a real one.

4.5.1 Simulation Setup

The Telefónica’s topology is a multilayer network composed of 30 ROADM-

s/OXCs and 56 bi-directional fiber links carrying up to 80 wavelengths, with

a capacity of 100 Gbps each at the optical layer. We doubled the propagation

delay of each fiber to simulate a larger network. On the IP layer, there are

14 IP/MPLS routers that can be interconnected by lightpaths provisioned

at the WDM layer [58]. The traffic generation is performed by using the

non-uniform traffic matrix of the same ISP, in which the majority of traffic

is routed to/from the capital city Madrid.

Net2Plan offers a discrete event simulator composed of an event genera-

tor and an event processor. The event generator produces a new SR based

on a Poisson process, i.e., with exponentially-distributed inter-arrival times

and holding times. After the expiration of the holding time, the allocated

network resources (e.g., the links and the capacity) to the SR are released.

The number of requests generated is 5× 105 and the statistics are collected

after 2×104 events, in order to exclude the values in low network utilization.

The provisioning algorithm has Kip = 50 and Kwdm = 5.

We consider as service requirements for each SR the bandwidth (b), the

latency (l) and the availability (a). a is expressed as (MTBF/(MTBF +

MTTR)) · 100, where MTBF is the Mean Time Between Failures and

MTTR is the Mean Time To Repair. The availability values provided on

the topology are different on every link and comparable to real ones, thus the

availability is not strictly dependent on the length of paths. All the parame-

Chapter 4. A Negotiation Scheme for Application-centric Networks 52

Table 4.1: Negotiation Level values

(bp − bt)/bp · 100 (%) lt (ms) at (%)

NL1 10% 15 99.5

NL2 20% 20 99.4

NL3 30% 25 99.2

NL4 40% 35 99

ters are randomly chosen based on the following sets: b = {1, 2, 5, 10} Gbps,

l = {10} ms, and a = {99.6} %. The s and d parameters are generated

accordingly to the non-uniform traffic matrix.

4.5.2 Sensitivity Test Methodology

We performed three experiments in which we evaluate the impact of the

negotiation scheme on the network behavior: (i) all the SR constraints can be

negotiated at the same time and can experience a degradation; (ii) different

ratios of SRs are willing to negotiate with respect to the total amount of

SRs, and (iii) the SRs can negotiate only one constraint at time.

In each experiment, we study the trade-off that the negotiation offers in

terms of the gain on the number of SRs accepted and the degradation of

parameters experienced by the applications. All the different scenarios are

compared with the case of the negotiation scheme is not adopted.

1) The SRs can negotiate all the constraints. In this experiment, the SRs

are always willing to negotiate b, l and a with the network by accepting looser

values of parameter degradations. We define multiple Negotiation Levels

(NLs), representing the maximum allowed degradation for application SRs.

The threshold values bt, lt and at are set as reported in Fig. 4.1. According

to the defined NLs, each SR can always tolerate a relaxation of b, l and a: the

maximum bandwidth tolerated degradation is set in terms of degradation

Chapter 4. A Negotiation Scheme for Application-centric Networks 53

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Load [Erlang]

No negotiation
NL1
NL2
NL3
NL4

(a)

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

N
eg

ot
ia

tio
n

Pr
ob

ab
ilit

y

Load [Erlang]

NL1
NL2
NL3
NL4

(b)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

N
eg

ot
ia

tio
n

Fa
ilu

re
 P

ro
ba

bi
lit

y
[%

]

Load [Erlang]

NL1
NL2
NL3
NL4

(c)

Figure 4.5: (Experiment 1) Evaluation of SR blocking probability (a), negotiation

probability (b) and negotiation failure probability (c).

percentage, the maximum latency tolerated degradation is set in terms of

a higher delay (in ms), while the maximum availability degradation is set

in terms of a lower value (in %). Higher NL subscript is always associated

to higher tolerance to service downgrade. For each simulation, we made all

SRs belong to the same NL.

Fig. 4.5a and Fig. 4.6 offer an overview on the trade-off between the

gain in SR acceptance (in terms of blocking probability reduction) and SR

average bandwidth, latency and availability degradation, for the negotiated

SRs, as a function of network load and NL. To be noticed in Fig. 4.6, the

values are normalized between 0% and 100%, in which 0 represents no degra-

dation, while 100 corresponds to the maximum allowed degradation for the

parameter at the selected NL. For instance, in the bandwidth degradation

Chapter 4. A Negotiation Scheme for Application-centric Networks 54

 0

 10

 20

 30

 40

 50

 60

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Ba
nd

w
id

th
 D

eg
ra

da
tio

n
[%

]

Load [Erlang]

NL1
NL2
NL3
NL4

(a)

 0

 10

 20

 30

 40

 50

 60

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

La
te

nc
y

D
eg

ra
da

tio
n

[%
]

Load [Erlang]

NL1
NL2
NL3
NL4

(b)

 0

 10

 20

 30

 40

 50

 60

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Av
ai

la
bi

lit
y

D
eg

ra
da

tio
n

[%
]

Load [Erlang]

NL1
NL2
NL3
NL4

(c)

Figure 4.6: (Experiment 1) Evaluation of the average degradation of bandwidth

(a), latency (b) and availability (c) experienced by SRs.

(Fig. 4.6a), at NL4, 100% represents (bp + 40%). In the case of a network

load of 6000 Erlang, the blocking probability decreases of about an order of

magnitude between the No negotiation and NL4 cases, while the bandwidth

(Fig. 4.6a), the latency (Fig. 4.6b), and availability (Fig. 4.6c) experience

the 35%, 2% and 1%, respectively, of their maximum allowed degradation.

Thus, the applications experience much less than the maximum tolerated

degradation, while the network increases much more the number of SRs

provisioned.

The bandwidth degradation increases both with respect to (i) network

load and (ii) NL. In fact, with higher loads, the network is only able to

offer ASs with in average more degraded bandwidth, since the average net-

work utilization is higher. Moreover, a higher NL makes SRs more tolerant

Chapter 4. A Negotiation Scheme for Application-centric Networks 55

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Load [Erlang]

No negotiation
20%
40%
60%
80%

100%

(a)

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

N
eg

ot
ia

tio
n

Pr
ob

ab
ilit

y

Load [Erlang]

20%
40%
60%
80%

100%

(b)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

N
eg

ot
ia

tio
n

Fa
ilu

re
 P

ro
ba

bi
lit

y
[%

]

Load [Erlang]

20%
40%
60%
80%

100%

(c)

Figure 4.7: (Experiment 2) Evaluation of SR blocking probability (a), negotiation

probability (b) and negotiation failure probability (c).

to bandwidth degradations, and the SRs bandwidth is thus in average de-

graded more. As opposed to bandwidth degradation, latency degradation

decreases with respect to NL and network load. The reason is that, in our

assumptions, each SR can have b, l and a degraded at the same time. The

higher b degradation is, both as a function of load and NL, the easier finding

spare resources on shortest paths is. Higher b degradations are thus always

associated to lower l and a degradations. This behavior points out how mul-

tiple ARs experience different degradation trends when they can be relaxed

at the same time, and how they mutually influence their trends.

Figs. 4.5b-4.5c show the SR negotiation probability (i.e., the probability

that the network starts the negotiation phase for a SR) and the negotiation

failure probability (i.e., the probability that the negotiation fails because no

Chapter 4. A Negotiation Scheme for Application-centric Networks 56

AS suits the least-acceptable values for the ARs) as a function of network

load and NL. Fig. 4.5b shows that the SR negotiation probability is, as

expected, similar to the blocking probability of No negotiation: it increases

as the network load increases and it is only slightly dependent on NL. As

expected, the negotiation failure probability (Fig. 4.5c) is higher (i) when

the NL is lower and (ii) as the load increases, i.e., in all the cases where

network utilization is higher.

Table 4.2: Degradation of the parameter values

Low Load High Load

b (%) l (%) a (%) b (%) l (%) a (%)

20% 29 1.86 1.45 54 0.27 0.91

40% 31 1.77 1.35 56 0.24 0.92

60% 33 1.68 1.00 57 0.2 0.92

80% 34 1.77 1.21 58 0.2 0.87

2) A percentage of the total number of SRs can negotiate. This exper-

iment aims at showing the impact of negotiation when a different amount

of SRs are willing to negotiate all their constraints. The amount of nego-

tiable SRs is expressed as a percentage. It represents the ratio between the

negotiable and the total number of SRs in the simulation. We defined the

percentage as a value between 0% and 100% that is increased by steps of

20% between each simulation. The maximum allowed degradation is fixed

for b, l and a to NL3 since it represents an average value of degradation

within all the experiments performed.

Fig. 4.7 offers an overview of the negotiation performance in terms of

SR blocking probability (Fig. 4.7a), negotiation probability (Fig. 4.7b) and

negotiation failure probability (Fig. 4.7c) as a function of the network load

and the percentage of negotiable requests. As expected, the SR blocking

probability is reducing as the number of negotiable SRs increases. In Ta-

Chapter 4. A Negotiation Scheme for Application-centric Networks 57

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

Bl
oc

ki
ng

 P
ro

ba
bi

lit
y

Load [Erlang]

No negotiation
Availability
Bandwidth

Latency
NL3

(a)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Pa
ra

m
et

er
 D

eg
ra

da
tio

ns
 [%

]

Load [Erlang]

Bandwidth
Latency

Availability

(b)

 0

 20

 40

 60

 80

 100

6000
6200

6400
6600

6800
7000

7200
7400

7600
7800

8000

Av
er

ag
e

Pa
ra

m
et

er
 D

eg
ra

da
tio

ns
 [%

]

Load [Erlang]

Bandwidth
Latency

Availability

(c)

Figure 4.8: (Experiment 3) Evaluation of SR blocking probability (a), average

parameter degradation (b) and average parameter degradation at NL3 (c).

ble 4.2, we report the experienced parameter degradation at low and high

network loads (i.e. 6000 and 8000 Erlang). The degradations are mostly

dependent on the network load than the average number of negotiable SRs.

3) Single negotiable constraint. In this test, the SRs are willing to nego-

tiate only one constraint at time while the others are kept at the preferable

value. We aim at evaluating how the negotiation of a single SR constraint

can influence the blocking probability and the experienced degradation and

if there is a predominant constraint. Between each simulation run, we set

as negotiable b, l or a. The maximum allowed degradation of the negotiable

parameter is set to NL3. We compared the results to the ones of the first

experiment performed, in which all the constraints can be negotiated, with

the maximum degradation of NL3.

Chapter 4. A Negotiation Scheme for Application-centric Networks 58

10-5

10-4

10-3

10-2

10-1

 6000 6500 7000 7500 8000

N
eg

ot
ia

tio
n

Pr
ob

ab
ilit

y

Load [Erlang]

Negotiable parameter:
Availability
Bandwidth

Latency
NL3

Figure 4.9: (Experiment 3) Negotiation probability.

The SR blocking probability (Fig. 4.8a) presents a slight reduction at

6000 Erlang with respect the No negotiation case. From 7000 Erlang, the

negotiation and No negotiation cases have the same values. Different from

the NL3 line, which shows a decrease of an order of magnitude at 6000 Er-

lang and the negotiation effects are still present at 8000 Erlang. Thus, the

negotiation of all the constraints demonstrates better performances than the

negotiation of a single constraint. The blocking probability shows almost

overlapping values between b, l and a cases on all the network load analyzed.

This implies that there is not a predominant constraint and both the ne-

gotiable and non-negotiable ones influence each other in the SR evaluation

on the network and application sides. In particular, on the network side,

in the case of l and a are negotiable, we found that the 100% of blocked

SRs is caused by the impossibility to find any AS by the Application-Aware

Algorithm. Different from the case of b is negotiable, in which the algorithm

always manages to find an AS. On the application side, in the case of l or

a are negotiable, the application can always find an AS fitting in the range

of either lt or at, while in the case of b negotiable, the 100% of the ASs

excluded by the Alternative Solution Algorithm are caused by a violation

of bt. Indeed, as reported in Table 4.3, the probability that the negotiation

fails depends only on b between all the analyzed network loads.

The constraint degradations, normalized between 0% and 100%, are de-

Chapter 4. A Negotiation Scheme for Application-centric Networks 59

picted in Fig. 4.8b. In this experiment, the degradation can be experienced

only by the parameter chose as negotiable for the simulation. In the case of

b negotiable, the degradation of b is constant and does not present signifi-

cant variations between 6000 and 8000 Erlang. Different from when all the

constraints are negotiable (Fig. 4.8c), in which b experiences an increasing

degradation from the lowest to the highest network loads. To be noticed,

in the case of l or a are negotiable, they present higher degradations with

respect to the case of all the constraints are negotiable. For instance, at

6000 Erlang l experiences the 6.20% and 1.66%, respectively. In addition,

the degradation of l increases with respect to the network load in this ex-

periment, unlike the initial one. This occurs due to the parameter b that is

not negotiable and the SRs are forced to use always longest paths since the

shortest ones are the first to fill up the capacity.

Table 4.3: Negotiation Failure Probability

b (%) l (%) a (%)

Low load 47.67% 0 0

Medium load 52.38% 0 0

High load 58.87% 0 0

Fig. 4.9 shows the negotiation probability as a function of the network

load and the negotiable constraint. The negotiation probability in the case

of b is negotiable is almost overlapped to the NL3 case, thus, they present

a negotiation probability that is similar to the No negotiation case. The

latency and availability negotiation probabilities present similar values be-

tween 6000 and 6800 Erlang, while they are different at higher network loads.

The availability presents lower values at higher loads, thus the number of

SRs that enter in the negotiation phase are less than the other cases. This

implies that the network has more difficulties to find an AS when both b

and l are not negotiable.

Chapter 5

Interactions between

business applications, SDN

controller applications and

networks

Network operators are looking forward to novel business models and services

for their customers in order to increase the revenues while reducing CAPEX

and OPEX. However, offering a customized service to every customer poses

many challenges and overheads to network providers. The services devel-

oped on networks are often imperative and have to consider integrations

with a number of subsystems in an operator’s ecosystem. Consequently,

network operators typically limit commercial offers to a fixed pool with lim-

ited configuration options that novel business applications with stringent

requirements could not exploit.

In this chapter, we show how the interaction between three different en-

tities, business applications, SDN controller applications and networks can

offer a multi-service selection system to increase the number of ad-hoc con-

Chapter 5. An SDN App Store for Network Connectivity Services 61

nectivity services offered by a network operator. We exploit the flexibility

of SDN networks to propose an SDN App Store, which leverages intents to

offer a multi-service selection model for network connectivity services, imple-

mented as applications on top of an SDN controller. The user or the business

application can request an SDN controller application (SD-WAN, VPN, etc.)

and the associated constraints in the form of an intent, and receive offers

from multiple SDN application providers, each one delivering a customized

implementation of the application. Performance evaluation of the imple-

mentation demonstrates the capability to integrate multiple providers with

very low overhead while enabling users to choose from multiple offers for a

given application.

5.1 An SDN App Store for Network Connectivity

Services

A primary revenue stream for network operators comes from offering ser-

vices for specific types of applications and customers, such as data center

interconnection, SD-WAN, etc., with specific requirements and constraints.

Demands for such services is expected to show significant increasing, driven

by a heterogeneity in terms of customer requirements. This implies that

network operators are forced to look forward to novel market models and

technologies while increasing the revenues and reducing the operating costs.

However, the logistical overhead in deploying and maintaining a wide set

of services, which consists of specific configurations is non-trivial. The high

number of permutations to configure and maintain a service on vendor-

specific devices is one of the primary reason why operators only offer a

limited portfolio of services to their customers.

The advent of software control on network platforms provides the poten-

tial to deliver an enhanced flexibility to network operators. Software control

Chapter 5. An SDN App Store for Network Connectivity Services 62

simplifies service provisioning and Operations, Administration and Manage-

ment (OAM) in a vendor-agnostic fashion. The SDN controllers, based on

application requirements, can deploy specific software-based network func-

tions on generic white-box hardware in the network.

The architectural modularity of modern SDN controllers, such as ONOS [9]

and OpenDayLight [10], can be exploited to develop single software modules,

executed on top of them, that can offer all the logic for computing, provision-

ing and maintaining services required by a given connectivity application.

It is envisioned that an SDN controller should be able to host multiple

software modules (or SDN controller applications) that can deliver distinct

solution flavors for a given request for a connectivity application. This solu-

tion may increase the competition between multiple service providers, which

can share the same network infrastructure to provide their own solution for

a connectivity service to a customer.

This work presents the SDN App Store architecture that proposes a

system for multi-service selection built on top of an SDN controller. The ar-

chitecture enables operators to host multiple SDN applications offering the

same network connectivity services (e.g., SD-WAN, CDN, etc.) and enables

the users to select between multiple offers as computed by these applications.

Multiple algorithms are incorporated as SDN applications to compute ser-

vice offerings and an intent-based NBI, named DISMI [59], offers the pos-

sibility to define a generic, technology-agnostic grammar to communicate

with the users. We extended DISMI to support a negotiation mechanism,

enabling a user to choose from multiple offers in a seamless, application-

agnostic fashion.

The SDN App Store and its intent-based interface are released as open

source project [43].

Chapter 5. An SDN App Store for Network Connectivity Services 63

5.2 Related Work

In the state of the art, the possibility to select a service from multiple

providers has been proposed under the concept of service brokers. They

aim at simplifying the service selection and provisioning in a multi-provider

setting. Service brokers are middlewares that offer an abstraction between

the users/applications and service providers. Brokers receive a service re-

quest from the users, and query multiple providers for offers. Finally, the

brokers orchestrate provisioning for offers that are either selected automat-

ically or by the user.

Service brokers can be divided into two main categories:

Cloud Service Brokers. The cloud paradigm has always been con-

sidered as a commodity service for computational resource, which can be

scaled up and down on-demand. The number of cloud providers is con-

tinuously growing, making it difficult for users to find the best service in

terms of price and performance guarantees. To overcome this issue, several

works proposed the concept of Cloud Service Brokers. In [60], authors pro-

posed a cloud broker that automatically deploys an application by selecting

resources between multiple cloud providers. User can describe application

requirements (storage, CPUs etc.) and the broker selects the best service

among the registered cloud providers in terms of price and performance. An-

other work [61] presents a cloud broker, based on standard APIs and model

descriptors for application requirements. This work proposes a solution to

automatically load balance applications between multiple cloud providers.

The work in [62] propose service selection by offering several alternative

prices offered by the registered cloud providers to the user.

Connectivity Brokers. Network operators are exploring solutions to

dynamically provision on-demand connectivity services in order to enable

new market models [63], which in turn has led researchers to explore the use

of brokers to choose between multiple services. In [64], the authors propose

Chapter 5. An SDN App Store for Network Connectivity Services 64

USER

Application[{Constraints}]

Intent
Compilers

Figure 5.1: App Store generic model.

a market model in which a broker queries the service providers and attempts

to find the best solution that optimizes performance and costs for the user.

The selection of a custom end-to-end path traversing multiple domains has

been proposed in [65], which is able to query multiple network exchange

points in order to formulate an offer for the user.

To date, brokers are designed for specific applications, and cannot be

easily extended to other applications. For example, connectivity brokers

do not inherently provide the possibility to request advanced connectivity

service, such as SD-WAN, and limit the service requirements that can be

requested are based on the broker’s specifications. This work presents a

general framework which uses multiple SDN applications to compute offers

for specific network application requests, and facilitates offer selection by

the user.

5.3 The App Store Model

This section presents our model for the App Store. The App Store is de-

signed as a platform where users can request a specific application and mul-

Chapter 5. An SDN App Store for Network Connectivity Services 65

tiple SDN application providers (apps) can compute service offerings for the

request. Computed offers from the apps are sent to the user, and a selection

from these offers is used to initiate provisioning actions. For the scope of this

work, the application under consideration are traditional business connec-

tivity applications like SD-WANs, CDNs, VPNs, etc. The App Store offers

applications on top of single Internet Service Provider (ISP) management

infrastructure with networking resources shared between multiple applica-

tions. Apps can target implementations for a given application to optimize

specific metrics: For instance, applications offering a CDN application can

optimize selection of caching points based on different metrics (i.e. total ca-

pacity reserved, or on maximum geographical distance from caching point)

which leads to a different offer to the user.

Fig. 5.1 shows the detailed App Store architectural model. The App

Store is based on a SDN framework, in which a generic network control and

management plane (i.e. a SDN network controller) can control the network

substrate in a vendor-agnostic fashion. The App Store also exposes an

Intent-based NBI, which offers the possibility to state what is the required

by the application instead of how it should be implemented. The intent

API is used by the users to request an application and to interact with the

SDN controller. The user intent is composed of an application request with

several constraints describing the application requirements. The grammar

defining the intent is defined as {application[contraints]}. For instance, the

intent grammar for a SD-WAN intent can be broadly specified as defined

as {SD-WAN[endpoints=[DataCenter1, DataCenter2], bw=1 Gbps]}, where

endpoints[], bw represent the list of network endpoints, and the capacity,

respectively.

After the intent submission, a specific module named Intent Transla-

tion and Negotiation is responsible for managing the intent lifecycle in the

SDN controller. It provides the abstraction between an application request

Chapter 5. An SDN App Store for Network Connectivity Services 66

and the implementation of all the application providers. This module main-

tains a list with all the providers that implement a particular application.

On receiving an application request, the Intent Translation and Negotiation

module validates the request, and queries the provider list to find all the pos-

sible providers that offer the application. Finally, this module generates the

requests for all the providers implementing the application, which are made

by generating specific intents, defined as {Application}{Provider}Intents.

{Application}{Provider}Intents are high level instructions that require

a translation into network actions and commands for the SDN orchestrator,

which are computed inside intent compilers, called {Application}{Provider}Compilers.

These compilers implement the logic of computing resources for a specific ap-

plication based on an application request and its constraints, check whether

the request can be accepted, and they convert the application intent into a

set of configurations that can be installed in the network substrate.

An {Application}{Provider}Compiler is in charge of compiling only a

specific {Application}{Provider}Intent. For instance, the App Store can

have two providers for a SD-WAN application, defined as Provider1 and

Provider2. When the Intent Translation and Negotiation module receives a

SD-WAN request, it generates two intent requests, namely SDWANProvider1Intent

and SDWANProvider2Intent. They can be compiled only by the SDWAN-

Provider1Compiler and the SDWANProvider2Compiler, respectively.

The {Application}{Provider}Compilers can interact with several ser-

vices offered by a SDN controller. In particular, the recent SDN con-

trollers, such as ONOS [9] or OpenDayLight [10], provide several services

(i.e. APIs), which can be exploited by external software modules. Specif-

ically, the {Application}{Provider}Compilers exploit both the SDN con-

troller APIs, such as path computation, forwarding rule installation, event

notifications, etc., and other services that were specifically designed for

the App Store, namely the Network Intent Primitives and the Resource

Chapter 5. An SDN App Store for Network Connectivity Services 67

Manager. The first ones represent a set of intent compilers for basic con-

nectivity services, such as path provisioning, access control, optical provi-

sioning, etc., which can be developed directly from the hosting ISP. The

{Application}{Provider}Compilers can reuse these services without the need

for re-develop them, reducing overhead in developing new application providers.

The second service is the Resource Manager, which maintains network re-

source inventory and current allocations. The {Application}{Provider}Compilers

rely on this component in order to check if an application request can be

provisioned in the network based on its requirements.

5.3.1 Offer generation and negotiation

The App Store can generate multiple offers for an application request based

on the number of registered application providers. This phase is defined as

offer generation and negotiation and it is managed by the Intent Translation

and Negotiation module. Specifically, this phase works as follows:

1. The Intent Translation and Negotiation module generates the specific

intents for all {Application}{Provider}Compilers registered for a specific

application. Then, it submits these intents to the associated compilers.

2. The {Application}{Provider}Compilers generate an offer for the appli-

cation based on their own implementation and the available network re-

sources. To understand the available resources, the compiler queries the

Resource Manager and checks whether the resources may allow the appli-

cation and its constraints. In the case of the resources are not enough, the

compiler may propose an alternative solution based on a degradation of

the requirements. For instance, an application requires 1 Gbps of band-

width between two network endpoints. The compiler checks whether the

path between the endpoints allows the requested capacity. In the case

of a negative response, the compiler may calculate the amount of spare

Chapter 5. An SDN App Store for Network Connectivity Services 68

USER

DISMI Service
[Intent(Application,{Constraints})]

Figure 5.2: Software architecture for the ONOS controller.

capacity on the path and offer it as an alternative solution to the user.

3. The Intent Translation and Negotiation module collects all the offers from

the application compilers and starts the negotiation phase with the user.

It provides all offers to the user, who can select one of the provided offers

or withdraw the application request.

4. If a user selects an offer, the Intent Translation and Negotiation module

receives the selected offer, converts it to the associated {Application}{Provider}Intent,

and forwards this to the {Application}{Provider}Compiler.

5. Finally, the compiler translates the intent to the configuration operations

and allocates the network resources in the Resource Manager.

Chapter 5. An SDN App Store for Network Connectivity Services 69

5.4 Software Architecture

As indicated in the reference architecture, the AppStore is built on top of an

SDN controller. Several requirements imposed by the reference architecture

are key in selecting the underlying SDN orchestrator, namely: (i) a RESTful

API to receive application intents from the users; (ii) a module that can

negotiate the requests for applications with the users; (iii) the translation of

the intents into configuration operations, i.e. the intent compilers, and (iv)

a network resource manager, which keeps track of the available resources in

the network.

To this end, we rely on ONOS [9] as SDN controller for the implemen-

tation of the App Store prototype. This controller offers a modular archi-

tecture in which external software modules, i.e. OSGi [56] bundles, can be

added and removed at runtime. ONOS provides a comprehensive intent

framework [42], which offers the possibility to handle all the intent life cycle

from the submission to the installation of the corresponding configurations

in a network. In addition, new intent compilers can be inserted at runtime

as part of the software modules. The NBI is based on a modified version of

DISMI [59], an intent-based interface for requesting application-centric con-

nectivity services. The overall software architecture is depicted in Fig. 5.2.

In this section, we discuss App Store implementation over ONOS. We

also describe the modifications to the DISMI architecture, and demonstrate

how the ONOS Intent Framework and Core Services are employed in the

architecture.

5.4.1 Extending the DISMI intent interface

The DISMI intent interface provides an abstraction layer where application-

centric connectivity service requests are translated into simpler intents un-

derstandable by a specific SDN controller implementation. The DISMI in-

tents are composed of an action and several constraints. The action spec-

Chapter 5. An SDN App Store for Network Connectivity Services 70

ifies the type of connectivity between endpoints (e.g., connection between

two endpoints, multicast, multipoint, etc.) and the constraints represent its

requirements, such as minimum bandwidth, maximum latency, minimum

availability, etc.

DISMI provides a REST API based on Swagger [5] to receive application

requests in the JSON format [66]. A Graphical User Interface (GUI) is

provided in order to simplify the intent generation and management by the

users.

The intents are processed by several action Validators and Decomposers.

Every action is associated to a particular Validator and Decomposer, e.g.,

the Mesh action relies on the MeshActionValidator and MeshActionDecom-

poser classes. The Validators are in charge of checking the DISMI intent

and reject it in the case of composition errors of the actions and the con-

straints. For instance, the Mesh action requires at least two connection-

Points. In the case of the mesh intent does not provide this information, it

is rejected by DISMI. On the other side, the Decomposers are responsible for

the generation of low-level intents from other high-level intents. They are in

charge of converting the actions into intents understandable by the ONOS

implementation. For instance, a user requires a mesh connection between

several data centers distributed in different geographical locations. By ex-

ploiting the DISMI interface, the user can require a unique high level intent

in the form of Mesh(connectionPoint1, connectionPoint2, · · ·)[bw=1 Gbps],

in which the connectionPoints represent the data center endpoints (i.e. the

IP address) and bw the bandwidth required. Then, this intent is validate

and decomposed into simpler ones understandable by ONOS and, finally,

they are submitted to the ONOS Intent Framework for the compilation and

installation. For instance, a mesh connection is decomposed into a list of

ONOS PointToPoint intents [67].

New Validators and Decomposers can be added in DISMI by exploit-

Chapter 5. An SDN App Store for Network Connectivity Services 71

ing its modular architecture. We use this feature to implement the Intent

Translation and Negotiation module of the App Store. The DISMI software

architecture has been modified and extended as shown in Fig. 5.2. In order

to support new App Store applications and negotiation of the offers from

the providers, the action Validators and Decomposers have been modified in

order to become application Validators and Decomposers. We implemented

the SDWANValidator and SDWANDecomposer which are responsible to

manage the SD-WAN application intents in DISMI.

Unlike the original DISMI model, an application can be offered by several

providers. The application Decomposer maintains the list of the providers to

contact in the negotiation phase and the type of {Intent}{Provider}Intents

that should be submitted. In this implementation, the SDWANDecomposer

maintains a list of two providers to contact, Provider1 and Provider2. On

receiving a request, it generates two intents, SDWANProvider1Intent and

SDWANProvider2Intent, with the requested application constraints. These

intents are submitted to the ONOS Intent Framework and DISMI waits for

the generation of the offer from the two providers.

5.4.2 ONOS Intent Framework and Services

The ONOS Intent Framework manages the intent submission, compilation

and the installation of the configurations on the network devices. In gen-

eral, it is composed of several intent compilers, each one compiling a specific

type of intent. ONOS provides a set of pre-defined intents representing a

network connectivity action, such as the HostToHostIntent [68]. This intent

represents a point-to-point connection between two hosts in the network.

The compilation of this intent is associated only to the HostToHostIntent-

Compiler for the translation to configurations.

The intent compilers interact with the other ONOS Core Services in

order to obtain the information required for translating an intent into req-

Chapter 5. An SDN App Store for Network Connectivity Services 72

uisite configurations. Specifically, ONOS provides the Path Service [69] and

the Resource Service [70], which represent the ONOS path computation

element and the implementation of the App Store Resource Manager, re-

spectively. The ONOS Resource Service provides a database to keep track

of all available network resources (e.g., links, the ports of a device, etc.),

their characteristics (e.g., latency, capacity, etc.) and consumptions. The

intent compilers may exploit these service to retrieve information about the

shortest path between two network endpoints and the status of the network

resources to check whether an intent constraint can be satisfied. For exam-

ple, consider an intent with a bandwidth constraint of 100 Mbps between

two hosts in a network. The associated intent compiler queries the Path-

Service and receives the shortest path connecting the two hosts. Then, the

compiler checks if the path can support the requested capacity. Finally, in

the case of a positive response, it allocates the requested capacity in the

Resource Service.

The Resource Service must be initialized with the initial network configu-

ration to identify the complete set of resources available, which is performed

by exploiting the Network Config subsystem. This sybsystem provides an

interface to load the network configuration via a REST API. For example,

it can be used to configure the capacity of a device port or to annotate on

a link a particular information, such as the latency, the availability or if it

supports the traffic encryption.

By exploiting the current architecture of the ONOS Intent Framework,

the application compilers of the App Store can be developed as ONOS in-

tent compilers. We developed two application compilers for the SD-WAN use

case, representing the service implementation of two providers, i.e. the SD-

WANProvider1Compiler and the SDWANProvider2Compiler. They exploit

several services and Network Intent Primitives from the ONOS controller.

Chapter 5. An SDN App Store for Network Connectivity Services 73

5.4.3 Implementation of the Network Intent Primitives

In ONOS, the intent compilation may rely on more than one compiler in

order to reduce the development complexity. ONOS provides many basic

compilers for simplifying the generation of configurations from the intents.

For example, the LinkCollectionIntentCompiler [71] can be used to trans-

late a set of links into a single adjacency, and every compiler can use it to

avoid the re-implementation of the same feature. We exploited this prop-

erty in order to create a set of Network Intent Primitives for the App Store

implementation. They are defined as follow:

AciIntentCompiler. This intent compiler can be used to request

application-centric connectivity in the network. It translates and analyzes

the Application-Centric Intents (ACiIntents). This type of intent repre-

sents the request for a connection between two endpoints in a network with

a specific set of application-centric constraints, such as bandwidth, latency,

availability, etc. This compiler searches for the shortest paths between the

network endpoints and uses the ONOS Resource Service to evaluate if all

intent constraints are satisfied on this path. In case no path can satisfy all

the constraints, the compiler calculates a set of alternative solutions, i.e. the

constraints that the possible shortest paths are able to satisfy.

AccessControlIntentCompiler. This intent compiler offers the gen-

eration of rules for network access control. We create a new constraint,

defined as DenyAccessContraint. This constraint can be exploited by the

user to create a blocking policy for a particular IP address or a subnet. The

compiler generates a set of forwarding rules that drop the traffic.

EncryptionIntentCompiler. It checks if two network endpoints can

be connected by an encrypted path and generates the forwarding rules ac-

cordingly. It exploits the Resource Service to query the information about

whether a link supports an encryption scheme. We provide a simplified

implementation, in which we annotate on the links only a value (i.e. en-

Chapter 5. An SDN App Store for Network Connectivity Services 74

cryption) to state whether an encryption scheme is supported. This imple-

mentation can be extend also to support optical encryption schemes and

generate the commands to install an optical encrypted path.

5.4.4 The negotiation phase

The implementation of the negotiation phase in ONOS works as follows:

1. The user requests a SDWAN application between two network endpoints

with several constraints (e.g. bw=1 Gbps).

2. DISMI validates and decomposes the request into two intents, defined as

SDWANProvider1 and SDWANProvider2, since the SDWANDecomposer

has two registered providers. Then, it submits the intents to the ONOS

Intent Framework.

3. The SDWANProvider1 and SDWANProvider2 compilers calculate the

initial offer by querying the Path Service and the ONOS Resource Man-

ager to check whether the application can be installed while respecting

the constraints. After that, they generate a notification for the initial in-

tents, defined as NEGOTIATION REQUIRED, and generate a new set

of {Application}{Provider}Intents that are saved in the ONOS Intent

Framework database.

4. DISMI receives these notifications and gets the offers from the providers

by querying the API of the ONOS Intent Framework. It sends the intents

to the GUI, where the user can select one offer and submit it to DISMI,

which forwards the request directly to the ONOS Intent Framework.

5. Finally, the selected application compiler translates the intent into con-

figurations and allocates the network resources in the Resource Manager.

Chapter 5. An SDN App Store for Network Connectivity Services 75

5.5 Performance Evaluation

The preliminary performance evaluation of the App Store has been per-

formed by considering the processing time required for: (i) the generation of

an application offer from the providers, (ii) the intent compilation, and (iii)

the overall installation of an application. These times are evaluated by vary-

ing the number of application requests already provisioned in the network.

In this way, we can evaluate the scalability of the App Store implementation.

Figure 5.3: Experiment setup for the evaluation.

5.5.1 Test methodology

Experimental setup. For the experiments, we use an emulated network

environment based on Mininet [34]. The test setup is depicted in Fig. 5.3.

The network is controlled by a modified version of the ONOS controller to

host the App Store. We run the App Store and Mininet on a commodity

PC equipped with a Intel i7-5600U quad-core CPU running at 2.60GHz and

16GB of DDR3 memory working at 1600Mhz.

Chapter 5. An SDN App Store for Network Connectivity Services 76

Methodology. The App Store implementation adds several new mod-

ules to the ONOS controller, which require an evaluation of their processing

time. In particular, we evaluate the processing time for the DISMI frame-

work to generate the requests for the providers, the generation of an offer

from one of the SD-WAN compilers, the compilation time, and the overall

application installation time.

Since the App Store is part of the ONOS controller, we can easily retrieve

the processing time by exploiting the logging system. We generate the log

messages at the beginning and the end of the methods inside the modules

that we want to test. Then, we evaluate the time delta between the first and

the second log message. The results are based on an average of ten requests.

The experiments are executed by submitting SD-WAN application re-

quests without time expiration. We start from an empty state of the App

Store, in which there are no application requests provisioned. Then, we in-

crease the number of provisioned applications in the App Store by steps of

500 up to 2000.

5.5.2 Results and discussion

The processing time required to decompose the application requests into the

providers specific intents is shown in Fig. 5.4. These tests consider the time

required from the receipt of an user request to the intent generation for the

application providers. The results show a slight increase in the processing

time with respect to the number of provisioned application by the controller.

This is mainly caused by the overall controller load. Indeed, the DISMI

application decomposition mainly depends on the number of provider that

should be contacted. In these tests, the number of application providers is

fixed to two.

After the application decomposition, DISMI requests an offer from the

registered application providers. Fig. 5.5 shows the average time required

Chapter 5. An SDN App Store for Network Connectivity Services 77

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000

Ti
m

e
[m

s]

Provisioned applications

DISMI app decomposition

Figure 5.4: DISMI processing time for decomposing the SD-WAN application re-

quest.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

Ti
m

e
[m

s]

Provisioned applications

Offer generation

Figure 5.5: Processing time for generating an offer from the SD-WAN compilers.

by the SDWANProvider1Compiler to generate the initial application offer.

We do not provide the SDWANProvider2Compiler results since they show

overlapping values. Indeed, both the SDWANProvider1Compiler and the

SDWANProvider2Compiler have the same compilation logic at the time of

writing. The processing time for the offer generation by the SD-WAN com-

pilers slowly increases between 0 and 1500 provisioned applications. After

Chapter 5. An SDN App Store for Network Connectivity Services 78

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000

Ti
m

e
[m

s]

Provisioned applications

Compilation

Figure 5.6: Processing time required by the compiler to generate the forwarding

rules.

1500, the processing time shows a huge increase (337%). This happens be-

cause the offer generation depends on the lookup of the resource manager.

Increasing the number of provisioned applications leads to a higher number

of entries registered in the resource manager database. Thus, the lookup

time required by the compilers increases with respect to the number of provi-

sioned applications. In addition, a higher number of previsioned applications

leads to more forwarding rules installed into the network, thus increasing the

overall SDN controller load for maintaining the traffic statistics.

The compilation time required by the SDWANProvider1Compiler is pre-

sented in 5.6. It represents the processing time required for the conversion

of an application intent into configurations. For these tests, we manually

select the Provider1 offer on the GUI, ensuring that the compilation is al-

ways performed by the SDWANProvider1Compiler. Different from the offer

generation test, the compilation phase includes the time required by the

compiler to lookup and also write the network resources in the resource

manager. As expected, the compilation time constantly increases with re-

spect to the number of provisioned applications due to an increased overhead

Chapter 5. An SDN App Store for Network Connectivity Services 79

 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 500 1000 1500 2000

Ti
m

e
[m

s]

Provisioned applications

App installation

Figure 5.7: Overall time required to install an application in the network.

for operations with the resource manager. Compilation time also requires

interactions with other systems outside of ONOS, and is larger with respect

to the sum of decomposition and offer generation times.

Fig. 5.7 shows the overall installation time from the receipt of an ap-

plication request to the submission of the forwarding rules in the network.

Mainly, the installation phase depends on the decomposition and compila-

tion times, while processing times have very little variation at across the

load spectrum analyzed.

Chapter 6

Conclusions

This thesis studied three types of interaction between business applications,

such as trading platforms for banks, e-commerce, video streaming services,

etc., applications for SDN controllers, and SDN networks. In particular,

the following interactions are analyzed (i) interactions between SDN con-

troller applications and networks, (ii) interactions between business appli-

cations and SDN networks, and interactions between business applications,

SDN controller applications and networks.

In the first interaction, this work showed how an application for SDN

controllers can interact with a SDN network in order to overcome the limited

memory capacity of SDN devices. We presented a novel memory swapping

mechanism for SDN controllers that aims at improving the performance and

the reliability of the network. The mechanism, which is part of a SDN con-

troller application, ensures that the flow entries needed to smoothly manage

the network, i.e., the most frequently matched and the most recent ones, are

stored in the fast TCAM memory of the switches even when the space on

such memory reach its limit. Performance evaluations showed an increase

in the throughput of network devices in the case of memory overflows. This

interaction demonstrates that a SDN application is able to intercept poten-

tial network issues, i.e. an alarm from a network device, and provide the

Chapter 6. Conclusions 81

right decisions to resolve it.

In the second interaction, this thesis analyzed how business applications

and SDN controllers can cooperate together to reduce the connectivity ser-

vice blocking probability in an application-centric network. The application-

centric paradigm proposes the provisioning of connectivity services by re-

specting all the business application requirements, such as bandwidth, la-

tency, availability, etc. The application communicates its requirements to a

SDN controller, which blocks the service request in the case of the network

cannot provide all of them. We defined an application-centric negotiation

scheme, which offers the possibility to the SDN controller to provide a set

of alternative solutions, in the case of network resource scarcity, and the

possibility for applications to provide a feedback for the provisioning. We

demonstrate a lower blocking probability of service requests with limited

degradation of the application requirements.

The last interaction shows how business applications and SDN controller

applications can cooperate together to enable a multi-service selection model

on a SDN network. We proposed an SDN App Store, which provides a

collection of SDN applications, developed by different providers, for a specific

connectivity service (e.g. SD-WAN, VPN, etc.). The business applications

or the users can request a connectivity service and receive several offers from

the SDN controller applications implementing the service.

Bibliography

[1] (2015) Deep Shift 21 Ways Software Will Transform

Global Society. Last access 14-12-2017. [Online]. Avail-

able: http://www3.weforum.org/docs/WEF GAC15 Deep Shift Soft-

ware Transform Society.pdf

[2] A. Marsico, R. Doriguzzi-Corin, and D. Siracusa, “Overcoming the

Memory Limits of Network Devices in SDN-enabled Data Centers,”

to appear in IEEE/IFIP IM 2017.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation

in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,

no. 2, pp. 69–74, Mar. 2008.

[4] (2017) Open Networking Foundation. [Online]. Available:

http://www.opennetworking.org

[5] Swagger RESTful API framework. Last access 14-12-2017. [Online].

Available: http://swagger.io/

[6] (2015) Intent As The Common Interface to Net-

work Resources. [Online]. Available: http://www.ietf.org/mail-

archive/web/i2nsf/current/pdfEhAfL7kT9F.pdf

BIBLIOGRAPHY 83

[7] J. Schönwälder, M. Björklund, and P. Shafer, “Network con-

figuration management using netconf and yang,” Comm. Mag.,

vol. 48, no. 9, pp. 166–173, Sep. 2010. [Online]. Available:

http://dx.doi.org/10.1109/MCOM.2010.5560601

[8] RFC 6020. Last access 24-01-2018. [Online]. Available:

https://tools.ietf.org/html/rfc6020

[9] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,

“ONOS: Towards an Open, Distributed SDN OS,” in Proceedings of

the Third Workshop on Hot Topics in Software Defined Networking,

Chicago, Illinois, USA, 22 Aug. 2014.

[10] (2017) The OpenDayLight Project. [Online]. Available:

http://www.opendaylight.org/

[11] “MMS GitHub repo.” [Online]. Available: https://github.com/fp7-

netide/Tools.git

[12] “OpenFlow Switch Specification 1.5.1.” [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

[13] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey,” IEEE Jour-

nal of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, March 2006.

[14] R. Doriguzzi-Corin, D. Siracusa, E. Salvadori, and A. Schwabe, “Em-

powering Network Operating Systems with Memory Management Tech-

niques,” in IEEE/IFIP Network Operations and Management Sympo-

sium, Istanbul, Turkey, 25-29 Apr. 2016.

[15] Ryu SDN Framework. [Online]. Available: http://osrg.github.io/ryu/

BIBLIOGRAPHY 84

[16] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “CacheFlow:

Dependency-Aware Rule-Caching for Software-Defined Networks,” in

Symposium on SDN Research, Santa Clara, CA, USA, 14-15 Mar. 2016.

[17] Y. Nakagawa, K. Hyoudou, C. Lee, S. Kobayashi, O. Shiraki, and

T. Shimizu, “DomainFlow: Practical Flow Management Method Us-

ing Multiple Flow Tables in Commodity Switches,” in Proceedings of

the Ninth ACM Conference on Emerging Networking Experiments and

Technologies, Santa Barbara, California, USA, 9-12 Dec. 2013.

[18] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,

and S. Banerjee, “DevoFlow: Scaling Flow Management for High-

performance Networks,” in Proceedings of the ACM SIGCOMM 2011

Conference, Toronto, Ontario, Canada, 15-19 Aug. 2011.

[19] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective

Switch Memory Management in OpenFlow Networks,” in Proceedings

of the 8th ACM International Conference on Distributed Event-Based

Systems, Mumbai, India, 26-29 May 2014.

[20] S. Banerjee and K. Kannan, “Tag-In-Tag: Efficient Flow Table Manage-

ment in SDN Switches,” in 10th International Conference on Network

and Service Management (CNSM) and Workshop, Rio de Janeiro, BR,

17-21 Nov. 2014.

[21] W. Braun and M. Menth, “Wildcard Compression of Inter-Domain

Routing Tables for OpenFlow-Based Software-Defined Networking,” in

2014 Third European Workshop on Software Defined Networks, 2014.

[22] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-based

networking with DIFANE,” ACM SIGCOMM Computer Communica-

tion Review, vol. 40, no. 4, p. 351, 2010.

BIBLIOGRAPHY 85

[23] M. Rifai, N. Huin, C. Caillouet, F. Giroire, D. Lopez-Pacheco,

J. Moulierac, and G. Urvoy-Keller, “Too Many SDN Rules? Compress

Them with MINNIE,” in 2015 IEEE Global Communications Confer-

ence (GLOBECOM), San Diego, CA, USA, 6-10 Dec. 2015.

[24] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti, “Optimizing

rules placement in openflow networks: Trading routing for better effi-

ciency,” in Proceedings of the Third Workshop on Hot Topics in Soft-

ware Defined Networking, Chicago, Illinois, USA, Aug. 2014.

[25] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in

software-defined networks,” in IEEE INFOCOM 2013 - IEEE Confer-

ence on Computer Communications, Torino, Italy, 14-19 Apr. 2013.

[26] J. M. Lucas, M. S. Saccucci, R. V. Baxley, Jr., W. H. Woodall, H. D.

Maragh, F. W. Faltin, G. J. Hahn, W. T. Tucker, J. S. Hunter, J. F.

MacGregor, and T. J. Harris, “Exponentially weighted moving aver-

age control schemes: Properties and enhancements,” Technometrics,

vol. 32, no. 1, pp. 1–29, Jan. 1990.

[27] A. Marsico, R. Doriguzzi-Corin, M. Gerola, D. Siracusa, and

A. Schwabe, “A Non-disruptive Automated Approach to Update SDN

Applications at Runtime,” in IEEE/IFIP Network Operations and

Management Symposium, Istanbul, Turkey, 25-29 Apr. 2016.

[28] “ONOS Interface FlowRuleService.” [Online]. Available: http://api.

onosproject.org/1.6.0/org/onosproject/net/flow/FlowRuleService.html

[29] “ONOS Interface OpenFlowController.” [Online]. Avail-

able: https://github.com/opennetworkinglab/onos/blob/onos-

1.6/protocols/openflow/api/src/main/java/org/onosproject/openflow/

controller/OpenFlowController.java

BIBLIOGRAPHY 86

[30] “ONOS Interface StorageService.” [Online]. Available: http://api.

onosproject.org/1.6.0/org/onosproject/store/service/StorageService.html

[31] “ONOS Interface PacketService.” [Online]. Available: http://api.

onosproject.org/1.6.0/org/onosproject/net/packet/PacketService.html

[32] “ONOS Interface EventuallyConsistentMap.” [Online]. Available:

http://api.onosproject.org/1.6.0/org/onosproject/store/service/Eventually

ConsistentMap.html

[33] “NEC IP8800 OpenFlow Networking.” [Online]. Available:

https://support.necam.com/SDN/ip8800/

[34] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown, “Re-

producible Network Experiments Using Container-based Emulation,”

in Proceedings of the 8th International Conference on Emerging Net-

working Experiments and Technologies, Nice, France, 10-13 Dec. 2012.

[35] The Open vSwitch Project. [Online]. Available:

http://openvswitch.org/

[36] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre, “In-

ternet traffic modeling by means of Hidden Markov Models,” Computer

Networks, vol. 52, no. 14, pp. 2645 – 2662, 2008.

[37] “HP OpenFlow 1.3 Administrator Guide,” Hewlett-Packard, p. 15, Jun.

2015, rev. 2.

[38] “ONOS ReactiveForwarding.” [Online]. Available:

https://github.com/opennetworkinglab/onos/blob/onos-

1.6/apps/fwd/src/

main/java/org/onosproject/fwd/ReactiveForwarding.java

[39] H. Perros, Networking Services: QoS, Signaling, Processes. CreateS-

pace Independent Publishing Platform, 2014.

BIBLIOGRAPHY 87

[40] V. Lopez, D. Konidis, D. Siracusa, C. Rozic, I. Tomkos, and J. P.

Fernandez-Palacios, “On the benefits of multilayer optimization and

application awareness,” Journal of Lightwave Technology, vol. 35, no. 6,

pp. 1274–1279, March 2017.

[41] M. Savi, F. Pederzolli, and D. Siracusa, “An Application-Aware Multi-

Layer Service Provisioning Algorithm based on Auxiliary Graphs,” Pro-

ceedings of the OFC 2017 Conference, 2017, to appear.

[42] ONOS Intent Framework. Last access 24-01-2018. [Online]. Available:

https://wiki.onosproject.org/display/ONOS/Intent+Framework

[43] ACINO Multi-layer Network Orchestrator. [Online]. Available:

https://github.com/ACINO-H2020/network-orchestrator

[44] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “SDN-

Based Application-Aware Networking on the Example of YouTube

Video Streaming,” in 2013 Second European Workshop on Software

Defined Networks, Berlin, DE, 10-11 Oct. 2013.

[45] Y. Yiakoumis, S. Katti, T. Huang, N. McKeown, K. Yap, and R. Johari,

“Putting home users in charge of their network,” in Proceedings of the

2012 ACM Conference on Ubiquitous Computing, Pittsburgh, PA, USA,

5-8 Sep. 2012.

[46] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Kr-

ishnamurthi, “Participatory networking: An api for applica-

tion control of sdns,” SIGCOMM Comput. Commun. Rev.,

vol. 43, no. 4, pp. 327–338, Aug. 2013. [Online]. Available:

http://doi.acm.org/10.1145/2534169.2486003

[47] X. Wang and H. Schulzrinne, “Integrated resource negotiation, pricing,

and QoS adaptation framework for multimedia applications,” IEEE

BIBLIOGRAPHY 88

Journal on Selected Areas in Communications, vol. 18, no. 12, pp. 2514–

2529, 2000.

[48] (2017) Amazon EC2 Spot Instances. [Online]. Available:

https://aws.amazon.com/ec2/spot/

[49] (2017) Google Preemptible Virtual Machines. [Online]. Available:

https://cloud.google.com/preemptible-vms/

[50] S. Venugopal, X. Chu, and R. Buyya, “A negotiation mechanism for

advance resource reservations using the alternate offers protocol,” En-

schede, NL, 2-4 Jun. 2008.

[51] A. Rubinstein, “Perfect equilibrium in a bargaining model,” Economet-

rica, vol. 50, no. 1, pp. 97–109, 1982.

[52] S. S. Savas, M. F. Habib, M. Tornatore, and B. Mukherjee, “Exploit-

ing degraded-service tolerance to improve performance of telecom net-

works,” in OFC 2014, San Francisco, CA, USA, 9-14 Mar. 2014, pp.

1–3.

[53] Z. Zhong, J. Li, N. Hua, G. B. Figueiredo, Y. Li, X. Zheng, and

B. Mukherjee, “On qos-assured degraded provisioning in service-

differentiated multi-layer elastic optical networks,” in 2016 IEEE Global

Communications Conference (GLOBECOM), 4-8 Dec. 2016, pp. 1–5.

[54] M. Pham and D. B. Hoang, “Sdn applications - the intent-based north-

bound interface realisation for extended applications,” in 2016 IEEE

NetSoft Conference and Workshops (NetSoft), June 2016, pp. 372–377.

[55] H. Zhu, H. Zang, K. Zhu, and B. Mukherjee, “Dynamic traffic groom-

ing in WDM mesh networks using a novel graph model,” in Global

Telecommunications Conference (IEEE GLOBECOM), Tapei, Taiwan,

17-21 Nov. 2002.

BIBLIOGRAPHY 89

[56] “OSGi Alliance.” [Online]. Available: https://www.osgi.org/

[57] P. Pavon-Marino and J.-L. Izquierdo-Zaragoza, “Net2plan: An open

source network planning tool for bridging the gap between academia

and industry,” IEEE Network, vol. 29, no. 5, pp. 90–96, September-

October 2015.

[58] F. Rambach, B. Konrad, L. Dembeck, U. Gebhard, M. Gunkel,

M. Quagliotti, L. Serra, and V. Lopez, “A multilayer cost model for

metro/core networks,” IEEE/OSA Journal of Optical Communications

and Networking, vol. 5, no. 3, pp. 210–225, March 2013.

[59] P. Sköldström, S. Junique, A. Ghafoor, A. Marsico, and D. Siracusa,

“Dismi - an intent interface for application-centric transport network

services,” in 19th International Conference on Transparent Optical Net-

works (ICTON), Girona, Spain, 2-6 Jul. 2017.

[60] P. Pawluk, B. Simmons, M. Smit, M. Litoiu, and S. Mankovski, “In-

troducing STRATOS: A Cloud Broker Service,” in IEEE Fifth Inter-

national Conference on Cloud Computing. Honolulu, HI, USA: IEEE,

24-29 Jun. 2012.

[61] S. Yangui, I. Marshall, J. Laisne, and S. Tata, “CompatibleOne: The

Open Source Cloud Broker,” Journal of Grid Computing, vol. 12, pp.

93–109, 2014.

[62] S. Sundareswaran, A. Squicciarini, and D. Lin, “A brokerage-based

approach for cloud service selection,” in 2012 IEEE 5th International

Conference on Cloud Computing, Honolulu, HI, USA, 24-29 Jun. 2012.

[63] Why you should consider networking as a ser-

vice. Last access 14-12-2017. [Online]. Avail-

able: https://www.cisco.com/c/en/us/solutions/enterprise-

networks/network-as-service-naas.html

BIBLIOGRAPHY 90

[64] D. Di Sorte and G. Reali, “Pricing and brokering services over intercon-

nected IP networks,” Journal of Network and Computer Applications,

vol. 28, no. 4, pp. 249–283, nov 2005.

[65] J. R. Lane and A. Nakao, “Path brokering for end-host path selection,”

in Proceedings of the ACM CoNEXT Conference, Madrid, Spain, 9-

12 Dec. 2008.

[66] JavaScript Object Notation. Last access 14-12-2017. [Online]. Available:

http://www.json.org/

[67] ONOS PointToPoint Intent. Last access 14-12-2017. [Online]. Available:

http://api.onosproject.org/1.11.0/org/onosproject/net/intent/PointToPointIntent.html

[68] ONOS PointToPoint Intent. Last access 14-12-2017. [Online]. Available:

http://api.onosproject.org/1.11.0/org/onosproject/net/intent/HostToHostIntent.html

[69] ONOS Interface PathService. Last ac-

cess 14-12-2017. [Online]. Available:

http://api.onosproject.org/1.11.0/org/onosproject/net/topology/PathService.html

[70] ONOS ResourceService. Last access 14-12-2017. [Online]. Available:

http://api.onosproject.org/1.11.0/org/onosproject/net/resource/ResourceService.html

[71] ONOS LinkCollection Intent. Last ac-

cess 14-12-2017. [Online]. Available:

http://api.onosproject.org/1.11.0/org/onosproject/net/intent/LinkCollectionIntent.html

