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Abstract	
	
	

The	research	presented	in	this	thesis	addresses	the	neural	mechanisms	of	auditory	

motion	 processing	 and	 the	 impact	 of	 early	 visual	 deprivation	 on	motion-responsive	 brain	

regions,	 by	 using	 functional	magnetic	 resonance	 imaging.	 Visual	motion,	 and	 in	 particular	

direction	selectivity,	is	one	of	the	most	investigated	aspects	of	mammalian	brain	function.	In	

comparison,	 little	 is	known	about	how	the	brain	processes	moving	sounds.	More	precisely,	

we	have	a	poor	understanding	of	how	the	human	brain	codes	for	the	direction	of	auditory	

motion	and	how	this	process	differs	from	auditory	sound-source	localization.	

In	 the	 first	 study,	we	 characterized	 the	neural	 representations	of	 auditory	motion	

within	the	Planum	Temporale	(PT),	and	how	motion	direction	and	sound	source	location	are	

represented	 within	 this	 auditory	 motion	 responsive	 region.	 We	 further	 explore	 if	 the	

distribution	of	orientation	 responsive	neurons	 (topographic	 representations)	within	 the	PT	

shares	 similar	 organizational	 features	 to	 what	 is	 observed	 within	 the	 visual	 motion	 area	

MT/V5.	 The	 spatial	 representations	 would,	 therefore,	 be	 more	 systematic	 for	 axis	 of	

motion/space,	 rather	 than	 for	 within-axis	 direction/location.	 Despite	 the	 shared	

representations	 between	 auditory	 spatial	 conditions,	we	 show	 that	motion	 directions	 and	

sound	source	locations	generate	highly	distinct	patterns	of	activity.	

The	 second	 study	 focused	 on	 the	 impact	 of	 early	 visual	 deprivation	 on	 auditory	

motion	processing.	Studying	visual	deprivation-induced	plasticity	sheds	light	on	how	sensory	

experience	 alters	 the	 functional	 organization	 of	 motion	 processing	 areas,	 and	 exploits	

intrinsic	 computational	 bias	 implemented	 in	 cortical	 regions.	 In	 addition	 to	 enhanced	

auditory	motion	responses	within	the	hMT+/V5,	we	demonstrate	that	this	region	maintains	

direction	selectivity	tuning,	but	enhances	its	modality	preference	to	auditory	input	in	case	of	

early	 blindness.	 Crucially,	 the	 enhanced	 computational	 role	 of	 hMT+/V5	 is	 followed	 by	 a	

reduced	 role	of	PT	 for	processing	both	motion	direction	and	sound	source	 location.	These	

results	 suggest	 that	 early	 blindness	 triggers	 interplay	 between	 visual	 and	 auditory	motion	

areas,	 and	 their	 computational	 roles	 could	 be	 re-distributed	 for	 effective	 processing	 of	

auditory	spatial	tasks.	

Overall,	our	findings	suggest	(1)	auditory	motion-specific	processing	in	the	typically	

developed	 auditory	 cortex,	 and	 (2)	 interplay	 between	 cross-	 and	 intra-modal	 plasticity	 to	

compute	auditory	motion	and	space	in	early	blind	individuals.	

Keywords:	Auditory	motion,	PT,	crossmodal	plasticity,	hMT+,	fMRI.
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Overview	

	

	

The	ability	to	finely	compute	auditory	motion	direction	and	localize	sound	sources	is	

a	critical,	but	under-investigated,	cognitive	process	that	most	of	the	animal	kingdom	uses	to	

efficiently	 interact	 with	 their	 dynamic	 environments.	 While	 the	 brain	 mechanisms	

underlying	 the	 processing	 of	 visual	 location	 and	 visual	motion	 have	 received	 considerable	

attention,	much	less	is	known	about	how	the	brain	implements	spatial	hearing.	

The	present	thesis	aims	at	 investigating	the	neural	mechanisms	of	auditory	motion	

and	 localization	 in	 sighted	 and	 blind	 individuals.	 In	 chapter	 2,	 we	 investigate	 the	 neural	

mechanisms	 underlying	 the	 processing	 of	 auditory	 directions	 and	 how	 this	 process	 differs	

from	sound-source	location.	Chapter	3	focuses	on	how	the	lack	of	visual	experience	affects	

the	 functional	 organization	 of	 the	 brain	 regions	 typically	 involved	 in	 the	 processing	 of	

auditory	and	visual	motion.	Chapter	4	reviews	the	most	important	results	and	conclusions	of	

each	 empirical	 work	 and	 links	 them	 with	 the	 general	 framework	 on	 the	 cortical	

representation	 of	 auditory	 motion	 and	 crossmodal	 plasticity.	 The	 following	 chapter	 will	

provide	a	review	of	the	literature	that	inspired	the	empirical	work	conducted	throughout	the	

thesis.	 First,	 our	 review	will	 focus	 on	 auditory	 spatial	 processing	 in	 the	 auditory	 pathway,	

and	 then	will	 illustrate	what	we	 currently	 know	 about	 visual	motion	 processing.	 The	 final	

part	of	 the	 introduction	will	 center	on	how	brain	 reorganizes	 itself	 to	adapt	 to	 the	 lack	of	

vision.		 	
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Chapter	1	
	
General	Introduction  
 
 
	
	
	
	



	

1.	GENERAL	INTRODUCTION		

1.1.	SOUND	SOURCE	LOCALIZATION		

The	 locations	 in	 space	 of	 somatosensory	 stimuli	 are	 mapped	 onto	 the	 sensory	

surfaces,	 i.e.	 retina	 and	 skin,	 before	 reaching	 a	 topographically	 organized	primary	 sensory	

cortex.	For	instance,	the	location	of	a	visual	object	activates	specific	cells	 in	the	retina	that	

project	 to	 visual	 cortex	 and	maintain	 their	 spatial	 relationships	 all	 the	way	 to	 extrastriate	

cortex	and	even	beyond	(e.g.	parietal,	frontal)	(Sereno	&	Huang	2006;	Saygin	&	Sereno	2008;	

Harvey	et	al.,	2013;	Wandel	&	Winawer	2011;	see	review	Wandell	et	al.	2007).	This	means	

that	objects	that	are	close	to	each	other	maintain	their	spatial	relationship	essentially	intact	

as	they	proceed	to	higher	visual	levels	(retinotopic	organization).	The	somatosensory	system	

also	has	a	 topographic	 (somatotopic)	organization	such	 that	 the	 location	of	a	 tactile	event	

on	the	body	activate	selective	region	in	the	somatosensory	cortex	and	regions	close	to	each	

other	occupy	nearby	regions	of	the	cortex	(the	homunculus).	In	this	regard,	spatial	hearing	is	

a	 unique	 process	 in	 the	 auditory	 system.	 The	 auditory	 system,	 unlike	 visual	 or	

somatosensory,	does	not	have	a	direct	sensory	surface	containing	receptors	for	the	spatial	

position	of	sounds.	The	primary	auditory	cortex	 (Merzenich	et	al.,	1974;	Striem-Amit	et	al.	

2011;	Langers	et	al.	2014;	De	Martino	et	al.	2015)	 (and	beyond	Merzenich	et	al.,	1974;	De	

Martino	et	al.	 2013),	mirrors	 the	organization	of	 the	 cochlea	by	displaying	a	 tonotopic	 (or	

cochleotopic)	 organization,	 showing	 a	 topological	 organization	 dependent	 on	 the	

frequencies	 of	 the	 sounds.	 While	 frequency	 is	 being	 mapped	 onto	 the	 cochlear	 sensory	

surface,	the	auditory	space,	however,	relies	on	computations	between	binaural	and	spectral	

cues	 that	 arise	 at	 each	 external	 ear	 and	 between	 the	 ears	 (see	 for	 review	Middlebrooks	

2015;	Middlebrooks	 2002;	 Grothe	 et	 al.	 2010).	 Binaural	 cues	 are	 based	 on	 the	 interaural	

time	(ITD)	and	level	differences	(ILD),	processed	in	different	parts	of	the	auditory	pathway	to	

derive	the	sound	source	location	mainly	in	the	horizontal	plane	(Blauert	1983;	see	for	review	

Blauert	1997).	While	binaural	cues	rely	on	both	ears	for	detecting	and	computing	the	level	

and	the	time	difference	of	 the	sound	reaching	the	eardrum,	spectral	cues	are	represented	

monaurally.	The	pinna	(outer	ear),	head	and	torso	modulate	the	spectral	content	of	sounds	

depending	 on	 the	 direction	 of	 the	 source,	 such	 content	 is	 mainly	 essential	 for	 localizing	

sounds	in	the	elevation	and	differentiating	the	sound	sources	from	front	and	behind	(Blauert	

1997).	
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1.1.1.	Neural	mechanisms	for	spatial	processing	

Sound	waves	reaching	the	external	ears	alter	the	air	pressure	and	causes	vibration	in	

eardrum.	Vibrations	are	carried	into	the	cochlea,	the	hearing	organ	of	the	inner	ear.	Evoked	

vibrations	 transduced	 into	 action	 potentials	 in	 the	 cochlea	 and	 via	 auditory	 nerves,	 these	

neural	 signals	 are	 transmitted	 into	 the	 ventral	 and	 dorsal	 cochlear	 nuclei	 in	 auditory	

brainstem	 (Grothe	 et	 al.	 2010).	 Cochlear	 nuclei	 and	 superior	 olive	 structures	 in	 the	

brainstem	 contain	 neurons	 showing	 differential	 activity	 for	 spatial	 cues.	While	 neurons	 in	

medial	superior	olive	complex	(MSO)	and	lateral	superior	olive	complex	(LSO)	compute	ITD	

and	 ILD,	 respectively,	 dorsal	 cochlear	 nucleus	 (DCN)	 cells	 are	 sensitive	 for	 spectral	 cues	

(Goldberg	&	Brown	1969;	Yin	&	Chan	1990;	Boudreau	&	Tsuchitani	1968;	Young	et	al.	1992;	

Imig	et	al.	2000).	Early	processing	of	spatial	cues	is	followed	by	a	topographic	representation	

of	 location	 in	 the	 auditory	 pathway.	 Specifically,	 in	 barn	 owl	 nucleus	 laminaris,	 inferior	

colliculus	 (IC)	 and	 optic	 tectum	 show	 a	 topographic	 representation	 of	 acoustic	 space	

(Knudsen	&	Konishi	1978).	Further	studies	in	mammals	also	have	demonstrated	topographic	

organization	 in	 other	 subcortical	 nuclei	 (Palmer	 &	 King	 1982;	 Middlebrooks	 &	 Knudsen	

1984).	

Even	 though	 numerous	 studies	 investigated	 the	 existence	 of	 spatiotopic	

organization	in	the	auditory	cortex	across	different	species	(e.g.	avian,	cats,	primates),	up	to	

our	knowledge,	there	is	no	evidence	of	point-to-point	spatial	representation	in	the	auditory	

cortex	 (Middlebrooks	 &	 Pettigrew	 1981;	 Rajan	 et	 al.	 1990;	 Middlebrooks	 2002;	

Middlebrooks	 &	 Bremen	 2013;	McAlpine	 et	 al.	 2001;	 Derey	 et	 al.	 2016;	 Ahveninen	 et	 al.	

2006;	Brunetti	et	al.	2005;	Deouell	et	al.	2007).	Yet,	 lesion	studies	have	demonstrated	 the	

critical	 role	of	 the	auditory	 cortex	 for	 spatial	hearing	 in	humans	 (Sanchez-Longo	&	Forster	

1958;	Zatorre	&	Belin	2001;	Duffour-Nikolov	et	al.	2012).	

Auditory	 cortex	neurons	 show	 large	 receptive	 fields	 to	 variety	of	 spatial	 locations,	

indicating	that	instead	of	responding	preferentially	to	a	specific	location	in	space,	the	neural	

response	 show	 broad	 spatial	 tuning	 (Recanzone	 2000;	 Stecker	 et	 al.	 2005;	 Miller	 &	

Recanzone	 2009).	 Firing	 rates	 of	 neural	 populations	 that	 carry	 information	 about	 sound	

source	are	widespread	over	the	auditory	cortex	(Miller	&	Recanzone	2009;	M.	Ahissar	et	al.	

1992).	 Authors	 suggested	 that	 different	 cortical	 areas	 carrying	 sound	 location	 information	

could	account	for	observed	inhomogeneous	sampling	of	space	(e.g.	lack	of	spatiotopy).	The	

broad	 spatial	 receptive	 fields	 of	 neurons	 are	 unlikely	 to	 account	 for	 encoding	 auditory	

location,	however	population	of	neurons	might	be	underlying	mechanism	of	 sound	source	

localization	(Mcalpine	et	al.	2001;	Stecker	et	al.	2005;	Miller	&	Recanzone	2009).	Moreover,	
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majority	 of	 sound-location	 sensitive	 neurons	 in	 the	 auditory	 cortex	 show	 sharp	

discrimination	 of	 left	 vs.	 right	 sounds	 indicating	 preferential	 contralateral	 response	

(Middlebrooks	&	Green,	1991).	These	results	 led	to	opponent-process	assumption	 in	which	

sound	locations	are	represented	by	the	differences	in	the	activity	of	neural	subpopulations	

that	 are	 preferentially	 coding	 for	 the	 opponent	 space.	 The	 opponent	 population	 coding	

proposes	that	spatial	hearing	in	the	azimuth	is	encoded	by	a	combination	of	broadly	tuned	

neurons	 with	 overall	 preference	 for	 opposite	 acoustic	 hemifields	 (Day	 &	 Delgutte	 2013;	

Mcalpine	et	al.	2001;	Stecker	et	al.	2005).		

The	 coarse	 preference	 to	 spatial	 locations	 in	 the	 auditory	 cortex	 could	 potentially	

indicate	that	the	auditory	cortex	performs	as	a	high-level	associative	area	that	integrates	or	

segregates	spatial	cues	in	order	to	process	complex	stimuli.	Similarly,	high-level	associative	

neurons	in	the	visual	cortex	(i.e.	extrastriate	neurons)	have	bigger	receptive	fields	and	prefer	

more	 complex	 stimuli	 than	 neurons	 in	 the	 primary	 cortices.	 Therefore,	 they	 potentially	

integrate	 visual	 information	 in	 a	more	 abstract	 level	 (spatially	 over	 a	 larger	 range)	 (Hubel	

and	Wiesel	1965).	By	the	same	token,	auditory	neurons	in	the	non-primary	fields	or	regions	

that	are	higher	up	 in	 the	processing	pathway,	might	be	expected	 to	 integrate	 information	

over	 a	 larger	 range	 of	 auditory	 space	 (Rauschecker	 et	 al.	 1995),	 instead	 of	 showing	 fine-

tuned	selectivity	for	wide-range	of	sound	sources.	

	

1.1.2.	Functional	organization	of	auditory	cortex	

A	dual-streams	hypothesis	proposes	a	framework	to	study	spatial	processing	in	the	

auditory	 cortex	 of	 mammals	 (Rauschecker	 &	 Tian	 2000).	 In	 the	 visual	 cortex,	 the	 ventral	

stream	is	specialized	for	object	recognition,	and	the	dorsal	stream	for	identifying	where	the	

object	 is	 (Haxby	 et	 al.	 1991;	 Mishkin	 1983;	 Goodale	 &	 Milner).	 Neuroimaging	 studies	 in	

humans	support	the	existence	of	a	dual-stream	structure	in	both	vision	and	audition.	More	

recently,	 a	 third	 pathway	 was	 suggested	 for	 processing	 sensorimotor	 information	 for	 the	

auditory	 system	 (Kaas	&	Hackett	2000),	however,	 the	debate	has	been	 inconclusive	about	

the	presence	of	this	third	pathway	(see	for	review	Rauschecker	2017).	

In	the	auditory	cortex,	the	“where”	pathway	was	proposed	to	encompass	the	caudal	

portion	of	the	superior	temporal	gyrus	(including	planum	temporale)	(Romanski	et	al.	1999;	

Rauschecker	 &	 Tian	 2000),	 and	 the	 “what”	 pathway	 was	 proposed	 to	 encompass	 rostral	

areas	 of	 the	 cortex	 and	 preferentially	 process	 non-spatial,	 auditory	 object	 recognition	

information	(Kaas	et	al.	1999;	Romanski	et	al.	1999;	Rauschecker	&	Tian	2000;	Chevillet	et	al.	

2011).	Applying	reversible	cooling	on	cat	auditory	cortex	demonstrated	that	deactivation	of	
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posterior	 auditory	 fields	 (“where”	 pathway)	 resulted	 in	 sounds	 localization	 impairments,	

while	 deactivation	 of	 anterior	 fields	 (“what”	 pathway)	 resulted	 in	 pattern	 discrimination	

impairments	(Lomber	&	Malhotra	2008).	Furthermore,	the	cooling	technique	has	shown	that	

the	 posterior	 portions	 of	 cat	 auditory	 cortex	 have	 stronger	 impact	 on	 the	 spatial	 hearing	

abilities,	rather	than	lesions	in	primary	auditory	region	(Malhotra	et	al.	2008).	Similarly,	the	

cat	auditory	cortex	shows	greater	spatial	sensitivity	in	the	dorsal	zone	(DZ)	and	in	posterior	

auditory	field	(PAF)	in	sound	localization	(Stecker	et	al.	2005;	Stecker	&	Middlebrooks	2003).	

In	 non-human	 primates,	 the	 caudomedial	 (CM)	 and	 caudolateral	 (CL)	 belt	 area	 neurons	

show	 greater	 spatial	 selectivity	 compared	 to	 neurons	 in	 A1	 (primary	 auditory	 cortex)	 and	

anterior	regions	(Recanzone	2000;	Tian	et	al.	2001;	Woods	et	al.,	2006;	Miller	&	Recanzone	

2009).	Evidence	from	human	neuroimaging	studies	strengthens	the	role	of	posterior	fields	in	

processing	 auditory	 location	 and	 motion	 (Warren	 et	 al.	 2002;	 Brunetti	 et	 al.	 2005;	

Krumbholz	et	al.	2005;	Zimmer	et	al.	2006;	Deouell	et	al.	2007),	while	the	anterior	auditory	

belt	areas	are	primarily	responsive	to	the	spectro-temporal	features	of	a	sound,,	crucial	for	

the	object	identity	(Griffiths	et	al.	1998;	Barrett	&	Hall	2006;	Hart	et	al.	2004).	

	

1.2.	Auditory	motion	processing	in	the	auditory	cortex	

A	number	of	neurophysiological	studies	have	investigated	the	processing	of	auditory	

motion	 cues	 in	 the	brain	 stem	and	 in	 the	 cortex	 (Altman	et	 al.,	 1970;	Ahissar	 et	 al.	 1992;	

Spitzer	 and	 Semple	 1993;	 Doan	 et	 al.	 1999;	 Stumpf	 et	 al.	 1992;	 Toronchuk	 et	 al.	 1992;	

McAlpine	 et	 al.	 2000).	 Neurons	 in	 IC	 show	 sensitivity	 to	 direction,	 location	 and	 extent	 of	

apparent	motion	cues	in	cats	(McAlpine	et	al.	2000;	Spitzer	and	Semple	1993).	Furthermore,	

from	IC	to	medial	geniculate	body	and	primary	cortex,	the	proportion	of	direction	selective	

neurons	 increases	 (Altman	1968;	Altman	et	 al.,	 1970;	Altman	1987).	However,	 there	 is	 no	

conclusive	 evidence	 whether	 these	 neurons	 exhibit	 selectivity	 specifically	 to	 motion	

direction	or	to	spatial	location	(Poirier	et	al.	1997;	McAlpine	et	al.	2000;	Ingham	et	al.	2001).	

A	lesion	study	on	two	patients	with	auditory	agnosia	and	two	patients	with	auditory	

spatial	 deficits	 following	 left	 hemispheric	 lesions	 strengthens	 the	 notion	 of	 distinct	

processing	 pathways	 in	 the	 human	 auditory	 cortex	 (Clarke	 et	 al.	 2000).	More	 specifically,	

lesions	including	superior,	middle	and	inferior	temporal	gyri	and	lateral	auditory	areas	led	to	

deficits	 in	 recognition	 of	 object	 sounds,	 however,	 auditory	 localization	 and	 motion	

perception	 were	 intact.	 Lesions	 in	 the	 supratemporal	 region	 (including	 Heschl’s	 gyrus,	

planum	polare	and	temporale)	 led	to	severe	impairments	of	motion	perception	and	partial	

deficit	in	auditory	localization,	indicating	a	possible	crucial	role	of	dorsal	stream	for	motion	
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perception.	More	 recent	 studies	have	demonstrated	auditory	motion	processing	may	 take	

place	in	the	further	posterior	parts	of	the	temporal	and	parietal	cortices	(Lewald	et	al.	2009;	

Thaler	et	al.	2016).	

Additionally,	 among	 auditory	 selective	 cortical	 regions	 in	 the	 posterior	 field,	 the	

planum	temporale	(PT)	region	seems	to	play	a	critical	role	in	spatial	hearing.	The	PT	region	is	

in	the	superior	temporal	gyrus,	posterior	to	primary	auditory	cortex	(Heschl’s	gyrus),	and	it	is	

considered	 the	 homolog	 region	 of	 monkey	 CM	 and	 CL	 belt	 areas.	 Some	 authors	 have	

pointed	toward	a	specific	 role	 in	motion	 for	 this	area	 (Poirier	et	al.	2017).	However,	other	

studies	have	 suggested	 that	PT	engages	 in	 spatial	 hearing	 in	 general	 (Zatorre	et	 al.	 2002).	

Human	 functional	magnetic	 resonance	 imaging	 (fMRI)	 studies	 indicate	 that	 the	 area	 PT	 is	

particularly	 responsive	 to	 spatial	 stimuli	 (Barrett	&	Hall	 2006;	Derey	 et	 al.	 2016),	 and	 it	 is	

preferentially	 activated	 by	 moving	 compared	 to	 static	 sounds	 (Baumgart	 &	 Gaschler-

Markefski	 1999;	 Bremmer	 et	 al.	 2001;	 Rees	 et	 al.	 1998;	 Hall	 &	Moore	 2003;	 Lewis	 et	 al.	

2000;	Pavani	et	al.	 2002;	Warren	et	al.	 2002;	Krumbholz	et	al.	 2005).	Multivariate	pattern	

analyses	 support	 the	 notion	 that	 PT	 carries	 auditory	 motion	 information	 (e.g.	 content,	

direction	 of	 motion)	 (Alink	 et	 al.	 2012;	 Jiang	 et	 al.	 2014;	 Jiang	 et	 al.	 2016;	 Dormal	 et	 al.	

2016).	However,	whether	PT	plays	a	specific	role	for	auditory	motion	or	if	it	engages	in	the	

processing	 of	 spatial	 locations	 as	 well,	 remains	 a	 matter	 of	 debate.	 According	 to	 the	

snapshot	hypothesis,	motion	can	be	inferred	from	snapshots	of	object	positions,	without	a	

motion-specific	 mechanism	 (Grantham	 1986;	 1997).	 Early	 neurophysiological	 studies	 in	

animals	reported	direction-sensitive	neurons	in	the	auditory	cortex	(M.	Ahissar	et	al.	1992;	

Toronchuk	et	al.	1992;	Poirier	et	al.	1997;	Doan	et	al.	1999),	while	a	large	portion	of	neurons	

that	 responded	 to	moving	 stimuli	 showed	 sensitivity	 to	 spatial	 location	 with	 externalized	

sound	 stimuli	 (Poirier	 et	 al.	 1997;	 Ingham	et	 al.	 2001).	 This	 led	 to	 the	 suggestion	 that	 the	

observed	motion-related	activity	in	PT	may	link	to	spatial	and	spectro-temporal	components	

of	the	sounds,	rather	 indicating	preference	to	moving	stimuli	(Zatorre	et	al.	2002;	Smith	et	

al.	2010).	Even	so,	a	recent	study	in	monkeys	has	demonstrated	thoroughly	that	in	CM	and	

CL	areas,	the	auditory	motion	activation	is	not	merely	due	to	sequential	processing	of	sound	

source	 locations	 (Poirier	 et	 al.	 2017).	 In	 humans,	 however,	 further	 research	 is	 needed	 to	

understand	 whether	 auditory	 motion	 perception	 is	 derived	 from	 motion	 specific	 neural	

processing	 or	 if	motion	 and	 spatial	 localization	 rely	 on,	 at	 least	 partially,	 common	 neural	

mechanisms	 in	the	human	PT.	More	specifically,	 if	 responses	to	auditory	motion	within	PT	

could	 simply	 be	 due	 to	 computing	 various	 sound	 source	 locations,	 the	 representation	 of	

motion	 direction	 and	 location	 could	 rely	 on	 similar	 patterns.	 Alternatively,	 while	 some	
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aspects	 of	 the	 neural	 patterns	 might	 be	 shared	 across	 motion	 direction	 and	 location,	

representations	of	both	auditory	conditions	could	be	unique.	

The	empirical	work	 in	study	1	was	designed	to	characterize	neural	response	within	

PT,	to	evaluate	whether	 it	reflects	distributed	information	about	auditory	motion	direction	

and	 spatial	 location,	 and	 if	 so,	 to	 quantify	 the	 extent	 of	 functional	 overlap	 between	 the	

representations	 of	 direction	 and	 location.	 Furthermore,	we	 investigated	 the	 characteristic	

tuning	 of	 this	 region	 for	 separate	 directions	 and	 within-axis	 aggregated	 (i.e.	 opposite)	

motion	 directions.	 If	 the	 distribution	 of	 orientation	 responsive	 neurons	 (topographic	

representations)	within	the	PT	shares	similar	organizational	features	to	what	is	observed	in	

MT/V5,	 the	 spatial	 representations	 might	 therefore	 be	 more	 systematic	 for	 axis	 of	

motion/space,	rather	than	for	within-axis	direction/location.	

To	 deepen	 our	 understanding	 of	motion	 and	 its	 representation	 in	 the	 cortex,	 the	

following	section	will	briefly	 review	the	 literature	about	 the	well-established	visual	motion	

area	hMT+/V5.		Following	that,	the	third	section	is	focused	on	studies	investigating	blindness	

and	how	sensory	experience	alters	 the	 intrinsic	 functional	organization	of	auditory	motion	

processing.	

	

1.3.	Visual	Motion	Processing	Area	MT+/V5			

The	 primary	 visual	 cortex	 has	 a	 cortical	 columnar	 organization	 for	 orientation	

selectivity	(Felleman	and	Van	Essen,	1987;	Hubel	and	Wiesel,	1968).	Columnar	organization	

suggests	 that	neurons	 in	 the	same	column	share	 the	same	receptive	 field	and	process	 the	

same	 information	 (Mountcastle	 1956).	 In	 primary	 visual	 cortex,	 columnar	 organization	 is	

highly	selective	for	orientation	and	motion	direction	(Hubel	and	Wiesel,	1974).	

In	 the	 visual	 cortex,	 many	 areas	 are	 selective	 for	 moving	 stimuli.	 One	 of	 the	

strongest	 motion-selective	 responses	 emerges	 from	 middle	 temporal	 visual	 area,	 MT/V5	

(Dubner	 &	 Zeki	 1971;	 Allmann	 &	 Kaas	 1971;	 Maunsell	 &	 Van	 Essen	 1983;	 Albright	 et	 al.	

1984).	In	non-human	primates,	area	MT	contains	an	abundance	of	neurons	selective	for	the	

direction	 of	 visual	 motion,	 and	 shows	 columnar	 organization	 of	 preferred	 direction	 of	

motion.	Continuous	representation	of	preferred	direction	of	motion	columns	is	occasionally	

disrupted	 by	 a	 set	 of	 columns	 preferring	 the	 opposite	 direction	 (see	 section	 1.3.1).	 This	

suggests	that	the	representation	of	motion	axis	in	area	MT/V5	is	more	systematic	(Albright	

et	al.	1984).		Single-cell	recordings	and	micro-stimulation	experiments	have	demonstrated	a	

direct	role	of	MT/V5	in	perceiving	motion	direction	(Newsome	et	al.,	1985;	1986;	Cohen	et	

al.,	2004;	Liu	&	Newsome	2005).	
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Using	fMRI,	the	human	homologue	of	MT/V5	(hMT+/V5)	in	the	posterior	part	of	the	

inferior	 temporal	 sulcus	has	been	 functionally	 identified	by	 its	 strong	preference	 for	visual	

motion	stimuli	(Watson	et	al.,	1993;	Tootell	et	al.	1995;	Dumoulin	et	al.	2000).	The	hMT+/V5	

complex	 consists	 of	 the	human	homologue	of	MT,	 and	 the	 surrounding	dorsal	 and	 lateral	

medial	 superior	 temporal	areas	 (MSTd/MSTl).	The	coarse	 retinotopic	organization	 in	 these	

areas	shows	that	area	MT	responds	to	motion	in	the	contralateral	visual	hemi-field,	and	MST	

responds	to	ipsilateral	motion	and	processes	more	complex	types	of	motion	(e.g.	visual	flow)	

(Dukelow	et	al.	2001;	Morrone	et	al.	2000;	Smith	et	al.	2006).		Similar	to	monkey	V5,	lesions	

in	 hMT+/V5	 complex	 have	 been	 reported	 to	 result	 in	 akinetopsia,	 in	which	 the	 patient	 is	

unable	 to	 perceive	 motion	 while	 visual	 perception	 for	 other	 types	 of	 visual	 stimuli	 is	

unaffected	(Zeki	1991).	

	

1.3.1.	Columnar	organization	of	MT/V5	

Motion	 direction	 preference	 in	 MT/V5	 complex	 has	 also	 been	 investigated	 in	

humans	by	using	standard	and	high-field	fMRI	techniques	(Kamitani	&	Tong	2006;	Tong	et	al.	

2012;	Zimmermann	et	al.	2011).	The	lack	of	columnar	level	spatial	resolution	in	non-invasive	

human	 neuroimaging	 techniques	 prevents	 a	 direct	 identification	 of	 direction-selective	

responses	in	hMT+/V5	(Uǧurbil	et	al.	2003).	High-field	human	fMRI	experiments	show	that	a	

spatial	resolution	of	1.1	mm	(iso-voxels)	is	close	to	the	resolution	needed	to	image	columnar	

structures	(Zimmermann	et	al.	2011;	Rosa	et	al.	1988;	Adams	et	al.	2007;	Diogo	et	al.	2003).	

In	 primary	 visual	 cortex,	 reliable	 maps	 have	 been	 obtained	 for	 ocular	 and	 orientation	

columns	(Cheng	et	al.,	2001;	Moon	et	al.,	2007;	Yacoub	et	al.,	2007).	High-field	fMRI	(7T)	has	

revealed	 reliable	 axis-of-motion	 columns	 in	 hMT+/V5	 (Zimmermann	 et	 al.,	 2011)	 arising	

from	 neighboring	 columns	 with	 preferred	 motion	 directions	 that	 are	 opposite	 (i.e.	 180°	

difference,	 Figure	 1),	 rather	 than	 individual	 direction-selective	 columns	 like	 those	 for	

orientation	selectivity.		Investigating	single-direction	of	motion	columns	potentially	requires	

employing	higher	spatial	resolutions	(Zimmermann	et	al.,	2011;	Emmerling	et	al.,	2016).	
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Figure	1.	Illustration	of	columnar	representation	of	axis	of	motion	from	high-field	fMRI	data.	The	results	of	hMT+/V5	visual	
localizer	experiment	are	projected	onto	cortical	reconstructions	of	the	left	hemisphere.	fMRI	data	sampling	was	focused	at	two	
cortical	depths.	B.	Results	of	motion	direction	experiment	in	high-cortical	sampling	demonstrate	columnar	organization	of	axis	
of	motion.	C.	An	illustration	of	two	cortical	layers.	Adapted	from	Zimmermann	et	al.	(2011).	

	
Another	 approach	 to	 investigate	 direction	 selective	 responses	 in	 hMT+/V5	 with	

standard	 human	 imaging	 is	 by	 using	 multivariate	 pattern	 analysis	 (MVPA)	 that	 relies	 on	

machine	 learning	 algorithms.	 In	 a	 voxel,	 the	 blood-oxygen-level	 dependent	 (BOLD)	 signal	

consists	of	averaged	responses	of	several	cortical	columns.	MVPA	exploits	 the	BOLD	signal	

across	 different	 voxels	 and	 treats	 this	 as	 an	 activity	 pattern.	 Classifiers	 are	 trained	 to	 use	

such	multivariate	 samples	 of	 a	 group	 of	 voxels	 to	 learn	 patterns	 of	 activation	 and	 assign	

each	 pattern	 in	 the	 data	 to	 stimulus	 conditions	 (Norman	 et	 al.	 2006;	 Haxby	 et	 al.	 2001;	

Haynes	2015).	MVPA	has	been	used	to	decode	motion	direction	information	in	early	visual	

areas	and	in	hMT+/V5	complex	in	humans	(Kamitani	&	Tong	2006;	Tong	et	al.	2012;	Beckett	

et	 al.	 2012),	 however	 in	 these	 studies,	 classifiers	 did	 not	 perform	 well	 in	 hMT+/V5,	

compared	 to	 early	 visual	 areas.	 The	probable	 reason	 for	 such	discrepancy	 in	performance	

could	 be	 the	 existence	 of	 densely	 packed	 cortical	 columns	 with	 opposite	 direction	

preference,	 and	 not	 individual	 direction-selective	 columns	 (for	 a	 review	 see	 Bartels	 et	 al.	

2008,	Figure	2).	
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Figure	2	Cortical	functional	organization	and	pattern	classification	analysis.	A.	Schematic	illustration	of	spatial	distribution	
of	motion	direction	selective	columns	in	area	X	(left	panel),	 in	area	Y	(right	panel).	Area	X	has	densely	packed	distribution	of	
feature-selective	columns,	therefore,	the	classification	of	feature-based	information	is	worse	compared	to	that	of	area	Y,	as	the	
gross	 spatial	 distribution	 of	 feature	 selectivity	 in	 Y	 allows	 better	 detection	 of	 feature	 information	 by	 the	 detectors.	 B.	
Illustration	of	how	scanner	resolution	affects	the	outcome	of	the	fMRI	data	analysis	of	the	underlying	brain	area	at	the	bottom	
level.	Top	level	contains	no	information	about	the	feature	as	it	averages	over	the	entire	brain	area.	The	second	level	with	an	
increased	resolution	shows	a	pattern	of	voxels,	allowing	MVPA	to	reveal	feature	specific	information.	At	the	third	level,	actual	
functional	 organization	 can	 be	 reached	 using	 voxel-wise	 approach	 in	 high-resolution	 imaging.	 Adapted	 from	 Bartels	 et	 al.	
(2008).	

	
The	 averaged	 signal	 from	 an	 area,	 for	 instance	 hMT+/V5,	 containing	 very	 closely	

spaced	direction-selective	columns,	can	nullify	 the	direction	selectivity	of	 the	area	 (Fig	2A,	

left	panel).	The	spatial	arrangement	of	directional	preferences	dictates	 the	strength	of	 the	

average	 signal	 and	 subsequently	 the	 performance	of	 the	 classifier.	 Thus,	 a	 classifier	 could	

perform	 comparably	 on	 an	 early	 visual	 area	 with	 weaker	 directional	 preference	 as	 on	

direction-selective	 hMT+/V5	 complex,	 if	 their	 spatial	 arrangement	 of	 the	 signals	 were	

different.	 (Figure	 2A,	 right	 panel).	 With	 these	 methodological	 constraints	 in	 mind,	 these	

studies	 nevertheless	 indicate	 that	 MT+	 is	 highly	 specialized	 for	 visual	 motion,	 and	 its	

function	is	preserved	across	different	primate	species.	

	

	

1.3.1.1	Plausible	mechanisms	underlying	decoding	

Pioneering	 studies	 in	 the	 field	 suggested	 that	 MVPA	 can	 bypass	 the	 spatial	

limitations	 and	 detect	 feature-specific	 information	 within	 the	 activity	 pattern	 of	 many	

voxels,	 based	on	 the	 cortical	 columns	 at	 submillimeter	 scale	 (Kamitani	&	 Tong	 2005).	 The	

hypothesis	 relies	 on	 that	 cortical	 column	 responses	 lead	 to	 weak	 biases	 in	 each	 voxel.	

Resulted	local	biases	contain	information	about	orientation/direction	preferences.		

Such	 biases	 can	 be	measured	 by	 computing	 activity	 pattern	 of	many	 voxels	 and	 reflect	 a	

stable	selectivity	for	orientation	(Kamitani	&	Tong	2005).	However,	this	assumption	seems	to	

contradict	with	 the	 low-spatial	 resolution	of	 standard	 fMRI	 signal	due	 to	 spatial	 spread	of	

the	underlying	hemodynamic	 factors.	 If	decoding	stem	from	the	biases	 (within	each	voxel)	
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emerged	 at	 the	 cortical	 columnar	 level	 (e.g.	 direction,	 and	 orientation	 selective	 columns)	

(Kamitani	&	Tong	2006;	Bartels	et	al.,	2008),	then	smoothing	of	the	data	would	decrease	the	

decoding	accuracies	(see	Figure	2b).	Recent	evidence	points	to	no	influence	of	smoothing	on	

the	decoding	accuracies,	therefore,	against	the	‘biased	sampling’	assumption	(Op	de	Beeck	

2010).	 Accordingly,	 studies	 conducted	 on	 early	 visual	 cortex	 proposed	 that	 decoding	

orientation	 preference	 reflects	 much	 larger	 scale	 (e.g.	 retinotopy)	 rather	 than	 columnar	

organization	(Freeman	et	al.	2011;	Freeman	et	al.	2013;	Op	de	Beeck	2010).	Answering	the	

question	 of	 whether	 decoding	 of	 orientation/direction	 reflects	 fine-scale	 or	 large-scale	

biases	(Kriegeskorte	et	al.	2010;	Alink	et	al.	2013;	Freeman	et	al.	2011;	Freeman	et	al.	2013)	

have	a	particular	 importance	to	understand	not	only	the	functional	organization	of	feature	

selectivity	 in	 the	 visual	 cortex,	 but	 also	 the	 types	 of	 information	 that	 can	 be	 detected	 in	

neural	 activity	 patterns	 (Swisher	 et	 al.	 2010;	 Shmuel	 et	 al.	 2010;	 Tong	 &	 Pratte	 2012;	

Gardner	2010)	 and	at	 the	 scale	of	 individual	 voxels	 (Kay	et	 al.	 2008;	 Serences	et	 al.	 2009;	

Kriegeskorte	et	al.	2010).	

Interestingly,	high-field	fMRI	studies	showed	that	the	fMRI	signal	carries	information	

related	to	both	fine-	and	large-scale	biases	(Sengupta	et	al.	2017;	Gardumi	et	al.	2016;	Pratte	

et	 al.	 2016).	 Combining	 voxels	with	 similar	 visual	 field	preferences	 that	 are	determined	 in	

separate	retinotopy	measurements	showed	that	classification	accuracy	was	sustained	even	

when	 voxels	 were	 averaged	 across	 substantial	 distance	 in	 the	 cortical	 surfaces	 (Beckett	

2012).	 Large-scale,	 retinotopically	 restricted	 biases	 were	 suggested	 to	 play	 a	 role	 in	

classification.	Although	 large-scale	biases	contribute	 to	 the	performance	of	decoding,	 they	

are	not	the	sole	factors	(Pratte	et	al.,	2016).	Modifications	in	the	spatial	filtering	affect	the	

performance	 of	 orientation	 decoding	 (Sengupta	 et	 al.	 2017).	 Furthermore,	 a	 study	

conducted	on	the	auditory	cortex	investigated	the	effect	of	spatial	resolution	and	smoothing	

on	 the	 decoding	 accuracies	 on	 two	 different	 auditory	 tasks	 (Gardumi	 et	 al.	 2016).	 The	

authors	concluded	that	the	influence	of	fine-	and	large-scale	spatial	biases	depends	on	the	

specific	 task	 of	 interest.	 These	 studies	 support	 the	notion	 that	MVPA	 results	 could	 reflect	

the	 combination	 of	 both	 large-scale	 (e.g.	 retinotopy)	 and	 fine-scale	 (columnar)	

organizations.	 Similarly,	 in	 early	 visual	 areas	 and	 hMT+/V5	 decoding	 of	motion	 directions	

suggested	to	emerge	from	macroscopic	organizational	principles	at	the	 level	of	retinotopic	

maps,	 instead	 that	 from	 the	 functional	 organization	 of	 motion	 selectivity	 (Beckett	 et	 al.	

2012;	Wang	 et	 al.	 2014).	 Although	 results	 in	 hMT+/V5	 are	 inconclusive,	 overall	 evidence	

suggests	 that	 both	 retinotopy	 and	 columnar	 organizations	 seem	 to	 play	 critical	 role	 in	

decoding	performance.	
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Altogether,	 advanced	 fMRI	 analyses	 performed	 on	 the	 neural	 activity	 patterns	

should	 be	 carefully	 interpreted	 with	 the	 considerations	 of	 the	 underlying	 anatomical	

organizations,	as	well	as	large	and	fine-scale	influences	within	the	fMRI	signal.	

	

1.3.2.	Development	of	hMT+/V5	

The	ability	to	detect	motion	is	one	of	the	most	important	skills	for	survival.	For	this	

crucial	 skill,	 as	mentioned	above,	 the	 visual	 cortex	 contains	 a	highly	 specialized	 region	 for	

visual	motion	perception	that	develops	functionality	in	very	early	stages	of	life	(Braddick	et	

al.	 2005;	 Gilmore	 et	 al.	 2007).	 The	 perceptual	 preference	 to	 moving	 compared	 to	 static	

stimuli	develops	soon	after	birth,	in	as	young	as	1	month	old	infants	(Volkmann	and	Dobson	

1986;	Wattam-Bell	1996).	Following	motion	preference,	 infants	during	 their	 first	4	months	

develop	 visual	 evoked	 potentials	 for	 different	 motion	 directions,	 indicating	 direction	

selectivity	 (Braddick	 1986,	 2005;	 Hou	 2009).	 Furthermore,	 evoked	 brain	 activity	 in	 infants	

between	 4	 to	 6	months	 of	 age,	 shows	 differential	 response	 to	 coherent	moving	 patterns	

(Gilmore	et	 al.	 2007;	 Shirai	 et	 al.	 2009;	 Lee	et	 al.	 2013).	 These	 studies	 support	 the	notion	

that	 visual	 motion	 area	 is	 highly	 organized	 from	 birth	 and	 develops	 very	 early	 in	 life,	

somehow	pointing	toward	a	genetically	predetermined	functional	organization.	

During	 early	 stages	 of	 development,	 even	 a	 short	 period	 of	 disturbance	 has,	

however,	 profound	 effects	 on	 motion	 perception.	 Individuals	 who	 were	 born	 with	 or	

developed	dense	bilateral	cataracts	show	permanent	impairments	in	their	ability	to	perceive	

overall	motion	direction,	even	after	their	cataracts	have	been	surgically	removed	soon	after	

birth	(Ellemberg	et	al.	2002;	Hadad	et	al.	2012).	Interestingly,	global	motion	percept	is	intact	

when	 the	 visual	 deprivation	 occurs	 later,	 after	 8	 to	 57	 months	 of	 age	 (Ellemberg	 et	 al.,	

2002).	 Even	 if	 the	 development	 of	 motion	 perception	 and	 the	 functional	 tuning	 of	 brain	

regions	 toward	 motion	 processing	 is	 evident	 early	 after	 birth,	 the	 development	 and	

maintenance	 of	 this	 functional	 and	 perceptual	 organization	 is	 highly	 dependent	 on	 early	

visual	experience	(Collignon	et	al.	2015).	

Thus	far,	the	thesis	has	reviewed	two	key	aspects.	The	first	section	provided	a	brief	

summary	 of	 how	 auditory	 motion	 and	 static	 location	 are	 represented	 in	 the	 auditory	

pathway	 and	 discussed	 putative	 motion-responsive	 regions	 in	 the	 auditory	 cortex.	 The	

second	 section	 was	 dedicated	 to	 the	 functional	 specialization	 of	 visual	 motion-selective	

area,	hMT+/V5.	The	 section	 that	 follows	considers	 the	 impact	of	 visual	deprivation	on	 the	

visual	and	auditory	cortices.	
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1.4.	PLASTICITY	IN	THE	BLIND	BRAIN	

Research	 on	 blindness	 represents	 a	 unique	 opportunity	 to	 study	 neuroplasticity,	

which	 refers	 to	 our	 brain's	 ability	 to	 adapt	 to	 the	 environment	 and	 how	 our	 experiences	

throughout	our	lifetime	reorganize	neural	pathways	(Bavelier	&	Neville	2002).	Lack	of	visual	

experience	 in	 early	 development,	 for	 instance,	 leads	 to	massive	 reorganization	 of	 sensory	

cortices	(see	reviews	Collignon	et	al.	2012;	Dormal	et	al.	2012).	

Congenital	 blindness,	 or	 blindness	 from	 birth,	 triggers	 cortical	 expansion	 in	 the	

tonotopic	maps	of	the	auditory	cortex	and	 increases	the	representation	of	the	finger	most	

used	 for	Braille	 reading	by	 the	blind	 individuals	within	 the	somatosensory	cortex	 (Pascual-

leone	 &	 Torres	 1993;	 Sterr	 et	 al.	 1998;	 Elbert	 et	 al.	 2002).	 These	 experience-dependent	

intramodal	 alterations	 in	 the	 primary	 sensory	 cortices	 of	 the	 congenitally	 blind	 can	 be	

explained	 by	 enhanced	 reading	 abilities	 and	 auditory	 processing	 skills	 (Elbert	 et	 al.	 2002;	

Goldreich	 &	 Kanics	 2003;	 Wong	 et	 al.	 2011).	 In	 contrast,	 passive	 listening	 induces	 lower	

activity	 in	 the	 auditory	 cortex	 of	 congenitally	 blind	 than	 in	 late	 blind	 and	 sighted	 controls	

(Stevens	 et	 al.	 2007;	Watkins	 et	 al.	 2013).	 Recent	 studies	 have	 reported	 that	 early	 visual	

deprivation	results	in	reduced	auditory	motion	information	within	area	PT	(Jiang	et	al.	2014;	

Jiang	et	al.	2016;	Dormal	et	al.	2016).	

In	 addition	 to	 intramodal	 plasticity,	 visually	 deprived	 occipital	 regions	 start	 to	

respond	 to	 other	 sensory	 inputs	 (Rauschecker	 1995).	 This	 form	 of	 brain	 reorganization	 is	

called	 crossmodal	 plasticity	 as	 opposed	 to	 intramodal	 plasticity.	 Massive	 crossmodal	

plasticity	 has	 been	 reported	 in	 the	 occipital	 cortex	 of	 early	 blinds.	 A	 pioneering	

neuroimaging	study	found	higher	metabolic	activity	 in	early	blind	visual	cortex	 in	response	

to	 auditory	 spatial	 localization	 tasks	 compared	 to	 their	 blindfolded	 sighted	 peers	 (Wanet-

Defalque	 et	 al.	 1988).	 This	 study	was	 followed	 by	 another	 positron	 emission	 tomography	

(PET)	 study	showing	higher	glucose	consumption	 in	early	blinds	compared	 to	both	sighted	

and	late	blind	people	in	the	visual	cortex	(Veraart	et	al.	1990)	(Figure	3).	
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Figure	 3.	 Glucose	 metabolisms	 in	 sighted	 and	 blind	 subjects.	 In	 the	 top	 panel,	 the	 consumption	 of	 glucose	 was	
presented	in	sighted	subjects	(left:	eyes	open,	and	right:	eyes	closed),	in	the	bottom	panel	glucose	consumption	of	early	
blinds	 (right)	 appears	 higher	 than	 in	 sighted	 subjects	 eyes	 closed	 and	 than	 in	 late	 blind	 subjects	 (left).	 Adapted	 from	
Veraart	et	al.	(1990).	

	

Braille	reading	activates	the	occipital	cortex	in	blind	subjects	but	not	in	the	sighted	

controls	 (Sadato	 et	 al.	 1996;	 Büchel	 et	 al.	 1998).	 In	 addition	 to	 tactile	 stimuli,	 auditory	

(Kujala	et	al.	2005;	Roeder	et	al.	1999;	Weeks	et	al.	2000)	and	language	related	(Röder	et	al.	

2000;	 Burton	 et	 al.	 2002)	 tasks	 activate	 the	 visually	 deprived	 occipital	 cortex.	 Visually	

deprived	occipital	cortex	is	not	only	responsive	to	a	variety	of	verbal	tasks	but	its	response	

profile	becomes	actually	similar	to	that	of	classical	language	areas	(Bedny	et	al.	2011).	

	

1.4.1.	Functional	relevance	of	crossmodal	plasticity	

Correlation	 between	 neural	 activity	 and	 the	 improved	 abilities	 of	 blinds	

demonstrated	that	these	cross-modal	alterations	might	potentially	be	compensatory	(Amedi	

et	al.	2003;	Gougoux	et	al.	2005;	see	Benetti	et	al.	2017	for	a	similar	example	in	congenitally	

deaf	 people).	 However,	 correlation	 does	 not	 mean	 causation.	 Transcranial	 magnetic	

stimulation	(TMS)	can	be	used	to	gain	further	causal	evidence	that	cross-modal	plasticity	is	

not	just	an	epiphenomenon	but	functionally	links	to	the	processing	of	the	remaining	senses.	

Indeed,	TMS	is	a	useful	tool	to	demonstrate	a	causal	link	between	a	specific	brain	region	and	

a	 particular	 cognitive	 operation.	 Interfering	 with	 occipital	 regions	 alters	 braille	 reading	 in	

blind	individuals	and	induces	tactile	sensations	in	the	fingers	of	blind	Braille	readers	(Cohen	

et	 al.	 1997;	 Kupers	 et	 al.	 2007).	 In	 contrast,	 occipital	 stimulation	 causes	 no	 disruption	 in	

identifying	 Roman	 letters	 in	 sighted	 controls.	 Furthermore,	 repetitive	 TMS	 decreases	
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accuracy	of	verb	generation	 in	congenitally	blind	but	not	 in	blindfolded	controls	 (Amedi	et	

al.	2004).	TMS	on	right	dorsal	occipital	 regions	disrupts	performance	on	sound	 localization	

only	in	blind	individuals,	but	does	not	alter	the	discrimination	of	pitch	and	intensity	in	sound	

processing	tasks	(Collignon	et	al.	2006).	This	study	suggests	that	regions	typically	involved	in	

visuo-spatial	processing	(right	dorsal	occipital	stream)	in	sighted	individuals	are	recruited	in	

audio-spatial	processing	in	the	blinds	(Figure	4).	

	

	
Figure	4.	Functional	relevance	of	right	dorsal	occipital	region	for	spatial	localization	in	early	blind	individuals.	TMS	applied	to	
right	dorsal	extrastriate	regions	selectively	disrupts	sound	 localization	only	 in	early	blinds.	Pitch	and	 intensity	discriminations	
remain	unaffected	in	both	groups.		Adapted	from	Collignon	et	al.	(2007).	

	

	

Importantly,	the	functional	recruitment	of	occipital	regions	in	blinds	appears	to	have	

a	functional	role	in	task-dependent	processing	rather	than	an	unspecific	generalized	gain	of	

function.	

	

1.4.2.	Critical	period	of	neural	development	

As	 mentioned	 above,	 non-visual	 tasks	 strongly	 activate	 the	 occipital	 cortex	 of	

congenitally	 blind	 and	 early	 blind	 groups.	 The	 extent	 to	 which	 crossmodal	 plasticity	

manifests	in	late	blinds	remains	more	elusive.		One	of	the	first	neuroimaging	studies	in	blind	

individuals	 demonstrated	 larger	 occipital	 activity	 in	 early	 blinds	 compared	 to	 the	 sighted	

controls	with	eyes	closed	and	late	blinds	(Veraart	et	al.,	1990,	see	Figure	3).	Although	both	

late	and	early	blind	groups	showed	higher	activity	in	the	visual	areas	than	sighted	peers	in	a	

tactile	 task,	 V1	 activity	 was	 suppressed	 in	 the	 late	 blind	 group	 (Sadato	 et	 al.	 2002).	 This	

suggests	the	existence	of	a	critical	period	for	crossmodal	plasticity	in	the	blind	individuals.	
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Visually	dominated	motion	responsive	regions	hMT+/V5	reveal	significantly	different	

activity	 in	 early	 and	 late	 blind	 individuals	 (Bedny	 et	 al.	 2010).	 In	 early	 blind	 individuals,	

hMT+/V5	is	activated	for	auditory	motion.	However,	activity	in	late-blind	adults	for	moving	

sounds	is	below	baseline,	like	in	sighted	subjects	(Figure	5).	Interestingly,	in	a	blind	individual	

who	lost	his	sight	after	the	age	of	2-3,	the	responsiveness	of	hMT+/V5	was	more	similar	to	

sighted	group	 rather	early	blind	group	 (Bedny	et	al.	 2010).	Despite	more	 than	50	years	of	

visual	deprivation,	in	this	individual,	visual	motion	area	hMT+/V5	region	were	not	recruited	

for	auditory	motion.	

	

	
Figure	5.	Critical	period	 for	crossmodal	plasticity	 in	hMT+/V5	 for	auditory	motion	 in	early	and	 late	blind,	and	
sighted	individuals.	Responses	to	auditory	looming	with	high	(straight	lines)	and	low	motion	(dashed	lines)	content	are	
only	seen	 in	visual	areas	of	 the	congenitally	blind	 individuals,	while	 late	blind	 individuals	 show	baseline	activity	as	an	
early	blind	subject	who	lost	sight	at	the	age	of	2.5	years	old.	Adapted	from	Bedny	et	al.	(2010).	

	

Similarly,	 while	 sound	 processing	 activates	 some	 occipital	 regions	 in	 both	

congenitally	and	late	blind	individuals,	the	cuneus	is	only	activated	by	sound	in	congenitally	

but	 not	 late	 blinds	 (Collignon,	 Dormal,	 Albouy,	 et	 al.	 2013).	 More	 importantly,	 spatial	

processing	of	sounds	selectively	activates	the	right	dorsal	stream	only	 in	congenitally	blind	

individuals.	Recent	studies	in	cataract-reversal	individuals	demonstrated	that	a	short	period	

of	visual	deprivation	triggers	 long-lasting	occipital	cortex	reorganization,	but	not	functional	

specialization	 (Collignon	 et	 al.	 2015),	 and	 enhanced	 the	 salience	of	 auditory	 inputs	 during	

audiovisual	integration	tasks	(de	Heering	et	al.	2016).	Furthermore,	no	difference	in	auditory	

cortical	 responses	was	observed	during	an	auditory	motion	task	between	cataract-reversal	

individuals	and	normally	sighted	participants	(Collignon	et	al.,	2015),	suggesting	that	a	brief	

and	 reversible	 period	 of	 visual	 deprivation	 does	 not	 have	 permanent	 effect	 on	 auditory	

cortex.	Losing	sight	during	a	critical	period	of	development	may	lead	to	the	enhancement	of	

functional	 specialization	 in	 visual	 cortex	 to	 a	 non-visual	 modality,	 while	 in	 late	 blind	

individuals,	 crossmodal	 plasticity	 shows	no	domain	 specific	 functional	 organization.	 In	 this	

thesis,	only	congenitally	and	early	blind	individuals	will	be	included	as	participants	since	we	
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were	mostly	 interested	by	the	question	of	how	an	early	and	total	absence	of	vision	affects	

the	neural	network	dedicated	to	motion	processing.	

	

1.4.3.	Functional	specialization	–	Crossmodal	reorganization	

The	 visual	 cortex	 in	 sighted	 individuals	 has	 two	 pathways	 to	 process	 information:	

the	ventral	stream	is	involved	with	object	representation	(what	pathway)	and	dorsal	stream	

processes	 spatial	 and	 sensorimotor	 information	 (where	 pathway)	 (Goodale	 1992).	 Recent	

studies	 further	 suggested	 a	 more	 complex	 substream	 system	 including	 “how”	 pathway	

processing	sensorimotor	information	(Kravitz	et	al.,	2011;	see	for	review	Rauchkecker	2017).	

Some	 studies	 question	whether	 the	 rewired	 visually	 deprived	 occipital	 cortex	 also	

has	a	similar	division	of	labor	when	processing	non-visual	input.	In	the	congenitally	blind,	the	

ventral	stream	is	selectively	active	for	object	representation	(Pietrini	et	al.	2004)	and	shape	

recognition	 (Amedi	 et	 al.	 2007).	 Furthermore,	 it	 shows	 preference	 for	 both	 living	 and	

nonliving	stimuli	(Mahon	et	al.	2009):	the	parahippocampal	place	area	(PPA)	is	selective	for	

large	 objects	 (He	 et	 al.	 2013),	 the	 lateral	 occipitotemporal	 cortex	 (LOC)	 maintains	 its	

tool/shape	selectivity	(Peelen	et	al.	2013),	and	the	visual	word	form	area	(VWFA)	is	recruited	

for	 Braille	 word	 processing	 (Büchel	 et	 al.	 1998;	 Reich	 et	 al.	 2011).	 Studies	 using	 sensory	

substitution	devices	(SSD)	demonstrated	that	the	visual	number-form	area	is	activated	in	the	

congenitally	blind	for	number	recognition	(Abboud	et	al.	2015),	 letter	strings	trigger	higher	

response	 in	 visual	 word-form	 area	 (Reich	 et	 al.	 2011),	 shape	 information	 drives	 neural	

activity	 in	 tactile-visual	 area	 (Amedi	 et	 al.	 2007)	 and	 body	 parts	 activate	 the	 extrastriate	

body	 area	 (Striem-Amit	 &	 Amedi	 2014).	 Taken	 together,	 the	 ventral	 stream	 in	 blind	

individuals	seems	to	maintain	its	functional	organization	for	processing	object	identity.	

The	 dorsal	 stream	 is	 selectively	 active	 for	 auditory	 localization	 in	 early	 blind	

individuals	 (Weeks	et	al.	2000;	Collignon	et	al.,	2007;	Collignon	et	al.	2011).	The	functional	

specialization	of	 the	 right	dorsal	occipital	 cortex	 for	processing	 tactile	and	auditory	 spatial	

information	 could	 stem	 from	 being	 involved	 in	 visuo-spatial	 processing	 in	 the	 sighted	

(Collignon	 et	 al.	 2011;	 Collignon	 et	 al.	 2009;	 Collignon,	 Dormal,	 Albouy,	 et	 al.	 2013).	 This	

suggests	that	right	dorsal	occipital	cortex	may	maintain	its	functional	architecture	and	might	

process	 non-visual	 spatial	 input	 in	 the	 absence	 of	 sight.	 In	 the	 dorsal	 stream,	 middle	

temporal	 gyrus,	 a	 region	 dedicated	 to	 support	 visual	 motion	 in	 the	 sighted	 individuals,	

developed	to	process	auditory	 (Poirier	et	al.	2006;	Bedny	et	al.	2010;	Wolbers	et	al.	2011;	

Jiang	et	al.	2014;	Dormal	et	al.	2016)	and	tactile	(Ricciardi	et	al.	2007;	Matteau	et	al.	2010)	

motion	in	case	of	early	visual	deprivation	(Figure	6).	
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Figure	 6.	 Auditory	 motion	 selectivity	 in	 early	 blind	 individuals.	 A.	 Auditory	 motion	 selectivity	 in	 the	 blind	 group	 was	
calculated	with	a	conjunction	analysis	of	Blind	>	Sighted	x	 [In-depth	Motion	>	Static]	And	Blind	>Sighted	x	 [Lateral	Motion	>	
Static].	 The	 observed	 auditory	 activity	 overlaps	 with	 visual	 motion	 area,	 hMT+/V5	 in	 sighted.	 Left	 below	 panel:	 The	 beta	
parameter	 estimates	 show	 that	 in	 blind	 group	motion	 conditions	 activate	 hMT+/V5,	while	 in	 sighted	 hMT+/V5	 activation	 is	
suppressed	during	auditory	motion.	B.	The	activity	map	in	red	represents	tactile	motion	activity	in	blind	individuals,	while	the	
green	indicates	the	visual	motion	area	in	sighted.	In	yellow	is	the	overlap	between	tactile	and	visual	motion.	C.	Beta	parameter	
estimates	of	auditory	motion	 responses	within	 the	visually	defined	hMT+/V5	 region	 in	both	sighted	 (gray)	and	blind	 (black).	
Adapted	from	Dormal	et	al.	(2016)	(A),	Ricciardi	et	al.	(2007)	(B),	Jiang	et	al.	(2014)	(C).	

In	the	case	of	early	blindness,	it	therefore	seems	that	the	functional	organization	of	

occipital	 areas	 that	 are	 dedicated	 to	 process	 specific	 visual	 input	 in	 the	 sighted,	 is	

maintained	 but	 reoriented	 toward	 non-visual	 modalities.	 The	 organization	 of	 the	 visual	

cortex	appears	to	be	based	on	specific	computational	units	that	are	dedicated	to	perform	a	

particular	function,	rather	than	strictly	sensory-dependent.	However,	when	lacking	input	in	

the	preferred	modality,	this	cortex	reorients	 itself	towards	auditory	or	tactile	modalities	to	

accomplish	 the	required	computation,	at	 least	when	vision	 is	 lost	early	 in	 life	 (see	reviews	

Dormal	&	Collignon	2011;	Voss	&	Zatorre	2012).	

	

1.3.4.	Non	visual	activations	in	the	visual	cortex	of	sighted	

Several	 studies	 have	 found	 evidence	 that,	 to	 some	 extent,	 the	 occipital	 cortex	 is	

recruited	 for	 nonvisual	 tasks	 even	 in	 the	 sighted	 individuals	 (Alink	 et	 al.	 2008;	 Lewis	 &	

Noppeney	 2010;	 Sadaghiani	 et	 al.	 2009).	 For	 instance,	 when	 the	 visual	 information	 is	

unreliable,	 evoked	 BOLD	 responses	 in	 hMT+/V5	 region	 for	 audio-visual	 stimuli	 increases	

(Sadaghiani	 et	 al.,	 2009).	 These	 results	 suggest	 that	 hMT+/V5	 is	 sensitive	 to	 the	 other	

modalities	in	the	absence	of	reliable	visual	input.	

Auditory	and	tactile	dynamic	stimuli	alone	can	also	evoke	crossmodal	activation	 in	

A.

B. C. hMT+/V5

In-depth 
Lateral  
Static

Blind  
Sighted



Chapter 1 

	 21	

sighted	individuals	in	the	vicinity	of	hMT+/V5	(Pavani	et	al.	2002;	Warren	et	al.	2002;	Poirier	

et	al.	2005;	Strnad	et	al.	2013;	Hagen	et	al.	2002;	Matteau	et	al.	2010;	Ricciardi	et	al.	2007;	

van	 Kemenade	 et	 al.	 2013).	 Similarly,	 LOC	 region	 in	 the	 ventral	 stream,	 preferentially	

responsive	 to	 pictures	 of	 objects	 (Malach	 et	 al.	 1995),	 shows	 activity	 for	 tactile	 object	

exploration	 (Amedi	et	al.,	2001;	Amedi	et	al.	2007;	Amedi	et	al.	2010;	Zhang	 	et	al.,	2004)	

and	 auditory	 size	 judgments	 in	 living	 versus	 nonliving	 objects	 (Peelen	 et	 al.,	 2013),	

manipulable	 and	 non-manipulable	 objects	 (He	 et	 al.,	 2013)	 in	 sighted	 individuals.	 These	

studies	raise	an	important	question:	is	the	functional	recruitment	of	these	occipital	areas	in	

blind	individuals	a	consequence	of	visual	deprivation?	Or	does	it	rely	on	pre-existing/innate	

organization	 of	 the	 brain	 in	 both	 blind	 and	 sighted	 individuals	 (Pascual-Leone	&	Hamilton	

2001;	 Ricciardi	 et	 al.	 2014;	 Hannagan	 et	 al.	 2015)?	 The	 meta-modal	 theory	 of	 the	 brain	

suggests	that	areas	typically	known	to	be	unisensory	might	be	organized	to	compute	a	given	

function	 regardless	 of	 input	 modality	 (Pascual-Leone	 &	 Hamilton	 2001).	 For	 instance,	

hMT+/V5	 would	 prefer	 visual	 input	 due	 to	 the	 innate	 specialization	 of	 that	 region	 for	

computing	 motion/spatial	 information	 and	 the	 suitability	 of	 the	 visual	 modality	 to	 carry	

most	 informative	 cues	 for	 that	 function.	 One	 of	 the	 proposed	 explanations	 of	 remaining	

functional	 organization	 in	 early	 blinds	 is	 that,	 when	 a	 representation	 is	 shared	 across	

modalities,	 such	 as	motion	 processing,	 multimodal	 functions	 or	 attributes	 have	 a	 greater	

potential	to	be	recruited	for	crossmodal	processing	(Lomber	&	Malhorta	2008;	Collignon	et	

al.,	2011).	The	computational	mechanism	of	visual	motion	area	might	be	recycled	to	process	

dynamic	 information	 when	 dominant	 sensory	 input	 is	 not	 available.	 Therefore,	 some	

researchers	 further	 argued	 that	 visual	 deprivation	might	 not	 be	 compulsory	 for	 observing	

crossmodal	 responses	 in	 the	“visual”	cortex.	However,	 the	 response	could	be	enhanced	 in	

the	lack	of	preferred	modality	by	not	having	competitive	visual	input.	For	instance,	in	case	of	

visual	deprivation	 the	observed	 recruitment	of	hMT+/V5	could	 result	by	 the	unmasking	or	

the	 enhancement	 of	 a	 pre-existing	 supramodal	 nature	 of	 hMT+/V5	 (Voss	&	 Zatorre	 2012;	

Pietrini	et	al.,	2011;	Ricciardi	et	al.,	2014).	

It	 is	 important	 to	emphasize	 that	similar	activation	 in	a	given	region	could	emerge	

from	 different	 processes/cognitive	 computations	 in	 blind	 and	 sighted	 populations.	 An	

alternative	 interpretation	 of	 observed	 crossmodal	 responses	 in	 area	 hMT+/V5	 in	 sighted	

individuals	 is	 visual	 mental	 imagery	 (Goebel	 et	 al.	 1998;	 Emmerling	 et	 al.	 2016).	 Mental	

visual	 imagery	 evokes	 reliable	 activity	 in	 the	 sighted	 visual	 cortex	 (Kosslyn	 et	 al.	 1993;	

Slotnick	et	al.	2005)	and	imagining	apparent	motion	activates	hMT+/V5	(Goebel	et	al.,	1998).	

A	 recent	 high-field	 fMRI	 study	 demonstrated	 successful	 decoding	 of	 imagined	 motion	
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directions	in	hMT+/V5	(Emmerling	et	al.,	2015).	Therefore,	it	could	be	argued	that	hMT+/V5	

supports	 auditory	 motion	 processing	 in	 early	 blinds,	 whereas	 in	 sighted	 the	 corssmodal	

activity	 could	 reflect	 mental	 imagery.	 Ruling	 out	 such	 confound	 could	 be	 challenging,	

however,	 the	 reliance	 on	 visual	 imagery	 can	 be	 reduced	 by	 using	 low	 imagery	 content	

(noise).	

In	 sighted	 individuals,	 however,	 several	 studies	 failed	 to	 showing	 univariate	

responses	to	auditory	stimuli	alone	(Lewis	et	al.,	2000;	Bedny	et	al.,	2010;	Alink	et	al.,	2012),	

and	 instead	demonstrated	deactivation	for	auditory	motion	(Saenz	et	al.	2008;	Jiang	et	al.,	

2014;	Dormal	et	al.,	2016),	spatial	localization	(Collignon	et	al.,	2011;	Renier	et	al.	2010),	and	

tactile	 (Gougoux	 et	 al.,	 2005,	 Laurenti	 et	 al.,	 2002;	 Merabet	 	 et	 al.,	 2007)	 processing.	

Interestingly,	 when	 univariate	 activity	 showed	 deactivation	 or	 no	 response	 to	 auditory	

motion	 in	 sighted	 individuals;	 multivariate	 analysis	 provided	 significant	 results	 about	 the	

presence	of	auditory	motion	information	in	hMT+/V5	for	sighted	(Figure	7).	
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Figure	 7.	Auditory	motion	 representations	 in	 hMT+/V5	 in	 sighted	 individuals.	 A.	 Left	 panel:	 Yellow	 regions	 show	 auditory	
motion	 selective	 activity	 in	 the	 sighted	 group,	 blue	 indicates	 visual	 motion	 activity	 in	 hMT+/V5,	 and	 green	 is	 the	 overlap	
between	visual	and	auditory	motion.	Right	panel:	Deactivation	of	auditory	motion	in	sighted	was	demonstrated	in	comparison	
with	 two	 sight-recovery	 participants.	 B-D.	 Data	 was	 obtained	 from	 Bedny	 et	 al.,	 (2010).	 (C)	 Univariate	 analysis	 based	 on	
hMT+/V5	ROI,	percent	signal	change	in	early	blind	and	sighted	group.	(D).	Multivariate	results	showing	no	significant	difference	
of	classification	performance	for	the	decoding	of	high	versus	low	motion	conditions	in	early	blind	and	sighted	participants	(for	
univariate	analysis,	see	Figure	5,	Bedny	et	al.,	2010).	E-F.	Results	of	the	univariate	(top	panel)	and	multivariate	pattern	(bottom	
panel)	 analyses	 in	 the	 auditory	 motion	 experiments.	 Bottom-Left-panel:	 multi-class	 decoding	 accuracy	 of	 the	 3	 auditory	
conditions	 (in-depth,	 lateral,	 static).	 Bottom-Right-panel:	 binary	 decoding	 accuracy	 of	 the	 2	 auditory	motion	 conditions	 (in-
depth	vs.	lateral	motion).	In	the	lack	of	univariate	analysis,	multivariate	can	provide	information	related	to	the	auditory	motion	
within	hMT/V5.	Adapted	from	Saenz	et	al.	(2008)	(A),	Strnard	et	al.	(2013)	(B-D),	and	Dormal	et	al.	(2016)	(E-F).	

	

It	should	be	noted	that	deactivation	by	nonvisual	tasks	could	be,	nevertheless,	task	

dependent	 (Merabet	 et	 al.,	 2007)	 and	 indicate	 the	 presence	 of	 nonvisual	 information	 in	

occipital	 cortex	 of	 sighted	 (Ghazanfar	 et	 al.,	 2007).	 Moreover,	 the	 deactivation	 in	 the	

occipital	cortex	due	to	crossmodal	input	could	stem	from	inhibitory	modulations	to	decrease	

influences	from	visual	input	(Laurienti	et	al.,	2002).	

Altogether,	 this	 section	 reviewed	 studies	 on	 cross-modal	 plasticity	 in	 occipital	

regions	and,	mainly	 focused	on	auditory	motion	 responses	 in	hMT+/V5	 in	both	early	blind	

and	 sighted	 individuals.	 Aforementioned	 studies	 support	 the	 notion	 that	 cross-modal	

reorganization	of	hMT+/V5	following	visual	deprivation	maintains	the	computational	role	of	

the	colonized	area	while	 redirecting	 the	modality	 to	non-visual	 input	 (Dormal	et	al.,	2016;	

Jiang	 et	 al.,	 2014;	 Collignon	 et	 al.,	 2009,	 Bedny	 et	 al.,	 2010).	 To	 understand	 how	 visual	

deprivation	 affects	 hMT+/V5	 responses,	 the	 empirical	 work	 in	 study	 2	 was	 dedicated	 to	

investigate	 if	 auditory	motion	 direction	 can	 be	 decoded	 in	 hMT+/V5	 in	 both	 sighted	 and	

blind	 individuals,	 or	 whether	 this	 is	 specific	 to	 early	 blind	 individuals.	 Addressing	 this	

question	 would	 clarify	 how	 (visual)	 experience	 affects	 the	 functional	 development	 of	

hMT+/V5,	 as	 well	 as	 the	 modality	 preferences	 of	 this	 region	 for	 motion	 processing.	

Furthermore,	 the	 enhancement	 of	 hMT+/V5	 for	 auditory	 motion	 questions	 the	

computational	 role	 of	 regions	 within	 the	 auditory	 cortex	 that	 are	 typically	 involved	 in	

spatial/motion	 processing.	We,	 therefore,	 investigated	 both	 crossmodal	 plasticity	 in	 visual	

motion	 area,	 and	 intramodal	 plasticity	 in	 auditory	motion	 responsive	 area	 to	 deepen	 the	

understanding	 of	 computational	 roles	 of	 auditory	 and	 visual	 cortices	 in	 early	 blind	 and	

sighted	individuals.	

	
1.5.	 METHODS	 TO	 INVESTIGATE	 HOW	 THE	 BRAIN	 IMPLEMENTS	 AUDITORY	 MOTION	

DIRECTION	AND	SOUND-SOURCE	LOCATION	

In	order	 to	address	how	visual	and	auditory	cortices	code	for	auditory	motion	and	

localization,	advanced	sound	system	and	state-of-art	 fMRI	data	analyses	were	used.	 In	 the	

following	section,	general	information	related	to	these	methods	is	described.	
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1.5.1.	Sound	system	

Our	limited	knowledge	of	the	auditory	space	processing	in	the	cortex	might	notably	

be	related	to	the	technical	challenge	of	evoking	vivid	auditory	experience	while	lying	in	the	

unwelcoming	and	noisy	scanner	environment.	To	create	an	externalized	ecological	sensation	

of	 sound	 location	 and	motion,	 we	 relied	 on	 individual	 in-ear	 stereo	 recordings	 that	 were	

recorded	from	each	participant	in	both	horizontal	and	vertical	axes.	Then,	these	recordings	

were	re-played	to	the	participants	when	they	were	inside	fMRI.	By	using	in-ear	recordings	of	

external	sounds,	auditory	stimuli	automatically	convolved	with	each	individual's	own	pinna	

and	 head	 related	 transfer	 function	 to	 produce	 the	 auditory	 perception	 in	 external	 space	

(Wightman	 &	 Kistler	 1989).	 Maintaining	 ecological	 properties	 of	 subject-specific	 binaural	

(interaural	time	and	level	differences)	and	spectral	cues	plays	a	crucial	role	in	sharpening	the	

auditory	 perception	 and	 increases	 the	 richness	 of	 the	 spatial	 cues	 (Hofman	 et	 al.	 1998;	

Pavani	et	al.	2002)	triggering	more	reliable	brain	response	to	the	multiplexed	aspect	related	

to	spatial	hearing.	

	

1.5.2.	fMRI	data	analyses	

MVPA	

In	 the	 last	 two	 decades,	 pattern	 classification	 techniques	 to	 analyze	 fMRI	 data	

brought	new	perspectives	 to	cognitive	neuroscience	 (see	 review	Haxby	2012;	Kriegeskorte	

et	 al.	 2008;	 Haynes	 2015).	 Unlike	 conventional	 univariate	 approach,	 multivariate	 pattern	

analysis	allowed	neuroscientists	 to	 investigate	activity	pattern	of	many	voxels,	 rather	 than	

focusing	solely	on	individual	voxels	(Cox	&	Savoy	2003).	Conventional	fMRI	analysis	reveals	

the	voxels	that	show	significant	response	to	experimental	conditions,	therefore	providing	a	

measure	 of	 the	 overall	 responsiveness	 of	 a	 region	 (Figure	 8A).	 Voxels	with	 consistent	 but	

non-significant	responses	are	discarded	in	univariate	analyses,	even	if	they	carry	information	

about	 the	 experimental	 condition	 (Norman	 et	 al.	 2006;	 Haxby	 et	 al.	 2001;	 Cox	 &	 Savoy	

2003).	 These	 fine-scale	 spatial	 patterns	 that	 might	 carry	 information	 about	 the	 different	

experimental	 conditions	 are	 the	 bases	 of	 MVPA	 approach.	 In	 MVPA,	 classifiers	 (i.e.,	

machine-learning	 algorithms	 such	 as	 support-vector-machines,	 SVMs)	 are	 trained	 with	

extracted	 pattern	 of	 activity	 from	 a	 brain	 region	 to	 differentiate	 between	 experimental	

conditions.	Next,	 the	classifiers	are	 tested	on	unknown	neural	patterns	 (Figure	8B).	Above	

chance-level	 decoding	 accuracy	 is	 a	 proxy	 that	 neural	 patterns	 contain	 information	 about	

the	 experimental	 conditions.	 In	 the	 present	 thesis,	 MVPA	 approach	 was	 used	 to	 reveal	
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auditory	motion	direction	and	sound	source	location	information	in	both	visual	and	auditory	

cortices.	

	

Cross-condition	MVPA	

To	understand	whether	brain	 regions	 contain	 condition-specific	 (e.g.	 direction	and	

location)	 and/or	 modality-specific	 (e.g.	 visual	 and	 auditory)	 information,	 several	 studies	

employed	cross-condition	(Formisano	et	al.,	2008)	or	cross-modality	decoding	analysis	(Man	

et	al.	2012;	Kaplan	et	al.	2015;	Fairhall	&	Caramazza	2013).	Cross-condition	or	cross-modality	

decoding	analyses	are	based	on	classifiers	that	are	trained	and	tested	on	the	two	different	

experimental	 conditions	 in	 order	 to	 reveal	 whether	 there	 is	 shared	 information	 across	

conditions	 or	modalities	 (Figure	 8C).	 In	 this	way,	 the	 classifier	 detects	 the	 feature-specific	

information	that	is	shared	by	both	modalities/conditions.	

	

	
Figure	 8.	 Univariate	 and	 Multivariate	 Analyses.	 A.	 Univariate	 analyses	 model	 each	 voxel	 individually	 based	 on	
regressors/contrasts,	and	captures	areas	where	all	voxels	 show	an	effect	 in	 the	same	direction.	B.	Multivariate	classification	
analysis	 extracts	 pattern	 of	 activity	 -	 patch	 of	 voxels,	 for	 instance	 from	hMT+	 region.	On	 hMT+/V5	 pattern,	we	 used	 cross-
validation	method	 to	 train	 classifier	on	 four	motion	directions	 (left,	 right,	 down	and	up)	 and	 test	whether	 the	 classifier	 can	
predict	unlabeled	motion	direction	 in	 a	dataset,	which	was	not	used	 for	 training.	C.	 Cross-decoding	analysis	 relied	on	 same	
technique,	however	 the	 training	 and	 testing	were	performed	on	different	 conditions.	 Condition	A	was	used	 for	 the	 training	
dataset,	while	testing	performed	on	Condition	B.		Likewise,	reverse	analysis	was	performed,	training	on	Condition	B	and	testing	
on	Condition	A,	then	the	accuracies	were	averaged.	D.	Representational	Similarity	Analysis	(RSA)	relies	on	correlation	between	
dissimilarities	 in	the	neural	patterns	evoked	by	specific	conditions	and	computational	models	that	have	assumptions	on	how	
dissimilar	the	conditions	are.	

	
	

Up	 to	 now,	 the	 cross-modal/condition	 classification	 has	 been	 considered	 as	 a	

technique	 to	 identify	 regions	 that	show	abstract	 representations	of	modality	or	conditions	

(Fairhall	 &	 Caramazza	 2013;	 Hong	 et	 al.	 2012;	 Higgins	 et	 al.	 2017).	 In	 the	 present	

dissertation,	 we	 argue	 that	 even	 cross-MVPA	 can	 provide	 useful	 hints	 about	 shared	

information	across	conditions	in	a	given	region,	results	cannot	be	taken	as	evidence	that	the	

region	 implements	 abstract	 representation.	 In	 machine-learning	 algorithms	 the	 decision	
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boundary	that	classifiers	rely	on,	splits	the	vector	space	depending	on	the	number	of	stimuli.	

In	cross-MVPA,	the	classifier	learns	the	decision	boundary	according	to	the	stimuli-features	

of	condition	A	(e.g.	four	motion	directions)	and	classifies	the	stimuli	in	condition	B	(e.g.	four	

sound	source	locations)	according	to	learned	decision	boundary.	The	successful	cross-MVPA	

reveals	there	is	shared	information	across	conditions.	However,	it	fails	at	conveying	further	

information	 than	 stimuli-features	 in	 motion	 direction	 and	 sound	 source	 location	 can	 be	

differentiated	 with	 the	 same	 decision	 boundary.	 Anti-correlated	 neural	 patterns	 of	 two	

conditions	 could	 potentially	 lead	 to	 successful	 cross-MVPA	 (Rezk	 et	 al.,	 2018),	 therefore	

cross-condition	decoding	should	be	interpreted	with	caution.	

	

Representational	similarity	analysis	(RSA)	

RSA	 is	 another	 multivariate	 pattern	 approach	 that	 relates	 three	 major	 branches:	

brain	 activity	 measurement,	 behavioral	 measurement,	 and	 computational	 modeling	

(Kriegeskorte	 et	 al.	 2008).	 To	 deepen	 the	 understandings	 of	 neural	 activity	 patterns,	 this	

approach	compares	the	representational	similarities	between	each	experimental	condition.	

The	 correlations	 between	 activity	 patterns	 and	 either	 behavioral	 measurement	 and/or	

computational	models	 indicate	how	the	information	is	represented	in	a	given	brain	region.	

Abstracting	 the	 information	 from	 the	 neural	 pattern	 itself,	 allows	 us	 to	 make	 direct	

comparisons	 between	 represented	 similarities	with	 computational	models,	 different	 brain	

regions,	and	even	across	populations	(Kriegeskorte	et	al.,	2008).	

Interestingly,	RSA	can	detect	the	degrees	of	similarities	between	the	two	conditions,	

unlike	 cross-MVPA.	 The	 reason	 is	 that	 RSA	 relies	 on	 correlations	 between	 the	 patterns	 of	

activity,	therefore	can	detect	and	differentiate	positive	and	negative	correlations.	The	 idea	

of	 investigating	 abstract	 representations	 with	 both	 cross-MVPA	 and	 RSA	 is	 coming	 from	

results	 of	 an	 experiment	 performed	 in	 our	 lab.	 In	 sighted	 participants,	 visual	 motion	

selective	 area	 responds	 to	 both	 visual	 and	 auditory	motion,	 and	 cross-MVPA	 (training	 on	

visual	motion,	 testing	 on	 auditory	motion)	 provided	 significant	 results	 (Rezk	 et.	 al,	 2018).	

The	 cross-MVPA	 results	 could	 lead	 to	 the	 wrong	 assumption	 that	 hMT+/V5	 computes	

motion	 independently	 of	 the	 modality.	 However,	 further	 multivariate	 analyses	 provided	

evidence	that	auditory	and	visual	motion	evokes	de-correlated	neural	patterns	in	hMT+/V5.	

We	 can,	 therefore,	 conclude	 that	 this	 is	 a	 motion-specific	 region	 that	 contains	 shared	

information	between	modalities	but	it	is	not	abstracted	from	the	sensory	input.	In	fact,	the	

patterns	of	activity	generated	from	visual	and	auditory	modalities	are	still	distinguishable.	In	

the	 present	 thesis,	 we	 performed	 cross-condition	 decoding	 to	 reveal	 whether	 auditory	
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motion	 and	 sound-source	 location	 patterns	 share	 representations	 within	 the	 PT,	 and	 to	

further	analyze	their	neural	patterns	implementing	RSA.	

We	 performed	 RSA	 to	 understand	 the	 similarities	 between	 the	 neural	 patterns	

generated	by	the	auditory	motion	directions	and	the	sound-source	 locations	 in	the	PT.	We	

used	Pearson’s	linear	correlation	as	the	similarity	measure	to	compare	each	possible	pair	of	

activity	 patterns	 evoked	 by	 the	 four	 different	 motion	 directions	 and	 four	 different	 static	

locations	 (Figure	8D).	 This	 resulted	 in	an	8	 x	8	 correlation	matrix	 for	each	participant	 that	

was	then	converted	into	a	representational	dissimilarity	matrix	(RDMs).	Each	square	of	the	

RDM	 contains	 the	 dissimilarity	 index	 between	 the	 patterns	 of	 activity	 generated	 by	 two	

conditions,	in	other	words	the	RDM	represents	how	different	is	the	neural	representation	of	

each	 condition	 from	 the	 neural	 representations	 of	 all	 the	 other	 condition	 in	 the	 selected	

region-of-interest.	 Then,	 we	 created	 multiple	 computational	 models	 ranging	 from	 a	 fully	

condition-distinct	model	to	a	fully	condition-invariant	model	with	intermediate	gradients	in	

between	(Zabicki	et	al.	2016).	Finally,	we	computed	Pearson’s	correlation	to	compare	neural	

RDMs	 and	 computational	 model	 RDMs.	 The	 resulting	 correlation	 captures	 which	

computational	 model	 better	 explains	 the	 neural	 dissimilarity	 patterns	 between	 motion	

direction	and	static	location	conditions.	

	

1.6.	SUMMARY	AND	CONCLUSION	

	

Before	going	to	the	experimental	part	of	this	thesis,	we	briefly	reviewed	the	studies	

on	 auditory	 spatial	 (e.g.	 motion	 and	 static)	 processing	 in	 auditory	 and	 visual	 motion	

responsive	areas.	We,	then,	described	what	we	currently	know	about	how	blindness	impacts	

on	auditory	motion	processing.	Up	to	our	knowledge,	very	few	studies	investigated	how	the	

brain	represents	auditory	motion	in	comparison	to	sound-source	location.	In	our	study	1,	we	

aimed	 at	 understanding	 whether	 auditory	 motion	 perception	 and	 sound	 source	 location	

share,	at	 least	partially,	a	common	neural	representation	in	the	auditory	spatial	processing	

region,	 in	particular	 the	planum	temporale.	Specifically,	we	asked	whether	neural	patterns	

show	selectivity	 for	motion	direction	and	spatial	 location.	 In	 study	2,	we	 investigated	how	

visual	experience	shapes	the	functional	reorganization	of	motion	responsive	regions	in	visual	

and	auditory	cortices.	Addressing	this	question	aimed	to	clarify	the	interplay	between	both	

auditory	and	visual	cortical	regions	typically	involved	in	the	processing	of	moving	stimuli.	We	

will	then	summarize	the	main	findings	of	these	empirical	studies	and	describe	how	they	help	

to	bring	new	theoretical	perspectives	in	the	research	field.	
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2.1.	ABSTRACT	

	

The	ability	to	precisely	compute	the	 location	and	direction	of	sounds	 in	external	space	 is	a	

crucial	perceptual	process	to	efficiently	interact	with	dynamic	environments.	Little	is	known,	

however,	 about	 how	 the	 human	 brain	 implements	 spatial	 hearing.	 In	 our	 study,	we	 used	

fMRI	to	characterize	the	brain	activity	of	humans	listening	to	left,	right,	up	and	down	moving	

as	well	as	static	sounds.	Whole	brain	univariate	results	contrasting	moving	and	static	sounds	

varying	 in	 their	 location	 revealed	 a	 robust	 functional	 preference	 for	 auditory	 motion	 in	

bilateral	 human	 Planum	 Temporale	 (hPT).	 Importantly,	 multivariate	 pattern	 classification	

analysis	showed	that	hPT	contains	 information	about	both	auditory	motion	directions	and,	

to	a	 lesser	extent,	 sound	 source	 locations.	More	precisely,	we	observed	 that	our	 classifier	

successfully	decoded	opposite	axes	of	motion	(vertical	versus	horizontal)	but	was	 less	able	

to	classify	opposite	within-axis	direction	(left	versus	right	or	up	versus	down);	reminiscent	of	

the	axis	of	motion	organization	observed	 in	 the	middle-temporal	cortex	 for	vision.	Further	

multivariate	 analyses	 demonstrated	 that	 even	 if	 motion	 direction	 and	 location	 rely	 on	

partially	shared	pattern	geometries	in	PT,	the	responses	elicited	by	static	and	moving	sounds	

were	 however	 distinct.	 Altogether	 our	 results	 demonstrate	 that	 human	 PT	 codes	 for	

auditory	motion	and	location	but	that	the	underlying	neural	computation	 linked	to	motion	

processing	 is	 more	 reliable	 and	 partially	 distinct	 from	 the	 one	 supporting	 sound	 source	

location.	
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2.2.INTRODUCTION		

	

The	ability	 to	precisely	 locate	and	 track	moving	 information	 is	a	 crucial	perceptual	

skill	for	efficient	interaction	with	the	environment.	While	the	brain	mechanisms	underlying	

the	processing	of	visual	localization	and	visual	motion	have	received	considerable	attention	

(Braddick	 et	 al.,	 2001;	 Britten	 et	 al.,	 1996;	Movshon	 and	 Newsome,	 1996;	 Newsome	 and	

Park,	 1988),	 much	 less	 is	 known	 about	 how	 the	 brain	 implements	 spatial	 hearing.	 The	

representation	 of	 auditory	 space	 relies	 on	 the	 computations	 and	 comparison	 of	 intensity,	

temporal	and	spectral	cues	that	arise	at	each	ear	(Blauert,	1982;	Searle	et	al.,	1976).	In	the	

auditory	pathway,	these	cues	are	both	processed	and	integrated	in	the	thalamus,	brainstem	

and	 cortex	 in	 order	 to	 create	 an	 integrated	 neural	 representation	 of	 auditory	 space	

(Boudreau	and	Tsuchitani,	1968;	Goldberg	and	Brown,	1969;	Imig	et	al.,	2000;	Ingham	et	al.,	

2001;	Young	et	al.,	1992;	Yin	and	Chan,	1990).	At	the	cortical	level,	the	acoustic	space	lacks	

point-to-point	spatial	representation	(Derey	et	al.,	2016;	Middlebrooks,	2002;	Middlebrooks	

and	Bremen,	2013;	Middlebrooks	and	Pettigrew,	1981;	Ortiz-Rios	et	al.,	2017;	Rajan	et	al.,	

1990).	 However,	 differences	 in	 spatial	 selectivity	 along	 anterior-posterior	 auditory	 areas	

suggest	that	specific	regions	within	the	auditory	cortex	might	specialize	in	the	processing	of	

spatial	 hearing.	 Lesion	 studies	 have	 indeed	 demonstrated	 the	 critical	 role	 of	 the	 auditory	

cortex	 for	 spatial	 hearing	 in	 humans	 (Duffour-Nikolov	 et	 al.,	 2012;	 Sanchez-Longo	 and	

Forster,	1958;	Zatorre	and	Belin,	2001).	Similar	to	the	visual	cortex	dual-stream	processing	

model,	 partially	 distinct	 ventral	 “what”	 and	 dorsal	 “where”	 auditory	 processing	 streams	

have	been	proposed	for	auditory	processing	(Barrett	and	Hall,	2006;	Lomber	and	Malhotra,	

2008;	Rauschecker	and	Tian,	2000;	Recanzone,	2000;	Romanski	et	al.,	1999;	Tian	et	al.,	2001;	

Warren	and	Griffiths,	2003).	However,	 it	 remains	poorly	understood	how	the	human	brain	

implements	 the	processing	of	auditory	motion	and	 location,	and	how	these	two	processes	

differ	from	each	other.		

One	 candidate	 region	 that	 might	 integrate	 spatial	 cues	 to	 compute	 motion	 and	

location	 information	 in	 the	human	auditory	 cortex	 is	 the	planum	 temporale	 (hPT)	 (Barrett	

and	Hall,	2006;	Baumgart	and	Gaschler-Markefski,	1999;	Warren	et	al.,	2002).	hPT	is	located	

in	the	superior	temporal	gyrus,	posterior	to	Helsch’	gyrus,	and	is	typically	considered	part	of	

the	 dorsal	 auditory	 stream	 (Poirier	 et	 al.,	 2017;	 Rauschecker	 and	 Tian,	 2000;	 Recanzone,	

2000;	Romanski	et	al.,	1999;	Tian	et	al.,	2001).	Interestingly,	in	macaque	monkeys	neurons	in	

the	caudal	belt	region	demonstrate	shaper	spatial	tuning	and	proportionally	more	neurons	

show	 spatial	 selectivity	 that	 correlated	 with	 the	 behavioral	 performance	 of	 auditory	
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localization	 compared	 to	 primary	 cortex	 neurons	 (Recanzone	 2000b;	Woods	 et	 al.,	 2006).	

Some	authors	have	suggested	that	hPT	equally	engages	in	the	processing	of	moving	sounds	

and	 the	 location	 of	 static	 sound-sources	 (Barrett	 and	 Hall,	 2006;	 Derey	 et	 al.,	 2016;	

Krumbholz	et	al.,	2005;	Smith	et	al.,	2004,	2007,	2010;	Zatorre	et	al.,	2002).	This	proposition	

is	supported	by	early	animal	electrophysiological	studies	suggesting	the	existence	of	neurons	

in	 the	 auditory	 cortex	 that	 are	 selective	 to	 sound	 source	 location	 and	 motion	 directions	

(Altman,	1968,	1994;	Benson	et	al.,	1981;	Doan	et	al.,	1999;	Imig	et	al.,	1990;	Middlebrooks	

and	Pettigrew,	1981;	Poirier	et	al.,	1997;	Rajan	et	al.,	1990),	which	display	similar	response	

profiles	 for	 moving	 and	 sound	 source	 locations	 (Ahissar	 et	 al.,	 1992;	 Doan	 et	 al.,	 1999;	

Poirier	et	al.,	1997).	 In	contrast,	other	studies	 in	animals	 (Poirier	et	al.,	2017)	and	humans	

(Baumgart	 and	Gaschler-Markefski,	 1999;	Bremmer	et	 al.,	 2001;	Griffiths	 et	 al.,	 1998;	Hall	

and	Moore,	2003;	Krumbholz	et	al.,	2005;	Lewis	et	al.,	2000;	Pavani	et	al.,	2002;	Poirier	et	

al.,	 2005)	 pointed	 toward	 a	 more	 specific	 role	 of	 hPT	 for	 auditory	 motion	 processing.	 In	

addition	to	the	shared	or	distinct	nature	of	the	neural	representation	of	auditory	motion	and	

location	in	the	hPT,	the	characteristic	tuning	of	this	region	for	separate	direction	or	axis	of	

motion/location	remains	unknown.		

The	main	goals	of	the	present	study	were	threefold.	First,	using	multivariate	pattern	analysis	

(MVPA),	we	 investigated	whether	 information	about	auditory	motion	direction	and	sound-

source	 location	 can	 be	 retrieved	 from	 the	 pattern	 of	 activity	 in	 hPT.	 Further,	 we	 asked	

whether	the	spatial	distribution	of	the	neural	representation	 is	 in	the	format	of	“preferred	

axis	 of	 motion”	 as	 observed	 in	 the	 visual	 motion	 selective	 regions	 (Albright	 et	 al.,	 1984;	

Zimmermann	 et	 al.,	 2011).	 Finally,	 we	 aimed	 at	 characterizing	 whether	 the	 processing	 of	

motion	direction	(e.g.	going	to	the	left)	and	sound-source	location	(e.g.	being	in	the	left)	rely	

on	common	neural	representations	in	the	hPT.	

	

2.3.	MATERIALS	AND	METHODS	

	

2.3.1.	Participants	

Eighteen	participants	with	no	reported	auditory	problems	were	recruited	for	the	study.	Two	

participants	were	 excluded	due	 to	poor	 spatial	 hearing	performance	 in	 the	 task.	 The	 final	

sample,	 therefore,	 included	 16	 right-handed	 participants	 (8	 females,	 age	 range:	 20	 to	 42,	

mean	±	 SD	=	31.7	±	5.6	 years).	 Participants	were	blindfolded	and	 instructed	 to	 keep	 their	

eyes	 closed	 throughout	 the	 experiments	 and	 practice	 runs.	 All	 the	 procedures	 were	

approved	by	the	research	ethics	boards	of	the	Centre	for	Mind/Brain	Sciences	(CIMeC)	and	
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University	 of	 Trento.	 Experiments	 were	 undertaken	 with	 the	 understanding	 and	 written	

consent	of	each	participant.	

	

2.3.2.	Auditory	stimuli	

Our	limited	knowledge	of	the	auditory	space	processing	in	the	cortex	of	humans	might	be	a	

consequence	of	 the	 technical	 challenge	of	evoking	vivid	perceptual	experience	of	auditory	

space	 inside	 fMRI.	 To	 create	 an	 externalized	 ecological	 sensation	 of	 sound	 location	 and	

motion,	 we	 relied	 on	 individual	 in-ear	 stereo	 recordings	 that	 were	 recorded	 in	 a	 semi-

anechoic	room	and	from	30	loudspeakers	on	horizontal	and	vertical	planes,	mounted	on	two	

semicircular	 wooden	 structures	 with	 a	 radius	 of	 1.1m	 (see	 Figure	 1A).	 Participants	 were	

seated	in	the	center	of	the	apparatus	with	their	head	on	a	chin-rest,	such	that	the	speakers	

on	 the	 horizontal	 and	 vertical	 planes	 were	 equally	 distant	 from	 participants’	 ears.	 Then,	

these	 recordings	were	 re-played	 to	 the	 participants	when	 they	were	 inside	 the	 functional	

MRI	 (fMRI).	 By	 using	 such	 sound	 system	 with	 in-ear	 recordings,	 auditory	 stimuli	

automatically	convolved	with	each	individuals’	own	pinna	and	head	related	transfer	function	

to	produce	a	salient	auditory	perception	in	external	space.	

	

	
Figure	1.	Stimuli	and	Experimental	Design.	(A)	The	acoustic	apparatus	used	to	present	auditory	moving	and	static	sounds	while	
binaural	 recordings	were	 carried	out	 for	 each	participant	before	 the	 fMRI	 session.	 (B)	 Auditory	 stimuli	 presented	 inside	 the	
fMRI	consisted	of	8	conditions:	leftward,	rightward,	downward	and	upward	moving	stimuli	and	left,	right,	down	and	up	static	
stimuli.	Each	condition	was	presented	for	15	s	(12	repetition	of	1250	ms	sound,	no	ISI)	and	followed	by	7	s	gap	for	indicating	
the	corresponding	direction/location	 in	space	and	8	s	of	silence	(total	 inter-block	 interval	was	15	s).	Sound	presentation	and	
response	 button	 press	 were	 pseudo-randomised.	 Subjects	 were	 asked	 to	 respond	 as	 accurately	 as	 possible	 during	 the	 gap	
period.	(C)	The	behavioural	performance	inside	the	scanner.	

	

2.3.2.1.	Sound	Apparatus	

The	 auditory	 stimuli	 were	 prepared	 using	 custom	 MATLAB	 scripts	 (r2013b;	 Matworks).	

Auditory	stimuli	were	 recorded	using	binaural	 in-ear	omni-directional	microphones	 (Sound	

Professionals-TFB-2;	‘flat’	frequency	range	20–20,000	Hz)	connected	to	a	portable	Zoom	H4n	

digital	wave	recorder	(16-bit,	stereo,	44.1	kHz	sampling	rate).	Microphones	were	positioned	

at	the	opening	of	participant’s	left	and	right	auditory	ear	canals.	While	auditory	stimuli	were	

(a) Recording moving and static sounds (b) fMRI design (c) Behavioral results inside fMRI
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played,	participants	were	listening	without	performing	any	task	with	head	fixed	to	the	chin-

rest	in	front	of	them.	Binaural	in-ear	recordings	allowed	combining	binaural	properties	such	

as	interaural	time	and	intensity	differences,	and	participant	specific	monaural	filtering	cues	

to	create	reliable	and	ecological	auditory	space	sensation	(Pavani	et	al.,	2002).		

	

2.3.2.2.	Stimuli	recordings	

Sound	stimuli	consisted	of	1250	ms	pink	noise	(50	ms	rise/fall	time).	 In	the	motion	

condition,	the	pink	noise	was	presented	moving	in	4	directions:	leftward,	rightward,	upward	

and	downward.	Moving	stimuli	covered	120°	of	space/visual	field	in	horizontal	and	vertical	

axes.	To	create	the	perception	of	smooth	motion,	the	1250	ms	of	pink	noise	was	fragmented	

into	15	equal	length	pieces	with	each	83.333	ms	fragment	being	played	every	two	speakers,	

and	moved	one	speaker	at	a	time,	from	outer	left	to	outer	right	(rightward	motion),	or	vice-

versa	 for	 the	 leftward	 motion.	 For	 example,	 for	 the	 rightward	 sweep,	 sound	 was	 played	

through	 speakers	 located	 at	 -60°	 and	 -52°	 consecutively,	 followed	 by	 -44°,	 and	 so	 on.	 A	

similar	design	was	used	for	the	vertical	axis.	This	resulted	in	participants	perceiving	moving	

sweeps	covering	an	arc	of	120°	in	1250	ms	(speed	=	96°/s;	50	ms	fade	in/out)	containing	the	

same	sounds	for	all	four	directions.	The	choice	of	the	movement	speed	of	the	motion	stimuli	

aimed	to	create	listening	experience	relevant	to	everyday-life	conditions.	Moreover,	at	such	

velocity	it	has	been	demonstrated	that	human	listeners	are	not	able	to	make	the	differences	

between	concatenated	static	stimuli	from	motion	stimuli	elicited	by	a	single	moving	object	

(Poirier	 et	 al.,	 2005),	 supporting	 the	 subject’s	 report	 that	 our	 stimuli	 were	 perceived	 as	

smoothly	moving	(no	perception	of	successive	snapshots).	In	the	static	condition,	the	same	

pink	noise	was	presented	separately	at	one	of	4	 locations:	 left,	 right,	up,	and	down.	Static	

sounds	were	presented	at	the	second	most	outer	speakers	(-56°	and	+56°	in	the	horizontal	

axis,	 and	 +56°	 and	 -56°	 in	 the	 vertical	 axis)	 in	 order	 to	 avoid	 possible	 reverberation	

difference	at	 the	outermost	 speakers.	 The	 static	 sounds	were	 fixed	at	one	 location	within	

experimental	 block	 instead	 of	 presented	 in	 multiple	 locations	 (Poirier	 et	 al.,	 2005;	

Krumbholz	et	al.,	2005).	This	strategy	was	purposely	adopted	for	three	main	reasons.	First,	

randomly	 presented	 static	 sounds	 can	 evoke	 auditory	 apparent	 motion	 (Strybel	 &	 Neale	

1994;	Lakatos	et	al.,	1997;	see	review	Carlile	2016).	Second,	in	the	visual	domain,	incoherent	

moving	(i.e.	flickering)	dots	evoke	higher	activity	compared	to	100%	coherent	moving	stimuli	

in	hMT+/V5	region	(Mckeefry	et	al.,	1997;	Vachon	et	al.,	2009).	One	possible	explanation	is	

that	 incoherent	 moving	 stimuli	 are	 actually	 difficult;	 therefore,	 require	 more	 attention	

compared	 to	 the	 100%	 coherent	 moving	 directions.	 We	 avoided	 such	 confound	 by	
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presenting	 static	 sounds	 in	 a	 fixed	 location	 (Vachon	 et	 al.,	 2009).	 Lastly,	 presenting	 static	

sounds	located	on	a	given	space	and	moving	sounds	directed	toward	the	same	space	allows	

us	 to	 investigate	 a	 possible	 shared	 computation	 between	moving	 and	 static	 sounds	 using	

cross-condition	decoding	(see	below).		

Before	 the	 recordings,	 the	 sound	 pressure	 levels	 (SPL)	 were	 measured	 from	 the	

subject’s	head	position	and	ensured	that	each	speaker	conveys	65dB-A	SPL.	All	participants	

reported	 strong	 sensation	of	 auditory	motion	and	were	able	 to	detect	 locations	with	high	

accuracy	 (see	 Fig	 1C).	 Throughout	 the	 experiment,	 participants	 were	 blindfolded.	 Stimuli	

recordings	were	conducted	in	a	session	that	lasted	approximately	10	minutes,	requiring	the	

participant	to	remain	still	during	this	period.		

	

2.3.3.	Auditory	experiment	

Auditory	stimuli	were	presented	via	MR-compatible	closed-ear	headphones	(Serene	Sound,	

Resonance	 Technology;	 500-10KHz	 frequency	 response)	 that	 provided	 average	 ambient	

noise	 cancellation	 of	 about	 30	 dB-A,	 and	 amplitude	 was	 adjusted	 according	 to	 each	

participant’s	 comfort	 level.	 To	 familiarize	 the	participants	with	 the	 task,	 they	 completed	a	

practice	 session	 outside	 of	 the	 scanner	 while	 lying	 down	 until	 they	 reached	 above	 80%	

accuracy.		

Each	run	consisted	of	the	8	conditions	(4	motion	and	4	static)	randomly	presented	

using	a	block-design.	Each	condition	was	presented	for	15	s	(12	repetition	of	1250	ms	sound,	

no	ISI)	and	followed	by	7	s	gap	for	 indicating	the	corresponding	direction/location	in	space	

and	8	s	of	silence	(total	inter-block	interval	was	15	s).	The	ramp	applied	at	the	beginning	and	

at	 the	 end	 of	 each	 sound	 creates	 static	 bursts	 and	 minimized	 adaptation	 to	 the	 static	

sounds.	During	the	response	gap,	participants	heard	a	voice	saying	“left”,	“right”,	“up”,	and	

“down”	 in	pseudo-randomized	order.	Participants	were	asked	 to	press	a	button	with	 their	

right	 index	 finger	 when	 the	 auditory	 block’s	 direction	 or	 location	 was	matching	 with	 the	

auditory	cue	(Figure	1B).	The	number	of	targets	and	the	order	(position	1-4)	of	the	correct	

button	press	were	balanced	across	conditions.	This	procedure	was	adopted	to	ensure	that	

the	participants	gave	their	response	using	equal	motor	command	for	each	condition	and	to	

ensure	the	response	is	produced	after	the	end	of	the	stimulation	period	for	each	condition.	

Each	scan	consisted	of	one	block	of	each	condition,	resulting	in	a	total	of	8	blocks	per	run,	

with	each	run	 lasting	4	m	10	s.	Participants	completed	a	total	of	12	runs.	The	order	of	the	

blocks	was	pseudo-randomized	within	each	run,	and	across	participants.	



Chapter 2 
 

	 55	

Based	on	pilot	experiments,	we	decided	to	not	rely	on	a	sparse-sampling	design	as	

sometimes	 done	 in	 the	 auditory	 literature	 in	 order	 to	 present	 the	 sounds	 without	 the	

scanner	 background	 noise	 (Hall	 et	 al.,	 1999).	 These	 pilot	 experiments	 showed	 that	 the	

increase	 in	 the	 signal	 to	 noise	 ratio	 potentially	 provided	 by	 sparse	 sampling	 did	 not	

compensate	 for	 the	 loss	 in	 the	number	of	volume	acquisitions.	 Indeed,	pilot	 recordings	on	

participants	not	included	in	the	current	sample	showed	that,	given	a	similar	acquisition	time	

between	 sparse-sampling	 designs	 (several	 options	 tested)	 and	 continuous	 acquisition,	 the	

activity	maps	elicited	by	our	spatial	sounds	contained	higher	and	more	reliable	beta	values	

using	continuous	acquisition.	

	

2.3.4.	fMRI	data	acquisition	and	analyses	

	

2.3.4.1.	Imaging	parameters			

Functional	and	structural	data	were	acquired	with	a	4T	Bruker	MedSpec	Biospin	MR	

scanner,	equipped	with	an	8-channel	head	coil.	Functional	images	were	acquired	with	T2*-

weighted	 gradient	 echo-planar	 sequence.	 Acquisition	 parameters	were:	 repetition	 time	 of	

2500	ms,	echo	time	of	26	ms,	flip	angle	of	73°,	a	field	of	view	of	192	mm,	a	matrix	size	of	64	

x	64,	and	voxel	size	of	3	x	3	x	3	mm3.		A	total	of	39	slices	were	acquired	in	ascending	feet-to-

head	 interleaved	 order	 with	 no	 gap.	 The	 three	 initial	 scans	 of	 each	 acquisition	 run	 were	

discarded	to	allow	for	steady-state	magnetization.	Before	every	two	EPI	run,	we	performed	

an	 additional	 scan	 to	measure	 the	 point-spread	 function	 (PSF)	 of	 the	 acquired	 sequence,	

including	 fat	 saturation,	which	 served	 for	 distortion	 correction	 that	 is	 expected	with	high-

field	imaging	(Zeng	and	Constable,	2002).	

High-resolution	anatomical	scan	was	acquired	for	each	subject	using	a	T1-weighted	

3D	MP-RAGE	sequence	(176	sagittal	slices,	voxel	size	of	1×1×1	mm3;	field	of	view	256	x	224	

mm;	repetition	time	=	2700	ms;	TE	=	4.18	ms;	FA:	7°;	inversion	time:	1020	ms).	Participants	

were	blindfolded	and	instructed	to	lie	still	during	acquisition	and	foam	padding	was	used	to	

minimize	scanner	noise	and	head	movement.		

	

2.3.4.2	Univariate	fMRI	analysis	

Whole	brain	

Raw	functional	images	were	pre-processed	and	analysed	with	SPM8	(Welcome	Trust	

Centre	 for	 Neuroimaging	 London,	 UK;	 http://www.fil.ion.ucl.ac.uk/spm/software/spm/)	

implemented	 in	 MATLAB	 R2014b	 (MathWorks).	 Before	 the	 statistical	 analysis,	 our	

preprocessing	 steps	 included	 slice	 time	 correction	with	 reference	 to	 the	middle	 temporal	
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slice,	realignment	of	functional	time	series,	the	coregistration	of	functional	and	anatomical	

data,	spatial	normalization	to	an	echo	planar	imaging	template	conforming	to	the	Montreal	

Neurological	 Institute	 space,	 and	 spatial	 smoothing	 (Gaussian	 kernel,	 6	mm	 FWHM)	were	

performed.	

To	obtain	blood	oxygen	 level-dependent	 (BOLD)	activity	 related	 to	auditory	spatial	

processing,	 we	 computed	 single	 subject	 statistical	 comparisons	 with	 fixed-effect	 general	

linear	model	(GLM).	In	the	GLM,	we	used	eight	regressors	from	each	condition	(four	motion	

direction,	four	sound	source	location).	The	canonical	double-gamma	hemodynamic	response	

function	 implemented	 in	SPM8	was	convolved	with	a	box-car	function	to	model	the	above	

mentioned	 regressors.	 Motion	 parameters	 derived	 from	 realignment	 of	 the	 functional	

volumes	(3	translational	motion	and	3	rotational	motion	parameters),	button	press,	and	the	

four	 auditory	 response	 cue	 events	were	modeled	 as	 regressors	 of	 no	 interest.	 During	 the	

model	 estimation,	 the	 data	were	 high-pass	 filtered	with	 cut-off	 128s	 to	 remove	 the	 slow	

drifts/	low-frequency	fluctuations	from	the	time	series.	To	account	for	serial	correlation	due	

to	noise	in	fMRI	signal,	autoregressive	(AR	(1))	was	used.		

In	 order	 to	 obtain	 activity	 related	 to	 auditory	 processing	 in	 the	 whole	 brain,	 the	

contrasts	 tested	 the	 main	 effect	 of	 each	 condition	 ([Left	 Motion],	 [Right	 Motion],	 [Up	

Motion],	[Down	Motion],	[Left	Static],	[Right	Static],	[Up	Static],	[Down	Static]).	To	find	brain	

regions	responding	preferentially	to	the	auditory	motion	and	static,	we	combined	all	motion	

conditions	[Motion]	and	all	static	conditions	[Static].	The	contrasts	tested	the	main	effect	of	

each	 condition	 ([Motion],	 [Static]),	 and	 comparison	 between	 the	 conditions	 ([Motion	 >	

Static],	and	[Static	>	Motion]).	These	linear	contrasts	generated	statistical	parametric	maps	

(SPM[T])	which	were	further	spatially	smoothed	(Gaussian	kernel	8	mm	FWHM)	and	entered	

in	 a	 second-level	 analysis,	 corresponding	 to	a	 random	effects	model,	 accounting	 for	 inter-

subject	 variance.	 One-sample	 t-tests	 were	 run	 to	 characterize	 the	 main	 effect	 of	 each	

condition	 ([Motion],	 [Static]),	and	 the	main	effect	of	motion	processing	 ([Motion	>	Static])	

and	static	location	processing	([Static	>	Motion]).	Statistical	inferences	were	performed	at	a	

threshold	of	p<0.05	corrected	for	multiple	comparisons	(Family-Wise	Error	corrected;	FWE)	

either	over	the	entire	brain	volume	or	after	correction	for	multiple	comparisons	over	small	

spherical	 volumes	 (12	mm	 radius)	 located	 in	 regions	 of	 interest	 (SVC).	 Significant	 clusters	

were	 anatomically	 labeled	 using	 the	 xjView	 Matlab	 toolbox	

(http://www.alivelearn.net/xjview)	or	structural	neuroanatomy	information	provided	in	the	

Anatomy	Toolbox	(Eickhoff	et	al.,	2007).		
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Region	of	interest	analysis	

ROI	Definition	

Due	 to	 the	hypothesis-driven	nature	of	 our	 study	we	defined	hPT	 as	 an	a	priori	 region	of	

interest	for	statistical	comparisons	and	in	order	to	define	the	volume	in	which	we	performed	

multivariate	pattern	classification	analyses.	

To	avoid	any	form	of	double	dipping	that	may	arise	when	defining	the	ROI	based	on	our	own	

data,	we	decided	to	independently	define	hPT,	using	a	meta-analysis	method	of	quantitative	

reverse	 inference,	 implemented	via	 the	online	tool	Neurosynth	 (Yarkoni	et	al.,	2011)	using	

the	 term	 “Planum	 Temporale”	 query.	 Rather	 than	 showing	 which	 regions	 are	

disproportionately	reported	by	studies	where	a	certain	term	is	dominant	(forward	inference;	

P	(activation	|	term)),	this	method	identifies	regions	whose	report	in	a	neuroimaging	study	is	

diagnostic	 of	 a	 certain	 term	 being	 dominant	 in	 the	 study	 (reverse	 inference;	 P	 (term	 |	

activation)).	 As	 such,	 the	 definition	 of	 this	 ROI	 was	 based	 on	 a	 set	 of	 85	 neuroimaging	

studies	 at	 the	 moment	 of	 the	 query	 (September	 2017).	 This	 method	 provides	 an	

independent	 method	 to	 obtain	 masks	 for	 further	 region-of-interest	 analysis.	 The	 peak	

coordinate	 from	 the	meta-analysis	map	was	 used	 to	 create	 a	 6	mm	 spheres	 (117	 voxels)	

around	the	peak	z-values	of	hPT	(peak	MNI	coordinates	[-56	-28	8]	and	[60	-28	8];	lhPT	and	

rhPT	hereafter,	respectively).	

	

ROI	Analyses	

Univariate	

The	beta	parameter	estimates	of	the	4	motion	directions	and	4	sound	source	locations	were	

extracted	from	lhPT	and	rhPT	regions	(Fig	2C).	In	order	to	investigate	the	presence	of	motion	

directions/sound	 source	 locations	 selectivity	 and	 condition	 effect	 in	 hPT	 regions,	 we	

performed	 a	 2	 Conditions	 (motion,	 static)	 x	 4	 Orientations	 (left,	 right,	 down,	 and	 up)	

repeated	 measures	 ANOVA	 in	 each	 hemisphere	 separately	 on	 these	 beta	 parameter	

estimates.	Statistical	results	were	then	corrected	for	multiple	comparisons	(number	of	ROIs	

x	 number	 of	 tests)	 using	 the	 false	 discovery	 rate	 (FDR)	method	 (Benjamini	 and	 Yekutieli,	

2001).	 A	 Greenhouse–Geisser	 correction	 was	 applied	 to	 the	 degrees	 of	 freedom	 and	

significance	levels	whenever	an	assumption	of	sphericity	was	violated.	
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2.3.4.3.	ROI	-	Multivariate	pattern	analyses	

Within	Condition	Decoding	

Four-class	and	binary	classification	analyses	were	conducted	within	the	hPT	region	in	order	

to	 investigate	 the	 presence	 of	 auditory	 motion	 direction	 and	 sound	 source	 location	

information	in	this	area.	To	ensure	that	the	number	of	voxels	was	identical	across	subjects	

an	ANOVA-based	feature	selection	was	performed	to	select	the	110	voxels	within	each	ROI,	

which	 are	most	 informative/discriminative	 across	 all	 motion	 and	 static	 conditions	 (Cox	 &	

Savoy	2003;	Haxby	et	al.,	2001;	Norman	et	al.,	2006).	

Multivariate	 pattern	 analyses	 (MVPA)	 were	 performed	 in	 the	 lhPT	 and	 rhPT.	

Preprocessing	steps	were	identical	to	the	steps	performed	for	univariate	analyses,	except	for	

functional	time	series	that	were	smoothed	with	a	Gaussian	kernel	of	2	mm	(FWHM).	MVPA	

was	 performed	 in	 CoSMoMVPA	 (http://www.cosmomvpa.org/;	 (Oosterhof	 et	 al.,	 2016),	

which	 implements	 LIBSVM	 software	 (http://www.csie.ntu.edu.tw/~cjlin/libsvm).	 A	 general	

linear	model	was	 implemented	 in	 SPM8,	where	 each	 block	was	 defined	 as	 a	 regressor	 of	

interest.	A	beta	map	was	calculated	for	each	block	separately.	Two	multi-class	and	six	binary	

linear	 support	 vector	 machine	 (SVM)	 classifiers	 with	 a	 linear	 kernel	 with	 a	 fixed	

regularization	parameter	of	C	=	1	were	 trained	and	 tested	 for	each	participant	 separately.	

The	two	multi-class	classifiers	were	trained	and	tested	to	discriminate	between	the	response	

patterns	 of	 the	 4	 auditory	 motion	 directions	 and	 locations,	 respectively.	 Four	 binary	

classifiers	were	used	 to	discriminate	brain	activity	patterns	 for	motion	and	 location	within	

axes	 (left	 vs.	 right	 motion,	 left	 vs.	 right	 static,	 up	 vs.	 down	 motion,	 up	 vs.	 down	 static,	

hereafter	within	axis	 classification).	 Four	binary	 classifiers	were	used	 to	discriminate	brain	

activity	 patterns	 for	 motion	 and	 location	 within	 axes	 (left	 vs.	 right	 motion,	 left	 vs.	 right	

static,	up	vs.	down	motion,	up	vs.	down	static,	hereafter	within	axis	classification).	We	used	

8	additional	classifiers	to	discriminate	across	axes	 (Left	vs.	Up,	Left	vs.	Down,	Right	vs.	Up,	

and	Right	vs.	Down	motion	directions,	Left	vs.	Up,	Left	vs.	Down,	Right	vs.	Up,	and	Right	vs.	

Down	sound	source	locations,	hereafter	across	axes	classification).	

For	each	participant,	the	classifier	was	trained	using	a	cross-validation	leave-one-out	

procedure	where	training	was	performed	with	n-1	runs	and	testing	was	then	applied	to	the	

remaining	 one	 run.	 In	 each	 cross-validation	 fold,	 the	 beta	 maps	 in	 the	 training	 set	 were	

normalized	(z-scored)	across	conditions,	and	the	estimated	parameters	were	applied	to	the	

test	set.	 	To	evaluate	the	performance	of	the	classifier	and	 its	generalization	across	all	 the	

data,	the	previous	step	was	repeated	12	times	where	in	each	fold	a	different	run	was	used	

as	the	testing	data	and	the	classifier	was	trained	on	the	other	11	runs.	For	each	region	per	
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subject,	a	single	classification	accuracy	was	obtained	by	averaging	the	accuracies	of	all	cross-

validation	folds.	

	

Cross-condition	Decoding	

To	 test	 whether	 motion	 directions	 and	 sound	 source	 locations	 share	 a	 similar	 neural	

representation	 in	 hPT	 region,	we	 performed	 cross-condition	 classification.	We	 carried	 out	

the	same	steps	as	for	the	within-condition	classification	as	described	above	but	trained	the	

classifier	 on	 sound	 source	 locations	 and	 tested	 on	motion	 directions,	 and	 vice	 versa.	 The	

accuracies	 from	 the	 two	 cross-condition	 classification	 analyses	 were	 averaged.	 For	

interpretability	 reasons,	 cross-condition	 classification	 was	 only	 interpreted	 on	 the	 stimuli	

categories	 that	 the	 classifiers	 discriminated	 reliably	 (above	 chance	 level)	 for	 both	motion	

and	 static	 conditions	 (e.g.	 if	 discrimination	 of	 left	 vs.	 right	 was	 not	 successful	 in	 one	

condition,	either	static	or	motion,	then	the	left	vs.	right	cross-condition	classification	analysis	

was	not	carried	out).	

	

Across-condition	Decoding	

To	 foreshadow	 our	 results,	 cross-condition	 classification	 analyses	 (see	 previous	 section)	

showed	that	motion	directions	and	sound	source	locations	share,	at	least	partially,	a	similar	

neural	 representation	 in	 hPT	 region.	 To	 further	 investigate	 the	 similarities/differences	

between	the	neural	patterns	evoked	by	motion	directions	and	sound	source	locations	in	the	

hPT,	we	performed	4	binary	classifications:	leftward	motion	vs.	left	static,	rightward	motion	

vs.	 right	 static,	 upward	motion	 vs.	 up	 static,	 and	 downward	motion	 vs.	 down	 static.	 The	

mean	 of	 the	 four	 binary	 classifications	was	 computed	 to	 produce	 one	 accuracy	 score	 per	

ROI.	 Prior	 to	 performing	 the	 across-condition	 and	 cross-condition	 MVPA,	 each	 individual	

pattern	 was	 normalised	 separately	 across	 voxels	 so	 that	 any	 cross	 or	 across-condition	

classification	 could	 not	 be	 due	 to	 global	 univariate	 activation	 differences	 across	 the	

conditions.			

	

Statistical	significance	

Statistical	 significance	 in	 the	 multivariate	 classification	 analyses	 was	 assessed	 using	 non-

parametric	 tests	 permuting	 condition	 labels	 and	 bootstrapping	 (Stelzer	 et	 al.,	 2013).	 Each	

permutation	step	included	shuffling	of	the	condition	labels	and	re-running	the	classification	

100	times	on	the	single-subject	level.	Next,	we	applied	bootstrapping	procedure	in	order	to	

obtain	 a	 group-level	 null	 distribution	 that	 is	 representative	 of	 whole	 group.	 From	 each	
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subject’s	 null	 distribution	 one	 value	 was	 randomly	 chosen	 and	 averaged	 across	 all	 the	

subjects.	This	step	was	repeated	100,000	times	resulting	in	a	group	level	null	distribution	of	

100,000	values.	The	classification	accuracies	across	subjects	we	considered	as	significant	 if	

the	p<0.05	after	corrections	for	multiple	comparisons	using	the	FDR	method	(Benjamini	and	

Yekutieli,	2001).		

Similar	 approach	 was	 adopted	 to	 assess	 significance	 difference	 between	 two	

auditory	conditions	(motion	and	static).	We	performed	additional	permutation	tests	(100000	

iterations)	by	building	a	null	distribution	for	t-stats	after	randomly	shuffling	the	classification	

accuracy	 values	 across	 two	 conditions,	 and	 re-calculating	 the	 two-tail	 t-test	 between	 the	

classification	 accuracies	 of	 motion	 and	 static	 conditions.	 All	 p-values	 were	 corrected	 for	

multiple	comparisons	using	the	FDR	method	(Benjamini	and	Yekutieli,	2001).		

	

2.3.4.4.	Representation	Similarity	analysis		

2.3.4.4.1	Neural	Dissimilarity	matrices	

We	 employed	 representation	 similarity	 analysis	 (RSA;	 Kriegeskorte	 et	 al.,	 2008)	 to	

characterize	 the	 degree	 of	 shared	 representation	 between	 motion	 directions	 and	 sound	

source	 locations	 in	 hPT	 region.	 The	 RSA	 was	 performed	 using	 CosmoMVPA	 toolbox	

(Oosterhof	et	al.,	2016)	implemented	in	MATLAB.	To	perform	this	analysis	we	first	extracted	

in	each	 subject	 the	activity	patterns	associated	with	each	condition	 (Edelman	et	al.,	 1998;	

Haxby	 et	 al.,	 2001).	 Then,	 we	 averaged	 individual	 subject	 statistical	 maps	 (i.e.	 activity	

patterns)	in	order	to	have	a	mean	pattern	of	activity	for	each	condition	across	runs.	Finally,	

we	used	Pearson’s	linear	correlation	as	the	similarity	measure	to	compare	each	possible	pair	

of	 the	 activity	 patterns	 evoked	 by	 the	 four	 different	motion	 directions	 and	 four	 different	

sound	source	locations.	This	resulted	in	an	8	x	8	correlation	matrix	for	each	participant	that	

was	 then	 converted	 into	 a	 representational	 dissimilarity	matrix	 (RDMs)	 by	 computing	 1	 –	

correlation.	Each	square	of	the	RDM	contains	the	dissimilarity	index	between	the	patterns	of	

activity	 generated	by	 two	conditions,	 in	other	words	 the	RDM	represents	how	different	 is	

the	neural	representation	of	each	condition	from	the	neural	representations	of	all	the	other	

condition	 in	 the	 selected	 ROI.	 The	 16	 neural	 RDMs	 (1	 per	 subject)	 for	 each	 of	 the	 2	 ROIs	

were	used	as	neural	input	for	RSA.	

	

2.3.4.4.2	Computational	models	

To	investigate	shared	representations	between	auditory	motion	directions	and	sound	source	

locations,	we	created	multiple	computational	models	ranging	from	a	fully	condition-distinct	
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model	to	a	fully	condition-invariant	model	with	 intermediate	gradients	 in	between	(Zabicki	

et	al.,	2016).	

	

Condition-Distinct	model	

The	 condition-distinct	 models	 assume	 that	 dissimilarities	 between	 motion	 and	 static	

condition	 is	1	 (i.e.	highly	dissimilar),	meaning	that	neural	 responses/patterns	generated	by	

motion	and	static	conditions	are	totally	unrelated.	For	instance,	there	would	be	no	similarity	

between	any	motion	directions	with	any	 sound	source	 location.	The	dissimilarity	values	 in	

the	 diagonal	 were	 set	 to	 0,	 simply	 reflecting	 that	 neural	 responses	 for	 the	 same	

direction/location	are	identical	to	themselves.	

	

Condition-Invariant	model	

The	 condition-invariant	 models	 assume	 a	 fully	 shared	 representation	 for	

specific/corresponding	static	and	motion	conditions.	For	example,	the	models	consider	the	

neural	representation	for	the	left	sound	source	location	and	the	left	motion	direction	highly	

similar.	All	within-condition	 (left,	 right,	up	and	down)	 comparisons	are	 set	 to	0	 (i.e.	highly	

similar)	 regardless	 of	 their	 auditory	 condition.	 The	 dissimilarities	 between	 different	

directions/locations	are	set	to	1	meaning	that	each	within	condition	sound	(motion	or	static)	

is	different	from	all	the	other	within	conditions.	

	

Intermediate	models	

To	 detect	 the	 degree	 of	 similarity/shared	 representation	 between	 motion	 direction	 and	

sound	source	location	patterns,	we	additionally	tested	2	classes	of	5	different	intermediate	

models.	The	two	classes	were	used	to	deepen	the	understanding	of	characteristic	tuning	of	

hPT	 for	 separate	 direction/location	 or	 axis	 of	 motion/location.	 The	 two	 model	 classes	

represent	2	different	possibilities.	The	first	scenario	was	labeled	as	Within-Axis	Distinct,	and	

these	models	assume	that	each	of	the	4	directions/locations	(i.e.	left,	right,	up,	down)	would	

generate	a	distinctive	neural	representation	different	from	all	of	the	other	within-condition	

sounds	(e.g.	the	patterns	of	activity	produced	by	the	left	conditions	are	highly	different	from	

the	patterns	produced	by	 right,	up	and	down	conditions)	 (see	Figure	4C,	upper	panel).	 To	

foreshadow	 our	 results,	 we	 observed	 preference	 for	 axis	 of	motion	 in	MVP-classification,	

therefore	we	created	another	class	of	models	to	further	investigate	neural	representations	

of	within-axis	 and	across-axes	of	 auditory	motion/space.	 The	 second	 scenario	was	 labeled	

with	 Within-Axis	 Combined,	 and	 these	 models	 assume	 that	 opposite	 direction/locations	
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within	the	same	axis	would	generate	similar	patterns	of	activity	(e.g.	the	pattern	of	activity	

of	horizontal	(left	and	right)	conditions	are	different	from	the	patterns	of	activity	of	vertical	

conditions	(up	and	down)	(see	Figure	4C,	lower	panel).	

In	 all	 intermediate	models,	 the	 values	 corresponding	 to	 the	 dissimilarity	 between	

same	auditory	spaces	 (e.g.	 left	motion	and	 left	 location)	were	gradually	modified	 from	0.9	

(motion	and	static	conditions	are	mostly	distinct)	to	0.1	(motion	and	static	conditions	mostly	

similar).	These	models	were	labeled	M9,	7,	5,	3,	and	1	respectively.	

In	 all	 condition-distinct	 and	 intermediate	 models,	 the	 dissimilarity	 of	 within-condition	

sounds	was	fixed	to	0.5	and	dissimilarity	of	across-condition	sounds	was	fixed	to	1.	Across	all	

models,	the	diagonal	values	were	set	to	0.	

	

2.3.4.4.3.	Performing	RSA	

We	 computed	 Pearson’s	 correlation	 to	 compare	 neural	 RDMs	 and	 computational	 model	

RDMs.	 The	 resulting	 correlation	 captures	 which	 computational	 model	 better	 explains	 the	

neural	 dissimilarity	 patterns	 between	 motion	 direction	 and	 sound	 source	 location	

conditions.	 To	 visualize	 the	 distance	 between	 the	 patterns	 of	 the	 motion	 directions	 and	

sound	 source	 locations,	 we	 used	 multi-dimensional	 scaling	 (MDS)	 to	 project	 the	 high-

dimensional	RDM	space	onto	2	dimensions	with	the	neural	RDMs	that	were	obtained	from	

both	lhPT	and	rhPT.	Additionally,	the	single-subject	8	x	8	correlation	matrices	were	used	to	

calculate	 the	 reliability	 of	 the	 data	 considering	 the	 signal-to-noise	 ratio	 of	 the	 data	

(Kriegeskorte	et	al.,	2007).	For	each	participant	and	each	ROI,	the	RDM	was	correlated	with	

the	 averaged	 RDM	 of	 the	 rest	 of	 the	 group.	 The	 correlation	 values	 were	 then	 averaged	

across	participants.	This	provided	the	maximum	correlation	that	can	be	expected	from	the	

data.	

	

2.4.	RESULTS	

2.4.1.	Behavioral	results	

During	the	experiment,	we	collected	target	direction/location	discrimination	responses	(see	

Figure	 1C).	 The	 overall	 accuracy	 scores	 were	 entered	 into	 2	 x	 4	 (Condition,	 Orientation)	

repeated	 measures	 ANOVA.	 No	 main	 effect	 of	 Condition	 (F1,15	 =	 2.22;	 p	 =	 0.157)	 was	

observed,	indicating	that	the	overall	accuracy	while	detecting	direction	of	motion	or	sound	

source	 location	 did	 not	 differ.	 There	 was	 a	 significant	 main	 effect	 of	 orientation	 (F1,15	 =	

11.688;	p	<	0.001),	caused	by	greater	accuracy	in	the	horizontal	orientations	(left	and	right)	

as	compared	to	the	vertical	orientations	(up	and	down).	Post-hoc	two-tailed	t-tests	(p<0.05,	

Bonferroni	 corrected)	 revealed	 that	 accuracies	 did	 not	 reveal	 significant	 difference	within	
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horizontal	orientations	(left	vs	right;	t15	=	-0.15,	p=1),	and	vertical	orientations	(up	vs	down;	

t15	=	0.89,	p=1).	However,	left	orientation	accuracy	was	greater	as	compared	to	down	(t15	=	

3.613,	p=0.005),	and	up	(t15	=	4.51,	p<0.001)	orientations	and	right	orientation	accuracy	was	

greater	 as	 compared	 to	 the	 down	 (t15	 =	 3.76,	 p=0.003)	 and	 up	 (t15	 =	 4.66,	 p<0.001)	

orientation	 accuracies.	 No	 interaction	 between	 Condition	 x	 Orientation	 was	 observed,	

pointing	out	that	differences	between	orientations	in	terms	of	performance	expresses	both	

for	static	and	motion.		

	

2.4.2.	fMRI	results	–	whole-brain	univariate	analyses		

To	identify	brain	regions	that	are	preferentially	recruited	for	auditory	motion	processing,	we	

performed	 a	 univariate	 RFX-	 GLM	 contrast	 [Motion	 >	 Static]	 (Figure	 2A).	 Consistent	 with	

previous	 studies	 (Dormal	 et	 al.,	 2016;	 Getzmann	 and	 Lewald,	 2012;	 Pavani	 et	 al.,	 2002;	

Poirier	et	al.,	2005;	Warren	et	al.,	2002),	whole-brain	univariate	analysis	revealed	activation	

in	 the	superior	 temporal	gyri,	bilateral	hPT,	precentral	gyri,	and	anterior	portion	of	middle	

temporal	 gyrus	 in	 both	 hemispheres	 (Figure	 2A,	 Table	 1).	 The	 most	 robust	 activation	

(resisting	whole	brain	FWE	correction,	p<0.05)	was	observed	in	the	bilateral	hPT	(peak	MNI	

coordinates	 	 [-46	 -32	 10]	 and	 [60	 -32	 12]).	 We	 also	 observed	 significant	 activation	 in	

occipito-temporal	 regions	 (in	 the	 vicinity	 of	 hMT+/V5)	 as	 suggested	 by	 previous	 studies	

(Dormal	et	al.,	2016;	Poirier	et	al.,	2005;	Warren	et	al.,	2002).					

	

2.4.3.	fMRI	results	–	ROI	univariate	analyses	

Beta	parameter	estimates	were	extracted	from	the	pre-defined	ROIs	(see	methods)	

for	the	four	motion	directions	and	four	sound	source	locations	from	the	auditory	experiment	

(Figure	 2C).	 We	 investigated	 the	 condition	 effect	 and	 the	 presence	 of	 direction/location	

selectivity	in	lhPT	and	rhPT	regions	separately	by	performing	2	x	4	(Conditions,	Orientations)	

repeated	 measures	 of	 ANOVA	 with	 beta	 parameter	 estimates.	 In	 lhPT,	 main	 effect	 of	

Conditions	was	significant	(F1,15	=	37.28,	p	<	0.001),	 indicating	that	auditory	motion	evoked	

higher	 response	 compared	 to	 static	 sounds.	 There	 was	 no	 significant	 main	 effect	 of	

Orientations	(F1.5,22.5	=	0.771,	p	=	0.4),	and	no	interaction	(F3,45	=	2.21,	p	=	0.11).	Similarly,	in	

rhPT,	only	main	effect	of	Conditions	was	significant	(F1,15	=	37.02,	p	<	0.001).	No	main	effect	

of	Orientation	 (F1.5,23.2	 =	 1.43,	p	=	0.3)	or	 interaction	 (F3,45	 =	1.73,	p	=	0.19)	was	observed.	

Overall,	brain	activity	in	the	hPT	as	measured	with	beta	parameter	estimate	extracted	from	

univariate	 analysis	 did	 not	 provide	 evidence	 of	motion	 direction	 or	 sound	 source	 location	

selectivity.	
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Figure	 2.	 Univariate	 whole	 brain	 results.	 (A).	 Auditory	 motion	 processing	 [motion	 >	 static]	 at	 p	 <0.001	
uncorrected.	(B).	Reverse	inference	map	was	obtained	from	the	online	tool	Neurosynth	using	the	term	“Planum	
Temporale”	(FDR	corrected	p	<0.05).	The	black	spheres	are	illustration	of	drawn	mask	(radius	=	6mm,	117	voxels)	
around	 the	peak	 coordinate	 from	Neurosynth	 (search	 term	“planum	 temporale”,	meta-analysis	of	 85	 studies).	
(C).	Mean	activity	estimates	(arbitrary	units	±	SEM)	associated	with	the	perception	of	auditory	motion	direction	
(red)	and	sound-source	location	(blue).	ML:	motion	left,	MR:	motion	right,	MD:	motion	down,	MU:	motion	up,	SL:	
static	left,	SR:	static	right,	SD:	static	down,	and	SU:	static	up.			
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Table	1.	Results	of	the	univariate	analyses	for	the	main	effect	of	auditory	motion	processing	[motion	>	static],	
and	auditory	localization	processing	[static	>	motion].	Coordinates	reported	in	this	table	are	significant	(p	<	0.05	
FWE)	after	correction	over	small	spherical	volumes	(SVC,	15	mm	radius)	of	 interest	(#)	or	over	the	whole	brain	
(*).	Coordinates	used	for	correction	over	small	spherical	volumes	are	as	follows	(x,	y,	z,	in	MNI	space):	left	middle	
temporal	gyrus	(hMT+/V5)	[-42	-64	4]	(Dormal	et	al.,	2016),	right	middle	temporal	gyrus	(hMT	+/V5)	[42	−	60	4]	
(Dormal	et	al.,	2016),	right	superior	frontal	sulcus	[32	0	48]	(Collignon	et	al.,	2011),	right	middle	occipital	gyrus	
[48	-76	6]	(Collignon	et	al.,	2011).	K	represents	the	number	of	voxels	when	displayed	at	p(unc)	<	0.001.	L:	left,	R:	
right,	G:	gyrus,	S:	sulcus.	
	
Area	 k	 x	 y	 z	 Z	 p	

		 	 (mm)	 (mm)	 (mm)	 	 	
MOTION	>	STATIC		 	 	 	 	 	 	
L	planum	temporale	 10506	 -46	 -32	 10	 6.63	 0.000*	

L	Middle	Temporal	G	 	 -56	 -38	 14	 6.10	 0.000*	

L	Precentral	G	 	 -46	 -4	 52	 5.25	 0.004*	

L	Putamen	
	

-22	 2	 2	 4.98	 0.011*	

L	Middle	Temporal	G	 43	 -50	 -52	 8	 3.79	 0.01#	

R	Superior	Temporal	G	 7074	 66	 -36	 12	 6.44	 0.000*	

R	Superior	Temporal	G	 	 62	 -2	 -4	 5.73	 0.000*	

R	Superior	Temporal	G	 	 52	 -14	 0	 5.56	 0.001*	

R	Precentral	G	
	

50	 2	 50	 4.70	 0.032*	

R	Superior	Frontal	S	 159	 46	 0	 50	 4.40	 0.001#	

R	Middle	Temporal	G	 136	 42	 -60	 6	 4.31	 0.001#	

R	Middle	Occipital	G	 24	 44	 -62	 6	 3.97	 0.006#	

	
	
	
2.4.4.	fMRI	results	–	ROI	multivariate	pattern	analyses	

To	 further	 investigate	 the	 presence	 of	 information	 about	 auditory	 motion	 direction	 and	

sound	 source	 location	 in	 hPT,	 we	 ran	 multi-class	 and	 binary	 multivariate	 pattern	

classifications.	Figure	3A-C	shows	the	mean	classification	accuracy	across	categories	in	each	

ROI.	

2.4.4.1.	MVPA	–	Within	Condition	

2.4.4.1.1.	Decoding	auditory	motion	and	static	

Multi-class	across	 four	conditions	classification	accuracy	 in	 the	hPT	was	significantly	above	

chance	 (chance	 level	=	25%)	 in	both	hemispheres	 for	motion	direction	 (lhPT:	mean	±	SD	=	

38.4	±7,	p<0.001;	rhPT:	mean	±	SD	=	37.1	±	6.5,	p<0.001),	and	sound	source	location	(lhPT:	

mean	±	 SD	=	 32.4	 ±6.7,	 p<0.001;	 rhPT:	mean	±	 SD	=	 31.2	 ±	 7.5,	 p<0.001).	 In	 addition,	we	

assessed	 the	differences	between	classification	accuracies	 for	motion	and	 static	 stimuli	by	

using	 permutation	 tests	 in	 lhPT	 (p	 =	 0.0238)	 and	 rhPT	 (p	 =	 0.0236),	 indicating	 greater	

accuracies	for	classifying	motion	direction	than	sound	source	location	across	all	regions.		
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2.4.4.1.2.	MVPA	–	“Axis	of	Motion”	Preference	

In	 order	 to	 test	 whether	 neural	 patterns	 within	 hPT	 contain	 information	 about	 opposite	

directions/locations	within	an	axis,	we	performed	two	binary	within-axis	classifications	(see	

Supplemental	Analysis).	The	classification	accuracies	were	plotted	in	Figure	3B-C.		

We	 asked	 whether	 the	 spatial	 distribution	 of	 the	 neural	 representation	 is	 in	 the	

format	 of	 “preferred	 axis	 of	 motion”	 as	 observed	 in	 the	 visual	 motion	 selective	 regions	

(Albright	et	al.,	1984;	Zimmermann	et	al.,	2011).	In	motion	direction	classifications,	to	assess	

the	statistical	difference	between	classification	accuracies	of	across	axes	(left	vs.	up,	left	vs.	

down,	 and	 right	 vs.	 up,	 right	 vs.	 down)	 and	 within	 axes	 (left	 vs.	 right,	 and	 up	 vs.	 down)	

directions,	 we	 performed	 pairwise	 permutation	 tests	 and	 FDR-corrected	 for	 multiple	

comparisons.	 Across-axes	 classification	 accuracies	 in	 lhPT	 ([left	 vs.	 up]	 vs.	 [left	 vs.	 right]:	

p=0.006,	 [left	 vs.	 down]	 vs.	 [left	 vs.	 right]:	 p<0.001,	 [right	 vs.	 down]	 vs.	 [left	 vs.	 right]:	

p<0.001,	[right	vs.	up]	vs.	[left	vs.	right]:	p=0.001),	and	rhPT	([left	vs.	up]	vs.	[left	vs.	right]:	

p=0.029,	 [left	 vs.	 down]	 vs.	 [left	 vs.	 right]:	 p=0.014,	 [right	 vs.	 down]	 vs.	 [left	 vs.	 right]:	

p=0.02,	[right	vs.	up]	vs.	[left	vs.	right]:	p=0.003)	were	significantly	higher	compared	to	the	

horizontal	within-axis	classification	accuracies.	Similarly,	across-axes	classification	accuracies	

were	significantly	higher	when	compared	with	vertical	within-axis	classification	accuracies	in	

lhPT	([up	vs.	down]	vs.	[left	vs.	up],	p=0.02;	[up	vs.	down]	vs.	[left	vs.	down],	p=0.001;	[up	vs.	

down]	vs.	[right	vs.	up],	p=0.001;	[up	vs.	down]	vs.	[right	vs.	down],	p	<0.001)	and	rhPT	([up	

vs.	down]	vs.	[left	vs.	up],	p=	0.001;	[up	vs.	down]	vs.	[left	vs.	down],	p=0.001;	[up	vs.	down]	

vs.	 [right	 vs.	 up],	 p=	 0.001;	 [up	 vs.	 down]	 vs.	 [right	 vs.	 down],	 p=0.002).	 No	 significant	

difference	was	observed	between	the	within-axis	classifications	in	lhPT	([left	vs.	right]	vs.	[up	

vs.	down],	p=0.24)	and	rhPT	([left	vs.	right]	vs.	[up	vs.	down],	p=0.31).	Similarly,	among	the	

across-axes	 conditions,	 classification	 accuracies	 did	 not	 show	 significant	 difference	 in	

bilateral	hPT.	In	static	sound	location	classifications,	no	significant	difference	was	observed	

between	across-axes	and	within-axes	classification	accuracies,	 indicating	that	classifiers	did	

not	perform	better	when	discriminating	sound	source	locations	across	axes	compared	to	the	

opposite	locations.		

To	 investigate	 the	 presence	 of	 information	 about	 aggregated	 opposite	

directions/location	 within	 an	 axis	 (across-planes)	 two	 additional	 binary	 classifications	

performed	(see	Supplemental	Analysis).		
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Figure	3.	Within	and	cross-classification	results.	(A).	Classification	results	for	the	4	conditions.	Within-condition	
and	cross-condition	classification	results	are	shown	in	the	same	bar	plots.	Moving:	four	motion	direction;	Static:	
four	 sound	 source	 location;	 and	 Cross:	 cross-condition	 classification	 accuracies.	 (B).	 Classification	 results	 of	
within	(left	vs.	right,	up	vs.	down)	and	across	axes	(left	vs.	up,	left	vs.	down,	right	vs.	up,	right	vs.	down)	motion	
directions.	 (C).	 Classification	 results	 of	within	 (left	 vs.	 right,	 up	 vs.	 down)	 and	 across	 axes	 (left	 vs.	 up,	 left	 vs.	
down,	right	vs.	up,	right	vs.	down)	sound	source	locations.	LvsR:	Left	vs.	Right,	UvsD:	Up	vs.	Down,	LvsU:	Left	vs.	
Up,	 LvsD:	 Left	 vs.	 Down,	 RvsU:	 Right	 vs.	 Up,	 RvsD:	 Right	 vs.	 Down	 classifications.	 FDR	 corrected	 p-values:	 (*)	
p<0.05,	(**)	p<0.01,	(***)	p<0.001	testing	differences	against	chance	level	(dotted	lines;	see	methods).	
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One	may	wonder	whether	the	higher	classification	accuracy	for	across	compared	to	

within	 axes	 relates	 to	 the	 perceptual	 differences	 in	 discriminating	 sounds	 within	 the	

horizontal	 and	 vertical	 axes.	 Indeed,	 because	we	 opted	 for	 an	 ecological	 design	 reflecting	

daily-life	 listening	 condition,	 we	 observed,	 as	 expected,	 that	 discriminating	 vertical	

directions	was	more	difficult	than	discriminating	horizontal	ones	(Middlebrooks	and	Green,	

1991).	 However,	 it	 should	 be	 noted	 that,	while	 accuracy	 differences	 between	 across-	 and	

within-axes	classification	was	only	observed	in	the	motion	condition,	behavioral	differences	

were	observed	in	both	static	and	motion	conditions.	This	observation	strengthens	the	notion	

that	 the	 higher	 classification	 accuracies	 for	 axes	 of	 motion	 do	 not	 simply	 stem	 from	

behavioral	performance	differences.		

	

2.4.4.2.	MVPA	–	Cross-condition	

To	investigate	if	motion	direction	and	sound	source	locations	rely	on	shared	representation	

in	 hPT,	we	 trained	 the	 classifier	 to	 distinguish	 neural	 patterns	 from	 the	motion	 directions	

(e.g.	 going	 to	 the	 left)	 and	 then	 tested	 on	 the	 patterns	 elicited	 by	 static	 conditions	 (e.g.	

being	in	the	left),	and	vice	versa.		

Cross-condition	 classification	 revealed	 significant	 results	 on	 across	 4	 conditions	

(lhPT:	mean	±	SD	=	27.8	±	5.3,	p	=	0.008,	rhPT:	mean	±	SD	=	28.7	±	3.8,	p<0.001)	and	across	

axes	(lhPT:	mean	±	SD	=	57.6	±	6.2,	p	<	0.001;	mean	±	SD	=	58.8	±	6.2,	p<0.001).	Within-	axis	

categories	did	not	reveal	any	significant	cross-condition	classification.	These	results	suggest	

that	a	partial	overlap	between	the	neural	patterns	of	moving	and	static	stimuli	in	the	hPT.		

	

2.4.4.3.	MVPA	–	Across-condition	Decoding	

Cross-condition	 classification	 results	 indicated	 a	 shared	 representation	 between	 motion	

directions	 and	 sound	 source	 locations.	 Previous	 studies	 argued	 that	 successful	 cross-

condition	classification	reflects	an	abstract	representation	of	stimuli	conditions	(Fairhall	and	

Caramazza,	2013;	Higgins	et	al.,	2017;	Hong	et	al.,	2012).	To	test	this	hypothesis,	patterns	of	

the	same	orientation	of	motion	and	static	conditions	(e.g.	leftward	motion	and	left	location)	

were	involved	in	across-condition	MVPA.	The	rational	was	that	if	the	hPT	region	carries	fully	

abstract	 representation	of	 space,	across-condition	classification	would	give	 results	 in	 favor	

of	 the	 null	 hypothesis	 (no	 differences	 across	 conditions).	 In	 the	 across-condition	

classification	analysis,	accuracies	from	the	four	across-condition	classification	analyses	were	

averaged	 and	 survived	 FDR	 corrections	 in	 bilateral	 hPT	 (lhPT:	mean	 ±	 SD	 =	 65.6	 ±	 5,	 p	 <	

0.001,	rhPT:	mean	±	SD	=	61.9	±	5.6,	p<0.001),	indicating	that	the	neural	patterns	of	motion	
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direction	can	be	reliably	differentiated	from	sound-source	location	within	hPT.	

	

	
Figure	 4.	 Pattern	 dissimilarity	 between	motion	 directions	 and	 sound	 source	 locations.	 (A).	Across-condition	
classification	results	of	across	4	conditions	are	represented	in	each	ROI	(lhPT	and	rhPT).	4	binary	classifications	
[leftward	motion	 vs.	 left	 location],	 [rightward	motion	 vs.	 right	 location],	 [upward	motion	 vs.	 up	 location],	 and	
[downward	motion	vs.	down	location]	were	computed	and	averaged	to	produce	one	accuracy	score	per	ROI.	FDR	
corrected	 p-values:	 (***)	 p<0.001.	 Dotted	 lines	 represent	 chance	 level.	 (B).	 The	 embedded	 top	 panel	 shows	
neural	 RDMs	 extracted	 from	 left	 and	 right	 hPT,	 and	 multi-dimensional	 scaling	 (MDS)	 plot	 visualizes	 the	
similarities	of	 the	neural	 pattern	elicited	by	4	motion	directions	 (arrows)	 and	4	 sound	 source	 locations	 (dots).	
Color	 codes	 for	 arrow/dots	 are	 as	 follows:	 green	 indicates	 left	 direction/location,	 red	 indicates	 right	
direction/location,	 orange	 indicates	 up	 direction/location,	 and	 blue	 indicates	 down	 direction/location.	 ML:	
motion	left,	MR:	motion	right,	MD:	motion	down,	MU:	motion	up,	SL:	static	left,	SR:	static	right,	SD:	static	down,	
and	 SU:	 static	 up.	 	 (C-D).	The	 results	 of	 representational	 similarity	 analysis	 (RSA)	 in	 hPT	 are	 represented.	 (C).	
RDMs	of	 the	 computational	models	 that	 assume	different	 similarities	of	 the	neural	 pattern	based	on	auditory	
motion	 and	 static	 conditions.	 (D).	 RSA	 results	 for	 every	 model	 and	 each	 ROI.	 For	 each	 ROI,	 the	 black	 line	
represents	 the	 reliability	 of	 the	 data	 considering	 the	 signal-to-noise	 ratio	 (see	Materials	 and	Methods),	which	
provides	 an	 estimate	of	 the	highest	 correlation	we	 can	expect	 in	 a	 given	ROI	when	 correlating	 computational	
models	and	neural	RDMs.	Error	bars	indicate	SEM.	IM1:	Intermediate	models	with	within-axis	conditions	distinct,	
IM2:	Intermediate	model	with	within-axis	conditions	combined.	
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2.4.4.4.	RSA		

Multi-dimensional	Scaling	

Visualization	 of	 the	 representational	 distance	 between	 the	 neural	 patterns	 evoked	 by	

motion	directions	and	sound	source	 locations	 further	supported	that	within-axis	directions	

show	similar	geometry	compared	to	the	across-axes	directions,	therefore,	it	is	more	difficult	

to	 differentiate	 the	 neural	 patterns	 of	 opposite	 directions	 in	MVP-classification.	MDS	 also	

showed	 that	 in	 both	 lhPT	 and	 rhPT,	 motion	 directions	 and	 sound	 source	 locations	 are	

separated	into	2	clusters	(Figure	4B).		

	

RSA	with	external	models	

The	correlation	between	model	predictions	and	neural	RDMs	for	the	lhPT	and	rhPT	is	shown	

in	 Figure	 4D.	 The	 cross-condition	 classification	 results	 indicated	 a	 shared	 representation	

within	 the	 neural	 patterns	 of	 hPT	 for	 motion	 and	 static	 sounds.	 We	 examined	 the	

correspondence	between	the	response	pattern	dissimilarities	elicited	by	our	stimuli	with	14	

different	 model	 RDMs	 that	 included	 a	 fully	 condition	 distinct,	 fully	 condition-invariant	

models,	and	intermediate	models	with	different	degrees	of	shared	representation.		

First	 set	 of	 computational	 RDMs	 were	 modeled	 with	 the	 assumption	 that	 the	 neural	

patterns	of	within-axis	sounds	are	fully	distinct.	The	analysis	revealed	a	negative	correlation	

with	 the	 fully	 condition-invariant	model	 in	 the	 bilateral	 hPT	 (lhPT:	mean	 r	 ±	 SD	 =	 -0.12	 ±	

0.18,	rhPT:	mean	r	±	SD	=	-0.01	±	0.2)	that	increased	gradually	as	the	models	progressed	in	

the	condition-distinct	direction.	The	model	 that	best	 fit	 the	data	was	the	M9	model	 in	 the	

bilateral	hPT	(lhPT:	mean	r	±	SD	=	0.66±	0.3,	rhPT:	mean	r	±	SD	=	0,65	±	0.3).	A	similar	trend	

was	observed	for	the	second	set	of	models	that	have	the	assumption	of	within-axis	sounds	

evoke	similar	neural	patterns.	Condition-invariant	model	provided	 the	 least	explanation	of	

the	data	(lhPT:	mean	r	±	SD	=	0.14	±	0.25,	rhPT:	mean	r	±	SD	=	0.2	±	0.29),	and	correlations	

gradually	increased	as	the	models	progressed	in	the	condition-distinct	direction.	The	winner	

models	in	this	set	were	the	models	M9	in	lhPT	and	M7	in	the	rhPT	(lhPT:	mean	r	±	SD	=	0.67	

±	0.22,	rhPT:	mean	r	±	SD	=	0.69	±	0.15).		

In	 addition,	 we	 assessed	 differences	 between	 correlation	 coefficients	 for	

computational	 models	 and	 sets	 using	 a	 7	 x	 2	 x	 2	 (Models,	 Classes,	 and	 Hemispheres)	

repeated	measures	ANOVA.	This	 revealed	a	main	effect	of	Models	 (F6,90	=	32.8,	p	<	0.001)	

indicating	 correlations	 gradually	 increased	 as	 the	 models	 progressed	 in	 the	 condition-

distinct	direction.	The	significant	main	effect	of	Classes	was	also	observed	(F1,15	=	7.66,	p	=	

0.014)	 due	 to	 the	 higher	 correlation	 coefficients	 in	Within-Axis	 Combined	 set.	Within-Axis	
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Combined	 models	 explained	 our	 stimuli	 space	 better	 than	 Within-Axis	 Distinct	 models	

supporting	 similar	 pattern	 representation	 within	 planes.	 There	 were	 no	 differences	 in	

correlations	for	Hemispheres	(F1,15	=	0.587,	p	=	0.45)	and	no	significant	interaction	between	

Models	 x	Hemispheres	 (F6,90	=	0.25,	p	=	0.95),	 and	between	Classes	x	Hemispheres	 (F1,15	=	

0.749,	p	=	0.4).	

In	the	lhPT,	M9	and	M7	model	predictions	reached	the	noise	ceiling,	 indicating	the	

model	 performed	 as	 well	 as	 possible	 given	 the	 variability	 of	 the	 pattern	 across	 subjects.	

These	 results	 indicate	 that	 separate	 auditory	 spatial	 conditions	 (motion	 or	 static)	 elicit	

massively	different	neural	patterns	in	hPT.		

	

2.5.	DISCUSSION	
	

In	line	with	several	studies	investigating	auditory	motion	processing,	our	univariate	

results	demonstrated	a	preference	 for	moving	over	 static	 sounds	 in	 the	superior	 temporal	

gyri,	 bilateral	 hPT,	 precentral	 gyri,	 and	 anterior	 portion	 of	middle	 temporal	 gyrus	 in	 both	

hemispheres	(Baumgart	and	Gaschler-Markefski,	1999;	Krumbholz	et	al.,	2005;	Pavani	et	al.,	

2002;	 Poirier	 et	 al.,	 2005;	 Warren	 et	 al.,	 2002).	 The	 most	 robust	 cluster	 of	 activity	 was	

observed	 in	 the	 bilateral	 hPT	 (Figure	 2B,	 Table	 1).	Moreover,	 activity	 estimates	 extracted	

from	 independently	 defined	 hPT	 (from	 neurosynth	 meta-analysis)	 also	 revealed	 higher	

activity	 for	moving	 relative	 to	 static	 sounds.	 Both	whole-brain	 and	ROI	 analyses	 therefore	

clearly	 indicated	a	functional	preference	(expressed	here	as	higher	activity	 level	estimates)	

for	motion	processing	over	sound-source	location	in	bilateral	hPT	regions	(Figure	2).		

Does	 hPT	 contain	 information	 about	 specific	 motion	 directions	 and	 sound	 source	

locations?	At	the	univariate	level,	our	four	(left,	right,	up	and	down)	motion	directions	and	

sound	source	locations	did	not	evoke	differential	univariate	activity	in	hPT	region	(see	Figure	

2C).	We	then	carried	out	multivariate	pattern	classification	 in	order	to	 investigate	whether	

information	 related	 to	 motion	 directions	 and	 sound-source	 locations	 could	 be	 retrieved	

from	the	distributed	activity	reliably	elicited	by	each	separate	condition	across	voxels	of	the	

hPT.		

We	observed	that	bilateral	hPT	contains	reliable	information	about	the	four	auditory	

motion	directions	(Figure	3A).	Our	results	therefore	demonstrate	that	despite	no	univariate	

differences,	area	hPT	contains	reliable	distributed	information	about	separate	directions	of	

motions	 (Alink	 et	 al.,	 2012;	 Dormal	 et	 al.,	 2016;	 Jiang	 et	 al.,	 2014,	 2016).	 Our	 results	 are	

therefore	 similar	 to	 the	 observations	 made	 with	 fMRI	 in	 the	 human	 visual	 motion	 area	

hMT+/V5	 showing	 reliable	 direction-selective	 information	 despite	 comparable	 voxel-wise	
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univariate	 activity	 levels	 across	 directions	 (Kamitani	 and	 Tong,	 2006).	 To	 the	 best	 of	 our	

knowledge,	this	study	is	the	first	to	investigate	the	differences	between	within-	and	across-

axes	of	motion	directions	classification.	Within-axis	MVP-classification	results	revealed	that	

both	horizontal	 (left	 versus	 right),	 and	 vertical	 (up	 versus	down)	motion	directions	 can	be	

classified	 in	 the	 hPT	 region	 (see	 Figure	 3B-C).	 However,	 the	 results	 showed	 lack	 of	

consistency	across	hemispheres.	The	lhPT	contained	decodable	information	about	up	versus	

down	directions	but	not	between	left	versus	right;	the	opposite	results	were	observed	in	the	

rhPT.	 Importantly,	 across	 axes	direction	 classification	 revealed	massively	higher	 accuracies	

compared	 to	 within-axis	 classifications,	 indicating	 that	 classification	 motion	 direction	

information	 is	 much	more	 reliable	 across	 axis	 of	 motion,	 rather	 than	 separate	 directions	

within	 horizontal	 (left	 versus	 right)	 or	 vertical	 (up	 versus	 down)	 axes.	 Such	 enhanced	

classification	accuracy	across	axes	versus	within	axis	is	reminiscent	of	observations	made	in	

MT+/V5	where	 the	 large-scale	 axis	 of	motion	 selective	 organization	was	 observed	 in	 non-

human	 primates	 (Albright	 et	 al.,	 1984),	 and	 in	 human	 area	MT+/V5	 (Zimmermann	 et	 al.,	

2011).	 Further	 examination	 with	 RSA	 provided	 additional	 evidence	 that	 within-axis	

combined	models	 (aggregating	 the	 opposite	 directions/location)	 explain	 better	 the	 neural	

representational	space	of	hPT	by	showing	higher	correlations	values	compared	to	within-axis	

distinct	 models.	 These	 results	 strengthen	 the	 idea	 of	 representation	 of	 opposite	

directions/locations	are	similar	in	the	neural	patterns	of	hPT	(see	Figure	4D).		

The	 resemblance	 between	 our	 findings	 with	 the	 conclusions	 reached	 in	 the	

hMT+/V5	 for	 visual	 motion	 (Zimmermann	 et	 al.,	 2011)	 suggests	 that	 the	 topographic	

organization	 principle	 of	 hMT+/V5	 and	 hPT	 shows	 similarities	 in	 representing	 motion	

directions.	 The	 functional	 organization	of	 the	middle	occipito-temporal	 region	hMT+/V5	 is	

characterized	 by	 columns	 containing	 neurons	 that	 react	 specifically	 to	 a	 certain	 visual	

motion	 direction	 (Albright	 et	 al.,	 1984).	 Those	 columns	 vary	 smoothly	 for	 certain	motion	

direction	 but	 are	 also	 found	 running	 side	 by	 side	 with	 their	 respective	 opposing	 motion	

direction	 counterparts	 (Albright	 et	 al.,	 1984;	 Born	 and	 Bradley,	 2005;	 Diogo	 et	 al.,	 2003;	

Geesaman	 et	 al.,	 1997;	 Zimmermann	 et	 al.,	 2011).	 By	 aggregating	 opposing	 motion	

directions,	larger	axis	of	motion	features	can	be	constructed	that	are	more	easily	detectable	

with	fMRI	than	individual	direction	selective	columns	(Zimmermann	et	al.,	2011).	Moreover,	

neural	 responses	 to	 opposite	 directions	 were	 suggested	 to	 play	 a	 role	 in	 encoding	 visual	

motion	direction	by	triggering	excitatory/inhibitory	mechanism	within	hMT+/V5	(Heeger	et	

al.,	1999).	Due	to	this	topographic	organization	principle	of	area	hMT+/V5,	and	probably	in	

combination	with	excitatory/inhibitory	activity	features	of	the	opposing	motion	directions,	it	
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has	been	suggested	that	the	representation	of	preferred	axis	of	motion	is	more	systematic	

from	 the	 pattern	 of	 fMRI	 activity	 when	 compared	 to	 the	 opposite	 direction	 of	 motion	

(Zimmermann	 et	 al.,	 2011;	 but	 see	 below	 for	 alternative	 accounts).	 The	 observed	motion	

opponent	mechanism	in	visual	motion	area	could	also	exist	in	hPT	region	and	influence	the	

reliable	axis	of	motion	classification.	A	number	of	electrophysiological	 studies	have	 indeed	

demonstrated	the	existence	of	motion	direction	sensitive	neurons	in	the	auditory	cortex	of	

mammals	 (Ahissar	 et	 al.,	 1992;	Doan	 et	 al.,	 1999;	 Poirier	 et	 al.,	 1997)	 and	 showed	higher	

spatial	 selectivity	 (sharper	 spatial	 tuning)	 in	 the	 caudal	 fields	 (homologue	 to	 area	 hPT)	

(Woods	et	 al.,	 2006;	 Zhou	and	Wang,	2012).	Visual	motion	aftereffect	 (vMAE)	 is	 the	most	

compelling	 psychophysical	 evidence	 that	 point	 towards	 the	 existence	 of	 direction	 specific	

mechanisms	 in	 vision.	 The	 effect	 relies	 on	 prolonged	 exposure	 to	 a	 particular	 motion	

direction,	followed	by	the	viewing	of	a	stationary	object,	elicits	the	illusion	of	motion	in	the	

opposite	 direction,	 demonstrating	 an	 adaptation	 of	 specialized	 direction	 detecting	

mechanisms	(Barlow	and	Hill,	1963).	The	effect	of	adaptation	to	a	specific	motion	direction	

has	 been	 commonly	 observed	 in	 hMT+/V5	 (He	 et	 al.,	 1998;	 Hogendoorn	 and	 Verstraten,	

2013;	Huk	et	 al.,	 2001;	 Tootell	 et	 al.,	 1995;	Van	Wezel	 2002).	 Similarly,	 behavioral	 studies	

have	provided	compelling	evidence	for	motion	selective	(Deas	et	al.,	2008;	Guerreiro	et	al.,	

2016;	 Kitagawa	 and	 Ichihara,	 2002;	 Reinhardt-Rutland	 and	 Anstis,	 1982)	 and	 direction-

sensitive	 auditory	 motion	 aftereffects	 (aMAEs)	 (Dong	 et	 al.,	 2000;	 Grantham,	 1998;	

Grantham	 and	 Wightman,	 1979;	 Neelon	 and	 Jenison,	 2003).	 However,	 the	 existence	 of	

direction	specific	adaptation	in	the	human	auditory	cortex	remains	controversial	(Grzeschik	

et	al.,	2013;	Magezi	et	al.,	2013).		

Even	if	it	has	been	proposed	that	successful	classification	may	potentially	stem	from	

the	 spatial	 biases	 within	 each	 voxel	 that	 relates	 to	 the	 underlying	 cortical	 columnar	

organization	 or	 other	 types	 of	 direction	 selective	 signals	 (Bartels	 et	 al.,	 2008;	Haynes	 and	

Rees,	 2006;	 Kamitani	 and	 Tong,	 2005),	 alternative	 explanations	 have	 also	 been	 provided.	

Indeed,	if	fMRI	signal	within	a	voxel	would	exclusively	reflect	a	sampling	of	cortical	columns,	

smoothing	 of	 the	 data	 would	 substantially	 decrease	 the	 classification	 accuracies	 due	 to	

averaging	out	the	random	biases	in	the	neighboring	voxels	(Kamitani	and	Sawahata,	2010).	

Contrary	to	that,	evidence	points	to	no	influence	of	smoothing	(Op	de	Beeck,	2010).	Studies	

conducted	 on	 early	 visual	 cortex	 proposed	 that	 classifying	 orientation	 preference	 reflects	

much	 larger	scale	 (e.g.	 retinotopy)	 rather	 than	columnar	organization	 (Op	de	Beeck,	2010;	

Freeman	 et	 al.,	 2011,	 2013).	 Interestingly,	 high-field	 fMRI	 studies	 showed	 that	 the	 signal	

carries	information	related	to	both	large-	and	fine-scale	(columnar	level)	biases	(Gardumi	et	
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al.,	2016;	Pratte	et	al.,	2016;	Sengupta	et	al.,	2017).	A	study	that	 investigated	the	effect	of	

spatial	 resolution	and	smoothing	on	 the	classification	accuracies	on	 two	different	auditory	

tasks,	 concluded	 that	 the	 influence	 of	 large-	 and	 fine-scale	 spatial	 biases	 depends	 on	 the	

specific	task	of	interest	(Gardumi	et	al.,	2016).	These	studies	support	the	notion	that	MVP-

classification	results	could	reflect	the	combination	of	both	large-	and	fine-scale	organization.	

The	present	study	sheds	important	new	lights	on	the	coding	mechanism	of	motion	direction	

within	 the	 hPT	 and	 demonstrates	 that	 fMRI	 signal	 in	 the	 hPT	 contains	 direction	 specific	

information	and	point	toward	an	“axis	of	motion”	organization.	However,	further	studies	are	

needed	to	test	the	similarities	between	the	coding	mechanisms	 implemented	in	visual	and	

auditory	motion	selective	regions,	and	more	particularly,	to	investigate	whether	directional	

information	 captured	 in	 fMRI	 emerges	 from	 columnar	 level	 or	 larger-scale	 spatiotopic	

organization.	

Supporting	univariate	motion	selectivity	results	in	bilateral	hPT,	MVPA	revealed	that	

multi-class	 and	 across-axes	 classifications	 are	 higher	 for	 moving	 than	 for	 static	 sounds	

(Figure	3A-B).	However,	despite	minimal	univariate	activity	elicited	by	sound-source	location	

in	 hPT,	 and	 the	 absence	 of	 reliable	 univariate	 differences	 in	 the	 activity	 elicited	 by	 each	

position	(see	Figure	2C),	MVP-classification	results	showed	that	beside	the	vertical	axis	(up	

versus	down),	sound	source	 location	information	can	be	reliably	decoded	bilaterally	 in	hPT	

(Figure	3C).	Our	 results	 are	 in	 line	with	previous	 studies	 showing	 that	posterior	 regions	 in	

auditory	cortex	exhibit	location	sensitivity	both	in	animals	(Recanzone,	2000;	Stecker	et	al.,	

2005;	 Tian	 et	 al.,	 2001)	 and	 humans	 (Ahveninen	 et	 al.,	 2006,	 2013;	 Brunetti	 et	 al.,	 2005;	

Deouell	et	al.,	2007;	Derey	et	al.,	2016;	Krumbholz	et	al.,	2005;	Warren	and	Griffiths,	2003;	

Zatorre	et	al.,	2002).		

In	 contrast	 to	 what	 was	 observed	 for	 motion	 direction,	 sound	 source	 location	

patterns	 did	 not	 reveal	 “axis	 of	 location”	 preference	 in	 hPT.	 This	 indicates	 that	 auditory	

sound	 source	 locations	 might	 not	 follow	 similar	 topographic	 representations	 to	 motion	

directions.		

The	 observed	 lack	 of	 axis	 of	 location	 preference	 in	 PT	 could	 be	 attributed	 to	

widespread/interspersed	 distribution	 of	 location	 selective	 neurons	 (Ahissar	 et	 al.,	 1992).	

One	 recent	 study	 has	 demonstrated	 that	 sound	 locations	 in	 the	 azimuth	 can	 be	modeled	

with	opponent	channel	coding	based	on	the	BOLD	responses	 in	bilateral	hPT	 (Derey	et	al.,	

2016).	Opponent	 channel	 coding	model,	which	 stems	 from	electrophysiological	 recordings	

of	 mammalian	 auditory	 pathway	 (Day	 and	 Delgutte,	 2013;	 Miller	 and	 Recanzone,	 2009;	

Stecker	 et	 al.,	 2005),	 proposes	 that	 sound	 locations	 in	 the	 azimuth	 may	 be	 represented	
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through	the	combined	activity	of	two	neuronal	subpopulations	that	are	broadly	tuned	with	

an	overall	preference	for	opposite	auditory	hemifields	(McAlpine	et	al.	2001;	Stecker	et	al.	

2005),	 and	 recent	 data	 in	 both	 monkeys	 and	 humans	 suggest	 that	 these	 broadly	 tuned	

neurons		are	distributed	more	widely	across	auditory	cortex	(Derey	et	al.,	2016;	Magezi	and	

Krumbholz,	 2010;	 Ortiz-Rios	 et	 al.,	 2017;	 Salminen	 et	 al.,	 2009;	 Werner-Reiss	 and	 Groh,	

2008).	In	the	horizontal	within-condition	classification,	our	findings	are	in	line	with	previous	

observations	 from	monkey	 and	 human	 fMRI	 studies	 that	 in	 the	 posterior	 auditory	 cortex	

(including	 PT),	 fMRI	 signals	 contain	 representations	 of	 sound	 location	 (Derey	 et	 al.,	 2016;	

Lewis	 et	 al.,	 2008;	Ortiz-Rios	 et	 al.,	 2017).	 The	widespread	 and	 spatially	 contralateral	 bias	

might	provide	information	to	the	classifier	to	detect	the	neural	pattern	differences	between	

sounds	on	the	horizontal	axis	(see	Figure	3C).	In	the	vertical	axis,	MVP-classification	was	not	

significant	 for	 sound	 source	 locations	 (see	 Figure	 3C).	 A	 recent	 electroencephalographic	

(EEG)	 study	 also	 showed	 that	 while	 horizontal	 sound	 source	 (left	 versus	 right)	 revealed	

successful	 classification	 in	 the	 scalp,	 less	 consistent	 classification	 results	was	 observed	 for	

vertical	 sounds	 (Bednar	 et	 al.	 2017).	 It	 should	 be	 noted	 that	 the	 lack	 of	 significant	

classification	could	simply	indicate	that	the	neural	patterns	evoked	by	up	and	down	sounds,	

at	our	brain	sampling	level,	cannot	be	differentiated	by	the	classifier,	which	does	not	mean	

that	hPT	do	not	contain	any	information	related	to	up	vs	down	vertical	sounds.	Our	results	

however	 demonstrate	 that	 information	 about	 the	 position	 of	 sounds	 is	 more	 easily	

decodable	in	the	horizontal	plane	when	compare	to	the	vertical	plane,	using	the	patterned	

activity	recorded	in	hPT.	

To	which	extend	 the	neural	 representation	of	motion	directions	and	sound	source	

locations	overlaps	has	been	debated	extensively	(Grantham,	1986;	Kaas	et	al.,	1999;	Poirier	

et	al.,	2017;	Romanski	et	al.,	2000;	Smith	et	al.,	2004,	2007;	Zatorre	and	Belin,	2001).	Despite	

the	 fact	 that	 hPT	 preferentially	 represents	 directional	 motion	 (observed	 in	 our	 study	 by	

higher	univariate	responses	and	higher	within-condition	classification	accuracies),	the	cross-

condition	 classification	 results	 revealed	 that	 auditory	 motion	 (e.g.	 going	 to	 the	 left)	 and	

sound-source	location	(being	on	the	left)	share	partial	neural	representations	in	hPT	(Figure	

3A).	 The	 idea	of	 cross-condition	 classification	between	motion	direction	and	 sound-source	

location	 necessarily	 relies	 on	 whether	 there	 is	 a	 shared	 computation	 between	 sounds	

located	on	a	given	space	and	sounds	directed	towards	this	space.	Low-level	features	of	these	

two	 types	 of	 auditory	 stimuli	 vary	 in	 many	 ways	 and	 produce	 large	 difference	 at	 the	

univariate	 level	 in	 the	 cortex	 (see	 Figure	 2B).	 However,	 perceiving,	 for	 instance,	 a	 sound	

going	toward	the	left	side	or	located	on	the	left	side	evoke	a	sensation	of	location/direction	
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in	 the	 external	 space	 that	 is	 common	 across	 conditions.	 Our	 significant	 cross-condition	

classification	 may	 therefore	 relate	 to	 the	 evoked	 sensation/perception	 of	 an	 object	

being/going	 to	 a	 common	external	 spatial	 location.	 Electrophysiological	 studies	 in	 animals	

demonstrated	 that	 motion-selective	 neurons	 in	 the	 auditory	 cortex	 displayed	 similar	

response	profile	 to	 sounds	 located	or	moving	 toward	 the	 same	position	 in	external	 space,	

suggesting	that	the	processing	of	sound-source	 locations	may	contribute	to	the	perception	

of	moving	sounds	(Ahissar	et	al.,	1992;	Doan	et	al.,	1999;	Poirier	et	al.,	1997).	Results	from	

human	 psychophysiological	 and	 auditory	 evoked	 potential	 studies	 also	 strengthen	 the	

notion	that	sound	source	location	contributes	to	motion	perception	(Getzmann	and	Lewald,	

2011;	 Strybel	 and	 Neale,	 1994).	 Our	 cross-condition	 MVPA	 results	 therefore	 extend	 the	

notion	that	motion	directions	and	sound	source	locations	might	have	common	features	that	

are	shared	for	encoding	spatial	sounds.		

Significant	 cross-condition	 classification	 has	 typically	 been	 considered	 as	 a	

demonstration	that	the	region	implements	a	partly	common	and	abstracted	representation	

of	 the	 tested	 conditions	 (Fairhall	 and	 Caramazza,	 2013;	 Higgins	 et	 al.,	 2017;	 Hong	 et	 al.,	

2012).	For	instance,	a	recent	study	elegantly	demonstrated	that	the	human	auditory	cortex	

at	 least	 partly	 integrates	 interaural	 time	 and	 level	 differences	 (ITD	 and	 ILD)	 into	 a	 higher-

order	 representation	 of	 auditory	 space	 based	 on	 significant	 for	 cross-cue	 classification	

(training	on	ITD	and	classifying	ILD,	and	reversely).	In	the	present	study,	we	argue	that	even	

if	 cross-	 condition	 MVP-classification	 can	 provide	 useful	 hints	 about	 shared	 information	

across	 conditions	 in	 a	 given	 region;	 successful	 cross-MVPA	 results	 cannot	 be	 taken	 as	

evidence	 that	 the	 region	 implements	 abstract	 representation.	 Our	 successful	 across-

condition	 classification	 (see	 Figure	 4A)	 demonstrated	 that,	 even	 though	 there	 are	 shared	

representations	 for	 moving	 and	 static	 sounds	 within	 hPT,	 classifiers	 are	 able	 to	 easily	

distinguish	motion	directions	from	sound	source	locations	(e.g.	leftward	versus	left	location).	

RSA	 analyses	 further	 supported	 the	 idea	 that	 moving	 and	 static	 sounds	 elicit	 distinct	

patterns	 in	 hPT	 (see	 Figure	 4B-D).	 Altogether,	 our	 results	 suggest	 that	 hPT	 contains	 both	

motion	direction	and	sound-source	location	information	but	that	the	neural	patterns	related	

to	these	two	conditions	are	only	partially	overlapping.	Our	observation	of	significant	cross-

condition	 classification	 based	 on	 highly	 distinct	 pattern	 of	 activity	 between	 static	 and	

moving	 sounds	may	 support	 the	notion	 that	 even	 if	 location	 information	 could	 serve	 as	 a	

substrate	 for	 movement	 detection,	 motion	 encoding	 does	 not	 solely	 rely	 on	 location	

information	(Ducommun	et	al.,	2002;	Getzmann,	2011;	Poirier	et	al.,	2017).		
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2.6.	CONCLUSION	

	 	

The	 present	 study	 demonstrates	 that	 information	 related	 to	 both	 horizontal	 and	

vertical	moving	and	static	sounds	can	be	detected	in	the	PT.	Despite	the	shared	information	

between	 the	neural	 patterns	 evoked	by	 auditory	motion	 and	 static	 sounds,	we	 show	 that	

motion	 directions	 and	 static	 locations	 generate	 highly	 distinct	 patterns	 of	 activity	 in	 the	

independently	 defined	 PT.	 Importantly,	 using	 multivariate	 decoding	 of	 different	 motion	

directions,	we	show	evidences	 that	direction-related	 information	within	PT	displays	axis-of	

motion	 coding	 features,	 reminiscent	 to	 the	 known	 organization	 of	 visual	motion	 selective	

area.		

	

2.7.	REFERENCES	

	

Abeles,	M.,	and	Goldstein	Jr.,	M.H.	(1970).	Functional	architecture	in	cat	primary	auditory	

cortex:	columnar	organization	and	organization	according	to	depth.	J.	Neurophysiol.	

33,	172–187.	

Ahissar,	M.,	Ahissar,	E.,	Bergman,	H.,	and	Vaadia,	E.	(1992).	Encoding	of	sound-source	

location	and	movement:	activity	of	single	neurons	and	interactions	between	adjacent	

neurons	in	the	monkey	auditory	cortex.	J.	Neurophysiol.	67,	203–215.	

Ahveninen,	J.,	Jaaskelainen,	I.P.,	Raij,	T.,	Bonmassar,	G.,	Devore,	S.,	Hamalainen,	M.,	

Levanen,	S.,	Lin,	F.-H.H.,	Sams,	M.,	Shinn-Cunningham,	B.G.,	et	al.	(2006).	Task-

modulated	“what”	and	“where”	pathways	in	human	auditory	cortex.	Proc.	Natl.	Acad.	

Sci.	U.	S.	A.	103,	14608–14613.	

Ahveninen,	J.,	Huang,	S.,	Nummenmaa,	A.,	Belliveau,	J.W.,	Hung,	A.-Y.,	Jääskeläinen,	I.P.,	

Rauschecker,	J.P.,	Rossi,	S.,	Tiitinen,	H.,	and	Raij,	T.	(2013).	Evidence	for	distinct	

human	auditory	cortex	regions	for	sound	location	versus	identity	processing.	Nat.	

Commun.	4,	871–882.	

Albright,	T.D.,	Desimone,	R.,	and	Gross,	C.G.	(1984).	Columnar	organization	of	directionally	

selective	cells	in	visual	area	MT	of	the	macaque.	J.	Neurophysiol.	51,	16–31.	

Alink,	A.,	Euler,	F.,	Kriegeskorte,	N.,	Singer,	W.,	and	Kohler,	A.	(2012).	Auditory	motion	

direction	encoding	in	auditory	cortex	and	high-level	visual	cortex.	Hum.	Brain	Mapp.	

33,	969–978.	

Altman,	J.A.	(1968).	Are	there	neurons	detecting	direction	of	sound	source	motion?	Exp.	



Chapter 2 
 

	 78	

Neurol.	22,	13–25.	

Altman,	J.A.	(1994).	Processing	of	Information	Concerning	Moving	Sound	Sources	in	the	

Auditory	Centers	and	its	Utilization	by	Brain	Integrative	Structures.	Sens.	Syst.	8,	255–

261.	

Barlow,	H.B.,	and	Hill,	R.M.	(1963).	Evidence	for	a	physiological	explanation	of	the	waterfall	

phenomenon	and	figural	after-effects	[50].	Nature	200,	1345–1347.	

Barrett,	D.J.K.,	and	Hall,	D.A.	(2006a).	Response	preferences	for	“what”	and	“where”	in	

human	non-primary	auditory	cortex.	Neuroimage	32,	968–977.	

Barrett,	D.J.K.,	and	Hall,	D.	a.	(2006b).	Response	preferences	for	“‘what’”	and	“‘where’”	in	

human	non-primary	auditory	cortex.	Neuroimage	32,	968–977.	

Bartels,	A.,	Logothetis,	N.K.,	and	Moutoussis,	K.	(2008).	fMRI	and	its	interpretations:	an	

illustration	on	directional	selectivity	in	area	V5/MT.	Trends	Neurosci.	31,	444–453.	

Baumgart,	F.,	and	Gaschler-Markefski,	B.	(1999).	A	movement-sensitive	area	in	auditory	

cortex.	Nature	400,	1997–1999.	

Beckett,	A.,	Peirce,	J.W.,	Sanchez-Panchuelo,	R.M.,	Francis,	S.,	and	Schluppeck,	D.	(2012).	

Contribution	of	large	scale	biases	in	decoding	of	direction-of-motion	from	high-

resolution	fMRI	data	in	human	early	visual	cortex.	Neuroimage	63,	1623–1632.	

Op	de	Beeck,	H.P.	(2010).	Against	hyperacuity	in	brain	reading:	Spatial	smoothing	does	not	

hurt	multivariate	fMRI	analyses?	Neuroimage	49,	1943–1948.	

Benjamini,	Y.,	and	Yekutieli,	D.	(2001).	The	control	of	the	false	discovery	rate	in	multiple	

testing	under	dependency.	Ann.	Stat.	29,	1165–1188.	

Benson,	D.A.,	Hienz,	R.D.,	and	Goldstein,	M.H.	(1981).	Single-unit	activity	in	the	auditory	

cortex	of	monkeys	actively	localizing	sound	sources:	Spatial	tuning	and	behavioral	

dependency.	Brain	Res.	219,	249–267.	

Blauert,	J.	(1982).	Binaural	localization.	Scand.	Audiol.	Suppl.	15,	7–26.	

Born,	R.T.,	and	Bradley,	D.C.	(2005).	Structure	and	function	of	visual	area	MT.	Annu.	Rev.	

Neurosci.	28,	157–189.	

Braddick,	O.J.,	O’Brien,	J.M.D.,	Wattam-Bell,	J.,	Atkinson,	J.,	Hartley,	T.,	and	Turner,	R.	

(2001).	Brain	areas	sensitive	to	coherent	visual	motion.	Perception	30,	61–72.	

Bremmer,	F.,	Schlack,		a,	Shah,	N.J.,	Zafiris,	O.,	Kubischik,	M.,	Hoffmann,	K.,	Zilles,	K.,	and	

Fink,	G.R.	(2001).	Polymodal	motion	processing	in	posterior	parietal	and	premotor	

cortex:	a	human	fMRI	study	strongly	implies	equivalencies	between	humans	and	

monkeys.	Neuron	29,	287–296.	

Britten,	K.H.,	Newsome,	W.T.,	Shadlen,	M.N.,	Celebrini,	S.,	and	Movshon,	J.A.	(1996).	A	



Chapter 2 
 

	 79	

relationship	between	behavioral	choice	and	the	visual	responses	of	neurons	in	

macaque	MT.	Vis.	Neurosci.	13,	87–100.	

Brunetti,	M.,	Belardinelli,	P.,	Caulo,	M.,	Gratta,	C.	Del,	Penna,	S.	Della,	Ferretti,	A.,	Lucci,	G.,	

Moretti,	A.,	Pizzella,	V.,	Tartaro,	A.,	et	al.	(2005).	Human	Brain	Activation	During	

Passive	Listening	to	Sounds	From	Different	Locations :	An	fMRI	and	MEG	Study.	261,	

251–261.	

Carlile,	S.,	and	Leung,	J.	(2016).	The	Perception	of	Auditory	Motion.	Trends	Hear.	20,	1–19.	

Clarey,	J.C.,	Barone,	P.,	and	Imig,	T.J.	(1994).	Functional	organization	of	sound	direction	and	

sound	pressure	level	in	primary	auditory	cortex	of	the	cat.	J.	Neurophysiol.	72,	2383–

2405.	

Collignon,	O.,	Vandewalle,	G.,	Voss,	P.,	Albouy,	G.,	Charbonneau,	G.,	Lassonde,	M.,	and	

Lepore,	F.	(2011).	Functional	specialization	for	auditory-spatial	processing	in	the	

occipital	cortex	of	congenitally	blind	humans.	Proc.	Natl.	Acad.	Sci.	108,	4435–4440.	

Day,	M.L.,	and	Delgutte,	B.	(2013).	Decoding	Sound	Source	Location	and	Separation	Using	

Neural	Population	Activity	Patterns.	J.	Neurosci.	33,	15837–15847.	

Deas,	R.W.,	Roach,	N.W.,	and	McGraw,	P.	V.	(2008).	Distortions	of	perceived	auditory	and	

visual	space	following	adaptation	to	motion.	Exp.	Brain	Res.	191,	473–485.	

Deouell,	L.Y.,	Heller,	A.S.,	Malach,	R.,	Esposito,	M.D.,	and	Knight,	R.T.	(2007).	Cerebral	

Responses	to	Change	in	Spatial	Location	of	Unattended	Sounds.	Neuron	55,	985–996.	

Derey,	K.,	Valente,	G.,	De	Gelder,	B.,	and	Formisano,	E.	(2016).	Opponent	Coding	of	Sound	

Location	(Azimuth)	in	Planum	Temporale	is	Robust	to	Sound-Level	Variations.	Cereb.	

Cortex	26,	450–464.	

Diogo,	A.C.M.,	Soares,	J.G.M.,	Koulakov,	A.,	Albright,	T.D.,	and	Gattass,	R.	(2003).	

Electrophysiological	imaging	of	functional	architecture	in	the	cortical	middle	temporal	

visual	area	of	Cebus	apella	monkey.	J.	Neurosci.	23,	3881–3898.	

Doan,	D.E.,	Saunders,	J.C.,	Field,	F.,	Ingham,	N.J.,	Hart,	H.C.,	and	Mcalpine,	D.	(1999).	

Sensitivity	to	Simulated	Directional	Sound	Motion	in	the	Rat	Primary	Auditory	Cortex	

Sensitivity	to	Simulated	Directional	Sound	Motion	in	the	Rat	Primary	Auditory	Cortex.	

2075–2087.	

Dong,	C.J.,	Swindale,	N.	V,	Zakarauskas,	P.,	Hayward,	V.,	and	Cynader,	M.S.	(2000).	The	

auditory	motion	aftereffect:	its	tuning	and	specificity	in	the	spatial	and	frequency	

domains.	Percept.	Psychophys.	62,	1099–1111.	

Dormal,	G.,	Rezk,	M.,	Yakobov,	E.,	Lepore,	F.,	and	Collignon,	O.	(2016).	Auditory	motion	in	

the	sighted	and	blind:	Early	visual	deprivation	triggers	a	large-scale	imbalance	



Chapter 2 
 

	 80	

between	auditory	and	“visual”	brain	regions.	Neuroimage	134,	630–644.	

Ducommun,	C.Y.,	Murray,	M.M.,	Thut,	G.,	Bellmann,	A.,	Viaud-Delmon,	I.,	Clarke,	S.,	and	

Michel,	C.M.	(2002).	Segregated	processing	of	auditory	motion	and	auditory	location:	

an	ERP	mapping	study.	Neuroimage	16,	76–88.	

Duffour-Nikolov,	C.,	Tardif,	E.,	Maeder,	P.,	Thiran,	A.B.,	Bloch,	J.,	Frischknecht,	R.,	and	Clarke,	

S.	(2012).	Auditory	spatial	deficits	following	hemispheric	lesions:	Dissociation	of	

explicit	and	implicit	processing.	Neuropsychol.	Rehabil.	22,	674–696.	

Edelman,	S.,	Grill-Spector,	K.,	Kushnir,	T.,	and	Malach,	R.	(1998).	Toward	direct	visualization	

of	the	internal	shape	represetation	space	by	fMRI.	Psychobiology	26,	309–321.	

Eickhoff,	S.B.,	Paus,	T.,	Caspers,	S.,	Grosbras,	M.H.,	Evans,	A.C.,	Zilles,	K.,	and	Amunts,	K.	

(2007).	Assignment	of	functional	activations	to	probabilistic	cytoarchitectonic	areas	

revisited.	Neuroimage	36,	511–521.	

Fairhall,	S.L.,	and	Caramazza,	A.	(2013).	Brain	Regions	That	Represent	Amodal	Conceptual	

Knowledge.	J.	Neurosci.	33,	10552–10558.	

Freeman,	J.,	Brouwer,	G.J.,	Heeger,	D.J.,	and	Merriam,	E.P.	(2011).	Orientation	decoding	

depends	on	maps,	not	columns.	J.	Neurosci.	31,	4792–4804.	

Freeman,	J.,	Heeger,	D.J.,	and	Merriam,	E.P.	(2013).	Coarse-Scale	Biases	for	Spirals	and	

Orientation	in	Human	Visual	Cortex.	J.	Neurosci.	33,	19695–19703.	

Gardumi,	A.,	Ivanov,	D.,	Hausfeld,	L.,	Valente,	G.,	Formisano,	E.,	and	Uludağ,	K.	(2016).	The	

effect	of	spatial	resolution	on	decoding	accuracy	in	fMRI	multivariate	pattern	analysis.	

Neuroimage	132,	32–42.	

Geesaman,	B.J.,	Born,	R.T.,	Andersen,	R.A.,	and	Tootell,	R.B.	(1997).	Maps	of	complex	motion	

selectivity	in	the	superior	temporal	cortex	of	the	alert	macaque	monkey:	a	double-

label	2-deoxyglucose	study.	Cereb	Cortex	7,	749–757.	

Getzmann,	S.	(2011).	Auditory	motion	perception:	Onset	position	and	motion	direction	are	

encoded	in	discrete	processing	stages.	Eur.	J.	Neurosci.	33,	1339–1350.	

Getzmann,	S.,	and	Lewald,	J.	(2011).	The	effect	of	spatial	adaptation	on	auditory	motion	

processing.	Hear.	Res.	272,	21–29.	

Getzmann,	S.,	and	Lewald,	J.	(2012).	Cortical	processing	of	change	in	sound	location:	Smooth	

motion	versus	discontinuous	displacement.	Brain	Res.	1466,	119–127.	

Grantham,	D.W.	(1986).	Detection	and	discrimination	of	simulated	motion	of	auditory	

targets	in	the	horizontal	plane.	J.	Acoust.	Soc.	Am.	79,	1939–1949.	

Grantham,	D.W.	(1998).	Auditory	motion	aftereffects	in	the	horizontal	plane:	the	effects	of	

spectral	region,	spatial	sector,	and	spatial	richness.	Acust.	-	Acta	Acust.	84,	337–347.	



Chapter 2 
 

	 81	

Grantham,	D.W.,	and	Wightman,	F.L.	(1979).	Auditory	motion	aftereffects.	Percept.	

Psychophys.	26,	403–408.	

Griffiths,	T.D.,	Büchel,	C.,	Frackowiak,	R.S.,	and	Patterson,	R.D.	(1998).	Analysis	of	temporal	

structure	in	sound	by	the	human	brain.	Nat.	Neurosci.	1,	422–427.	

Grzeschik,	R.,	Muller,	R.,	Verhey,	J.L.,	Bockmann-Barthel,	M.,	and	Hoffmann,	M.B.	(2013).	

Direction-specific	adaptation	of	motion-onset	auditory	evoked	potentials.	38,	2557–

2565.	

Guerreiro,	M.J.S.,	Putzar,	L.,	and	Röder,	B.	(2016).	Persisting	Cross-Modal	Changes	in	Sight-

Recovery	Individuals	Modulate	Visual	Perception.	Curr.	Biol.	26,	3096–3100.	

Hall,	D.A.,	and	Moore,	D.R.	(2003).	Auditory	neuroscience:	the	salience	of	looming	sounds.	

Curr.	Biol.	13,	R91-3.	

Hall,	D.A.,	Haggard,	M.P.,	Akeroyd,	M.A.,	Palmer,	A.R.,	Summerfield,	A.Q.,	Elliott,	M.R.,	

Gurney,	E.M.,	and	Bowtell,	R.W.	(1999).	“Sparse”	temporal	sampling	in	auditory	fMRI.	

Hum.	Brain	Mapp.	7,	213–223.	

Haxby,	J.	V,	Gobbini,	M.I.,	Furey,	M.L.,	Ishai,	A.,	Schouten,	J.L.,	and	Pietrini,	P.	(2001).	

Distributed	and	overlapping	representations	of	faces	and	objects	in	ventral	temporal	

cortex.	Science	(80-.	).	293,	2425–2430.	

Haynes,	J.,	and	Rees,	G.	(2006).	Decoding	mental	states	from	brain	activity	in	humans.	7,	

523–534.	

Heeger,	D.J.,	Boynton,	G.M.,	Demb,	J.B.,	Seidemann,	E.,	and	Newsome,	W.T.	(1999).	Motion	

opponency	in	visual	cortex.	J.	Neurosci.	19,	7162–7174.	

Higgins,	N.C.,	McLaughlin,	S.A.,	Rinne,	T.,	and	Stecker,	G.C.	(2017).	Evidence	for	cue-

independent	spatial	representation	in	the	human	auditory	cortex	during	active	

listening.	Proc.	Natl.	Acad.	Sci.	114,	E7602–E7611.	

Hong,	S.W.,	Tong,	F.,	and	Seiffert,	A.E.	(2012).	Direction-selective	patterns	of	activity	in	

human	visual	cortex	suggest	common	neural	substrates	for	different	types	of	motion.	

Neuropsychologia	50,	514–521.	

Imig,	T.J.,	and	Adrián,	H.O.	(1977).	Binaural	columns	in	the	primary	field	(A1)	of	cat	auditory	

cortex.	Brain	Res.	138,	241–257.	

Imig,	T.J.,	Irons,	W.	a,	and	Samson,	F.R.	(1990).	Single-unit	selectivity	to	azimuthal	direction	

and	sound	pressure	level	of	noise	bursts	in	cat	high-frequency	primary	auditory	

cortex.	J.	Neurophysiol.	63,	1448–1466.	

Imig,	T.J.,	Bibikov,	N.G.,	Poirier,	P.,	and	Samson,	F.K.	(2000).	Directionality	derived	from	

pinna-cue	spectral	notches	in	cat	dorsal	cochlear	nucleus.	J.	Neurophysiol.	83,	907–



Chapter 2 
 

	 82	

925.	

Ingham,	N.J.,	Hart,	H.C.,	and	McAlpine,	D.	(2001).	Spatial	receptive	fields	of	inferior	colliculus	

neurons	to	auditory	apparent	motion	in	free	field.	J.	Neurophysiol.	85,	23–33.	

Jiang,	F.,	Stecker,	G.C.,	and	Fine,	I.	(2014).	Auditory	motion	processing	after	early	blindness.	

J.	Vis.	14,	4–4.	

Jiang,	F.,	Stecker,	G.C.,	Boynton,	G.M.,	and	Fine,	I.	(2016).	Early	Blindness	Results	in	

Developmental	Plasticity	for	Auditory	Motion	Processing	within	Auditory	and	Occipital	

Cortex.	Front.	Hum.	Neurosci.	10,	324.	

Kaas,	J.H.,	Hackett,	T.A.,	and	Tramo,	M.J.	(1999).	Auditory	processing	in	primate	cerebral	

cortex.	Curr.	Opin.	Neurobiol.	9,	164–170.	

Kamitani,	Y.,	and	Sawahata,	Y.	(2010).	Spatial	smoothing	hurts	localization	but	not	

information:	Pitfalls	for	brain	mappers.	Neuroimage	49,	1949–1952.	

Kamitani,	Y.,	and	Tong,	F.	(2005).	Decoding	the	visual	and	subjective	contents	of	the	human	

brain.	8,	679–685.	

Kamitani,	Y.,	and	Tong,	F.	(2006).	Decoding	seen	and	attended	motion	directions	from	

activity	in	the	human	visual	cortex.	Curr.	Biol.	16,	1096–1102.	

van	Kemenade,	B.M.,	Seymour,	K.,	Christophel,	T.B.,	Rothkirch,	M.,	and	Sterzer,	P.	(2014).	

Decoding	pattern	motion	information	in	V1.	Cortex	57,	177–187.	

Kitagawa,	N.,	and	Ichihara,	S.	(2002).	Hearing	visual	motion	in	depth.	Nature	416,	172–174.	

Kriegeskorte,	N.,	and	Kievit,	R.A.	(2013).	Representational	geometry:	Integrating	cognition,	

computation,	and	the	brain.	Trends	Cogn.	Sci.	17,	401–412.	

Kriegeskorte,	N.,	Formisano,	E.,	Sorger,	B.,	and	Goebel,	R.	(2007).	Individual	faces	elicit	

distinct	response	patterns	in	human	anterior	temporal	cortex.	Proc.	Natl.	Acad.	Sci.	

104,	20600–20605.	

Kriegeskorte,	N.,	Mur,	M.,	and	Bandettini,	P.	(2008).	Representational	similarity	analysis	-	

connecting	the	branches	of	systems	neuroscience.	Front.	Syst.	Neurosci.	2,	4.	

Krumbholz,	K.,	Schönwiesner,	M.,	Rübsamen,	R.,	Zilles,	K.,	Fink,	G.R.,	and	von	Cramon,	D.Y.	

(2005).	Hierarchical	processing	of	sound	location	and	motion	in	the	human	brainstem	

and	planum	temporale.	Eur.	J.	Neurosci.	21,	230–238.	

Lewis,	J.W.,	Beauchamp,	M.S.,	and	DeYoe,	E.	a	(2000).	A	comparison	of	visual	and	auditory	

motion	processing	in	human	cerebral	cortex.	Cereb.	Cortex	10,	873–888.	

Lomber,	S.G.,	and	Malhotra,	S.	(2008).	Double	dissociation	of	“what”	and	“where”	

processing	in	auditory	cortex.	Nat.	Neurosci.	11,	609–616.	

Magezi,	D.A.,	Buetler,	K.A.,	Chouiter,	L.,	Annoni,	J.-M.,	and	Spierer,	L.	(2013).	Electrical	



Chapter 2 
 

	 83	

neuroimaging	during	auditory	motion	aftereffects	reveals	that	auditory	motion	

processing	is	motion	sensitive	but	not	direction	selective.	J.	Neurophysiol.	109,	321–

331.	

Mcalpine,	D.,	Jiang,	D.,	and	Palmer,	A.R.	(2001).	A	neural	code	for	low-frequency	sound	

localization	in	mammals.	4,	396–401.	

Middlebrooks,	J.C.	(2002).	Auditory	space	processing:	Here,	there	or	everywhere?	Nat.	

Neurosci.	5,	824–826.	

Middlebrooks,	J.C.	(2015).	Sound	localization.	Handb.	Clin.	Neurol.	129,	99–116.	

Middlebrooks,	J.,	and	Pettigrew,	J.	(1981).	Functional	classes	of	neurons	in	primary	auditory	

cortex	of	the	cat	distinguished	by	sensitivity	to	sound	location.	J	Neurosci	1,	107–120.	

Middlebrooks,	J.C.,	and	Bremen,	P.	(2013).	Spatial	Stream	Segregation	by	Auditory	Cortical	

Neurons.	J.	Neurosci.	33,	10986–11001.	

Middlebrooks,	J.C.,	and	Green,	D.M.	(1991).	Sound	localization	by	human	listeners.	Annu.	

Rev.	Psychol.	42,	135–159.	

Miller,	L.M.,	and	Recanzone,	G.H.	(2009).	Populations	of	auditory	cortical	neurons	can	

accurately	encode	acoustic	space	across	stimulus	intensity.	106.	

Movshon,	J.A.,	and	Newsome,	W.T.	(1996).	Visual	response	properties	of	striate	cortical	

neurons	projecting	to	area	MT	in	macaque	monkeys.	J.	Neurosci.	16,	7733–7741.	

Neelon,	M.F.,	and	Jenison,	R.L.	(2003).	The	effect	of	trajectory	on	the	auditory	motion	

aftereffect.	Hear.	Res.	180,	57–66.	

Newsome,	W.T.,	and	Park,	E.B.	(1988).	A	Selective	Impairment	of	Motion	Perception	

Following	Lesions	of	the	Middle	Temporal	Visual	Area	(MT).	J.	Neurosci.	8,	2201–2211.	

Oosterhof,	N.N.,	Connolly,	A.C.,	and	Haxby,	J.	V.	(2016).	CoSMoMVPA:	Multi-Modal	

Multivariate	Pattern	Analysis	of	Neuroimaging	Data	in	Matlab/GNU	Octave.	Front.	

Neuroinform.	10,	1–27.	

Ortiz-Rios,	M.,	Azevedo,	F.A.C.,	Kuśmierek,	P.,	Balla,	D.Z.,	Munk,	M.H.,	Keliris,	G.A.,	

Logothetis,	N.K.,	and	Rauschecker,	J.P.	(2017).	Widespread	and	Opponent	fMRI	Signals	

Represent	Sound	Location	in	Macaque	Auditory	Cortex.	Neuron	93,	971–983.e4.	

Pavani,	F.,	Macaluso,	E.,	Warren,	J.D.,	Driver,	J.,	and	Griffiths,	T.D.	(2002).	A	common	cortical	

substrate	activated	by	horizontal	and	vertical	sound	movement	in	the	human	brain.	

Curr.	Biol.	12,	1584–1590.	

Poirier,	C.,	Collignon,	O.,	Devolder,	A.G.,	Renier,	L.,	Vanlierde,	A.,	Tranduy,	D.,	and	Scheiber,	

C.	(2005).	Specific	activation	of	the	V5	brain	area	by	auditory	motion	processing:	an	

fMRI	study.	Brain	Res.	Cogn.	Brain	Res.	25,	650–658.	



Chapter 2 
 

	 84	

Poirier,	C.,	Baumann,	S.,	Dheerendra,	P.,	Joly,	O.,	Hunter,	D.,	Balezeau,	F.,	Sun,	L.,	Rees,	A.,	

Petkov,	C.I.,	Thiele,	A.,	et	al.	(2017).	Auditory	motion-specific	mechanisms	in	the	

primate	brain.	PLoS	Biol.	15,	1–24.	

Poirier,	P.,	Jiang,	H.,	Lepore,	F.,	and	Guillemot,	J.P.	(1997).	Positional,	directional	and	speed	

selectivities	in	the	primary	auditory	cortex	of	the	cat.	Hear.	Res.	113,	1–13.	

Pratte,	M.S.,	Sy,	J.L.,	Swisher,	J.D.,	and	Tong,	F.	(2016).	Radial	bias	is	not	necessary	for	

orientation	decoding.	Neuroimage	127,	23–33.	

Rajan,	R.,	Aitkin,	L.M.,	and	Irvine,	D.R.	(1990).	Azimuthal	sensitivity	of	neurons	in	primary	

auditory	cortex	of	cats.	II.	Organization	along	frequency-band	strips.	J.	Neurophysiol.	

64,	888–902.	

Rauschecker,	J.P.,	and	Tian,	B.	(2000).	Mechanisms	and	streams	for	processing	of	“what”	and	

“where”	in	auditory	cortex.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	97,	11800–11806.	

Recanzone,	G.H.	(2000).	Spatial	processing	in	the	auditory	cortex	of	the	macaque	monkey.	

Proc.	Natl.	Acad.	Sci.	U.	S.	A.	97,	11829–11835.	

Reinhardt-Rutland,	A.,	and	Anstis,	S.	(1982).	Auditory	adaptation	to	gradual	rise	or	fall	in	

intensity	of	a	tone.	Percept.	Psychophys.	31,	63–67.	

Romanski,	Tian,	Fritz,	Mishkin,	Goldman-Rakic,	and	Rauschecker	(2000).	Reply	to	"What’,	

“where”	and	“how”	in	auditory	cortex’.	Nat.	Neurosci.	3,	966.	

Romanski,	L.M.,	Tian,	B.,	Fritz,	J.,	Mishkin,	M.,	Goldman-Rakic,	P.S.,	and	Rauschecker,	J.P.	

(1999).	Dual	streams	of	auditory	afferents	target	multiple	domains	in	the	primate	

prefrontal	cortex.	Nat.	Neurosci.	2,	1131–1136.	

Sanchez-Longo,	L.P.,	and	Forster,	F.M.	(1958).	Clinical	significance	of	impairment	of	sound	

localization.	Neurology	8,	119–125.	

Searle,	C.L.,	Braida,	L.D.,	Davis,	M.F.,	and	Colburn,	H.S.	(1976).	Model	for	auditory	

localization.	J.	Acoust.	Soc.	Am.	60,	1164–1175.	

Sengupta,	A.,	Yakupov,	R.,	Speck,	O.,	Pollmann,	S.,	and	Hanke,	M.	(2017).	The	effect	of	

acquisition	resolution	on	orientation	decoding	from	V1	BOLD	fMRI	at	7	T.	Neuroimage	

148,	64–76.	

Smith,	K.R.,	Okada,	K.,	Saberi,	K.,	and	Hickok,	G.	(2004).	Human	cortical	auditory	motion	

areas	are	not	motion	selective.	Neuroreport	15,	1523–1526.	

Smith,	K.R.,	Saberi,	K.,	and	Hickok,	G.	(2007).	An	event-related	fMRI	study	of	auditory	motion	

perception:	No	evidence	for	a	specialized	cortical	system.	Brain	Res.	1150,	94–99.	

Smith,	K.R.,	Hsieh,	I.-H.,	Saberi,	K.,	and	Hickok,	G.	(2010).	Auditory	spatial	and	object	

processing	in	the	human	planum	temporale:	no	evidence	for	selectivity.	J.	Cogn.	



Chapter 2 
 

	 85	

Neurosci.	22,	632–639.	

Stecker,	G.C.,	Harrington,	I.A.,	and	Middlebrooks,	J.C.	(2005).	Location	coding	by	opponent	

neural	populations	in	the	auditory	cortex.	PLoS	Biol.	3,	0520–0528.	

Stelzer,	J.,	Chen,	Y.,	and	Turner,	R.	(2013).	Statistical	inference	and	multiple	testing	

correction	in	classification-based	multi-voxel	pattern	analysis	(MVPA):	Random	

permutations	and	cluster	size	control.	Neuroimage	65,	69–82.	

Strybel,	T.Z.,	and	Neale,	W.	(1994).	The	effect	of	burst	duration,	interstimulus	onset	interval,	

and	loudspeaker	arrangement	on	auditory	apparent	motion	in	the	free	field.	J.	Acoust.	

Soc.	Am.	96,	3463–3475.	

Tian,	B.,	Reser,	D.,	Durham,	A.,	Kustov,	A.,	and	Rauschecker,	J.P.	(2001).	Functional	

Specialization	in	Rhesus	Monkey	Auditory	Cortex.	Science	(80-.	).	292,	290–293.	

Wang,	H.X.,	Merriam,	E.P.,	Freeman,	J.,	and	Heeger,	D.J.	(2014).	Motion	Direction	Biases	and	

Decoding	in	Human	Visual	Cortex.	J.	Neurosci.	34,	12601–12615.	

Warren,	J.D.,	and	Griffiths,	T.D.	(2003a).	Distinct	mechanisms	for	processing	spatial	

sequences	and	pitch	sequences	in	the	human	auditory	brain.	J	Neurosci	23,	5799–

5804.	

Warren,	J.D.,	and	Griffiths,	T.D.	(2003b).	Distinct	Mechanisms	for	Processing	Spatial	

Sequences	and	Pitch	Sequences	in	the	Human	Auditory	Brain.	23,	5799–5804.	

Warren,	J.,	Zielinski,	B.,	and	Green,	G.	(2002).	Perception	of	sound-source	motion	by	the	

human	brain.	Neuron	34,	139–148.	

Woods,	T.M.,	Lopez,	S.E.,	Long,	J.H.,	Rahman,	J.E.,	and	Recanzone,	G.H.	(2006).	Effects	of	

Stimulus	Azimuth	and	Intensity	on	the	Single-Neuron	Activity	in	the	Auditory	Cortex	of	

the	Alert	Macaque	Monkey.	J.	Neurophysiol.	96,	3323–3337.	

Yarkoni,	T.,	Poldrack,	R.A.,	Nichols,	T.E.,	Van	Essen,	D.C.,	and	Wager,	T.D.	(2011).	Large-scale	

automated	synthesis	of	human	functional	neuroimaging	data.	Nat.	Methods	8,	665–

670.	

Young,	E.D.,	Spirou,	G.A.,	Rice,	J.J.,	Voigt,	H.F.,	and	Rees,	A.	(1992).	Neural	Organization	and	

Responses	to	Complex	Stimuli	in	the	Dorsal	Cochlear	Nucleus.	Philos.	Trans.	R.	Soc.	B	

Biol.	Sci.	336,	407–413.	

Zabicki,	A.,	De	Haas,	B.,	Zentgraf,	K.,	Stark,	R.,	Munzert,	J.,	and	Krüger,	B.	(2016).	Imagined	

and	Executed	Actions	in	the	Human	Motor	System:	Testing	Neural	Similarity	Between	

Execution	and	Imagery	of	Actions	with	a	Multivariate	Approach.	Cereb.	Cortex	1–14.	

Zatorre,	R.J.,	and	Belin,	P.	(2001).	Spectral	and	Temporal	Processing	in	Human	Auditory	

Cortex.	Cereb.	Cortex	11,	946–953.	



Chapter 2 
 

	 86	

Zatorre,	R.J.,	Bouffard,	M.,	Ahad,	P.,	and	Belin,	P.	(2002).	Where	is	“where”	in	the	human	

auditory	cortex?	Nat.	Neurosci.	5,	905–909.	

Zeng,	H.,	and	Constable,	R.T.	(2002).	Image	distortion	correction	in	EPI:	Comparison	of	field	

mapping	with	point	spread	function	mapping.	Magn.	Reson.	Med.	48,	137–146.	

Zhou,	Y.,	and	Wang,	X.	(2012).	Level	dependence	of	spatial	processing	in	the	primate	

auditory	cortex.	J.	Neurophysiol.	108,	810–826.	

Zimmermann,	J.,	Goebel,	R.,	de	Martino,	F.,	van	de	Moortele,	P.F.,	Feinberg,	D.,	Adriany,	G.,	

Chaimow,	D.,	Shmuel,	A.,	Uǧurbil,	K.,	and	Yacoub,	E.	(2011).	Mapping	the	organization	

of	axis	of	motion	selective	features	in	human	area	mt	using	high-field	fmri.	PLoS	One	

6,	1–10.	

	



	

Supplemental	Information	

To	 further	 investigate	 the	 presence	 of	 information	 about	 auditory	 motion	 direction	 and	

sound	source	 location	 in	opposite	directions/location	within	an	axis	and	across-planes,	we	

ran	 four	 binary	MVP-classifications	 in	 the	 left	 and	 right	 hPT.	 Figure	 3B-C	 in	 the	main	 text	

shows	the	mean	classification	accuracy	across	categories	in	each	ROI.	

	
MVPA	–Binary		Across-planes	

We	used	2	additional	classifiers	to	discriminate	across	planes	(horizontal	vs.	vertical	motion,	

horizontal	 vs.	 vertical	 static,	 hereafter	 across	 planes	 classification).	 Binary	 across-planes	

(horizontal	 vs.	 vertical)	 classification	 was	 significantly	 above	 chance	 level	 in	 the	 lhPT	 and	

rhPT	both	for	moving	(lhPT:	mean	±	SD	=	74.5	±10.5,	p<0.001;	rhPT:	mean	±	SD	=	65.6	±	10.6,	

p<0.001),	and	static	sounds	(lhPT:	mean	±	SD	=	55.6	±8.6,	p<0.001;	rhPT:	mean	±	SD	=	57.8	±	

8.9,	p<0.001).	For	multiple-comparisons,	FDR-correction	performed	on	p	values.		

	

MVPA	–	Binary	Within-Axis		

Binary	horizontal	 (left	 vs.	 right)	within-axis	 classification	 showed	 significant	 results	 in	both	

lhPT	and	rhPT	for	static	sounds	(lhPT:	mean	±	SD	=	58.6	±14.5,	p<0.001;	rhPT:	mean	±	SD	=	

56.5	±	11.9,	p	=	0.008),	while	motion	classification	was	significant	only	in	the	rhPT	(mean	±	

SD	=	55.5	±	13.9,	p	=	0.018).	Moreover,	binary	vertical	(up	vs	down)	within-axis	classification	

was	significant	only	in	the	lhPT	for	both	motion	(mean	±	SD	=	55.7	±	7.1,	p	=	0.01),	and	static	

(mean	 ±	 SD	 =	 54.9	 ±	 11.9,	 p	 =	 0.03)	 conditions.	 For	multiple-comparisons,	 FDR-correction	

performed	on	p	values.	
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3.1.	ABSTRACT	
	
In	sighted	individuals,	a	portion	of	the	middle	occipito-temporal	cortex	(hMT+/V5)	responds	

preferentially	to	visual	motion	whereas	the	planum	temporale	(PT)	responds	preferentially	

to	 auditory	 motion.	 In	 case	 of	 early	 visual	 deprivation,	 hMT+/V5	 enhances	 its	 response	

tuning	 toward	moving	 sounds.	However,	 the	 impact	 of	 early	 blindness	 on	 the	 PT	 remains	

poorly	 understood.	Moreover,	 whether	 hMT+/V5	 contains	 sound	 direction	 selectivity	 and	

whether	 the	 functional	 enhancement	 observed	 in	 the	 blind	 is	 motion	 specific	 or	 also	

involves	auditory	localization	is	equivocal.	We	used	fMRI	to	characterize	the	brain	activity	of	

sighted	 and	 early	 blind	 individuals	 listening	 to	 left,	 right,	 up	 and	 down	moving	 and	 static	

sounds.	Whole-brain	univariate	analysis	 revealed	preferential	 response	to	auditory	motion	

in	both	sighted	and	blind	participants	in	a	dorsal	fronto-temporo-parietal	network	including	

PT,	as	well	as	in	the	most	anterior	portion	of	hMT+/V5.	Blind	participants	showed	additional	

preferential	 response	 to	 auditory	 motion	 in	 the	 more	 posterior	 region	 of	 hMT+/V5.	

Multivariate	 pattern	 analysis	 revealed	 significant	 decoding	 of	 auditory	motion	 direction	 in	

independently	 localized	 PT	 and	 hMT+/V5	 in	 blind	 and	 sighted	 participants.	 However,	

decoding	accuracies	in	the	blind	were	significantly	higher	in	hMT+/V5	and	lower	in	PT	when	

compared	 to	 sighted	participants.	 Interestingly,	 decoding	 sound	 location	 showed	a	 similar	

pattern	 of	 results	 even	 if	 the	 decoding	 accuracies	 where	 in	 general	 lower	 than	 those	

obtained	 from	 motion	 directions.	 Together,	 these	 results	 suggest	 that	 early	 visual	

deprivation	 triggers	 a	 network-level	 reorganization	 that	 enhances	 the	 recruitment	 of	

occipital	 areas	 in	 conjunction	 with	 a	 release	 in	 the	 computational	 workload	 of	 temporal	

regions	typically	dedicated	to	spatial	hearing.	
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3.2.INTRODUCTION	
	
The	 human	 region	 hMT+/V5	 has	 long	 been	 considered	 hard-wired	 for	 the	 processing	 of	

visual	motion	 (Tootell	et	al.	1995;	Zeki	et	al.	1991;	Watson	et	al.	1993).	 Its	 location	 in	 the	

ascending	 limb	 of	 the	 inferior	 temporal	 sulcus	 is	 relatively	 consistent	 across	 individuals	

(Dumoulin	et	al.	2000),	 its	functional	preference	for	visual	motion	is	observed	very	early	 in	

development	 (Braddick	 et	 al.	 2005;	 Gilmore	 et	 al.	 2007;	 Hou	 et	 al.	 2009)	 and	 the	

organization	 of	 this	 region	 shares	 striking	 similarities	 across	 species	 (Albright	 et	 al.	 1984;	

Newsome	&	Park	1988;	Mikami	et	al.	1986;	Saito	et	al.	1986;	Tanaka	&	Saito	1989;	Duffy	&	

Wurtz	 1991).	 Examining	how	 a	 visual	 region	 like	 hMT+/V5	 develops	 in	congenitally	blind	

individuals	presents	an	 opportunity	 to	 assess	 how	 genetic	 and	 experience-dependent	

constraints	functionally	tune	specialized	computational/cognitive	brain	units.	

In	 case	 of	 early	 visual	 deprivation,	 hMT+/V5	 shows	 a	 reliable	 and	 preferential	

response	 to	auditory	 (Poirier	et	al.	 2006;	Dormal	et	al.	 2016;	 Jiang	et	al.	 2014)	and	 tactile	

motion	 (Ricciardi	 et	 al.	 2007;	 Matteau	 et	 al.	 2010),	 highlighting	 that	 while	 the	 driving	

modality	 input	might	 change	without	developmental	 vision,	 the	 computational	preference	

toward	motion	processing	remains.	But	is	the	processing	of	non-visual	motion	in	hMT+/V5	a	

unique	 consequence	of	 early	blindness?	 Some	 studies	 in	 sighted	have	 shown	 that	 at	 least	

some	 part	 of	 this	 extended	 region	 (e.g.	MST)	may	 also	 respond	 to	 auditory	 (Saenz	 et	 al.	

2008;	 Poirier	 et	 al.	 2005;	 Collignon	 et	 al.	 2015)	 and	 tactile	 motion	 (Hagen	 et	 al.	 2002;	

Beauchamp	et	al.	2007;	van	Kemenade	et	al.	2013;	Ricciardi	et	al.	2007),	even	if	to	a	lower	

extent	than	in	the	early	blind	(Jiang	et	al.	2016;	Dormal	et	al.	2016;	Jiang	et	al.	2014).	These	

observations	suggest	that	the	enhanced	non-visual	responses	for	moving	stimuli	observed	in	

early	 blinds	 may	 build	 on	 pre-existing	 connections	 between	 auditory,	 tactile	 and	 visual	

motion	processing	centers	(Konkle	et	al.	2009;	Dormal	et	al.	2012;	Berger	&	Ehrsson	2016).	

However,	 the	 involvement	 of	 hMT+/V5	 for	 non-visual	 motion	 processing	 in	 the	 sighted	

remains	 controversial	 (Lewis	 et	 al.	 2000;	 Bedny	 et	 al.	 2010;	 Alink	 et	 al.	 2012;	 Jiang	 et	 al.	

2014).		

In	 non-human	 primates,	 MT+	 displays	 a	 columnar	 organization	 supporting	 visual	

direction	selectivity	(Dubner	&	Zeki	1971;	Albright	et	al.	1984;	Movshon	&	Newsome	1986;	

Born	 &	 Bradley	 2005).	 Even	 if	 the	 presence	 of	 such	 columnar	 organization	 for	 motion	

direction	remains	to	be	demonstrated	in	the	human	homologue	region	hMT+/V5	(Bartels	et	

al.	2008;	Zimmermann	et	al.,	2011),	 fMRI	 studies	have	 shown	 that	visual	motion	direction	

can	 also	 be	 successfully	 decoded	 in	 this	 region	 (Kamitani	 &	 Tong	 2006;	 Seymour	 et	 al.	
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20091).	 If	 the	visually	deprived	occipital	 cortex	 reorganizes	 to	process	non-visual	 inputs	by	

maintaining	a	similar	functional	organization	as	the	one	observed	in	the	sighted	(Amedi	et	al.	

2007;	 Ricciardi	 et	 al.	 2007;	 Dormal	 &	 Collignon	 2011;	 Collignon,	 Dormal	 &	 Lepore	 2013;	

Wang	et	al.	2017),	it	might	be	hypothesized	that	auditory	motion	direction	can	be	decoded	

in	hMT+/V5	regions	in	early	blinds.	To	date,	only	few	studies	have	investigated	the	decoding	

of	 different	 auditory	 motion	 direction	 in	 hMT+/V5	 of	 sighted	 and	 early	 blind	 people,	

providing	mixed	results	(Wolbers	et	al.	2011;	Alink	et	al.	2012;	Jiang	et	al.	2016;	Dormal	et	al.	

2016).	Discrepancies	could	at	 least	partially	be	attributed	to	the	variety	of	auditory	stimuli	

used	across	studies	and	the	challenge	of	creating	a	vivid	and	ecological	sensation	of	auditory	

motion	while	the	subject	is	inside	the	scanner.		

The	recruitment	of	the	hMT+/V5	region	for	auditory	motion	in	blind	and,	to	a	lesser	

extent,	 in	 sighted	 individuals	 may	 reflect	 a	 more	 general	 involvement	 of	 this	 region	 for	

spatial	hearing.	In	blind	individuals,	enhanced	selectivity	for	auditory	spatial	processing	has	

been	 observed	 in	 the	 middle/superior	 occipital	 gyrus	 –	 a	 region	 in	 close	 proximity	 to	

hMT+/V5	 (Collignon	 et	 al.	 2011;	Weeks	 et	 al.	 2000;	 Gougoux	 et	 al.	 2005).	 A	 study	 using	

transcranial	 magnetic	 stimulation	 (TMS)	 found	 that	 focally	 and	 transiently	 disrupting	 the	

activity	 of	 this	 region	 significantly	 altered	 auditory	 spatial	 localization	 abilities	 in	 the	 early	

blind	but	not	in	sighted	participants,	while	leaving	pitch	and	intensity	perception	unaffected	

in	both	groups	(Collignon	et	al.	2007).	However,	most	previous	studies	(Collignon	et	al.	2011;	

Collignon	 et	 al.	 2007;	 Gougoux	 et	 al.	 2005)	 investigated	 sound	 location	 abilities	 asking	 to	

compare	the	position	of	a	target	relative	to	a	probe	sound	(e.g.	 is	the	target	on	the	left	or	

right	side	of	the	probe),	a	condition	that	can	trigger	induced	motion	perception	(Lakatos	&	

Shepard	1997).	Therefore,	whether	hMT+/V5	shows	selective	response	to	moving	sounds	or	

also	contributes	computing	sound-source	location	remains	unknown	(see	review	Dormal	et	

al.	2012).		

What	 is	 the	 impact	of	 the	enhanced	 involvement	of	hMT+/V5	 for	auditory	motion	

(and	 potentially	 location)	 on	 regions	 of	 the	 auditory	 system	 that	 typically	 involve	 in	 this	

process?	 The	 planum	 temporale	 (PT),	 a	 region	 in	 the	 superior	 temporal	 cortex	 that	 is	

posterior	 to	Helsch’	 gyrus,	 has	been	 suggested	 to	 engage	 in	 auditory	 spatial	 processing	 in	

general,	including	the	processing	of	moving	sounds	and	the	location	of	static	sound-sources	

(Zatorre	et	al.	2002;	Smith	et	al.	2004;	Smith	et	al.	2007;	Smith	et	al.	2010).	However,	other	

studies	 in	animals	 (Poirier	et	al.	2017)	and	humans	 (Baumgart	&	Gaschler-Markefski	1999;	
																																																								
1 The	observation	of	significant	decoding	of	visual	motion	direction	does	not	however	prove	the	presence	of	
the	underlying	columnar	organization	for	directionality	since	successful	decoding	may	emerge	from	more	
macroscopic	 organizational	 principles	 (e.g.	 retinotopy;	 Dukelow	 2001;	 Huk	 2002;	 Amano	 2009;	 Kolster	
2010).	
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Bremmer	et	al.	2001;	Hall	&	Moore	2003;	Pavani	et	al.	2002;	Krumbholz	et	al.	2005;	Rees	et	

al.	 1998;	 Lewis	 et	 al.	 2000;	 Poirier	 et	 al.	 2005)	 pointed	 toward	 a	 specific	 role	 of	 PT	 for	

auditory	motion	processing.	Human	studies	using	multivariate	pattern	analyses	support	the	

notion	that	PT	contains	directional	auditory	motion	information	(Alink	et	al.	2012;	Jiang	et	al.	

2014;	 Jiang	 et	 al.	 2016).	 In	 case	 of	 early	 blindness,	 some	 evidence	 points	 to	 an	 interplay	

between	hMT+/V5	and	PT	for	processing	auditory	motion,	with	enhanced	auditory	motion	

information	in	hMT+/V5	but	reduced	information	in	PT	when	compared	to	sighted	controls	

(Jiang	et	al.	2014;	Dormal	et	al.	2016).	However,	whether	 the	re-distributed	“workload”	 in	

between	hMT+/V5	and	PT	can	also	be	observed	for	multiple	motion	planes,	and	whether	re-

distribution	can	occur	also	for	computing	spatial	positions	remains	unknown.		

The	present	 study	aimed	 to	address	 three	questions	 that	have	previously	 received	

equivocal	 answers	 in	 the	 literature.	 First,	 we	 asked	 if	 auditory	 motion	 direction	 can	 be	

decoded	 in	hMT+/V5	region	 in	both	sighted	and	blind	 individuals.	Second,	we	 investigated	

whether	 hMT+/V5	 and	 PT	 regions	 only	 codes	 for	 motion	 direction	 information	 or	 also	

contain	 information	about	 sound-source	 location	 in	both	 the	blind	and	 the	sighted.	 Lastly,	

we	asked	how	early	blindness	affects	auditory	representation	in	PT.		

	

	

3.3.	MATERIALS	AND	METHODS	

	

3.3.1.	Participants	

Sixteen	early	blind	(EB)	and	18	sighted	control	participants	(SC)	were	recruited	for	the	study.	

Participants	were	matched	for	age	and	gender.	Sighted	participants	also	participated	 in	an	

independent	 visual	motion	 localiser	 task.	 Two	 SC	 participants	were	 excluded	 due	 to	 poor	

performance	 on	 the	 task	 within	 the	 scanner.	 This	 resulted	 in	 a	 total	 of	 32	 participants	

included	in	the	analyses:	16	early	blind	participants	(8	female,	age	range:	20	to	46,	mean	±	

SD	=	33.7	±	7.2	years)	and	16	sighted	participants	(8	female,	age	range:	20	to	42,	mean	±	SD	

=	31.8	±	5.7	years).	An	additional	17	sighted	participants	 (10	females,	age	range:	20	to	41,	

mean	 ±	 SD	 =	 28	 ±	 5.3	 years)	 participated	 in	 an	 independent	 auditory	 motion	 localizer	

experiment.		

In	 all	 cases,	 blindness	 was	 attributed	 to	 peripheral	 deficits	 with	 no	 additional	

neurological	problems	(see	Supplementary	Table	1).	All	the	blind	participants	lost	sight	since	

birth	or	 had	 visual	 problems	 since	birth	 that	 evolved	 toward	 complete	blindness	 before	 4	
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years	 of	 age.	 Seven	 blind	 participants	 had	 faint	 light	 perception	 but	 could	 not	 recognise	

colors	or	shapes.		

Sighted	 participants	 had	 normal	 or	 corrected-to-normal	 vision.	 Experiments	 were	

undertaken	with	the	understanding	and	written	consent	of	each	subject.	All	the	procedures	

were	approved	by	the	research	ethics	boards	of	the	Centre	for	Mind/Brain	Sciences	(CIMeC)	

and	 the	 University	 of	 Trento,	 and	 in	 accordance	 with	 The	 Code	 of	 Ethics	 of	 the	 World	

Medical	Association,	Declaration	of	Helsinki	(Rickham	1964).	

	

3.3.2.	Auditory	stimuli	

To	 induce	 a	 reliable	 perception	 of	 auditory	 space	 for	 each	 participant	 in	 the	MRI	

scanner,	 auditory	 stimuli	 were	 recorded	 in	 a	 semi-anechoic	 room	 using	 binaural	 in-ear	

microphones	from	each	participant	independently.	Binaural	in-ear	recordings	allow	binaural	

properties	 such	 as	 interaural	 time	 and	 intensity	 differences,	 as	well	 as	 participant-specific	

monaural	filtering	cues,	and	serve	to	create	reliable	and	ecological	auditory	space	(Pavani	et	

al.	2002).		

To	 create	 an	 externalized	 ecological	 sensation	 of	 sound	 location	 and	 motion,	 we	

relied	 on	 individual	 in-ear	 stereo	 recordings	 that	were	 recorded	 in	 a	 semi-anechoic	 room	

and	 from	30	 loudspeakers	on	horizontal	and	vertical	planes,	mounted	on	 two	semicircular	

wooden	 structures	with	 a	 radius	 of	 1.1m	 (see	 Figure	 1A).	 Participants	were	 seated	 in	 the	

center	 of	 the	 apparatus	 with	 their	 head	 on	 a	 chin-rest,	 such	 that	 the	 speakers	 on	 the	

horizontal	 plane	were	 at	 the	 participant’s	 ear	 level	 and	 those	 on	 the	 vertical	 plane	were	

aligned	with	the	participant’s	mid-sagittal	plane.		

	

	
Figure	1.	Stimuli	and	Experimental	Design.	(A).	Acoustic	apparatus	used	to	present	auditory	

moving	 and	 static	 sounds	 while	 binaural	 recordings	 were	 carried	 out	 from	 each	 participant’s	 ear	
before	 the	 fMRI	 session.	 (B).	 Auditory	 stimuli	 presented	 inside	 the	 fMRI	 consisted	 of	 8	 conditions:	
leftward,	rightward,	downward	and	upward	moving	sounds	and	left,	right,	down	and	up	static	sounds.	
(C).	The	behavioral	performance	recorded	inside	the	scanner.	

	

(A) In-Ear Recordings (B) fMRI Design (C) Behavioral results 
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Auditory	 stimuli	were	prepared	using	a	 custom-designed	MATLAB	 scripts	 (R2013b,	

MathWorks).	During	the	presentation	of	stimuli,	 the	audio	was	recorded	using	binaural	 in-

ear	 omni-directional	 microphones	 (Sound	 Professionals-TFB-2;	 ‘flat’	 frequency	 range	 20–

20,000	Hz)	attached	to	a	portable	Zoom	H4n	digital	wave	recorder	(16-bit,	stereo,	44.1	kHz	

sampling	 rate).	Microphones	were	positioned	at	 the	opening	of	participant’s	 left	and	 right	

auditory	 ear	 canals.	 Then,	 these	 recordings	were	 re-played	 to	 the	 participants	when	 they	

were	 inside	 the	 functional	 MRI	 (fMRI).	 By	 using	 in-ear	 recordings,	 auditory	 stimuli	

automatically	convolved	with	each	individuals’	own	pinna	and	head	related	transfer	function	

to	 produce	 a	 salient	 auditory	 perception	 in	 external	 space.	 The	 recorded	 auditory	 stimuli	

were	 used	 in	 both	 the	 main	 auditory	 experiment	 and	 the	 auditory	 motion	 localizer.	 All	

participants	were	blindfolded	throughout	the	experiment.	Prior	to	the	recordings,	the	sound	

pressure	level	(SPL)	were	measured	from	the	subject’s	head	position	and	ensured	that	each	

speaker	conveys	65dB-A	SPL.	

	

Stimuli	recordings	

Sound	stimuli	consisted	of	1250	ms	pink	noise	(50	ms	rise/fall	time).	In	the	static	condition,	

the	 pink	 noise	 was	 presented	 separately	 at	 one	 of	 4	 locations:	 left,	 right,	 up,	 and	 down.	

Static	 sounds	 were	 presented	 at	 the	 third	 most	 outer	 speakers	 (-52°	 and	 +52°	 in	 the	

horizontal	 axis,	 and	 +52°	 and	 -52°	 in	 the	 vertical	 axis)	 in	 order	 to	 avoid	 possible	

reverberation	difference	at	the	outermost	speakers.	In	the	motion	condition,	the	same	pink	

noise	was	 presented	moving	 in	 4	 directions:	 leftward,	 rightward,	 upward	 and	 downward.	

Moving	stimuli	covered	120°	of	space/visual	 field	 in	horizontal	and	vertical	axes.	To	create	

the	perception	of	smooth	motion,	the	1250	ms	of	pink	noise	was	fragmented	into	15	equal	

length	pieces	with	each	83.333	ms	 fragment	being	played	every	 two	speakers,	and	moved	

one	 speaker	 at	 a	 time,	 from	 the	 outer	 left	 to	 the	 outer	 right	 (rightward	motion),	 or	 vice-

versa	 for	 the	 leftward	 motion.	 For	 example,	 for	 the	 rightward	 sweep,	 sound	 was	 played	

through	 speakers	 located	 at	 -60°	 and	 -52°	 consecutively,	 followed	 by	 -44°,	 and	 so	 on.	 A	

similar	design	was	used	for	the	vertical	axis.	This	resulted	in	participants	perceiving	moving	

sweeps	 covering	 an	 arc	 of	 120°	 in	 1250	 ms	 (speed	 =	 96°/s)	 for	 four	 different	 directions.	

Participants	 were	 instructed	 to	 listen	 to	 the	 stimuli,	 without	 performing	 any	 task.	 Stimuli	

recordings	were	conducted	in	a	session	that	lasted	approximately	10	minutes,	requiring	the	

participant	 to	 remain	 still	 during	 this	 period.	 All	 participants	 reported	 strong	 sensation	 of	

auditory	motion	and	were	able	to	detect	directions	and	locations	with	high	accuracy	(see	Fig	

1C).		
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3.3.3	Auditory	experiment	

Auditory	stimuli	were	presented	via	MR-compatible	closed-ear	headphones	(Serene	Sound,	

Resonance	 Technology),	 and	 amplitude	 was	 adjusted	 according	 to	 each	 participant’s	

comfort	 level.	 To	 familiarize	 participants	 with	 the	 task,	 participants	 completed	 a	 practice	

outside	 of	 the	 scanner	 while	 lying	 down	 until	 they	 reached	 above	 80%	 of	 accuracy.	

Participants	were	blindfolded	and	instructed	to	keep	their	eyes	closed.	

Each	run	consisted	of	the	8	conditions	(4	motion	and	4	static)	randomly	presented	using	a	

block-design.	Each	condition	was	presented	 for	15	s	block	 (12	repetitions	of	each	event	of	

1250	 ms	 sound,	 no	 ISI)	 and	 followed	 by	 7	 s	 gap	 for	 indicating	 the	 corresponding	

direction/location	 in	space	and	8s	of	silence	(total	 inter-block	 interval	was	15	s).	The	ramp	

applied	at	the	beginning	and	at	the	end	of	each	sound	creates	static	bursts,	and	prevented	

adaptation	to	the	static	sounds.	During	the	response	gap,	participants	heard	a	voice	saying	

“left”,	 “right”,	 “up”,	 and	 “down”	 in	 pseudo-randomized	 order.	 Participants	were	 asked	 to	

press	a	button	with	their	 right	 index	 finger	when	the	auditory	block’s	direction	or	 location	

was	 matching	 with	 the	 auditory	 cue	 (Figure	 1B).	 The	 number	 of	 targets	 and	 the	 order	

(position	1-4)	of	 the	correct	button	press	were	balanced	across	conditions.	This	procedure	

was	 adopted	 to	 ensure	 that	 the	 participants	 gave	 their	 response	 using	 equal	 motor	

command	 for	each	condition	and	 to	ensure	 the	 response	 is	produced	after	 the	end	of	 the	

stimulation	period	 for	each	condition.	Each	scan	consisted	of	one	block	of	each	condition,	

resulting	 in	 a	 total	 of	 8	 blocks	 per	 run,	 with	 each	 run	 lasting	 4	 m	 10	 s	 (100	 volumes).	

Participants	completed	a	total	of	12	runs.	The	order	of	the	blocks	was	pseudo-randomized	

within	each	run,	and	across	participants.	

	

3.3.4	Auditory	localizer	

To	 localize	 regions	 responding	 to	 auditory	 motion,	 an	 independent	 group	 of	 sighted	

participants	 (n	 =	 17)	 undertook	 an	 auditory	 motion	 localizer	 scan.	 Individual	 in-ear	

recordings	 of	 moving	 and	 static	 stimuli	 were	 presented	 in	 a	 blocked	 design.	 Each	 block	

contained	12	repetitions	of	1200	ms	sounds	from	one	of	8	conditions:	4	motion	directions,	

and	4	static	 locations.	Stimuli	within	a	block	were	separate	by	100	ms	 ISIs,	and	each	block	

was	followed	by	a	6	s	rest	period.	The	localizer	had	one	run	and	consisted	of	13	repetitions	

of	each	condition	block	 in	a	pseudorandom	order.	The	scan	 lasted	a	 total	of	9	m	and	48	s	

(235	 volumes).	 Participants	 were	 instructed	 to	 indicate	 via	 button	 press	 with	 their	 right	

index	finger	when	they	detected	a	stimulus	with	a	shorter	duration	(targets	=	600	ms).	The	
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number	of	targets	in	each	block	was	varied	between	1	and	3	targets,	with	the	location	in	the	

block	 randomized	 and	 balanced	 across	 conditions.	 Participants	were	 familiarized	with	 the	

task	before	the	fMRI	session,	and	were	blindfolded	throughout	the	scan.	

	

3.3.5	Visual	hMT+/V5	localizer	

To	 identify	 hMT+/V5	 in	 sighted	 individuals,	 participants	 undertook	 an	 independent	 visual	

motion	localizer	scan.	Visual	stimuli	were	back-projected	onto	a	screen	(width:	42	cm,	frame	

rate:	 60	Hz,	 screen	 resolution:	 1024	 x	 768	pixels;	mean	 luminance:	 109	 cd/m2	 via	 a	 liquid	

crystal	projector	 (OC	EMP	7900,	Epson	Nagano)	positioned	at	 the	back	of	 the	scanner	and	

viewed	via	mirror	mounted	on	 the	head	coil	at	a	distance	of	134	cm.	Stimuli	were	16	s	of	

random-dot	patterns,	consisting	of	circular	aperture	 (radius	4°)	of	 radial	moving	and	static	

dots	 (moving	 and	 static	 conditions,	 respectively)	 with	 a	 central	 fixation	 cross	 (Huk	 et	 al.	

2002).	 One	 hundred	 and	 twenty	white	 dots	 (diameter	 of	 each	 dot	was	 0.1	 visual	 degree)	

were	displayed	on	a	gray	background,	moving	4°	per	second.	In	all	conditions,	each	dot	had	

a	limited	lifetime	of	0.2	s.	Limited	lifetime	dots	were	used	in	order	to	ensure	that	the	global	

direction	 of	 motion	 could	 only	 be	 determined	 by	 integrating	 local	 signals	 over	 a	 larger	

summation	field	rather	than	by	following	a	single	dot	(Bex	et	al.	2003).	Additionally,	limited	

lifetime	dots	allowed	the	use	of	control	 flickering	(as	opposed	to	purely	static)	stimuli	 that	

were	matched	to	the	moving	stimuli	in	terms	of	temporal	resolution.	Stimuli	were	presented	

for	 16	 s	 followed	 by	 a	 6	 s	 rest	 period.	 Stimuli	 within	 motion	 blocks	 alternated	 between	

inward	 and	 outward	 motion	 (expanding	 and	 contracting)	 once	 per	 second.	 Because	 the	

localizer	aimed	to	localize	the	global	hMT+/V5	complex	(e.g.	MT	and	MST	regions)	the	static	

block	 was	 composed	 of	 dots	 maintaining	 their	 position	 throughout	 the	 block	 in	 order	 to	

prevent	 flicker-like	motion	(Smith	2006).	The	 localizer	consisted	of	14	alternating	blocks	of	

moving	and	 static	dots	 (7	each)	and	 lasting	a	 total	of	6	m	40	 s	 (160	volumes).	 In	order	 to	

maintain	 the	 participant’s	 attention	 and	 to	 minimize	 eye-movement	 during	 acquisition	

during	the	localizer’s	run,	participants	were	instructed	to	detect	a	color	change	(from	black	

to	red)	of	a	central	fixation	cross	(0.03°)	by	pressing	the	response	button	with	the	right	index	

finger.		

	

3.3.6.	Imaging	parameters			

Functional	and	structural	data	were	acquired	with	4T	Bruker	MedSpec	Biospin	MR	scanner,	

equipped	 with	 8-channel	 head	 coil.	 Functional	 images	 were	 acquired	 with	 T2*-weighted	

gradient	 echo-planar	 sequence	 with	 fat	 suppression.	 	 Acquisition	 parameters	 were:	
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repetition	time	of	2500	ms,	echo	time	of	26	ms,	flip	angle	of	73°,	a	field	of	view	of	192	mm,	a	

matrix	size	of	64	x	64,	and	voxel	size	of	3	x	3	x	3	mm3.	A	total	of	39	slices	were	acquired	in	

ascending	 feet-to-head	 interleaved	 order	 with	 no	 gap.	 The	 three	 initial	 scans	 of	 each	

acquisition	run	were	discarded	to	allow	for	steady-state	magnetization.	Before	each	EPI	run,	

we	performed	an	additional	scan	to	measure	the	point-spread	function	(PSF)	of	the	acquired	

sequence,	 including	 fat	 saturation,	which	 served	 for	 distortion	 correction	 that	 is	 expected	

with	high-field	imaging	(Zeng	&	Constable	2002).	

High-resolution	anatomical	 scan	was	acquired	using	a	T1-weighted	3D	MP-RAGE	sequence	

(176	sagittal	slices,	voxel	size	of	1	×	1	×	1mm;	field	of	view	256	x	224	mm;	repetition	time	=	

2700	ms;	TE	=	4.18	ms;	FA:	7°;	inversion	time:	1020	ms).	Participants	were	blindfolded	and	

instructed	 to	 lie	 still	 during	 acquisition	 and	 foam	 padding	 was	 used	 to	 minimize	 scanner	

noise	and	head	movement.		

	

3.3.7.	Univariate	fMRI	analysis	

Raw	functional	images	were	pre-processed	and	analyzed	with	SPM8	(Welcome	Trust	Centre	

for	 Neuroimaging	 London,	 UK;	 http://www.fil.ion.ucl.ac.uk/spm/software/spm/)	

implemented	 in	 MATLAB	 R2014b	 (MathWorks).	 Before	 the	 statistical	 analysis,	 our	

preprocessing	 steps	 included	 slice	 time	 correction	with	 reference	 to	 the	middle	 temporal	

slice,	realignment	of	functional	time	series,	the	coregistration	of	functional	and	anatomical	

data,	spatial	normalization	to	an	echo	planar	imaging	template	conforming	to	the	Montreal	

Neurological	 Institute	 space,	 and	 spatial	 smoothing	 (Gaussian	 kernel,	 6	mm	 FWHM)	were	

performed.	

	

3.3.7.1.	Auditory	experiment		

To	 obtain	 blood	 oxygen	 level-dependent	 (BOLD)	 activity	 related	 to	 auditory	 spatial	

processing,	 we	 computed	 single	 subject	 statistical	 comparisons	 with	 fixed-effect	 general	

linear	model	(GLM).	In	the	GLM,	we	used	eight	regressors	from	each	condition	(four	motion	

direction,	four	sound	source	location).	The	canonical	double-gamma	hemodynamic	response	

function	 implemented	 in	SPM8	was	convolved	with	a	box-car	function	to	model	the	above	

mentioned	 regressors.	 Motion	 parameters	 derived	 from	 realignment	 of	 the	 functional	

volumes	(3	translational	motion	and	3	rotational	motion	parameters),	button	press,	and	four	

auditory	response	cue	events	were	modeled	as	regressors	of	no	interest.	During	the	model	

estimation,	the	data	were	high-pass	filtered	with	cut-off	128	s	to	remove	the	scanner	drift	
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and	low-frequency	fluctuations	from	the	time	series.	To	account	for	serial	correlation	due	to	

noise	in	fMRI	signal,	autoregressive	(AR	(1))	was	used.	

At	the	fixed-effect	individual	subject	level	(FFX),	to	obtain	activity	related	to	auditory	

processing	 in	 the	whole	brain,	 the	contrasts	 tested	 the	main	effect	of	each	condition:	Left	

Motion,	 Right	 Motion,	 Up	Motion,	 Down	Motion,	 Left	 Static,	 Right	 Static,	 Up	 Static,	 and	

Down	Static.	Next,	to	identify	regions	responding	preferentially	to	the	auditory	motion	and	

static	 stimuli,	 we	 compared	 the	 response	 of	 all	 motion	 conditions	 to	 all	 static	 conditions	

(Motion	 >	 Static,	 and	 Static	 >	 Motion).	 These	 linear	 contrasts	 generated	 statistical	

parametric	 maps	 (SPM[T])	 that	 were	 further	 spatially	 smoothed	 (Gaussian	 kernel	 8	 mm	

FWHM)	before	being	entered	in	a	second-level	group	analysis,	using	a	random	effect	model	

(RFX),	accounting	for	inter-subjects	variance.		

At	the	group	level,	a	series	of	one-sample	t-tests	was	implemented	to	examine	the	

main	 effects	 of	 each	 condition	 (Motion,	 Static),	 general	 auditory	 processing	 (Motion	 +	

Static),	 and	motion	processing	 (Motion	 >	 Static)	 for	 each	participant	 group.	A	 conjunction	

analysis	characterized	brain	areas	 jointly	activated	for	 the	contrast	Motion	>	Static	 in	both	

groups	 (EB	 and	 SC).	 Two-sample	 t-tests	 were	 then	 performed	 to	 compare	 these	 effects	

between	groups	(SC	>	EB,	EB	>	SC).	

Statistical	 inferences	 were	 done	 using	 family-wise	 error	 (FWE)	 correction	 for	

multiple	 comparisons	 using	 p<0.05	 over	 the	 entire	 brain	 volume	 or	 over	 small	 spherical	

volumes	 (15	mm	 radius)	 located	 around	 regions	 of	 interest	 (see	 Table	 1)	 using	 a	minimal	

cluster	size	threshold	of	20	contiguous	voxels	(Worsley	et	al.	1996).	Significant	clusters	were	

anatomically	labeled	using	the	xjView	Matlab	toolbox	(http://www.alivelearn.net/xjview)	or	

structural	 neuroanatomy	 information	 provided	 in	 the	 Anatomy	 Toolbox	 (Eickhoff	 et	 al.	

2007).	

	

3.3.7.2	Region	of	interest	definition	

We	used	 independent	auditory	and	visual	motion	 localizers	 to	 functionally	defined	PT	and	

hMT+/V5	 regions.	Preprocessing	 steps	were	 similar	 to	whole-brain	univariate	analysis	 (see	

section	Univariate	fMRI	Analysis).	Single	subject	statistical	comparisons	were	made	using	a	

fixed-effect	 GLM	 for	 each	 participant	 with	 two	 regressors	 (motion,	 static),	 and	 motion	

parameters	 (6	 regressors	 of	 no	 interest).	 The	 canonical	 double-gamma	 hemodynamic	

response	 function	 implemented	 in	 SPM8	was	 convolved	with	 a	 box-car	 function	 for	 each	

regressor.	 Motion	 parameters	 derived	 from	 realignment	 of	 the	 functional	 volumes	 (3	

translational	 motion	 and	 3	 rotational	 motion	 parameters),	 button	 press	 was	 modeled	 as	
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regressor	of	no	interest.	During	the	model	estimation,	the	data	were	high-pass	filtered	with	

cut-off	 128	 s	 to	 remove	 the	 scanner	 drift	 and	 low-frequency	 fluctuations	 from	 the	 time	

series.	To	account	for	serial	correlation	due	to	noise	 in	fMRI	signal,	autoregressive	(AR	(1))	

was	used.	

One-sample	 t-tests	 were	 conducted	 to	 characterize	 the	 main	 effect	 of	 motion	

processing	(Motion	>	Static).	This	linear	contrast	generated	statistical	parametric	maps	that	

were	further	spatially	smoothed	(Gaussian	kernel	8	mm	FWHM)	and	entered	into	a	second-

level	group	analysis	using	a	random	effects	GLM.	Group-level	peak	coordinates	of	bilateral	

hMT+/V5	and	PT	were	defined	by	contrasting	the	main	effects	of	 localizer	scan	(Motion	vs	

Static),	surviving	a	whole-brain	family-wise-error	correction	(p<0.05).	Peak	coordinates	from	

the	auditory	and	visual	motion	localizers	were	used	to	create	a	sphere	of	6	mm	radius	(117	

voxels)	around	4	region-of-interests	(ROIs):	 left	hMT+/V5,	right	hMT+/V5,	 left	PT,	and	right	

PT.	 The	 4	 ROIs	were	 defined	 functionally	 but	 constrained	by	 anatomical	 landmarks	 of	 the	

regions.	PT	was	selected	within	the	triangular	region	 lying	caudal	 to	the	Helschl’s	gyrus	on	

the	 supratemporal	plane,	whilst	hMT+/V5	was	 constrained	with	 the	ascending	 limb	of	 the	

inferior	temporal	sulcus	(Zeki	et	al.	1991;	Watson	et	al.	1993).	

	

3.3.8.	Multivariate	pattern	analyses	

In	order	to	investigate	the	presence	of	auditory	motion	direction	and	sound	source	location	

information,	 multivariate	 pattern	 analyses	 (MVPA)	 were	 conducted	 within	 the	

independently	defined	hMT+/V5	and	PT	regions.	To	ensure	that	 the	number	of	voxels	was	

identical	across	subjects	an	ANOVA-based	feature	selection	was	performed	to	select	the	110	

voxels	 within	 each	 ROI,	 which	 are	 most	 informative/discriminative	 across	 all	 motion	 and	

static	 conditions	 (Cox	&	 Savoy	 2003;	 Haxby	 et	 al.,	 2001;	Norman	 et	 al.,	 2006).	 All	 further	

analysis	was	conducted	on	these	regions	for	all	sighted	and	blind	participants.	

Preprocessing	 steps	were	 identical	 to	 the	 steps	performed	 for	univariate	analyses,	

with	 the	exception	of	 functional	volumes	 that	were	smoothed	with	a	Gaussian	kernel	of	2	

mm	 (FWHM).	 MVPA	 were	 performed	 in	 CoSMoMVPA	 (http://www.cosmomvpa.org/;	

(Oosterhof	 et	 al.	 2016,	 which	 implements	 LIBSVM	 software	

(http://www.csie.ntu.edu.tw/~cjlin/libsvm).	 A	 general	 linear	 model	 was	 implemented	 in	

SPM8,	where	each	block	was	defined	as	a	regressor	of	interest.	A	beta	map	was	calculated	

for	 each	 block	 separately.	 Two	multi-class	 linear	 support	 vector	machine	 (SVM)	 classifiers	

with	a	linear	kernel	with	a	fixed	regularization	parameter	of	C	=	1	was	trained	and	tested	for	

each	participant	 separately	within	each	group.	The	 two	multi-class	 classifiers	were	 trained	
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and	 tested	 to	 discriminate	 between	 the	 response	 patterns	 of	 the	 4	 auditory	 motion	

directions	and	locations,	respectively.	

For	each	participant,	the	classifier	was	trained	using	a	cross-validation	leave-one-out	

procedure	where	training	was	performed	with	n-1	runs	and	testing	was	then	applied	to	the	

remaining	 one	 run.	 In	 each	 cross-validation	 fold,	 the	 beta	 maps	 in	 the	 training	 set	 were	

normalized	(z-scored)	across	conditions,	and	the	estimated	parameters	were	applied	to	the	

test	 set.	 To	evaluate	 the	performance	of	 the	 classifier	 and	 its	 generalization	across	all	 the	

data,	the	previous	step	was	repeated	12	times	where	in	each	fold	a	different	run	was	used	

as	the	testing	data	and	the	classifier	was	trained	on	the	other	11	runs.	For	each	region	per	

subject,	a	single	classification	accuracy	was	obtained	by	averaging	the	accuracies	of	all	cross-

validation	folds.	

	

3.3.8.1.	Within	Condition	Decoding	

To	 investigate	motion	 direction	 and	 static	 location	 information	 in	 areas	 hMT+/V5	

and	 PT	 in	 sighted	 and	 blind	 participants,	 4-class	 classifiers	 were	 trained	 and	 tested	 to	

discriminate	between	the	response	patterns	of	the	4	auditory	motion	directions	and	4	sound	

source	locations,	respectively	(hereafter	across-planes	decoding).	The	order	of	the	4	motion	

conditions	and	4	static	conditions	were	randomized	across	runs	in	order	to	avoid	biasing	the	

classifier,	and	to	prevent	the	classifier	to	learn	and	decode	an	alternative	rule	(i.e.	the	order,	

rather	direction	and	location	information).	

	

3.3.8.2.	Cross-condition	Decoding	

To	test	whether	neural	patterns	of	auditory	motion	within	hMT+/V5	and	PT	reflect	

neuronal	 computations	 purely	 dedicated	 to	 motion	 or	 that	 can	 be	 shared	 with	 static	

locations,	we	 performed	 cross-condition	 classification	 in	 the	 areas	 that	 showed	 successful	

within-condition	decoding	with	both	motion	and	static	stimuli.	Specifically,	the	classifier	was	

trained	to	discriminate	static	locations,	and	was	then	tested	to	distinguish	between	motion	

directions,	and	vice	versa.	Accuracies	from	the	two	cross-condition	decoding	analyses	(static	

to	 motion,	 motion	 to	 static)	 were	 then	 averaged.	 For	 interpretability	 reasons,	 cross-

condition	 classification	 was	 only	 interpreted	 on	 the	 stimuli	 categories	 that	 the	 classifiers	

discriminated	 reliably	 (above	 chance	 level)	 for	 both	 motion	 and	 static	 conditions	 (e.g.	 if	

discrimination	of	 left	vs.	 right	was	not	successful	 in	one	condition,	either	static	or	motion,	

then	the	left	vs.	right	cross-condition	classification	analysis	was	not	carried	out).	
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Prior	 to	 performing	 the	 cross-condition	 MVPA,	 each	 individual	 pattern	 was	

normalized	 separately	 across	 voxels	 so	 that	 any	 cross-condition	 classification	 could	not	be	

due	to	global	univariate	activation	differences	across	the	conditions.			

	

3.3.8.3.	Statistical	Significance	

Statistical	 significance	 in	 the	 multivariate	 classification	 analyses	 was	 assessed	 using	 non-

parametric	 tests	 permuting	 condition	 labels	 and	 bootstrapping	 (Stelzer	 et	 al.	 2013).	 Each	

permutation	 step	 included	 shuffling	 of	 condition	 labels	 and	 re-running	 the	 classification,	

which	was	repeated	100	times	on	the	single-subject	level.	Next,	we	applied	a	bootstrapping	

procedure	in	order	to	a	group-level	null	distribution	that	is	representative	of	each	group.	For	

each	 group,	 from	 each	 subject’s	 null	 distribution	 one	 value	 was	 randomly	 chosen	 and	

averaged	across	all	the	subjects.	This	step	was	repeated	100,000	times	resulting	in	a	group	

level	 null	 distribution	 of	 100,000	 values.	 The	 classification	 accuracies	 across	 subjects	 we	

considered	as	significant	 if	 the	p<0.05	after	corrections	for	multiple	comparisons	using	the	

FDR	 method	 (Benjamini	 &	 Yekutieli	 2001).	 The	 group	 comparison	 was	 also	 tested	 for	

significance	by	using	permutation	(100,000	iterations).		

Classification	accuracies	were	entered	into	a	2	x	2	x	2	x	2	repeated	measures	ANOVA	

to	test	the	interaction	between	Group	(EB,	SC;	between-subject	factor),	Condition	(motion,	

static;	within-subject	 factor),	Region	(hMT+/V5,	PT;	within-subject	 factor),	and	Hemisphere	

(left,	right;	within-subject	factor).	

	

3.3.9.	Brain-Behavior	Correlation	Analysis	

We	 investigated	 the	 link	between	behavioral	performance	and	neural	 activity	of	hMT+/V5	

and	 PT	 regions	 by	 performing	 between-subject	 Pearson’s	 correlation	 on	 behavioral	

performance	 with	 (1)	 extracted	 beta	 parameter	 estimates,	 and	 (2)	 extracted	 decoding	

accuracies	in	both	EB	and	SC	groups.	Behavioral	performance	was	measured	as	the	accuracy	

of	 detecting	 motion	 directions	 and	 sound	 source	 locations	 during	 the	 fMRI	 session.	 We	

extracted	beta	parameter	estimates	from	peak	voxel	of	each	ROI	(left	and	right	hemispheres	

in	hMT+/V5	and	PT)	from	each	subject,	and	for	each	of	the	8	auditory	conditions	(leftward,	

rightward,	upward,	downward,	 left,	 right,	up,	and	down),	and	performed	between-subject	

correlation.	

Classification	 accuracies	 obtained	 from	multi-class	 classification	 from	 each	 ROI	 of	

each	subject	was	correlated	with	overall	performance	of	motion	direction	and	sound	source	



Chapter 3 

	 103	

location	discrimination.	Statistical	results	were	corrected	for	multiple	comparisons	using	the	

FDR	method	(Benjamini	&	Yekutieli	2001).	

	

3.4.	RESULTS	

3.4.1.	Behavioral	

Behavioral	performances	 in	all	 the	8	conditions	 in	both	groups	were	above	80%	of	

correct	responses,	demonstrating	that	we	were	able	to	trigger	salient	and	reliable	auditory	

percepts	 while	 the	 subjects	 were	 inside	 the	 scanner.	 To	 determine	 if	 there	 were	 any	

differences	between	groups	or	conditions	in	the	target	detection	task	performed	during	the	

auditory	 experiment,	 accuracy	 scores	 were	 entered	 into	 a	 2	 x	 2	 x	 4	 repeated	 measure	

ANOVA	 to	 test	 the	 interaction	between	Group	 (EB,	 SC;	between-subject	 factor),	Condition	

(motion,	 static;	 within-subject	 factor),	 and	 Orientation	 (left,	 right,	 up,	 and	 down;	 within-

subject	 factor).	 Importantly,	 this	 showed	 no	main	 effect	 of	 Group	 (F1,30	 =	 0.401;	 p	 =	 0.5),	

indicating	that	the	overall	accuracy	while	detecting	direction	of	motion	or	location	of	sound	

source	 did	 not	 differ	 between	 the	 blind	 and	 sighted	 groups.	 There	was	 a	 significant	main	

effect	 of	 Condition	 (F1,30	 =	 11.49;	 p	 =	 0.002),	which	was	 caused	 by	 higher	 accuracy	 in	 the	

motion	condition	as	compared	to	the	static	condition.	There	was	a	significant	main	effect	of	

Orientation	 (F1.6,48.3	 =	 14.24;	 p	 <	 0.001),	 caused	 by	 greater	 accuracy	 in	 the	 horizontal	

orientations	 (left	 and	 right)	 as	 compared	 to	 the	vertical	orientations	 (up	and	down).	Post-

hoc	two-tailed	t-tests	(p<0.05,	Bonferroni	corrected	for	multiple	comparisons)	showed	that	

this	main	effect	was	due	to	significant	different	between	left	orientation	with	up	(t15	=	5.22,	

p<0.001)	and	down	(t15	=	3.87,	p=0.001)	orientations,	and	between	right	orientation	with	up	

(t15	 =	 5.17,	 p<0.001)	 and	 down	 (t15	 =	 3.81,	 p=0.001)	 orientations.	No	 interaction	 between	

Condition	x	Orientation	was	observed.	

	

3.4.2.	Whole	brain	analyses	

Figure	 2	 shows	 the	 response	 to	 motion	 and	 static	 auditory	 stimuli	 in	 EB	 and	 SC	

participants.	Consistent	with	previous	studies	(Warren	et	al.	2002;	Pavani	et	al.	2002;	Poirier	

et	 al.	 2005),	 a	 preferential	 response	 to	 auditory	 moving	 stimuli	 (Motion	 >	 Static)	 was	

observed	 for	 SC	 participants	 in	 the	 superior	 temporal	 gyri,	 bilateral	 planum	 temporale,	

precentral	gyri,	and	anterior	portion	of	middle	temporal	gyrus	in	both	hemispheres	(Figure	

2A).	A	similar	response	was	observed	in	EB	participants	(Figure	2B),	with	a	reliable	extension	

toward	the	occipital	cortex.		

To	identify	regions	responding	more	to	moving	than	static	sounds	in	both	EB	and	SC	
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participants,	we	ran	a	conjunction	(AND;	Nichols	et	al.	2005)	analysis	(SC	[motion	>	static]	∩	

EB	[motion	>	static]).	This	showed	that	both	groups	activated	the	superior	temporal	gyrus,	

bilateral	 planum	 temporale	 and	 the	 anterior	 portion	 of	middle	 temporal	 gyrus	 bilaterally.	

The	 right	 middle	 temporal	 gyrus	 (MTG)	 region	 partially	 overlapped	 with	 the	 functionally	

defined	hMT+/V5	identified	visually	(motion	>	static)	in	SC	participants	(white	outline,	Figure	

2C).	

To	identify	which	regions	activated	more	for	moving	than	static	sound	in	EB	versus	

SC	 participants,	 we	 performed	 a	 two-sample	 t-test	 ((EB	 [motion	 >	 static)	 >	 SC	 [motion	 >	

static]).	 This	 revealed	 enhanced	 activity	 for	 EB	 participants	 in	 regions	 including	 the	

precuneus,	 the	 cuneus	 extending	 into	 the	 intraparietal	 sulci,	 planum	 temporale,	 and	

bilateral	posterior	middle	temporal	gyrus	(see	Table	1.).		
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Figure	 2.	 Univariate	 whole	 brain	 results.	 A-B.	 Activations	 obtained	 from	 the	 contrast	 testing	 which	
regions	preferentially	activated	for	auditory	motion	processing	in	sighted	and	early	blind	participants:	(A)	
Sighted	 [Motion	 >	 Static],	 (B)	 Blind	 [Motion	 >	 Static].	 C.	 Activation	 in	 blue	 indicates	 auditory	 motion	
selectivity	 in	 both	 of	 the	 groups	 [Sighted	 conj,	 Blind]	 x	 [Motion	 >	 Static].	 Activation	 in	 red	 indicates	
enhanced	responses	to	moving	compared	to	static	sounds	in	the	early	blind	compared	to	the	sighted	group	
[Blind	>	Sighted]	x	[Motion	>	Static].	Activation	in	green	indicates	the	overlap	between	the	conjunction	and	
group	comparison	analyses.	The	arrows	indicate	the	peak	coordinates	of	middle	temporal	gyrus	(MTG)	in	
the	conjunction	and	group	comparison	analyses.	All	the	maps	are	thresholded	with	p<0,001	(uncorrected)	
for	 illustration	 purpose	 only	 (see	 methods	 for	 statistical	 significance	 assessment).	 Right	 panel:	 Beta	
parameter	 estimates	 (arbitrary	 units	 ±	 SEM;	 illustration	purpose	 only)	 associated	with	 the	 perception	 of	
motion	(green),	and	static	sounds	(yellow)	are	plotted	for	blind	and	sighted	at	significant	peak	coordinates	
from	 the	 group	 comparison	 ((a)	 and	 (b))	 and	 conjunction	 ((c)	 and	 (d))	 analyses.	D-E.	 Motion	 selective	
results	 from	 the	 visual	 and	 auditory	 motion	 localizers	 (FWE	 corrected	 p<0.05).	 F-G.	 From	 the	 peak	
coordinate	 of	 the	 motion	 localizers,	 mean	 activity	 estimates	 (arbitrary	 units	 ±	 SEM)	 associated	 with	
auditory	motion	and	static	sounds	are	plotted.	H-I.	Decoding	accuracies	of	4	auditory	motion	directions	and	
4	static	locations	in	independently	localized	hMT+/V5	and	PT.	Error	bars	indicate	the	SEM.			

	

	

3.4.3.	Independent	visual	and	auditory	motion	localizer		

In	order	to	avoid	circularity	that	can	arise	from	selection	of	ROIs,	more	particularly	“double	

dipping”	(Kriegeskorte	et	al.,	2009)	–	the	use	of	the	same	dataset	for	selection	and	specific	

analysis	–	we	independently	 localized	visual	and	auditory	motion	responsive	areas.	Whole-

brain	 univariate	 analyses	 for	 independent	 visual	 and	 auditory	 motion	 localizers	 were	

performed	 to	 acquire	 the	 peak	 coordinates	 of	 hMT+/V5	 and	 PT,	 selective	 to	 visual	 and	

auditory	motion	respectively	(Figure	2D-E).	The	obtained	stereotactic	MNI	coordinates	were	

as	follows:	L	hMT+/V5:	[-46	-72	-2];	R	hMT+/V5:	[40	-76	-2],	and	L	PT:	[-48	-30	8],	R	PT:	[62	-

36	10].		

	

3.4.3.1.	Region	of	interest	analyses	

Beta	 parameters	 extracted	 from	 PT	 and	 hMT+/V5	 ROIs	 were	 entered	 in	 a	 2	 x	 2	 x	 2	 x	 2	

repeated	measure	ANOVA,	Group	(EB,	SC)	as	between	subjects	factor	and	Hemisphere	(left,	

right),	 Region	 (hMT+/V5,	 PT)	 and	Condition	 (motion,	 static)	 as	within-subjects	 factors.	We	

observed	 a	main	 effect	 of	 Condition	 (F1,30	 =	 69.2,	 p	 <	 0.001)	 and	 Region	 (F1,30	 =	 10.8,	 p	 <	

0.001).	 The	main	effect	of	Condition	was	 caused	by	 a	 greater	 response	 to	motion	>	 static	

stimuli	 across	 all	 regions.	 There	 was	 no	 interaction	 between	 Condition	 x	 Region	 x	

Hemisphere	 (F1,30	 =	 2.02,	 p	 =	 0.16).	 There	 was	 a	 significant	 interaction	 between	 Group	 x	

Region	x	Condition	(F1,30	=	12.63	,	p	<	0.001).	Post-hoc	two-tailed	t-tests	(p<0.05,	Bonferroni	

corrected)	showed	that	the	interaction	was	caused	by	greater	responses	to	motion	>	static	

stimuli	for	EB	in	hMT+/V5	(t15	=	3.82,	p<0.001)	and	PT	(t15	=	7.9,	p<0.001)	regions,	whereas	

the	 SC	 participants	 only	 showed	 a	 greater	 response	 to	 motion	 >	 static	 in	 PT	 (t15	 =	 10.2,	

p<0.001,	hMT+/V5:	t15	=	0.06,	p	=0.9)	region	(see	Figure	2F-G).		



Chapter 3 

	 107	

To	investigate	motion	direction	and	sound	source	location	selectivity	in	each	ROI,	we	

performed	8	repeated	measures	of	ANOVA.	For	motion	direction,	 in	 left	PT	region,	a	2	x	4	

(Group:	between	 subjects	 factor,	Direction:	within-subject	 factor)	ANOVA	 revealed	a	main	

effect	of	Direction	 (F3,90=	5.29,	p	=	0.002),	 that	was	caused	by	higher	 response	 to	 leftward	

sounds	compared	to	downward	(t3,30	=	3.35,	p	=	0.006)	and	upward	(t3,30	=	3.23,	p	=	0.009)	

sounds	(p<0.05,	Bonferroni	corrected	for	multiple	comparisons)	across	groups.	However,	no	

main	effect	of	Group	and	no	interaction	were	observed.	In	the	right	PT	and	the	left	hMT+/V5	

regions,	 2	 x	 4	 (Group,	 Direction)	 ANOVA	 did	 not	 reveal	 any	 significant	 results.	 In	 right	

hMT+/V5,	despite	no	main	effects,	Direction	x	Group	revealed	significant	interaction	(F2.2,66.3	

=	 4.43,	 p	 =	 0.013).	 The	 interaction	 was	 driven	 by	 higher	 activity	 to	 horizontal	 motion	

direction	 and	 lower	 activity	 to	 vertical	 motion	 directions	 in	 the	 SC	 compared	 to	 the	 EB.	

These	 results	 indicated	 that	no	clear	evidence	of	motion	direction	 selective	activity	across	

groups.		

Among	 the	 four	 2	 x	 4	 (Group:	 between	 subjects	 factor,	 Location:	 within-subject	

factor)	 ANOVAs	 to	 investigate	 sound	 source	 location	 selectivity,	 we	 observed	 significant	

results	 only	 in	 the	 left	 PT	 region.	 The	main	 effect	 of	 Location	was	mainly	 driven	 by	 right	

location	evoking	higher	activity	in	left	PT	compared	to	left	location	(t3,30	=	3.21,	p	=	0.01)	and	

down	 location	 (t3,30	 =	 2.99,	 p	 =	 0.019)	 sounds.	 Moreover,	 Location	 x	 Group	 interaction	

revealed	that	differential	location	activity	was	due	to	the	SC	group	(stats).		

Overall,	beta	parameter	estimates	did	not	show	clear	evidence	for	motion	direction	

or	sound-source	location	specific	activity.		

	

3.4.4.	Multivariate	pattern	analyses	

3.4.4.1.	Within-Condition:	multi-class	decoding	

We	ran	multi-class	MVP-decoding	in	four	ROIs	identified	using	the	independent	auditory	and	

visual	 motion	 localizers	 (bilateral	 hMT+/V5,	 bilateral	 PT)	 in	 order	 to	 determine	 whether	

there	 were	 significant	 differences	 in	 the	 response	 patterns	 to	 the	 four	motion	 directions	

(leftward,	rightward,	upward,	downward)	and	four	static	locations	(left,	right,	up,	down).	

Figure	 2H-I	 shows	 decoding	 accuracies	 for	 motion	 and	 static	 stimuli	 in	 the	 four	

regions	of	interest	for	EB	and	SC	participants.	For	motion	stimuli,	permutation	testing	(FDR-

corrected)	 revealed	 that	 classification	 accuracies	 in	 hMT+/V5	 were	 significantly	 above	

chance	for	EB	participants	 in	both	the	hemispheres	(left:	mean	±	SD	=	32.4	±	0.8,	p<0.001;	

right:	 mean	 ±	 SD	 =	 33.1	 ±	 0.7,	 p<0.001).	 In	 SC	 participants,	 decoding	 accuracy	 was	 only	

significantly	above	chance	in	the	left	hMT+/V5	but	not	in	the	right	hMT/V5	(left:	mean	±	SD	
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=	30.5	±	0.6,	p=0.002;	right:	mean	±	SD	=	26.4	±	0.4,	p=0.184).	In	PT,	decoding	accuracy	was	

significantly	above	chance	 in	both	hemispheres	 in	both	groups	 (EB	 left:	mean	±	SD	=	32	±	

0.6,	 p<0.001;	 EB	 right:	mean	 ±	 SD	 =	 29.7	 ±	 0.7,	 p=0.003;	 SC	 left:	mean	 ±	 SD	 =	 40.6	 ±0.8,	

p<0.001;	 SC	 right:	 mean	 ±	 SD	 =	 35.3	 ±	 0.9,	 p<0.001).	 Permutation	 of	 two-sample	 t-tests	

revealed	that	decoding	accuracy	was	higher	for	EB	as	compared	to	SC	in	the	right	hMT+/V5	

(p=0.02)	but	not	in	the	left	hMT+/V5	(p=0.62).	In	contrast,	decoding	accuracy	was	greater	in	

SC	than	in	EB	in	the	left	PT	(p=0.016)	but	not	in	the	right	PT	(p=0.101)	(Figure	2I).		

For	 static	 location	 stimuli,	 decoding	accuracies	were	 significant	within	hMT+/V5	 in	

the	right	(mean	±	SD	=	29.7	±	0.9,	p=0.003)	and	very	close	to	the	cut-off	significance	value	in	

the	left	hemisphere	(mean	±	SD	=	27.6	±	0.6,	p=0.054)	of	EB	participants,	while	decoding	was	

not	significantly	greater	than	chance	in	either	the	left	or	right	hMT+/V5	for	SC	participants	

(left	 hMT+/V5:	 mean	 ±	 SD	 =	 26.3	 ±	 0.7,	 p=0.2;	 right	 hMT+/V5:	 mean	 ±	 SD	 =	 25	 ±	 0.5,	

p=0.458).	 In	 the	 PT,	 classification	 accuracy	 was	 significantly	 above	 chance	 in	 both	

hemispheres	in	SC	participants	(left	PT:	mean	±	SD	=	31.3	±	0.9,	p<0.001;	right	PT:	mean	±	SD	

=	28.7	±	0.7,	p=0.023),	but	only	in	the	right	hemisphere	of	EB	(right	PT:	mean	±	SD	=	29.4	±	

0.8,	p=0.007;	left	PT:	mean	±	SD	=	25.3	±	0.7,	p=0.458).		

Finally,	we	assessed	differences	between	decoding	accuracies	using	a	2	x	2	x	2	x	2	

(Group,	 Region,	 Condition,	Hemisphere)	 repeated	measures	ANOVA.	 This	 revealed	 a	main	

effect	of	Condition	(F1,30	=	17.2,	p	<	0.001)	due	to	greater	accuracies	for	motion	over	static	

stimuli	across	all	regions.	We	also	observed	a	main	effect	of	Region	(F1,30		=	10.5,	p	=	0.003)	

showing	overall	higher	decoding	 in	PT	 than	hMT+/V5.	 	Crucially,	we	observed	a	 significant	

interaction	between	Group	 x	Region	 (F1,30	 	 =	 26.54,	 p	 <	0.001).	 Post-hoc	 two-tailed	 t-tests	

(p<0.05;	Bonferroni	corrected	for	multiple	comparisons)	showed	that	decoding	accuracy	 in	

hMT+/V5	was	significantly	greater	for	EB	over	SC		(p	=	0.003).	In	contrast,	decoding	accuracy	

in	PT	was	significantly	greater	for	SC	over	EB	(p	=	0.004).		The	lack	of	significant	interaction	

between	Group	x	Region	 x	Condition	 indicates	 that	differences	 in	 the	decoding	accuracies	

between	groups	and	regions	are	not	specific	to	motion	condition.		

	

3.4.4.4.	Cross-condition	decoding		

Within-condition	 classification	 results	provide	evidence	 that	both	motion	direction	

and	location	can	be	decoded	in	bilateral	PT	for	SC,	and	the	right	PT	and	right	hMT+/V5	of	EB.	

However,	 these	 data	 do	 not	 address	 whether	 the	 patterns	 are	 shared	 across	 the	 spatial	

conditions	–	for	example,	whether	the	representations	of	leftward	motion	and	left	static	are	

similar.	 To	 investigate	 the	 shared	 representation	 of	 motion	 direction	 and	 sound-source	
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location,	we	trained	our	classifiers	on	neural	patterns	extracted	from	motion	directions	and	

tested	 on	 patterns	 underlying	 sound-source	 location,	 and	 vice	 versa.	 For	 interpretability	

reasons,	cross-condition	classification	was	only	carried	out	in	ROIs	that	decoded	significantly	

above	chance	for	both	motion	and	sound-source	conditions	in	the	within-condition	decoding	

analysis	(In	sighted	group,	left	and	right	PT,	in	early	blind	group	right	hMT+/V5).		

Cross-condition	 classification	 in	 the	 four	 regions	 of	 interest	 revealed	 significant	

results	in	the	left	PT	(mean	±	SD	=	27.8	±	5.3,	p	<	0.001)	and	a	trend	in	the	right	PT	(mean	±	

SD	=	26.7	±	5.1,	p	=	0.085)	 in	 the	SC	group;	while	significant	cross-condition	decoding	was	

observed	in	the	right	PT	(mean	±	SD	=	28.7	±	3.8,	p	=	0.03),	but	not	in	right	hMT+/V5	(mean	±	

SD	=	25.4	±	5.7,	p	=	0.341)	in	the	EB	group	(see	Figure	3).	

	

	
Figure	 3.	 Cross-classification	 results.	 The	 cross-condition	MVP-decoding	was	 performed	 on	 four	 ROIs.	
The	classifiers	were	 trained	on	4	motion	condition	and	 tested	on	4	static	condition	(and	vice	versa).	FDR	
corrected	p-values:	(*)	is	p<0.05,	(**),	(***)	p<0.001.	Dotted	lines	represent	chance	level.	
	
	

	

3.4.5.	Brain-Behavior	correlation	analyses	

In	 order	 to	 explore	whether	 the	brain	 activity	 elicited	by	our	moving	 and	 static	 sounds	 in	

hMT+/V5	and	PT	links	to	the	ability	of	the	listener	to	discriminate	the	direction	and	location	

of	 these	 sounds,	 we	 conducted	 between-subject	 correlations	 analyses.	 The	 multi-class	

decoding	 accuracies	 and	 beta	 parameter	 estimates	 were	 extracted	 from	 the	 peak	

coordinates	 of	 independently	 defined	 hMT+/V5	 and	 PT	 regions.	 Behavioral	 accuracies	 of	

discrimination	 motion	 directions	 (motion	 condition)	 and	 sound	 source	 locations	 (static	

condition)	 were	 correlated	 with	 decoding	 accuracies	 and	 beta	 parameter	 estimates	

separately.	 No	 correlation	was	 observed	 between	 behavioral	 performance	 and	 the	 neural	

activity	of	hMT+/V5	and	PT	across	groups	(see	Supplemental	Fig.	1).		
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3.5.	DISCUSSION	

	 	

In	 this	 study,	 we	 comprehensively	 investigated	 the	 role	 of	 hMT+/V5	 and	 PT	 regions	 in	

auditory	motion	direction	and	sound-source	 location	 in	sighted	and	early	blind	 individuals.	

Both	groups	showed	auditory	motion	selective	response	in	the	classical	auditory	network,	as	

well	 as	 a	 region	overlapping	with	 the	most	 anterior	 portion	of	 hMT+/V5.	Moreover,	 early	

blinds	showed	additional	preferential	response	in	the	more	posterior	region	of	hMT+/V5.	

Our	analysis	showed	no	differences	between	the	four	sound	locations	or	directions	

at	the	univariate	level.	However,	we	found	that	motion	direction	and	sound-source	location	

can	 be	 decoded	 in	 both	 hMT+/V5	 and	 PT	 regions	 in	 both	 the	 sighted	 and	 the	 blind.	

Importantly,	we	observed	that	visual	experience	had	a	major	impact	on	the	coding	profile	of	

these	 regions.	 Overall,	 our	 results	 demonstrated	 enhanced	 tuning	 for	 auditory	 motion	

direction	and	sound-source	 location	 in	hMT+/V5	 regions	 in	EB	when	compared	 to	SC.	This	

enhanced	auditory	tuning	in	hMT+/V5	in	the	blind	co-occurs	with	a	reduced	computational	

involvement	 of	 PT	 regions.	 Early	 visual	 deprivation	 therefore	 triggers	 a	 network-level	

reorganization	between	occipital	and	temporal	regions	typically	dedicated	to	spatial	hearing.		

Whole-brain	univariate	analyses	revealed	preferential	response	to	auditory	motion	for	both	

sighted	and	blind	participants	 in	a	dorsal	 fronto-temporo-parietal	network,	 including	PT	as	

well	as	a	region	overlapping	with	the	most	anterior	portion	of	the	right	hMT+/V5	(Figure	2C;	

Table	1).	These	univariate	results	therefore	support	and	extend	a	growing	body	of	evidence	

suggesting	 that	 moving	 auditory	 (Warren	 et	 al.	 2002;	 Poirier	 et	 al.	 2005)	 and	 tactile	

(Beauchamp	 et	 al.	 2007;	 Ricciardi	 et	 al.	 2007;	Matteau	 et	 al.	 2010;	 van	 Kemenade	 et	 al.	

2013)	 stimuli	 can	 evoke	 preferential	 responses	 in	 a	 portion	 of	 the	 hMT+/V5	 in	 sighted	

individuals.	The	observation	of	motion	selective	activity	 in	both	of	 the	groups	was	used	to	

support	 the	 idea	 that	 this	 region	 may	 implement,	 at	 least	 partially,	 abstracted	 motion	

computation	 that	 is	 independent	 of	 sensory	 input	 and/or	 experience	 (Ricciardi	 &	 Pietrini	

2011;	 Strnad	 et	 al.	 2013).	 It	 is,	 however,	 important	 to	 note	 that	 an	 overlap	 of	 functional	

preference	 for	 auditory	 motion	 between	 the	 sighted	 and	 the	 blind	 individuals	 does	 not	

guarantee	 similar	 underlying	 computation.	 For	 instance,	 hMT+/V5	 could	 activate	 due	 to	

visual	 imagery	 in	 sighted	 people	 (Goebel	 et	 al.	 1998;	 Sathian	 2005;	 Vetter	 et	 al.	 2014;	

Emmerling	et	al.	2016)	but	instead	relies	on	crossmodal	reorganization	of	occipital	regions	in	

case	of	 early	 visual	 deprivation	 (Poirier	 et	 al.	 2006;	Dormal	 et	 al.	 2016;	 Jiang	 et	 al.	 2014).	

Actually,	 a	 study	 using	 TMS	 found	 that	 focally	 and	 transiently	 disrupting	 the	 activity	 of	

hMT+/V5	significantly	altered	auditory	spatial	localization	abilities	only	in	the	early	blind	and	
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not	 in	 sighted	 participants,	 suggesting	 that	 non-visual	 processing	 could	 be	 mediated	 by	

different	mechanisms	in	blind	and	sighted	populations	(Collignon	et	al.	2007).	

Blind	 participants	 showed	 additional	 preferential	 response	 to	 moving	 over	 static	

sounds	in	the	more	posterior	region	of	hMT+/V5.	Our	finding	is	in	line	with	previous	studies	

showing	 that	 hMT+/V5	 responds	 to	 auditory	 (Poirier,	 Collignon,	 Scheiber,	 L.	 Renier,	 et	 al.	

2006;	 Bedny	 et	 al.	 2010;	Wolbers	 et	 al.	 2011;	 Jiang	 et	 al.	 2014;	 Dormal	 et	 al.	 2016)	 and	

tactile	 (Ricciardi	et	al.	2007;	Matteau	et	al.	2010)	motion	 stimuli	 in	early	blind	 individuals.	

These	 results	 support	 the	 notion	 that	 cross-modal	 reorganization	 of	 hMT+/V5	 following	

visual	deprivation	maintains	the	computational	role	of	the	colonized	area	while	redirecting	

the	modality	to	non-visual	 input	 (Collignon	et	al.	2009;	Dormal	et	al.	2016;	Collignon	et	al.	

2011;	Ricciardi	et	al.	2014;	Amedi	et	al.	2017).	Similarly,	studies	involving	early	deaf	animals	

suggested	 that	 regions	 normally	 sensitive	 to	 auditory	motion	 processing	 in	 the	 “auditory”	

cortex	 specifically	 reorganize	 to	 support	 visual	 motion	 processing	 (Lomber	 et	 al.	 2010;	

Meredith	et	al.	2011).	

Overall,	 the	 four	motion	directions	and	 four	 sound	 source	 locations	did	not	evoke	

differential	univariate	activity	 in	the	hMT+/V5	region	in	both	groups	(see	section	Region	of	

interest	analyses).	Our	 results	demonstrate	 that	 information	pertaining	 to	multiple	axes	of	

motion	 can	 be	 decoded	 within	 hMT+/V5	 in	 EB	 and	 SC	 groups.	 In	 congruency	 with	 the	

univariate	 analyses,	 the	 right	 hMT+/V5	 showed	 enhanced	 decoding	 accuracy	 in	 the	 blind	

relative	 to	 the	 sighted	 group	 (Figure	 2H),	 suggesting	 again	 that	 early	 visual	 deprivation	

increases	the	functional	involvement	of	the	hMT+/V5	for	the	processing	of	auditory	motion.		

Our	 findings	 contrast	 with	 previous	 studies	 that	 did	 not	 find	 information	 about	

auditory	motion	 direction	 in	 hMT+/V5	 of	 the	 sighted	 (Jiang	 et	 al.	 2014;	 Jiang	 et	 al.	 2016;	

Alink	 et	 al.	 2012).	 The	 contradiction	 could	 emerge	 from	 the	 differences	 in	 experimental	

design	 and	 auditory	 stimuli.	 In	 those	 studies,	 the	 directional	 selectivity	 was	 investigated	

exclusively	 in	 the	 horizontal	 axis,	 while	 the	 present	 study	 contained	 both	 horizontal	 and	

vertical	 auditory	 stimuli.	 It	 is	 possible	 that	 activity	 patterns	 elicited	 in	 hMT+/V5	 for	 the	

cardinal	motion	directions	differ	to	a	larger	extent	from	activity	patterns	elicited	by	sounds	

provided	only	 in	 the	horizontal	 axis	 (Alink	et	al.	2012;	 Jiang	et	al.	2014;	 Jiang	et	al.	2016).	

Here,	 we	 propose	 a	 mechanistic	 framework	 to	 explain	 the	 differences	 across	 above	

mentioned	studies	and	our	results.	 In	the	visual	domain,	the	functional	organization	of	the	

middle	occipito-temporal	 region	hMT+/V5	 is	 characterized	by	 columns	 containing	neurons	

that	 react	 specifically	 to	 a	 certain	 visual	 motion	 direction	 (Albright	 et	 al.	 1984).	 Those	

columns	vary	smoothly	for	certain	motion	direction	but	are	also	found	running	side	by	side	
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with	their	respective	opposing	motion	direction	counterparts	(Albright	et	al.	1984;	Diogo	et	

al.	2003;	Born	&	Bradley	2005;	Zimmermann	et	al.	2011).	By	aggregating	opposing	motion	

directions,	larger	axis	of	motion	features	can	be	constructed	that	are	more	easily	detectable	

with	 fMRI	 than	 individual	 direction	 selective	 columns	 (Zimmermann	 et	 al.	 2011).	 In	 the	

present	 study,	 axis	 of	 motion	 (horizontal	 versus	 vertical)	 classification	 provided	 more	

reliable	results	compared	to	within-axis	direction	 (e.g.	 left	versus	right	or	up	versus	down)	

classifications,	indicating	that	axis	of	motion	directions	is	more	easily	detectable	also	in	the	

auditory	domain	in	hMT+/V5	(see	Supplementary	Analysis).	Our	results	are	consistent	with	

the	results	of	Dormal	et	al.,	(2016)	showing	that	radial	and	vertical	motion	can	be	decoded	

in	 hMT+/V5	 in	 early	 blind	 and,	 to	 a	 lower	 extend,	 sighted	 individuals.	 Our	 study	 extends	

these	results	by	showing	enhanced	decoding	across-axes	when	compared	to	within-axes	of	

motion.	This	bring	the	resemblance	between	the	coding	of	hMT+/V5	in	vision	and	audition	

to	 an	 additional	 and	 finer-grained	 level	 of	 resemblance	 (Kamitani	 &	 Tong	 2006),	 further	

suggesting	 that	 topographic	 organization	 principle	 of	 hMT+/V5	 might	 be	

maintained/recycled	 for	 representing	 auditory	 motion	 directions	 in	 sighted	 and	 blind	

people.		

Previous	 studies	 highlighted	 that	 group-averaged	 responses	 for	 localization	 of	

hMT+/V5	in	the	sighted	individuals	can	lead	to	deceptive	BOLD	activity	to	non-visual	motion	

(Jiang	et	 al.,	 2015;	 Saenz	et	 al.,	 2008)	due	 to	 the	overlapping	 responses	 from	neighboring	

areas.	The	misleading	activity	could	stem	from	the	location	of	visual	hMT+/V5	varies	widely	

across	individuals	(Dumoulin	et	al.,	2000;	Huk	et	al.,	2002).	We	conducted	additional	analysis	

to	test	auditory	motion	direction	in	individually	defined	hMT+/V5	in	sighted	participants	(see	

Supplemental	 Information).	 Our	 results	 confirmed	 the	 group-averaged	 hMT+/V5	 that	

auditory	spatial	information	can	be	detected	in	hMT+/V5	of	sighted	people.		

It	is	however	important	to	note	that	the	observation	of	significant	motion	direction	

decoding	 in	 the	 visual	 (Kamitani	&	Tong	2006;	Beckett	 et	 al.	 2012;	Wang	et	 al.	 2014)	 and	

auditory	 domain	 does	 not	 however	 prove	 the	 presence	 of	 an	 underlying	 columnar	

organization	 for	 directionality	 since	 successful	 decoding	 may	 emerge	 from	 more	

macroscopic	organizational	principles	 (e.g.	 retinotopy;	Amano	et	 al.,	 2009;	Dukelow	et	 al.,	

2001;	Huk	et	al.,	2002;	Kolster	et	al.,	2010).	High-field	fMRI	studies	have	recently	suggested	

that	 both	 large-scale	 (retinotopic	 organization)	 and	 fine-scale	 (e.g.	 columnar	 organization)	

seem	to	play	a	critical	role	in	decoding	performance	based	on	fMRI	data	(Beckett	et	al.	2012;	

Wang	et	al.	2014;	Sengupta	et	al.	2017;	Gardumi	et	al.	2016;	Pratte	et	al.	2016).	
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	 We	have	seen	that	a	region	corresponding	to	hMT+/V5	contains	information	about	

motion	direction	 in	 the	blind	and,	 to	a	 lesser	extent,	 in	sighted	 individuals.	Does	hMT+/V5	

also	 contains	 information	 about	 sound-source	 locations?	 In	 sighted	 individuals,	 hMT+/V5	

contains	 location	 selective	 representations	 of	 visual	 stimuli	 (Dukelow	 2001;	 Huk	 2002;	

Amano	 2009;	 Kolster	 2010;	 Fisher	 2010).	 For	 instance,	 a	 recent	 fMRI	 study	 has	 found	

evidence	that	hMT+/V5	plays	a	role	in	the	processing	of	visual	localization	of	briefly	flashed	

stimuli	 (Bonkhoff	et	al.	2017).	These	studies	suggest	an	active	processing	of	visual	 location	

information	in	hMT+/V5	in	sighted	individuals.		

If	auditory	 information	 is	being	processed	 in	hMT+/V5	 in	a	computationally	analog	

structure	 as	 the	 one	 observed	 in	 vision,	 one	 may	 expect	 to	 find	 traces	 of	 sound	 source	

location	 in	 this	 region.	 In	 our	 study,	 we	 observed	 sound	 source	 location	 information	 in	

bilateral	 hMT+/V5	 in	 EB,	 but	 not	 in	 SC	 group.	 Our	 results	 therefore	 confirm	 and	 extend	

previous	 studies	 demonstrating	 that	 the	 right	 dorsal	 extrastriate	 occipital	 cortex	 in	 blind	

individuals	contributes	to	spatial	processing	of	sounds	(Collignon	et	al.	2007;	Collignon	et	al.	

2009;	 Collignon	 et	 al.	 2011;	 Collignon	 et	 al.	 2009b).	 However,	 in	 contrast	 to	 what	 was	

observed	 for	 the	directions	of	motion,	we	did	not	observe	“axis	of	position”	preference	 in	

either	group.	Moreover,	the	cross-condition	classification	results	showed	that	the	classifiers	

trained	 on	motion	 directions	 failed	 at	 classifying	 sound	 source	 locations	 (and	 vice-versa),	

therefore	 demonstrating	 separate	 pattern	 geometries	 between	 auditory	 motion	 and	

location	processing	in	hMT+/V5	for	both	of	the	groups.	This	pattern	of	results	contrast	with	

the	 one	 observed	 in	 PT	 where	 axis	 of	 motion	 preference	 is	 observed	 for	 both	 motion	

directions	and	sound	source	location	and	where	cross-conditions	decoding	shows	significant	

results.	These	results	suggest	separate	computational	structure	between	PT	and	hMT+/V5.	It	

therefore	 appears	 that	 hMT+/V5	 in	 the	 blind	 is	 not	 a	 full	 replica	 of	 what	 is	 observed	 in	

sighted	in	vision	and	neither	a	duplicate	of	the	functional	organization	observed	in	PT.	Using	

electrophysiological	 measurements	 to	 investigate	 at	 what	 time	 point	 after	 stimulus	

presentation	 do	 the	 occipital	 and	 temporal	 regions	 participate	 in	 the	 auditory	 spatial	

processing	would	potentially	help	in	addressing	such	question.	

What	are	the	mechanisms	that	could	drive	such	extension	of	the	crossmodal	recruitment	

of	 hMT+/V5	 for	 auditory	motion	 in	 the	 blind?	 Large-scale	 connectivity	 patterns	 between	

separate	sensory	regions	that	are	involved	in	related	function	could	be	a	determining	factor	

for	the	expression	of	crossmodal	plasticity	(Hannagan	et	al.	2015;	Dormal	&	Collignon	2011).	

According	 to	 a	 biased	 connectivity	 framework,	 enhanced	 non-visual	 responses	 for	moving	

stimuli	 observed	 in	 early	 blinds	may	 build	 on	 pre-existing	 connections	 between	 auditory,	
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tactile	and	visual	motion	processing	areas	(Johnson	2011).	This	idea	of	shared	computational	

structure	 between	 the	 senses	 may	 find	 support	 in	 the	 numerous	 studies	 showing	 strong	

multisensory	interaction	between	visual	and	auditory	motion	processing	(Soto-Faraco	et	al.	

2004;	 Soto-Faraco	 et	 al.	 2004;	 Soto-Faraco	 et	 al.	 2002;	 Kitagawa	 &	 Ichihara	 2002).	 For	

instance,	it	has	been	reported	that	adapting	to	visual	motion	induces	an	auditory	aftereffect	

(Soto-Faraco	 et	 al.	 2003;	 Soto-Faraco	 et	 al.	 2005;	 Kitagawa	 &	 Ichihara	 2002),	 strongly	

suggesting	 that	 the	 processing	 of	 visual	 and	 auditory	 motion	 relies	 on	 shared	 neural	

representations	(see	also	Konkle	et	al.	(2009)	for	a	link	between	vision	and	touch	for	motion	

processing).	Moreover,	coherent	audiovisual	motion	direction	results	in	enhanced	activity	in	

hMT+/V5	compared	to	only	visual	motion	or	 incoherent	audiovisual	motion	stimuli	(Scheef	

et	al.,	2009)	and	enhanced	functional	connectivity	between	hMT+/V5	and	superior	temporal	

gyrus	(vicinity	of	area	PT)	has	been	observed	during	the	processing	of	sound	induced	visual	

motion	(Hidaka	2017).		

During	 brain	 development,	 sensory	 experience	 impacts	 on	 synaptic	 pruning	 in	

cortical	 connections	 between	 regions	 (Innocenti	 &	 Price	 2005;	 Innocenti	 1995).	 Visually	

deprived	 cats	 show	 maintenance	 of	 partially	 pruned	 cortico-cortical	 and	 thalami-cortical	

projections	to	the	visual	cortex	(Berman	1991;	Karlen	2006;	Kingsbury	2002).	It	is	therefore	

possible	 visual	 loss	 triggers	 the	 stabilization	and/or	 strengthening	of	 connections	between	

PT	 and	 hMT+/V5.	 Furthermore,	 evidence	 from	 dynamic	 causal	modeling	 of	 fMRI	 datasets	

suggests	 that	 early	 blindness	 triggers	 stronger	 cortico-cortical	 (functional)	 connections	

between	auditory	and	occipital	areas,	 together	with	 the	enhanced	recruitment	of	occipital	

areas	 by	 auditory	 modality	 (Klinge	 et	 al.	 2010;	 Collignon,	 Dormal,	 Albouy,	 et	 al.	

2013).Intrinsic	 anatomical	 and	 functional	 connections	 between	 visual	 and	 auditory	 areas	

could	 therefore	 play	 a	 crucial	 role	 in	 re-distributing	 the	 auditory	 information	 between	

computationally	analog	units.		

The	 decreased	 computational	 role	 of	 the	 PT	 suggests	 that	 the	 absence	 of	 visual	

experience	since	birth	not	only	influences	the	response	properties	of	“visual”	areas	but	also	

alters	the	functioning	of	the	regions	supporting	the	remaining	senses.	 In	line	with	previous	

studies,	 both	 univariate	 and	multivariate	 results	 showed	 that	 PT	maintains	 its	 features	 to	

process	auditory	motion	in	early	blind	individuals,	however,	its	fine-scale	computational	role	

–	 containing	 motion	 direction	 information	 -	 is	 reduced	 compared	 to	 sighted	 individuals	

(Dormal	et	al.	2016;	Jiang	et	al.	2014;	Jiang	et	al.	2016).	Our	results	demonstrated	not	only	

the	existence	of	auditory	motion	direction	information	in	the	two	motion	responsive	regions	

across	 groups,	but	 also	a	 significant	 interaction	between	groups	and	 regions	 showing	 that	
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early	 blindness	 triggers	 a	 workload	 re-distribution	 between	 these	 two	motion	 responsive	

regions.	Moreover,	 this	 re-distribution	 is	not	 limited	 to	auditory	motion	direction	but	 also	

observed	for	static	sound	location.	In	other	words,	early	blindness	may	trigger	a	large-scale	

reorganization	in	the	division	of	computational	labor	across	sensory	regions.		

What	 are	 the	 behavioral	 consequences	 of	 such	 large-scale	 interplay	 between	 sensory	

cortices	 on	 auditory	 motion	 processing?	 A	 limited	 number	 of	 studies	 have	 shown	 that	

enhanced	occipital	recruitment	in	EB	may	support	compensatory	behaviors	in	the	remaining	

senses	(Gougoux	et	al.	2005;	Amedi	et	al.	2003;	see	Lomber	&	Malhotra	2008;	Benetti	et	al.	

2017	 for	 similar	 reasoning	 with	 auditory	 deprivation).	 For	 instance,	 superior	 auditory	

localization	 abilities	 of	 blind	 individuals	 correlate	 with	 the	 enhanced	 recruitment	 of	 the	

occipital	 cortex	 (Gougoux	 et	 al.	 2005).	 Moreover,	 TMS	 on	 right	 dorsal	 occipital	 regions	

specifically	disrupts	auditory	localization	in	the	blind	(Collignon	et	al.	2007).	In	our	study	we	

did	 not	 observe	 significant	 correlation	 between	 neural	 activity	 or	 decoding	 accuracy	 and	

behavior.	A	possible	explanation	could	be	that,	even	if	both	the	occipital	and	the	temporal	

areas	are	functionally	involved	in	processing	auditory	spatial	tasks	in	both	groups,	there	may	

not	 be	 a	 straightforward	 relation	 between	 brain	 activity	 in	 discrete	 regions	 and	 behavior.	

One	more	direct	measure	of	 the	 causal	 effects	of	 the	brain	 reorganization	observed	 in	EB	

can	be	obtained	by	using	TMS	to	focally	and	transiently	alter	the	activity	of	a	specific	brain	

region,	like	hMT+/V5	or	PT.	Previous	studies	seems	to	support	this	hypothesis	showing	that	

TMS	 applied	 over	 the	 right	 dorsal	 occipital	 regions	 causes	 selective	 impairment	 on	 sound	

localization	only	in	blind	individuals	(Collignon	et	al.	2007).	Moreover,	stimulating	hMT+/V5	

in	 EB	 impairs	 accuracy,	 precision	 and	 speed	 perception	 of	 tactile	 motion	 (Ricciardi	 et	 al.	

2011;	Basso	et	al.,	2012).		

	
	
	
3.6.	CONCLUSION	
	
Our	results	clearly	demonstrate	not	only	the	existence	of	auditory	spatial	information	in	the	

two	 motion	 responsive	 regions	 across	 groups,	 but	 also	 significant	 interaction	 between	

groups	and	regions	showing	that	early	blindness	triggers	a	workload	re-distribution	between	

these	 two	 motion	 responsive	 regions.	 More	 specifically,	 auditory	 information	 is	

concomitantly	 enhanced	 in	 the	 hMT+/V5	 and	 diminished	 in	 the	 PT	 of	 early	 blind	 when	

compared	 to	 sighted	 individuals.	We	 propose	 that	 the	 enhanced	 crossmodal	 recruitment	

observed	in	hMT+/V5	of	EB	builds	upon	the	typical	directional	and	spatial	tuning	properties	

of	this	region	in	vision	(Kolster	et	al.	2010;	Amano	et	al.	2009;	Bonkho	et	al.	2017;	Albright	et	
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al.	1984;	Mikami	et	al.	1986;	Kamitani	&	Tong	2006;	Zimmermann	et	al.	2011).	We	believe	

that	the	computational	structure	of	motion	and	location	processing	in	vision	and	audition	is	

sufficiently	close	to	(1)	find	trace	of	auditory	processing	 in	hMT+/V5	of	the	sighted	and	(2)	

observe	a	massive	extension	of	auditory	computations	in	this	region	in	the	absence	of	visual	

inputs	since	birth.	
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	Supplemental	Information	

	

Supplemental	 Table	 1.	 Results	 of	 the	 univariate	 analyses	 for	 the	main	 effect	 of	 auditory	

motion	processing	[motion	>	static]	in	the	blind	and	the	sighted,	Coordinates	reported	in	this	

table	are	 significant	 (p	<	0,05	FWE)	after	 correction	over	 small	 spherical	 volumes	 (SVC)	or	

over	 the	 entire	 brain	 volume	 (*).	 Coordinates	 used	 for	 correction	 over	 small	 spherical	

volumes	were	 extracted	 from	 four	 papers	 investigating	 auditory	motion	 processing	 in	 the	

sighted	only	(Alink	et	al.,	2012,	Pavani	et	al.,	2002)	or	comparing	sighted	and	blinds	(Dormal	

et	 al.,	 2016;	Collignon	et	 al.,	 2009)	and	are	as	 follows	 (x,	 y,	 z,	 in	MNI	 space):	 left	 superior	

temporal	gyrus	[−54	−36	14]	(Pavani	et	al.,	2002);	right	superior	temporal	gyrus	[64	−26	10]	

(Pavani	et	al.,	2002);	 left	 superior	parietal	 lobule	 [−	30	−	54	64]	 (Pavani	et	al.,	2002);	 right	

intraparietal	sulcus	[36	−	40	40]	(Collignon	et	al.,	2011);	right	superior	frontal	sulcus	[32	0	48]	

(Collignon	 et	 al.,	 2011);	 left	 precentral	 gyrus	 [−40	 −6	 60]	 (Pavani	 et	 al,,	 2002);	 right	

precentral	 gyrus	 [46	 4	 36]	 (Pavani	 et	 al.,	 2002);	 right	 middle	 occipital	 gyrus	 [48	 −76	 6]	

(Collignon	et	al.,	2011);	left	middle	temporal	gyrus	(hMT	+/V5)	[−	42	−	64	4]	(Dormal	2016);	

right	 middle	 temporal	 gyrus	 (hMT	 +/V5)	 [42	 −	 60	 4]	 (Dormal	 et	 al.,	 2016);	 left	 superior	

occipital	gyrus	[−	20	−	80	30]	(Collignon	et	al.,	2011);	right	superior	occipital	gyrus	(V3A)	[22	

−80	28]	(Dormal	et	al.,	2016);	left	planum	temporal	(PT)	[-50	-31	14]	(Alink	et	al.,	2012);	right	

plane	temporale	[54	-26	20]	(Dormal	et	al.,	2016),	K	represents	the	number	of	voxels	when	

displayed	at	p(unc)	<	0,001,	L:	left,	R:	right,	G:	gyrus,	S:	sulcus.	
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Area k x y z Z p 

  (mm) (mm) (mm)   
BLIND	>	SIGHTED	[MOTION	>	STATIC]       
L	middle	temporal	G 40 -44 -66 6 3,29 0,033 

L	superior	occipital	G	 1065 -26 -84 28 4,68 0,02* 

L	superior	parietal	lobule 3 -32 -40 60 3,15 0,046 

       
R	middle	temporal	G 373 56 -64 6 3,95 0,004 

R	superior	occipital	G	(V3A)	 252 18 -80 30 4,16 0,002 

R	middle	occipital	G 355 56 -66 8 4,02 0,002 

R	intraparietal	S 19 30 -34 52 3,25 0,036 

R	superior	temporal	G 24 54 -24 20 3,69 0,01 

R	planum	temporale  54 -26 20 3,67 0,011 

       
BLIND	∩	SIGHTED	[MOTION	>	
STATIC]       
L	superior	temporal	G/	PT 1614 -44 -32 10 6,98 0,000* 

L	precentral	G 432 -44 -8 52 5,69 0,000* 

L	planum	temporale  -54 -38 14 5,69 0,000* 

L	superior	G  -54 -18 6 5,46 0,001* 

L	precentral	G 31 -58 0 28 4,89 0,008* 

L	middle	temporal	G 101 -56 -64 4 3,59 0,014 

R	posterior-medial	frontal 42 6 -8 64 4,71 0,017* 

R	rolandic	operculum 3 62 4 20 4,54 0,034* 

       
R	superior	temporal	G/	PT 1967 64 -36 16 6,50 0,000* 

R	superior	G  60 -6 0 5,98 0,000* 

R	precentral	G	 208 52 -6 48 5,73 0,000* 

R	superior	frontal	S  46 -4 50 5,14 0,000* 

R	middle	temporal	G 162 44 -58 8 3,71 0,01 

R	middle	occipital	G 11 44 -62 8 3,35 0,027 
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Area k x y z Z p 

  (mm) (mm) (mm)   
BLIND	[MOTION	>	STATIC]       
L	superior	temporal	G 2458 -44 -32 10 6,98 0,000* 
L	planum	temporale  -54 -38 14 5,69 0,000* 
L	precentral	G 501 -44 -8 52 5,69 0,000* 
L	middle	temporal	gyrus 1143 -48 -64 6 5,13 0,000 
L	superior	occipital	gyrus 73 -4 -76 20 4,80 0,012* 
L	superior	parietal	lobule 87 -32 -40 60 3,90 0,005 

       
R	superior	temporal	G 3431 54 -30 18 6,79 0,000* 
R	planum	temporale  64 -36 16 6,50 0,000* 
R	precentral	G 557 54 -8 46 5,88 0,000* 
R	middle	temporal	gyrus 1118 54 -62 6 5,90 0,000 
R	middle	occipital	gyrus 509 54 -64 8 5,87 0,000 
R	superior	frontal	sulcus 187 46 -4 50 5,14 0,000 
R	intraparietal	sulcus 152 28 -36 52 4,07 0,013 
R	superior	occipital	gyrus	 143 18 -78 28 3,98 0,004 

       
SIGHTED	[MOTION	>	
STATIC]       

L	superior	temporal	G 2873 -46 -32 10 Inf 0,000* 
L	planum	temporale  -54 -38 14 7,66 0,000* 
L	precentral	Gyrus 650 -46 -4 54 6,4 0,000* 
L	Putamen 462 -24 0 -2 5,97 0,000* 

       
R	Superior	Temporal	Gyrus 2683 66 -36 10 7,1 0,000* 
R	Precentral	G 280 54 -4 48 5,81 0,000* 
R	Putamen 177 22 6 8 5,18 0,002* 
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Participant Age Gender Handness Residual 
Vision Onset Etiology Educational 

Level 
Musical 

Exp 

EB1 28 M R Light 3y Retinopathy of 
prematurity High school No 

EB2 36 M ambidexstrous None 0 Retinopathy of 
prematurity High school Yes 

EB3 35 F R Light 0 Retinopathy of 
prematurity High school No 

EB4 27 F R Light 0 Retinitis 
pigmentosa 

University 
(Bachelor) Yes 

EB5 46 M R Light 0 Atrophy optic 
nerve Junior high school Yes 

EB6 44 M R Light 0 Congenital 
retinopathy 

University 
(Master) Yes 

EB7 34 F R Light 0 Retinopathy of 
prematurity 

University 
(Master) Yes 

EB8 40 M R Light 0 
Leber’s 

congenital 
amaurosis 

High school Yes 

EB9 27 F R None 0 
Bilateral 

agenesia optic 
nerve 

University(Master) Yes 

EB10 29 F R Light 0 Retinopathy of 
prematurity High school No 

EB11 33 M R None 0 Retinopathy of 
prematurity 

University 
(Bachelor) Yes 

EB12 20 F R Light 0 
Leber’s 

congenital 
amaurosis 

High school Yes 

EB13 44 M R Light 0 Distrophy optic 
nerve High school Yes 

EB14 31 M R Light 0 Ipoplasia optic 
nerve 

University 
(Master) Yes 

EB15 35 F R None 0 
Bilateral 

congenital 
microphtalmia 

University 
(Master) Yes 

EB16 26 F R Light 0 
Bilateral 

congenital 
microphtalmia 

University 
(Master) Yes 

Supplementary	 Table	 2.	 Characteristics	 of	 the	 blind	 participants.	 Handedness	 was	
evaluated	 using	 an	 adapted	 version	 of	 the	 Edinburgh	 inventory,	 Blind	 and	 sighted	
participants	were	classified	as	musicians	 if	 they	had	practiced	a	musical	 instrument	or	had	
vocal	 training	 for	 at	 least	 2	 years	 on	 a	 regular	 basis	 (at	 least	 2	 hours	 a	 week),	 A:	
Ambidextrous,	M:	male,	F:	female,	y:	years	
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Supplementary	Figure	1.	Univariate	brain-behavioral	 correlation	 results.	Between-subject	

correlations	 was	 performed	 between	 behavioural	 performance	 and	 motion	 and	 static	

activity	 (beta	parameter	 estimates)	 of	 4	 visual	 auditory	 localizer	ROIs	 (left	 hMT+/V5,	 right	

hMT+/V5,	left	PT,	and	right	PT).	FDR-corrections	were	performed	for	multiple	comparisons.	

	

L hMT+/V5 R hMT+/V5 L PT R PT

L hMT+/V5 R hMT+/V5 L PT R PT

Auditory static betas
EB

SC

Auditory motion betasEB
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SC



Chapter 3 

	 132	

	
Supplementary	 Figure	 2.	 Multivariate	 brain-behavioral	 correlation	 results.	 Between-

subject	 correlations	 was	 performed	 between	 behavioural	 performance	 and	 multi-class	

decoding	 accuracies	 (four	 motion	 directions,	 and	 four	 sound	 source	 locations)	 extracted	

from	4	 visual	 auditory	 localizer	 ROIs	 (left	 hMT+/V5,	 right	 hMT+/V5,	 left	 PT,	 and	 right	 PT).	

FDR-corrections	were	performed	for	multiple	comparisons.	

	

	

	

	

Auditory static deciding accuracies
EB

Auditory motion decoding accuraciesEB
L hMT+/V5 R hMT+/V5 L PT R PT

SC

L hMT+/V5 R hMT+/V5 L PT R PT
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Supplementary	Figure	3.	MVP-decoding	results	of	 the	 individually	 localised	 left	and	right	

hMT+/V5	 in	 sighted	participants.	Multi-class	decoding	 results	of	4	motion	directions	 (red)	

and	4	 sound	source	 locations	 (blue)	are	 represented	 in	 individually	 localised	6-mm	sphere	

radius	 ROIs	 (left	 hMT+/V5	 and	 right	 hMT+/V5).	 All	 p-values	 reflect	 differences	 between	

observed	 decoding	 accuracy	 against	 chance	 level	 (1000	 permutations).	 Results	were	 FDR-

corrected	 for	 multiple	 comparisons	 (number	 of	 ROIs	 x	 number	 of	 tests),	 p-values:	 (*)	 is	

p<0.05,	(**)	p<0.01,	(***)	p<0.001.	Error	bars	indicate	the	SEM.	Dotted	line	indicates	chance	

level	(25%).	

	

Supplementary	Analysis	

Axis	of	Motion	Preference		

To	 investigate	 the	 preference	 of	 “axis	 of	motion/space”	 in	 both	 hMT+/V5	 and	 PT,	

binary	 classifiers	 were	 used	 to	 discriminate	 brain	 activity	 patterns	 for	 motion	 direction	

within	 axes	 (leftward	 vs.	 rightward,	 left	 vs.	 right	 position,	 upward	 vs.	 downward,	 up	 vs.	

down	position	hereafter	within-axis	 classification),	 and	2	additional	 classifiers	was	used	 to	

discriminate	 across	 axes	 (horizontal	 vs.	 vertical	 motion,	 horizontal	 vs.	 vertical	 position,	

hereafter	 across-axes	 classification).	 We	 compared	 binary	 decoding	 accuracies	 of	 across-

axes,	 horizontal	 and	 vertical	 within-axes	 to	 assess	 whether	 hMT+/V5	 and	 PT	 regions	

demonstrate	axis	of	motion	characteristic	tuning	for	auditory	motion.	We	performed	2	x	3	x	

2	repeated	measures	of	ANOVA	on	2	Groups	(EB,	SC;	between-subject	factor),	3	Axes	(across	

axes,	 horizontal	 within-axis,	 and	 vertical	 within	 axis;	 within-subject	 factor),	 and	 2	

Hemispheres	 (left,	 right;	 within-subject	 factor)	 by	 entering	 motion	 direction	 accuracies	
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Supplementary Figure 3. MVP-decoding results of the individually localised 
left and right hMT+/V5 in sighted participants. Multi-class decoding results of 4 
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extracted	 from	 hMT+/V5.	 The	 observed	 main	 effect	 of	 Axes	 (F1.9,59.7	 	 =	 7.05,	 p	 =	 0.002)	

indicated	across-axes	direction	classification	are	more	 reliable	 compared	 to	horizontal	 (t	=	

3.14,	p	=	0.01)	and	vertical	(t	=	3.27,	p	=	0.007)		within-axis	classification.	ANOVA	on	sound	

source	location	decoding	accuracies	did	not	reveal	significant	results.	2	x	3	x	2		(Group,	Axes,	

Hemisphere)	repeated	measures	of	ANOVA	on	motion	direction	accuracies	extracted	from	

PT	 region	 revealed	 significant	 main	 effect	 of	 Axes	 (F1.9,56	 	 =	 21.07,	 p	 <	 0.001),	 and	

Hemisphere	 (F1,30	 	 =	 4.88,	 p	 =	 0.035),	 indicating	 similar	 results	 to	 hMT+/V5,	 across-axes	

direction	 classification	 are	 more	 reliable	 compared	 to	 horizontal	 and	 vertical	 within-axis	

classification.	 Surprisingly,	 sound	 source	 location	 also	 provides	 significant	 main	 effect	 of	

Axes	(F1.7,52	=	3.8,	p	=	0.034),	and	Axes	x	Group	interaction	(F1.7,52	=	3.9,	p	=	0.029),	and	Axes	x	

Hemisphere	interaction	(F1.9,57	=	11.2,	p	<	0.001).			
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4.	GENERAL	DISCUSSION	
	

The	 main	 objective	 of	 this	 thesis	 was	 twofold:	 (1)	 to	 better	 understand	 how	 the	

human	brain	processes	auditory	motion	and	sound-source	locations;	(2)	to	investigate	how	

the	 total	 absence	 of	 sight	 since	 birth	 impacts	 the	 neural	 architecture	 typically	 supporting	

auditory	and	visual	motion	processing.	

	
4.1.	Auditory	spatial	information	in	PT	

4.1.1.	Auditory	motion	direction	decoding	in	PT	

In	 chapter	 2,	 we	 investigated	 the	 coding	 of	 auditory	 motion	 direction	 and	 sound	

source	 location	 in	 the	 human	 planum	 temporale	 (PT),	 and	 their	 level	 of	 shared	

representation.	 Our	 results	 demonstrated	 that	 independently	 defined	 PT	 regions	 contain	

information	about	both	auditory	motion	direction	and	sound	source	location.	Furthermore,	

cross-condition	 decoding	 analysis	 revealed	 a	 partially	 shared	 representation	 between	

motion	and	static	conditions.	

Consistent	with	previous	studies	(Warren	et	al.	2002;	Pavani	et	al.	2002;	Poirier	et	al.	

2005;	 Getzmann	 &	 Lewald	 2012;	 Dormal	 et	 al.	 2016),	 whole-brain	 univariate	 analyses	

revealed	 preferential	 response	 to	 auditory	 motion	 in	 a	 dorsal	 fronto-temporo-parietal	

network,	including	PT	(Chapter	2	Fig.	2A,	Table	1).	Both	whole-brain	and	ROI	analyses	clearly	

indicated	 a	 functional	 preference	 (expressed	 as	 higher	 activity	 level	 estimates)	 for	motion	

processing	 over	 sound-source	 location	 in	 bilateral	 PT	 regions	 (Chapter	 2	 Fig.	 2).	 MVP-

decoding	 results	 demonstrated	 that	 despite	 no	 univariate	 differences	 across	 separate	

motion	 directions,	 PT	 contains	 spatially	 distributed	 direction-selective	 features.	 Despite	

minimal	 univariate	 activity	 elicited	 by	 sound-source	 location	 in	 PT,	 and	 the	 absence	 of	

reliable	 univariate	 differences	 in	 the	 activity	 elicited	 by	 each	 position	 (Chapter	 2	 Fig.	 2),	

MVP-decoding	 results	 showed	 that	 PT	 also	 spatially	 distributed	 sound	 source	 location	

information	 (Chapter	 2	 Fig.	 3).	 Supporting	 univariate	motion	 selectivity	 results	 in	 bilateral	

PT,	 MVPA	 revealed	 that	 multi-class	 and	 across-axes	 classifications	 are	 higher	 for	 moving	

than	for	static	sounds	(Chapter	2	Fig.	3A-B).	

Neuroimaging	studies	debated	on	whether	PT	engages	in	spatial	hearing	in	general	

(Zatorre	 et	 al.	 2002;	 Smith	 et	 al.	 2004;	 Smith	 et	 al.	 2007;	 Smith	 et	 al.	 2010)	 or	 contains	

motion-specific	 processing	 mechanisms	 (Poirier	 et	 al.	 2017).	 In	 our	 study,	 univariate	

analyses	 showed	 that	 PT	 responds	 more	 to	 motion	 compared	 to	 static	 sounds,	 and	

multivariate-decoding	 analysis	 showed	 that	 in	 the	 PT	 information	 on	 motion	 direction	 is	

more	robust	than	information	on	sound	source	location.		
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One	may	wonder	whether	 the	 higher	 classification	 accuracy	 for	motion	 directions	

compared	 to	 sound	 source	 locations	 relates	 to	 the	 spectro-temporal	 differences	 between	

motion	 and	 static	 stimuli.	 The	 auditory	 motion	 directions	 consisted	 of	 sounds	 moving	 in	

multiple	 spatial	 locations	 (from	 -60°	 to	 +60°	 or	 vice	 versa),	 however,	 the	 sound	 source	

locations	were	fixed	in	one	spatial	 location	throughout	the	one	experimental	block	(Poirier	

et	al.,	2005;	Krumbholz	et	al.,	2005).	We	purposely	adopted	the	strategy	of	presenting	static	

sounds	 in	 fixed	 locations	 rather	 than	 presenting	 in	 multiple	 locations	 due	 to	 three	 main	

reasons.	 First,	 randomly	 presented	 static	 sounds	 can	 evoke	 auditory	 apparent	 motion	

(Strybel	&	Neale	1994;	 Lakatos	et	al.,	1997;	 see	 review	Carlile	2016).	Second,	 in	 the	visual	

domain,	 incoherent	 moving	 (i.e.	 flickering)	 dots	 evoke	 higher	 activity	 compared	 to	 100%	

coherent	moving	 stimuli	 in	 hMT+/V5	 region	 (Mckeefry	 et	 al.,	 1997;	 Vachon	 et	 al.,	 2009).	

Vachon	 and	 colleagues	 suggested	 that	 incoherent	 moving	 stimuli	 are	 actually	 difficult;	

therefore,	 require	 more	 attention	 compared	 to	 the	 100%	 coherent	 moving	 directions	

(2009).	 We	 avoided	 such	 confounds	 by	 presenting	 static	 sounds	 in	 a	 fixed	 location.	

Furthermore,	fMRI	study	in	macaque	clearly	demonstrated	that	posterior	region	of	superior	

temporal	 cortex	 (vicinity	 of	 hPT)	 has	 auditory	 motion-specific	 mechanism	 when	 motion	

stimuli	contrasted	with	both	static	and	spatially	rich	but	non-dynamic	stimuli	(Poirier	et	al.,	

2017).	Lastly,	presenting	static	sounds	located	on	a	given	space	and	moving	sounds	directed	

toward	 the	 same	 space	 allows	 us	 to	 investigate	 a	 possible	 shared	 computation	 between	

moving	and	static	sounds	using	cross-condition	decoding	(see	below).		

Both	 univariate	 and	multivariate	 results	 indicated	 a	motion-specific	mechanism	 in	

PT.	 Interestingly,	 significant	 cross-conditions	 classification	 in	 PT	 region	 suggested	 that	 the	

two	spatial	(motion	and	static)	conditions	rely	on	partially	shared	pattern	geometries	in	PT.	

Psychophysiological	 study	 that	 manipulated	 auditory	 apparent	 motion	 varying	

sound	source	location	and	inter-stimulus	onset	intervals,	showed	that	localization	cues	were	

important	for	the	determination	of	the	direction	of	motion	(Strybel	&	Neale	1994).	However,	

the	crucial	factor	of	the	perceiving	of	apparent	motion	was	the	inter-stimulus	onset	intervals	

instead	of	localization	cues,	suggesting	that	auditory	motion	perception	does	not	solely	rely	

on	 or	 stem	 from	 localization	 cues	 (Strybel	 &	 Neale	 1994).	 Auditory	 evoked	 potentials	 to	

static	and	moving	sounds	have	shown	that,	while	the	initial	analysis	of	spatial	sound	features	

is	 being	 processed	 in	 a	 common	 auditory	 network	 with	 a	 strong	 contralateral	 effect	

(Ducommun	 et	 al.	 2002;	 Getzmann	 2011),	 the	 later	 stage	 of	 motion	 direction	 encoding	

varies	according	to	the	sound	source	processing	(Getzmann	2011).	A	recent	study,	relying	on	
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auditory	 adaptation	 paradigm,	 showed	 that	 when	 horizontal	 motion	 directions	 were	

preceded	 by	 contralateral	 static	 sounds,	 motion-onset	 response	 lowered,	 indicating	 that	

location	 induced	 adaptation	 to	 moving	 sounds	 (Getzmann	 &	 Lewald	 2011).	 Due	 to	 the	

temporal	 resolution	 of	 fMRI,	 we	 cannot	 target	 early	 and	 late	 stages	 of	 auditory	 evoked	

potentials.	However,	our	 cross-condition	classification	 results	 confirm	and	extend	 the	 idea	

that	motion	 direction	 and	 sound	 source	 location	might	 rely	 on	 partially	 common	 features	

that	are	shared	for	encoding	spatial	sounds.	

Does	 the	 observation	 of	 significant	 cross-condition	 decoding	 demonstrate	 that	

sound-source	 locations	 and	 motion	 directions	 share	 similar	 and	 abstracted	 coding	

strategies?	 Cross-MVPA	 has	 been	 employed	 to	 investigate	 whether	 in	 a	 given	 region,	

generalized/common	 information	can	be	observed	across	modalities/conditions	 (Fairhall	&	

Caramazza	2013;	 Jung	et	al.	2017;	Man	et	al.	2012;	Formisano	et	al.,	2008)	The	analysis	 is	

performed	 on	 evoked	 patterns	 of	 corresponding	 stimuli	 in	 two	 different	

modalities/conditions.	 To	 investigate	 whether	 conditions	 share	 common	 computational	

principles,	 the	classifier	 is	 trained	on	one	condition	and	 test	on	 the	 subsequent	condition.	

The	cross-trained-tested	classifier	could	reveal	the	presence	of	category-specific	information	

that	 is	 shared	 between	 conditions.	 Therefore,	 regions	 that	 demonstrate	 successful	 cross-

condition	MVP-decoding	has	been	suggested	to	carry	abstract	features	that	are	independent	

of	the	conditions	(Fairhall	&	Caramazza	2013).	For	instance,	successful	cross-condition	MVP-

decoding	was	performed	to	investigate	abstract	representation	in	the	neural	patterns	of	two	

auditory	 spatial	 conditions	 (Higgins	 et	 al.	 2017;	 Hong	 et	 al.	 2012).	 A	 recent	 study	

investigated	the	processing	of	spatial	cues	in	the	auditory	cortex	and	tested	whether	neural	

representations	evoked	by	interaural	time-	(ITD)	and	interaural	level-	(ILD)	differences	share	

informative	 features	 (Higgins	et	al.,	2017).	Authors	 suggested	 integrated	processing	of	 ITD	

and	ILD,	and	these	spatial	cues	might	integrate	to	form	a	cue	independent	representation	of	

space	due	to	the	successful	within-condition	and	cross-condition	MVP-decoding.	In	another	

study,	classifiers	were	trained	on	neural	patterns	evoked	by	one	type	of	motion	 (e.g.	 first-

order	motion),	and	 tested	on	neural	patterns	evoked	by	 second-order	direction	of	motion	

(Hong	 et	 al.,	 2012).	 The	 successful	 cross-MVPA	 results	 suggested	 that	 direction-selective	

responses	in	two	different	motion	types	are	based	on	shared	neural	substrate.		

In	 our	 studies,	 we	 trained	 classifiers	 to	 learn	 to	 distinguish	 motion	 directions.	

According	 to	 the	 neural	 patterns	 of	 training	 conditions	 (leftward,	 rightward,	 upward,	 and	

downward),	 the	 classifier	 sets	 a	 decision	 boundary	 to	 differentiate	 the	 four	 motion	

directions.	 If	 the	 set	 decision	 boundary	were	 informative	 for	 the	 classifier	 to	 differentiate	
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the	 four	 sound	 source	 locations	 (left,	 right,	 up	 and	 down),	 then	 cross-condition	 MVP-

decoding	 would	 be	 significantly	 higher	 compared	 to	 the	 chance	 level.	 The	 idea	 of	 cross-

condition	 MVP-decoding	 on	 auditory	 neural	 patterns	 stem	 from	 possible	 shared	

representation	 between	 sounds	 going	 toward	 a	 given	 direction	 or	 located	 on	 the	 same	

location.	Perceiving	sounds	going	toward	 left	or	 located	on	the	 left	could	evoke	a	sense	of	

location/direction	 in	 the	 external	 space.	 The	 evoked	 sensation/perception	 of	 an	 object	

being/going	to	an	external	spatial	 location	could	be	reflected	 in	the	auditory	cortex	with	a	

shared	neural	representation.	Early	animal	electrophysiological	studies	suggested	a	common	

mechanism	 between	moving	 and	 static	 sounds	 for	 processing	 specific	 locations	 arising	 in	

space	 (Ahissar	et	al.	1992;	Benson	et	al.	1981;	 Imig	et	al.	1990;	Middlebrooks	&	Pettigrew	

1981;	Poirier	et	al.	1997;	Rajan	et	al.	1990;	Doan	&	Saunders	1999)	and	demonstrated	the	

existence	of	neurons	in	the	auditory	cortex	that	are	selective	to	sound	source	locations	and	

motion	directions	(Ahissar	et	al.,	1992;	Doan	and	Saunders,	1999;	Poirier	et	al.,	1997;	Rajan	

et	al.,	1990).	More	recent	studies	in	humans	have	shown	the	existence	of	motion	direction	

(Alink	et	al.,	2012;	Dormal	et	al.,	2016;	 Jiang	et	al.,	2014,	2016)	and	sound	source	 location	

information	(Derey	et	al.,	2016)	within	PT	region.	Our	results	of	successful	within-condition	

and	cross-condition	classifications	for	directions	and	locations	also	confirmed	the	existence	

and	 the	 partially	 shared	 representations	 of	 direction	 and	 location	 information	 within	 the	

auditory	cortex.	

Our	further	analysis	with	across-condition	classifications	(going	to	 left	versus	being	

on	the	left)	provided	strong	evidences	that	neural	patterns	evoked	by	motion	directions	and	

sound	 source	 locations	 can	 be	 differentiated	 from	 each	 other	 (see	 Chapter	 2	 Fig.	 4A),	

indicating	 that	 neural	 patterns	 carry	 condition	 specific	 information.	 Moreover,	

representational	similarity	analysis	showed	that	neural	representations	of	moving	and	static	

sounds	are	mostly	distinct	in	PT	(see	Chapter	2	Fig.	4D).	Importantly,	the	lowest	correlation	

was	 observed	 between	 the	 neural	 patterns	 and	 the	 condition-invariant	 external	 model,	

indicating	that	motion	and	static	conditions	evoked	highly	differentiable	patterns.	

Altogether,	 these	 results	 suggest	 that	 PT	 contains	 information	 about	 both	motion	

direction	 and	 sound-source	 location	 and	 that	 the	 neural	 patterns	 related	 to	 these	 two	

spatial	 conditions	 are	 only	 partially	 overlapping.	 In	 line	with	 the	 results	 of	 fMRI	 study	 on	

non-human	 primates	 demonstrating	 motion-specific	 computation	 in	 the	 caudal	 belt	 and	

parabelt	 (i.e.	 homolog	 areas	 of	 PT)	 (Poirier	 et	 al.,	 2017),	 our	 study	 shows	 similar	 motion	

specific	mechanisms	in	the	human	PT.		
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4.1.2.	Axis	of	motion	preference	in	PT		

The	activity	patterns	 in	 the	PT	 showed	 that	horizontal	 and	vertical	moving	 sounds	

generate	 patterns	 that	 could	 successfully	 be	 differentiated	 from	 each	 other.	 However,	

within	 the	 horizontal	 axis	 (left	 versus	 right)	 and	 the	 vertical	 axis	 (up	 versus	 down)	 the	

classification	 revealed	 inconsistent	 results	 across	 hemispheres.	 Furthermore,	 across-axes	

motion	direction	classification	consistently	provided	more	robust	 information	compared	to	

the	 results	 of	within-axis	 classifications.	 In	 the	 left	 hemisphere,	we	 observed	 only	 vertical	

axis	 motion	 information;	 while	 in	 the	 right	 hemisphere	 we	 observed	 only	 horizontal	 axis	

information	(see	Chapter	2,	Figure	3B).	This	lack	of	consistency	across	different	hemispheres	

and	 less	 reliable	 direction	 information	 in	 the	 classification	 of	 opposite	 directions,	 points	

towards	 a	 similarity	 between	 the	 PT	 and	 the	 visual	 motion	 area	 hMT+/V5.	 In	 the	 visual	

domain,	the	functional	organization	of	the	hMT+/V5	is	characterized	by	columns	containing	

neurons	 that	 react	 specifically	 to	 a	 certain	 visual	 motion	 direction	 (Albright	 et	 al.	 1984).	

Those	columns	vary	smoothly	for	certain	motion	direction	but	are	also	found	running	side	by	

side	 with	 their	 respective	 opposing	 motion	 direction	 counterparts	 (Albright	 et	 al.	 1984;	

Diogo	et	al.	2003;	Born	&	Bradley	2005;	Zimmermann	et	al.	2011).	By	aggregating	opposing	

motion	 directions,	 larger	 axis	 of	motion	 features	 can	 be	 constructed	 that	 are	more	 easily	

detectable	with	fMRI	than	individual	direction	selective	columns	(Zimmermann	et	al.	2011).	

In	 the	 Chapter	 2,	 across-axis	 classifications	 provided	 more	 reliable	 results	 compared	 to	

within-axis	direction	(e.g.	left	versus	right	or	up	versus	down)	classifications,	indicating	that	

opposite	motion	directions	are	harder	to	detect	also	in	the	PT	region	for	auditory	motion.		

It	should	be	noted	that,	up	to	our	knowledge,	reports	on	the	auditory	cortex	often	

indicate	 lack	 of	 topographic	 organization,	 specifically	 for	 spatial	 locations.	 Neurons	 that	

process	spatial	properties	of	sounds	show	non-uniform	(non-systematic)	distribution	across	

the	auditory	cortex	(Ahissar	et	al.,	1992;	Stecker	et	al.,	2005).	While	a	temporal	modulation	

preference	 suggests	 a	 common	 columnar	 functional	 organization,	 spectral	 modulation	

preference	rather	 indicates	a	 laminar	diversity	or	specialization	that	does	not	follow	point-

to-point	 topographic	 organization	 (Atencio	 &	 Schreiner	 2010).	 The	 layers	 in	 the	 auditory	

cortex	 that	 show	 modulation	 preferences	 might	 play	 a	 distinct	 role	 in	 the	 extraction	 of	

dynamic	 sound	 information	 in	 addition	 to	 the	 cortical	 columns	 (Linden	&	 Schreiner	 2003;	

Atencio	&	Schreiner	2010).	Despite	the	fact	that	previous	studies	of	laminar	differences	and	

columnar	 processing	 have	 failed	 to	 reach	 a	 consensus	 on	 the	 organizational	 principles	 of	

auditory	cortex	(Dear	et	al.	1993;	Eggermont	1996;	Noreña	&	Eggermont	2002;	Sugimoto	et	

al.	1997;	Abeles	&	Goldstein	Jr.	1970;	Clarey	et	al.	1994;	Foeller	et	al.	2001;	Phillips	&	Irvine	
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1981).	 Our	 observations	 from	 MVP-decoding	 could	 at	 least	 shows	 a	 possible	 spatial	

distribution	of	motion	direction	 selective	neurons	 that	 allow	 the	preference	of	 the	axis	 of	

motion	 in	 the	 PT	 region.	 The	 proportion	 of	 direction	 or	motion	 selective	 neurons	 in	 PT	 is	

lower	 compared	 to	 hMT+/V5	 area,	 and	 these	 neurons	 are	 typically	 interspersed	with	 non	

motion-selective	neurons	(Ahissar	et	al.,	1992).	This	might	potentially	result	in	difficulties	in	

detecting	an	organized	spatial	distribution	in	PT	such	as	the	one	observed	in	hMT+/V5.	

	 Does	 our	 observation	 of	 significant	 decoding	 of	 motion	 directions	 support	 the	

existence	 of	 a	 columnar	 organization	 of	 sound	 source	 location	 or	 motion	 direction?	

Although	 our	 significant	 decoding	 indicates	 that	 direction	 specific	 information	 is	 more	

reliable	compared	to	classification	of	opposite	directions,	classification	may	not	refer	to	the	

existence	of	direction	 selective	columns	 in	 the	PT.	Successful	 classification	may	stem	 from	

the	(spatial)	biases	within	each	voxel	emerged	at	the	cortical	columnar	level	or	other	types	

of	 direction	 selective	 signals	 (Kamitani	 &	 Tong	 2005;	 Haynes	 &	 Rees	 2006;	 Bartels	 et	 al.	

2008).	 If	 fMRI	 signal	 within	 a	 voxel	 reflects	 exclusively	 a	 sampling	 of	 cortical	 columns,	

smoothing	 of	 the	 data	 would	 substantially	 decrease	 the	 decoding	 accuracies	 due	 to	

averaging	 out	 the	 random	 biases	 in	 the	 neighboring	 voxels	 (Kamitani	 &	 Sawahata	 2010).	

Contrary	to	that,	evidence	points	to	no	influence	of	smoothing	(Op	de	Beeck	2010).	Studies	

conducted	on	early	visual	 cortex	proposed	 that	decoding	orientations	 reflects	much	 larger	

scale	(e.g.	retinotopy)	rather	than	columnar	organization	(Freeman	et	al.	2011;	Freeman	et	

al.	 2013;	 Op	 de	 Beeck	 2010),	 and	 similarly,	 motion	 directions	 decoding	 in	 hMT+/V5	 was	

suggested	 to	 emerge	 from	 large-scale	 systematic	 biases	 at	 the	 level	 of	 retinotopic	maps,	

instead	of	relying	on	the	functional	organization	of	motion	selectivity	(Beckett	et	al.	2012;	H.	

X.	 Wang	 et	 al.	 2014).	 Interestingly,	 recent	 high-field	 fMRI	 studies	 showed	 that	 the	 fMRI	

BOLD	signal	carries	information	related	to	both	large-	and	fine-scale	(columnar	level)	biases	

(Sengupta	 et	 al.	 2017;	 Gardumi	 et	 al.	 2016;	 Pratte	 et	 al.	 2016).	 Sengupta	 and	 colleagues	

demonstrated	 that	 orientation	 decoding	 is	 affected	 by	 both	 high	 spatial	 frequency	

components	 (fine-scale),	 as	 well	 as	 large-scale	 biases	 (2017).	 The	 effect	 of	 high	 spatial	

frequency	also	depends	on	the	task.	For	instance,	using	the	same	auditory	stimuli,	Gardumi	

and	colleagues	showed	that	the	decoding	accuracy	of	different	vowels	increased	with	higher	

spatial	 resolution.	However,	when	 classifying	 the	 speaker	 identity	on	 the	 same	 stimuli,	 no	

enhancement	 in	 decoding	 was	 observed	 with	 higher	 spatial	 resolution	 (Gardumi	 2016).	

These	 results	 suggest	 that	 both	 high	 spatial	 frequency	 information	 and	 coarse	 large-scale	

information	contribute	to	the	classification	process.	



Chapter 4 
 

	 143	

Our	 results	 demonstrate	 that	 PT	 contains	 direction	 specific	 information,	 and	 in	

particular	 that	 “axis	 of	motion”	 representation	 are	more	easily	 accessible	 than	within-axis	

representations.	However,	whether	the	information	emerges	from	columnar	level	or	larger-

scale	spatiotopic	organization	within	PT	remains	to	be	addressed.	

	

4.1.3.	Sound	source	location	decoding	in	PT	

At	 the	 univariate	 level,	 we	 observed	 a	 tendency	 of	 contralateral	 effect	 for	 sound	

source	 locations	 in	the	azimuth	(see	Chapter	2,	Fig.	2).	 In	addition,	the	multivariate	results	

showed	 successful	 decoding	 for	 multi-class	 locations	 (left,	 right,	 up	 and	 down)	 and	

successful	binary	decoding	only	 in	the	horizontal	 (left	versus	right)	axis,	 in	the	bilateral	PT.	

Our	 findings	are	 in	 line	with	previous	observations	 from	monkey	and	human	 fMRI	 studies	

that	 in	the	posterior	auditory	cortex	(including	PT),	fMRI	signals	contain	representations	of	

sound	 location	 (Ortiz-Rios	 et	 al.,	 2017;	 Derey	 et	 al.,	 2016).	 The	 widespread	 and	 spatially	

contralateral	 bias	might	 provide	 information	 to	 the	 classifier	 to	 detect	 the	 neural	 pattern	

differences	between	sounds	on	the	horizontal	axis.	

The	information	related	to	the	horizontal	sound	source	locations	could	stem	from	a	

heterogeneously	 spread	 population	 of	 neurons	 that	 are	 responsive	 to	 contralateral	 fields	

(Stecker	 et	 al.,	 2005;	 Derey	 et	 al.,	 2016;	 Ortiz-Rios	 et	 al.,	 2017).	 Recent	 fMRI	 studies	

investigated	 the	 topographic	 maps	 for	 preferred	 location	 in	 both	 auditory	 cortex	 and	

subcortical	 structures,	 and	 demonstrated	 a	 contralateral	 tuning	 but	 lacked	 point-to-point	

topographic	map	in	the	auditory	cortex	(Derey	et	al.	2016;	Moerel	et	al.	2015).	Derey	et	al.	

investigated	the	opponent	coding	model	in	the	human	auditory	cortex	reporting	that	human	

auditory	 cortex	 (including	 bilateral	 PT)	 also	 shows	 a	 broad	 contralateral	 spatial	 tuning	 for	

static	sounds	in	the	azimuth	(2016).	Similar	results	of	broad	contralateral	tuning	have	been	

also	observed	in	non-human	primates	(Ortiz-Rios	et	al.	2017)	and	cats	(Stecker	et	al.	2005).	

Lack	of	 (systematic)	 spatial	 selectivity	 emerged	also	 at	 the	 level	 of	 sub-cortical	 structures.	

High-resolution	 fMRI	 studies,	 indicating	 that	 similarly	 to	 the	 auditory	 cortex,	 sub-cortical	

structures	 also	 do	 not	 show	 point-to-point	 spatiotopy,	 rather	 selectivity	 is	 limited	 to	 the	

contralateral	 locations	 in	 azimuth	 (Moerel	 et	 al.,	 2015).	 These	 results	 point	 out	 that	 the	

preference	of	 location	does	 not	 follow	a	 topographic	map	 across	 species,	 even	 if	 location	

specific	 information	 exists	 in	 earlier	 stages	 of	 the	 auditory	 pathway,	 as	 well	 as	 in	 the	

auditory	cortex.	

In	the	vertical	within-condition	classification,	we	do	not	observe	information	related	

to	 up	 and	 down	 sound	 source	 locations.	 It	 should	 be	 noted	 that	 lack	 of	 significant	
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classification	 could	 simply	 indicate	 that	 the	 neural	 patterns	 evoked	 by	 up	 and	 by	 down	

sounds	 cannot	 be	 differentiated	 by	 the	 classifier,	 instead	 of	 indicating	 no	 information	

related	 to	 the	 presented	 sounds.	 	 Recent	 electroencephalographic	 (EEG)	 study	

demonstrated	that	evoked	event-related	potentials	across	the	scalp	differ	for	horizontal	and	

vertical	 static	 sounds,	 suggesting	 that	 topographic	 distributions	 of	 spatial	 cues	 underlying	

horizontal	and	vertical	sounds	could	be	different.	While	horizontal	sound	source	(left	versus	

right)	 revealed	 successful	 decoding	 in	 the	 scalp,	 less	 consistent	 decoding	 results	 was	

observed	 for	 vertical	 sounds	 (Bednar	 et	 al.	 2017).	 Our	 results	 showing	 lack	 of	 significant	

classification	indicated	that	spatially	distributed	neural	patterns	generated	by	sounds	in	the	

vertical	axis	cannot	be	differentiated	from	each	other.	

Unlike	for	motion	direction,	neural	patterns	of	static	sounds	showed	no	preference	

of	 axis	 of	 location	 in	 the	 PT.	 Classification	 accuracies	 for	 opposite	 static	 sound	 locations	

within	an	axis	were	similar	to	the	accuracies	for	aggregated	locations	across	axes,	indicating	

that	lack	of	characteristic	tuning	to	“axis	of	space”	in	the	PT.	Nonetheless,	overall	successful	

classifications	 of	 static	 locations	 suggest	 that	 PT	 contains	 information	 about	 the	 sound	

source	location.		

Considering	the	successful	across-axes	(horizontal	versus	vertical)	classification	both	

in	motion	directions	and	 sound	 source	 locations,	we	 further	 speculate	 that	horizontal	 and	

vertical	 sounds	might	 rely	on	different	mechanisms.	Our	univariate	 results	are	 in	 line	with	

previous	 study	 showing	 that	 horizontal	 and	 vertical	 sounds	 rely	 on	 a	 common	 auditory	

network	(Pavani	et	al.,	2002),	however,	the	multivariate	classification	results	in	the	present	

study	suggests	that	neural	patterns	carry	distinctive	information	for	the	sounds	arriving	from	

different	axes.	Sounds	presented	horizontally	and	vertically	contain	distinct	spatial	cues	(i.e.	

binaural	 and	 spectral	 cues,	 respectively),	 and	 these	 cues	 are	 processed	 in	 different	

subcortical	 structures	 (Goldberg	&	 Brown	 1969;	 Yin	&	 Chan	 1990;	 Boudreau	&	 Tsuchitani	

1968;	 Young	 et	 al.	 1992;	 Imig	 et	 al.	 2000)(Goldberg	 &	 Brown	 1969;	 Yin	 &	 Chan	 1990;	

Boudreau	&	Tsuchitani	1968;	Young	et	al.	1992;	 Imig	et	al.	2000).	The	different	spatial	cue	

properties	 of	 horizontal	 and	 vertical	 sounds	 may	 potentially	 lead	 to	 the	 involvement	 of	

separate	auditory	networks/mechanisms.	Future	studies	could	target	the	possible	influence	

of	behavioral	performance	in	the	spatially	distributed	patterns	of	auditory	cortex.	

	

4.2.	Functional	reorganization	of	auditory	motion	processing	in	blind	individuals	

The	empirical	work	presented	in	Chapter	3	was	dedicated	to	investigate	the	impact	

of	 visual	 deprivation	 in	 shaping	 the	 functional	 specialization	 of	 brain	 regions	 that	 are	
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typically	supporting	visual	and	auditory	motion	processing.	First,	we	focused	on	cross-modal	

plasticity	 in	 visual	 areas	 during	 auditory	 motion	 processing.	 More	 specifically,	 we	 asked	

whether	 the	 cross-modal	 responses	 observed	 in	 visually	 deprived	 hMT+/V5	 could	 respect	

the	 (intrinsic)	 fine-scale	 organization	 that	 typically	 emerges	 in	 sighted	 individuals.	 We	

further	 extended	 our	 question	 to	 understand	 whether	 such	 cross-modal	 responses	 to	

auditory	 motion	 stimuli	 can	 be	 observed	 even	 in	 sighted	 individuals,	 or	 whether	 this	 is	

specific	to	early	blind	individuals.	Second,	we	investigated	whether	hMT+/V5	and	PT	regions	

only	code	for	the	motion	direction	information	or	also	contain	information	about	the	sound-

source	 location	 in	 both	 the	 blind	 and	 the	 sighted.	 Lastly,	 we	 asked	 how	 early	 blindness	

affects	auditory	representation	in	PT.	

Whole-brain	 univariate	 analysis	 revealed	 preferential	 response	 to	 auditory	motion	

for	both	sighted	and	blind	participants	in	a	dorsal	fronto-temporo-parietal	network	including	

PT,	as	well	as	a	region	overlapping	with	the	most	anterior	portion	of	hMT+/V5	(see	Chapter	

3	 Fig.	 2C).	 Blind	 participants	 showed	 additional	 preferential	 response	 in	 a	more	 posterior	

portion	of	hMT+/V5.	Multivariate	pattern	analyses	revealed	that	classification	accuracies	in	

the	early	blind	group	were	significantly	higher	in	hMT+/V5	and	lower	in	PT	when	compared	

to	 sighted	 participants.	 Furthermore,	 classification	 of	 sound	 source	 locations	 showed	 a	

similar	pattern	of	results	even	if	the	accuracies	were	lower	than	those	obtained	from	motion	

directions.	

Previous	 studies	 have	 investigated	 auditory	 motion	 content	 (high	 versus	 low),	

motion	planes	 (lateral	versus	 radial),	and	horizontal	directions	 (left	versus	 right)	 in	sighted	

and	blind	 individuals	 (Strnad	et	al.	2013;	Dormal	et	al.	2016;	 Jiang	et	al.,	2014;	 Jiang	et	al.	

2016).	 However,	 up	 to	 our	 knowledge,	 we	 are	 the	 first	 to	 show	 motion	 direction	

classification	 in	 multiple	 axes	 of	 sound	 motion,	 similar	 to	 the	 pioneering	 study	 showing	

direction	 selectivity	 in	 visual	 modality	 (Kamitani	 &	 Tong	 2006).	 Previous	 work	 on	

classification	of	horizontal	motion	directions	showed	no	significant	results	in	the	hMT+/V5	in	

sighted	 individuals	 (Jiang	 et	 al.	 2014;	 Jiang	 et	 al.	 2016;	 Alink	 et	 al.	 2012).	 In	 the	 present	

study,	 specific	 information	about	 auditory	directions	 emerges	 in	 the	 visual	motion	area	 in	

both	 groups.	 This	 result,	 in	 contrast	 with	 previous	 studies,	 could	 be	 explained	 by	 the	

differences	in	experimental	design	and	in	the	set	of	auditory	stimuli.	In	those	studies,	in	fact,	

the	 directional	 selectivity	 was	 investigated	 exclusively	 in	 the	 horizontal	 axis,	 while	 the	

present	 study	 contained	 both	 horizontal	 and	 vertical	 auditory	 stimuli.	 It	 is	 possible	 that	

activity	patterns	elicited	in	hMT+/V5	for	four	motion	directions	differ	to	a	larger	extent	from	



Chapter 4 
 

	 146	

activity	patterns	elicited	by	sounds	only	in	the	horizontal	axis	(Alink	et	al.	2012;	Jiang	et	al.	

2014;	Jiang	et	al.	2016).	

In	 PT,	 in	 line	 with	 previous	 researches,	 both	 univariate	 and	 multivariate	 results	

showed	 that	 this	 region	 maintains	 its	 features	 to	 process	 auditory	 motion	 in	 early	 blind	

individuals,	 however,	 its	 fine-scale	 computational	 role	 –	 containing	 motion	 direction	

information	 -	 is	 reduced	 compared	 to	 sighted	 individuals	 (Dormal	 et	 al.	 2016;	 Jiang	 et	 al.	

2014;	Jiang	et	al.	2016).	Our	results	demonstrated	not	only	the	existence	of	auditory	motion	

direction	 information	 in	 the	 two	 motion	 responsive	 regions	 across	 groups,	 but	 also	 a	

significant	 interaction	between	groups	and	 regions	 showing	 that	 early	blindness	 triggers	 a	

workload	re-distribution	between	these	two	motion	responsive	regions.	

While	PT	region	showed	significant	sound	source	location	information	in	both	of	the	

groups,	hMT+/V5	revealed	sound	source	information	only	 in	the	early	blinds.	These	results	

point	 towards	 a	 sensory	 experience	 dependent	 re-distribution	 of	 the	 workload	 between	

visual	 and	auditory	areas.	Moreover,	 this	 re-distribution	 is	not	 limited	 to	motion	direction	

information	 but	 also	 observed	 for	 static	 location	 information.	 The	 presence	 of	 static	

information	 in	 hMT+/V5	 in	 the	 early	 blind	 group	 confirms	 and	 extends	 previous	 studies	

demonstrating	that	the	dorsal	extrastriate	occipital	cortex	in	blind	individuals	contributes	to	

spatial	 processing	 of	 sounds	 (Collignon	 et	 al.	 2007;	 Collignon	 et	 al.	 2009;	 Collignon	 et	 al.	

2011).	 Interestingly,	 even	 if	 hMT+/V5	 contains	 both	 motion	 direction	 and	 sound	 source	

location	 information	 in	 the	 early	 blinds,	 cross-condition	 decoding	was	 not	 significant.	 This	

result	 suggests	 that	 auditory	 motion	 evoked	 distinct	 neural	 patterns	 compared	 to	 static	

sounds.	The	region	hMT+/V5	is	highly	specialized	for	processing	visual	motion	(Tootell	et	al.	

1995;	Zeki	et	al.	1991;	Watson	et	al.	1993)	and	its	functional	preference	for	visual	motion	is	

observed	 very	 early	 in	 development	 (Braddick	 et	 al.	 2005;	Gilmore	 et	 al.	 2007;	Hou	 et	 al.	

2009).	In	line	with	hard-wired	motion	specificity	of	hMT+/V5	in	sighted,	in	the	lack	of	visual	

input,	 the	 functional	 specialization	 toward	 the	 processing	 of	 motion	 information	 is	

maintained	 while	 the	 modality	 tuning	 is	 redirected	 toward	 sounds.	 The	 results	 of	 cross-

condition	 decoding	 support	 the	 notion	 that	 cross-modal	 plasticity	 colonizes	 the	 visual	

regions	while	maintains	 the	 specific	 computation	 of	 the	 colonized	 region	 (Collignon	 et	 al.	

2009;	Dormal	et	al.	2016;	Collignon	et	al.	2011;	Ricciardi	et	al.	2014;	Amedi	et	al.	2017).	

Investigating	 the	 possible	 spatiotopic	 organization	 of	 occipital	 regions	 in	 blind	

individuals	 is	 an	 interesting	 venue	 for	 future	 works.	 Recent	 evidences	 from	 resting-state	

fMRI	studies	have	shown	that	functional	connectivity	of	early	visual	areas	follows	retinotopic	

organizational	 principles	 (Striem-Amit	 et	 al.	 2015;	 Bock	 et	 al.	 2015).	 Striem-Amit	 and	
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colleagues	 investigated	 the	 functional	 connectivity	 patterns	 in	 the	 visual	 cortex	 in	 the	

absence	 of	 a	 task	 in	 sighted	 and	 blind	 individuals	 (2015).	 While	 resting-state	 functional	

connectivity	in	three	retinotopic	maps	(eccentricity,	laterality,	and	elevation)	in	the	occipital	

regions	 shows	 similar	 patterns	 between	 blind	 and	 sighted	 populations,	 in	 blinds	 altered	

functional	 connectivity	 patterns	 were	 observed	 between	 portions	 of	 V1	 and	 non-visual	

(somatosensory	and	auditory)	cortices	 (Striem-Amit	et	al.,	2015).	 If	 functional	organization	

of	occipital	cortex	in	blinds	follows	principles	similar	to	the	ones	by	the	occipital	cortex	for	

visual	 locations	 (retinotopy)	 in	 sighted,	 the	observed	 sound	source	 location	 information	 in	

the	occipital	areas	of	the	blind	group	could	stem	from	maintained	retinotopic	organization.	

Overall,	 our	 findings	expand	upon	previous	 knowledge	about	auditory	motion	and	

static	location	processing,	and	the	functional	specializations	of	cross-modal	plasticity.	Future	

studies	 could	 investigate	 the	 causal	 role	 of	 such	 re-distribution	 of	 computational	 roles	

between	motion	areas,	and	whether	the	interplay	between	intra-	and	cross-modal	plasticity	

could	shed	lights	on	effective	processing	of	auditory	input	(Stevens	et	al.	2007;	Gougoux	et	

al.	 2005;	Amedi	 et	 al.	 2003;	Voss	 et	 al.	 2008;	Voss	 et	 al.	 2011;	 Lewald	2013).	One	way	of	

investigating	 the	 causal	 role	 of	 the	 re-distributed	workload	would	 be	 to	 stimulate	 cortical	

areas	 with	 transcranial	 magnetic	 stimulation	 (TMS)	 to	 temporarily	 disrupt	 the	 auditory	

motion	 processing	 in	 these	 regions.	 Studies	 using	 TMS	 found	 that	 stimulating	 right	 dorsal	

occipital	regions	caused	impairment	on	sound	localization	only	in	blind	individuals	(Collignon	

et	 al.,	 2007),	 and	 stimulating	 hMT+/V5	 during	 tactile	motion	 impaired	 accuracy,	 precision	

and	speed	perception	only	in	the	blind	participants	(Ricciardi	et	al.	2011;	Basso	et	al.	2012).	

If	the	recruitment	of	occipital	areas	has	a	causal	effect	to	the	auditory	motion	perception	in	

the	early	blind	population,	TMS	applied	over	hMT+/V5	area	 could	potentially	 reduce	 their	

performance	 on	 discriminating	 auditory	 motion	 direction.	 Moreover,	 investigating	 the	

contribution	of	hMT+/V5	activity	to	auditory	motion	perception	in	the	sighted	could	reveal	if	

the	activation	we	observed	in	anterior	hMT+/V5	for	moving	sounds	also	in	the	sighted	plays	

a	functional	role	in	supporting	auditory	localization	behavior.	Based	on	our	findings	and	on	

previous	TMS	studies	in	the	tactile	(Ricciardi	et	al.	2011)	and	auditory	(Collignon	et	al.	2007)	

domains,	we	expect	a	decrease	in	auditory	motion	perception	in	the	sighted	group	as	well.	

However,	this	decrease	would	be	enhanced	in	the	early	blind	population.	

A	 limited	 number	 of	 studies	 have	 shown	 that	 occipital	 recruitment	 in	 EB	 may	

support	compensatory	behaviors	in	the	remaining	senses	(Gougoux	et	al.	2005;	Amedi	et	al.	

2003;	 Lomber	 &	 Malhotra	 2008;	 Benetti	 et	 al.	 2017	 for	 similar	 reasoning	 with	 auditory	

deprivation).	 For	 instance,	 superior	 auditory	 localization	 abilities	 of	 blind	 individuals	
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correlate	 with	 the	 enhanced	 recruitment	 of	 occipital	 cortex	 (Gougoux	 et	 al.	 2005).		

Interestingly,	 some	 studies	 have	 also	 shown	 that	 reduced	 auditory	 cortex	 activity	 was	

associated	with	 efficient	 auditory	 processing	 in	 early	 blind	 individuals	 (Stevens	 &	Weaver	

2009;	Watkins	et	al.	2013).	It	might,	therefore,	be	hypothesized	that	a	re-distribution	of	the	

computational	 role	of	PT	and	hMT+/V5	 to	 implement	 spatial	hearing	and	auditory	motion	

may	underlie	the	superior	abilities	that	are	reported	in	early	blinds	for	auditory	localization	

and	motion	 discrimination	 (Lessard	 et	 al.	 1998;	 Roeder	 et	 al.	 1999;	 Gougoux	 et	 al.	 2005;	

Voss	et	al.	2011;	Lewald	2013;	Voss	&	Zatorre	2015).	In	the	present	study	we	did	not	observe	

a	 direct	 link	 between	 the	 recruitment	 of	 auditory	 and	 occipital	 areas	 and	 behavioral	

performance	 in	 none	 of	 the	 groups	 (see	 Chapter	 3	 Supplementary	 Fig.	 1).	 A	 possible	

explanation	 for	 this	 lack	 of	 correlation	 could	 be	 that,	 even	 if	 both	 occipital	 and	 temporal	

areas	 are	 functionally	 involved	 in	 processing	 auditory	 spatial	 tasks	 in	 both	 of	 the	 groups,	

there	 may	 not	 be	 a	 straightforward	 relation	 between	 brain	 and	 behavior.	 The	 brain	 is	 a	

highly	 interconnected	organ	 and	 asking	 a	 direct	 link	 between	 the	behavioral	 performance	

and	the	neural	activity	of	certain	region	during	complex	tasks	may	be	considered	as	an	 ill-

post	 question	 to	 investigate	 the	 functional	 relevance	 of	 a	 brain	 region.	 Instead	 of	 solely	

correlating	one	 region’s	activity	 in	 isolation	 from	 its	 interconnected	network,	 correlating	a	

distributed	pattern	of	activity	of	occipital	and	temporal	regions	could	provide	insights	on	the	

large-scale	 interplay	 between	 the	 two	 motion	 responsive	 regions.	 In	 a	 study	 from	 our	

laboratory,	 we	 observed	 that	 during	 processing	 sounds	 from	 different	 categories,	 the	

similarity	between	neural	patterns	of	occipital	and	temporal	regions	did	not	differ	between	

early	 blind	 and	 sighted	 participants.	 In	 line	 with	 our	 results	 from	 Chapter	 3,	 the	 authors	

demonstrated	 that	 occipital	 regions	 contain	more	 auditory	 information	 in	 the	 blind	 and	 a	

reduced	 role	 of	 the	 temporal	 cortex	 compared	 to	 the	 sighted	 individuals.	 Despite	 both	

occipital	and	temporal	areas	of	early	blinds	are	involved	in	processing	auditory	stimuli,	these	

areas	 might	 be	 processing	 different	 aspects	 of	 the	 stimuli	 (Mattioni	 et	 al.,	 2018).	

Redistribution	 of	workload	 by	 processing	 different	 aspect	 of	 the	 stimuli,	 could	 be	 a	more	

efficient	 way	 to	 reorganize	 a	 highly	 interconnected	 system	 rather	 than	 relying	 on	 a	

duplication	of	 the	 same	 computational	 process.	 Investigating	neural	 pattern	 similarities	 of	

hMT+/V5	and	PT	during	 auditory	motion	processing	 could	bring	 additional	 support	 to	 this	

notion.	We	therefore	make	the	hypothesis	that	distributed	patterns	of	activity	of	hMT+/V5	

and	PT	would	be	highly	dissimilar.	
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4.3.	Cross-modal	responses	in	visual	cortex	of	sighted	individuals	

A	 growing	 body	 of	 evidence	 suggested	 that	moving	 auditory	 (Warren	 et	 al.	 2002;	

Poirier	et	al.	2005)	and	tactile	(Beauchamp	et	al.	2007;	Ricciardi	et	al.	2007;	Matteau	et	al.	

2010;	van	Kemenade	et	al.	2013)	stimuli	can	also	evoke	preferential	responses	in	a	portion	

of	 the	 hMT+/V5	 complex	 in	 sighted	 individuals.	 One	 of	 the	 possibilities	 for	 the	 observed	

activity	 of	 hMT+/V5	 in	 response	 to	 auditory	 motion	 stimuli	 in	 sighted	 is	 visual	 imagery	

(Goebel	et	al.	1998;	Sathian	2005;	Vetter	et	al.	2014;	Emmerling	et	al.	2016).	Nonetheless,	

the	 observed	 hMT+/V5	 activation	 in	 early	 blind	 individuals	 cannot	 be	 explained	 by	 visual	

imagery,	 as	 they	 have	 never	 received	 visual	 input	 (Strnad	 et	 al.	 2013).	 Therefore,	 the	

observation	 that	 early	 blind	 individuals	 also	 preferentially	 activate	 hMT+/V5	 for	 the	

processing	of	moving	stimuli	was	used	to	support	the	idea	that	this	region	may	implement,	

at	 least	 partially,	 an	 abstracted	motion	 computation	 that	 is	 independent	 of	 sensory	 input	

and/or	 experience	 (Ricciardi	 &	 Pietrini	 2011;	 Strnad	 et	 al.	 2013).	 Our	 results	 on	 auditory	

motion	 processing	 do	 not	 fully	 support	 this	 supramodal	 brain	 assumption.	 First,	 auditory	

motion	selectivity	extended	from	temporal	areas	to	middle	temporal	gyrus	(MTG)	in	sighted,	

and	showed	no	overlap	with	visual	motion	areas	in	the	left	hemisphere,	while	only	the	most	

anterior	portions	of	hMT+/V5	overlapped	with	the	activity	in	the	right	MTG	(see	Figure	1	and	

Chapter	3	Fig.	2C).	Second,	we	observed	in	the	univariate	results	that	the	hMT+/V5	region	of	

sighted	individuals	showed	deactivation	or	no	response.	Despite	that	deactivation,	hMT+/V5	

region	 showed	 significant	 auditory	 motion	 direction	 classification	 in	 sighted.	 It	 should	 be	

noted	 that	 successful	MVPA	 (see	 Section	 4.1.1.)	 indicates	 that	 the	 four	motion	 directions	

evoke	 distinct	 neural	 patterns	 in	 hMT+/V5	 and	 that	 the	 classifier	 can	 differentiate	 among	

them.	However,	the	observed	multivariate	information	about	motion	directions	in	hMT+/V5	

could	stem	from	task-dependent	deactivation	in	sighted	group.	A	recent	study	conducted	in	

our	lab	demonstrated	that	neural	patterns	evoked	by	visual	and	auditory	motion	directions	

in	hMT+/V5	of	sighted	individuals	are	anti-correlated	(Rezk	et	al.,	2018).	We	speculate	that	

the	existence	of	 fine-scale	auditory	motion	direction	 information	 in	sighted	hMT+/V5	does	

not	 provide	 clear	 evidence	 of	 the	 supramodality	 of	 hMT+/V5.	 An	 overlap	 of	 functional	

preference	between	the	sighted	and	the	blind,	or	significant	MVP-decoding	 in	both	groups	

for	non-visual	motion	 in	 the	visual	areas	 should	be	 interpreted	with	caution.	For	 instance,	

hMT+/V5	could	activate	due	to	visual	imagery	in	sighted	people	(Goebel	et	al.	1998;	Sathian	

2005;	 Vetter	 et	 al.	 2014;	 Emmerling	 et	 al.	 2016)	 and	 instead	 rely	 on	 crossmodal	

reorganization	 of	 occipital	 regions	 in	 case	 of	 early	 visual	 deprivation	 (Poirier	 et	 al.	 2006;	

Dormal	 et	 al.	 2016;	 Jiang	 et	 al.	 2014).	 Actually,	 a	 study	 using	 TMS	 found	 that	 focally	 and	
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transiently	 disrupting	 of	 hMT+/V5	 activity	 significantly	 altered	 auditory	 spatial	 localization	

abilities	 only	 in	 the	 early	 blind	 and	 not	 in	 sighted	 participants,	 suggesting	 that	 non-visual	

processing	 could	 be	 mediated	 by	 different	 mechanisms	 in	 blind	 and	 sighted	 populations	

(Collignon	et	al.	2007).	

Returning	briefly	 to	 the	 topic	of	 cross-modal	 responses	 in	both	of	 the	 groups,	 the	

following	 section	 discusses	 the	 possible	 underlying	 mechanisms	 in	 the	 hMT+/V5	 for	

processing	auditory	motion.		

In	 our	 results,	 the	 anterior	 portion	 of	 hMT+/V5,	 that	 is	 in	 closer	 vicinity	 of	 the	

temporal	 areas,	 showed	 auditory	 motion	 selectivity	 in	 both	 of	 the	 populations,	 while	

posterior	 regions	 show	 auditory	 motion	 selective	 recruitment	 only	 in	 the	 early	 blind	

individuals.	Previous	studies	showed	that	the	anterior	portion	of	visually	defined	hMT+/V5	is	

being	recruited	for	both	tactile	and	visual	motion	in	sighted	and	blind	people	(Ricciardi	et	al.	

2007).	 It	was	 suggested	 that	 visual	 experience	 could	 lead	 to	 functional	 segregation	within	

hMT+/V5,	with	the	anterior	portion	recruited	by	tactile	motion	in	both	groups	and	carrying	

supramodal	representations	of	motion;	while	the	recruitment	of	the	more	posterior	portion	

of	hMT+/V5	would	be	sensory-specific	and	experience	dependent.	The	posterior	hMT+/V5	

that	is	solely	visual	in	the	sighted	could	be	recruited	for	non-visual	motion	processing	in	case	

of	early	blindness.	Another	study	in	sighted	individuals	showed	that	MST,	the	anterior	part	

of	hMT+/V5,	responds	to	both	visual	and	tactile	motion,	while	MT	(posterior	regions	within	

hMT+/V5)	 only	 responds	 to	 visual	 motion	 (Beauchamp	 et	 al.,	 2007).	 Taken	 together,	 the	

activity	in	the	posterior	hMT+/V5	seems	to	be	highly	driven	by	visual	input	in	the	sighted	but	

extends	 its	 functional	tuning	toward	non-visual	 inputs	 in	early	blind	 individuals.	To	explore	

further	the	auditory	motion	selectivity,	we	calculated	the	geodesic	path	(minimum	distance)	

between	 the	 peaks	 of	 visually	 localized	 hMT+/V5,	 posterior	 portions	 of	 hMT+/V5	 (EB>SC	

group	comparison	analysis),	 anterior	portion	of	hMT+/V5	 (group	conjunction	analysis)	 and	

auditory	localized	PT	(see	Chapter	3	Fig.	2C-E).	Then,	we	extracted	the	activity	estimates	of	

auditory	motion	and	static	sounds	across	the	posterior-anterior	axis.	Figure	1	represents	the	

auditory	motion	selectivity	along	the	geodesic	path	between	hMT+/V5	and	PT	regions	in	the	

left	 and	 right	 hemispheres	 (top	 panel)	 and	 the	 auditory	 motion	 selectivity	 along	 the	

posterior-anterior	axis.	
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Figure	1.	Auditory	Motion	selectivity	along	the	geodesic	path	between	hMT+/V5	and	PT.	Top	panel	
represents	the	geodesic	path	in	the	left	and	right	hemispheres.	The	triangles	indicate	the	peak	coordinates	
from	the	visually	localizer	hMT+	auditory	motion	experiment	(Conj.	hMT+:	EB	conj.	SC,	group	conjunction	
analysis,	Comp.	hMT+:	EB	>	SC	group	comparison	analyses)	from	the	empirical	work	in	Chapter	3.	Bottom	
panel	represents	the	auditory	motion	selectivity	(beta	parameter	estimates	(arbitrary	units),	BPE)	in	early	
blind	(purple)	and	sighted	(gray)	individuals.	The	shade	represents	±	SEM.	

	

In	this	figure,	auditory	motion	selectivity	is	represented	with	the	difference	between	

the	beta	parameter	estimates	of	motion	and	static.	The	sighted	group	showed	more	static	

activation	compared	to	the	motion	in	the	most	posterior	regions	but	along	the	axis	a	gradual	

increase	 was	 observed	 for	 the	 auditory	 motion	 selectivity.	 In	 line	 with	 aforementioned	

studies,	 in	 the	 early	 blind	 group,	 the	 auditory	motion	 selective	 recruitment	 occurs	 in	 the	

posterior	to	anterior	regions	and	a	gradual	decrease	in	the	auditory	motion	selectivity	along	

the	axis.	Interestingly,	at	the	peak	coordinate	of	PT,	the	sighted	group	shows	higher	activity	

compared	to	early	blinds.	

For	 auditory	 motion	 processing,	 early	 blind	 individuals	 showed	 enhanced	

recruitment	 of	 posterior	 regions	 (hMT+/V5)	 and	 decreased	 activity	 in	 the	 most	 anterior	

region	(PT)	compared	to	the	sighted	individuals.	This	result	supports	the	notion	of	interplay	

between	hMT+/V5	and	PT	in	case	of	early	blindness.	Furthermore,	the	presence	of	auditory	

information	 in	the	anterior	portion	of	hMT+/V5	 in	the	sighted,	suggests	an	 involvement	of	

this	 region	 in	 sighted	 in	 processing	 non-visual	 information.	 In	 case	 of	 blindness,	 the	

involvement	of	hMT+/V5	is	enhanced.		
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4.4.	Cross-modal	responses	in	visual	cortex	of	late-blind	individuals	

What	would	happen	if	someone	loose	sight	later	in	life,	after	the	full	development	of	

the	visual	system?	Would	we	observe	similar	reorganization	principles	as	 in	early	blinds	or	

would	crossmodal	plasticity	expresses	using	different	mechanisms	since	building	on	occipital	

regions	 that	 have	 been	 fully	 developed	 for	 vision?	 According	 to	 the	 supramodal	 brain	

approach,	 occipital	 regions	 should	 compute	 its	 function	 independently	 of	 the	 visual	

experience.	 Therefore,	 non-visual	 motion	 processing	 in	 the	 late	 blind	 individuals	 should	

activate	hMT+/V5.	

	Previous	 studies	 have	 shown	 that	 while	 spatial	 sounds	 recruited	 right	 middle	

occipital	 gyrus	 (in	 the	vicinity	of	hMT+/V5)	and	cuneus	 in	 the	early	blinds	 (Collignon	et	al.	

2011),	late	blinds	showed	lack	of	functional	specialization	for	spatial	sounds	(Collignon	et	al.	

2013)	 in	 the	 occipital	 cortex.	 Similarly,	 hMT+/V5	 revealed	 significantly	 different	 activity	 in	

early	 and	 late	 blind	 individuals	 (Bedny	 et	 al.	 2010).	 In	 early	 blind	 individuals,	 hMT+/V5	 is	

activated	 for	 auditory	motion.	 However,	 activity	 in	 late-blind	 adults	 for	moving	 sounds	 is	

below	 baseline,	 like	 in	 sighted	 subjects	 (see	 Chapter	 1	 Fig.	 5).	 Interestingly,	 in	 a	 blind	

individual	who	lost	his	sight	after	the	age	of	2-3,	the	responsiveness	of	hMT+/V5	was	more	

similar	to	sighted	group	rather	early	blind	group	(Bedny	et	al.	2010).	Despite	more	than	50	

years	of	visual	deprivation,	 in	 this	 individual,	visual	motion	area	hMT+/V5	region	were	not	

recruited	for	auditory	motion.	These	results	suggest	that	functional	specialization	of	occipital	

regions	depend	on	 the	 visual	 experience,	 in	 contrast	with	 the	 supramodal	 brain	 approach	

suggestion.	 Investigating	 the	 functional	 specialization	 of	 hMT+/V5	 in	 the	 late	 blind	

individuals	could	provide	further	evidence	on	the	format	(supramodal	or	sensory-related)	of	

this	region	and	on	the	impact	of	the	crossmodal	plasticity	in	its	reorganization.	

Overall,	we	hypothesize	that	the	recruitment	of	the	hMT+/V5	and	auditory	motion	

direction	 information	 in	 late-blind	 individuals	 could	be	 similar	 to	what	we	observed	 in	 the	

sighted	in	the	present	study.		

We	 have	 seen	 that	 early	 blindness	 triggers	 interplay	 between	 hMT+/V5	 and	 PT;	

however,	 the	 lack	of	domain	 specific	 functional	 reorganization	 in	 the	 late	blind	 individuals	

suggests	 that	 the	 redistribution	of	 the	 computational	workload	between	hMT+/V5	and	PT	

would	not	be	observed.	
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4.4.	Putative	mechanisms	of	cross-modal	responses	

What	are	the	mechanisms	that	could	drive	such	extension	of	the	crossmodal	recruitment	of	

hMT+/V5	 for	 auditory	 motion	 in	 the	 blind?	 At	 the	 neural	 level,	 rewiring	 subcortical	 or	

cortico-cortical	circuitries	have	been	suggested	to	support	crossmodal	plasticity	(Bavelier	&	

Neville	 2002).	 In	 the	mole	 rat,	 a	 subterranean	 rodent	 with	 extremely	 reduced	 peripheral	

visual	system,	occipital	areas	showed	retained	organization,	despite	thalamo-cortical	visual	

pathway	 is	 colonized	 by	 auditory	 input	 mediated	 by	 projections	 from	 the	 subcortical	

structures	to	the	dorsal	lateral	geniculate	nucleus	(Bronchti	et	al.	2002).	In	addition,	cortico-

cortical	connections	seem	to	play	an	important	role	in	mediating	crossmodal	recruitment	of	

occipital	areas.	In	sighted,	recent	findings	have	proposed	that	multisensory	integration	starts	

already	 in	 the	 primary	 sensory	 cortices	 (Kayser	 &	 Logothetis	 2007;	 Noesselt	 et	 al.	 2007;	

Lewis	&	Noppeney	 2010;	Molholm	et	 al.	 2002;	 Lee	&	Noppeney	 2014;	 Rohe	&	Noppeney	

2016)	 via	 (1)	 thalamo-cortical	 connections	 (Lakatos	 et	 al.	 2007),	 (2)	 direct	 (anatomical)	

connections	between	sensory	areas	(Falchier	et	al.	2002;	Rockland	&	Ojima	2003),	or	(3)	top-

down	 influences	 from	multimodal	 association	 areas	 such	 as	 parietal	 or	 superior	 temporal	

sulcus	 (Macaluso	 &	 Driver	 2005;	 Schroeder	 &	 Foxe	 2002;	 Driver	 &	 Noesselt	 2008).	While	

both	 subcortical	 and	 cortico-cortical	 mechanisms	 potentially	 contribute	 to	 the	 functional	

reorganization	in	the	early	blind	individuals,	voxel-based-morphometry	(VBM)	have	shown,	

in	these	individuals,	atrophy	in	both	grey	and	while	matter	structures	(Noppeney	et	al.	2005;	

Shu	 et	 al.	 2009;	Wang	 et	 al.	 2014).	Moreover,	 diffusion	 tensor	 imaging	 (DTI)	 studies	 also	

demonstrated	atrophy	in	the	white	matter	pathway	that	convey	visual	input	from	the	lateral	

geniculate	nucleus	(LGN)	of	the	thalamus	to	the	occipital	cortex	(Leporé	et	al.	2010;	Wang	et	

al.	2013).	In	the	blind	individuals,	the	evidences	of	atrophy	in	the	circuits	between	occipital	

cortex	and	 the	 subthalamic	 cortices	emphasize	 the	 role	of	 cortico-cortical	mechanisms	 for	

the	 presence	 of	 non-visual	 sensory	 input	 in	 the	 occipital	 cortex.	 The	 existence	 of	 cortico-

cortical	connections	for	the	purpose	of	multisensory	integration,	could	explain	our	findings	

of	motion	direction	information	in	hMT+/V5	both	in	sighted	and	blind	individuals.	

Under	 normal	 development,	 excessive	 synaptic	 pruning	 occurs	 by	 the	 age	 of	 8	

months.	 Almost	 40%	 of	 the	 synaptic	 density	 vanishes	 and	 stabilizes	 approximately	 by	 the	

age	of	11	(Huttenlocher	1990;	Huttenlocher	&	de	Courten	1987).	Visually	deprived	cats	show	

maintenance	 of	 normally	 pruned	 cortico-cortical	 and	 thalami-cortical	 projections	 to	 the	

visual	 cortex	 (Berman	 1991;	 Karlen	 et	 al.	 2006;	 Kingsbury	 et	 al.	 2002).	Moreover,	 sighted	

cats	 and	 monkeys	 show	 existence	 of	 transient	 long-range	 projections	 from	 the	 auditory	

cortex	 to	 the	visual	cortex	 (Innocenti	&	Price	2005;	Falchier	et	al.	2002;	Rockland	&	Ojima	
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2003).	 It	 is	 possible	 that	 sensory	 loss	 triggers	 the	 activation	 of	 preexisting	 connections	 or	

stabilization	 of	 normally	 transient	 or	 functionally	 silent	 connections	 (Das	 &	 Gilbert	 1995;	

Innocenti	 et	 al.	 1988;	 Innocenti	 &	 Clarke	 1984)	 and,	 therefore,	 these	 connections	 may	

mediate,	at	least	in	part,	the	information	flow	between	visual	and	auditory	cortices	(Bavelier	

&	 Neville	 2002;	 Collignon	 et	 al.	 2009;	 Hannagan	 et	 al.	 2015;	 Pascual-Leone	 et	 al.	 2005).	

Maintaining	 exuberant	 synapses	 and	 intermodal	 connections	 during	 early	 phases	 of	

development	could	facilitate	cortico-cortical	connections	between	visual	and	other	sensory	

areas	 due	 to	 the	 “what	 fires	 together,	 wires	 together”	 Hebbian	 plasticity	 (Hebb	 1949;	

Rauschecker	 1995),	 and	 could	 be	 an	 underlying	 mechanism	 for	 enhanced	 recruitment	 of	

occipital	 cortex	 for	 non-visual	 processing	 in	 early	 blind	 individuals.	 Supporting	 evidences	

from	 dynamic	 causal	 modeling	 of	 fMRI	 datasets	 suggest	 that	 early	 blindness	 triggers	

stronger	 cortico-cortical	 connections	 between	 auditory	 and	 occipital	 areas,	 together	 with	

the	 enhanced	 recruitment	 of	 occipital	 areas	 by	 auditory	 modality	 (Collignon	 et	 al.,	 2013;	

Klinge	et	al.,	2010).	These	results	suggest	that	the	maintained	and	enhanced	cortico-cortical	

connectivity	may	lead	the	auditory	information	to	evoke	responses	in	the	visual	cortex.	

What	 can	 drive	 the	 maintenance	 of	 functional	 specialization	 of	 hMT+/V5	 while	

reducing	 the	 computational	 role	 of	 PT?	 For	 instance,	 we	 have	 seen	 that	 a	 portion	 of	

hMT+/V5	 is	 specialized	 for	auditory	motion	processing	 in	blind	 individuals	and,	 to	a	 lesser	

extent,	 in	 sighted	 one.	 Increased	 role	 of	 hMT+/V5	 accompanied	 by	 the	 decreased	

involvement	 of	 PT	 for	 spatial	 hearing	 in	 early	 blind	 individuals.	 Large-scale	 connectivity	

patterns	are	suggested	to	be	the	determining	factor	of	functional	specialization	of	occipital	

areas.	More	specifically,	pre-existing	large-scale	cortical	circuits	might	be	crucial	for	a	region	

to	 perform	 specific	 tasks	 (Johnson	 2011;	 Hannagan	 et	 al.	 2015).	 According	 to	 the	 biased	

connectivity	framework,	enhanced	non-visual	responses	for	moving	stimuli	observed	in	early	

blinds	may	 build	 on	 pre-existing	 connections	 between	 auditory,	 tactile	 and	 visual	motion	

processing	 areas	 (Hannagan	 et	 al.	 2015;	 Konkle	 et	 al.	 2009).	 Several	 lines	 of	 evidence,	

including	the	present	work	in	Chapter	3,	suggests	that	the	right	extrastriate	occipital	regions	

are	 part	 of	 a	 network	 of	 fronto-parietal	 areas	 typically	 involved	 in	 spatial	 attention	 and	

awareness	 (Collignon	 et	 al.	 2011;	Dormal	 et	 al.	 2016).	We	 therefore	make	 the	 hypothesis	

that	 the	 regions	 that	 are	 performing	 specific	 function	 maintain	 their	 functional	

organization/specialization	but	extend	their	responsiveness	toward	non-visual	inputs	due	to	

a	potentially	 intrinsic	connectivity	biases	between	regions	participating	 in	similar	 functions	

across	 the	 senses	 (Pascual-Leone	 &	 Hamilton	 2001;	 Mahon	 &	 Caramazza	 2011;	 Johnson	

2011;	 Hannagan	 et	 al.	 2015).	 Furthermore,	 a	 possible	 communication	 between	 the	
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computationally	 analog	 areas	 via	 large-scale	 connectivity	 could	 explain	 this	 interplay	

between	visual	and	auditory	motion	responsive	areas	in	the	case	of	early	visual	deprivation.		

According	 to	 our	 empirical	 results	 and	 previous	 work	 in	 the	 field,	 we	 propose	 a	

framework	to	explain	possible	auditory	motion	mechanisms	in	the	brain	of	infants,	sighted,	

and	blind	individuals	(Figure	2).	

	

	
Figure	2.	Illustration	of	putative	auditory	motion	mechanism.	Dots	represent	motion	information	in	the	
cortex.	Information	related	to	visual	motion	(red),	auditory	motion	(blue),	and	multimodal	motion	(purple).	
Connections	(purple	and	blue)	represent	cortico-cortical	circuits	carrying	visual	and	auditory	 information	
between	motion	responsive	areas.	

	

At	birth,	hMT+/5	and	PT	might	have	a	 rather	crude	 functional	 specialization	 for	visual	and	

auditory	motion,	respectively.	The	two	systems	are	intended	to	collaborate,	for	instance,	for	

the	 purpose	 of	 multisensory	 integration	 and	 therefore	 may	 have	 intrinsic	 connectivity	

between	them	(Figure	2A).	During	development,	the	more	anterior	part	of	hMT+/V5	would	

show	a	pattern	of	motion	selectivity	in	both	vision	and	audition,	assumed	to	arise	due	to	the	

above-mentioned	 pattern	 of	 connectivity	 linking	 the	 two	 motion-sensitive	 systems.	

Moreover,	 such	 large-scale	connectivity	patterns	between	auditory	and	visual	 regions	 that	

are	 involved	 in	 motion	 processing	 could	 be	 a	 determining	 factor	 for	 the	 expression	 of	

crossmodal	plasticity	(Hannagan	et	al.	2015;	Dormal	&	Collignon	2011).	In	case	of	early	visual	

deprivation,	 building	 on	 this	 biased	 connectivity,	 hMT+/V5	 is	 massively	 extending	 its	

response	 to	 auditory	 input	while	maintaining	 a	 preferential	 tuning	 to	moving	 stimuli.	 This	

extension	of	auditory	motion	computation	in	the	visually	deprived	hMT+/V5	appears	to	lead	

to	a	decrease	in	the	computational	 load	in	PT.	Both	anatomical	and	functional	connections	

between	visual	and	auditory	areas	could	 therefore	play	a	crucial	 role	 in	 re-distributing	 the	

computational	“workload”	analog	units.	
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