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 Summary  

 

The ability of plant roots to penetrate soils is affected by several stimuli from the 

surrounding medium such as mechanical stresses and chemical changes. Therefore, 

roots have developed multiple responses to the several outer stimuli. Since plant 

roots have to face very complex problems to grow deeply into the ground, they are 

remarkable examples of problem-solving behaviour and adaptation to the outer 

constraints. The adaptation strategies of a natural root are not yet completely known 

and understood with exhaustive explanations. For this reason, mathematical models 

and experimental techniques applied to biological phenomena can perform a key 

role in translating the Nature adaptive solutions into engineering applications. The 

aim of this thesis is therefore to provide further insights in understanding biological 

phenomena for the development of new potential technologies inspired by the 

adaptive ability of plant roots, e.g. for environmental exploration, monitoring 

systems, rescue tasks, and biomedical fields. Accordingly, we proposed both 

theoretical and experimental explanations to the adaptive behaviour of plant roots. 

The mathematical modelling is based on a modified version of the extended (Guiot, 

Pugno and Delsanto, 2006) West, Brown and Enquist universal law (West, Brown 

and Enquist, 2001), considering the root growth as an inclusion problem. We 

showed that the proposed equation has as a particular case a growth equation 

exploiting an approach similar to Lockhart (Lockhart, 1965) taking into account the 

soil impedance. We studied the influence of mechanical stresses and nutrient 

availability on the root growth. Firstly, we applied the developed theoretical 

framework for the strategy adopted by plant roots of a growing tip in natural soils 

and of the root behaviour in response to different soil impedances with data from 

both natural and artificial soils. The model predicted a different variation of the root 

final length in artificial and real soils. Unexpectedly, we obtained a greater 

elongation in the highest compaction for the case of artificial soils and a lower 

elongation in the highest compaction for real soils. The results were in agreement 



Benedetta Calusi – Penetration Mechanics of Plant Roots and Related Inspired Robots 

 

14 

 

with experimental data. Secondly, by coupling mechanical stress with nutrient 

stimuli, we adopted an activation mechanism of the root response to the nutrient 

availability in order to model the radial expansion. In particular, we proposed an 

extension of the previous mathematical model by including a radial expansion 

through a critical threshold. We compared the numerical solution of the analytical 

model with experimental data collected in artificial soils.  

In addition, we investigated the theories and hypotheses of the root ability to grow 

in the apical region through nanoindentation, wettability, and photoelasticity. The 

first technique provided insights for the possible role and function at both different 

tissues levels and distances from the tip in the root movement and penetration 

during the growth. The investigation of root tissue properties revealed that the 

penetration and adaptation strategies adopted by plant roots could be enhanced by 

a combination of soft and stiff tissues. The second technique aimed to highlight the 

wettability of the apical zone and root hairs for the acquisition of water and 

nutrients. Finally, photoelastic experiments provided a non-invasive and in situ 

observation of plant roots growth and, by exploiting the fringe multiplication, we 

proposed a set up for the study of plant roots growing in edible gelatine.  
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Chapter 1  

1. Introduction   

1.1. Bioinspired Engineering  

In their evolution, humans have developed several methods, design and materials 

to improve the quality of their life. However, such solutions could frequently have 

a negative impact on the environment, e.g. the presence of pollutants in both air and 

water damaging all species living on the Earth. On the contrary, Nature has 

developed effective mechanisms by continuously adapting in order to withstand the 

environment changes. Specifically, several examples of optimal efficiency in 

design and fabrication can be found in Nature, such as bees’ honeycomb, spider’s 

web, gecko adhesion and lotus’ self-cleaning, see e.g. (Bar-Cohen, 2006; Cranford 

et al., 2012). Moreover, it is relevant how animals and plants evolved strategies to 

adapt and maintain stability during their movements, from climbing abilities to soil 

anchorage. Therefore, science and engineering are both interested in the principles 

exploited by Nature (Darwin and Darwin, 1880; Dougal, 1987; Full, 2002; Goriely 

and Neukirch, 2006; Baluška et al., 2009; Isnard and Silk, 2009; Roppolo et al., 

2011; Margheri et al., 2011; Crouzy, Edmaier and Perona, 2014; Tramacere et al., 

2014; Edmaier et al., 2014; Mazzolai, Beccai and Mattoli, 2014; Popova, 

Tonazzini, et al., 2016). The transfer of such biological mechanisms into novel 

technologies and solutions can lead to a great improvement in engineering 

applications (Laschi et al., 2012; Hawkes et al., 2014; Tricinci et al., 2015; Pope et 

al., 2017). In particular, the translation of Nature’s adaptive strategies into 

engineering applications could provide smart solutions with tunable properties, e.g. 

films with controlled surface wettability (Wang et al., 2017). In addition, the use of 

a bioinspired approach could lead to the development not only of efficient devices 

but also of environment-friendly technologies. The nest of birds and silk 

fabrication, e.g. of spiders and silkworm, are remarkable examples of Nature’s 

ability to produce sustainable, smart and effective solutions.  In this regard, a recent 
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study shows the existence of worms eating plastic that leads to a potential solution 

for plastic degradation (Bombelli, Howe and Bertocchini, 2017). Furthermore, 

another recent research investigates and translates the hairy structure of aquatic 

plant leaves for oil/water selective separation with biodegradable and recyclable 

polymers (Kavalenka et al., 2017; Zeiger et al., 2017). Therefore, Nature is the 

perfect teacher for the creation of robust, efficient, and optimized ideas which 

provide benefits to both the environment and the economy. The study and 

translation of Nature’s adaptive strategies could have a positive effect on the 

sustainability and economic development.  

Recently, plant roots have inspired new principles and new technological solutions: 

plant-inspired robots, called PLANTOIDs (Mazzolai, 2017), which aim at 

efficiently moving into the soil by artificial roots that can grow, sense, and bend 

(Sadeghi et al., 2014, 2017), by exploiting the adaptive penetration strategies of the 

natural counterpart. One of the main challenges in describing the penetration of 

plant roots is the active interaction between the root and the soil, i.e. the presence 

of a simultaneous and mutual dependence on their evolutions and changes (Figure 

1.1.1).  In fact, roots adapt themselves to unexpected environment changes with 

several responses, e.g. the shrinking of the diameter, the root-structure architecture, 

the secretion (Barley, 1963; A. G. Bengough and Mullins, 1990; Li et al., 2014; 

Popova, van Dusschoten, et al., 2016), by leading further changes in the 

surrounding medium. Thus, plant roots move inside the soil by growing at the apical 

zone with several and not yet completely known regulation mechanisms. One of 

the first steps towards a better understanding of the root penetration is the 

knowledge and definition of the key parameters to simplify the variables involved. 

The penetration mechanisms and adaptation can be investigated by means of 

mathematical modelling and experimental techniques. Theoretical studies have 

been developed to investigate and to explain possible regulation processes that 

govern the root growth, by exploiting either the control of hormone production, the 

root water uptake, the root distribution on space, or the mechanical behavior at the 

cellular to tissue scale, e.g. see (Chavarría-Krauser, Jäger and Schurr, 2005; Dupuy, 
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Gregory and Bengough, 2010; Dyson and Jensen, 2010; Blengino Albrieu, 

Reginato and Tarzia, 2015).  In this regard, experimental investigations can 

estimate essential aspects which mathematical models could predict and exploit, 

i.e. chemical and morphological properties and variations that may depend on the 

environment changes, e.g. see (Hamza et al., 2006; Peaucelle, 2014; Colombi et 

al., 2017; Dietrich et al., 2017).  

For the theoretical approach, two simple models from continuum mechanics have 

been proposed to characterize the mechanical and nutrient influence of the 

surrounding medium on the root during its growth. In addition, the root mechanical 

properties, wettability of root surface and the stress distribution developed by plant 

roots inside the surrounding medium have also been investigated.  

Experimental frameworks will allow further to extend the proposed mathematical 

modelling by considering a more complete scenario of the root growth inside a soil 

medium. 

Indeed, the linkage of theoretical and experimental studies could provide not only 

the means to better understand the root control mechanisms (e.g. tissue bending, 

mucilage secretion, and hormones production), but also contribute in defining 

which aspects should be translated with artificial smart materials in devices. For 

this reason, cross-disciplinary studies are crucial to shed light on the root adaptive 

capability during the penetration through the soil. On this basis, a future challenge 

is to inspire an effective design based on the biological phenomenon and, 

consequently, to describe the connection between natural and artificial roots.  
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Figure 1.1.1 Schematic diagram of plant root structure with a simplified overview of the interaction 

between plant roots and environment (e.g. climatic and soil influences). The growth phenomenon 

occurs at the apical region through cell growth and elongation. The growing region is constituted by 

the elongation zone and the meristem, separated by a transitional zone, namely the transition zone. 

Therefore, the growing tip with mucilage and cell secretion at the root cap enables the root penetration 

into the soil. The maturation zone is stationary and it is characterized by the presence of lateral hairs 

on the roots. The presence of hairs and lateral roots in the mature zone provides nutrients acquisition 

and anchorage. In the latter zone, the cells begin their differentiation to become a more specialized 

type. The growth phenomenon is strictly connected to the root structure organization, i.e. the 

development of specialized zones allows roots to penetrate the soil with adaptive movements.  
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1.2. Outline  

The present work focused on providing further insights in understanding Nature’s 

adaptive solutions for the development of innovative technologies inspired by the 

penetration mechanics of plant roots. This thesis aims at studying such strategies 

through mathematical modelling and experimental methods and translating them 

into potential engineering applications.  

Chapter 2 and 3 are devoted to mathematical modelling developed to describe the 

root growth in presence of mechanical and nutrient stimuli. In fact, the ability of 

plant roots to penetrate soils is affected by different stimuli, which are exerted by 

the surrounding medium. In literature, studies undertook in real soils have shown 

conflicting results. We supposed that this discrepancy was mainly due to the 

experiment in real soils, which are intrinsically characterized by several chemical 

and physical stimuli. We then compared the two growth models with experimental 

data.  

In particular, in Chapter 2 we investigated and modelled the biomechanical 

response of the primary root of Zea mays L., grown in artificial soils at several 

levels of compactness. Unlike in heterogeneous real soils, in artificial soils the 

mechanical stimulation can be distinguished from all other stimuli. We developed 

a mathematical model of the dynamic evolution of plant roots, based on a modified 

version of the extended universal law of West, Brown and Enquist. The theoretical 

results confirm the used experimental data. Our model highlighted that root 

behaviour is strongly affected by the mechanical properties of the surrounding 

medium and may provide a plausible theory explaining the root behaviour during 

the growth inside the surrounding soil medium. This study provides further insights 

for the adaptive ability of plant roots to various soil impedance constraints.  

In Chapter 3, we explored the root growth with different nutrient concentrations in 

artificial soils. In fact, in presence of high concentration of chemicals plants show 

thicker and shorter root apparatus. This physiological enlargement of the root 
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transversal section becomes anomalous in presence of toxic elements. In this case, 

an abnormal swelling of the root diameter and an inhibition of the root elongation 

occur in the apical region. Thus, we studied the response of Zea mays roots to 

different nutrient concentrations in artificial soils and proposed a hypothesis of 

mechanism which can be used by plants to control nutrient changes. In this regard, 

we extended the model developed in Chapter 2 by including both axial and radial 

growth and we proposed that the radial expansion occurs through a critical 

threshold.  

The exploited experimental results showed that an excess of nutrients concentration 

can result toxic for the plants, which, in fact, show a shorter root system with 

abnormal enlargement in the apical region.  

Our experimental and theoretical findings may improve the current knowledge of 

the root response to nutrient stress. In particular, this study could describe how plant 

roots may regulate both the root elongation and radial expansion due to nutrient 

concentrations.  

Chapters 4 and 5 are devoted to experimental activities.   

In Chapter 4, we analysed the mechanical properties and surface features of Zea 

mays primary roots, exploiting dynamic nanoindentation and wettability tests. We 

used the indentation in the apical region and measured the contact angle close both 

to the tip and the seed. The mechanical results revealed higher storage modulus 

along the outer wall with respect to the central skeleton. Therefore, the outer tissue 

could provide a coating to induce rigidity along the whole root and inner core could 

help in case of unexpected fractures of the outer wall, e.g. for the excavation of 

tunnels by burrowing animals or water flow. Moreover, the contact angle tests 

showed that the apical region is characterized by low wettability and the hairy 

surface close the seed seem to be a highly hydrophobic surface.  

The aim of this work is to implement these features into robots inspired by natural 

roots. Accordingly, a soft robot with adaptable mechanical and wettability 
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properties for both efficient penetration and selective filtration could be useful in 

several fields, e.g. soil monitoring and exploration, chemical and toxic material 

spill and medical applications. 

In Chapter 5, we explored the growth of Phaseolus vulgaris L. primary roots in 

homogeneous birefringent media using the photoelastic technique. The growth 

medium is edible gelatine. The creation of an artificial growing medium with 

photoelastic properties allows to directly observe the root development and to 

analyse the stresses of the growing root at the same time. Plant roots generate small 

stresses at the growing tip, thus only low fringe orders can be seen. Therefore, we 

showed the advantages of fringe multiplication applied to the study of plant roots 

growing in edible gelatine.  

In Appendix, we present an additional related study. In particular, it is devoted to 

mathematical modelling of instability phenomena affecting the performance of load 

sensor in MEMS-based tensile testing devices.  
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Chapter 2  

2. Mathematical Model for Axial Root Growth 

under Soil Confinement  

Plants do not follow a rigid predefined growing plan but adjust their strategy to 

environmental conditions. Upon germination, plant architecture is driven by a 

genetic post-embryonic program, which is at the basis of the plant plasticity 

(Foehse and Jungk, 1983; Sánchez-Calderón, Ibarra-Cortés and Zepeda-Jazo, 

2013). The study in (Bradshaw, 1965) identified two types of plant plasticity based 

on morphological or physiological mechanisms. Morphological mechanisms 

require high energetic costs because new functional portions are produced. On the 

other hand, in the physiological mechanism, the modifications occurring in 

differentiated tissue are imperceptible, the process is completely reversible and the 

energetic cost is very low. The two types of plasticity are continuously expressed 

during plant life since they are fundamental for their own survival (Grime and 

Mackey, 2002). Root system is one of the more remarkable examples of plant 

plasticity because it can sense, move and respond to the external stimuli and 

transmit this information to the entire plant. The root architecture is led by the root 

tip, which has the entire control of root structure in the space of a few millimetres 

(Filleur et al., 2005). Root tip consists of a meristematic and elongation area, 

separated by a region called the transition zone (Figure 2.1). The initial cells, 

namely the cells producing new tissues during root growth, are in the meristematic 

zone. Therefore, the apical region interacts with the surrounding medium and can 

move continuously adapting to the outer stimuli, e.g. soil impedance. Specifically, 

a growing plant root can exert an estimated maximum pressure up to 1MPa (Misra, 

Dexter and Alston, 1986). For maize root, the arrest of the growth has been reported 

with a penetration resistance of 0.8-2MPa (Clark, Whalley and Barraclough, 2003; 

Bengough et al., 2011), and in (Popova, van Dusschoten, et al., 2016) some maize 

plants did not grow beyond a penetrometer resistance of 0.25MPa. The growth  
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Figure 2.1 Optical image of the growth region of a Zea mays L. primary root. The zoom shows the 

root cap with mucilage and dead cells.  

pressure is defined as the stress, acting normally at the root surface, which a root 

has to exert in order to deform the soil around it. Although a penetrometer probe is 

widely used to estimate the pressure that a root has to exert for penetrating soils, 

the studies in (Clark, Whalley and Barraclough, 2003) and (Misra, Dexter and 

Alston, 1986) demonstrated that this procedure overestimates the root growth 

strength. In literature, growth models for plant roots are mainly based on Lockhart’s 

equation (Lockhart, 1965; Greacen and Oh, 1972). In (Dexter, 1987), expressions 

are proposed for the changes in root elongation rate with respect to soil water 

potential and soil mechanical resistance.  

In this Chapter, we investigate the evolution of the primary root of maize in 

artificial soil with different concentration of Phytagel and in real soils with different 



 • Chapter 2 • Theoretical Model  

 

25 

 

soil compactness. Furthermore, we formulate a mathematical model for root growth 

based on an elastic inclusion problem (Guiot, Pugno and Delsanto, 2006). By 

exploiting a continuum mechanics approach, we consider plant root as an elastic 

cylinder and soil as a homogeneous elastic fracturable matrix, in agreement with 

(Guiot, Pugno and Delsanto, 2006). Since we focus on the variation of the root 

elongation caused by the interactions with the surrounding environment, we 

consider a single isolated root growing in an axial direction. By comparing the 

theoretical results with experimental data, the goal of the present work is to 

investigate how the root behaviour can be affected by the mechanical interaction 

between the growing root and the surrounding soil medium.  

2.1. Theoretical Model  

We present a mathematical model describing the effect of mechanical stresses on 

plant root growth. The model shows how the axial stress at the contact affects the 

plant roots growth in the surrounding environment. When the environment is hard 

to penetrate, an individual root may stop growing (Popova, van Dusschoten, et al., 

2016). Therefore, a Fracture-Regrowth Cycle, FRC, was used as in (Guiot, Pugno 

and Delsanto, 2006) by including also the condition that the root stops its growth 

when a threshold axial pressure is reached. If  𝑝𝑓𝑟
∗

is the fracture stress of the 

surrounding elastic medium and  𝑝𝑐
∗
 is the maximum pressure that a root can exert 

to grow, two cases can occur: 

(a) 𝑝𝑐
∗
≤ 𝑝𝑓𝑟

∗
. The elastic root can grow until the axial stress 𝑝

∗
 

reaches the critical value and there is no fracture of the elastic 

matrix; i.e. the root stops growing when 𝑝
∗
= 𝑝𝑐

∗
. It may be the 

limit case of a root growing in very strong soils. 

(b) 𝑝𝑐
∗
> 𝑝𝑓𝑟

∗
. The medium strength tolerance is reached and the root 

relaxes. Therefore, the growth process starts with a new initial 

length.  
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In the present study, we focus on case (b).  

Figure 2.1.1 shows a flow chart for the implementation of both the concept of FRC 

and the stop growth condition.  

 

 

Figure 2.1.1 Flow chart of FRC (Fracture Regrowth Cycle) and the condition of the threshold axial 

pressure. Each cycle starts with the initial length equal to the growing zone length and ends when the 

axial stress, 𝑝
∗
, at the contact reaches soil failure, 𝑝

𝑓𝑟

∗
. Therefore, the root relaxes, the increase in root 

length is stored, and a new cycle starts with the updated root length. Otherwise, the root can grow 

until the growth critical pressure,  𝑝
𝑐

∗
, and there is no fracture of the elastic matrix. 

2.2.1. Mechanical Problem and Interpretation   

We treat both the root and the surrounding medium as a linearly elastic, 

homogeneous, and isotropic material. Since the time-scale of growth is longer than 
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the time-scale of the elastic response, this latter is hypothesized as being a quasi-

static phenomenon, thus inertial forces are negligible. We denote the plant root 

domain of the growing zone 𝐶, the surrounding matrix as 𝑀, and we split 𝑀 into 

two subdomains 𝐶+, 𝐶−, 𝐶+ ∪ 𝐶− = 𝑀 as in Figure 2.1.2.  

 

 

Figure 2.1.2 Diagram of (a) the domain for the plant root and soil, and (b) the inclusion problem 

applied to the domain related to the growing region. The growing zone of the root is a cylinder, C, 

and is subjected to axial and radial pressure. The surrounding soil, M, is such that 𝑀 = 𝐶+ ∪ 𝐶− with 

the cylindrical hole subjected to axial and radial pressure.  

We assume that the plant root domain, 𝐶, is cylindrical, with radius1 𝑅∗, and that 

the growth occurs only in the axial direction. The cylinder is closed at both ends 

and subjected to the outer pressure 𝑝
∗
 on the bottom surface at 𝑧∗ = 𝐿∗ and 𝑝∗ in 

the radial direction. The upper part of the matrix is a linear elastic isotropic thick-

walled cylinder, 𝐶+, of inner and outer radii 𝑅1
∗ and 𝑅2

∗ , respectively. 𝑝∗  is the 

                                                           
1 The superscript “*” denotes dimensional variables. 
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pressure applied at 𝑅1
∗. We then consider a linear elastic isotropic cylinder, 𝐶−, of 

radius 𝑅2
∗. We suppose that the cylinder 𝐶− is closed at bottom end (at 𝑧∗ = 𝐿2

∗ ) 

and the top end is subjected to axial pressure 𝑝
∗
 over a circle of radius 𝑅1

∗. In order 

to meet the experimental conditions, we require that there is no displacement over 

the whole outer surface of 𝑀. We assume that the displacement vector is 

𝒖∗(𝑟∗, 𝜃∗, 𝑧∗) = (𝑢𝑟∗
∗ , 𝑢𝜃∗

∗ , 𝑢𝑧∗
∗ ) = (𝑢𝑟∗

∗ (𝑟∗), 0, 𝑢𝑧∗(𝑧
∗)),               (1) 

thus, for the cylinders 𝐶±, 𝐶 we have  

∇∗ × 𝒖∗ = 0.                                                          (2) 

First, we compute stresses and displacements in the elastic matrix, 𝑀 , with a 

cylindrical hole, and then in the elastic cylinder, 𝐶.  

In the case of elastic matrix, the equation (2) has the following solution2  

{
 
 
 

 
 
 𝑢𝑟∗

∗ +
(𝑟∗) =

𝐶1
+𝑟∗

2
+
𝐶2
+

𝑟∗
                                𝑖𝑛 𝐶+,

𝑢𝑧∗
∗ +
(𝑧∗) = 𝐶3

+𝑧∗ + 𝐶4
+                                𝑖𝑛 𝐶+,

𝑢𝑟∗
∗ −
(𝑟∗) =

𝐶1
−𝑟∗

2
                                           𝑖𝑛 𝐶−,

𝑢𝑧∗
∗ −
(𝑧∗) = 𝐶3

−𝑧∗ + 𝐶4
−                                𝑖𝑛 𝐶−,
 

 

where 𝑢∗+, 𝑢∗− are the displacements of the upper and lower part of the matrix, 

respectively. Thus, we look for values of the constants such that the following 

boundary conditions  

{
 
 
 

 
 
 
𝜎𝑟∗𝑟∗
∗ + = −𝑝∗                                   𝑟∗ = 𝑅1

∗,   𝑧∗ ∈ (0, 𝐿1
∗ ),

𝑢𝑟∗
∗ +(𝑅2

∗) = 0                                                    𝑧∗ ∈ (0, 𝐿1
∗ ),

𝑢𝑟∗
∗ +(𝑅2

∗) = 0                                                   𝑧∗ ∈ (𝐿1
∗ , 𝐿2

∗ ),

𝑢𝑧∗
∗−(𝐿2

∗ ) = 0                                                     𝑟∗ ∈ (0, 𝑅2
∗),

𝑢𝑧∗
∗ +(𝐿1

∗ ) = 𝑢𝑧∗
∗ −(𝐿1

∗ )                                       𝑟∗ ∈ (𝑅1
∗, 𝑅2

∗),

𝑢𝑧∗
∗ +(0) = 0                                                    𝑟∗ ∈ (𝑅1

∗, 𝑅2
∗),

 

                                                           
2 All the derivatives with respect to 𝜃∗ vanish and there is no dependence of the angle 𝜃∗. 



 • Chapter 2 • Theoretical Model  

 

29 

 

and the following equilibrium  

𝜋𝜎𝑧∗𝑧∗
∗ + (𝑅2

∗2 − 𝑅1
∗2) − 𝜋𝑝

∗
𝑅1
∗2 = 𝜋𝜎𝑧∗𝑧∗

∗ −  𝑅2
∗2       𝑧∗ = 𝐿∗,   𝑟∗ ∈ (0, 𝑅∗), 

are satisfied. By neglecting the terms of higher order then 𝜀2, we obtain  

𝐶1
+ = 

−2𝑝∗𝜖2

𝐸𝑚
(1 + 𝜈𝑚),                                                                                                     

𝐶2
+ = 

𝑅1
∗2(1 + 𝜈𝑚)
𝐸𝑚

{𝑝̅∗
𝜖2𝜈𝑚(1 − 𝜒)

1 − 𝜈
+ 𝑝∗ [1 +

𝜖2

1 − 2𝜈𝑚
(−1 +

2𝜈𝑚
2 (1 − 𝜒)
1 − 2𝜈𝑚

)]} ,

𝐶3
− = 

𝜖2𝜒
𝐸𝑚(1 − 𝜈𝑚)

(𝑝̅∗ + 𝑝∗
2𝜈𝑚

1 − 2𝜈𝑚
),                                                                          

𝐶1
− =  0,                                                                                                                                   
𝐶4
− =  0,                                                                                                                                   

 

where 𝜒 = 𝐿1
∗ /𝐿2

∗ , 𝜖 = 𝑅1
∗/𝑅2

∗, 𝜐𝑚, 𝐸𝑚 are the Poisson ratio and Young modulus of 

the elastic medium, respectively.  

In a similar way, in the case of the elastic cylinder, the solution of the equation (2) 

is given by 𝑢𝑟∗
∗ (𝑟∗ ) =

𝐶1𝑟
∗

2
 and 𝑢𝑧∗

∗ (𝑧∗) = 𝐶3𝑧
∗  with (𝑟∗, 𝑧∗) ∈ 𝐶 . By imposing 

the following boundary conditions  

{

𝜎𝑟∗𝑟∗
∗ = −𝑝∗          𝑟∗ = 𝑅∗,   𝑧∗ ∈ (0, 𝐿∗),

𝜎𝑧∗𝑧∗
∗ = −𝑝

∗
          𝑧∗ = 𝐿∗,   𝑟∗ ∈ (0, 𝑅∗),

𝑢∗(0) = 0,                                                     

 

the solution, in the case of the elastic cylinder, is given by 𝐶1 =

 
−𝑝∗(1−𝜈𝑐)+𝜈𝑐𝑝

∗

𝐸𝑐
, 𝐶3 = 

2𝜈𝑐𝑝
∗−𝑝

∗

𝐸𝑐
, where 𝜐𝑐 , 𝐸𝑐  correspond to the elastic cylinder 

coefficients, respectively. In order to have the contact at the interface between the 

matrix and the elastic cylinder, we require the following compatibility equation  

{
𝑅∗ + 𝑢𝑟∗

∗ (𝑅∗)  =  𝑅1
∗ + 𝑢𝑟∗

∗ +
(𝑅1

∗),

𝐿∗ + 𝑢𝑧∗
∗ (𝐿∗) =  𝐿1

∗ + 𝑢𝑧∗
∗ +(𝐿1

∗ ),   
   

the radius and length of the deformed elastic root are equal to the radius and length 

of the deformed matrix, respectively. By exploiting the compatibility conditions at 
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the contact and after some algebra, we obtain the expressions for radial, 𝑝∗, and 

axial pressure, 𝑝
∗
, in a dimensional form   

𝑝̅∗ = 𝐸𝑐
(1 − 𝜈𝑐)(𝑅

∗ + 𝑅1
∗𝐴2)(𝐿

∗ − 𝐿1
∗ ) + 2𝜈𝑐(𝐿

∗ − 𝐿1
∗𝐴1)(𝑅

∗ − 𝑅1
∗)

(1 − 𝜐𝑐)(𝑅
∗ + 𝑅1

∗𝐴2)(𝐿
∗ + 𝐿1

∗𝐵1) − 2𝜈𝑐
2(𝐿∗ − 𝐿1

∗𝐴1)(𝑅
∗ − 𝑅1

∗𝐴1)
 ,     (3.1) 

𝑝∗ = 𝐸𝑐
𝜈𝑐(𝑅

∗ − 𝑅1
∗𝐴1)(𝐿

∗ − 𝐿1
∗ ) + (𝐿∗ − 𝐿1

∗𝐵1)(𝑅
∗ − 𝑅1

∗)

(1 − 𝜐𝑐)(𝑅
∗ + 𝑅1

∗𝐴2)(𝐿
∗ + 𝐿1

∗𝐵1) − 2𝜈𝑐
2(𝐿∗ − 𝐿1

∗𝐴1)(𝑅
∗ − 𝑅1

∗𝐴1)
 ,     (3.2) 

where  

• 𝐴1 = 𝜖
2 𝐸𝑐

𝐸𝑚
𝜐𝑚  

(1−𝜒)(1+𝜐𝑚)

𝜈𝑐(1−𝜐𝑚)
,  

• A2 =
𝐸𝑐

𝐸𝑚

(1+𝜐𝑚)

(1−𝜐𝑐)
[1 − 𝜖2 +

𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)] , 

• B1 = 𝜖
2 𝐸𝑐

𝐸𝑚
(1 − 𝜒)(1 + 𝜐𝑚) 

• 𝜖 =
𝑅1
∗

𝑅2
∗ , 𝜒 =

𝐿1
∗

𝐿2
∗ . 

2.2.2. Axial Growth Equations   

By exploiting a similar approach to Lockhart (Lockhart, 1965) and by taking into 

account the soil impedance as in (Greacen and Oh, 1972; Dexter, 1987; Bengough, 

Croser and Pritchard, 1997; Bengough et al., 2006), we can describe the growth 

process with the following model3  

1

𝑉∗
𝑑𝑉∗

𝑑𝑡∗
= 𝛷∗ (𝑝𝑐

∗
− 𝑝

∗
)
+
,                                                  (4) 

where 𝛷∗, [𝛷∗] = (MPa ∙ s)−1, is related to the extensibility of wall of a plant cell 

and 𝑝𝑐
∗
 is the threshold value introduced at the beginning of Section 2.1. The model 

(4) captures the most commonly accepted phenomenon related to the influence of 

                                                           

3 (𝑓(𝑥))+ = max (𝑓(𝑥),0) = {
𝑓(𝑥),    𝑓(𝑥) > 0
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     is the positive part of 𝑓(𝑥).  
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soil physical properties on root growth, i.e. roots grow slower in denser soils. 

Proceeding as in (Guiot, Pugno and Delsanto, 2006), we introduce a second growth 

model based on energy considerations, namely 

𝜂∗
𝑑𝑁

𝑑𝑡∗
+ 𝑝

∗ 𝑑𝑉
∗

𝑑𝑡∗
+ 𝛽∗𝑁 = 𝛾∗𝑁𝜌 ,                                        (5) 

where  

• 𝑁 = 𝑀∗ 𝑚∗ =⁄ 𝑉∗ 𝑣∗⁄    represents the total number of cells in the growing 

zone of the plant root; and 𝑀∗ (𝑉∗),𝑚∗ (𝑣∗) are the mass (volume) of the 

root growing zone and average mass (volume) of a single cell, 

respectively;  

• 𝜂∗ is the energy required to create a new cell; 

• 𝛽∗ is the metabolic rate for a single cell; 

• 𝛾∗𝑁𝜌 = 𝛼∗(𝑚∗)𝜌𝑁𝜌 = 𝛼∗𝑀𝜌  is the input power from the surrounding 

matrix and  𝜌 =  3 4⁄ . Since we focus on the growth of the primary root, 

we assume that the plant seed continuously supplies nutrients and the 

surrounding matrix is only an external source of water. In the case of older 

plant roots, we can consider the matrix is a continuously-replenished 

medium.  

•  𝑝
∗

 is the axial pressure experienced by the growing root tip at the 

boundary between root and matrix.  

For simplicity, we consider a uniformly distributed growth at the apical zone 

through cell division and cell extension. It is worth noting that the effect of turgor 

pressure, which is regarded as the driving force for cell extension, can be implicitly 

considered in both the axial and radial pressures.  

The equation (5) is a modified version of the growth equation proposed by (Guiot, 

Pugno and Delsanto, 2006). This approach has been applied to a wide range of 
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biological phenomena (West, Brown and Enquist, 1997; Bettencourt et al., 2007). 

For example, the authors of (Guiot, Pugno and Delsanto, 2006) developed a model 

for tumour invasion,  considering the effect of interfacial pressure as an extension 

of the West, Brown and Enquist law (West, Brown and Enquist, 2001). The root 

elongation rate is sensitive to variations in axial pressure (Bengough and 

Mackenzie, 1994; Bengough, 2012), but insensitive to radial pressure (Kolb, 

Hartmann and Genet, 2012). This aspect explains the presence of the mechanical 

term in equations (4) and (5) due to the axial pressure. We will further assume that 

root is cylindrical (as in Figure 2.1.2) and grows only in length. Therefore, an 

increase in length is related to an increase in volume and in the number of cells 

through 

𝑑𝐿∗

𝑑𝑡∗
= 

1

𝜋𝑅∗2
 
𝑑𝑉∗

𝑑𝑡∗
= 

𝑣0
∗

𝜋𝑅∗2
 
𝑑𝑁

𝑑𝑡∗
,                                         (6) 

where 𝑣0
∗ is the single cell volume that we consider constant. Note that if 𝜌 = 1 and 

if  𝑝
∗
 is small, with proper values of 𝑣0

∗, 𝜂∗, 𝛾∗, 𝛽∗ we can recover the equation (4) 

from the equation (5).  

2.2.3. Adimensionalization   

We scale the variables by writing 

𝐿∗ = 𝐿0
∗ 𝐿, 𝑡∗ = 𝑡𝑟𝑒𝑓

∗ 𝑡, 

where 𝐿0
∗  represents the length of the growing region from the tip to the end of the 

elongation zone and 𝑡𝑟𝑒𝑓
∗  is the duration of the experiment. We assume 𝐿0

∗ = 3mm 

and 𝑡𝑟𝑒𝑓
∗ = 3days.  

We notice that 𝐿1
∗  represents the initial length of the elastic cylinder in each cycle 

and we assume zero pressure at both ends of the cycle. Therefore, we can write 

𝐿1
∗ = 𝐿0

∗ 𝐿(𝑡0), where the adimensional length 𝐿(𝑡0) is “updated” at the beginning 

of each cycle. 
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Assuming the axial growth, i.e. 𝑅∗ = 𝑅1
∗, we can rewrite equations (3.1) and (3.2) 

as   

{
 

 𝑝
∗
= Θ1

∗
𝐿 − Θ2
𝐿 + Θ3

,

𝑝∗ = Θ4
∗
𝐿 − Θ2
𝐿 + Θ3

,

 

where  

• Θ1
∗ = 𝐸𝑐  

𝛼

𝛽
,  

• Θ2 = 𝐿(𝑡0) is the root length at the beginning of the FRC; 

• Θ3 =
𝛾

𝛽
𝜖2

𝐸𝑐

𝐸𝑚
 𝐿(𝑡0)(1 − 𝜒)(1 + 𝜐𝑚), 

• Θ4
∗ = 

𝐸𝑐

𝛽
[𝜐𝑐 − 𝜖

2 𝐸𝑐

𝐸𝑚
 (1 − 𝜒)

𝜐𝑚(1+𝜐𝑚)

(1−𝜐𝑚)
], 

• 𝛼 = 1 − 𝜐𝑐 + 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚) [1 − 𝜖

2 +
𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)], 

• 𝛽 =  𝛼 + 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚)

2𝜐𝑚𝜐𝑐𝜀
2(1−𝜒)

(1−𝜐𝑚)
2 − 2𝜐𝑐

2 , 

• 𝛾 =  𝛼 − 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚)

2𝜐𝑚
2 𝜀2(1−𝜒)

(1−𝜐𝑚)
2 −

2𝜐𝑚𝜐𝑐

1−𝜐𝑚
 , 

 and [Θ1
∗] = [Θ4

∗ ] = MPa and [Θ2] = [Θ3] = 1.  

By considering the stop of the root growth when  𝑝
∗
 reaches the critical value 𝑝𝑐

∗
, 

from the equation (5) the following relation  

𝛽∗ = 𝛾∗

(

 
 Θ2 +Θ3

𝑝𝑐
∗

Θ1
∗

1 − 
𝑝𝑐
∗

Θ1
∗
)

 
 

𝜌−1

, 
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holds and we introduce the scaling parameter Θ1
∗   for the adimesionalization of the 

axial pressure, 𝑝
∗
, as an upper bound for 𝑝𝑐

∗
.  

2.2.4. Stress Effects on Root Penetration   

This Section focuses on how the axial stress at the contact affects the biomechanical 

properties of plant roots penetration depending on the surrounding matrix. Since 

the change in length is slow, every moment of the growth process can be 

represented as a static state and we can interpret the mechanical process of root 

growth as an inclusion model. The inclusion model analyses in detail the 

mechanical expansion of an elastic cylinder in a cylindrical hole of an elastic 

fracturable medium. In particular, we study the sensitivity of the root length to the 

variation in the fracture stress, 𝑝𝑓𝑟
∗

, and the Young modulus, 𝐸𝑚 , of the 

surrounding matrix. Therefore, we analyse the variation in the root length, 

𝐿𝑓𝑟
∗ , when the axial contact pressure is equal to 𝑝𝑓𝑟

∗
.  

From the inclusion problem, we can obtain the expression of root length in the 

dimensionless form (see Subsection 2.2.3) at 𝑝
∗
= 𝑝𝑓𝑟

∗
  

𝐿𝑓𝑟 = 
𝐿(𝑡0) + Θ3

𝑝
𝑓𝑟

∗

Θ1
∗

1 − 
𝑝𝑓𝑟
∗

Θ1
∗

, ∀ 𝑝𝑓𝑟
∗
< Θ1

∗  ,                                (7) 

where  

• 𝐿(𝑡0) is the root length at the beginning of FRC; 

• Θ1
∗ = 𝐸𝑐  

𝛼

𝛽
,  

• Θ3 =
𝛾

𝛽
𝜖2

𝐸𝑐

𝐸𝑚
 𝐿(𝑡0)(1 − 𝜒)(1 + 𝜐𝑚), 

• 𝛼 = 1 − 𝜐𝑐 + 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚) [1 − 𝜖

2 +
𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)], 
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• 𝛽 =  𝛼 + 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚)

2𝜐𝑚𝜐𝑐𝜀
2(1−𝜒)

(1−𝜐𝑚)
2 − 2𝜐𝑐

2 , 

• 𝛾 =  𝛼 − 
𝐸𝑐

𝐸𝑚
(1 + 𝜐𝑚)

2𝜐𝑚
2 𝜀2(1−𝜒)

(1−𝜐𝑚)
2 −

2𝜐𝑚𝜐𝑐

1−𝜐𝑚
 . 

Since 𝐿1
∗ ≪ 𝐿2

∗ , we consider 𝜒 =   𝐿1
∗ 𝐿2

∗⁄ → 0, but we maintain the order of 

approximation of 𝜖 = 𝑅1
∗ 𝑅2

∗⁄  . 

 

Figure 2.1.3 Plot of the ratio between the root length at 𝑝
∗
=  𝑝

𝑓𝑟

∗
and the root initial length in 

adimensional form,  𝐿𝑓𝑟/𝐿(𝑡0), considering the ‘stop growth’ pressure as 𝑝
𝑐

∗
= 0.5MPa, the root 

Young modulus, 𝐸𝐶 = 10MPa, the Poisson ratio for both root and soil as 𝜐𝑚 =  𝜐𝑐 = 0.49, the root 

and hole radius as 𝑅∗ = 𝑅1
∗ = 0.588mm, and the outer radius of the soil as 𝑅2

∗ = 50mm.  

We consider 𝐿𝑓𝑟 = 𝐿𝑓𝑟(𝑝𝑓𝑟
∗
, 𝐸𝑚), i.e. as a function of both failure stress, 𝑝𝑓𝑟

∗
, and 

the elastic modulus of the surrounding medium, 𝐸𝑚. The plot of 𝐿𝑓𝑟(𝑝𝑓𝑟
∗
, 𝐸𝑚) is 

shown in Figure 2.1.3, which highlights that when 

1. 𝑝𝑓𝑟
∗
= 𝑘 ∙ 𝐸𝑚, 𝐿𝑓𝑟  is an increasing function of 𝐸𝑚 for values of 𝐸𝑚   enough 

small such that 𝐿𝑓𝑟 > 0 and 𝑝𝑓𝑟
∗
< 𝑝𝑐

∗
; 

2. 𝐸𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐿𝑓𝑟  is an increasing function of 𝑝𝑓𝑟
∗

 such that 𝐿𝑓𝑟 > 0 and 

𝑝𝑓𝑟
∗
< 𝑝𝑐

∗
; 
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3. 𝑝𝑓𝑟
∗
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 <  𝑝𝑐

∗
, 𝐿𝑓𝑟  is a decreasing function of 𝐸𝑚 such that 𝐿𝑓𝑟 > 0.  

The above analysis highlights the importance of considering the concept of failure 

stress at a small value for Young’s modulus of the elastic matrix. 

In order to determine the growth, we employ the model given by the equation (5) 

to the experiments in artificial soils (the experimental work related to this Chapter 

has been performed by IIT). In addition, we compare our theoretical results with 

data from experiments in different real soil compactions (for more details see 

(Popova, van Dusschoten, et al., 2016)).  

2.2. Theoretical Results  

In this analysis, the surrounding medium is assumed to be an infinite body with 

respect to the plant root, so that 𝑅∗, 𝑅1
∗ ≪ 𝑅2

∗ and 𝐿∗, 𝐿1
∗ ≪ 𝐿2

∗ . Therefore, to obtain 

the numerical solutions, we set 𝜒 = 𝐿1
∗ 𝐿2

∗⁄ = 0, and we assume  𝑅2
∗ = 50mm for 

both artificial and real soils. We then assume that the growth critical pressure 𝑝𝑐
∗
=

0.5 MPa (for the value range of 𝑝𝑐
∗
 see, e.g., (Misra, Dexter and Alston, 1986; 

Clark, Whalley and Barraclough, 2003; Bengough et al., 2011; Popova, van 

Dusschoten, et al., 2016)), and the root Young modulus 𝐸𝑐 = 10MPa (Forterre, 

2013). We assume that 𝑅1
∗ = 𝑅∗ are equal to the values of the root apex radius at 

the third day of life (the related experimental work has been performed by IIT) for 

artificial soil, and 𝑅1
∗ = 𝑅∗ = 0.6 mm  for real soils. Both Poisson’s ratios are 

𝜈𝑚,𝑐 = 0.49  for Phytagel and 𝜈𝑐 = 0.49, 𝜈𝑚 = 0.45  for soils (Bowles, 1997; 

Normand et al., 2000; Das, 2014). The values used for  𝛾∗, 𝐸𝑚, 𝑝𝑓𝑟
∗

 are reported in 

Table 1 (𝐸𝑚, 𝑝𝑓𝑟
∗

are obtained by means of compression tests). In order to estimate 

only the variation of 𝛾∗ with respect the different soil media, a constant value for 

the parameter 𝜂∗,  𝜂∗ = 35 MPa ·  mm3,  has been chosen. Figure 2.2.1- Figure 

2.2.3 show the evolution of the root length with time for artificial and real soils, 

respectively.  
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The value of the scaling parameter  𝛾∗  of the energy released from the seed 

increases in the medium hardness for both artificial and real soils. By using artificial 

growth media, roots, which were grown in harder soils, were longer than the roots 

grown in softer soils, while in real soils this was not the case. Using 0.6% Phytagel 

(Group C) we obtain a lower final length in both the numerical (Figure 2.2.4b) and 

experimental results (the related experimental work has been performed by IIT). In 

order to assess the influence of 𝛾∗ on the variation of the final root length, we carry 

out the theoretical predictions in both artificial and real soil using all the 

combinations of the value for 𝛾∗ listed in Table 1. The results by means of equation 

(5) are given in Figure 2.2.4.  

Phytagel is a hard and brittle homogeneous gel (Schiavi, Cuccaro and Troia, 2016) 

and,  because of its homogeneity, we can assume that the increase in Young 

modulus leads to an increase in the fracture stress (see Subsection 2.2.4). In 

addition, Figure 2.2.4c shows that 𝛾∗ increases linearly with respect to the Phytagel 

concentration. Therefore, in the presence of artificial soils the increase in energy 

availability and the soil mechanical properties may enhance root penetration.  

Table 1 Values of parameters used in the analytical results for the growth model. 

  𝑬𝒎 (MPa) 𝒑
𝒇𝒓

∗
± 𝐒𝐃 (MPa) 𝜸∗(MPa·mm3/s) 

 

 

 

 

Phytagel 

Artificial soil 

Group A (0.15% 

Phyt. conc.) 

1.02·10−2 0.0025±7.278·10-4 7.53·10-4 

Group B (0.3% 

Phyt. conc.) 

1.82·10−2 0.0053±0.0012 1.94·10-3 

Group C (0.6% 

Phyt. conc.) 

4.23·10−2 0.0089±0.0016 2.56·10-3 

Group D (0.9% 

Phyt. conc.) 

7.43·10−2 0.0140±0.0018 4.76·10-3 

Group E (1.2% 

Phyt. conc.) 

8.09·10−2 0.0141±0.0017 6.7·10-3 

 Low compaction 2 0.02 1.2·10-2 

Real soil Medium 

compaction 

25 0.04 2.19·10-2 

 High compaction 50 0.25 0.1021 
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Figure 2.2.1 Comparison of the experimental data (red circles) in artificial soils (mean values ±SD) 

and analytical solution (blue line) in (a) 0.15%, (b) 0.3%, (c) 0.6% Phytagel concentration. Each step 

of the analytical solution represents a cycle, which ends with the fracture of the soil and begins after 

the relaxation of the root. 

(a) 

(b) 

(c) 
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Figure 2.2.2 Comparison of the experimental data (red circles) in artificial soils (mean values ±SD) 

and analytical solution (blue line) in (a) 0.9% and (b) 1.2% Phytagel concentration. Each step of the 

analytical solution represents a cycle, which ends with the fracture of the soil and begins after the 

relaxation of the root. 

  

(a) 

(b) 
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Figure 2.2.3 Comparison of the experimental data (red circles) in real soils and analytical solution 

(blue lines) in (a) low, (b) medium, and (c) high compaction. Each step of the analytical solution 

represents a cycle, which ends with the fracture of the soil and begins after the relaxation of the root. 

(a) 

(b) 

(c) 
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Figure 2.2.4 (a) In each soil medium we evaluated the variation of the root length at the sixth day of 

life, by considering all the combinations of the values for the scaling parameter γ* of the input power 

from the plant seed, exploited in the numerical solution (Table 1); (b) The dotted line represents the 

variation in the root length in the numerical solutions of Figure 2.2.1-Figure 2.2.3; (c) The linear fit 

of γ* and different concentrations of Phytagel (R-squared: 0.97; y = a‧x, a = 5.346‧10-3 MPa‧mm3/s).  

(a) 

(b) 

(c) 
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2.3. Interpretation and Discussion   

The first week of plant life is a fundamental period to establish a strong anchorage 

and develop a complete radical apparatus. The primary root thus represents an 

interesting model to study the soil impedance response (Goodman and Ennos, 

1999). By using real soils, conflicting results on the increase or decrease in root 

length by varying the soil compaction and root species have been found (Barley, 

1963; Taylor and Ratliff, 1969; Wilson, Robards and Goss, 1977; Wilson and 

Robards, 1978; Atwell, 1989; A. Bengough and Mullins, 1990; Pietola and 

Smucker, 1998; Alessa and Earnhart, 2000). Decodifying a univocal cause–effect 

behaviour between root growth and soil hardness is difficult. In fact, previous 

studies have been carried out in real soil, which is intrinsically characterized by 

several physical and chemical complex interactions (soil aerations, water, oxygen 

availability, etc.).  

Alternative protocols to the use of real soil have been proposed, such as wax layers 

or vertical oriented agar plates (Okada and Shimura, 1990; Materechera, Dexter 

and Alston, 1991; Clark et al., 1996). One of the most common approaches is to 

use transparent gelling agents such as agar and agarose, commonly used to prepare 

growth media for botanical and bacterial applications. For example, (Zacarias and 

Reid, 1992; Volkmar, 1994; Clark et al., 1999) all used the agar gels to study 

mechanical impedance in roots because agar gel impedes the root system and 

visualizes it at the same time. In accordance with these studies, we analyse the 

growth kinetics of Zea mays L. primary root exploiting artificial soils (Phytagel) 

with different levels of concentrations. Accordingly, we investigated the first 

interaction of plant root with the soil, preventing the interference of any other 

physical and chemical stimulus.  

Unexpectedly, the experimental results showed that the primary roots grown in 

higher concentrations of Phytagel (i.e. higher levels of compactness in the soil) 

have greater elongation. In order to ascertain the plausibility of these findings in 

comparison with experiments in real soils, we developed a theoretical model for 
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the mechanical process of root growth with the root-soil mechanical interaction. 

Our mathematical model combines plant roots growth and the mechanical contact 

with the soil through the modified version of the extended WBE universal law and 

the inclusion problem.  

From the theoretical results, we found that an increase in the scaling parameter 𝛾∗ 

(Table1) could reveal an increase in the demand of plant nutrients when the soil 

medium is more compact. Since the experiments were carried out in the absence of 

nutrients in the soil, the nutrient demand was addressed to the reserves stored in the 

seed (primary roots) and the surrounding soil medium supplies continuously only 

water. Thus, our study may reveal a relation between nutrients from the seed and 

soil medium compactness. Since the mechanical impedance of the artificial soils is 

weaker than real soils in terms of inducing a change in root growth, the increase in 

the released energy can provide a more effective penetration in Phytagel (Figure 

2.2.4). In fact, the inclusion problem could explain how, at the contact fracture 

pressure, the ability of plant roots to grow changes and is influenced by the 

mechanical properties of the surrounding environment.  

The Young modulus of plant tissues takes typically a value of around 10 MPa 

(Forterre, 2013). We assume that 𝐸𝑐 is constant so it does not change along the root 

axis (i.e. with age) and the surrounding soil. In addition, we notice that 𝐿𝑓𝑟 
∗  is a 

decreasing function of 𝐸𝑐 , i.e. considering a fixed medium the increase in root 

stiffness seems to have a negative influence on the plant roots expansion as 

remarked in (Wei and Lintilhac, 2007). Indeed, the authors of (Wei and Lintilhac, 

2007) investigated aspect of turgor-driven plant cell growth with a model derived 

from the Eulerian concept of instability and showed that increasing elastic modulus 

of plant cell has a negative effect on wall expansion.  

In conclusion, we analyse the growth kinetic of the primary root (Z. mays) in 

artificial soils. In particular, we develop an ad-hoc setup and a theoretical 

framework to understand the contribution played by mechanical stimuli in the root 

growth. Our theoretical and experimental studies may be a further investigation to 

explain how plant roots could control the growth in response to the contact with the 
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surrounding medium and help to improve the current knowledge on the behavioural 

strategies of plant roots. The mathematical model is based on continuum mechanics 

and is a general formulation for the prediction of plant roots growth in soil media. 

The unexpected experimental results highlight the active response of plant roots to 

the changes in the surrounding medium as simulated by the theoretical model.  
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Chapter 3  

3. Extension of the Mathematical Model including 

Root Radial Growth and Nutrient Influence  

Plant roots have developed different defence responses to outer stimuli caused by 

the surrounding soil, e.g. increase or decrease in the elongation, swelling or 

shrinking of the diameter and root-structure tortuosity (Barley, 1963; A. Bengough 

and Mullins, 1990; Li et al., 2014; Popova, van Dusschoten, et al., 2016). Since the 

apical zone tissues are the most sensitive to the environment changes, the apex is 

the first zone of the root responding to external stimuli. For this reason, several 

investigations to understand how plant roots can modulate and control the effects 

of external chemical and physical (mainly mechanical) stimuli on their growth can 

be found, e.g. see (Wilson, Robards and Goss, 1977; Atwell, 1989; Baluska et al., 

1993; Baluska, Parker and Barlow, 1993; Baluška, Parker and Barlow, 1993; 

Baluška, Busti, et al., 2001; Baluška, Jasik, et al., 2001). 

In particular, many studies illustrated the evolution of root system in nutrient-rich 

patches (Drew and Saker, 1978; Crick and Grime, 1987; Jackson and Caldwell, 

1989, 1996; Gross, Peters and Pregitzer, 1993) analysing phenotypical reactions 

(branching, root elongation, lateral root emergence, root hairs proliferation, etc.). 

Since the majority of these studies were conducted in real soils (Kirby and 

Bengough, 2002; Pierret et al., 2007), characterized by high heterogeneity, these 

findings have to be considered as a result of several physical and chemical stimuli. 

In fact, in order to properly investigate each phenomenon and carry out a rigorous 

cause-effect analysis, plants should be studied in environments that allow to 

distinguish each single stimulus. In order to discriminate indiscernible parameters 

in a real environment (Tian and Doerner, 2013) and ascertain the response of plant 

root to different nutrient concentrations, we used data of plants grown in artificial 

soils in the absence of other physical or chemical stimuli.  
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A recent research (Li et al., 2014) explains that roots exploit an adaptive strategy 

to defend themselves by salt toxicity, increasing the number of stele tissue cell 

layers. Such a strategy causes an evident swelling of root apex that should help cells 

to up-take more water and create a stronger barrier to reduce Na+ concentration. 

Furthermore, other studies show similar root apex swellings, e.g. after depletion of 

giberellic acid or ethylene and high calcium exposures (Baluska et al., 1993; 

Baluška, Parker and Barlow, 1993; Baluska, Hauskrecht and Barlow, 1996). In 

addition, investigations on the depolymerization of F-actin with latrunculin B 

reveal also in very similar maize root apex swellings and inhibition of the root cell 

elongation (Baluška, Jasik, et al., 2001). The root swelling and the reduction of 

primary root length were observed in maize and cotton (Kurth et al., 1986; Zidan, 

Azaizeh and Neumann, 1990) and in several crop plants grown in media with high 

concentration of NaCl. Aluminium is considered a source of toxicity for plants as 

well, inducing structure deformation (Pietola and Smucker, 1998; Zhu, Ahn and 

Matsumoto, 2003; Kynast, 2012) and swelling phenomenon (Bennet, Breen and 

Fey, 1985a, 1985b; Budíková, 1999). One of the potential explanations of the 

observed phenomenon could be an adaptation strategy of plant roots. In fact, plants 

can be regarded as sensory and communicative organisms with active problem-

solving behaviour (Baluška et al., 2009). Although the molecular and cellular 

responses are still not known, we believe that such studies will provide insights in 

understanding the control and modulation of root development with several 

morphological adaptations. 

In this Chapter we exploited the experiments in which the nutrient stress was 

produced by an excess of Murashige and Skoog Basal Salt Mixture, MS (Murashige 

and Skoog, 1962). Therefore, by using the aforementioned data, we focus on 

modelling the behaviour of plant roots in the presence of mechanical and nutrient 

stress (a schematic diagram is reported in Figure 3.1.1). Here we pursue such an 

approach, seeking to understand how the simultaneous mechanical and chemical 

properties of the surrounding medium may influence and contribute to the root 
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development such as morphometric changes, particularly root elongation and radial 

expansion. For this reason, we develop a modified version of the growth equation 

applied to model the tumour invasion proposed in (Guiot, Pugno and Delsanto, 

2006) with a radial growth equation as an activation response to chemical-

mechanical stimuli. The model illustrates how nutrients concentration may 

influence both the root length and radius.  

3.1. Theoretical Model  

3.1.1. Axial and Radial Growth Coupled Equations  

We propose the following model  

𝜂∗
𝑑𝑁
𝑑𝑡∗

+ 𝑝
∗ 𝑑𝑉∗

𝑑𝑡∗
+ 𝛽∗𝑁 = 𝛾∗𝑁𝜌 ,                                        (8.1)

 
 

𝑑𝑅∗

𝑑𝑡∗
1
𝑅∗ = (1 − 

𝛾𝐶𝑐
∗

𝛾∗ )+
∙
𝑑𝑁
𝑑𝑡∗

∙
1
𝑁 .                                          (8.2)

 

The equation (8.1) has been proposed by (Guiot, Pugno and Delsanto, 2006) and 

we include both axial and radial growth. As reported in Subsection 2.2.2, in the 

equation (8.1) the parameters  𝜂∗  and 𝛽∗refer to the energy required to create a new 

cell and the metabolic rate for a single cell of the root, respectively. The parameter 

𝛾∗ is a scaling constant of the root metabolic rate and 𝜌 =  3 4⁄ . Specifically, the 

axial pressure, 𝑝
∗
, at the boundary between the root tip and matrix depends on both 

axial and radial growth (see Subsection 2.2.1). In the equation (8.2), we take into 

account the estimated value, 𝛾𝐶𝑐
∗ , of the previous case, i.e. without nutrient in the 

soil, meaning that the plant seed furnishes nutrients and the surrounding medium 

supplies continuously only water (see Section 2.2, Table 1); 𝛾𝐶𝑐
∗   corresponds to the 

parameter 𝛾∗ labelled as Control concentration in Table 2. In order to include the 

effect of the nutrient in the soil, the equation (8.2) considers that the radial swelling 

occurs only when the scaling parameter 𝛾∗ of the input power from the surrounding 

soil is higher than 𝛾𝐶𝑐
∗  (Figure 3.1.1).  

By assuming that the root is cylindrical, the increase in length, 𝐿∗, is given by  
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Figure 3.1.1 Schematic diagram of the root control mechanism to nutrient stress. This mechanism 

could be similar to salt toxicity as observed in (Li et al., 2014). A possible adaptive strategy to nutrient 

stress could be the enlargement of cells, inducing a swelling of root apex. This strategy should help 

cells to up-take more water and create a stronger barrier to reduce toxic nutrient concentration (Li et 

al., 2014). The initial conditions are differently updated if the root activates the radial swelling as 

response to nutrient stress. In such a case, the initial root length, diameter, and cell volume are updated 

and stored, otherwise only the root initial length is stored. Specifically, each cycle starts with updated 

initial conditions and ends when the soil medium fractures, i.e. the axial stress, 𝑝
∗
, at the contact 

equals the soil failure, 𝑝
𝑓𝑟

∗
. Therefore, the root relaxes and a new cycle starts with the updated initial 

conditions. Otherwise the fracture in the matrix does not occur and the root grows until the growth 

critical pressure, 𝑝
𝑐

∗
.  

𝑑𝐿∗

𝑑𝑡∗
= 

𝑣0
∗

𝜋𝑅∗2
(
𝑑𝑁

𝑑𝑡∗
− 
2𝑁

𝑅∗
∙  
𝑑𝑅∗

𝑑𝑡∗
).                                              (9) 

We consider that the total number of cells in a plant root is  𝑁 = 𝑉∗ 𝑣0
∗⁄  , where 𝑉∗ 

is the root volume of the growing zone and 𝑣0
∗ is the average of a single cell volume. 
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We update 𝑣0
∗  with the non-dimensional initial root radius at each FRC to indicate 

the possible thickening of cells due to the chemical stimulus.  

3.1.2. Adimensionalization  

We scale the variables by writing 

𝐿∗ = 𝐿0
∗ 𝐿, 𝑅∗ = 𝑅0

∗𝑅, 𝑡∗ = 𝑡𝑟𝑒𝑓
∗ 𝑡, 

where 𝐿0
∗  represents the length of the growing region from the tip to the end of the 

elongation zone and 𝑡𝑟𝑒𝑓
∗  is the duration of the experiments. We assume 𝐿0

∗ =

3mm, and 𝑡𝑟𝑒𝑓
∗ = 3days as in Chapter 2. We consider for 𝑅0

∗ the values of the top 

diameter at the third day of life (the related experimental work has been performed 

by IIT).  

𝐿1
∗ , 𝑅1

∗ represent the initial length and radius of the elastic cylinder, respectively, in 

each cycle and we assume zero pressure at both ends of the cycle. Therefore, we 

can write 

𝐿1
∗ = 𝐿0

∗ 𝐿(𝑡0),     𝑅1
∗ = 𝑅0

∗𝑅(𝑡0), 

where the adimensional length 𝐿(𝑡0)  and radius  𝑅(𝑡0)  are “updated” at the 

beginning of each cycle. By assuming the same length growing zone (from the 

meristematic to the elongation region) and number of cells at the beginning of each 

FRC with an increasing radius (𝑣0
∗𝑁(𝑡0) = 𝜋𝐿

∗(𝑡0)𝑅
∗2(𝑡0)), we update the single 

cell volume 𝑣0
∗ with the non-dimensional initial root radius in each FRC, i.e. 𝑣0

∗ ∝

𝑅2(𝑡0).  

Furthermore, by assuming that the root growth ends when 𝑝̅∗ = 𝑝̅𝑐
∗ , from the 

equation (8.1) we obtain  

𝛽∗ = 𝛾∗𝑁𝑐
𝜌−1,     𝜌 =

3

4
, 

where  
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𝑁𝑐 = 𝑁(𝑡0)
1 +

𝑝̅𝑐
𝐸𝑐
(
𝑈1𝐵1 − 𝑈2𝐴1

𝑈1
)

1 −
𝑝̅𝑐
𝐸𝑐
(
𝑈1 − 𝑈2
𝑈1

)
,                                  (10) 

and  

• 𝑈1 = (1 − 𝜈𝑐)(1 + 𝐴2) , 

• U2 = 2𝜈𝑐
2(1 − 𝐴1),  

• 𝐴1 = 𝜖
2 𝐸𝑐

𝐸𝑚
𝜐𝑚  

(1−𝜒)(1+𝜐𝑚)

𝜈𝑐(1−𝜐𝑚)
,  

• A2 =
𝐸𝑐

𝐸𝑚

(1+𝜐𝑚)

(1−𝜐𝑐)
[1 − 𝜖2 +

𝜀2

1−2𝜐𝑚
 (
2𝜐𝑚

2 (1−𝜒)

1−𝜐𝑚
− 1)] , 

• 𝜖 =
𝑅1
∗

𝑅2
∗ , 𝜒 =

𝐿1
∗

𝐿2
∗ .  

In the case of axial growth, the equation (10) corresponds to the equation (7) 

Chapter 2.  

3.2. Theoretical Results  

The theoretical results are performed by means of the equations (8.1) and (8.2) 

applied to the growing zone of the root and the related surrounding medium (Figure 

2.1.2, Subsection 2.2.1). We suppose that the soil is greater than the root, i.e. 

𝑅∗, 𝑅1
∗ ≪ 𝑅2

∗  and 𝐿∗, 𝐿1
∗ ≪ 𝐿2

∗  (Figure 2.1.2, Chapter 2). Therefore, we set the 

values of the parameters 𝜒, 𝑅2
∗, 𝑝

𝑐

∗
, 𝐸𝑐 , 𝜈𝑚,𝑐 ,  and 𝜂∗as in Chapter 2. The values used 

for the matrix Young modulus, 𝐸𝑚,  and the fracture pressure, 𝑝𝑓𝑟
∗

, are obtained by 

means of compression tests and are reported in Table 1, Section 2.2. The estimated 

values of 𝛾∗ for Zea mays roots grown in artificial soil with and without nutrient 

are in Table 2.  

The four different MS concentrations are labelled MS1, MS2, MS3, and MS4 and 

correspond to increasing MS concentration.  
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The value of the scaling parameter 𝛾∗ of the input power from the surrounding 

matrix increases with both the Phytagel concentration (used in the previous 

Chapter) and the MS concentration (only the MS2-Group B and Group C have a 

lower estimated value than the corresponding MS1). The results from the equations 

(8.1) and (8.2) are given in Figure 3.2.1. Since we have observed that the radial 

swelling of 17% at the height of meristematic area occurs in the 5-6-day old roots 

for the MS4 concentration with respect to the mature region, we consider the 

increase of 17% in the top diameter at the 6-day age for the comparison with the 

numerical solutions (the related experimental work has been performed by IIT). 

The numerical result of the MS4-Group B is smaller than the measured data for the 

same elongation reduction.  

Figure 3.2.2-Figure 3.2.4 present the numerical solutions of the MS1-MS3 

concentrations. It is worth noting that the equation (8.2) cannot allow a decrease in 

root radius, since 𝛾𝐶𝑐
∗  represents the parameter related to the energy released by 

seed without nutrients in soil and the soil medium is only an external source of 

water.  

Table 2 Estimated value of the parameter 𝛾∗  related to the nutrient availability. In the control 

concentration, i.e. without nutrient in the soil medium, the plant seed furnishes the nutrient for the 

growth and is the parameter labelled as 𝛾𝐶𝑐
∗  in the current Section.  

 𝜸∗(MPa mm3 s-1) 

 Control 

conc. 

MS1 

conc. 

MS2  

conc. 

MS3 

conc. 

MS4 

conc. 

Group B (0.3% Phyt. 

conc.) 

1.94·10-3 2.18·10-3 1.955·10-3 2.531·10-3 3.098·10-3 

Group C (0.6% Phyt. 

conc.) 

2.56·10-3 2.932·10-3 2.666·10-3 2.937·10-3 4.093·10-3 

Group D (0.9% Phyt. 

conc.) 

4.76·10-3 4.783·10-3 5.638·10-3 6.429·10-3 6.888·10-3 
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Figure 3.2.1 Numerical solution of length (a) and radius (b) evolution and axial (c) and radial (d) 

pressure against time. The red circles are the experimental data (mean values ±SD) in MS4 

concentration. 



 • Chapter 3 • Theoretical Results  

 

53 

 

 
Figure 3.2.2 Numerical solution of length (a) and radius (b) evolution and axial (c) and radial (d) 

pressure against time. The red circles are the experimental data (mean values ±SD) in MS1 

concentration. 
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Figure 3.2.3 Numerical solution of length (a) and radius (b) evolution and axial (c) and radial (d) 

pressure against time. The red circles are the experimental data (mean values ±SD) in MS2 

concentration. 
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Figure 3.2.4 Numerical solution of length (a) and radius (b) evolution and axial (c) and radial (d) 

pressure against time. The red circles are the experimental data (mean values ±SD) in MS3 

concentration. 
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3.3. Interpretation and Discussion  

We observed the behaviour of Zea mays roots in artificial soils with different 

nutrient concentrations. Plants grown inside soil media with high concentrations of 

nutrients developed shorter and thicker root apparatus. The experiments have been 

repeated using soils with three different Phytagel concentrations and, in all the three 

cases, the root elongation rate decreased with the increase of nutrient 

concentrations.   

It was possible to notice a visible enlargement for roots grown in media with higher 

concentrations of nutrients. The swelling was localized at the height of the 

meristematic area, which was the most sensitive area to the environment changes, 

e.g. to salt stress (Huang and van Steveninck, 1990). The experimental data showed 

that the excess of Murashige and Skoog Basal Salt Mixture, MS (Murashige and 

Skoog, 1962), in soil produces an abnormal radial swelling and elongation 

reduction and it can have a similar interpretation to the root swelling, due to NaCl 

stress (Li et al., 2014). Therefore, the swelling of root observed in our study in the 

presence of MS4 concentration might be a further example of root sensibility to 

mineral nutrients stress.  

The aim of this study is to couple experimental with theoretical results to gain a 

better understanding of how plant roots face nutrient stress. In order to explain such 

morphological and strategical adaptation of plant roots, we proposed a growth 

model by considering also the mechanical pressure due to the interaction between 

the root and the surrounding soil medium. In particular, we modelled the radial 

expansion through a critical threshold to describe the radial swelling as found in 

the experiments. Therefore, we formulated a hypothesis that the root radial 

expansion can be activated in the presence of an excessive nutrient concentration 

in the soil medium as an adaptation mechanism of response to nutrient availability. 

In fact, the equation (8.2) represents an activation equation for radial growth with 

a threshold level for the scaling parameter related to the nutrient availability, 𝛾∗. In 

accordance with the experiments, 𝛾∗  increased with the Phytagel and MS 
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concentration. Specifically, the decrease in root length and the increase in root 

diameter occurred with respect to the increase in the values of 𝛾∗  and MS 

concentration in the soil medium for both our analytical and experimental results, 

respectively. One of the limits in our modelling approach is the underestimation of 

the radial expansion. Nevertheless, there is a significant scope to extend the 

theoretical model to incorporate other constitutive equations, e.g. more complex 

mechanical properties of root tissues and soil medium, the potential regulation of 

hormones and the osmotic effect at cellular level due to the outer medium. Such 

factors will be addressed in future studies by measuring further key parameters 

under experimental control. This study could lead to deeper investigations into the 

root behaviour mechanisms used to convert such adaptive strategies into bio-

inspired approaches.  
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Chapter 4  

4. Nanoindentation and Wettability Tests on Plant 

Roots  

Several examples of adaptive strategies and solutions are in Nature kingdom to 

inspire engineering applications, e.g. see (Bar-Cohen, 2006). The question of how 

the efficient mechanisms by means of which plant roots respond and adapt to 

environmental stimuli has not completely answered, e.g. the endodermal 

specification and adaptation. Specifically, it is not completely understood how the 

root endodermis evolves according to the simultaneous and mutual dependence and 

interaction between the root and the soil medium. In fact, almost completely 

unknown mechanisms regulate such adaptive behaviours, such as the deposition of 

hydrophobic cell wall material (Roppolo et al., 2011). Plant roots continuously 

sense and adapt their growth according to the surrounding medium through cell 

growth, secretion, elongation, differentiation and maturation (Kolb, Legué and 

Bogeat-Triboulot, 2017) (Figure 4.1).  

 
Figure 4.1 Plant root structure. In the maturation zone, the cells complete their differentiation and, 

providing anchorage and nutrient acquisition, lateral roots and root hairs grow. Then, in the growing 

zone, cell division and elongation occur. Therefore, the root elongates and penetrates the soil in the 

apical region. The penetration is due to the movements localized from the root tip to the beginning of 

the maturation region.  
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The addition, the growth, and the elongation of new material occur at the apical 

zone of the root between the meristematic and the elongation area, allowing the 

penetration in the soil. Then, the main differentiation of cells results in the mature 

zone with also the onset of hairs and lateral roots. Thus, the growing tip could 

control, coordinate and enhance the root system development and ability to face 

and withstand the unexpected physical and chemical obstacles. In fact, roots are 

extremely smart to resist to chemical and mechanical stimuli during the growth and, 

thus, to adjust their penetration direction and ability with a wide range of “active” 

responses, e.g. through radial swelling and reduction in elongation due to a toxic 

level of salt (Li et al., 2014) and high soil impedance (A. Bengough and Mullins, 

1990), respectively. Recent studies remark that plants can be regarded as sensory 

and communicative organisms with active problem-solving behaviour, as C. 

Darwin and F. Darwin firstly hypothesised in “The power of movement in plants” 

(Darwin and Darwin, 1880; Baluška et al., 2009; Gagliano, 2017). In the latter 

manuscript a root tip that bends away when is irritated by contact is depicted 

(Figure 4.2).  

 

Figure 4.2 (a) “Vicia faba: A, radicle beginning to bend from the attached little square of card; B, 

bent at a rectangle; C, bent into a circle or loop, with the tip beginning to bend downwards through 

the action of geotropism.” from (Darwin and Darwin, 1880). (b) A Borlotti Lamon bean (Phaseolus 

vulgaris L.) exposed to light during growing in a 2D-confinement. The scale bar equals 2000 µm.  

(b) (a) 
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Therefore, we aim to reveal such adaptive behaviour through mechanical and 

surface characterization tests. In particular, we conducted dynamic indentation to 

shed light on the mechanical properties of the inner tissue and the intact root at the 

apical region. This technique allows localized measurements especially close the 

root tip, in which the standard setups for tensile test fail simply due to physical 

limitations. In addition, we performed wettability tests to investigate the capability 

of the root surface close to the root tip and seed. In the latter region, the presence 

of root hairs has a key role for the acquisition and selection of the nutrient and water 

uptake by roots.  

This Chapter is devoted to experimental activities aiming to shed light on the 

adaptive strategies of plant roots during the penetration. Specifically, the 

mechanical tests, conducted at IIT (Pontedera) and reported in this thesis, arise from 

tensile tests on plant roots driven by curiosity (performed in our laboratory). Figure 

4.3 shows different responses of root tissue close to and far from the root tip.  

In Section 4.1, we present a study on the mechanical properties of Zea mays primary 

root, at level of its outer surface, inner part, and cap, by using a dynamic indentation 

technique. Then, wettability tests were performed and reported in Section 4.2.  

  
Figure 4.3 Tensile tests performed on Zea mays primary roots: (a) close to and (b) far from the tip.  

(b) (a) 
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4.1. Dynamic Nanoindentation Tests 

4.1.1. Experimental Procedure  

The experiments were performed using 3/4-day old Zea mays L. roots. The seeds 

were placed on filter paper with tap water and kept into a growth chamber at 25˚C. 

We measured the mechanical properties in correspondence of the outer wall and 

inner core of the root by dynamic indentation technique in 1-200 Hz frequency 

range with an indenter tip of 109 µm and 198.5 µm diameter, employing an iNano 

indentation system (Nanomechanics, Inc.). We used a dynamic nanoindentation 

technique to measure the storage modulus, E’, and the loss modulus, E’’, i.e. the 

real and complex part of the complex modulus which characterizes the material’s 

ability to store and damp energy, respectively. E’ provides information about the 

material ability to store energy elastically and E’’ gives information about the 

material ability to dissipate energy (Pharr, Oliver and Brotzen, 1992; Herbert, 

Oliver and Pharr, 2008; Herbert et al., 2009). In fact, E’ and E’’ are related to the 

storage stiffness and loss stiffness of the sample, respectively. E’ is comparable to 

the Young’s modulus if damping is negligible.  

The experiments were carried out in distilled water and were made on roots (we cut 

the samples ~1cm in length from the tip) fixed on the bottom of the holder by means 

of attack (Loctite) at different distances from the tip (2, 3, 4, 5, 6, and 7 mm) in 

correspondence of the wall, the inner core, and the root cap (Figure 4.1.1, Figure 

4.1.2). Due to the complex geometry of root tip, an ad hoc sample holder with two 

inclinations was built to perform tests in the root tip area (Figure 4.1.1b). In order 

to extract the root core, we made a circumferential incision of the root at the base 

of the seed, thus the outer wall can be easily separated from the inner core (Figure 

4.1.1d). Then, we performed tests by exploiting the indenter tip of 198.5 µm 

diameter on both the intact root and the inner core and the indenter tip of 109 µm 

diameter near the root cap.  

The results and the measurements number of the nanoindentation tests along the 

three root regions are reported in Tables 3-5. Figure 4.1.3  and Figure 4.1.4 show  
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Figure 4.1.1 View of a nanoindentation experiment. a) A nanoindentation test. The zoom shows the 

indenter tip; b) and c) a sample holder used to test mechanical properties of root tissues near to the 

cap, and in outer and inner areas, respectively; d) separation procedure of the outer wall from the 

inner core.  

 

Figure 4.1.2 Schematic of the setup used for testing along the root in water at different distances from 

the tip. 
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graphical results of the storage and loss moduli for both the intact root and the 

inner tissue level. 

4.1.2. Statistical Analysis   

We performed statistical analysis to quantify the storage modulus (E’) and the loss 

modulus (E’’) changes with respect to the distance/frequency from the tip and at 

different tissue level (i.e. outer and inner tissues) for each frequency/distance.  

The most appropriate statistical method is the ANOVA test in order to assess the 

statistical significance of the different response in the measurement of the moduli 

depending on the distance from the tip, frequency and tissue level. This test assumes 

that the data in the groups at various levels of effects are normally distributed, 

statistically independent and have the same variance. However, since our data 

showed some deviations from normality and/or homoscedasticity, we also 

performed different statistical tests when appropriated: the non-parametric Kruskal-

Wallis test when the normality assumption failed, the Welch test when the data 

showed a strong heteroscedasticity.  

In this regard, we exploited the Kruskal-Wallis test and the Welch test to verify the 

significance of the storage and loss modulus measurements, respectively, at both 

the intact root and inner core. We used the one-way ANOVA to test the significance 

of the measurements near the cap for both the storage and loss moduli.  

The statistical analysis is at the 95% confidence level and performed in R.  

We obtained significant E’ difference with respect to distance from the tip (2mm-

5mm) for each frequency for both intact root and inner tissue level (Table 6). While, 

we had significant E’ differences with respect to frequency for each distance, except 

for the inner core at 2mm and 3mm from the tip and for the intact root at 2mm, 

5mm and 7mm from the tip (p > 0.05, Table 7).  

In addition, the results of the Welch tests showed significant E’’ difference with 

respect to distances from the tip (2mm-7mm) for intact root at each frequency and 

(2-5mm) for inner tissue at 1-35Hz (Table 8). Moreover, the measurements of E’’ 

changes are significant with respect to the frequency influence at both intact root 



 • Chapter 4 • Dynamic Nanoindentation Tests  

 

65 

 

and inner core at each distance from the tip, except for the inner core at 2mm-3mm 

and for the intact root at 7mm (p > 0.05, Table 9).  

The one-way ANOVA results pointed out significant E’ and E’’ differences near 

the root cap with respect to the frequency (Table 10).  

 

Table 3. Storage and loss moduli (mean value ± SD) of the root cap for all frequencies (1, 3, 10, 15, 

35, 85, 200 Hz). A total of 7 indentations on 4 roots were performed.  

Freq. (Hz) E’ (MPa) E’’ (MPa) 

200 4.23±1.53 0.61±0.22 

85 3.9±1.29 0.6±0.22 

35 3.65±1.22 0.56±0.18 

15 3.39±1.15 0.55±0.17 

10 3.27±1.13 0.55±0.16 

3 2.81±1.01 0.54±0.17 

1 2.49±0.93 0.55±0.2 
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Table 4 Storage modulus measurements (mean value ± SD) along the inner core at different 

distances from the tip (2, 3, 4, 5 mm) and the intact root tissue (2, 3, 4, 5, 6, 7 mm) for all 

frequencies (1, 3, 10, 15, 35, 85, 200 Hz). The measurements number for each distance is reported. 

Freq. 

(Hz) 

Tissue 

level 

Storage Modulus, E’ (MPa) 

2mm 

(N=15) 

3mm 

(N=15) 

4mm 

(N=15) 

5mm 

(N=15) 

6mm 

(N=10) 

7mm 

(N=10) 

200 
intact 8.06±1.95 7.28±1.41 5.94±1.39 5.23±1.51 4.4±0.9 3.86±1.03 

core 5.24±1.7 4.92±1.7 4.56±1.34 3.56±0.85 / / 

85 
intact 7.74±1.88 6.98±1.35 5.66±1.38 4.99±1.53 4.16±0.89 3.6±1.04 

core 4.97±1.66 4.65±1.29 4.27±1.06 3.4±0.83 / / 

35 

intact 7.51±1.87 6.74±1.33 5.47±1.33 4.83±1.5 4.02±0.87 3.46±1.03 

core 4.8±1.63 4.5±1.26 4.12±1.07 3.27±0.82 / / 

15 
intact 7.27±1.84 6.5±1.31 5.28±1.29 4.67±1.46 3.88±0.85 3.33±11.02 

core 4.62±1.6 4.35±1.23 3.98±1.07 3.15±1.81 / / 

10 

intact 7.16±1.82 6.39±1.3 5.19±1.26 4.59±1.44 3.81±0.84 3.27±1.01 

core 4.54±1.59 4.27±1.22 3.92±1.08 3.1±0.8 / / 

3 

intact 6.59±1.71 5.86±1.23 4.75±1.17 4.22±1.35 3.47±0.82 3±0.98 

core 4.12±1.51 3.91±1.16 3.57±1.05 2.84±0.78 / / 

1 
intact 6.13±1.65 5.46±1.18 4.42±1.13 3.95±1.31 3.18±0.85 2.79±0.98 

core 3.8±1.49 3.65±1.15 3.33±1.07 2.66±0.79 / / 
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Table 5 Loss modulus measurements (mean value ± SD) along the inner core at different distances 

from the tip (2, 3, 4, 5 mm) and the intact root tissue (2, 3, 4, 5, 6, 7 mm) for all frequencies (1, 3, 

10, 15, 35, 85, 200 Hz). The measurements number for each distance is reported. 

Freq. 

(Hz) 

Tissue 

level 

Loss Modulus, E’’ (MPa) 

2mm 

(N=15) 

3mm 

(N=15) 

4mm 

(N=15) 

5mm 

(N=15) 

6mm 

(N=10) 

7mm 

(N=10) 

200 
intact 0.49±0.07  0.48±0.08 0.42±0.12 0.34±0.1 0.34±0.09 0.34±0.07 

core 0.37± 0.12 0.36±0.12 0.36±0.08 0.3±0.09 / / 

85 
intact 0.48±0.08 0.47±0.08 0.39±0.09 0.33±0.09 0.30±0.07 0.3±0.07 

core 0.35±0.12 0.33±0.1 0.31±0.07 0.26±0.07 / / 

35 

intact 0.49±0.09 0.47±0.09 0.38±0.09 0.32±0.08 0.29±0.06 0.28±0.06 

core 0.35±0.11 0.31±0.1 0.3±0.06 0.25±0.06 / / 

15 
intact 0.51±0.11 0.49±0.09 0.4±0.09 0.34±0.09 0.3±0.067 0.27±0.05 

core 0.37±0.12 0.31±0.1 0.3±0.07 0.25±0.05 / / 

10 

intact 0.54±0.13 0.51±0.1 0.42±0.1 0.35±0.1 0.32±0.07 0.27±0.05 

core 0.38±0.14 0.32±0.1 0.31±0.07 0.26±0.05 / / 

3 

intact 0.65±0.19 0.59±0.15 0.47±0.12 0.4±0.11 0.38±0.1 0.29±0.08 

core 0.44±0.18 0.36±0.11 0.38±0.12 0.28±0.04 / / 

1 
intact 0.86±0.28 0.73±0.23 0.56±0.16 0.47±0.12 0.46±0.11 0.34±0.12 

core 0.48±0.2 0.39±0.12 0.39±0.01 0.3±0.03 / / 
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Figure 4.1.3 Plot of the mean and SD of the storage modulus at (a) the intact root and (b) the inner 

tissue.  

(a) 

(b) 
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Figure 4.1.4 Plot of the mean and SD of the loss modulus at (a) the intact root and (b) the inner 

tissue. 

(a) 

(b) 
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Table 6 Results of the Kruskal-Wallis test for the significance of the measurements of E’ obtained at 

inner and intact root outer tissue levels for each frequency at the distances of 2, 3, 4 and 5mm from 

the tip (df= degrees of freedom).  

Tissue  Freq. Kruskal-Wallis test: Storage Modulus (E’) vs Distance 

 

 

 

Inner tissue 

200Hz Kruskal-Wallis chi-squared = 12.14, df = 3, p-value = 0.006918 

85Hz Kruskal-Wallis chi-squared = 10.922, df = 3, p-value = 0.01215 

35Hz Kruskal-Wallis chi-squared = 11.256, df = 3, p-value = 0.01042 

15Hz Kruskal-Wallis chi-squared = 10.862, df = 3, p-value = 0.0125 

10Hz Kruskal-Wallis chi-squared = 10.803, df = 3, p-value = 0.01284 

3Hz Kruskal-Wallis chi-squared = 9.6728, df = 3, p-value = 0.02156 

1Hz Kruskal-Wallis chi-squared = 7.8297, df = 3, p-value = 0.04966 

 

 

 

Intact root 

200Hz Kruskal-Wallis chi-squared = 19.288, df = 3, p-value = 0.0002384 

85Hz Kruskal-Wallis chi-squared = 19.455, df = 3, p-value = 0.0002202 

35Hz Kruskal-Wallis chi-squared = 19.255, df = 3, p-value = 0.0002421 

15Hz Kruskal-Wallis chi-squared = 18.938, df = 3, p-value = 0.0002815 

10Hz Kruskal-Wallis chi-squared = 18.642, df = 3, p-value = 0.0003241 

3Hz Kruskal-Wallis chi-squared = 18.242, df = 3, p-value = 0.0003921 

1Hz Kruskal-Wallis chi-squared = 16.844, df = 3, p-value = 0.0007609 

 

Table 7 Results of the Kruskal-Wallis test for the significance of the measurements of E’ obtained at 

inner and intact root outer tissue levels for each distance from the tip at all the frequencies 200, 85, 

35, 15, 10, 3, 1Hz (df= degrees of freedom). 

Tissue  Dist. Kruskal-Wallis test: Storage Modulus (E’) vs Frequency 

 

 

Inner tissue 

 

2mm Kruskal-Wallis chi-squared = 12.128, df = 6, p-value = 0.05918 

3mm Kruskal-Wallis chi-squared = 10.091, df = 6, p-value = 0.1209 

4mm Kruskal-Wallis chi-squared = 14.486, df = 6, p-value = 0.02465 

5mm Kruskal-Wallis chi-squared = 14.025, df = 6, p-value = 0.02936 

 

 

Intact root 

2mm Kruskal-Wallis chi-squared = 10.452, df = 6, p-value = 0.1069 

3mm Kruskal-Wallis chi-squared = 25.825, df = 6, p-value = 0.0002399 

4mm Kruskal-Wallis chi-squared = 13.416, df = 6, p-value = 0.03688 

5mm Kruskal-Wallis chi-squared = 11.629, df = 6, p-value = 0.07078 

6mm Kruskal-Wallis chi-squared = 12.805, df = 6, p-value = 0.04624 

7mm Kruskal-Wallis chi-squared = 9.5971, df = 6, p-value = 0.1427 
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Table 8 Results of the Kruskal-Wallis test for the significance of the measurements of E’’ obtained 

at inner and intact root outer tissue levels for each frequency at the distances of 2, 3, 4 and 5mm 

from the tip (df= degrees of freedom). 

Tissue  Freq. Welch test: Loss Modulus (E’’) vs Distance 

 

 

 

Inner tissue 

200Hz F = 1.8818, num df = 3, denom df = 30.712, p-value = 0.1534 

85Hz F = 2.6863, num df = 3, denom df = 30.488, p-value = 0.06394 

35Hz F = 3.7163, num df = 3, denom df = 30.281, p-value = 0.02186 

15Hz F = 4.8201, num df = 3, denom df = 29.837, p-value = 0.007454 

10Hz F = 5.4988, num df = 3, denom df = 29.62, p-value = 0.003987 

3Hz F = 7.8436, num df = 3, denom df = 26.941, p-value = 0.0006412 

1Hz F = 8.6182, num df = 3, denom df = 25.923, p-value = 0.0003897 

 

 

 

Intact root 

200Hz F = 8.7583, num df = 3, denom df = 30.756, p-value = 0.0002392 

85Hz F = 11.084, num df = 3, denom df = 31.034, p-value = 4.16e-05 

35Hz F = 11.243, num df = 3, denom df = 31.098, p-value = 3.698e-05 

15Hz F = 9.9032, num df = 3, denom df = 31.043, p-value = 9.771e-05 

10Hz F = 9.6887, num df = 3, denom df = 30.981, p-value = 0.0001153 

3Hz F = 9.0686, num df = 3, denom df = 30.513, p-value = 0.0001915 

1Hz F = 10.074, num df = 3, denom df = 29.91, p-value = 9.513e-05 

 

Table 9 Results of the Kruskal-Wallis test for the significance of the measurements of E’’ obtained 

at inner and intact root outer tissue levels for each distance from the tip at all the frequencies 200, 

85, 35, 15, 10, 3, 1Hz (df= degrees of freedom). 

Tissue  Dist. Welch test: Loss Modulus (E’’) vs Frequency 

 

 

Inner tissue 

 

2mm F = 1.315, num df = 6, denom df = 43.391, p-value = 0.271 

3mm F = 1.0713, num df = 6, denom df = 43.526, p-value = 0.3943 

4mm F = 2.7377, num df = 6, denom df = 43.395, p-value = 0.0241 

5mm F = 3.1199, num df = 6, denom df = 43.106, p-value = 0.01254 

 

 

Intact root 

2mm F = 5.6909, num df = 6, denom df = 43.027, p-value = 0.0002016 

3mm F = 3.7472, num df = 6, denom df = 43.245, p-value = 0.004335 

4mm F = 3.177, num df = 6, denom df = 43.436, p-value = 0.01131 

5mm F = 3.3021, num df = 6, denom df = 43.49, p-value = 0.00913 

6mm F = 3.1782, num df = 6, denom df = 27.883, p-value = 0.01668 

7mm F = 1.5232, num df = 6, denom df = 27.841, p-value = 0.2073 
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Table 10 Results of the one-way ANOVA test for the significance of the measurements of the 

storage (E’) and loss (E’’) moduli obtained near the root cap tip at all the frequencies 200, 85, 35, 

15, 10, 3, 1Hz (Df= degrees of freedom; Sum Sq= sum square; Mean Sq= mean square).  

  Measurements near the root cap 

  Df Sum Sq Mean Sq F-value Pr(>F) 

Storage 

Modulus 

Frequency 6 15.46 2.576 1.81 0.12 

Residuals 42 59.78 1.423   

Loss 

Modulus 

Frequency 6 0.0341 0.00568 0.156 0.987 

Residuals 42 1.5275 0.03637   

 

4.2. Wettability Tests 

4.2.1. Experimental Procedure  

We tested 3/4-day old Zea mays L. roots and we proceeded with the same planting 

procedure described in the previous Section. We evaluated the wettability of the 

root surface close to both the tip and the seed, measuring the static contact angle. 

The water droplet (~0.5µl) was deposited on the surface of the root with a speed 

dispenser holder rate of 10000mm/min by using Hamilton 81434 Syringe. We 

performed measurements at the apical region and close to the seed. Since the 

presence and resistance of root hairs close to the seed, the needle of the syringe was 

immersed in the droplet in order to achieve the deposition of the water droplet 

directly on the root lateral surface. We carried out the test on intact roots without 

attack on the bottom (Figure 4.2.1). We converted the source image into a grayscale 

image with Matlab® (The Mathworks, Inc.), then we rotated and analyzed the 

images with ImageJ (see Figure 4.2.2).  

4.2.2. Contact Angle Measurements  

We obtained that the mean contact angle is 92.6°±18.3° at the apical region and 

149.4°±11.9° at the root hair zone.  

 



 • Chapter 4 • Wettability Tests  

 

73 

 

 

 

Figure 4.2.1 Overview of the contact angle measurements on the surface close to the apical and 

maturation zone. 

 

 

Figure 4.2.2 Grayscale images of the wettability experiments. We analysed the corresponding rotated 

zooms at a) the surface close to seed and b) the apical region. 
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4.3. Interpretation and Discussion  

Recently, studies on the morphological aspects of plant development reveal the 

need to better understand the connection between the biochemical variations and 

the mechanical changes of their tissues (Hamant, Traas and Boudaoud, 2010; 

Potocka and Szymanowska-Pułka, 2018). Thus, the knowledge of such features is 

required to this aim. In this regard, studies on the mechanical properties of plant 

roots have been done, e.g., to explore slope stability for crop and soil sciences. In 

fact, protocols have been developed to exploit compression, tensile, uprooting and 

AFM tests, see e.g. (Whiteley and Dexter, 1981; Loades et al., 2013, 2015; Edmaier 

et al., 2014; Peaucelle, 2014; Yang, Chen and Li, 2016). In addition, non-invasive 

imaging techniques are used to reduce possible errors in measurements (Hamza et 

al., 2006) and/or for novel experimental system (Bizet et al., 2016). In fact, the 

authors of (Bizet et al., 2016) combined a 3D live in situ imaging, kinematics and 

a novel mechanical sensor to study root tissues and root responses to axial 

mechanical forces in nutrient solution. A remaining experimental limitation is to 

characterize the mechanical properties of living tissues in soil-like environments. 

Nevertheless, such experimental investigations could quantify the functional 

importance of some key features involved into the root growth development. In this 

contest, we performed mechanical and surface characterization of root tissues. 

From a mechanical perspective, the variation of E’ at the tissue levels suggests that 

the outer and inner tissue can have a different purpose: the first plays the role of a 

coating in the overall root stiffness, while the second can be seen as a “soft 

skeleton” in the root structure (Figure 4.3.1a-c, images of fracture due to 

manipulation of the root tissues are in Figure 4.3.2). More interestingly, the 

localization of the sensory and motor tissue at the apical region could lead to several 

classes of movements, such as circumnavigation to avoid obstacles (e.g. see 

(Popova, Tonazzini, et al., 2016)). The investigation of curvatures produced by 

stimuli has been investigated by C. Darwin and F. Darwin. They showed that the  
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Figure 4.3.1 A 3/4-day old Zea mays L. root, scale bar: 5mm. (a) The apical zone is the most sensitive 

region of the root. Cell division and elongation occur at the apical region and allow the root to move 

and grow into the soil. The cell division is slower in the quiescent centre, then the cells mainly elongate 

and differentiate in the elongation zone. The root cap has the role of protection from the surrounding 

soil; (b) Fracture of the outer wall and intact inner core; (c) Twist of the inner core; (d) Water and 

nutrients can move across the root through different internal pathways: Apoplast, Transmembrane, 

and Symplast pathways. In this regard, the Casparian strip is in the Apoplast pathway, limiting the 

water and solute movement due to the presence of suberin (image from (Taiz and Zeiger, 1991)).  

The scale bar equals 1000µm in a-c.  

sensitiveness of tip transmits the curvature movement to the upper part starting 

from 6 mm from the tip (Darwin and Darwin, 1880). In this regard, the mechanism 

of root curvature can be allowed due to the increase of softness with the increase of 

the distance from the tip (Table 4). Moreover, the authors of (Bizet et al., 2016) 

show the presence of mechanical weakness for bending between the growing and 

the mature zones in poplar roots during the growth in nutrient solution. In addition, 

by comparing the second moment of inertia of a solid and a hollow cylindrical beam 

(𝐼𝑠 and 𝐼𝐻, respectively) representing the inner and outer tissues (in similar way of 

(Niklas, 1999)), it holds   
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𝐼𝑠 =
𝜋

4
 𝑅𝑖
4  and  𝐼𝐻 =

𝜋

4
 (𝑅𝑜

4 − 𝑅𝑖
4)  ⇒  

𝐼𝐻 

𝐼𝑠
= 𝜒4 − 1,

𝑅𝑜
𝑅𝑖
=  𝜒  with  𝜒 > 1, 

where 𝑅𝑜 is the outer radius of the intact root and 𝑅𝑖 is the radius of the root inner 

core. Therefore, the outer wall could increase the stiffness of the inner core by 

providing a greater withstanding bending forces to the intact root. In addition, by 

comparing the second moment of inertia of the intact root, 𝐼𝑅, and the outer wall, 

𝐼𝐻 , it results 𝐼𝑅 𝐼𝐻⁄ = 1 − 1 𝜒4⁄ . Thus, for 𝜒 ≫ 1 , it holds that 𝐼𝑅 

tends 𝐼𝐻 and 𝐼𝐻 ≫ 𝐼𝑆, i.e. the amount of outer wall could significantly increase its 

role in the stiffening of the whole root structure when the inner core radius is 

negligible with respect to the root radius. Since the cell differentiation arises more 

clearly with the increase of the distance from the tip, the difference between the 

inner and outer tissues increases with the increase of the distance to the root tip. 

Thus, the growing zone close to the root tip could be represented by the limiting 

case 𝜒 ≫ 1.  

 

Figure 4.3.2 Images of fracture due to manipulation of the root tissues of the whole root a) and of the 

inner skeleton b). The tightening of the knot without fracture of the tissue is possible only at the inner 

tissue level. 

In addition, another interesting feature to investigate is the distribution of 

specialized absorbing surface along the root. We found that the apical region seems 
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to be a surface with low wettability (92.6°±18.3°) and the root hair zone is a highly 

hydrophobic surface (149.4°±11.9°). The apical zone is permeable to water, while 

the increase in the distance from the tip leads to a higher presence of suberin, i.e. 

hydrophobic matter (Taiz and Zeiger, 1991). In addition, the authors of (Otten and 

Herminghaus, 2004) show that the presence of additional elastic hair-like structures 

covering a substrate could allow to exhibit superhydrophobic behaviour in Lady’s 

Mantle leaves, even though the hairs are hydrophilic (Jiang and Feng, 2010). In 

fact, the bundle formation of hairs and thus its elasticity develop a repulsive 

interaction between the surface and the water/air interface with elastic energy costs. 

By considering the height of the bundle, h, they propose the elastic energy 

contribution  

Γ ∝ (𝐸ℎ𝑎𝑖𝑟𝑠 ∙ ℎ
−1)1 2⁄  , 

where 𝐸ℎ𝑎𝑖𝑟𝑠  is the hairs Young modulus (Otten and Herminghaus, 2004). In 

addition, the author of (Bernardino, Blickle and Dietrich, 2010) show that 

hydrophobicity with hydrophilic hairs is difficult to gain (e.g. see also (Mock et al., 

2005)) and the hairs elasticity does not provide such behaviour in the Lady’s Mantle 

leaves, i.e. the elastic energy may not counterbalance the wetting energy. However, 

they do not exclude that the hairs flexibility has a key role in wetting phenomena, 

e.g. the water droplet bends the hairs, thus a metastable Cassie state is observed. 

During our experiments the buckling of the root hairs occurs due to the deposition 

of the water droplet. Thus, the root hairs not only extend the absorbing surface of 

the root but they could have also a key role as an amplifier for hydrophobicity with 

an air-solid state in the measurements of the contact angle (Otten and Herminghaus, 

2004; Bernardino, Blickle and Dietrich, 2010; Jiang and Feng, 2010), i.e. the water 

drop sits on the roughness given by the root hairs (Figure 4.3.3, Figure 4.3.4). Since 

the hairs height and distribution along the root surface increase with increasing the 

distance from the root tip, the influence of these additional parameters on the 

hydrophobicity increases close the plant seed (Figure 4.3.5). The determination of 

factors that activate the adaptive strategies of plants could have a great potential to 
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be used in several applications, e.g. a recent study remarks the crucial role of the 

hairy surfaces in the separation of oil/water mixtures (Kavalenka et al., 2017; 

Zeiger et al., 2017). Moreover, it could be useful to exploit not only both the 

mechanical and wettability properties to design robots for selective absorption but 

also the internal transport of nutrients and water (Figure 4.3.1d) through the inner 

skeleton. Therefore, the inspiration from Nature could be essential for technologies 

that aim to the recycling and re-use bringing benefits to both environment and 

economy.  

 

 

Figure 4.3.3 An example of water drops sitting on root hairs (on the left) with its schematic diagram 

(on the right). The surface close to the seed is covered with dense root hairs. Thus, the hydrophobic 

properties could be strengthened by surfaces textures and amplified by the presence of the root hairs. 

Moreover, an air-solid state could arise from root hairs due to the air trapped below the drop.  
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Figure 4.3.4 Images showing an air-solid state arising from the presence of root hairs on the surface 

close to the seed (observations on N=6 samples).  
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Figure 4.3.5 Droplets with different shapes along a plant root due to the variation of the height and 

distribution of hairs on the root surface.  
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Chapter 5  

5. Plant Roots Growth in Photoelastic Gelatine  

Plant roots represent an excellent example of successful soil penetration and 

exploration strategies (Popova, van Dusschoten, et al., 2016). Roots can efficiently 

penetrate the substrate and perform key functions for growth and survival (Gilroy 

and Masson, 2008). Since the mechanical properties of the growth medium 

influence the  plant root growth, the interest on the development of non-invasively 

technique to observe root growth is increasing (Kolb, Hartmann and Genet, 2012; 

Silverberg et al., 2012; Tan et al., 2015; Keyes et al., 2016; Popova, van 

Dusschoten, et al., 2016; Zha et al., 2016). Because of its transparency, artificial 

substrates, e.g. agar and hydrogel, are mainly adopted to directly observe the root 

growth (Silverberg et al., 2012; Tan et al., 2015; Zha et al., 2016). In addition, the 

development of novel non-invasive imaging techniques has a high significance to 

capture a more complete feedback between roots development and soil properties, 

see e.g. (Keyes et al., 2016; Popova, van Dusschoten, et al., 2016; Colombi et al., 

2017). In fact, in (Popova, van Dusschoten, et al., 2016) a novel 3-D imaging 

technique, MRI, to dynamically and non–invasively investigate the influence of 

physical soil properties on root growth in non–transparent media has been 

developed. Photoelasticity can be a further powerful technique to observe the 

penetration strategies of plant roots. Photoelastic stress analysis is a technique once 

widely employed by engineers to observe stress patterns (Durelli and Riley, 1965). 

Moreover, the use of photoelasticity have been used also to visualize and analyse 

the strain in medical applications, see e.g.  (Tomlinson and Taylor, 2015). In 

(Tomlinson and Taylor, 2015) gelatine mixed with glycerin was used for the 

photoelastic tests as a starting point for needle insertion. In early works forces 

exerted by moving organisms have been quantitatively measured by means of 

photoelasticity, e.g. (Harris, 1978; Full, Yamauchi and Jindrich, 1995; Goldman 

and Hu, 2010; Hu, David and Shelley, 2012; Dorgan, Law and Rouse, 2013; 
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Mirbagheri et al., 2015). This technique is non-invasive and requires minimal 

equipment for both dynamic measurements of forces exerted by moving organisms 

(Harris, 1978) and direct observation of the phenomenon. In fact, gelatine has been 

used to study animals locomotion, e.g. in (Dorgan, Arwade and Jumars, 2007) 

gelatine mimics muddy sediments. Nonetheless, the photoelastic technique is also 

applied to living organisms in granular substrates (Kolb, Hartmann and Genet, 

2012; Wendell et al., 2012; Mirbagheri et al., 2015). Previous studies on plant root 

growth have exploited photoelastic soils by means of granular systems where 

photoelastic grains are used to visualize and quantify the local forces in the system 

(Kolb, Hartmann and Genet, 2012; Wendell et al., 2012). This Chapter describes 

the application of photoelasticity to the plant root growth in photoelastic 

homogeneous medium. When small forces are exerted, small stresses can be 

generated, thus only low fringe orders can be seen as in the case of plant root 

growth. Therefore, we exploited the fringe multiplication applied to the study of 

plant roots growing in edible gelatine. The fringe multiplication technique is 

especially useful for increasing the observable fringe orders. In fact, D. Post 

demonstrated the potential of the fringe multiplier, which consists of two partial 

mirrors at the front and rear of the specimen into a traditional polariscope (see e.g. 

(Post, 1955, 1966, 1970)). Fringe multiplication is a full-field compensation 

technique where the fringe fractional orders can be estimated simultaneously at all 

points on the sample (Dally and Riley, 1991). This technique may provide further 

insights into the forces exerted during root growing and bending. Since plant roots 

have great ability to explore and respond to environmental stimuli, a root-like 

growing device represents a translation of biological concepts into an engineering 

system not only for soil penetration but also for biomedical applications. In fact, 

the needle insertion (e.g. epidural puncture), guidance problems deep in the body 

require relatively large distance to be travelled, to penetrate and to be in close 

contact with tissues with different layer properties (e.g. from a hard to a soft layer). 

Minimally invasive penetrations may be achieved by controlling feed position or 

velocity using a highly sensitised tip as analogue of root tip to detect mechanical 
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properties of the surrounding medium. Therefore, a microdrilling that adapts to the 

surrounding environment and is able to avoid obstacles offers potential for 

improved surgery in areas of difficult access (Brett et al., 1995).  

5.1. Photoelasticity  

We report a brief description of the photoelasticity principles in this Section and 

fringe multiplication in Section 5.2. For more details on the theory about 

photoelastic techniques we refer the reader to e.g. the book Experimental Stress 

Analysis by Dally and Riley (Dally and Riley, 1991).  

Light propagates in free space with a velocity, 𝑐, approximately of 3 × 108𝑚/𝑠 

and in any other bodies with a lower velocity, 𝑣 . The ratio between the two 

velocities is called index of refraction, 𝑛 =  𝑐 𝑣⁄ . When a ray of light enters in 

optically isotropic materials, the refractive index does not depend upon the 

direction of propagation or the plane of vibration. While optically anisotropic 

bodies have different indices of refraction in each of the two mutually-

perpendicular planes in which the light may vibrate. Such materials are named 

birefringent. It is possible to obtain a temporary or artificial birefringence in certain 

bodies. In fact, many non-crystalline transparent materials are ordinarily optically 

isotropic and become anisotropic only during the application of external forces, i.e. 

it is temporarily birefringent. Such materials have photoelastic behaviour and are 

called photoelastic materials.  

When a polarized light4 pass through the body of thickness h, and it is divided into 

two components rays that are linearly polarized at right angles to each other, 

propagating with different velocities. Therefore, the relative retardation between 

the two rays is  

                                                           
4 A polarized light emits waves in which the vibrations occur in a single plane. While, an 

ordinary light source emits waves that are vibrating in more than one plane (e.g. the light 

emitted by the sun and by a lamp).  
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𝛿 = 𝑐 (
ℎ

𝑣1
+

ℎ

𝑣2
) = ℎ(𝑛1 − 𝑛2), 

where ℎ/𝑣𝑖 = 𝑡𝑖  is the time necessary of the i-th ray to cross the body, 𝑣𝑖 , 𝑛𝑖 

represent the velocity of propagation and the refractive index of the i-th ray, 

respectively, with i =1, 2. Thus, the phase difference of the light components 

emerging is given by  

∆=
2𝜋

𝜆
 (𝑡2 − 𝑡1) =

2𝜋

𝜆
 ℎ(𝑛1 − 𝑛2),  

where 𝜆 is the wavelength of the light being used.  

In 1816 David Brewster discovered that “the relative change in index of refraction 

is proportional to the difference of principal strain”. Then, Neumann and Maxwell 

studied the phenomenon of temporary birefringence and gave analogous relations 

in the case of linearly elastic materials. Thus, by restricting to linear elasticity, the 

following relationships between indices of refraction and applied loads  

𝑛1 − 𝑛0 = 𝑐1𝜎1 + 𝑐2(𝜎2 + 𝜎3),

𝑛2 − 𝑛0 = 𝑐1𝜎2 + 𝑐2(𝜎3 + 𝜎1),

𝑛3 − 𝑛0 = 𝑐1𝜎3 + 𝑐2(𝜎1 + 𝜎2),

 

hold, where 𝑛0 is the index of refraction of the material in the unstressed state, 

𝑛1,𝑛2, 𝑛3  are the principal refractive indices along the principal stress direction 

𝜎1, 𝜎2, 𝜎3, and 𝑐1, 𝑐2 are constants depending on the material, namely stress-optic 

coefficients.  

By subtracting the previous equation member to member and exploiting the 

relationship between the phase difference and the indices of refraction, in the case 

of two-dimensional or plane stress problems (e.g. 𝜎3 = 0), it holds  

Δ =
2𝜋 ℎ𝐶

𝜆
(𝜎1 − 𝜎2),  
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where 𝐶 = 𝑐2 − 𝑐1  represents the relative stress-optic coefficient ([𝐶]  =

1 Brewster =  10−12
m2

N
= 10−6

1

MPa
).  

Let 𝑁 = 
Δ

2𝜋
 be the fractional phase shift (fringe order) and 𝑓𝜎 =

𝜆

𝐶
 be a property of 

the material for a given wavelength (material fringe value), we can rewrite the latter 

equation as  

(𝜎1 − 𝜎2) =  
𝑁𝑓𝜎
ℎ
.  

If the value of N can be measured and 𝑓𝜎 can be determined through calibration, the 

stress difference 𝜎1 − 𝜎2 can be estimated.  

The purpose of the polariscope is to determine the value of N at each point in the 

material. When the stressed material is placed into a polariscope, a pattern of bands 

is observed due to the applied loads. The bands are coloured or dark/light whether 

the sample is subjected to white or monochromatic light source, respectively. The 

displayed bands are named fringes, which provide the value of N throughout the 

material. The number of fringes increases in proportion to the applied forces.  

A circular polariscope consist of a light source, two lenses, two polarizer filters and 

two quarter-wave plates (Figure 5.1.1). The observed fringe pattern is called 

isochromatic fringes and the intensity of the light emerging from the circular 

polariscope is given by   

𝐼 = 𝑎2 sin2
∆

2
,  

where a is the amplitude of the wave. Therefore, the intensity of light depends only 

on the difference 𝜎1 − 𝜎2  and the formation of black bands in the photoelastic 

pattern  
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Figure 5.1.1 A circular polariscope diagram. The polarizer divides the incident light waves into 

vertical and horizontal components and transmit only the components parallel to the axis of 

polarization of the filter. The quarter-wave plate is like a photoelastic material having N=1/4 and its 

principal axis are oriented at an angle of 45° to the axis of the polarizer. 𝛼 is the angle between the 

principal stress direction,  𝜎1 and 𝜎2, at the point under consideration in the material and the axis of 

polarization of the polarizer.  

represents the extinction of the used monochromatic light, i.e. 
∆

2
= 𝑛 𝜋 , 𝑛 =

0, 1, 2,… . The observed pattern is referred as isochromatic fringe pattern. The 

circular polariscope can be employed with either the polarization axis of the 

polarizer and analyser crossed (dark field) or parallel (light field). In the first 

arrangement the order of fringes, N, coincides with n, while in the second 

arrangement the order of fringe is 𝑁 =
1

2
+ 𝑛.   

By removing the two quarter-wave plates from the circular polariscope, we obtain 

a plane polariscope. In this system the intensity of the emerging light in the dark 

field arrangement is  

𝐼 = 𝑎2 sin2 2𝛼 sin2
∆

2
,  

where 𝛼  is the angle between the principal stress direction at the point under 

consideration in the material and the axis of polarization of the polarizer. Thus, the 

extinction of the light depends on both the principal stress directions and the 

principal stress difference 𝜎1 − 𝜎2 . The fringe pattern produced by  sin2 2𝛼  is 

named isoclinic fringe pattern. Since the principal stress directions and 𝜎1 − 𝜎2 

generally change with the point under consideration, in a plane polariscope a 
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superimposition of the isoclinic and isochromatic fringe pattern can be observed. 

Therefore, the circular polariscope is more used because it eliminates the isoclinic 

fringe pattern and maintains the isochromatic pattern.  

5.2. Fringe Multiplication and Experimental Setup  

The scope of the fringe multiplier is to increase the sensitivity of the polariscope. 

The optical system for fringe multiplication technique consists of a circular 

polariscope with the addition of a partial mirror on each side of the specimen as 

shown in Figure 5.3.2. The mirrors are slightly inclined, so that the light rays 

emerge in slightly different directions according to their number of passages 

through the sample. Light passing back and forth through the sample model is 

converged to different points corresponding to a specific fringe multiplication. A 

diaphragm stop is placed to eliminate the unwanted light beams except the specific 

one carrying the desired multiplication pattern to pass.  

Therefore, by considering the multiplication of fringes m times, the intensity of 

light in the dark field arrangement is  

𝐼 = 𝑎2 𝑇2𝑅𝑚−1sin2
∆

2
,  

where R, T are the light reflection and transmission of the employed partial mirrors, 

respectively. Thus, we have the value of fringe number is Nm = ∆/2π = k/m, k = 0, 

1, 2, ….  

The developed optical system for fringe multiplication technique consists of a green 

led as light source (with a wavelength of approximately 520-530nm), two lenses 

(AGL-50-39P and S-SLB-50-100P, OptoSigma Europe), two quarter-wave plates 

(WP140HE, ITOS), and two linear polarizing sheets (Polaroid XP44-40, ITOS). 

We selected partial mirrors that reflect about 50% of the incident light and transmit 

about 50% (Eksma Optics - Optolita UAB). Therefore, the optimum multiplication 

factor of the selected mirrors is m=3, i.e. the loss in intensity is minimized. Since 

the difference 𝜎1 − 𝜎2 is directly proportional to the applied load for a circular disk 
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under diametric compression, we exploited this case to verify the fringe 

multiplication technique. Figure 5.2.1 shows the isochromatic pattern observed in 

a birefringent circular disk under diametric compression with the fringe 

multiplication technique.  

We tested root growth in edible gelatine using a modified optical system for fringe 

multiplication to control the plant roots not only at constant time interval, but also 

at constant interval of light (Memo DW E - Vemer S.p.A.). In fact, the plant was 

firstly tested by keeping a light on, then 3 and 1 minutes of light every 15 minutes 

for all the experiment duration.   

 

Figure 5.2.1 Isochromatic patterns observed in a birefringent circular disk under diametric 

compression. (a) ordinary isochromatic pattern; (b) ordinary isochromatic pattern by increasing three 

times the applied load; (c) three times multiplication by applying the same load as in (a). 

5.3. Planting and Gelatine Preparation  

We tested 3/4-day old Borlotti beans (Phaseolus vulgaris L.). The seed were grown 

in tap water and kept at ~25˚C.  

The birefringent soil medium was prepared by using ~2.2gr of edible gelatine in 

~50ml of boiled water. Higher concentrations of gelatine lead to an excessive and 

premature growth of fractures during the experiments, thus hiding the photoelastic 

fringes. The gelatine was placed in two types of plastic boxes (Figure 5.3.1). After 

3/4 days, plants with root grown straight and of ~2 cm length were selected, 

transplanted into the gelatine, and placed into the photoelastic setup as in Figure 

5.3.2.  Therefore, the growth time t = 0 is referred to the starting time of the 

photoelastic experiment, i.e. the sample is a 3/4-day old primary root at t = 0.  

(a)  (b)  (c)  
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Figure 5.3.1 The plants grow in two possible types of plastic boxes. (a) The box is open at the top and 

close at the bottom; (b) The box is close at the top and open to the bottom to allow the possibility to 

extend the surface as the configuration (c), by placing a box of type (a) beside a box of type (b).  

(a) (b) (c) 
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Figure 5.3.2 (a) The optical system for fringe multiplication technique and (b) its schematic diagram 

(modified image from (Doyle and Phillips, 1989)). S – Light Source; L – Lens; P – Polarizer; λ/4 – 

Quarter-wave plate; A – Analyzer. 

(b) 

(a) 
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Figure 5.3.3 Isochromatic patterns developed by a Borlotti root (Phaseolus vulgaris) in edible gelatine 

illustrating photoelastic fringe multiplication by factors of (a) 1 and (b) 3. (c) The corresponding 

lateral view of the plant roots in the photoelastic set-up after 3 days 1h from the beginning of the 

photoelastic experiment.  

(a) (b) (c) 
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Figure 5.3.4 Development of a Borlotti root (Phaseolus vulgaris) in edible gelatine at different growth 

times with the root tested by keeping the light on during the all duration of the experiment. See Figure 

5.3.3c for the lateral view of the root at t ~ 3 days 1h. The growth time t =0 is the starting time of the 

photoelastic experiment, i.e. the sample is a 3/4-day old primary root.  

t = 0 t ~ 4h t ~ 1 day 4h 

t ~ 2 days 4h t ~ 2 days 7h t ~ 3 days 1h 
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Figure 5.3.5 Development of a Borlotti root (Phaseolus vulgaris) in edible gelatine at different growth 

times with the root tested by keeping the light on for 3 minutes of light every 15 minutes for all the 

experiment duration. On the right the corresponding lateral view of the plant roots in the photoelastic 

set-up after 3 days 15h from the beginning of the photoelastic experiment. 

 
Figure 5.3.6 Development of a Borlotti root (Phaseolus vulgaris) in edible gelatine at different growth 

times with the root tested by keeping the light on for 1 minutes of light every 15 minutes for all the 

experiment duration. On the right the corresponding lateral view of the plant roots in the photoelastic 

set-up at t ~ 3 days 18h from the beginning of the photoelastic experiment and just before the arise of 

the fracture inside the gelatine.  

t ~ 2 days 7h t ~ 2 days 12h t ~ 2 days 14h 

t ~ 2 days 21h t ~ 3 days 9h t ~ 3 days 15h 

t ~ 4 days  

t ~ 3 days 9h 

Fracture  
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5.4. Interpretation and Discussion    

We firstly perform preliminary tests to investigate and choose a proper gelatine 

concentration and a growing method with the polariscope of our laboratory (the 

polariscope has been designed and manufactured at the University of Trento and 

used e.g. in (Noselli, Dal Corso and Bigoni, 2010; Misseroni et al., 2014), see 

http://ssmg.unitn.it/ for more details). Then, we set up the optical system for fringe 

multiplication in order to increase a number of observable fringe order. We applied 

the fringe multiplication to the study of plant roots growing in edible gelatine. We 

collected the pictures into videos, by monitoring the growth of plant roots in the 

fringe multiplication set up keeping the light on at three different time intervals. 

We firstly tested keeping the light on for all the duration of the experiment. In this 

configuration, roots exhibited an inversion of growth direction with respect to 

gravity (Figure 5.3.3, Figure 5.3.4). To verify if the light exposition time could be 

a possible consequence of such phenomenon, we modified the photoelastic set-up 

to perform the experiments with 3 minutes and 1 minute of light every 15 minutes 

for all the experiment duration (Figure 5.3.5 and Figure 5.3.6, respectively). Figure 

5.3.6 shows the method with 1 minute of light every 15 minutes may result less 

invasive at reversing the green light response of the root with respect the other two 

methods.  

To give a descriptive explanation of the presence of homogeneous fringes along the 

root lateral surface, we exploited the theoretical model developed in Chapter 2 with 

the growth data of Phytagel E. In fact, by consider the root growth as consecutive 

cycles of Fracture and Regrowth as in Chapter 2 and through the experimental 

position of the first fringe, we can obtain an estimated value of the fringe constant 

fσ, e.g. at the end of the FRC. The variation of the first fringe position along the root 

lateral surface during a FRC is given by Figure 5.4.1. Then, the increase of fringes 

along the lateral surface of the root is due to the simultaneous growth of lateral 

roots and fractures of the gelatine (Figure 5.3.3c). We are aware that both the 

theoretical model and the photoelastic technique do not take into account all the 

http://ssmg.unitn.it/
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possible phenomena involved in the interaction between the plant root and soil 

medium, e.g. dewatering. In spite of their limitations, these studies could pay the 

way to give further insight on better understanding such physical phenomenon. 

Further experiments should be conducted to determine e.g. whether the dewatering 

of the soil can modify the fringe constant due to the presence of the plant root.  

 

Figure 5.4.1 The evolution of the first fringe during the FRC by applying the growth model in Chapter 

2 to the growth data (Phytagel E), by using fσ= 5.22 N/m.   
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Chapter 6   

6. Conclusion and Future Perspective  

Animals and plants are in direct contact with the environment and have to face 

continuously several unexpected constraints and changes. On this basis, the 

exploitation of the movement efficiency adopted by Nature could be a key feature 

to provide new bioinspired concepts. Therefore, the interest of science and 

engineering is increasing to understand the principles exploited by Nature.  

The present thesis aims at creating a synergy between different fields, such as 

biology, engineering and mathematics in order to investigate on the adaptive 

strategies adopted by plant roots for new potential devices. In particular, 

mathematical models applied to plant science can be crucial for both explaining 

biological phenomena and better designing robotic systems enabled with 

penetration capabilities and adaptive movements. There is a great potential for a 

possible extension of such models to develop new methodologies for robots with 

adaptive movements based on soft materials. In the present work, both the 

theoretical and experimental studies could lead to deeper investigations to gain a 

better understanding of the adaptive strategies of plant roots to the outer stimuli.  

In Chapter 2, we studied the growth of plant roots in artificial and real soils. Since 

the ability of plant roots to penetrate soils is affected by the mechanical stresses 

exerted by the surrounding medium, we investigated and modelled the 

biomechanical response of the Zea mays L. primary roots, grown in soils with 

different impedances. In this regard, we developed a growth mathematical model 

based on a modified version of the extended universal law of West, Brown, and 

Enquist. Our model, in agreement with our experimental results, showed a different 

root elongation compared to data from both real and artificial soil by varying the 

soil medium compactness.  
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Then, in Chapter 3 we extended the mathematical model, developed in Chapter 2, 

to the growth of plant roots in artificial soils with different concentrations of 

nutrient. In order to avoid the soil heterogeneity, we used experiments in artificial 

soil with only the presence of different nutrient stimuli. In fact, we proposed a 

model, in combination with experimental data, in order to better understand the 

adaptation process of roots in presence of high nutrient concentrations. Our findings 

indicated that the root length decreases whereas its radius increases in higher 

nutrient concentration. The theoretical framework aims at coupling continuum 

mechanics with plant roots response to nutrient availability.  

Understanding the mechanisms that control root growth is essential to model the 

key biological processes and translate them into possible bio-inspired engineering 

applications. Therefore, the two theoretical studies may provide further insights 

into the adaptive ability of plant roots at various impedance and nutrient constraints 

and could be improved by including and considering a more complete and complex 

scenario of the root growth inside a soil medium.  

In addition, some theories and hypotheses about the function of the root tip and the 

mechanism of transmitted stimuli by the tip along the whole root have not been 

completely understood and explained. The investigation of how the mechanical and 

surface properties could vary with respect to the outer stimuli is closely related to 

the role of root tip as a “motor zone” (Dougal, 1987). Thus, in Chapter 4, we used 

the dynamic nanoindentation technique and wettability tests to study the 

mechanical properties and surface features of Zea mays L. root tissues. As new cells 

are continuously created in the apical region, the cellular differentiation is at an 

early stage, close to the root tip. Therefore, the results of the mechanical tests could 

reveal root penetration strategies during the growth from the tip. The combination 

of soft and stiff materials may enhance plant roots to simultaneously penetrate and 

adapt to soil constraints. Accordingly, this experimental study could improve the 

current knowledge in the tip function to control the adaptive mechanisms for the 

development of bioinspired engineering applications. Future developments will be 
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the study of the whole plant tissues in various plant species in order to gain a better 

understanding of the role of mechanical tissue properties in penetrating soil at 

different outer stimuli.  

Finally, in Chapter 5, we presented a set-up for the primary root growth in 

homogeneous birefringent media using photoelastic technique. An accurate picture 

of stress distribution at various points in a photoelastic material can be determined, 

by studying the fringe pattern by means of photoelastic technique. Several attempts 

have been made due to the difficulties of controlling bacterial activities and gelatine 

concentration. Lastly, we obtained a working method to use edible gelatine as a 

growing medium for Phaseolus vulgaris primary roots. We selected optical 

products for the fringe multiplication technique in order to improve the results on 

observable fringe order. Further experiments, exploiting the created non-standard 

boxes, could be useful to investigate how the penetration angle of the root could 

evolve during the penetration with different soil constraints, e.g. as the tip-to-barrier 

angle (observed in (Popova, Tonazzini, et al., 2016)). This study showed that 

photoelasticity may be an alternative and potentially useful technique to investigate 

the primary root growth. In fact, despite its exploratory nature, this study could 

offer some insights into the stress distribution developed by roots inside a 

birefringent medium thanks to the monitoring of the root growth by keeping the 

light on at different time interval.  
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Appendix    

A. Additional Related Activity: Load Sensor Instability 

in MEMS-based Tensile Testing Devices  

Quantitative and qualitative approaches involve experiments at the different length 

scales from micro/nanoscale to macroscale in the context of biomechanics and 

biomimetics.  

The ability of animal and plant movements and how their tissues adapt to external 

constraints and changes can be collected through experimental data. Experimental 

methods can be tissue mechanical tests and surface properties characterizations. 

Mechanical tests include nanoindentation, tensile and compression tests that 

provide information about the strength, stiffness, and hardness of the considered 

tissues. Indeed, such properties affect the ability of the whole animal/plant structure 

to perform specific movements. The aim of such experiments is to unlock the 

secrets of the biological tissue structures that could significantly affect the stability 

of movements and anchorage. While the second type of characterization will 

provide information about wettability and adhesion of the tissue during a specific 

movement. To this aim direct measurements of animal ground forces and plant 

ground anchorages can be carried out by means of force sensors and tracking tools 

to study the adaptive movement ability of plants and animals as a whole, see e.g. 

the Full and Tu force platform at Berkeley (Bartsch et al., 2001, 2003, 2007), the 

Bending-Lab-On-Chip and the Electrical Lab-on-Chip (Nezhad et al., 2013; 

Agudelo, Packirisamy and Geitmann, 2016). In addition, mathematical modelling 

is useful to analyse and verify the plausibility of experimental findings. Theoretical 

frameworks have a key role to highlight and explain natural phenomena in several 

fields. Moreover, an analytical approach can be useful in potential predictions for 

performances of bio- and non-bioinspired devices. In fact, dynamical systems 

theory could shed light on the potential implementation of strategies adopted by 

Nature into the physical key parameters of novel devices, e.g. to prevent the 
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possible onset of instability in devices during measurements (Agrawal, Peng and 

Espinosa, 2009).  

 In this regard, MEMS-based tensile testing devices are very powerful tools for 

mechanical characterization of nanoscale materials, as they allow for testing of 

micro/nano-sized components in situ electron microscopes. In a typical 

configuration, they consist of an actuator, to deliver force/displacement, and a load 

sensor, which is connected to the sample like springs in series. Such configuration, 

while providing a high-resolution force measurement, can cause the onset of 

instability phenomena, which can later compromise the test validity. In the present 

Chapter, such phenomena are quantitatively discussed through the development of 

an analytical model, which allows to find a relationship between the rise of 

instability and the sensor stiffness, which is the key parameter to be optimized. In 

addition, a potential bio-inspired design can be an effective solution to avoid such 

instability phenomena.  

The work in this Chapter arises from the collaboration with Dr. Ing. Maria Fiorella 

Pantano of the University of Trento.  

Analytical modeling of MEMS-based tensile testing devices 

In most of MEMS tensile testing devices, the load sensor and the sample to be tested 

are connected like springs in series, as in the lumped parameters model reported in 

Figure A.1a. This is a 2-degrees-of-freedom system, where the sample is 

represented as a spring with a generic characteristic (its mass is negligible with 

respect to that of the load sensor), while the load sensor is modeled through a mass 

(MLS) connected to the substrate through a damper (with damping constant D) and 

a spring (with spring constant kLS). The sample undergoes a displacement xS, as a 

consequence of the actuator movement (not reported in the present model), whereas 

xLS is the load sensor's displacement.  

For simplicity, let us first neglect both the damping and inertial contribution, and 

let us evaluate the global force-displacement relationship characterizing the system 

comprising the load sensor and sample springs (Figure A.1b). 
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Figure A.1 a) Lumped parameters model of a typical tensile testing device, where the sample can be 

modeled like a spring whose characteristic shows a softening branch; b) Global behavior of the system 

consisting of both the load sensor and the sample, showing the relationship between the force (F) 

corresponding to the applied displacement (xS). When the sample enters in the softening regime, F 

may increase (line a)) or decrease (either line b) or c)) with xS, depending on the magnitude of the 

slope of the sample characteristic, ∂F/∂(xS-xLS), compared to the load sensor stiffness, kLS. In 

particular, line b) corresponds to ∂F/∂(xS-xLS)<0 and kLS>|∂F/∂(xS-xLS)|, c) ∂F/∂(xS-xLS)<0 and 

kLS<|∂F/∂(xS-xLS)|. In order to evaluate the stability of the equilibrium position of the load sensor, its 

dynamic behavior can be linearized and modeled about such position through a Jacobian matrix. c) 

The sign of the trace, τ, and the determinant, Δ, of the Jacobian matrix determine the stability of the 

equilibrium point. 

 

Global system behavior 

The overall deformation undergone by the system is xS=xLS+ (xS-xLS), where xLS is 

the load sensor deformation and (xS-xLS) the sample deformation. If infinitely small 

displacements are considered, the overall system deformation becomes: 

𝑑𝑥𝑆 = 𝑑𝑥𝐿𝑆 + 𝑑(𝑥𝑆  − 𝑥𝐿𝑆).                                                                                        (A1) 

Since kLS is the load sensor spring constant, then dxLS=dF/kLS. If a general 

characteristic is assumed for the sample, it follows that 𝑑(𝑥𝑆 − 𝑥𝐿𝑆) =

𝜕(𝑥𝑆 − 𝑥𝐿𝑆) 𝜕𝐹⁄ 𝑑𝐹, where dF is the force acting on the system, which is the same 

on both the sample and load sensor (since they are connected in series). Thus, eq. 

(A1) can be rewritten as: 
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𝑑𝑥𝑆 =
𝑑𝐹

𝑘𝐿𝑆
+
𝜕(𝑥𝑆  − 𝑥𝐿𝑆)

𝜕𝐹
dF ,                                                                                    (A2) 

or, 

 

𝑑𝑥𝑆
𝑑𝐹

=
1

𝑘𝐿𝑆
+
𝜕(𝑥𝑆  − 𝑥𝐿𝑆)

𝜕𝐹
 .                                                                                         (A3) 

 

At the beginning, the sample characteristic has a linear increasing trend, (e.g., ∂(xS-

xLS)/∂F or ∂F/∂(xS-xLS) are constant, and the sample can be modeled like a linear 

spring), and the slope of the system characteristic (∂F/∂xS) is equal to the equivalent 

stiffness of the sample and load sensor spring constants. Then, the system 

characteristic may either increase or decrease with increasing xS, depending on the 

sample’s behavior. In particular, either of the following cases may occur (Figure 

A.1b): 

(a) Overall system hardening as a consequence of sample hardening, e.g, if ∂(xS-

xLS)/∂F>0; 

(b) Overall softening with negative slope, if the sample exhibits softening (e.g., 

∂F/∂(xS-xLS)<0) and its slope in modulus is smaller than the load sensor spring 

constant. In fact, from eq. (A3): 

 

𝑑𝑥𝑆
𝑑𝐹

< 0 ⇔
1

𝑘𝐿𝑆
+
𝜕(𝑥𝑆  − 𝑥𝐿𝑆)

𝜕𝐹
< 0 ,                                                                       (𝐴4) 

 

which is equivalent to  

 

𝑘𝐿𝑆 > |
𝜕𝐹

𝜕(𝑥𝑆  − 𝑥𝐿𝑆)
|,                                                                                                    (𝐴5) 

 

(c) Overall softening with positive slope if the sample exhibits softening (e.g., 

∂F/∂(xs-xLS)<0) and its slope in modulus is bigger than the load sensor spring 

constant. In fact, from eq. (A3): 
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𝑑𝑥𝑆
𝑑𝐹

> 0 ⇔
1

𝑘𝐿𝑆
+
𝜕(𝑥𝑆  − 𝑥𝐿𝑆)

𝜕𝐹
> 0 ,                                                                       (𝐴5) 

 

which is equivalent to  

 

𝑘𝐿𝑆 < |
𝜕𝐹

𝜕(𝑥𝑆  − 𝑥𝐿𝑆)
|.                                                                                                    (𝐴7) 

 

Thus, in this latter case, the system would tend to come back to smaller values of 

xS, displaying a snap-back branch with positive slope. However, since in a typical 

tensile test, xS is progressively increased, the sample is broken without the 

possibility to follow the snap-back branch and, thus, the corresponding region of 

the sample characteristic. As a consequence, the optimal design value for the load 

sensor stiffness depends on the steepest point of interest to be expected during 

softening regime in the sample characteristic curve. Thus, as a compromise 

between high resolution during the elastic regime and stability requirement, we can 

define an optimal load sensor stiffness as 

 

𝑘𝐿𝑆,𝑜𝑝𝑡 = 𝜂 |
𝜕𝐹

𝜕(𝑥𝑆  − 𝑥𝐿𝑆)
|
𝑀𝐴𝑋

  ,       

 

where η is a partial factor for stability, which could be set equal to 10%. 

 

Load sensor stability  

It is now interesting to study what happens to the load sensor when its stiffness is 

smaller than the sample characteristic slope during softening. To this aim, it is 

convenient to refer to the model depicted in Figure A.1a and write the load sensor’s 

equilibrium equation: 
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𝑀𝐿𝑆
𝑑2𝑥𝐿𝑆
𝑑𝑡2

=∑𝐹𝑖 ,                                                                                                      (𝐴8)

𝑖

 

where Fi is the i-th force acting on the load sensor. In this case, three forces have 

to be considered: 

 

𝐹𝑆 = 𝐹(𝑥𝑆 − 𝑥𝐿𝑆),                                                                                                         (𝐴9) 

𝐹𝐿𝑆 = −𝑘𝐿𝑆𝑥𝐿𝑆 ,                                                                                                            (𝐴10) 

𝐹𝐷 = −𝐷
𝑑𝑥𝐿𝑆
𝑑𝑡

 ,                                                                                                            (𝐴11) 

 

where FS is the force transmitted to the load sensor by the sample and depends on 

the actual sample deformation (xS-xLS), FLS is the elastic force exerted by the load 

sensor spring, and FD the damping force. Thus, considering the (A9)-(A11), eq. 

(A8) can be rewritten as: 

 

𝑀𝐿𝑆

𝑑2𝑥𝐿𝑆
𝑑𝑡′2

= −𝐷
𝑑𝑥𝐿𝑆
𝑑𝑡′

− 𝑘𝐿𝑆𝑥𝐿𝑆 + 𝐹(𝑥𝑆 − 𝑥𝐿𝑆).                                                (𝐴12) 

 

In steady-state condition, the equilibrium points of equation (A12) are given by the 

roots of 𝑓(𝑥𝐿𝑆) =  −𝑘𝐿𝑆 + 𝐹(𝑥𝑆 − 𝑥𝐿𝑆).  In order to infer about the stability of a 

load sensor equilibrium point, 𝑥𝐿𝑆
∗  (solution of eq. (A12)), it is convenient to 

linearize f(xLS) through Taylor expansion as 𝑓(𝑥𝐿𝑆) ≈ 𝑓
′(𝑥𝐿𝑆

∗ )(𝑥𝐿𝑆 − 𝑥𝐿𝑆
∗ ), where 

𝑓′(𝑥𝐿𝑆
∗ ) = (−𝑘𝐿𝑆 −

𝑑𝐹

𝑑(𝑥𝑠−𝑥𝐿𝑆)
)|
𝑥𝐿𝑆
∗

 (Pelesko and Bernstein, 2003). From this, it 

follows that the sign of the slope of 𝑓(𝑥𝐿𝑆) depends on the magnitude of the slope 

of 𝐹(𝑥𝑆 − 𝑥𝐿𝑆) compared to 𝑘𝐿𝑆, providing two possible cases:  

1) 𝑓′(𝑥𝐿𝑆
∗ ) > 0 ⇔ 𝐹̇(𝑥𝑆 − 𝑥𝐿𝑆

∗ ) < −𝑘𝐿𝑆, 

2) 𝑓′(𝑥𝐿𝑆
∗ ) < 0 ⇔ 𝐹̇(𝑥𝑆 − 𝑥𝐿𝑆

∗ ) > −𝑘𝐿𝑆.  

It is now convenient to rewrite eq. (A12) through the following system  
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{
 

 
𝑑𝑥𝐿𝑆
𝑑𝑡

= 𝑣,                            

𝑑𝑣

𝑑𝑡
=  −

𝐷

𝑀𝐿𝑆
𝑣 +

𝑓(𝑥𝐿𝑆)

𝑀𝐿𝑆
,

 

 

that we can linearize near the equilibrium point, 𝑥𝐿𝑆
∗ , as 

𝑑𝒖

𝑑𝑡
= 𝐽 𝒖,  with 𝐽 =

 (
0 1
𝑓′

𝑀𝐿𝑆
−

𝐷

𝑀𝐿𝑆

)|
𝑥𝐿𝑆
∗

, 𝒖 = (𝑥𝐿𝑆−𝑥𝐿𝑆
∗

𝑣
).  

The stability of the solution, 𝑥𝐿𝑆
∗ , depends on the trace and determinant of the 

Jacobian matrix (Strogatz, 2000; Pelesko and Bernstein, 2003), 𝜏 = 𝑡𝑟(𝐽), ∆=

𝑑𝑒𝑡(𝐽), respectively, that on turn depend on 𝑓′. In particular, in our system 𝜏 =

−𝐷 𝑀𝐿𝑆⁄ <0, whereas ∆= −𝑓′ 𝑀𝐿𝑆⁄  . Therefore, when 𝑓′>0 (previous case 1) Δ<0, 

meaning that the equilibrium point is unstable (saddle point from Figure A.1c). On 

the contrary, when 𝑓′<0 (previous case 2), Δ>0, corresponding to always stable 

equilibrium points (Figure A.1c). As a conclusion, when the sample characteristic 

slope is negative (e.g., softening in the sample) and its modulus is smaller than kLS, 

stable equilibrium points are allowed to the load sensor (case 2); while instead the 

sample characteristic slope is negative and its modulus is bigger than kLS, no stable 

equilibrium points are possible (case 1). Indeed, in such case, as shown in the 

previous Section, the system of the sample and load sensor springs show a snap-

back branch with a positive slope, which cannot be followed during the tensile test.   

 

In some simple cases, the previous generic equation (A12) can be solved 

analytically. As an example, let us consider a piecewise linear expression of F(xS-

xLS), that is characterized by an initial region, where the force increases with the 

deformation, followed by a second region with a decreasing trend (softening 

region), that can be defined as (Figure A.1a): 
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𝐹(𝑥𝑆 − 𝑥𝐿𝑆)

= {
𝑘0(𝑥𝑆 − 𝑥𝐿𝑆),                                 𝑖𝑓 𝑥𝑆 − 𝑥𝐿𝑆 < 𝑥

∗

𝑘0𝑥
∗ − 𝑘1(𝑥𝑆 − 𝑥𝐿𝑆 − 𝑥

∗), 𝑖𝑓 𝑥𝑆 − 𝑥𝐿𝑆 > 𝑥
∗                      (𝐴13) 

  

Its first region defines the sample elastic regime, while the second one corresponds 

to the softening region. In order to study what happens to the sensor as soon as the 

sample enters within the softening regime, we substitute the second of equations 

(A13) in equation (A12), which then becomes: 

 

𝑀𝐿𝑆

𝑑2𝑥𝐿𝑆
𝑑𝑡′2

= −𝐷
𝑑𝑥𝐿𝑆
𝑑𝑡′

− 𝑘𝐿𝑆𝑥𝐿𝑆 + 𝑘0𝑥
∗ − 𝑘1(𝑥𝑆 − 𝑥𝐿𝑆 − 𝑥

∗).                      (𝐴14) 

 

It is convenient rewrite Eq. (A14) in dimensionless form. To this aim, we introduce 

the dimensionless time, t=t’√
|𝑘1−𝑘𝐿𝑆|

𝑀𝐿𝑆
  , and length, y=xLS/l, being l the sample gage 

length and k1≠kLS. With these positions, Eq. (A14) can be rewritten as: 

 

𝑑2𝑦

𝑑𝑡2
= −𝛼

𝑑𝑦

𝑑𝑡
+ 𝑠𝑔𝑛(𝑘1 − 𝑘𝐿𝑆)𝑦 +

𝑥∗(𝑘0 + 𝑘1) − 𝑘1𝑥𝑆
𝑙|𝑘1 − 𝑘𝐿𝑆|

.                                (𝐴15) 

 

Where 𝛼 =
𝐷

√𝑀𝐿𝑆|𝑘1−𝑘𝐿𝑆|
 is a corrected quality factor, that takes into account the 

presence of the sample through the term k1. 

Considering a typical MEMS, like that one reported in (Pantano et al., 2015), the 

damping contribution can be neglected with respect to the inertial effects, meaning 

that α<<1. Thus, in the inertia-dominated regime, Eq. (A15) simplifies as: 

 

𝑑2𝑦

𝑑𝑡2
= 𝑠𝑔𝑛(𝑘1 − 𝑘𝐿𝑆)𝑦 +

𝑥∗(𝑘0 + 𝑘1) − 𝑘1𝑥𝑆
𝑙|𝑘1 − 𝑘𝐿𝑆|

.                                                  (𝐴16) 
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In general, xs=xs(t), but in the hypothesis of a negligible variation of xs with time, 

Eq. (A16) can be solved analytically depending on the positive (a) or negative (b) 

sign of (k1-kLS). 

 

(a) If k1>kLS, the general solution of Eq. (25) is: 

𝑦 = 𝐴𝑒𝑡 + 𝐵𝑒−𝑡 −
𝑥∗(𝑘0 + 𝑘1) − 𝑘1𝑥𝑆

𝑙(𝑘1 − 𝑘𝐿𝑆)
,                                                               (𝐴17) 

 

(b) If k1<kLS, the general solution of Eq. (25) is instead: 

𝑦 = 𝐴 cos 𝑡 + 𝐵 sin 𝑡 −
𝑥∗(𝑘0 + 𝑘1) − 𝑘1𝑥𝑆

𝑙(𝑘1 − 𝑘𝐿𝑆)
,                                                       (𝐴18) 

 

A, B are constants depending on the initial conditions.   

In order to infer about the stability of the load sensor equilibrium positions defined 

by equations (A17) and (A18), it is useful to write the second-order differential 

equation (A16) as a nonhomogeneous linear system: 

 

{
 

 
𝑑𝑦1
𝑑𝑡

= 𝑦2,                                                                     

𝑑𝑦2
𝑑𝑡

= 𝑠𝑔𝑛(𝑘1 − 𝑘𝐿𝑆)𝑦1 +
𝑥∗(𝑘0 + 𝑘1) − 𝑘1𝑥𝑆

𝑙|𝑘1 − 𝑘𝐿𝑆|
.

 

 

This latter can be turn in a homogeneous system, by introducing the translations 

𝜒1 = 𝑦1 −
𝑥∗(𝑘0+𝑘1)−𝑘1𝑥𝑆

𝑙(𝑘1−𝑘𝐿𝑆)
, 𝜒2 = 𝑦2, i.e. 

 

{

𝑑𝜒1
𝑑𝑡

= 𝜒2,                          

𝑑𝜒2
𝑑𝑡

= 𝑠𝑔𝑛(𝑘1 − 𝑘𝐿𝑆)𝜒1.
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The above homogeneous linear system has a fixed point, χ*, at χ1=0, χ2=0, i.e. the 

origin corresponds to the equilibrium position of the system. Repeating the same 

logic as before, the trace, τ, and the determinant, Δ, of the Jacobian matrix 

associated to the linear system provides the stability of the fixed point. In this case, 

τ=0, while Δ=-sgn(k1-kLs). Thus, with reference to Figure A.1c, 

 

(a) If k1>kLS, Δ<0, thus the equilibrium point, χ*, is a saddle point, i.e., 

unstable. 

(b) If k1<kLS, Δ>0the equilibrium point, χ*, is a center, i.e., neutrally stable. 

 

Since 
𝑑𝐹

𝑑(𝑥𝑠−𝑥𝐿𝑆)
= 𝑘1 and k1 represents the slope of the decreasing branch of the 

sample characteristic, the results found now match the conclusions derived 

previously in case of a sample with a generic characteristic.  

 



 

The ability of plant roots to penetrate soils is affected by several stimuli from 
the surrounding medium such as mechanical stresses and chemical changes. 
Therefore, roots have developed multiple responses to the several outer 
stimuli. Since plant roots have to face very complex problems to grow deeply 
into the ground, they are remarkable examples of problem-solving behaviour 
and adaptation to the outer constraints. The adaptation strategies of a 
natural root are not yet completely known and understood with exhaustive 
explanations. For this reason, mathematical models and experimental 
techniques applied to biological phenomena can perform a key role in 
translating the Nature adaptive solutions into engineering applications. The 
aim of this thesis is to provide further insights in understanding biological 
phenomena for the development of new technologies inspired by the adaptive 
ability of plant roots. Accordingly, both theoretical and experimental 
explanations to the adaptive behaviour of plant roots are proposed. The 
mathematical modelling is based on a modified version of the extended West, 
Brown and Enquist universal law, considering the root growth as an inclusion 
problem. The proposed equation has as a particular case a growth equation 
exploiting an approach similar to Lockhart taking into account the soil 
impedance. The influence of mechanical stresses and nutrient availability on 
the root growth are studied. The solutions of the analytical model are 
compared with experimental data collected in real and artificial soils. 
In addition, the theories and hypotheses of the root ability to grow in the 
apical region through nanoindentation, wettability, and photoelasticity are 
investigated. The first technique provided insights for the possible role and 
function at both different tissues levels and distances from the tip in the root 
movement and penetration during the growth. The investigation of root 
tissue properties revealed that the penetration and adaptation strategies 
adopted by plant roots could be enhanced by a combination of soft and stiff 
tissues. The second technique aimed to highlight the wettability of the apical 
zone and root hairs for the acquisition of water and nutrients. Finally, 
photoelastic experiments provided a non-invasive and in situ observation of 
plant roots growth and, by exploiting the fringe multiplication, a set up for 
the study of plant roots growing in edible gelatine is proposed.
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