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List of Figures 
 Figure 1.1 a) Asperity model for anisotropic friction as reported in (Mróz and 

Stupkiewicz 1994). b) The asperity model for orthotropic friction as adopted 

for our model: the asperities can be asymmetric and can vary the slopes from 

top and bottom. c). By assuming a single spring, the equilibrium on the tilted 

plane is showed to obtain the reaction forces Fx and Fy in the global reference 

system. 41 

 Figure 1.2 Field of model application: in order to have the normal force N > 

0, μ0 must be smaller than cotφ. This defines when the model is applicable 

(blue part). 43 

 Figure 1.3 Particular cases: a) One flat surface sliding on a rough surface 

with symmetric wedge asperities. b) Two rough surfaces with the same 

symmetric wedge asperities. 46 

 Figure 1.4 Coefficient of friction for different sliding directions (β) in the case 

of two wedge asperity surfaces. μ0 is set equal to 0.3. 49 

 Figure 1.5 a) Variation of the global coefficient of friction by assuming one 

flat upper surface and one lower rough surface with respect to wedge slopes 

and the direction of sliding. b) Focus on the first part of the function: for 

smaller asperities slopes, reliable values of global coefficient of friction are 

obtained. This behaviour highlights the field of application of the model, 

which is suitable for asperities with small angles. μ0 is set equal to 0.3.

 50 

 Figure 1.6 a) Variation of the global coefficient of friction by assuming both 

rough surfaces surface with respect to wedge slopes and the direction of 

sliding. b) Focus on the first part of the function: for smaller asperities slopes, 

reliable values of global coefficient of friction are obtained. This behaviour 

highlights the field of application of the model, which is suitable for asperities 

with small angles. μ0 is set equal to 0.3. 50 
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 Figure 1.7 a) Detail of a surface with 1D roughness (along x direction): we 

consider the force equilibrium at point P, P ∈  f(x) due to the spring 

interaction. To obtain each force contribution, in this case the tangent plane 

(π) in P is considered. b) Force decomposition on π is considered with respect 

to the global system xyz in P. β0 identifies the direction of the sliding velocity 

vector v0 on the π plane, tilted by φ from the xy plane, while v is the projected 

sliding velocity and β the projection of β0 on the xy plane. 52 

 Figure 1.8 Coefficient of friction for six case studies reported in the box for 

two derivable periodic surfaces. As in the previous case, the coefficients are 

calculated by assuming different direction of sliding (𝛽). μ0 is set equal to 0.3.

 55 

 Figure 1.9 Friction coefficient μ with respect to time (i.e. sliding distance if 

the sliding velocity is constant) for two 1D symmetric sinusoidal shaped 

asperities. The graph shows the evolution in time of the global coefficient of 

friction with respect to the local coefficient μ0. The average values increase, 

by increasing the local coefficient of friction. At the same time, the sliding 

direction β strongly influences both the oscillations around the mean values 

and the mean values as well. With β = 90° no oscillations occur due to the 

shape of the surfaces, which are extruded along the y direction in the xy plane.

 56 

 Figure 1.10 a) 2D roughness characterizes both surfaces in contact. A set of 

longitudinal springs governs the interaction at the interface. Details of one 

surface with 2D roughness: we consider the force equilibrium at point P, P ∈ 

f(x,y) due to the spring interaction. To obtain each force contribution, the 

tangent plane (π) in P is considered. b) Force decomposition on π is 

considered with respect to the local system x’y’z’ in P. To obtain the overall 

reactions in the global reference system xyz, the rotation matrix must be 

applied (α). β0 identifies the direction of the sliding velocity vector v0 on the π 
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plane, tilted by φ from the x’y’ plane, while v is the projected sliding velocity 

and β’ the projection of β0 on the x’y’ plane. 58 

 Figure 1.11 Variation of the coefficient of friction between two 2D rough 

surfaces with respect to the direction of sliding β. The upper and lower 

surfaces are the same and with symmetric roughness, thus the coefficient of 

friction μ varies between 0° and 45°. The blue line shows how the coefficient 

of friction changes between 0° and 90°, with a step ∆𝛽 equal to 5°, while the 

red line is the friction coefficient obtained for smaller steps. μ0 is set equal to 

0.3. 60 

 Figure 1.12 Some of the analyzed surfaces for the 2D roughness. The 

wavelengths vary along x and y (no differences occur between upper and 

lower surfaces) and the friction behavior is studied, due to these variations in 

both wavelength and sliding direction. 61 

 Figure 1.13 Changes in the friction coefficient by varying both wavelength in 

x and y directions (from λ = π to λ = 3π) and sliding direction β from 0° (a) 

then 45° (c) and finally 90°(b). As expected, a) and b) are symmetrical and 

show the maximum coefficient of friction for the smallest wavelengths and this 

trend is preserved in the direction of sliding. Instead, the minimum value is 

reached for the biggest wavelengths. With β equal to 45°, the coefficient of 

friction is symmetrical with respect to the middle values. μ0 is set equal to 0.3.

 62 

 Figure 2.1 Some examples of hierarchical and biological surfaces, SEM 

images of the (a) taro plant (Colocasia esculenta), (b) parrot feather plant 

(Myriophyllum aquaticum), and (c)–(e) lotus plant (Nelumbo nucifera) at 

various scales (McCarthy et al. 2012). In (f) the Brassica oleracea is an 

example of hierarchical and fractal surface (web source). A surface for 

anisotropic friction is reported in (g), with an example of snake skin 

microstructure (Lampropeltis getula californiae)(Tramsen et al. 2018). 
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Finally, a gecko’s foot, with a focus on the hierarchical morphology that 

covers its skin (Liskiewicz et al. 2008). 66 

 Figure 2.2 A 2D schematization of half model in various situations in the 

presence of adhesion, with decreasing L from a) to d). a) All the springs are 

compressed and the normal load is equal to the sum of all the spring axial 

forces. b) If some springs are elongated and L is the applied normal load, the 

sum of the compressive forces is larger than the load. c) In case of no external 

load, the sum of tensile and compressive forces on the springs is zero. d) In 

the case of a tensile load some compressed springs still generate friction.

 68 

 Figure 2.3 Effect of adhesion between 1D rough surfaces. a) Variation of 

springs elongation in time, normalized by the function period T. The number 

of stretched springs depends on the normal load. For each circular dot in b), 

a curve in a) is obtained. In the reported case, until the ratio L/Lmax is major 

than 0.3, the springs are all compressed (blue line in a), corresponding to 

zero for each time interval). After that value, some springs are elongated, and 

lines from blue to red show when and how many springs display a tensile 

force. When the upper and lower surfaces are both described by the same 

function, and they are in phase, the number of elongated springs is described 

by lines with shades of blue, which refer to L>0. On the contrary, lines with 

shades of red describe the number of elongated springs once the load reduces 

and becomes tensile (L<0). b) Tangential force Rx,y with respect to the applied 

normal load L. When no adhesion occurs, the coefficient of friction is the ratio 

between the two; on the contrary, when some springs become tensile,, a non-

linear curve describes this relationship. In the presence of 1D roughness, 

adhesion does not affect the sliding with β=90°, because there is a swift 

transition from compressed to tensile springs along the y direction. 70 

 Figure 2.4  Effect of adhesion between 2D rough surfaces. a) Tangential force 

Rx,y with respect to the applied normal load L, both normalized with respect 
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to the maximum load Lmax. Without adhesion effects, the coefficient of friction 

is the ratio of the two; when adhesion occurs, a non-linear relationship 

describes this relationship. In the presence of 2D symmetrical roughness, 

adhesion equally affects x and y directions of sliding (blue line and yellow 

dashed line). An enlargement on the graph close to the origin is reported in 

b). With other sliding directions, e.g. β = 45°, the behaviour is without 

substantial differences from the previous cases. 72 

 Figure 2.5 Surface distribution of both compressed (blue) and tensile (yellow) 

springs when the relative motion between two 2D rough surfaces is along the 

x direction. Only the compressed springs contribute to the calculation of the 

frictional force. 74 

 Figure 2.6 Surface distribution of compressed (blue) and tensile (yellow) 

springs when the sliding direction β is 45°. As stated before, only the 

compressed springs are assumed to contribute to obtaining the frictional 

force. These tensile or compressed zones are perpendicular to the sliding 

motion, thanks to the simmetry of the surface roughness. 74 

 Figure 2.7 Surface distribution of compressed (blue) and tensile (yellow) 

springs when the relative motion between two 2D rough surfaces is along the 

y direction. 75 

 Figure 2.8 a) A schematization of the surface levelling after the wear process. 

z0 is the initial surface shape, while zi is the surface profile after a certain time 

ti. At the end of the wear mechanism, the surface will be flat. b) A scheme of 

the surface levelling in case of 1D wedge asperities; φ0 is the initial surface 

tilt angle, while φi is the smoothed surface after a certain time ti.  c) Surface 

roughness changing in time. 77 

 Figure 2.9 Variation in time of the friction coefficient between 2D rough 

symmetrical asperities. Five different directions of sliding (β) have been 

considered, from 0° to 45° (it has been demonstrated that from 45° to 90° the 

behavior is the same, due to symmetry.  After a time equal to TW the surfaces 
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become flat, so that the friction coefficient tends to the local friction 

coefficient μ0. μ0 is set equal to 0.3. 78 

 Figure 2.10 a) Variation in time of the friction coefficient between two wedge 

asperities. Three different directions of sliding (β) have been considered. After 

a time equal to TW the surfaces become flat, so that the friction coefficient 

tends to the local friction coefficient μ0. b) Variation in time of the friction 

coefficient between two asperities with generic 1D roughness, again for three 

different directions of sliding (β). After a time equal to TW, the surfaces 

become flat, causing the friction coefficient to assume the local friction 

coefficient μ0. As observed in Figure 1.8, the generic 1D roughness gives a 

higher friction coefficient, with respect to the equivalent wedge case.

 80 

 Figure 2.11 How to model different levels of roughness. 82 

 Figure 2.12 Hierarchical friction for 2D roughness. a) Variation of the 

friction coefficient between two symmetric self-similar hierarchical 

asperities. Three different directions of sliding (β) are considered.. b) 

Variation of the friction coefficient between two asymmetric self-similar 

hierarchical asperities. Two different directions of sliding (β) have been 

considered as a prof that, if the asperities are not symmetric, the frictional 

response varies in a more significant way with respect to β. 83 

 Figure 2.13 Hierarchical friction. a) Variation of the friction coefficient 

between two sinusoidal hierarchical asperities. Three different directions of 

sliding (β) are considered. The theoretical prediction, which is the exact 

solution in case of wedge asperities, is reported (red curve). b) Variation of 

the friction coefficient between a sinusoidal hierarchical surface and a flat 

surface. Three different directions of sliding (β) are reported. The theoretical 

prediction, which is the exact solution in case of wedge asperities, is reported 

(red curve). Hierarchical friction. c) If the surfaces are modelled as 

hierarchical wedges, friction coefficient is the same as obtained from the 



List of Figures -  

 

17 

 

power law. Also other directions of sliding (β) have been reported. d) 

Variation of the friction coefficient between hierarchical wedge asperities. 

Three different directions of sliding (β) have been considered. In this casetoo, 

the theoretical prediction perfectly matches the numerical results. 85 

 Figure 2.14 Variation of the global coefficient of friction as a function of wear 

and roughness levels. Every outer level is influenced by the inner one, so that 

wear induces a reduction of each global coefficient of friction associated to a 

certain level i. After a time equal to TW the innermost level becomes flat, so 

that the coefficient of friction of each level at the end of this wear cycle tends 

to its local friction coefficient. Level 0 is the local coefficient of friction.

 87 

 Figure 3.1 Stribeck curve generalized for ice friction: the friction coefficient 

is a non-linear function of the sliding velocity (proportional to the thickness 

of lubricant (water). Three regimes are highlighted, due to different asperity 

interaction and increasing water layer thickness h. 90 

 Figure 3.2 Optical microscopy image of an ice surface replica. The 

magnification shows the characteristic 120° angles formed by the grain 

boundaries at almost each cross. Etch pits are also visible. 92 

 Figure 3.3 3D surface profile of the stainless-steel pins. a) Pin #1, which is 

characterized by the smoothest surfaces. b) Pin #2 and c) pin #3. 94 

 Figure 3.4 Friction coefficient results obtained from the pin-on-disc tests at 

increasing sliding velocity. a) pin #1, (b) pin #2 and (c) pin #3. The tests have 

been performed at various temperatures from -2 °C to -17 °C. 96 

 Figure 3.5 Schematic illustration of the contact between ice and steel pin. To 

compute the coefficient of local friction a number of contacts n of length b and 

width a is assumed. The sliding velocity is v. 99 

 Figure 3.6 a) Schematic illustration of the contact between ice and steel pin 

and b) how it is converted into the 1D-ALSFM developed in Chapter 1. The 
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interaction between ice and steel is modelled by a set of springs with only 

longitudinal compliance. 102 

 Figure 3.7 Best fits of the experimental data obtained for pin 1# with the 1D-

ALSFM (red line) for all the tested temperatures. It is evident that the model 

is not able to predict pin 1# friction regime, due to the model hypotheses which 

assume the pin in a mixed lubrication regime. 105 

 Figure 3.8 Best fits of the experimental data obtained for pin 2# with the 1D-

ALSFM for all the tested temperatures (blue line represents the upper values 

for the coefficient of friction, while red line is for the lower values). 105 

 Figure 3.9 Best fits of the experimental data obtained for pin 3# with the 1D-

ALSFM for all the tested temperatures (blue line represents the upper values 

for the coefficient of friction, while red line is for the lower values). 106 

 Figure 3.10 Correlation between the model surface and the bearing ratio 

curve (BRC). 107 

 Figure 3.11 A comparison between fitted and estimated contact length a. 

These results show a good agreement between the fitted values of the contact 

length a with respect to the contact length obtained from the geometrical 

calculation. After this validation, it is possible to infer that the values provided 

from the fit are reliable values 108 

 Figure 3.12 Comparison between the friction coefficient results obtained from 

the resin pin tests performed at -2°C (black dots) and the results from the steel 

pin #1 tests (red dots) performed at the same temperature. 109 

 Figure 4.1 (A) Sample holder with a glued sample. (B) SEM image of a flat 

surface. (C) SEM image of sample A. (D) SEM image of sample B. (E) SEM 

image of sample C. (F) SEM image of sample S. (G) SEM image of sample S, 

enlargement of a single hole. These samples were tested along x and y 

directions. All scale bars are equal to 20 μm. 115 

 Figure 4.2 A) Details of the custom built setup. A black flat polycarbonate 

surface is fixed to a tensile machine (a). A transparent sample holder (b) can 
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slide on the polycarbonate surface, thanks to two inextensible wires (c), which 

are connected to the grip of the tensile machine. A frictionless roller transmits 

the imposed velocity from the machine to the sample holder (d). Each PDMS 

surface is anchored to the transparent support (e) and loaded with different 

known weights. B) Overview of the setup. 116 

 Figure 4.3 Examples of friction tests with the described setup; friction force 

(T) is normalized with respect to the peak value of the respective test, which 

corresponds to the static friction force (Tmax): (A) Friction test for a flat PDMS 

surface . (B) Friction test for sample A. (C) Friction test for sample B. (D) 

Friction test for sample C. (E) Friction test for sample S, along x- and y- 

directions. All scale bars are equal to 20 μm. 118 

 Figure 4.4 Experimental friction test results. Plots report the ratio between 

static and dynamic friction force (T) and the applied normal load (N) as a 

function of the normal pressure p (N/Ath). (A) Static friction coefficients of flat 

surfaces and samples A, B and C. (B) Dynamic friction coefficients of flat 

surfaces and samples A, B and C. (C) Static friction coefficients of samples S, 

along both x and y directions. (D) Static friction coefficients of samples S, 

along both x and y directions. 119 

 Figure 4.5 Static friction force T as a function of the applied normal load (N): 

experimental data (blue circles), linear fit (red line), rescaled fit (yellow 

dotted line). (A) Flat surface; (B) A sample;(C) B sample; (D) C sample; (E) 

S sample - sliding along the x direction; (F) S sample - sliding along the y 

direction. 120 

 Figure 4.6 Dynamic friction force T as a function of the applied normal load 

(N): experimental data (blue circles), linear fit (red line), rescaled fit (yellow 

dotted line). (A) Flat surface; (B) A sample;(C) B sample; (D) C sample; (E) 

S sample - sliding along the x direction; (F) S sample - sliding along the y 

direction. 121 



Alice Berardo – A Numerical and Experimental Study on the Friction of Complex Surfaces 

20 

 

 Figure 4.7 Comparison between the fitted parameters for the static coefficient 

of friction μ and τ0 with respect to the prediction by adopting Eq.(4.2). A 

linear fit of both the parameters show a decresing trend with decresing AF.

 122 

 Figure 4.8 Comparison between the fitted parameters for the dynamic 

coefficient of friction μ and τ0 with respect to the prediction by adopting 

Eq.(4.2). A linear fit of both the parameters show a decresing trend with 

decresing AF. 122 

 Figure 4.9 A) Sketch of patterned surface, where the main sliding direction is 

set to α=0°.B) Schematic of the 2D spring-block model with the notation used 

in the text. Mesh of the internal springs on the surface, the shear springs are 

not shown. C) Side view showing the slider moving at constant velocity v and 

the shear springs. D) Outputs of the numerical simulations, showing the 

evolution of the coefficient of friction in time. 126 

 Figure 4.10 Numerical and experimental results of the static coefficient of 

friction. the ratio between the static friction force (T) and the applied normal 

load (N) as a function of the nominal pressure (p = N/A) is reported for all 

the case studies. (A) Flat surfaces; (B) A samples;(C) B samples; (D) C 

samples; (E) S samples - sliding along the x direction; (F) S samples - sliding 

along the y direction. All scale bars are equal to 20 μm. 129 

 Figure 4.11 Numerical and experimental results of dynamic friction tests in 

term of the ratio between the static friction force (T) and the applied normal 

load (N) as a function of the nominal pressure (p = N/A) for all the case 

studies. (A) A samples;(B) B samples; (C) S samples - sliding along the x 

direction; (D) S samples - sliding along the y direction. All scale bars are 

equal to 20 μm. 130 

 Figure 5.1 Our silkworm silk fibres were extracted from a) the cocoon as is, 

(the silkworm produces the cocoon to protect itself during the metamorphosis) 
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or b) after the degumming process, where the sericin, a protein, is removed. 

Scale bars 1 cm. 135 

 Figure 5.2 a) A natural fibre of silk formed by two brins coated and bended 

together by a layer of sericin, removed after the degumming process. b) Cross 

section of a natural silk fibre. c) Cross section of a degummed silk fibre. Scale 

bars 10 μm. 137 

 Figure 5.3 a) A degummed silk fibre, provided with an optimized knot, 

spanning over a paper frame prepared for nanotensile testing. The knot, 

either single (STSK) or double (DTSK) turned slip knot, is characterized by 

two main parameters, the loop length, lp, and the knot diameter, as shown in 

the zoomed view (b). 137 

 Figure 5.4 Stress-strain curves derived from tensile tests carried out on single 

untreated baves (black line) and degummed fibres (green line), both showing 

significant variability. 138 

 Figure 5.5 Gallery of knots implemented in single silk fibres. (a) SEM picture 

of the Noose with a schematic on top. (b) SEM picture of the Overhand Loop 

with a schematic on top. (c) SEM picture of the Chain Knot with two chains 

and a schematic on top. (d) SEM picture of the X-Knot with a schematic on 

top. Scale bar: 10 µm. 141 

 Figure 5.6 (a) Stress-strain curve of an unknotted natural fibre with length l. 

(b) Stress-strain curve of a knotted natural fibre with length l and distance 

between its opposite ends l0, which was extracted from a cocoon region 

adjacent to the unknotted fibre (a). The presence of the knot modifies the 

shape of the stress-strain curve (a), introducing a plastic-like plateau and 

leaving a final region (highlighted) almost corresponding to the stress-strain 

curve of the same fibre with unknotted configuration. The strain interval 

within this final region appears larger than in (a) since it is computed with 

respect to l0 instead of l. 143 
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 Figure 5.7 Untightening mechanism of the (a) Noose, (b) Overhand Loop, (c) 

Chain Knot (in this schematic with two chains) and (d) X-Knot. When the fibre 

opposite ends are pulled apart, the loop is sucked into its closest chain until 

this is completely released, thus forcing the knot to collapse into a simple 

noose. If the fibre ends are pulled further apart, the noose loosens until the 

knot is completely untightened. On the contrary, the Overhand Loop becomes 

tighter as the fibre is pulled. In an X-knot, the fibre appears to be turned twice 

at the bottom of its loop. When its opposite ends are pulled apart, the turn 

closer to the loop tends to tie, causing friction against the fibre sliding, while 

the other one loosens. In this way, the knot can unfasten completely although 

a significant amount of energy can be dissipated. 144 

 Figure 5.8 (a) Stress-strain curves of natural and degummed silk fibres with 

optimized Noose or Overhand Loop slip knots. Comparison between the 

normalized stress-strain curves obtained for natural and degummed single 

silk fibres provided with optimized knots. Stress values are normalized with 

respect to fracture strength. Comparison between the stress-strain curves 

derived from samples with an X-Knot and a Chain Knot with either 2, 4 or 6 

chains, respectively. Here, stress values are normalized with respect to the 

fracture stress of each fiber. 148 

 Figure 5.9 a) Unfastening mechanism of the Noose, which tends to loosen as 

the fiber ends are pulled apart. Such knot can always be released, even when 

extremely tight, as shown in the SEM image. b) Unfastening mechanism of the 

Overhand Loop, which tends to further tie as the fiber ends are pulled apart. 

Thus, if this knot is too tight at the beginning of the test, it cannot be released, 

as occurred in the natural silk fiber reported in the SEM image (b), which 

broke at the knot entrance. The sericin coating looks significantly damaged 

by friction. c) SEM image of a fiber with a Chain Knot with four chains visibly 

damaged by preparation, which caused superficial exfoliation. (d) SEM 
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image of a fiber with a Chain Knot with six chains not uniformly tightened 

during preparation. Scale bars: 10 µm 150 

 Figure A.1 a) Raman spectra of GNPs. b) The data of FWHM with respect to 

2D peak positions. 184 

 Figure A.2 (a) Stress-strain curves of the prepared samples. (b) Modulus at 

different strains and maximum strength of the prepared samples. 185 

 Figure A.3 Elongation at break of the prepared samples. 186 

 Figure A.4 Dynamic and static coefficient of friction measured of the 

prepared samples. 187 

 Figure A.5 Set-up of the impact test. The impact area is a metallic plate where 

the sample to be tested has been fastened to. The sample was hit by a 

percussion which excites the vibration. A shock accelerometer positioned in 

the back plate is thus excited and the response is recorded and digitalized via 
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Summary 
 

Whenever two bodies are in contact and one is sliding against the other, a 

tangential force arises, opposed to the motion. This force is called friction force, 

and involves different mechanisms, such as asperity interactions, energy 

dissipation, chemical and physical alterations of the surface topography and wear 

(Greenwood and Williamson 1966; Persson et al. 2005; Popova and Popov 2015; 

Vakis et al. 2018). The friction coefficient is defined as the ratio between the 

friction force and the applied normal load. Despite this apparently simple 

definition, friction is a very complex phenomenon, which also involves several 

aspects at both the micro- and nano-scale, including adhesion and phase 

transformations (Nosonovsky and Bhushan 2008; Spagni et al. 2016; Valentini et 

al. 2016). Friction plays a key role in a variety of systems, and can be either 

enhanced (e.g. for locomotion) or minimized (e.g. in bearings), depending on the 

application. 

Considering friction as a multiscale problem, an analytical model is herein 

proposed to describe friction in the presence of anisotropy, adhesion and wear 

between surfaces with hierarchical (e.g. self-similar) structures. This model has 

been developed starting from others in the literature (Mróz and Stupkiewicz 

1994), extended to take into account adhesion, wear and hierarchy. This 

Anisotropic Lattice Spring Friction Model (ALSFM) has been implemented in a 

MATLAB code for the design of the tribological properties of hierarchical 

surfaces.  

Such a model has been applied to describe the frictional behaviour between ice 

and steel and to assess the influence of the surface roughness. 

Furthermore, it has been studied how a particular isotropic or anisotropic surface 

morphology (e.g., microholes of different shapes and sizes) can influence the 

static and dynamic friction coefficients with respect to its flat counterpart. In 
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particular, it has been proved that the presence of grooves on surfaces can decrease 

the friction coefficients and, thus, reduce wear and energy dissipation. 

Experimental tests were performed with a setup realized ad hoc and the results 

were compared with full numerical simulations by using codes developed in our 

group (Capozza and Pugno 2015; Costagliola, Bosia, and Pugno 2016, 2018).  

Tough some applications require a reduction in sliding friction, others could 

require an increase in energy dissipation, e.g. to enhance toughness of microfibers. 

In particular, the applied method  consists of introducing sliding frictional 

elements (sliding knots) (Pugno 2014) in biological (silkworm silk, natural or 

degummed) and synthetic fibres (Berardo, Pantano, and Pugno 2016; Bosia et al. 

2016; Pantano, Berardo, and Pugno 2016). This procedure reproduces the 

presence of sacrificial bonds in molecules, which provides higher toughness to the 

molecular backbone, thanks to a hidden length that occurs after their breakage. A 

variety of slip knot topologies with different unfastening mechanisms have been 

investigated, including even complex knots usually adopted in the textile industry. 

The knots were made by the manipulation of fibres with tweezers and the resulting 

knotted fibres were characterized through nanotensile tests to obtain their stress-

strain curve until failure. The presence of sliding knots strongly increases the 

dissipated energy per unit mass, without compromising the structural integrity of 

the fibre itself. Slip knots with optimized shape and size resulted in a significant 

enhancement of fibres toughness, up to 300-400% for natural silkworm silk fibres, 

without affecting their load bearing capacity.  
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Introduction 
Tribology is the science of interacting surfaces in relative motion and of related 

subjects. The interactions that take place at the moving interface define the 

friction, wear, and lubrication behaviour. Since friction occurs in everyday life, 

understanding the nature of these interactions at micro and nano scale may solve 

the technological problems associated with the interfacial phenomena. This 

constitutes the essence of tribology. In addition, tribological problems must be 

considered with a multidisciplinary approach, due to the presence of several 

mechanisms, such as mechanics, energy dissipation, adhesion, physical and 

chemical alterations of the surface, materials science third body lubrication, thin 

films and coating, phase transitions, wear (Archard 1953; Greenwood and 

Williamson 1966; Makkonen 1997; Persson et al. 2005; Popova and Popov 2015; 

Shu 1986; Vakis et al. 2018). In the field of tribology, some considerable progress 

has been recently achieved since the frictional behaviour of many components in 

industrial and everyday applications is of great importance to their functionality, 

from a macroscopic to a microscopic point of view.  

In particular, frictional surfaces can be also found on different scales in nature, 

with developed efficient solutions to minimise or maximise friction, depending on 

the needs. For example, ultra low friction is achieved in lubricated systems as 

synovial joints while ultra-high friction or even controlled adaptable friction can 

be found in the gecko feet, providing hierarchical structures with maximum 

adhesion (Baum et al. 2014; Boesel et al. 2010; Filippov and Gorb 2013; Jin and 

Dowson 2013; Liskiewicz, Morina, and Neville 2008). The study of these 

optimized structures and materials is of great interest for the development of 

nature-based solutions from an engineering point of view. 

For these reasons, the main goals of my PhD research are to acquire further 

knowledge in the wide field of tribology. The results aim to pave the way for 
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further investigations on how to increase and/or reduce friction to achieve 

optimized frictional and mechanical properties. My interests are the description of 

friction in the presence of rough surfaces in order to highlight the effects of 

anisotropic friction and tunable properties. Moreover, adhesion, wear, lubrication 

and hierarchical structures are also objects of this study to obtain a general 

overview of the main aspects related to tribology and bio-tribology. After a 

numerical part and model developing, experimental analyses in two different 

systems are shown to provide examples of how to exploit friction, by taking 

inspiration from nature. 

State of the art 

Although it has been studied for centuries, friction still includes various open 

questions, due to the many aspects occurring at the interface between bodies in 

relative motion.  

Leonardo da Vinci first proposed the “laws of dry friction”, then reformulated and 

collected by Amontons in the so-called four “laws of friction”, which are the basic 

qualitative concepts related to this very complex phenomenon, even if in a 

qualitative way (Dowson 1979; Popova and Popov 2015).  

Despite their simplicity, these laws resulted in the Amontons-Coulomb 

constitutive laws of friction (Coulomb 1821; Bo N. J. Persson 2000; Stewart 

Gillmor 1971). They can be summarized as follows: 

 The friction resistance increases or decreases proportionally to the applied 

pressure; 

 The friction coefficient (which is the ratio between the friction force and 

the normal load) is independent of sliding velocity, contact area and the 

surface roughness (Coulomb 1821; B N J Persson 2000; Popova and 

Popov 2015; Stewart Gillmor 1971). 

Coulomb stated that “Friction and cohesion are not active forces like gravity, but 

only passive forces”(Popova and Popov 2015), highlighting that they arise only in 
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the presence of an incipient relative motion (static friction force) or during the 

sliding (dynamic friction force). He also generalized the relationship between the 

tangential force and the applied load, by introducing a cohesive contribution, 

independent of the normal pressure. 

In terms of stresses, it is expressed as follows: 

𝜏 = 𝜏0 + 𝜇𝜎𝑁 

where τ is the frictional stress, τ0 is the cohesive component, σN is the normal 

pressure and μ is the internal coefficient of friction. 

The Coulomb’s law is still considered the basis for the description of dry friction 

in classical mechanics, even though recent studies have proved that some 

deviations may occur (Capozza and Pugno 2015; Carbone and Bottiglione 2008, 

2011; C Caroli and Nozières 1998). For example, it does not consider the presence 

of anisotropy, i.e. when the friction force depends on the direction of sliding, or 

how the normal load depends on the real contact area. 

Over the years, analytical models have been introduced to study the complicated 

problem of friction. One of the main contact theories was introduced by Hertz 

(Hertz 1882), which paved the way for the development of more recent models 

for contact mechanics, such as the one proposed by Greenwood and Williamson 

(GW) (Greenwood and Williamson 1966), the so called multi-asperity model and 

related studies by Majumdar and Bhusham (Bhushan and Majumdar 1992; 

Majumdar and Bhushan 1991), or alternative solutions, such as Persson’s theory 

(Bo N. J. Persson 2000; Persson 2001, 2006). They presented different approaches 

to compute the response of a rough surface in contact with a flat substrate, due to 

a normal load. Greenwood and Williamson developed the Archard’s studies, 

assuming a surface formed by n elastic spherical caps with same radii but different 

heights and provided the solution for the contact area after pressing this multi-

asperity surface against a rigid plane (Archard 1953; Greenwood and Williamson 

1966; Whitehouse and Archard 1970). They found that the area of real contact, 

usually smaller than the apparent contact area (B N J Persson 2000), is 
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proportional to the load, while the average size of micro contacts is independent 

of the load. Indeed, when the load increases, new contact spots are generated. On 

the contrary, Persson referred to surface roughness by defining the power spectral 

density of the undeformed rough surface and studied the contact mechanics 

between this rough rigid surface and a semi-infinite elastic solid. 

Other models have been developed during the years to study the interaction 

between the asperities of rough surfaces in contact. The one proposed by Caroli 

and Nozières (C. Caroli and Nozières 1998) studied velocity independent friction 

in a dry system and found that it is generated by hysteretic behaviour, while the 

elastic interactions between the asperities play a minor role in solid friction of 

multicontact interfaces. Mroz and Stupkiewicz also reported a friction model for 

anisotropic friction, which is the starting point for the development of the model 

I present within this work. Further details are pointed out in Chapter 1. 

An overview about tribological modelling and theories has been recently 

published (Vakis et al. 2018), which compares multiple theories and shows 

different approaches to this intriguing topic. 

Overview 

Since friction depends on numerous factors, my research activity has been 

organized into two main parts.  

In the first part, an analytical model for anisotropic dynamic friction has been 

introduced, which directly connects roughness with the friction coefficient and 

extends the study presented in (Mróz and Stupkiewicz 1994). Then, its 

adaptability has been enhanced by introducing one-dimensional and two-

dimensional roughness (1D and 2D Analytical Lattice Spring Friction Model), 

wear as a process which modifies the contact surface, adhesion and hierarchy. The 

model is based on the local validity of the classical Coulomb’s law (B N J Persson 

2000) and considers parallel springs to simulate the interaction between rough 

surfaces.  
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I implemented a mechanism simulating wear, which modifies the roughness 

profile, according to Archard’s law (Archard 1953). As a first approach, wear 

smooths the asperities. Then, adhesion has been modelled as a tensile force, which 

increases its effects during surfaces separation. Since nature provides optimized 

surfaces with hierarchical structures, I extended the model to describe surfaces 

using n levels of hierarchy in order to study their contribution to the frictional 

response of the system (Nosonovsky and Bhushan 2008; Pugno, Yin, et al. 2013).  

This has also been applied to the complex topic of ice friction, introducing 

lubrication and phase changes. Over a century of scientific research on the sliding 

friction of ice has not been sufficient to find an exhaustive explanation for the 

tribological behaviour of frozen water. It has been noticed that ice shows different 

friction regimes, but a detailed description of all the different processes occurring 

at the interface, including the effect of surface roughness of both the ice and the 

sliding material, was still missing.  

For this reason, in my thesis, the effects of surface morphology on the friction of 

steel/ice interfaces are discussed. Different degrees of random roughness are 

introduced on the steel surface and the friction coefficient is determined over a 

wide range of temperature and sliding velocities. The correlation between the 

surface roughness, the lubrication regime and the friction coefficient variation is 

described, by applying the 1D-ALSFM. 

The second part of this thesis is devoted to experimental activities, as a bio-

inspired approach to reduce friction in dry contacts, thanks to micro-textured 

surfaces, and a mechanical procedure to enhance the toughness of one-

dimensional materials (i.e. fibres), taking advantage of friction on the fibre lateral 

surface. 

Indeed, since friction depends on surface topography as well as on material 

mechanical parameters, new possibilities have emerged to control frictional 

properties by exploiting microscale surface patterning with sub-micrometer-

precision fabrication techniques. In order to design surfaces with the desired 
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characteristics, it is important to understand this relationship and to predict the 

final behaviour. In this thesis, I investigated with a custom-made setup how 

micropatterns affect the friction coefficient of surfaces and then verified the 

reliability of one numerical model, i.e. the 2D Spring Block model (Costagliola et 

al. 2016, 2018). In particular, experimental tests on various polymer substrates 

with isotropic and anisotropic patterns have been performed and compared to the 

corresponding numerical predictions for static and dynamic friction. In this 

experimental part, I could not apply my model for hierarchical surfaces due to its 

limits, which to date can not describe friction on surfaces with discontinuities (e.g. 

holes or pillars). 

However, friction could also be enhanced to improve the contacts between bodies 

or to dissipate more energy during the sliding. For this reason, a mechanical 

method is introduced to increase the energy dissipation of one-dimensional 

elements (silkworm silk fibres). The combination of high strength and high 

toughness is a desirable feature that structural materials should display. While in 

the past engineers were forced to reach a compromise, new toughening strategies 

are available. In this thesis, I reported my study on one of such strategies, which 

requires no chemical treatment, but only the implementation of slip knots with 

optimized shape and size in the chosen material fibres. Knots are fascinating 

topological elements, which can be found in both natural and artificial systems. In 

particular, a variety of slip knot topologies with different unfastening mechanisms 

has been investigated, including complex knots usually used in the textile industry 

and their efficiency in enhancing toughness of silk fibres has been reported. 

Potential knotted structures have been exploited to artificially increase the 

toughness of silkworm, thanks to the friction involved during the unfastening 

process. This method reproduces at the microscale the same toughening function, 

which sacrificial bonds have in highly coiled macromolecules. As the breakage of 

weak bonds (i.e., sacrificial bonds) reveals a hidden length in macromolecules, 

which can be further stretched without breaking their backbones, the unfastened 
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knots in our samples provided silk fibres with additional length, which can thus 

be further elongated before failure. 

Accordingly, this thesis is organised as follows: in Chapter 1, I introduce the 

analytical Anisotropic Lattice Spring Friction Model, starting from the one-

dimensional description and then exploiting it to the two-dimensional surface 

roughness.   

In Chapter 2, I introduce multiple effects related to dry friction phenomena as the 

presence of adhesion, sliding wear and hierarchy, providing an overall description 

of a typical tribological system. 

In Chapter 3, I report a study in collaboration with the University of Modena and 

Reggio Emilia relative to the ice friction. Both experiments and analytical 

modelling are described and the aforementioned 1D-ALSFM is applied to 

correlate the roughness of surfaces to the friction behaviour in different regimes. 

In Chapter 4, surface textures are analysed from an experimental point of view, 

then the results are applied to validate the spring-block model developed in 

collaboration with the University of Turin (Costagliola et al. 2018). 

Finally, in Chapter 5, the experimental procedure of toughness enhancement 

through friction is proposed. I describe the method, the adopted material and main 

results, also reported in (Berardo et al. 2016; Pantano et al. 2016). 

An additional related work is presented in Appendix, in which I performed 

tribological tests on Ethylene-propylene-diene termopolymer (EPDM) rubber 

based nanocomposites containing carbon black (CB), graphene nanoplatelets 

(GNPs) and mixtures of the two fillers, realized by University of Perugia. This 

work proposes the mechanical and thermal analysis of these composites. 
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Chapter 1 

1. Modelling anisotropic friction in the presence 

of 1D and 2D roughness  

Anisotropy in tribology can arise due to anisotropy of the surface roughness (e.g. 

textured surfaces, biological/bioinspired surfaces) or of the materials in contact 

(e.g. composites, crystals). The micromechanical modelling of friction anisotropy 

is a useful approach to study the interactions at the microscale and then to provide 

the overall behaviour at the macroscale. However, only few micromechanical 

models for anisotropic friction have been developed through the years, as the 

model for rubber friction (Carbone et al. 2009) and the model developed by Mroz 

and Stupkiewicz (Mróz and Stupkiewicz 1994). The first one assumes anisotropy 

due to orientation-dependent hysteretic contributions, while the second describes 

the contact between two surfaces (one represented by a parallel rigid wedge 

asperities and the other one flat) thanks to a set of longitudinal springs, which can 

deform only in the vertical direction. The Coulomb’s friction law is assumed to 

be valid for local contacts. 

Consistent with this last statement, I propose an analytical model, developed from 

the asperity model described in (Mróz and Stupkiewicz 1994), which is extended 

in this Chapter for general one-dimensional (1D) roughness and adapted to two-

dimensional (2D) roughness (a simplified version of the presented model has 

already been applied in Spagni et al. 2016 and described in Chapter 3). For 1D 

roughness, a function of one variable is defined, in the form z = f (x), while for 

2D roughness, it is assumed that z depends on two variables, as z = f (x,y). 

In particular, in this Chapter, I have studied the interaction between two surfaces 

with a generic roughness in order to derive the expression of the global friction 
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force and the dynamic coefficient of friction. Their interaction is governed by a 

set of longitudinal springs to model the elastic forces acting between the surfaces. 

The analytical model is firstly proposed for two wedge surfaces, considering the 

effects of different geometries and direction of sliding. Secondly, surface 

roughness is described by continuous and derivative periodic functions for 1D and 

finally 2D asperities, to obtain how the general dynamic friction coefficient 

depends on these parameters. Finally, some case studies and their results are 

proposed and further discussed. 

The presented model describes the interactions between rough surfacesduring the 

sliding, assuming that the two contact bodies are already in relative motion, 

without considering the static friction force.  

Indeed, in this approach, attention is given to how roughness influences the 

dynamic friction forces, since continuous sliding for a long time is one of the main 

causes of wear and surface alterations. In addition, many industrial analyses of 

friction and wear on mechanical components are performed referring to the 

dynamic regime (Antoni et al. 2007; Bistac and Galliano 2005; Colbeck 1988; 

Spagni et al. 2016; Xing et al. 2017), thus this is why I primary focus on it. Some 

changes can be implemented within the model to extend its predictions also on the 

static phase; however, these are not object of this thesis.  

1.1. Anisotropic Lattice Spring Friction Model for 1D 

roughness (1D-ALSFM) 

The model described in (Mróz and Stupkiewicz 1994) considers two contacting 

surfaces as reported in Figure 1.1 a, in which their interaction is described by a set 

of longitudinal springs, with constant stiffness equal to 𝑘. This previous model 

assumes that one surface has long wedge-shaped asperities, while the other is flat, 

with attached isotropically distributed springs. When one surface is moving 

against the other, the springs deform and slide on the rough surface. 
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In this extended model, first of all, I changed the initial configuration, by assuming 

two rough surfaces. To detect this double roughness effect, the springs slide on 

both the upper and lower surface, being attached half to the lower surface and the 

other half to the upper surface respectively (Figure 1.1 b). This configuration 

allows the model to distinguish the coefficient of dynamic friction in the presence 

of two rough surfaces from the one of rough-flat contacts. 

 

Figure 1.1 a) Asperity model for anisotropic friction as reported in (Mróz and Stupkiewicz 1994). 

b) The asperity model for orthotropic friction as adopted for our model: the asperities can be 

asymmetric and can vary the slopes from top and bottom. c). By assuming a single spring, the 

equilibrium on the tilted plane is showed to obtain the reaction forces Fx and Fy in the global 

reference system. 

Firstly, the equilibrium of a single spring at point P on the tilted plane is 

considered, as reported in Figure 1.1 c. The spring length is equal to 𝑙𝑃, while the 

rest length is 𝑙0. The sliding velocity on the asperity is identified by v0, a vector in 

the xy plane. The direction of sliding is expressed by β0, which can vary from 0° 

to 90°.  
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Due to its length variation, the single spring generates an elastic force, expressed 

as follows:  

𝐹𝑧(𝑃) = 𝑢𝑘𝑐 > 0    (1.1) 

in case of compression, where 𝑙0 − 𝑙𝑃 = 𝑢. 

The normal force 𝑁 is the force perpendicular to the asperity (tilted by an angle 

𝜑 = 𝜑1 with respect to the xy plane), and the tangential force 𝑇 is the friction 

force, equal to 𝑇 = 𝜇0𝑁, where 𝜇0 is the local dynamic coefficient of friction. 

These forces are in equilibrium with the reaction forces 𝐹𝑥 and 𝐹𝑦 on the xy plane 

and by 𝐹𝑧 in the vertical direction. From the equilibrium, the following equations 

are obtained: 

𝐹𝑧 = 𝑁 cos𝜑1 − 𝑇𝜉 sin𝜑1   (1.2) 

𝐹𝑥 = 𝑁 sin𝜑1 − 𝑇𝜉 cos𝜑1 (1.3) 

𝐹𝑦 = 𝑇 sin𝛽0  (1.4) 

Where 𝑇𝜉 = 𝑇 cos𝛽0 and tan𝛽0 = tan𝛽 cos𝜑1. 

Referring to a generic plane tilted by any angle φ1, from Eq. (1.2) to (1.4) the 

expression for 𝑁 is obtained: 

𝑁 =
𝑘𝑢

cos𝜑 −
𝜇0 tan𝜑1 cos 𝛽

√1 + tan2𝜑1 cos2 𝛽

 
(1.5) 

The denominator must be different from zero, leading to 𝜑1 ≠
𝜋

2
 and 𝜇0 ≠ cos𝜑1. 

If 𝐹𝑧 is a compressive force, it means 𝑘𝑢 ≥ 0 and cos𝜑1 −
𝜇0 tan𝜑1 cos𝛽

√1+tan2𝜑1  cos
2𝛽
> 0. 

This means that  𝑙0 − 𝑙𝑃 is positive and that the local coefficient of friction 𝜇0 

must be smaller than cot𝜑1. To satisfy Eq. (1.5), the more the material displays 

sharp roughness, the more the local friction coefficient must be small. In 

particular, for φ equal to 45°, μ0 has to be minor than 1. From a physical point of 
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view, this implies that the model is suitable for elastomers, which usually display 

dynamic coefficient of friction around 1-2 (He, Chen, and Jane Wang 2008; 

Johnston et al. 2014; Rand and Crosby 2009; Valentini et al. 2016), until they 

show a smooth roughness (Figure 1.2). 

 

Figure 1.2 Field of model application: in order to have the normal force N > 0, μ0 must be smaller 

than cotφ. This defines when the model is applicable (blue part). 

From from Eq. (1.2) to (1.5)(1.4), the reaction forces acting in x and y directions 

are: 

𝐹𝑥 = 𝐹𝑧
sin𝜑1√1 + tan

2 𝜑1 cos
2 𝛽 + 𝜇0 cos𝛽

cos𝜑1√1 + tan
2 𝜑1 cos

2 𝛽 − 𝜇0 tan𝜑1 cos 𝛽
 (1.6) 

𝐹𝑦 = 𝐹𝑧
𝜇0 sin𝛽

cos𝜑1√1 + tan
2𝜑1 cos

2 𝛽 − 𝜇0 tan𝜑1 cos 𝛽
 

 

(1.7) 

For simplicity, to recall the reaction forces Fx and Fy, the following expression are 

used: 



Alice Berardo – A Numerical and Experimental Study on the Friction of Complex Surfaces 

44 

 

𝐹𝑥 = 𝐹𝑧𝐻𝑥(𝜇0, 𝜑1, 𝛽) (1.8) 

𝐹𝑦 = 𝐹𝑧𝐻𝑦(𝜇0, 𝜑1, 𝛽) (1.9) 

where Hx and Hy include the contributions of the sliding direction β and the 

geometry, i.e. asperity slopes. When a single spring is considered, Hx and Hy are 

constant, until the spring slides on the plane tilted by φ1 with the same orientation. 

To pass from a single spring interaction to the overall elastic response, a certain 

number n of springs is considered between two wedge asperities, formed byplanes 

tilted by φ1, φ2, φ3, φ4 respectively, with respect to the xy plane. 

Since the average spring displacement is equal to 
∑ ∆𝑙𝑖
𝑛
𝑖

𝑛
 , the average normal 

(elastic) force is 𝑅𝑧 =
𝑘 ∑ ∆𝑙𝑖

𝑛
𝑖

𝑛
=

∑ 𝑘∆𝑙𝑖
𝑛
𝑖

𝑛
=

∑ 𝐹𝑧
𝑖𝑛

𝑖

𝑛
 (thanks to the same spring 

stiffness). If the whole asperity is considered, the average normal elastic force Rz 

(in the z-direction) is the sum of the average elastic forces generated by the spring 

compression on each tilted plane. The average elastic forces are also weighted by 

their area of competence, thanks to the introduction of ψ and δ. The coefficient ½ 

remembers that the springs are fixed half on the upper and half on the lower 

surfaces.  

𝑅𝑧 =
1

2

𝜓

1 +𝜓
𝑅𝑧
(1) +

1

2

1

1 +𝜓
𝑅𝑧
(2) +

1

2

𝛿

1 + 𝛿
𝑅𝑧
(3) +

1

2

1

1 + 𝛿
𝑅𝑧
(4)

 (1.10) 

              

𝜓 =
tan𝜑2
tan𝜑1

     𝛿 =
tan𝜑4
tan𝜑3

  

𝑅𝑧
(1)

(average normal force, acting on the tilted plane by φ1), 𝑅𝑧
(2)

(average normal 

force, acting on the tilted plane by φ2),  𝑅𝑧
(3)

(average normal force, acting on the 

tilted plane by φ3) and  𝑅𝑧
(4)

(average normal force, acting on the tilted plane by 

φ4). In case of various wedge (i.e. triangular) asperities, these weights might be 

different, depending on the wedge slopes. 
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In this case, same expressions for the reaction forces 𝑅𝑥 and 𝑅𝑦 are obtained: 

𝑅𝑥 =
1

2

𝜓

1 + 𝜓
𝑅𝑧
(1)
𝐻𝑥(𝜇0, 𝜑1, 𝛽) +

1

2

1

1 + 𝜓
𝑅𝑧
(2)
𝐻𝑥(𝜇0, −𝜑2, 𝛽) 

+
1

2

𝛿

1 + 𝛿
𝑅𝑧
(3)
𝐻𝑥(𝜇0, 𝜑3, 𝛽) +

1

2

1

1 + 𝛿
𝑅𝑧
(4)
𝐻𝑥(𝜇0, −𝜑4, 𝛽) (1.11) 

 

𝑅𝑦 =
1

2

𝜓

1 + 𝜓
𝑅𝑧
(1)𝐻𝑦(𝜇0, 𝜑1, 𝛽) +

1

2

1

1 + 𝜓
𝑅𝑧
(2)𝐻𝑦(𝜇0, −𝜑2, 𝛽) 

+
1

2

𝛿

1 + 𝛿
𝑅𝑧
(3)
𝐻𝑦(𝜇0, 𝜑3, 𝛽) +

1

2

1

1 + 𝛿
𝑅𝑧
(4)
𝐻𝑦(𝜇0, −𝜑4, 𝛽) (1.12) 

 

Finally, by computing the resulting tangential force on the xy plane, the global 

friction coefficient 𝜇 is equal to: 

  𝜇 =
𝑅𝑥,𝑦

𝑅𝑧
 (1.13) 

If  𝛽 = 0 the sliding motion is only in 𝑥 direction, 𝜇𝑦 = 0 and  

𝜇 = 𝜇𝑥 =
𝑅𝑥
𝑅𝑧

 (1.14)  

 

𝜇𝑥 =

1
2

𝜓
1 + 𝜓

𝑅𝑧
(1) 𝜇0 + tan𝜑1
1 − 𝜇0 tan 𝜑1

+
1
2

𝛿
1 + 𝛿

𝑅𝑧
(3) 𝜇0 + tan𝜑3
1 − 𝜇0 tan𝜑3

𝑅𝑧
+ 

+

1
2

1
1 + 𝜓

𝑅𝑧
(2) 𝜇0 − tan𝜑2
1 + 𝜇0 tan𝜑2

+
1
2

1
1 + 𝛿

𝑅𝑧
(4) 𝜇0 − tan𝜑4
1 + 𝜇0 tan 𝜑4

𝑅𝑧
 

On the contrary, if  𝛽 =
𝜋

2
, 𝜇𝑥 = 0 and  

𝜇 = 𝜇𝑦 =
𝑅𝑦

𝑅𝑧
 (1.15)  
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𝜇𝑦 =

1
2

𝜓
1 + 𝜓

𝑅𝑧
(1) 𝜇0
cos𝜑1

+
1
2

𝛿
1 + 𝛿

𝑅𝑧
(3) 𝜇0
cos𝜑3

+
1
2

1
1 + 𝜓

𝑅𝑧
(2) 𝜇0
cos 𝜑2

+
1
2

1
1 + 𝛿

𝑅𝑧
(4) 𝜇0
cos 𝜑4

𝑅𝑧
 

1.2. Particular cases 

 

Figure 1.3 Particular cases: a) One flat surface sliding on a rough surface with symmetric wedge 

asperities. b) Two rough surfaces with the same symmetric wedge asperities. 

 Case 1: 𝜑1 = 𝜑2 = 𝜑, 𝜑3 = 𝜑4 = 0 and 𝜓 = 𝛿 = 1 (Figure 1.3 a) 

This case is simplified when  𝛽 = 0 , so that the sliding motion is only in x 

direction, 𝜇𝑦 = 0 and 𝜇𝑥 becomes: 

 

𝜇𝑥 =

1
4𝑅𝑧

(1) 𝜇0 + tan𝜑
1 − 𝜇0 tan𝜑

+
1
4𝑅𝑧

(3)
𝜇0 +

1
4𝑅𝑧

(2) 𝜇0 − tan𝜑
1 + 𝜇0 tan𝜑

+
1
4𝑅𝑧

(4)
𝜇0

𝑅𝑧
 

=
𝜇0(2 − sin

2𝜑 (1 + 𝜇0
2))

2(1 − sin2𝜑 (1 + 𝜇0
2))

 (1.16) 

 

The contributions of the upper and lower surfaces are different, due to their 

roughness (or flatness). In the case of a flat surface, the reaction forces are equal 

to the tangential forces, since N is equal to Fz. 
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On the contrary, if β = 90°, the sliding motion is along y direction and it means 

that 𝜇𝑥 = 0 and  

𝜇𝑦 =

1
4
𝑅𝑧
(1) 𝜇0
cos𝜑

+
1
4
𝑅𝑧
(2) 𝜇0
cos𝜑

+
1
4
𝑅𝑧
(3)
𝜇0 +

1
4
𝑅𝑧
(4)
𝜇0

𝑅𝑧
=
1

2
𝜇0 (

1

cos𝜑
+ 1) 

(1.17) 

Although these particular cases could seem very similar to the ones reported in 

(Mróz and Stupkiewicz 1994), slightly different values are obtained, as reported 

in Eq. (1.16) and (1.17). This is due to the different initial hypotheses. In 

particular, since the springs are fixed half on the lower surface and half on the 

upper surface, so that the average vertical force 𝑅𝑧 is the mean of both upper and 

lower elastic forces, as in Eq. (1.10). On the contrary, in (Mróz and Stupkiewicz 

1994) 𝑅𝑧 was the mean of the elastic forces acting only on the lower surface, while 

the upper one does not contribute, resulting in different tangential forces. Thus, 

introducing in the ALSFM the same assumptions, the final values are the 

following: 

𝑅𝑧 =
𝜓

1 + 𝜓
𝑅𝑧
(1)
+

1

1 + 𝜓
𝑅𝑧
(2)

 
(1.18) 

𝜇𝑥 =

1
2𝑅𝑧

(1) 𝜇0 + tan𝜑
1 − 𝜇0 tan𝜑

+
1
2𝑅𝑧

(2) 𝜇0 − tan𝜑
1 + 𝜇0 tan𝜑

𝑅𝑧
=

𝜇0
1 − sin2𝜑 (1 + 𝜇0

2)
 

(1.19) 

𝜇𝑦 =

1
2𝑅𝑧

(1) 𝜇0
cos𝜑 +

1
2𝑅𝑧

(2) 𝜇0
cos𝜑

𝑅𝑧
=

𝜇0
cos𝜑

 
(1.20) 

Where Eq. (1.19) refers to the global coefficient of friction when β = 0° and the 

sliding occurs along the x-direction while Eq. (1.20) refers to the global 

coefficient of friction when β = 90° and the sliding occurs along the y-direction.  

Eq. from (1.18) to (1.20) are obtained by assuming that only one surface 
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contributes to the calculation of the global coefficient of friction and the results 

are the same as reported in (Mróz and Stupkiewicz 1994). 

Case 2: 𝜑1 = 𝜑2 = 𝜑3 = 𝜑4 = 𝜑 and 𝜓 = 𝛿 = 1 (Figure 1.3 b) 

This case is simplified when 𝛽 = 0, the sliding motion occurs in x direction, 𝜇𝑦 =

0 and: 

𝜇𝑥

=

1
4
𝑅𝑧
(1) 𝜇0 + tan𝜑
1 − 𝜇0 tan𝜑

+
1
4
𝑅𝑧
(3) 𝜇0 + tan𝜑
1 − 𝜇0 tan𝜑

+
1
4
𝑅𝑧
(2) 𝜇0 − tan𝜑
1 + 𝜇0 tan𝜑

+
1
4
𝑅𝑧
(4) 𝜇0 − tan𝜑
1 + 𝜇0 tan 𝜑

𝑅𝑧

=
𝜇0

1 − sin2 𝜑 (1 + 𝜇0
2)

 

 

(1.21) 

On the contrary, if β = 90°, 𝜇𝑥 = 0 and  

𝜇𝑦 =

1
4
𝑅𝑧
(1) 𝜇0
cos𝜑

+
1
4
𝑅𝑧
(3) 𝜇0
cos𝜑

+
1
4
𝑅𝑧
(2) 𝜇0
cos𝜑

+
1
4
𝑅𝑧
(4) 𝜇0
cos𝜑

𝑅𝑧
=

𝜇0
cos𝜑

 
(1.22) 

The coefficients found in Case 1 are smaller than in Case 2. This is reasonable, 

because Case 2 considers both the surfaces rough, thus, if one is flat (Case 1), 

there is a lower contribution to enhance the global friction coefficient. 

In Case 2, when the lower and upper surfaces are defined by the same functions, 

the total elastic force is equally shared and all the tangential forces associated to 

each spring are influenced by the same roughness. This configuration refers to the 

one of (Mróz and Stupkiewicz 1994) and the same results are obtained. 

The behaviour of the global coefficient of friction is reported in Figure 1.4, where 

we analysed six different roughness configurations with respect to the influence 

of the sliding direction (𝛽). The direction of sliding non-linearly modifies the 

coefficient of friction 𝜇. 
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Figure 1.4 Coefficient of friction for different sliding directions (β) in the case of two wedge asperity 

surfaces. μ0 is set equal to 0.3. 

The largest coefficient of friction is reached when both the surfaces are rough and, 

in particular, when the first slope is greater of the two, which is the case of 

asymmetrical roughness (red stars in Figure 1.4). More broadly, contacts with 

both rough surfaces show a larger coefficient of friction, with respect to the rough-

flat surface contacts. When β tends to 90°, some reported cases collapse: this is 

the case for φ1 = φ3 > φ2 = φ4 and φ1 = φ3 < φ2 = φ4 , which have the same 

coefficient of friction if β is 90°. The same occurs for φ1 > φ2  φ3 = φ4 = 0 and φ1 

< φ2  φ3 = φ4 = 0, where, in fact, the roughness asymmetry becomes negligible 

when the sliding is along the y direction. All these results confirm what was 

previously surmised from the analytical solutions. In Figure 1.4 values of 𝜇 are 

normalized by 𝜇0, the local coefficient of friction used in the isotropic Coulomb 

friction model. 
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Figure 1.5 a) Variation of the global coefficient of friction by assuming one flat upper surface and 

one lower rough surface with respect to wedge slopes and the direction of sliding. b) Focus on the 

first part of the function: for smaller asperities slopes, reliable values of global coefficient of friction 

are obtained. This behaviour highlights the field of application of the model, which is suitable for 

asperities with small angles. μ0 is set equal to 0.3. 

 

Figure 1.6 a) Variation of the global coefficient of friction by assuming both rough surfaces surface 

with respect to wedge slopes and the direction of sliding. b) Focus on the first part of the function: 

for smaller asperities slopes, reliable values of global coefficient of friction are obtained. This 

behaviour highlights the field of application of the model, which is suitable for asperities with small 

angles. μ0 is set equal to 0.3. 

In case of sharp-shaped asperities (φ = 60° or more), the global coefficient of 

friction 𝜇 becomes ten times higher and continues to increase, especially for small 

values of 𝛽 (see Figure 1.5 and Figure 1.6). For φ = 90° it tends to an infinite 

value.. An angle φ close to 90° means that the asperities are vertical to the xy 
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plane, e.g. holes or pillar on a flat substrate. Indeed, in this situation, the tangential 

force arises to infinite values. Considering a single spring, sliding along the 

surface profile, when it faces the vertical asperity, its sliding is obstructed and an 

infinite value of the coefficient of friction is reached, meaning that the relative 

motion stops. 

However, if one focused on the first parts of the graphs (dashed boxes) 

corresponding to smoother surfaces (φ < 45°), results are encouraging in the 

presence of both flat-rough or only rough surfaces and highlight that the model 

could be applied to smoother roughness.  

1.3. ALSFM for 1D general roughness 

Now consider two rough surfaces in contact, modelled as reported in Figure 1.7, 

so that roughness is expressed by a continuous and differentiable function with a 

defined periodicity. 

The surfaces are defined as functions of the only variable 𝑥 , while they are 

extruded along 𝑦 direction: the slope 𝜑 is the inverse tangent of the derivative of 

function 𝑧(𝑥) obtained in 𝑃 (𝜑𝑃) 

These surfaces (the lower surface is identified by no. 1, while the upper is no. 2) 

are described by two functions, which can be expressed as: 

𝑧1 = 𝑓1(𝑥) (1.23) 

𝑧2 = 𝑓2(𝑥). (1.24) 

As stated before, it is assumed that the isotropic Coulomb friction model describes 

the local friction between surfaces and that the surfaces in contact are modelled 

with a lattice of equally spaced longitudinal springs, which governs their 

interaction. 

As stated previously, if no adhesion occurs, it is assumed that the springs are all 

characterized by the same longitudinal stiffness k, and the two bodies interact with 

normal elastic forces, which arise when the springs are compressed or elongated. 
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Firstly, the force equilibrium at point 𝑃  (𝑃 ∈ 𝑓(𝑥) ) due to a single spring 

interaction is analysed (Figure 1.7.b).  

𝛽0 identifies the direction of the sliding velocity vector 𝑣0 on the 𝜋 plane (Figure 

1.7.a), which is the tangent plane in P, tilted by 𝜑 = 𝜑𝑃 from the xy plane (𝜑𝑃 is 

the intersection between the tangent plane in 𝑃 and the 𝑥𝑦 plane), while 𝑣 and 𝛽 

are the projected sliding velocity and the projection of 𝛽0  on the xy plane, 

respectively. 

 

 

Figure 1.7 a) Detail of a surface with 1D roughness (along x direction): we consider the force 

equilibrium at point P, P ∈ f(x) due to the spring interaction. To obtain each force contribution, in 

this case the tangent plane (π) in P is considered. b) Force decomposition on π is considered with 

respect to the global system xyz in P. β0 identifies the direction of the sliding velocity vector v0 on 

the π plane, tilted by φ from the xy plane, while v is the projected sliding velocity and β the projection 

of β0 on the xy plane. 

A spring fixed on the upper asperity (surface 𝑧2) is considered, while it is sliding 

on the lower one (surface 𝑧1); l0 is the spring length at rest: the actual spring length 

l depends on the geometrical shape of the asperities. Functions 𝑧1 and 𝑧2 describe 

the surface asperities; for a certain point 𝑃, the spring length is equal to: 

𝑙𝑝 = 𝑧2(𝑥𝑝) − 𝑧1(𝑥𝑝) (1.25) 

Due to its length variation, the single spring generates an elastic force that can be 

expressed as follows:  

𝐹𝑧(𝑃) = (𝑙0 − 𝑙𝑃)𝑘𝑐 in case of compression; 
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𝐹𝑧(𝑃) = 0 in case of elongation (see Chapter 2 if adhesion occurs); 

 

From force equilibrium, the expression for the local normal force N, acting on the 

𝜋 plane is obtained. The tangential force is equal to 𝑇 = 𝜇0𝑁, where 𝜇0 indicates 

the local coefficient of friction. The expression for 𝑁 is similar to the previous 

one: 

𝑁 = 𝑘𝑢 [cos𝜑𝑃 −
𝜇0 tan𝜑𝑃 cos𝛽

√1 + tan2𝜑𝑃  cos
2 𝛽
]

−1

 (1.26) 

Where 𝜑𝑃 , 𝛽 and 𝜇0 are defined as previously. 

As before, the denominator should be different from zero, leading to the same 

limitations as in the previous case, which constrain the tilt of the wedge asperities. 

Referring to the global reference system, it is possible to express the tangential 

force with respect to the normal elastic force, similar to Eq. (1.6) and (1.7): 

𝐹𝑥 = 𝐹𝑧
sin𝜑𝑃√1 + tan

2 𝜑𝑃 cos
2 𝛽 + 𝜇0 cos𝛽

cos𝜑𝑃 √1 + tan
2𝜑𝑃 cos

2 𝛽 − 𝜇0 tan𝜑𝑃 cos𝛽
= 𝐹𝑧𝐻𝑥(𝜇0, 𝜑𝑃 , 𝛽) (1.27) 

𝐹𝑦 = 𝐹𝑧
𝜇0 sin 𝛽

cos𝜑𝑃 √1 + tan
2𝜑𝑃 cos

2 𝛽 − 𝜇0 tan𝜑𝑃 cos𝛽
= 𝐹𝑧𝐻𝑦(𝜇0, 𝜑𝑃 , 𝛽) (1.28) 

When one surface is moving against the other, each spring length changes in time, 

due to the anisotropy in x direction. 

Consider now a certain number n of springs, acting on both asperities. The 

following equations can be adopted, where each number associated to a force 

identifies the surface on which it is applied.  

If the whole asperity is considered, the total normal force 𝑅𝑧 will be equal to: 

𝑅𝑧 =∑𝐹𝑧
(1) +∑𝐹𝑧

(2)
 (1.29) 

𝐹𝑧
(1)

(normal forces acting on the lower surface), 𝐹𝑧
(2)

(normal forces acting on the 

upper surface). 
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The same expressions are obtained for the tangential forces in both the principal 

directions  𝑅𝑥 and 𝑅𝑦, following the same subdivision as in Eq. (1.8) and (1.9): 

𝑅𝑥
(1)
=∑𝐹𝑥

(1)
= ∑𝐹𝑧

(1)
𝐻𝑥(𝜇0, 𝜑𝑃 , 𝛽) (1.30) 

𝑅𝑦
(1) =∑𝐹𝑦

(1) = ∑𝐹𝑧
(1)𝐻𝑦(𝜇0, 𝜑𝑃 , 𝛽) (1.31) 

𝑅𝑥
(2)
=∑𝐹𝑥

(2)
= ∑𝐹𝑧

(2)
𝐻𝑥(𝜇0, 𝜑𝑃 , 𝛽) (1.32) 

𝑅𝑦
(2) =∑𝐹𝑦

(2) = ∑𝐹𝑧
(2)𝐻𝑦(𝜇0, 𝜑𝑃 , 𝛽) (1.33) 

It is useful to observe that these expressions can be subdivided into two terms. 

The first is the elastic contribution, which depends on the length variation of the 

springs, on the function derivative in each point and on v. The second term (Hi) is 

a geometrical part, which depends on to one of the two asperities, on the velocity 

orientation β and on the local friction coefficient 𝜇0. 

From the previous relationships, in the case of no adhesion, the coefficient of 

friction 𝜇𝑥  , 𝜇𝑦  and the global coefficient of friction 𝜇  are obtained as in Eq. 

(1.14), (1.15) and (1.13) respectively.  

Following the Coulomb’s law, the tangential force is proportional to the normal 

force applied to the surface. Thus, the tangential forces 𝑅𝑥  and 𝑅𝑦  can be 

expressed in the following form: 

𝑅𝑥 =∑𝐹𝑧
(1)𝐻𝑥(𝜇0, 𝜑𝑃 , 𝛽) + ∑𝐹𝑧

(2)𝐻𝑥(𝜇0, 𝜑𝑃 , 𝛽) (1.34) 

𝑅𝑦 =∑𝐹𝑧
(1)𝐻𝑦(𝜇0, 𝜑𝑃 , 𝛽) +∑𝐹𝑧

(2)𝐻𝑦(𝜇0, 𝜑𝑃 , 𝛽) (1.35) 

P represents each point in which the equilibrium between friction forces and 

elastic/reaction forces is considered. The equilibrium is calculated n times for a 

single time step, where n is the number of nodes in which the surfaces are 

discretized.  
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Figure 1.8 Coefficient of friction for six case studies reported in the box for two derivable periodic 

surfaces. As in the previous case, the coefficients are calculated by assuming different direction of 

sliding (𝛽). μ0 is set equal to 0.3. 

Figure 1.8 shows the results of six different configurations of roughness with 

respect to the influence of the sliding direction (𝛽). As reported, the direction of 

sliding strongly affects the coefficient of friction 𝜇. Furthermore, it is stated that 

generic 1D roughness has globally a higher friction coefficient than the equivalent 

wedge asperities (for the generic 1D roughness we refer to 𝜑1, 𝜑2, etc., as the 

average slopes of the surface 𝑧1  and 𝑧2). As previously stated, some of these 

results collapse into the same value, if the sliding occurs along the y direction. 

In Figure 1.9, the global friction coefficient μ is reported with respect to time (i.e. 

sliding distance if the sliding velocity is constant) in the presence of 1D symmetric 

sinusoidal shaped asperities. The graph shows the evolution of the global 

coefficient of friction with respect to the local coefficient μ0 after a small sliding 

length. They highlight the influence of the surface profile, the contribution of the 

local coefficient of friction and the direction of sliding. By increasing the sliding 

distance, these oscillations recall the experimental results obtained from common 
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friction tests, as reported in Chapter 4, or in other works (Antoni et al. 2007; 

Gualtieri et al. 2009). The resulting global friction coefficients are the average 

values of these curves. 

The average global coefficients of friction increase, following the local coefficient 

of friction. At the same time, as inferred previously, the sliding direction β 

strongly influences both the oscillations around the mean values and the mean 

values as well. With β = 90° no oscillations occur due to the shape of the surfaces, 

which are extruded along the y direction in the xy plane.  

 

Figure 1.9 Friction coefficient μ with respect to time (i.e. sliding distance if the sliding velocity is 

constant) for two 1D symmetric sinusoidal shaped asperities. The graph shows the evolution in time 

of the global coefficient of friction with respect to the local coefficient μ0. The average values 

increase, by increasing the local coefficient of friction. At the same time, the sliding direction β 

strongly influences both the oscillations around the mean values and the mean values as well. With 

β = 90° no oscillations occur due to the shape of the surfaces, which are extruded along the y 

direction in the xy plane. 
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1.4. Extended ALSFM for 2D roughness (2D-ALSFM) 

The Anisotropic Lattice Spring Friction Model for 1D roughness is adapted in this 

section to surfaces characterized by two-dimensional (2D-ALSFM) roughness, 

which changes in both x and y directions. 

The initial hypotheses are the same as in the previous studies: two rough surfaces 

in contact, modelled as reported in Figure 1.10, where roughness can be expressed 

by a continuous and differentiable function of x and y with a defined periodicity. 

These surfaces (as before, the lower surface is identified by no. 1, while the upper 

is no. 2) are described by two functions: 

𝑧1 = 𝑓1(𝑥, 𝑦) (1.36) 

𝑧2 = 𝑓2(𝑥, 𝑦). (1.37) 

Due to the presence of vertical springs, the two bodies share normal elastic forces, 

which can be modified when the springs are compressed or elongated. 

This configuration is adopted to consider the contributions of both rough surfaces 

to the global coefficient of friction. 

Firstly, the force equilibrium at point 𝑃 ∈ 𝑓(𝑥, 𝑦) in the presence of a single 

spring interaction is considered (Figure 1.10 b). To obtain each force contribution, 

the plane 𝜋 (Figure 1.10 a), tangent to the surface in 𝑃, is considered, by Eq. 

(1.38): 

(𝑥 − 𝑥𝑃)
𝜕𝐺

𝜕𝑥
+ (𝑦 − 𝑦𝑃)

𝜕𝐺

𝜕𝑦
+ (𝑧 − 𝑧𝑃)

𝜕𝐺

𝜕𝑧
= 0 (1.38) 

𝐺: 𝑓(𝑥, 𝑦) − 𝑧 = 0 (1.39) 

G is the set of points, which satisfy the Eq. (1.39). From the equilibrium at point 

P, the forces are firstly referred to the rotated reference system  x’y’z, where the 

x’ axis and y’ axis are the concurrent straight lines generating the tangent plane in 

P (y’ correspond to the η axis, while x’ is the projection of the ξ axis on the x’y’z 

reference system). Once the acting and reacting forces are estimated with respect 
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to the local system 𝑥′𝑦′𝑧 in 𝑃 (Figure 1.10 c), to determine the final reactions in 

the global reference system 𝑥𝑦𝑧 , the rotation matrix must be applied (𝛼). 𝛽0 

identifies the direction of the sliding velocity vector 𝑣0 on the 𝜋 plane, tilted by φ 

= φP from 𝑥′𝑦′ plane, φP is the intersection between the tangent plane in 𝑃 and the 

𝑥′𝑦′ plane), while 𝑣 and 𝛽′ are the projected sliding velocity and the projection of 

𝛽0 on the 𝑥′𝑦′ plane, respectively. In the global reference system xyz the sliding 

direction is identified by β, with β = β’ + α. 

 

Figure 1.10 a) 2D roughness characterizes both surfaces in contact. A set of longitudinal springs 

governs the interaction at the interface. Details of one surface with 2D roughness: we consider the 

force equilibrium at point P, P ∈  f(x,y) due to the spring interaction. To obtain each force 

contribution, the tangent plane (π) in P is considered. b) Force decomposition on π is considered 

with respect to the local system x’y’z’ in P. To obtain the overall reactions in the global reference 

system xyz, the rotation matrix must be applied (α). β0 identifies the direction of the sliding velocity 

vector v0 on the π plane, tilted by φ from the x’y’ plane, while v is the projected sliding velocity and 

β’ the projection of β0 on the x’y’ plane.  

The equilibrium is considered for a spring fixed on the upper asperity (surface 𝑧2) 

and slides on the lower (surface 𝑧1); l0 is the spring length at rest: the actual spring 

length l depends on the geometrical shape of the asperities. Functions 𝑧1 and 𝑧2 

describe the surface asperities and, for a certain point 𝑃, the spring length is equal 

to: 

𝑙𝑝 = 𝑧2(𝑥𝑝, 𝑦𝑝) − 𝑧1(𝑥𝑝, 𝑦𝑝) (1.40) 
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As before, the single spring generates an elastic force:  

𝐹𝑧(𝑃) = (𝑙0 − 𝑙𝑃)𝑘𝑐 in case of compression; 

𝐹𝑧(𝑃) = 0 in case of elongation (see Chapter 2 if adhesion occurs); 

Locally, the normal force 𝑁 acting on the 𝝅 plane is deducted. The tangential 

force is equal to 𝑇 = 𝜇0𝑁, where 𝜇0 is the local coefficient of friction (as for the 

previous cases the model follows the isotropic Coulomb’s law to describe local 

friction). 

The limitations obtained for 𝑁 are the same as before. 

Referring to the  𝑥′𝑦′ plane, from the equilibrium, the tangential forces follow Eq. 

(1.27) and (1.28) but expressed in the rotated system, while the normal elastic 

force is still expressed by Eq. (1.1): 

𝐹𝑥′ = 𝐹𝑧
sin𝜑𝑃 √1 + tan

2 𝜑𝑃 cos
2 𝛽′ + 𝜇0 cos𝛽′

cos𝜑𝑃√1 + tan
2 𝜑𝑃 cos

2 𝛽 ′ − 𝜇0 tan𝜑𝑃 cos𝛽 ′
= 𝐹𝑧𝐻𝑥(𝜇0, 𝜑𝑃 , 𝛽′) (1.41) 

𝐹𝑦′ = 𝐹𝑧
𝜇0 sin 𝛽′

cos𝜑𝑃 √1 + tan
2 𝜑𝑃 cos

2 𝛽′ − 𝜇0 tan𝜑𝑃 cos 𝛽′
= 𝐹𝑧𝐻𝑦(𝜇0, 𝜑𝑃 , 𝛽′) (1.42) 

When one surface is moving against the other, each spring length changes in time, 

due to the variation in both x and y direction. 

Finally, to achieve the reaction forces in xyz system (𝐹𝑥 and 𝐹𝑦), a rotation of the 

local reference system x’y’z is needed, thanks to the well-known relationship: 

(
𝑋𝑃
𝑌𝑃
) = [

cos 𝛼𝑃 sin𝛼𝑃
−sin𝛼𝑃 cos𝛼𝑃

] (
𝑋′𝑃
𝑌′𝑃

) 

Where 𝛼𝑃 is the rotation of the local reference system in 𝑃 with respect to the 

global system, while X and Y are the quantities to be led back to the global 

reference system.  

This procedure must be adopted for each spring of the system. 
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Once all the local reaction forces in the xyz-system are calculated, equations from 

(1.29) to (1.35) are used to obtain Rz, Rx and Ry.  

In the following graphs, some results in the case of 2D roughness are reported.  

 

Figure 1.11 Variation of the coefficient of friction between two 2D rough surfaces with respect to 

the direction of sliding β. The upper and lower surfaces are the same and with symmetric roughness, 

thus the coefficient of friction μ varies between 0° and 45°. The blue line shows how the coefficient 

of friction changes between 0° and 90°, with a step ∆𝛽 equal to 5°, while the red line is the friction 

coefficient obtained for smaller steps. μ0 is set equal to 0.3. 

Firstly, the dependence of the friction coefficient with respect to various sliding 

directions (𝛽) has been analysed (Figure 1.11). Two surfaces described by the 

same function, with symmetrical 2D asperities, both along x and y directions are 

analysed. Due to symmetry, the coefficient of friction is expected to be the same 

if one surface is sliding with 𝛽 equal to 0° or 𝛽 equal to 90°.  

These results are reported in Figure 1.11. 

In addition, the coefficient of friction in the 2D case does not vary as much as it 

does in the 1D roughness case with respect to the sliding direction. This is due to 

the different shape of the surfaces, where the succession of summits and valleys 

both along x and y-direction generate smaller frictional forces. 
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Figure 1.12 Some of the analyzed surfaces for the 2D roughness. The wavelengths vary along x and 

y (no differences occur between upper and lower surfaces) and the friction behavior is studied, due 

to these variations in both wavelength and sliding direction. 

Since to slide up a summit implies a higher friction force rather than to slide down 

in a valley, the coefficient of global friction appears to be almost constant with 

respect to β. More changes may occur if the wavelength of the asperities are 

modified. 

The coefficient of friction can increase/decrease by considering several 

combinations of wavelength in x and y directions (respectively λx and λy). 

Globally, 25 combinations are reported, each with sliding direction β from 0° 

(Figure 1.13 a), 45° (Figure 1.13 c) and 90° (Figure 1.13 b). 

As in the previous case, the results are as expected. Figure 1.13 a) and b) are 

symmetrical and display the maximum coefficient of friction for the smallest 

wavelengths (λx = λy = π). In addition, the bigger coefficient of friction is reached 

if the smaller wavelength is the one in the direction of sliding. For example, in 

Figure 1.13 a), when λx = π and the direction of sliding is along the x-axis (β = 0) 

the bigger coefficient of frictions are reached and appears to be slightly affected 

by variations in λy. On the contrary, with β = 0, μ varies significantly by changing 

λx. Opposite results are observed in Figure 1.13 b), due to β = 90°. 
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Figure 1.13 Changes in the friction coefficient by varying both wavelength in x and y directions 

(from λ = π to λ = 3π) and sliding direction β from 0° (a) then 45° (c) and finally 90°(b). As expected, 

a) and b) are symmetrical and show the maximum coefficient of friction for the smallest wavelengths 

and this trend is preserved in the direction of sliding. Instead, the minimum value is reached for the 

biggest wavelengths. With β equal to 45°, the coefficient of friction is symmetrical with respect to 

the middle values. μ0 is set equal to 0.3. 

These insights may suggest that the wavelength that mainly governs the 

coefficient of friction is the one in the same direction as β, because the asperities 

that the surfaces are facing are predominant in influencing the coefficient of 

friction, and they become smoother as the wavelength increases. The increase in 

wavelength perpendicular to the motion slightly affects the values of μ, reaching 

the minimum value for both the largest wavelengths. If the direction of sliding β 
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is equal to 45°, the coefficient of friction shows a symmetrical behaviour with 

respect to the diagonal middle values. This is reasonable because both the 

wavelength play the same role in enhancing or decreasing the global coefficient 

of friction. 

1.5. Preliminary conclusions 

In Chapter 1, a theoretical model for anisotropic friction is described, which 

considers the interactions and effects of two rough surfaces in contact, when one 

is sliding with respect to the other. 

This study shows that the friction coefficient strongly depends on the roughness 

of the surfaces involved and the case with 𝜑1 = 𝜑3 > 𝜑2 = 𝜑4 has the highest 

friction coefficient; if one surface is flat, it decreases. In general, generic 1D 

roughness shows higher dynamic friction coefficients than the saw tooth shape.  

Furthermore, by introducing 2D roughness, the model appears to be more suitable 

for the description of generic roughness and numerous case studies are presented. 

The results of this investigation prove that both roughness and sliding direction 

affect the global coefficient of friction: in particular, 1D roughness is easily 

influenced by both these quantities, while in the case of 2D roughness, it seems 

that μ is especially modified by the shape of surfaces, while the direction of sliding 

affects the results to a lesser extent.  

Thus, the work described in this Chapter represents the starting point for the 

development of this friction model. 

With respect to the model developed by Mroz and Stupkiewicz (Mróz and 

Stupkiewicz 1994), the ALSFM has been extended to surfaces with non-

symmetrical roughness and to surfaces described by periodic functions with one 

or two variables. Moreover, it takes into account also the differences between 

rough-rough contact or rough-flat contact. 
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As in the previous model, the Coulomb’s friction law is adopted as the local 

friction law and μ0 must be smaller than cotφ. Equally, only a compressive 

behaviour of the springs is allowed at this point. 

Accordingly, in Chapter 2, this model is expanded to include other tribological 

phenomena such as adhesion, wear and multiple hierarchical asperities in order to 

thoroughly analyse the effects of surface topology and hierarchy in the friction 

response of multilevel surfaces. 
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Chapter 2 

2. Hierarchical HALSTM for 1D and 2D roughness 

Systems and structures in nature draw a lot of attention thanks to their high 

efficiency and durability. Biological materials and systems, as bones and nacre, 

have optimized their mechanical properties by combining high strength and 

toughness (Du et al. 2015; Pugno 2006; Pugno and Carpinteri 2008). To date, the 

interest in transferring technologies from biological systems into engineering 

applications has been greatly pursued, also in the field of tribology. 

Indeed, biological structures have efficient ways to minimize or maximize friction 

or to adapt to different environments depending on the goals (Jin and Dowson 

2013; Liskiewicz et al. 2008). Synovial joints, gecko feet, hydra, are all examples 

in which a biological structure evolved to optimize the tribological performance, 

providing adhesion, improved slip or a perfect lubrication for motion (Autumn et 

al. 2000; Bhushan 2007; Boesel et al. 2010; Liskiewicz et al. 2008; McCarthy et 

al. 2012; Pugno et al. 2011; Pugno and Lepore 2008). 

Usually these intriguing properties have been developed by biological systems 

thanks to a specific hierarchical structure. By changing their organization, 

variations in the mechanical and physical properties are possible. 

In Figure 2.1 some examples of hierarchical structures are reported. 

Friction is not only a macroscopic problem, but it also involves several effects that 

occur at the micro and nanoscale, from adhesion to asperity interactions 

(Nosonovsky and Bhushan 2007, 2008). 

Contact between rough surfaces is an example of a multiscale problem, addressed 

in past and recent works (Capozza and Pugno 2015; Carbone et al. 2009; Carbone 

and Bottiglione 2008, 2011; C Caroli and Nozières 1998; Mróz and Stupkiewicz 

1994; Persson, Bucher, and Chiaia 2002; Stupkiewicz, Lewandowski, and 

Lengiewicz 2014), sometimes resorting to self-affine shapes, leading to  
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Figure 2.1 Some examples of hierarchical and biological surfaces, SEM images of the (a) taro plant 

(Colocasia esculenta), (b) parrot feather plant (Myriophyllum aquaticum), and (c)–(e) lotus plant 

(Nelumbo nucifera) at various scales (McCarthy et al. 2012). In (f) the Brassica oleracea is an 

example of hierarchical and fractal surface (web source). A surface for anisotropic friction is 

reported in (g), with an example of snake skin microstructure (Lampropeltis getula 

californiae)(Tramsen et al. 2018). Finally, a gecko’s foot, with a focus on the hierarchical 

morphology that covers its skin (Liskiewicz et al. 2008). 

hierarchical and fractal geometries (Borodich and Onishchenko 1999; Costagliola 

et al. 2016; Gagnepain and Roques-Carmes 1986; Popov and Dimaki 2011; Vakis 

et al. 2018). 

In order to take into account the multiscale aspect of friction, in this Chapter the 

concept of hierarchical friction is introduced in the ALSFM, by analysing 

multilevel surfaces. Furthermore, to describe other phenomena associated to 

sliding friction, adhesion is included, as well as wear, by adopting the Archard’s 

wear model (Archard 1953) to describe the evolution of the contact surface during 

multiple sliding.  

2.1. Introducing adhesion in the ALSFM 

Many times adhesion has been neglected, due to the presence of surface roughness 

(Fuller and Tabor 1975; Persson et al. 2005), which can remove the adhesive 

forces. However, even if roughness vanishes the adhesion contribution, the area 

of real contact is still affected by its presence (B N J Persson 2000). In addition, 



Chapter 2 - Hierarchical HALSTM for 1D and 2D roughness 

 

67 

 

adhesion must be considered, if the surface is characterized by a smooth 

roughness. 

The most common analytical models developed to study adhesive contacts are the 

Johnson-Kendall-Roberts (JKR) model and the Derjaguin-Muller-Toporov 

(DMT) model, with related studies (Derjaguin, Muller, and Toporov 1975; 

Greenwood 1997; Johnson, Kendall, and Roberts 1971; Tabor 1977). JKR model 

assumes an elastic sphere in contact with a flat substrate with a free energy per 

unit area, which occurs when the contact is reached (Johnson et al. 1971; B N J 

Persson 2000). Due to this energy, a contact spot with finite radius remains even 

if the external load is zero. This contact breaks at a critical pull-out force. The 

model gives the values of the contact force and the minimum contact radius at 

which a mechanical instability breaks the bond. If no free surface energy is 

present, the model collapses into the Hertz’s model (Hertz 1882; Johnson et al. 

1971; B N J Persson 2000). The JKR model is accurate for soft materials and high 

surface energy, otherwise the DMT model must be applied , which has been 

formulated for adhesion between hard spheres (B N J Persson 2000). 

In particular, due to a wide interest in bioinspired applications, in the last decades 

there has been an increase in research on adhesion (Autumn et al. 2000; Boesel et 

al. 2010; Jung and Bhushan 2006; Kim and Bhushan 2007; Pugno et al. 2011; 

Pugno and Lepore 2008; Varenberg, Pugno, and Gorb 2010; Yu et al. 2012). For 

example, further developments of the DMT theories have shown that adhesion 

generates an additional load around each asperity (Vakis et al. 2018).  

Other works investigated the adhesion hysteresis contribution to friction (Carbone 

and Mangialardi 2004), adhesion between surfaces with smooth roughness 

(Persson et al. 2005), or simulating the gecko seta in contact with rough surfaces 

to obtain the efficiency of the attachment (Kim and Bhushan 2007; Yu et al. 2012).  

In the Anisotropic Spring Lattice Friction Model (ASLFM) illustrated in this 

thesis, adhesion is introduced in the model by adding the contribution of tensile 

springs, which can elongate to a length lT that is larger than the rest length l0. 
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When the load L decreases, even to zero, the springs relax and the elastic 

compressive force decreases (from Figure 2.2.a and Figure 2.2.b the load L is 

reduced). Due to the shape of a rough profile, some springs can elongate when the 

distance between the two sliding surfaces is bigger than the spring rest length. 

This generates a portion of the contact area subjected to tensile elastic forces, i.e. 

adhesion forces. Since the real area of contact determines the sliding friction force, 

adhesion, where present, can affect and modify the frictional behaviour of solids 

(Figure 2.2 c).  

 

Figure 2.2 A 2D schematization of half model in various situations in the presence of adhesion, with 

decreasing L from a) to d). a) All the springs are compressed and the normal load is equal to the 

sum of all the spring axial forces. b) If some springs are elongated and L is the applied normal load, 

the sum of the compressive forces is larger than the load. c) In case of no external load, the sum of 

tensile and compressive forces on the springs is zero. d) In the case of a tensile load some 

compressed springs still generate friction. 
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The apparent normal load is: 

𝐿 =∑𝐹𝑧
(𝑐) +∑𝐹𝑧

(𝑡)
 (2.1) 

Where ∑𝐹𝑧
(𝑐)

is the sum of all the compressive forces and ∑𝐹𝑧
(𝑡)

 is the sum of the 

tensile forces, which have opposite directions. If no adhesion occurs, ∑𝐹𝑧
(𝑐)

 is 

equal to the normal load L (Figure 2.2 a), otherwise 𝑅𝑧
(𝑐)
= ∑𝐹𝑧

(𝑐)
 is larger. 

It is assumed that the stretched springs do not generate a friction force by sliding, 

so that, the coefficient of friction is expressed as follows: 

𝜇𝑎 =
𝑅𝑥,𝑦 (𝑓 (𝑅𝑧

(𝑐)))

𝐿
 

(2.2) 

Where Rx,y ( f (Rz
(c))) indicates that the tangential force Rx,y on the xy plane is 

generated only by the springs in compression, where f indicates that Rx,y is a 

function of only the Rz
(c) elastic forces. This means that the apparent coefficient of 

friction increases due to the presence of adhesion. 

Springs are assumed with different compressive and tensile behaviours, by 

defining a compression stiffness and a tensile one, respectively 𝑘𝑐 and 𝑘𝑡 = 𝑘𝑐 2⁄ . 

With this assumption, the model takes into account a larger compression 

resistance than the tensile one. For a single spring in a certain point P, the elastic 

forces can be: 

 𝐹𝑧(𝑃) = (𝑙0 − 𝑙𝑃)𝑘𝑐 > 0 in case of compression; 

𝐹𝑧(𝑃) = (𝑙0 − 𝑙𝑇,𝑃)𝑘𝑡 < 0 in case of elongation; 

In Figure 2.3, the model responses in the presence of adhesion for general 1D 

roughness (sinusoidal function) is reported.  



Alice Berardo – A Numerical and Experimental Study on the Friction of Complex Surfaces 

70 

 

 

Figure 2.3 Effect of adhesion between 1D rough surfaces. a) Variation of springs elongation in time, 

normalized by the function period T. The number of stretched springs depends on the normal load. 

For each circular dot in b), a curve in a) is obtained. In the reported case, until the ratio L/Lmax is 

major than 0.3, the springs are all compressed (blue line in a), corresponding to zero for each time 

interval). After that value, some springs are elongated, and lines from blue to red show when and 

how many springs display a tensile force. When the upper and lower surfaces are both described by 
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the same function, and they are in phase, the number of elongated springs is described by lines with 

shades of blue, which refer to L>0. On the contrary, lines with shades of red describe the number 

of elongated springs once the load reduces and becomes tensile (L<0). b) Tangential force Rx,y with 

respect to the applied normal load L. When no adhesion occurs, the coefficient of friction is the ratio 

between the two; on the contrary, when some springs become tensile,, a non-linear curve describes 

this relationship. In the presence of 1D roughness, adhesion does not affect the sliding with β=90°, 

because there is a swift transition from compressed to tensile springs along the y direction. 

Several situations may occur, as shown from Figure 2.2 a-d: if all the springs are 

compressed, the sum of all the compression forces balance the applied normal 

load 𝐿. This is the case of the dots associated with high loads, (Figure 2.3 b). Then, 

if the load decreases, some springs may be elongated and these tensile forces are 

balanced by the remaining compressed springs (Figure 2.2 b). In Figure 2.3 a, the 

variation in time (normalized by the period of the functions 𝑇) of tensile springs 

(𝑛𝑇) with respect to the total number of springs (𝑛𝑡𝑜𝑡) is reported (from blue to 

red curves). 

The more the load reduces, the more the springs are elongated, until 𝐿 = 0, in 

which the sum of the compression forces is equal in modulus to the sum of the 

tensile forces (opposite direction). If the surfaces are described by the same 

function z (x,y) and at 𝑡 = 0 they are in phase, when the load is zero, the springs 

are no longer compressed at the beginning of sliding, following the red curves in 

Figure 2.3 a. By applying a negative load (tensile force), some springs could still 

be compressed (negative part of the graph in Figure 2.3 b). 

When there is no spring elongation, the tangential force 𝑅𝑥,𝑦 is linearly dependent 

on the normal force 𝑅𝑧, while if some springs start to elongate, the behaviour 

becomes non linear, due to adhesion effects. Moreover, adhesion appears to have 

a significant role only for small normal loads, as also reported in experimental 

works e.g. (He et al. 2008). 

The presence of adhesion generates an (apparent) enhancement of the friction 

coefficient (or even a negative value, when the load has the opposite direction), if 

it is computed as in Eq. (2.2) 
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Figure 2.4  Effect of adhesion between 2D rough surfaces. a) Tangential force Rx,y with respect to 

the applied normal load L, both normalized with respect to the maximum load Lmax. Without 

adhesion effects, the coefficient of friction is the ratio of the two; when adhesion occurs, a non-

linear relationship describes this relationship. In the presence of 2D symmetrical roughness, 

adhesion equally affects x and y directions of sliding (blue line and yellow dashed line). An 
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enlargement on the graph close to the origin is reported in b). With other sliding directions, e.g. β 

= 45°, the behaviour is without substantial differences from the previous cases. 

When the surfaces are described by the same function, so that z1( x,y ) = z2( x,y ), 

and the sliding direction 𝛽 is equal to 90°, the springs do not modify their length 

along the sliding. In particular, if they are in phase at t = 0, adhesion does not 

influence the frictional behaviour (orange curve reported in Figure 2.3 b). 

The roughness anisotropy clearly influences the frictional response, as the curves 

in Figure 2.3 b show. The sliding direction that mainly contributes in enhancing 

the effects of adhesion is β = 0°. 

The effect of adhesion is different if we assume a 2D roughness.  

The case of a 2D symmetrical roughness (sinusoidal function in both x and y 

directions) for both the upper and the lower surfaces in contact is reported. By 

displaying the tangential force Rx,y with respect to the applied normal load L 

(Figure 2.4), it is evident that there is no significant dependence on the direction 

of sliding. Furthermore, adhesion equally affects x and y directions of sliding 

(blue line and yellow dashed line). Without adhesion effects, the coefficient of 

friction is the ratio of the two; when adhesion occurs, a non-linear relationship 

describes friction between rough surfaces. Figure 2.4 b) shows an enlargement on 

the graph close to zero. When the load L is equal to zero, a frictional force is still 

noticeable, due to some springs that are compressed and thus generate friction.  

In the following figures (Figure 2.5, Figure 2.6 and Figure 2.7), the evolution of  

the contact surface during the sliding in the presence of an adhesive contribution 

is reported. In these graphs, roughness is described with the same function z (x,y) 

= sin(x)*sin(y) for both upper and lower surfaces. During sliding, it is possible to 

notice two simultaneous situations: on the one hand, when the distance between 

the surfaces is larger than the rest length of the springs, tensile forces (yellow 

zones) characterize the associated area. 
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Figure 2.5 Surface distribution of both compressed (blue) and tensile (yellow) springs when the 

relative motion between two 2D rough surfaces is along the x direction. Only the compressed springs 

contribute to the calculation of the frictional force.  

 

Figure 2.6 Surface distribution of compressed (blue) and tensile (yellow) springs when the sliding 

direction β is 45°. As stated before, only the compressed springs are assumed to contribute to 
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obtaining the frictional force. These tensile or compressed zones are perpendicular to the sliding 

motion, thanks to the simmetry of the surface roughness.  

On the other hand, springs with a length smaller than the rest length determine 

areas with compressed forces (blue zones).  

Only the compressed springs contribute to obtaining the tangential force Rx,y. For 

a certain applied load L, the compression forces grow to satisfy the equilibrium 

when some portions of the contact area are characterized by tensile forces. 

From Figure 2.5 to Figure 2.7, it is also possible to see the evolution of the contact 

area as a function with the direction of sliding. 

 

 

Figure 2.7 Surface distribution of compressed (blue) and tensile (yellow) springs when the relative 

motion between two 2D rough surfaces is along the y direction.  

2.2. Introducing wear in the ALSFM 

Among the various tribological phenomena related to sliding friction, one of the 

most significant is wear. As for friction, wear involves different physical and 

chemical processes occurring over different time and length scales. Several 
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empirical models have been developed, from the well-known Archard’s model to 

recent works. Empirical models, experimental studies with wear track 

observations with Scanning Electron Microscope or Atomic Force Microscope, 

and recently numerical simulations have been performed to obtain the surface 

evolution during the sliding and the correlations between sliding velocity, 

mechanical parameters and wear volume (Archard 1953; Meng and Ludema 1995; 

B N J Persson 2000; Shu 1986; Vakis et al. 2018).  

In this dissertation, wear is considered as a process affecting the contact surface 

as a function of time. This means that the more two surfaces are in a relative 

sliding motion, the more they modify their topography, due to material 

consumption. Thus, since the ALSFM describes the dependence of the coefficient 

of friction with respect to surface roughness, and roughness is modified by wear, 

its evolution in time is of great importance.   

Wear is modelled as a dynamic process and, in order to predict it,  Archard’s wear 

law is adopted (Archard 1953): 

𝑉

𝑆
= 𝐾

𝐿

𝐻
 

(2.3) 

Where V is the total wear (transferred) volume, 𝑆 is the sliding distance, 𝐿 is the 

normal load, 𝐻 is the surface hardness and 𝐾 is the wear coefficient. 

In this thesis, it is assumed that wear changes the shape of the asperities by 

reducing their initial amplitude until zero, so that a rough surface becomes flat. 

Rough surfaces become flat after a certain time 𝑇𝑊, which is the estimated time 

to completely smooth the surfaces, assuming a certain wear rate W = V/S and a 

constant applied load, which does not change during the wear process (Figure 2.8). 

In the presence of 2D roughness, the total transferred volume can also be 

expressed as follows (with 𝑆 = 𝑣𝑥𝑡  and 𝑊 = 𝑉/𝑆 is the wear rate): 



Chapter 2 - Hierarchical HALSTM for 1D and 2D roughness 

 

77 

 

∆𝑉 = ∬ 𝑧(𝑥, 𝑦) 𝑑𝑥

𝑥𝑓,𝑦𝑓

𝑥0,𝑦0

𝑑𝑦 − 𝐵 ∬ 𝑧(𝑥, 𝑦) 𝑑𝑥

𝑥𝑓,𝑦𝑓

𝑥0,𝑦0

𝑑𝑦 = 𝑊𝑣𝑥∆𝑡 
(2.4) 

𝐵 = 1 −
𝑊𝑣𝑥∆𝑡

∬ 𝑧(𝑥, 𝑦) 𝑑𝑥
𝑥𝑓,𝑦𝑓
𝑥0,𝑦0

𝑑𝑦
 (2.5) 

B is a reduction coefficient for the roughness amplitude and varies between 0 and 

1. B = 1 means that wear has not modified the roughness yet, so that the transferred 

volume is zero. On the contrary, B = 0 implies that the rough surfaces become 

smooth, as a result of the wear mechanism.  

 

Figure 2.8 a) A schematization of the surface levelling after the wear process. z0 is the initial surface 

shape, while zi is the surface profile after a certain time ti. At the end of the wear mechanism, the 

surface will be flat. b) A scheme of the surface levelling in case of 1D wedge asperities; φ0 is the 

initial surface tilt angle, while φi is the smoothed surface after a certain time ti.  c) Surface roughness 

changing in time. 

As stated in the previous Chapter, the 2D-ALSFM predictions for the global 

coefficient of friction are slightly affected by the direction of sliding, especially 

for symmetric asperities. This is also observed in Figure 2.9, where the first point 
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of each curve represents the global coefficient of friction (normalized by the local 

coefficient) without wear effects. These values are similar and, by adopting a local 

coefficient of friction μ0 = 0.3, the same results reported in Chapter 1 are achieved 

(Figure 1.11). Then, when the wear mechanism starts modifying the shape of 

surfaces, the coefficient of friction decreases non-linearly, until it reaches the 

value of the local coefficient μ0, meaning that the surfaces become flat. 

 

 

Figure 2.9 Variation in time of the friction coefficient between 2D rough symmetrical asperities. 

Five different directions of sliding (β) have been considered, from 0° to 45° (it has been 

demonstrated that from 45° to 90° the behavior is the same, due to symmetry.  After a time equal to 

TW the surfaces become flat, so that the friction coefficient tends to the local friction coefficient μ0. 

μ0 is set equal to 0.3. 

When 1D roughness is considered, the previous formula changes as follows: 

∆𝑉 = ∆𝐴 ∙ 𝑌 = 𝑌 ∙ (∫ 𝑧(𝑥)
𝑏

𝑎

𝑑𝑥 − 𝐵∫ 𝑧(𝑥)
𝑏

𝑎

𝑑𝑥) = 𝑊𝑣𝑥∆𝑡 
(2.6) 
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𝐵 = 1 −
𝑊𝑣𝑥∆𝑡

𝑌 ∙ ∫ 𝑧(𝑥)
𝑏

𝑎
𝑑𝑥

 (2.7) 

Where 𝑌  is the asperity depth (y direction), ∆𝐴  refers to the total transferred 

volume per unit depth and B is the reduction coefficient for the roughness 

amplitude. 

In the presence of 1D wedge asperities, wear reduces the slopes of the asperities 

from the initial tilt angles φ0 to zero (flat surfaces, Figure 2.8 b). 

The total wear volume can also be expressed as a function of the wedge asperity 

angles, finding the following relationship (with S = vt  and W = V/S): 

𝑑 𝑡𝑎𝑛 𝜑

𝑑𝑡
= −

2𝑊𝑣

𝑠𝑖
2𝑌

 
(2.8) 

It is possible to express the removed material as the volume V due to an angle 

reduction from the initial value 𝜑𝑖
0 at time 𝑡0 to 𝜑𝑖

1 at a certain time 𝑡𝑖 as follows: 

𝑡𝑎𝑛 𝜑𝑖
1 = −

2𝑊𝑣

𝑠𝑖
2𝑌
𝑡𝑖 + 𝑡𝑎𝑛𝜑𝑖

0 
(2.9) 

In Figure 2.10, the effect of sliding wear is displayed, due to the variation in time 

of surface roughness and consequently of the friction coefficient. By supposing a 

certain wear rate 𝑊 (order of magnitude 10−3mm3 m⁄ , as reported in Shu 1986 

for metals), after a time equal to TW, the surfaces become flat and the friction 

coefficient tends to the local friction coefficient 𝜇0. The influence of the sliding 

direction β is more evident, with respect to Figure 2.9. 
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Figure 2.10 a) Variation in time of the friction coefficient between two wedge asperities. Three 

different directions of sliding (β) have been considered. After a time equal to TW the surfaces become 

flat, so that the friction coefficient tends to the local friction coefficient μ0. b) Variation in time of 

the friction coefficient between two asperities with generic 1D roughness, again for three different 

directions of sliding (β). After a time equal to TW, the surfaces become flat, causing the friction 

coefficient to assume the local friction coefficient μ0. As observed in Figure 1.8, the generic 1D 

roughness gives a higher friction coefficient, with respect to the equivalent wedge case. 

2.3. Hierarchical ALSFM 

As previously stated, friction is a multiscale phenomenon. When friction involves 

rough surfaces, the multiscale nature of their profiles can significantly affect the 

global coefficient of friction. For this reason, Archard proposed an hierarchical 

approach to describe friction in the presence of rough self-affine surfaces (Archard 

1957). Hierarchical profiles and fractals have been adopted to describe also 

fractures in rock mechanics (Brown 1987), to give an overall characterization of 

surface roughness (Gagnepain and Roques-Carmes 1986; Majumdar and Bhushan 

1991; Majumdar and Tien 1990) and to model friction and contact (Bhushan and 

Majumdar 1992; Borodich and Onishchenko 1999; Majumdar and Bhushan 1991; 

Popov and Dimaki 2011; Putignano et al. 2012). 

In this context, the 1D and 2D-ALSFM are extended to study the effects of 

roughness surfaces characterized by a hierarchical structure. In this mechanical 

formulation, upper level characteristics depend on the previous lower level ones.  
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It is assumed that each asperity presents multiple levels of roughness, one inside 

the other. In this way, the surface is described with a certain number of sublevels 

n, which appear to be linked together. By applying the Hierarchical ALSFM, the 

global friction coefficient of the level n depends on the local friction coefficient 

𝜇𝑛−1, meaning that the sublevel influences the dynamic friction coefficient of the 

upper level. 

At each roughness level, the springs are characterized by longitudinal motion. 

Indeed some simplifications need to be introduced. The isotropic Coulomb 

friction model is assumed to be valid in every sublevel, 𝜇0 is the local coefficient 

of friction for the lowest 1-level, 𝜇1 = 𝑓1(𝜇0, 𝑧1, 𝑧2, 𝛽) is the global coefficient of 

friction at the 1-level and the local coefficient of friction in the 2-level, and 

similarly for the others. By adopting a surface roughness formed by some 

hierarchical self-similar levels, the periodic function in variables x and y is 

expressed as follows: 

𝑧 = 𝐴𝑎 ∗ sin (
2𝜋

𝜆𝑥
𝐵𝑏𝑥) ∗ sin(

2𝜋

𝜆𝑦
𝐶𝑐𝑦) (2.10) 

Where A, B and C are the coefficients that modulate the shape of the surfaces, 

while a, b and c depend on the level of roughness. In these studies A = B = C are 

assumed equal to 10 and b = c = (n - ni) while a = - (n-ni),with n number of levels, 

ni number of the i sublevel (i = 1 is for the innermost, and then it increases until 

the biggest external level). 

This means that, at the i-level, 𝜇𝑖−1  is the local coefficient of friction and 

following the same concept: 

𝜇𝑖 = 𝑓𝑖(𝜇𝑖−1, 𝑧1, 𝑧2, 𝛽) = 𝛾[𝑓1(𝜇0, 𝑧1, 𝑧2, 𝛽)] (2.11) 

𝐹𝑥 = 𝐹𝑧
sin𝜑𝑃 √1 + tan

2 𝜑𝑃 cos
2 𝛽 + 𝜇𝑖−1 cos𝛽

cos𝜑𝑃 √1 + tan
2 𝜑𝑃 cos

2 𝛽 − 𝜇𝑖−1 tan𝜑𝑃 cos𝛽
= 𝐹𝑧𝐻𝑥(𝜇𝑖−1, 𝜑𝑃 , 𝛽) (2.12) 

𝐹𝑦 = 𝐹𝑧
𝜇𝑖−1 sin𝛽

cos𝜑𝑃 √1 + tan
2𝜑𝑃 cos

2 𝛽 − 𝜇𝑖−1 tan𝜑𝑃 cos𝛽
= 𝐹𝑧𝐻𝑦(𝜇𝑖−1, 𝜑𝑃 , 𝛽) (2.13) 

𝐹𝑧 = 𝐾𝑖𝑢 (2.14) 
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Figure 2.11 How to model different levels of roughness. 

The function γ contains all the contributions of levels from 2 to i. This means that 

the coefficient of friction of level i always depends on the local coefficient of 

friction of the innermost level.  

The reaction forces for the whole asperity are expressed as follows: 

𝑅𝑥 = 𝑅𝑧
(1)
(

sin𝜑𝑃,1√1 + tan
2𝜑𝑃,1 cos

2 𝛽 + 𝜇𝑖−1 cos𝛽

cos𝜑𝑃,1√1 + tan
2 𝜑𝑃,1 cos

2 𝛽 − 𝜇𝑖−1 tan𝜑𝑃,1 cos𝛽
)

+ 𝑅𝑧
(2)
(

+ sin𝜑𝑃,2√1 + tan
2 𝜑𝑃,2 cos

2 𝛽 + 𝜇𝑖−1 cos𝛽

cos𝜑𝑃,2√1 + tan
2𝜑𝑃,2 cos

2 𝛽 − 𝜇𝑖−1 tan𝜑𝑃,2 cos 𝛽
) 

(2.15) 

 𝑅𝑦 = 𝑅𝑧
(1)
(

𝜇𝑖−1 sin𝛽

cos𝜑𝑃,1√1 + tan
2𝜑𝑃,1 cos

2 𝛽 − 𝜇𝑖−1 tan𝜑𝑃,1 cos𝛽
)

+ 𝑅𝑧
(2)
(

𝜇𝑖−1 sin𝛽

cos𝜑𝑃,2√1 + tan
2𝜑𝑃,2 cos

2 𝛽 − 𝜇𝑖−1 tan𝜑𝑃,2 cos 𝛽
) 

(2.16) 
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In particular, if β = 90° and the surfaces are defined as triangular asperities, the 

upper surface slides perpendicularly (along the y direction) on the other, these 

expressions can be simplified into: 

{
 

 𝜇𝑛 =
𝜇0
2𝑛
[
𝜓

cos𝜑
+ 1]

𝑛

             𝜑1 = 𝜑2      𝜑3 = 𝜑4 = 0

𝜇𝑛 =
𝜇0

(cos𝜑)𝑛
                                   𝜑1 = 𝜑2 = 𝜑3 = 𝜑4

 

(2.17) 

(2.18) 

Thanks to the introduction of hierarchy, the HASLFM firstly computes the friction 

coefficient of the inner level (on the smallest scale), and then the coefficient of the 

others. Changing a level means hypothetically changing the scale of the problem 

(supposing that the physics and the geometry of the problem are preserved). To 

obtain this effect, different reference lengths characterize each level (between two 

consecutive levels they differ in one order of magnitude). As in the previous cases, 

these results are obtained for distinct values of β, for both 2D and 1D roughness 

(wedge asperities or generic shape). 

Hierarchy non-linearly enhances the friction coefficient, and the coefficient of 

each level depends on the previous one. By defining hierarchical sublevels in both 

upper and lower surfaces, the friction coefficient increases faster than in the case 

of one hierarchical surface and a second single-level surface.  

 

Figure 2.12 Hierarchical friction for 2D roughness. a) Variation of the friction coefficient between 

two symmetric self-similar hierarchical asperities. Three different directions of sliding (β) are 
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considered.. b) Variation of the friction coefficient between two asymmetric self-similar hierarchical 

asperities. Two different directions of sliding (β) have been considered as a prof that, if the asperities 

are not symmetric, the frictional response varies in a more significant way with respect to β.  

In  Figure 2.12, the variation of the friction coefficient between two symmetric or 

asymmetric self-similar hierarchical asperities is reported. Three different 

directions of sliding (β) are considered in Figure 2.12 a. For surfaces with 2D 

symmetric roughness, the same behaviour is found with relative sliding along x 

and y directions, proving again that the frictional response is symmetric. However, 

similar results are obtained also for other β, e.g. 45°, meaning that the sliding 

direction is not the preponderant factor modifying the friction coefficient, even in 

the presence of hierarchical surfaces. On the contrary, if asymmetric asperities are 

adopted, the frictional response varies in a more significant way with respect to β. 

In particular, the results obtained for β equal to 0° or 45°, with surfaces 

characterized by λx = 2π and λy = 3π, or by λx = 3π and λy = 2π are reported. The 

difference among the sliding directions is more significant, while the results for β 

= 45° are the same, as shown in Figure 1.13 c.  

The effects of hierarchy in the presence of 1D sinusoidal asperities are also studied 

(Figure 2.13 a-b) and wedge asperities (Figure 2.13 c-d), both in case of the same 

shape or in the presence of one flat surface. For wedge asperities it is possible to 

compare the numerical results with the analytical solutions previously obtained 

(closed solution only for β = 90°). 

By adopting the same simplified solution in the case of sinusoidal roughness 

(where we adopted the average of the slopes as φ), it is possible to make a 

qualitative prediction of the variation of the friction coefficient in a hierarchical 

surface, even if underestimated (red curves in Figure 2.13 a-b), due to the slope 

approximation.  
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Figure 2.13 Hierarchical friction. a) Variation of the friction coefficient between two sinusoidal 

hierarchical asperities. Three different directions of sliding (β) are considered. The theoretical 

prediction, which is the exact solution in case of wedge asperities, is reported (red curve). b) 

Variation of the friction coefficient between a sinusoidal hierarchical surface and a flat surface. 

Three different directions of sliding (β) are reported. The theoretical prediction, which is the exact 

solution in case of wedge asperities, is reported (red curve). Hierarchical friction. c) If the surfaces 

are modelled as hierarchical wedges, friction coefficient is the same as obtained from the power 

law. Also other directions of sliding (β) have been reported. d) Variation of the friction coefficient 

between hierarchical wedge asperities. Three different directions of sliding (β) have been 

considered. In this casetoo, the theoretical prediction perfectly matches the numerical results. 
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2.4. Coupling hierarchy and wear effects in ALSTM 

In the work of Whitehouse and Archard in 1970, it was found that from the profile 

of a rough surface after a single passage of a lubricated slider, the fine roughness 

(i.e. the roughness associated to the smaller levels) was removed, while the main 

roughness was preserved. Following the concept of such experiments, the effect 

of hierarchy is coupled with wear mechanisms, to provide a model that can 

describe and predict the variation of the frictional behaviour after a certain sliding 

distance, in the presence of sliding wear. 

It is assumed that, if wear affects hierarchical surfaces, the first consumed sublevel 

is the innermost one. When its roughness is removed, the second to last levels 

begins to be subjected to wear. 

This means that the coefficient of friction of the innermost level tends to its local 

coefficient of friction 𝜇0 and each level follows, until the external level is worn 

and thus the global coefficient of friction becomes that of a flat surface (𝜇0): 

𝜇𝑛 → 𝜇𝑛−1 → ⋯ → 𝜇1 → 𝜇0 

After a time equal to 𝑇𝑤 (𝐵 = 0, 𝑡0 = 0), the global coefficient of friction of a 

certain level i is reduced to its local coefficient of friction 𝜇0,𝑖 (and the number of 

hierarchical levels decreases from n to n-1).  

In the presence of 2D roughness, the time needed to wear away a certain level i is 

obtained from the expression of the reduction coefficient B, when the latter is 

equal to zero: 

𝑇𝑤,𝑖 =
∬ 𝑧(𝑥, 𝑦) 𝑑𝑥
𝑥𝑓,𝑦𝑓
𝑥0,𝑦0

𝑑𝑦

𝑊𝑣
 (2.19) 
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Figure 2.14 Variation of the global coefficient of friction as a function of wear and roughness levels. 

Every outer level is influenced by the inner one, so that wear induces a reduction of each global 

coefficient of friction associated to a certain level i. After a time equal to TW the innermost level 

becomes flat, so that the coefficient of friction of each level at the end of this wear cycle tends to its 

local friction coefficient. Level 0 is the local coefficient of friction. 

The effect of hierarchical wear is introduced within the HASLFM, in order to 

show the decrease in the global coefficient of friction associated to each roughness 

level. In Figure 2.14, the frictional and wear behaviour between two 2D rough 

hierarchical surfaces is reported. TW is the time needed to wear away the innermost 

level (level 1). As stated before, each outer level is linked to the previous ones and 

influences the following. A change in the friction coefficient at a certain level i 

affects all the upper levels, as it is clearly visible in Figure 2.14. In particular, after 

a time equal to TW, the global coefficient of the level i tends to the local coefficient 

of friction of that level, i.e. the global coefficient of friction of the level i-1. 

2.5. Conclusions 

In this Chapter, some aspects related to friction are introduced, as the effects of 

adhesion and wear, studying the case of both sinusoidal 2D and 1D roughness, 
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and extending it to wedge roughness. Hierarchy has been included, since friction 

can be considered a multiscale hierarchical phenomenon. 

This study shows that, since the friction coefficient strongly depends on the 

roughness of the involved surfaces, if multiple self-similar hierarchical levels are 

present, they contribute to enhancing the friction coefficient in a non-linear way, 

which collapses in a power law in the particular case of β = 90° and wedge shaped 

asperities. 

Adhesion occurs when springs in tension are introduced to model the interaction 

at the interface. This leads to an increase in the total compression force acting on 

the asperities, resulting in an increase in the apparent friction coefficient and 

providing a tangential force even when the applied load is equal to zero.  

Furthermore, wear has been described as a process that reduces the friction 

coefficient and smooths the asperities. The effect is more evident if the sliding 

occurs in the x direction for 1D roughness (𝛽 = 0).  

Finally, by combining wear and hierarchy, it is possible to model how the friction 

coefficient of hierarchical surfaces is modified due to sliding wear, providing 

useful insights into this complex field.  
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Chapter 3 

3. Modelling the ice friction of rough surfaces: an 

application of the 1D-ALSFM to experiments 

 

The study of friction between metals and ice is as complicated as it is important 

in a wide range of fields, from ice sports to motorized traffic (Colbeck et al. 1975; 

Higgins et al. 2008; Roberts and Richardson 1981). That being said, the debate 

behind the origin of the low friction coefficient characterizing ice surfaces is still 

open even after decades of experimental and theoretical research on both saline 

and freshwater ice (Hatton, Sammonds, and Feltham 2009; Jacobsen, Scherer, and 

Schulson 2015; Kietzig, Hatzikiriakos, and Englezos 2010; Lishman, Sammonds, 

and Feltham 2011; Schulson 2015; Schulson and Fortt 2012; Wallen-Russell and 

Lishman 2016).  

The friction coefficient of a solid surface sliding on ice is related to the existence 

of a thin layer of water between the slider and the ice itself.  There are three main 

mechanisms governing the formation of this layer (Kietzig et al. 2010): surface 

melting, pressure melting and frictional melting. Surface melting is a spontaneous 

generation of a thin layer of melted ice (with thickness in the order of magnitude 

of few nanometers) without any contact with other bodies and without any applied 

pressure, when the temperature approaches the melting value. The origin of this 

phenomenon, observed in a number of solid surfaces, is still under debate, 

although the most prevailing theories indicate the minimization of free surface 

energy as the main cause (Kietzig et al. 2010). The pressure melting is responsible 

for the decrease of the melting ice temperature by applying a pressure. The 

frictional melting is generated by the heat dissipated by the friction force; this heat 

increases the interface temperature and is considered as the most relevant 

mechanism in the formation of water at the interface in sliding systems (Bowden 
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and Hughes 1939; Fülöp and Tuononen 2013; Higgins et al. 2008; Kriston et al. 

2016; Nyberg et al. 2013). The thickness of the water layer defines the lubrication 

regime of a given sliding system and is influenced by temperature, normal force 

and sliding velocity (Kietzig et al. 2010; Klapproth et al. 2016; Stamboulides, 

Englezos, and Hatzikiriakos 2012). Consequently, by varying the experimental 

parameters, it is possible to explore all lubrication regimes, from boundary to 

hydrodynamic (Figure 3.1). According to the literature, surface roughness has a 

great importance since it defines the height of the asperities interacting with each 

other (Ducret et al. 2005; Kietzig et al. 2010; Sukhorukov and Marchenko 2014).  

 

Figure 3.1 Stribeck curve generalized for ice friction: the friction coefficient is a non-linear function 

of the sliding velocity (proportional to the thickness of lubricant (water). Three regimes are 

highlighted, due to different asperity interaction and increasing water layer thickness h. 

In boundary (or dry) lubrication regime the frictional behaviour is governed by 

the real contact area between the solids, in which adhesion is the main source of 

friction and heat dissipation (Bowden, Tabor, and Palmer 1951; Kietzig et al. 

2010; Makkonen 2012; Bo N. J. Persson 2000). In this regime, the thickness of 

the liquid water is very small, in the order of magnitude of few molecular layers 

(Makkonen and Tikanmäki 2014; Petrenko and Whitworth 1999). By increasing 



Chapter 3 - Modelling the ice friction of rough surfaces: an application of the 1D-ALSFM to 

experiments 

 

91 

 

the sliding velocity, the thickness of this liquid-like layer increases and supports 

the load of the slider; this condition is typical of the mixed lubrication regime. The 

interfacial conditions of this lubrication regime are still not fully clarified although 

there are different theories (Kietzig et al. 2010; Makkonen and Tikanmäki 2014). 

In particular, Kietzig et al. 2010 assume that mixed lubrication occurs when the 

temperature at the contact point is greater than the melting temperature of ice, but 

the thickness of the water layer is still smaller than the roughness of the 

counterpart’s surface. With this assumption, both solid-solid and lubricated 

contact coexist at the interface. In contrast, Makkonen and Tikanmäki 2014 

assume that at the actual contact point the temperature rises to the melting point, 

but not over this value. The contact is,therefore fully lubricated, even with very 

low thickness of the layer of water, and there is no longer solid-solid interaction 

between the surfaces. All the experimental data reveal a dependence of the 

coefficient of friction (𝜇) on sliding velocity (𝑣) as  𝜇~1/√𝑣  (Bäurle et al. 2007; 

Marmo, Blackford, and Jeffree 2005).   

In the hydrodynamic regime, the coefficient of friction increases proportionally 

with √𝑣 (Albracht 2004; Jones et al. 1994; de Koning, de Groot, and van Ingen 

Schenau 1992).  Kietzig et al. 2010 estimate that this regime starts when the 

thickness of the water layer becomes greater than the average roughness of the 

involved surfaces. 

In this Chapter, a study undertaken with the collaboration of the University of 

Modena and Reggio Emilia (Spagni et al. 2016) is presented, in which the role 

played by the surface of the slider in terms of roughness and topography on the 

friction regimes is examined. Tribological tests of steel-ice contacts have been 

performed, by varying temperature and sliding velocity. Furthermore, the 

dependence of friction on surface morphology has been studied by inducing 

different degrees of roughness on stainless steel surfaces. Then, the analytical 1D-

ALSFM has been applied to the experimental data, directly correlating the surface 

roughness to the friction coefficient. 
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3.1. Experimental procedure 

The ice samples are obtained by freezing distilled water in a commercial freezer 

unit at -8 C. Thin layers of water are frozen on the top of each other in order to 

minimize cracking and bubble formation and to produce a polycrystalline surface 

(Kietzig et al. 2010). Figure 3.2 shows an optical image of the surface replica. 

Curved grain boundaries of ice and their characteristic 120° angles are clearly 

visible. In Figure 3.2, sublimation pits (“etch pits”) are visible as well. These spots 

are created by a higher sublimation speed at locations where dislocation slip lines 

cross the surface (Fülöp and Tuononen 2013; Kriston et al. 2016) and the ice 

surface does not go through a long aging process, so no frost deposition is visible. 

The average roughness (Ra) of the ice is measured by stylus profilometer on a 

replica of the surface, prepared using a vinylpolysiloxane-based liquid thermo-

polymer (Bäurle et al. 2007), obtaining a value of 100±10 nm. 

 

 
Figure 3.2 Optical microscopy image of an ice surface replica. The magnification shows the 

characteristic 120° angles formed by the grain boundaries at almost each cross. Etch pits are also 

visible. 

On the stainless-steel pins, a controlled surface roughness is induced through 

mechanical polishing and sand-blasting. Three different pins are produced, 

labelled #1, #2 and #3. The pin #1 is polished with alumina slurry (1-3 µm 
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diameter), while pins #2 and #3 are grinded through sand-blasting (grit 320 and 

180 respectively). 

As before, surface morphology is measured through a stylus profilometer (3D 

profiles shown in Figure 3.2). Different parameters are used to characterize the 

surface roughness (Table 3.1), briefly described in the following:  

 Average roughness, Ra: it gives a good general description of the height 

variation along the profile, but without any information about its 

morphology; 

 RMS slope profile Rdq: it is calculated as the root mean square of the slope of 

the profile over the assessment length; 

 Skewness Sk: it gives an overview of the symmetry of the profile with respect 

to the mean line, and it is sensitive to the presence of deep valleys and high 

peaks. A perfect symmetrical distribution shows Sk = 0; 

 Kurtosis Ku: it measures the sharpness of the profile amplitude probability 

density function p(y). It can be useful to differentiate surfaces with the same 

Ra but different shape; 

 Fractal dimension D: it is a quantity related to fractal geometry. It is related 

to the scaling structure of the roughness profile and to its self-similarity; 

 Contact angle θc: quantifies the wettability of a solid surface. 

All of these parameters show a monotonic trend, except for the contact angle 

which is characterized by the same value (within the experimental error) for each 

sample. Ra and Rdq of pin #1 are one order of magnitude lower than those of pin 

#2 and #3. Furthermore, the roughness of pin #1 is almost the same as the one of 

the ice surface (see below).  

The tribological tests are performed in pin-on-disc configuration on a UMT3-

CETR tribometer (http://www.cetr.com/eng/products/umt-3.html) enclosed in a 

thermally insulated chamber, where the temperature is controlled by a flow of cold 

dry air. The system reached temperatures down to -25°C, with an error of ±1°C. 

All the tribological tests are performed with a constant normal load of 15 N, 
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(nominal pressure of 0.085 MPa), constant environmental temperature (between -

17°C and -2°C) and increasing sliding velocity in consecutive steps (from 0.025 

m/s to 1m/s), each one of 2 minutes length for a total duration of 16 minutes (8 

different speeds were tested).  

Pin Ra [μm] Rdq [°] Sk Ku D θc 

#1 0.11±0.02 7.3±1.0 2.35±0.05 9.3±0.4 2.763±0.005 52±2 

#2 1.4±0.1 27.2±1.5 1.2±0.3 6.4±1.2 2.359±0.005 63±10 

#3 2.6±0.1 33.6±1.1 0.9±0.3 3.4±0.9 2.276±0.005 55±8 

Table 3.1 Roughness parameters for the stainless-steel pins: average roughness (Ra), RMS slope 

(Rdq), skewness (Sk), kurtosis (Ku), fractal dimension (D) and contact angle (θc). 

Unfortunately, the temperature of the ice can not be measured. However, the ice 

sample is left in the tribometer chamber for about one hour, which is enough for 

the ice to reach the same temperature of the surrounding environment. 

 

Figure 3.3 3D surface profile of the stainless-steel pins. a) Pin #1, which is characterized by the 

smoothest surfaces. b) Pin #2 and c) pin #3. 

3.2. Experimental results 

To improve the accuracy and reliability of the experimental results and to avoid 

systematic errors, for each test a newly prepared ice surface wias used and four 

different measurements are made for each temperature. Here, the average of all 

measurements is reported (Figure 3.4). At the beginning of each test, a short 

sliding run is done on the ice surface, in order to remove or reduce ice macroscopic 
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asperities that could compromise the stability of the tests. This preliminary run is 

characterised by a load of 2 N and a 3-time rotation of the disk.  

Figure 3.4 shows values of friction coefficient obtained for steel on ice versus the 

sliding velocity for the three pins, at different ambient temperatures between -2° 

and -17° C.  

One of the first deductions is that the operating temperature (presumably, the bulk 

temperature of slider and ice) does not significantly affect the values of the friction 

coefficient, probably due to the experimental setup. Using a pin-on-disc 

configuration, the repeated passages of the pin on the same circular track result in 

frictional heat dissipation causing an increase in temperature at the steel-ice 

interface.  

From the thermal equilibrium of the dissipation of frictional heat during the 

contact and the refreezing between two consecutive passages, the interface 

temperature saturates at a value larger than the one of the steel, of the ice bulk and 

of the surrounding environment (Dash 2003). A quick calculation demonstrates 

that, with a speed of 0.1 m/s (80 rpm), the time between two passages over the 

same spot is less than 1 second. This caused an increase in the temperature of the 

ice surface and of the steel slider surface until the achievement of balance. Thus, 

basically, after a short initial phase, the coefficient of friction reaches a steady 

state where both the interface temperature and all the other conditions do not vary. 

The thickness of the water layer produced by melting in this state is independent 

on the initial conditions, thanks to the two competitive effects contributing to his 

formation, that is the frictional melting and the squeeze-out of the water (as stated 

by (Colbeck 1988)). 

 



Alice Berardo – A Numerical and Experimental Study on the Friction of Complex Surfaces 

96 

 

 

Figure 3.4 Friction coefficient results obtained from the pin-on-disc tests at increasing sliding 

velocity. a) pin #1, (b) pin #2 and (c) pin #3. The tests have been performed at various temperatures 

from -2 °C to -17 °C. 

? 
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Another consequence, inferred from Figure 3.4, is that the frictional behaviour is 

quite different for pin #1 (the smoothest one) and pin #2 and #3, (roughness about 

1 order of magnitude larger).  

Results from pin #2 and #3 shows decreasing friction coefficient values as the 

sliding velocity increases, in which the decrease is initially quite sharp. Between 

0.025 m/s and 0.3 m/s, the coefficient of friction decreases from 0.09÷0.11 (pin 

#3) and 0.06÷0.08 (pin #2) down to 0.03÷0.05. Then, the dependence of the 

coefficient of friction on the sliding velocity markedly reduces and the friction 

curve becomes almost flat, with values of 0.02÷0.04. This trend is typical of the 

transition region between mixed and hydrodynamic friction regimes, as 

highlighted by the grey squares in the insets of Figure 3.4 b and c. 

Despite the very similar trends, the difference of friction coefficients between pin 

#2 and pin #3 is a consequence of the roughness difference between the two steel 

surfaces. 

On the contrary, the results from pin #1 showed a nearly constant coefficient of 

friction (roughly between 0.02 and 0.03) along the entire sliding velocity range, 

indicating that the system is probably in a different lubrication regime. However, 

the assignment to a specific lubrication regime is quite difficult because a constant 

coefficient of friction behaviour is typical of either the boundary friction regime 

or the minimum between the mixed and the hydrodynamic regime (see the grey 

squares in Figure 3.4 a with the question mark). The small values of coefficient of 

friction seem to support the second hypothesis because they are typical of the 

mixed lubrication regime. Nevertheless, in the absence of high wear effects (e.g. 

ploughing friction or cracking), the low shear stress of ice is characterised by low 

values of coefficient of friction, even in the dry lubrication regime. This condition 

could actually be applied in the present case, thanks to the very low roughness of 

pin #1 and to the low applied pressure. The pin has nearly the same roughness of 

the ice surface, and its low waviness leads to a high real contact area and, 

furthermore, the roughness profile is quite broad (Rdq = 7.3, Table 3.1). These 
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features, matched with a nominal applied pressure of 0.085 MPa (nearly two 

orders of magnitude below the breaking pressure of ice), suggest that phenomena 

like ploughing friction and cracking of the ice bulk close to the surface are 

negligible. 

3.3. Extended 1D-ALSFM to the ice friction 

Ice friction model 

In the literature there are several theoretical models describing ice tribology 

(Colbeck 1988; Evans, Nye, and Cheeseman 1976; Kietzig, Hatzikiriakos, and 

Englezos 2009; Klapproth et al. 2016; Makkonen and Tikanmäki 2014; Oksanen 

and Keinonen 1982), each attempting to estimate the coefficient of friction of ice 

and accounting for the interdependence of the different involved parameters.  

One of the most complete models was developed by Makkonen (Makkonen and 

Tikanmäki 2014), where the only source of friction is the shear strength τ of the 

water layer, due to its viscosity: 

𝑇 = 𝜏𝐴 =
𝜂𝑣

ℎ
𝐴 (3.1) 

𝜇𝑤𝑒𝑡 =
𝑇

𝑁
=
𝜂𝑣𝐴

ℎ𝑁
 (3.2) 

 

where A is the real contact area, v is the sliding velocity, N is the applied normal 

load, η and h are respectively the viscosity and the thickness of the liquid-like 

layer. 

One of the most difficult parameters to estimate is the thickness of this layer of 

melted ice. The problem may be solved by considering the thermal balance 

between ice and steel. 
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Figure 3.5 Schematic illustration of the contact between ice and steel pin. To compute the coefficient 

of local friction a number of contacts n of length b and width a is assumed. The sliding velocity is v. 

A rectangular contact asperity moving on ice at a certain sliding velocity 𝑣  is 

assumed (Figure 3.5) and the frictional energy produced per unit contact is 

(Makkonen and Tikanmäki 2014; Oksanen and Keinonen 1982): 

𝑄𝑓 =
𝜇𝑁𝑏

𝑛
 (3.3) 

In addition, if the temperature of the steel-ice interface is the same as the ice 

melting temperature, the generated heat flux is the sum of the energy flow from 

the contact to ice (𝑄𝑐1) and the energy flow from the contact into the pin (𝑄𝑐2): 

𝑄𝑐 = 𝑄𝑐1 + 𝑄𝑐2 = 𝑎𝑏∆𝑇1√
𝑏

2𝑣
√𝑘1𝑐1𝜌1 + 𝑎𝑏∆𝑇2√

𝑏

2𝑣
√𝑘2𝑐2𝜌2 

 

(3.4) 

𝑎 and 𝑏 are respectively the width and the length of the contact, while all the other 

terms are reported in Table 3.2. Finally, 𝑄𝑚 is the energy required to generate a 

liquid like layer of thickness h, length b and width a: 

𝑄𝑚 = 𝑎𝑏ℎ𝐿𝜌 (3.5) 

 (see Table 3.2. for parameters explanations). 

The thermal equilibrium imposes that the energy dissipated through friction is 

equal to the sum of the heat flux and the melting energy (Makkonen and 

Tikanmäki 2014): 

𝑄𝑓 = 𝑄𝑐 +𝑄𝑚 (3.6) 
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From this equilibrium, it is possible to estimate the thickness of the liquid like 

layer h produced during the sliding and then the friction coefficient 𝜇𝑤𝑒𝑡 , by 

assuming a = b and the hardness of ice Hi = N/A = N/(nab) (Makkonen and 

Tikanmäki 2014): 

ℎ =
1

𝑙𝜌
(
𝜇𝑁

𝑛𝑎
− √

𝑏

2𝑣
𝛾) (3.7) 

𝜇𝑤𝑒𝑡 =
1

𝐻1√𝑎
∙
1

2√2𝑣
(𝛾 + √𝛾 + 8𝜂𝐿𝜌𝑣2) (3.8) 

Where 

𝛾 = ∆𝑇1√𝑐1𝑘1𝜌1 + ∆𝑇2√𝑐2𝑘2𝜌2 (3.9) 

∆𝑇𝑖 = 𝑇𝑖 − 𝑇𝑚 (3.10) 

 

In the model presented by Makkonen (Makkonen and Tikanmäki 2014), the role 

of the surface morphology is included in an approximate manner as it occurs only 

in the definition of a, the characteristic length of the real area of contact between 

the ice and the slider, which was fixed to 1 mm. With such a great contact length, 

the dependence on the roughness of the slider is not included in the model and so 

only the low-frequency waviness of the surface affects the tribological behaviour 

of the system.  

In order to include the contribution of the surface roughness to the tribological 

behaviour of the system, the 1D-ALSFM described in Chapter 1 is applied and 

validated with the present study. 

 

 List of symbols Numerical values 

 
  Ice Steel Water 

a 
Contact length     
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Ti 
Temperature (°C) -17 to -2    

Tm 
Melting temperature of 

ice (°C) 

(Kriston et 

al. 2016) 
   

v 
Sliding velocity (m/s) 0.025 to 1    

Hi 
Ice hardness (MPa) 

(Kriston et 

al. 2016) 
   

𝝆i 
Density (Kg m-3)  916 7750  

𝝆w 
Water density at 0°C (Kg 

m-3) 
   1000 

𝜼w 
Water viscosity at 0°C 

(Kg m-1 s-1) 
   1.76 ∙10-3 

ki 
Thermal conductivity (W 

m-1 K-1) 
 2.2 20  

ci 
Specific heat (J Kg-1 K-1)  2090 460  

L 
Water latent heat (J Kg-1)    330∙103 

Table 3.2 List of used symbols and their numerical values; i=1 for ice, i=2 for slider. The contact 

length a is calculated from data analysis in the next section. 

Surface roughness  

The ALSFM considers the sliding motion between rough surfaces and directly 

correlates the effects of different roughness to the friction coefficient. This model 

has been introduced and described in Chapter 1, in which the contact between two 

surfaces has been modelled by a set of springs with only longitudinal compliance. 

During the sliding of one surface on the other, the vertical springs have to comply 

with the movement, by modifying their length, becoming compressed or 

elongated. This length variation is reflected on the elastic forces that the two 

surfaces exchange.  Furthermore, the moving surface can change the direction of 

sliding (𝑣0 is the sliding velocity), so that it could be perpendicular or not to the 

asperities of the fixed surface (Figure 3.6). 
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Figure 3.6 a) Schematic illustration of the contact between ice and steel pin and b) how it is 

converted into the 1D-ALSFM developed in Chapter 1. The interaction between ice and steel is 

modelled by a set of springs with only longitudinal compliance.  

Being 𝑅𝑧 the global reaction force along the vertical direction and 𝑅𝑥,𝑦 the global 

reaction force acting on the ice-plane, the total coefficient of friction 𝑓  is 

expressed as in Eq. (1.13). 

In order to evaluate this friction coefficient, it is necessary to determine the 

reaction forces in the global reference system xyz, by analysing at first the 

contribution of a single spring. All the details of the calculation are reported in 

Chapter 1. 

This model considers the local interaction between the two surfaces through the 

introduction of a generic local coefficient of friction (named 𝜇0), which does not 

consider any morphological effect and does not specify any physical mechanism 

at its base. In order to contextualize the model to the previous ice friction model 

(Makkonen and Tikanmäki 2014), the generic local Coefficient of friction 𝜇0 was 

substituted with 𝜇𝑤𝑒𝑡 ,which is the coefficient obtained previously in Eq. (3.8) and 

does not consider the effects of surface roughness. 

3.4. Results 

To apply the 1D-ALSFM to the tribological system reported in this work, two 

particular cases are selected, namely β = 0° and β = 90°, where β  is the direction 

of sliding. In both cases, the steel asperities are considered symmetrical, adopting 

𝜑1 = 𝜑2 = 𝜑  while the ice (whose roughness is negligible with respect to the 

steel roughness) is assumed to be flat (𝜑3 = 𝜑4 = 0). The asperity slope refers to 

the pin roughness, thus equal to Rqd, one of the parameters obtained from a stylus 
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profilometer. For β = 0°, the sliding appears to be against the wedge asperities and 

the coefficient of friction is maximum.  On the contrary, β = 90° leads to the 

minimum coefficient of friction. 

The expressions for these two cases refer to Chapter 1 and are here reported: 

𝑓𝑢 =
𝜇𝑤𝑒𝑡(2 − sin

2𝜑 (1 + 𝜇0
2))

2(1 − sin2𝜑 (1 + 𝜇0
2))

 (3.11) 

𝑓𝑙 =
1

2
𝜇𝑤𝑒𝑡 (

1

cos𝜑
+ 1) (3.12) 

where 𝑓𝑢 and  𝑓𝑙 are respectively the upper and the lower limit of the coefficient 

of friction. All the possible orientations of the sliding motion are thus 

automatically considered and the real value of the coefficient of friction is 

included between these upper and lower limits.  

Since the shear strength of a liquid layer is the only source of friction in this 

picture, a further hypothesis is introduced, assuming that the real contact area is 

entirely covered by a water layer and the contact during the sliding motion is fully 

lubricated. This hypothesis does not exclude the presence of ploughing by the 

slider asperities into the ice, but it consideres this presence to be mediated by a 

thin layer of water.  

Furthermore, the model describes the motion along a straight line,while friction 

experiments are performed in pin-on-disc configuration. One of the hypotheses of 

the model is that the slider always runs on a new ice surface, whose surface 

temperature is the same as the bulk. In the rotational real case, conversely, the 

slider performs periodically repeated passages over each point of the ice track, 

with a short refreezing time due to the short radius of the track and to the sliding 

speed. With these conditions, the interface temperature of the ice increases, since 

every passage of the slider dissipates frictional heat. After a few rotations, the 

temperature at the interface can be considered homogenous and close to the 

melting point of ice and, accordingly, the terms T1 and T2 can be neglected. This 
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assumption is justified by the very weak temperature dependence of the 

tribological tests, shown in Figure 3.4.  

While the interface temperature is considered as homogenous at melting point of 

ice, the bulk temperature is not and neither is the hardness of the ice. This 

parameter is calculated with the bulk temperature since the depth of the stress, 

caused by the indentation of micrometric asperities, is expected to be of the order 

of a few microns, while the melting process affects a much lower thickness, very 

close to the interface. The values of ice hardness in this paper are based on the 

work of (Makkonen and Tikanmäki 2014), following the relation 

𝐻𝑖 = 𝐶1𝑇 + 𝐶2 (3.13) 

with C1 = -5.08 MPa/K and C2 = 15.19 MPa. 

After all these assumptions, the experimental data are fitted with both Eq. (3.11) 

and Eq. (3.12), using the contact length a as the only fitting parameter. The best 

fits are reported in Figure 3.7, Figure 3.8 and Figure 3.9. 

The first outcome is that the model fits quite well the experimental results obtained 

with pins #2 and #3. In the explored range of sliding velocities, both the trends 

and the absolute values of coefficient of friction are satisfactorily described by the 

model. It must be stressed that the model introduces the shear stress of the liquid 

like layer as the only source of friction; therefore, its ability to fit results from pins 

to #2 and #3 confirms that these sliders operate in a lubricated regime. 

On the contrary, the model does not fit satisfactorily the experimental results of 

pin #1, confirming that, in this case, the system experiences a different lubrication 

regime.  
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Figure 3.7 Best fits of the experimental data obtained for pin 1# with the 1D-ALSFM (red line) 

for all the tested temperatures. It is evident that the model is not able to predict pin 1# friction 

regime, due to the model hypotheses which assume the pin in a mixed lubrication regime. 

 

Figure 3.8 Best fits of the experimental data obtained for pin 2# with the 1D-ALSFM for all the 

tested temperatures (blue line represents the upper values for the coefficient of friction, while red 

line is for the lower values).  
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Figure 3.9 Best fits of the experimental data obtained for pin 3# with the 1D-ALSFM for all the 

tested temperatures (blue line represents the upper values for the coefficient of friction, while red 

line is for the lower values).  

Actual and nominal contact area 

In order to compare the results of a obtained with the fitting procedure, a realistic 

value of the contact length is evaluated. For this purpose, the topography of the 

surface is approximated with a regular pattern of triangular asperities (Figure 

3.10) with the same Rdq of the real random surface used in the experimental tests. 

When that surface is indented with a load 𝑁 on a flat ice surface, the tips of the 

asperities penetrate into the ice, both through melting and elasto-plastic 

deformations. The real contact area (𝐴𝑟𝑒𝑎𝑙 ) is inversely proportional to the 

hardness of the ice 𝐻1 (Archard 1957; Makkonen and Tikanmäki 2014), while the 

nominal contact area (𝐴𝑛𝑜𝑚) is inversely proportional to the applied pressure 𝜎 

(B N J Persson 2000). 

𝐴𝑟𝑒𝑎𝑙 =
𝑁

𝐻1
                  𝐴𝑛𝑜𝑚 =

𝑁

𝜎
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It is therefore possible to write the ratio ∆𝐴 which represents the ratio between the 

nominal and real contact area: 

∆𝐴 =
𝐴𝑟𝑒𝑎𝑙
𝐴𝑛𝑜𝑚

=
𝜎

𝐻1
 (3.14) 

By taking the bearing-ratio curve of the real surface, it is possible to correlate ∆𝐴 

with the average indentation depth of the triangular asperities. 

 

Figure 3.10 Correlation between the model surface and the bearing ratio curve (BRC). 

The bearing ratio curve (or Abbott-Firestone curve) describes the texture of the 

surface profile. It is the cumulative probability density function of the height of 

the surface profile. This curve is directly obtained from the profilometer and it is 

correlated with the other roughness parameters reported in Table 3.1. Knowing the 

percentage of real area with respect to the nominal contact area, Eq.(3.14), the 

indentation depth associated to that normal load is obtained (Figure 3.10). 

With simple geometrical calculations, by assuming a symmetrical wedge asperity,  

an average value of the contact area length at the interface is found: 

𝑎 = 2
𝑑

tan𝑅𝑑𝑞
 (3.15) 

As shown in Figure 3.11, there is good agreement between the values obtained 

from the fits and from the bearing ratio curve. 

Since the ice is considered as a flat surface and the pin material as rigid, the value 

of a is expected to be of the same order of magnitude as Ra, due to low normal 

load and thus small plastic deformations. 
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Figure 3.11 A comparison between fitted and estimated contact length a. These results show a good 

agreement between the fitted values of the contact length a with respect to the contact length 

obtained from the geometrical calculation. After this validation, it is possible to infer that the values 

provided from the fit are reliable values 

Friction regime for pin #1 

As previously stated, the theoretical model, obtained by coupling μwet and the 1D-

ALSFM, is not suitable to fit the behaviour of pin #1, leading to infer that the 

lubricated regime could be different from the ones of pin #2 and #3. Indeed, the 

low roughness of pin #1 compared to pins #2 and #3 is expected to induce a lower 

frictional interface heat and, consequently, a reduced frictional melting. 

Considering the frictional melting the most relevant mechanism in the formation 

of the water layer in sliding systems (Bowden and Hughes 1939), pin #1 is 

expected to work in an almost dry lubrication regime.  

Such a description assigns a key role to the interface heating during the sliding 

and outlines the contribution of the interface roughness in the determination of the 

interface temperature. It is confirmed by exploring another relevant parameter 

affecting the interface temperature, namely the thermal conductivity of the slider.  
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Preliminary tests are performed with a pin made of hard phenolic resin. From the 

mechanical point of view, the resin is softer than steel (by a factor 10), but it is 

still much harder than ice (by a factor close to 15). The hypotheses on the contact 

mechanics of the system are still valid, in particular the dependence of the contact 

area on the softer material at the interface (the ice). From the thermal point of 

view, however, a conductor (steel has a thermal conductivity of about 20 W/mK) 

is replaced by an insulator (resin has a thermal conductivity of about 0.2 W/mK). 

The resin pin is prepared with a roughness Ra of 0.13 μm, close to the roughness 

of steel pin #1, and the measurements of the coefficient of friction are performed 

with the same experimental conditions used for the experiments with steel sliders. 

The values of the friction coefficient obtained at T=-2°C are reported in Figure 

3.12, with the corresponding data from steel pin #1. Results from resin pin show 

decreasing values of the coefficient of friction as the sliding velocity increases, 

indicating a clear transition from dry to a mixed lubrication regime, thanks to the 

formation of a water layer in association with the higher interface temperature. 

 

 

Figure 3.12 Comparison between the friction coefficient results obtained from the resin pin tests 

performed at -2°C (black dots) and the results from the steel pin #1 tests (red dots) performed at 

the same temperature. 
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Since the thermal conductivity of the resin is much lower than the one of steel, 

the conclusion is that the steel pin with the smoothest roughness works in 

boundary lubrication regime. 

3.5. Conclusions 

The two roughest pins clearly exhibited a mixed lubrication regime behaviour, so 

that the 1D-ALSFM modified for ice friction is able to replicate the experimental 

data and provides good approximations of the contact length a (in the range of 

tested velocities). Conversely, the smoothest pin shows a different behaviour that 

can not be fitted with the model in its current status of development. The trend of 

the coefficient of friction of the smoothest pin is clarified performing the same 

tests with a pin made of resin with the same surface roughness. Since this resin 

pin displays a mixed lubrication behaviour and the thermal conductivity of steel 

is bigger, the steel pin #1 is proved to work in the boundary lubrication regime. 

Therefore, the interplay between the surface roughness and the thermal 

conductivity of the counterpart of the ice surface determines the range of 

applicability of the proposed model. 

  



Chapter 4 - Friction of micro-patterned surfaces: experimental and numerical investigation 

 

111 

 

Chapter 4 

4. Friction of micro-patterned surfaces: 

experimental and numerical investigation 

Recent experimental results about the frictional behaviour of sliding patterned 

surfaces have been obtained in the presence of non-trivial geometric features, e.g. 

microstructures like grooves, dimples, pillars or honeycomb patterns (Baum et al. 

2014; Greiner et al. 2014; He et al. 2008; Li et al. 2016; Maegawa, Itoigawa, and 

Nakamura 2016; Murarash, Itovich, and Varenberg 2011; Tramsen et al. 2018). 

The goal of these studies is to explore the possibility of modifying the 

macroscopic friction properties by exploiting specific surface structures, both in 

dry and lubricated conditions, rather than through modification of the material 

chemistry.  

Surface patterning has been studied for several years due to the possibilities it 

provides to accentuate the hydrophilic or hydrophobic properties of surfaces 

(Ghio et al. 2015; Hsu et al. 2014; Jung and Bhushan 2006; Pettersson and 

Jacobson 2004). Thus, it is of great interest to explore the effect of surface 

patterning on the frictional properties of surfaces, including those applications 

where control of water-repellent or adhesive behaviour is also required. 

Friction between nominally flat surfaces at macroscale is the result of interactions 

at different length scales spanning from atomic forces to mesoscale and 

macroscale effects (Nosonovsky and Bhushan 2007; Vakis et al. 2018), as also 

pointed out in Chapter 2. In the case of micro-patterned surfaces, the characteristic 

lengths of the structures also play a role, so that it is difficult to separate the 

contributions of surface roughness, heterogeneity and patterning, and to identify 

the dominant mechanisms determining the emergent frictional behaviour. Thus, 

theoretical and numerical modelling must be associated to experimental results in 
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order to explain the effects induced by surface textures and to predict the most 

suitable configurations for specific purposes. 

Models addressing the effect of surface patterning on macroscopic frictional 

behaviour have been developed for specific cases to be compared with some 

experiments (Filippov and Gorb 2013; Maegawa et al. 2016; Nguyen et al. 2013). 

Another option consists in developing a general simplified model, including the 

relevant features at the mesoscale and taking into account the microscale by means 

of effective laws (Vanossi et al. 2013) e.g. the Frenkel-Kontorova model (Braun 

and Kivshar 2004), describing the emergent superlubric transition due to 

incommensurate lattice lengths of two sliding layers (Mandelli et al. 2015; Norell, 

Fasolino, and De Wijn 2016). Another example is the so-called spring-block 

model, which has been implemented in 1D and 2D to investigate how friction 

properties can be modified by surface textures (Capozza and Pugno 2015; 

Costagliola et al. 2016; Costagliola, Bosia, and Pugno 2017; Costagliola et al. 

2018). In particular, the model can provide useful insights on the transition 

between static and dynamic friction in the presence of structures that modify the 

surface stress distribution at the onset of sliding. Thanks to its simplicity, the 

model can qualitative describes the effects taking place, but due to the adopted 

approximations, its reliability for precise quantitative predictions is still to be 

evaluated. In (Costagliola et al. 2018) qualitative trends consistent with those 

obtained by experiments for surface structures were obtained, suggesting that 

some effects are quite general and may depend on parameters such as structure 

and dimensions of the surface textures rather than on specific material properties 

In order to physically realize various surface patterns, several techniques have 

been developed and optimized in the past years, including laser surface texturing 

(Erdemir 2005; Etsion 2004, 2005, Gualtieri et al. 2009, 2011; Ranjan et al. 1991), 

which seems to provide high precision and speed of manufacturing , especially for 

applications with metallic surfaces. However, micromoulding techniques are a 

simple and effective alternative to the high costs of laser texturing (He et al. 2008; 
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Rand and Crosby 2009; Yu et al. 2012). These consist in casting an elastomer by 

using a mould formed by a lithographic technique, and thus transferring the 

pattern on the elastomer substrate. 

In this Chapter, this method has been applied to realize microscale surface 

texturing in different shapes and sizes, including anisotropic patterns. Variable 

contact area fractions are considered to account for a wide range of potential 

applications. Friction tests are then performed on the patterned elastomer 

substrates against a flat polycarbonate surface and results are compared to the 

predictions of a 2D version of the Spring-Block model, (Costagliola et al. 2018) 

thanks to a collaboration with the University of Turin, evaluating for the first time 

the limits of its qualitative predictions towards a precise tribological design of the 

microscopic surface texture. In this Chapter, the ALSFM is not applied due to its 

limitations in the presence of discontinuities. 

4.1. Bespoke setup for friction tests 

Samples preparation 

Surface samples are made of polydemethilsiloxane (PDMS) and are realized by 

direct copy of a patterned silicon substrate. This material is widely used in 

applications where a precise reproduction of a surface design is required (e.g. in 

microfluidics and in vitro biology applications). The PDMS (Sylgard184) is 

supplied as two different compounds: a cross-linking curing agent and a pre-

polymer base. Polymerization begins when the two liquids are mixed together. 

Then, it is degassed a first time for 30 minutes directly after mixing and a second 

time 30 minutes after deposition on the silicon substrate. The Silicon substrate is 

processed in a Metal-Oxide-Semiconductor (MOS) pilot line, involving soft-

lithography and dry etching to realize micrometric surface structures. Before 

PDMS moulding the silicon substrate is coated with a silane Self-Assembly 

Monolayer (SAM) both to avoid sticking and to promote detachment after curing. 
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Samples are cured at temperature of 70° C for 50 minutes and PDMS surfaces are 

peeled from the silicon substrate after cooling.  

The chosen surface patterns are periodic arrangements of micro-holes illustrated 

in Figure 4.1. In particular, three patterns are considered, each of them 

characterized by different hole diameter Φ, pitch distance between holes p and 

corresponding contact Area Fraction 𝐴𝐹 = ( 𝐴𝑡ℎ − 𝐴𝑟) 𝐴𝑡ℎ ⁄  values, where 𝐴𝑡ℎ 

is the theoretical contact area while 𝐴𝑟 is the real contact area of samples. Table 

4.1 reports the geometrical characteristics of the samples, which have been chosen 

thanks to their simplicity of fabrication in potential applications. 

An additional pattern is considered to study the influence of anisotropy (Figure 

4.1 F, sample S). This pattern presents asymmetric holes 40 x 200 µm in size, with 

pitch distance 120 µm in the shorter direction. Again, this geometry is chosen for 

its simplicity, while providing marked anisotropy. The holes are staggered in the 

longer direction. Both principal directions (x and y reported in Figure 4.1 G) are 

considered in friction tests.  

Sample Φ (µm) p (µm) AF 

Type A 5 20 0.95 

Type B 10 15 0.65 

Type C 15 20 0.56 

Type S 40 200 120 200 0.67 

Table 4.1 Geometrical characteristics of considered samples 
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Figure 4.1 (A) Sample holder with a glued sample. (B) SEM image of a flat surface. (C) SEM image 

of sample A. (D) SEM image of sample B. (E) SEM image of sample C. (F) SEM image of sample S. 

(G) SEM image of sample S, enlargement of a single hole. These samples were tested along x and y 

directions. All scale bars are equal to 20 μm. 

Setup for Tribological Tests 

In order to obtain both the static and dynamic friction coefficients of the 

aforementioned surfaces, an ad hoc custom-built setup is used (Figure 4.2). It is 

composed of two main polycarbonate parts. The first component (Figure 4.2 A) is 

formed by a tensile machine and a lapped polycarbonate rigid surface, which is 

the reference surface where the samples can slide on. The other component is the 

sample holder and slider (enlargement in Figure 4.1 A). Samples are glued on the 

slider, with the surface to be tested in contact with the rigid polycarbonate base. 

The slider is pulled by a double inextensible wire, connected to the grip of the 

tensile machine. A weight of mass m is placed on the top of the slider to vary the 

normal applied force. The tensile machine records the wire pulling force 

transmitted by a frictionless roller, i.e. the friction force generated by the sample 

sliding on the polycarbonate base. 
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Figure 4.2 A) Details of the custom built setup. A black flat polycarbonate surface is fixed to a tensile 

machine (a). A transparent sample holder (b) can slide on the polycarbonate surface, thanks to two 

inextensible wires (c), which are connected to the grip of the tensile machine. A frictionless roller 

transmits the imposed velocity from the machine to the sample holder (d). Each PDMS surface is 

anchored to the transparent support (e) and loaded with different known weights. B) Overview of 

the setup. 

Tribological Test Procedure 

Samples are first glued to the sample holder. Both the surface to test and the 

polycarbonate base are cleaned with ethanol and dried, then a given mass is 

applied on the slider. The tests are then performed at constant puling speed of 0.2 

mm/s, an average of values adopted in previous studies (Bistac and Galliano 2005; 

Galliano, Bistac, and Schultz 2003; Sahli et al. 2018). Once the detachment force 

is reached, at the static friction force value and corresponding to the first highest 

peak in the load-displacement curve, the sample starts moving at an approximately 

constant force value, that is the dynamic friction force. When this value stabilizes, 

the test is stopped. The dynamic friction force is considered as the mean value 

during the sliding phase. 

Different masses are used during the friction tests, from 1.5 g (the mass of the 

sample holder without any additional mass) to about 140 g. Tests are repeated 

about ten times for each sample and mass (three samples per pattern type) to obtain 

sufficient statistics and all measurements are carried out at room temperature.  
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4.2. Experimental results 

It is well known that frictional behaviour of elastomers is a complex phenomenon, 

usually governed by interfacial properties and dissipation mechanisms (Bistac and 

Galliano 2005; Carbone et al. 2009; Yu and Zhao 2009). Adhesion and friction 

are strictly correlated, and they both can depend on sliding velocity, applied 

normal load and molecular weight. The dependence on velocity of macroscopic 

friction is generally considered negligible (Bistac and Galliano 2005). In any case, 

in this study all friction tests are performed at the same sliding speed. On the 

contrary, the normal force affects the value of friction coefficients, with a decrease 

in the normal force leading to higher friction coefficients (Bistac and Galliano 

2005; He et al. 2008). 

Figure 4.3 shows the tangential force variation in time for different surface 

textures. As explained in the previous section, both the static and the dynamic 

friction forces can be determined from these friction tests. One friction test for 

each patterning type is reported, i.e. the friction force 𝑇  normalized by the 

maximum friction force obtained in the same test (𝑇𝑚𝑎𝑥), to highlight different 

behaviors between the samples. The tests illustrate considerable stick-slip 

behaviour between the polycarbonate and flat PDMS samples (Figure 4.3 A), 

especially at the beginning of sliding, but this effect becomes less evident with 

higher applied loads, as also reported in (He et al. 2008; Rand and Crosby 2009). 

The plots highlight some differences between patterns: in particular for sample C, 

static and dynamic friction forces are similar, with limited stick-slip effects. 

In order to better point out the dependence of the friction force on the pattern type, 

Figure 4.4 shows the results for different applied pressures, both for static and 

dynamic friction. As found in previous works (Bistac and Galliano 2005; Galliano 

et al. 2003), macroscopic friction coefficients decrease non-linearly with 

increasing applied normal load. 
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Figure 4.3 Examples of friction tests with the described setup; friction force (T) is normalized with 

respect to the peak value of the respective test, which corresponds to the static friction force (Tmax): 

(A) Friction test for a flat PDMS surface . (B) Friction test for sample A. (C) Friction test for sample 

B. (D) Friction test for sample C. (E) Friction test for sample S, along x- and y- directions. All scale 

bars are equal to 20 μm. 

For small or near-zero normal load, results present a large standard deviation, 

mainly due to difficulties in setting identical initial conditions for all the samples 

(samples were positioned on the setup by hand). Conversely, the standard 

deviation decreases for increasing normal load. This also applies to sample C, 

although some oscillations occur.  

Results obtained for sample S highlight the effect of anisotropy. Friction along the 

x direction appears to be higher than friction along y direction. A similar result 

was found in (Rand and Crosby 2009), where they studied friction parallel and 

perpendicular to wrinkled surfaces. 

From the experimental results, it can be deduced how surface patterns influence 

the frictional behaviour of the PDMS samples. Sample A is the one characterized 

by the smallest holes and larger spacing, thus its friction coefficients appear to be 

close to the flat samples.  

(A) (B) (C) 

(D) (E) 
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Figure 4.4 Experimental friction test results. Plots report the ratio between static and dynamic 

friction force (T) and the applied normal load (N) as a function of the normal pressure p (N/Ath). 

(A) Static friction coefficients of flat surfaces and samples A, B and C. (B) Dynamic friction 

coefficients of flat surfaces and samples A, B and C. (C) Static friction coefficients of samples S, 

along both x and y directions. (D) Static friction coefficients of samples S, along both x and y 

directions. 

On the contrary, samples B and C have lower friction forces with respect to 

applied normal load. 

This is partly due to a decrease in the real contact area of textured samples, as 

discussed in (He et al. 2008), but other aspects also contribute to this trend, 

including stress concentrations around surface features or the effect of adhesion, 

(A) (B) 

(C) (D) 
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which has a higher influence at lower loads, especially on the surfaces with higher 

texture density. 

These results are described by the Coulomb’s friction model, by fitting the 

experimental data with the equation: 

𝜏 = 𝜏0 + 𝜇𝑝 (4.1) 

Where p is the applied pressure, equal to N/Ath, while τ0 and μ are the parameters 

to be fitted (red curves in Figure 4.5 and Figure 4.6). 

 

Figure 4.5 Static friction force T as a function of the applied normal load (N): experimental data 

(blue circles), linear fit (red line), rescaled fit (yellow dotted line). (A) Flat surface; (B) A sample;(C) 

B sample; (D) C sample; (E) S sample - sliding along the x direction; (F) S sample - sliding along 

the y direction. 

Eq. (4.1) appears to be a good explanation of the frictional behavior, even if for 

small loads the coefficient of friction is higher, while increasing the load, it 

becomes constant, also because the effects of adhesion become smaller. The 

values obtained from the fits are reported in Table 4.2 Results obtained from the 

fits following Eq. (4.1). 

In Figure 4.5 and Figure 4.6 another curve is reported (dotted lines), to study how 

patterns, so that the Area Fraction (AF), contribute in decreasing the coefficient 

of friction. This is done by computing the coefficient of friction of each patterned 
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surface with respect to its AF and the coefficient of friction of the flat surface. The 

equation of the yellow dotted curve is the following: 

𝑇 = 𝐴𝐹(𝜏0,𝐹𝐴𝑡ℎ + 𝜇𝐹𝑁) (4.2) 

Where τ0,F and μF are the adhesion force per unit area and the coefficient of friction 

of the flat surface, respectively. These predictions are qualitative good, but tend 

to overestimate the frictional behaviour of the patterned surfaces. Moreover, this 

formulation does not consider the effect of anisotropy, because sample S is 

characterized by the same AF. These insights suggest that the decrease in the 

friction coefficient due to a surface texturing depends not only from the real 

contact area of the samples. For these reasons, numerical simulations are realized, 

in order to describe more in details the effects of patterning and to capture also the 

surface anisotropy. 

 

Figure 4.6 Dynamic friction force T as a function of the applied normal load (N): experimental data 

(blue circles), linear fit (red line), rescaled fit (yellow dotted line). (A) Flat surface; (B) A sample;(C) 

B sample; (D) C sample; (E) S sample - sliding along the x direction; (F) S sample - sliding along 

the y direction. 
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Figure 4.7 Comparison between the fitted parameters for the static coefficient of friction μ and τ0 

with respect to the prediction by adopting Eq.(4.2). A linear fit of both the parameters show a 

decresing trend with decresing AF. 

 

Figure 4.8 Comparison between the fitted parameters for the dynamic coefficient of friction μ and 

τ0 with respect to the prediction by adopting Eq.(4.2). A linear fit of both the parameters show a 

decresing trend with decresing AF. 
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Sample 

STATIC DYNAMIC 

μ τ0 [kPa] μ τ0 [kPa] 

mean st.dev mean st.dev mean st.dev mean st.dev 

F 4.76 0.73 23.45 9.24 2.88 1.39 11.85 11.27 

A 5.71 2.36 15.41 20.03 3.75 1.64 4.02 9.47 

B 2.05 0.40 24.85 7.46 2.62 0.32 2.98 2.55 

C 2.18 1.19 4.30 6.15 1.88 0.78 1.05 2.01 

S (x) 2.44 1.55 9.17 12.13 2.67 0.87 4.52 5.12 

S (y) 2.25 0.22 1.16 2.07 2.14 0.16 0.09 0.84 

Table 4.2 Results obtained from the fits following Eq. (4.1). 

4.3. Numerical simulations 

Model formulation 

In order to compare numerical results with experimental tests, a 2D formulation 

of the spring-block model previously introduced in (Costagliola et al. 2018) is 

adopted. In the spring-block model, the contact surface is discretized into elements 

of mass m, each connected by springs to the first eight neighbours and arranged 

in a regular square lattice with Nx blocks along the x-axis and Ny  blocks along the 

y-axis. The distances between blocks on the two axes are lx and ly, respectively. 

The equivalence of this spring-mass system with a homogeneous elastic material 

is obtained by imposing that the stiffness of the springs parallel to the axis is Kint 

= 3/8 E lz, where lz  is the thickness of the layer. The stiffness of the diagonal 

springs is Kint/2, while the Poisson’s ratio is fixed to 1/3 and lx = ly = l  (Absi and 

Prager 1975). The force exerted on the i–th block by the neighbouring j-th block 

can be written as: Fint
(ij) = kij (rij - lij)(ri – rj)/rij, where ri , rj are the position vectors 

of the two blocks, rij is the modulus of their distance, lij is the modulus of the rest 

distance and kij is the stiffness of the spring connecting them. 

All the blocks are connected to the slider through springs of stiffness KS, which 

are related to the shear modulus of the material G = 3/8 E and, by simple 

calculation, Ks = Kint (l/ lz)2 . For simplicity lz = l. The slider moves at a constant 

velocity characterized by the vector v laying on the xy plane, so that the force 
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exerted by shear springs on the i-th block at time t is Fs
(i)

 = (vt + ri
0- ri), where  ri

0 

is the initial resting position. The total driving force is defined as Fmot
(i) = Fs

(i) + 

Fint
(ij). Each block is subjected to a normal force Fn

(i) = pl2, where p is the applied 

pressure. Furthermore, a damping force term is added to avoid artificial block 

oscillations, Fd
 (i) = - m γ �̇�𝑖 where γ is the damping coefficient and �̇�𝑖 is the velocity 

vector of the block. 

The interaction between blocks and the rigid plane is modelled as in (Costagliola 

et al. 2018) : each block is subjected to the fundamental Amontons-Coulomb (AC) 

friction force with a local static and dynamic friction coefficients, respectively μs
(i) 

and μd
(i) , randomly assigned for each block at the beginning of the simulation from 

a Gaussian statistical distribution, i.e. g(μs,d
(i)) = (2πσ) −1 exp [−(μs,d

(i ) − (μs,d)m ) 2 

/(2σs,d
2 )]. (μs,d)m denotes the mean value of the microscopic friction coefficients 

for static and dynamic case, respectively, and σs,d is its standard deviation. Thus, 

the friction force on the i-th block can be described as follows: while the block is 

at rest, the friction force Ffr
(i) opposes to the total driving force, i.e. Ffr

(i) = −Fmot
(i) 

, up to a threshold value Ffr
(i) =  μs

(i) Fn
(i) . When this limit is exceeded, a constant 

dynamic friction force opposes the motion, i.e. Ffr
(i) = - μd

(i) Fn
(i) . However, 

experimental data in this work show non-negligible adhesion effects in the friction 

force in the limit of zero pressure. In order to take into account this effect, a 

constant force is added to the static friction force thresholds. Thus, the friction 

threshold for the i-th block is Ffr
(i) =  μs

(i) Fn
(i) + Fad, where the last term is the same 

for all blocks and includes all the possible adhesion effects. This is the simplest 

way to account for adhesion effects without adding specific details of the 

microscopic interactions that give rise to them. This level of approximation is 

consistent with that adopted for the AC friction force and with the rest of the 

model, which intentionally avoids a detailed microscopic description. In the case 

of patterned surfaces, areas corresponding to cavities are attributed friction 

coefficients equal to zero. 
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Thus, the motion of each block is described by a system of Newton’s equations 

that can be solved using a fourth-order Runge-Kutta algorithm. From the motion 

equation of all blocks, the total friction force can be calculated through the total 

force exerted by the slider, e.g. Ttot(t)=ΣiFs
(i)(t), corresponding to that measured in 

the experiments. A typical behaviour of Ttot as a function of time is shown in 

Figure 4.9. From this, the static friction force T=maxt Ttot(t) is the first maximum 

peak. To account for statistical effects, the simulations are iterated, by extracting 

each time new random local friction coefficients and determining a statistical 

average of any observable. The integration time step is 10−8 s, which is sufficient 

to reduce integration errors below the statistical uncertainty due to the model 

iterations as detailed in (Costagliola et al. 2018). 

Model parameters 

The numerical model contains a number of parameters that need to be modified 

to fit experimental data, although some degree of approximation is inevitable 

since experimental conditions cannot be replicated exactly. For example, the 

Poisson’s ratio of the model is 1/3 by definition, while the PDMS real value is 

closer to 0.5.  

The slider velocity, the applied pressure, the material density and Young’s 

modulus are taken from experimental values. Thus, the mass of the block is m = 

 l3 , with  = 1.012 g/cm3 . The Young’s modulus is assumed E = 0.8 MPa (Yu 

and Zhao 2009) , and the applied pressure varies between 3 KPa and 25 KPa. The 

slider velocity is in modulus v = 0.2 mm/s. The sliding direction with respect to 

the (x,y) orientation is randomly chosen at each simulation at an angle to 

account for the uncertainty in the sliding direction in experiments. Thus, the 

velocity vector of the slider is v = (v cos(), v sin()). For flat and patterned 

samples A,B,C the angle is chosen with a uniform distribution in the range [0°, 

45°]sufficient to emulate the experimental setup due to the symmetry of the 

samples. For anisotropic samples S, designed with a precise sliding direction 

(for S along x-axis samples and for S along y-axis), the uncertainty 
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is reduced and the angle is chosen within a range [-10°, 10°] around the nominal 

sliding angle. 

 

Figure 4.9 A) Sketch of patterned surface, where the main sliding direction is set to α=0°.B) 

Schematic of the 2D spring-block model with the notation used in the text. Mesh of the internal 

springs on the surface, the shear springs are not shown. C) Side view showing the slider moving at 

constant velocity v and the shear springs. D) Outputs of the numerical simulations, showing the 

evolution of the coefficient of friction in time. 

The local friction coefficients of the model are obtained by fitting the experimental 

data for a flat, non-patterned surface. The optimal values are (μs)m =4.5, σs =0.2 

and (μd)m =3.0, σd =0.2 for the local static and dynamic friction coefficient, 

respectively. The adhesion term is inferred by extrapolating the experimental 

results for each sample at zero applied normal pressure, as reported in the Table 

4.3. 

The spring mesh discretization length is fixed to l = 5 µm corresponding to the 

smallest feature of the experimental surface structures. The total number of blocks 

(A) (B) 

(C) 

(D) 
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required to match the size of the experimental sample would be very high, but  not 

necessary. As shown in (Costagliola et al. 2018), the qualitative behaviour is not 

influenced by the number of blocks and the only effect is the decrease of the 

macroscopic static friction coefficients. Since there is already a set of free 

parameters, e.g. local friction coefficients and the adhesion, which need to be 

changed in order to match the macroscopic coefficients with the experimental one, 

it is equivalent to fix a smaller number of blocks and tune consequently the other 

parameters. Thus, the lateral number of blocks is Nx = Ny = 85, which allows to 

simulate all the different samples with the same mesh whilst adequately modelling 

the hole geometries.  

However, the numerical model does not replicate the exact experimental sample 

geometry, since the adopted lattice is square, while the sample holes are circular 

in shape. The presence of holes is simulated by setting to zero the local friction 

coefficients of blocks in the corresponding positions, and their circular shape is 

approximated by means of squares with length equal to the diameter and spacing. 

The same local friction coefficients of the flat surfaces have been adopted for the 

regions of the patterned samples in contact with the substrate. 

Sample Fad/l
2 (kPa) 

Flat 23.8 

A 36.1 

B 44.4 

C 34.4 

S (x axis) 45.1 

S (y axis) 11.2 

Table 4.3 Adhesion terms expressed as force for unit surface deduced from experimental results for 

each sample.  

In order to compare the numerical simulations with the experimental results, 

data must be normalized with the total normal force N=ΣiFn
(i), so that the 
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comparison is performed through the quantity (T/N), i.e. the macroscopic 

friction coefficient, as a function of the pressure p. 

4.4. Comparison between experimental results with 

numerical simulations 

In this section, numerical results are compared to experimental results, in 

particular the behaviour of the static friction is considered for the analysed 

patterns. Once the model parameters are tuned through the simulations for a flat 

surface, results for patterned surfaces are in good agreement with experimental 

results, as shown in the Figure 4.10, in which the macroscopic static friction 

coefficient is reported as a function of the applied pressure p. 

As suggested (Costagliola et al. 2018), despite the approximations, the model is 

able to capture the underlying mechanisms of the transition from the static to the 

dynamic phase in the presence of surface features, correctly accounting the stress 

concentrations occurring at the edge of these structures and the propagation of 

detachment fronts before the onset of sliding. This is confirmed by the current 

comparison, in which the modifications of static friction values due to surface 

patterning are correctly predicted. Thus, at least in this regime of slow sliding 

velocities and low to intermediate pressure values, the influence of the patterns is 

independent of material parameters such as exact elastic properties and 

microscopic interactions. These features can be taken into account by means of an 

effective local law, as done in the current model formulation, i.e. through the 

combination of Coulomb friction with constant adhesion force. The necessary 

tuning of model parameters can be performed once and for all for a given material 

system and these remain valid for varying surface patterns. Numerical simulations 

for asymmetrical or anisotropic patterns do not provide a perfect match with 

experimental data. This is probably mainly due to the implicit model assumption  
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Figure 4.10 Numerical and experimental results of the static coefficient of friction. the ratio between 

the static friction force (T) and the applied normal load (N) as a function of the nominal pressure (p 

= N/A) is reported for all the case studies. (A) Flat surfaces; (B) A samples;(C) B samples; (D) C 

samples; (E) S samples - sliding along the x direction; (F) S samples - sliding along the y direction. 

All scale bars are equal to 20 μm. 

 

(A) (B) 

(C) (D) 

(E) (F) 
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that pattern shapes remain unvaried during sliding, which may not be strictly true 

for a soft elastic material like PDMS at higher pressure values. The current 

formulation does not include modifications of the contact shape or area of the 

patterns, so that the model is less predictive when these factors are influential. 

Despite this, the model correctly predicts an increase of static friction when the 

sliding direction is aligned with the longer sides of the structures, in the case of 

asymmetric holes. 

 

Figure 4.11 Numerical and experimental results of dynamic friction tests in term of the ratio between 

the static friction force (T) and the applied normal load (N) as a function of the nominal pressure (p 

= N/A) for all the case studies. (A) A samples;(B) B samples; (C) S samples - sliding along the x 

direction; (D) S samples - sliding along the y direction. All scale bars are equal to 20 μm. 

The results for dynamic friction are also reported (Figure 4.11). As expected, the 

current formulation of the model is less accurate in describing this phase of the 

sliding, since it predicts similar asymptotic values for all the types of patterns, 

(A) (B) 

(C) (D) 
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while experimental results display larger variations. Also, there is a discrepancy 

for small normal pressures, suggesting that other phenomena become relevant in 

this case, e.g. the deformation of the surface structures. 

In conclusion, the 2D spring-block model can be used not only for qualitative, but 

also for quantitative predictions of static friction of elastic patterned surfaces. The 

current formulation is reliable for the static phase in a regime of slow sliding and 

small-intermediate pressures, while additional modifications are required to 

correctly describe the dynamic phase or higher sliding velocities. 

4.5. Conclusions 

Experimental results are performed with a custom-made apparatus evaluating 

friction forces at a constant sliding velocity and for varying normal applied loads. 

Various types of simple micro-patterns are considered, from equally spaced 

circular holes to an array of elongated cavities, to evaluate the role pattern spacing 

and anisotropy. Results show good repeatability and consistency, with a decrease 

in macroscopic friction coefficients as a function applied normal load. Anisotropic 

patterns generate a variation of friction forces of up to 300% depending on the 

sliding direction in the plane, thus allowing to generate directionally tuned 

friction. Numerical predictions using a 2D spring-block model, modified to 

include adhesion, are considerably in compliance with experimental results, 

reproducing normal load dependence and static friction coefficient absolute 

values, both for isotropic and anisotropic patterns. Although some discrepancy 

remains, this study provides further evidence of the reliability of the presented 

model in the case of patterned 2D surfaces. This can be of great interest for the 

conception of novel surface texture designs for applications, which can enable 

control and tuning of their frictional, including adhesive properties.  

  



Alice Berardo – A Numerical and Experimental Study on the Friction of Complex Surfaces 

132 

 

 

 

  



Chapter 5 - Friction in silk fibres to increase toughness without losing strength 

 

133 

 

Chapter 5 

5. Friction in silk fibres to increase toughness 

without losing strength  

Nowadays, global attention is increasingly focussed on the employment of 

biological, biocompatible and biodegradable materials in many disciplines, such 

as medicine, material and biomedical engineering, chemistry, applied science and 

technologies. Biomaterials can be used as common materials with many 

advantages: firstly, they are already available in nature, secondly, their mechanical 

properties are almost comparable to or even better than common materials, thirdly, 

they are recyclable and durable, but more importantly, they are suitable for being 

applied in medicine without human body rejection (Some examples are reported 

in Altman et al., 2003; Chen et al., 2014; Cheung et al., 2008; Hench, 1998; Hersel 

et al., 2003; Hubbell, 1995; Kundanati et al., 2016; Pugno & Carpinteri, 2007; 

Staiger et al., 2006; Warnecke et al., 2017; Zorlutuna et al., 2012) 

One of these important materials, thoroughly studied in these last twenty-five 

years, is the Bombyx mori silkworm silk (Jiang et al., 2006; Omenetto & Kaplan, 

2008, 2010; Pérez-Rigueiro, Viney, Llorca, & Elices, 2000; Viney, Llorca, Elices, 

& Pe, 1998). Silk has been defined as a new old material with a high capacity to 

impact high technology, material science, medicine and global health (Figure 5.1). 

It is composed of water and proteins (Jin and Kaplan 2003; Shao and Vollrath 

2002), so that it appears as a transparent material, technologically quite simple to 

obtain (it is processed in water at room temperature). Moreover, it is 

biodegradable, edible and could be implantable in the human body without 

causing any immune response (Lawrence et al. 2009; Partlow et al. 2014; Zhang, 

Baughman, and Kaplan 2008).  
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Silkworm silk has been used for centuries in textile and medical industries, with 

recent application in composites (Ude, Ariffin, and Azhari 2013), tissue 

engineering scaffolds (Jin and Kaplan 2003; Meinel et al. 2009) and drug delivery 

(Hardy, Römer, and Scheibel 2008), in microelectronics and photonics (Keum et 

al. 2011; Kim et al. 2009, 2011; Lawrence et al. 2008; Mannoor et al. 2012). 

At the same time, the availability of materials displaying both high strength and 

high toughness is greatly desirable in structural applications. In the past, engineers 

had to reach a compromise preferring one or the other property depending on the 

requested application. Strong materials traditionally displayed poor deformation 

capability and, thus, low specific energy dissipation potential (Ritchie 2011). 

However, recent developments in materials science have led to new techniques 

taking inspiration from nature, which has already overcome the conflict between 

strength and toughness, providing materials like nacre and bones, with complex 

structures cooperating at different length scales (Bouville et al. 2014; Cranford et 

al. 2012; Munch et al. 2008). This concept has been transferred to engineering 

materials, introducing, for example, weak interfaces with intricate architectures 

(Mirkhalaf, Dastjerdi, and Barthelat 2014) or dispersing fibres in a brittle matrix 

to form a bridge complementing crack opening and fracture (Palmeri, Putz, and 

Brinson 2010). While all of these solutions require some chemical treatment on 

the material of interest, in the present study a different toughening strategy 

operating at a micro length scale is considered, with a significant increase in 

toughness of as-produced fibres. This follows an idea recently proposed in (Pugno 

2014) and requires the introduction within a fibre of a sliding frictional element, 

e.g., a knot. When the opposite ends of a knotted fibre are pulled apart, a hidden 

length is revealed through a sliding mechanism, which dissipates a huge amount 

of energy. Basically, this mechanism reproduces at a microscopic level the 

breakage of weak bonds (i.e., sacrificial bonds) in highly coiled macromolecules, 

which allows the molecular backbone to be further stretched with beneficial 

effects on toughness (Fantner et al. 2006).  
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Figure 5.1 Our silkworm silk fibres were extracted from a) the cocoon as is, (the silkworm produces 

the cocoon to protect itself during the metamorphosis) or b) after the degumming process, where 

the sericin, a protein, is removed. Scale bars 1 cm. 

Knots are intriguing topological elements, with a variety of examples appearing 

in fine arts as well as many scientific fields, including mathematics (Anstee, 

Przytycki, and Rolfsen 1989), polymer science (Bayer 1994; Saitta et al. 1999), 

colloids (Senyuk et al. 2013; Tkalec et al. 2011), fluids (Kleckner and Irvine 2013), 

chemistry (Ayme et al. 2012; Forgan, Sauvage, and Stoddart 2011), biology 

(Meluzzi, Smith, and Arya 2010), and obviously engineering (Pugno 2014). Knots 

can be introduced by hand (Arai et al. 1999), but many biological systems, like 

proteins and DNA, naturally form knotted configurations (Dean et al. 1985), and 

their function is still debated (He et al. 2014). 

How the presence of knots can affect the mechanical properties of natural fibres 

as silkworm silk is investigated, and the topologies, that can maximize the 

toughness increase without compromising fibre strength are analysed. Firstly, the 

attention focuses on slip or running knots, which can be unfastened without 

inducing stress concentration and premature failure of the fibre. Then, other 

topologies are considered, involving different unfastening mechanisms and design 

complexities, some of them well known in the textile industry, with the aim of 
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providing new and feasible tools to optimize systems in which energy dissipation 

is highly requested. 

5.1. Sample preparation 

For the experiments presented in this chapter, single silk fibres are extracted from 

untreated and degummed cocoons of domestic Bombyx mori silkworm (see Figure 

5.1). Some of the isolated fibres are manipulated by tweezers in order to introduce 

a knot, while others are left plain and used as control samples. From a structural 

point of view, natural silk fibres (baves) are composed of two filaments (known 

in the literature as brins), mainly consisting of fibroin, which are coated with a 

sericin layer binding them together. Since sericin does not contribute to load 

bearing capacity of the bave (Pérez-Rigueiro et al. 2001), it was removed through 

a typical degumming process (Bonani et al. 2011) in order to obtain separated bare 

fibroin fibres one from the other (Figure 5.2). The process of the present 

experiments follows a typical procedure (Bonani et al. 2011), consisting of boiling 

twice the cocoon with 1.1 g/L and 0.4 g/L Na2CO3 (anhydrous, minimum 99%, 

from Sigma Aldrich) water solution for one hour each time. This allows to remove 

any sericin traces and to produce bare fibroin fibres then washes with distilled 

water and air-dried.  

Starting from a fibre length l of 20 mm and a distance between the fibre ends l0 of 

10 mm, the optimal single turned slip knot geometry, which maximized the fibre 

energy dissipation capability, has a very small knot diameter with a loop length lp 

of about 10 mm. Indeed, as this kind of knot tends to loosen during tensile tests, 

it is convenient to start from the tightest possible configuration. On the contrary, 

it is not possible to perform successful experiments with a fibre length of 20 mm 

and l0 equal to 10 mm, provided with double turned slip knot. Knots with this size 

could not completely unfasten during tensile tests. Thus, an optimization process 

is carried out to guarantee the knot the complete release during a test on a fibre 

with the longest possible loop (for dissipating the highest possible energy), still 
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keeping l0=10 mm. This has the following geometry: knot diameter of 6±0.3 mm 

(with about 12 mm of fibre involved within the knot), and loop length (lp) of 6 

mm. 

 

Figure 5.2 a) A natural fibre of silk formed by two brins coated and bended together by a layer of 

sericin, removed after the degumming process. b) Cross section of a natural silk fibre. c) Cross 

section of a degummed silk fibre. Scale bars 10 μm. 

 

Figure 5.3 a) A degummed silk fibre, provided with an optimized knot, spanning over a paper 

frame prepared for nanotensile testing. The knot, either single (STSK) or double (DTSK) turned 

slip knot, is characterized by two main parameters, the loop length, lp, and the knot diameter, as 

shown in the zoomed view (b). 

5.2. Mechanical properties of silk fibres 

From a mechanical point of view, silk fibres extracted from silkworm cocoons are 

reported with remarkable mechanical properties, i.e., Young modulus up to 16 

GPa (Pérez-Rigueiro et al. 2000), fracture strength up to 600 MPa (Viney et al. 

1998) and toughness of 6·104 J/kg (Shao and Vollrath 2002), even though these 
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cannot compete with those characterizing spider silk dragline (Pugno, Cranford, 

and Buehler 2013), having fracture strength of 1.3 GPa and toughness of 16·104 

J/kg (Shao and Vollrath 2002). However, since spiders offer a smaller yield 

capability, which hinders their silk to be fully implemented in a massive industrial 

production (Altman et al. 2003), it would be desirable to combine the advantages 

offered by both such biomaterials, thus developing methods to provide silkworm 

silk with spider silk performances.  

However, extracting meaningful data from tensile tests on silk is not a 

straightforward process. As expected from literature, the stress-strain curves of 

control silk fibres display significant variability (Figure 5.4), which causes in turn 

variability in terms of mechanical properties, included toughness.  

 

Figure 5.4 Stress-strain curves derived from tensile tests carried out on single untreated baves 

(black line) and degummed fibres (green line), both showing significant variability. 

Such variability is mainly caused by fluctuations in the fibre diameter, which is in 

turn dependent on many factors closely related to the silkworm nature (Zhao, Feng, 

and Shi 2007), such as mode and speed of the spinning process. Furthermore, fibre 

diameter can not only vary in size, but also in shape over the same cocoon 

(Colomban and Dinh 2012; Pérez-Rigueiro et al. 2000; Viney et al. 1998). 
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However, as common practice in literature (Pérez-Rigueiro et al. 2000), fibres are 

considered as provided with a circular cross-section.  

The diameter of each tested fibre is evaluated from observation under either 

optical or scanning electron (SEM) microscope, providing average values of 21 

µm and 12 µm for natural and degummed fibres, respectively.  

For a fibre without any knot, the energy dissipated per unit mass, Tu, e.g., 

toughness modulus, can be computed from its stress-strain curve as (Figure 5.6 

a): 

𝑇𝑢 = 1 𝑚∫ 𝐹𝑑𝑥 = 𝐴𝑙 𝑚∫ 𝜎𝑑𝜀 = 1 𝜌∫ 𝜎𝑑𝜀
𝜀𝑓

0

⁄
𝜀𝑓

0

⁄
𝑥𝑓

0

⁄  (5.1) 

Where m is the fibre mass, xf is the displacement at fracture, F is the applied force, 

A is the fibre cross sectional area, l is the fibre initial length, ρ is the volumetric 

density, 𝜀𝑓 = (𝑙𝑓 − 𝑙) 𝑙⁄ = 𝑥𝑓 𝑙⁄  is the fracture strain, lf is the fibre final length, 

and ∫ 𝜎𝑑𝜀
𝜀𝑓
0

 is the area under the stress-strain curve. 

Both untreated baves and degummed single silk fibres are tested at room 

temperature through a nanotensile testing machine (Agilent T150 UTM) and at a 

strain rate of 0.001 s-1 in case of control samples and 0.002 s-1 in case of samples 

provided with knots. Figure 5.4 shows some tensile tests results of both natural 

and degummed silk. 

Reference values of silk toughness are derived from tensile testing of control 

untreated baves and degummed single silk fibres with no knot implemented (i.e., 

toughness is proportional to the area under sample stress-strain curve) 

5.3. Knot implementation is silk fibres 

In order to evaluate the toughness increase due to the knot introduction, more than 

150 single fibres are tested of both untreated and degummed silk, provided with 

optimized knot topologies (see at the end of this Chapter for details of 

experimental data). 
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The knots introduced in the fibres are designed to unfasten as their opposite ends 

are pulled apart.  

This is a necessary condition to fully exploit the knot friction potential and avoid 

any stress concentration, which can trigger premature failure of the fibre, and 

compromise its load bearing capacity. 

Furthermore, since raw silk from cocoons usually undergoes a degumming 

process before being processed in industrial applications, in the first knot 

optimization both natural (i.e., extracted directly from a cocoon) and degummed 

(i.e., extracted from degummed cocoons) fibres are considered, in order to capture 

potential differences. Then, tensile tests are performed on both knotted and 

unknotted control samples in order to evaluate the toughness enhancement due to 

the knot presence. 

Firstly two different knot topologies are tested, involving opposite unfastening 

mechanism. These knots are known as Noose and Overhand Loop (Ashley 1944), 

as reported in Figure 5.5 (a) and (b). While the Noose requires the fibre to be 

turned once around itself, the Overhand Loop requires the fibre to be first folded 

and then turned around itself, thus involving a different unfastening mechanism. 

In the first case the knot tends to untie as the fibre ends are pulled apart. Thus, at 

the beginning, this can be very tight and cause the fibre to be highly stressed 

during the whole tensile test and its toughness to be significantly increased. On 

the contrary, in the Overhand Loop the knot tends to further tie, requiring to start 

from a very loose configuration in order to be completely released, with much less 

toughness enhancement. 
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Figure 5.5 Gallery of knots implemented in single silk fibres. (a) SEM picture of the Noose with a 

schematic on top. (b) SEM picture of the Overhand Loop with a schematic on top. (c) SEM picture 

of the Chain Knot with two chains and a schematic on top. (d) SEM picture of the X-Knot with a 

schematic on top. Scale bar: 10 µm. 

Then, other slip knot topologies are investigated and optimized, which are strictly 

related to the Noose in order to explore the possibility to further improve its 

performance.  

The first topology is an open version of the Monkey Chain Lanyard Knot (Ashley 

1944), well known in the textile industry as this reproduces a chain stitch of 

crochet (Figure 5.5 c): after a noose is tightened, one thread of the fibre is folded 

and forced to cross the loop, which ends in a chain of a chain stitch. In some 

samples, such steps are repeated in order to build chain stitch with four and six 

chains, respectively. In the following, for the sake of brevity, such knot topology 

will be referred to as simply Chain Knot. 

The second topology (Figure 5.5d), which has no common name, requires first to 

implement a noose (Ashley 1944) then to turn its loop inside the knot, obtaining 

an x-shaped knot, which is, for this reason, referred to as X-Knot topology in the 

following (see Figure 5.7 for details about the knot implementation).  
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5.4. Estimation of toughness increase due to knots 

If a knot is introduced in a fibre, (Figure 5.5) the expression to compute the 

toughness modulus has to be modified in order to take into account the fibre length 

involved in both the knot (negligible) and the loop, with its toughness modulus, 

Tk, which can be computed as: 

𝑇𝑘 = 1 𝑚∫ 𝐹𝑑𝑥 = 𝐴𝑙0 𝑚∫ 𝜎𝑑𝜀 =
𝜀𝑓
∗

0

⁄
𝑥𝑓
∗

0

⁄ (1 − 𝑘1) 𝜌⁄ ∫ 𝜎𝑑𝜀
𝜀𝑓
∗

0

 (5.2) 

where 𝑥𝑓
∗ = 𝑙 − 𝑙0 + 𝑥𝑓, l0 is the initial length equal to the distance between the 

fibre opposite ends, 𝜀𝑓
∗ = 𝑥𝑓

∗ 𝑙0⁄ , 𝑘1 = (𝑙 − 𝑙0) 𝑙⁄  accounting for the difference 

between l0 and l and ∫ 𝜎𝑑𝜀
𝜀𝑓
∗

0
 is the area under the stress-strain curve of the knotted 

fibre (Pugno 2014). 

In order to infer quantitative results of knot induced toughness increase, which is 

not affected by the variability of silk mechanical properties, the toughness of a 

knotted sample is compared with the toughness of a control sample. If possible, 

toughness comparison refers to the same fibre.  

When the opposite ends of a knotted fibre are pulled apart, the knot presence 

causes alternating cycles of loading (the knot is tightened and the fibre is stressed) 

and unloading (the knot unties, some fibre length is released from the loop, 

causing stress relaxation) until the knot loosens completely (Figure 5.6 b). In all 

the tests, the final part of the stress-strain curve of knotted fibres reproduced the 

stress-strain curve of the corresponding unknotted fibres, showing, in fact, a stress 

at break comparable with the strength of reference samples (without any knots and 

extracted from a cocoon region adjacent to the knotted fibre) tested apart (Figure 

5.6). Moreover, since it is well known that silk mechanical properties display 

significant variability (Zhao et al. 2007), it is preferable to compare the toughness 

of a knotted fibre with the toughness of the same fibre in unknotted configuration. 
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Figure 5.6 (a) Stress-strain curve of an unknotted natural fibre with length l. (b) Stress-strain curve 

of a knotted natural fibre with length l and distance between its opposite ends l0, which was extracted 

from a cocoon region adjacent to the unknotted fibre (a). The presence of the knot modifies the shape 

of the stress-strain curve (a), introducing a plastic-like plateau and leaving a final region 

(highlighted) almost corresponding to the stress-strain curve of the same fibre with unknotted 

configuration. The strain interval within this final region appears larger than in (a) since it is 

computed with respect to l0 instead of l. 

Accordingly, the final part of the stress-strain curve of a knotted fibre is 

considered as the curve of its reference unknotted fibre. Then, the ratio between 

the toughness of the knotted fibre, Tk, and the toughness of the corresponding 

unknotted fibre, Tu’, can be obtained with the following expression: 

𝑇𝑘 𝑇𝑢′ =⁄ [𝐴𝑙0 𝑚⁄ ∫ 𝜎𝑑𝜀
𝜀𝑓
∗

0

] [𝐴𝑙0 𝑚⁄ ∫ 𝜎𝑑𝜀
𝜀𝑓
∗

𝜀∗
]⁄ = ∫ 𝜎𝑑𝜀

𝜀𝑓
∗

0

∫ 𝜎𝑑𝜀
𝜀𝑓
∗

𝜀∗
⁄  (5.3) 

where ∫ 𝜎𝑑𝜀
𝜀𝑓
∗

𝜀∗
 is the area under the final part of the stress-strain curve, when the 

knot is completely released. 

However, sometimes it is not possible to consider the same fibre for comparison, 

since the final part of the stress-strain curve does not clearly show the behaviour 

of the fibre in unknotted configuration. Therefore, the toughness increase is 

estimated by referring to the toughness modulus of an unknotted fibre extracted 

from a cocoon region adjacent to that of the knotted fibre in order to limit 
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variations in physical and mechanical properties. In this way, the area under the 

stress-strain curve of the knotted fibre has to be scaled by the factor (1-k1): 

𝑇𝑘 𝑇𝑢 =⁄ [(1 − 𝑘1) 𝜌⁄ ∫ 𝜎𝑑𝜀
𝜀𝑓
∗

0

] [1 𝜌⁄ ∫ 𝜎𝑑𝜀
𝜀𝑓

0

] = (1 − 𝑘1)∫ 𝜎𝑑𝜀
𝜀𝑓
∗

0

∫ 𝜎𝑑𝜀
𝜀𝑓

0

⁄  ⁄  (5.4) 

5.5. Results 

In the present section, the effectiveness of four kinds of slip (or running) knots are 

analysed and compared.  

Referring to the Noose and the Overhand Loop, implemented in both natural and 

degummed silk, the fibre is allowed in any case, to slide throughout the knot in 

order to promote energy dissipation, but undergoes a different unfastening 

mechanism (Figure 5.7). 

 

Figure 5.7 Untightening mechanism of the (a) Noose, (b) Overhand Loop, (c) Chain Knot (in this 

schematic with two chains) and (d) X-Knot. When the fibre opposite ends are pulled apart, the loop 

is sucked into its closest chain until this is completely released, thus forcing the knot to collapse into 

a simple noose. If the fibre ends are pulled further apart, the noose loosens until the knot is 

completely untightened. On the contrary, the Overhand Loop becomes tighter as the fibre is pulled. 

In an X-knot, the fibre appears to be turned twice at the bottom of its loop. When its opposite ends 

are pulled apart, the turn closer to the loop tends to tie, causing friction against the fibre sliding, 
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while the other one loosens. In this way, the knot can unfasten completely although a significant 

amount of energy can be dissipated. 

In fact, while the Noose is always able to unfasten, even when extremely tight, as 

it loosens when the fibre ends are pulled apart, the Overhand Loop poses much 

more issues, since, on the contrary, it becomes tighter as the fibre is pulled. For 

both untreated and degummed silk, either knot topology is optimized in order to 

fulfil two main requirements.  

 
Knot 

topology 

Friction 

stress / 

strenght 

Raw silk Degummed silk 

Diameter [µm] - - 21 ± 2 12 ± 2 

Strength (unknotted 

fibres) [MPa] 
- - 219 ± 68 481 ± 91 

Tu [J/g] - - 20 ± 11 29 ± 13 

Strength [MPa] 

Noose 
> 8% 229 ± 50 343 ± 104 

< 8% 216 ± 46 463 ± 120 

O. L. 
> 8% - - 

< 8% 237 ± 53 434 ± 146 

Tk [J/g] 

Noose 
> 8% 45 ± 12 28 ± 9 

< 8% 19 ± 8 36 ± 18 

O. L. 
> 8% - - 

< 8% 17 ± 18 29 ± 17 

Tu‘ [J/g] 

Noose 
> 8% 15 ± 9 29 ± 17 

< 8% 16 ± 7 29 ± 17 

O. L. 
> 8% - - 

< 8% 16 ± 8 27 ± 17 

Table 5.1 Strength and toughness modulus (Tu) of unknotted control fibres. Strength, toughness 

modulus (Tk) and toughness modulus after unfastening (Tu’) of fibres with the Noose and the 
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Overhand Loop (O. L.) (the toughness modulus was computed considering a density of 1.4 g/cm3 

(Pérez-Rigueiro et al. 2001)). For each knot topology, two sets of data are provided, corresponding 

to samples with average stress in the strain interval 0%-40% of their strain at break (i.e., friction 

stress) above or below the 8% of their strength. Such threshold value was considered as the 

minimum friction stress required for knots to be efficiently implemented. 

With respect to unknotted control samples (Figure 5.4), many differences arise. 

First, as expected, the knot presence extends the strain interval (i.e., fibres 

provided with a knot reach a bigger apparent  strain) and introduces an artificial 

plateau, characterized by a series of peaks and drops, corresponding to partial 

fastening and unfastening of the fibre in the knot and related stick-slips. 

In particular, a well-defined plastic-like plateau appears especially when the single 

turned slip knot topology is considered and this is more evident for natural fibres 

than for degummed fibres. This means that natural fibres with this knot topology 

can be constantly high stressed throughout the whole test, causing energy 

dissipation to be strongly enhanced. Such observations are quantitatively 

confirmed by values reported in Table 5.1. The single turned slip knot topology 

allows to significantly enhance toughness of both natural and degummed fibres, 

with almost 300% increase in the optimal configuration. Conversely, the 

Overhand Loop resulted to be sensibly less performing, with comparable 

toughness increase around 110% in both natural and degummed fibres. 

Knot Topology Toughness Increase (%) Strength Decrease (%) 

X-Knot 450 ± 107 18 ± 27 

Chain Knot (2 chains) 310 ± 11 7 ± 35 

Chain Knot (4 chains) 150 ± 11 19 ± 27 

Chain Knot (6 chains) 142 ± 18 11 ± 30 

Table 5.2 Comparison (*) between the toughness increases and strength decreases provided by 

different knot topologies with respect to unknotted single silk fibres (average strength of 514 ± 103 

MPa and average toughness modulus: 32 ± 14 J/g computed considering a density of 1.4 g/cm3 

[32]). 
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(*) Because of the variability in the knot tightening procedure, the knot size shows some difference 

from sample to sample. Thus, when we computed the toughness enhancement provided by each knot 

topology, we considered an average over three results representative of their optimized behaviour.  

Through the analysis of the knot evolutions of the Noose only for degummed silk 

fibres (Figure 5.5 c and d), it is interesting to observe that at the end of the test, 

before the knot loosens completely and the curve collapses into the stress-strain 

curve of an unknotted fibre, there are some pronounced stress peaks, which 

correspond to the number of times the fibre has been turned around itself during 

preparation. The number of final stress peaks, mainly responsible for toughness 

increase, is more visible in case of a chain knot with four and six chains. 

The Chain Knot and the X-Knot can be firmly tightened and then completely 

unfastened during the test with quite high energy dissipation (Table 5.2), 

depending on the stress plateau value introduced in the corresponding stress-strain 

curve (Figure 5.8 b). In particular, samples with a chain knot with two chains 

display a stress-strain curve with a well-defined plastic-like plateau between one 

eighth and a quarter of the fracture strength (Figure 5.8 b), providing a toughness 

increase of about 300%, which is comparable to the result obtained with the Noose 

(Pantano et al. 2016). When the number of chains is increased, there is no visible 

trend in toughness enhancement (Table 5.2). In fact, even if some samples with a 

chain knot with four chains provide some significant toughness enhancement of 

almost 400%, the average value is much lower, being about 150%, which is 

comparable to the average result provided by chain knots with six chains. 

However, such values are still bigger than the one recorded for the Overhand Loop 

(Table 5.2). 

On the contrary, X-Knot topology, with a higher plateau in sample stress-strain 

curve and average values of about one fifth of the fracture stress (Figure 5.8 b) 

results in a toughness enhancement up to 450% on average (Table 5.2).  
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Figure 5.8 (a) Stress-strain curves of natural and degummed silk fibres with optimized Noose or 

Overhand Loop slip knots. Comparison between the normalized stress-strain curves obtained for 

natural and degummed single silk fibres provided with optimized knots. Stress values are normalized 

with respect to fracture strength. Comparison between the stress-strain curves derived from samples 

with an X-Knot and a Chain Knot with either 2, 4 or 6 chains, respectively. Here, stress values are 

normalized with respect to the fracture stress of each fiber. 



Chapter 5 - Friction in silk fibres to increase toughness without losing strength 

 

149 

 

5.6. Discussion and conclusions 

The results presented in the previous section can be explained by focusing on the 

unfastening mechanism involved in either knot topology. In fact, the Noose tends 

to loosen during the test (Figure 5.7 a). Thus, it is possible to start from a very 

tight configuration, which provides the fibre to be significantly stressed 

throughout the whole test within a relatively wide apparent strain interval, which 

allows to more than quadrupling toughness (Table 5.1). On the contrary, the 

Overhand Loop tends to further tighten as the fibre is pulled ((Figure 5.7 b). Thus, 

in order to release completely the fibre without any damage, it is necessary to start 

from a very loose configuration. This, however, causes the fibre not to be very 

stressed, except at the end of the test, providing a much less significant toughness 

enhancement.  

On average, with reference to the single turned slip knot, higher toughness values 

are reported for natural silk than for degummed silk. This is related to the 

possibility for natural fibres to dissipate more energy by friction, thus reaching a 

stress plateau much closer to their fracture strength, as it emerges if the stress 

values reported in Figure 5.8 are normalized with respect to the corresponding 

fracture strength. The Overhand Loop topology produces instead comparable 

results for both natural and degummed fibres. 

Such different behaviour can be explained by considering the role played by 

sericin coating. In fact, natural silk fibres are less smooth than degummed fibres 

and they are more prone to friction as they run through the knot. However, when 

the knot is always able to unfasten (e.g., Noose), this is an added value and 

contributes positively to further increase the fibre toughness. Conversely, when 

for the fibre running throughout its loop is difficult as the knot tends to tie during 

tensile tests (e.g., Overhand Loop), any additional friction source can further 

hinder sliding, causing damage and premature failure of the fibre (Fig. 5e-g).  
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Figure 5.9 a) Unfastening mechanism of the Noose, which tends to loosen as the fiber ends are 

pulled apart. Such knot can always be released, even when extremely tight, as shown in the SEM 

image. b) Unfastening mechanism of the Overhand Loop, which tends to further tie as the fiber ends 

are pulled apart. Thus, if this knot is too tight at the beginning of the test, it cannot be released, as 

occurred in the natural silk fiber reported in the SEM image (b), which broke at the knot entrance. 

The sericin coating looks significantly damaged by friction. c) SEM image of a fiber with a Chain 

Knot with four chains visibly damaged by preparation, which caused superficial exfoliation. (d) 

SEM image of a fiber with a Chain Knot with six chains not uniformly tightened during preparation. 

Scale bars: 10 µm 

Both the Chain Knot and X-Knot evolve from the Noose and provide different 

results, depending on a different sliding mechanism which the fibre experiences 

before the knot is completely unfastened (Figure 5.7 c and d). In this context, the 

Chain Knot behaves more similar to the Noose, since the chain closer to the loop 

tends to open as the fibre ends are pulled apart, thus the fibre can slide easily 

within the loop and the knot tends to further untie (Figure 5.7 d). On the contrary, 

a part of the X-Knot tends to tie when the fibre is pulled (Figure 5.7 c). The fibre 
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appears to be turned twice, but while one turn (which is the closest to the loop) 

tends to tie as the fibre ends are pulled apart, the second one (on the opposite side) 

tends to untie. This means that the knot can always be released, but with 

significant energy dissipation, causing the fibre to be much more stressed during 

the test and toughness to be more than four times bigger than the reference (Table 

5.2). 

The influence of the number of chains on the friction potential of the Chain Knot 

are also investigated. First of all, compared to other knots, chain knots with 

multiple chains require increasing manipulation, which, on turn, could induce 

some superficial exfoliations into the knotted fibre (Figure 5.9). On the one hand, 

this could contribute in enhancing the energy dissipated by friction during 

unfastening, as the fibre surface becomes rougher, but, on the other hand, it could 

also affect the fibre fracture strength, if too much damage is introduced. From a 

quantitative point of view, these results show that the introduction of 2 chains in 

the chain knot causes about a twofold toughness increase with respect to the 

average data obtained with 4 and 6 chains, which are comparable (Table 5.2). This 

indicates that in the latter cases, the friction potential is not fully exploited, as it is 

difficult to guarantee all chains in the knot to be uniformly tightened (Figure 5.9). 

Nevertheless, in some cases, a much more significant increase of almost 400% is 

achieved, meaning that there is still room for further increase, which could be 

obtained through the implementation of a controlled and repeatable production 

process, as that used in the textile industry.  

Finally, the effectiveness of different knot topologies in enhancing the toughness 

of single silk fibres is compared. The knots considered herein are characterized by 

different design complexity, but have common features to be able to completely 

unfasten when the fibre opposite ends were pulled apart. Such condition allows 

on the one hand to not introduce any stress concentration, which could cause 

premature failure of the fibre, and on the other hand to dissipate an even 

significant amount of energy depending on the knot design. Such results are very 
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promising, since, as stated before, some of the tested knots are already known in 

the textile industry. Thus, the availability of industrial machinery able to process 

knots with high quality and repeatability could easily allow them to be 

implemented in industrial products requiring strong energy dissipation capability. 

The silk toughness could be further increased by considering longer loop to fibre 

length ratio than that of our experiments, or introducing multiple slip knots within 

the same fibre. Thus, the results presented in this study could be of help for future 

investigations, as the work proposed by Bosia et al. (Bosia et al. 2016), where they 

proposed knots inside synthetic fibres and carbon nanotubes, in order to provide 

optimizing systems with toughness modulus up to 1400 J/g. 

5.7. Supplementary information on silk tensile tests 

Supplementary Tables report the results obtained from tensile tests on both raw 

and degummed single silk fibers provided with the Noose and the Overhand Loop 

topologies. In particular, a variety of data can be found, including the strength and 

the toughness modulus (Tk) of knotted fibers, the toughness modulus of knotted 

samples computed after complete knot release (Tu’), the toughness modulus of a 

reference unknotted fiber (Tu) when Tu’ could not be clearly identified. Toughness 

modulus values are computed considering a density of 1.4 g/cm3 (Ashby 2011). 

Supplementary Tables include also the values of the mean stress reached by 

samples over 0% - 40% of their strain at break. In fact, the average stress value 

reached by knotted fibers at the beginning of tensile tests is indicative of the 

friction force and thus of the tightness quality of implemented knot. The values of 

toughness modulus reported in Table 5.1 are computed as average over those 

values corresponding to samples which reached an average friction stress above 

the threshold value of 8% of the sample strength. Samples satisfying such 

requirement are highlighted in both supplementary Table 5.3 and Table 5.5. 

Conversely, the other values of toughness modulus reported in Table 5.1 are 

computed as average over those values corresponding to samples, which reached 
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an average friction stress below the threshold. In case of the Overhand Loop, 

neither sample reaches a friction mean stress above the threshold, thus 

demonstrating its low efficiency if compared to the Noose topology.  

Material 
Sample 

number 

Strength 

[MPa] 

Friction 

stress/strength 
Tk [J/g] Tu' [J/g] Tu [J/g] 

Raw silk 1 - - - - - 

Raw silk 2 305 25.5% 67.7 - 32.6 

Raw silk 3 246 29.0% 53.1 - 19.6 

Raw silk 4 269 25.0% 52.1 23.1   

Raw silk 5 200 23.1% 37.1 - 8.5 

Raw silk 6 196 38.6% 42.5 - 8.5 

Raw silk 7 115 0.4% 3.5 2.6 - 

Raw silk 8 226 1.0% 18.8 17.4 - 

Raw silk 9 191 1.3% 22.1 20.4 - 

Raw silk 10 220 6.2% 20.3 14.2 - 

Raw silk 11 246 3.1% 25.1 21.8 - 

Raw silk 12 183 30.2% 39.4 7.7 - 

Raw silk 13 165 24.7% 27.8 7.3 - 

Raw silk 14 - - - - - 

Raw silk 15 269 5.1% 30.7 23.5 - 

Raw silk 16 244 1.4% 13.6 11.9 - 

Raw silk 17 242 4.1% 21.5 17.6 - 

Raw silk 18 268 17.0% 41.7 22.9 - 

Raw silk 19 191 6.8% 18.0 - 8.5 

Table 5.3 Raw silk fibers with single turned slip knot: Strength, average friction stress/strength over 

0% - 40% of the strain at break, toughness modulus (Tk), toughness modulus after knot unfastening 

of knotted fibers (Tu’), toughness modulus of reference unknotted samples (Tu). 

Material 
Sample 

number 

Strength 

[MPa] 

Friction 

stress/strength 
Tk [J/g] Tu' [J/g] 

Raw silk 1 235 0.1% - - 

Raw silk 2 297 0.0% 14.1 13.9 

Raw silk 3 312 0.5% 31.6 31.2 

Raw silk 4 171 0.1% 8.0 7.3 
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Raw silk 5 243 0.5% 18.7 18.3 

Raw silk 6 175 0.6% 12.4 10.6 

Raw silk 7 - - - - 

Raw silk 8 111 0.8% - - 

Raw silk 9 117 0.8% - - 

Raw silk 10 198 1.8% - - 

Raw silk 11 157 1.1% - - 

Raw silk 12 7 - - - 

Raw silk 13 236 0.9% - - 

Raw silk 14 226 0.5% - - 

Raw silk 15 212 0.5% 11.9 10.5 

Raw silk 16 219 0.4% 12.5 11.7 

Raw silk 17 267 0.2% - - 

Raw silk 18 209 0.4% - - 

Raw silk 19 273 0.4% 26.1 23.8 

Table 5.4 Raw silk fibers with double turned slip knot: Strength, average friction stress/strength 

over 0% - 40% of the strain at break, toughness modulus (Tk), toughness modulus after knot 

unfastening of knotted fibers (Tu’). 

Material 
Sample 

number 

Strength 

[MPa] 

Friction 

stress/strength 
Tk [J/g] Tu' [J/g] 

Degummed silk 1 396 13.1% 27.3 8.4 

Degummed silk 2 508 4.9% 48.0 34.4 

Degummed silk 3 - - - - 

Degummed silk 4 325 1.4% 22.8 21.6 

Degummed silk 5 675 0.6% 67.1 64.4 

Degummed silk 6 452 3.0% 24.4 16.0 

Degummed silk 7 410 9.0% 36.8 19.5 

Degummed silk 8 401 6.0% 25.3 17.2 

Degummed silk 9 - - - - 

Degummed silk 10 - - - - 

Degummed silk 11 420 7.5% 30.3 17.0 

Degummed silk 12 223 8.2% 18.8 5.8 
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Table 5.5 Degummed silk fibers with single turned slip knot: Strength, average friction 

stress/strength over 0% - 40% of the strain at break, toughness modulus (Tk), toughness modulus 

after knot unfastening of knotted fibers (Tu’). 

Material 
Sample 

number 

Strength 

[MPa] 

Friction 

stress/strength 
Tk [J/g] Tu' [J/g] 

Degummed silk 1 - - - - 

Degummed silk 2 - - - - 

Degummed silk 3 225 0.5% 5.0 3.3 

Degummed silk 4 318 0.7% 15.5 10.8 

Degummed silk 5 518 0.0% - - 

Degummed silk 6 - - - - 

Degummed silk 7 - - - - 

Degummed silk 8 - - - - 

Degummed silk 9 - - - - 

Degummed silk 10 624 0.0% 32.6 31.0 

Degummed silk 11 - - - - 

Degummed silk 12 - - - - 

Degummed silk 13 - - - - 

Degummed silk 14 455 2.2% 34.4 32.0 

Degummed silk 15 - - - - 

Degummed silk 16 243 0.4% 7.2 4.9 

Degummed silk 17 - - - - 

Degummed silk 18 370 0.6% 13.6 13.2 

Degummed silk 19 - - - - 

Degummed silk 20 489 0.4% 35.1 34.1 

Degummed silk 21 497 0.2% 57.1 56.3 

Degummed silk 22 - - - - 

Degummed silk 23 391 0.3% 22.2 21.1 

Degummed silk 24 - - - - 

Degummed silk 25 - - - - 

Degummed silk 26 - - - - 

Degummed silk 27 470 0.8% 45.1 42.9 

Degummed silk 28 696 1.2% 47.0 42.8 
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Table 5.6 Degummed silk fibers with double turned slip knot: Strength, average friction 

stress/strength over 0% - 40% of the strain at break, toughness modulus (Tk), toughness modulus 

after knot unfastening of knotted fibers (Tu’). 

Finally, some reference values of toughness modulus or strength of control raw or 

degummed single silk unknotted fibers are provided in Table 5.7 and Table 5.8, 

respectively. The average of the reported values were included in Table 5.1. 

Material 
Sample 

number 
Diameter [µm] Strength [MPa] Tu [J/g] 

Raw silk 1 21 271 32.6 

Raw silk 2 20 251 19.6 

Raw silk 3 21 179 8.5 

Raw silk 4 19 315 36.2 

Raw silk 5 22 236 27.1 

Raw silk 6 25 171 18.1 

Raw silk 7 18 231 18.1 

Raw silk 8 19 97 4.1 

 Mean 21 219 20.5 

 St. Dev. 2 68 11.1 

Table 5.7 Strength and toughness modulus of control raw silk unknotted fibers. 

Material 
Sample 

number 
Diameter [µm] 

Strength 

[MPa] 
Tu [J/g] 

Degummed silk 1 12 339 15.0 

Degummed silk 2 8 646 43.5 

Degummed silk 3 12 441 47.9 

Degummed silk 4 12 415 17.6 

Degummed silk 5 12 544 26.4 

Degummed silk 6 14 490 24.8 

Degummed silk 7 14 496 18.7 

Degummed silk 8 14 474 40.1 

 Mean 12 481 29.3 

 St. Dev. 2 91 12.8 

Table 5.8 Strength and toughness modulus of control degummed silk unknotted fibers. 
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Conclusions 

 

The overall research in this thesis is devoted to extend our current knowledge in 

tribology. The world tribology comprises several interlinked complex 

phenomena. In this work, I aimed at describing friction from an analytical and 

numerical point of view, and, at the same time, to find some challenging and 

useful applications of friction, taking inspiration from the biological world. 

Since a good understanding of all features would require a multidisciplinary 

background, I focused especially on dry friction, except for the ice friction 

modelling, in which a lubricant (i.e. water) is present.  

By developing the analytical model for 1D and 2D surface roughness (the 

Anisotropic Lattice Spring Friction Model), which and how parameters influence 

the frictional behaviour of the model are described, such as local friction 

coefficient, direction of sliding, amplitude and wavelength of the surfaces. The 

friction coefficient strongly depends on the roughness of the surfaces involved 

and on the sliding direction β. Generic 1D roughness displays higher friction 

coefficient rather than the saw tooth shape, with a variation up to 40% less, 

moving from β = 0° to 90°. By introducing 2D roughness, the results of this 

investigation highlight that symmetrical surfaces seem to be more influenced by 

their shape, rather than the direction of sliding, while with non-symmetrical 

surfaces (different wavelength in the x and y directions), the sliding direction 

affects up to 30-40% the dynamic friction coefficient when β varies from 0° to 

90°. 

Then, other effects are introduced, namely adhesion, sliding wear and hierarchical 

structures. Adhesion can be introduced by imposing that the springs governing the 

interaction at the interface can be subjected to tensile forces. This aspect causes 

an increase in both the total compression force acting on the asperities and in the 
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apparent friction coefficient. Results show that, when adhesion affects the contact 

between surfaces, a tangential force is still present even if there is no normal load. 

Wear is adopted as a process that reduces the friction coefficient in time and 

smooths the asperities. The effect is more evident if the sliding is along the profile 

with sharper roughness (e.g. β equal to 0 for 1D roughness). If hierarchical self-

similar levels are present, they contribute in enhancing the friction coefficient in 

a non-linear way. The effect of wear in the presence of hierarchical surfaces, 

provides the model with the prediction of the friction coefficient, which decreases 

in time due to sliding wear. 

A particular case of lubricated friction is studied, dealing with the tribological 

behaviour of ice. Three different degrees of random roughness are introduced on 

stainless-steel surface pins, one comparable to the roughness of the ice and the 

other two one order of magnitude higher. Both the temperature of the system and 

the sliding velocity vary in a wide range.  

It is shown that surface morphology influences the tribological regime of the 

system. In the boundary regime the higher the roughness, the higher the coefficient 

of friction. By increasing the sliding velocity (and thus the thickness of the water 

layer on the interface), the role of the interlocking asperity contacts becomes less 

relevant and the roughness has a lower influence on the coefficient of friction. 

The experimental results are explained by applying the 1D-ASLFM that includes 

roughness and describes the local coefficient of friction in terms of shear stress of 

the water originated from the melting of ice at the interface. The only unknown 

parameter, the real contact area, is estimated both from the fits and through the 

bearing-ratio curve and the roughness parameters of the steel surfaces. The good 

fits between the model and the experimental data obtained with the two rougher 

sliders confirm the validity of both the model and the physical hypotheses about 

the mechanism of sliding friction on ice. The tribological behaviour of pin #1, 

characterized by the smoothest roughness, is proved to belong to the boundary 
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regime rather than the mixed regime. For this reason, the model can not describe 

its friction and estimate the contact length.  

Referring to tribological tests, five various surface pattern configurations are 

studied. They have been realised from direct copy of silicon substrate with micro 

pillars on the surface, resulting in micro holes on PDMS surface samples. Results 

show how surface patterns influence the frictional behaviour. This is partly due to 

a decrease in the real contact area of textured samples although other aspects may 

contribute to this trend, including stress concentrations around surface features or 

the effect of adhesion, which has a higher influence at lower loads, especially on 

the surfaces with higher texture density. Thus, experiments are combined with a 

numerical study and results show both good repeatability and consistency. 

Anisotropic patterns generated a variation of friction forces of up to 300% 

depending on the sliding direction in the plane, thus producing directionally tuned 

friction. 

Finally, how friction can be used to increase the toughness of one-dimensional 

elements, thanks to slip knots on single silkworm silk fibres is presented. This 

study demonstrates that, under optimized conditions, a slip knot introduced within 

the fibre can increase its energy dissipation capability, without causing significant 

damage to the fibre and avoiding significant stress concentration at the knot 

entrance. Four different topologies are considered and two opposite unfasten 

mechanisms. Although both mechanisms allow the fibre to slide within their loop, 

thus promoting energy dissipation, the Noose and the X-knot provided the best 

results, with respectively more than three times and four times toughness 

enhancement compared to a reference unknotted sample. 

 

To summarize, the Anisotropic Lattice Spring Friction Model, thanks to its 

versatility, appears to be highly adaptable to various situations, even to the ice 

friction, opening further developments of application in other tribological systems. 

The presence of hierarchy shows that surfaces with hierarchical self-affine 
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structures can be seen as a smart way to increase the friction coefficient. The 

experimental parts provide new insights on friction and how to tune tribological 

properties of materials. 

The results of this thesis justify future developments from both experimental and 

numerical points of view. Experiments on controlled rough surfaces will be 

realized to validate the model. Moreover, new features will be introduced inside 

the numerical formulation, such as random roughness and static friction force, 

overcoming the limits due to periodic and derivable surfaces. 
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Appendix 
In the following pages, an additional related work is reported, thanks to the 

collaboration with the University of Perugia. In particular, we focused on the 

tribological part reported in (Valentini et al. 2016). 

A. Synergistic effect of graphene nanoplatelets 

and carbon black in multifunctional EPDM 

nanocomposites 

Rubber is commonly considered the workhorse of the industrial and automotive 

products because of its good mechanical properties and its relatively low cost; 

finished products are found in the market place as compression moulded products. 

The physical and chemical resistance properties of rubber materials are 

determined by the addition of carbon black (CB) that historically has been utilized 

to reinforce rubber matrices [1,2].  

However, since the main factors that affect the composite properties are the 

particle size and the mode of interactions with the matrix materials, single filler 

does not generally match the structural and functional requirements of rubber 

composites [3-7]. There are different types of carbon fillers (e.g., exfoliated 

graphite, carbon nanotubes and carbon fibres) and each type has its peculiar 

characteristic. For example, the percolation threshold of nanotubes is very low 

because of their high aspect ratio and it was found that the partial replacement of 

CB with carbon nanotubes leads to a much lower percolation threshold than that 

of the composite obtained with single filler and to a synergetic effect on the 

composite properties [8,9]; on the other hand the high cost hinders their large scale 

application. Exfoliated graphite is cheap and recently it was used as potential 

material for replacing CB for reinforcement of styrene-butadiene rubber. Its main 



Alice Berardo – A Numerical and Experimental Study on the Friction of Complex Surfaces 

178 

 

drawback is the percolation threshold that is usually high and detrimental for the 

mechanical properties.  

Thus, the use of a combination of different carbon fillers would be a good way to 

get balanced properties and cost. A model for predicting the synergy between 

electrical conducting nanofillers, assumed immiscible, was applied for the optimal 

design of real nanocomposites [11]. Ma et al. [12] showed that the addition of 

carbon nanotubes into CB polymer composites enhanced the electric conductivity 

of the polymer matrix [12] with a low percolation threshold of about 0.4 wt.%. 

The combination of two or more carbon fillers was demonstrated to improve also 

the thermal performance of the composite due to the synergistic effect [13-14]. 

Recently, Yang et al. [15] studied the effects of substituting CB with graphene 

oxide/CB and reduced graphene oxide/CB hybrid fillers on the structure and 

properties of natural rubber composites.  

Carbon fillers with different aspect ratio and sizes can be mixed with a host 

polymer matrix showing evidences of exfoliation and shortening of the particle 

size during mixing process even with expanded graphite. That suggests that 

simple mechanical milling can facilitate the exfoliation of the graphite layers into 

smaller dimension. Das et al. [16] reported a TEM and X-ray diffraction study of 

styrene butadiene rubber composites showing that the dispersion/exfoliation of 

the stacked graphene sheets into individual single sheets was facilitated by the 

presence of carbon black in the system. The existence of few-layer graphene 

sheets was attributed to a complex morphology arisen from filler –filler network 

interaction. The same authors [17] reported another study on solution styrene 

butadiene rubber composites reinforced with graphene nanoplatelets, expanded 

graphite, and multiwall carbon nanotubes. It was found that the high aspect ratio 

of carbon nanotubes enabled to form a network at low filler loading, leading  to a 

good reinforcement effect.  

Similarly to these previous attempts, Hu et al. [18] report a simple and effective 

way to disperse carbon nanotubes and graphene in silicone rubber and more 
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recently Li et al. [19] demonstrated toughening natural rubber by designing a 

compact hybrid filler network composed of graphene and carbon nanotubes. 

In addition to graphene oxide, multi-layer graphene platelets also exhibit unique 

and useful behaviours. Multi-layer graphene, herein referred to as graphite 

nanoplatelets (GNPs) contains essentially no oxygen (<1% by weight of oxygen). 

Graphite nanoplatelets (GNPs) are obtained from graphite expansion that 

determines the platelet thickness [20,21]. With this method, 2D graphite materials 

consisting of hundreds of stacked graphene layers and named graphite 

nanoplatelets with ABA or ABCA stacking, and with a thickness and/or lateral 

dimension less than 100 nm are obtained. 

The 2D nanoscale dimension of GNPs is a huge benefit in relation to the large 

conventional 3D fillers [22]. Those graphitic inclusions are characterized by far 

better shape factor, larger contact surface and higher mechanical strength. At the 

same time GNPs tend to aggregate and are difficult to disperse in polymer 

matrices due to the strong van der Waals attraction between the sheets and their 

high surface area, the synergy among the hybrid fillers comprising of graphite 

intercalation compounds, mainly GNPs, and CB could lead to the development of 

graphite-based elastomer composites exhibiting exceptional mechanical and 

thermal properties.  

It is known that rubbers or elastomers generally have a low thermal conductivity. 

Consequently, when such materials are used as packaging for electronic circuit, 

they store the generated heat that in turn raises the temperature of the device itself, 

thereby promoting heat deterioration of the electronic component. To achieve this 

goal, the heat conduction capability of a rubber may be improved by compounding 

a rubber with a filler having a heat conductivity higher than that of the rubber. 

High filler loadings (>30 vol.%) or traditional metallic materials were typically 

necessary to develop functional elastomers with appropriate level of thermal 

conductivity [23,24]. The employment of high filler loading makes difficult the 

processing, such as possibility to be extruded and injection moulded, while 
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traditional metallic materials with the highest thermal conductivity are too heavy 

and subjected to corrosion. Moreover, the reinforcing capacity is deteriorated after 

some certain value of filler amount. When a dramatic increase in properties, such 

as mechanical and thermal properties can be achieved when two different fillers 

both with saturate amount are added in rubber matrix synchronously, this is 

suggestive of synergistic effect.  

In this work a part of carbon black with graphite nanoplatelets was replaced to 

produce ethylene-propylene diene terpolymer rubber (EPDM) based 

nanocomposites; a proper combination of graphite nanoplatelets lead to 

synergistic effect in improving the thermal conductivity, damping and mechanical 

properties of the nanocomposites. The effects of substituting GNPs for CB on the 

thermal, damping and mechanical properties of rubber/CB composites was 

studied and rationalized in terms of a mixture model.  

A.1. Experimental details 

Ethylene-propylene diene terpolymer rubber (EPDM) was kindly supplied by 

Exxon Mobil Chemical under the trade name Vistalon 7500 (ethylene content: 

56.0 wt.% and 5-ethylidene-2-norbornene (ENB) content: 5.7 wt.%). Carbon 

black was kindly supplied by Cabot, S.A. under the trade name Vulcan 3-N330 

(diameter 225 nm with a surface area of 77 m2/g) and a paraffinic oil kindly 

supplied by Nynas, Nyflex 820 was used as plasticizer. Graphite nanoplatelets, an 

intermediate grade between graphene and graphite, which can neither be 

considered pure graphene nor graphite were purchased from Cheaptubes. 

Rubber compounds were prepared in an open two-roll mill at room temperature. 

The rotors operated at a speed ratio of 1:1.4. The vulcanization ingredients were 

sequentially added to the elastomer before  to the incorporation of the filler and 

sulphur. The recipes of the compounds are described in Table A.1. Vulcanizing 

conditions (temperature and time) were previously determined by a Monsanto 

Moving Die Rheometer MDR 2000E. Rubber compounds were then vulcanized 
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at 160 ºC in a thermofluid heated press. The vulcanization time of the samples 

corresponds to the optimum cure time t90 derived from the curing curves of the 

MDR 2000E. Specimens were mechanically cut out from the vulcanized plaques. 

Field emission scanning microscopy (FESEM) was used to investigate the cross 

section of the samples.  

Ingredient EPDM

-1 

(0/0) 

EPDM

-2 

(2/0) 

EPDM

-3 

(5/0) 

EPD

M-4 

(10/0) 

EPDM

-5 

(0/48) 

EPDM

-6 

(2/24) 

EPDM

-7 

(5/48) 

EPDM 

Vistalon 7500 

100 100 100 100 100 100 100 

Paraffinic oil 80 80 80 80 80 80 80 

Zinc oxide 5 5 5 5 5 5 5 

Stearic acid 1 1 1 1 1 1 1 

TMTD 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

Sulphur 3 3 3 3 3 3 3 

Carbon black --- --- --- --- 190 95 190 

Graphite 

Nanoplatelets 

--- 10 20 50 --- 10 20 

Table A.1 Recipes of the rubber compounds (indicated in phr: parts per hundred of rubber). The 

%weight content of GNPs/CB is reported below the name of each sample. 

Tensile stress–strain properties were measured according to ISO 37–1977 

specifications, on an Instron dynamometer (Model 4301), at 25 ºC at a crosshead 

speed of 500 mm*min−1. At least five specimens of each sample were tested.  

X-ray diffraction (XRD) experiments were conducted with an XRD 

diffractometer (Bruker) with a radiation source of Cu Kα and wavelength = 0.154 
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nm operating at 40 kV and 40 mA. The incidence angle (2θ) was fixed between 

1° and 60° and the scan rate was 0.02°/s. Raman measurements were performed 

with Labram Raman spectroscopy (Horiba, Jobin-Yvon spectrometer) with a 

wavelength of 632.8 nm. 

A ball-on-disk tribometer was used to determine the dynamic friction of 

coefficient of the composites. The samples were cut in order to have a squared 

base with different measures, from 8x8 mm2 to 15x15 mm2 (average values), 

depending on the given materials. They were fixed in the tribometer and the 

antagonist material we chose was steel (100Cr6), a sphere of 6 mm diameter in 

order to have a single contact point between the rubber and the steel.  No lubricants 

were  used. The sliding velocity was  set  at  0.01  m/s  and  the normal load varied 

from 0.05 N (softer samples) to 0.1 N (harder samples). For each  sample  from 

three to five measurements were realized. 

The method used to measure the static friction coefficient is based on the Coulomb 

theory of friction. Each sample was positioned on a plate and fixed on it. After, a 

weight is put on the sample. The plate was then tilted until the stable configuration 

was overwhelmed and the weight slides on the rubber surface. The final 

configuration is tilted by a certain angle with respect to the initial position of the 

plate and corresponds to the  transition  from  a  stable  state  (static  equilibrium)  

to  an  unstable one (incipient movement). The tangent of that angle corresponds 

to the ratio between the tangential force and the normal applied load (the weight). 

Five measures per sample were performed. 

The damping properties were tested through a vibration generated via a pneumatic 

percussion system hitting a metallic plate. The impact area is a metallic plate 

where the sample to be tested has been fastened to. The sample was hit by a 

percussion which excites the vibration. A shock accelerometer positioned in the 

back plate is thus excited and the response is recorded and digitalized via high 

performance data acquisition system. The impact velocity was set to 8m/s 
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resulting in an impact energy of 58 J. Three tests were repeated on each sample; 

the experimental error was estimated below 1%. 

Thermal conductivity measurements follow the “two thermometer-one heater” 

method using a custom built stage. Two PT100 thermocouples, contacted to the 

surfaces of a 13*40 mm2 rectangular shape and 14 mm thick sample, monitor the 

temperature of two polished oxygen-free sample sides. A 3,4 Ohm resistor heats 

the top plate (13*40 mm2 surface, 14 mm thick) to a temperature THot . Heat flows 

from the top plate, through the sample, and into the bottom plate which is 

thermally grounded to TCold (i. e. 20°C) by the cold plate. Thermally conducting 

grease was used to enhance the thermal contact to the bottom of the sample.  

The microstructure of the samples was investigated by micro tomography (micro-

CT) using a Carl Zeiss Xradia Versa-410 3D X-ray microscope. The scan was 

performed over a 360° rotation using 1600 projections, 80 KV voltage, 7 W 

power, 80 sec exposure time, and 20x objective lens. The resulting nominal voxel 

(volumetric pixel) size was 0.36 micron and the total scan time was ~38 hours for 

each scan. Reconstruction of the attenuation data was performed using filtered 

back- projection, producing a stack of 967 cross-sectional, grey-scale digital 

images. The different components and their distributions have been analysed by 

segmenting regions of a given range of grayscale values from the rest of the image 

by using the XM3D viewer and Fiji software. 

A.2. Results and discussion 

Raman spectroscopy has been carried out to elucidate the Raman characteristics 

of 2D graphite material used in this work, such as differentiating few-layer and 

multi-layer from bulk graphite [25] and detecting structural defects [26]. The main 

features in Raman spectra reported in Figure A.1 a are the G and D bands and the 

second order of the D band, so-called 2D band. The G band, standing at around 

1580 cm-1, corresponds to in-plane carbon-atom stretching vibrations [26].  The 

positions of the D and 2D band are excitation-energy dependent and occur at 
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around 1329 cm-1 and 2663 cm-1, respectively (Figure A.1 a). The D band is 

activated by the presence of defects [26]. After characterizations of a large number 

of AB-stacked few-layer graphene samples during the past years [27], the FWHM 

of 2D band (Figure A.1 b) unambiguously is associated to the graphite layer 

number. The typical FWHM of 2D peaks plotted in Figure A.1 b is consistent with 

five-layer graphitic material and thus with graphite nanoplatelets 2D materials 

with AB stacking, and having a thickness and/or lateral dimension less than 100 

nm [27]. 

  

Figure A.1 a) Raman spectra of GNPs. b) The data of FWHM with respect to 2D peak positions. 

Graphite nanoplatelets have attracted considerable attention in nanocomposites, 

thanks to the excellent in-plane mechanical and thermal properties of graphite. 

The stress-strain characteristics of the prepared nanocomposites are presented in 

Figure A.2 a and the tensile properties given in terms of the modulus at different 

strains (50%, 100% and 300%), maximum strength and elongation at break are 

reported in Figure A.2 b and Figure A.3, respectively. It is known that carbon 

blacks or silica when added to elastomers create a modulus that increases with 

strain. This non-linearity protects rubber from damage during large deformations 

[28]. Pristine GNPs provide enhanced non-linear strength to elastomers. The 

interface is similar to that of carbon black, the flexibility of the GNPs enables 

deformation at low strains and strengthening at higher deformations. As expected, 

the addition of the fillers to the EPDM matrix gives rise to an increase in the 

stiffness of the material which is reflected in an improvement of the modulus at 

a) b) 
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different strains (Figure A.2). The elongation at break, as an indicator for the 

toughness of the materials, decreases when adding GNPs to the EPDM/CB blend 

(Figure A.3) (i. e. EPDM-7 sample). The synergistic effect of CB and GNPs is 

evident in the sample EPDM-6 (i. e. 2 wt.% of GNPs and 24wt.% of CB) that 

showed a higher increment of the maximum strength (Figure A.2) along with a 

higher elongation at break with respect to the EPDM/CB blends (Figure A.3). 

  

Figure A.2 (a) Stress-strain curves of the prepared samples. (b) Modulus at different strains and 

maximum strength of the prepared samples. 

For a system containing two types of fillers such as GNPs and CB, our results can 

be rationalized in terms of the following mixture model: 

σ= σm(1-fGNPs -fCB)+σGNPsfGNPs + σCBfCB 

where σ is again the composite strength, σm is the matrix strength, σGNPs is the GNP 

strength, σCB is the CB strength and fGNPs and fCB are the GNPs and CB 

concentrations, respectively.  

Assuming σGNPs= 800 MPa [29], σCB ~14MPa (obtained by using the rule of 

mixture for CB single phase σ≅σm(1-0.48)+0.48σCB) and fGNPs and fCB the 

concentrations for obtaining the maximum of the mechanical resistance, the model 

predict for the composite a mechanical strength of about 25MPa that is in good 

agreement with that obtained experimentally (i.e. ~20MPa). For a single phase 

inclusion, if an ideal dispersion, thus without agglomeration, is considered, the 

a) 

b) 
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composite mechanical resistance would depend linearly on the percentage of the 

phase itself, thus an increment of f would cause an increment also in the 

mechanical resistance (assuming the strength of the inclusion much larger than 

that of the matrix). This is not true if the agglomeration of the phase takes place. 

In the model for two immiscible phases, the synergy can be understood as a 

retardation of the agglomeration towards higher total concentration as reported 

below.  

 

Figure A.3 Elongation at break of the prepared samples. 

 

The dynamic friction coefficients of the samples were estimated accordingly to 

the Herzian analysis for a smooth sphere in contact with a smooth flat surface, 

where the radius of contact circle expressed as a=[3LR/4E]^1/3, where L is the 

applied load, R is the sphere radius and E is the elastic modulus of the softer 

material (i.e. rubber). In the present case, the only parameter varied was the load, 

thus accordingly to the mechanical properties, it was decreased for the softer 

composite samples containing a GNP/CB ratio of 2/0, 5/0 and 10/0, respectively. 

The final values are shown in Figure A.4. For composites with a GNP/CB ratio of 

5/0, 10/0 and 2/24 values major than 1 were obtained and in literature for 

particular combinations of rubbers similar results were found (i. e. rubber-steel 

contact) [30-34]. It was also reported that the dynamic friction coefficient depends 



Appendix - Synergistic effect of graphene nanoplatelets and carbon black in multifunctional 

EPDM nanocomposites 

 

187 

 

on the sliding velocity, it increases if the velocity increases, but becomes almost 

stable for velocities around 0.01 m/s [30-34].  

The static coefficient of friction of the samples was estimated by putting a weight 

made of steel (0.7 g) on the rubber samples and tilting the plate, until the incipient 

sliding was reached. The dynamic and static coefficients of friction are not 

comparable due to the different type of steel used as counterpart as well as the 

different type of setup adopted for dynamic and static tests. The addition of GNPs 

to the EPDM/CB blend reduces the static coefficient of friction while the partial 

substitution of CB with GNPs did not affect the grip of the EPDM/CB sample 

surfaces.  

 

Figure A.4 Dynamic and static coefficient of friction measured of the prepared samples. 

Figure A.5 reports the peak acceleration measured in the impact excitation test. 

The damping of the sample can be qualitatively estimated by the peak 

acceleration. No data were recorded on neat EPDM due to the cracking of the 

samples even at lower impact velocity. It is evident how in the composites, the 

impact performances depend on the elongation at break; in particular, the higher 

stiffness of the composites with CB shows a scarce damping properties. The 

obtained results can be explained with the increase in the modulus at different 

strain along with the reduction of elongation when the GNPs were added. The 

addition of 5wt.% of GNPs in the 48 wt.% CB filled matrix deteriorates the 
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damping properties. The partial substitution of CB in the sample with 2 wt.% of 

GNPs and 24 wt.% of CB showed the best shock absorbing performance with a 

lower variation of the acceleration peak after the impact.   

  

Figure A.5 Set-up of the impact test. The impact area is a metallic plate where the sample to be 

tested has been fastened to. The sample was hit by a percussion which excites the vibration. A shock 

accelerometer positioned in the back plate is thus excited and the response is recorded and 

digitalized via high performance data acquisition system. b) Peak acceleration measured by the 

accelerometer in the impact test of the prepared samples. 

Figure A.6 a shows the experimental set up for the thermal conductivity 

measurements. The in-plane thermal conductivity was measured through a 

rectangular shaped (1.5cm wide, 1.4 mm high, 4cm long) specimen, as shown in 

Figure 5a.  

The in-plane thermal conductivity test method was used with the goal to conduct 

heat only by conduction through the solid sample.  

A Mylar cap around the cold plate fixed at TCold and a high vacuum 10-5 Torr  

reduce thermal losses due to radiation and convection, respectively.  When the 

sample is powered, the generated heat flows through the sample from the sample 

heater to the cold plate. Heat is generated in the sample from electrical resistance 

heating of the sample heater. 

a) b) 
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Figure A.6 (a) Set up of the thermal conductivity measurements. (b) Thermal conductivity values as 

a function of the GNPs/CB content. 

a) 

b) 

Heater 

Thermocouple 1 

Thermocouple 2 

Cold Plate 
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Thus, heat is equal to the power dissipated by the resistor (V*I). Figure A.6 a 

illustrates this set up. The thermal conductivity of the specimen is determined by 

[35]  λ=(V*I/d/where λ is the thermal conductivity of the specimen being 

tested; V is the voltage drop across the sample heater resistor; I is the current 

through the sample heater resistor;   is the temperature difference across the 

specimen; d is the distance between the two junctions of the thermocouples; and 

A is the cross-sectional area of the specimen (specimen width*specimen height). 

Such in-plane thermal conductivity test method is based on the steady state 

method (see inset of Figure A.6 a). 

  

Figure A.7 X-ray diffraction patterns of (a) EPDM nanocomposites with different GNPs/CB content 

and (b) CB, GNPs and neat EPDM. 

In analogy with electrical conductivity, the thermal conductivity of polymers 

filled with conducting nanoparticles derives from the formation of a percolation 

network of the fillers in the matrix [36]. The increasing of the conductive paths 

enhances the composite thermal conductivity. As for the CB filler alone EPDM-5 

(i. e. 48 wt.% CB), the conductive network is formed due to the contact between 

GNPs and CB. For the sample EPDM-6 (i. e. 2 wt.% GNPs and 24 wt.% CB) 

when GNPs are added into the CB composite, GNP particles act as spacers 

between the CB agglomerates, which leads to the formation of linked conductive 

paths (Figures 6b). As proof of this statement, XRD, FESEM and MCT analyses 

were performed. 

a) b) 

a) b) 
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Figure A.8 FESEM images of the a) EPDM-6 and b) EPDM-7 samples. The arrows in Figure A.6 

a) shows the CB agglomerates on a GNP sheet. The scale bars indicate 1 m. 

XRD experiments on GNPs and CB related rubber composites are reported in 

Figure A.7 a. All XRD spectra present a broad region at 2θ = 14°-20° due to the 

EPDM polymer reported in Figure A.7 b [37].  

Figure A.7 b shows the X-ray diffractogram recorded for the pristine carbon black; 

the spectrum reveals a peak at about 2θ=24.6°, which is the d(002) 3.72Å lattice 

spacing of the graphite layers [38,39]. XRD pattern of the EPDM-5 (i. e. 48 wt.% 

CB) with CB filler alone, reveals that the EPDM region is followed by a distinct 

crystalline region at 2θ = 26.5°. This results is in agreement with a previous study 

reported in ref. [40], stating that carbon black aggregates tend to concentrate in 

amorphous regions of the polymer matrix; the peak at 2θ of about 32° corresponds 

to (100) lattice plane of the hexagonal wurtzite structure of zinc oxide (ZnO) [41].  

XRD pattern of  EPDM-3 (i. e. 5 wt.% GNPs) shows three significant peaks at 2θ 

of about 32°, 34° and 36° corresponding to (100), (001) and (101) lattice planes 

of the hexagonal wurtzite structure of zinc oxide (ZnO), respectively [41].  By 

comparison with the XRD pattern of pristine graphite nanoplatelets reported in 

Figure A.7 b, it is evident that the peak at about 26.3° is due to the GNPs. The 

diffraction peak at about 11,7° is attributed to the intrinsic diffraction of oxidized 

graphite, as confirmed by the XRD pattern of oxidized graphite reported 
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elsewhere [42] and indicated by Raman measurement that there are substantial 

defects on graphite plane prone to be oxidized during the vulcanization process. 

 

Figure A.9 a) Total cylindrical volume of the EPDM-6 sample (348 micron in diameter and 360 

micron in height); b) and c) Detail of segmented CT images showing the distribution of the graphite 

nanoplatelets and carbon black aggregates, respectively (scale bar is 50 microns). d) Detail of 

segmented CT images showing the whole distribution of the graphite nanoplatelets (in red) and 

carbon black aggregates (in blue indicated by the arrows) (scale bar is 50 microns). 

D 
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Accordingly to Wei et al. [36], our FESEM analysis reported in Figure A.8 a 

shows small CB agglomerates attached on the surface and edge of the GNPs. On 

the other hand, increasing the GNPs content into the sample with the highest CB 

concentration (i. e. 5 wt.% GNPs and 48 wt.% CB) contribute to the increase in 

the CB agglomeration resulting in a decrease of both impact properties and 

thermal conductivity (Figures 6b and 8b). 

Figure A.9 shows the results of micro-CT analyses for the sample EPDM-6 (i. e. 

2 wt.% GNPs and 24 wt.% CB). The raw data acquired by the X-ray microscope 

have been processed using tomographic reconstruction, producing a stack of 967 

cross-sectional, grey-scale digital images. The total cylindrical volume of the 

analysed sample has 348 microns in diameter and 360 microns in height (Figure 

A.9 a). As the grey level value in 3D image is related to the X-ray absorption of 

the material, the concentrated CB agglomerates are shown in lighter grey to white 

colour, while GNPs due to its flat shape is shown in darker grey colour.  

Image analysis techniques have been applied in order to segment the 3D imaged 

data and separate the different materials by their grey level value. Segmented CT 

images reported in Figures 9a and 9b, show that both GNPs and CB are uniformly 

dispersed within the polymer matrix. Particularly CB forms aggregates (Figure 

A.9 d) mostly on the surface of the graphite nanoplatelets linking the gap distance 

between the GNPs resulting in the formation of additional conductive paths and 

increasing the interface resistance in the hybrid composite. 

A.3. Conclusions 

In this paper we adopt a processing technology to develop elastomer plus nano-

graphite hybrid composites with multifunctional properties. Beyond the 

improvements of the mechanical properties, the research findings demonstrate the 

synergistic effect of carbon black and graphite nanoplatelets to prepare rubber 

composites thermally conductive and to design a new class of shock absorbers. It 

was found that a critical GNPs/CB ratio was able to reduce the strong interlayer 
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forces among the GNPs sheets, which led to the efficiency on reinforcement in 

mechanical properties and improvements of the performance of the rubber 

composites.  
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Whenever two bodies are in contact due to a normal load and one is sliding 
against the other, a tangential force arises, opposed to the motion. This force 
is called friction force, and involves different mechanisms, such as asperity 
interactions, energy dissipation, chemical and physical alterations of the 
surface topography and wear. The friction coefficient is defined as the ratio 
between the friction force and the applied normal load. Despite this 
apparently simple definition, friction appears to be a very complex 
phenomenon, which also involves several aspects at both the micro- and 
nano-scale, including adhesion and phase transformation. Moreover, it plays a 
key role in a variety of systems, and must be either enhanced (e.g. for 
locomotion) or minimized (e.g. in bearings), depending on the application.
Considering friction as a multiscale problem, an analytical model has been 
proposed, starting from the literature, to describe friction in the presence of 
anisotropy, adhesion and wear between surfaces with hierarchical structures, 
e.g. self-similar. This model has been implemented in a MATLAB code for the 
design of the tribological properties of hierarchical surfaces and has been 
applied to study the ice friction, comparing analytical predictions with 
experimental tests.
Furthermore, particular isotropic or anisotropic surface morphologies (e.g., 
microholes of different shapes and sizes) has been investigated for their 
influence to the static and dynamic friction coefficients with respect to a flat 
counterpart. In particular, it has been proved that the presence of grooves on 
surfaces could decrease the friction coefficients and thus reduce wear and 
energy dissipation. Experimental tests were performed with a setup realized 
ad hoc and the results were compared with full numerical simulations.
If patterned surfaces showed that they can reduce sliding friction, other 
applications could require an increase in energy dissipation, e.g. to enhance 
toughness of microfibers. Specifically, the applied method consists of 
introducing sliding frictional elements (sliding knots) in biological (silkworm 
silk, natural or degummed) and synthetic fibers, reproducing the concept of 
molecules, where the sacrificial bonds provide higher toughness to the 
molecular backbone, with a hidden length, which occurs after their breakage. 
A variety of slip knot topologies with different unfastening mechanisms have 
been investigated, including even complex knots usually adopted in textile 
industry. The knots were made by manipulation of fibers with tweezers and 
the resulting knotted fibers were characterized through nanotensile tests to 
obtain their stress-strain curve until failure. The presence of sliding knots 
strongly increase the dissipated energy per unit mass, without compromising 
the structural integrity of the fiber itself.
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