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Abstract 

In this PhD project, novel polymer nanocomposites are developed with the aim 

to increase the performances of 3D-printed parts obtained by fused deposition 

modeling (FDM). The attention is focused on carbon-based nanomaterials 

incorporated into an acrylonitrile–butadiene–styrene (ABS) polymer by a solvent-free 

process. ABS-based nanocomposites were prepared by incorporating different kinds 

and amounts of graphene nanoplatelets (GNP), carbon nanotubes (CNT) and hybrid 

(GNP/CNT) systems. In order to understand the effect of the manufacturing process 

on the material’s properties, the samples were produced into two different processing 

routes: (i) melt compounding and compression molding, and (ii) melt compounding, 

following by filament extrusion, and fused deposition modelling (FDM). Several 

characterization techniques were employed in order to evaluate the flowablity, 

morphology, mechanical and functional properties of the materials. 

In the first part of work, ABS-graphene nanocomposites are described. Two 

ABS matrices having different viscosity were compared with the addition of various 

types of commercial graphene nanoplatelets (xGnP® M5, C300, C500, and C750 by 

XG Sciences) in the range 2-8 wt%. The better processability and higher stiffening 

effect on compression molded plates were achieved by utilizing the low viscosity ABS. 

The effects of GNPs on the thermal, electromagnetic shielding (EMI SE), electrical and 

mechanical behaviour of an ABS matrix were investigated. Melt flow index (MFI) 

values almost linearly decreased with all the type of GNP, especially with the highest 

surface area nanofiller (GNP-C750). Due to large size of graphene, nanocomposites 

filled with GNP-M5 showed the better properties of in electromagnetic interference 

shielding efficiency (EMI SE) and stiffness. Consequently, GNP-M5 were selected and 

incorporated at 4 wt% in ABS filaments used to feed a FDM machine to obtain 

specimens with various build orientations. The elastic modulus and dynamic storage 

moduli of 3D printed parts along three different build orientations were increased by 

the presence of GNP-M5 in the ABS matrix. At the same time, a decrease in both 

strength and strain at break was observed when GNP-M5 is added to ABS. Moreover, 

higher thermal stability was induced on 3D printed parts by GNP, as indicated by a 

reduction in both coefficient of linear thermal expansion and creep compliance. A 

comparison between 3D printed and compression molded parts highlighted the 

importance of the orientation effects induced by the FDM process. 

In the second part of work, the results of the investigation on ABS-carbon 

nanotubes nanocomposites are reported. ABS-CNT nanocomposites plate production 

by compression molding and their characterization was a preliminary step. 

Nanocomposite ABS/CNT filaments at 1-8 wt % were obtained by using direct melt 

compounding and extrusion. The optimal CNT content in the filaments for FDM was 

found to be 6 wt %; for this composite, a detailed investigation of the thermal, 

mechanical and electrical properties was performed. The presence of CNT in ABS 
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filaments and 3D-printed parts resulted in a significant enhancement of the tensile 

modulus and strength, accompanied by a reduction of the elongation at break. As 

documented by dynamic mechanical thermal analysis, the stiffening effect of CNT in 

ABS is particularly pronounced at high temperatures. Besides, the presence of CNT 

in 3D-printed parts accounts for better creep and thermal dimensional stabilities of 3D-

printed parts, accompanied by a reduction of the coefficient of thermal expansion. 3D-

printed nanocomposite samples with 6 wt% of CNT exhibited a good electrical 

conductivity, even if lower than pristine composite filaments. In addition, the strain 

sensing capabilities of the conducting 3D-printed samples with 6 wt% of CNT with two 

different infill patterns (HC, and H45) were studied. Upon the strain applied, the 

resistance change and damage in the conductive FDM parts were detectable. Fatigue 

and creep loading on FDM products were also carried out. 

In last part of work, ABS-GNP-CNT hybrid nanocomposites are described. ABS 

nanocomposites plates with addition GNP-M5 and CNT at 2-8 wt% were compared. A 

significant higher reduction in MFI value by the addition of CNT compared to GNP was 

observed. The ABS/GNP nanocomposites showed the slightly higher stiffness and the 

creep stability compared to the ABS/CNT nanocomposites, but showed the lower 

tensile strength. Also, the ABS/CNT samples showed significant higher electrical 

properties in comparison to ABS/GNP. The total nanofiller content of CNT/GNP hybrid 

plates was fixed at 6 wt%. The hybrid nanocomposites showed a linear increase in 

modulus and strength as a function to CNT/M5 ratio. Moreover, conductive hybrid 

nanocomposite plates were obtained by the addition of CNT. The composition of 50:50 

of CNT/GNP at 6 wt% was selected for FDM process due to the good compromise 

between processability and properties (e.g. mechanical and electrical). In agreement 

with electrical resistivity, EMI SE of 6 wt% ABS/CNT and 50:50 hybrid ABS 

nanocomposites resulted to be -46 dB and -31.7 dB for plate samples. EMI SE of FDM 

parts is about for -14 dB HC and H45 build orientation and –25 dB for PC build 

orientation printing from ABS/CNT nanocomposites, while parts had EMI SE about -

12 dB for HC and H45 and -16 dB for PC from hybrid nanocomposites. 

  



VII 

Table of contents 

Abstract ...................................................................................................................... V 
Table of contents ..................................................................................................... VII 
List of Figures .......................................................................................................... XII 
List of Tables ......................................................................................................... XXI 
List of abbreviation and acronyms ..................................................................... XXV 
Chapter I ..................................................................................................................... 1 
Introduction ................................................................................................................ 1 
Chapter II .................................................................................................................... 3 
Background ................................................................................................................ 3 

2.1 Additive manufacturing (AM) ......................................................................... 3 

2.1.1 Main phases of an AM process .................................................................. 3 
2.1.2 Types of AM processes .............................................................................. 4 

2.2 Fused deposition modelling .......................................................................... 7 

2.2.1 Filament production by extrusion ............................................................... 8 
2.2.2 FDM materials ............................................................................................ 9 
2.2.3 FDM processing parameters .................................................................... 10 
2.2.4 Limitations and processing problems of FDM .......................................... 12 

2.3 Polymer nanocomposites ............................................................................ 13 

2.3.1 Graphene-based nanocomposites ........................................................... 16 

2.3.1.1 Graphene nanoplatelets ................................................................ 16 
2.3.1.2 Properties of graphene-based polymer nanocomposites .............. 17 

2.3.2 Carbon nanotubes based nanocomposites ............................................. 18 

2.3.2.1 Carbon nanotubes ......................................................................... 18 
2.3.2.2 Properties of CNT-based polymer nanocomposites ...................... 20 

2.4 Development of composites for FDM ......................................................... 23 

2.4.1 FDM composites with enhanced mechanical properties ......................... 23 
2.4.2 FDM composites with enhanced functional properties ............................ 25 

Chapter III ................................................................................................................. 28 
Experimental ............................................................................................................ 28 

3.1 Materials ......................................................................................................... 28 

3.1.1 Acrylonitrile-butadiene-styrene (ABS) ...................................................... 28 
3.1.2 Graphene nanoplatelets (GNP)................................................................ 29 
3.1.3 Carbon nanotubes (CNTs) ....................................................................... 31 



VIII 

3.2 Processing and composite preparation ..................................................... 32 

3.2.1 Samples designation ................................................................................ 32 
3.2.2 Compounding ........................................................................................... 36 
3.2.3 Compression moulding (CM) ................................................................... 37 
3.2.4 Filament extrusion (E) .............................................................................. 38 
3.2.5 Fused deposition modelling (FDM) .......................................................... 39 

3.3 Testing techniques ....................................................................................... 45 

3.3.1 Microstructural characterizations ............................................................. 45 

3.3.1.1 Density measurements .................................................................. 45 
3.3.1.2 Melt flow index (MFI) ..................................................................... 45 
3.3.1.3 Rheological analysis ...................................................................... 46 
3.3.1.4 Scanning electron microscopy (SEM) ........................................... 46 
3.3.1.5 Transmission Electron Microscopy (TEM) ..................................... 46 
3.3.1.6 Fourier transform infrared spectroscopy (FTIR) ............................ 46 
3.3.1.7 X-ray photoelectron spectroscopy (XPS) ...................................... 46 
3.3.1.8 Thermogravimetric analysis (TGA) ................................................ 47 
3.3.1.9 Differential scanning calorimetry (DSC) ........................................ 47 

3.3.2 Mechanical testing ................................................................................... 47 

3.3.2.1 Quasi-static tensile test .................................................................. 47 
3.3.2.2 Flexural test ................................................................................... 48 
3.3.2.3 Dynamic mechanical thermal analysis .......................................... 48 
3.3.2.4 Creep test ...................................................................................... 49 
3.3.2.5 Modelling of tensile modulus ......................................................... 49 

3.3.3 Testing of electrical properties ................................................................. 50 

3.3.3.1 Electrical resistivity test .................................................................. 50 
3.3.3.2 Surface temperature evaluation upon voltage application ............ 51 
3.3.3.3 Strain monitoring tests ................................................................... 51 

3.3.4 Electromagnetic interference shielding effectiveness (EMI SE) test ....... 53 

Results and discussions ........................................................................................ 54 
Chapter IV ................................................................................................................. 54 
ABS-graphene nanoplatelets nanocomposites.................................................... 54 

4.1 Characterization of GNP ............................................................................... 54 
4.2 Selection of ABS matrix ............................................................................... 60 

4.2.1 Melt flow index ......................................................................................... 60 
4.2.2 FTIR and differential scanning calorimetry .............................................. 61 
4.2.3 Fractography ............................................................................................ 63 



IX 

4.2.4 Quasi- tensile tests ................................................................................... 64 

4.3 ABS-graphene nanocomposites plates ...................................................... 67 

4.3.1 Melt flow index ......................................................................................... 67 
4.3.2 Thermal analysis (TGA and DSC)............................................................ 68 
4.3.3 Electromagnetic interference shielding effectiveness (EMI SE) .............. 74 
4.3.4 Quasi-static tensile tests .......................................................................... 81 
4.3.5 Modelling of tensile modulus .................................................................... 84 
4.3.6 Fractography ............................................................................................ 87 

4.4 Fused deposition modelling with ABS–graphene nanocomposites ....... 91 

4.4.1 Selection of GNP content ......................................................................... 91 
4.4.2 Filament extrusion .................................................................................... 92 
4.4.3 Preliminary study on FDM process (flexural test) .................................... 93 
4.4.4 Scanning electron microscopy ................................................................. 97 
4.4.5 Differential scanning calorimetry .............................................................. 99 
4.4.6 Quasi-static tensile tests ........................................................................ 101 
4.4.7 Dynamic mechanical response and coefficient of thermal expansion ... 103 
4.4.8 Creep stability ........................................................................................ 109 

4.5 Summary on ABS-graphene nanocomposites ........................................ 111 

Chapter V ................................................................................................................ 113 
ABS-carbon nanotubes nanocomposites ........................................................... 113 

5.1 Characterization of carbon nanotubes ..................................................... 114 
5.2 ABS-carbon nanotubes nanocomposites plates ..................................... 116 

5.2.1 Compounding and morphology .............................................................. 116 
5.2.2 Differential scanning calorimetry ............................................................ 118 
5.2.3 Quasi-static tensile test .......................................................................... 119 

5.3 ABS-carbon nanotubes nanocomposites filaments ............................... 120 

5.3.1 Filament extrusion and melt flow index .................................................. 120 
5.3.2 Bulk density ............................................................................................ 123 
5.3.3 Morphological analyses .......................................................................... 124 
5.3.4 Thermal degradation behaviour ............................................................. 125 
5.3.5 Differential scanning calorimetry ............................................................ 128 
5.3.6 Quasi-static tensile test .......................................................................... 129 
5.3.7 Dynamic mechanical response and coefficient of thermal expansion ... 130 
5.3.8 Creep stability ........................................................................................ 134 

5.4 Fused deposition modelling with ABS-carbon nanotubes 

nanocomposites.......................................................................................... 136 



X 

5.4.1 Morphological analyses .......................................................................... 136 
5.4.2 Thermal degradation behaviour ............................................................. 137 
5.4.3 Differential scanning calorimetry ............................................................ 139 
5.4.4 Mechanical behaviour ............................................................................ 140 

5.4.4.1 Quasi-static tensile test ................................................................ 140 
5.4.4.2 Fracture mechanism .................................................................... 141 

5.4.5 Dynamic mechanical response and coefficient of thermal expansion ... 144 
5.4.6 Creep stability ........................................................................................ 149 

5.5 Electrical properties of ABS-carbon nanotubes nanocomposites ........ 150 

5.5.1 Electrical resistivity ................................................................................. 150 
5.5.2 Surface temperature under applied voltage ........................................... 157 
5.5.3 Strain monitoring .................................................................................... 164 

5.5.3.1 Tensile fracture ............................................................................ 164 
5.5.3.2 Ramp strain ................................................................................. 166 
5.5.3.3 Cyclic strain ................................................................................. 167 
5.5.3.4 Creep mode ................................................................................. 173 

5.6 Summary ABS-carbon nanotubes nanocomposites ............................... 174 

Chapter VI ............................................................................................................... 176 
Comparative study of graphene and carbon nanotube filled ABS 

nanocomposites plates......................................................................................... 176 

6.1 Morphology .................................................................................................. 176 
6.2 Melt flow index ............................................................................................ 178 
6.3 Quasi-static tensile test .............................................................................. 180 
6.4 Creep stability ............................................................................................. 184 
6.5 Electrical resistivity .................................................................................... 190 
6.6 Summary of a comparative study of graphene and carbon nanotube 

nanocomposites compression molded plates ......................................... 195 

Chapter VII .............................................................................................................. 196 
ABS-graphene-carbon nanotubes hybrid nanocomposites ............................. 196 

7.1 ABS-graphene-carbon nanotubes hybrid nanocomposites compression 

molded plates .............................................................................................. 196 

7.1.1 Compounding and morphology .............................................................. 196 
7.1.2 Quasi-static tensile test .......................................................................... 198 
7.1.3 Electrical resistivity ................................................................................. 200 
7.1.4 Electromagnetic interference shielding effectiveness (EMI SE) ............ 201 



XI 

7.2 Fused deposition modelling with ABS-graphene-carbon nanotubes 

hybrid nanocomposites ............................................................................. 204 

7.2.1 Rheological behaviour ............................................................................ 204 
7.2.2 Morphology............................................................................................. 205 
7.2.3 Quasi-static tensile test .......................................................................... 207 
7.2.4 Electrical resistivity ................................................................................. 208 
7.2.5 Electromagnetic interference shielding effectiveness (EMI SE) ............ 209 

Chapter VIII ............................................................................................................. 214 
General conclusions and Future perspectives .................................................. 214 
Chapter IX ............................................................................................................... 216 
Collateral research activities ................................................................................ 216 

9.1 Fused deposition modelling with carbon nanotubes-carbon black hybrid 

nanocomposites.......................................................................................... 216 

9.1.1 Materials and sample preparations ........................................................ 216 

9.1.1.1 Materials ...................................................................................... 216 
9.1.1.2 Composites preparation and FDM manufacturing ....................... 217 

9.1.2 Density measurements .......................................................................... 218 
9.1.3 Rheological behaviour ............................................................................ 219 
9.1.4 Microstructure of the specimens obtained via FDM ............................... 221 
9.1.5 Electrical conductivity – DC regime........................................................ 223 
9.1.6 Electromagnetic interference shielding effectiveness (EMI SE) ............ 226 
9.1.7 Quasi-static tensile test .......................................................................... 230 
9.1.8 Summary ABS-carbon nanotubes-carbon black hybrid nanocomposites

 234 

Publications on peer reviewed journals .............................................................. 250 
Participation to congresses, schools and workshops ...................................... 250 
Other activities ....................................................................................................... 251 
Acknowledgements ............................................................................................... 252 
 

  



XII 

List of Figures 

Figure 2.1-1. Additive manufacturing (AM) process flow [24]. .................................... 3 
Figure 2.1-2. The evolution of 3D printing techniques: resolutions and compatible 

materials [25]. ....................................................................................................... 5 
Figure 2.2-1. The scheme of FDM process includes a movable platform (1); a 

feedstock filament (2); feeding rolls (3) that press the yarn through a heated die 
(4) with a supportive structure (5) [26]. ................................................................. 7 

Figure 2.2-2. The basic component of an extrusion process [27]. ............................. 8 
Figure 2.2-3. Cross-section of single-screw and twin-screws extruder barrel. ........... 8 
Figure 2.2-4. Scheme of types of extrusion screw. .................................................... 9 
Figure 2.2-5. Cause and effect diagram of FDM process parameters [40]. ............. 11 
Figure 2.2-6. FDM parameters: (a) Build orientations, (b) layer thickness, and (c) FDM 

tool path parameters [40]. ................................................................................... 12 
Figure 2.2-7. Failure during FDM process [41]. ........................................................ 13 
Figure 2.3-1. Three categories of nanofillers based on particle geometry [42]. ....... 14 
Figure 2.3-2. Schematic representation of the degree of dispersion and distribution of 

particles in a polymer matrix: (a) good dispersion, poor distribution, (b) poor 
dispersion, good distribution, (c) poor dispersion, poor distribution, (d) good 
dispersion, good distribution [43]. ....................................................................... 14 

Figure 2.3-3. Collision behaviour of (a) charged particles and (b) uncharged particles 
[88]. ..................................................................................................................... 15 

Figure 2.3-4. The proposed interaction scheme of coupling between carbon fibre and 
LDPE matrix [47]. ............................................................................................... 16 

Figure 2.3-5. Graphene nanomaterials based on physical structure: (A) Single layer 
graphene, (B) double-layer graphene, (C) few-layer graphene and (D) graphene 
platelets [48]. ...................................................................................................... 16 

Figure 2.3-6. Graphene and carbon nanotubes: (A) single wall carbon nanotube 
(SWCNT) and (B) multi-wall carbon nanotube (MWCNT) structures [72]. ......... 18 

Figure 2.3-7. The conductivity of polymer composites as a function of filler 
concentration [87]. .............................................................................................. 21 

Figure 2.3-8. A conductive path in a composite with filamentary additives [88]. ...... 22 
Figure 2.3-9. EMI shielding concepts for a slab of conductive nanocomposite (a) wave 

propagation and reflection (b) definition of incoming, reflected and transmitted 
power for shielding effectiveness SE (c) configuration for the definition of 
reflectivity (R) [93]. .............................................................................................. 23 

Figure 2.4-1. Effect of fiber content and preparation process on (a) tensile strength, 
and (b) modulus, of ABS/CF composites[11]. .................................................... 24 

Figure 2.4-2. SEM image of (a, b) pure ABS FDM printed, (c) 10 wt% carbon fiber 
(CF) loaded FDM parted, (d) 10 wt% CF load compression-moulded ABS/CF 
composites [11]. ................................................................................................. 24 

Figure 2.4-3. Mechanical properties of the (1) ABS(injection moudling), (2) ABS, (3) 
ABS/SiO2, (4) ABS/MMT, (5) ABS/MWCNTs, and (6) ABS/CaCO3 
nanocomposites fabricated by FDM [110]. ......................................................... 25 

Figure 2.4-4. Thermal conductivity and tensile modulus of CF/PA12 in two different 
directions [30]. .................................................................................................... 26 



XIII 

Figure 2.4-5. Various examples of 3D nanocomposite macro- and microstructures 
manufactured using different 3D printing technologies for a wide range of domains 
such as MEMS, microfluidics, engineered materials and composites, 
microelectronics and telecommunications [25]. .................................................. 27 

Figure 3.1-1. Chemical representation of acrylonitrile–butadiene–styrene (ABS) 
polymer macromolecule. .................................................................................... 28 

Figure 3.1-2. SEM image of graphene nanoplatelets: (a) M5, (b) C300, (c) C500 and 
(d) C750. ............................................................................................................. 30 

Figure 3.1-3. TEM image of NC7000TM carbon nanotubes. ..................................... 32 
Figure 3.2-1. Examples of notation for compression moulding (CM) materials. ...... 32 
Figure 3.2-2. Examples of notation for filament (a), and 3D-printed materials (b). .. 33 
Figure 3.2-3. Photographs of (a) Haake® internal mixer, (b) its mixing chamber, and 

(c) Piovan grinder Model RN 166. ...................................................................... 36 
Figure 3.2-4. Torque recorded during compounding for neat ABS (F), graphene 

nanocomposites (F-M5-6) and carbon nanotubes composite (F-CNT-6). ......... 37 
Figure 3.2-5. Carver® hot plates press. .................................................................... 37 
Figure 3.2-6. Photographs of (a) twin screw extruder Thermo Haake PTW16, (b) view 

inside of the extruder, (c) take-off unit Thermo Electron Type 002-5341, and (d) 
extrusion process with cooling fans. ................................................................... 38 

Figure 3.2-7. Photographs of 3D printer Next Generation sharebot (a) standard 
commercial and (b) prototype high-temperature 3D-printer. .............................. 40 

Figure 3.2-8. Schematic of 3D-printed dumbbell and parallelepiped specimens at 
different orientations: (a) and (d) horizontal (H); (b) and (e) vertical (V); (c) and (f) 
perpendicular (P). ............................................................................................... 41 

Figure 3.2-9. 3D samples along horizontal build orientation with different raster angle 
and infill density of ABS-graphene nanocomposites (L-M5-4) for the flexural test.
 ............................................................................................................................ 42 

Figure 3.3-1. Experimental setup for the strain monitoring: (a) Specimens after 
conductive paint; (b) Schematic of experimental setup; (c) Actual setup for testing.
 ............................................................................................................................ 52 

Figure 4.1-1. FESEM images of graphene nanoplatelets: (a) M5, (b) C300, (c) C500 
and (d) C750. ...................................................................................................... 55 

Figure 4.1-2. XPS spectra of GNP-M5 (1), C300 (2), C500 (3) and C750 (4): a) XPS 
survey, b) the oxygen core level, and c) the sulfur core level. ........................... 57 

Figure 4.1-3. Oxygen content associated with the ether/alcohol groups as a function 
to the surface area of graphene nanoplatelets. .................................................. 58 

Figure 4.1-4. TGA curve of different types of graphene nanoplatelets performed in air 
atmosphere: (a) mass loss and (b) derivative of mass loss. .............................. 60 

Figure 4.2-1. Melt flow index of two different types of neat ABS (L and F) and its 

relative nanocomposites as a function of graphene M5. .................................... 61 
Figure 4.2-2. FITR spectra of two types of neat ABS and ABS graphene M5 

composites with 8 wt%. ...................................................................................... 62 
Figure 4.2-3. The heating-cooling-heating cycle of DSC thermograms of two neat ABS 

with (L) and without (F) mold lubricant. .............................................................. 63 
Figure 4.2-4. FESEM image of the fracture surface of (a) L-M5-8 and (b) F-M5-8. . 64 



XIV 

Figure 4.2-5. Tensile mechanical properties of GNP-M5 nanocomposite with two 
different kind of ABS resins (L and F): (a) elastic modulus, (b) tensile strength, 
and (c) strain at break (c). .................................................................................. 65 

Figure 4.2-6. Improvement of normalized modulus of ABS composites according to 
Eq. (4.2-1) after incorporation of GNP-M5 into different ABS matrix. ................ 66 

Figure 4.3-1. Melt flow index (220°C /10kg) of ABS nanocomposites as a function of 

GNPs. ................................................................................................................. 68 
Figure 4.3-2. Selected TGA data obtained on neat and nanofilled ABS-graphene 

performed under a nitrogen atmosphere: (a) mass loss curves, (b) derivative of 
mass loss curves, and (c) relative residual values at 600°C. ............................. 70 

Figure 4.3-3. DSC thermograms (first heating scan) of neat ABS and nanocomposites 
at different content of M5 (a), C300 (b), C500 (c) and C750 (d) graphene 
nanoplatelets. ..................................................................................................... 72 

Figure 4.3-4. Normalized melting heat (from second DSC heating) of mould lubricant 
as a function of surface area and content of GNP nanoplatelets in ABS 
nanocomposites. ................................................................................................ 73 

Figure 4.3-5. Representative curves of EMI SE of nanocomposites containing different 
types of graphene nanoplatelets: (a) L-M5, (b) L-C300, (c) L-C500 and (d) L-C750.
 ............................................................................................................................ 76 

Figure 4.3-6. Influence of absorption and reflection mechanisms on the EMI SE of 
nanocomposites containing different graphene nanoplatelets: (a) L-M5, (b) L-
C300, (c) L-C500 and (d) L-C750, with various fillers contents. ........................ 79 

Figure 4.3-7. Absorption (a) and reflection (b) of ABS nanocomposites as a function 
of surface area and content of GNP nanoplatelets. ........................................... 80 

Figure 4.3-8.  Relative electromagnetic shield vs relative resistivity of GNP-ABS 
composite at 8 wt% of M5 and Series C. ........................................................... 81 

Figure 4.3-9. Improvement of normalized modulus of ABS composites according to 
Eq. (4.2-1) after incorporation of different carbonaceous fillers, such as carbon 
black (CB [154]), MWCNTs [77], graphite flakes (GFs) [62], reduced graphene 
oxide ( rGO [153]), graphene [155], and the GNP nanoplatelets M5, C300, C500, 
and C750 of the present study. ABS composites reinforced with carbon fiber (CF) 
and produced by injection molding [152], compression molding [11],  and additive 
manufacturing [10, 151] are also reported. ........................................................ 84 

Figure 4.3-10. Elastic modulus of nanocomposites with different type of graphene, i.e., 
a) L-M5, b) L-C300, c) L-C500 and d) L-C750. Continuous and dot lines represent 
prediction according to Halpin-Tsai models with in-plane and 3D random 
orientations, respectively. ................................................................................... 87 

Figure 4.3-11. SEM micrographs of L-M5 (a), L-C300 (b), L-C500 (c), and L-C750 (d) 
nanocomposites at graphene loading of 8 wt% obtained at increasing 
magnifications: 1000x (1), 10000x (2) and 50000x (3). ...................................... 90 

Figure 4.4-1. Tensile modulus, tensile strength and melt flow index values for 
compression moulded neat ABS (L) and ABS-graphene (L-M5) nanocomposites
 ............................................................................................................................ 92 

Figure 4.4-2. Flexural stress-strain curve as measured on 3D-printed specimens: (a) 
neat ABS Sharebot, (b) ABS with mould lubricant (L) and graphene 
nanocomposites (L-M5-4). .................................................................................. 94 



XV 

Figure 4.4-3. Flexural test of neat ABS Sharebot, ABS with mould lubricant (L) and it 
graphene nanocomposites (L-M5-4) as measured on 3D-printed specimens (a) 
Specific elastic modulus, and (b) specific maximum stress. .............................. 97 

Figure 4.4-4. Schematic of 3D-printed dumbbell specimens at different orientations: 
horizontal (HC), vertical (VC) and perpendicular (PC). ...................................... 98 

Figure 4.4-5. SEM micrographs of 3D-printed dumbbell specimens printed from neat 
ABS, L-HC (a), L-VC (b) and L-PC (c); and from graphene nanocomposites, L-
M5-4-HC (d), L-M5-4-VC (e) and L-M5-4-PC (f). ............................................... 99 

Figure 4.4-6. DSC thermograms of neat ABS (L) and nanocomposites. First heating 
scan (a), cooling scan (b), and second heating scan (c) of CM (compression 
moulded), E (extruded) and FDM specimens. .................................................. 100 

Figure 4.4-7. Dynamic mechanical thermograms a) storage modulus (E’) and b) loss 
tangent (tanδ), of neat ABS and nanocomposite samples as measured on 
compression moulded (CM), filaments (E) and 3D-printed specimens along 
horizontal orientation (HC). ............................................................................... 104 

Figure 4.4-8. Dynamic mechanical thermograms a) storage modulus (E’) and b) loss 
factor (tanδ) of neat ABS and nanocomposite as measured on 3D-printed 
specimens along different orientations (HC, VC, PC). ..................................... 105 

Figure 4.4-9.Thermal strain of neat ABS and nanocomposite samples as measured 
on a) compression molded (CM), extruded (E) and 3D-printed specimens along 
horizontal orientation (HC) and b) along different orientations (HC, VC, PC). . 107 

Figure 4.4-10. Creep compliance, D(t) at 30°C and 3.9 MPa, of neat ABS and 
nanocomposites as measured on a) compression molded (CM), extruded (E) and 
3D-printed specimens along horizontal orientation (HC) and b) along different 
orientations (HC, VC, PC). ............................................................................... 110 

Figure 5.1-1. TEM micrographs of carbon nanotubes particles (CNT). .................. 114 
Figure 5.1-2. Density of carbon nanotube measured through a Micromeritics®Accupyc 

1330 helium pycnometry (23.0°C) with 10 cm3 chamber. ................................ 115 
Figure 5.1-3. TGA curve of carbon nanotubes performed in air atmosphere: mass loss 

(continuous line) and derivative of mass loss (dot line).................................... 115 
Figure 5.2-1. SEM micrographs of ABS/CNT nanocomposite plates with 2 wt% (a, e), 

4wt% (b, f), 6 wt% (c, g) and 8 wt% (d, h) of CNT at magnification of 10,000× (left) 
and 50,000× (right). .......................................................................................... 117 

Figure 5.2-2. DSC thermogram of neat ABS and ABS/ CNT nanocomposites from 
compression moulding in the heating-cooling-heating cycle. ........................... 118 

Figure 5.2-3. Representative of the tensile stress-strain curve of ABS and ABS-CNT 
compression moulding. ..................................................................................... 119 

Figure 5.3-1. Melt flow index (250ºC/10 kg) of ABS nanocomposit as a function of 
CNT. ................................................................................................................. 123 

Figure 5.3-2. Experimental density values of ABS-CNT filaments compared to 
theoretical density and voids fraction (Vv). ....................................................... 124 

Figure 5.3-3. SEM micrographs of F-CNT-6-E (left) and F-CNT-8-E (right) filaments 
at different magnifications (a, d) ×80, (b, e) ×10000 and (c, f) ×50000. ........... 125 

Figure 5.3-4. TGA curves of neat and nanofilled ABS filaments under air atmosphere: 
(a) Residual mass as a function of temperature; (b) Derivative of the mass loss.
 .......................................................................................................................... 126 

Figure 5.3-5. The comparison of experimental and theoretical residues of 
nanocomposites at 475˚C and 575˚C. ............................................................. 127 



XVI 

Figure 5.3-6. DSC thermogram of neat ABS and its ABS/CNT nanocomposites 
filaments in the heating-cooling-heating cycle. ................................................. 128 

Figure 5.3-7. Representative tensile stress-strain curve of ABS filament with an 
indication of the tensile energy to break (TEB) and the propagation energy (P) 
from the yield to break point. ............................................................................ 129 

Figure 5.3-8. Tensile stress-strain curve of ABS and ABS-CNT filaments............. 130 
Figure 5.3-9. Dynamic mechanical thermograms a) and c) storage modulus (E’) and 

b) loss modulus (E’’) of neat ABS and nanocomposite samples as measured on 
filaments. .......................................................................................................... 132 

Figure 5.3-10. Thermal strain of neat ABS and nanocomposite samples as measured 
on filaments. ..................................................................................................... 134 

Figure 5.3-11. Creep compliance, D(t) at 30°C, of neat ABS and nanocomposites as 
measured on filaments at 3.9 MPa. .................................................................. 135 

Figure 5.4-1. SEM micrographs of 3D-printed dumbbell specimens printed from 
carbon nanotubes nanocomposites, F-CNT-6-HC (a, b), F-CNT-6-H45 (c, d) and 
F-CNT-6-PC (e, f). ............................................................................................ 137 

Figure 5.4-2. TGA curves of neat and 6 wt% nanofilled ABS 3D printed samples (HC 
and PC) under air atmosphere: (a) Residual mass as a function of temperature; 
(b) Derivative of the mass loss. ........................................................................ 138 

Figure 5.4-3. DSC thermogram of neat ABS and its ABS/CNT nanocomposites of 3D-
printed samples in the heating-cooling-heating cycle....................................... 139 

Figure 5.4-4. Tensile stress-strain curve of ABS and ABS-CNT of 3D-printed samples.
 .......................................................................................................................... 141 

Figure 5.4-5. Frozen fracture of cross-section of 3D-printed dumbbells: (a) F-HC, (b) 
F-H45, (c) F-PC, (d) F-CNT-6-HC, (e) F-CNT-6-H45 and (f) F-CNT-6-PC. ..... 142 

Figure 5.4-6. Tensile fracture of cross-section of 3D-printed dumbbells: (a) F-HC, (b) 
F-H45, (c) F-PC, (d) F-CNT-6-HC, (e) F-CNT-6-H45 and (f) F-CNT-6-PC. ..... 143 

Figure 5.4-7. Dynamic mechanical thermograms a) and c) storage modulus (E’) and 
b) loss modulus (E’’) of neat ABS and nanocomposite samples as measured on 
3D-printed specimens along different orientation (HC, H45, PC). ................... 145 

Figure 5.4-8. Reduction of main transition of storage modulus-R (a) and F-factor (b) 
as function of CNT nanofiller loading measured on filaments and 3D-printed 
samples (HC, H45 and PC). ............................................................................. 147 

Figure 5.4-9. Thermal strain of neat ABS and nanocomposite samples as measured 
on 3D-printed samples along different orientations (HC, H45, and PC). ......... 148 

Figure 5.4-10. Creep compliance, D(t) at 30°C, of neat ABS and nanocomposites as 
measured on 3D-printed samples along different orientations at 3.0 MPa. ..... 149 

Figure 5.5-1.  Electrical volume resistivity of ABS nanocomposites: compression 
moulding (a), filaments (b) and 6 wt% CNT filled nanocomposites with different 
3D printing (c). .................................................................................................. 151 

Figure 5.5-2. Electrical volume resistivity of ABS/CNT nanocomposites measured on 
compression moulding (CM) and filament (E) samples at an applied voltage of 5 
V. ...................................................................................................................... 152 

Figure 5.5-3. Evolution of electrical resistivity in ABS nanocomposite plates with a 

volume concentration (for c detail in section 6.5). .......................................... 153 
Figure 5.5-4. Internal features of FDM samples: (a) HC, (b) H45 and (c) PC. ....... 153 
Figure 5.5-5. Electrical resistivity of FDM samples as a volume of voids from Figure 

5.4-1. ................................................................................................................. 154 



XVII 

Figure 5.5-6. Summary of preparation of filament plate with the mould 50×50×1.0 mm 
starting with filaments at 6 and 8 wt% of CNT: (a) before compression and (b) 
after compression. (c) Schematic of samples at the different angles (0, 45 and 
90º) for measuring electrical resistivity (see Figure 5.5-7). .............................. 155 

Figure 5.5-7. Electrical volume resistivity of ABS 6 wt% and 8 wt% filled 
nanocomposites of filament plates at different angles (0, 45 and 90º) as a function 
of the applied voltage of the applied voltage. ................................................... 156 

Figure 5.5-8. (a) the ratio modulus/resistivity reference at 5 V; (b) the ratio 
modulus/resistivity and CNT content as a function of CNT % for compression 
moulding (plates), filament, fiber and 3D samples. .......................................... 157 

Figure 5.5-9. Infrared thermal imaging of F-CNT-6 (left) and F-CNT-8 (right) 
nanocomposites samples under an applied voltage of 12 V. ........................... 158 

Figure 5.5-10. Infrared thermal imaging of F-CNT-6 (left) and F-CNT-8 (right) 
nanocomposites samples under an applied voltage of 24 V. ........................... 159 

Figure 5.5-11. Increment of surface temperature upon a voltage of 12 V (a) and 24 V 
(b) for ABS/CNT nanocomposites from compression moulding with different CNT 
content at room temperature of 23ºC. .............................................................. 160 

Figure 5.5-12. Results of thermal imaging upon voltage application at 24 V at 120 
seconds: F-CNT-6-E (a), F-CNT-6-HC (b), F-CNT-6-H45 (c) and F-CNT-6-PC (d).
 .......................................................................................................................... 161 

Figure 5.5-13. Increment of surface temperature upon a voltage of 12 V (a) and 24 V 
(b) for ABS nanocomposites filaments with different CNT loading at room 
temperature of 23ºC. ........................................................................................ 162 

Figure 5.5-14. Increment of surface temperature upon a voltage of 12 V (a) and 24 V 
(b) for ABS nanocomposites 3D printed samples with 6 wt% CNT content at room 
temperature of 23ºC. ........................................................................................ 163 

Figure 5.5-15. Electrical resistivity change (ΔR/R0) and stress of 3D-printed F-CNT-6 
nanocomposites under applied strain up to fracture: F-CNT-6-HC (a) and F-CNT-
6-H45 (b)........................................................................................................... 165 

Figure 5.5-16. A representative of electrical (ΔR/R0) and mechanical response of 3D-
printed ABS/CNT nanocomposites during loading (full symbol) and unloading 
(open symbol) under tensile test: F-CNT-6-HC (a) and F-CNT-6-H45 (b). ...... 167 

Figure 5.5-17. Piezoresistivity of the F-CNT-6-HC sample : resistance variation during  
50 cycles of controlled strain (0.1-0.5%) under tensile loading. ....................... 168 

Figure 5.5-18. Piezoresistivity of the F-CNT-6-HC sample as function of stress during 
50 cycles (a) under tensile loading and detail of the last 10 cycles (b). ........... 169 

Figure 5.5-19. Piezoresistivity of the F-CNT-6-H45 sample: resistance variation as 
function of controlled strain (0.1-0.5%) during  50 cycles under tensile loading.
 .......................................................................................................................... 169 

Figure 5.5-20. Piezoresistivity of the F-CNT-6-H45 samples and (a) 50 strain, (b) 50 
stress cycles under tensile loading and (c) detail of the last 10 cycles. ........... 170 

Figure 5.5-21. Gauge factor of the 6 wt% CNT 3D-printed nanocomposite samples 
along number of cycle strain of HC and H45. ................................................... 171 

Figure 5.5-22. F-CNT-6-HC sample: (a) before, and (b) after 50 cycles under tensile 
loading. ............................................................................................................. 172 

Figure 5.5-23. F-CNT-6-H45 sample: (a) before, and (b) after 50 cycles under tensile 
loading. ............................................................................................................. 173 



XVIII 

Figure 5.5-24. Creep compliance at a constant load of 20 MPa and ΔR/R0 for different 
infill samples: (a) F-CNT-6-HC and (b) F-CNT-6-H45. ..................................... 174 

Figure 6.1-1. TEM micrographs of the selected carbonaceous nanoparticles: (a) GNP-
M5 and (b) CNT. ............................................................................................... 177 

Figure 6.1-2. SEM micrographs of the samples of F-CNT-6 (a, b), F-M5-6 (c, d) and 
F-M5-30 (e, f). ................................................................................................... 178 

Figure 6.2-1. Melt flow index of ABS/graphene (full symbol) and ABS/CNT(open 
symbols) nanocomposites at different temperatures and nanofiller content. ... 178 

Figure 6.2-2. Melt flow index of graphene (a) and carbon nanotubes (b) 
nanocomposites as a function of temperature. ................................................ 180 

Figure 6.3-1. Comparison of tensile properties of nanocomposites with ABS/M5 and 
ABS/CNT: (a) elastic modulus and (b) strength. .............................................. 182 

Figure 6.3-2. Elastic modulus of nanocomposites with ABS/M5 (a) and ABS/CNT (b). 
Continuous (___) and dash lines (_ _ _) and dot lines (...) represent prediction 
according to Halpin-Tsai models with parallel, 2D random and 3D random 
orientation, respectively. ................................................................................... 184 

Figure 6.4-1. Creep compliance of graphene (a) and carbon nanotubes (b) 
nanocomposites at 30°C at 3.9 MPa................................................................ 185 

Figure 6.4-2. Comparison of creep compliance of nanocomposites with ABS/M5 and 
ABS/CNT: (a) elastic (Del) and (b) total D(t=3600 s). ....................................... 186 

Figure 6.4-3. Creep compliance of F (a), F-M5-6 (b) and F-CNT-6 (c) nanocomposites 
under applied load of 3.9 MPa at 30-90°C. ...................................................... 188 

Figure 6.4-4. Creep compliance of F, F-M5-6, and F-CNT-6 nanocomposites at 3.9 
MPa at different temperature range.................................................................. 189 

Figure 6.5-1. Electrical volume resistivity of ABS/M5 and ABS/CNT nanocomposites. 
The applied voltage was 5 V or 100 V for samples having resistivity lower or higher 
than 107 Ω.cm, respectively. ............................................................................ 191 

Figure 6.5-2. Percolation theory power law fit of ABS/M5 and ABS/CNT 
nanocomposites. .............................................................................................. 192 

Figure 6.5-3. The combined effect of elastic modulus, melt flow index and resistivity 
as a function of nanofiller content. .................................................................... 193 

Figure 6.5-4. Comparison of selected properties of ABS/M5 and ABS/CNT 
nanocomposites as function of nanofiller content (2-8 wt%). ........................... 193 

Figure 7.1-1. Melt flow index (220°C/10kg) of ABS/CNT/M5 hybrid nanocomposites.
 .......................................................................................................................... 197 

Figure 7.1-2. SEM micrographs of F-M5-3-CNT-3 nanocomposite plates at different 
magnification of 3,000× (a), 20,000× (b) and 50,000× (c). ............................... 198 

Figure 7.1-3. Tensile properties of ABS/M5/CNT hybrid nanocomposites: (a) elastic 
modulus, (b) maximum stress and (c) strain at break. ..................................... 199 

Figure 7.1-4. Electrical volume resistivity of hybrid nanocomposites with total 
nanofiller of 6 wt% as a function of CNT/M5 relative amount........................... 200 

Figure 7.1-5. Representative curves of EMI SE of neat ABS, single and hybrid 
nanocomposites at 6 wt% from compression moulding. .................................. 201 

Figure 7.1-6. Influence of absorption and reflection mechanisms on the EMI SE of 
hybrid nanocomposites from compression moulding. ...................................... 202 

Figure 7.1-7. The combined effect of elastic modulus, melt flow index and resistivity 
as a function of CNT/M5 relative amount of total 6 wt%. ................................. 203 



XIX 

Figure 7.1-8. Processability, resistivity, electromagnetic shielding, tensile properties 
of graphene, carbon nanotubes and hybrid nanocomposites at 6 wt% from 
compression moulding. ..................................................................................... 203 

Figure 7.2-1. Complex viscosity as a function of frequency for F-M5-6, F-CNT-6 and 
F-M5-3-CNT-3 composite plates at (a) 250°C and (b) 280°C. ........................ 205 

Figure 7.2-2. SEM micrographs of F-M5-3-CNT-3-E nanocomposite filament at 
different magnification of 100× (a), 1,000× (b), 5,000× (c) and 20,000× (d). ... 206 

Figure 7.2-3. SEM micrographs of 3D-printed dumbbell specimens printed from F- 
M5-3-CNT-3-HC at different magnification of 100× (a), 1000× (b), 5,000× (c) and 
20,000× (d). ...................................................................................................... 206 

Figure 7.2-4. Electrical volume resistivity: a). F-M5-3-CNT-3 hybrid nanocomposites 
as a function applied voltage and b). F-M5-6, F-CNT-6 and F-M5-3-CNT-3 at 
different processing: compression moulding (CM), the filament (E), FDM samples 
(HC, H45, and PC). .......................................................................................... 208 

Figure 7.2-5. Representative curves of EMI SE of hybrid nanocomposites from 
compression moulding and FDM process: (a) HC, (b) H45 and (c) PC. .......... 210 

Figure 7.2-6. Influence of absorption and reflection mechanisms on the EMI SE of 
hybrid nanocomposites from FDM process: (a) HC, (b) H45 and (c) PC. ........ 211 

Figure 7.2-7. Electromagnetic shield vs resistivity of neat ABS, ABS-M5, ABS-CNT 
and hybrid nanocomposite at 6 wt%. ............................................................... 212 

Figure 9.1-1. Schematic representation of the specimens built along the three build 
oreintation. For each build oreintation from the left to the right: first deposited layer, 
representation of the second layer and, the resulting solid component with proper 
dimensions........................................................................................................ 218 

Figure 9.1-2. Complex viscosity as a function of frequency for ABS/CNT (a) and 
ABS/CB (b) composites with various filler contents. ........................................ 220 

Figure 9.1-3. Complex viscosity as a function of frequency of hybrid ABS with 3 wt% 
total filler amount at different fractions. ............................................................ 221 

Figure 9.1-4. Photographs of the FDM components: PC (a), H45 (d) and HC (g). 
Optical microscopy at 100x magnification, PC (b), H45 (e) and HC (h). Optical 
microscopy at 50x magnification top view of PC (c), H45 (f) and HC (i). ......... 222 

Figure 9.1-5. SEM images of cross-section for respective growing directions: PC (a-
c), HC (d-f) and H45 (g-h). ................................................................................ 222 

Figure 9.1-6. D.C. electrical conductivity of the extruded filaments with 3 wt% of 
nanofillers. ........................................................................................................ 224 

Figure 9.1-7. D.C. volume conductivity of ABS carbon-based solid components 
produced via FDM in three different layer-by-layer growing directions: 
perpendicular (left graph), horizontal concentric (center graph) and horizontal 
alternate (right graph). ...................................................................................... 225 

Figure 9.1-8. Total electromagnetic interference shielding effectiveness of ABS 
carbon-based composites of 3 wt% of nanofillers in three different layer-by-layer 
growing directions: perpendicular (upper graph), horizontal concentric (middle 
graph) and horizontal alternate (bottom graph). ............................................... 227 

Figure 9.1-9. Shielding by absorption (a) and by reflection portion (b) of ABS carbon-
based composites of 3 wt% of nanofillers in three different layer-by-layer growing 
directions: perpendicular (upper graph), horizontal concentric (middle graph) and 
horizontal alternate (bottom graph). ................................................................. 229 

Figure 9.1-10. Stress-strain curve of ABS and nanocomposites filaments. ........... 231 



XX 

Figure 9.1-11. Stress-strain curve of 3D-printed ABS and nanocomposites. Growing 
direction: HC. .................................................................................................... 232 

Figure 9.1-12. Stress-strain curve of 3D-printed ABS and nanocomposites. Growing 
direction: H45. .................................................................................................. 232 

Figure 9.1-13. Stress-strain curve of 3D-printed ABS and nanocomposites. Growing 
direction: PC. .................................................................................................... 233 

 

  



XXI 

List of Tables 

Table 2.1-1. Summary of the 3D printing techniques [25]. ......................................... 5 
Table 2.2-1. Variations in properties for the ABS range of FDM materials (compiled 

from Stratasys data sheets) [24]......................................................................... 10 
Table 2.3-1. Summary of three most common methods for CNT synthesis [74]. ..... 19 
Table 2.3-2. Theoretical and experimental properties of carbon nanotubes compared 

with graphene [75]. ............................................................................................. 20 
Table 2.3-3. Electromagnetic interference (EMI) shielding of CNT-polymer 

nanocomposites. ................................................................................................ 22 
Table 3.1-1. Technical datasheet of the ABS Sinkral®L322 and Sinkral®F322 [114].

 ............................................................................................................................ 29 
Table 3.1-2. Dimension and density from the producer of graphene nanoplatelets [51].

 ............................................................................................................................ 30 
Table 3.1-3. Data from the technical datasheet of graphene nanoplatelets [51]. ..... 30 
Table 3.1-4. Technical datasheet of NC7000TM carbon nanotubes [115]. ................ 31 
Table 3.2-1. Materials and processing techniques investigated in this work. ........... 34 
Table 3.2-2. Working parameters of twin screw extruder Thermo Haake PTW16. .. 39 
Table 3.2-3. Feature of Sharebot Next Generation desktop 3D printer. ................... 39 
Table 3.2-4. Summary of 3D samples with details of FDM parameters. .................. 41 
Table 3.2-5. Filaments used for 3D-printing and processing temperature to 

manufacture 3D samples. ................................................................................... 42 
Table 3.2-6. Dimensions and processing parameters of FDM specimens. .............. 43 
Table 4.1-1. Characteristics of as-received graphene nanoplatelets (GNP). Atomic 

percentage of surface elemental composition and density, as measured by XPS 
analysis and helium pycnometry, respectively. .................................................. 58 

Table 4.1-2. Results of TGA analysis of graphene nanoplatelets performed under air 
atmosphere. ........................................................................................................ 59 

Table 4.2-1. Glass transition temperatures of styrene–acrylonitrile phase (Tg), melting 
temperature (Tm) and enthalpy of fusion of lubricant (ΔHm) for both types of neat 
ABS plate from DSC. .......................................................................................... 63 

Table 4.2-2. Tensile mechanical properties of two different types of ABS 
nanocomposites (L and F) as a function of GNP-M5 nanoplatelets. .................. 66 

Table 4.2-3. The mould lubricant (ML)/graphene ratio at different graphene content.
 ............................................................................................................................ 67 

Table 4.3-1. Results of TGA analysis of neat and nanofilled ABS-graphene performed 
under nitrogen atmosphere. ............................................................................... 70 

Table 4.3-2. Glass transition temperatures (Tg) of styrene–acrylonitrile phase, melting 
temperature (Tm), melting heat (ΔHm), and relative crystallinity index (RC) of mould 
lubricant for ABS and relative nanocomposite as measured in DSC analysis. .. 73 

Table 4.3-3. Volume resistivity and average EMISE of ABS and nanocomposites with 
8% wt of GNP. .................................................................................................... 80 

Table 4.3-4. Tensile properties of nanocomposites as a function of different GNP type 
and content. ........................................................................................................ 83 

Table 4.4-1. Processing properties of L-E and L-M5-4-E nanocomposite during 
extrusion. ............................................................................................................ 93 



XXII 

Table 4.4-2. Flexural parameters of ABS and its nanocomposite as measured on 3D-
printed specimens with different orientations. .................................................... 95 

Table 4.4-3. Glass transition temperatures of styrene-acrylonitrile phase (Tg), melting 
temperature (Tm) and enthalpy of fusion of lubricant (ΔHm) crystallization 
temperature (Tc) and crystallization enthalpy (ΔHc) for ABS and relative 
nanocomposite as determined from DSC tests. ............................................... 101 

Table 4.4-4. Quasi-static tensile properties of ABS and its nanocomposite as 
measured on compression moulded (CM), extruded (E) and 3D-printed 
specimens with different orientations (HC, VC, PC). ........................................ 102 

Table 4.4-5. Dynamic mechanical properties of neat ABS and its nanocomposites as 
measured on compression moulded (CM), extruded (E) and 3D-printed 
specimens with different orientations (HC, VC, PC). ........................................ 103 

Table 4.4-6. Coefficients of linear thermal expansion (CLTE) and linear thermal 
deformation (CLTD) of ABS and its nanocomposites in the glassy state as 
measured on compression moulded (CM), extruded (E) and 3D-printed 
specimens with different orientations (HC, VC, PC). ........................................ 108 

Table 4.4-7. Elastic (Del), viscoelastic Dve(t=3600s) and total D(t=3600s) creep 
compliance at 3600s, and fitting parameters (Eq. (4.4-7)) of ABS and its 
nanocomposites as measured on compression moulded (CM), extruded (E) and 
3D-printed specimens with different orientations (HC, VC, PC). ...................... 110 

Table 5.2-1. Designation and formulation of ABS nanocomposites dependence of melt 
flow index (250°C/10 Kg). ................................................................................ 116 

Table 5.2-2. Glass transition temperatures (Tg) of neat ABS and resulting 
nanocomposite plates from DSC tests. ............................................................ 118 

Table 5.2-3. Tensile properties of ABS-CNT nanocomposites as function of carbon 
nanotubes (CNT) content. ................................................................................ 120 

Table 5.3-1. Processing parameters of twin screw extruder for the production of ABS 
and ABS/CNT nanocomposite filaments. ......................................................... 122 

Table 5.3-2. Bulk density and linear density of ABS and ABS/CNT nanocomposite 
during filament extrusion and 3D fiber production. Extrusion and 3D printing draw 
ratio. .................................................................................................................. 122 

Table 5.3-3. TGA data of pure ABS and its nanocomposites in an air atmosphere.
 .......................................................................................................................... 127 

Table 5.3-4. Glass transition temperatures of styrene–acrylonitrile phase (Tg) for ABS 
and relative nanocomposite of filaments from DSC. ........................................ 128 

Table 5.3-5. Quasi-static tensile properties of ABS and its nanocomposite of filaments 
(E) and single fiber (f) produced by twin screw and FDM extrusion, respectively.
 .......................................................................................................................... 131 

Table 5.3-6. Storage modulus and stiffness loos from DMTA analysis of neat ABS and 
its nanocomposites as measured on filaments and FDM samples. ................. 133 

Table 5.3-7. Damping peaks and loss modulus from DMTA analysis of neat ABS and 
its nanocomposites as measured on filaments and FDM samples. ................. 133 

Table 5.3-8. Coefficients of linear thermal expansion (CLTE) and linear thermal 
deformation (CLTD) of ABS and its nanocomposites as measured on filament 
samples. ........................................................................................................... 134 

Table 5.3-9. Creep test of neat ABS and its nanocomposites as measured on filaments 
and FDM samples. ........................................................................................... 136 



XXIII 

Table 5.4-1. TGA data of pure ABS and its nanocomposites in an air atmosphere.
 .......................................................................................................................... 139 

Table 5.4-2. Glass transition temperatures of styrene–acrylonitrile phase (Tg) for ABS 
and relative nanocomposite of FDM samples from DSC. ................................ 140 

Table 5.4-3. Quasi-static tensile properties of ABS and its nanocomposite of FDM 
samples. ........................................................................................................... 141 

Table 5.4-4. Storage modulus and stiffness loss from DMTA analysis of neat ABS and 
its nanocomposites as measured on filaments and FDM samples. ................. 146 

Table 5.4-5. Damping peaks and loss modulus from DMTA analysis of neat ABS and 
its nanocomposites as measured on filaments and FDM samples. ................. 146 

Table 5.4-6. Coefficients of linear thermal expansion (CLTE) and linear thermal 
deformation (CLTD) of ABS and its nanocomposites as measured on filament and 
FDM samples.................................................................................................... 148 

Table 5.4-7. Creep test of neat ABS and its nanocomposites as measured on filaments 
and FDM samples. ........................................................................................... 150 

Table 5.5-1. Electrical volume resistivity of different kinds of ABS-CNT samples at an 
applied voltage of 5 V. ...................................................................................... 155 

Table 5.5-2.  Initial resistance values (R0) of the 3D-printed samples before the 
application of the stain. ..................................................................................... 164 

Table 5.5-3.  Gauge factor of ABS/CNT 3D-printed samples at different infill pattern.
 .......................................................................................................................... 165 

Table 5.5-4.  Gauge factor of ABS/CNT 3D-printed samples at different infill pattern.
 .......................................................................................................................... 166 

Table 5.5-5.  Selected values of gauge factor of ABS/CNT 3D-printed samples. .. 171 
Table 6.2-1. Melt flow index and activation energy for neat ABS and carbon nanotubes 

and graphene nanocomposites. ....................................................................... 179 
Table 6.3-1. Comparison of the tensile properties of ABS/CNT and ABS/M5 

nanocomposites. .............................................................................................. 181 
Table 6.4-1. Creep compliance data of ABS-graphene and ABS-CNT nanocomposites 

according E.q (5.3-8). ....................................................................................... 187 
Table 6.4-2. Creep compliance data of ABS-graphene and ABS-CNT nanocomposites 

according E.q (5.3-8). ....................................................................................... 189 
Table 6.4-3. The activation energy for the creep process. ..................................... 190 
Table 6.5-1. Summary of the main properties of ABS matrix and its composites with 

GNP-M5 and CNT nanofillers. The values at 2 wt% and 8 wt% are reported. . 194 
Table 7.1-1. Designation and formulation of ABS/CNT/M5 hybrid nanocomposites 

dependence of melt flow index (220°C/10 Kg). ................................................ 196 
Table 7.1-2. Tensile properties of ABS/M5/CNT hybrid nanocomposites. ............. 198 
Table 7.1-3. Electrical volume resistivity of ABS /M5/CNT hybrid nanocomposites with 

6 wt% of nanofillers at an applied voltage of 5 V.............................................. 200 
Table 7.1-4. The summary of properties graphene-CNT hybrid nanocomposites. . 202 
Table 7.2-1. Quasi-static tensile properties of ABS and its nanocomposite of filaments 

(E) and FDM samples (HC, H45, and PC). ...................................................... 207 
Table 7.2-2.  Comparison of selected properties of ABS nanocomposites studied in 

this research with respect to other carbon-based engineering polymers. ........ 213 
Table 9.1-1. Nanocomposites formulations used in the preparation of FDM specimens.

 .......................................................................................................................... 217 



XXIV 

Table 9.1-2. Density of the carbonaceous fillers, polymer nanocomposites volume 
fraction, density and voids fraction. .................................................................. 219 

Table 9.1-3. Electrical conductivity (σ) of extruded filaments and the specimens 
obtained via FDM with 3 wt% of nanofillers. ..................................................... 226 

Table 9.1-4. Total EMI SE, shielding effectiveness by reflection (SER) and shielding 
effectiveness by absorption (SEA) at the frequency range of 8 to 12 GHz of neat 
ABS and carbon-based nanocomposites. ........................................................ 230 

Table 9.1-5. Quasi-static tensile properties of ABS and its nanocomposite of filaments.
 .......................................................................................................................... 231 

Table 9.1-6. Quasi-static tensile properties of ABS and its nanocomposite of 3D 
samples. ........................................................................................................... 233 

 

  



XXV 

List of abbreviation and acronyms 

ADR Apparent draw ratio 
AM Additive manufacturing  
CAD Computer-aided design  
CaCO3 Calcium carbonate 
CB Carbon black 
CF Carbon fibres 
DR Effective draw ratio 
ESD Electrostatic discharge 
GO Graphene oxide 
K Potassium 
ABS Acrylonitrile-butadiene-styrene 
CAD Computer-aided design 
CM Compression molding 
CNT Carbon nanotubes 
CVD Chemical vapour deposition 
DMA Dynamic mechanical thermal analysis 
DS Die-swelling 
DSC Differential scanning calorimetry analysis 
E Elastic modulus 
E’ Storage modulus 
E’’ Loss modulus 
EMI SE Electromagnetic interference shielding effectiveness EMI SE 
FDM Fused deposition modelling 
FESEM Field emission scanning electron microscope 
FTIR Fourier transform infrared spectroscopy 
GIC Nature graphite 
GNP Graphene nanoplatelets 
HNO3 Nitric acid 
MEMS Microelectromechanical systems 
MFI Melt flow index 
MMLR Maximum mass loss rate 
MMT Montmorillonite 
MVR Melt volume-flow rate 
MWCNT Multi-walled carbon nanotubes 
OFT Total orientation factor in fiber 
P Propagation energy 
PC Polycarbonate 
PCL Polycaprolactone 
PEEK Polyether ether ketone 
PEI Polyetherimideand 
PLA Polylactic acid 
PMMA Polymethyl methacrylate 
PNCs Polymer nanocomposites 
PP Polypropylene 
PS Polystyrene 



XXVI 

PU Polyurethane 
r-GO Reduced graphene oxide 
SAN Styrene-acrylonitrile 
SC-3D printing Solvent-cast 3D printing 
SD Cross sectional area of the extrusion die 
SDE Cross-sectional area of the extruder die hole 
SF Cross-sectional area of the filament 
SiO2 Silica 
SLA Stereolithography 
SLS Selective laser sintering 
SWCNT Single-walled carbon nanotubes 
TC Crystallization Temperature 
TEB Tensile energy to break 
TEM Transmission electron microscopy 
Tg Glass transition temperature 
TGA Thermogravimetric analysis 
Tm Melting temperature 
UV-3D printing Ultraviolet-assisted 3D printing 
Vv Volume fraction 
XPS X-ray photoelectron spectroscopy 
ΔHc Crystallization enthalpy 
ΔHm Enthalpy of fusion of lubricant 



1 

Chapter I 

Introduction 

Additive manufacturing (AM) is a technology of building objects layer-by-layer 

based on computer-aided design (CAD) [1]. This technology attracts strong interest 

from both industry and academic for the challenging possibility to build objects with 

complex shapes and minimal use of harmful chemicals at a reasonable speed [2-5]. 

Among AM methods, fused deposition modelling (FDM) is one of the most common 

techniques. In this process, a filament of a thermoplastic polymer is extruded at a 

temperature above its glass transition or melting temperature through a nozzle and 

deposited layer-by-layer on a platform to build a tridimensional (3D) object. In fact, the 

term 3D printing is frequently used to refer to this technology. The most frequently 

used thermoplastic polymers in FDM are acrylonitrile-butadiene-styrene (ABS), and 

polylactic acid (PLA) [6-9]. One of the current limitations of this AM technique is related 

to the limited mechanical properties of the 3D-printed parts [10-12]. 

Development of composite materials could be a way to improve the mechanical 

properties of components produced by FDM. In recent years, polymer 

nanocomposites have attracted attention due to the possibility of improving the 

properties of host matrices with a small amount of filler. Adding nanomaterials such as 

carbon nanotubes, nanowires, and nanoparticles to matrices such as polymers, 

metals, and ceramics via AM has the potential to improve the performance of the 

resulting components [3, 13]. A quite limited amount of information is available in the 

open scientific literature on the development of ABS-based micro or nanocomposites 

for FDM application. In particular, reinforcing materials have been considered in form 

of spherical particles (such as titanium dioxide [12] or fumed silica [14] or carbon black 

[15, 16]), microfibers (such as jute fibres [12], short glass fibres [17] and carbon fibres 

[10, 11]) nanofibers (such as vapour-grown carbon fibres [18]), carbon nanotubes [19-

22] and nanoclays [23]. According to the ISI Web of Knowledge database, about 116 

papers published in the scientific journal in the period 1980-2018 contain the keywords 

“nanocomposite” and “3D printing”. 

Starting from these considerations, the aim of work was mainly to produce 

carbon-based nanocomposites through a solvent-free procedure for fused deposition 

modelling application. The introduction of carbonaceous nanofillers within polymers 

for FDM may allow an enhancement of their properties (i.e. mechanical and 

functional), without impairing their processability. Specifically, ABS nanocomposites 

based on different nanofillers (graphene and carbon nanotubes) were processed 

through melt compounding and extrusion. To evaluate the effect of nanofillers, the 

properties of polymeric matrix and nanocomposites were monitored on the samples 

obtained by compression molding, extruded filament, and FDM-printed parts. To 

achieve these purpose, different kinds of nanocomposites were considered: 
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 ABS-graphene nanocomposites. In this case nanocomposites were ABS 

matrix filled with a low amount (2-8 wt%) of graphene nanoplatelets (GNP). 

Four different types of GNP with the different specific surface area (from 

120 up to 750 m2/g) were used (see Chapter IV).  

 ABS-carbon nanotube nanocomposites. For this purpose carbon 

nanotubes with an average length of 1.5 m and a diameter of 9.5 nm were 

used in the range of 1-8 wt% (see Chapter V). 

 ABS-graphene-carbon nanotube hybrid nanocomposites. In this case, 

ABS was reinforced by various mixtures of graphene and carbon 

nanotubes at a total nanofiller amount of 6 wt % (see Chapter VI and 

Chapter VII). 

 ABS-carbon black and/ or carbon nanotube nanocomposites. In this 

case, ABS was reinforced by various mixtures of carbon black and carbon 

nanotubes at 3 wt% and 5 wt% (see Chapter IX). 

To understand the microstructure and the mechanical properties of the 

nanocomposites, several techniques were applied. Scanning electron microscopy 

(SEM) was employed to evaluate the filler dispersion in the matrix and adhesion level. 

The processability of materials was evaluated through the melt flow test. Calorimetric 

analysis was carried out to evaluate the effect of the nanofillers on the glass transition 

temperature of the neat matrix and the thermal stability. The elastic modulus, fracture 

behaviour was estimated through quasi-static tensile tests, to assess the effect of 

fillers on the tensile properties. A more detailed analysis on the viscoelastic behaviour 

of nanocomposites at different temperature, coefficient of thermal expansion and 

creep compliance was determined by the dynamic mechanical thermal analysis. The 

electrical behaviour of materials was analysed by electrical resistivity measurements 

and by evaluation of the Joule's effect and the electromagnetic interference shielding 

effectiveness (EMI SE) properties of nanocomposites. Additionally, strain monitoring 

tests were also conducted in which the piezoresistive behaviour of 3D printed parts 

was. 

The main target was to compare the results obtained by compression molding 

and FDM processes to understand the influence of processing conditions on the 

material behaviour and finally to assess the influence of selected FDM parameters on 

the final nanofilled FDM part properties.  
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Chapter II 

Background 

2.1 Additive manufacturing (AM) 

Additive manufacturing (AM) is defined as a technology capable of joining 

materials to make objects from 3D model data, usually layer upon layer, as opposed 

to subtractive manufacturing methodologies. The AM machine reads in data from a 

digital model and lays downs or adds successive layers of liquid, powder, or sheet 

material, in a layer-upon-layer fashion to fabricate a 3D object. In fact, the term of “3D 

printing” or “rapid prototyping” are identified as the synonym of additive manufacturing. 

AM processes have been developed in more than 20 years and founded 

applications in aerospace, automotive, biomedical, digital art, architectural design, etc. 

This technology can offer numerous benefits such as the challenging possibility to 

build objects with complex shapes, no assembly required for components, fewer 

materials waste, and minimal use of harmful chemicals at a reasonable speed [2-5]. 

2.1.1 Main phases of an AM process 

All the AM processes share some common operations that are always required 

for manufacturing of generic products. AM involves a number of steps that move from 

the virtual CAD concept to resultant physical parts. The process flow chart of additive 

manufacture is presented in Figure 2.1-1 [24]. 

 

 
Figure 2.1-1. Additive manufacturing (AM) process flow [24]. 
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- Step1-CAD-based 3D model: For the initial of AM process, a 3D digital model 

can be obtained by CAD design, available on the internet, or 3D scanning 

physical objects. CAD-based model is produced in the available software such 

as Auto-cad or SolidWorks. 

- Step 2-Conversion to STL file: The 3D model is converted to STL file which 

describes the external closed surface. Some AM machines accept the STL file 

format which is export from CAD software. 

- Step 3-Sliced layers and loading to AM machines: The STL files are used to 

control the printing process through slicing software (or called CAM software). 

Some open slicing software are available such as Slic3r, and Cura and non-free 

CAM software including Kisslicer, Netfabb, and MakerWare. Consequently, 

from CAM software G-code file is exported and loaded in the AM machine. 

- Step 4-Machine Setup: Before the build process, the AM machine must be 

properly set up such as the build parameters like the material constraints, 

energy source, layer thickness, timings, etc. 

- Step 5-Build: Following the setting in CAM software, the objects are built layer-

by-layer in an automated process. AM machines have different working 

principals. Depending on the object's size, the machine and the materials used, 

this process could take hours or even days to complete. Be sure to check the 

machine periodically to make sure there are no errors. 

- Step 6-Removal: Remove the printed object (or multiple objects in some cases) 

from the machine. 

- Step 7-Postprocessing: Once the 3D-objects are obtained, the post process 

can be done such as removal of flashes or support structures. Some of AM 

techniques case the rough surface of parts. Therefore, some surface finishing 

like mechanical sanding or solvent vapor smoothing operations or painting. 

- Step 8-Application: After post-processing, printed-parts are ready for use. It 

should be noted that parts may not behave according to the standard materials 

specifications from conventional manufacturing approaches (like molding and 

casting) due to the presence of small voids trapped inside structure parts. 

2.1.2 Types of AM processes 

There are several AM processes with different capabilities, advantages, and 

limitations, as summarized in Table 2.1-1. Figure 2.1-2 describes the evolutions of 3D 

printing techniques concerning the time and resolution and possible materials used. 
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Figure 2.1-2. The evolution of 3D printing techniques: resolutions and compatible 

materials [25]. 

 
Table 2.1-1. Summary of the 3D printing techniques [25]. 

 

- Stereolithography (SLA): SLA patented by Chuck Hull in 1986, is a form of 

3D-printing technology used a focused UV laser beam to photopolymerize the 

uncured resin a layer-by-layer. The laser beam is used to solidify the selected 

thin layer, and then the resin container moves downward or upward to grow 

another layer. SLA is capable of achieving the high resolution of 100 μm. 
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- Selective laser sintering (SLS): This technique were developed by a team at 

the University of Texas Austin in mid-1980s. The SLS, which is one of the 

powder bed 3D printing, uses scanning laser beam (e.g. CO2 laser) to sinter the 

powdered materials at the cross-sections. After the first layer is hardened, the 

powder bed move downward, allowing a new layer of materials apply on the top 

and the process is repeated until to obtain 3D parts. SLS enable to fabricate 

with the resolution of around a few tens of microns and the equipment costs a 

few tens of thousand dollars. 

- Binder jetting: Binder jetting is also powder bed 3D printing technique, 

developed by Emanuel Sachs and his team at Massachusetts Institute of 

Technology in the early 1990s. The binder jetting uses the liquid adhesive to 

selectively deposit to join powder particles. After the liquid spreading 

solidification, it is repeated for the next layers until the printing process is 

complete. This technique has some drawbacks such as the high cost of the 

powder bed, rough surface finish, and relatively low resolution of the printed 

parts and post-processing treatment (e.g., thermal sintering or impregnating 

with another material). 

- Fused deposition modelling (FDM): The FDM, developed by Scott Crump 

primarily as a rapid prototyping tool, is the extrusion-based 3D printing 

technique that utilizes thermoplastics as printing materials. The technique is one 

of the most popular technologies in the era of 3D printing and is the foundation 

of most commercial low-cost 3D printers that use thermoplastic spools as 

feeding materials. The detail of FDM will be described in Section 2.2. 

- PolyJet inkjet printing: This rapid prototyping process uses ink-jet technology 

combined with UV curable materials to quickly and economically produce highly 

detailed and high-precision physical prototypes with a resolution about 30 μm. 

Similar to an ink-jet printer lays down pigment, the PolyJect print head deposits 

a small amount of ultraviolet curable materials on build platform to form a single 

cross-section of the part, while an ultraviolet light attached to the print head 

simultaneously cures the materials. Once a cross-section is complete, the build 

platform is lowered to make room for next layer until the end of the printing 

process.   

-  Ultraviolet-assisted 3D printing (UV-3D printing) and solvent-cast 3D 

printing (SC-3D printing):  These printing processes are among the new-

emerging techniques, which deposits the materials directly from continuous 

filament to build complex 3D features without any support materials. In this UV-

3D printing, a dispensing apparatus is capable of moving in three directions (X, 

Y and Z axe) and a UV laser is employed to solidify an uncured viscous liquid 

resin in seconds after extrusion. For SC-3D printing, a viscous ink is made by 

dissolving a polymer in a solvent. The deposited filaments solidify when the 
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solvent evaporates within a second. The minimum feature size of the structures 

fabricated by these two techniques is around 100 μm. These techniques enable 

the fabrication of microstructures with spanning and freeform features. 

2.2 Fused deposition modelling 

Among AM methods, fused deposition modelling (FDM) is one of the most 

common techniques. The price of an FDM printer may be as low as a thousand dollars. 

Due to its low cost and variety of compatible materials, FDM is favourable for research 

communities, industries, and home users. 

This is an extrusion based system, in which a thermoplastic polymer is supplied 

as a continuous feedstock filament. It is pushed into a heating chamber by a tractor 

wheel arrangement and it is heated until softening or melting. The extrusion pressure 

is given by the portion of filament pushed into the chamber that forces the softened 

material through the nozzle. The extruder head is able to scan on a horizontal plane 

as well as starting and stopping the flow of material. In addition, the deposition bed 

can move in the vertical direction. Once a layer is completed, the bed moves the part 

downwards, so that a further layer can be produced. In order to obtain a flow of 

material with constant rate and constant cross-section diameter, the extrusion 

pressure and the travel speed of the nozzle across a depositing surface must remain 

as constant as possible during all deposition phases. 

 

 
Figure 2.2-1. The scheme of FDM process includes a movable platform (1); a 

feedstock filament (2); feeding rolls (3) that press the yarn through a heated die (4) 

with a supportive structure (5) [26]. 
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2.2.1 Filament production by extrusion 

The continuous feedstock filaments are usually produced by melt extrusion. 

Melt extrusion is a manufacturing processing method in which continuous profiles such 

as sheets, tubes, fibres, and films are formed from a molten plastic mass. During 

extrusion process, the polymers matrix and additives can be mixed together due to the 

high shear stress in the extrusion profile. Therefore forces allow the additives to be 

homogeneously dispersed in the molten polymer. The schematic of extrusion process 

is presented in Figure 2.2-2 including materials feeder, extruder, die, cooling system 

(air or/and water). 

 

 
Figure 2.2-2. The basic component of an extrusion process [27]. 

 

The melting extrusion process is performed by using an extruder that transport 

material down the barrel. There are two types of extruders: single-screw and twin-

screws extruders as described in Figure 2.2-3. The main regions can be generally 

identified in extrusion screws: solids conveying, melt and melt pumping. 

 

 
Figure 2.2-3. Cross-section of single-screw and twin-screws extruder barrel. 

- Solids conveying (feeding zone) - in this zone, materials are filled into hopper 

and fall by gravity into the heated cylinder when the screw of extruder begin to 
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rotate. The height of the threads of the screw is high and constant, and the 

granules occupy a very high volume due to high voids. 

- Melting zone (compression zone) - in this zone, the molten polymer is 

transported and compressed. Due to the heat exchange with the walls, the 

polymers melt. In order to compress the polymers in this zone, the screw thread 

is design to be lower and higher of the core screw. Therefore, internal pressure 

increases, and cavities and presented gas may be eliminated. 

- Melt pumping zone (metering zone) – in this zone the molten polymer through 

the die is pushed by internal pressure. Similar the feeding zone, the threat screw 

is constant throughout this zone. 

Single-screw extruders are usually used for the conventional polymer, whereas 

twin-screws extruders are mostly employed for melt-mixing of polymers and additives 

such as pigments, reinforcements and fillers. To obtain good materials dispersion, the 

twin-screws extruder is favoured because of the homogenous and consistent mixing. 

In this type of extruder, materials melt in the barrels due to the frictional heating and 

undergo the shearing introduced between two rotating screws and between screws 

and the wall of the barrels. In addition, some advantage of twin-screws over single-

screw extruders are high capacity, short time residence, facility in cleaning, and the 

possibility to work with thermally sensible materials [28]. 

The screws of twin-screws extruder can be counter-rotating (Figure 2.2-4a) or 

co-rotating (Figure 2.2-4b). The counter-rotating screw is usually used for the profiles 

extrusion, while the co-rotating screw is usually suitable for the mixing process [29]. 

 

 

  
(a). Counter-rotating screw   (b). Co-rotating screw 

Figure 2.2-4. Scheme of types of extrusion screw. 

2.2.2 FDM materials 

The most frequently materials used in FDM are thermoplastic polymers such as 

acrylonitrile-butadiene-styrene (ABS) and polylactic acid (PLA), but also 

polycarbonate (PC) [6], polyamide (PA) [30], polystyrene (PS) [31], polyurethane 

(TPU), polypropylene (PP) and polycaprolactone (PCL) [7-9] have been considered 

[6-9]. Single, double, or even triple-head 3D printing machines have been used with 

different polymers in order to modulate the properties, as described by Leigh et al. [15] 

with ABS, PLA and PCL. High-temperature resistance thermoplastics such as 
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polyetherimide (PEI) and polyether ether ketone (PEEK) are also being adapted for 

the FDM printing process [32-34]. 

Among the materials used in FDM process, ABS is the most popular because it 

has a good properties profile characterized by high rigidity and strength, easy 

processing characteristics, chemical resistance, dimensional stability, and good 

surface finishing. This thermoplastic polymer has been used for various applications 

in the automotive sector, electronic devices, domestic appliances, etc. [3, 35-39]. The 

properties of ABS materials and ABS blend, which are widely used by the company 

Stratasys, the inventor of FDM process, are described in Table 2.2-1. 

 

Table 2.2-1. Variations in properties for the ABS range of FDM materials (compiled 

from Stratasys data sheets) [24]. 

 

2.2.3 FDM processing parameters 

FDM is a complicated process containing a large number of parameters. These 

parameters will influence the part quality and materials properties (e.g. mechanical 

properties). FDM rapid prototyping technology can potentially deliver good part quality, 

high productivity rate, safety, low manufacturing cost and short lead time. In order to 

reach such objectives, proper process parameters must be assessed. 

The main parameters that can affect the proprieties and quality of FDM products 

are shown in Figure 2.2-5. 
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Figure 2.2-5. Cause and effect diagram of FDM process parameters [40]. 

 

Specifically, main working parameters in FDM process are shown in Figure 2.2-6, and 

these parameters are also described as following [40]: 

- Build orientation: the direction in which the part is grown inside the build platform 

with respect to X, Y, Z axes, as shown in Figure 2.2-6a. 

- Layer thickness (or height): the thickness of the layer deposited through printing 

nozzle (see Figure 2.2-6b). The value of layer thickness depends on the 

extruded materials and size of nozzle, usually in the range of 0.1 -0.4 mm. 

- Air gap (or infill density): the gap between adjacent raster tool paths at the same 

layer as presented in Figure 2.2-6c. 

- Raster angle: the angle of the raster tool paths with respect to the X-axis on the 

XY part layer. The typical raster angles from 0˚ to 90˚ are used. 

- Raster width: the width of the material deposited raster which depends on 

nozzle size. Usually, larger of raster width provides a stronger interior, while 

smaller one consumes less production time and materials. 

- Contour width:  similar to raster width, the width of contour tool path. 

- Number of contours: number build around inner part curves, as shown in Figure 

2.2-6c. The more number of contours may improve perimeter part walls. 

- Contour to contour air gap: Similar to the air gap, the gap between contours 

when the multiple contours are used. 

- Perimeter to raster air gap: the gap between the innermost contour and the 

edge of the raster fill inside of the contour. 
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Figure 2.2-6. FDM parameters: (a) Build orientations, (b) layer thickness, and (c) 

FDM tool path parameters [40]. 

2.2.4 Limitations and processing problems of FDM 

Even if FDM machines meet the demands of many industrial users due to low 

cost, the disadvantages of this technology include building speed, accuracy, and 

materials density.  For example, the average layer thickness is in the range of 0.1-0.3 

mm, and the higher level of resolution (about 0.040 mm) can be only provided by the 

highly-costing machines at longer build times. Additionally, all nozzles are circular, and 

therefore it is impossible to draw sharp external corners and a radius equivalent to that 

of the nozzle will be at any corner or edge. An important design consideration when 

using FDM is to account for build orientation. The FDM parts usually behave as 

isotropic in the XY plane, but when deposited microfilaments along with a particular 

direction preferentially, they behave as anisotropic. Moreover, the strength of FDM 

parts builds in Z-direction is measurably is lower than those in the XY plane. Therefore, 

it is preferable to grow the parts, which the major stress axes along the XY plane rather 

than in the Z-direction [12, 40]. 

During FDM process, several types of nudesired processing problems could 

occur such as not extruding at the start, not sticking to the plate form, under-extrusion, 

over-extrusion, gaps in top layers, string or oozing, overheating, layer shifting, 

warping, and cracking. Another critical problem during 3D printing, especially for high 

viscous materials, is nozzle clogging. All those examples are shown in Figure 2.2-7. 
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 Not extruding at start Not sticking to bed Under-extrusion Over-extruison 

    
 Gaps in top layers String or oozing overheating layer shifting 

     
 Warping layer-splitting or cracking nozzle clogging  

Figure 2.2-7. Failure during FDM process [41]. 

2.3 Polymer nanocomposites 

Polymer nanocomposites (PNCs) have blossomed in both academic and 

industrial field over the last twenty years due to the remarkable properties of 

nanostructure materials. Polymer nanocomposites are referred to the polymeric 

material (i.e. thermoplastic, thermoset, and elastomer) typically consisting one or more 

nanoscale materials (nanoparticles). 

Composites are distinguished by the characteristic size of the inorganic filler 

particles: (i) traditional composites or micro-composites that contain micrometre-scale 

fillers and (ii) nanocomposites containing nanometre-scale fillers which having at least 

a characteristic size less than 100 nm. The nanofillers are generally classified 

depending on the number of dimensions in the nanometer size (see Figure 2.3-1): 

- one nanodimensional filler (1-D) contains layered structural form such as 

layered silicates, nanoclay, mica, and graphene nanoplatelets. 

- two naodimensional filler (2-D) contains rods, tubes and whiskers as, for 

example, carbon nanotubes, silver nanorods, cellulose nanowhiskers. 

- three naodimensional filler (3-D) contains spherical particles like carbon black, 

silica dioxide and titanium oxide. 
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Figure 2.3-1. Three categories of nanofillers based on particle geometry [42]. 

The nanometric size of the filler provided these nanocomposites with 

remarkable improvements of mechanical, thermal, optical and physic-chemical 

properties over the neat polymer. In order to achieve all these positive effects, the 

dispersion of nanofillers and the filler/matrix adhesion play a dominant role. In fact, the 

crucial problem in nanocomposite manufacturing is poor dispersion. The possible 

types of dispersion and distribution of nanofillers in the polymer matrix are shown in 

Figure 2.3-2. 

 
Figure 2.3-2. Schematic representation of the degree of dispersion and 

distribution of particles in a polymer matrix: (a) good dispersion, poor distribution, (b) 

poor dispersion, good distribution, (c) poor dispersion, poor distribution, (d) good 

dispersion, good distribution [43]. 

 

In order to obtain a high dispersion degree and good interfacial interaction, the 

processing techniques were employed such as traditional melt mixing with twin screw 
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extruder and injection moulding, solution mixing assisted with the aids of sonication 

and surfactants, in-situ polymerization. 

In addition, the dispersion level of nanofillers can be improved by surface 

treatment of nanofillers to aggregation phenomena within the polymer matrix. Due to 

very small size of colloid particle, the surface forces at interface of particle are large, 

resulting in agglomerates. In order to separate and prevent particles from 

agglomeration, the particles must hold the sample electrical charge (positive or 

negative) to produce a force of mutual electrostatic repulsion between adjacent 

particles, as shown in Figure 2.3-3 [44]. In previous research, various surface 

treatment methods were applied to nanoparticle to increase functional group including 

O2 plasma, nitric acid, nitric acid/sulfuric acid, acid/oxidizer, ozone/heat, UV/ozone, 

and amine grafting treatment [45, 46]. X-Ray Photoelectron Spectroscopy (XPS) is a 

common technique to quantify the amount and type of functional groups on the particle 

surface. 

 

 
 (a) (b) 

Figure 2.3-3. Collision behaviour of (a) charged particles and (b) uncharged particles 

[44]. 

 

 The investigation of the interfacial properties is important for the understanding 

of the structure/properties relationships governing the mechanical behaviour of 

polymer nanocomposites [47]. Using a compatibilizer within the polymer matrix and 

functional nanoparticles could enhance the filler/matrix interface. Organosilane 

compounds, MA-grafted organic fatty acid derivative, MA grafted petroleum-based 

polymers (e.g. MA-g-HDPE, MA-g-PP, etc.) are used commonly as coupling agents or 

compatibilizers. For examples, the possible chemical reactions may include the 

reactions of the aforementioned -COOH groups of compatibilizers and the -OH groups 

on surface of oxidized  carbon fibre [48]. The interaction scheme of coupling is 

presented in Figure 2.3-4. 
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Figure 2.3-4. The proposed interaction scheme of coupling between carbon 

fibre and LDPE matrix [48]. 

2.3.1 Graphene-based nanocomposites 

2.3.1.1 Graphene nanoplatelets 

Graphene nanoplatelets are based on flake-like carbon form ranging from 

single-layer graphene to a variety of related materials changing by layer number, 

lateral dimension, and chemical modification.  Plateleys in the graphene family can be 

classified based on the physical structure and chemical modification [49]: 

- For the physical structure, graphene materials are distinguished by number of 

layer (see Figure 2.3-5): single-layer graphene, double-layer, called few-layer 

graphene (few than 10 graphene layers) and multi-layer graphene or graphene 

nanoplatelets (10-100 graphene layer). 

- Depending on the chemical modification, graphene can be either defined as 

pristine graphene, graphene oxide, reduced graphene oxide or functionalized 

graphene. 

 
Figure 2.3-5. Graphene nanomaterials based on physical structure: (A) Single layer 

graphene, (B) double-layer graphene, (C) few-layer graphene and (D) graphene 

platelets [49]. 
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In this project, graphene nanoplatelets (GNP) have been used. Graphene 

nanoplatelets can be synthesized through chemical vapor depositions and discharging 

methods, but the common approaches are mechanical milling and graphite 

intercalation chemistry [50]. Mechanical milling is a top-down technique by breaking 

down the Van de Waals of bulk graphite. However, these approaches have the 

drawback of large particle size and broad particle size distribution. 

Graphene nanoplatelets (GNP) are a type of graphitic nanofillers composed of 

the stacked 2D graphene sheet. The stacked layers are bonded to each other by weak 

Van der Waals forces with a constant interlayer distance of 0.335 nm [51]. The 

thickness of graphene nanoplatelets is a range from several to dozen nanometers, as 

compared to their diameter, usually in the microscale, which leads to the high specific 

surface area of GNPs (with a theoretical value of 2630–2965 m2/g) and high aspect 

ratios. In comparison with other classic 2D nanofillers, such as nanoclays, GNPs have 

lower mass density and are highly electrically and thermally conductive, due to the sp2 

hybridized carbons in the monolayer graphenes within the GNPs. The single graphene 

also possesses superior mechanical properties with a reported modulus of 1100 GPa 

and strength of 125 GPa [49], thermal conductivity of 3000 W/mK (in-plane) and 6 

W/mK (z-axis), and electrical conductivity 107 S/m (in-plane) and 102 S/m( Z-axis) [51, 

52]. 

2.3.1.2 Properties of graphene-based polymer nanocomposites 

Graphene nanoparticles are under investigation as potential reinforcing fillers 

for polymer-based nanocomposites. This kind of nanofiller has been used as 

multifunctional reinforcement resulting in superior mechanical, electrical and thermal 

properties. Therefore, for thermoplastic nanocomposite filled with graphene dramatic 

enhancements of mechanical properties and thermal stabilities were reported [42, 50, 

53-62]. 

Specifically, some studies on ABS with graphite/graphene as nanofillers were 

also reported. Pandey et al. [63] also investigated graphite flake-reinforced ABS up to 

high loading content (40 vol%). At mentioned loading level of filler, flexural modulus 

and loss modulus were enhanced by 92% and 250%, respectively. On the other hand, 

the tensile strength and elongation at break were reduced. They also reported an 

improvement of thermal conductivity of about 250%. Cheol et al. [64] prepared and 

characterized octadecylamine-graphene (C18-graphene) incorporated with ABS. 

Homogeneous dispersion of the hybrid graphene filler, resulting in the improvement of 

thermal and tensile properties. Sachdev et al. [65] reported graphite/ABS through 

compression molding within electromagnetic interference shielding and conductivity 

properties. At 15 wt% of graphene, electromagnetic shielding (EMI SE) and 

conductivity values of -60 dB and 0.166 S/cm were respectively achieved. Ben Difallah 

et al. [38] reported ABS polymer matrix filled with graphite powder through melt 

blending. Graphite powder decreased mechanical properties of neat ABS but 
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improved the friction and wear resistances especially at a filler loading of 7.5 wt%. 

Chong et al. [66] reported on ABS filled with graphene nanosheet with a low 

percolation threshold of 0.13 vol% due to the adopted coagulation method. Fawn et 

al. [67] reported ABS filled virgin graphite and expanded graphite. However, the 

mechanical properties were not enhanced. Hong et al. [68] reported on ABS/graphene 

nanocomposites combined with metal hydroxide nanorods with enhanced mechanical 

and flame retardant properties. Dahiya et al. [69] also reported on ABS filled with 

graphite which enhances the electrical and dielectric properties at a loading level of 

7.6 vol%. Pour et al. [70] reported polycarbonate/ABS polymer blend with graphene 

nanoplatelets reinforced. One type of GNP with a length of 15 µm was investigated 

with improvement by 30% and 54% of tensile and flexural modulus at a content of 3 

wt%. 

2.3.2 Carbon nanotubes based nanocomposites 

2.3.2.1 Carbon nanotubes 

Carbon nanotubes (CNTs) is 2D nanomaterial which is rolled sheets of a 

hexagonal array of carbon atoms. CNTs were first observed by Baker et al. [71] in the 

1970s but were re-discovered by Iijima et al. in 1991 [72]. CNTs have been widely 

investigated as nanofillers due to their remarkable physical, mechanical and electrical 

properties. 

Carbon nanotubes are defined by the number of concentric walls: single-walled 

carbon nanotubes (SWCNT) having only single layer of graphitic carbon atoms, and 

multi-walled carbon nanotubes (MWCNT) with several layers of coaxial carbon tubes, 

as shown in Figure 2.3-6. 

 

 

 
Figure 2.3-6. Graphene and carbon nanotubes: (A) single wall carbon 

nanotube (SWCNT) and (B) multi-wall carbon nanotube (MWCNT) structures [73]. 
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Several synthesis methods of carbon nanotubes have been used to reach a 

variety of diameters, aspect ratio, crystallinity, crystalline orientation, purity, and 

surface chemistry. In particular, CNTs are generally produced by three main 

techniques: electric arc discharge, laser ablation, and chemical vapor deposition 

(CVD) [74]. The advantages and disadvantages of each method are summarized in 

Table 2.3-1. 

- Electric arc discharge: a vapor is created by an arc discharge between two 

carbon electrodes. The direct current (50-120 A) is applied through two high-

purity graphite electrodes in a chamber filled with an inert gas (e.g. helium). At 

the high temperature (approximately 4000 K), graphite fuses, and the matter is 

torn from one electrode is deposited on another electrode forming nanotubes. 

By using this method, SWCNT and MWCNT (with the use of metal catalyst) can 

be produced with an advantage of production of large quantity, but it is difficult 

to control the alignment of the created nanotubes and impure materials. 

-  Laser ablation technique: a graphite target is vaporized by laser ablation beam 

in a quartz tube infilled with an inert gas flow in a furnace at temperature 1000-

1200˚C. This results in soot containing CNTs which are cooled at the walls of a 

quartz tube. By this method, SWCNT mostly in the form of ropes have been 

produced. The CNTs formed by this method are higher quality than those 

produced by the arc discharge method, but the production quantity is low. 

- Chemical vapour deposition (CVD): To grow the nanotubes, two gases 

hydrocarbon and metal catalyst along with inert gas are introduced into the 

reaction chamber. Carbon atom from vaporous hydrocarbons such as ethylene 

and acetylene to supply the growth of the nanotubes. The nanotubes grow on 

the substrate by the decomposition of hydrocarbon while reaction chamber is 

heated at temperature 700-900˚C at the one atmosphere of pressure. CVD is 

the most promise method due to an economically practical method for large-

scale and quite pure CNT production. 

Table 2.3-1. Summary of three most common methods for CNT synthesis [75]. 

Method Arc discharge Laser ablation CVD 

Yield rate >75% >75% >75% 

SWCNT or MWCNT Both Both Both 

Advantages Simple, inexpensive, 

high-quality 

nanotubes 

Relative high purity, 

room-temperature 

synthesis 

Simple, low temperature, high 

purity, large-scale production, 

aligned growth possible 

Disadvantages High temperature, 

purification required, 

tangle nanotubes 

Method limited to 

the lab scale, crude 

production 

purification required 

Synthesis CNTs are usually 

MWCNTs, defects.  
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Table 2.3-2. Theoretical and experimental properties of carbon nanotubes compared 

with graphene [76]. 

Property CNTs Graphene 

Specific gravity 0.8 g/cm3 for SWCNT;  

1.8 g/cm3 for MWCNT (theoretical) 

2.26 g/cm3 

Elastic modulus 1 TPa for SWCNT; 0.3-1 TPa for MWCNT 1 TPa (in-plane) 

Strength 50-500 GPa for SWCNT; 10-60 GPa for MWCNT  

Resistivity 5-50 Ωcm 50 Ωcm (in-plane) 

Thermal conductivity 3000 W/mK (theoretical) 3000 W/mK (in-plane) 

6 W/mK (c-axis) 

Magnetic susceptibility 22 ×106 EMU/g (perpendicular with the plane) 

0.2 ×106 EMU/g (parallel with plane) 

 

Thermal expansion Negligible (theoretical) -1 × 10-6 (in-plane) 

29 × 10-6 (c-axis) 

Thermal stability >700˚C (in air); 2800˚C (in vacuum) 450-650˚C (in air) 

Specific surface area 10-20 m2/g  

 

CNTs usually have diameters in the range of ~1–50 nm and lengths of many 

microns [77]. Due to the very small size of CNTs, physical properties of CNTs is 

relatively more difficult to determine compared to other fillers. However, theoretical 

and experimental properties of carbon nanotubes have been reported in Table 2.3-2. 

The CNT also possesses superior mechanical properties with a reported modulus of 

1 TPa for SWCNT and 0.3-1 TPa for MWCNT  and strength of 50-500 GPa for SWCNT 

and 10-60 GPa for MWCNT, thermal conductivity 3000 W/mK, and electrical 

conductivity 5-50 Ω.cm [75, 76]. 

2.3.2.2 Properties of CNT-based polymer nanocomposites 

CNT-based polymer nanocomposites have used in real-world applications in 

different fields including transportation, automotive, aerospace, defence, sporting 

goods, and energy and infrastructure sectors. In addition, high electrical conductive 

CNT-based polymer nanocomposites have been used as electrostatic discharge 

(ESD) and electromagnetic interference (EMI) shielding material, circuits and the 

conductive coating. 

The processing technique determines the dispersion level of CNTs. CNT-based 

polymer nanocomposites are commonly produced through melt compounding, 

solution mixing and in-situ polymerization techniques. Among them, the direct melt 

blending method is more commercially for industrial scale and environmentally 

friendly. 

The addition of particles polymers matrix aim to improve its mechanical 

properties (i.e. the elastic modulus and tensile strength). By incorporating a small 

amount of CNT, significant improvement of mechanical properties of the polymer. Jyoti 

et al. [78] reported that addition of 3 wt% MWCNTs in the ABS by extrusion and 
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injection molding method, results in 23% and 29% improvements in tensile modulus 

and tensile strength, respectively. They have also reported an increase of storage 

modulus (glassy region) by 1.7 times on adding 10 wt% MWCNTs in ABS [79]. 

Mohammed et al. [80] also found significant improvement in the strength and modulus 

(72% and 107%) on the addition of 10 wt% MWCNTs in ABS matrix. Homogeneous 

dispersion and well-embedded of CNTs in polymer matrix had a significant effect on 

the properties of resulting composites. Lijun et al. [81] reported that anisotropy of 

PLA/MWCNT nanocomposites by using a twin-screw extrusion, and the strength of 

nanocomposites at 3 wt% of MWCNTs increased. 

Beside good effect of CNT on mechanical properties, electrical properties of 

CNT-polymer composites were also investigated. Highly conductive electrical 

properties have been wildly reported for CNT-based nanocomposites in the scientific 

literature [78, 80-84]. The conductivity of CNT-polymer composites depends on 

properties of CNTs including the type of CNT, aspect ratio, surface functionalization 

and CNT content. The conductivity of nanocomposites suddenly increases above the 

critical concentration, transiting the materials from isolated to conductive, as shown in 

Figure 2.3-7. This critical filler concentration is called electrical percolation threshold 

concentration. At percolation threshold concentration, filler forms a three-dimensional 

conductive network within the matrix (see Figure 2.3-8), hence electron can tunnel 

from one filler to another, and in doing so, and it overcomes the low conductivity 

caused by the insulating polymer matrix. The intrinsic and aspect ratio of CNT affect 

the percolation threshold. For example, the higher aspect ratio of CNT, the smaller 

percolation threshold of CNT in polymer [85]. In addition, Saleh et al. [86] reported 

carbon nanotube (CNT) dispersed in an ABS matrix was prepared by solution mixing. 

The good dispersion and selective localization of CNT in the styrene-acrylonitrile 

(SAN) phase of the ABS matrix allowed to prepare nanocomposites with a percolation 

threshold of only 0.06 vol%. Brajesh et al. [87] reported that the electric conductivity 

measurement revealed the electrical percolation threshold at around 0.60 wt % of 

MWCNT in ABS matrix. 

 
Figure 2.3-7. The conductivity of polymer composites as a function of filler 

concentration [88]. 
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Figure 2.3-8. A conductive path in a composite with filamentary additives [44]. 

 

The high electrical conductivity of CNT-based polymer nanocomposites leads 

to applications in electronics, automotive and aerospace with uses electromagnetic 

interference (EMI) shielding. Considerable research efforts have been done for the 

investigation on conducting polymer nanocomposites for EMI shielding materials to 

substitute the metal-based materials due to light weight, resistance to corrosion and 

flexibility of processing. By incorporating CNT nanoparticle, remarkable results of EMI 

SE of nanocomposites have been reported, as shown in Table 2.3-3. 

 

Table 2.3-3. Electromagnetic interference (EMI) shielding of CNT-polymer 

nanocomposites. 

Matrix types CNT content EMI SE (-dB) Reference 

Polypropylene (PP) 7.5 vol% 35 Al-Saleh et al. (2009) [89] 

Polystyrene (PS) 7 wt% 20 Yang et al. (2005) [90] 

Polyurethane (PU) 20 wt% 17 Lui et al. (2007) [91] 

Polymethyl methacrylate 

(PMMA) 

40 wt% 27 Kim et al. (2004) [92] 

Acrylonitrile butadiene 

styrene (ABS) 

10 wt% 39 Jyoti et al. (2015) [78] 

 

 

The EMI SE typically required for commercial application is about -22.0 dB, which 

corresponds to <1% of the transmitted electromagnetic wave. Three types of EMI 

shielding mechanisms have been proposed, namely: reflection, absorption and 

multiple reflections. Some previous studies have shown that in MWCNT/polymer 

nanocomposites, SE is mainly absorption dominated whereas SWCNT/polymer 

nanocomposites are mainly reflection dominated material [85]. The application area of 

EMI shielding materials depends on the dominant shielding mechanism like absorption 

based EMI shielding materials employed in radar, microwave communication 
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technology, stealth (self-concealing) technology, microwave darkroom and anti-EMI 

coating application. 

 
 

Figure 2.3-9. EMI shielding concepts for a slab of conductive nanocomposite (a) 

wave propagation and reflection (b) definition of incoming, reflected and transmitted 

power for shielding effectiveness SE (c) configuration for the definition of reflectivity 

(R) [93]. 

2.4 Development of composites for FDM  

Development of composites materials for FDM technology has attracted a 

remarkable interest because incorporated nanoparticles offer the potential to enhance 

various properties (e.g. mechanical and electrical) of 3D-printed parts. For instance, 

high-strength products can be applied in aerospace sectors [13, 25, 94]. Moreover, 

the dispersion of conductive nanoparticles in a polymer matrix makes it possible to 

produce 3D-printed components for various applications such as electronic sensors 

[15, 19, 95], cases with good electromagnetic interference (EMI) shielding 

performances [96], circuits [97] and microbatteries [98]. 

Over 200 works including few literature review [94, 99, 100] have been done on 

the composites for FDM. Reinforced materials used are such as titanium dioxide [12], 

fumed silica [14], jute fibres [12], short glass fibres [17] and carbon fibres [10, 11, 30, 

101], vapour-grown carbon fibres [18], carbon nanotubes [19-22, 96, 102, 103] and 

nanoclays [23], graphene [97, 102, 104, 105], carbon black [15, 16], iron and copper 

[106]. 

The incorporation of nanofillers usually increases the viscosity of materials 

(flowability) that could affect the printability of nanocomposites filament. The viscosity 

of printing is crucial issue required to choose the mixing strategies in order to obtain 

the proper dispersion of the nanofillers into the polymer matrix. The most common 

mixing method is high shear mixing by melt extrusion at the approximate melting point 

of polymers. 

2.4.1 FDM composites with enhanced mechanical properties 

The composites in 3D printing process could provide the remarkable 

mechanical strength and durability that can be used in aerospace, automotive industry, 

wind energy and similar high material performance demanding industries. 
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Among reinforcing materials, carbon fibres (CF) lead to the remarkable 

enhancements of stiffness and strength. For recent examples, Tekinalp et al. [11] 

reported that 30 wt% CF-ABS composites exhibited significant enhancement 115% 

and 700% in strength and elastic modulus, respectively, as shown in Figure 2.4-1. 

They also mentioned the high fiber orientation in the printing direction, and decreased 

voids between beads (see Figure 2.4-2). Ning et al. [107] incorporated 5 wt% or 7.5 

wt% of CF in ABS with enhancements of 22.5% and 30.5% in tensile strength and 

modulus, respectively. They also indicated that longer CF (150 m vs 100 m) 

provided the better mechanical properties. Guangxin et al. [30] found that the tensile 

strength and flexural strength of 10 wt% CF/PA12 composites were enhanced by 

102% and 251% respectively. Zhong et al. [17] also reported improvement of tensile 

strength by addition of short glass fibers (10-18 wt%). Continuous carbon fiber 

reinforced polymers in FDM is also another interesting research area because 

improvements of mechanical properties are even higher than short fiber. As an 

example by Li [108], the tensile strength of continuous CF/PLA can reach up to 91 

MPa while only 68 MPa for short CF. 

 
Figure 2.4-1. Effect of fiber content and preparation process on (a) tensile strength, 

and (b) modulus, of ABS/CF composites[11]. 

 

Figure 2.4-2. SEM image of (a, b) pure ABS FDM printed, (c) 10 wt% carbon fiber 

(CF) loaded FDM parted, (d) 10 wt% CF load compression-moulded ABS/CF 

composites [11]. 
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Employing nanoparticles in FDM also improves the mechanical properties of 

3D-printed parts. For examples, Zhang et al. [97] found the superior mechanical 

properties of FDM parts by using r-GO/polylactic acid (PLA) of (6wt% r-GO). Wei et 

al.[104] investigated fully exfoliated GO sheets and ABS were mixed in solution in a 

solvent (N-methyl-pyrrolidone) up to a concentration of 5.6 wt%. The GO sheets were 

chemically reduced and the resulting nanocomposites extruded in filaments used to 

feed an FDM machine. Even if the mechanical properties were not investigated, for 

the 3D printed samples containing graphene, a very slight decrease of the coefficient 

of linear thermal expansion (by about 4%) was reported along with a reduction of the 

loss factor. Angel et al. [12] reported the improved strength and modulus of FDM parts 

in XYZ (or horizontal build orientation) 13% and 11% by the addition of titanium dioxide 

in ABS.  The inclusion of CNTs increased Young’s modulus by 30% at 5% CNT loading 

in PLA but reduced the tensile strength and overall toughness of the FDM parts by 

Huseini et al. [109]. Shuna et al. [110] compared the mechanical properties of ABS 

nanocomposites from injection moulding and FDM. Also, different kinds of 

incorporated nanoparticles at a fixed 1 wt% of content are used in FDM process 

including MWCNTs, silica (SiO2), montmorillonite (MMT) and calcium carbonate 

(CaCO3), as shown in Figure 2.4-3. 

 

 

Figure 2.4-3. Mechanical properties of the (1) ABS(injection moudling), (2) ABS, (3) 

ABS/SiO2, (4) ABS/MMT, (5) ABS/MWCNTs, and (6) ABS/CaCO3 nanocomposites 

fabricated by FDM [110]. 

2.4.2 FDM composites with enhanced functional properties 

Conductive nanoparticles have been used in FDM such as carbon black (CB) 

[15, 16], graphene oxide (GO) [104, 111], reduced graphene oxide (r-GO) [97], 

graphene [102, 112] and carbon nanotubes [19, 21, 22, 102, 103]. However, few 
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studies investigated the production of filament feedstock nanocomposites and FDM 

products. For example, Zhang et al. [97] reported the resistivity of composites 

filaments with a diameter of 1.75 mm of r-GO/Polylactic acid (PLA) of 0.21 Ω.cm (6wt% 

r-GO). Zhang et al. [16] reported 15 wt% of CB in ABS resistivity of feedstock filaments 

about 2900 Ω.cm, and they specifically characterized the resistivity of 3D-printed 

composites by some FDM parameters. Wu et al. dispersed MWCNTs in 

polyhydroxyalkanoate to produce feedstock filaments up to 3 wt%, but the resistivity 

of filaments was not described [103].  Wei et al. [104] were able to 3D-print 5.6 wt% of 

GO in ABS matrix, but they did not investigate on electrical properties of composites 

filaments and FDM samples. 

Conductive nanocomposites have been intensively used in electromagnetic 

interference shielding application by adding fillers mostly CNT. The composites for 

EMI shielding applications have been produced through conventional fabrication 

method such as solvent cast and melt mixing followed by compression molding. 

However, there are very few publications about EMI SE from FDM method. For 

example, only one paper by Chizari et al. [96] reported EMI SE of 20 wt% of CNT/PLA 

by solution casting 3D printing (SC3D). The specific EMI SE of 3D scaffolds is -37 

dB.g-1.cm3 compared -70 dB.g-1.cm3 by hot compression process. 

 

 
Figure 2.4-4. Thermal conductivity and tensile modulus of CF/PA12 in two 

different directions [30]. 

 

Another interesting property from FDM nanocomposites is thermal conductivity. 

A remarkable improvement in thermal conductivity of carbon fiber/PA12 composites 

was shown by Guangxin et al. [30]. Due to the establishment of heat-channel, the 

thermal conductivity along the printing direction increased from 0.221W/m/k for pure 

PA12 to 0.835W/m/k for CF/PA12 (increase about 277.8%), as shown Figure 2.4-4. 



27 

Another study is an investigation of thermal conductivity of metal- particle filled ABS 

(copper and iron) [106]. 

3D patterning and complex 3D feather are other benefits offered by 3D printing. 

The ability to 3D print nanocomposites can be used to optimize the sensors’ 

geometries and to replace the existing 2D sensors with a 3D product showing higher 

sensing efficiency and more reliable results [19]. In addition, the ability to construct 

complex 3D features using the new printing nanocomposite materials has been 

interested by various sectors such as microelectromechanical systems (MEMS), lab-

on-a-chip, microfluidics, engineered materials and composites, microelectronics, 

tissue engineering, and photonics (see Figure 2.4-5) [25]. 

 

 
Figure 2.4-5. Various examples of 3D nanocomposite macro- and microstructures 

manufactured using different 3D printing technologies for a wide range of domains 

such as MEMS, microfluidics, engineered materials and composites, 

microelectronics and telecommunications [25]. 



28 

Chapter III 

Experimental 

3.1 Materials 

This work involved the use of acrylonitrile–butadiene–styrene (ABS) as a matrix 

and carbon-based particles as nanofillers. Two grades of ABS with different viscosity 

were used, while two types of carbon-based nanofillers such as graphene 

nanoplatelets and carbon nanotubes were selected. The following paragraphs are 

dedicated to present their properties. 

3.1.1 Acrylonitrile-butadiene-styrene (ABS) 

ABS is produced by a combination of three monomers: acrylonitrile, butadiene, 

and styrene (see Figure 3.1-1) and its property are controlled by the ratio and 

distribution of the unique characteristics of each monomer. For instance, acrylonitrile 

influences the chemical resistance, heat and ageing stability; butadiene promotes 

toughness, impact resistance and low-temperature properties; styrene contributes in 

improving the rigidity, glossy surface appearance, and processability. ABS resins 

contain two phases: a continuous glassy matrix of styrene–acrylonitrile copolymer 

(SAN), and a rubbery phase (butadiene) within SAN graft. SAN branches are grafted 

to poly-butadiene backbone thus forming the boundary to continuous glassy SAN 

matrix. The higher molecular weight of SAN and the higher is its strength. The 

concentration, size, and distribution of the butadiene particles affect product 

toughness and impact strength [113]. 

 

Figure 3.1-1. Chemical representation of acrylonitrile–butadiene–styrene (ABS) 

polymer macromolecule. 

 

The matrices of the nanocomposites used in this work were two different grades 

of acrylonitrile–butadiene–styrene (ABS) polymer in the form of white pellets, provided 

by Versalis S.p.A. (Mantova, Italy) with the tradename Sinkral®L322 and Sinkral®F322. 

Both ABS are high flow moulding grade for general purpose. According to the 

producer’s technical data sheet, both ABS are characterized by a density of 1.04 

g/cm3. The manufacturer reports different viscosity values for the selected ABS 
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grades. In fact, melt flow index (MFI) values of 26 and 14 cm3/10min (220°C/10 kg) 

are reported for Sinkral®L322 and Sinkral®F322, respectively. The principal properties 

of the ABS grades used in this research, according to the producer datasheet, are 

listed in Table 3.1-1. 

 

 
Table 3.1-1. Technical datasheet of the ABS Sinkral®L322 and Sinkral®F322 [114]. 

Properties  Test Standard ABS®L322 ABS®F322 

Melt volume-flow rate, MVR (cm3/10min) ISO 11133 

220°C, 10kg 

26 14 

Density (kg/m3) ISO 1183 1040 1040 

Mechanical properties    

Tensile Modulus (MPa) ISO 527-1/-2 2350 2250 

Yield stress (MPa) ISO 527-1/-2 42 44 

Yield strain (MPa) ISO 527-1/-2 3 3 

Nominal strain at break (%) ISO 527-1/-2 12 30 

Thermal properties    

Glass transition temperature (°C) ISO 11357-1/-2 100 107 

Temp. of deflection under load, ISO 75-1/-2 

(1.80 MPa) 

83 83 

Vicat softening temperature, ISO 306 

(50°C/h 50N) 

96 102 

Coeff. of linear therm. expansion, 

parallel (E-6/K) 

ISO 11359-1/-2 90 90 

Electrical properties    

Volume resistivity (ohm.m) IEC 60093 1E13 1E13 

Surface resistivity (ohm) IEC 60093 1E14 1E14 

Rheological calculation properties    

Density of melt (kg/m3) ISO Data 960 960 

Spec. heat capacity of melt (J/(kg K)) ISO Data 2150 2150 

Test specimen production    

Injection Molding, melt temperature (°C) ISO 294 250 250 

Injection Molding, mold temperature (°C) ISO 10724 60 60 

Injection Molding, pressure at hold 

(MPa) 
ISO 294 70 70 

Other properties    

Water absorption (%) Sim. to ISO 62 0.6 0.6 

Humidity absorption (%) Sim. to ISO 62 0.2 0.2 

 

3.1.2 Graphene nanoplatelets (GNP) 

Four different grades of graphene nanoplatelets (GNP), namely M5, C300, 

C500 and C750 with increasing surface area, i.e., 120-150 m2/g, 300 m2/g, 500 m2/g 

and 750 m2/g, respectively, were purchased from XG Sciences, Lansing, MI, USA. 
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The data available from the producer on the dimension and density of the 

nanoplatelets are reported in Table 3.1-2, and the properties are in Table 3.1-3. 

 

Table 3.1-2. Dimension and density from the producer of graphene nanoplatelets [52]. 

Samples 
Surface area 

(m2/g) 

Lateral 

dimension (μm) 

Thickness 

(nm) 

Density 

(g/cm3) 

GNP-M5 120-150 ~5 6 2.2  

GNP-C300 300 1-2 2 2-2.25 

GNP-C500 500 1-2 2 2-2.25 

GNP-C750 750 1-2 2 2-2.25 

 

Table 3.1-3. Data from the technical datasheet of graphene nanoplatelets [52]. 

Properties Parallel surface Perpendicular surface 

Carbon content (%) >99.5 ~5 

Thermal Conductivity (W/mK) 3000 6 

Thermal Expansion (m/m/K) 4 - 6 ×10-6 0.5-1.0 ×10-6 

Tensile Modulus (GPa) 1000 N/A 

Tensile Strength (GPa) 5 N/A 

Electrical Conductivity (S/m) 107 102 

 

 

  
 (a) (b) 

  
 (c)  (d) 

Figure 3.1-2. SEM image of graphene nanoplatelets: (a) M5, (b) C300, (c) C500 and 
(d) C750. 
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Graphene nanoplatelets (GNPs) are ultrathin particles with wide aspect ratio 

which represent a new class of carbon nanoparticles with multifunctional properties. 

Thanks to the unique size and platelets morphology, GNPs are efficient at providing 

barrier properties, and their pure graphitic composition makes them excellent electrical 

and thermal conductors. Potential applications include additive for light weighting 

composites, barrier material for packaging,  conductive additive for battery electrodes, 

thermally-conductive films and coatings, electrically-conductive inks, etc. [52]. Addition 

of little amount of GNP can significantly improve the mechanical properties of polymer 

matrices including stiffness, strength and surface hardness. GNP® graphene 

nanoplatelets are reported to be compatible with almost all polymers. XG Science has 

adopted non-oxidizing manufacturing processes which can maintain the pristine 

graphene surface of sp2 carbon molecules. Thus, resulting polymer nanocomposites 

might be suitable for high electrical or thermal conductivity. 

3.1.3 Carbon nanotubes (CNTs) 

NC7000™ carbon nanotubes are used in various applications, mainly requiring 

low electrical percolation thresholds such as high-performance electrostatic dissipative 

plastics or coatings. These nanoparticles can provide high electrical conductivity, good 

processability, maintaining mechanical properties, the best cost in use ratio, thermal 

dissipation, etc. [115]. 

In this work, NC7000™ thin multiwall carbon nanotubes provided by Nanocyl 

S.A. (Sambreville, Belgium) were used. This carbon nanotube (CNT) are produced via 

the catalytic chemical vapor deposition (CCVD) process. The technical data sheet 

reports an average length of 1.5 μm, a diameter of 9.5 nm and a surface area of 250-

300 m2/g. The main features of CNTs used in this work are summarized in Table 3.1-4. 

Figure 3.1-3 reports a representative TEM image of NC7000™ carbon nanotubes. 

 

Table 3.1-4. Technical datasheet of NC7000TM carbon nanotubes [115]. 

Properties Value Method of measurement 

Average diameter (nm) 9.5 Transmission electron microscopy (TEM) 

Average length (μm) 1.5 Transmission electron microscopy (TEM) 

Carbon purity (%) 90 Thermogravimetric analysis (TGA) 

Transition metal oxide <1% Inductively coupled plasma mass 

spectrometry (ICP-MS) 

Amorphous carbon * High-resolution Transmission Electron 

Microscopy (HRTEM) 

Surface area (m2/g) 250-300 BET surface area analysis 

Volume resistivity 

(Ω.cm) 

10-4 Internal test method 

(resistivity on powder) 
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Figure 3.1-3. TEM image of NC7000TM carbon nanotubes. 

3.2 Processing and composite preparation 

In this work, several types of composites materials were transformed and 

processed by various techniques. For these reasons, the description of materials 

composition and composites preparation is described in Samples designation. The 

samples were produced according to three techniques:  (i) melt compounding and 

compression molding, (ii) melt compounding and filament extrusion, and (iii) fused 

deposition modelling. A list of notation of materials and processing techniques used in 

this work is reported in Table 3.2-1. 

3.2.1 Samples designation 

The sample notation of compression moulding was identified indicating the 

matrix type, the kind of filler and its amount. For example, a sample L-M5-4 (Figure 

3.2-1) indicate the ABS Sinkral®L322 filled 4 wt% of graphene M5 from compression 

moulding (CM). 

 
Figure 3.2-1. Examples of notation for compression moulding (CM) materials. 

 

For filaments and FDM products, samples were designated indicating the matrix 

type, the kind of filler and its amount, and its processing. For example, a sample L-

M5-4-E (Figure 3.2-2) indicates the ABS Sinkral®L322 filled 4 wt% of the graphene 

M5 extruded filament. A sample L-M5-4-H45_80 indicate the same composition of 

materials by FDM process with horizontal build orientation, raster angle [45°/-45°] and 

infill of 80%. 
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 (a) (b) 

Figure 3.2-2. Examples of notation for filament (a), and 3D-printed materials (b). 
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Table 3.2-1. Materials and processing techniques investigated in this work. 

Materials 

Composition Processing 

ABS polymer GNP 
CNT 
(wt%) 

Compression 
moulding 

Filament  
extrusion (E) 

3D-printing 
(FDM) L322 

(wt%) 
F322 
(wt%) 

C300 
(wt%) 

C500 
(wt%) 

C750 
(wt%) 

M5 
(wt%) 

Low viscosity ABS matrix          

L 100 - - - - - - x x x 

L-C300-2 98 - 2 - - - - x - - 

L-C300-4 96 - 4 - - - - x - - 

L-C300-8 92 - 8 - - - - x - - 

L-C500-2 98 - - 2 - - - x - - 

L-C500-4 96 - - 4 - - - x - - 

L-C500-8 92 - - 8 - - - x - - 

L-C750-2 98 - - - 2 - - x - - 

L-C750-4 96 - - - 4 - - x - - 

L-C750-8 92 - - - 8 - - x - - 

L-M5-2 98 - - - - 2 - x - - 

L-M5-4 96 - - - - 4 - x x x 

L-M5-8 92 - - - - 8 - x - - 
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High viscosity ABS matrix          

F - 100 - - - - - x - - 

F-M5-2 - 98 - - - 2 - x - - 

F-M5-4 - 96 - - - 4 - x - - 

F-M5-6 - 94 - - - 6 - x x x 

F-M5-8 - 92 - - - 8 - x - - 

F-M5-12 - 88 - - - 12 - x - - 

F-M5-16 - 84 - - - 16 - x - - 

F-M5-30 - 70 - - - 30 - x - - 

F-CNT-1 - 99 - - - - 1 - x - 

F-CNT-2 - 98 - - - - 2 x x - 

F-CNT-4 - 96 - - - - 4 x x - 

F-CNT-6 - 94 - - - - 6 x x x 

F-CNT-8 - 92 - - - - 8 x x - 

Hybrid nanocomposites          

F-CNT-0.6-M5-5.4 - 94 - - - 0.6 5.4 x - - 

F-CNT-1.8-M5-4.2 - 94 - - - 1.8 4.2 x - - 

F-CNT-3-M5-3 - 94 - - - 3 3 x x x 

F-CNT-4.2-M5-1.8 - 94 - - - 4.2 1.8 x - - 

F-CNT-5.4-M5-0.6 - 94 - - - 5.4 0.6 x - - 
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3.2.2 Compounding 

Various amounts of nanofillers were melt compounded with ABS by a Thermo-

Haake Polylab Rheomix counter-rotating internal mixer at 190°C, rotor speed 90 rpm 

for 15 min until a constant torque was reached. The batches of about 50 g were 

processed for each composition, and the resulting material was granulated in a 

mechanical grinder (Piovan Model RN 166). The photographs of internal mixer and 

grinder are illustrated in Figure 3.2-3. Prior to the melt processing, as received ABS 

chips were dried at least 2 hours at 80°C under vacuum before processing. 

 

    

(a) (b) 

 

(c) 

Figure 3.2-3. Photographs of (a) Haake® internal mixer, (b) its mixing chamber, and 
(c) Piovan grinder Model RN 166. 

 

In order to investigate the effect of the melt mixing on materials, the torque 

applied by the melt mixer was monitored during the processing time (see Figure 3.2-4). 

ABS was melted in the first 4 min, and after the addition of nanofillers (at minute 5) a 

direct increase of torque was observed, followed by a slight decrease in torque. Then 
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in the last about 10 min of compounding, a pleateau constancy in the torque value was 

reached. Neat ABS was also processed under the same conditions. Moreover, slightly 

increase in torque can be noticed with the incorporation of nanofiller. 
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Figure 3.2-4. Torque recorded during compounding for neat ABS (F), graphene 

nanocomposites (F-M5-6) and carbon nanotubes composite (F-CNT-6). 

3.2.3 Compression moulding (CM) 

Compounded materials were hot pressed in a Carver Laboratory press at a 

temperature of 190°C under a pressure of 3.9 MPa applied for 10 min and a cooling 

rate of 20°C/min to obtain square plaques with dimensions 160×160×1.2 mm or 

120×120×2 mm. 

 

 

Figure 3.2-5. Carver® hot plates press. 



38 

3.2.4 Filament extrusion (E) 

Compounded materials were also used to feed a Thermo Haake PTW16 

intermeshing co-rotating twin screw extruder (screw diameter=16 mm; L/D ratio=25) 

presented in Figure 3.2-6. The processing temperature gradually increased from 

180°C (zone 1) up to 220°C (zone 5 – rod die). The screw rotation speed and 

collection rate were regulated in order to obtain an extruded filament with a final 

diameter of 1.75 ± 0.10 mm. A constant collection rate was imposed by using a take-

off unit Thermo Electron Type 002-5341. The detailed working parameters 

corresponding to each material are reported in Table 3.2-2. The code E will be used 

to identify extruded filament samples. 

 

  

(a) (b) 

    

               (c)                                                   (d) 

Figure 3.2-6. Photographs of (a) twin screw extruder Thermo Haake PTW16, (b) 

view inside of the extruder, (c) take-off unit Thermo Electron Type 002-5341, and (d) 

extrusion process with cooling fans. 
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Table 3.2-2. Working parameters of twin screw extruder Thermo Haake PTW16. 

Twin screw extruder Thermo Haake PTW16 

Parameter 
GNP-M5 

composites 
CNT composites 

CNT/M5 

hybrid 

composites 

T1 180°C 180°C 180°C 

T2 190°C 205°C 205°C 

T3 195°C 210°C 210°C 

T4 195°C 215°C 215°C 

T5 200°C 220°C 220°C 

Screw diameter 16 mm 16 mm 16 mm 

Rod die diameter 3.0 mm 1.80 mm 1.80 mm 

Screw speed 9 rpm 5 rpm 5 rpm 

  

3.2.5 Fused deposition modelling (FDM) 

3D printed specimens were manufactured by fused deposition modelling (FDM) 

with a Sharebot Next Generation desktop 3D printer (Sharebot NG, Italy) feed with the 

filaments extruded as described in the previous paragraph. Two different desktop 3D 

printer (Sharebot NG, Italy) were provided Sharebot NG and used in this work: a 

commercial standard one and an experimental high-temperature 3D-printer. The main 

feature of the experimental high-temperature 3D-printer is the capacity to reach higher 

temperatures in both the extrusion nozzle and deposition bed. The main technical 

features of each printer are reported in Table 3.2-3. 

 

Table 3.2-3. Feature of Sharebot Next Generation desktop 3D printer. 

Features Standard commercial  
Experimental-high 

temperature 

Extrusion type Dual Single 

Nozzle diameter 0.35 mm 0.40 mm 

Max nozzle temperature  260°C 500°C 

Max bed temperature 90°C 135°C 
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 (a)  (b) 

Figure 3.2-7. Photographs of 3D printer Next Generation sharebot (a) standard 

commercial and (b) prototype high-temperature 3D-printer. 

Generally, FDM processing is characterized by a high number of parameters. 

In particular, three parameters including build orientation, infill pattern and infill density 

were selected for this work, by using the Slic3r software. The details of 3D-printed 

samples are summarized in Table 3.2-4. 

As schematically represented in Figure 3.2-8, dumbbell shaped and 

parallelepiped specimens were built-up along three different orientations, i.e., 

horizontal, vertical and perpendicular, and coded as H, V and P, respectively. X is the 

direction of filament deposition, and Z is the direction of the overlapping layers. 

Printing parameters were used: no raft; layer height 0.20 mm. The deposition 

rate has been fixed at 40 mm/s for HC, H45 and VC samples, whereas PC specimens 

were produced at a lower deposition rate (4 mm/s) in order to allow the solidification 

of deposited beads and provide support for the growing part. For VC specimens it was 

necessary to generate also a support material deposited at 50 mm/s.  

Each filament used to feed 3D-printer in Table 3.2-5 along with information on the 

temperature of nozzle and bed. The size and the processing parameters of FDM 

specimens are summarized in Table 3.2-6. 
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Figure 3.2-8. Schematic of 3D-printed dumbbell and parallelepiped specimens at 

different orientations: (a) and (d) horizontal (H); (b) and (e) vertical (V); (c) and (f) 

perpendicular (P). 

 

Table 3.2-4. Summary of 3D samples with details of FDM parameters. 

3D Samples Build orientation Infill pattern Raster angle Infill density 

PC Perpendicular Concentric [0˚/0˚] 100 % 

VC Vertical Concentric [0˚/0˚] 100 % 

HC Horizontal Concentric [0˚/0˚] 100 % 

H45 Horizontal Rectangular [45˚/-45˚] 100 % 

H45_80 Horizontal Rectangular [45˚/-45˚] 80 % 

H45_60 Horizontal Rectangular [45˚/-45˚] 60 % 

H45_40 Horizontal Rectangular [45˚/-45˚] 40 % 
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Figure 3.2-9. 3D samples along horizontal build orientation with different raster angle 

and infill density of ABS-graphene nanocomposites (L-M5-4) for the flexural test. 

 
 
 
Table 3.2-5. Filaments used for 3D-printing and processing temperature to 

manufacture 3D samples. 

Filaments  Tnozzle (°C) Tbed (°C) 3D-Printer type 

L 230 60 Standard 

commercial  L-M5-4 230 60 

F 250 110 

Experimental 

high temperature 

F-M5-6 250 110 

F-CNT-6 280 110 

F-M5-3-CNT-3 250 110 
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Table 3.2-6. Dimensions and processing parameters of FDM specimens. 

 

Analysis 
X 

(mm) 

Y 

(mm) 

Z 

(mm) 

F b 

filaments 

in a layer 

D 

deposition 

time of 

single layer 

(sec) 

D/F 

deposition 

time of 

single 

filament 

(sec) 

number 

of layers 

total 

time c 

(min) 

Sample shape 

Flexural test 

HC 80 12.7 3.2 31 70 2.3 16 20 

Parallelepiped 

H45 80 12.7 3.2 - 59 - 16 20 

H45_80 80 12.7 3.2 - 51 - 16 15 

H45_60 80 12.7 3.2 - 42 - 16 13 

H45_40 80 12.7 3.2 - 33 - 16 10 

Tensile test 

PC 4-12.5 a 2 75 5 11 2 375 89 

Dumbbell 
VC 2 75 4-12.5 a 5 21 4 20-63 14 

HC 75 4-12.5 a 2 11 43 4 10 8 

H45 75 4-12.5 a 2 - 33 - 10 6 
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Creep test 

HC 25 4 1 11 10 1 5 1.2 

Parallelepiped 
H45 25 4 1 - 10 - 5 1.2 

VC 25 1 4 3 4 1 20 1.6 

PC 1 4 25 3 6 2 125 15 

DMA 

HC 25 4 2 11 10 1 10 2 

Parallelepiped 
H45 25 4 2 - 10 - 10 2 

VC 25 2 4 5 5 1 20 2.1 

PC 2 4 25 5 9 2 125 21 

Resistivity test 

HC 25 6 2 15 12 0.8 10 4.0 

Parallelepiped H45 25 6 2 - 11 - 10 4.0 

PC 2 6 25 5 11 2.2 125 37.5 

Resistive heating 

HC 50 6 2 15 23 1.5 10 7.0 

Parallelepiped H45 50 6 2 - 16 - 10 5.0 

PC 2 6 50 5 11 2.2 250 75.0 

a min and max values of specimen's width are reported  
b number of contiguous filaments in a single layer in the gage length 
c for production of one FDM specimen. 
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3.3 Testing techniques 

3.3.1 Microstructural characterizations 

3.3.1.1 Density measurements 

Density measurements of nanoparticles were carried out by gas pycnometry 

technique on a Micromeritics® Accupyc 1330 helium pycnometer (Norcross USA), at 

a temperature of 23.0°C, using a testing chamber of 10 cm3 and performing at least 

99 measurements. 

Density measurements on bulk samples were measured by the displacement 

method weighing the specimens in air and immersed in ethanol-water (a concentration 

of 96 wt % and density of 0.802 g/cm3) at room temperature on at least three replicated 

specimens for each sample. The density was calculated through Eq. (3.3-1). 

exp
air ethanol

air ethanol

m

m m







  
(3.3-1) 

where mair and methanol are the mass of samples in air and ethanol respectively. 

In order to compare the experimental results, theoretical density of composites 

was predicted based on the rule of mixture according to Eq. (3.3-2).  

th m m f fV V     
 (3.3-2) 

where ρc, ρm, ρf are the densities of the composites, the neat matrix, and the 

nanoparticles respectively, while Vm and Vf are the volume fraction of the matrix and 

the nanofiller. 

The voids content (Vv) in nanocomposites was evaluated according to the 

following equation:  

expth

V

th

V
 






 

(3.3-3) 

3.3.1.2 Melt flow index (MFI) 

The melt flow index (MFI) measurements were carried out according to ASTM 

D 1238 standard (procedure A), through a Kayeness Co. model 4003DE capillary 

rheometer, at a temperature of 220°C, 250°C or 280°C under an applied load of 10 

kg on samples with a mass of about 5 g (pre-heat and compaction time of about 5 

min). 
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3.3.1.3 Rheological analysis 

Rheological properties of neat ABS and the nanocomposites were evaluated 

using an oscillatory rheometer, model Hybrid Discovery HR1 from TA Instrument Inc., 

with parallel plate geometry (25 mm). The analysis was performed at temperature of 

230°C, 250°C and 280°C and range frequency of 0.01–100 Hz with a 0.5% 

deformation, in the linear viscoelastic regime. 

3.3.1.4 Scanning electron microscopy (SEM) 

Morphology of nanoparticles and fracture surface of nanocomposites were 

studied by using a Carl Zeiss AG Supra 40 field emission scanning electron 

microscope (FESEM). 

Nanoparticles were dispersed in chloroform with a concentration of 0.1 mg/ml 

and sonicated for 10 min by Ultrasonic Processor UP400S. Finally, nanoparticles 

dispersion solution was directly dropped and evaporated onto aluminum plates for 

observation at an acceleration voltage of 10 kV. Nanocomposites were fractured in 

liquid nitrogen, and the fracture surfaces were observed at an acceleration voltage of 

3 kV. Representative micrographs at different level of magnification were selected. 

3.3.1.5 Transmission Electron Microscopy (TEM) 

The morphology of graphene nanoplatelets and carbon nanotubes 

nanoparticles was observed by transmission electron microscopy (TEM), using a 

Philips® EM 400 T (Amsterdam, Netherlands) transmission electronic microscope at 

an acceleration voltage of 120 kV. Nanoparticles were dispersed in acetone 

suspension (concentration = 0.5 mg/ml) and sonicated for 5 min, and the nanoparticle 

suspensions were dropped on a 600-mesh copper grid for TEM observation. 

3.3.1.6 Fourier transform infrared spectroscopy (FTIR) 

Fourier transform infrared (FTIR) spectra were recorded by a Spectrum OneTM 

spectrometer (Perkin Elmer ATR-FTIR) in a scanning range from 4000 to 400 cm-1. 

3.3.1.7 X-ray photoelectron spectroscopy (XPS) 

In order to identify the surface chemical compositions of GNP, X-ray 

photoelectron (XPS) spectroscopy was performed using a Kratos Axis Ultra DLD 

instrument (Kratos Analytical, Manchester, UK) equipped with a hemispherical 

analyzer and a monochromatic AlK (1486.6 eV) X-ray source, in spectroscopy mode. 

The emission angle between the axis of the analyzer and the normal to the surface of 

samples was 0°. For each sample a survey (for binding energy up to 1300 eV) was 

collected, to identify the elements on the surface. Afterwards, the core levels C 1s, O 
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1s and N 1s were also collected, with a higher energy resolution in order to evaluate 

the chemical differences between the samples. The quantification, reported as relative 

element percentage, for each sample was performed using the integrated area of the 

fitted core lines, after Shirley background subtraction, and correcting for the atomic 

sensitivity factors. 

3.3.1.8 Thermogravimetric analysis (TGA) 

Thermal degradation was investigated through a Q5000 IR thermogravimetric 

analyzer (TA Instruments-Waters LLC, New Castle, USA). The samples having a 

mass of about 10 mg were tested from 30°C up to 800°C at a rate of 10°C /min under 

a nitrogen flow of 15 ml/min. The onset temperature of degradation (Tonset) was defined 

by the intersection point of the two tangent lines, and the maximum degradation 

temperature (Td, max) was taken in correspondence to the maximum of the first 

derivative of weight loss. The relative residue was also reported in order to evaluate 

the content of nanofiller according to the equation: 

Cnanofiller = Rcomp - RABS (3.3-4) 

where Rcomp and RABS are the residue of composite and ABS respectively at the same 

temperature. 

3.3.1.9 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) tests were performed by a Mettler DSC 

30 calorimeter under a nitrogen flow of 100 ml/ min on samples with a mass of about 

10 mg. The samples were first heated from 30°C to 260°C at a rate of 10°C /min 

followed by an isothermal stay at 260°C for 5 min. The samples were then cooled 

down from 260°C to 30°C at a rate of -10°C /min and re-heated at the same rate from 

30°C to 260°C. Glass transition temperature (Tg) of SAN phase was measured as an 

inflection point of the thermograms. 

3.3.2 Mechanical testing 

3.3.2.1 Quasi-static tensile test 

Uniaxial tensile tests were carried out at room temperature by an Instron® 5969 

electromechanical testing machine equipped with a 50 kN load cell. 

Fracture properties were evaluated at a crosshead speed of 10 mm/min as the 

average value of at least three replicates. Specimens consisted of i) compression 

molded (CM) materials ISO 527 type 1BA dumbbell (gauge length 30 mm; thickness 

1.2 mm) ; ii) extruded filaments (E) (gauge length 100 mm diameter 1.75 mm); iii) 3D 

printed materials, ISO 527 type 5A dumbbell (gauge length 25 mm; thickness 2 mm). 
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Elastic modulus of CM and 3D-printed H, V and P specimens was 

determined at a cross-head speed of 1 mm/min by an electrical extensometer Instron® 

model 2620-601 with a gage length of 12.5 mm; whereas the tensile modulus of 

filament specimens was measured at a cross-head speed of 10 mm/min without 

extensometer with a gage length of 100 mm taking the system compliance into 

account. According to ISO 527 standard, the elastic modulus was determined as a 

secant value between strain levels of 0.05% and 0.25%. 

3.3.2.2 Flexural test 

Flexural testing (three points bending) was performed according to ASTM D790 

on 3D-printed samples (length = 80 mm, width = 12.7 mm and thickness = 3.2 mm). 

The tests were carried out by using an Instron® 5969 electromechanical testing 

machine equipped with a 50 kN load cell at a cross-head speed of 1.4 mm/min on 

specimens with a span length of 51.2 mm. For each sample, at least three specimens 

were tested with a span length of 51.2 mm. The flexural stress and strain were 

calculated as shown in Eq. (3.3-5) and (3.3-6) respectively: 
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(3.3-6) 

where  P = load 

D = maximum deflection of the center of the beam 

L = support span 

d = depth 

b = width of beam tested 

3.3.2.3 Dynamic mechanical thermal analysis 

Dynamic mechanical thermal analysis (DMA) tests were performed under 

tensile mode by a TA Instruments DMA Q800 device. For CM and 3D-printed 

materials, rectangular specimens were tested with a length of 25 mm, and different 

cross section (width 5 mm and a thickness 1.2 mm for CM and width 4 mm and a 

thickness 2 mm for 3D-printed materials). Extruded filaments 25 mm in length and a 

diameter of 1.75 mm were tested. The gauge length of all samples was fixed at 11.8 

mm. Tests were performed from -100°C to 150°C at a heating rate of 3°C/min applying 

a maximum dynamic strain of 0.05% at a frequency of 1 Hz. Storage modulus (E'), 

loss modulus (E") and loss tangent (tan δ) as a function of the temperature were 

reported.  
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From the thermal strain curve, a coefficient of linear thermal expansion (CLTE) 

below Tg and a coefficient of linear thermal deformation (CLTD) above Tg were 

determined according to equation (3.3-7): 

0

0

/
( )

L L
CLTE or CLTD

T




  
(3.3-7) 

where L0 and ΔL are the initial specimen gauge length and the length variation, and 

ΔT is the selected temperature interval (i.e.,50/-20°C; 20/50°C; 70/90°C, 

108°C/113°C for CLTE and 120/150°C for CLTD). 

3.3.2.4 Creep test 

Creep tests were performed through a TA Instruments DMA Q800 under a 

constant stress of about 10% of the yield stress of neat ABS at 30°C up to 3600 s. 

Rectangular samples with length of 25 mm, width of 5 mm and thickness of 0.9 mm 

were machined from compression molded plaques. Cylindrical extruded specimen 

with diameter 1.75 mm with length of 25 mm were used. Rectangular specimens with 

length of 25 mm, width of 4 mm and thickness of 1 mm were also prepared by 3D 

printing.The adopted gauge of all samples was about 11.5 mm. 

3.3.2.5 Modelling of tensile modulus 

The empirical Halpin-Tsai model is a simple approach to predict the modulus of 

composite materials which takes into account the modulus of matrix EM and filler EF, 

filler aspect ratio ξ, volume fraction of filler Vf, assuming a homogeneous dispersion 

and perfect interfacial adhesion between polymer/filler, [42, 116-119]. The tensile 

modulus in both longitudinal EL and transverse ET directions can be predicted 

according to Halpin-Tsai model [120, 121] by the following equations: 
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where the parameters ηL, ηT and ξ are defined as: 
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                            2
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                  for plates (3.3-12) 

                         2 f

f

L

D
                   for fiber (3.3-13) 

Df and tf are lateral diameter and thickness of platelets and Lf and Df are length and 

diameter of fibers, respectively. 

The volume fraction Vf is linked to the weight fraction wf through the following equation:  
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(3.3-14) 

 

where, ρM and ρf are the density values of ABS matrix and graphene nanoplatelets, 

respectively. 

 

Subsequently, the modulus of a composite with platelets filler long axis parallel to the 

loading direction (EParallel) and randomly oriented platelets/fibers fillers in all two 

dimensional 2D-direction (E2D,Random)  and three dimensional 3D-directions (E3D,Random)  

can be predicted according to literature [60, 122, 123] as follow 

For plates: 

Parallel

c LE E
 (3.3-15) 

3 , 0.49 0.51D Random

c L TE E E 
 (3.3-16) 

 

For fiber: 

Parallel

c LE E
 (3.3-17) 

2 , 0.375 0.625D Random

c L TE E E 
 (3.3-18) 

3 , 0.184 0.816D Random

c L TE E E 
 (3.3-19) 

 

3.3.3 Testing of electrical properties 

3.3.3.1 Electrical resistivity test 

For samples with an electrical resistivity higher than 107 Ω.cm, the volume 

resistivity was measured according to the ASTM D257 by using a Keithley 6517A 

electrometer/High Resistance Meter and an 8009 Resistivity Test Fixture at the room 
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temperature. In this test, the constant applied voltage of 100 V was applied to a square 

specimen of 64×64 mm. 

For moderately conductive materials (<107 Ω.cm), electrical resistivity test was 

carried out following ASTM D4496-04 standard for moderately conductive materials 

with four-point contact configuration. Each specimen was applied at a voltage from 2 

to 24 V by using a DC power supply (IPS303DD produced by ISO-TECH) and the 

current flow on the samples was measured between external electrodes by using an 

ISO-TECH IDM 67 Pocket Multimeter electrometer. Compression moulding (CM), 

filaments (E) and 3D-printed samples were tested with a length of 25 mm and different 

cross-section (rectangular specimens 6×1.2 mm for CM and 6×2 mm for 3D-printed 

sample; diameter of 1.75 mm for filament). At least three specimens were replicated 

for each sample. Due to the surface roughness of 3D-printed samples, a conductive 

silver paint was applied to the sample surface at the contact electrodes in order to 

ensure good electrical contact. The electrical volume resistivity of the samples was 

evaluated by Eq. (3.3-20): 

A
R

L
  

 

(3.3-20) 

where R is the electrical resistance, 𝐴 is the is the cross-section of the specimen and 

𝐿 is the distance between the internal electrodes (i.e. 3.69 mm). 

3.3.3.2 Surface temperature evaluation upon voltage application 

The heating of a sample generated by a current flow is known as resistive 

heating, and it is described by the Joule’s law. Surface temperature evolution induced 

by Joule’s effect upon different applied voltages was measured by a Flir E6 

thermographic camera. The voltages were applied by a DC power supply (IPS 303DD 

produced by ISO-TECH), while the samples were fixed with two metal clips with an 

external distance of 30 mm. In these tests, specimen length was 50 mm with different 

cross-sections of rectangular 6×1.2 mm for CM, 6×2 mm 3D-printed specimens and 

diameter of 1.75 mm for cylindrical filaments. The surface temperature values have 

been recorded for 120 seconds of application of voltage levels of 12 V and 24 V. 

3.3.3.3 Strain monitoring tests 

The monitoring of the change of resistance upon the application of mechanical 

strain was performed on the conductive composites specimens. 3D-printed sheets of 

100×10×1.4 mm were subjected to tensile, cyclic load and creep test with the distance 

between the grips of 50 mm by using Instron® 5969 electromechanical testing 

machine. The fracture test were performed at a cross-head of 0.5 mm/min (strain rate 

of 1 %/min). For ramp strain, cyclic and creep test, the strain was measured by using 

extensometer Instron® model 2620-601 with a gauge length of 12.5 mm with a strain 
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rate of 0.3%/min. Two probes were employed for measurement resistivity at a very low 

voltage of 0.1 V. To ensure good electrical contact, a silver paint was applied on the 

surface of the conductive samples at a distance of 30 mm, and the electrical resistivity 

was measured using a Keithley 6517A high-resistance meter as shown in Figure 3.3-1. 

The creep tests were performed by using the same equipment on specimens at a 

constant stress of 20 MPa at the room temperature up to 3600 s. 

A gauge factor (k) was calculated by using the following formula: 

 0/R R
k






 
(3.3-21) 

 

  
 (a) (b) 

 
(c) 

Figure 3.3-1. Experimental setup for the strain monitoring: (a) Specimens after 
conductive paint; (b) Schematic of experimental setup; (c) Actual setup for testing. 
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3.3.4 Electromagnetic interference shielding effectiveness 

(EMI SE) test 

The electromagnetic interference properties of ABS and nanocomposites were 

measured using an Agilent Technology PNA series network analyzer (N5230C Agilent 

PNA-L, Santa Clara, CA) and a standard rectangular waveguide in the X-band 

frequency range (8.2 – 12.4 GHz). The analysis was performed on samples with a 

width of 10 mm, length of 23 mm and thickness of 2 mm, and the S-parameters (S11, 

S22, S12, S21) were recorded over the X-band frequency range. 

The contribution of reflection (SER) and absorption (SEA) to the total EMI SE of 

the composites were investigated. At the same time, the effect of multiple reflections 

(SEM) was neglected, as commonly reported in the literature [124, 125]. For this 

purpose, the complex scattering parameters that represent the reflection S11 (S22) and 

transmission S12 (S21) coefficients were compared with the incident electromagnetic 

wave, and were used to evaluate reflected power (Pref), transmitted power (Ptrans) and 

absorbed power (Pabs) according to the equations: 

2

2 2

11 22( )R
ref

I

E
P S S

E
  

 

(3.3-22) 
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(3.3-23) 

1 ( )abs ref transP P P  
 (3.3-24) 

 

Subsequently, the contribution of reflection SER and absorption SEA to the total EMI 

SE was evaluated according to equations (3.3-25), (3.3-26).and (3.3-27). 

( ) 10log inc
R

inc ref

P
SE dB

P P
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Results and discussions 

Chapter IV 

ABS-graphene nanoplatelets nanocomposites 

 

Part of this chapter has been published in: 

S. Dul, H. Mahmood, L. Fambri, A. Pegoretti 

“Graphene-ABS nanocomposites for fused deposition modelling” 

Proceeding of the 17th European Conference on Composite Materials -ECCM 2017 (2016). 

 

S. Dul, L. Fambri, C. Merlini, G.M.O. Barra, M. Bersani, L. Vanzetti, A. Pegoretti 

“Effect of graphene nanoplatelets structure on the properties of acrylonitrile-butadiene-

styrene-composites” 

Polymers Composites. In press. 

 

S. Dul, L. Fambri, A. Pegoretti 

“Fused deposition modelling with ABS–graphene nanocomposites” 

Composites Part A - Applied Science and Manufacturing. 85. (2016) 181-191. 

 

This chapter is dedicated to ABS-graphene nanocomposites with the aim to 

produce suitable filaments through a solvent-free procedure based on melt 

compounding and extrusion for FDM process. In section 4.1, characterizations of 

graphene nanoplatelets nanofillers were carried out in order to understand the 

chemical and physical properties. Section 4.2 is about the comparison between two 

types of ABS (with high and low viscosity used for nanocomposites plates from 

compression moulding process. In the following section 4.3, four different types of 

graphene nanoplatelets with different size and surface area were incorporated in low 

viscosity ABS to produce nanocomposites plates. Section 4.4 describes the ABS-

graphene filament were employed in FDM process with a comparison of properties on 

samples obtained by compression moulding, extruded filament and FDM printed parts. 

Finally, the summary of the study is provided in section 4.5. 

 

4.1 Characterization of GNP 

SEM images of different types of graphene nanoplatelets are shown in Figure 

4.1-1. It can be clearly observed that M5 nanoparticles show the largest size followed 

by C300, C500 and C750 respectively, in agreement with the corresponding surface 

area values. Graphene nanoplatelets C300 and C500 resulted to be similar in size as 
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illustrated in Figure 4.1-1(b-c), whereas C750 appeared as particles rather than 

platelets. This observation indicates a low aspect ratio for GNP-C750 in good 

agreement with the observations of other authors [60, 126]. 

 

   
 (a) (b) 

   
 (c)  (d) 

Figure 4.1-1. FESEM images of graphene nanoplatelets: (a) M5, (b) C300, (c) C500 

and (d) C750. 

Figure 4.1-2a shows the XPS survey spectra of the four different GNPs 

nanoparticles. As summarized in Table 4.1-1, carbon and oxygen are the main 

elements detected on the surface from the peaks at 285 and ~533 eV, with a very 

small amount of nitrogen (0.2-0.4%), as evidenced from the peak at about 400 eV for 

all nanofillers. 

Details of the oxygen core level are shown in Figure 4.1-2b. Samples C750, 

C500 and C300 exhibit a similar O 1s peak, centred at about 533 eV, that can be 

attributed to oxydrilic and/or ether groups [127]; it is worthwhile to be noted that peak 

height increased with the surface area, reaching  the highest oxygen content of 6.7% 

for GNP-750, due to smallest particle size resulting in a large proportion of edges, 

showing an analogous direct relationship with the surface area, as observed for 

sample C500 and C300. 

On the other hand, XPS reveals that M5 sample possesses a total oxygen 

content of 4.2%, which is comparable to literature data [126], but it is higher than 

expected considering the surface area and the particle dimensions, that are definitively 

higher than C samples. The explanation could be found by the qualitative difference 

of O 1s signal observed for sample M5 (double peak) with a significant contribute of 
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the peak at about 531 eV (see deconvolution in Figure 4.1-2b), that according literature 

is attributable to the carbonyl group [127]. Following partial integration, the quantitative 

analysis resulted in an almost equivalent contribute of the carbonyl and the 

ether/alcohol groups, being 2.2% of >C=O and 2.0% of -O- and –OH groups. Taking 

into consideration this latter value, the ether/alcohol content of graphene particles 

appeared almost directly proportional to the surface area (see Figure 4.1-3). 

The peculiar aspect of M5 graphene is furtherly evidenced from the surface 

chemical composition with few traces of sulphur, as documented in Figure 4.1-2a, by 

the S 2s and S 2p peaks at 225 and about 165 eV respectively. 

A comparative enlargement of the S 2p zone (Figure 4.1-2c) confirmed the 

absence of sulphur in the three graphenes of Series C, whereas sample M5 evidenced 

two types of sulphur, in particular, the peaks at 163.8 eV and 168.1 eV can be 

respectively assigned to 2p2/3 and to oxidized sulphur groups, according to Quan et al. 

[128]. 
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Figure 4.1-2. XPS spectra of GNP-M5 (1), C300 (2), C500 (3) and C750 (4): a) XPS 

survey, b) the oxygen core level, and c) the sulfur core level. 

 

The density data of graphene nanoplatelets are also reported in Table 4.1-1. 

The density of C300 is slightly higher than that of C500 and higher than that of C750, 

evidencing an almost inverse dependence of their density on the content of 

ether/alcohol groups and on the surface area.  On the other hand, M5 shows lower 

density (2.06 g/cm3) with respect to the grade C nanoparticles (2.21-2.33 g/cm3), in 

conformity to the qualitatively and quantitatively different chemical composition of the 
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surface of grade M graphene, due to the presence of carbonyl and sulphur containing 

groups, as revealed by XPS. 

 
 

Table 4.1-1. Characteristics of as-received graphene nanoplatelets (GNP). Atomic 

percentage of surface elemental composition and density, as measured by XPS 

analysis and helium pycnometry, respectively. 

Samples C (%) O (%) N (%) S (%) 
Density 

(g/cm3) 

GNP-M5 95.1 2.2+2.0* 0.3 0.4 2.06 ± 0.03 

GNP-C300 96.0 3.8 0.2 0.0 2.33 ± 0.02 

GNP-C500 93.8 5.9 0.3 0.0 2.30 ± 0.02 

GNP-C750 92.9 6.7 0.4 0.0 2.21 ± 0.03 

* contributes to two components (see details in the text). 
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Figure 4.1-3. Oxygen content associated with the ether/alcohol groups as a function 

to the surface area of graphene nanoplatelets. 

 

The thermal stability of each graphene nanoplatelets was investigated through 

thermogravimetric analysis (see Figure 4.1-4). One single degradation step can be 

observed for grade C graphenes (GNP-C300, C500 and C750). Due to the smallest 

size of graphene nanoplatelets, GNP-C750 showed the lowest degradation 

temperature, and these results are similar to those reported by the manufacturer [52]. 

The comparison of thermal stability of graphene are reported in Table 4.1-2 in terms 

of the selected decomposition temperatures at 10% (T0.1), 50% (T0.5) and 80% (T0.8) 

of mass loss and maximum degradation rate temperature (Td, max). The maximum 

mass loss rate (MMLR) of grade C graphenes increases with the surface area. 
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In addition, since all types of graphene began to partially degrade before 500˚C, 

which is the degradation temperature of very small crystalline particles, the presence 

of some amorphous carbon may be hypothesized. The situation was manifestly more 

evident in grade M graphene (GNP-M5), which manifest a degradation curve with two 

clear steps. 

 

Table 4.1-2. Results of TGA analysis of graphene nanoplatelets performed under air 

atmosphere. 

Samples 

Temperature of 

10% mass loss 

– T0.1 (°C) 

Temperature of 

50% mass loss 

– T0.5 (°C) 

Temperature of 

80% mass loss 

– T0.8 (°C) 

Td, max 

(°C) 

MMLR 

(%/°C) 

GNP-M5 449 697 732 720 0.95 

GNP-C300 611 733 783 762 0.62 

GNP-C500 544 675 714 708 0.79 

GNP-C750 477 632 675 677 0.87 

Td, max: maximum degradation rate temperature. 

MMLR: Maximum mass loss rate. 
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Figure 4.1-4. TGA curve of different types of graphene nanoplatelets performed in 

air atmosphere: (a) mass loss and (b) derivative of mass loss. 

 

4.2 Selection of ABS matrix 

In this section, nanocomposites with two ABS with different viscosity, i.e. 

Sinkral®L322 (L) and Sinkral®F322 (F) were investigated. Graphene (GNP-M5) 

nanofiller was selected to be incorporated by melt compounding following by 

compression moulding. The processability, microstructure and mechanical properties 

were evaluated on samples prepared by compression moulding. 

4.2.1 Melt flow index 

The melt flow index (MFI) of two different types of neat ABS (L and F) and its 

relative nanocomposites as a function of graphene M5 are reported in Figure 4.2-1. 

The MFI values are 25.4 ± 1.4 g/10min and 14.8 ± 1.0 g/10min for L and F ABS pellets 

respectively, which are consistent with the reported values in the materials technical 

data sheet [114]. Melt compounding and hot pressing processes lead to an increase 

of the melt flow index of neat ABS to 34.8 ± 1.4 g/10min and to 23.6 ± 1.3 g/10min for 

L and F samples respectively. This lower viscosity can be attributed to the chain 

scission occurred during the process, after the consumption of antioxidant stabilizers. 

As reported by Boldizar and Möller [129], melt volume rate of neat ABS significantly 

increased (up to about two times) after a repetition of seven consecutive extrusion 

processes and accelerated aging. The melt flow index of both L-M5 and F-M5 

nanocomposites showed a nearly linear decrease with the graphene-M5 content. 



61 

Moreover, L matrix sample and its nanocomposite show MFI values higher than the 

corresponding materials based on F matrix. In particular, the MFI ratio of L over F 

samples is 1.47 for the neat matrix, whereas 1.44, 1.69 and 1.62 for nanocomposite 

at 2 and 4 and 8 wt% of GNP-M5, respectively. Similarly, the MFI ratio of 1.56 for 

lubricated ABS over pure ABS was reported, suggesting the similar amount of mould 

lubricant [130]. This result indicated the better processability for ABS Sinkral®L322 (L) 

nanocomposites. 
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Figure 4.2-1. Melt flow index of two different types of neat ABS (L and F) and its 

relative nanocomposites as a function of graphene M5. 

4.2.2 FTIR and differential scanning calorimetry 

FTIR spectra of ABS-graphene nanocomposites and matrices from 

compression moulding are also shown in Figure 4.2-2. Spectra of L sample clearly 

show the presence of distinctive peaks at ~3296, 1638 cm-1 and 1555 cm-1 related to 

the presence of additives in ABS which correspond to N-H, and C=O stretch of an 

amide group, respectively. 

Figure 4.2-3 shows the typical DSC thermograms in a heating-cooling-heating 

cycle of the different type of ABS matrices in the form of compression moulded plates. 

From Table 4.2-1, both ABS have glass transition temperature about 101ºC and 108ºC 

for lubricated and non-lubricated ABS indicating styrene-acrylonitrile copolymer (SAN) 

phase [39, 104, 131]. In addition, lubricated ABS shows the presence of an 

endothermic peak at a temperature of about 136ºC (in Table 4.2-1) associated to the 

melting of mould lubricant. Differently from the interpretation given by Singh et al. [132] 

and Rytlewski et al. [133], in our opinion this endothermal peak cannot be attributed 

to the melting of acrylonitrile (AN) crystallites, but it is mostly related to a mould 
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lubricant that is generally added for better processing of commercial high viscosity 

ABS, as described by Reed et al. [134]. 

Based on FTIR and DSC indications, the mould lubricant additive could be a 

fatty acid amide (FAA) with a melting point of 150ºC, in conformity to the literature 

[134], or a polyamide [135]. 
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Figure 4.2-2. FITR spectra of two types of neat ABS and ABS graphene M5 

composites with 8 wt%. 
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Figure 4.2-3. The heating-cooling-heating cycle of DSC thermograms of two neat 

ABS with (L) and without (F) mold lubricant. 

 
 
Table 4.2-1. Glass transition temperatures of styrene–acrylonitrile phase (Tg), melting 

temperature (Tm) and enthalpy of fusion of lubricant (ΔHm) for both types of neat ABS 

plate from DSC. 

Samples 

First heating Cooling Second heating 

Tg 

(°C) 

Tm 

(°C) 

ΔHm 

(J/g) 

Tg 

(°C) 

TC 

(°C) 

ΔHc 

(J/g) 

Tg 

(°C) 

Tm 

(°C) 

ΔHm 

(J/g) 

L 100.7 136.4 3.1 100.6 114.1 2.7 103.3 137.1 2.8 

F 108.3 - - 102.4 - - 108.0 - - 

4.2.3 Fractography 

Comparative morphology of both kinds of ABS/GNP-M5 nanocomposites at the 

highest contraction (8 wt%) is presented in Figure 4.2-4. Larger and more numerous 

holes were observed in L-M5-8 sample with respect to F-M5-8 sample, most probably 

depending on the volatilization of the mould lubricant in the high-vacuum SEM 

chamber. 
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 (a)  (b) 

Figure 4.2-4. FESEM image of the fracture surface of (a) L-M5-8 and (b) F-M5-8. 

4.2.4 Quasi- tensile tests  

The quasi-static tensile properties of both ABS nanocomposites are reported in 

Table 4.2-2. From Figure 4.2-5, elastic modulus and yield stress of neat ABS (F) matrix 

are slightly higher than ABS (L) specimen which could be attributed to the presence 

of the mould lubricant. By adding graphene nanoplatelets, the elastic modulus was 

improved for both ABS types. On the other hand, the tensile strength (max) of F-M5 

samples shows relatively constant values with the filler content, but that of L-M5 

specimens exhibits a slight reduction (about -9% for L-M5-8). For both 

nanocomposites, the presence of graphene-M5 led to a significant decrease of strain 

at break values. 

 

0 2 4 6 8

2000

2500

3000

3500

4000
 L-M5

 F-M5

E
la

s
ti

c
 m

o
d

u
lu

s
 (

M
P

a
)

M5 content (wt%)
 

(a) 



65 

0 2 4 6 8

33

36

39

42

45
 L-M5

 F-M5

S
tr

e
n

g
th

 (
M

P
a
)

M5 content (wt%)
 

(b) 

0 2 4 6 8
1

10

100
 L-M5

 F-M5

S
tr

a
in

 a
t 

b
re

a
k
 (

%
)

M5 content (wt%)
 

(c) 

Figure 4.2-5. Tensile mechanical properties of GNP-M5 nanocomposite with two 

different kind of ABS resins (L and F): (a) elastic modulus, (b) tensile strength, and 

(c) strain at break (c). 

 

 

 

 

 

 

 



66 

Table 4.2-2. Tensile mechanical properties of two different types of ABS 

nanocomposites (L and F) as a function of GNP-M5 nanoplatelets. 

Samples E (GPa) σy (MPa) εy (%) σb (MPa) εb (%) Enorm
a 

L 2147 ± 118 39.0 ± 0.5 4.1 ± 0.2 29.9 ± 0.4 28.4 ± 5.2 nd b 

L-M5-2 2582 ± 86 36.4 ± 1.0 3.5 ± 0.1 29.1 ± 0.8 9.6 ± 2.8 10.1 

L-M5-4 2868 ± 202 35.7 ± 0.7 3.2 ± 0.1 31.5 ± 2.6 5.1 ± 1.5 8.4 

L-M5-8 3531 ± 282 35.4 ± 1.0 2.7 ± 0.1 33.3 ± 4.3 2.8 ± 0.2 8.1 

F 2315 ± 100 41.7 ± 0.4 4.2 ± 0.1  33.6 ± 0.4 35.9 ± 6.1 nd 2 

F-M5-2 2631 ± 133 41.5 ± 1.2 3.7 ± 0.1 39.9 ± 2.3 4.1 ± 0.2 6.8 

F-M5-4 2911 ± 109 40.2 ± 1.5 3.6 ± 0.1 39.3 ± 1.2 3.7 ± 0.2 6.4 

F-M5-8 3523 ± 209 - - 41.4 ± 1.0 3.1 ± 0.3 6.5 

a normalised value of the improvement of the modulus following equation (4.2-1). 
b not defined. 

 

To compare the mechanical properties of ABS composites reported in the 

literature, a normalised modulus (Enorm) was evaluated as follows: 


 c i

norm

i f

E E
E

E w
 (4.2-1) 

where Ec is the modulus of ABS composite; Ei is the modulus of neat ABS, and wf is 

the weight fraction of incorporated filler, as proposed by Pandey et al. [63]. Enorm 

formally represents the percentage of modulus variation after addition of 1% of filler. 
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Figure 4.2-6. Improvement of normalized modulus of ABS composites according to 

Eq. (4.2-1) after incorporation of GNP-M5 into different ABS matrix. 
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Figure 4.2-6 compares the normalized modulus of ABS nanocomposites 

according to Eq. (4.2-1) after incorporation of GNP-M5 into two different ABS matrix. 

The ABS (L) shows the higher normalized modulus than ABS (F), suggesting a relative 

higher stiffening effect, due to the lower modulus of pure ABS (L) matrix. Moreover, 

the normalized modulus of ABS (F) matrix appears almost independent on filler 

content. On the other hand, the highest normalized modulus (Enorm) was observed for 

2% of graphene in ABS (L) containing about 3.6 % of lubricant (see detail in section 

4.3.2) with the highest lubricant/graphene ratio as shown in Table 4.2-3. A possible 

explanation could be the role of lubricant in the improvement of graphene dispersion. 

In fact, the higher the graphene content in ABS (L) composites, the lower the 

lubricant/graphene ratio, and the lower the normalized modulus. 

 

Table 4.2-3. The mould lubricant (ML)/graphene ratio at different graphene content. 

Graphene content 2 % 4 % 8 % 

ML/GNP 1.8 0.9 0.4 

 

According to the better results regading MFI and stiffening effect, low viscosity 

ABS (L) have been selected for further investigation. 

4.3 ABS-graphene nanocomposites plates 

Following the results of the previous paragraph, this section is aimed at 

investigating the influence of four commercially available graphene nanoplatelets (M5, 

C300, C500, and C750) with different size and surface area (120-700 m2/g) on the 

properties and processability of low viscosity ABS (L) matrix. The specimens were 

obtained by melt compounding followed by compression moulding (CM). In particular, 

melt flow index, thermal transitions, electromagnetic shielding (EMI SE) and tensile 

mechanical properties were investigated as a function of filler content. The Halpin-Tsai 

model was used to fit the experimental values of tensile modulus. The material 

properties and modeling of GNP-M5, C300, C500, C750 in ABS matrix have never 

been previously reported in the open scientific literature. 

4.3.1 Melt flow index 

The effect of the various types of GNP nanoparticles on MFI of ABS 

nanocomposites is compared in Figure 4.3-1. The almost linear decrease of MFI with 

the percentage of nanofillers suggests that a good dispersion of graphene has been 

reached with the formation of a nanofiller network, determining a significant constrain 

of the polymer flow, and consequently an increase of viscosity, in agreement with the 

literature on graphene-based nanocomposites [136-140]. At the highest concentration 

of graphene (8 wt %), MFI was reduced by about 50% for M5, whereas higher 
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reduction was observed for grade C nanoparticles, i.e. about 53%, 56%, and 67% for 

nanofillers with specific surface area of 300, 500 and 750 g/m2, respectively. The 

higher the nanofiller surface area, the higher the rate of reduction of MFI and the higher 

the viscosity. In prior work, the larger specific surface area of fillers was also reported 

to increase the viscosity of the unsaturated polyester resin, due to increasing of the 

interaction between the matrix and the particles [141]. 

 

0 2 4 6 8

10

15

20

25

30

35

40

M
F

I 
(g

/1
0

m
in

)

GNP content (wt%)

 L-Pellets

 L-M5

 L-C300

 L-C500

 L-C750

 
Figure 4.3-1. Melt flow index (220°C /10kg) of ABS nanocomposites as a function of 

GNPs. 

4.3.2 Thermal analysis (TGA and DSC) 

The thermal stability of graphene and its graphene-ABS composites has widely 

been reported in the scientific literature [63, 64, 68, 104]. In Figure 4.3-2 the 

thermograms of neat ABS and its nanocomposites at the highest content of graphene 

are plotted. Neat ABS and ABS-graphene composites decompose in one single step 

of degradation in inert (nitrogen) atmosphere regardless the effect of graphene. This 

behaviour is probably attributed to the butadiene particle content in ABS structure [80]. 

In addition, relative chart residue of ABS composite in Figure 4.3-2c linearly increases 

with the amount of nanofiller up to 7.6-10%. As reported in Table 4.3-1, the maximum 

degradation temperature (Td, max) seems not to be affected by graphene content. In 

addition, Td,max slightly increases for L-M5 composites but drops for L-C500 and L-

C750. This behaviour could be induced by the different size of graphene flakes, as 

documented in Figure 4.1-1. In general, larger flakes can hinder the diffusion of 

volatiles products generated by polymer decomposition. In particular, as the 

concentration of graphene in ABS increases, the maximum mass loss rate (MMLR) is 

progressively reduced. This behaviour was also observed in ABS-carbon 
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nanotube[80] and polypropylene-graphene composites [142]. The high surface area 

of graphene (e.g. C500 and C750) reduces the value of MMLR which is expected as 

a result of stronger interphase bonding between the matrix and the C-type graphene. 
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Figure 4.3-2. Selected TGA data obtained on neat and nanofilled ABS-graphene 

performed under a nitrogen atmosphere: (a) mass loss curves, (b) derivative of mass 

loss curves, and (c) relative residual values at 600°C. 

 
Table 4.3-1. Results of TGA analysis of neat and nanofilled ABS-graphene performed 

under nitrogen atmosphere. 

Samples 
Td, max 

(°C) 

Mass loss 

(wt%) 

MMLR 

(%/°C) 

Residual mass at 

600°C (wt%) 800°C (wt%) 

L 429.2 47.5 2.15 0.9 0.0 

L-M5-2 428.3 48.5 2.13 2.5 0.9 

L-M5-4 430.5 47.3 2.10 4.7 2.0 

L-M5-8 430.0 48.2 2.05 8.5 3.9 

L-C300-2 428.0 50.4 2.12 3.2 1.1 

L-C300-4 429.2 50.2 2.04 5.1 2.9 

L-C300-8 428.6 52.9 1.93 9.8 6.6 

L-C500-2 428.1 50.2 2.14 3.1 0.7 

L-C500-4 426.9 51.6 2.07 5.3 1.9 

L-C500-8 426.9 54.3 1.89 10.0 5.8 

L-C750-2 426.0 51.2 2.15 3.1 0.2 

L-C750-4 427.1 54.4 2.05 6.1 2.2 

L-C750-8 426.3 56.1 1.80 10.9 6.1 

Td, max: maximum degradation rate temperature. 

MMLR: Maximum mass loss rate. 
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Typical DSC thermograms of ABS and relative nanocomposites are illustrated 

in Figure 4.3-3. Two transitions can be clearly observed in both first and second 

heating scan of DSC analysis. At about 101°C ABS displays a glass transition signal 

of the amorphous styrene-acrylonitrile copolymer (SAN) phase, followed by another 

signal at about 137°C. 

Table 4.3-2 reports thermal data of ABS pellets and compression molded 

plates. In particular, Tg of SAN phase, and melting temperature (Tm) and melting heat 

(ΔHm) of mould lubricant for all the compositions are shown. The mold lubricant content 

in ABS could be evaluated as 3.6 wt%, according to literature from the ratio of the 

melting heat of pellets and the reference enthalpy 98.8 J/g of pure lubricant [143].  
In both first and second heating scan, the presence of M5 nanoparticles does not 

significantly affect the Tg of ABS matrix, whereas a slight increase of Tg was observed 

with other GNP, up to about 2°C in the case of 8% of C750. Moreover, the melting 

temperature of the mould lubricant (Tm) decreased after addition of graphene, by about 

7°C for C750 filled samples. The higher the graphene content and/or the higher the 

surface area of the filler, the lower the melting temperature. Similarly, a significant 

decrease of melting heat was found in ABS composites, with values of the 

endothermal heat lower than that expected from composition, suggesting an 

interaction between mold lubricant and graphene. This fact is more evident in the 

second DSC heating, after a controlled cooling scan at -10°C/min, where all the 

samples exhibited not only an increase of Tg and Tm, and but also a decrease of the 

melting heat. This latter effect is well evidenced by considering the normalized melting 

heat of mold lubricant, ΔHN, referred to the fraction of ABS matrix, according to the 

equation: 


 

1
m

N

f

H
H

w
 

(4.3-1) 

where wf is filler fraction in nanocomposite. Figure 4.3-4 shows the reduction of the 

melting heat of lubricant (ΔHN) in the second DSC scan with the increase of the surface 

area and/or of the content of GNP. 

Moreover, the relative crystallinity (RC) of mold lubricant in ABS composites 

could be evaluated according to the equation: 

100
3.6

NH
RC


 

 

(4.3-2) 

from the ratio of the normalized melting heat HN of the composite and the melting 

heat of pristine ABS pellets (i.e. 3.6 J/g). It is interesting to observe that the percentage 

of crystallized mold lubricant was found to progressively decrease with the addition of 

filler, reaching about 36-39% in the case of C500-8 and C750-8, confirming a certain 

effect of the graphene nanoparticles on the crystallizability of the mold lubricant, both 

in the first and especially in the second DSC scan (see Table 4.3-2).  

These findings not only suggest an interaction between the mould lubricant and 

graphene but also indirectly indicate a good dispersion of the filler. 
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Figure 4.3-3. DSC thermograms (first heating scan) of neat ABS and 

nanocomposites at different content of M5 (a), C300 (b), C500 (c) and C750 (d) 

graphene nanoplatelets. 
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Table 4.3-2. Glass transition temperatures (Tg) of styrene–acrylonitrile phase, melting 

temperature (Tm), melting heat (ΔHm), and relative crystallinity index (RC) of mould 

lubricant for ABS and relative nanocomposite as measured in DSC analysis. 

Samples 

First heating Second heating 

Tg 

(°C ) 

Tm 

(°C ) 

ΔHm 

(J/g) 

RC* 

(%) 

Tg 

(°C ) 

Tm 

(°C ) 

ΔHm 

(J/g) 

RC* 

(%) 

L-Pellets 101.3 138.9 3.6 100 104.3 138.7 3.0 83 

L 100.7 136.4 3.1 86 103.3 137.1 2.8 78 

L-M5-2 101.2 136.4 3.1 88 103.8 136.8 2.7 77 

L-M5-4 102.0 134.9 2.9 84 103.3 135.7 2.5 72 

L-M5-8 102.0 134.1 2.4 72 104.3 135.1 1.8 54 

L-C300-2 102.0 135.4 2.6 74 104.3 138.6 2.0 57 

L-C300-4 102.5 133.6 2.7 78 104.3 136.6 1.7 49 

L-C300-8 102.3 132.3 2.2 66 105.1 134.8 1.1 33 

L-C500-2 102.3 135.1 2.7 77 105.3 137.6 2.1 60 

L-C500-4 102.0 132.4 2.6 75 104.8 135.5 1.7 49 

L-C500-8 102.8 129.1 1.2 36 105.6 132.0 0.8 24 

L-C750-2 102.0 134.9 2.7 77 105.2 137.3 2.1 60 

L-C750-4 102.1 133.4 2.4 69 105.1 134.4 1.5 43 

L-C750-8 103.0 128.9 1.3 39 105.5 129.5 0.7 21 

* Relative crystallinity following equation (4.3-2). 
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Figure 4.3-4. Normalized melting heat (from second DSC heating) of mould lubricant 

as a function of surface area and content of GNP nanoplatelets in ABS 

nanocomposites. 
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4.3.3 Electromagnetic interference shielding effectiveness 

(EMI SE) 

Figure 4.3-5(a-d) shows the representative plots of EMI SE expressed in decibel 

(dB) of the neat ABS and various GNP-filled nanocomposites in the frequency range 

from 8 to 12.4 GHz. An average EMI SE value of -0.74 dB for neat ABS was measured, 

indicating that the polymer is almost transparent to magnetic waves. As expected, the 

increase in the conductive filler content resulted in an improvement of EMI SE, as 

reported in literature for various carbon-based ABS composites [65, 78, 125, 144]. 

Nanocomposites containing C300, C500 and C750 nanoplatelets exhibited 

similar electromagnetic attenuation, for a given GNP content, almost independently on 

the surface area of the filler. On the other hand, nanocomposites filled with M5 

nanofiller (thickness of 6 nm), showed a higher EMI SE, analogously to ABS 

composites filled with high structure carbon black [125]. Furthermore, the EMI SE of 

nanocomposites containing until 4 wt% of GNP is almost independent from the 

frequency, whereas nanocomposites with 8 wt% of GNP showed a slight influence of 

the shielding effectiveness on the frequency in the X-band. 
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Figure 4.3-5. Representative curves of EMI SE of nanocomposites containing 

different types of graphene nanoplatelets: (a) L-M5, (b) L-C300, (c) L-C500 and (d) 

L-C750. 

 

The maximum of shielding effectiveness in ABS composites was obtained with 

the highest loading of GNP (i.e. 8 wt%). In particular, EMI SE increased 257% after 

addition of GNP-C (C300, C500, and C750) from -0.7 to -2.5 dB, and 786% with 

graphene type M5 (from -0.7 to -6.2 dB). However, these results of graphene/ABS 

composite appeared lower than those of other carbon based ABS composites reported 

in the literature. For instance, Sachdev et al. obtained a shielding efficiency of -60 dB 

after addition of 15 wt% of graphite in the X-band [65], whereas by using 10 wt% of 

multiwall carbon nanotubes (MWCNTs) Jyoti et al. achieved a shielding efficiency of -

39 dB in the Ku-band, 12-18 GHz [78]. The EMI SE typically required for commercial 

application is of about -22.0 dB, which corresponds to <1% of transmitted 

electromagnetic wave [144]. The results reported in this work indicate that by adding 

up to 8 wt% of GNP in the ABS matrix, it is not possible to reach the EMI SE levels 

required for commercial applications. 

Due to the almost independence on frequency, the average values of reflection 

and absorption contributes in the range frequency of 8.2–12.4 GHz were reported and 

compared in Figure 4.3-6 as a function of graphene content. For all compositions, the 

shielding by either reflection or absorption of composites increases with increasing 

GNP content, resulting in higher EMI SE. In addition, the effect of the surface of 

graphene on absorption and reflection of ABS nanocomposites is presented in Figure 

4.3-7(a-b), respectively. 

In particular, the dominant shielding mechanism is the reflection for all 

graphene/ABS composites, due to the platelet-shaped GNP that provide higher 
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surface area for interaction with the electromagnetic waves, as previously observed in 

carbon based poly(styrene-b-ethylene-ran-butylene-b-styrene) (SEBS) composite 

[145]. However, it should be noted that other researchers reported that in different 

nanocomposites the shielding absorption contribute is higher than that of reflection 

one, SEA > SER [65, 125, 146, 147]. 

It is interesting to compare the effects of graphene and graphene oxide 

nanoplatelets that have been recently used to improve the EMI SE of amorphous 

thermoplastic polymers. It is certainly worthwhile to note that Yan et al. [146] achieved 

an ultra-efficient EMI shielding of -45.1 dB in the X-band, with 7 wt% of reduced 

graphene oxide, following a peculiar processing technique of segregation at high 

pressure starting from micrometric polystyrene powder. On the other hand, following 

traditional processing conditions, King et al. prepared the various composition of 

polycarbonate (PC) nanocomposites with GnP type M nanoparticles through twin 

screw compounding [148]. They reported no effect after addition 4 wt% of GNP-M5 in 

PC, while nanocomposites filled with 15 wt% showed SE value of -6.3 dB at 0.8 GHz. 

Similarly, in the present research a lower percentage of GNP-M5, 8 wt%, was shown 

to obtain -7.1 dB at 8.2 GHz in ABS nanocomposites produced by direct melt 

compounding. Following these results, it is possible to conclude that M5 nanoparticles 

appear more effective in EMI SE than C-type graphene nanoplatelets in ABS 

nanocomposites. 

The better performance of ABS nanocomposites containing M5 can also be 

related to the higher average lateral dimensions of graphene (about 5 microns) with 

respect to C-type graphene nanoplatelets, and determining an increase of interaction 

with the radiation, and consequently an improvement of EMI SE. 
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Figure 4.3-6. Influence of absorption and reflection mechanisms on the EMI SE of 

nanocomposites containing different graphene nanoplatelets: (a) L-M5, (b) L-C300, 

(c) L-C500 and (d) L-C750, with various fillers contents. 

 

0 100 200 300 400 500 600 700 800

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0%

 2%

 4%

 8%

A
b

s
o

rp
ti

o
n

 (
-d

B
)

Surface area of GNP (m
2
/g)

 
(a) 



80 

0 100 200 300 400 500 600 700 800

0

1

2

3

4

5

6

7

 0%

 2%

 4%

 8%

R
e
fl

e
c
ti

o
n

 (
-d

B
)

Surface area of GNP (m
2
/g)

 
(b) 

Figure 4.3-7. Absorption (a) and reflection (b) of ABS nanocomposites as a function 

of surface area and content of GNP nanoplatelets. 
 

In order to shed more light on the EMI SE behaviour, the electrical resistivity of 

ABS and GNP nanocomposites at highest graphene content (8 wt%, i.e. about 4 vol%), 

has been compared and reported in Table 4.3-3. Despite the low resistivity of single 

graphene nanoparticle, about 50×10-6 Ω.cm and 1 Ω.cm in parallel and in 

perpendicular direction respectively [149], volume resistivity of ABS (2.15×1015 Ω.cm) 

was only slightly reduced after addition of GNP of Series C (about 0.9×1015 Ω.cm), 

whereas a better improvement was obtained in composite containing M5 (1.8×1014 

.cm). The higher the content of conductive filler, the higher the resistivity reduction, 

the higher the increase of EMI SE. 

 

Table 4.3-3. Volume resistivity and average EMISE of ABS and nanocomposites with 

8% wt of GNP. 

Samples 
GNP Surface 

(m2/g) 

Electrical resistivity×10-14 

(Ω.cm) * 

EMI SE 

(-dB) ** 

L - 21.5 + 3.3 0.74 + 0.04 

L-C750-8 750 9.71 + 2.57 2.53 + 0.67 

L-C500-8 500 8.03 + 1.64 2.52 + 0.66 

L-C300-8 300 8.95 + 3.12 2.56 + 0.69 

L-M5-8 120-150 1.75 + 0.28 6.23 + 0.33 

*Average of three samples. 

**Average between 8.2-12.4 GHz. 
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The relationship between the decrease of resistivity and the effect of magnetic 

shield is shown in Figure 4.3-8 that correlates the better performance induced by the 

addition of M5 nanoparticles with reduced resistivity and the correspondent higher EMI 

SE. The relative volume resistivity, however, is not reduced enough reach a 

conductive behaviour. Therefore, due to the low values of EMI SE achieved by using 

up to 8 wt% of GNP  higher fractions of GNP need to be incorporated in order reach 

to higher values. In fact, as reported by Merlini et al. [144], the EMI SE levels required 

for commercial applications were obtained only after addition of 15 wt% of GNP into a 

PU matrix.  
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Figure 4.3-8.  Relative electromagnetic shield vs relative resistivity of GNP-ABS 

composite at 8 wt% of M5 and Series C. 

 

It should be noted that King et al. after addition of GNP-M5 at 8 wt% (5 vol %) in 

polycarbonate matrix reached a percolation threshold with the electrical resistivity of 

4.0×107 .cm [150].  

Following these results, M5 nanoparticles appear the more promising GNP 

candidate for the production of ABS nanocomposites for EMI SE applications and a 

minimum filler content of at least 12 wt% could be suggested. 

4.3.4 Quasi-static tensile tests 

The tensile properties of nanocomposites with the different types of graphene 

are summarized in Table 4.3-4. It can be noticed that elastic modulus of ABS increased 

proportionally to the filler loading. The modulus of composites containing the highest 

amount (8 wt%) of grade C GNPs is increased from 2147 MPa to 2523 MPa (i.e. 17%), 

to 2623 MPa (i.e. 22%) and to 2527 MPa (i.e. 17%) for C300, C500 and C750 

nanofillers respectively. More effectively, the addition of M5 determined a higher 
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increase of modulus for all the compositions, reaching 3531 MPa (i.e. 64%) in 

nanocomposite containing 8 wt% of nanofiller. These better performances of M5 in 

increasing ABS stiffness are in agreement with other literature data. For instance, King 

et al. reported an increase of tensile modulus of thermosetting epoxy of about 14% 

and 23% after addition of 6 wt% of GNP-C300 and GNP-M5 respectively [119]. An 

analogous and more evident effect was also reported by Wang et al. [126] for epoxy 

nanocomposites containing 5% of graphene; they showed an increase of tensile 

modulus of about 22% after addition of C750 and an increase of 48% after addition of 

M5 nanoparticles. Following their results and other literature data, Wang et al. 

attributed the superior behaviour of GNP-M5 to their higher aspect ratio [126]. 

Moreover, the yield stress of ABS nanocomposite is fairly constant at about 39-

41 MPa by the addition of grade C GNPs (C300, C750 and C500), whereas the effect 

of M5 nanofiller is to slightly reduce the yield strength (by about 9%). Concerning the 

ultimate properties, the strain at break is markedly decreased down to 3-4% after 

addition of 8% of GNP. Correspondingly, the stress at break reached a maximum of 

37-40 MPa in nanocomposites containing graphene of C series, whereas only 33 MPa 

in the case of M5 nanoplatelets. 

The lower yield stress and strength of composites filled with M5 nanoparticles 

can be attributed to the poor adhesion between ABS matrix and the nanofiller. 

Similarly, a significant reduction of strength in M5/epoxy nanocomposites [119, 126], 

and an almost constant strength in C750/epoxy nanocomposites with respect to the 

pure matrix was also reported [126]. Wang et al. attributed the higher strength and the 

better adhesion of C750 to the higher content of oxygen functional groups, in 

comparison to the lower adhesion and the lower oxygen content of M5 [126]. 

However, in order to understand the ultimate mechanical properties reported in 

Table 4.3-4, the simple explanation referred to the absolute content of oxygen is not 

exhaustive/satisfactory. Following a deeper interpretation of XPS analysis (Table 

4.1-1, and Figure 4.1-2b and Figure 4.1-2c), the lower ultimate properties of GNP-

M5/nanocomposite and the reduced adhesion between matrix and filler, could be 

attributed not only to the lower content of ether/alcohol groups, but also to the 

significant content of sulphur and carbonyl groups on the surface of GNP-M5. In 

general, the higher the content of ether/alcohol groups on the graphene surface, the 

higher the adhesion to ABS matrix, and the higher the yield stress and strength. The 

effect of GNP-M5 on mechanical properties with respect to the Series C appeared 

similar for both thermosetting and thermoplastic matrices [119, 126]. 
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Table 4.3-4. Tensile properties of nanocomposites as a function of different GNP type 

and content. 

Samples 
Vf 

(vol %) 
E (GPa) σy (MPa) εy (%) σb (MPa) εb (%) Enorm

a 

L 0 2147 ± 118 39.0 ± 0.5 4.1 ± 0.2 29.9 ± 0.4 28.4 ± 5.2 ndb 

L-M5-2 1.02 2582 ± 86 36.4 ± 1.0 3.5 ± 0.1 29.1 ± 0.8 9.6 ± 2.8 10.1 

L-M5-4 2.06 2868 ± 202 35.7 ± 0.7 3.2 ± 0.1 31.5 ± 2.6 5.1 ± 1.5 8.4 

L-M5-8 4.21 3531 ± 282 35.4 ± 1.0 2.7 ± 0.1 33.3 ± 4.3 2.8 ± 0.2 8.1 

L-C300-2 0.90 2196 ± 74 38.6 ± 1.0 3.8 ± 0.2 29.3 ± 0.7 11.7 ± 6.0 1.1 

L-C300-4 1.83 2340 ± 101 39.8 ± 0.3 3.6 ± 0.1 33.8 ± 2.8 5.1 ± 1.2 2.3 

L-C300-8 3.74 2523 ± 224 37.8 ± 0.9 3.3 ± 0.2 37.2 ± 0.8 3.4 ± 0.3 2.2 

L-C500-2 0.91 2368 ± 184 41.4 ± 0.7 4.0 ± 0.2 33.2 ± 1.9 6.8 ± 2.5 5.2 

L-C500-4 1.85 2434 ± 179 40.7 ± 0.6 3.7 ± 0.2 38.9 ± 1.5 3.9 ± 0.3 3.3 

L-C500-8 3.78 2623 ± 101 39.3 ± 2.0 3.5 ± 0.1 38.8 ± 2.2 3.6 ± 0.3 2.8 

L-C750-2 0.95 2312 ± 348 41.0 ± 0.9 4.0 ± 0.2 33.1 ± 2.8 12.0 ±5.3 3.8 

L-C750-4 1.93 2271 ± 122 39.8 ± 0.7 3.6 ± 0.1 36.4 ± 1.6 4.0 ± 0.2 1.4 

L-C750-8 3.94 2527 ± 177 40.4 ± 2.5 3.4 ± 0.2 40.3 ± 2.4 3.4 ± 0.2 2.2 

a normalised value of the improvement of the modulus following equation (4.2-1).  
b not defined 

 

Figure 4.3-9 compares the normalized modulus at the highest weight fraction 

from equation (4.2-1) of various carbon based ABS nanocomposites produced from 

different processes. High normalized modulus between 12-27 were calculated for 

carbon fiber (CF) composite produced by compression molding [11], or additive 

manufacturing [10, 151]; and lower values of 3.7 for short CF composite obtained by 

injection molding [152]. It is also worth noting the case of reduced graphene oxide 

(rGO) for which a normalized modulus of 11 was obtained, and attributed to the 

superior dispersion in ABS after chemical modification with respect to the scarce be of 

graphene oxide [153]. Different the situation of other lower size carbon fillers at micro 

or nano level, evaluated from recent literature data for ABS composites, for which the 

normalized modulus was determined in the range 1.5-4.0, i.e. 1.7 after addition of 40 

wt% of carbon black (CB) [154], 1.68 with 9 vol% of graphite flakes (GFs) [63], 3.9 with 

10 wt% of MWCNTs [78], 3.2 with 7.5 wt% of graphene [155].  

It was found that the addition of GNP determines a normalized modulus in the 

range from 2.2 to 2.8 for C300, C500 and C750, and a remarkable a value of 8.1 for 

M5 at the highest filler weight fraction of 8 wt %. These results are comparable to those 

of other nanocomposites with GNP dispersed in different matrices. For instance, in 

epoxy resin values of 2.3 and 3.9 were obtained for C300 and M5 according to the 

data presented by King et al. [119]; and higher normalized modulus could be obtained 

from the results of Wang et al. [126], i.e. 4.4 for C750 and 9.6 for M5. Moreover, in the 

case of polycarbonate, normalized modulus of 3.6, 4.0 and 11.2 could be determined 

for carbon black, carbon nanotube and graphene type M5, respectively [150]. 



84 

It is possible to conclude that between the various examined graphenes, GNP-

M5 allows reaching the higher normalized modulus values. 
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Figure 4.3-9. Improvement of normalized modulus of ABS composites according to 

Eq. (4.2-1) after incorporation of different carbonaceous fillers, such as carbon black 

(CB [154]), MWCNTs [78], graphite flakes (GFs) [63], reduced graphene oxide ( rGO 

[153]), graphene [155], and the GNP nanoplatelets M5, C300, C500, and C750 of 

the present study. ABS composites reinforced with carbon fiber (CF) and produced 

by injection molding [152], compression molding [11],  and additive manufacturing 

[10, 151] are also reported. 

4.3.5 Modelling of tensile modulus 

The empirical Halpin-Tsai model is a simple approach to predict the modulus of 

composite materials which takes into account the modulus of matrix EM and filler EF, 

filler aspect ratio ξ, the volume fraction of filler Vf, assuming a homogeneous dispersion 

and perfect interfacial adhesion between polymer/filler, [42, 116-119]. The tensile 

modulus in both longitudinal EL and transverse ET directions can be predicted 

according to Halpin-Tsai model [120, 121] by the following equations: 

1

1
L f

L M

L f
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E E
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n V
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


 

(4.3-4) 

where the parameters ηL, ηT and ξ are defined as: 
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Df and tf are lateral diameter and thickness of graphene nanoplatelets, respectively.  

The volume fraction Vf is linked to the weight fraction wf through the following equation:  

(1 )
f M

f

f M f f

w
V

w w



 


 
 

(4.3-8) 

 

where, ρM and ρf are the density values of ABS matrix and graphene nanoplatelets, 

respectively. 

Subsequently, the modulus of a composite with platelets filler long axis parallel 

to the loading direction (EParallel) and randomly oriented platelets fillers in all three 

dimensional 3D-directions (ERandom)  can be predicted according to the literature [60, 

122, 123] as follow: 

Parallel

c LE E
 (4.3-9) 

 0.49 0.51Random

c L TE E E
 (4.3-10) 

 

In the Halpin-Tsai model an experimental modulus for neat ABS of 2147 MPa 

was considered (Table 4.3-4). The aspect ratios are considered equal to 19 for GNP-

C (C300, C500 and C750) as reported by Chong et al. [60] and 833 for GNP-M5 (Df = 

5000 nm and tf = 6 nm). The outcome of the model largely depends on the value of 

tensile modulus of the GNP (Ef). The “in the plane” tensile modulus of a single-layer 

graphene is reported to be as high as 1000 GPa [52, 60, 156]. In prior works, a 

modulus of 250 GPa was considered for graphene by Gomez-Navarro et al. [157] and 

Mayoral et al. [158], while Karevan et al. [159] and Pedrazzoli et al. [160] adopted a 

value of 70 GPa. Since GNPs consists of several layers of graphitic planes bonded by 

van der Waals dispersive forces, King et al. [119] suggested an elastic modulus of 

36.5 GPa. In the present study, an elastic modulus of 70 GPa has been tentatively 

assumed.  

A comparison between the experimental data and the predictions of the two 

analytical models (in the plane and 3D random orientation) is reported in Figure 4.3-10. 

It is evident that the experimental modulus of nanocomposites containing GNPs M5, 

C300, C500 and C750 is adequately well fitted by Halpin-Tsai model assuming a three-

dimensional (3D) random orientation of all the fillers. These results are in conformity 
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with the processing conditions (compounding and compression molding), where 

almost no orientation is expected. 
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Figure 4.3-10. Elastic modulus of nanocomposites with different type of graphene, 

i.e., a) L-M5, b) L-C300, c) L-C500 and d) L-C750. Continuous and dot lines 

represent prediction according to Halpin-Tsai models with in-plane and 3D random 

orientations, respectively. 

4.3.6 Fractography 

Relative good dispersion of graphene in ABS matrix can be observed for all the 

compositions, as documented in Figure 4.3-11(a1-d1) from the fracture surface of 

nanocomposites at GNP loading of 8 wt%. For C300, C500, C750 and M5 
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nanocomposites, graphene nanoplatelets are likely to be an almost random-like 

orientation as better shown in Figure 4.3-11(a2, b2, c2 and d2), which confirm the 

hypothesis of 3D randomly oriented nanoplatelets assumed in the Halpin-Tsai model. 

For M5 nanocomposites, wider graphene flakes can be visualized in Figure 4.3-11(a2-

a3), composed of single and multilayer platelets, whose thickness appeared to be 

about 35-40 nm. It is worthwhile to observe that the fracture surface evidences a quite 

poor filler/matrix adhesion level and wrinkles of graphene flakes were also observed. 

These features could justify the lower yield stress of M5 nanocomposite (36 MPa) with 

respect to that of ABS (39MPa). On the other hand, the higher yield stress of C500 

and C750 (40-41 MPa) could be associated to the lower size of the particles and to a 

better adhesion between ABS matrix and the GNP nanoplatelets at higher oxygen 

content on the surface.  

At the highest magnification, the larger dimension of single graphene can be 

evaluated with lateral width of about 5.3 micron, 2.7 micron, 580 nm and 410 nm  for 

M5 (Figure 4.3-11a3), C300(Figure 4.3-11b3), C500 (Figure 4.3-11c3) and C750 

(Figure 4.3-11d3), respectively. In particular, for C750 samples (Figure 4.3-11d3), the 

smallest size of the nanoparticle can be confirmed. Moreover, the thickness of about 

25-35 nm can be evidenced for all C-type nanoparticles. These geometrical 

dimensions appeared only partially in agreement with the producer’s data sheet 

(Figure 4.3-11). The larger thickness could be attributed to an overlapping effect of 

various tightly bonded nanoplatelets.  

Some sub-micrometric cavities in the range of about 40-550 nm were also 

observed in all samples (see Figure 4.3-11 at high magnification), which could be 

associated with the presence of a mould lubricant additive. In fact, during composite 

preparation, the mould lubricant could be only partially dispersed in the matrix and/or 

on the filler surface, and a part of it could be separated in homogeneous spherical 

microparticles, that could be lost after exposure of the fracture surfaces. Moreover, the 

observed size of the nanofillers appeared proportional to the melting enthalpy of the 

mould lubricant, as shown in Table 4.3-2 and Figure 4.3-4. 
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Figure 4.3-11. SEM micrographs of L-M5 (a), L-C300 (b), L-C500 (c), and L-C750 

(d) nanocomposites at graphene loading of 8 wt% obtained at increasing 

magnifications: 1000x (1), 10000x (2) and 50000x (3). 
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4.4 Fused deposition modelling with ABS–graphene 

nanocomposites 

ABS-graphene-filaments suitable for a fused deposition modeling (FDM) 

process were produced through melt compounding and extrusion. On the basis of the 

work presented in the previous sections, ABS (L) with lubricant and graphene 

nanoplatelets-M5 (GNP-M5) were selected. The material composition was optimized 

in terms MFI and mechanical properties. The properties of neat ABS and ABS/GNP-

M5 nanocomposites were monitored on samples obtained by compression moulding, 

extruded filament and FDM-printed parts from standard commercial machine. 

Moreover, the effect of GNP on ABS 3D printed parts was investigated as a function 

of the most important parameters of the FDM process such as the building (i.e. 

horizontal, vertical and perpendicular), infill pattern and infill density. 

4.4.1 Selection of GNP content 

Figure 4.4-1 summarizes the tensile mechanical properties and melt flow index 

values determined on the compression molded (CM) materials as a function of the 

GNP-M5 content. The elastic modulus of nanocomposite materials increases with the 

amount of GNP-M5. On the other hand, the tensile strength of materials slightly 

decreases when the GNP-M5 concentration increases. At the same time, a 

remarkable reduction of the deformation at break can be observed when GNP-M5 

nanoparticles are added. This experimental evidence could be attributed to a poor 

adhesion level between the GNP-M5 nanoplatelets and the ABS matrix. It is 

worthwhile to observe that the MFI values strongly decrease with the GNP-M5 content 

due to the increasing viscosity in nanocomposites induced by the formation of a 

nanofiller network, as documented by the torque increase after addition of graphene 

to ABS in melt-compounding process. Considering the viscosity and elongation at 

break of extruding filaments for the 3D printing process, a GNP-M5 content of 4 wt% 

has been considered to be an optimal value. Therefore, all the subsequent 

investigations have been limited to nanocomposites containing 4 wt% of GNP-M5. 
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Figure 4.4-1. Tensile modulus, tensile strength and melt flow index values for 

compression moulded neat ABS (L) and ABS-graphene (L-M5) nanocomposites 

 

4.4.2 Filament extrusion 

Filaments of ABS and ABS with 4 wt% of GNP-M5 were extruded with an 

apparent draw ratio (ADR) of 2.6-3.3 calculated, according to Eq. (4.4-1), as the ratio 

between the cross sectional area of the extrusion die (SD) and the cross sectional area 

of the filament (SF). 

ADR = SD / SF (4.4-1) 

The apparent draw ratio includes the effect of die-swelling (DS), i.e. the ratio between 

the cross sectional area of the extrudate (SE) and the cross sectional area of the die. 

DS = SE/SD (4.4-2) 

For nanocomposite filaments, a lower DS value (1.19) was experimentally determined 

with respect to neat ABS that presented a value of 1.34. This difference could be 

attributed to the effect of graphene nanoplatelets on the rheological behaviour of the 

investigated material. Combining Eqs. (4.4-1) and (4.4-2) an effective draw ratio (DR) 

can be calculated as: 

DR = ADR ∙ DS= SE / SF (4.4-3) 

DR values of 3.9 and 3.5 were evaluated for ABS (E) and nanocomposite (4-E) 

filaments, respectively. 

ABS (L-E) and nanocomposite (L-M5-4-E) filaments were produced with linear 

density of 2490 ± 143 tex and 2516 ± 145 tex, respectively [161]. Corresponding bulk 
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density of 1.036 ± 0.008 g/cm3 and 1.049 ± 0.016 g/cm3 were also estimated from 

direct measurement of filament weight and volume. 

 

Table 4.4-1. Processing properties of L-E and L-M5-4-E nanocomposite during 

extrusion. 

Samples DSa ADRb DRc 
Linear density 

(tex) 

Density 

(g/cm3) 

L-E 1.34 2.6-3.3 3.9 2490 ± 143 1.036 ± 0.008 

L-M5-4-E 1.19 2.6-3.3 3.5 2516 ± 145 1.049 ± 0.016 
a Die-swelling 
b Apparent draw ratio 
c Draw ratio 

 

Extruded nanocomposite filaments were less flexible and more brittle than 

unfilled ABS filaments, and for this reason were wounded onto spools with a diameter 

of 20 cm, instead of spools with 10 cm diameter suitable for standard ABS, in order to 

avoid fracture of filament during the printing process. 

4.4.3 Preliminary study on FDM process (flexural test) 

ABS filaments provided by Sharebot, neat ABS (L) and ABS-graphene (L-M5-

4) filaments were feed into standard commercial FDM machine to produce the 

specimens for the flexural test. In Figure 4.4-2, the representative flexural stress-strain 

curves of ABS from Sharebot, and neat ABS (L), and ABS-graphene (L-M5-4) 

measured on 3D-printed along horizontal build orientation samples with different infill 

pattern and density are represented, while in Table 4.4-2, the main flexural parameters 

are summarized. 

From Table 4.4-2, the flexural modulus and maximum stress of neat ABS (L) 

and commercial ABS from sharebot are similar. It is worthwhile to note that HC 

samples lead to the highest flexural modulus and maximum stress due to the 

alignment of deposited filaments. For FDM parts with 45˚/-45˚ infill, the flexural 

modulus and maximum stress were reduced with the percentage of infill density. On 

the other hand, the yield strain of FDM horizontal build orientation samples 

progressively increased with lower infill density. In the literature, only a few scientific 

articles are about the effect of infill density on mechanical properties [162-164]. 

Upon the addition of 4wt% of graphene, it showed the remarkable improvement 

of flexural modulus for all samples, especially at the high infill density. Similar to tensile 

properties, the maximum flexural stress were also slightly reduced by the presence of 

graphene due to poor adhesion between graphene nanofiller and ABS matrix. 
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Figure 4.4-2. Flexural stress-strain curve as measured on 3D-printed specimens: (a) 

neat ABS Sharebot, (b) ABS with mould lubricant (L) and graphene nanocomposites 

(L-M5-4). 
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Table 4.4-2. Flexural parameters of ABS and its nanocomposite as measured on 3D-

printed specimens with different orientations. 

Sample 
Ef (MPa) 

Ef* (MPa/(g/cm3) 

σmax,f (MPa) 

σ*max,f (MPa/g/cm3) 
εy (%) 

ABS_Sharebot-HC 1900 ± 65 

2019 

58.3 ± 1.3 

61.9 

4.7 ± 0.1 

ABS_Sharebot-H45 1718 ± 36 

1798 

51.0 ± 1.6 

53.4 

4.7 ± 0.1 

ABS_Sharebot-H45_80 1093 ± 59 

1335 

31.5 ± 1.6 

38.5 

4.8 ± 0.4 

ABS_Sharebot-H45_60 631 ± 41 

952 

21.0 ± 0.9 

31.7 

5.7 ± 0.6 

ABS_Sharebot-H45_40 426 ± 9 

850 

13.9 ± 0.2 

27.8 

5.6 ± 0.3 

L-HC 1989 ± 54 

2030 

60.6 ± 0.9 

61.8 

4.7 ± 0.1 

L-H45 1721 ± 62 

1816 

47.8 ± 2.0 

50.4 

4.6 ± 0.3 

L-H45_80 1082 ± 111 

1348 

30.3 ± 1.6 

37.8 

4.8 ± 0.6 

L-H45_60 682 ± 56 

1014 

21.1 ± 1.8 

31.4 

5.8 ± 0.6 

L-H45_40 434 ± 19 

912 

13.9 ± 0.8 

29.1 

5.9 ± 0.2 

L-M5-4-HC 2338 ± 95 

2480 

58.8 ± 1.5 

62.3 

4.0 ± 0.3 

L-M5-4-H45 1998 ± 84 

2140 

45.4 ± 2.4 

48.6 

3.5 ± 0.1 

L-M5-4-H45_80 1283 ± 102 

1533 

30.0 ± 1.5 

35.9 

3.8 ± 0.2 

L-M5-4-H45_60 708 ± 27 

1122 

18.3 ± 0.7 

29.1 

4.2 ± 0.2 

L-M5-4-H45_40 465 ± 54 

954 

12.8 ± 1.6 

26.3 

4.2 ± 0.2 

* the specific properties calculated following the equation (4.4-4) and (4.4-5). 
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The specific elastic modulus (Ef*) and specific strength (σ*max,f) were evaluated 

by the following equations: 


* f

f

E
E

 

(4.4-4) 







max,

max,* f

f

 

(4.4-5) 

where  Ef = flexural modulus 

σmax,f = maximum stress 

 = density of samples 

 

 

The specific flexural modulus and the maximum stress of all samples were 

evaluated by normalizing over the density and presented in Figure 4.4-3. The same 

tendency of specific properties regarding the type and infill density can be observed. 

The modulus of composites containing 4 wt% of grade GNP-M5 is enhanced from 

2019 MPa to 2480 MPa (i.e. 23%) for HC, from 1789 MPa to 2140 MPa (i.e. 19%) for 

H45, from 1335 MPa to 1533 MPa (i.e. 15%) for H45_80, from 952 MPa to 1122 MPa 

(i.e. 18%), and from 850 MPa to 954 MPa (i.e. 12%) for H45_40.  The reinforcement 

effect of graphene was clearly highlighted in specific flexural modulus and strength. 
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Figure 4.4-3. Flexural test of neat ABS Sharebot, ABS with mould lubricant (L) and it 

graphene nanocomposites (L-M5-4) as measured on 3D-printed specimens (a) 

Specific elastic modulus, and (b) specific maximum stress. 

 

4.4.4 Scanning electron microscopy 

3D-printed dumbbell specimens at different orientations along horizontal (HC), 

vertical (VC) and perpendicular (PC) were built as shown Figure 4.4-4. In Figure 

4.4-5(a-c), low magnification FESEM pictures of the fracture surface of HC, VC and 

PC dumbbell specimens, are presented. Identification of the FDM process parameters 

significantly affecting the quality of FDM processed parts is of primary importance [40]. 

In Figure 4.4-5a and b the cross-sections of single filaments in samples HC and VC 

can be observed; the trapezoidal shape (final thickness of 0.20 mm and width of about 

0.41 mm), indicates not only a shape variation from the initial circular section (nozzle 

diameter of 0.35 mm) but also a slight reduction of the filament cross-section due to 

the polymer orientation during FDM process. In particular, a draw ratio of 1.2 could be 

estimated as the ratio between the original section of the filament at the nozzle and 

the average section measured from Figure 4.4-5a-b. This drawing is expected to 

improve the mechanical properties along the correspondent direction (X), as a direct 

effect of the orientation of polymer chains [165]. Of course, the above considerations 

do most probably underestimate the drawing of the filament during the FDM process 

since any filament expansion when it leaves the nozzle is neglected. Moreover, the 

coalescence of the material showed in the upper level determines an almost flat plane 

for the next layer deposition; whereas the lack of continuity is evident in triangular 

cavities at the base of deposition plane. Sample VC has been built-up by layering five 
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contiguous filaments that have been deposited as follows: first, the external frame 

(filaments 1 and 5), then the infill process with an inner concentric frame (filaments 2 

and 4) and the lastly a third layer is deposited in the middle. Figure 4.4-5b shows some 

defects between the second and the third layers (see highlighted zone in Figure 

4.4-5b), evidencing a non-regular co-contiguity in the middle part; however, these 

small local imperfections do not impair the mechanical performances of the sample. 

On the other hand, the fracture surface of sample PC (Figure 4.4-5c) indicates a brittle 

fracture of an almost homogeneous material, and no traces of the precursor filament 

are evident. This suggests that deposited filaments completely merge together in 

quote homogeneous coalesced layers, due to the shorter deposition time of 

contiguous filaments in the plane X-Y. Moreover, the total deposition time of five 

filaments of a layer in sample PC is 11 sec (Table 3.2-5), much faster than that of 

samples HC and VC. Taking into account the number of filaments, about 4 seconds is 

the average time between the contact deposition in dumbbell specimens HC and VC, 

whereas for sample PC the average time is about 2 seconds. This processing time is 

even lower in parallelepiped specimens (about 1-2 seconds). The shorter time, the 

better the interaction and inter-joining between contiguous filaments, because the 

filament temperature is higher and closer to the polymer Tg, determining a higher 

quality of filament bonding [166]. 

 
Figure 4.4-4. Schematic of 3D-printed dumbbell specimens at different orientations: 

horizontal (HC), vertical (VC) and perpendicular (PC). 

 

Higher magnification FESEM pictures of the cross-section of the 3D-printed 

dumbbell specimens are reported for horizontal, vertical and perpendicular orientation, 

in Figure 4.4-5d, e and f, respectively. According to Figure 4.4-5d and e, the graphene 

nanoplatelets for HC and VC parts appear to be oriented mostly perpendicular to the 

fracture plane and therefore most likely oriented along the loading direction of 

dumbbell specimens. On the other hand, Figure 4.4-5f clearly proves that in PC 

specimens, graphene nanoplatelets appear to be distributed parallel to the cross-
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section. It can be therefore inferred that, during FDM process, the graphene 

nanoplatelets are forced to align along the layer plane. A relatively good dispersion of 

graphene nanoplatelets in ABS matrix can be observed for all building directions. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4.4-5. SEM micrographs of 3D-printed dumbbell specimens printed from neat 

ABS, L-HC (a), L-VC (b) and L-PC (c); and from graphene nanocomposites, L-M5-4-

HC (d), L-M5-4-VC (e) and L-M5-4-PC (f). 

4.4.5 Differential scanning calorimetry 

Figure 4.4-6 shows the typical DSC thermograms of compression molded 

specimens, extruded filaments and 3D printed H specimens of neat ABS and 

nanocomposites Two transitions are clearly visible both in the first (Figure 4.4-6a) and 

in the second heating scan (Figure 4.4-6c), i.e. the glass transition temperature of 

styrene-acrylonitrile copolymer phase (SAN) at about 105°C (in conformity to literature 

indications [104, 131]), followed by an endothermic peak at about 140°C. 
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Figure 4.4-6. DSC thermograms of neat ABS (L) and nanocomposites. First heating 

scan (a), cooling scan (b), and second heating scan (c) of CM (compression 

moulded), E (extruded) and FDM specimens. 

 

In Table 4.4-3, the Tg of SAN phase and data of melting (Tm, ΔHm) and 

crystallization (Tc, ΔHc) of mold lubricant are summarized. The transition temperatures 

Tg and Tm for pure ABS were fairly constant at about 105°C and 137°C, respectively, 

independently from the processing technique. Addition of GNP-M5 did not significantly 
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affect the glass transition temperature measured by DSC. On the other hand, no 

crystallization peak was found in the cooling step of nanocomposites (thermograms 

reported in Figure 4.4-6b and data in Table 4.4-3). However, the increased intensity of 

the melting peak observed in the second heating scan (Figure 4.4-6c) suggests that 

graphene could favor the crystallization of the mold lubricant and to play a nucleating 

effect. 

 

Table 4.4-3. Glass transition temperatures of styrene-acrylonitrile phase (Tg), melting 

temperature (Tm) and enthalpy of fusion of lubricant (ΔHm) crystallization temperature 

(Tc) and crystallization enthalpy (ΔHc) for ABS and relative nanocomposite as 

determined from DSC tests. 

Sample 

First heating Cooling Second heating 

Tg 

(°C) 

Tm    

(°C) 

ΔHm 

(J/g) 

Tc 

(°C) 

ΔHc 

(J/g) 

Tg 

(°C) 

Tm  

(°C) 

ΔHm 

(J/g) 

L 104.8 137.8 3.0 117.8 2.3 105.6 137.6 2.5 

L-E 102.2 137.5 3.1 116.2 2.4 105.5 137.3 2.6 

L-HC 103.8 137.7 3.4 115.3 2.6 105.7 137.0 2.7 

L-M5-4 102.0 134.9 2.9 - - 103.3 135.1 2.5 

L-M5-4-E 103.2 136.8 2.6 - - 106.0 137.2 2.0 

L-M5-4-HC 103.7 136.8 2.7 - - 105.5 136.9 2.0 

4.4.6 Quasi-static tensile tests 

The effect of GNP nanoplatelets on the elastic modulus (E), yield stress (σy), 

and stress (σb) and strain at break (εb) of neat ABS and ABS nanocomposite 

compression moulded, extruded and 3D-printed parts with different orientations are 

summarized in Table 4.4-4. In general, it can be noted how the presence of graphene 

nanoplatelets promotes a remarkable increase of the elastic modulus of the ABS 

matrix, but slightly decreases its strength. Concurrently, a noticeable drop of the strain 

at break values can be observed when GNP nanoparticles are added. The reduction 

of ultimate properties could be attributed to a poor adhesion level between the 

nanofiller and ABS matrix as documented by the FESEM observations of Figure 4.4-5. 
As it clearly emerges from Table 4.4-4, for neat ABS the elastic modulus of 

compression moulded samples is higher than that of 3D-printed samples along the 

horizontal direction (sample HC). This behaviour could be explained by the fact that a 

compaction pressure is applied only in the compression moulding process, while both 

extrusion and FDM processes are characterized by low or no compaction pressure. 

On the other hand, the almost similar elastic modulus of CM and E parts could be the 

result of two opposite factors: from one side the underestimation of true strain in tensile 

test on E samples due to the impossibility of using a contact extensometer, and from 

the other side the positive effect of orientation during extrusion. Moreover, for 3D-
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printed specimens, the presence of voids (about 6 vol% as observed from Figure 

4.4-5a) in the microstructure leads to a lower effective cross-section. The strength 

value of neat ABS compression moulded samples is of about 39 MPa, and it remains 

almost constant on both extruded filaments and FDM samples along the horizontal 

direction (sample HC). Tekinalp et al. also reported similar tensile strength values for 

neat ABS processed by CM or FDM [11]. 

Upon addition of 4wt% of GNP the elastic modulus improves by about 30% 

compared to unfilled ABS for all the investigated processing conditions, i.e. CM, 

extruded and horizontally oriented 3D printed samples. As expected, the build 

orientation remarkably affects the tensile mechanical properties of 3D printed samples. 

In fact, as reported in Table 4.4-4, the horizontally built sample exhibits the highest 

elastic modulus and strength, followed by vertical and then by perpendicular 

orientations, respectively. Also of HC and VC samples results to be higher than that 

of PC sample. The behaviour observed for HC and VC samples is certainly related to 

the direction of the deposited filaments preferentially aligned along the tensile applied 

load, while the deposited beads in PC specimens are mostly oriented transversally to 

the tensile load. According to the existing literature information on the effects of build 

orientation on the elastic modulus and tensile strength of ABS 3D printed parts similar 

trends were reported [2, 12, 167]. Valentan et al. [168] reported a significant effect of 

nozzle temperature on tensile elastic modulus and strength. Complementary 

information on mechanical properties of ABS FDM samples as a function of building 

directions were also reported by Jami et al. [169]. 

 

 
Table 4.4-4. Quasi-static tensile properties of ABS and its nanocomposite as 

measured on compression moulded (CM), extruded (E) and 3D-printed specimens 

with different orientations (HC, VC, PC). 

Sample E (MPa) σy (MPa) σb (MPa) εb (%) 

L 2147 ± 118 39.0 ± 0.5 29.9 ± 0.4 28.4 ± 5.2 

L-M5-4 2868 ± 202 35.7 ± 0.7 31.5 ± 2.6 5.1 ± 1.5 

L-E 2080 ± 68 39.3 ± 1.2 30.8 ± 0.8 32.5 ± 9.8 

L-M5-4-E 2563 ± 93 37.3 ± 0.7 33.6 ± 2.9 3.2 ± 1.4 

L-HC 1866 ± 118 38.8 ± 0.8 33.0 ± 4.3 4.2 ± 0.2 

L-M5-4-HC 2463 ± 76 - 35.9 ± 1.0 3.0 ± 0.1 

L-VC 1687 ± 104 35.7 ± 2.4 32.0 ± 1.0 4.5 ± 0.2 

L-M5-4-VC 2151 ± 78 - 30.5 ± 0.9 3.4 ± 0.5 

L-PC 1560 ± 85 23.8 ± 1.3 22.7 ± 2.9 3.3 ± 1.0 

L-M5-4-PC 1686 ± 129 - 13.4 ± 1.3 1.8 ± 0.4 
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4.4.7 Dynamic mechanical response and coefficient of 

thermal expansion 

Dynamic mechanical thermograms of neat ABS and nanocomposites after 

compression moulding, extrusion and 3D-printing with different orientations are Figure 

4.4-7 and Figure 4.4-8, respectively. In Table 4.4-5, selected values of storage 

modulus (E'), loss modulus (E") and glass transition temperature from loss tangent 

(tanδ) are summarized. Due to the orientation of polymer chains during extrusion, in 

the entire temperature range, the storage modulus of the extrudate (E) is higher than 

that of compression molded samples and FDM printed parts (Figure 4.4-7a). In FDM 

samples the positive effect of filament orientation is counterbalanced by the negative 

effect of some cavities, as shown in cross section micrographs (Figure 4.4-8 a and b). 

Due to the GNP addition in the ABS matrix, the storage modulus of CM, 

extrudate and FDM parts increases of about 30-50% with respect to the neat ABS 

below the Tg. The effect of GNP nanofiller is manifestly more evident above Tg. In fact, 

as shown in Table 4.4-5, the storage modulus of composite materials at 125°C is more 

than twice that of neat ABS for all investigated samples, thus revealing a positive 

stiffening effect of graphene nanoplatelets in the molten state. 

Two damping peaks can be clearly observed in Figure 4.4-7b and Figure 4.4-8b as 

expected in ABS copolymers. In particular, the first peak at about -76°C is related to 

the glass transition temperature (Tg1) of the butadiene rich phase [170], while the 

second transition (Tg2) at about 120°C is associated to the styrene-acrylonitrile (SAN) 

rich phase. 

 

Table 4.4-5. Dynamic mechanical properties of neat ABS and its nanocomposites as 

measured on compression moulded (CM), extruded (E) and 3D-printed specimens 

with different orientations (HC, VC, PC). 

Sample 

Storage modulus Damping peaks 
Loss modulus of SAN 

peak 

-50°C 

(MPa) 

30°C 

(MPa) 

125°C 

(MPa) 

B-

phase 

Tg1 (°C) 

SAN-

phase 

Tg2 (°C) 

E"peak 

(MPa) 

Tpeak 

(°C) 

wpeak* 

(°C) 

L 2009 1769 6.1 -77.6 120.7 333 112.2 10.1 

L-M5-4 2271 1995 12.3 -76.7 122.7 402 113.4 11.4 

L-E 2191 1889 6.0 -80.1 120.2 316 110.5 12.5 

L-M5-4-E 2661 2337 14.0 -79.6 122.4 413 112.6 13.1 

L-HC 1871 1598 9.9 -76.9 123.3 286 113.5 12.6 

L-M5-4-HC 2248 1975 27.3 -77.4 125.7 372 116.2 12.9 

L-VC 1611 1399 6.1 -76.6 120.7 275 112.4 11.2 

L-M5-4-VC 2159 1883 15.3 -76.0 123.5 364 114.6 11.9 

L-PC 1517 1306 5.8 -76.8 121.7 235 112.8 11.2 

L-M5-4-PC 1580 1371 11.4 -75.8 123.9 257 115.3 11.3 

*width at half peak 
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Figure 4.4-7. Dynamic mechanical thermograms a) storage modulus (E’) and b) loss 

tangent (tanδ), of neat ABS and nanocomposite samples as measured on 

compression moulded (CM), filaments (E) and 3D-printed specimens along 

horizontal orientation (HC). 
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Figure 4.4-8. Dynamic mechanical thermograms a) storage modulus (E’) and b) loss 

factor (tanδ) of neat ABS and nanocomposite as measured on 3D-printed specimens 

along different orientations (HC, VC, PC). 

 

For all processing routes, the presence of the GNP causes an increase of Tg1 

values by about 1°C and Tg2 values by about 2°C due to the restriction of motion of 

macromolecules. This observation agrees with what reported by Wei et al. [104] on a 

shift from 105°C to about 106°C for SAN phase transition after addition of 3.5% of 

graphene in fused deposition modelled ABS. 
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It is worth noting that the position of the glass to rubbery transition damping 

peak in ABS has been observed in the range 100-124°C [171-173] and it does 

dependent on various factors, such as copolymer composition, molecular weight and 

additives. 

DMA parameters of FDM samples at various build orientations are also 

compared in Figure 4.4-8. Horizontally built specimens show the highest storage 

modulus followed by vertical and perpendicular specimens, respectively. The trend is 

the same previously observed for the tensile Young's modulus, thus confirming that 

as recently reported by Arivazhagan and Masood [174] , dynamic mechanical 

properties strongly depend on the deposition orientation in FDM. Addition of GNP 

causes an increase of the storage modulus in comparison to neat ABS for all build 

orientation parts: at room temperature the storage modulus increases by 23%, 34% 

and 5% for HC, VC and PC orientation respectively. Therefore, it is confirmed that 

graphene nanoplatelets play the best stiffening effect in FDM printed parts when the 

deposited layers are aligned along the tensile load direction. It is worthwhile to note 

that the presence of graphene also causes a shift in loss modulus (E") peak 

temperature by about two degrees (see Table 4.4-5) for all investigated samples. At 

the same time, a slight enlargement of the width of loss modulus peak in graphene-

ABS composite indicates the coexistence of differently constrained polymer chains, 

probably due to the restriction of chain motion of ABS matrix in the surrounding of 

graphene platelets. 

Thermal strain of various specimens is compared in Figure 4.4-9. As a common 

feature, an almost linear increase with temperature is observed up to about 100°C, 

then in the proximity of Tg a steep increment of thermal strain indicates a transition into 

the rubbery state with a higher mobility of polymer chains. Eventually, after a relative 

maximum at about 110-120°C, an abrupt contraction suggests the tendency to recover 

a random coil conformation. The values of coefficient of linear thermal expansion 

(CLTE) of ABS and ABS-GNP nanocomposites for different processing routes and 

along various 3D-printing orientations have been calculated from the thermal strain 

and summarized in Table 4.4-6. Four temperature ranges have been selected in the 

glassy zone, i.e. at low temperature (T1=-50/-20°C), at room temperature 

(T2=20/50°C) and at high temperature close Tg (T3=70/90°C and T4= 

108°/113°C), respectively. CLTE values of neat ABS up to 50°C are in the range 60-

75×10-6/K, which are slightly lower than 90×10-6/K, the literature value of general 

purpose ABS [175]. After addition of GNP nanoplatelets, CLTE is remarkably reduced 

with values in the range 44-66×10-6/K, which means a better thermal stability in all the 

temperature intervals. In particular, GNP causes a reduction of CLTE of about 15% for 

CM specimen and about 42% for the extruded specimen mostly due to the orientation 

of graphene along extrusion directions as shown in Figure 4.4-5 (d, e). 
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Figure 4.4-9.Thermal strain of neat ABS and nanocomposite samples as measured 

on a) compression molded (CM), extruded (E) and 3D-printed specimens along 

horizontal orientation (HC) and b) along different orientations (HC, VC, PC). 
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Table 4.4-6. Coefficients of linear thermal expansion (CLTE) and linear thermal 

deformation (CLTD) of ABS and its nanocomposites in the glassy state as measured 

on compression moulded (CM), extruded (E) and 3D-printed specimens with different 

orientations (HC, VC, PC). 

Sample 
CLTE (×10-6/K) CLTD (×10-6/K) 

T1 T2 T3 T4 T5 

L 62.0 ± 0.2 64.7 ± 0.2 159.7 ± 0.9 5784 ± 281 773 ± 8 

L-M5-4 54.2 ± 0.1 54.9 ± 0.2 169.0 ± 1.2 4389 ± 180 678 ± 4 

L-E 60.0 ± 0.2 74.7 ± 0.3 232.2 ± 2.1 8266 ± 111 -3292 ± 57 

L-M5-4-E 43.8 ± 0.1 43.3 ± 0.2 193.0 ± 1.9 5692 ± 179 -2475 ± 33 

L-HC 64.9 ± 0.1 65.5 ± 0.3 174.2 ± 0.9 4081 ± 144 -5722 ± 78 

L-M5-4-HC 48.9 ± 0.1 48.3 ± 0.2 141.7 ± 0.9 1907 ± 62 -4466 ± 52 

L-VC 65.9 ± 0.1 73.5 ± 0.3 212.6 ± 0.9 6601 ± 209 -4854 ± 83 

L-M5-4-VC 49.3 ± 0.1 53.7 ± 0.3 151.0 ± 0.7 2933 ± 112 -3768 ± 55 

L-PC 65.6 ± 0.1 66.3 ± 0.3 183.3 ± 1.2 5660 ± 217 1257 ± 24 

L-M5-4-PC 60.4 ± 0.1 65.6 ± 0.3 187.4 ± 1.3 2476 ± 90 1169 ± 18 

Temperature interval: T1=-50/-20°C; T2=20/50°C; T3=70/90°C; T4=108/113°C; and 

T5=120/150°C. 

 

FDM specimens (HC, VC and PC) printed with neat ABS, present room 

temperature CLTE values of 66-74×10-6/K (Table 4.4-6), comparable to the values of 

78-87×10-6/K previously reported for FDM printed ABS [10, 104]. After the dispersion 

of GNP nanoplatelets, CLTE at room temperature reduces by 26% and 27% for HC 

and VC specimens, whereas only 1% for PC specimen, respectively. The behaviour 

of PC specimen indicates that the graphene nanoplatelets have an almost negligible 

effect on CLTE of ABS matrix because in this case the main role is determined by the 

adhesion layer (see Figure 4.4-5c). In the proximity of Tg (T4=108/113°C) the effect 

of graphene on ABS matrix indicated a certain reduction of CLTE of CM and E 

specimens (about 25-30%), and a stronger variation for all FDM printed specimens 

(about 55% of CLTE reduction). 

The thermal dilation behaviour above the glass transition temperature of SAN 

phase (range (T5=125°C/150°C) is described by the CLTD coefficients reported in 

the last column of Table 4.4-6. Poorly oriented samples, such as CM and P, show a 

positive thermal strain, corresponding to CLTD values of about 750 and 1250×10-6/K 

for ABS, respectively, that slightly decrease (-7/12%) after graphene addition. On the 

other hand, negative CLTD values can be found on extruded filaments and on FDM 

samples along H and V orientation. In this elevated temperature range, the reinforcing 

effect of graphene is markedly evident in the more oriented samples (E, HC and VC) 

with a shrinkage reduced by about 24% with respect to neat ABS. It is worthwhile to 

observe that nanofiller causes a reduction of both CLTE (below Tg) and CLTD (above 

Tg), suggesting an effective interaction between graphene and ABS both in the glassy 

and in the rubbery state. 
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4.4.8 Creep stability 

Figure 4.4-10(a-b) show the isothermal creep compliance of neat ABS and 

relative nanocomposite. If no plastic deformation is produced in the course of creeping, 

the total creep compliance in isothermal tensile creep in the linear viscoelastic region, 

D(t), is generally viewed as consisting of two components, i) elastic (instantaneous, 

reversible), Del and ii) viscoelastic (time-dependent, reversible) Dve(t) [176, 177]: 

( ) ( )veel
D t D D t 

 (4.4-6) 

Elastic (Del), viscoelastic Dve(t=3600s) and total D(t=3600s) creep compliance 

at 3600s have been estimated on creep curves and summarized in Table 4.4-7. It is 

evident that the addition of graphene nanoplatelets can promote the reduction of creep 

compliance for each investigated process and build orientation. The role of nanofiller 

is to restrict the polymeric chain mobility, thus promoting a better creep stability. 

According to the results, extrudate sample exhibits the highest reduction of creep 

compliance compared to compression moulded and printed specimens. For FDM 

printed specimens at various orientation, vertically built specimens show the highest 

reduction of creep compliance by about 24% owing to the addition of GNP-M5. 
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Figure 4.4-10. Creep compliance, D(t) at 30°C and 3.9 MPa, of neat ABS and 

nanocomposites as measured on a) compression molded (CM), extruded (E) and 

3D-printed specimens along horizontal orientation (HC) and b) along different 

orientations (HC, VC, PC). 

 
Table 4.4-7. Elastic (Del), viscoelastic Dve(t=3600s) and total D(t=3600s) creep 

compliance at 3600s, and fitting parameters (Eq. (4.4-7)) of ABS and its 

nanocomposites as measured on compression moulded (CM), extruded (E) and 3D-

printed specimens with different orientations (HC, VC, PC). 

Sample 
Del 

(GPa-1) 

Dve(t=3600s) 

(GPa-1) 

D(t=3600s) 

(GPa-1) 

De 

(GPa-1) 

k 

(GPa1 s-n) 
n R2 

L 0.59 0.21 0.80 0.576 0.037 0.219 0.9853 

L-M5-4 0.43 0.18 0.61 0.437 0.010 0.345 0.9877 

L-E 0.67 0.42 1.08 0.688 0.039 0.280 0.9786 

L-M5-4-E 0.45 0.27 0.72 0.454 0.013 0.371 0.9959 

L-HC 0.66 0.36 1.02 0.660 0.024 0.331 0.9950 

L-M5-4-HC 0.53 0.37 0.89 0.532 0.020 0.356 0.9947 

L-VC 0.68 0.45 1.13 0.696 0.017 0.399 0.9961 

L-M5-4-VC 0.55 0.31 0.86 0.543 0.023 0.323 0.9953 

L-PC 0.89 0.59 1.48 0.879 0.041 0.329 0.9968 

L-M5-4-PC 0.76 0.57 1.33 0.742 0.039 0.333 0.9977 

 

To model the viscoelastic creep response Findley’s model (power law) is 

commonly adopted to fit the experimental data [178]. This model can be obtained by 

expanding the Kohlrausch–Williams–Watts (KWW) model [179], generally described 

by a Weibull-like function as a series and ignoring all but the first term [180]: 
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 ( ) n
eD t D k t 

 (4.4-7) 

 

where De is the elastic instantaneous creep compliance, k is a coefficient related to 

the magnitude of the underlying retardation process and n is an exponent tuning the 

time dependency of the creep process. The parameters resulting from the best fitting 

of experimental creep data are summarized in Table 4.4-7. The elevated R2 values 

indicate that the Findley equation can satisfactory represents the experimental data. 

The reduction of the creep compliance due to the addition of GNP-M5 seems to be 

mostly associated with a reduction of the values of parameters De, which is 

comparable to Del and k. In fact, the coefficient n, which represents the kinetics of the 

flow process of macromolecules during creep time, is only marginally affected by the 

presence of GNP. 

4.5 Summary on ABS-graphene nanocomposites 

ABS nanocomposites with graphene nanoplatelets were prepared following 

different processing routes, i.e. compression molding, twin-screw extrusion and FDM 

process. Selection of types of ABS matrix and graphene nanoplatelets were carried 

out, as a preliminary study on compression molding samples. Next, graphene was 

successfully melt compounded in an ABS matrix then extruded in filaments suitable 

for fused deposition modelling. 

Two different ABS with low (Sinkral®L322) and high (Sinkral®F322) viscosity 

were used to host GNP-M5 nanofiller in order to produce the nanocomposites from 

compression molded plates. Microstructure analysis revealed that the low viscosity 

ABS (L) contains the mould lubricant additive. The strength of ABS with lubricant 

exhibited slight reductions due to the addition of GNP-M5. On the other hand, ABS 

with mould lubricant nanocomposites systems confirmed the better processability and 

stiffening effect. 

The influence of different types of graphene nanoplatelets (GNP-C300, C500, 

C700 and M5) on flow, thermal, electromagnetic shielding, electrical and mechanical 

properties of low viscosity ABS plates were investigated. XPS analysis revealed an 

oxygen content of ether/alcohol groups for C300, C500 and C750 nanoparticles 

progressively increasing with the particle size reduction and the increase of surface 

area; in the case M5 the total oxygen content is also depending on the contribute of 

carbonyl groups, and it is associated to traces of sulphur. The melt flow of ABS almost 

linearly decreased by the presence of graphene up to 8 wt%. For C-type nanoparticles, 

MFI values decreased proportionally to the filler surface area. Larger M5 nanoplatelets 

resulted to be the more promising in enhancing the shielding efficiency to 

electromagnetic interference, while C300, C500 and C750 resulted in a moderate 

effect on ABS regardless of specific surface area. Correspondently, M5 determined a 

higher reduction of electrical resistivity with respect to the almost equivalent effect of 
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C300, C500 and C750. However, it is necessary to point out that graphene content 

higher than 8% is required for practical applications in the field of electromagnetic 

shielding. In addition, GNP-M5 nanoparticles showed the best reinforcement effect on 

the elastic modulus of the composite in comparison of GNP-C300, C500 and C750. 

The Halpin-Tsai model was used to fit the tensile modulus of ABS/graphene 

composite. A 3D randomly oriented Halpin-Tsai model well fitted the experimental 

values of tensile modulus. Our results suggested that graphene nanoplatelets were 

3D randomly oriented in ABS which is in agreement with observation through scanning 

electron microscopy. It is worth to underline that the improvement of normalised 

modulus observed for GNP-M5/ABS composite is the highest ever reported in the 

open scientific literature on carbon-based fillers, except the case of carbon fiber and 

reduced graphene-oxide ABS composites. Among the various GNP nanoparticles 

studied in this study, GNP-M5 appears to be the most promising for electrical resistivity 

reduction and for EMI applications, and the most relevant for improving mechanical 

properties. 

GNP-M5 were successfully incorporated in an ABS matrix to produce the 

filaments suitable for fused deposition modelling. Due to the processing and materials 

properties, the filler content was optimized at 4 wt%. The thermo-mechanical 

properties of neat ABS and its nanocomposites have been compared on samples 

obtained through various processing routes such as compression moulding, extrusion 

and fused-deposition modelling. This positive effect was also verified along several 

different orientations in FDM samples. In all cases, the flexural modulus and maximum 

stress were reduced regarding type of infill and infill density. In addition, flexural 

modulus was enhanced by the presence graphene-M5 along the infill density. Also the 

presence of GNP-M5 improved the tensile modulus of ABS. Concurrently, the 

presence of GNP causes a slight reduction of tensile strength and strain at break for 

horizontal and vertical 3D built specimens and a more severe effect along the 

perpendicular direction. Moreover, GNP was also proven to reduce the coefficient of 

thermal dilation of 3D printed parts and to improve their stability under long-lasting 

loads. In fact, the creep compliance significantly reduced by addition of the nanofiller.  

For FDM-printed parts, the graphene nanoplatelets resulted to play the best 

reinforcement effect for horizontal and vertical orientation and to be less effective for 

perpendicularly printed specimens. 
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Chapter V 

ABS-carbon nanotubes nanocomposites 

 

Part of this chapter has been published in: 

S. Dul, L. Fambri, A. Pegoretti 

“Filaments production and fused deposition modelling of ABS/carbon nanotubes 

composites” 

Nanomaterials. 8. (2018) 49-73. 

 
To date, various conductive nanoparticles have been used in the 3D printing, 

e.g. carbon black (CB) [15, 16], graphene oxide (GO) [104, 111], reduced graphene 

oxide (r-GO) [97], graphene [102, 112] and carbon nanotubes [19, 21, 22, 102, 103]. 

However, very few studies have been focused on the production of nanocomposite 

filament feedstock for FDM. For example, a resistivity of 0.21 Ω.cm was reported for 

composite filaments of GO/polylactic acid (PLA) with 6 wt% of r-GO with a diameter of 

1.75 mm along with superior mechanical properties of FDM parts [97]. 15 wt% of CB 

on the resistivity of composite ABS feedstock filaments (about 2900 Ω.cm) was studied 

and characterized the resistivity of 3D-printed parts by several FDM parameters [16]. 

MWCNTs up to 3 wt% was dispersed in polyhydroxyalkanoate to produce feedstock 

filaments, but the resistivity of filaments have not been reported [103]. 3D-printing with 

5.6 wt% of GO in ABS matrix reported, but without information on electrical and 

mechanical properties of composites filaments and FDM samples [104]. The 3D 

printing with polymer nanocomposites consisting of CNT- and graphene-based 

polybutylene terephthalate was reported, finding that 3D-printed objects filled with 

CNT have better conductive and mechanical properties and better performance than 

those filled with graphene [102]. 

In a previous paper of this group, [181] the main effort was focused on the 

possibility to disperse CNT in ABS by using a commercial masterbatch of ABS/CNT 

for the production of filaments with a non-standard diameter of 1.4 mm. 6 wt% of CNT 

was found as an optimal fraction for the production of composite filaments. 

This chapter is dedicated to ABS-carbon nanotubes (CNT) nanocomposites 

with the aim to produce suitable filaments through the possibility to directly disperse 

CNT in ABS matrix in order to produce the ABS/CNT filaments suitable for the FDM 

process with a standard diameter of about 1.7 mm. Relatively higher viscosity ABS 

matrix, and lower processing temperatures with respect to the previous chapter have 

been properly selected in order to increase the processing shear stresses and to 

improve/facilitate CNT dispersion. 
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 In the following section 5.1, characterizations of carbon nanotubes nanofillers 

were carried out in terms of transmission electron microscopy (TEM), density and 

TGA. Section 5.2 is on the characterization on ABS-CNT nanocomposites in form of 

compression moulded plates. Section 5.3 describes the filaments production by using 

common industrial method (internal mixer and twin-screw extruder) with extensive 

thermal, mechanical, and electrical characterizations of ABS-CNT nanocomposites. 

Subsequently, the optimization the suitable ABS-CNT filaments for FDM and FDM 

parts characterizations along various build orientations are presented and discussed 

in section 5.4. Section 5.5 provides the electrical properties of ABS-CNT composites 

from different processing routes including compression moulding, filaments, fiber, and 

FDM samples following by some possible applications (surface temperature under 

applied voltage and strain monitoring). Finally, a summary of the study is provided in 

section 5.6. 

5.1 Characterization of carbon nanotubes 

From transmission electron microscopy (TEM) pictures represented in Figure 

5.1-1(a-b), the morphological structure of carbon nanotubes (CNTs) can observed. In 

particular, it is possible to note the presence of hollow tubes of CNTs with an outer 

diameter of about 20-15 nm and a thickness of about 4-6 nm. 

 

   
 (a) (b)  

Figure 5.1-1. TEM micrographs of carbon nanotubes particles (CNT). 

 

The helium pycnometer data obtained on carbon nanotubes are reported in 

Figure 5.1-2. The sample was analysed within 300 measurements in order to reach a 

plateau. This behaviour can be attributed to the diffused open porosity present on the 

surface of carbon nanotubes aggregates, among which helium molecules can difficulty 

penetrate and diffuse. Density of CNT particles was evaluated as 2.151 ± 0.033 g/cm3 

by the consideration of the last 200 data. 
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Figure 5.1-2. Density of carbon nanotube measured through a 
Micromeritics®Accupyc 1330 helium pycnometry (23.0°C) with 10 cm3 chamber. 

 

The thermal stability of carbon nanotubes was investigated through 

thermogravimetric analysis (see Figure 5.1-3). One single degradation step can be 

observed with a maximum degradation temperature (Td,max) of 627.3°C and a 

maximum mass loss rate (MMLR) of 1.16 %/°C. The residue at 700°C is about 11.3%. 
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Figure 5.1-3. TGA curve of carbon nanotubes performed in air atmosphere: mass 

loss (continuous line) and derivative of mass loss (dot line). 
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5.2 ABS-carbon nanotubes nanocomposites plates 

The first step of nanocomposite preparation was performed following previous 

compounding procedure following compression moulding. At this purpose in order to 

increase the processing shear stresses during CNT dispersion, an ABS matrix with 

MFI of 14.8 ± 1.0 g/cm3 (220°C and 10Kg) was properly selected, with higher viscosity 

than ABS with MFI of 25.4 ± 1.4 g/cm3 (220°C and 10Kg) previously utilized for the 

production CNT composite from master-batch [181]. 

Nanocomposites are designated indicating the type of ABS (F, in this study) and 

the filler type (CNT) and content. As an example, F-CNT-2 indicates a nanocomposite 

sample filled with 2 wt% of CNT. 

5.2.1 Compounding and morphology 

As reported in Table 5.2-1, the investigated formulations are a combination of 

ABS with carbon nanotubes. It should be noted the MFI value significantly decreased 

with the percentage of carbon nanotube in the polymer matrix (Table 5.2-1). The 

density of nanocomposites was increasing with almost linear dependence on the F-

CNT composition, suggesting a proper distribution of nanofiller in ABS matrix. 

 

 

Table 5.2-1. Designation and formulation of ABS nanocomposites dependence of melt 

flow index (250°C/10 Kg). 

Sample 
ABS®F322 

(wt%) 

CNT 

(wt%) 

MFI  

(g/10min) 

Density  

(g/cm3) 

F 100 0 89.7 ± 2.5 1.042 ± 0.003 

F-CNT-2 98 2 39.3 ± 3.2 1.057 ± 0.003 

F-CNT-4 96 4 8.4 ± 1.3 1.064 ± 0.003 

F-CNT-6 94 6 0.55 ± 0.04 1.074 ± 0.003 

F-CNT-8 92 8 0.06 ± 0.01 1.082 ± 0.003 

 

The effect of compounding and the quality of carbon nanotubes dispersion into 

ABS matrix was evaluated of the fracture surface of ABS/CNT nanocomposites with 2 

wt%, 4 wt%, 6 wt% and 8 wt% of CNT by SEM analysis and results are represented 

Figure 5.2-1(a-d) respectively. From The SEM figures, it is evidenced that carbon 

nanotubes show an uniform distribution and the excellent dispersion. In addition, at 

high magnification images (see Figure 5.2-1 (e-h)), adhesion level between CNTs and 

ABS can be observed which is, expected to enhance the mechanical properties of the 

composites. 

 



117 

   
(a)    (e) 

   
(b)     (f) 

   
(c)    (g) 

   
(d)    (h) 

Figure 5.2-1. SEM micrographs of ABS/CNT nanocomposite plates with 2 wt% (a, 

e), 4wt% (b, f), 6 wt% (c, g) and 8 wt% (d, h) of CNT at magnification of 10,000× 

(left) and 50,000× (right). 
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5.2.2 Differential scanning calorimetry 

DSC thermogram of ABS and CTN filled nanocomposites are illustrated in 

Figure 5.2-2, and data are summarized in Table 5.2-2. The glass transition 

temperatures for unfilled ABS and its nanocomposite of are of about 108°C in both 

first and second heating stage, which is associated to styrene–acrylonitrile copolymer 

phase (SAN). According to the data reported in Table 5.2-2, the presence of CNT has 

no significant effect on the glass transition temperature of composites. Also, Yang et 

al. reported only a slight increase in Tg promoted by single wall carbon nanotubes 

(SWCNT) dispersed in ABS [182]. 
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Figure 5.2-2. DSC thermogram of neat ABS and ABS/ CNT nanocomposites from 

compression moulding in the heating-cooling-heating cycle. 

 
Table 5.2-2. Glass transition temperatures (Tg) of neat ABS and resulting 

nanocomposite plates from DSC tests. 

Samples 
Tg (ºC) 

First heating Cooling Second heating  

F 108.3 102.4 108.0 

F-CNT-2 108.0 102.4 107.8 

F-CNT-4 108.0 100.5 108.5 

F-CNT-6 107.7 104.0 108.5 

F-CNT-8 108.2 102.7 108.5 
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5.2.3 Quasi-static tensile test 

Representative stress-strain curves of neat ABS and ABS/CNT 

nanocomposites obtained by compression moulding are reported in Figure 5.2-3. The 

tensile properties of neat ABS and nanofilled ABS nanocomposite plates with different 

amount of carbon nanotubes are summarized in Table 5.2-3. As expected, the 

introduction of carbon nanotube leads to the improvement of the elastic modulus with 

respect to the neat ABS [78, 80, 183]. For instance, the modulus of composites 

containing 8 wt% of CNT is enhanced from 2315 MPa to 3068 MPa (i.e., 32%). At 

nanofiller higher than 4 wt% of CNT, the samples behave in very brittle manner, and 

the failure occurs before the yield point (see Table 5.2-3). Moreover, it is important to 

note that the strength of ABS increased proportionally to carbon nanotubes content. 

The highest strength was obtained for 6 wt% of CTN in ABS. Tensile strength 

increased from 41.7 MPa for neat ABS to 46.6 MPa for F-CNT-6 sample (i.e., 12%). 

Such significant improvement in the tensile modulus and strength is consistent with 

the scanning electron microscopy analysis that shows a very good dispersion and 

good adhesion at the CNT/ABS interface. In addition, neat ABS presents a much 

higher strain at break compared with the filled samples, and nanofiller introduction 

induces an embrittlement of the samples. 
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Figure 5.2-3. Representative of the tensile stress-strain curve of ABS and ABS-CNT 

compression moulding. 
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Table 5.2-3. Tensile properties of ABS-CNT nanocomposites as function of carbon 

nanotubes (CNT) content. 

Samples E (MPa) σy (MPa) εy (%) σb (MPa) εb (%) 

F 2315 ± 100 41.7 ± 0.4 4.2 ± 0.1 33.6 ± 0.4 35.9 ±  6.1 

F-CNT-2 2513 ± 101 43.3 ± 0.4 3.9 ± 0.1 34.1 ± 1.5 7.5 ± 2.4 

F-CNT-4 2622 ± 29 43.5 ± 1.0 3.9 ± 0.1 40.3 ± 1.8 4.5 ± 0.6 

F-CNT-6 2849 ± 70 - - 46.6 ± 0.5 3.9 ± 0.2 

F-CNT-8 3068 ±156 - - 45.1 ± 2.3 3.2 ± 0.3 

 

5.3 ABS-carbon nanotubes nanocomposites filaments 

The first step of composite preparation was performed following compounding 

procedure with the direct mixing of filler and polymeric matrix as previously reported 

in [112, 184]. For the purpose to increase the processing shear stresses during CNT 

dispersion, an ABS matrix with MFI of 14.8 ± 1.0 g/cm3 (220°C and 10 kg) was 

properly selected, with viscosity higher than ABS with MF of 23 g/cm3 (220°C and 10 

kg) previously utilized for the production CNT composite from master-batch [181]. 

Moreover, in the second step of filament extrusion, lower processing temperatures, 

220°C instead of 240°C [181], were set in order to furtherly improve dispersion under 

high shear stresses. 

3D-printed fibers were prepared, starting from extruded filament by using a 

prototype of a 3D printer for high temperature processing, Sharebot HT Next 

Generation desktop (Sharebot NG, Nibionno, LC, Italy). through a nozzle with a 

diameter of 0.40 mm at temperature of 250°C or 280°C for ABS or nanocomposites 

respectively. Fibers of about 100 cm length with a diameter of 0.50–0.65 mm were 

also freely extruded at a speed of 40 mm/s for mechanical and electrical testing. 

 

5.3.1 Filament extrusion and melt flow index 

The working parameters of extrusion were set for the production of filaments 

with a standard diameter of about 1.70 mm at constant collection rate, as reported in 

Table 5.3-1. The torque and internal pressure at the die of extruder significantly 

increased with CNT content. 

The filament of neat ABS and of ABS/CNT composites were extruded with an 

orientation factor of about 1.0 at 220°C, as evaluated by the ratio between the cross-

sectional area of the extruder die hole (SDE) and the cross-sectional area of the 

obtained filament (SF) according to Eq. (5.3-1). 

OFE = SDE/SF (5.3-1)  
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Moreover the orientation factor of fiber produced by 3D-printer as the cross-sectional 

area of the filament (SF) and the cross-sectional area of the obtained fiber (Sf) 

according to Eq. (3.3-1). 

OF3D = SF/Sf (5.3-2)  

The orientation factor is higher in the fiber (produced at 250°C for ABS and at 

280°C for CNT-6) than filament obtained at 220°C due to the processing conditions. 

The higher the CNT content, the higher the orientation factor of fibers. Moreover, it is 

important to observe that linear density of fiber is progressively decreasing with CNT 

content, as shown in Table 5.3-2. 

This result could be explained by considering that the final diameter of fiber is 

decreasing with the nanofiller content (see detail in Table 5.3-5). Consequently, the 

free flow of the fibers from die of 3D-printer was used to evaluate the die-swelling (DS), 

according to Eq. (5.3-3), where Sf is the cross-sectional area of fibers and SDP is nozzle 

section of 3D-printer (0.40 mm). 

 

DS = SF/SDP (5.3-3) 

Table 5.3-2 shows that the die-swelling of the investigated composites is significantly 

reduced as the CNTs fraction increases; in particular, at 6 and 8 wt % of CNTs, die 

swelling in fiber is almost completely suppressed. 
Moreover, a total orientation factor in fiber OFT could be calculated combining 

Eqs (5.3-1) and (3.3-1, as shown in Eq. (5.3-4): 

 

OFT = SDE/Sf (5.3-4) 

 

The total orientation factor in the fiber increased with CNT content in direct 

dependence on the first step of filament production at 220°C and the subsequent 

extrusion from 3D printer at 250°C (for ABS) or 280°C (for nanocomposite), that is the 

most effective step. This cumulative effect could be a useful parameter for evaluating 

the processability of the various filaments.
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Table 5.3-1. Processing parameters of twin screw extruder for the production of ABS and ABS/CNT nanocomposite filaments. 

Samples 
Pressure 

(bar) 
Torque 
(Nm) 

Screw speed 
(rpm) 

Collection rate 
(m/min) 

Output 
(g/h) 

Filament 
diameter (mm) 

F-E 16.9 40.4 5 1.00 137.6 1.725 ± 0.049 

F-CNT-1-E 17.1 38.4 5 1.00 134.6 1.679 ± 0.007 

F-CNT-2-E 21.7 45.9 5 1.00 137.7 1.684 ± 0.025 

F-CNT-4-E 28.0 66.8 5 1.00 138.6 1.765 ± 0.026 

F-CNT-6-E 44.2 100.1 5 1.15 139.6 1.712 ± 0.035 

F-CNT-8-E 45.7 119.6 4.5 0.88 122.1 1.702 ± 0.016 

 
Table 5.3-2. Bulk density and linear density of ABS and ABS/CNT nanocomposite during filament extrusion and 3D fiber production. Extrusion and 3D 

printing draw ratio. 

Samples 
CNT 

content 
(wt%) 

Bulk density 
(g/cm3) 

Filament Linear 
density (tex) 

Filament 
Extrusion 

OFE
 1 

Fiber Linear 
density 

(tex) 

3D-printing 
OF3D

 2 

Fiber 
Swelling 

DS 
3 

Fiber 
OFT 

4 

F-E 0 1.042 ± 0.001 2389 ± 139 1.09 349 ± 17 7.1 2.6 7.7 

F-CNT-1-E 1 1.046 ± 0.001 2256 ± 18 1.15 290 ± 7 8.1 2.2 9.3 

F-CNT-2-E 2 1.051 ± 0.001 2287 ± 71 1.14 267 ± 5 8.8 2.0 10.1 

F-CNT-4-E 4 1.059 ± 0.002 2534 ± 83 1.04 231 ± 3 11.2 1.7 11.6 

F-CNT-6-E 6 1.071 ± 0.002 2425 ± 64 1.11 224 ± 3 11.1 1.7 12.2 

F-CNT-8-E 8 1.081 ± 0.002 2387 ± 64 1.12 219 ± 2 11.3 1.6 12.7 
1 Draw ratio of filament (extrusion) from Eq. (5.3-1). 2 Draw ratio in 3D printing from Eq.(5.3-3). 3 Fiber swelling. 4 Total Draw ratio of fiber (extrusion and 3d 

printing) see Eq. (5.3-4).
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The effect of CNT on the melt flow index (MFI) of extruded ABS filaments was 

also investigated. Figure 5.3-1 shows a strong decrease of MFI with the carbon 

nanotubes content, due to the increasing viscosity induced by the formation of a 

nanofiller network. This effect is also documented by a significant increase in the 

torque and internal pressure measured during the extrusion process after addition of 

CNT to ABS (see Table 5.3-1). Even though the MFI of nanocomposites with CNT 

content higher than 4 wt % is extremely low, it has been possible to produce feedstock 

filaments by using twin screw extruder up to 8 wt % of CNT, reaching maximum values 

of internal pressure of about 46 bar and 120 Nm of torque. 
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Figure 5.3-1. Melt flow index (250ºC/10 kg) of ABS nanocomposit as a function of 

CNT. 

5.3.2 Bulk density  

The bulk density of filaments is plotted in Figure 5.3-2 as a function of CNT 

volume fraction. The density of neat ABS filament is 1.042 g/cm3, which is consistent 

with the reported value in the materials technical data sheet [114]. Density of ABS/CNT 

composites increases almost linearly with rising fraction of CNT up to 1.081 g/cm3 at 

8 wt % of CNT (corresponding to about 4 vol %). As it can be seen, the experimental 

density of ABS filled CNT nanocomposites is slightly lower than the theoretical density 

estimated by using the rule of mixture, which evidences the presence of microvoids, 

whose volume fraction (Vv) is reported in Figure 5.3-2. Details of voids determination 

are reported in section 3.3.1.1. 
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Figure 5.3-2. Experimental density values of ABS-CNT filaments compared to 

theoretical density and voids fraction (Vv). 

5.3.3 Morphological analyses 

The fracture surface of cryogenically broken filaments was visualized by SEM 

microscopy. Figure 5.3-3 illustrates the SEM images of ABS/CNT filaments with a 

CNTs content of 6 and 8 wt % at increasing magnification. Regarding the CNTs 

dispersion in both compositions, a homogenous distribution of single nanotubes in 

ABS matrix can be observed (no aggregates of nanotubes were detected). This means 

that the adopted two-steps process, consisting of mixing in an internal mixer followed 

by twin-screw extrusion, was capable to avoid the formation of nanofiller aggregates 

and to properly disperse CNTs in the ABS matrix. In addition, at high magnifications, 

a good adhesion level between CNT and ABS can be observed. 

 

 (a)  (d) 
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 (b)  (e) 

 (c) (f) 
 

Figure 5.3-3. SEM micrographs of F-CNT-6-E (left) and F-CNT-8-E (right) filaments 

at different magnifications (a, d) ×80, (b, e) ×10000 and (c, f) ×50000. 

5.3.4 Thermal degradation behaviour 

Thermal stability of ABS matrix and prepared composites was investigated by 

using thermal gravimetric analysis (TGA). Figure 5.3-4(a-b) depicts the TGA 

thermogram of neat ABS and CNT-filled composite filaments, while the most important 

parameters are summarized in Table 4. For the neat ABS in air environment two main 

degradation steps can be clearly observed at 416 °C and 514 °C, that could be 

attributed to the molecular chain scission and the oxidation of residual species, 

respectively [68, 182]. On the other hand, neat CNTs showed one single 

decomposition step at around 627°C. The onset temperature (Tonset) and the maximum 

degradation temperature (Td,max) of the composites slightly increase with rising CNTs 

fraction up to a maximum value for 2 wt % of CNTs; afterwards they decrease. Similar 

behaviour was also observed for other systems, such as polylactic acid/CNT, where it 

was attributed to possible aggregation and breakage of CNTs at elevated 

concentrations [81]. 

For F-CNT-6-E and F-CNT-8-E samples, it is possible to note that double peaks 

occurred between 420–430°C. Moreover, an additional peak of nanocomposites with 

more than 4 wt % of CNT can be observed around 616–618 °C, which might be 

associated with the presence of CNT. The maximum mass loss rate (MMLR) in Figure 

5.3-4b is progressively reduced by the presence of CNT since the nanofiller can hinder 

the diffusion of volatile products generated by polymer decomposition [80, 81, 182]. 
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As reported in Table 5.3-3, the residue of tested composites at 475°C and 575°C 

increases with the CNT fraction.  
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(b) 

Figure 5.3-4. TGA curves of neat and nanofilled ABS filaments under air 

atmosphere: (a) Residual mass as a function of temperature; (b) Derivative of the 

mass loss. 
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Table 5.3-3. TGA data of pure ABS and its nanocomposites in an air atmosphere. 

Samples 
Tonset 
(°C) 

Tmax1 
(°C) 

Tmax2 

(°C) 
TCNT 
(°C) 

Residue at  
(wt%) 

Relative 
residue at  

(wt%)* 

475°C 575°C 700°C 475°C 575°C 

F 394.0 416.5 514.4 - 7.9 0.1 0.0 0.0 0.0 

F-CNT-1-E 397.5 424.6 560.4 - 8.8 2.8 0.2 0.9 2.7 

F-CNT-2-E 399.4 426.2 548.6 - 9.7 3.0 0.2 1.8 2.9 

F-CNT-4-E 396.9 421.5 547.1 618.2 12.6 4.8 0.4 4.7 4.7 

F-CNT-6-E 394.8 420.6 542.2 617.5 15.4 6.6 0.6 7.5 6.5 

F-CNT-8-E 394.6 428.3 544.1 616.6 17.8 8.2 0.7 9.9 8.1 

Pure CNT 576.3 - - 627.3 97.7 84.6 11.3 - - 

*calculated according to the equation (3.3-4). 

 

In Figure 5.3-5, however, the experimental residual mass is slightly higher than 

theoretical residue from individual components polymer ABS and pure CNT (see 

equation (5.3-5)). It is suggesting the interaction between ABS and CNT provided a 

lower degradation in nanocomposites with respect to the behaviour of single 

constituents. 

   (1 )theoretical f CNT f ABSR w R w R  (5.3-5) 

 

where wf is weight fraction of CNT; RCNT and RABS are the residue of pure CNT and 

neat ABS, respectively. 
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Figure 5.3-5. The comparison of experimental and theoretical residues of 

nanocomposites at 475˚C and 575˚C. 
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5.3.5 Differential scanning calorimetry  

All DSC thermograms of neat matrix ABS and of CTN filled composites are 

depicted in Figure 5.3-6 and were used for the determination of the glass transition 

temperature Tg (Table 5.3-4). (Table S2). The Tg values found for SAN phase in neat 

ABS and in CNT-filled ABS filaments are about 106 °C and 108 °C at the first and the 

second heating run, respectively, which means that the presence of CNT has no 

significant effects on Tg of ABS/CNT composites. Also, Yang et al. reported only a 

slight increase in Tg promoted by single wall carbon nanotubes (SWCNT) dispersed in 

ABS [182]. 
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Figure 5.3-6. DSC thermogram of neat ABS and its ABS/CNT nanocomposites 

filaments in the heating-cooling-heating cycle. 

 

 

Table 5.3-4. Glass transition temperatures of styrene–acrylonitrile phase (Tg) for ABS 

and relative nanocomposite of filaments from DSC. 

Samples 
Tg  (ºC) 

First heating Cooling Second heating 

F-E 106.1 102.1 108.0 

F-CNT-1-E 105.8 102.2 108.7 

F-CNT-2-E 105.5 102.9 108.8 

F-CNT-4-E 105.5 102.7 108.8 

F-CNT-6-E 106.7 100.1 109.2 

F-CNT-8-E 105.2 102.7 108.8 
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5.3.6 Quasi-static tensile test 

Tensile properties were measured for both filaments and fibers at the various 

CNT content. Table 5.3-5 shows an almost equivalent mechanical behaviour of the 

different diameter extrudates (about 1.7 mm and 0.50-0.65 mm) with no direct 

dependence on the polymer orientation. The representative tensile stress-strain curve 

of ABS filament with an indication of the tensile energy to break (TEB) and the 

propagation energy (P) from the yield to break point presents in Figure 5.3-7. Ductility 

factor is the ratio between the propagation energy (P) from the yield to break point with 

respect to TEB, calculated according to the equation: 

 
P

Ductility factor
TEB  

(5.3-6) 

In Table 5.3-5, TEB progressively decreases with CNT content, and correspondingly 

the ductility factor for both filaments and fibers, especially above 4 wt% of nanofiller. 

Representative stress-strain curves of filaments of neat ABS and its 

nanocomposites are reported in Figure 5.3-8. It is worth noting that CNT enhances 

both tensile modulus (E) and yield strength (σy) of the composites (see Table 5.3-5). 

At the highest concentration of nanotubes (8 wt %) the elastic modulus of ABS/CNT 

nanocomposites achieved a value 19% higher than that of ABS matrix. The highest σy 

was found for F-CNT-6-E, while F-CNT-8-E shows a slight reduction in σy and almost 

brittle behaviour. Therefore, ABS with 6 wt % of carbon nanotubes was an optimal 

compromise for FDM application. 

0 3 6 9 12 15

0

10

20

30

40

50

 TEB

 P

S
tr

e
s

s
 (

M
P

a
)

Strain (%)

 
Figure 5.3-7. Representative tensile stress-strain curve of ABS filament with an 

indication of the tensile energy to break (TEB) and the propagation energy (P) from 

the yield to break point. 
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Figure 5.3-8. Tensile stress-strain curve of ABS and ABS-CNT filaments. 

5.3.7 Dynamic mechanical response and coefficient of 

thermal expansion 

As reported in Figure 5.3-9, ABS matrix and all composites show two transitions 

which can be identified with the glass transition of butadiene phase (B-phase; Tg1 = 

−84°C) and the glass transition of styrene–acrylonitrile phase (SAN phase; Tg2 = 

125°C). Incorporation of CNT accounts for enhancement of the storage modulus of 

composites above that of ABS matrix, which becomes more pronounced at higher 

temperatures. For instance, at the highest concentration of CNT (8 wt %), the storage 

modulus of composite filament exceeds that of ABS by about 16% at 30°C and by 

897% at 130°C. 

Incorporated CNT also contributes in enhancing the dissipation of mechanical 

energy, as represented by the dynamic loss modulus. Moreover, the nanofiller also 

increases the glass transition temperatures of both butadiene and styrene–acrylonitrile 

phases by about 3ºC due to the hindering of segmental motions at the interface. 

Similar observations were also reported in prior papers [63, 79]. 

The stiffness loss (SLTg) at the glass transition temperature could be evaluated 

from the reduction of storage modulus before and after the transition (ΔE’), according 

to Equation (12) as a function of storage modulus at 30°C. 

SLTg= (E’) / E’30°C (5.3-7) 

Where E’ represents the modulus variation from -100°C to -50°C, or from 90°C to 

130°C, in the case of transition of butadiene or SAN phase, respectively (see data in 

Table 5.3-6). 
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Table 5.3-5. Quasi-static tensile properties of ABS and its nanocomposite of filaments (E) and single fiber (f) produced by twin screw and FDM extrusion, 

respectively. 

Samples 
Filament 

diameter (mm) 
E 

(MPa) 
σy 

(MPa) 
σb 

(MPa) 
εb 

(%) 
TEB* 

(MJ/m3) 
Ductility factor** 

P/TEB 

F-E 1.725 ± 0.049 2207 ± 65 42.8 ± 1.9 35.0 ± 0.4 25.6 ± 15.8 8.94 ± 5.61 0.907 ± 0.040 

F-CNT-1-E 1.679 ± 0.007 2132 ± 63 42.9 ± 0.4 35.1 ± 0.3 7.9 ± 2.4 2.59 ± 0.86 0.713 ± 0.104 

F-CNT-2-E 1.684 ± 0.025 2226 ± 48 43.3 ± 0.3 37.8 ± 1.8 4.4 ± 1.2 1.36 ± 0.45 0.464 ± 0.153 

F-CNT-4-E 1.765 ± 0.026 2320 ± 74 43.4 ± 0.9 41.9 ± 1.7 2.6 ± 0.3 0.65 ± 0.16 0.099 ± 0.083 

F-CNT-6-E 1.712 ± 0.035 2625 ± 55 47.1 ± 0.5 44.6 ± 1.0 3.2 ± 0.5 1.04 ± 0.24 0.273 ± 0.158 

F-CNT-8-E 1.702 ± 0.016 2650 ± 125 46.8 ± 1.2 46.5 ± 1.1 2.5 ± 0.2 0.73 ± 0.10 0.046 ± 0.065 

F-f 0.648 ± 0.021 1918 ± 105 40.4 ± 0.9 33.6 ± 0.8 52.8 ± 27.2 18.5 ± 9.60 0.944 ± 0.023 

F-CNT-1-f 0.591 ± 0.012 1801 ± 122 39.3 ± 1.7 35.8 ± 1.5 6.4 ± 3.2 2.00 ± 1.20 0.463 ± 0.259 

F-CNT-2-f 0.567 ± 0.007 2033 ± 142 40.4 ± 0.5 33.6 ± 0.8 4.9 ± 1.2 1.53 ± 0.44 0.371 ± 0.168 

F-CNT-4-f 0.528 ± 0.001 2035 ± 58 42.9 ± 1.4 40.8 ± 2.4 4.9 ± 1.2 1.59 ± 0.48 0.335 ± 0.220 

F-CNT-6-f 0.515 ± 0.003 2099 ± 124 44.9 ± 1.3 44.1 ± 1.6 4.1 ± 0.6 1.29 ± 0.23 0.124 ± 0.098 

F-CNT-8-f 0.506 ± 0.005 2147 ± 80 47.1 ± 0.6 46.9 ± 0.9 4.0 ± 0.7 1.31 ± 0.31 0.096 ± 0.075 

*Total energy to break. **Ratio between the propagation energy (P) from the yield to break point, with respect to TEB. 
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In the zone of butadiene transition, the parameter SL was found to progressively 

decrease from about 0.45 (ABS matrix) up to 0.38 for F-CNT-8-E, in dependence on 

the content of CNT for all nanocomposite samples. On the other hand, the stiffness 

loss at the main glass transition (Tg of SAN phase) is almost linearly increasing with 

CNT content, from 0.80 (ABS filament) to about 0.84 for F-CNT-8-E filaments and it 

depends on the stiffening of rubbery phase above Tg. 
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Figure 5.3-9. Dynamic mechanical thermograms a) and c) storage modulus (E’) and 

b) loss modulus (E’’) of neat ABS and nanocomposite samples as measured on 

filaments. 
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Table 5.3-6. Storage modulus and stiffness loos from DMTA analysis of neat ABS and 

its nanocomposites as measured on filaments and FDM samples. 

Samples 

Storage modulus 
Stiffness loss* 

at Tg 

-100°C 
(MPa) 

-50°C 
(MPa) 

30°C 
(MPa) 

90°C 
(MPa) 

130°C 
(MPa) 

SL Tg1 SL Tg2 

F-E 3474 2503 2145 1711 4.7 0.453 0.795 
F-CNT-1-E 3417 2468 2129 1729 6.2 0.446 0.809 
F-CNT-2-E 3487 2531 2197 1809 9.7 0.435 0.819 
F-CNT-4-E 3636 2662 2342 1952 18.3 0.416 0.826 
F-CNT-6-E 3614 2685 2390 2044 28.0 0.389 0.844 
F-CNT-8-E 3747 2799 2496 2139 42.2 0.380 0.840 

*Stiffness loss calculated following the Eq. (5.3-7). 

 

Table 5.3-7. Damping peaks and loss modulus from DMTA analysis of neat ABS and 

its nanocomposites as measured on filaments and FDM samples. 

Samples 

Loss modulus 
Damping peaks 

B peak SAN peak 

E''peak 
(MPa) 

Tpeak 

(°C) 
E''peak 
(MPa) 

Tpeak 

(°C) 
B-phase 

Tg1 
SAN-phase 

Tg2 

F-E 128 -86.9 347 115.6 -84.9 122.7 

F-CNT-1-E 124 -84.5 355 116.3 -83.6 123.2 

F-CNT-2-E 122 -85.1 356 117.6 -82.4 125.5 

F-CNT-4-E 128 -83.8 380 118.4 -82.9 126.0 

F-CNT-6-E 122 -83.3 406 118.0 -81.5 124.6 

F-CNT-8-E 128 -83.1 419 118.4 -82.2 125.6 

 

 

Thermal strain of ABS/CNT filaments is plotted in Figure 5.3-10, and coefficient 

of thermal expansion of all samples is reported in Table 5.3-8. The thermal strain of 

composite filaments exhibited the linear trend up to 100°C, i.e. approximately to the 

glass transition temperature. The steep increment of thermal strain indicates the 

transition from the glassy state to the rubbery state with the much higher mobility of 

polymer chains. Above 120°C, the thermal strain showed negative slope concerning 

the temperature scale due to some shrinkage of the polymer chains orientated during 

extrusion. Incorporated CNT markedly reduced the coefficient thermal expansion (see 

Table 5.3-8). As expected, the composite with the highest concentration of CNT shows 

the largest drop of the coefficient thermal expansion, i.e.79.6 for ABS to 52.3×10-6/K 

for F-CNT-8-E at the room temperature (20/50°C), and from -891 for ABS to -51×10-

6/K for F-CNT-8-E at the temperature (130/150°C). 
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Figure 5.3-10. Thermal strain of neat ABS and nanocomposite samples as 

measured on filaments. 

 

Table 5.3-8. Coefficients of linear thermal expansion (CLTE) and linear thermal 

deformation (CLTD) of ABS and its nanocomposites as measured on filament 

samples. 

Sample 
CLTE (×10-6/K) CLTD (×10-6/K) 

T1 T2 T3 T4 T5 

F-E 49.7 ± 0.2 79.6 ± 0.4 262.9 ± 2.1 2350 ± 68 -891 ± 11 

F-CNT-1-E 51.6 ± 0.3 78.5 ± 0.5 246.1 ± 1.8 1880 ± 55 -678 ±  55 

F-CNT-2-E 48.4 ± 0.1 70.3 ± 0.4 250.8 ± 2.0 1770 ± 54 -491 ± 7 

F-CNT-4-E 43.2 ± 0.1 67.5 ± 0.5 223.8 ± 2.1 1450 ± 44 -465 ± 7 

F-CNT-6-E 38.1 ± 0.1 55.9 ± 0.3 207.0 ± 2.1 1290 ± 26 -206 ± 7 

F-CNT-8-E 33.7 ± 0.1 52.3 ± 0.2 191.3 ± 1.9 1150 ± 21 -51 ± 7 

Temperature interval: T1=-50/-20°C; T2=20/50°C; T3=70/90°C; T4=108/113°C; 

T5=130/150°C. 

5.3.8 Creep stability 

Figure 5.3-11 shows the creep compliance at 30°C of neat ABS and composites 

found for filament samples. If no plastic deformation occurs, compliance of isothermal 

tensile creep, Dtot(t), consists two components: elastic (instantaneous) Del and 

viscoelastic (time-dependent) Dve, as defined in Eq. (5.3-8). 

 

( ) ( )veel
D t D D t 

 (5.3-8) 

Incorporation of CNT in ABS accounts for a pronounced reduction of both 

compliance components, as reported in Table 5.3-9. Del is characterized by an almost 
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linear decrease with CNT fraction, which is in conformity with the inverse trend of 

tensile modulus (Table 5.3-5 and Table 5.3-6). For example, the composite with 8 wt% 

of the nanofiller showed Del or Dtot,3600s by 21% or 26% lower than the neat matrix.  

The empirical Findley’s model (power law), summarized in Eq. (5.3-9) was used 

to describe the viscoelastic creep response [178-180]: 

 ( ) n
eD t D k t 

 (5.3-9)  

where De is the elastic (instantaneous) creep compliance, k is a coefficient related to 

the magnitude of the underlying retardation process and n is an exponent related to 

the time dependence of the creep process. The fitting parameters for experimental 

creep data are summarized in Table 5.3-9. The fitting model was satisfactory, as R2 

around 0.99 was found for all samples value. The addition of CNT reduced the creep 

compliance of composites; in particular, the value of parameter De, for filaments are in 

good agreement with the values of Del. from Eq. (5.3-8). The coefficient n reflects the 

kinetics of displacements of the segments of macromolecules in the viscous medium 

in the course of the creep and it was found to slightly decrease with the presence of 

CNT in ABS filaments. 
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Figure 5.3-11. Creep compliance, D(t) at 30°C, of neat ABS and nanocomposites as 

measured on filaments at 3.9 MPa. 
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Table 5.3-9. Creep test of neat ABS and its nanocomposites as measured on filaments 

and FDM samples. 

Samples 
Del 

(GPa-1) 

Dve,3600s 

(GPa-1) 

Dtot,3600s 

(GPa-1) 

De 

(GPa-1) 

k 

(GPa-1 s-n) 
n R2 

F-E 0.482 0.369 0.851 0.488 0.012 0.419 0.9924 

F-CNT-1-E 0.471 0.362 0.833 0.460 0.020 0.364 0.9889 

F-CNT-2-E 0.450 0.261 0.710 0.447 0.016 0.345 0.9912 

F-CNT-4-E 0.436 0.225 0.660 0.436 0.014 0.342 0.9920 

F-CNT-6-E 0.405 0.246 0.652 0.393 0.020 0.319 0.9844 

F-CNT-8-E 0.380 0.246 0.626 0.374 0.016 0.347 0.9925 

 

5.4 Fused deposition modelling with ABS-carbon 

nanotubes nanocomposites 

On the basis of the work presented in the previous sections, neat ABS (F) and 

6 wt% of CNT filaments were selected to feed a high-temperature FDM 3D-printer to 

specify the effects of CNT on the properties 3D-printed components along various 

build orientations: horizontal concentric (HC), horizontal 45°/-45° infill (H45) and 

perpendicular concentric (PC). 

5.4.1 Morphological analyses 

In Figure 5.4-1 (a–f), the cross-sections of FDM nanocomposite specimens at 

low and high magnifications are visualized. Moreover, for FDM specimens the 

presence of voids (about 3 and 1 vol % as observed from Figure 5a, c respectively) is 

documented. Also, uniform dispersion of nanofillers can be observed in Figure 5.4-1 

(b, d, f) for all FDM specimens at different build orientations. By using the ImageJ 

software, the diameter of nanotubes was estimated to be about 33 ± 3 nm for all 

specimens (average of ten measurements). 

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.4-1. SEM micrographs of 3D-printed dumbbell specimens printed from 

carbon nanotubes nanocomposites, F-CNT-6-HC (a, b), F-CNT-6-H45 (c, d) and F-

CNT-6-PC (e, f). 

5.4.2 Thermal degradation behaviour 

TGA thermograms reported in Figure 5.4-2 (a-b) prove that 3D-printed 

specimens prepared at different built orientations (HC and PC) exhibited a behaviour 

similar to that observed for neat ABS filaments. However, as reported in Table 5.3-3, 

3D-printed nanocomposite samples, i.e. F-CNT-6-HC and F-CNT-6-PC, showed a 

slightly lower Tonset than the corresponding neat ABS samples. The residue at 475°C 

and 575°C was considered to evaluate the composition of CNT. In particular, the 

relative residue obtained after subtraction of ABS contribute fit quite well with the 6 

wt% of CNT. 
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(b) 

Figure 5.4-2. TGA curves of neat and 6 wt% nanofilled ABS 3D printed samples (HC 

and PC) under air atmosphere: (a) Residual mass as a function of temperature; (b) 

Derivative of the mass loss. 
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Table 5.4-1. TGA data of pure ABS and its nanocomposites in an air atmosphere. 

Samples 
Tonset 
(°C) 

Tmax1 
(°C) 

Tmax2 

(°C) 
TCNT 
(°C) 

Residue at (wt%) 
Relative 

residue at  
(wt%) 

475°C 575°C 700°C 475°C 575°C 

F-HC 391.9 414.0 531.8 - 9.2 0.2 0.0 0.0 0.0 

F-PC 391.0 415.2 535.6 - 8.9 0.2 0.0 0.0 0.0 

F-CNT-6-HC 382.3 424.5 525.3 618.0 15.8 5.4 0.6 6.6 5.2 

F-CNT-6-PC 388.0 423.1 529.0 613.6 15.6 5.7 0.8 6.7 5.5 

 

5.4.3 Differential scanning calorimetry 

All DSC thermograms of neat ABS matrix and of CTN filled composites are 

reported in Figure 5.4-3 and were used for the determination of the glass transition 

temperature Tg (see Table 5.4-2). The glass transition temperature of 3D-printed neat 

ABS (F-HC and F-PC) is slightly higher than that of neat ABS filament at the first 

heating run but similar in the second heating run. Moreover, the presence of nanotubes 

does not have any significant effect on glass transition temperature of nanocomposites 

in all the three steps of the cycle (first heating-cooling second heating). 
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Figure 5.4-3. DSC thermogram of neat ABS and its ABS/CNT nanocomposites of 

3D-printed samples in the heating-cooling-heating cycle. 
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Table 5.4-2. Glass transition temperatures of styrene–acrylonitrile phase (Tg) for ABS 

and relative nanocomposite of FDM samples from DSC. 

Samples 
Tg  (ºC) 

First heating Cooling Second heating 

F-HC 109.0 101.9 108.1 

F-PC 108.1 101.1 108.3 

F-CNT-6-HC 108.5 102.4 109.7 

F-CNT-6-PC 108.5 102.9 108.7 

 

5.4.4 Mechanical behaviour 

5.4.4.1 Quasi-static tensile test 

Stress-strain curves of 3D-printed specimens are shown in Figure 5.4-4 and 

resulting mechanical parameters are summarized in Table 5.4-3. Tensile modulus of 

H45 sample is comparable to that of HC sample probably because of good contact 

between bead extruded microfilaments and a lower fraction of voids in H45, as 

documented by SEM images (Figure 5.4-1a and c). Similarly enough, the lower yield 

strength of H45 with respect to that of HC is most probably due to internal orientations 

of deposited filaments as shown in Figure 5.4-1(a and c). H45 or HC samples are 

expected to behave almost as isotropic or transversally isotropic materials. On the 

other hand, ABS-PC samples manifest a brittle behaviour due to the weakness of 

interlayer bonding and the same behaviour is even clearer for F-CNT-6-PC samples 

because interlayer bonding could be significantly reduced by the higher viscosity in 

the molten state. Correspondingly, the ductility factor is zero, due to the absence of 

any toughening mechanism in the fracture process. In addition, the presence of CNTs 

resulted in an enhancement of both tensile modulus and yield stress for all FDM 

samples. The elastic modulus of ABS/CNT nanocomposites continuously increased 

up to 22%, 18% and 5% above that of unfilled ABS at the orientation of HC, H45 and 

PC, respectively. The highest yield stress can be observed in F-CNT-6-HC sample 

owing to deposited filaments parallel to the applied load and the reinforcing effect of 

carbon nanotubes. As a side effect, the elongation at break of FDM composites 

samples was significantly reduced proportionally to the CNT content. 

 



 141  

0 5 10 15 20 25 30 35

0

10

20

30

40

50

S
tr

e
s

s
 (

M
P

a
)

Strain (%)

F-HC

F-H45

F-PC

F-CNT-6-PC

F-CNT-6-H45

F-CNT-6-HC

 
Figure 5.4-4. Tensile stress-strain curve of ABS and ABS-CNT of 3D-printed 

samples. 

 

Table 5.4-3. Quasi-static tensile properties of ABS and its nanocomposite of FDM 

samples. 

Samples 
E 

(MPa) 
σy 

(MPa) 
σb 

(MPa) 
εb 

(%) 
TEB* 

(MJ/m3) 
Ductility factor** 

P/TEB 

F-HC 2235±170 45.7± 0.5 31.9±1.7 30.0± 10.4 10.7±3.76 0.866±0.077 

F-H45 2308±112 41.1±0.9 37.9±1.6 5.3±0.5 1.30±0.16 0.204±0.120 

F-PC 2077±44 - 22.0±4.4 2.4±0.7 0.30±0.10 0 

F-CNT-6-HC 2735±158 49.6±0.6 49.2±0.6 4.5±0.2 1.35±0.10 0.048±0.044 

F-CNT-6-H45 2739±268 43.2±0.3 42.6±0.4 4.6±0.3 1.19±0.11 0.054±0.056 

F-CNT-6-PC 2181±51 - 18.7±1.5 1.9±0.1 0.18±0.03 0 

*Total energy to break. ** Ratio between the propagation energy (P) from the yield to break point, 

with respect to TEB. 

5.4.4.2 Fracture mechanism 

Figure 5.4-5 presents the fractured surface of ABS and CNT-6 3D-printed 

specimens broken in liquid nitrogen. For both HC and H45 samples, it is easy to 

observe along the thickness in Z direction 10 flattened parallel deposited bead 

microfilaments with a dimension of about 420 microns in width and 210 microns in 

height for F-HC (and about 410 micron and 210 micron for F-CNT-6-HC). 
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(a)  (d) 

 (b)  (e) 

 

(c) 

 

(f) 

Figure 5.4-5. Frozen fracture of cross-section of 3D-printed dumbbells: (a) F-HC, (b) 

F-H45, (c) F-PC, (d) F-CNT-6-HC, (e) F-CNT-6-H45 and (f) F-CNT-6-PC. 

 

At the same time, along with the sample width in the Y direction, HC evidenced 

10 deposited microfilaments, whereas only 4 deposited parallel microfilaments could 

be observed in the external contours of H45 samples (2 on the right and 2 on the left). 

The inner microfilaments oriented at +45°/−45° could not be easily distinguished and 

an almost homogeneous zone appeared. For this reason, the similar stiffness of HC 

and H45 can be attributed to the combined effect of both the larger number of voids 

and orientation of microfilaments. On the other hand, for F-PC and F-CNT-6-PC no 
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traces of voids and of deposited microfilaments were observed in the cryo-fractured 

surface. These results have been attributed to the higher temperature of interlayer 

overlapping that is dependent on two factors: (i) the lower deposition rate (16 mm/s of 

PC sample with respect to 40 mm/s of other samples) and consequently the lower 

viscosity of deposited microfilament; and (ii) the lower time of deposition of the layer 

in PC samples with respect to HC samples (23 s vs. 46 s, respectively) and hence the 

higher temperature of the last deposited layer in PC sample (surface of deposition). 

 

 

(a) 

 

(d) 

 

(b) 

 

(e) 

 

(c) 

 

(f) 

Figure 5.4-6. Tensile fracture of cross-section of 3D-printed dumbbells: (a) F-HC, (b) 

F-H45, (c) F-PC, (d) F-CNT-6-HC, (e) F-CNT-6-H45 and (f) F-CNT-6-PC. 
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Difference is the case of a fractured cross-section of 3D-printed samples 

derived from the tensile test, as shown in Figure 5.4-6. The clear shape and size of 

the triangular voids between the deposited microfilaments (see Figure 5.4-6a) were 

observed due to the plastic deformation under tensile load. Moreover, some traces of 

microfilaments were partially evidenced in VC sample of both neat ABS and its 

nanocomposites, as shown in Figure 5.4-6 (c, f), which suggests a weak adhesion of 

the inter-layer bonding between microfilaments. 

5.4.5 Dynamic mechanical response and coefficient of 

thermal expansion 

As expected, the storage modulus of 3D-printed specimens at build parallel and 

±45° orientations (HC and H45) is higher than that measured on samples with the PC 

orientation. The behaviour observed for HC and H45 samples is related to the direction 

of the deposited filaments preferentially aligned and isotropic materials inclined at 

±45° along the tensile applied load respectively, while the deposited layers in PC 

specimens are mostly oriented transversally to the tensile force. In general, the 3D-

printed samples show storage modulus lower than original filaments due to the 

presence of voids and specific orientation of extruded microfilaments in 3D-printed 

samples (HC and PC). 

The data summarized in Table 5.4-4, clearly show that the storage modulus of 

HC or H45 at 30°C is enhanced by about 15% or 12% due to the addition of carbon 

nanotubes. The observed effect is even more pronounced at higher temperatures: at 

130°C the storage modulus of F-CNT-6-HC or F-CNT-6-H45 is 5 times higher than 

that of neat ABS-HC and ABS-H45. On the other hand, CNT do not exhibit any 

stiffening effect on storage modulus along PC orientation in the temperature range -

50 to 30°C, while a three-fold increase in the storage modulus can be observed at 

130°C. The presence of carbon nanotubes also increases the glass temperature of F-

CNT-6-HC and F-CNT-6-H45 by about 3°C, which is identical with previously reported 

an increase in Tg for nanocomposite filaments (see Table 5.4-5). 
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(b) 

Figure 5.4-7. Dynamic mechanical thermograms a) and c) storage modulus (E’) and 

b) loss modulus (E’’) of neat ABS and nanocomposite samples as measured on 3D-

printed specimens along different orientation (HC, H45, PC). 
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Table 5.4-4. Storage modulus and stiffness loss from DMTA analysis of neat ABS and 

its nanocomposites as measured on filaments and FDM samples. 

Samples 

Storage modulus 
Stiffness loss* 

at Tg 

-100°C 
(MPa) 

-50°C 
(MPa) 

30°C 
(MPa) 

90°C 
(MPa) 

130°C 
(MPa) 

SL Tg1 SL Tg2 

F-HC 2709 1948 1678 1415 5.4 0.454 0.840 
F-H45 2646 1904 1631 1384 4.7 0.455 0.846 
F-PC 2229 1583 1367 1207 3.9 0.473 0.880 
F-CNT-6-HC 2980 2211 1977 1749 32.6 0.389 0.868 
F-CNT-6-H45 2813 2080 1845 1632 25.9 0.397 0.871 
F-CNT-6-PC 2114 1527 1338 1245 11.8 0.439 0.922 

*Stiffness loss calculated following the Eq. (5.3-7). 

 

Table 5.4-5. Damping peaks and loss modulus from DMTA analysis of neat ABS and 

its nanocomposites as measured on filaments and FDM samples. 

Samples 

Loss modulus 
Damping peaks 

B peak SAN peak 

E''peak 
(MPa) 

Tpeak 

(°C) 
E''peak 
(MPa) 

Tpeak 

(°C) 
B-phase 

Tg1 
SAN-

phase Tg2 

F-HC 107 -79.5 304 117.2 -78.6 124.9 
F-H45 105 -78.7 293 116.9 -78.0 124.8 
F-PC 89 -79.7 267 117.0 -77.9 124.1 
F-CNT-6-HC 114 -78.0 354 120.3 -77.5 127.6 
F-CNT-6-H45 108 -77.1 326 120.0 -75.3 127.0 
F-CNT-6-PC 81 -75.3 270 117.1 -73.9 123.4 

 

Figure 5.4-8 (a-b) shows the reduction of the main transition of storage modulus 

(R) and F-factor [79, 185] which are plotted as functions of the CTN fraction. In Figure 

11a, the stiffening effect of CNTs in the rubbery phase above Tg of SAN is well 

documented. In particular, this effect seems to be more pronounced for FDM samples 

(HC and H45) with respect to filaments F-CNT-6-E, probably owing to the higher 

orientation and adhesion/dispersion of carbon nanotubes in FDM process. 

Moreover, the F-factor represents a relative measure of modulus in the 

temperature interval of the glass transition, assuming that modulus at glassy state is 

dominated by the strength of intermolecular forces when polymer chains and 

nanofillers are packed [79]. Thus, the higher F-factor, the higher the effectiveness of 

the filler. Figure 5.4-8b presents the increase in the F-factor of filaments with the 

fraction of CNT and it confirms the relative effectiveness of CNT nanofiller with its 

fraction in composites in the rubbery phase. 

For FDM sample (HC and H45), the reinforcing efficiency is slightly lower than 

filament at 6 wt % of CNT, maintaining almost the same adhesion level of nanofiller 

and matrix during FDM process. On the other hand, PC sample shows a different effect 
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since the properties of these specimens are mainly dependent on the inter-layer matrix 

adhesion and mostly independent on the compatibility of the polymer chains and 

nanofiller. 
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Figure 5.4-8. Reduction of main transition of storage modulus-R (a) and F-factor (b) 

as function of CNT nanofiller loading measured on filaments and 3D-printed samples 

(HC, H45 and PC). 
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Thermal strain of ABS/CNT FDM samples is plotted in Figure 5.4-9, and 

coefficient of thermal expansion of all samples is reported in Table 5.4-6. In the 

temperature interval 20/50°C, FDM specimens (HC, H45 and PC) printed from neat 

ABS, exhibit CLTE values of 85.8, 74.5 and 79.1 × 10−6/K, respectively (see Table 

5.4-6). The presence of CNTs accounts for a reduction of the CLTE of FDM specimens 

by 31% or 27% for HC or H45 but no effect was observed for PC build orientation. 
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Figure 5.4-9. Thermal strain of neat ABS and nanocomposite samples as measured 

on 3D-printed samples along different orientations (HC, H45, and PC). 

 

 

Table 5.4-6. Coefficients of linear thermal expansion (CLTE) and linear thermal 

deformation (CLTD) of ABS and its nanocomposites as measured on filament and 

FDM samples. 

Sample 
CLTE (×10-6/K) CLTD (×10-6/K) 

T1 T2 T3 T4 T5 

F-HC 61.0 ± 0.1 85.8 ± 0.3 156.6 ± 1.2 1040 ± 41 -4860 ± 50 

F-CNT-6-HC 40.2 ± 0.1 59.0 ± 0.2 106.7 ± 0.9 479 ± 11 -805 ± 4 

F-H45 58.0 ± 0.2 74.5 ± 0.2 146.5 ± 1.1 1210 ± 36 -3620 ± 32 

F-CNT-6-H45 41.1 ± 0.1 54.0 ± 0.2 114.3 ± 1.0 587 ± 16 -506 ± 2 

F-PC 61.0 ± 0.2 79.1 ± 0.2 147.3 ± 0.9 1330 ± 36 3310 ± 67 

F-CNT-6-PC 57.8 ± 0.1 79.4 ± 0.3 139.7 ± 0.8 1010 ± 28 1090 ± 12 

Temperature interval: T1=-50/-20°C; T2=20/50°C; T3=70/90°C; T4=108/113°C; 

T5=130/150°C. 
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5.4.6 Creep stability 

Figure 5.4-10 shows the creep compliance at 30°C of neat ABS and composites 

found for FDM samples. Incorporation of CNTs in ABS accounts for a pronounced 

reduction of both compliance components, as reported in Table 5.4-7. Del is 

characterized by an almost linear decrease with CNTs fraction, which is in conformity 

with the inverse trend of tensile modulus (Table 5.4-3 and Table 5.4-4). A similar effect 

of CNT on both elastic and viscoelastic creep compliance was observed: 6 wt % of the 

nanofiller in ABS matrix reduced the total compliance of nanocomposite by 16%, 12% 

and 10% for HC, H45 and PC respectively. 
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Figure 5.4-10. Creep compliance, D(t) at 30°C, of neat ABS and nanocomposites as 

measured on 3D-printed samples along different orientations at 3.0 MPa. 

 
 

The fitting parameters for experimental creep data are summarized in Table 

5.4-7. The fitting model was satisfactory, as R2 around 0.99 was found for all samples 

value. The addition of CNT reduced the creep compliance of composites; in particular, 

the values of parameter De for 3D-parts are in good agreement with the values of Del. 
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Table 5.4-7. Creep test of neat ABS and its nanocomposites as measured on filaments 

and FDM samples. 

Samples 
Del 

(GPa-1) 

Dve,3600s 

(GPa-1) 

Dtot,3600s 

(GPa-1) 

De 

(GPa-1) 

k 

(GPa-1 s-n) 
n R2 

F-HC 0.521 0.169 0.689 0.547 0.005 0.402 0.9951 

F-CNT-6-HC 0.454 0.123 0.577 0.479 0.002 0.469 0.9905 

F-H45 0.587 0.148 0.735 0.616 0.005 0.392 0.9910 

F-CNT-6-H45 0.501 0.145 0.645 0.531 0.002 0.503 0.9917 

F-PC 0.756 0.364 1.120 0.783 0.019 0.355 0.9980 

F-CNT-6-PC 0.729 0.283 1.012 0.758 0.013 0.366 0.9981 

 

5.5 Electrical properties of ABS-carbon nanotubes 

nanocomposites 

The previous sections have illustrated how CNT affects mechanical properties 

of prepared composites but most important effects of CNT can be expected in the field 

of electrical properties. Improvements of conductivity and electrical properties by 

incorporated CNT in different polymer, such as polyamide [83], polypropylene [84], 

polylactide [81] and ABS [78, 80, 181] have been documented in literature. 

The measurement of electrical resistivity is essential to determine the CNTs 

content required to achieve an appreciable reduction of resistivity for applications. The 

electrical volume resistivity was carried out on samples obtained by the compression 

moulding (CM), on extruded filament (E), on fiber, on 3D-printed samples and filament 

plates. In particular, applications for the surface temperature under applied voltage 

were performed on CM, filaments and 3D samples. In the last section, strain 

monitoring capabilities were also tested for FDM samples with 6 wt% of CNT. 

5.5.1 Electrical resistivity 

The results of the electrical volume resistivity test on the compression mould 

(CM), the filament (E) and 3D-printed samples are reported in Figure 5.5-1 (a, b and 

c), respectively. In Figure 5.5-1a, these results showed that the volume resistivity of 

the ABS/CNT nanocomposite plates decreased exponentially with the increase of the 

CNT concentration. Moreover, the electrical resistivity of the loaded samples does not 

appreciably change with the applied voltage up to 12 V. It can be concluded that these 

materials behave like ohmic conductors. Due to the Joule’s effect the samples with 

higher than 2 wt% of CNT cannot testing at 24 V. For filament samples, the F-CNT-8-

E sample could not be tested at 24 V either due to the Joule’s effect. 
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Figure 5.5-1.  Electrical volume resistivity of ABS nanocomposites: compression 

moulding (a), filaments (b) and 6 wt% CNT filled nanocomposites with different 3D 

printing (c). 
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In Figure 5.5-2 the electrical resistivity data measured on compression molding 

(CM) and filament (E) samples an applied voltage of 5 V are plotted as a function of 

CNT content. For CM samples, a significant resistivity drop can be achieved at CNT 

contents lower than 2 wt%. For example, as the CNT concentration was increased 

from neat ABS to 2 wt% of CNT, the volume resistivity of the nanocomposites 

decreased by fifteen orders of magnitude (from 1016 Ω.cm to 2.9×101 Ω.cm). This result 

is quite similar to that reported in the literature for ABS/MWCNT nanocomposites for 

which an electrical percolation threshold of below 1 wt% is reported [86, 87]. The better 

results can be obtained with the F-CNT-6 and F-CNT-8 nanocomposites, for which a 

reduction of about sixteen orders of magnitude is achieved. In addition, the 

measurements on filaments reveal that the volume resistivity of the nanocomposites 

significantly decreases with at least 4 wt% of nanofiller whereas at CNT fractions up 

to 2 wt% the materials still exhibit an insulating behaviour and filaments could not be 

tested by means of the four probes configuration. The incorporation of CNT decreases 

the electrical resistivity of filaments to about 11 Ω.cm, 4.1 Ω.cm and 1.8 Ω.cm for F-

CNT-4-E, F-CNT-6-E, and F-CNT-8-E, respectively.  
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Figure 5.5-2. Electrical volume resistivity of ABS/CNT nanocomposites measured on 

compression moulding (CM) and filament (E) samples at an applied voltage of 5 V. 

 

The evolution of electrical resistivity in ABS/CNT nanocomposites with weight content 

of CNT nanofiller in Figure 5.5-2 is due to network formation of CNT as shown in Figure 

5.5-3. An analytical model of ABS/CNT nanocomposites is detailed in section 6.5. 
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Figure 5.5-3. Evolution of electrical resistivity in ABS nanocomposite plates with a 

volume concentration (for c detail in section 6.5). 

 

The resistivity of 3D-printed samples F-CNT-6-H45 and F-CNT-6-PC shown in 

Figure 5.5-1c is independent of applied voltages and is higher than the correspondent 

filament (F-CNT-6-E). This partial reduction of conductivity not only in comparison with 

single filaments but also with compression molded specimens at the same 

composition (see Table 5.5-1) could be attributed to the internal features of FDM 

samples as shown in Figure 5.5-4. 

 

 
Figure 5.5-4. Internal features of FDM samples: (a) HC, (b) H45 and (c) PC.  

 

Moreover, it should be noted that F-CNT-6-HC shows the highest resistivity, 

whereas F-CNT-6-PC the lowest. These results could be related to the better contact 

between deposited fibers beads, resulting in higher conductivity of samples; these 

findings are in good conformity with the documentation of SEM images (Figure 5.4-1e), 
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where F-CNT-6-PC specimens exhibit better and extensive contacts between the layer 

of deposited fibers in the direction of electrical measurements. Another consequence 

of different in resistivity of FDM samples is the presence of voids, as observed in their 

fracture surface (see Figure 5.4-1). In fact, the resistivity decreased with the volume 

of voids as shown in Figure 5.5-5. 
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Figure 5.5-5. Electrical resistivity of FDM samples as a volume of voids from Figure 

5.4-1. 

 

Similarly, in literature, Zhang et al. reported that the electrical resistivity of 3D-

printed components was found lower than the pristine 3D-printing fibers and the results 

were also confirmed to be highly dependent on the contact resistivity by numerical 

simulation method [16]. 

In order to understand the electrical behaviour of composite filaments and to 

evaluate the effect of CNT orientation in ABS, the most conductive filaments (i.e., F-

CNT-6-E and F-CNT-8-E) were compression-molded for the production of 

homogeneous plates (resistivity results are shown in Figure 5.5-7). It worth noting that 

the electrical resistivity of CNT8-0, CNT8-45 and CNT8-90 was found to directly 

depend on the angles of filament orientation in the plate (Figure 5.5-6c). The resistivity 

of CNT8-0 is similar to that of CNT8 filament owing to the almost identical filaments 

orientation, whereas CNT8-90 leads to the lower level of filaments alignment with 

respect to the electrical field. The higher the angle, the higher the resistivity. And the 

same for specimens CNT6-0, CNT6-45 and CNT6-90, at resistivity even higher. From 

these findings, the electrical resistivity of filaments could be considered a quasi-

isotropic behaviour of materials with partial random oriented CNT. 
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Table 5.5-1. Electrical volume resistivity of different kinds of ABS-CNT samples at an 

applied voltage of 5 V. 

CTN content 
(wt%) 

Plates 
(Ω.cm) 

Filament 

1.70 mm 
(Ω.cm) 

3D-printed fiber 

0.50-0.55 mm 
(Ω.cm) 

3D samples 
(Ω.cm) 

2% 29.9 ± 1.7 - 520 ± 95 Not prepared 
     

4% 3.54 ± 0.31 10.8 ± 0.3 8.41 ± 1.26 Not prepared 

     

6% 1.50 ± 0.17 4.12 ± 0.15 2.05 ± 0.09 

61.2 ± 7.0 (HC) 

49.0 ± 4.8 (H45) 

16.8 ± 2.7 (PC) 

     

8% 0.87 ± 0.08 1.84 ± 0.15 1.18 ± 0.04 Not prepared 

 

    
 (a) (b) 

 
(c) 

Figure 5.5-6. Summary of preparation of filament plate with the mould 50×50×1.0 

mm starting with filaments at 6 and 8 wt% of CNT: (a) before compression and (b) 

after compression. (c) Schematic of samples at the different angles (0, 45 and 90º) 

for measuring electrical resistivity (see Figure 5.5-7). 
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Figure 5.5-7. Electrical volume resistivity of ABS 6 wt% and 8 wt% filled 

nanocomposites of filament plates at different angles (0, 45 and 90º) as a function of 

the applied voltage of the applied voltage. 

However, after FDM process the conductivity of 3D-printed fibers (see Table 

5.5-1) slightly increases, so that is comparable to that of plate samples. The results 

suggest that the orientation CNT during the extrusion contributes to the reduction of 

the resistivity of the composites. A similar effect was also observed for the composites 

with graphene oxide [97] and carbon black [16]. 

The beneficial effect of CNT could be particularly summarized in the double 

results to increase the stiffness and to reduce the resistivity of ABS nanocomposites 

with a normalized content of nanofiller, by considering a coefficient Q calculated 

according to the following equation: 




 f

E
Q

w
 

(5.5-1) 

where E is the elastic modulus 

is the volume resistivity  

wf is the CNT content. 

 

Figure 5.5-8 (a-b) depicts this double effect, revealing that compression moulding 

samples exhibited the best behaviour, while filaments and fibers exhibited a relative 

good behaviour especially with a CNT of 6-8 wt%. The relative lower values of 3D-

printed specimens directly depend on the specific FDM process. 
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(b) 
Figure 5.5-8. (a) the ratio modulus/resistivity reference at 5 V; (b) the ratio 

modulus/resistivity and CNT content as a function of CNT % for compression 

moulding (plates), filament, fiber and 3D samples. 

5.5.2 Surface temperature under applied voltage 

In this paragraph, the measurements of Joule’s heating upon voltage 

application of the samples with different contents of CNT are presented. These tests 

were performed by using two different voltages, 12 V and 24 V which are commonly 
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reached by batteries for automotive applications. We monitored the evolution of the 

surface temperature as a function of the voltages, the time and the composition of 

nanocomposite materials. 

Representative images of the evolution of the surface temperature taken by an 

IR thermocamera under an applied voltage of 12 V for the F-CNT-6 and F-CNT-8 

nanocomposite plates are reported in Figure 5.5-9. It is immediately evident that the 

samples can be rapidly heated if a voltage is applied, and a homogeneous temperature 

profile can be detected even after prolonged time (i.e., 120 s). As it could be expected, 

the temperature in the central section of the sample is higher than that detectable on 

the borders, because the heat exchange is favoured in the external zones of the 

samples. Under an applied voltage of 24 V (see Figure 5.5-10), both F-CNT-6 and F-

CNT-8 samples reached a temperature higher than 280°C after 10 s. 

 

 

Figure 5.5-9. Infrared thermal imaging of F-CNT-6 (left) and F-CNT-8 (right) 

nanocomposites samples under an applied voltage of 12 V. 
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Figure 5.5-10. Infrared thermal imaging of F-CNT-6 (left) and F-CNT-8 (right) 

nanocomposites samples under an applied voltage of 24 V. 

 

The numerical results of the temperature increment upon an applied voltage of 

12 V and 24 V on compression molded samples are shown in Figure 5.5-11(a-b), 

respectively. The first aspect to underline is that not all the samples can be significantly 

heated through the voltage application. In fact, only samples with CNT content higher 

than 4 wt% can increase their surface temperature when a voltage of 12 V is applied.  

At an applied voltage of 24 V, only F-CNT-2 sample does not significantly increase its 

surface temperature, while F-CNT-4 sample shows a moderate heating after 120 s. 

Very effective results can be obtained for all the other samples. For instance, for F-

CNT-6 and F-CNT-8 samples it was not possible to reach the end of the test because 

they thermally decompose with the emission of dense smoke, characteristic of 

polymers containing aromatic rings. 
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Figure 5.5-11. Increment of surface temperature upon a voltage of 12 V (a) and 24 V 

(b) for ABS/CNT nanocomposites from compression moulding with different CNT 

content at room temperature of 23ºC. 

 

In Figure 5.5-12, we can see the representative images of the evolution of 

surface temperature upon voltage application to F-CNT-6-E filament and FDM 

samples. As shown in Figure 5.5-13(a-b) the increment of the temperature of all 

samples under both voltages (12 V and 24 V) seems to reach the plateau after 60 

seconds. Obviously, the higher the applied voltage, the higher the increase in 
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temperature. Besides, the resistivity of composite materials of ABS/CNT filaments has 

a good correlation with their behaviour in Joule’s effect measurements. The higher the 

conductivity, the higher the increase in the surface temperature of samples due to the 

dissipation of thermal energy. For example, F-CNT-4-E sample does not show any 

significant increase in temperature, whereas a rather high increase in temperature can 

be seen for F-CNT-8-E. It is worth noting that, at applied 24 V at 120 s (Figure 5.5-13b), 

the generated surface temperature of the F-CNT-8-E sample exceeds the glass 

transition temperature. Following these results in order to avoid thermal degradation 

of materials during prolonged voltage application, between the various ABS materials 

studied in this research, the F-CNT-6 samples appeared the most convenient 

nanocomposite materials for electro-conductive applications. 

 

 

 (a)  (b) 

 

 (c) 

 

 (d) 

Figure 5.5-12. Results of thermal imaging upon voltage application at 24 V at 120 

seconds: F-CNT-6-E (a), F-CNT-6-HC (b), F-CNT-6-H45 (c) and F-CNT-6-PC (d). 

 

The electrical measurements of 3D-printed samples with CNT contents of 6 wt% 

built with different orientations were performed by using the same two voltages applied 

values to the filaments (12 V and 24 V). Surface temperature under applied voltage 

shows good correlation with resistivity measurements. Lower resistivity resulted in a 

higher increment of temperature, e.g. F-CNT-6-PC reached the highest temperature 
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of about 100°C after 120 s. However, the local temperature of all FDM samples 

achieved via the Joule’s effect remains below the glass transition temperature of ABS, 

which allows us to presume good thermal stability of produced nanocomposite 

materials in electrical applications. 
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Figure 5.5-13. Increment of surface temperature upon a voltage of 12 V (a) and 24 V 

(b) for ABS nanocomposites filaments with different CNT loading at room 

temperature of 23ºC. 
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Figure 5.5-14. Increment of surface temperature upon a voltage of 12 V (a) and 24 V 

(b) for ABS nanocomposites 3D printed samples with 6 wt% CNT content at room 

temperature of 23ºC. 
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5.5.3 Strain monitoring 

In order to investigate the effect of an applied strain on the conductivity 

behaviour, the 3D-printed nanocomposite samples (HC and H45) were tested in 

various mechanical loading modes, and their absolute resistances were monitored 

simultaneously by two probe contact method. 

 

Table 5.5-2.  Initial resistance values (R0) of the 3D-printed samples before the 

application of the stain. 

Test 
R0 (Ω) 

F-CNT-6-HC F-CNT-6-H45 

Tensile fracture 238 431 

Ramp strain 527, 188, 278, 202 730, 454, 712, 875 

Cyclic strain 407 603 

Creep mode 402 669 

 

5.5.3.1 Tensile fracture 

Stress-strain behaviour and relative electrical resistance variation (ΔR/R0) 

during quasi-static tensile tests on F-CNT-6-HC and F-CNT-6-H45 samples are 

reported in Figure 5.5-15. A tensile stress applied to FDM nanocomposites causes the 

electrical change (ΔR/R0) a positive linear increment until the fracture point for both 

samples. This behaviour could be explained by the destruction of percolating paths 

forming the conducting network [186]. Moreover, it is important to note that F-CNT-6-

H45 is more sensitive to strain change than F-CNT-6-HC due to the different infill 

pattern. For example, for strain of 2%, ΔR/R0  for the sample with F-CNT-6-HC is about 

5.3% and for the sample with F-CNT-6-H45 is about 8.4%. Failure of the 

nanocomposites, corresponding to the breakage of the specimen, was detected as a 

pronounced the drop in the electrical resistance. This demonstrated capability of 

detecting and locating is advantageous for the damaged component. It is worthwhile 

to note the gauge factor according to the formula (K = (ΔR/R0)/ε) at different stain level 

is reported in Table 5.5-3. 
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Figure 5.5-15. Electrical resistivity change (ΔR/R0) and stress of 3D-printed F-CNT-6 

nanocomposites under applied strain up to fracture: F-CNT-6-HC (a) and F-CNT-6-

H45 (b). 

 

Table 5.5-3.  Gauge factor of ABS/CNT 3D-printed samples at different infill pattern. 

Gauge factor (K) At 1% At 2% At 3% 

F-CNT-6-HC 3.2 2.7 2.9 

F-CNT-6-H45 4.6 3.7 4.0 

 



 166  

5.5.3.2 Ramp strain 

Figure 5.5-16(a-b) describes the relative change of electrical resistance (ΔR/R0) 

of 3D-printed samples under ramp strain from electrical extensometer up to 1% and 

unloading (recovery). The higher the applied stress, the higher the resistance change. 

The resistance change of HC specimen was almost reversible during unloading while 

that of H45 a significant loss of conductivity was observed. It is worthwhile to note the 

gauge factor K= 4.5 and K=9.2 for F-CNT-6-HC and F-CNT-6-H45 respectively. The 

results suggest a higher piezo-resistivity for H45 3D-printed parts. In particular, it 

should be underlined the high sensitivity of the ΔR/R0 curve at low deformation levels. 

This result of gauge factor is comparable to works by Georgousis et al. [186], but it is 

even more significant, compared to several works reported by Oliva-Avile et al. [187], 

Bautista-Quijano et al. [188] and Moriche et al. [189]. 

 

 

Table 5.5-4.  Gauge factor of ABS/CNT 3D-printed samples at different infill pattern. 

Sample Gauge factor (K) 

F-CNT-6-HC 4.5 ± 1.3 (n=4) 

F-CNT-6-H45 9.2 ± 1.5 (n=4) 
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Figure 5.5-16. A representative of electrical (ΔR/R0) and mechanical response of 

3D-printed ABS/CNT nanocomposites during loading (full symbol) and unloading 

(open symbol) under tensile test: F-CNT-6-HC (a) and F-CNT-6-H45 (b). 

5.5.3.3 Cyclic strain 

Once reversibility of the electrical network has been investigated, a low cycle 

deformation was applied to samples in order evaluate if the piezoresistivity is 

reversible during a finite number of cycles strain. Figure 5.5-18a and Figure 5.5-20a 

presents the electrical resistance for F-CNT-6-HC and F-CNT-6-H45 respectively 

under 50 strain cycles applied in the strain range of 0.1% < < 0.5%. It is evident that 

in cyclic strain, the electrical resistance for both samples progressively decreases. 

Results suggested a possible rearrangement, rotations, and reorientation, of 1D 

nanoparticles forming the electrical network as reported by Bautista-Quijano et al. 

[188]. It is different from 2D reinforcement such as graphene 2D that nanoparticles are 

less susceptible to these phenomena as the initial electrical resistance was reached 

after each cycle [189]. 
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Figure 5.5-17. Piezoresistivity of the F-CNT-6-HC sample : resistance variation 

during  50 cycles of controlled strain (0.1-0.5%) under tensile loading. 
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Figure 5.5-18. Piezoresistivity of the F-CNT-6-HC sample as function of stress 

during 50 cycles (a) under tensile loading and detail of the last 10 cycles (b). 

 

 

Figure 5.5-18b and Figure 5.5-20b present the response of the last 10 cycles in 

order to evidence the decreasing of electrical resistance change of F-CNT-6-HC and 

F-CNT-6-H45 samples. Moreover, after the 50 cycles, the amplitude of the electrical 

signal diminished around 28% and 62% for HC and H45 3D-printed samples 

respectively. 
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Figure 5.5-19. Piezoresistivity of the F-CNT-6-H45 sample: resistance variation as 

function of controlled strain (0.1-0.5%) during  50 cycles under tensile loading. 
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Figure 5.5-20. Piezoresistivity of the F-CNT-6-H45 samples and (a) 50 strain, (b) 50 

stress cycles under tensile loading and (c) detail of the last 10 cycles. 

 

In order to understand the gauge factor with respect to cyclic strain, gauge factor (K i) 

at each step of cycle were elaborate following the equation: 

  


 


/i i i i

i

R R R
K

 

(5.5-2) 
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Figure 5.5-21 represents the value of gauge factor during number of cycle, showing 

that the gauge factor of both HC and H45 samples progressively reduce to a stable 

value about 2.3-2.7 after 30 cycles. Selected values are reported in Table 5.5-5. 
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Figure 5.5-21. Gauge factor of the 6 wt% CNT 3D-printed nanocomposite samples 

along number of cycle strain of HC and H45. 

 

Table 5.5-5.  Selected values of gauge factor of ABS/CNT 3D-printed samples. 

Cycle 
Gauge factor (K) 

F-CNT-6-HC F-CNT-6-H45 

1st  3.8 10.9 

2nd 2.9 4.9 

--- --- ---- 

40th 2.3 2.3 

45th 2.3 2.6 

50th 2.7 2.7 

 

Finally it is worth noting in Figure 5.5-18a and Figure 5.5-20a, the effect of stress 

reduction during 50 cycle of controlled strain deformation. In particular the max-min 

stress reduced from 12.3/2.2 MPa to 11.9/1.8 MPa in the last cycle for F-CNT-6-HC 

sample (about 0.4MPa). In the case of F-CNT-6-H45 sample, a higher stress reduction 

of about 0.70MPa was observed, resulting the max/min stress of 11.8/2.1 MPa and 

11.1/1.4 MPa in the first and in the 50th cycle, respectively. This effect could be 

attributed to viscoelastic effect of stress relaxation and/or thermal heating for a mild 

Joule’s effect. 
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The images of the samples of F-CNT-6-HC and F-CNT-6-H45 before and after 

testing are presented in Figure 5.5-22 and Figure 5.5-23, respectively. After 50 cycle 

under tensile loading, no evidences of damage can be observed in any sample. 

 

  
(a) 

 
(b) 

Figure 5.5-22. F-CNT-6-HC sample: (a) before, and (b) after 50 cycles under tensile 

loading. 

 

 

 
(a) 
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(b) 

Figure 5.5-23. F-CNT-6-H45 sample: (a) before, and (b) after 50 cycles under tensile 

loading. 

5.5.3.4 Creep mode 

The performance of the samples under permanent stress also needs to be 

characterized. With the purpose of analyzing the samples capability when a 

permanent load is applied, a creep test was carried out with a stress of 20 MPa at 

maintenance time of 3600 s. Figure 5.5-24a and b depicts ΔR/R0 and creep 

compliance D(t) curve for F-CNT-6-HC and F-CNT-6-H45 specimens, respectively. 

The initial sudden increase of electrical resistance was induced by load application. It 

is interesting to note that ΔR/R0 of both HC and H45 appear to slightly decrease during 

creep time, probably as a consequence of the orientation and the partial reformation 

of the conductive network [190]. 
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Figure 5.5-24. Creep compliance at a constant load of 20 MPa and ΔR/R0 for 

different infill samples: (a) F-CNT-6-HC and (b) F-CNT-6-H45. 

5.6 Summary ABS-carbon nanotubes nanocomposites 

Carbon nanotubes (in fractions up to 8 wt %) were directly melt compounded 

with relatively high viscosity ABS (F) matrix by using a completely solvent-free 

process. Subsequently, by using a twin-screw extruder, composite filaments were 

appositely extruded for application in 3D printing with fused deposition modelling.  

The optimum CNT fraction for fused deposition modelling process was found to 

be 6 wt %. Thermal, mechanical and electrical properties of neat ABS and ABS/CNT 

composites have been investigated on produced filaments and 3D-printed parts. CNT 

has the positive effect on the resistance to long-lasting loads due to the reduction of 

creep compliance. Besides, the enhancement of both tensile modulus and strength 

was found for filaments and FDM products, except for vertical 3D built specimens. On 

the other hand, elongation at break of the composites was reduced in proportion to the 

CNT fraction. The presence of CNT also promoted the thermal stability of 3D-printed 

parts due to the reduction in coefficient of thermal expansion. 

Electrical conductivity of 3D-printed samples was markedly incremented but a 

partial loss in conductivity with respect to filament nanocomposite was also observed. 

Moreover, the resistivity of 3D-printed parts is highly dependent on the build 

microfilaments orientation, which consequently leads to different surface temperature 

increment under applied voltages. For FDM-printed parts, the carbon nanotubes in 

playing the best reinforcement in thermal mechanical behaviour for HC and H45 

orientation but less effective in electrical properties. 
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The strain sensing capabilities of the conducting FDM samples by 6wt% of CNT 

with different two infill patterns (HC, and H45) were studied. The resistance change 

and damage in the conductive FDM parts were detectable upon the strain applied. The 

higher sensitivity of the 3D-part within the H45 pattern in comparison to HC by 

measurement the gauge factor. The CNT conductive network path in FDM products 

seems to be reform during the fatigue and creep load. 

In short, carbon nanotubes were proven to significantly reduce the flow 

properties of ABS nanocomposites, but remarkably improved electrical conductivity 

and mechanical properties. 
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Chapter VI 

Comparative study of graphene and carbon 
nanotube filled ABS nanocomposites plates 

In literature, studies on graphene (GNP) and carbon nanotubes (CNT) 

nanocomposites have been massively reported. In particular, the comparative study 

between this two nanofillers has been detailed in a few scientific reports in the epoxy 

[191-195] and polyamide [196] with the highest nanofiller content of 5 wt%. Only one 

report is focused on the comparison between graphene and carbon nanotubes in ABS 

at concentrations up to 1.2 vol% (2.5 wt%) reached by solution mixing [197]. 

This chapter is dedicated to the effects of graphene and carbon nanotube 

nanofillers in ABS nanocomposites in order to specifically highlight the potentialities of 

each nanofiller. Although some prior works [191-197] have been dedicated to the 

comparisons between graphene and CNT nanocomposites with the same matrix, the 

effect of these two fillers on processability, mechanical and electrical properties of 

nanocomposites filled at percentage in the range of 2-8 wt% are not reported yet. 

Therefore, the characterization could provide useful information about both CNT and 

GNP-M5 nanofiller, which consequently should be properly selected for applications. 

Noteworthy, ABS without mould lubricant (Sinkral®F322) with relatively low melt flow 

is the selected matrix for the production of nanocomposites prepared by melt 

compounding and compression moulding (section 3.2.2) and investigated in this work. 

6.1 Morphology 

The morphologies of graphene-M5 (GNP-M5) and carbon nanotube (CNT) have 

been characterized by TEM microscopy, as represented in Figure 6.1-1. Figure 6.1-1a 

shows the typical thin sheet structure of the GNP. From TEM micrographs, the average 

diameter of platelets of GNP has been measured to be about 5.5 to 6.8 μm. In addition, 

it was also observed that some GNP nanoplatelets superimposed on top of each other 

and wrinkled into an irregular shape. Figure 6.1-1b displays the morphological 

structure of CNT and clearly documents that these investigated CNT have the outer 

diameter of tubes about 15-20 nm within wall thickness of about 4-6 nm. 

 



 177  

       
 (a)  (b) 

Figure 6.1-1. TEM micrographs of the selected carbonaceous nanoparticles: (a) 

GNP-M5 and (b) CNT. 

 

The SEM images of the fracture surface of ABS/graphene and ABS/CNT 

samples are represented in Figure 6.1-2(a-d) and Figure 6.1-2(e-f), respectively. A 

relatively poor adhesion level between graphene and ABS was documented in Figure 

6.1-2b. Figure 6.1-2c shows F-M5-30 sample with the highest GNP concentration 

where graphene flakes appear distributed quite homogeneously within the matrix even 

though at the highest concentration of 30 wt%. A relative good dispersion was also 

observed for graphene nanofiller. In addition, carbon nanotubes were clearly observed 

in the SEM micrographs (Figure 6.1-2e-f), with uniform distribution and excellent 

dispersion. 

 

   
(a)     (b) 

   
(c)     (d) 
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(e)     (f) 

Figure 6.1-2. SEM micrographs of the samples of F-CNT-6 (a, b), F-M5-6 (c, d) and 

F-M5-30 (e, f). 

6.2 Melt flow index 

The processability of the nanocomposites materials was investigated by 

comparing their melt flow index. Figure 6.2-1 shows that the effect of the nanofiller 

amounts, the types of nanofillers and the temperature on MFI value of 

nanocomposites. It is worthwhile to note that the MFI value decreased with the 

nanofiller content. In addition, CNT nanofiller show more reduction in MFI of ABS in 

comparison to graphene. Moreover, the higher the temperature, the higher the MFI 

value with respect to filler content. 
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Figure 6.2-1. Melt flow index of ABS/graphene (full symbol) and ABS/CNT(open 
symbols) nanocomposites at different temperatures and nanofiller content. 
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Following the results of MFI at different temperature, activation energy (Eact) of 

nanocomposites can be evaluated from the slope of the best fitting straight lines by 

using Kissinger approach [198]: 

 

0log( ) log( ) 1/
2.303

actE
MFI C T

R

 
  

 
 (6.2-1) 

 

where C0 is a pre-exponential factor, T is the selected temperature of melt flow index, 

and R, the universal gas constant, is 8.314 J / mol. K. The value of intercept C0 formally 

represents melt flow at infinite temperature. 

As reported in Table 6.2-1, the activation energy of neat ABS was 86.6 KJ/mol, 

and it increased with the content of both graphene and CNT. However it should be 

noted that the activation energy of ABS/CTN nanocomposites is higher than that of 

corresponding graphene nanocomposites, thus indicating the difficulty of these 

materials to flow. In other words, CNT nanocomposites required more energy for 

processing. For instance, activation energy values of nanocomposite with 6 wt% of 

nanofiller was about 100 kJ/mol graphene and Eact = 117 kJ/mol for CNT. 

 

 

Table 6.2-1. Melt flow index and activation energy for neat ABS and carbon nanotubes 

and graphene nanocomposites. 

Samples 
MFI (g/10 mins) 

Log(C0) 
Eact 

a 

(kJ/mol) 220ºC 250ºC 280ºC 

F 23.6 ± 1.3 89.7 ± 2.5 232 ± 19 10.6 86.6 ± 5.5 

F-M5-2 18.9 ± 1.0 72.5 ± 1.8 203 ± 6 10.8 89.9 ± 3.9 

F-M5-4 14.7 ± 1.0 63.9 ± 0.7 172 ± 5 11.0 93.1 ± 7.3 

F-M5-6 13.7 ± 0.7 52.7 ± 4.3 163 ± 4 11.1 93.7 ± 1.6 

F-M5-8 10.7 ± 0.5 47.1 ± 1.0 149 ± 14 11.6 99.6 ± 3.9 

F-M5-12 8.3 ± 0.2 ntc ntc - ntc 

F-M5-16 6.3 ± 0.2 ntc ntc - ntc 

F-M5-20 5.2 ± 0.4 ntc ntc - ntc 

F-M5-30 1.9 ± 0.1 ntc ntc - ntc 

F-CNT-2 9.5 ± 0.6 39.3 ± 3.2 107 ± 12 10.7 91.7 ± 6.3 

F-CNT-4 1.4 ± 0.1 8.4 ± 1.3 23.3 ± 5.8 11.6 107.6 ± 13.6 

F-CNT-6 0.08 ± 0.01 0.55 ± 0.04 1.87 ± 0.19 11.4 117.2 ± 10.3 

F-CNT-8 0.03 ± 0.01 0.06 ± 0.01 0.28 ± 0.02 11.4 126.8b 
a Eact activation energy was evaluated following Eq. (6.2-1). 
b evaluated in the range temperature of 250ºC and 280ºC. 
c nt= not tested. 
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Figure 6.2-2. Melt flow index of graphene (a) and carbon nanotubes (b) 
nanocomposites as a function of temperature. 

 

6.3 Quasi-static tensile test 

Tensile testing was carried out to investigate the reinforcement effect of 

graphene and CNT on ABS nanocomposites. The tensile properties of ABS/M5 and 

ABS/CNT nanocomposites are summarised in Table 6.3-1. As expected, both ABS/M5 

and ABS/CNT show an enhancement of tensile properties compared to the neat ABS. 
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In Figure 6.3-1a, the elastic modulus of graphene-based nanocomposites is higher 

than that of carbon nanotubes. For instance, the elastic modulus of composites 

containing 8 wt% of M5 was increased from 2315 MPa to 3523 MPa (i.e. 52%) and 

whereas in the case of 8 wt% of CNT a corresponding increase up to 3068 MPa (i.e. 

32%) was measured. The elastic modulus of composites was influenced by various 

factors depending on nanofillers including their stiffness, shape, and orientation. 

Yielding phenomenon was observed only for nanocomposites up to 4% of nanofiller. 

 

Table 6.3-1. Comparison of the tensile properties of ABS/CNT and ABS/M5 

nanocomposites. 

Samples E (MPa) σy (MPa) σb (MPa) εb (%) TEB(MJ.mm-3) Enorm
a 

F 2315 ± 100 41.7 ± 0.4 33.6 ± 0.4 35.9 ±  6.1 11.785 ± 2.007 nd b 

F-M5-2 2631 ± 133 41.5 ± 1.2 39.9 ± 2.3 4.1 ± 0.2 1.057 ± 0.078 6.8 

F-M5-4 2911 ± 109 40.2 ± 1.5 39.3 ± 1.2 3.7 ± 0.2 0.929 ± 0.096 6.4 

F-M5-6 3406 ± 86 - 41.5 ± 0.8 3.1 ± 0.1 0.788 ± 0.086 7.9 

F-M5-8 3523 ± 209 - 41.4 ± 1.0 3.1 ± 0.3 0.780 ± 0.132 6.5 

F-M5-12 4450 ± 224 - 42.4 ± 1.7 2.5 ± 0.3 0.645 ± 0.115 7.7 

F-M5-16 5072 ± 270 - 41.6 ± 1.1 2.0 ± 0.1 0.491 ± 0.032 7.4 

F-M5-20 5725 ± 308 - 42.9 ± 1.6 1.9 ± 0.1 0.468 ± 0.041 7.4 

F-M5-30 7362 ± 569 - 44.3 ± 1.9 1.3 ± 0.1 0.340 ± 0.034 7.3 

F-CNT-2 2513 ± 101 43.3 ± 0.4 34.1 ± 1.5 7.5 ± 2.4 2.313 ± 0.832 4.3 

F-CNT-4 2622 ± 29 43.5 ± 1.0 40.3 ± 1.8 4.5 ± 0.6 1.253 ± 0.263 3.3 

F-CNT-6 2849 ± 70 - 46.6 ± 0.5 3.9 ± 0.2 1.112 ± 0.110 3.8 

F-CNT-8 3068 ±156 - 45.1 ± 2.3 3.2 ± 0.3 0.805 ± 0.117 4.1 

a normalised value of the improvement of the modulus following equation (4.2-1). 
b not defined 

 

On the other hand, the various factors affecting the tensile strength of ABS 

nanocomposites include the filler/matrix interfacial adhesion, the amount of filler, its 

properties and geometry and dispersion level in the matrix. In Figure 6.3-1b, the higher 

strength of ABS/CNT than ABS/M5 nanocomposites is attributed to the easier 

dispersion of CNT with respect to GNP-M5. Moreover, this behaviour could be 

associated to the two-dimensional (2D) aspect of graphene that seemed easier to 

aggregate due to its plane-to-plane contact area. Consequently, graphene, having 2D 

structure, could to be wrinkled and to be detached from ABS (see Figure 6.1-2) 

whereas some bending and twisting in the structure of the CNT could prevent the 

detachment of CNT from ABS matrix. Thus, these factors induced a better interfacial 

interaction between the CNT and ABS matrix. As a result, the load can efficiently be 

transferred from the ABS matrix, and therefore the tensile strength could be better 

improved in CNT nanocomposites. And analogously, the strain at break was observed 

to be more severely reduced in the case of M5 nanocomposites. 
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Another interesting result is the very high concentration of graphene that was 

possible to reach by proper processing conditions. In particular 30 wt% represents the 

highest content reported in literature for ABS/graphene composites, and these 

composites have manifested an elastic modulus of about 7362 MPa and a tensile 

strength of about 44 MPa. 
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Figure 6.3-1. Comparison of tensile properties of nanocomposites with ABS/M5 and 
ABS/CNT: (a) elastic modulus and (b) strength. 
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According to the experimental data, a maximum strength value was obtained 

for 6% of CNT, whereas a maximum stiffening effect (Enorm) was observed for 6% of 

M5, maintaining an acceptable deformation at break (3-4%) for both the compositions, 

even in absence of yielding. 

In the Halpin-Tsai model an experimental modulus for neat ABS of 2315 MPa 

was considered (Table 6.3-1). The aspect ratios are considered equal to 833 for GNP-

M5 (Df = 5000 nm and tf = 6 nm) and 158 for CNT (Lf = 1500 nm and Df = 9.5 nm). The 

elastic modulus of 70 GPa has been assumed for both graphene and carbon 

nanotubes [159, 160]. 

The experimental data are well-fitted assuming a 3D randomly orientated 

nanofiller due to the melt compounding process. However, the elastic modulus of 

ABS/M5 nanocomposites were lower than the predicted elastic modulus when the 

content of GNP-M5 is higher than 6.5 vol% (12 wt%), resulting in the loss of the 

reinforcement efficiency (Figure 6.3-2a). 
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Figure 6.3-2. Elastic modulus of nanocomposites with ABS/M5 (a) and ABS/CNT 
(b). Continuous (___) and dash lines (_ _ _) and dot lines (...) represent prediction 

according to Halpin-Tsai models with parallel, 2D random and 3D random 
orientation, respectively. 

 

6.4 Creep stability 

The isothermal creep compliance of ABS/CNT and ABS/M5 nanocomposites 

respectively, under a constant load of 3.9 MPa and at 30°C is reported in Figure 

6.4-1(a-b). Following the described models of creep evaluation, the elastic (De), 

viscoelastic Dve,3600s and total (Dt,3600s)components of the creep compliance after 

3600s are have been calculated; the resutls are summarized in Table 6.4-1. As 

expected, the introduction of graphene and carbon nanotubes nanoparticles results in 

a significant improvement of the creep stability of the material. In particular, the higher 

the filler content, the lower the creep compliance (see Figure 6.4-2). The role of 

nanofillers is to restrict the polymeric chain mobility, thus promoting a better creep 

stability. 

In addition, the creep compliances of nanocomposites at the same content of 

nanofillers do seem to be significantly reduced by the presence of graphene compared 

to the carbon nanotube. This reduction largely associated with a reduction of the 

values of elastic component De. ABS/graphene nanocomposites exhibited a higher 

creep stability with respect to CNT nanocomposites, in direct dependence on their 

higher stiffness (see elastic modulus in Table 6.3-1). 
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Figure 6.4-1. Creep compliance of graphene (a) and carbon nanotubes (b) 

nanocomposites at 30°C at 3.9 MPa. 
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Figure 6.4-2. Comparison of creep compliance of nanocomposites with ABS/M5 and 
ABS/CNT: (a) elastic (Del) and (b) total D(t=3600 s). 
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Table 6.4-1. Creep compliance data of ABS-graphene and ABS-CNT nanocomposites 

according E.q (5.3-8). 

Samples 
Del 

(GPa-1) 

Dve,3600s 

(GPa-1) 

Dtot,3600s 

(GPa-1) 

De 

(GPa-1) 

k 

(GPa-1 s-n) 
n R2 

F 0.572 0.205 0.777 0.5415 0.0210 0.2994 0.9981 

F-M5-2 0.451 0.122 0.573 0.4462 0.0034 0.4506 0.9874 

F-M5-4 0.415 0.084 0.499 0.4128 0.0020 0.4744 0.9821 

F-M5-6 0.382 0.065 0.447 0.3719 0.0099 0.2533 0.9890 

F-M5-8 0.328 0.088 0.416 0.3280 0.0012 0.5272 0.9966 

F-M5-16 0.214 0.077 0.290 0.2291 0.0010 0.5086 0.9903 

F-M5-30 0.138 0.039 0.177 0.1384 0.0002 0.6505 0.9830 

F-CNT-2 0.515 0.205 0.777 0.4964 0.0103 0.3512 0.9928 

F-CNT-4 0.478 0.152 0.667 0.4588 0.0127 0.3224 0.9947 

F-CNT-6 0.436 0.149 0.627 0.4331 0.0037 0.4497 0.9952 

F-CNT-8 0.413 0.135 0.572 0.4051 0.0043 0.4402 0.9914 

 
 

Further information can be obtained by considering the creep compliance 

curves of Figure 6.4-3, obtained at various temperatures from 30°C to 90°C. It can be 

noted that the deformation behaviour of the materials is strongly dependent on the 

temperature. In Figure 6.4-4, the reduction of the creep compliance of F-M5-6 and F-

CNT-6 is more pronounced at the highest temperature investigated (90°C). 
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Figure 6.4-3. Creep compliance of F (a), F-M5-6 (b) and F-CNT-6 (c) 

nanocomposites under applied load of 3.9 MPa at 30-90°C. 
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Figure 6.4-4. Creep compliance of F, F-M5-6, and F-CNT-6 nanocomposites 

at 3.9 MPa at different temperature range. 

 

Table 6.4-2. Creep compliance data of ABS-graphene and ABS-CNT nanocomposites 

according E.q (5.3-8). 

Samples 
Del 

(GPa-1) 

Dve,3600s 

(GPa-1) 

Dtot,3600s 

(GPa-1) 

De 

(GPa-1) 

k 

(GPa-1 s-n) 
n R2 

T= 50 ˚C 

F 0.604 0.380 0.984 0.5545 0.0164 0.3538 0.9823 

F-M5-6 0.494 0.349 0.843 0.4519 0.0232 0.3553 0.9840 

F-CNT-6 0.521 0.334 0.855 0.4711 0.0268 0.3367 0.9793 

T= 70 ˚C 

F 0.617 0.957 1.574 0.5416 0.0342 0.4243 0.9904 

F-M5-6 0.442 0.836 1.278 0.3436 0.0522 0.3620 0.9860 

F-CNT-6 0.534 0.997 1.532 0.4298 0.0531 0.3788 0.9887 

T= 90 ˚C 

F 0.687 5.747 6.435 0.4931 0.0569 0.5744 0.9943 

F-M5-6 0.516 3.726 4.242 0.3745 0.0507 0.5363 0.9939 

F-CNT-6 0.561 3.920 4.482 0.3149 0.0894 0.4774 0.9904 

 

Following the results of total creep compliance at different temperatures, 

activation energy (Eact) of the creep process for invesitaged nanocomposites can be 

evaluated from the slope of the best fitting straight lines by using Kissinger approach 

[198]: 
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where D0 is a pre-exponential factor, T is the selected temperature for creep 

experiments, and R, the universal gas constant, is 8.314 J / mol. K. The value of 

intercept D0 formally represents melt flow at infinite temperature. 

In Table 6.4-3, the activation energy of neat ABS was 15 KJ/mol, and it 

increased with the content of both graphene and CNT. However, it should be noted 

that the activation energy of ABS/GNP nanocomposites is higher than that of 

correspondent ABS/CNT nanocomposites, thus indicating an higher reduction of creep 

compliance. 

 

Table 6.4-3. The activation energy for the creep process. 

Samples Eact (kJ/mol) 

F 15.1 ± 3.4 

F-M5-6 22.8 ± 1.9 

F-CNT-6 21.2 ± 3.0 

 
 

6.5 Electrical resistivity 

The electrical volume resistivity values of CTN and graphene filled ABS 

compression molded plates are reported in Figure 6.5-1 as a function of the nanofiller 

fraction. The introduction of the carbon-based nanofiller in the insulating polymeric 

matrix increases the conductivity of the nanocomposites with different effects in 

dependence on the type and the content. For example, a resistivity value lower than 

102 Ω.cm can be achieved with a CNT content of 1 wt%. The introduction of CNTs 

confers a good conductivity to the nanocomposite samples, and it is possible to 

appreciate the lower electrical percolation threshold in CNT nanocomposites with 

respect to GNP-M5-filled nanocomposites. This threshold value is below 2 wt% for 

CNT, while GNP-M5 amount between 8 and 12 wt% can be visually estimated. The 

higher resistivity reduction reached with the introduction of carbon nanotube compared 

to graphene could be attributed to the better dispersion level and their higher aspect 

ratio. 
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Figure 6.5-1. Electrical volume resistivity of ABS/M5 and ABS/CNT nanocomposites. 

The applied voltage was 5 V or 100 V for samples having resistivity lower or higher 

than 107 Ω.cm, respectively. 

 

 

According to the statistical percolation theory, the data of electrical resistivity as 

functions to volume filler fraction were fitted by power law as: 

    ( )t

o c
 (6.5-1) 

 
This equation can be adapted to electrical resistivity as follows: 

1 1
log( ) log( ) log( )c

o

t  
 

  
 

(6.5-2) 

 

where  = volume resistivity, o = scale factor related to the filler intrinsic resistivity, 

= filler volume fraction, c= percolation threshold, and t = critical exponent. 

Exponent t value in the range 1.1-1.3 indicates the conduction through 2D network 

whereas for 3D network the value lies in the range of 1.6–2.0. 

The best-fit line in Figure 6.5-2 shows that the percolation critical concentration 

is 3.8 vol% (7.3 wt %) for GNP and 0.4 vol% (0.9 wt %) for CNT, respectively. In 

addition, the t values were found to be 7.3 and 1.8 for graphene and carbon nanotubes, 

respectively. The results suggested that the 3D network is formed for both graphene 

and CNT. In literature, Zhao et al. [199] reported the t values in the range of 2.40-6.92 

for graphene-based polymer composites. The t values for CNT were found in general 

in the range of 1.3-4.0 [200], and around 2.0 is the frequently found in the literature 

[86]. 



 192  

 

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
-15

-12

-9

-6

-3

0

3

Log(1/=1.84Log(
C
)-1.04

             R
2
 = 0.999

 F-M5

 F-CNT

L
o

g
 (

1
/

 (


.c
m

))

Log (
c
)

Log(1/ =7.38Log(
C
)-10.40

             R
2
 = 0.987

 
Figure 6.5-2. Percolation theory power law fit of ABS/M5 and ABS/CNT 

nanocomposites. 

 

 

The beneficial effect of graphene and CNT represented by the combined result 

to increase the stiffness, and to reduce melt flow index and the resistivity of ABS 

nanocomposites. Therefore a merit coefficient P can be calculated according to the 

equation: 






E MFI
P

 
(6.5-3) 

where  E is the elastic modulus 

MFI is the melt flow index value at 250°C 

is volume resistivity. 

 

Figure 6.5-3 shows the combined effect of elastic modulus, melt flow index and 

resistivity as a function of nanofiller content. The parameter P progressively increases 

with graphene content, and it reaches to a highest value at 4 wt% of CNT. 
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Figure 6.5-3. The combined effect of elastic modulus, melt flow index and resistivity 

as a function of nanofiller content. 
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Figure 6.5-4. Comparison of selected properties of ABS/M5 and ABS/CNT 

nanocomposites as function of nanofiller content (2-8 wt%). 

 

It is possible to observe that graphene and CNT provide some positive 

influences in different manners as shown in Figure 6.5-4. In the same time, some 

properties are negatively affected, even if at different levels. Therefore, a combination 

of these two fillers can be properly selected in order to tune the properties of resulting 

nanocomposites for the intended application.
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Table 6.5-1. Summary of the main properties of ABS matrix and its composites with GNP-M5 and CNT nanofillers. The values at 2 wt% and 8 wt% are 

reported. 

Properties F F-M5-2  F-M5-8 F-CNT-2  F-CNT-8 M5 Factor CNT Factor 
Effective 

filler 

MFI (g/10min) 89.7 72.5  47.1 39.3  0.1 0.81  0.53 0.44  1.1E-03 GNP 

E (MPa) 2315 2631  3523 2513  3068 1.14  1.52 39.3  0.1 GNP 

Strength (MPa) 41.7 41.5  41.4 43.3  45.1 1.00  0.99 1.04  1.08 Equivalent 

TEB (MJ.mm-3) 11.8 1.057  0.780 2.313  0.805 0.090  0.066 0.196  0.068 Equivalent 

Strain at break (%) 35.9 4.1  3.2 7.5  3.1 0.11 0.09 0.21 0.09 Equivalent 

Creep compliance (GPa-1) 0.777 0.573  0.416 0.667  0.553 0.74  0.54 0.86  0.71 GNP 

Resistivity (Ω.cm) 3.27E+15 2.72E+15  2.07E+13 2.94E+01 8.73E-01 1.2E+00  1.6E+02 1.1E+14  3.7E+15 CNT 

 

The relative factor was calculated by the ratio of the property of composites (PC) with respect to ABS matrix (PABS) according to the equation:  

Relative properties = PC / PABS (6.5-4) 

 

where P is GNP or CNT relative properties. 

In the case of resistivity was calculated according to the inverse Eq. (6.5-5). 

 

Relative properties = PABS / PC (6.5-5) 
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6.6 Summary of a comparative study of graphene and 

carbon nanotube nanocomposites compression 

molded plates 

In order to evaluate the possibility of improvement of carbon based ABS 

nanocomposites, by using a hybrid composition, a preliminary comparison of 

graphene and CNT nanofiller, and their effect in ABS nanocomposites are presented. 

A comparative evaluation is detailed in the followings, in order to the select the most 

convenient composition for hybrid systems. 

According to the experimental results, the incorporation of GNP-M5 and CNT 

into ABS matrix induced a significant impact on the properties of the ABS 

nanocomposites. The addition of both nanofillers determined an increase of modulus 

and strength, and a high reduction of deformation at break. In particular, a significantly 

higher reduction in MFI value by the addition of CNT compared to GNP-M5 was 

reported. The ABS/M5 samples showed a slightly higher stiffness and creep stability 

compared to the ABS/CNT. On the other hand, the tensile strength of ABS/M5 samples 

were almost constant, whereas the tensile strength of the ABS/CNT was enhanced  

because of the better dispersion level and the interfacial interactions between CNTs 

and the ABS matrix compared to graphene. In addition, ABS/CNT showed significant 

higher electrical properties in comparison to ABS/M5. It follows that CNT and graphene 

provide a positive influences in different manners. Therefore, a combination of these 

two fillers is investigated in the following chapter. Following the approach adopted in 

Chapter V, the nanofiller content of 6 wt% was selected and hybrid nanocomposites 

were prepared and the results reported in the following Chapter VII.  
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Chapter VII 

ABS-graphene-carbon nanotubes hybrid 
nanocomposites 

This chapter is dedicated to ABS-graphene-carbon nanotube hybrid 

nanocomposites with the aim to produce suitable filaments through a solvent-free 

procedure based on melt compounding and extrusion for FDM process. Section 7.1 is 

about the hybrid ABS-graphene-CNT nanocomposites plates from compression 

moulding process. Section 7.2 describes the suitable ABS-graphene-CNT filament 

was employed in FDM process with a comparison of properties on samples obtained 

by compression moulding, extruded filament and FDM printed parts. 

7.1 ABS-graphene-carbon nanotubes hybrid 

nanocomposites compression molded plates 

After the comparison of the ABS filled with single carbon nanotube and 

graphene nanocomposites, nanocomposites with CNT/M5 hybrids for a fixed weight 

fraction (6 wt%) were investigated. A mixture of CNT and GNP-M5 in ABS were 

produced through melt compounding in an internal mixer followed by compression 

moulding (plates). Evaluation on processability, mechanical, electrical and 

electromagnetic shielding (EMI SE) were carried out. 

7.1.1 Compounding and morphology 

Table 7.1-1. Designation and formulation of ABS/CNT/M5 hybrid nanocomposites 

dependence of melt flow index (220°C/10 Kg). 

 

As reported in Table 7.1-1, the investigated formulations are a combination of 

ABS with two nanofillers GNP-M5 and CNT. The total amount of nanofiller of 

nanocomposites was fixed at 6 wt% and the relative ratio between CNT/M5 was 

Sample 
ABS®F322 

(wt%) 

CNT 

(wt%) 

GNP-M5 

(wt%) 

CNT/M5 

Relative 

ratio 

MFI 

(g/10min) 

F 100 0 0 Neat 23.6 ± 1.3 

F-M5-6 94 0 6 0:100 13.7 ± 0.7 

F-M5-5.4-CNT-0.6 94 0.6 5.4 10:90 9.8 ± 0.4 

F-M5-4.2-CNT-1.8 94 1.8 4.2 30:70 5.2 ± 0.4 

F-M5-3-CNT-3 94 3 3 50:50 1.97 ± 0.17 

F-M5-1.8-CNT-4.2 94 4.2 1.8 70:30 0.42 ± 0.01 

F-M5-0.6-CNT-5.4 94 5.4 0.6 90:10 0.09 ± 0.01 

F-CNT-6 94 6 0 100:0 0.08 ± 0.00 
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varied. Figure 7.1-1 presents the flow properties of hybrid nanocomposites formulation 

at a fixed total amount of filler (6 wt%) as a function of the different fraction ratio. The 

MFI values of nanocomposites significantly decreased with the increase of CNT 

content. 
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Figure 7.1-1. Melt flow index (220°C/10kg) of ABS/CNT/M5 hybrid nanocomposites. 

 

The effect of compounding on the quality of carbon nanotubes and graphene-

M5 dispersion within the ABS matrix was evaluated on the fracture surface of F-M5-3-

CNT-3 nanocomposite plate by SEM analysis and results are presented in Figure 

7.1-2(a-c). From the SEM figures, it is evidenced that a poor adhesion level between 

graphene and ABS can be still observed. 

 

  
 (a) (b) 
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(c) 

Figure 7.1-2. SEM micrographs of F-M5-3-CNT-3 nanocomposite plates at different 

magnification of 3,000× (a), 20,000× (b) and 50,000× (c). 

7.1.2 Quasi-static tensile test 

The tensile properties of nanocomposites with ABS /M5/CNT hybrids at filler 

concentration of 6 wt% are summarized in Table 7.1-2. The tensile properties of 

various mixture ratios of CNT/M5 hybrids were collectively superior to pure ABS. As 

reported in Figure 7.1-3(a-b), the elastic modulus of nanocomposites linearly 

increases with the GNP-M5 content. For example, single filler CNT and GNP-M5 

nanocomposites exhibited 23% and 47% elastic modulus improvement, respectively, 

while the hybrid  nanocomposites with a ratio 50:50 exhibited 37% improvement. On 

the other hand, the strength of nanocomposites increases with CNT content, as shown 

in Figure 7.1-3b. From Figure 7.1-3c, the strain at break of F-CNT-6 is slightly higher 

than that of F-M5-6 nanocomposites, and the F-CNT-3-M5-3 exhibited the highest 

strain at break compared the nanocomposites. 

Some works reporting synergistic effect for hybrid carbon nanotubes-graphene 

nanocomposites at a low concentration of 1 wt% nanofiller can be found in the 

literature [192, 194, 201]. Nevertheless, our results indicated no synergistic effects 

until a higher concentration of nanofiller. 

 

Table 7.1-2. Tensile properties of ABS/M5/CNT hybrid nanocomposites. 

Samples E (MPa) σy (MPa) σb (MPa) εb (%) TEB (MJ.mm-3) 

F 2315 ± 100 41.7 ± 0.4 33.6 ± 0.4 35.9 ± 6.1 11.785 ± 2.007 

F-CNT-6 2849 ± 70 - 46.4 ± 0.4 3.9 ± 0.2 1.112 ± 0.110 

F-M5-0.6-CNT-5.4 2899 ± 119 - 45.7 ± 1.2 3.9 ± 0.1 1.030 ± 0.033 

F-M5-1.8-CNT-4.2 3064 ± 111 - 45.2 ± 0.6 4.1 ± 0.3 1.110 ± 0.133 

F-M5-3-CNT-3 3189 ± 87 - 45.2 ± 1.3 4.1 ± 0.2 1.156 ± 0.104 

F-M5-4.2-CNT-1.8 3275 ± 123 - 43.2 ± 0.6 3.8 ± 0.3 0.995 ± 0.139 

F-M5-5.4-CNT-0.6 3338 ± 125 - 41.7 ± 1.1 3.5 ± 0.1 0.868 ± 0.041 

F-M5-6 3406 ± 86 - 41.5 ± 0.8 3.1 ± 0.1 0.788 ± 0.086 
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Figure 7.1-3. Tensile properties of ABS/M5/CNT hybrid nanocomposites: (a) elastic 

modulus, (b) maximum stress and (c) strain at break. 
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7.1.3 Electrical resistivity 

Four-probe electrical measurements were performed, and the results of bulk 

resistivity measurements of the samples containing GNP-M5 and CNT nanofillers are 

reported in Table 7.1-3. From this set of data (see Figure 7.1-4), it is possible to 

understand that increasing the CNTs relative amount the resistivity decreases with a 

nonlinear trend, because of the synergistic effect for electrical resistivity due to the 

presence of both nanofillers. With a total nanofiller amount of 6 wt%, the 

nanocomposite required at least a CNT/M5 ratio of 30:70 to reach a good conductivity. 

 
Table 7.1-3. Electrical volume resistivity of ABS /M5/CNT hybrid nanocomposites with 

6 wt% of nanofillers at an applied voltage of 5 V. 

Samples Electrical resistivity (Ω.cm) 

F-CNT-6 1.51 ± 0.14 

F-M5-0.6-CNT-5.4 1.54 ± 0.21 

F-M5-1.8-CNT-4.2 1.90 ± 0.13 

F-M5-3-CNT-3 4.13 ± 0.69 

F-M5-4.2-CNT-1.8 12.7 ± 0.9 

F-M5-5.4-CNT-0.6 1.49E+07 

F-M5-6 6.44E+13 
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Figure 7.1-4. Electrical volume resistivity of hybrid nanocomposites with total 

nanofiller of 6 wt% as a function of CNT/M5 relative amount. 
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7.1.4 Electromagnetic interference shielding effectiveness 

(EMI SE) 

Figure 6.1-2 shows the representative plots of EMI SE expressed in decibel 

(dB) of the neat ABS and various single GNP-M5, single CNT and hybrid (50:50) 

compression molded nanocomposites at 6 wt% filler. In the frequency range from 8 to 

12.4 GHz, the EMI SE of all samples is almost independent from the frequency. The 

higher shielding effectiveness was achieved in the following order: F-CNT-6 > F-M5-

3-CNT-3 > F-M5-6 > F. Moreover, a good correlation with electrical volume resistivity 

can be detected. 

Materials for EMI shielding purposes are generally targeted to have a minimum 

of -20 dB of attenuation, at these values of shielding more than 99% of the incident 

wave is attenuated ensuring that electronic equipment does not generate, or is not 

affected by, electromagnetic interference [202, 203]. Therefore, it is interesting to note 

that samples contain 6 wt% of CNT and hybrid (50:50) nanofillers could reach to -46 

dB and -31.7 dB, respectively, which meet the EMI SE levels required for commercial 

applications. 
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Figure 7.1-5. Representative curves of EMI SE of neat ABS, single and hybrid 

nanocomposites at 6 wt% from compression moulding. 

 

Due to the almost independence on frequency, the average values of reflection 

and absorption contributes in the range frequency of 8.2–12.4 GHz were reported and 

compared in Figure 7.1-6. For the compositions contain carbon nanotubes, contribute 

of absorption on shielding efficiency is higher than that of reflection, i.e. SEA > SER. 

On the other hand, for ABS/graphene composites the dominant shielding mechanism 
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is reflection, due to the platelet-shaped GNP-M5 that provide a higher surface area for 

interaction with the electromagnetic waves. 
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Figure 7.1-6. Influence of absorption and reflection mechanisms on the EMI SE of 

hybrid nanocomposites from compression moulding. 

 

A summary of main properties of graphene-CNT hybrid nanocomposites at 6 

wt% is reported in Table 7.1-4. From Figure 7.1-7, the merit parameter P assumes the 

highest value at 50:50 and 70:30 of CNT/M5 relative ratio. 

 

Table 7.1-4. The summary of properties graphene-CNT hybrid nanocomposites. 

Relative 
ratio 

MFI 
(g/10min) 



(Ω.cm) 

E 
(MPa) 

Strength 
(MPa) 

b 
(%) 

TEB 
(MJ.mm-3) 

E × MFI/ 

Neat 23.61 3.27E+15 2315 41.7 35.9 11.785 1.67E-11 
0:100 13.71 1.04E+15 3406 41.5 3.1 0.788 7.25E-10 
10:90 9.77 1.49E+07 3338 41.7 3.5 0.868 2.19E-03 
30:70 5.22 1.27E+01 3275 43.2 3.8 0.995 1.35E+03 
50:50 1.97 4.13E+00 3189 45.2 4.1 1.156 1.52E+03 
70:30 0.42 1.90E+00 3064 45.2 4.1 1.110 6.75E+02 
90:10 0.09 1.54E+00 2899 45.7 3.9 1.030 1.68E+02 
100:0 0.08 1.51E+00 2849 46.6 3.9 1.112 1.60E+02 
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Figure 7.1-7. The combined effect of elastic modulus, melt flow index and resistivity 

as a function of CNT/M5 relative amount of total 6 wt%. 

 

Figure 7.1-8 shows the processability, resistivity, electromagnetic shielding, and 

tensile properties of graphene, carbon nanotubes and hybrid nanocomposites at 6 

wt% from compression moulding. It is interesting to observe that the 50:50 samples 

(F-M5-3-CNT-3) is a good compromise between the decrease of processability and 

the increase of mechanical, electrical resistivity and electromagnetic properties. 
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Figure 7.1-8. Processability, resistivity, electromagnetic shielding, tensile properties 

of graphene, carbon nanotubes and hybrid nanocomposites at 6 wt% from 

compression moulding. 

 



204 

7.2 Fused deposition modelling with ABS-graphene-

carbon nanotubes hybrid nanocomposites 

By considering the enhancement of properties (mechanical and electrical) and 

processability, a selected composition is 50:50 of M5/CNT of hybrid nanocomposites 

was extruded into filaments nanocomposites for FDM. It is worthwhile to note that the 

materials F-M5-3-CNT-3 (50:50) can be 3D-printed through FDM machine at a nozzle 

temperature of 250°C. 

7.2.1 Rheological behaviour 

Rheological investigations provide insights about the filler dispersion in the 

matrix, network formation and the material's behaviour during the process. The graphs 

given in Figure 7.2-1 show the complex viscosity of neat ABS and nanocomposites 

with 6 wt% filler as a function of frequency at 250°C and 280°C. Due to the effect of 

temperature, the complex viscosity of all samples decreased. It is possible to observe 

that the complex viscosity of ABS increased with the addition of nanofillers. At 

temperature of 250°C, the viscosity of ABS/graphene is relative higher than neat ABS 

at low frequencies, but slightly lower at high frequencies. At low frequencies, the 

viscosity increased by 3 orders of magnitude for ABS/CNT with 6 wt% filler content 

and by 2 orders of magnitude for hybrid nanocomposites. 

On the other hand at higher frequencies the difference between ABS matrix and 

6% nanofilled composites is lower, in the range of one order of magnitude. In 

particular, it is worth noting that at 250°C F-M5-6 exhibited a complex viscosity at 

100Hz even lower than pure ABS matrix. 
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Figure 7.2-1. Complex viscosity as a function of frequency for F-M5-6, F-CNT-6 and 

F-M5-3-CNT-3 composite plates at (a) 250°C and (b) 280°C. 

 

These findings can be interpreted as an effect of orientation of nanofiller, as  

previously observed in the ABS composites containing  carbon black (1-3 wt%) or CNT 

(up to 1 wt%) [204]. The higher the frequency, the higher the filler orientation, and the 

lower the viscosity. 

7.2.2 Morphology 

The effect of double steps of compounding and extrusion, and the quality of 

carbon nanotubes and graphene-M5 dispersion into ABS matrix was evaluated of the 

fracture surface of F-M5-3-CNT-3-E nanocomposite filament by SEM analysis and 

results are represented Figure 7.2-2(a-d). From Figure 7.2-2a, a small amount of voids 

can be observed. According to Figure 7.2-2b, the graphene nanoplatelets in the 

filaments appear to be oriented mostly perpendicular to the fracture plane. 

 

   
 (a) (b) 
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 (c) (d) 

Figure 7.2-2. SEM micrographs of F-M5-3-CNT-3-E nanocomposite filament at 

different magnification of 100× (a), 1,000× (b), 5,000× (c) and 20,000× (d). 

 

Similarly to the filaments, in Figure 7.2-3c, the graphene nanoplatelets for F-

M5-3-CNT-3-HC parts appear to be oriented mostly perpendicular to the fracture plane 

and therefore most likely along the loading direction of dumbbell specimens. It can be 

therefore inferred that, during extrusion and FDM process, the graphene nanoplatelets 

are forced to align along the layer plane. 

 

   
 (a) (b) 

   
 (c) (d) 

Figure 7.2-3. SEM micrographs of 3D-printed dumbbell specimens printed from F- 

M5-3-CNT-3-HC at different magnification of 100× (a), 1000× (b), 5,000× (c) and 

20,000× (d). 
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7.2.3 Quasi-static tensile test  

The tensile mechanical properties including elastic modulus (E), yield stress 

and fracture stress and strain are summarized in Table 7.2-1. The ductility of filament 

nanocomposites progressively reduces with the nanofiller amount as compared to 

neat ABS. In addition, it is worthwhile to note that the elastic modulus of the 50:50 

hybrid nanocomposites was higher than that of single CNT nanocomposites. The 

elastic modulus of ABS/CNT/M5 nanocomposites continuously increases up to 26% 

over unfilled ABS. On the other hand, the strength and strain at break of hybrid 

composite filament were slightly lower than pure CNT nanocomposites, and the 

sample was fracture before yield point. 

The numerical values of tensile properties of FDM samples are also reported in 

Table 7.2-1. The tensile properties of 3D-printed (HC and H45) samples showed a 

tendency similar to compression moulded plates and filaments. From Table 7.2-1, the 

elastic modulus of hybrid nanocomposites of HC and H45 samples were further 

increased compared pure CNT nanocomposites, whereas, strength and strain at break 

slightly reduced for this hybrid composition (50:50) as compared to single CNT 

nanocomposites.  

On the other hand, strength and strain at break values of 50:50 hybrid at PC 

build orientation were significantly reduced as compared to neat ABS, and the samples 

F-M5-3-CNT-3-PC behave as a brittle material, due to the weakness of bond 

properties at the cross-sections. 

 

Table 7.2-1. Quasi-static tensile properties of ABS and its nanocomposite of filaments 

(E) and FDM samples (HC, H45, and PC). 

FDM 

orientation 
Materials E (MPa) σy (MPa) σb (MPa) εb (%) 

Filaments 

F 2207 ± 65 42.8 ± 1.9 35.0 ± 0.4 25.6 ± 15.8 

F-CNT-6 2625 ± 55 47.1 ± 0.5 44.6 ± 1.0 3.2 ± 0.5 

F-M5-3-CNT-3 2787 ± 78 - 40.0 ± 0.4 2.0 ± 0.1 

HC 

F 2235 ± 170 45.7 ± 0.5 31.9 ± 1.7 30.0 ± 10.4 

F-CNT-6 2735 ± 158 49.6 ± 0.6 49.2 ± 0.6 4.5 ± 0.2 

F-M5-3-CNT-3 3228 ± 235 46.4 ± 0.5 41.8 ± 0.9 6.0 ± 0.2 

H45 

F 2308 ± 112 41.1 ± 0.9 37.9 ± 1.6 5.3 ± 0.5 

F-CNT-6 2739 ± 268 43.2 ± 0.3 42.6 ± 0.4 4.6 ± 0.3 

F-M5-3-CNT-3 3191 ± 132 - 39.3 ± 0.7 3.8 ± 0.1 

PC 

F 2077 ± 44 - 22.0 ± 4.4 2.4 ± 0.7 

F-CNT-6 2181 ± 51 - 18.7 ± 1.5 1.9 ± 0.1 

F-M5-3-CNT-3 1825 ± 178 - 10.1 ± 0.7 1.4 ± 0.1 
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7.2.4 Electrical resistivity 

Figure 7.2-4a shows electrical volume resistivity of the hybrid composition for 

the filament (E) and 3D-printed samples as a function of the applied voltage. Moreover, 

the electrical resistivity of the loaded samples does not appreciably change with the 

applied voltage up to 24 V. It can be concluded that these materials behave like ohmic 

conductors. The electrical resistivity of hybrid nanocomposite filament is about 8.45 

Ω.cm, while the resistivity of FDM samples is about 4.2×105 Ω.cm, 1.5×105 Ω.cm, and 

1.1×104 Ω.cm for HC, H45, and PC respectively. 

The resistivity of single CNT and 50:50 of CNT/M5 at 6 wt% with different 

processing techniques is plotted in Figure 7.2-4b. The electrical resistivity of both F-

CNT-6 and F-M5-3-CNT-3 nanocomposites increases in the order compression 

moulding (CM) < the filament (E) < FDM samples (HC, H45, and PC) respectively. 
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(b) 

Figure 7.2-4. Electrical volume resistivity: a). F-M5-3-CNT-3 hybrid nanocomposites 

as a function applied voltage and b). F-M5-6, F-CNT-6 and F-M5-3-CNT-3 at 

different processing: compression moulding (CM), the filament (E), FDM samples 

(HC, H45, and PC). 
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7.2.5 Electromagnetic interference shielding effectiveness 

(EMI SE) 

Figure 7.2-5(a-c) shows the representative plots of EMI SE of neat ABS and 

various single GNP-M5, single CNT and hybrid (50:50) nanocomposites at 6 wt% from 

FDM at different build orientation in the frequency range from 8 to 12.4 GHz. The 

nanocomposites with CNT showed a slight influence of the shielding effectiveness on 

the frequency in the X-band. 

Accordingly, EMI SE responses were found to be a function of both, the type of 

filler as well as build orientation of the specimens. For the polymer composites 

formulations, the higher shielding effectiveness was achieved in the order of F-CNT-6 

> F-M5-3-CNT-3 > F-M5-6 > F independently from the build orientation of the 

specimens. These results show the same tendency as electrical volume resistivity. For 

as the effect of the build orientation is concerned, it is observed that the specimens 

prepared along the PC build orientation better attenuated the electromagnetic 

radiation. For instance, the total EMI SE of CNT-based composite built along PC was 

around -25.3 dB whereas the same composite built along HC and H45 showed an 

attenuation of -14.4 and -15.3 dB, respectively. Similar differences are observed for 

hybrid composites, -16.1, -11.3 and -12.7 dB for PC, HC and H45 respectively. The 

ABS/graphene showed lower values of attenuation, near -4.5 dB independent on the 

growing direction. 
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Figure 7.2-5. Representative curves of EMI SE of hybrid nanocomposites from 

compression moulding and FDM process: (a) HC, (b) H45 and (c) PC. 

 

The average values of reflection and absorption contributes in the frequency 

range of 8.2–12.4 GHz were reported and compared in Figure 7.2-6. For the FDM 

samples contain carbon nanotubes independent on the build orientation, the shielding 

absorption contributes higher than that of reflection one, SEA > SER. In particular, the 

dominant shielding mechanism for ABS/graphene composites is the reflection, due to 

the platelet-shaped GNP-M5 regardless the build orientation. 
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Figure 7.2-6. Influence of absorption and reflection mechanisms on the EMI SE of 

hybrid nanocomposites from FDM process: (a) HC, (b) H45 and (c) PC. 
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The relationship between the decrease of resistivity and the effect of magnetic 

shield is shown in Figure 7.2-7 that correlates the better performance induced by the 

addition of GNP-M5, CNT and their mixture with reduced resistivity and the 

corresponding higher EMI SE. The samples from compression moulding showed the 

results better than those from 3D printed samples. 
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Figure 7.2-7. Electromagnetic shield vs resistivity of neat ABS, ABS-M5, ABS-CNT 

and hybrid nanocomposite at 6 wt%. 

 

A final comparison of properties of some ABS nanocomposites presented in this 

study and correspondant engineering polymers containing a similar type of carbon 

nanoparticles such as ABS/PC, PLA or polyamides is presented in Table 7.2-2. The 

comparative values could be useful for ranking of the various nanocomposites in 

depending on the required applications. 
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Table 7.2-2.  Comparison of selected properties of ABS nanocomposites studied in this research with respect to other carbon-based engineering polymers. 

  

Matrix 
Type of 

nanofiller 

Process 

technique 

Nanofiller 

content 
Modulus Strength 

Conductivity 

(S/cm) 

EMI SE 

(-dB) 
Ref 

ABS - - 0 2315 MPa 41.7 MPa 1.6 × 10-16 2.7 In this study 

ABS GNP Melt mixing 6 wt% +47 % -1 % 1.6 × 10-14 4.7 In this study 

ABS CNT Melt mixing 6 wt% +23 % +11 % 6.6 × 10-1 46.0 In this study 

ABS GNP/CNT Melt mixing 6 wt% +37 % +8 % 2.4 × 10-1 31.7 In this study 

PLA r-GO Melt mixing 6 wt% +36 % +74 % 4.7 × 100 - [97] 

ABS CB Metl mixing 15 wt% - - 3.4 × 10-4 - [16] 

ABS GO Solution mixing 5.6 wt% - - 1.1 × 10−5 - [104] 

PBT GNP Solution mixing 8.4 vol% - - 4.0 × 10-2 - [102] 

ABS/PC GNP Melt mixing 3 wt% +30 % +15 % - - [70] 

ABS Graphite Mellt mixing 40 vol% +96 % -19 % - - [63] 

ABS C18-graphene Solution mixing 1 wt% +18 % +38 % - - [64] 

ABS graphite Melt mixing 15 wt% - - 1.6 × 10-1 60 [65] 

ABS GNP nanosheet Solution mixing 0.13 vol% - - 1.0 × 10-3 - [66] 

ABS GNP nanosheet Solution mixing 2 wt% +48 % +41 % - - [68] 

ABS Graphite Melt mixing 4.9 vol% - - 2.0 × 10-1  [69] 

Polyamide Graphene Melt mixing 5 wt% - - 2.0 × 10-2 - [196] 

ABS CNT Solution mixing 6.1 vol% - - 1.0 × 100 - [86] 

PHAs f-MWCNT Melt mixing 1 wt% +33 % +102 % 1.0 × 10-7 - [103] 

Polyamide CNT Melt mixing 5 wt% - - 1.4 × 10-1 - [196] 

PBT CNT Solution mixing 3.5 vol% - - 2.5 × 10-1 - [102] 

ABS CNT Solid mixing 5 wt% - - 2.0 × 10-3 38.0 [205] 
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Chapter VIII 

General conclusions and Future perspectives 

Graphene nanoplatelets (GNP) and carbon nanotubes (CNT) nanofillers were 

successfully melt compounded in acrylonitrile–butadiene–styrene (ABS) matrix by 

using a completely solvent-free process and then extruded into filaments for FDM. 

Standard composition in the range of 2-8 wt% were selected to produce ABS 

nanocomposites. The materials properties were monitored along the processing 

routes including compression moulding, filaments and FDM parts. 

The final materials through all processing routes, were deeply characterized by 

means of thermo-mechanically, electrical and electromagnetic analysis. 

Some general conclusion have been led in the following: 

 Both nanofillers could be easily compounded in ABS matrix with or without 

internal lubricant. 

 Up to 30 wt% of GNP was dispersed in ABS matrix, whereas a maximum of 8 

wt% of CNT was achieved. 

 Composition of 4-6 wt% were properly selected for 3D printing. 

 It is worth to underline that the improvement of normalised modulus observed 

for GNP-M5/ABS composite is the highest ever reported in the open scientific 

literature on carbon-based fillers (except the case of carbon fiber and reduced 

graphene-oxide ABS composites). 

 The nanofillers reduce the flow behaviour, and the effect in particularly severe 

for carbon nanotubes. 

 The presence of graphene and carbon nanotubes have no significant influence 

on the glass transition temperature either on thermal decomposition of ABS. 

 Excellent dispersion of CNT and relative good for graphene in ABS matrix were 

observed in SEM analysis. 

 In all the case, both GNP-M5 and CNT nanofillers significant increased the 

stiffness of ABS matrix. For example, the improvement about 30% for ABS filled 

with 4 wt% of GNP-M5 and about 20% for 6 wt% of CNT with respect to neat 

ABS were obtained. 

 The strength of nanocomposites slightly reduced by addition of GNP-M5, while 

significantly increased by adding CNT. In both cases, a significant reduction of 

the strain at break of nanocomposites were noted. 

 DMTA tests confirmed the stiffening effect of nanoparticles as higher storage 

modulus for all compositions with nanoparticles. Both GNP-M5 and CNT are 

also proven to reduce the coefficient of thermal dilation of 3D printed parts, and 

they also improve their thermal stability. 



215 

 The creep compliance significantly reduced by addition of the GNP-M5 and 

CNT nanofiller, determining an improvement of nanocomposites stability under 

long-lasting loads. 

 The electrical conductive filaments and FDM parts were achieved after addition 

of CNT. However, their conductivity was reduced after 3D printing processing. 

 GNP-CNT hybrid nanocomposites showed a good compromise between 

processability and enhancement of properties (mainly mechanical and electrical 

properties). 

 Electromagnetic interference shielding effectiveness of ABS filled CNT 6 wt%, 

and hybrid 3 wt% GNP-M5 and 3 wt% of CNT obtained from compression 

molding, meet the requirement for application for compression moulding. EMI 

SE value slightly decreased in the case of FDM parts. 

Following the considerations of the promising results obtained from carbon-

based nanocomposites, hybrid compositions of carbon nanotube and carbon black 

incorporated in ABS were also produced for FDM application. Detail are described in 

collateral research activities (see Chapter IX) with specific attention to mechanical 

properties and EMI SE improvement. 

For future works, the surface treatments of nanofillers or the effect of a 

compatibilizer can be considered to improve the quality of nanoparticles/ABS interface 

and their influence on processing through additive manufacturing. In FDM process, 

the effect of some other parameters (e.g. layer height, infill density, nozzle 

temperature, the temperature of printing environment, printing speed)  on the 

mechanical properties including fracture toughness, impact or compression resistance 

still remains to be studied. Moreover, future research could be devoted to the 

investigation of other properties for the various composition such as ageing resistance, 

barrier properties (permeability to gases, fire reaction), stability of microstructure and 

effect of reprocessing. 

Finally, it should be underlined that conductive parts of carbonaceous ABS 

nanocomposites obtained via FDM may be open new interesting perspectives for 

some industrial applications including strain sensor, electromagnetic shielding casing, 

etc. At this purpose, a proper selection of hybrid composition based on carbon 

nanotubes, carbon black, and graphene could be derived from synergistic effects and 

a good compromise between the processability and the final properties of materials. 
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Chapter IX 

Collateral research activities 

9.1 Fused deposition modelling with carbon nanotubes-

carbon black hybrid nanocomposites 

Part of this chapter has been published in: 

D. P. Schmitz, L. G. Ecco, S. Dul, E. C. L. Pereira, B. G. Soares, G. M. O. Barra, A. Pegoretti  

“Electromagnetic Interference Shielding Effectiveness of ABS carbon-based Polymer 

Composites Manufactured via Fused Deposition Modelling” 

Materials Today Communication, 2018. 15(1): p. 70-80. 

 

 

This work reports the preparation of electrically conductive and efficient EMI 

shielding ABS-carbonaceous based nanocomposites specimens via FDM. Initially, an 

investigation on the rheological behaviour of the ABS composites is made for the 

selection of the formulations to be processed via FDM. The feedstock filaments for 

FDM were prepared at a fixed filler weight fraction of 3 wt% and 5 wt% consisting of 

carbon nanotube (CNT), carbon black (CB) as well as hybrid formulation (both CNT 

and CB). In order to verify the effect of the printing pattern of FDM, the solid 

components were built along three different growing directions and the 

electromagnetic interference shielding effectiveness of the specimens was assessed 

in the X-band frequency range. 

9.1.1 Materials and sample preparations 

9.1.1.1 Materials 

The polymeric matrix used in this work was the copolymer acrylonitrile–

butadiene–styrene (ABS), under the trade name of CycolacTM Resin MG47 supplied 

in pellets form by Sabic, Brazil. The carbonaceous filler used in the preparation of the 

polymer nanocomposites were: Multi-walled carbon nanotubes (CNT), trade name 

NanocylTM NC7000 provided by Nanocyl S.A, Belgium; Carbon black (CB) trade name 

PRINTEX XE 2-B, purchased from Orion Engineered Carbon, US. The 

nanocomposites were prepared, as detailed in Table 9.1-1. 

For sample designation, the unfilled matrix was denoted as ABS, while the 

coding of the nanocomposites indicated the matrix, the filler type, and the filler weight 

amount, as well. For instance, a sample filled with 1.5 wt% of CNT and 1.5 wt% of CB 

is coded as CB1.5-CNT1.5. 
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Table 9.1-1. Nanocomposites formulations used in the preparation of FDM specimens. 
Samples Filler Composite formulation (wt %) 

ABS  -- ABS (100) 

CB3 CNT ABS (97) / CNT (3) 

CNT3 Carbon black ABS (97) / CB (3) 

CB1.5-CNT1.5 CNT+Carbon black ABS (97) / CNT (1.5) / CB (1.5) 

CB2.5-CNT2.5 CNT+Carbon black ABS (95) / CNT (2.5) / CB (2.5) 

 

9.1.1.2 Composites preparation and FDM manufacturing 

- Compouding 

Before processing the ABS pellets and the carbonaceous fillers were vacuum 

dried overnight at 60°C. Neat ABS, as well as ABS/ nanocomposites, were prepared 

using an internal mixer (Thermo Scientific HaakeTM, PolylabTM Rheomix) with mixing 

chamber capacity of 75 g and counter-rotating rotors. The temperature in the mixing 

chamber was 230°C, the rotors speed set at 60 rpm for a mixing time of 15 min. To 

properly feed the extruder, the resulting materials were reduced to millimeter-sized 

particles using a low-speed granulator (Piovan, model: RN 166). 

- Filament preparation  

Before filament extrusion, the granulated materials were vacuum dried 

overnight at 60°C. Neat ABS and the nanocomposites filaments were prepared using 

a Thermo Haake PTW16 intermeshing corotating twin-screw extruder (screw diameter 

= 16 mm; L/D ratio = 25; rod die diameter 1.80 mm). The processing temperature of 

feeding zone (Zone 1) to rod die (Zone 5) increased from 150, 210, 215, 215 and 

220°C, respectively. The screw rotation speed was fixed at 10 rpm, and the collection 

rate was regulated in order to obtain a final diameter of the extruded filaments of 1.75 

± 0.10 mm. Two parameters of the process, the pressure at the die and torque were 

constantly recorded during the production of the filaments. 

- Preparation of the specimens via FDM for EMI SE 

Before FDM manufacturing the extruded filaments were vacuum dried 

overnight at 60°C. The specimens were produced using a Sharebot Next Generation 

machine (Sharebot NG, Nibionno, Italy). The manufacturing process was controlled 

and designed using the open source software Slic3r. The following printing parameters 

were selected and maintained constant for all the composites formulations: object infill 

100%; deposition rate of 40 mm/s; nozzle diameter 0.4 mm; layer height 0.20 mm; 

nozzle temperature 250°C; printing platform temperature 110°C. The layer height and 
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the object infill are the diameter of the deposited filament and the percentage of infill 

of the space inside the solid layers and the perimeters, respectively. 

For EMI SE analysis, the specimens were designed into a square shape with 

a side of 45 mm and a thickness of 2 mm, and they were built-up along three different 

growing directions named perpendicular concentric (PC), horizontal alternate (H45) 

and horizontal concentric (HC), as shown in the schematic representation given in 

Figure 9.1-1. The dimensions have been specifically defined on the basis of the EMI 

SE tests specifications. 

 

 

 

Figure 9.1-1. Schematic representation of the specimens built along the three build 

oreintation. For each build oreintation from the left to the right: first deposited layer, 

representation of the second layer and, the resulting solid component with proper 

dimensions. 

9.1.2 Density measurements 

Table 9.1-2 reports the densities of the carbonaceous fillers as well as the 

densities of neat ABS and the nanocomposites. The density of neat ABS filament was 

found near 1.034 g/cm3. Due to the addition of each type of filler, the densities of 

nanocomposites were increased to 1.048-1.051 g/cm3. The specific gravity of neat 

ABS, informed by the supplier, was considered as theoretical density of ABS and 

inputted into to estimate the theoretical density of the composites. The density values 
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of the additives, measured via helium pycnometry, were inserted to calculate the 

volume fraction of each fillers in the composites. The detail of voids (Vv) determination 

are reported in Density measurements (Section 3.3.1.1). 

 

Table 9.1-2. Density of the carbonaceous fillers, polymer nanocomposites volume 

fraction, density and voids fraction. 

Filler 

Density–He 

pycnometry 

(g/cm3) 

Composites 
Vol 

(%) 

 

Experimental 

density 

(g/cm3) 

Theoretical 

density 

(g/cm3) 

VV 

(%) 

CNT 2.287 ± 0.099 ABS - 1.034 ± 0.001 1.040 - 

  CNT3 1.383 1.049 ± 0.003 1.057 0.77 

CB 2.389 ± 0.066 CB3 1.325 1.048 ± 0.003 1.058 0.92 

  CB1.5-CNT1.5 1.354 1.051 ± 0.002 1.057 0.61 

  CB2.5-CNT2.5 2.283 1.056 ± 0.001 1.069 1.22 

 

9.1.3 Rheological behaviour 

Rheological investigations provide insights about the filler dispersion in the 

matrix, network formation and the material’s behaviour during process. Binary 

composites of ABS/CNT and ABS/CB were studied to better understand which 

formulations is the more promising to be employed for FDM application. The graphs 

given in Figure 9.1-2 show the complex viscosity of ABS/CNT and ABS/CB as a 

function of frequency at 230°C, for different amounts of filler content. It is possible to 

observe that the complex viscosity of ABS is already relatively high and increase with 

the addition of filler. At low frequencies the viscosity increased by 2 orders of 

magnitude for ABS/CNT with 5 wt% filler content and for ABS/CB with 10 wt% filler 

content. The complex viscosity curves of ABS/CNT manifest a transition between 0.3 

and 0.5 wt% which indicates rheological percolation. For ABS/CB this transition is 

visible between 3 and 5 wt%. 
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(a) 

 

(b) 

Figure 9.1-2. Complex viscosity as a function of frequency for ABS/CNT (a) and 
ABS/CB (b) composites with various filler contents. 

 

 

Because viscosity, for both CNT- and CB-based composites, increases highly 

between 3 and 5 wt% a specific formulation of 3 wt% of filler was chosen to continue 

the study and fabricate the FDM samples. Formulations at this weight fraction of fillers 

were considered the most appropriated for avoiding clogging the printing nozzle. 

Additionally, to choose a hybrid formulation, the same study was made. As it can be 

seen in Figure 9.1-3, the complex viscosity showed by hybrid composites with different 
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CNT/CB fractions, with fixed total amount of filler (3 wt%), increases with the increase 

of CNT. According to these results, a single formulation of ABS/CNT.CB with total 

amount of 3 wt% and a filler fraction of 50:50 has been selected to insure an 

appropriate viscosity. 

 

 
Figure 9.1-3. Complex viscosity as a function of frequency of hybrid ABS with 3 wt% 

total filler amount at different fractions. 

 

9.1.4 Microstructure of the specimens obtained via FDM   

In Figure 9.1-4 both the photos of the FDM specimens as well as the 

micrographs of their fracture surfaces analyzed via optical microscopy are reported. 

The axes inserted into the images are in accordance to the 3D axis representation 

presented in Figure 9.1-1. The photographs exhibit the FDM specimens of neat ABS 

and ABS/CNT for each growing direction. 

The micrographs evidence the boundaries between the deposited filaments 

during the construction of the specimens. Since PC specimens were built 

perpendicularly to the collecting platform, in Figure 9.1-4(b) the deposited filaments 

are forming the layer-upon-layer structure whereas for H45 and HC (Figure 9.1-4(e) 

and Figure 9.1-4(h), respectively) they were representative of the outermost surface. 

Figure 9.1-4(c) shows the top view at the left corner for PC specimen showing 

the presence of a central gap of 0.2 mm width (arrow inserted in the image) in the 

construction direction over the YX plane. The layer-upon-layer of H45 and HC are 

evidenced in the top view images of these specimens give in Figure 9.1-4(f) and Figure 

9.1-4(i), respectively. 
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Figure 9.1-4. Photographs of the FDM components: PC (a), H45 (d) and HC (g). 

Optical microscopy at 100x magnification, PC (b), H45 (e) and HC (h). Optical 

microscopy at 50x magnification top view of PC (c), H45 (f) and HC (i). 

 

 
Figure 9.1-5. SEM images of cross-section for respective growing directions: PC (a-

c), HC (d-f) and H45 (g-h). 
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The images displayed in Figure 9.1-5 are the cross-sections of the FDM 

specimens analyzed via SEM. For all the growing directions a reduction of the filament 

cross-section attributed to the cooling of the specimens and a possible orientation 

during FDM process can be observed. Similar shape modifications while processing 

via FDM have been already reported 

In addition, for PC specimens it is possible to see the central gap in the ZX 

plane and micro voids in the intersections of the filaments of respective layers. For 

H45 and HC, the images also revealed the presence of micro-voids between the 

filaments. In particular for H45 in the direction of the filaments (Figure 9.1-5(f)) the 

boundary formed by the deposited layers can be seen while for HC specimens the 

layers appear to be well compacted (Figure 9.1-5(g) to Figure 9.1-5(i)). 

 

9.1.5 Electrical conductivity – DC regime 

The electrical conductivity values of the extruded filaments as function of filler 

type are compared in Figure 9.1-6. The electrical conductivity values of the 

nanocomposites were effectively modified in comparison to neat ABS due to the 

addition of carbonaceous fillers at the weight fraction 3 wt%. The higher values were 

obtained for the composites with CNT followed by the hybrid systems and by the CB 

filled systems. 

In particular, the electrical conductivity was significantly increased from about 

10-15 S.cm-1 of neat ABS up to 10-2 S.cm-1 of ABS/CNT composites. ABS/CB 

composites showed the lowest electrical conductivity, around 10-7 S.cm-1. This 

differences can be attributed to CNT’s higher aspect ratio, which facilitates the creation 

of a continuous conductive network within the ABS matrix. Moreover, CNTs are 

intrinsically more conductive than CB. When both CNT and CB were added to form 

the hybrid composites, the electrical conductive was found to be in the order of 10-3 

S.cm-1. Therefore, CNT and CB together formed an efficient conductive network using 

half of the weight fraction of carbon nanotube. 
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Figure 9.1-6. D.C. electrical conductivity of the extruded filaments with 3 wt% of 

nanofillers. 

 

 

Figure 9.1-7 shows the volume electrical conductivity of the specimens for 

each composite formulation as function of the growing direction during FDM 

processing. Highlighting that the volume conductivity of FDM specimens was 

measured placing the terminals onto the opposites faces according to the 3D axis 

representation given in Figure 9.1-1: for PC plan YX; for HC and H45 plan ZX. 

According to Figure 9.1-7, the volume conductivity of the specimens prepared via FDM 

was found to be dependent on their growing direction. Those built along PC direction 

manifest the highest volume conductivity values, nearly two orders of magnitude 

higher than HC and H45 growing directions independent on the composite formulation. 

For instance, in the case of ABS/CNT, the specimen built along PC direction had the 

volume conductivity measured near 10-6 S.cm-1 whereas those specimens built along 

HC or H45 showed volume conductivity near 10-8 S.cm-1. Similar for CB1.5-CNT1.5, 

the volume conductivity was found in the order of 10-7 for PC and 10-9 S.cm-1 for HC 

and H45 growing directions. 
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Figure 9.1-7. D.C. volume conductivity of ABS carbon-based solid components 

produced via FDM in three different layer-by-layer growing directions: perpendicular 

(left graph), horizontal concentric (center graph) and horizontal alternate (right 

graph). 

 

The electrical conductivity of FDM specimens were approximately 5 to 6 

orders of magnitude lower compared to the respective filament. It is assumed that the 

extruded filaments are homogeneous, do not present macro defects, and the fillers 

are adequately distributed and dispersed along the polymer matrix in a way that an 

efficient conductive network had been formed during extrusion. Therefore, the drop on 

the electrical conductivity is attributed to the change in printing patterns of the 

specimens manufactured via FDM and to the fact that a fully compaction is not 

reached. In particular, the specimens built along PC direction have a more efficient 

conductive structure than HC and H45 specimens. The volume electrical conductivity 

of PC was approximately two orders of magnitude higher independent on the 

composite formulation, despite the fact that PC are approximately 0.40 grams lighter 

and presented macro voids or holes along the body of the specimens. During the 

electrical conductivity tests, the electrical charges were offered less resistance as they 

were moved along the direction of the filaments, note that PC specimens present a 

continuous pathway, (see Figure 9.1-4(c)). For H45 and HC instead, the electrical 

charges move throughout the specimens crossing the interfaces between the layers, 

lowering the volume conductivity of these specimens. 
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Table 9.1-3. Electrical conductivity (σ) of extruded filaments and the specimens 

obtained via FDM with 3 wt% of nanofillers. 

Composite 

formulation 

σ of filament 

(S.cm-1) 
σ on FDM components (S.cm-1) 

  PC HC H45 

ABS 10-16 10-16 10-16 10-16 

CNT3 10-2 10-7 10-9 10-9 

CB3 10-8 10-14 10-14 10-14 

CB1.5-CNT1.5 10-3 10-8 10-10 10-10 

 

9.1.6 Electromagnetic interference shielding effectiveness 

(EMI SE) 

The stack plot given in Figure 9.1-8 shows the total EMI SE for ABS 

composites specimens prepared via FDM as function of their growing direction, 

recalling that the incident wave reached the respective faces of FDM specimens: for 

PC plan YX; for HC and H45 plan ZX, according to Figure 9.1-1.  

Accordingly, EMI SE responses were found to be function of both the filler 

type as well as the growing direction of the specimens. Looking at the polymer 

composites formulations, the higher shielding effectiveness was achieved in the order 

following order: CNT3 > CB1.5-CNT1.5 > CB3 > neat ABS independent on the growing 

direction of the specimens. 

Considering the printing patterns, it can be observed that the specimens 

prepared along the PC direction better attenuated the electromagnetic radiation. For 

instance, the total EMI SE of carbon nanotube based composite built along PC was 

around -16 dB whereas the same composite built along HC and H45 showed an 

attenuation of -10 and -11 dB, respectively. Similar differences are observed for 

CB1.5-CNT1.5, -12, -8 and -8 dB for PC, HC and H45 respectively. The CB3 showed 

lower values of attenuation, near -4 dB independent on the growing direction. 
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Figure 9.1-8. Total electromagnetic interference shielding effectiveness of ABS 

carbon-based composites of 3 wt% of nanofillers in three different layer-by-layer 

growing directions: perpendicular (upper graph), horizontal concentric (middle graph) 

and horizontal alternate (bottom graph). 

 

The shielding effectiveness is achieved by attenuating the power of the 

incident wave passing through the specimens wherein two main mechanisms are 

operating: the reflection or the absorption of the incident wave [93]. The two stack plots 

given in Figure 9.1-9 make a distinction between both the shielding effectiveness by 

absorption (SEA) and shielding effectiveness by reflection (SER). It is possible to 

appreciate that absorption is the commanding mechanism of shielding when the 

incident wave propagates through the specimens. 

The mechanisms of attenuation are function of both the dielectric and the 

magnetic properties of the material to which the component is made of. Carbon-based 

composites are attributed changes at the electrical properties, i.e. dielectric constant, 
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compared to neat matrix due to the addition of these fillers [206-208] and, therefore, 

the commanding attenuation by means of absorption is justified by the use of carbon 

based fillers during the formulation of the ABS composites. 
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Figure 9.1-9. Shielding by absorption (a) and by reflection portion (b) of ABS carbon-
based composites of 3 wt% of nanofillers in three different layer-by-layer growing 
directions: perpendicular (upper graph), horizontal concentric (middle graph) and 

horizontal alternate (bottom graph). 
 

The outcomes of experimental measurements obtained in this work are 

displayed in Table 9.1-3. For obtaining 3D components manufactured via FDM having 

high EMI SE responses, the first step is preparing the extruded feedstock filament with 

electrical conductivity as higher as possible therefore, a proper selection of the filler 

and dispersion method are essential. In this work, the hybridization of CNT/CB 

reduced by half the weight fraction of carbon nanotubes and the extruded filaments of 

composites CNT3 and CB1.5-CNT1.5 showed similar electrical conductivity values. 

Nevertheless, once the 3D components are manufactured the volume conductivity of 

the specimens seems to be a physical property that would indicate on EMI SE 

performances. The printing patterns should be designed in a way that the FDM 
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manufactured component offers as low electrical resistance as possible to the 

movement of charges, i.e. higher volume electrical conductivity. In this work the PC 

specimens, have shown the highest volume electrical conductivity, despite the 

presence of a lacuna, micro voids and reduced weight compared to the other growing 

directions. As a consequence, the PC components have shown the highest EMI SE 

responses. 

Materials for EMI shielding purposes are normally targeted to have a 

minimum of -20 dB of attenuation, at these values of shielding more than 99% of the 

incident wave is attenuated ensuring that electronic equipment does not generate, or 

is not affected by, electromagnetic interference [202, 203].  The values of attenuation 

obtained in this work were lower than the minimum of attenuation that ensures safety. 

It is expected that formulations with higher weight fraction of either CNT or a hybrid 

combination of CNT/CB could effortlessly go higher than -20 dB. For that, it would be 

necessary to overcome the limitation of processing high viscous composites 

formulations via FDM. Advanced machines that could work at higher deposition 

temperatures, lower deposition rate and lower layer height could be a possible 

solution. On the other hand, it has been verified that components made of carbon-

based ABS polymer composites manufactured via FDM can have their EMI SE 

optimized if appropriately designed and shaped. 

 

Table 9.1-4. Total EMI SE, shielding effectiveness by reflection (SER) and shielding 

effectiveness by absorption (SEA) at the frequency range of 8 to 12 GHz of neat ABS 

and carbon-based nanocomposites. 

Composite 

formulation 
EMI SE (-dB) 

SE Absorption  

(-dB) 

SE Reflection  

(-dB) 

 PC HC H45 PC HC H45 PC HC H45 

ABS 1 1 1 < 1 < 1 < 1 < 1 < 1 < 1 

CNT3 16 10 11 12 7 7 4 3 4 

CB3 4 4 3 2 1 1 2 2 2 

CNT1.5-CB1.5 12 8 8 8 4 4 4 3 4 

 

9.1.7 Quasi-static tensile test  

The stress-strain curves of ABS and nanocomposites filaments are shown in 

Figure 9.1-10. The effect of CNT and CB on the elastic modulus (E), strength (σmax), 

and strain at break (εb) of neat ABS and ABS nanocomposite extruded filaments and 

3D-printed dumbells with different orientations are summarized in Table 9.1-5 and 

Table 9.1-6, respectively. In general, it can be noted how the presence of CNT and 

CB promotes a significant increase of the elastic modulus of the ABS matrix and the 

strength. 
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In Table 9.1-5, improvement of elastic modulus about 6-10% was obtained 

for single and hybrid CB, and CNT and  the highest improvement is about 12% for 5 

wt% of hybrid CB and CNT. The higher strength of nanofilled ABS filament in 

comparison to neat ABS. The strength of composites containing the amount 3 wt% is 

increased from 45.1 MPa to 47.5 MPa (i.e. 5%), to 49.8 MPa (i.e. 10%) and to 49.6 

MPa (i.e. 10%) for CB, CNT and CB+CNT nanofillers respectively. At the highest 

content of 5 wt% the strength reach to 50.6 MPa. 
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Figure 9.1-10. Stress-strain curve of ABS and nanocomposites filaments. 

 

Table 9.1-5. Quasi-static tensile properties of ABS and its nanocomposite of filaments. 

Samples E (MPa) σmax (MPa) εb (%) 

ABS 2093 ± 30 45.1 ± 0.1 5.1 ± 2.0 

CB3 2220 ± 53 47.5 ± 0.5 3.8 ± 0.4 

CNT3 2319 ± 87 49.8 ± 0.6 4.3 ± 0.4 

CB1.5-CNT1.5 2226 ± 40 49.6 ± 0.5 4.6 ± 0.8  

CB2.5-CNT2.5 2338 ± 69 50.6 ± 0.4 4.1 ± 0.5 

 

The stress-strain curves of 3-D printed dumbbell specimens for each 

growing direction (HC, H45, and PC) are shown in Figure 9.1-11, Figure 9.1-12 and 

Figure 9.1-13, respectively. Results of mechanical tests of 3D-printed samples are 

summarized in Table 6.2-1. The tensile modulus of H45 sample is comparable to that 

of HC sample probably because of good contact between bead extruded fibers and a 

lower fraction of voids in H45. Similarly enough, the lower yield strength of H45 with 

respect to that of HC is most probably due to internal orientations of deposited 
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filaments, whereas PC samples exhibited the poor mechanical properties due to the 

weakness of interlayer bonding. 
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Figure 9.1-11. Stress-strain curve of 3D-printed ABS and nanocomposites. Growing 

direction: HC. 
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Figure 9.1-12. Stress-strain curve of 3D-printed ABS and nanocomposites. Growing 

direction: H45. 
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Figure 9.1-13. Stress-strain curve of 3D-printed ABS and nanocomposites. Growing 

direction: PC. 

 

 

Table 9.1-6. Quasi-static tensile properties of ABS and its nanocomposite of 3D 

samples. 

FDM 

orientation 
Materials E (MPa) σmax (MPa) εb (%) 

 ABS 2113 ± 112 44.1 ± 0.4 16.8 ± 4.0 

 CB3 2158 ± 240 45.8 ± 0.2 14.6 ± 1.0 

HC CNT3 2472 ± 153 50.5 ± 1.6 8.0 ± 1.0 

 CB1.5-CNT1.5 2295 ± 238 49.5  ± 0.6  9.1 ± 0.1 

 CB2.5-CNT2.5 2552 ± 213  51.7 ± 0.3  7.5 ± 1.5 

 ABS 2196 ± 147  40.3 ± 0.2 5.3 ± 0.2 

 CB3 2481 ± 174  41.9 ± 0.3  6.6 ± 0.3 

H45 CNT3 2594 ± 153  45.2 ± 0.4  5.7 ± 0.3 

 CB1.5-CNT1.5 2565 ± 119  44.3 ± 1.3  5.9 ± 0.9 
 CB2.5-CNT2.5 2632 ± 138  45.8 ± 0.1  5.7 ± 0.2 

 ABS 1734 ± 64  22.3 ± 1.2 3.0 ± 0.2 

 CB3 1736 ± 141  15.7 ± 2.6  1.8 ± 0.3 

PC CNT3 1782 ± 178  16.6 ± 1.6  2.1 ± 0.1 

 CB1.5-CNT1.5 1621 ± 134  20.3 ± 0.2  2.7 ± 0.3 

 CB2.5-CNT2.5 1742 ± 116  13.5 ± 0.4  1.7 ± 0.1 

 

The elastic modulus and strength of ABS/CNT nanocomposites increase over 

unfilled ABS at the orientation of HC and H45. The highest strength can be observed 

in CB-2.5-CNT-2.5. As a side effect, the elongation at break of FDM composites 

samples was significantly reduced, especially for HC build orientation. On the other 

hand, the sample in PC build orientation,  only slight improvement in elastic modulus 
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was obtained, but serve reduction in strength. For instance, the strength of ABS-CB-

2.5-CNT-2.5 at PC build orientation was only 13.5 MPa because the interlayer bonding 

could be significantly reduced by the higher viscosity in a molten state. 

 

9.1.8 Summary ABS-carbon nanotubes-carbon black hybrid 

nanocomposites 

Multi-walled carbon nanotubes, carbon black and a 50:50 hybrid formulation 

were dispersed into ABS matrix at a fixed concentration of 3 wt%. Extruded filaments 

of resulting polymer composites were prepared and used as feedstock for fused 

deposition modelling. The fused deposition modelling components were manufactured 

along three different printing orientations. The electrical conductivity, electromagnetic 

interference shielding efficiency and mechanical properties of resulting 3D printed 

components were assessed. 

The incorporation of carbonaceous filler in the ABS matrix resulted in an 

increase in complex viscosity. A fixed filler concentration of 3 wt% has been selected 

for the preparation of the feedstock filaments for additive manufacturing of the 

specimens. At the weight fraction of 3%, the most appropriate correlation between the 

electrical conductivity and the viscosity of the composites had been observed. 

Extruded filaments of the ABS loaded with 3 wt% of multi-walled carbon 

nanotubes, carbon black and 50:50 hybrid composition have shown higher electrical 

conductivity values as well as improved mechanical properties such as elastic 

modulus and strength when compared to neat ABS. The volume electrical 

conductivity, the electromagnetic interference shielding efficiency and the mechanical 

properties of 3D printed specimens are intensely dependent on the printing patterns. 
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