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Chapter 1

Introduction

Microscopically disordered materials are at the core of an increasing number
of new material technologies, but crucial limitations in their applications
come from the physical aging of their properties and the extreme sensitivity
on the system’s history, which stem from their intrinsically out-of equilibrium
nature. A clear understanding of the aging phenomenon, together with the
interplay between phenomena that take place at different length-scales are
still lacking. In this Thesis the slow dynamics of disordered systems is
investigated at different length-scales ranging from the µm length-scale
probed in optical experiments to length-scales of few Ȧ probed in wide angle
X-ray experiments. The time evolution of the probed out of equilibrium
dynamics is thoroughly studied in different glasses exploiting the multi
speckle photon correlation technique with different sources.In all probed
materials a deep connection emerges between the microscopic dynamics and
the relaxation of the stresses that have remained trapped in the glass after
its production.
The investigated materials are a set of strong glass-formers (materials that
can be found in a wide variety of common glassware) and colloidal suspensions
at high volume fractions in an arrested state. The latter class of materials
are known as soft glasses and in recent years they are earning great interest
and can be found in a lot of industrial products (e.g. wall paint, ink,
chocolate) or in production processes (e.g. ceramics). A great deal of
the success of colloidal and soft systems in industrial and technological
fields comes from the possibility to finely tune the physical and chemical
properties of these classes of materials. Being able to effectively know
the out-of-equilibrium structural properties of these systems will grant us
the possibility to predict the evolution of the several physical properties.
Colloidal glasses share with their atomic counterpart the fact of being
strongly out of equilibrium disordered systems, but their internal dynamics
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is characterized by faster than exponential relaxations and a linear growth
of the characteristic relaxation time with the probed length-scale. These
latter features have been related to purely stress-release mechanisms and
have been observed in many experiments on very different systems: colloidal
glasses and gels [1, 2], polymers [3, 4], foams [5], aerogels [6], in metallic
glasses [7], and simulations [8].
The fundamental questions that will be tackled in the course of this Thesis
will be:

i) What are the effects of the stress-relaxation mechanisms on the dy-
namical properties of a generic disordered system?

ii) Does stress relaxation proceed microscopically through rupture events
randomly distributed in the material, or rather we have to imagine
massive displacements occurring through avalanche-type events? Is it
possible to associate a length-scale over which such events can occur?
Is it possible to know how many particles are involved in a single
event?

iii) Is there any general trend in the evolution of the stress dissipation
mechanism?

iv) What are the mechanisms at the basis of the internal dynamics devel-
oping in different disordered systems?

v) How does the presence of internal stresses affect the time evolution of
other dynamical properties?

vi) Is it possible to describe the parameters of the aging process in terms
of materials and/or of preparation protocols?

To answer these rather general questions this Thesis is structured as
follows: a first general introductory part followed by three chapters focused
on experiments carried out during my PhD, all closed by a final chapter
where the main results and common traits are summarized.

More in detail, the second chapter is devoted to build a broad scien-
tific background on glasses and colloidal systems. Emphasis is given to
the description of the dynamical properties of disordered materials, and
in particular to two of the key features of glassy materials, namely aging
and dynamical heterogeneities. Both of these properties have quite self
explicative names: the first refers to the fact that the physical quantities
of a glass explicitly depend on the time elapsed since the formation of the
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glass itself; the latter refers to the existence of a microscopic length scale,
over which the material’s dynamics ceases to be homogeneous.
The third chapter describes the techniques adopted in the experiments
reported in this Thesis, focusing on the working principles of photon correla-
tion and on the interpretation of the corresponding autocorrelation matrices.
Here the relations that link the intermediate scattering function to the auto-
correlation function of the intensity scattered from a sample illuminated with
a coherent light source are explained. In this chapter the working principles
of the algorithms developed during my PhD time in order to extract the
physical quantities from the raw output signals are also reported.

The fourth chapter is devoted to the presentation of the aging of a strong
network glass-former. The results concern the diboron trioxide (B2O3) mea-
sured in the glass transition region. Diboron trioxide is a well known glass
former with a high viscosity and a very low inclination to crystallize. In
this case the measurements where taken at a fixed angle using a visible
light source in the Structure and Dynamics of Complex Systems (SDSC)
laboratory in Trento. Prior to the production of the out of equilibrium glass,
the dynamical properties of the equilibrated undercooled liquid of B2O3
have been investigated in a wide range of temperatures above and below the
glass transition temperature. The measurement of the evolving properties of
the aging glass have been carried out with a multi-speckle set-up. The data
collected during the aging process have been then analysed and interpreted
using models that take into account the macroscopic processes that can
occur in a real life glass. At the end of this chapter is discussed how the
presence of the aging process affects the dynamical susceptibility.

The fifth chapter presents the results concerning colloidal systems. Among
the wide family of colloids, the system composed by SiO2 nanoparticles
suspended in a water-lutdine 2,6 solution has been chosen. The advan-
tages in choosing this particular material is that it is possible to tune the
inter-particle interaction changing the sample’s temperature switching from
repulsive hard spheres to sticky attractive particles. The static and dynami-
cal properties of different colloidal systems have been investigated using small
angle X-ray scattering (SAXS) and X-ray photon correlation (XPCS) during
an experiment at the European Synchrotron Radiation Faculty (ESRF). The
SAXS experiments performed using a fast readout, photon-counting pixel
detector system (Maxipix), grants the access to a wide range of exchanged
wave vectors (and thus length scales). Choosing the appropriate size of the
colloidal particles it has been possible to probe more effectively the dynamics
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at length scales both larger and smaller than the inter-particle distance.
Additional information of the dynamical properties have been obtained using
a multi-speckle photon correlation spectroscopy (MPCS) with a visible light
source. Among the characteristic features of colloidal systems there is the
fact that the dynamical heterogeneities can reach large enough dimensions to
be probed in standard SAXS experiments. The dependence of the structural
relaxation process on the scattering vector has been studied in detail, pro-
viding informations on the nature of the process itself. Interestingly, a clear
dependence of the structural relaxation process on the procedure used to
prepare the system has been observed, giving a clear hint on the connections
between this dynamics and the internal stresses accumulated in the glass
during its formation.

In the sixth chapter the X-ray photon correlation spectroscopy (XPCS)
results of measurements performed on network glasses are reported, namely
lithium borate (Li2O)0.5(B2O3)0.5 and silica (SiO2). It has been observed
that, for oxide glasses, the X-ray photons trigger a particular atomic motion
resulting in a complete structural rearrangement at a microscopic level.
This rearrangement, that cannot be explained by the simple heating of
the scattering volume due to X-ray absorption, is quite anomalous, since
for these glasses it can be detected up to the glass transition temperature
while at higher temperatures this induced dynamics becomes slower than
the structural relaxation one. This effect is, by its very nature, extremely
dependent on the instrumental details of the performed experiment, and in
order to compare different experiments a quantity describing the number
of particles that have been set in motion after the absorption of one X-ray
photon is defined. To understand this phenomenon, a detailed scattering
wave vector dependence study of the induced dynamic has been carried
out. In this Thesis, sets of experiments performed in a wide angle X-ray
scattering (WAXS) XPCS and SAXS experiments are reported. All these
experiments have been performed at room temperature, and have been
carried out at two different beamlines in two different large scale facilities,
ESRF and PETRA III. It is interesting to observe that the results obtained
in these studies appear to be very similar to those obtained for the dynamics
of colloidal glasses, pointing to a similar role of internal stresses in both cases.

The seventh chapter is dedicated to the conclusions of this PhD Thesis,
and puts the results of the previous chapters in a more general and common
framework.
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Chapter 2

Glasses and colloids

2.1 Glasses and disordered systems

Glasses and disordered systems are ubiquitous materials that can be found
in a wide variety of scientific and technologic fields. In nature, we can find
viterous systems in the most disparate situations, from geological structures
to biological systems. Also, since glasses are the first artificial materials ever
produced by humankind [9], we can find them in nearly every artifact, from
buildings to automotive, and recently a steady increasing interest in glassy
physics came from the pharmaceutical sector [10, 11, 12, 13]. But what is
exactly a glass? From a microscopical point of view the structure of a glass
is no different from the structure of a liquid while its macroscopic properties
are more similar to solid crystalline materials. We can use Tammann’s words
defining a glass as a liquid that has lost its ability to flow [14], this definition
is strongly related to the most common way to create a glass that is the melt-
quench technique. This technique, known since prehistoric times, starts with
the material in its liquid state above the melting temperature (Tm) and then,
thanks to a “fast enough” cooling rate the phase transition can be avoided
and the material remains in the liquid state even at temperatures T < Tm.
A so called undercooled liquid is obtained, and its viscosity will start to
increase as the temperature is lowered and eventually a glass will be obtained.
But what does a “fast enough” cooling rate means? A precise answer to
this question obviously depends on the material under study and on the
nucleation and growth of the crystalline phase for that material. However, it
is possible to provide a general and extremely simplified description of the
phenomena occurring during vitrification, but before going into that , we
have firstly to introduce some properties of glass-forming liquids.
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2.1.1 Relaxation times, strong and fragile glasses
We have seen that between what is called undercooled liquid and what
is called glass there isn’t a clear cut boundary like in conventional phase
transitions. Here we have a liquid material that behaves more and more like
a solid. It is possible to gain some more insight on this topic employing a
simple model developed by Maxwell in the description of the visco-elastic
properties of liquids [15]. Starting from the idea that applying a shear strain
γ to our sample, we can find both elastic (solid-like) and viscous (liquid-like)
response, we get a shear-strain relation given by

γ̇ = σ̇/G∞ + σ/η

Here σ is the shear stress, G∞ is the infinite frequency shear modulus (the
elastic response) and η is the viscosity (the liquid response). For a step like
strain (γ(t = 0−) = 0,γ(t = 0+) = γ0 ), the previous equation can be easily
solved in

σ = G∞γ0e
−G
η
t = σ0e

−t/τ

Where
τ = η/G∞ (2.1)

The quantity τ is called the structural (α) relaxation time and it tells us the
time required by our system to completely change its internal structure after
a small external perturbation or a thermal fluctuation. For a full-fledged
liquid this relaxation time is of the order of few picoseconds, e.g. [16], while
in undercooled liquids τ grows exponentially with the inverse of temperature,
and for systems in the glassy state it can easily reach geological timescales
[17, 18]. Usually for a given system a glass transition temperature (Tg) is
defined as the temperature in which η(Tg) = 1012Pa · s or, since G has typical
values in the range 109 − 1010Pa · s, another widely used definition for Tg is
τ(Tg) = 100s, in the following chapters of this Thesis the latter definition
will be employed. For most glasses the temperature dependence of τ can be
described by a simple Arrhenius law

τ(T ) = τ0e
E
kbT (2.2)

However, as can be seen in fig 2.1, the equation 2.2 cannot describe all the
experimental data and thus a more flexible formula, given by Vogel-Fulcher-
Tammann, is employed [19, 20, 21]

τ(T ) = τ0e
B

kb(T−TC ) (2.3)
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Figure 2.1: Tg rescaled Arrhenius representation of liquid viscosities showing
some representatives of the strong and fragile extremes. Strong glasses
follow a linear behaviour, indicating an activation energy independent of
temperature (E ∝ ∂(log(η))/∂(Tg/T )) and thus a constant slope. Conversely,
the fragile glasses manifest a super-Arrhenius behaviour with an activation
energy that increases as T → 0

Equation 2.3 suggest the existence of a divergence at a finite temperature
Tc, however this equation generally fails to correctly describe the data a low
temperatures, predicting too large relaxation times [22, 23, 24].
From graphs like fig 2.1, also called Angell plots, we can recognize two
“families” of materials called “strong” and “fragile” glass formers (or strong
and fragile liquids). The former are materials that follow quite closely
the simple Arrhenius behaviour while the latter strongly deviate from it.
Typically, strong liquids are composed of networks of covalently bonded
atoms (e.g. SiO2, GeO2 and B2O3 are typical strong liquids), while on
the other hand, fragile liquids are represented by systems in which the
inter-particle interactions are due to non-directional dispersive forces such as
van der Waals attraction. It is possible to quantify the fragility of a liquid
introducing the fragility index m [25], defined as the slope of log10(τ(Tg/T ))
when T = Tg

m = lim
T→Tg

∂ log10(τ)
∂(Tg/T )
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Figure 2.2: example of a time temperature transformation diagram for a
glass former. The continous line represents the nucleation time required to
the system to initiate the crystallization. The dashed line represents the
relaxation time of the liquid, that rise sharply as the temperature is lowered.
The straight lines represents three possible thermal treatments at different
cooling rates for a material prepared in its equilibrium liquid phase (LQ)
above the melting temperature Tm . If the cooling rate is not fast enough
(r < rc), we cross the nucleation line and obtain a crystal(CR). Conversely,
for r ≥ rc, the sample will maintain its liquid state and eventually, when
the dashed line is crossed, it will fall out from its metastable equilibrium
and we will obtain a glass (GL). Image taken from [26]

2.1.2 Approaching the glass transition

With the concept of relaxation time, we can now interpret the graph of fig.
2.2, in which the x axis represents the system’s temperature and the y axis
the time elapsed since the beginning of our thermal treatment. The “U”
shaped continuous line represents the boundary over which the nucleation
and growth of a crystalline phase inside the bulk will occur. If with our
thermal protocol we cross this region we will end up with a crystalline
(or partially crystalline) sample, while for thermal protocols with cooling
rates r greater than a certain critical value (namely the lowest cooling rate
for the crystal negation in fig 2.2 labelled as rc), then the phase transi-
tion is avoided and the system retain its amorphous structure. From the
undercooled liquid point of view, the crossing of Tm does not carry any
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Figure 2.3: Example of the specific volume change for the same material
following a rapid cooling and a slower one. The latter thermal treatment
produces a glass with a lower Tg and physical properties closer to those of
the crystalline phase.

apparent consequence, the microscopic structure is still the same and the
thermodynamic properties change continuously. This can be seen from the
behaviour of the system’s specific volume in fig. 2.3, where it is shown that
the system is no longer in thermodynamic equilibrium (represented by the
crystalline phase) but instead is in a metastable condition. Despite that,
the situation remains unchanged, and the system behaves like a liquid down
to a certain temperature range where it starts to slowly change switching
to a more solid-like behaviour. This temperature interval is called the glass
transition region, identified by the glass transition temperature Tg whose
exact value depends on the physical quantity employed to characterize the
system. Moreover as can be seen from fig. 2.3, even for the same observable
Tg alone cannot be employed to completely characterize a glass, since the
location of the glass transition region could change for different cooling rates,
the lower the cooling rate the lower Tg. This feature can be qualitatively
explained looking again at fig. 2.2; recalling that the atomic configurations
that can be accessed by a liquid are dictated by its temperature, and τ
is the time required by the system to change from a certain configuration
to another, it can be seen that different cooling rates intercept the dashed
curve representing the structural relaxation times at different temperatures.
Crossing the τ(T ) line with our thermal protocol means that our system will
eventually fail to rearrange its internal structure for the new temperature
and it will progressively fall out of equilibrium. Once the system cannot
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recover anymore the equilibrium condition in an accessible timescale, it is
said to be a glass. The other physical properties, in the example of fig. 2.3
the free volume, will be partially determined by the last temperature in
which the system was at equilibrium. It has to be noticed that in practice
for real glasses the location of the glass transition is not so arbitrary; since
the growth of τ(1/T ) is exponential, unless one decides to adopt a quite
particular thermal protocol, all the undercooled liquids will leave the equi-
librium condition in the same temperature range, typically temperatures
where τ(1/T ) ∈ [102s, 103s].
Here we have encountered another key property of the glassy state, which
is the importance of the history of the sample for the determination of the
physical properties. We will see this feature and other related properties
more in detail later in this and other chapters of this Thesis.

2.1.3 Energy landscape
Regardless of the classification of a glass former, we can see from equations
2.3 and 2.2 that the structural relaxation is always an activated process, in
which the system needs to overcome energy barriers in order to rearrange its
internal structure. A useful framework for the qualitative description of the
glassy phenomenology is provided by the energy landscape [27]. This is the
name generally attributed to the glass potential energy that for a system
composed by N particles is V ((r1), . . . , (rN )), where the vectors (ri) specify
the degrees of freedom of particle i (position, orientation, vibration etc. . .
). Strictly speaking, the energy landscape is a multidimensional surface.
Even with the simplest case of N identical particles with only translational
degrees of freedom, V is a (3N+1)-dimensional object. The concept of energy
landscape, proposed for the first time by Goldstein [28], has been successfully
applied in many fields of complex systems, such as protein folding [29, 30],
mechanical properties of glasses [31, 32]and the dynamics of supercooled
liquids [33]. For our present purposes it is sufficient to consider a simplified
version of this multidimensional surface, i.e. as can be found in [27], where
all the 3N configurations are projected on a single one-dimensional axis as
depicted in fig. 2.4. The energy landscape can give us a better understanding
of the distinction between strong and fragile glass formers. For a strong glass,
the activation energy remains substantially unchanged for every temperature,
indicating that the mechanisms at the basis of structural rearrangements of
strong glass formers, presumably the breaking and reformation of covalent
bonds, are the same in the whole energy landscape [34]. In contrast, a fragile
glass deviates remarkedly from the simple Arrhenius behaviour, showing
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an effective activation energy (Eeff = ∂ log(τ)/∂(1/T )) that can increase
up to an order of magnitude. This suggests a strong heterogeneity in the
basins of a fragile glass. The picture that we can infer from the behaviour of
Eeff is that at high temperatures, the systems can relax hopping over small
potential barriers with the rearrangement of a relatively small number of
molecules. Lowering the temperature, the barriers increase meaning that an
increasing number of particles is needed for the relaxation. These differences
between strong and fragile behaviour imply a corresponding topographic
distinction between the two prototypical landscapes as illustrated in the
bottom of fig. 2.4. Strong glasses will be characterized by a single mega-basin
with smaller local minima, while the fragile systems will be described by a
distribution of well separated mega-basins.

2.2 Structure of a disordered system
A disordered system, by its very definition, does not have the long-range
order of crystalline materials and obviously cannot be described using a
simple set of elementary units and symmetry groups. Nevertheless, this
does not mean that the microscopic structure is completely unknowable or
lacking general rules. there exists in fact, a set of observables that can be
accessed both theoretically and experimentally, characterizing the average
structure in the proximity of a given molecule.
The first quantity that we want to introduce is the number density of a
disordered system ρ(n)(r(n))), defined as the probability to find n particles
in the element of volume dr(n). The simplest expression for this quantity
is n = 1, which is exactly the usual definition of density, and thus for an
homogeneous system we have ρ(1) = N/V , where N is the total number of
particles and V is the total volume. Despite its importance ρ(1) does not
carry much information about the details of the local environment in which
our atoms or nanoparticles are living. The complete and exact description
of a disordered system is given by the knowledge of all the ρ(n)(r(n))) and,
strictly related to them, in another important set of observables, by the
particle distribution functions defined as

g(n)(r(n)) = ρ(n)(r(n))
ρn

The particle distribution functions measure the extent to which the structure
of a fluid deviates from complete randomness [39]. Luckily, this information
is often already embedded in the pair density function ρ(2)(r1, r2) and the
pair distribution function g(2)(r1, r2), which for isotropic systems are function
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Figure 2.4: top: representations of the energy landscapes for a glass system.
On the left, example of the configuration accessed by glassy system after
different cooling rates. The slower the liquid is cooled, the longer the
time available for configurational sampling at each temperature, and hence
the colder it can become before falling out of the liquid-state equilibrium.
Consequently Tg increases with cooling rate [34, 35, 36]. Image adapted
from [37]. Bottom: qualitative representations of the expected morphology
for a fragile (right) and a strong (left) glass. Image taken from [38].
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Figure 2.5: representation of a disordered system (left) and of a pair
correlation function (right). In the former figure we can observe an example
of the meaning of the coordination number, which is the number of particles
at a given distance from a reference one (in red). The average over all the
possible configurations will generate the pair correlation function.

only of the separation r between particles 1 and 2 at positions r1 and r2
(r = |r1 − r2|). The distribution function is then simply written as g(r)
and is often called radial distribution function and basically tells us what
is the probability, starting from a given particle to find another particle at
distance r. In fig. 2.5 we can see an example for a computed g(r). This
quantity tells us how much order is still present in the glass. The main
characteristics of this function common to all systems, are that g(r) = 0
for r < σ, where σ is the radius of a single particle. This means that there
cannot be overlap between particles. In the opposite limit g(r →∞)→ 1,
which corresponds to the recovery of the macroscopic density for large
separations. At distances of few atomic units, we can see the presence of
a certain number of peaks, progressively smaller and broader with r. The
integral in spherical coordinates of the area under each of these peaks can
tells us the average number of molecules at a given distance from the origin
(coordination number).

To create a model of the disordered system’s structure, we need to define
a hierarchy of correlation functions, called direct correlation functions cn(rn).
We are interested in the two-body direct correlation, which is related to the
radial distribution function through the Orstein-Zernike relation

h(r) = c(r) + ρ
∫
h(r′)c(|r− r′|)dr′ (2.4)
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Here h(r) = g(r) − 1. The Orstein-Zernike relation is often adopted as
definition of c(r) and can be expressed recursively in the following form

h(r) = c(r)+ρ
∫
c(r′)c(|r−r′|)dr′+ρ2

∫
dr′

∫
dr′′c(r′′)c(|r−r′|)c(|r′−r′′|)+. . .

Looking at this expression we can infer the physical meaning of such direct
correlation. The total correlation between two particles, represented by the
function h(r), is due to the direct correlation between these two particles
(the first term on the right side of the equation) but also to the indirect
correlation propagated by an increasingly large number of intermediate
particles. A much simpler expression for the Orstein-Zernike relation is
obtained taking the Fourier transform of both sides of equation 2.4

h(q) = c(q)
1− ρc(q) (2.5)

where q = 2π/r. Experimentally the measurement of g(r) is quite challeng-
ing, and it can be performed only in very specific conditions, i.e. optical
microscopy for large colloids [40, 41], or high-resolution transmission electron
microscopy for thin samples [42].
A measurement of g(r) comes from scattering experiments, where the probe
particles can be either neutrons x-rays or visible photons. Regardless of
the details of the scattering event, as long as we remain in single scattering
condition (i.e. the probe particle interacts only once inside the sample and
then leaves the scattering volume), the intensity recorded at a large distance
from the sample will originates from the superposition of all the waves
originated at the interaction sites, in other words the atomic positions

I(q) ∝
〈∑
l,j

flfje
iq(R−rl)e−iq(R−rj)

〉
=
〈∑
l,j

flfje
−iq(rj−rl)

〉

If the system is composed by identical particles fl = fj = f and

I(q) ∝
〈

N∑
j

f 2
〉

+ f 2
〈∑
j 6=l

∫
dr
∫
dr′eiqr−r′δ(r − rj)δ(r′ − rl)

〉

I(q) ∝ Nf 2+f 2
∫
dr
∫
dr′eiqr−r′ 〈δ(r − rj)δ(r′ − rl)〉 = Nf 2+f 2V ρ2

∫
dreiqrρ(2)(r)

Dividing by Nf 2 we get a quantity called structure factor, S(q)1

S(q) = 1 + ρ
∫
dreiqr(g(r)− 1).

1the structure factor is usually defined as S = 1
N 〈ρqρ−q〉, where ρq =

∑N
j eiqrj is the

Fourier component of the number density.
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In other terms the structure factor is proportional to the Fourier transform
of the total correlation function

S(q) = 1 + ρh(q) = 1 + ρc(q)
1− ρc(q)

More in detail for a sample composed by identical colloidal particles
probed by X-rays, the intensity collected by the detector can be expressed as

I(q) = dσ

dΩ∆Ω ∝ ρV 2∆ρ2P (q)S((q))∆Ω.

Where, as usual, ρ is the number density of particles, V is the scattering
volume, ∆ρ is difference in electronic density between the particles and the
suspension liquid and P (q) is the form factor. For spherical particles, the
form factor can be easily obtained from

P (q) = 4π
∫ ∞

0
ρ(r)r2 qr

qr
dr = 4π

∫ R

0
r2 qr

qr
dr = 4

3πR
33sin(qR)− qR cos(qR)

(qR)3

(2.6)

2.3 Dynamics in a disordered system
We have seen in the previous paragraphs that the glass transition is a
problem of dynamic origin, and consequently the dramatic slowing down of
the system’s internal rearrangements cannot be characterized effectively by
static structural quantities like the structure factor. In fact, snapshots of
undercooled liquid configurations are practically identical to the configura-
tions that can be found in the profoundly dynamically different glassy state
[43]. However, a clear signature of the glass transition can be easily found
looking at dynamical observables. Again, a central role is played by the
density function, but this time the positions of the particles are explicitly
time-dependent

ρ(r, t) =
〈

N∑
j

δ(r− rj(t))
〉

For more practical use we consider its spatial Fourier transform

ρ(q, t) =
〈

N∑
j

eiqrj(t)
〉

The ρ(2)(q, t1, t2)/N is the density time autocorrelation function, also called
intermediate scattering function

F (q, t1, t2) = 1
N

〈
ρq(t1)ρ∗q(t2)

〉
(2.7)

17



Figure 2.6: schematic example of the intermediate scattering function,
the insets at the different values of F (q, t) represent the instantaneous
configurations assumed by the system.

This quantity is accessible with neutron and light scattering experiments,
and as it can be seen from its definition, it is closely related to the structure
factor. In fact for t1 = t2 we recover the definition of S. Usually what is
studied is the normalized autocorrelation

Φ(q, t1, t2) = F (q, t1, t2)
S(q) .

It is a decreasing function starting from unity for fully correlated configura-
tions and reaching 0 for completely uncorrelated ones.
It is possible to give a quite straightforward interpretation of this quantity.
In fig 2.6 an example of the values of F (q, 0, t) for a system of spherical
particles is reported. Suppose to observe the system at a certain time t1 = 0
and that the system is ergodic, hence F (q, 0, t2) = F (q, t). F (q, 0) is simply
the instantaneous configuration correlated with itself; at a different t > 0 all
the particles will have moved from their original positions and the quantity
F (q, t) tells us the amount of change occurred in sample during a time
t. Eventually, for τ → ∞ every particle will have completely changed its
position, and thus F (q, t→∞) = 0. We can already identify a characteristic
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time of the relaxation process which is the time required to the particles
to move of 2π/q. If our system is composed by a simple liquid or a diluted
colloidal system, then we expect a very short time ballistic regime, where
single particles move freely, followed by a dissipative regime described by a
normal exponential function

Φ(q, t) = e−
t
τ .

For a single diffusive process 1/τ = q2D, where D is the diffusion constant.
Approaching the glass transition the expression for Φ becomes progressively
more complicated, in fig. 2.7 an example is reported . Qualitatively speaking,
with the lowering the temperature a plateau is formed so that the decay
is no longer purely exponential, but is articulated in a two-step relaxation
[44]. This two-step relaxation always appears as a precursor of the glass
transition and can be used as a qualitative fingerprint of approaching glassi-
ness. Roughly speaking, we can say that there exists a fast process weakly
dependent on the temperature (β relaxation), and a slow process strongly de-
pendent on T (α relaxation). A simpple interpretation can be made out from
the prototypical scenario of a hard spheres colloidal system. At high densities
all the particles are closely packed and from the point of view of an individual
particle all its neighbours are forming a cage impeding its free diffusion. Then
the first rapid relaxation is due to the movements of the particle rattling
inside its cage. After some time, the particle will eventually find a “hole” in
the cage escaping and starting the slower diffusive process. The height of
the plateau between the two relaxations is often called non-ergodicity level fq.

We have seen this diffusive relaxation from the point of view of a single
particle, but we must keep in mind that it is a cooperative process. In fact,
even our “protagonist particle” was forming a cage for its neighbours and
leaving its initial position it will in turn create a hole in the cage experienced
by them and thus one of these neighbours might escape from its own cage
allowing another particle to escape etc... .
The potential barriers that the system must overcome to reorganize its
internal structure are not identical but will follow a certain distribution, and
so inside an undercooled liquid at the same time we expect to observe different
microscopic regions relaxing at different rates [46]. The measurement of
the total structural relaxation arising from this distribution will then be
the Legendre transform of the distribution itself (fig. 2.8) [47, 48]. This
Legendre transform is called Kolraush-Williams-Watts (KWW) equation or
stretched exponential

Φq(t) =
∫ ∞

0
P (1/τ)e−t/τd(1/τ) = e−(t/τ)β . (2.8)
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Figure 2.7: computed intermediate scattering functions for a Lennard-Jones
liquid at different temperatures. It is clear the initial β relaxation weakly
dependent on temperature and the subsequent development of a plateau
and the final α relaxation. Image taken from [45]

Here β is usually named stretching exponent, and for undercooled liquids
and glasses it has values less than 1, in fig. 2.8 the profiles of P (1/τ) for
β ranging between 0.1 to 0.9 are reported. The processes related to the
α relaxation are still diffusive, but the q-dependence of τ is modified as
τβ ∝ q−2 [49, 50, 51].

Even if nowadays the heterogeneous origin of the stretching exponent is
commonly accepted, for long time it has been challenged by the opposite
interpretation of a homogeneous distribution. According to this homogeneous
explanation, relaxation is equally nonexponential in all regions, so that the
stretched nature of the correlation function is not due to a spatial average,
but it is an intrinsic phenomenon even at a local level, due to the disordered
environment each particle sees around itself.
The reason of this long-lived debate is in the difficulty for the experimentalists
to perform a measure local enough to be sensible to these microscopic
heterogeneities and even at the present time these dynamical heterogeneities
has been directly observed on a rather limited set of samples, mainly colloidal
systems or granural materials with particles large enough to be probed by a
microscope [40, 41, 52].

2.3.1 Dynamical heterogeneity
The consequence of this heterogeneous scenario, is that approaching the glass
transition, it becomes progressively difficult to define a “typical particle”
and a “typical environment”, because a variety of different behaviours
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emerge. Looking at the system on timescale comparable with the structural
relaxation, we will see that in the same amount of time some particles
have travelled distances comparable with their own sizes, while others have
remained localized in their original positions. Thus, at these time-scales
we can refer to “mobile” and “immobile” particles. An example is reported
in fig. 2.9 in which it is possible to identify regions of high mobility close
to regions of stillness. From this picture we can observe a very important
feature of the dynamical heterogeneity, that is the clustering of particles
with similar dynamic properties, such clusters are also called cooperative
rearrangements regions (CRR). In its narrow sense, the term dynamical
heterogeneity encapsulates the spatial correlations of the CRR; however
the term is often used to describe a range of fluctuation phenomena, that
arise from deviations from the typical phenomena [53]. Starting from the
first years of 2000 [43, 54, 55, 56], it has become possible to define and
measure observables related to the CRR that can be determined objectively
in a wide range of systems. These observables are known as “four point”
correlation functions, and are now commonly accepted as standard tools for
analysing dynamical heterogeneities. To begin to work with these four-point
correlations, we must find a good quantity to correlate. An appropriate
choice is given by the mobility ci(t1, t2) which indicate how much the particle
i moves between times t1 and t2. Then, given two particles separated by
a distance r, one can measure the degree to which their mobilities are
correlated, and we can define the quantity

C(r, t1, t2) =
N∑
i

ci(t1, t2)δ(r− ri)

Then, the spatial correlations of the mobility are naturally captured by the
quantity

G4(r, t) = 〈C(r, t, 0)C(0, t, 0)〉 − 〈C(r, t)〉2

Often the mobilities are by themselves two-point correlations, for example,
if we want to know the mobility over length-scales of the order 2π/q, then
ci(t1, t2) = ρi(q, t1)ρi(q, t2)∗ ( and of course Φq(t1, t2) = 〈ci(t1, t2)〉) and the
expression for G4 becomes

G4(r, t) = 〈ρ(r,q, t)ρ∗(r,q, 0)ρ(0,q, t)ρ∗(0,q, 0)〉 − 〈ρ(r,q, t)ρ∗(r,q, 0)〉2

this definition of a real-space correlation function allows the language of field
theory and critical phenomena to be used in studying dynamical properties
of the glassy state [57]. By analogy with critical phenomena, if there is a
single dominant length scale ξ4(t), then one expects that for large distances

22



Figure 2.9: Example of dynamical heterogeneities observed in a granular
material. The image reports the observed mobility in a system composed by
1:1 bidisperse mixture of steel beads of diameters 0.318 cm and 0.397 cm.
confined in a circular region of diameter 17.6 cm and bounded to roll on a
horizontal plane. The motion was induced by an upward air flow at fixed
speed. Image taken from [52].
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Figure 2.10: Example of the χ4 obtained from molcular dynamics simulation
for different sample temperatures. The general behaviour is an increase of
the height of the χ4, and a shift of the peak position, indicating that as
the temperature is decreased, we have a slow down accompained with an
enlargement of the dyanmical heterogeneities inside the sample. Image taken
from [54].

the correlation function decays as

G4(r, t) ∼ A(t)
rp

e−r/ξ4(t) (2.9)

and the quantity ξ4(t) is the length scale characterizing the CRR’s extension
and p a critical exponent [54, 57]. At this point we are ready to define the
susceptibility

χ4(t) =
∫
drG4(r, t)

where the integral is taken over the sampled volume, then if 2.9 holds:

χ4(t) ∼ A(t)ξd−p4 (t)

where d is the number of the system’s dimensions. The advantages of looking
at the χ4 instead G4 are due to the relatively easy access to the former,
both numerically and experimentally. In fact, defining the total mobility
C(t1, t2) =

∫
drc(r, t, 0) and computing its susceptibility, we have that

χ4(t) = N
[〈
C(t, 0)2

〉
− 〈C(t, 0)〉2

]
(2.10)

The typical behaviour of the χ4 is reported in fig. 2.10. For short times we
do not expect to observe strong signatures of heterogeneities, the particles
are still rattling inside their cages and this regime does not corresponds
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to significant cooperation, and also at long times χ4 → 0 because on that
timescales all particles have already diffused. On intermediate time scales
we can observe a pronounced peak at time t∗ ∼ τα, and this peak value can
be used as a measure of the volume over which the structural relaxation
processes are correlated [54, 57, 56]. In fact, if the dynamically correlated
regions are compact, χ4(t∗) ∼ ξd4 where the exponent d express the CRR’s
spatial dimensions, which can be fractal [41, 58, 40]. If there isn’t the
possibility to determine the value of d, or the approximations of eq. 2.9
are not valid it is always possible to define the total number of correlated
particles as

χ4(t∗) = Ncorr (2.11)

Here we can see already one of the complications for the measurements of
the χ4. Ncorr is a quantity that depends on the studied system, while the N
in eq. 2.10 is setted by the experimental conditions (the probed volume),
thus the experimentally accessible quantity,

[
〈C(t, 0)2〉 − 〈C(t, 0)〉2

]
, will be

inversely proportional to the sampled volume. Along with this restrain for the
measurement of the dynamical heterogeneity, another important limitation
comes from the crucial role covered by the choice of the probed mobility.
There exist in fact a wide number of possible definitions of the mobility
that are, a priori, equally acceptable. All these possible definitions involve
intrinsically a probe length-scale fixed by the choice of the measurement,
in contrast to the dynamic length scale ξ4, which is a physical quantity
characteristic of the system. The typical choice for the mobility is the
intermediate scattering function Φ(q, t1, t2), in which the probed length-scale
is ∼ 1/q. If the probed distance is of the order of the particle size or smaller,
Φ(q, t1, t2) measures local motions, and at this length-scales the heterogeneity
is typically more apparent. As the length-scale is increased, contributions to
the χ4 come from couples of particles separated by distances of the order
of 1/q, and typically such correlations weaken with increasing distances,
thus reducing the χ4 [59]. Similarly, also reducing too much 1/q reduces the
dynamical heterogeneity as we are approaching again to the length scales of
the cage motions that are basically uncorrelated thermal vibrations.
Therefore, a good choice of time and length scales, along with small enough
scattering volumes, is required if one wants to have the chance of observing
the dynamical heterogeneity. However, the optimal choice of q and t does
not grant immediately a safe measurement of the χ4 as its value can be
influenced by other factors, as we will see in other chapters of this Thesis.
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2.4 Colloidal glasses
In modern scientific usage, a colloid is a dispersion of particles or droplets in
a liquid that, despite the density difference between the dispersed phase and
the dispersing medium, is stable against sedimentation [60]. Typically, in the
major part of real life colloidal systems, the dispersed particles have linear
dimensions that range between 10 nm and 1 µm. Even if the focus here is
on fundamental science, there are many practical reasons to be interested
in colloids. Suspensions of every kind are ubiquitous in every-day life. In
fact, may natural substances can be described as colloidal suspensions (e.g.
milk or blood) and a lot of industrial products are either colloids in their
final state (e.g. wall paint, ink, chocolate) or would have passed through
the colloidal stage during their production (e.g. ceramics). Colloids are
materials that offer a complete control on an outstanding variety of physical
properties thanks to the possibility to work with well characterized particles,
with well-defined sizes and other properties, making them an optimal choice
as model systems.
The key property of every colloidal suspension is the volume fraction (φ),
defined as the ratio between the total volume occupied by the colloidal
particles and the total volume of the sample; for N identical particles with
volume Vp dispersed in a sample with total volume Vtot, the volume fraction
is defined as φ = NVp/Vtot.
The properties of colloidal suspensions at low volume fractions, are completely
described by the Brownian motion. The first quantity that is necessary to
describe this kind of dynamics is the mean square displacement〈

∆r2(t)
〉

= 2nDt

Where n is the number of dimensions over which the dynamics is taking
place and D is the diffusion coefficient. For a spherical particle that moves in
an infinite liquid medium (i.e. the influence of the sample’s wall is negligible)
with viscosity η at temperature T , the diffusion coefficient can be described
with the Stokes-Einstein relation

D = kbT

6πηa

Einstein also obtained that the number density of particles (n) in a suspen-
sion that has reached sedimentation equilibrium changes with the height z
following an exponential distribution

n(z) = n0e
−z/z0
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Where
z0 = kbT

∆mg
And ∆m = (ρp − ρl)Vp is the buoyant mass.
z0 serves as an upper bound for the colloidal length scale; we can say that a
colloidal particle is a particle with radius a for which a<̃z0.
It has been said that the colloidal systems can be adopted as model systems.
In this Thesis the main topic is the physics of disordered condensed matter,
thus we want a colloidal system with typical features of a disordered system,
in other words we need a colloidal glass (and possibly a colloidal undercooled
liquid). To create a glass, or a liquid or a condensed phase in general it is
necessary the presence of inter-particle attraction. A first approximation of
this interaction is given by the Lennard Jones potential, that for a spherical
particle of radius a is written as

ULJ = ε

[(
r

2a

)12
−
(
r

2a

)6
]

where ε is the depth of the potential well. The advantages, and the reason
of the success of this model are its simplicity and the fact that practically
everything is controlled by two parameters, a and ε. In a system described
by this kind of potential the condensed (liquid) phase exists for temperatures
below the critical temperature TC = 1.326ε/kb. This model system, even if
helpful to get a first insight on the behaviour of colloids at higher volume
fractions, cannot describe accurately what is happening with relatively large
objects such as colloidal particles and leaves out the physics developing
inside our colloidal glass.
In the “nano-world”, there is a set of ubiquitous attractive forces known as
Van der Waals force. In the case of the interaction between two identical
spheres the potential energy arising from this interaction can be expressed
as

WV dW (D) = − Aa

12D (2.12)

Where D is the separation between the two surfaces and A is the Hamaker
constant [61]. The Van der Waals interaction alone cannot describe the
behaviour of colloidal systems, in fact if we think of a system in which this
interaction is the only one present, then we cannot expect any suspended
phase to last long in solution, because this attractive force will inevitably
lead the particle to be irreversibly stick together and precipitate forming a
mass of solid material. Typically, this does not happen because particles
suspended in water are usually charged and electrostatic repulsive forces
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Figure 2.11: Representation of the electric double-layer forming around a
charged colloidal particle. On the particle’s rim the less mobile counterions
forming the Stern layer are present , while for greater distances we see the
more mobile counterions forming the diffuse double layer. A direct measure
of the surface potential requires particular techniques, thus the quantity
typically employed to characterize the charge of the colloidal particles is the
ξ potential, or zeta potential.

prevent the coalescence (other repulsive forces might be present, i.e. steric
repulsion, but these are outside the aim of this Thesis). The charging of a
surface in a liquid can occur for several reasons. Whatever is the charging
mechanism, at the end the final surface charge produced by the so called
“co-ions” is balanced by the presence of an equal but oppositely charged
region of “counterions”. Some of the counterions are physisorbed on the
surface within the so-called Stern layer, while the others form a cloud of ions
with higher mobility known as the diffuse “double layer”, see fig. 2.11. In
the case of colloidal systems dispersed in pure water the only source for the
counterions are those that have come off the surfaces (also the H3O

+ and
OH− naturally present in water); such systems are referred as “counterions
only”. For low surface potentials (typically less than 25 mV) it is possible to
express the surface charge density σ of our colloidal particles as σ = εε0kψ0
[62], where εε0 is the dielectric constant, ψ0 is the electrostatic potential and
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the quantity k is equal to

k =
(∑

i ρ∞ie
2zi

εε0kbT

)1/2

. (2.13)

Here ρ∞ is the number density of ions of a given charge ezi. The expression
for σ closely resembles the equation for a capacitor whose plates are separated
by a distance of 1/k. This analogy with the charged capacitor gives rise
to the name of “diffuse electric double layer”, where 1/k is a characteristic
length is known as Debye length. For spherical nanoparticles with radius
a, it is possible to write down the potential energy between two surfaces
separated by a distance D [62]

WDL(D) = 64πkbTρ∞aγ2

k2 e−kD = Za

2 e−kD

Here γ is the reduced surface potential defined as

γ = tanh
(
zeψ0

4kbT

)

We can now put together both interactions in what is called the DLVO
(Derjaguin, Landau, Verwey, Overbeek) theory; keeping the example of
spherical particles we get for the potential energy:

Wtot(D) = WDL(D) +WV dW (D) = Za

2 e−kD − Aa

12D (2.14)

The most evident feature is that this expression for the potential energy
will always produce a long-range attraction, since the effect of the double
layer fade away quite rapidly with an exponential law, while the Van der
Waals force scales as 1/D2. Depending on the surface charge density and
the concentration of electrolytes in solution (k) the total effect of the DLVO
interaction can be quite different, as can be seen in fig. 2.12. For highly
charged surfaces in low concentration of electrolytes (i.e. long Debye length)
the potential presents a strong long-range repulsion peaked around k (which
is typically in the few nanometres range) and produces a quite high en-
ergy barrier. Our colloidal system is then composed by purely repulsive
nanoparticles. For smaller values of k a small minimum will appear after the
energy barrier, often referred as “secondary minimum” (in contrast with the
“primary minimum” represented by two surfaces in contact). For colloidal
systems, even if the thermodynamic equilibrium should be represented by
the particle in close contact at the bottom of the primary minimum, often
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Figure 2.12: Example of the resulting potential energies for the DLVO model
for different attraction/repulsion ratios. Curve 1 represent a completely
repulsive colloidal system, while curves 2 and 3 are typical of attractive
colloids with a marked secondary minimum. Curve 4 and 5 represent the
potential energy for unstable systems, in which the particles will immediately
flocculate.
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the energy barrier is too high to be overcome by the particles in a reasonable
timescale. When this is the case the colloidal particles will either sit in
the shallow secondary minimum or remain totally dispersed in solution. In
the latter case the colloid is referred to as being kinetically stable. Further
lowering the charge density (or increasing the electrolyte concentration),
the energy barrier will be lower leading to a slow aggregation referred as
coagulation or flocculation. Eventually, the energy barrier will fall below
W = 0 and the particles will start to coagulate rapidly, and the colloid
is now referred to as being unstable. It is important to notice that all
these scenarios can be obtained for the same colloidal particles changing the
Debye length k, which by its definition, is a quantity determined only by
the solvent’s properties.

Increasing the volume fraction, the properties of a colloidal system will
become, similarly to more canonical condensed matter systems, determined
by the inter-particle interactions. In fig. 2.13 an example of the possible
phases that can be obtained with hard spheres colloidal particles is reported.
In the low concentration limit, the dynamics of the suspension is still
characterized by liquid-like simple diffusion mechanisms, and looking at
its intermediate scattering function we will see a single relaxation process.
At a certain point the number density of colloidal particles is high enough
to initiate a crystallization, however under certain conditions, typically a
certain degree of dispersion in the particle’s sizes, it is possible to prevent
the formation of crystals. Like the situation of undercooled liquids outlined
in previous sections, our system has entered a metastable state, and the
intermediate scattering function will be split in the fast β and slow α
relaxation processes. At higher volume fractions the colloidal system will
eventually fall off the metastable equilibrium, the alpha relaxation will be
so long to be practically impossible to measure and we will have obtained
a proper colloidal glass. At this point it is still possible to increase a little
more the particle’s density, but eventually we will reach the geometrical
limit of the random close packing located at φ ∼ 0.63.

The φ value that marks the liquid-crystal transition, and consequently
the location of the glass transition region, is strongly dependent on the
details of the inter particle potential and for Yukawa-type potentials the
phase transition could occur at much lower volume fractions [64]. A colloidal
system can reproduce dynamical behaviours of liquids, undercooled liquids
and glasses, simply changing the volume fraction, which cover a similar role
as the temperature in standard glasses, and in fact it is often identified a
colloidal glass transition volume fraction φg. As it can be seen in fig. 2.14,
the dependence of the structural relaxation time on the volume fraction is
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Figure 2.13: Example of the different phases for a colloidal hard-spheres
system. The continuous green lines represent the equilibrium configurations,
while the dashed lines are the metastable conditions. We can see the images
taken with an optical microscope of a colloidal system in the liquid (left),
glassy (center) and crystalline (right) phases. Image from [63]

like the one of a typical fragile glass, described by a VFT law

τ ∝ e
− B
T−T0 .

2.5 Aging
We will conclude this chapter citing another foundmental characteristic
common to all glasses, aging.
It is possible to employ again the concept of the energy landscape, to get a
qualitative view of the aging of a glass. We have already seen that when a
liquid is cooled, it falls out of equilibrium at a temperature that depends
on the cooling rate. The liquid thus remains trapped in the basins that are
commonly explored at that temperature; the slower the cooling, the lower
the energy of the basin where the system will remain trapped. However, this
does not mean that our glass will remain helplessly frozen inside its local
minimum; on the contrary, it will begin to sample the accessible regions of
the potential energy to find a way to reach more stable minima eventually
reaching the configuration of the most stable amorphous system, also referred
as ideal glass [37, 17, 66].

The aging regime is an out of equilibrium condition, but as we shall
briefly see, a quite particular one. In fact, we can still be able to identify a
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Figure 2.14: comparison of the volume fraction dependence of the structural
relaxation time, self diffusion coefficient and low shear viscosity as determined
on PMMA colloidal hard spheres. All quantities are normalized with respect
to their value in the φ → 0 limit. Data from [Brambilla et al., 2009; van
Megen and Underwood, 1994; van Megen et al., 1998], image from [65].

certain universality, even in this non-equilibrium behaviour [67]. By the very
definition of aging, older systems relax in a slower manner than younger
ones. It is possible to define the age of the system as the time spent in the
phase under study (tW ), and a good way to characterize the aging process is
using two times quantities such as in eq.2.7. When the system has fallen out
of equilibrium, typically at temperatures below Tg, the correlation function
(here generically described with C(t1, t1 + t) = 〈O(t1)O(t1 + t)〉) depends
explicitly on tW .

In structural glasses, a pictorial explanation of aging may be put forward
recovering again the cage model already described in previous sections.
When t is short compared to the structural relaxation time, each particle
rattles inside its own cage in a very similar manner to the undercooled liquid
case. The difference here is that the cages become stiffer as the system
evolves, and thus the time required for diffusion will become longer and
longer as tW increases, in fig. 2.15 an example is reported of the aging
intermediate scattering function relative to a simulated Lennard-Jones glass.
Thus, similarly to what happens when the undercooled liquid approaches
the glass transition, the time scale is separated into two very different “time
sectors” [43, 68]. Before reaching the proper aging regime, when the time
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elapsed since the beginning of the experiment is still much smaller than
the age of the sample, or in other terms (t− tW ) << tW , we have what it
is sometimes called a stationary regime during which the system evolves
in the same way regardless the sample’s age and, from the point of view
of the measured observable, it resembles a relaxation towards equilibrium.
What is happening is instead that our system is evolving rapidly towards a
metastable state.
Then we can separate our generic correlation function, C(t, tW ), in

C(t, tW ) = Ceq(t− tW ) + Cag(t, tW ).

Here the fast relaxation is described by Ceq(t−tW ) = Ceq(hf (t)/hf (tW )) with
hf (t) = et/τf and τf a characteristic time scale [68], experiments on glycerol
[69] have shown that this regime is overcome already for (t− tW ) ∼ 10−5tW .
This first term describes the stationary approach to the plateau, while the
slow, age dependent α relaxation is described by the term Cag(t, tW ).

Often, in many models and measurements, it is reported for the aging
part of the correlation function Cag(t, tW ) = Cag(hS(t− tW )/hS(tW )) with
hS(tW ) a system-dependent monotonic function [68, 70, 71] , and thus τα is
a function to the age of the system. Typically, this relation between age and
structural relaxation time is expressed with a power law τα = tµW with the
exponent µ ∈ [0.5, 1]. When µ = 1 one speaks of “full aging”, while µ < 1 is
referred as “sub-aging” [43].
What emerges from this description is that for a glass, once it has started
to age, the equilibrated undercooled liquid condition will never be reached
again, and its structural relaxation time will continue to increase indefinitely.
Indeed, it’s the case of a glass window, which is cooled at temperatures
so far from its Tg, that the time required to perform a simple structural
rearrangement is so long [18] that it will require millions of years to reach
the most stable configuration [17, 66]. However, if the time window chosen
to probe the glass is wide enough or, more realistically, the temperatures are
closer to the glass transition region, we expect to observe, at a certain point,
values of τα that does not age anymore. This behaviour has been observed
in some experiments and simulations [72, 73] and sometimes one refers to
this situation as “interrupted aging” [68].
The aging of a glass physical properties can also be described by phenomeno-
logical models like the one proposed by Tool, Moynihan and Narayanaswami
(further described in chapter 4 of this thesis), so is it possible to say aging
related problems are already known? Obviously, the answer is no. First of
all, despite being known from about a century, the aging of the glasses is
still one of the least understood problems of fundamental physics. From
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Figure 2.15: Computed aging intermediate scattering functions for a molec-
ular dynamics simulation of a Lennard-Jones glass. For small times the
dynamics is nearly the same for different ages, while conversely the long
time behaviour changes importantly with tW . Image taken from [72]

the experimental point of view the aging was typically described with the
evolution of simple quantites, such as density or refractive index, while direct
measurements of aging structural relaxation times are still quite scarce even
nowdays. The majority most of this kind of data come from dielectric
spectroscopy experiments, and only recently the intermediate scattering
function on aging systems have been measured in a reliable way. Lastly, all
the previous phenomenological description does not hold for a lot of glassy
systems, above all colloidal glasses and gels, for which it has been seen a
markedly different behaviour of τα(tW ) [74, 75, 76].From the theoretical point
of view the discussion is far to be considered concluded. Several theoretical
models have been developed [43, 77, 78, 70] and some of them are able to
describe the behaviour of particular systems. However the development of a
clear, general and predictive model has yet to come.
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Chapter 3

Experimental techniques

3.1 Speckle patterns

Objects illuminated by coherent light sources are readily observed to acquire
a peculiar granular appearance. This complex pattern cannot be described
by means of classic geometrical optics, instead, a quantitative description
can be achieved by the methods of probability and statistics. The origin of
this granularity was quickly recognized shortly after the development of the
first lasers [79], in fact, the vast majority of surfaces are extremely rough at
lenghtscales of of the illuminating wavelengths; thus, under illumination from
coherent light, the wave reflected from such surfaces consists of contributions
of many scattering areas [80]. Propagation of this reflected light to a distant
observation point results in the additions of various scattered components
with relative delays which varies from several to many wavelengths. Interfer-
ence of this dephased but coherent wavelets, results in the granular intensity
distribution known as speckle pattern. The speckle pattern consists of a
multitude of bright spots, where the interference is highly constructive, dark
spots where the interference is highly destructive, and intermediate levels of
intensity distributed according a specific statistic.

The refraction from surfaces is not the only way to produce a speckle
pattern, random fluctuations of the light source or diffusion from a disordered
medium will produce the same intensity distributions, in fig 3.1 is reported the
recorded speckle pattern from a concentrated colloidal glass illuminated by a
CW green laser. Thus, whenever the source of fluctuations, the description
of electromagnetic speckles is based on a statistical approach similar to the
one adopted more generally in statistical physics. The field is considered to
be a random variable generated by an underlying stochastic process. Using
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Figure 3.1: example of a recorded speckle pattern produced by scattered
coherent light from a colloidal glass.

the notation of [81], the complex amplitude in a certain point r can be
written as:

E(r) =
∑
Sn

ASn(r)e−φSn (r),

where Sn is a scattering sequence involving n scattering events at position
r1, r2, . . . , rn( in a medium made of discrete particles, these are the locations
of the n particles involved in the sequence. Both the amplitude ASn(r) and
the phase φSn(r) are random variables. It is possible to formulate a model
of fully developed speckle on the following assumptions [81]:
• The complex amplitudes resulting from two different sequences Sn

and Sn
′ are independent random variables.

• For a given sequence Sn, the amplitude and the phase are mutually
uncorrelated.

• The phase φSn(r) is uniformly distributed on [0, 2π].
defining X = Re(E(r)) and Y = Im(E(r)) the real and imaginary part
of the complex field respectively, under the three hypothesis of the fully
developed speckle pattern one find: 〈X〉 = 〈Y 〉 = 0, σ2 = 〈X2〉 = 〈Y 2〉 =
1/2∑Sn

ASn(r)2 and 〈XY 〉 = 0. The central limit theorem states that, both
X and Y are Gaussian variables with zero mean and equal variance, and the
joint probability of X and Y is also Gaussian

P (X, Y ) = P (|E|) = 1
2πσ2 e

−(X2+Y 2)/2σ2
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but X2 + Y 2 is the intensity I, thus adopting a change of variables

P (I) = 1
〈I〉

e−
I
〈I〉 , (3.1)

where the average intensity is equal to 〈I〉 = 2σ2. From the distribution of eq.
3.1 it is possible to easily obtain the second moment 〈I2〉 = 2 〈I〉. The ratio
A = σ2

I/ < I >2 is called contrast and in the ideal case of a fully coherent
source it is equal to 1. In figure 3.2 is reported the intensity recorded from
a speckle pattern produced by a B2O3 sample. It is evident that the actual
distribution is not exactly the one described by 3.1, the key parameter is
the contrast value that here is reduced to a value of 0.45. The reasons for
this reduction reside in experimental conditions, often far to be ideal, which
could be spurious background illumination, dynamic nature of the speckle
pattern, or not fully coherent light sources. The latter case, typical of X-ray
sources, can offer a quite straightforward interpretation for the contrast
reduction [82]. In that case we can imagine the total scattered intensity as
the intensity produced by M independent speckle patterns (where M is the
ratio between the scattering volume and the coherence volume) leading to a
modified intensity distribution

P (I) = MM

(
I

〈I〉

)M−1
e−M

I
〈I〉

Γ(M) < I >
, (3.2)

where Γ is the gamma function. The new value for the intensity fluctuations
is σ2 =< I >2 /M and the contrast is now A = 1/M . Another reason for
the reduction of the contrast is that the sensitive area, i.e. the single pixel
for a CCD, records more than a speckle at the same time. In this case the
recoded contrast will be inversely proportional to the number N of speckles
per pixel A ∝ 1/N . In a freely diffusing speckle pattern, i.e. with no optical
elements between the speckle’s source and the screen, the linear speckle size,
also called coherence length, at a fixed point in space is given by [83]

lc = λ

δθ
, (3.3)

where λ is the radiation wavelength, and δθ is the angle of the source
subtended at the screen. For a source with linear dimension L and a screen
placed at a distance D, the speckle size becomes

lc ≈ 1.22λD
L

(3.4)
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Figure 3.2: Example of the intensity distribution in a real speckle pattern
produced by the scattering from a B2O3 glass.

3.2 From the scattered intensity to the inter-
mediate scattering function

When the light travel inside a medium it can be diffused by small local
density fluctuations δρ, which create small changes of the dielectric constant
δε. If we send an electromagnetic field with initial amplitude E0, frequency
ω and wave-vector ki, the resulting field at a certain distance R from the
scattering volume is described by [83]

E(R, t) = −
k2
fE0

4πRε0
e−i(kf R−ωt)δε(q, t),

where
δε(q, t) =

∫
V
e−iqr[nf · (kf × (kf × (δε(r, t) · ni))]dr,

with V being the scattering volume, nf ,ni the final and initial polarizations
respectively, kf the final wave-vector, and q = kf − ki exchanged momen-
tum. The former is a fundamental quantity in all scattering experiments,
determined by the experimental parameters its magnitude is given by

q = 4nπ
λ

sin(θ/2), (3.5)

where n is the refractive index, λ is the probe wavelength and θ the angle
between ki and kf .
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The recorded physical quantity is the intensity, and its instantaneous
value, at a fixed point in space, depends on the positions and momenta of all
the particles inside the scattering volume. Thus even if individual particles
are described by deterministic laws, the time evolution of I(t) resemble a
noise pattern. The instantaneous values measured at two different instants
t and t + t′ are in general different I(t1) 6= I(t1 + t′), but if t′ is small
enough, then the two intensities will be partially correlated. The measure
of this correlation is the autocorrelation function < I(t1)I(t1 + t′) >, that
for ergodic systems, i.e. when the time average Ī is equal to the ensemble
average < I >, is defined as

< I(t1)I(t1 + t′) >= 1
T

∫ T

0
I(t1)I(t1 + t′)dt′, (3.6)

where the time interval T is much longer than the characteristic time of the in-
ternal dynamics. If the system is stationary, then 〈I(t1)〉 = 〈I(t1 + t′)〉 = 〈I〉
for all t′, and the mean physical property does not depend explicitly on the
value of t1 which will be put equal to zero. For t′ = 0 the autocorrelation
function is < I2 >, while in the limit t′ →∞, I(0) and I(t′) will eventually
become uncorrelated, thus 〈I(0)I(t′)〉 =< I >2. Since 〈I2〉 ≥ 〈I(0)I(t′)〉,
the autocorrelation function of an non periodic property decay from 〈I2〉 to
〈I〉2 in the course of time.
The physical quantity usually measured is the normalized intensity autocor-
relation function

g2 = 〈I(0)I(t)〉
〈I〉2

(3.7)

which, for an ideal speckle pattern is a function that decay from 2 to 1.
This g2(t) is called homodyne autocorrelation function, since it is obtained
uniquely from the scattered intensity. Another type of detection is possible
when one mix a small quantity of unscattered light (local oscillator) with
the diffused light on the detecting surface. In this case one talks about
heterodyne detection and the autocorrelation of the intensity is

〈I(0)I(t)〉 ' 〈ILO〉+ 2Re (〈E(0)E(t)〉) ,
where 〈ILO〉 is the mean intensity of the local oscillator, and Re (〈E(0)E(t)〉)
is the heterodyne autocorrelation function.
In the previous chapter we have seen that the dynamic structure factor is
the normalized autocorrelation of the density fluctuations, in practice this
quantity is strictly related to normalized autocorrelation function of the
electric fields, since

g1(t) = 〈E(0)E(t)〉
〈I〉

= 〈δε(q, 0)δε(q, t)〉
〈δε(q, 0)〉2

'

〈
δρq(0)δρ∗q(t)

〉
〈δρq〉2

= Φq(t).
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But how can we link this object to the measured quantities? For the
heterodyne case this is quite straightforward, since we have directly access
to the real part of g1(t). For the homodyne detection case, we can easily
access to the square modulus of the g1(t) thanks to the Sighert relation

g2(t)− 1 = A|g1(t)|2 (3.8)

where A ∈ [0, 1] is a parameter determined by the experimental set-up.

The experimental techniques described above are usually referred as
Dynamic Light Scattering (DLS) or Photon Correlation Spectroscopy (PCS),
and they are nowadays a classical experimental technique used to measure the
average translational and rotational dynamics in many different systems [83],
and in particular to probe the structural rearrangements in glass-forming
materials in time domain [84].
The most popular approach, mainly due to its relatively easy implementation
and straightforward interpretation, is the homodyne configuration. The
autocorrelation function g2(t) can be clearly seen (i.e. has a higher contrast)
if a single speckle is collected by the detector which, in typical DLS set-ups,
is a photomultiplier. The main drawback of this scheme is that, in order to
obtain an autocorrelation function of good statistical quality, i.e. in order
to perform a reliable time average of the measured signal, and thus being
able to apply eq. 3.6 the data have to be collected over a time interval
several orders of magnitude longer than the characteristic time of the probed
dynamic. This requirement clearly becomes critical when investigating the
structural relaxation dynamics across Tg, and in fact only few experiments
report DLS results of glass-formers in this temperature range [84].
In the last years, thanks to the increasing availability of high-quality bi-
dimensional sensors such as charged coupled devices (CCD), a growing
number of DLS experiments are carried out relying on new schemes based
on multi-speckle detection [5, 2, 85, 86, 7, 87]. The main advantage in
these schemes is the capability of measuring a large amount of independent
statistical events (speckles) simultaneously. This is achieved e.g. designing
the optical setup in order to have one speckle collected by each pixel of a bi-
dimensional detector. It is possible in this way to obtain an autocorrelation
function of good statistical quality even with measurement times of the same
order of magnitude as the relaxation time.

3.2.1 DLS experiments on slow systems
In a typical DLS experiment the measured quantity is a temporal series of
the light intensity, I(t), scattered by the sample. From this temporal series
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a normalized time autocorrelation function is calculated:

g2(τ) = I1(t)I1(t+ τ)
I1(t)2 , (3.9)

where the average is calculated over time t. In single scattering conditions,
it is possible to connect the intensity fluctuations to the intermediate scat-
tering function via the Siegert relation [83]: In a multi-speckle DLS setup,
instead, I(t) can be additionally averaged over the independent speckles
simultaneously collected by the CCD. In this case, an autocorrelation matrix
CI(t1, t2 = t1 + t) is often introduced defined as:

CI(t1, t1 + t) =
〈δIp(t1)δIp(t1 + t)〉p
〈Ip(t1)〉p 〈Ip(t1 + t)〉p

, (3.10)

where Ip(t) is the intensity collected by pixel p at time t, 〈. . .〉p indicates the
average over the pixels and δIp(t) = Ip(t)− 〈Ip(t)〉p. The element CI(i, j) of
this autocorrelation matrix is the correlation coefficient between the image
taken at time i and the image taken at time i+ j. The diagonal elements of
CI correspond to the autocorrelation coefficients at the same lag time (τ),
and the autocorrelation function at time t is obtained simply averaging the
CI values along a line parallel to the main diagonal and separated by a time
t from it, i.e.

g2(t)− 1 = CI(t1, t1 + t). (3.11)
The Siegert relation is then used again to get Φq(t), the observable of physical
interest.

In glass-forming materials close to Tg the intermediate scattering function
is dominated by the structural relaxation and shows a universal, stretched
exponential shape [88]:

Φq(τ) = fqe
−(τ/τr)β , (3.12)

where fq is known as the non-ergodicity factor, τr is the structural relaxation
time and β is the stretching exponent, with β ≤ 1. The structural relaxation
time, the non-ergodicity factor and the stretching exponent are the three
relevant physical parameters that are then extracted from a DLS experiment
on a glass-former close to Tg.

The advantages in employing the autocorrelation matrix, are not limited
to only slow systems. In fact, being C(t1, t2) a two-time quantity, it is
possible to correctly describe out of equilibrium dynamics. A classic example
are aging systems, and in fig. 3.3 the autocorrelation matrix of an aging
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Figure 3.3: example of an aging 2-times correlation matrix. The main
diagonal represent the istantaneous contrast of the speckle patterns at
different sample’s ages, the diagonals parallel to the tW axis are the collections
of the correlations at a certain lag-time t.

B2O3 glass is reported. Along the main diagonal, are located the points
corresponding to t1 = t2 = tW , with tW the sample’s age, while on lines
parallel to the main diagonal we find all the points C(tw, tw + t) in which the
intensities are separated by the same lag-time t. There exist several ways
to deal with such out-of equilibrium quantities. The most straightforward,
further described in chapter 4, consist of selecting smaller sub-matrices
spanning intervals of δt, over which one can compute the time average of eq.
4.4. This simple approach is useful when the dynamic is evolving following
simple linear function, like for full-aging systems in which τ(tW ) ∝ tW .
If in the chosen sub-matrix the dynamics does not evolve excessively, i.e.
(τ(tw + δt) − τ(tW ))/τ is small, the one can safely attribute the results
from 4.4 to the mean age of the considered sub-matrix (i.e. the resulting
relaxation time can be considered as τ = τ(tW + δt/2)). The limitation to
slowly evolving dynamics can be quite problematic when someone wants to
investigate strongly out of equilibrium systems, and in fig. 3.4 are reported
some limit-cases in which adopting the simple approach will inevitably
produce wrong or inconclusive results. In fact, reducing δt in order to
compensate the quickly varying dynamic will not work forever. At a certain
point, typically when δt ∼ τ , the fitting procedures for the determination
of the dynamical parameters (for processes described by eq. 4.6, fq, β, τ)
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Figure 3.4: autocorrelation matrices of fast, and non-linearly varying
processes. Left a glass sample has been rapidly cooled. Right autocorrelation
matrix of a slightly turbid sample in presence of small periodic thermal drifts
in the optical set-up.

Figure 3.5: Example of possible ways to analyse the autocorrelation matrix,
red is the the “sub-matrix” approach, magenta area correspond to C(tw, t)
defining tw = (t1 + t2)/2, while the green area is C(tW , tW + t) with tW = t1.
The matrix obtained from a measure on an equilibrated undercooled liquid
of B2O3 near its glass transition temperature.
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will start to produce less and less reliable results. A way to overcome such
situation is to consider “slices” of the autocorrelation matrix. One possibility
described also in [89], is taking the “cuts” orthogonal to the main diagonal,
thus one obtains C(tw, t) defining tw = (t1 + t2)/2, and t = |t2 − t1|. The
other approach, adopted in this thesis, is to consider cuts parallel to one of
the time axes, thus C(tW , tW + t) with tW = t1 [1]. These two approaches
are nearly equivalent, see fig. 3.5, and the principal differences are due
to operative considerations linked to the finite size of the autocorrelation
matrix, i.e. with the latter approach one can easily see the autocorrelation of
a very young system also at large lag times, while with the former definition
for a given lag time t the minimum age accessible is tW = t/2.

3.2.2 Visible photon correlation spectroscopy
Photon correlation spectroscopy is a technique originally developed precisely
to be adopted with visible laser sources. The general features of a typical
set-up are a focusing and collecting optics, which depending on the exper-
imental requirements can be composed by a simple convergent leness [90]
or more sophisticated objects [91], and a detector to record the scattered
intensity. In standard PCS set-ups the detector is often composed by a
fast photon-counting units, often an avalanche photo-diode, which produce
a signal for every photon hitting their sensitive area. Typical outputs of
such devices are time series of recorded events which are then correlated by
dedicated electronics (correlator), and finally recorded and analysed by a
computer. With these set-ups, the requirement to obtain signals with good
contrast is to completely fill the sensitive area with a single speckle. These
detectors,often referred as point-detectors, are capable of accessing very fast
time-scales and are able to span many decades of lag times (from µs to 100s
), but are limited by the contraints associated by the time average pointed
out in the previous sections.
For slow or non-ergodic samples, a better approach is to employ a bi-
dimensional detector, often a CCD or a CMOS. In this case the speckle-size
must not be smaller than the pixel size. Depending on the pourposes the col-
lecting optics can be of various kinds. The simples configuration is certainly
the freely propagating speckle pattern. In this case the speckle-sizes are
determined by eq. 3.4, but since in most of the cases the scattering volumes
are highly anisotropic, gaussian beams with lengths of few millimetres and
waists of ∼ 200µm, the resulting speckles will be elongated in the vertical
direction. One possibility to obtain a better aspect-ratio of the speckle
pattern is to place a limiting aperture ( a pin-hole) between the detector and
the sample. The drawback that one could often ecounter in doing so is that
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the light impinging on the CCD will be below the instrument’s sensitivity.
Placing a convergent lens the speckle size will be mofied according to [92]

Lc = 1.22λ
d

(
Z2 + Z1

(
1− Z2

f

))
, (3.13)

where d is the lateral extension of the source, often defined by a pin-hole, Z1
and Z2 are respectively the lens-source and lens-detector distances, and f is
the focal length.
In case both the detector and the source are placed on the lens’s focal plane
it can be easily shown that the speckle size become

Lc = 1.22f
d
.

Also, if the lens is placed to project the image of the scattering volume
on the detector (imaging condition) it is possible to demonstrate that the
speckle size become

Lc = 1.22λs
d
|M |, (3.14)

with M being the optical magnification, d the pin-hole diameter, and s the
source - pin-hole distance. In imaging conditions the speckle aspect ratio
is determined by the limiting aperture, and a good way to determine if
the sample image is correctly projected on the detector is to check if the
speckles have a symmetrical shape. The minimum value for Lc attainable
in imaging conditions is when s is the lens-object distance and d the lens
diameter, in other words the minimum speckle-size is the lateral resolution of
the collecting optics. Equations 3.13 and 3.14 are obtained here for a single
lens, but in first approximation can be easily extended to more complex
optical compounds.
Regardless the details of the collecting optics, when performing a multi-
speckle detection with a CCD, one has to always perform some corrections
to the recorded quantites to obtain the true scattered intensity. In fact, the
signal, Sp(t), measured by a certain pixel p is affected by a time dependent
electrical noise, bp(t), and by the non uniform illumination of the CCD, that
in imaging conditions corresponds to the image of the beam profile. This
latter contribution introduces a time independent factor mp that affects the
measured intensity in the following way [2]:

Sp(t) = Ip(t) ∗mp + bp(t). (3.15)

Assuming the noise contribution to be a pure random term, only its temporal
average affects the final result. Therefore, it is a good practice to take a

47



set of dark images for each measurement (this latter advice depends on
the kind of detectors one is working with, in most cases it is sufficient to
collect a dataset of dark images only once in a wile). Averaging out this
set of dark images one obtain bp. Then supposing the electrical noise to be
completely random and uniformly distributed both in time and in space
(bp = 〈bp〉), subtracting bp from the acquired data the noise contribution
is then cancelled out once the average is performed. Moreover, to account
for the non uniform illumination an image Mp = Sp(t)− bp was calculated
averaging over all of the recorded frames and then normalized by its mean
value obtaining mp = Mp/ 〈Mp〉p. For experiments whose duration is much
longer than the characteristic time of the probed dynamics this procedure
gives a smooth function since the spatial fluctuations due to the speckle
dynamics are completely averaged out. On the contrary, for measuring times
comparable with the characteristic time of the probed dynamics the Mp

image is heavily influenced by the location of the single speckles. Therefore
the Mp image was further smoothed applying a median filter. In case of even
slower systems, the smoothing of the mean image is not sufficient, and for
these situations it is better to renounce to normalize by mp because it might
affect the results for the dynamical quantities. Intuitively this is explained
considering a sample with an extremely slow relaxation rate, each imaged
speckle will light up or shut down following a certain distribution given by
sample’s properties. This means that, in the case of very slow dynamic, a
certain number of speckles will persist for a considerably long period of time;
if we normalize the collected images with mp, even if it’s smoothed, we will
end up altering the contribution of the very slow speckles treating them as
a static contribution.

3.2.3 X-ray photon correlation spectroscopy
Storage-ring based synchrotron radiation sources are chaotic sources since
the emission processes of the individual relativistic electrons (or positrons)
are independent and spontaneous. The coherence properties of radiation
can be characterized by the energy spread of the photons, which is described
by their spectral purity λ/∆λ, and the phase-space volume in which the
photons are contained (d · θ)2, where d is the measure of the photon-beam
widht and θ is the photon-beam divergence [93].
The degree of coherence of the radiation along its propagation direction, i.e.,
its longitudinal (or temporal) coherence, is the length (or time) over which
the phase of the field amplitude undergoes no fluctuations. Let us consider
two wavefronts, one at wavelength λ and the other at a slightly different
wavelength λ + ∆λ,which simultaneously depart from a single point. Let
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Figure 3.6: , example of two propagating waves with wavelengths λ and
λ+ ∆λ. The coherence lenght is defined as the distance required to produce
a dephasing between the two waves of π.

us assume that after some distance ll the two wavefronts are in antiphase;
see figure 3.6. If the first wave has made N oscillations over that distance,
the second wave must have madeN − 1/2 oscillations. One therefore has
Nλ = (N − 1/2)(λ + ∆λ). Solving for N and substituting in Nλ = ll we
find for this distance

ll = 1
2
λ2

∆λ.

Thus the longitudinal coherence is directly proportional to spectral purity,
or inversely proportional to bandwidth.

Incoherent radiation, from sources such as ordinary light bulbs, has a
broad spectral content and emits from a large area into the largest possible
solid angle. Fully coherent radiation has a narrow spectral content and a
phase-space volume given by the relation (d · θ)/2 = λ/π [93]. Partially
coherent radiation does not fully possess these limiting properties. Its spatial
coherence is defined by the previous relation, but its longitudinal coherence
is limited by the value of ll. Because of the direct relation between the
electron oscillation and the resulting radiation, the energy spread of the
electrons should be small, and the phase-space volume of the electrons (
given by the product between beam width and angular divergence σhσ′h)
must be contained in the phase-space of the photons, obtaining the relation

σhσ
′
h = λmin

4π ,

where λmin is the shortest wavelength over which coherence is expected. In
the X-ray regime such condition can be achieved only placing collimating
apertures in the beam, this obviously greatly reduces the total photon flux
and before the development of the udulator technology exploiting coherence
properties of synchrotron radiation was prohibitive. Undulators are third
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Figure 3.7: Example of the working principle of an undulator. Two sets of
magnetic arrays (1) induce an oscillatory trajectory in a bunch of relativistic
electrons (2) which emit synchrotron radiation in the forward direction (3).

generation synchrotron radiation light sources, they are composed by a
periodic array of magnetic dipoles arranged as in fig. 3.7. If the magnet’s
periodicity is λu and γ is the electrons Lorentz factor, then the produced
radiation will be a discrete spectrum with a fundamental wavelength given
by [94]

λ0 = λu
2γ (1 + 2K) ,

where K is the undulator parameter, and the other photon energies will be
multiples of the one εN = N}c/λ0. Undulators can be extremely brilliant
sources of X-rays, reaching brilliances of 1020photons/s/mrad2/mm2/0.1%
bandwidth or higher. The width of the collimating aperture is determined
by another transverse coherence length lt of the photon beam which can be
defined via the visibility of interference fringes, that for a circular monochro-
matic source of diameter Σ seen at distance D, is

lt = λ

2 (R/Σ)

Having access to a large number of coherent photons, allow the extension
of the photon correlation techniques even to the X-ray regime reaching probed
length-scales smaller than typical inter atomic distances (fg. 3.8). Carrying
out dynamical experiments like the ones described in the previous section
imply that all the scattering volume has to be illuminated by a coherent
radiation, implying that the maximum path-length difference (PLD) for rays
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in the sample has to be equal to or smaller than the longitudinal coherence
length ll of the beam. In addition, the lateral size of the illuminated sample
volume must be smaller than or comparable to the transverse coherence
length lt. In forward scattering the PLD between waves scattered from the
centre of the sample and from the outer edge equals to

PLD1 = d sin(2θ) (3.16)

where d is the beam diameter, and θ the scattering angle. Also the sample
thickness W , contribute to the PLD . The PLD between waves scattered
from the front and the back of the sample equals

PLD2 = W (1− cos(2θ)) = 2W (sin(θ))2. (3.17)

From equations 3.16 and 3.17 we get the conditions for coherence that is [95]

λ2

∆λ > max(PLD1, PLD2) (3.18)

typically, in samll angle X-ray scattering experiments (SAXS) the stric-
tiest requirements came from PLD1 [95], and starting from that, we get
restrictions on the maximum q that can be probed in a coherent conditions
[95]; recalling the definition 3.5 and imposing the limitation ll > PLD one
obtain

λ2

∆λ >
dq

k
,

where 2θ is the angle between kin and kout. The penalty in which we will
incur exceeding qmax or violating restrictions 3.16, 3.17 will be a decrease in
the experimental contrast and an intensity distribution given by equation
3.2.

Optimal thickness of the samples

X-rays are typically strongly absorbed by condensed matter phases, but more
the X-ray beam travel inside the sample, more photons will have the chance
to interact with the atoms, thus to obtain good signals one has to find a
compromise between these two effects. In the case of an incoming X-ray
beam with initial intensity I0, signal collected at scattering angle 2θ and
a material with absorption coefficient µ we get that the recorded intensity
arising from a small portion of the scattering volume is

dI = I0e
−µxsie

−µ W−x
cos(2θ) , (3.19)
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Figure 3.8: Frequency–scattering vector space covered by different ex-
perimental techniques X-ray photon correlation spectroscopy (XPCS) is a
continuation of photon correlation spectroscopy with visible coherent light
(PCS) in the very small length-scales. Image taken from [96]

where si is an isotropic scattering factor and W is the total sample’s width.
Integrating x over the width we get the total scattered intensity at angle 2θ

I = I0si
e−

µW
cos(2θ) − e−µW

µ(1− 1/ cos(2θ)) ,

and we find that the value of W that maximize the scattered intensity is [97]

W = ln(cos(2θ))
µ
(
1− 1

cos(2θ)

) ,
and in the small angles limit

W ≈ cos(2θ)
µ

. (3.20)

These relations must always be considered taking in account the conditions
imposed by the partial coherence of the light source. In the small angle regime
the requirements deriving from relation 3.18 allow sample thickness of few
millimetres and the only conditions derive from the absorption considerations
of eq. 3.20. The situation radically changes when the experiment is performed
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on scattering angles larger than few degrees, here the conditions imposed
by relation 3.17 are the strictest and to satisfy them the samples would
be extremely thin, i.e. for 1µm of longitudinal coherence, beam diameter
of 3µm and we want to perform the experiment at 20◦ we need a sample
thickness of 20µm. For most materials this would means a loss in total
number of scattered photons, so what happen in WAXS experiments is often
a compromise between signal and contrast.

3.3 Higher order correlations
We have seen in the previous chapter that it is possible to measure the prop-
erties of the dynamical heterogeneities with the aid of four point correlation
functions.

The optimal quantity for this task would be the G4(r, t), however its
detection, altought possible with appropriate techniques [98], cannot be
always implemented, especially in XPCS experiments. A more accessible
quantity is the dynamical susceptibility χ4 which is directly linked to the
variance of CI(t1, t1 + t), ideally one has:

χ4(t) ∝
〈
C(t1, t1 + t)2

〉
t1
− 〈C(t1, t1 + t)〉2t1 = σ2

CI
(t) (3.21)

and the proportionality constant would be the total number of particles in
the scattering volume.
The variance of CI(t1, t1 + t), σ2

CI
(t), is the lowest moment of the data

that provides information on the fluctuations. similarly, σ2
CI

(t) quantifies
the fluctuations of the intensity correlation function as the system evolves
through statistically independent configurations. Intuitively, one can expect
the variance of the fluctuations of the dynamics to scale as the inverse number
of “dynamically independent” regions in the scattering volume, and thus to
increase as the spatial range of the correlation of the dynamics increases.
Inspection of the t dependence of CI(t1, t1 + t) at fixed lag time allows
temporally heterogeneous dynamics to be discriminated from homogeneous
dynamics. Indeed, in the former case a large drop or increase of CI(t1, t1 + t)
is observed whenever the dynamics is faster or slower than average giving
a non zero contribution to σ2

CI
(t), while in the latter case the degree of

correlation keeps a constant value. This approach is quite general, since it
can be applied to any experimental configuration where an autocorrelation
matrix can be defined (thus any multispeckle photo-correlation experiment).
However, experiments on diluted suspensions of colloidal Brownian particles
have shown that the degree of correlation exhibits some fluctuations even
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in the absence of dynamic heterogeneity [99]. These fluctuations are due to
statistical noise stemming from the finite number of speckles in the collected
images. In order to exploit quantitatively the informations obtained with
σ2
CI

(t) it is thus necessary to separate the contribution to the fluctuations
of CI(t1, t1 + t) due to the noise from that due to dynamic heterogeneity.
Several strategies have been developed for such purpose, and in the present
thesis the extrapolation method developed by Duri et al. [2] will be adopted.
This method is based on the consideration that the temporal fluctuations
of the degree of correlation CI(t1, t1 + t) at a fixed lag time have only
two independent sources: the statistical noise due to the finite number
of speckles probed in the experiment and the intrinsic fluctuations of the
sample dynamics. The first contribution, referred as the measurement noise,
is always present. The second contribution, on the contrary, is present
only if the dynamics is temporally heterogeneous and thus represents the
physically valuable information that we aim to extract from the fluctuations
of CI(t1, t1 + t).To highlight the two different contributions, we rewrite Eq
4.3 as

CI(t1, t1 + t) = g2(a1(t1), ..., am(t1), t)− 1 + n(t1, t), (3.22)
where n(t1, t) is the measurement noise and n(t1, t) = 0 and g2(a1(t1), ..., am(t1), t)−
1 is the two-time correlation function that will be obtained in limit of an
infinite number of recorded speckles. a1(t1), ..., aν(t1) are parameters that
depend from the measurement if the dynamics are heterogeneous, but are
constant for homogeneous case. Let us consider the contributes to σ2

CI
due

to only the noise term. Assuming a temporally homogeneous dynamic, for
example a Brownian motion, the parameters a1, ..., an are constant and the
only fluctuations arise only from n(t1, t). Since MPCS experiments are
typically performed on a large number of pixels, the central limit theorem
can be applied and σ2

CI
are Gaussian distributed. Accordingly only CI and

σ2
n are needed to completely describe the full probability distribution of CI

(since σ2
CI

= σ2
n). To compute σ2

CI
we recall that for a given quantity f

function of n random variables x1, ..., xn its variance can be expressed as a
Taylor expansion

σ2
f =

n∑
i=1

(
∂f

∂xi

)2

σ2
xi

+
∑
i 6=j

(
∂f

∂xi

∂f

∂xj

)
σxi,xj , (3.23)

where σ2
xi

= x2
i −xi2 is the variance of the variable xi and σxi,xj = xixj−xixj

is the covariance between xi and xj. By applying eq. 3.23 to the definition
of CI we find

σ2
CI

(t) = 1
I

4σ
2
G2(t) + 2G2(t)2

I
6 σ2

I + 2G2(t)2

I
6 σI,J(t)− 4G2(t)

I
5 σG,I(t)
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where G2(t) = δI(t1)δI(t1 + t), and J(t) = I(t1 + t) (I = J). The origin of
the fluctuations of I and G2, and their covariances, stems from the finite
number of pixels. In [2] is demonstrated how σ2

I , σ
2
G2, σI,J and σI,G2 scales as

1/N where N is the number of probed pixels, and that, due to the definition
4.3, the fluctuations of the statistical noise can be expressed as a third order
polynomial dependence from CI(t)

σ2
n(t) = 1

N

3∑
i

αiCI(t)
i = Ω(t)

N
. (3.24)

Thus for N →∞ σ2
n(t)→ 0.

When the sample dynamic is heterogeneous, the measured fluctuations
fluctuations will be described by

σ2
CI

(t) = Ω(t)
N

+ σ2
g2(t),

where the first term is the measurement statistical noise, and the the second
is the physically relevant dynamical heterogeneity. The latter, contrary
to the noise term, does not depend on the number of pixels over which
CI is averaged. This argument is easy to understand when the scattering
experiments are performed in the far field geometry in which each pixel
receive light scattered by the whole illuminated sample. Thus, any spatial
or temporal heterogeneity of the dynamics affects in the same way the
signal measured by each pixel. The different pixel-number dependence of
the noise and the fluctuations suggests a way to discriminate between these
two contributions. Thus as described in [2], analysing the speckle images
by processing different number of pixels, and plotting σ2

CI
(t) as a function

of 1/N , as shown in fig. 3.9. The slope of a linear fit to the data yields
Ω(t) , while the intercept at N−1 = 0 is σ2

g2(t), the desired variance of
the correlation function due to dynamical heterogeneity. Operatively, the
procedure is as follows. First, all pixels of each image are processed and
CI(t) and its variance σ2

CI
(t) are calculated. Each image is then divided

into two regions of interest (ROI) of equal size. For each ROI, CI(t)2 and
its variance are calculated and the values of σ2

CI
(t)2 obtained for the two

ROIs are averaged, yielding the variance of σ2
CI

(t) when only N/2 pixels are
processed. This scheme is iterated as long as the size of each ROI contain a
meaningful quantity of different speckles.
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Figure 3.9: Left: σ2
CI

(t) at various ROI sizes. Right: σ2
CI

(t) as a function of
1/N for different lag times. Data obtained from an aging sample of B2O3.

3.3.1 General properties of the dynamical heterogene-
ity arising from stretched exponentials relaxations

We have now a tool to extract σ2
g2(t) from the experimental data, and we can

introduce a general approach to the interpretation of the observed results.
Many relaxation processes in glassy systems (and in many other situations)
are described by a stretched exponential function

g2(f 2
q (t1), τ(t1), β(t1), t)− 1 = fq(t1)2e−2(t/τ(t1))β(t1)

, (3.25)

where f 2
q is the non ergodicity level, τ(t) the relaxation time and β(t) the

stretching exponent. Here we are considering the most general case in which
all the parameters can in principle fluctuate in time. Applying equation 3.23
we get : (

∂g2 − 1
∂f 2

q

)2

σ2
f2
q

= e−4(t/τ)βσ2
f2
q(

∂g2 − 1
∂β

)2

σ2
β = 4(f 2

q )2
(
t

τ

)2β
ln2

(
t

τ

)
e−4(t/τ)βσ2

β

and lastly for the relaxation time(
∂g2 − 1
∂τ

)2

σ2
τ = 4(f 2

q )2β
2

τ 2

(
t

τ

)2β
e−4(t/τ)βσ2

τ

if the three parameters are independent their covariances are equal to zero,
and we get

σ2
g2−1 = 4(f 2

q )2
(
t

τ

)2β [(
ln2 (t/τ)σ2

β

)
+
(
β2

τ 2 σ
2
τ

)]
e−4(t/τ)β + e−4(t/τ)βσ2

f2
q

(3.26)
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Figure 3.10: Example of the expected dynamical heterogeneity for a
stretched exponential function with β = 0.7, τ = 1000 and f 2

0 = 0.8.
Red: contribution due to the fluctuations in τ ,green: contribution due to
the fluctuations in β,magenta: contribution due to the fluctuations in f 2

0 ,
black: fluctuations of g2 − 1 .

In figure 3.10 is represented a numerical example for the expected σ2
g2−1 for

a stretched exponential without the cross-correlation terms, the conrtibution
arising from contrast fluctuations is a monotonically decreasing term, while
the contribution from the fluctuations of the relaxation time is a peaked
function at values close to τ , the term due to the fluctuations in shape (β) is
still a peaked function, but with a maximum located at shorter time-scales.
It is interesting to point out that both the contributions to σ2

g2−1 coming from
the relaxation time and the stretching exponent are directly proportional to
the squared value of the non ergodicity level. Typically, the fluctuations of τ
are the main contribution to σ2

g2−1, and considering only this term, it’s easy
to compute the lag time t∗ corresponding to the dynamical susceptibility
peak

t∗ = 1
21/β τ.
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Chapter 4

Aging in diboron trioxide glass

4.1 Aging in structural glasses

We have seen that in general therms, what differentiates a glass from an
undercooled liquid is its out of equilibrium condition and consequently that
its physical properties explicitly depend on the time elapsed since the glass
creation, or more generally, they depend on the thermal history of the
sample.
Glassy materials, such as polymers, alloys, silicates and so on, change their
properties even years after the time when they have been produced [43, 100].
The basis of this physical aging is the process of establishing equilibrium,
usually studied after a decrease in temperature below the glass transition
temperature Tg. Aging is the key to understand the gradual changes in
volume, density, transport coefficient and other properties as a function of
time after the departure from equilibrium. The mechanisms responsible for
aging are the same that govern the structural relaxation in the undercooled
liquid state, with the added complication that the aging rate depends not
only on the temperature but also on the internal structure of the glass that
changes during aging [101].
The aging phenomenon is now a known topic and it has been described at
many theoretical levels. An important phenomenological model developed
to describe the aging process is the Tool-Narayanswanmy-Moynihan (TNM)
framework [102, 35, 103], specifically designed for the treatment of structural
glasses. The first quantitative description of the aging phenomenon can
be dated back already in the forties [102] and a complete formulation was
given in the seventies [103]. The description stems out from an initial simple
consideration: after a temperature jump the properties of the sample change
as a function of the new temperature and of the internal dynamics that
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evolves in the glass. The temperature dependent change, which occurs almost
instantaneously, leads to a slight change of the average distance between the
atoms. The time dependent changes are more complex and can be imagined
to be brought by several mechanisms of atomic rearrangements. Thus to
describe structural state of a nonequilibium glass exactly, it is necessary
to specify not only its pressure, temperature and other order parameters,
but also an additional set of parameters that describes the progress of the
relaxation mechanisms. Given p a generic physical property (e.g. the free
volume or the density) and considering its dependence in temperature in the
linear approximation (p ∝ T ) the coefficient in the liquid region is described
by

αpl = 1
p

∂p

∂T
αpl = αpg + αps

where αpg is the coefficient that describes the temperature dependent change,
while αps describes the structural changes. In the liquid region the structural
rearrangements are very fast and practically, only αpl can be measured,
while in the glassy state the internal dynamics becomes nearly arrested
and typically only αpg is observed. We can think of αpg as the short time
response and αpl as the long time response to a temperature change. Another
important quantity that we have to define is the response of our generic
property p after a temperature jump ∆T = T1 − T2

M(t,∆T ) = p(t)− p2∞

p1 − p2∞
= Tf (t)− T2

T1 − T2

where p1 is the initial value of the equilibrated property, p2∞ corresponds to
the asymptotic value of the equilibrated property at the new temperature T2.
With this relation we have operatively defined an important concept: the
fictive temperature Tf for the observable p. It is important to outline the fact
that as it is defined, the fictive temperature is in general different for different
physical properties. Before proceeding with a more detailed description it is
useful to clarify the assumptions over which this model is based: i) structural
relaxation is treated here as a single stretched exponential mechanism with a
constant activation energy, This assumption is equivalent to postulating the
existence of several relaxation mechanisms with identical activation energies;
ii) The slope of the equilibrium response curve is assumed to be fixed and
changes in actual and fictive temperature are assumed to simply alter the
time scale; iii) The intrinsic relation between force and flow is assumed linear,
in other words this model works with constant temperature coefficient only,
i.e. physical properties as expansions coefficients, heat capacity etc... are
assumed not to change significantly in the temperature range over which the
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experiment is performed. With these assumption it is possible to describe
the generalized equation of the evolution of the property p in response to an
arbitrary temperature jump T (t)

p(t)− p(0) = p(0)αpl(T − T0)− p(0)αps
∫ ξ

0
M(ξ − ξ′)dT

dξ′
dξ′

where ξ is the reduced time

ξ =
∫ t

0

dt′

τ(T, Tf )

and from [102, 35, 103]

τ(T, Tf ) = τ0e

(
xE
kbT

+ (1−x)E
kbTf

)
(4.1)

In the original idea proposed by Tool [102] it was stated that for every non
equilibrium state there exists a single corresponding equilibrium state. Thus
the original definition of fictive temperature was the actual temperature
of an hypothetical equilibrium condition that corresponds to the given
non equilibrium condition. As a consequence of this interpretation of the
fictive temperature, the memory effect wasn’t appropriately described by
the simple Tool’s model. Here the non equilibrium state is described as a
mixture of different equilibrium states, accordingly the fictive temperature
can be defined as:

Tf = T +
∫ ξ(t0)

ξ(T )
M(ξ − ξ′)dT

dξ′
dξ′

or in the more compact way [35]

Tf = T0 + ∆T
1− e−

(∫ t
t0

dt′
τ(T,Tf )

)δ (4.2)

with δ ∈ [0, 1].
This phenomenological model has been proven to be very effective in the
description of the time evolution of the glassy physical properties with the
“only” requirement of knowing exactly the thermal history of the sample.The
physical observable measured in the experiments here reported is the internal
dynamics itself and so a little deeper description of the aging glass is needed.
Let’s recall briefly what was previously said in chapter 2. We have seen that
for a general correlation function it is possible to identify a fast equilibrated
dynamics and a long time aging relaxation.

C(tw, tw + t) = Ceq(t) + Caging(
tw + t

tw
)
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where the characteristic time of the aging part corresponds to the α relaxation
τα, and typically it is seen that τα(tw) ∝ tw [43]. In these cases one talks
of full aging. Actually, for many systems a milder dependence is reported,
namely τα(tw) ∝ tµw with µ ∈ [1/2, 1], and one refers to these cases as
sub-aging [104]. It has been found through numerical simulations that the
occurrence of sub-aging or full-aging depends on how far from eqilibrium the
observed glass is [72]. From these models another requirement is deduced
for Caging, that is the property that all the Caging taken at different tw
rescale onto a single master curve, this property is often called time aging-
time superposition [43, 104]. This time-aging time superposition principle
has been challenged by some experimental results [101, 73] and also some
fundamental consideration are against it. In fact, in the hypothesis that the
structural dynamics is of heterogeneous origin, then is is legit to expect that
each microscopic region will reach equilibrium on timescales dictated by its
own dynamics. Thus, during the aging, the overall distribution of relaxation
frequencies will results distorted, and hence the final shape of the observed
relaxation function will emerge altered in respect to an equilibrated one.
For most glasses of common use, this aging process takes place on very long
time scales, few experiments have been performed in these conditions, and
the time required to observe a significant change is definitively too long
for the current capabilities of a DLS set-up, even with the multispeckle
approach[100, 105]. Nevertheless looking not too deep in the glass transition
region it is possible to observe aging phenomena on more reasonable time
scales.

4.2 Diboron trioxide
Diboron trioxide, together whit silica and germania, is one of the most widely
used glass formers and can be found mixed with other oxides and other
elements in a lot of common use objects, for example the main ingredients of
the majority of cooking glassware are SiO2 and B2O3. The glasses obtained
mixing boron oxide and silica are usually characterized by high chemical
stability and low thermal expansion coefficient making them the best choice
for the containment of chemically reacting materials in a lab or food in
the kitchen. However in its pure form, boron oxide presents very different
characteristics, starting from the coefficient of thermal expansion higher by
about 2 orders of magnitude whith respect to borosilicates [106], to the low
chemical stability, in fact diboron trioxide reacts with water forming boric
acid BH3O3, and even the presence of very small quantities of water can
strongly affect the final dynamical properties of the glass and it is sufficient
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to expose the samples to ambient humidity to see a significant change in the
glass transition temperature. Despite all these complications, pure boron
trioxide presents some properties that make it a very good sample when one
wants to study a system in the glass transition region; in first place, its Tg
is quite close to room temperature in respect to the other oxides (ranging
from 525 K to 570 K [107, 108, 109, 110, 111, 112, 113]) and above all the
crystallization of molten B2O3 at ambient pressure is strongly kinetically
disfavored [114] making it possible to cool the samples even with very slow
cooling rates and to keep the samples in the undercooled liquid state for very
long periods without worrying about the occurrence of the crystallization.

4.3 Sample preparation
All samples were prepared starting from anhydrous powder of B2O3 pur-
chased from Sigma Aldritch. Small quantities, typically between 2 to 3
grams, of this powder were loaded inside quartz glass test tubes, with 10
mm of inner diameter, 80 mm of height and 1 mm of wall thickness.
in order to obtain water-free samples, before melting the powder the loaded
test tubes were slowly heated to 140◦C, enhancing the degradation of
boric acid and the dessication of the powders [115]. Boron oxide melts
at Tm = 650◦C, however since it is a rather viscous material, the test tubes
were carried at 950◦C and held at that temperature for a long period (typ-
ically 48 hours) in order to let all the bubbles formed inside the melt to
exit from the bulk; then, taking advantage of the exceptional glass-forming
ability of boron oxide, the samples were slowly cooled to 330◦C in order to
minimize the creation of stresses between the SiO2 glass of the tube and the
B2O3. A typical thermal treatment for the glass production was:

- from room temperature to 140◦C at 1 K/min

- held at 140 for 3 hours

- from 140◦C to 950◦C at 1 K/min

- held at 950◦C for 48 hours

- from 950◦C to 330◦C at 0.5 K/min

Actually, for the production of bubble free samples, 950◦C for 48 hours is
an oversized amount of time, however we noticed that the reduction of the
duration of this step strongly influenced the glass transition temperature in
the final glass, indicating the presence of contaminating substances trapped
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inside the network (most probably water molecules) [107].
Once the samples reached 330◦C (603 K) they were immediately transferred
inside a furnace (ready at the same temperature of the preparation oven)
specifically designed for light scattering experiments. All of the samples
obtained in this way appeared, with a simple visual examination, completely
transparent and homogeneous. This “hot” transfer between furnaces was
necessary in order to minimize the stresses between the sample and the
quartz tube containing it. In fact, the first sample were cooled down to room
temperature, and the subsequent attempts to reheat them resulted in an
explosion of the couvette and in the shattering of the boron oxide glass.

4.4 Experimental set-up
The DLS setup was based on a 532 nm green laser as light source with a
beam attenuated to powers ranging between ' 15 mW and ' 100 mW at
the sample position on a spot of '100 µm in size. The sample was held in a
silica cilindrical couvette (inner diameter of 7 mm) placed in a furnace with
a temperature control to within 0.1 K. The radiation scattered at an angle
of 90o from the incoming beam was first selected by an aperture and then
imaged by a lens on a CCD (Atik 11000) connected to a PC. The CCD has
pixels 9 µm in size. It was possible to change the lens-sample position in
order to reach different magnifications of the scattering volume, the aperture,
composed by an adjustable iris, was changed for every configuration in order
to maintain a similar pixel size to speckle size ratio. In fig 4.1 is reported a
drawing of the implemented set-up, the distances are not in scale, in fig 4.2
a picture of the actual set up, and of the sample holder. For the experiments
reported in this chapter, the magnifications of the scattering volume where
setted to be 1:1 for the measurements of the undercooled liquid, and 3:1 for
the measurements of the aging system.

4.5 Results for B2O3

The details of the two time autocorrelation matrix and the autocorrelation
function have been reported in the previous chapters, but let’s recall briefly
the most important definitions: the autocorrelation matrix

C(t, τ) =
〈δIp(t)δIp(t+ τ)〉p
〈Ip(t)〉p 〈Ip(t+ τ)〉p

, (4.3)
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Figure 4.1: schematic representation of the set-up implemented for the
measurements carried out in the present chapter

Figure 4.2: picture of the various components of the set-up. (a) picture of
the adjustable iris and imaging lens. (b) Picture of the furnace placed inside
the optical set-up. (c) picture of the sample holder, usually located inside
the furnace. (d) picture of the Atik 1100 camera.
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where Ip(t) is the intensity collected by pixel p at time t, 〈. . .〉p indicates the
average over the pixels and δIp(t) = Ip(t)− 〈Ip(t)〉p.
The autocorrelation function:

g2(τ)− 1 = C(t, τ). (4.4)

And lastly the Siegert relation:

g2(τ)− 1 = A|Φq(τ)|2, (4.5)

An example of an autocorrelation matrix C(t, τ) computed for measure-
ments collected at T=503 K is reported Fig.4.3.

We can use an equilibrated undercooled sample to test the robustness
of the multispeckle photon correlation (MPCS). In Fig. 4.4 are reported
different curves that correspond to different time intervals (ranging from
5 minutes up to 3 hours) used to compute the time averages in Eqs. 4.4
and 4.5 starting from the same autocorrelation matrix shown in Fig. 4.3.
These curves are all mutually consistent, indicating that i) the MPCS is a
reliable technique also for integration times similar and even smaller than
the characteristic time of the probed dynamics, ii) even with relaxation
times of thousands of seconds we are observing an equilibrated undercooled
liquid.

4.5.1 Equilibrated undercooled liquid
The measurements were carried out starting from 553 K, i.e. above the glass
transition temperature (Tg =526 K for our samples). Between measurements
at one temperature and the following one, the sample was cooled down at
a rate of ∼3 K/min. The CCD data were collected only in the region of
interest (ROI), corresponding to the image of the sample (30x500 pixels
in size). With this choice of the ROI a rate of '1 frame/s was achieved.
Every CCD image was collected with an integration time of 0.1 s/frame.
The collecting lens was positioned in a imaging condition with a magnifying
factor M=1 and a pin-hole aperture chosen in order to obtain an average
speckle-size of ≈ 3 pixels2.

In figure 4.5 the final autocorrelation functions are reported for different
temperatures across the glass transition. The data are fitted using a stretched
exponential function

g2(t)− 1 = A|f0e
−(t/τα)β |2 (4.6)
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from which τα, β and Af 2
0 are deduced. The stretched exponential function

follows the experimental points quite closely in the first time lags. For longer
time lags the experimental data show larger statistical fluctuations since the
number of C(t, τ) elements decreases as τ increases.

The values obtained for the stretching exponent β come out to be equal
to 0.67±0.09 and don’t show a marked temperature dependence in the
investigated region, as can be seen from figure 4.7. This result is consistent
with the ones that can be found in literature, i.e. β=0.65±0.03 [111, 84] and
β=0.6 [117]. However, it has been observed a weak temperature dependence
that tend to produce more stretched autocorrelations for lower temperatures
[111].

The results obtained for the mean value of τα are reported in Fig. 4.6
where they have been calculated as 〈τα〉 = Γ(1/β)τα/β [47]. The tem-
perature dependence of τα follows an exponential behaviour that can be
described by the empirical formula τα = τ0exp(B/T ). The quantity B is
proportional to the activation energy, E = B · kB, or to the fragility index
m = B/Tg. The results here obtained for 〈τα〉 are compared on an Arrhenius
plot to the data of previous experiments on B2O3 [116, 111, 84]. While
the three sets of data show the same slopes within the experimental error
(i.e. the same activation energies), the glass transition temperatures, e.g.
the temperatures where 〈τα〉=100 s, are quite different: Tg=526 K for our
sample (q ∼ 0.0242nm−1), 556 K for that of Ref. [111] (q ∼ 0.0264nm−1)
and 569 K for that of Ref. [116] (q ∼ 0.0251nm−1). A possible explanation
for this difference can be found in the fact that, as previously anticipated,
several physical properties of B2O3 are very sensitive to the presence of
residual water molecules, and therefore critically depend on the sample
preparation procedure [109]. As a matter of fact, the values of Tg reported
in the literature span a temperature range of about 45 K between 525 K
and 570 K [107, 108, 109, 110, 111, 112, 113].

The 〈τα〉 data here presented follow quite closely an Arrhenius behaviour
as shown by the linear fit reported in Fig. 4.6. From the slope of this linear
fit it is possible to calculate the fragility index, m [117]. We obtain for m a
value of 29±1, well compatible with the value of 27±3 obtained from the
literature [84].

In addition to τα and β, it is possible to obtain also the non-ergodicity
level fq from the fits reported in Fig. 4.5 once the instrumental factor A
appearing in Eq. 4.5 is known. The factor A is in turn evaluated in two
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literature data from [111], the red dashed line is a guide to the eye.

steps: i) comparing a correlation function measured using the multi-speckle
setup here presented and that measured using a conventional setup based on
a photomultiplier on the same sample in the same conditions; ii) evaluating
the instrumental factor relative to the photomultiplier setup measuring a
standard dilute solution of 100 nm diameter silica spheres in water. Using the
data reported in Fig. 4.5 and the instrumental factor evaluated in this way
it is possible to estimate for fq a value of 0.82±0.05. This result is consistent
with the value fq=0.75±0.03 reported in Ref. [84]. Moreover, it is also
interesting to compare the value of fq here obtained with the values of the
zero-frequency longitudinal elastic modulus, M0 and the infinite-frequency
longitudinal elastic modulus, M∞, given that fq = 1−M0/M∞ [88]. Using
literature values for the elastic modulus in the low frequency limit [116, 118]
and in the high frequency limit obtained with ultrasonic and Brillouin light
scattering techniques [119, 120], respectively, we find fq = 0.86 ± 0.03 at
T=523 K, which is well consistent with the result obtained here.

We have seen how this diboron trioxide behaves in the glass transition
region in the equilibrated undercooled condition and how, with the right
amount of patience, slow cooling rates and time for the sample to equilibrate,
we can reach relatively low temperatures below Tg. But what happens if we
do not wait this much time to cool before measuring our samples? Then our
system will eventually fall out of the equilibrium and start to age, what we
have inside our furnace will then be a proper glass.
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4.5.2 Aging glass

Even for these measurements the experimental set-up didn’t change sub-
stantially: green laser, 90◦ scattering geometry and imaging configuration.
The main difference it the increased magnify factor, now 3:1.The increased
enlargement is the best compromise between good statistic (i.e. for a fixed
speckle size, larger the images, larger the number of pixels exploitable to com-
pute the autocorrelation matrix) and physical extension of the experimental
set-up which is directly linked to the thermal stability of the whole apparatus.
In fact even small changes in the laboratory’s temperature (∼ ±0.25k in 20
minutes ) can induce changes on the optical apparatus in the order of few
µm, these shifts are magnified by the collecting optics and if this magnified
thermal drift covers a distance comparable with the pixel size then it will
begin to affect even the measured dynamical properties limiting de facto the
maximum observable relaxation time.Even in this case the pin-hole aperture
was chosen in order to have the average speckle-size of ∼ 3 pixel2.
In order to create our out-of-equilibrium system we let our sample equilibrate
at temperatures 10 K above Tg and then we change the set point of the fur-
nace to a value below Tg. Thus the sample will change its temperature with
a rate defined by the furnace’s heat capacity, that in our case is 4.4K/min.
In figure 4.9 three thermal histories are shown. After this cooling, we give
some time to our system to equilibrate at the new temperature, typically
20 minutes, and we start the analysis, in other words we set tW = 0. One
could argue that a more precise identification of the tW = 0 can be obtained
identifying the exact instant in which the sample’s internal dynamics is
outrun by the changing temperature, namely looking at the intercept be-
tween the equilibrium Arrhenius curve and the curve of the sample’s thermal
history like how is is done for the more canonical phase transitions in a TTT
diagram [26], see fig 4.8. However doing so we would take in our analysis
even times at which our sample is still driven out of the equilibrium by the
thermal treatment. This choice of the origin of the sample’s age is indeed
quite arbitrary, but given our quite “mild” temperature treatment it is the
safest way to distinguish between an undercooled liquid driven in an out
of equilibrium condition with a temperature jump and the proper glassy
phase. More pragmatically, this choice allows us to look at our glass knowing,
at least macroscopically, that there are not strong “artificial” temperature
gradients inside the scattering volume.

The speckle patterns are recorded during the whole process and we can
look the effects of cooling on the autocorrelation matrices. In fig 4.9 some
examples are reported, it can be seen that at the beginning the system is
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of the system is outrun by the external temperature change.
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Figure 4.9: examples of three different temperature jumps. On the left, the
recorded fournace temperature is reported against the time elapsed since
the change of the setpoint. The final temperatures are 250◦C (a), 245◦C (b)
and 240◦C (c). On the right the corresponding two times autocorrelation
matrices are reported

still in equilibrium with a relaxation time of about 30s. Then, when the
temperature of the furnace starts to change, the correlation begins to increase
in a quite steep way (about 1 or 2 orders of magnitude in few minutes) until
it reaches the new temperature and then begin to slowly increase with the
waiting time as reported in fig 4.10. The relaxation times shown in fig. 4.10
are obtained computing Pearson autocorrelation function (i.e. C(t, t) = 1
and C(t, t′) = 0 for t′ − t → ∞) and then finding the lag time at which
C(tW , tW + τ) = e−2. In the cooling regime we can observe how the values
obtained for this “effective relaxation time” increase quickly indicating that
the system’s dynamic appears to be completely determined by the external
temperature.

When the temperature settled at the final value and the sample’s bulk
has thermalized we can begin our aging measurements. Obviously the rough
thermal treatment, that inevitably goes with every experiment on aging, and
the finite size of our sample will lead to the formation of internal stresses
inside the bulk, and we will shorty see what are the consequences of these
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lation functions reach the value exp(-2) for an aging sample. In this case the
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time behaviour is reported. The very first data points correspond to the
equilibrated undercooled liquid, while the sharp jump corresponds to the
temperature decrease

stresses.

There exist several ways to deal with an autocorrelation matrix for an
aging process; the most straightforward one is simply to select small ma-
trices from the total autocorrelation matrix and compute the g2 − 1 for
each sub-matrix collecting the autocorrelation functions at different waiting
times. The advantage of this approach is a more robust and simple inter-
pretation of the results, while on the other side we have a rather coarse
sampling of the ages of the sample giving a sensitivity on tW bounded to
be a multiple of the α relaxation time, (i.e. in order to obtain reliable fits
of the data is always a good practice to see a full decorrelation for the g2−1).

For deep temperature jumps it is not possible to reach the equilibrium
in a reasonable time or, for very low temperatures, avoid the shattering of
the sample as a consequence of the building up of the internal stresses. In
this regime, the time required to reach equilibrium is much longer than the
relaxation time and a full aging regime can be easily observed. Moreover the
aforementioned “loss” in sensitivity on tW is not a crucial task in this case,
since the aging rate is quite small compared to the relaxation time itself. In
figure 4.12, three different full aging cases are shown. In all three situations
the aging rates are quite similar.
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Figure 4.11: Example of an aging autocorrelation matrix analysed dividing
it in small submatrices
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Figure 4.12: relaxation times observed in three aging samples at three
different temperatures. The first ones (493 K and 498K ) are measures lasted
7 hours and each relaxation time is obtained integrating 1 hour. The third
one is a measure toward the deepest temperature reported in this thesis
and lasted 24 hours. The data points here reported are computed with an
increasing integration time, adopting the procedure illustrated in fig 4.10.
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Figure 4.13: Left, autocorrelation function for a sample at 503,15 K measured
at three different ages (2,6 hours, 30,4 hours and 91,3 hours). The continuous
red lines are the stretched exponential fits to the data. Right, the same
autocorrelation functions rescaled by the apparent relaxation time.

A straightforward approach

As can be already seen in fig 4.11 and more clearly in fig 4.13, the auto-
correlation functions from the “fast aging” regime appear more compressed
than the ones corresponding to the equilibrated undercooled liquid. The
stretched exponential is obviously no more the correct function to describe
the data, but it can still be useful to get a glimpse on the main features of
our aging glass.

Looking at the evolution of the KWW’s parameters it is clear to see that
both the relaxation time (τ) and the shape (β) follow a simple exponential
law of the form

τ(tW ) = τ∞ − (τ∞ − τ1)exp
(
− tW
τrel

)
(4.7)

β(tW ) = β∞ − (β∞ − β1)exp
(
− tW
τβ,rel

)

similar simple phenomenological laws has been readiliy observed in many
other aging systems [73, 121, 105]. In fig 4.14 the results for τ(tW ) are
reported. The parameter τ1 represents the the relaxation time immediately
after the final temperature has been reached, and it is clear how, for tem-
peratures further away from Tg, the difference between τ∞ and τ1 becomes
progressively larger while, the asymptotic value τ∞ falls on the Arrhenius
line extrapolated from the equilibrated undercooled liquid. It is worth notic-
ing that for long enough measurements, the relaxation times of the oldest
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Figure 4.14: Left, relaxation times at different ages for 6 temperature jumps,
the datapoints are rescaled by the asymptotic value τ∞ computed from 4.7.
The red lines are the fits to the data with equation 4.7. Right, Arrhenius plot
for the equilibrated undercooled liquid (blue symbols) compared with the
initial values of the relaxation time (black dots) and the asymptotic values
computed from 4.7. It is clear that the values of τ∞ fall on the Arrhehnius
line extrapolated from the equilibrium values (red line)

samples are compatible within the experimental uncertainty with the values
of τ∞ and do not depend anymore from the waiting time, i.e. the sample
had managed to equilibrate and can be referred to as to a very viscous
undercooled liquid.

From the behaviour of β we can understand how the shape of the auto-
correlation function evolves in time. As already stated before, the dynamic
of the younger samples cannot be described by a simple stretched exponen-
tial due to the presence of a clearly visible “distortion”, this feature has
the qualitative effect to compress the relaxation curve and looking at the
evolution of the shape parameter we can be able to track this deformation
at different times. In fig 4.15 we can see the results for β(tW ). Also in this
case the asymptotic value β∞ is aligned with the values of the equilibrated
undercooled liquid with a slight tendency to decrease with temperature, as
already observed in other experiments [111]. The initial value β1 is also
interesting, it tells us that the net effect of this anomalous shape is a com-
pressed decay at early stages, and the further away we are from Tg, the more
the initial decay function is closer to an exponential.
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Beyond a stretched exponential fitting

Among the consequences of the rapid quench there is the creation of internal
stresses inside the glass volume. Now, in order to infer a more complete
understanding of the physical phenomena that were developing in our samples
it is necessary to consider the origin and the implications of these stresses.
Due to the finite dimensions and the low thermal conductivity common to all
glasses, when the sample is cooled different portions of the volume experience
in practice a different cooling rate; at any instant during the cooling, the
structural evolution of the surface will precede that of the interior of the
sample. Thus temporary differences must exist between the specific volumes
of layers of glass near the surface and in the center of the sample [122]. This
difference in specific volumes produces strains and hence stresses inside our
sample.
The final temperatures at which all our experiments were carried out are
not too far from Tg and actually they lay in the temperature range in which
the annealing of glasses is typically carried out [102, 123]. Then inside
the samples volume we have to expect alongside the intrinsic structural α
relaxation also the rearrangements related to the dissipation of the internal
stresses that have been created after the quench. The mechanisms regulating
this dissipation imply an equalization of the mass density and thus a motion of
a certain amount of atoms from the denser center [122, 102], this macroscopic
movement will produce then a motion of the centroids of the speckles across
the pixels. Since this phenomenon is of dynamical origin, it will affect the
autocorrelation in a way that can be described using the approximations
reported in [124]. Qualitatively speaking the “natural” autocorrelation will
be truncated by a fast decaying function, that strictly depends on the velocity
v of the process that is taking place inside our sample

g2(t)− 1 = |Φq(t)|2G(v, t)

where G(v, t) is the term arising from the macroscopic motion, that in the
simplest approximation is a Gaussian function

G(v, t) = exp

(
−
(
v

σ
t
)2
)

where v is the velocity of the speckle crossing the pixels and σ2 = σ2
speckle +

σ2
pixel, where σspeckle and σpixel are the speckle diameter and the pixel size

respectively [124]. Adopting this correction it is now possible to fit our data
with the function:

g2(t)− 1 = A|
(
e−(t/τα)β

)
|2 · e(−(Γt)2) (4.8)
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Figure 4.17: Left, normalized autocorrelation functions computed for the
same subset of images but with different binning applied on the original
data. It is clear that adopting a bin size of at least 3 pixels, the tail
of the autocorrelation is already completely compatible with a stretched
exponential (green dashed line). Right, comparison between the relaxation
times obtained following different approaches starting from the same images.
In blue are the relaxation times obtained employing eq. 4.8, in orange the
relaxation time obtained from a fit with a simple stretched exponential, and
in yellow the relaxation times obtained from a stretched exponential fit on
the autocorrelations obtained from binned images (bin size of 3 pixels).

where now τα is meant to be the real structural α relaxation time and β
the real stretching exponent, while Γ ∝ v is a parameter monotonically
decreasing with tW .

We can test this hypothesis computing the autocorrelation functions
obtained sampling the original images into progressively larger bins. In fact
if the distortion is due to the movements of the single speckles across the
detector, increasing the effective dimension of the pixels will reduce this
effect, i.e. we are increasing the value of σpixel and Γ ∝ 1/σ2. As can be
seen from the images in fig. 4.17 considering bins of the size of 3X3 pixels,
the characteristic tail of the stretched exponential is already recovered. The
drawback of this approach is a rapid decrease in contrast which scales as
1/N , where N is the number of coherence areas recorded by a single pixel
[83].

Another consideration in support to this hypothesis can be found looking
at the signal arising from the rims of the scattering volume or more in
general, from the the portions of the image where a small percentage of
reflected laser light is present. In fact, since boron trioxide is a very clear
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and transparent material even the faintest reflection can affect greatly the
observed autocorrelation function polluting the signal with a small hetero-
dyne signal [125]. One advantage of working in an imaging configuration
is that such polluted regions can be quite easily identified. Normally one
avoids to consider such regions, and typically they are excluded via software
masks; but it is possible also to take advantage of the presence of this kind of
information to take a glimpse at the heterodyne autocorrelation function. In
these regions, in fact, we can express the measured autocorrelation function
with a modified Siegert relation [125, 83, 126]:

g2(t)− 1 = A
(
C2|g1(t)|2 + 2C(C − 1)Re(g1(t))

)
e−(Γt)2

in our case g1 = eiqvtf0e
−(t/τα)β , and the previous equation become

g2(t)− 1 = A
(
C2|f0e

−(t/τα)β |2 + 2C(C − 1) cos(qvt)|f0e
−(t/τα)β |

)
e−(Γt)2

(4.9)
where A is the instrumental contrast, C is the parameter that express the
percentage of homodyne signal and v is the velocity of the scatterers inside
the sample. In this framework a linear dependence between Γ and v is ex-
pected. In figure 4.18 an example of an autocorrelation measured on a spot
with a 99% of homodyne signal in a young sample is reported. The presence
of beatings can clearly be seen on the tail of the relaxing autocorrelation
confirming the presence of a velocity field inside the scattering volume.

With this concept in mind we can then proceed to interpret the data with
a more complete approach. As can be seen in fig. 4.19, now the fitting func-
tion can describe reasonably well the data at all the time-scales. First of all
we see that the Γ parameter, as already anticipated, is a decreasing function
of tW . In fig 4.20 it is shown an example of the aging of 1/Γ compared with
the one observed for < τα >. In the beginning the value of 1/Γ is lower than
the corresponding < τα >, meaning that in the young samples this internal
motion is developing at a much faster pace than the structural relaxation;
the situation changes rather quickly, in fact 1/Γ manifest a faster aging
rate than τα and eventually a crossover occurs before τα has reached the
equilibrium value. In the end this contribution will became too small to be
detected (typically this is the case for the higher final temperatures). In fig
4.20 we see that both the initial value Γ(tW = 0) and the rate at which Γ→ 0
decrease with decreasing final temperature. From these observations we can
infer some preliminary conclusions regarding this Gaussian contribution. In
fact since this term is dependent both on the sample’s age and on the final
temperature then: i) it must be a phenomenon that takes place inside the
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Figure 4.18: Autocorrelation function computed selecting a portion of the
detector with a small contribution of light reflected from the couvette’s wall.
In this specific example the percentage of the heterodyne signal is less to 1%,
however the beatings due to the heterodyne detection of a moving sample
can be clearly seen on top of the autocorrelation function. In the inset the
Fourier transform of the autocorrelation function is reported, showing the
presence of a periodic component in the spectrum. In order to see clearly the
beatings it is necessary to select a rather small tW interval when computing
the autocorrelation because the detected velocity is evolving and an average
on too large waiting times will eventually cancel out all the ripples leaving
only a large bump on the side of the autocorrelation function.
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Figure 4.19: Example of an autocorrelation function for a “young” sample
(blue dots) and the fit employing equation 4.8 (red line). For comparison the
stretched exponential expected for this sample age is shown as well (green
dashed line)

scattering volume and not a spurious effect due to the sample holder or the
optical set-up, ii) 1/Γ is related to τα, suggesting a link between the internal
dynamics of the sample and the value of Γ. This Γ(tW ) then describes
the evolution of the velocity field inside the sample’s bulk developed as a
consequence of the dissipation of the internal stresses.

Another important observation is that thanks to this Gaussian correction
the value of β does not depend any more on the sample’s age, thus preserving
the concept of the time aging-time superposition, see fig 4.21. Moreover it
appears evident that, for what concerns τα the difference between the initial
and the asymptotic values ( τ∞ − τ0) is greatly reduced, see fig 4.22. This
is true to the point that equation 4.7 can be used to describe effectively
only the points corresponding to temperature jumps larger than 10 K. In
fact, looking at the values that can be obtained for τrel, and comparing
them with the data from the previous approach, fig. 4.22, we can see that
the two results for τrel are consistent within their respective errorbars, but
this is mainly thanks to the increasing uncertainty on the newly computed
τrel. This huge errorbars are due to the significant decrease of the difference
τ∞− τ1, that for the highest temperatures is so small to be comparable with
the experimental fluctuations of the measured τα. However, it is now possible
to employ the more complete Tool-Moynihan-Narayanaswanmi model to
describe our data fig. 4.23, using a slight modified version of equations 4.1

83



0 1 2 3 4 5 6 7 8 9

t
W

 [s] 104

1000

1500

2000

2500

3000

3500

4000

4500

5000

 [s
]

< >

1/

103 104 105

t
W

 [s]

10-4

10-3

 [1
/s

]

T
final

=520.65 K

T
final

=518.15 K

T
final

=513.15 K

Figure 4.20: Left, comparison between the aging of < τα > and 1/Γ. It
is evident that the latter has a faster aging rate and that it grows almost
linearly with tW . Comparison of the measured aging of Γ at three different
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Figure 4.21: red squares, exponent β evaluated at different ages for a single
temperature jump (final temperature 518,15 K) using the modified equation
4.8. For comparison on the same plot the values of β obtained with the
stretched exponential are reported (green diamonds). The black dash-dotted
line is the value of β at equilibrium, while the dashed lines are the error
upon this final value

84



and 4.2

τ(T, Tf ) = τ0e
a

(
xE
kbT

+ (1−x)E
kbTf

)
(4.10)

Tf = T0 + ∆T
1− e−

(∫ t
t0

dt′
τ(T,Tf )

)δ (4.11)

where τ0 and E are obtained from the Arrehinus curve of the equilibrated
data, ∆T is the temperature difference between the starting temperature T0
and sample’s temperature, x describes the relevance of the fictive temperature
in the determination of τα and δ describes the broadening of the relaxation
time spectrum [102, 35, 103], while a is a parameter necessary to compensate
the presence of systematic errors that can have occurred in the determination
of τ0 and E. In order to work, this model needs the complete thermal history
of the sample and in all cases it is able to describe quite well the data keeping
as free parameters a, x, and δ see figure 4.23. For each temperature jump,
the results from such fits are consistent within their experimental error bar
and performing a weighted average of the parameters a,x,δ, obtained from
each temperature jump, we get a = 1.002± 0.001, x = (0.005± 5)10−2and
δ = 0.25± 0.06. The result for a substantially tells us that the systematic
errors in τ0 and E are not too big, the value for x tells us that the aging
mechanism in this case is unaffected by the sample’s temperature and is
completely determined by Tf and from δ we learn that in order to describe
the observed dynamics one has to consider a rather large distribution of
relaxation times. These facts can seem in contrast with what has been
observed in the aging of B2O3 in some previous works [35, 127], these
differences can be justified looking at the probed temperature ranges. In the
historical works of Moynihan and DeBolt the sample measurements were
always carried out at temperature well above Tg, while in the present work
the samples were carried at much deeper temperatures. Another possible
explanation for this discrepancy can be provided by the presence of the strong
stress relaxation mechanism, which interferes with the normal thermally
activated aging process delaying the time evolution of τα.
From the data shown in fig 4.22 and 4.23 it appears that smaller values of
τ∞− τ1 are related to greater values of τrel. We can now test this qualitative
hypothesis knowing the values for equations 4.10 and 4.11. In fig. 4.24
are reported the expected relaxation times at different temperature jumps
towards the same final temperature slightly below Tg. For higher initial
temperatures the sample has the possibility to better arrange its internal
structure and thus to find itself, at the end of the temperature ramp, with
a relaxation time closer to the equilibrium one. However as soon as the
temperature has ceased to change, the aging rate of the samples with an
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Figure 4.22: left, τrel at different temperatures obtained using equation 4.7
on τα(tW ) (blue circles) compared with the values reported in fig. 4.16 (black
triangles). The two results are compatible, within their respective errorbars.
The dashed line here is just a guide to the eye. Right, Arrhenius plot with the
real values of τα at tw = 0 (black diamonds) and tw →∞ (magenta circles),
compared with the values of the undecooled liquid (blue dots). The red line
is a linear fit considering both the values of the equilibrated undercooled
liquid and the asymptotic values. In respect to the values reported in fig.
4.14 the values of τ after the quench depart more mildly from the equilibrium
Arrhenius line, wile the asymptotic values of τ∞ maintain their position
substantially unchanged.

initial more stable configuration is much slower than the one corresponding
to smaller temperature jumps. Thus the systems that were initially further
from equilibrium age more quickly and in the end reach the equilibrated
undercooled liquid condition before systems starting from more advantageous
positions.
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4.6 Effects of aging on the dynamical suscep-
tibility

We have seen in previous chapters that the dynamical susceptibility can
grant the access to the dynamical heterogeneity, an important physical
quantity for the glass transition. At the end of chapter 3, we have seen a
way to purify the variance of the g2 − 1 from spurious contributions arising
from the finite number of pixels. The tool of the extrapolation grant the
access to the χ4 only in a q-resolved scattering geometry, thus in the imaging
configuration employed in the present chapter, one does not expect to find
non-Gaussian contributions when computing the σ2

g2−1, moreover for boron
oxides the spatial extensions of dynamical heterogeneity is of few nanometer,
thus it should be impossible to see a non-Gaussian contribution employing
visible light sources.
However, if one compute the susceptibility

σ2
g2−1 =

(
C(tw, tw + t)− C(tw, tw + t)

)2

for an aging glass of B2O3 it is possible to see a clear signal even after
the extrapolation method of [2] has been applied, see fig.4.25. It is easy
to understand the origin of this “non-Gaussian” contribution, in fact σ2

g2−1
is a tool to detect all the temporal heterogeneities and a relaxation time
continuously growing with the sample’s age is a very specific kind of temporal
heterogeneity.
Having at our disposal a complete description of the relaxation function
with eq.4.8, we can test the simple model described at the end of chapter 3
with the dynamical susceptibilities arising from full-aging samples. In this
peculiar condition the only quantities that are varying with a non-Gaussian
process are the structural relaxation time τα and the parameter Γ, and both
τα and 1/Γ are described by a simple linear relation τ(tW ) = a · tW + b. It is
easy to show that the variance σ2

τ of a quantity linearly growing between
the ages t1 and t2 can be written as

σ2
τ = a2

12
[
(t2 + t1)2 + t21

]
and adding the term

(
∂g2 − 1
∂Γ

)2

σ2
Γ = 4(f 2

q )2
(
2Γ(Γt)2

)2
e−4(t/τ)βe−2(Γt)2

σ2
Γ

88



1500

2000

2500

3000

 
 [s

]  

 a)

0.5 1 1.5 2 2.5 3

t
W

 [s] 104

500

1000

1500

 1/
 [s

]  

 b)

100 101 102 103 104 105

t [s]

-2

0

2

4

6

8

10

12

2 g
2
-1

10-4

extrapolated 
4

computed value
2

2
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to the equation 3.26 we obtain

σ2
g2−1 = 4(f 2

q )2
[(

t
τ

)2β ((
ln2 (t/τ)σ2

β

)
+
(
β2

τ2σ
2
τ

))
+ (2Γ(Γt)2)2

σ2
Γ

]
·(4.12)

·e−4(t/τ)βe−2(Γt)2 + e−4(t/τ)βe−2(Γt)2
σ2
f2
q

and we can reproduce reasonably well the observed dynamical susceptibility
of the full-aging glass (red line in the left panel of fig.4.25). This result
imply that if the time evolution of the dynamical parameters is described
with enough precision (in this case τα and Γ), it is possible to reproduce
with a reasonable precision the contribution to the χ4 that arise to the
solely aging parameters. Further refined, this technique can be employed in
the measurements in which a real dynamical heterogeneity is expected, but
the sample’s dynamic is not stationary, allowing to obtain a more precise
measure of the χ4.
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Chapter 5

Slow dynamics in colloidal
systems of silica nanoparticles

5.1 Silica nanoparticles in the water-lutidine
mixture

One of the most interesting features of colloidal systems is the possibility
to tune the inter-particle interactions. Typically, this tuning is performed
adding salts or polymers to the solvent to change the strength or even the
nature of the forces between the nanoparticle dispersed into the liquid phase
[62]. As long as one is interested only in the low volume fraction limit this
approach presents very few side effects; however, if one is interested in the
glass transition region of such materials this approach is all but trivial. In
fact, colloidal glasses, like most disordered materials, are very difficult to
reproduce (especially if one wants to finely characterize the glass transition
region), and changing the glass properties inserting exogenous substances
like a salt, de facto irreversibly destroys the previous glass. An alternative
to this approach is to change the inter-particle potential with an external
field. With this kind of approach, it is possible to obtain a homogeneous
change of the potential inside the sample, moreover in most cases it is also
possible to have a completely reversible process. To attain such condition
either the colloidal nanoparticles or the solvent must have a strong coupling
with the external filed, like for example magnetically active colloidal particle
[104], or like in our case a binary mixture near its critical concentration.
The solvent of the colloidal samples described in this chapter is a binary
mixture of water (H2O) and lutidine 2,6 (C7H9N). The change in the inter-
particle interaction in this peculiar binary mixture arises from a wetting
mechanism.
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Figure 5.1: water-lutidine phase diagram. The small shaded area just
before the critical point (Cc, Tc) indicate the pre-wetting region for this
bynary mixture. The insets are images of a bi-dimensional colloidal system
composed by micron-sized colloidal particles in a near-critical water-lutidine
binary mixture, taken with an optical microscope. Image adapted from [41]

Wetting phenomena on a wall appear in multicomponent systems close to
their critical point when one of the components exhibits different interactions
with the interface to a third phase (be it the wall of the container or the
liquid-air interface). What happens is that one of the two liquid phases tends
to completely cover the third phase eliminating the existence of three phases
interfaces, in other words a first-order transition between partial wetting
(finite contact angle between the wall and the two phases) and complete
wetting (one phase wets the wall and surrounds the other phase) occurs in
the region where the system exhibits two phases. This process is based on
van der Waals interactions and can be found in a wide variety of binary
mixtures [128, 129, 130]. For the water-lutidine system the lower critical
solution temperature is Tc = 34◦C and occurs at mass concentrations of
Cm
L = 0.28 (volume concentrations of Cv

L = 0.27), see the phase diagram
reported in fig 5.1.
The interesting part is that before this phase transition another equi-

librium line exists that marks another first order phase transition from a
one component system and a “pre-wetting” region that ends with a critical
point (Ta = 33.743◦C,Ca = 0.275) (different from the critical point of the
liquid-liquid transition)[130]. When the third solid phase is represented by
a colloidal particle, the effect of this pre-wetting regime is a change of the
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inter-particle interaction [131]. In fact, silica nanoparticles are negatively
charged (typically ∼ 140e− [130] for small nanoparticles) and when dispersed
in pure water they behave as hard repulsive particles. When the critical
point is approached, then lutidine starts to form a thin layer around every
nanoparticle and the inter-particle interaction switches from repulsive to
attractive. Since lutidine is a weak base one is tempted to interpret this
phenomenon as a simple screening process, however experimental observa-
tions suggest a more radical change of the nature of the interaction [130].
In fact, if a fluctuating medium is confined, the ensuing perturbation of
its fluctuation spectrum generates Casimir-like effective forces acting on its
confining surfaces. Thermal fluctuations in condensed matter typically occur
on a molecular scale. However, upon approaching the critical point of a
second-order phase transition the fluctuations of the order parameter of the
phase transition become relevant and detectable at a much larger length
scale, and its confinement produce a fluctuation-induced Casimir force acting
on the confining surfaces [132, 133].
From the point of view of the colloidal suspension, this effect causes a drop in
the absolute value of the zeta potential, and the particles start to flocculate
and aggregate into large clusters and, for low volume fractions, we can talk of
a gas-liquid transition for our colloidal system [131] (i.e. the system switches
from a condion in which the system is composed by freely diffusing non
interacting particles to one in wich the particles are still able to diffuse, but
the inter-particle distance is much smaller and the inter-particle interactions
are stronger). If the initial volume fraction is already high enough to have
a colloidal glass, then this transition has an even more interesting effect.
Approaching the transition from an arrested phase causes a melting of the
colloidal glass and a subsequent freezing in a new configuration [134], thus
corresponding to a transition from a repulsive glass to an attractive liquid to
an attractive glass. In a more detailed way, in the hard sphere repulsive glass
at the glass transition volume fraction (φg) each particle is both caged and is
part of a cage for its neighbours and all particles tend to stay away from each
other. This glassy state is perturbed by short range interparticle attraction
(stickiness), because now the particles does not repel each other anymore,
but on the contrary they tend to shorten the interparticle distance. Such an
attraction first melts the hard sphere glass and then a second, qualitatively
different, glassy state is formed. Sticky hard spheres, therefore represent
the simplest system in which multiple glassy state can occur [135]. The
neat thing is the complete reversibility of the whole process, as long as one
does not goes too far in the demixing region; the problem is that all of this
happens in a very narrow temperature range of less than 1 K.
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In this chapter we will see the results of scattering experiments (carried out
with both visible and X-ray photons) performed on concentrated suspensions
of silica nanoparticles in near critical water-lutidine solutions. Two “families”
of colloidal samples were produced, one made of silica nanoparticles with
nominal diameter of 450 nm, and one of silica nanoparticles with nominal
diameter of 100 nm. The reasons for these choice are manifold; the form
factor of the bigger particles can be measured even with a standard dynamic
light scattering-static light scattering (DLS-SLS) set-up and in a SAXS
experiment it is possible to measure easily the structure and the dynamics at
q vectors significantly larger than the first neighbour peak. However, since
their size is quite close to the wavelength of the visible light, performing a
DLS experiment on concentrated samples is prohibitive due to the multiple
scattering. On the other hand, the smaller particles when concentrated form
a nearly transparent sample that can be probed even with visible light and
a SAXS experiment gives complementary information in a wide q range.

5.2 Sample preparation
The colloidal nanoparticles were purchased by Micromod under the com-
mercial name of Sicastarr. They are plain silica nanoparticles dispersed
in pure water with mass concentration of 100mg per 1 ml of solution and
a polydispersity index inferior to 0.2. Particles are synthesized using a
modified Stoeber process [136] by hydrolysis of orthosilicates (TEOS). The
producer declares a silica nanoparticles density of 2 g/cm3. The lutidine,
99% purity, was purchased by Sigma-Aldrich.
To prepare the concentrated colloidal sample we start from an initial volume
(VSiO2 + VH2O) of the silica-water suspension and then we add the lutidine
(filtered with a 0.2 µm PMMA filter) in order to reach the mass concentration
of Cm

L = 0.25. The volume that one must add is obtained from

VL = Cm
L

1− Cm
L

mH2O

ρL

where ρL = 0.925g/ml is the lutidine density and mH2O is the initial mass
of pure water 1. Then the suspension is centrifuged, for 450 nm particles
typically 2500 g for 5 minutes, to concentrate all the nanoparticles at the
bottom of the cuvette. and then the excess liquid is removed in order to

1The mixing of water and lutidine is an exothermic process that in some cases can heat
up the solution above the critical point. Before proceeding with the sample preparation
it is then necessary to wait that the solution is cooled and completely mixed
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reach the desired volume fraction φfin. The volume of the solution to be
removed can be computed with the formula

Vremove = VH2O + VL − VSiO2
1− φfin
φfin

At this point we have a strongly inhomogeneous sample, with a very concen-
trated colloidal glass at the bottom and the remaining solvent on top. To
obtain again a homogeneous sample it is then necessary to disperse again
the nanoparticles. To do so, the cuvettes are placed on a vortex mixer until
the sample appears again homogeneous. We can think of this step as a shear
melting of the colloidal glass. The time required for the complete recovery of
the homogeneity is strongly dependent on the total area of the silica-solvent
interface, i.e. higher φfin and smaller particle radius requires longer times
on the vortex mixer. For 450 nm nanoparticles typically 20 minutes were
sufficient to obtain acceptable samples.
Once the homogeneous concentrated sample is obtained then the colloidal
glass is transferred inside borosilicate capillaries. To obtain bubble-free
homogeneous samples, the capillaries are again mildly centrifuged at 100 g
for 30 seconds. Once filled, the capillaries are sonicated before the beginning
of the experiment.
The samples for the X-ray experiments were prepared in thin walled capillar-
ies purchased from Hilgenberg (wall thickness 0.01 mm, nominal diameter 0.5
mm) and sealed with a hot glue cap. The samples for DLS experiments were
prepared inside capillaries produced in house starting from standard Pasteur
pipettes (wall thickness ∼ 1 mm ,diameter ∼ 1-2 mm), sealed with Teflon
and parafilm. All the steps listed above were carried out at temperatures
below 20◦C, i.e. in the repulsive glass region.

5.3 SAXS experiments
Silica nanoparticles have a refraction index close to the one characteristic of
bulk SiO2 and, for visible wavelengths, there is not a good match with the
refraction index of the water-lutidine mixture (with our concentration it can
be estimated using [137] to be 1.37 2). Thus, even if the 450 nm nanoparticles
have a form factor that can be easily measured with a visible DLS set-up,
once concentrated the samples result completely opaque to visible light,
making it impossible to correctly measure the structure factor due to the
large amount of multiple scattering. When changing the water-lutidine ratio

2nW L = nLutCL + nH2O(1− CL)
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Figure 5.2: sketch of the ID10 beamline. The X-ray source is located in the
far end on the rigt, while the experimental hutch used in this experiment is
at the end of the X-ray-path, image taken from http://www.esrf.eu

it is possible to obtain a better index matching, but the resulting sample
will have inevitably completely different physical properties (the lutidine
concentration necessary for the index matching is CL ∼ 0.68).
The most effective way to overcome this opacity limit is to radically change
the wavelength of the coherent radiation illuminating the sample; in other
words, performing an X-ray photo-correlation (XPCS) experiment in small
angle x-ray scattering (SAXS) configuration.

5.3.1 Experimental set-up

The SAXS experiments reported in this Thesis have been performed at the
beamline ID10 EH2 at the European synchrotron radiation facility (ESRF) in
Grenoble, France. The photon source is a third-generation synchrotron radia-
tion light source placed 61.5 m from the sample environment. More precisely
the light source is an insertion device composed of three undulator segments in
series: one with a period of 27 mm (U27), one of 35 mm (U35), and a revolver
unit carrying both U27 and U35 undulators. The source size is 928X23µm2

(H×V) FWHM, and the source divergence is 28X17µrad2 (H×V) FWHM,
the overall brilliance is B > 1020ph/s/0.1%bandwidth/mm2/mrad2/100mA
at 8 keV. We can see in fig 5.2 a sketch of the ID10 beamline. After being
generated in the undulators, the X-ray photons enter in the first safety
hutch (optics-hutch) dedicated to the optical components common to both
experimental hutches. In this sector the relevant devices for our set-up
are the high-power slits, a beam diagnostics device, a white beam double
mirror in horizontal reflection geometry (to produce a first filtering), a
channel cut monochromator ( composed of two sets of liquid nitrogen cooled
Si(111) crystals working in symmetric Bragg-Bragg reflection which provide
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Figure 5.3: (a): SAXS vacuum chamber. (b): three sample holders
with different possible apertures,the central one is the model most widely
used in the present experiment. (c): Maxipix detector, image taken from
http://www.esrf.eu

monochromatic beam in the energy range 7-25 keV), a pair of secondary slits,
a white beam transfocator (for the focusing), and finally the attenuators
and a photon shutter unit. The aims of these components are mainly the
optimization of the transverse coherence, a first filtering of the incoming
radiation and a first diagnostic of the beam properties. Another fundamental
piece of equipment that can be found in this hutch is the set of absorbers,
namely Si slabs that can be inserted or removed from the beam path, each
absorber reduces the total flux by a factor 1/e. The white beam is now ready
to be monochromatized and focused onto the sample, it is thus sent through
a pipe across the experimental hutch EH1 and enters inside the optics hutch
OH3. Here the beam is focused by a set of beryllium compound refractive
lenses, further polished by another set of high power slits and filtered by
a pseudo channel cut Si(111) monochromator. The beam can then finally
enter in the second experimental hutch (EH2) with a spot size at the sample
position of 10X10µm2 and an energy resolution of ∆ε/ε = 1.4 ∗ 10−4 giving
us a longitudinal coherence of ξL ∼ 1µm at 8.1 keV. The total flux on sample
in this configuration is then ∼ 4 · 1010 photons per second (value measured
at the beginning of the experiment). The sample environment is composed
by a cylindrical vacuum chamber, fig. 5.3-(a) in which the sample holder is
hosted (fig. 5.3-(b)) and its temperature controller. The vacuum chamber is
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directly connected to a 5 meters long pipe that the scattered photons cross
to reach the detector, a fast readout, photon-counting pixel detector system
named Maxipix shown in fig 5.3-(c). This device is composed of 4 chips in a
2X2 arrangement, each chip has 256 pixels and a single pixel has an area
of 55X55µm2. The system achieves up to 1.4 kHz frame rate with 290 µs
readout dead time. The total distance separating the scattering volume to
the centre of the detector is D = 5.225m, that combined with the scattering
volume’s transverse dimension of d = 10µm give us a linear speckle size of
σsp = 1.22 ∗ λ ∗D/d ≈ 97µm. To protect the detector, the direct beam was
blocked by a beam stopper.
Attenuating the incident photon flux with an appropriate number of ab-
sorbers, it was possible to record the direct beam with the Maxipix, without
causing any harm to the detector. Then scanning the sample’s position, it
was possible to measure of the sample’s X-ray transmission, in fig. 5.4, we
can see an example of such scans. Adopting the Lambert-Beer equation the
recorded intensity can be described with:

I(x) = I0exp (− (s(x)/µcapillary + L(x)φ/µSiO2,NP + L(x)(1− φ)/µWL))

with: 1/µWL = Cv
L/µlutidine + (1 − Cv

L)/µH2O; s(x) is the thickness of the
crossed capillary wall, L(x) is the length of the crossed sample’s volume,
and µcapillary = 136.7µm, λSiO2,NP = 149.8µm, µH2O = 1034.95µm and
µlutidine = 1081.3µm are the attenuation lengths of the materials constituting
the sample (values taken from the database of CXRO, http://www.cxro.lbl.gov/).

At the centre of the capillary, the above equation is simplified since s
is equal to the wall thickness and L to the difference between the capillary
diameter D and 2s. Knowing all the previous parameters it is possible to
perform a measurement of the volume fraction φ as:

φ = log(I/I0) + s/µcapillary + (D − 2s)/µWL

(D − 2s)(1/µWL − 1/µSiO2,NP ) (5.1)

All the measurements of φ presented in this chapter are carried out employing
eq. 5.1.
During the experiment it was not possible to thermalize correctly the sample,
thus, to avoid the phase separation of the water and lutidine due to an
excessive heating, it was decided to perform all the measurements at a
fixed nominal temperature of 32◦C. Hence all the results reported below,
correspond to a mildly repulsive hard sphere colloidal glass, and all the
efforts are devoted to a complete comprehension of the colloidal glass in this
configuration.
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Figure 5.4: Example of a transmission scan to determine the volume fraction.
From the width of the “shadow” projected by the capillary it is also possible
to determine the real value of the diameter of the capillary.

5.4 Static structure factor
Performing XPCS experiments in small angle configurations has the great
advantage that one is automatically performing also a measurement of the
structure factor S(q), on a wide range of q. In fact,

I(q) ∝ (∆ρ)2P (q)S(q)

where ∆ρ is electron density difference between the colloidal particles and
the surrounding liquid. For the present samples we have that ρSiO2 ≈
600e/nm3, while ρsolvent ≈ 330e/nm3 [138]. P (q) is the form factor of a
single particle and performing measurements on diluted samples it is possible
to experimentally measure P (q) once polydispersity and experimental q-
resolution (δq) are taken in account.
For the diluted samples, the recorded intensity will be then:

I(q) ∝
∫ q+δq

q−δq
dq′

∫ ∞
0

f(R)P (R, q′)dR + bkg (5.2)

Where bkg is the background due to the solvent and the capillary’s walls
independently measured3, and f(R) is the distribution of sizes. Typically,

3The water-lutidine mixture was measured in a silica capillary, while all the samples
were prepared in borosilicate capillaries, thus the background for equation 5.2 was obtained
with a combination of three backgrounds (bkgwater−lutidine − bkgsilica + bkgborosilicate)
see [138] for more details
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Figure 5.5: SEM images of dried nanoparticles. Since silica is a strong
insulator it was necessary to cover the nanoparticles with an Au layer, 1 nm
thick. Thus, the values obtained from a quantitative analysis of the images
will be inevitably biased by the presence of such layer. Nevertheless, it is still
possible to perform qualitative considerations, observing that the average
shape is a reasonably well-formed sphere and that the radii distribution is
quite narrow.

nanoparticles present a slightly skewed distributions that can be described
by a Shultz distribution [139, 89]

F (R) = (z + 1)z+1Rz e
−(z+1)R

µ

Γ(z + 1)µ

The parameter µ is the mean particle’s radius, while the parameter z is
related to the width of the distribution by the relation 〈R2〉−〈R〉2 = µ/(1+z).
In the present case, the nanoparticles have a quite large radius and thus, as
can be seen from SEM images reported in fig. 5.5, they came with a quite
narrow distribution and present a polydispersity index close to one [140].

In figure 5.6 an example of a measured form factor is reported. Knowing
the exact location of the direct beam on the pixel detector it is possible to
perform the average of the intensity over the azimuthal angles obtaining
the intensity profile as a function of θ (or as a function of q). Then, after
the subtraction of the background, it is possible to perform a fit to the
experimental data with eq. 5.2 as reported in the right side of figure 5.6.

Knowing the form factor it is possible to finally dig out the S(q). The
followed procedure consits in: i) a normalization by the form factor of
the background subtracted X-ray pattern produced by the concentrated
sample, and then, ii) an average over the azimuthal angles is performed.
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Figure 5.6: Left: image of the x-ray intensity pattern produced by a diluted
suspension of colloidal particles in water and lutidine mixture. The cross
shaped shadowed area is due to the connection of the Maxipix’s chips and the
beam stopper placed in correspondence of the direct beam. Right: intensity
profile as a function of q (black circles) and best fit to the data with eq. 5.2.
The estimated radius is R = (217.6 ± 0.4)nm, while the polydispersity is
estimated to be ∆r/r = (3± 1)% (the errors are attributed with the fitting
algorithm).

This procedure is adopted in order to get rid more effectively of stray light
contributions in the recorded backgrounds that affect critically the results
at small q. In figure 5.7, the steps followed for the determination of a
structure factor of a concentrated sample are reported. In the normalized
background subtracted X-ray pattern, a set of small Bragg spots are visible
on the second ring. Looking at the ratio between the peak intensity of those
Bragg spots (Icry), proportional to the square number of particles composing
the crystal (Nc), and the peak of the S(q) (Iam), proportional to the total
number of particles in the scattering volume (N), it is possible to determine
the relation Nc ∼

√
(Icry/Iam)N , which for N = 6 · 105 gives Nc ∼ 190, the

volume occupied by the crystallite is then ∼ 0.024% of the total scattering
volume.

If we know the solution of equation 2.4 it would be possible to generate an
analytical expression for S(q). The solution of eq.2.4, can be made possible
only applying a closure relation and some approximations. For our problem
a good closure is typically given by the mean spherical approximation (MSA)
which states {

g(r) = 0 r < R
c(r) = − 1

kbT
U(r) r > R

where U(r) is the potential energy between two particles. Analytical solutions
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Figure 5.7: Left: x-ray pattern produced by the scattering from a colloidal
glass. Right top: background corrected and normalized x-ray pattern. The
small dots on the second ring are Bragg spots originating from a small
cryistallite, during the whole measurement (lasted few ours) these spots does
not show any significant change in position or intensity, in further analysis
these regions were excluded with a software mask. Right bottom: azimuthal
averaged structure factor.

with the MSA are available for a certain number of potential functions [141].
For the case of charged colloidal particles, a screened Coulomb interaction is
often adopted for the description of the potential energy

U(r) =
{
∞ r < R

πε0εR
2ψ2

0
e−k(r−R)

r
r > R

Where 1/k is the Debye screening length, ε is the solvent’s relative dielectric
constant and ψ0 is the surface potential.
Thanks to this closure relation it is now possible to attempt a fit to the
experimental S(q). In figure 5.8 the structure factor of the concentrated
sample and the MSA fit is reported. It is evident that the MSA fit cannot
completely reproduce the second structure factor’s coordination shell, and
this is possibly due to the presence of systematic errors in the evaluation of
the background contribution. The right side of the second coordination shell
falls in fact in correspondence to the second minimum of the form factor,
which for monodisperse particles assumes values very close to zero. However,
the results obtained from the fit to the structure factor (R = (202±1)nm and
φ = 0.45± 0.02) are compatiblewith the values obtained from independent
measurements i.e. radius from the form factor and the volume fraction from
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Figure 5.8: fit of the experimental structure factor using a model based
on the MSA approximation, the first peak and the rise of the second ripple
are well reproduced. The shape of this latter feature is probably distorted
by irregularities in the background, since the second minimum of the form
factor falls exactly on the right side of the second coordination shell. The
k parameter is the product between the particle radius and the Debye
screening length, and its high value indicates that our system is very close
to the hard sphere approximation (the Debye length results in fact to
be 1/k = (10 ± 4)nm). The fitting procedure is extremely sensitive to
the starting parameters, so the results here reported must be taken at a
qualitative level.

transmission scans. The discrepancy in the radius arise from the fact that
the model employed to describe the structure factor does not take in account
the polydispersity of the colloidal particles inducing an underestimation of
the R value [138]. Also the value for the surface potential (ψ0) is compatible
with the ξ potential obtained from a standard zeta sizing apparatus (Malvern
zetasizer); the relation linking these two numbers is |ψ0| > ξ, and indeed
this is the case since at T = 32◦C ξ = −6.8± 0.4 and |ψ0| = (15± 2)mV .

As can be seen from figure 5.6 and 5.5, the particle’s size distribution
is quite narrow, thus the presence of crystallization has to be expected.
However, for samples “dense enough”, the nucleation and growth of crystals
can be extremely slow [60, 142]. Indeed, in our case this happened for
samples with volume fractions higher than ∼ 0.45 which maintained an
amorphous structure for about 4 days. For comparison, in figure 5.9 two
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Figure 5.9: comparison between the structure factors of partially crystalline
and amorphous samples. The first neighbour peak in the partially crystalline
sample is shifted towards smaller q-values implying smaller concentrations.
The crystalline peaks corresponding to the [1 1 1] and [2 0 0] planes.

structure factors are reported, one obtained on samples with Φ = 0.51±0.03,
and the other on samples with Φ = 0.41± 0.05. There is a clear difference
in the shape starting from q values corresponding to the second peak of the
S(q), with the appearance of small sharp peaks in positions compatible with
those expected for FCC crystal. Performing transverse scans, it was possible
to observe how the crystallites are more abundant close to the capillary
walls, thus suggesting a heterogeneous nucleation due to the sample-capillary
interface. The less concentrated samples manifest the presence of small
crystals already few hours after production, staining the measurements of
the sample’s dynamic.

5.5 Dynamic structure factor
The principal advantage in performing XPCS experiments in SAXS con-
figuration, is the possibility to study the dynamics over a large q-range,
described also in this case by a relaxation function of the kind g2(t)− 1 =
A ·exp(−(t/τ)β). Our samples are dense enough to slow down the crystalliza-
tion;they are in an out of equilibrium condition and aging is expected. The
probed q range span portions of the reciprocal space that go from inverse
lengths greater than the mean inter-particle distance to very localized mo-
tions, and the probed relaxation time varies by about one order of magnitude
across the detector. Lastly, there might be anisotropic effects due to the
reduced size of the capillary or the presence of gravitational effects on our
relatively large particles.
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Giving this wide variety of different phenomena that must be taken in
account, the analysis of the data is organized as follows:

• q-dependence of τ and β after azimuthal average;

• azimuthal dependence of τ and β;

• q-dependence of the aging dynamics at fixed azimuthal angles;

• study of the dynamical heterogeneities from the 2-times matrices;

The results presented in this chapter correspond to three datasets obtained
from a single sample. Two datasets correspond to the sample at two well
separated ages, let’s call them young and aged sample, while the third
corresponds to the same sample after tumbling, that lead to rejuvenation of
the dynamics. In the following sections the results concerning the preliminary
analysis and azimuthal dependence of the parameters will be referred to
data from the aged sample, since the variation of τ during the measurements
is relatively small. Conversely, for the study of the aging properties, the
data presented here came from the young sample, where the aging effects
are more evident. The dataset corresponding to the rejuvenated sample
was collected over a wider time window with respect to the preceding ones,
and offers a more complex time evolution described in more detail the next
sections. This last dataset, in particular, presents a large time interval in
which the system does not appear to age appreciably. For this reason the
results concerning the dynamical heterogeneities will refer to mainly this
dataset.

5.5.1 q-dependence of the dynamical quantities
We begin our description with a q-resolved analysis of various parameters
needed to describe the dynamics. As can be seen from fig. 5.10 and fig.
5.11, the autocorrelation functions manifest a visibly compressed shape with
a “stretching” exponent well above unity. Such compressed relaxations are
observed in a certain number of experiments performed on a wide variety of
disordered systems, colloidal glasses and gels [1, 2], polymers [3, 4], foams
[5], aerogels [6] and in metallic glasses [7]. The wide assortment of disor-
dered materials displaying these dynamics, suggests a common underlying
mechanism. However, no clear consensus about its microscopic origin has yet
emerged. One possibility, that can describe some experimental findings, is
the continuous time Lévy flight model with a power-law distribution of wait-
ing times [143], this model seems well suited for systems composed by large
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Figure 5.10: Left: normalized autocorrelation functions at q values between
q = 0.008nm−1 and q = 0.06nm−1. In all cases we have a similar compressed
shape with relaxation times decreasing with q. Right: Autocorrelation
function with a compressed exponential fit. The fit can reproduce reasonably
well only the first part of the decay, while the small stretched tail cannot
be described without relying on more complex models, the results of the
reported fit are τ = (508± 4)s, β = 1.51± 0.01 A = 0.247± 0.003.

particles dispersed in a glass forming medium [143]. Another model that
has proven to be quite successful, is the one initially proposed by Cipelletti
et al. and subsequently refined by Bouchaud and Pitard [144, 145]. This
model, tailored for the description of collapsing gels, describe a system of
attractive particles in which random micro-collapses occur producing point
like dipole stress fields leading to a distribution of strain velocities.
The compressed exponential is usually accompanied by an anomalous scaling
of τ(q) indicating non-diffusive processes; typically, is observed τ ∝ 1/q,
which is often labelled as hyper-diffusive or ballistic regime. Indeed, this
is also our case, as can be seen in fig. 5.12 where the relaxation times for
the old sample as a function of q are reported. A good fit to the data is
already obtained with the simple relation τ = 1/ω0q, however considering the
possibility of a finite value for τ in the limit q → 0 (namely 1/τ = ω0(q+ a))
a much better fit is obtained. Good fits can also be obtained using a power-
law of the kind 1/τ = ω0q

µ, and in this case a value of µ = 0.91 ± 0.04
is obtained ( µ = 0.80 ± 0.04 and µ = 0.82 ± 0.02 are obtained for the
young and rejuvenated samples respectively). For comparison, the rescaled
values of τ for the other runs are reported, and we can see a nearly-identical
q-dependance, meaning that the sample’s age does not alter this feature of
the dynamics.

Since we are here to learn about the properties of the water-lutidine
system in conditions close to the critical point, the solvent cannot offer a
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Figure 5.11: q-dependence of the compressing exponent β for all three
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Figure 5.12: Left: Relaxation times as a function of the exchanged wavevec-
tor for the aged sample. The black dashed line is a fit using the law
1/τ(q) = ω0q, while the red continuous line is the fit obtained with an extra
parameter (1/τ(q) = ω0(q + a)). Nearly identical results would be obtained
with a two parameter fitting function of the kind 1/τ(q) = ω0q

a. Both
models describe well the behaviour at large q values, while the discrepancies
become more and more evident as q approaches to zero.
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Figure 5.13: Comparison between the autocorrelation functions obtained
from vertical and horizontal sectors. In all cases the horizontal functions
manifest a faster and more compressed dynamics. Top left results for young
sample, top right aged sample and bottom rejuvenated sample.

good match for the nanoparticle’s density. Thus a priori, one could expect
to observe detectable gravitational effects on our systems, and the typical
signature would be an accelerated dynamics along the vertical direction.
Thus one of the first test performed on our data was checking the presence
of dynamical anisotropies. As can be seen from fig. 5.13 dividing the iso-q
ring in quarters, a certain degree of anisotropy can already be observed,
but it cannot be attributed to gravitational effects, since along the vertical
direction the characteristic times are significantly longer.

The questions that immediately arise are: what is happening inside our
samples? The dynamics observed along the horizontal plane is qualitatively
the same to the one observed along the vertical direction? To begin an-
swering the latter question, we can study the dependence of the dynamical
parameters τ and β on the azimuthal angle ϕ. As can be seen from fig. 5.14,
approaching the vertical direction, the relaxation time increases quickly up
to one order of magnitude more than the horizontal plane. At the same
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Figure 5.14: Analysis of the dynamical parameters for the aged sample.
The relaxation time sharply rises at ϕ values of ±π/2 corresponding to the
vertical direction, while the compressing exponent’s value drops towards
1. In the bottom panel, the inverse of the relaxation time Γ = 1/τ is also
reported as a function of ϕ, the red line is a simple Γ0| cos(ϕ)| where Γ0 is
the maximal value of Γ(ϕ). For the sake of clarity, the results for the other
two datasets are not reported here but are qualitatively identical.
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Figure 5.15: Results for the aging quantities from the young sample measured
at q corresponding to the first neighbours peak. Top left: comparison between
the relaxation times measured along the horizontal and vertical directions,
the dashed lines are linear fits prolonged to the interception point before the
beginning of the experiment. Top right: aging of the compressing exponent.
Bottom: autocorrelation matrices for the horizontal (left) and vertical (right)
directions.

time, the compression exponent sharply drops towards values close to one.
The situation is clearer if we consider the rate Γ = 1/τ , plotted as a function
of ϕ in the bottom part of fig. 5.14, and we immediately notice that it
follows a simple cosine function Γ ∝ cos(ϕ). This is an important piece of
information, but before drawing any conclusion let’s have look at another
crucial aspect of our colloidal system, the aging dynamic.

5.5.2 Aging dynamics
For this purpose, it’s better to focus our attention on the youngest sample,
shown in fig. 5.15, as it displays a clear full aging with τ ∝ tW . The data
reported in fig. 5.15 are obtained taking sectors along the horizontal and
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vertical direction with ∆ϕ = π/4 which is a good compromise between good
statistics and resolution in ϕ, and setting the origin of the waiting times
(tW = 0) as the beginning of the measurement. Both along the vertical and
horizontal directions the relaxation time follows a simple linear law of the
kind

τ(tW ) = αtW + τ0 (5.3)

Both τ0 and α are larger along the slow vertical direction than the fast
horizontal one, implying a seemingly counter-intuitive behaviour of a fast
aging for a slow motion. For the exponent we can see that the horizontal
ones are systematically larger than the vertical ones and that both display a
small growth with tW . A last important thing that must be noted before
proceeding further is that extrapolating the linear behaviours for negative
waiting times, i.e. for the instants before the beginning of the experiment,
the two lines intercept at a point that is about twenty minutes before tW = 0
which is compatible with the end of the sample’s preparation,meaning that
this observed dynamics is initiated immediately after the sample preparation.
Obviously these last considerations are only qualitative since it has been
proven that the initial stages of aging in colloidal systems usually shows
an exponential growth followed by a slower linear or sublinear behaviour
[74, 75].

All these observations can be quickly explained thinking to the results
of fig.5.14. In fact τ ∝ 1/cos(ϕ) and the relaxation times along the verti-
cal or the horizontal directions are the same quantity, simply scaled by a
geometrical factor. In this case, the “genuine” relaxation function can be
found when the term 1/cos(ϕ) ∼ 1, that in our case means ϕ close to the
horizontal plane.
In fact, focusing our attention on the q-dependence of the aging relaxation
times taken considering only azimuthal angles close to zero ( fig. 5.16 and
5.17), we can see that both the aging rate α and the intercept τ0 follow
closely a q−1 dependence, as outlined in the plots of fig. 5.17, thus we can
write αq = δ and τ0q = γ.

We are now ready to put together the information that we have collected.
Let’s start with the Γ(ϕ) ∝ cos(ϕ); this kind of dependence in relaxation
rates can be encountered in velocity fields where Γ = |q · v|, where in this
case the velocity is perfectly aligned along the radial direction. This suggests
that what we are observing are strain velocities due to the shrinking of the
colloidal glass, behaviour often observed in similar systems [146, 147, 148].
The other interesting result came from the aging of the relaxation time,
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Figure 5.16: Relaxation times as a function of tw and q obtained following
different complementary approaches. Empty symbols: aging obtained with
a fine q-scan (q ∈ [0.015nm−1, 0.07nm−1] but keeping a coarse tW resolution.
Filled diamonds: relaxation times extracted from the 2-times at 4 well
separated q-values. The q-resolution was kept constant in both methods,
and all the analysis are performed along the horizontal direction.
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Figure 5.17: Results for the parameters of eq. 5.3 at different q-values.
The orange filled circles corresponds to the empty symbol results of fig.
5.16, while the blue diamonds correspond to the filled symbols. Main panel:
α(q) from different approaches, the dashed black line is a fit with equation
α(q) = δ/q. Inset τ0q for the parameters obtained from the fine tw sampling,
the results from the coarse sampling are omitted because, even if their
nominal values are close to the ones reported here, they come with too
large uncertainties. Bottom: α · q for both samplings, here both results are
consistent and with similar uncertainties.
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Figure 5.18: Velocity field as a function of tW computed with the values
obtained from the young samples. The red lines are the confidence bands
coming from the uncertainties of δ and γ (δ = 1.11 ± 0.07)10−3nm−1 ,
γ = (1.13± 0.02)s/nm ).

that show us a close to 1/q dependence for α and τ0. Using the values
obtained for the horizontal direction we can approximate q · v ∼ qv, and
from τ(tW ) = (δtW + γ)/q we obtain an expression for the aging velocity
field:

v = 1
δtW + γ

(5.4)

In fig. 5.18 the values of v(tW ) for the aging sample are reported, at the
beginning of the measurement, the estimated velocity was v = (0.88 ±
0.04)nm/s, which is close to other values obtained in other soft systems
[144]. Now we can also explain why β seems to grow with tW . In fact, to
obtain the g2 − 1 we had to perform a time average on a finite interval
of tw and a finite interval of ϕ. We observe in fact that looking at the
two-times obtained with δϕ = π/4 and reducing the integration time at
values comparable to the relaxation time, the value of the exponent rise to
values close to 2. this means that the autocorrelation function that we have
seen in fig. 5.10 can be described by

g2(t)− 1 ≈ 1
2π

∫ 2π

0
dϕ

1
∆t

∫ tw+∆t/2

tw−∆t/2
dt′we

−(qv(t′w) cos(ϕ)t)2 (5.5)

It’s easy to demonstrate that the function arising form the averages in eq.
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Figure 5.19: Relaxation functions computed using equation 5.5. Blue:
simple compressed exponential with β = 2, red: average over 3000 seconds
with aging parameters of the young sample, green: average over 2π for a
fixed age. The average over different ages tends to stretch the decay, thus
lowering the β value, while the average over different angles give rise to a
stretched tail.

5.5 can be easily mistaken for a compressed exponential with β < 2, and
that when the ϕ is not too large β → 2 for δtW/ < τ >→ 0. In figure
5.19 the computed autocorrelation functions that has to be expected for an
average over a certain time interval at a small δϕ and on all the azimuthal
angles with a non-aging relaxation time are reported.

Moreover, in the conditions δtW/ < τ >→ 0, it is possible to compute
analytically the average performed on the whole ring of eq. 5.5

g2(t)− 1 = A ∗ e−(tqv)2
I0((tqv)2) (5.6)

where I0((tqv)2) is the modified Bessel function of the first kind. It is now
possible to correctly fit the relaxations observed with the average over all
the azimuthal angles, see fig. 5.20.

One more intersting question is, why the exponent is so close to two. We
have seen that we are in presence of a velocity field, thus it is possible to
employ the formalism developed for the autocorrelations detected in presence
of flow which are expressed in terms of three contributions [149]

g2 − 1 = |g1D|2|g1T |2|g1S|2

Here the first term is due to the free particle diffusion, which depends on the
diffusion constant D, that since our samples are all in an arrested state, this
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Figure 5.20: Experimental autocorrelation function computed over the
whole ring from fig.5.10. Red dashed line :simple compressed exponential fit,
black continuous line : fit using eq.5.6, it is now possible to describe also
the stretched tail. The results obtained with this method are systematically
smaller than the one obtained with compressed exponential functions along
the horizontal direction (in this case the results using eq. 5.6 is τ = (261±1)s,
while from the compressed relaxation τ = (328±5)s); this, in order to obtain
reliable data, a certain δϕ must always be considered, hence the observed
value of the relaxation time is an overestimate of the real value.
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term does not contribute appreciably to the observed dynamic. The second
term describes the exit of colloidal particles due to the flow. Here, since the
motion is radial in a cylindrical symmetry this term does not contribute
significantly to the overall g2 − 1.
The last term describes the shear induced effect. The decorrelation is
modulated by a self-beating frequency created by particles moving with
different velocities inside the scattering volume. If the velocity difference
between two particles separated by a distance r = r2 − r1, is δv, then the
beating frequency is given by q · δv. The resulting autocorrelation function
will be then subject to the modulation arising from the average over all
Doppler shifts between all pair of particles inside the scattering volume,
which can be written as

|g1S|2 = 1
4R2

∫ R/2

−R/2
dr1

∫ R/2

−R/2
dr2e

−iqδv(r1,r2)t (5.7)

Knowing the expression for the velocity across the scattering volume it is
possible to solve eq. 5.7, for a laminar shear [149]

|g1S|2 =
[
sin(ΓSt)

ΓSt

]2

or for a Poiseuille flow described by a parabolic velocity profile [150, 149]

|g1S|2 =

[
π
4 erf(

√
iπ4 ΓSt)

]2
ΓSt

Where ΓS = q · v0, with v0 the maximum shear velocity. Among these
two solutions the one that is more likely to describe our data is certainly
the latter, however in the limit of ΓSt → 0 both the expressions can be
approximated by a a Gaussian function.

However, from the transmission scans performed at the beginning of every
measurement it is not possible to detect any significant density gradient
across the capillary, and the structure factor measured at the beginning
of a measure with a young sample does not differ substantially from the
ones observed at the end once the sample has aged. These facts indicate
that here we are not in presence of a particle flow from the center of the
capillary toward the walls or vice versa, but instead the situation appear
more complex, with cluster of particles that move inward and outward the
capillary, following a certain velocity distribution.
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Figure 5.21: Left: autocorrelation matrix of the whole dataset for the
rejuvenated sample. Right, evolution of the relaxation time, the region
between the two red dashed lines, has a nearly constant τ .

5.6 Dynamical heterogeneities
From the autocorrelation matrices displayed in fig. 5.15 we can see small
fluctuations along the diagonal, and one might wonder if they are the sign
of dynamical heterogeneities. The scattering volume in this experiment
is approximately 500X10X10µm3, and for volume fractions of ∼ 0.5 and
nanoparticles with radii of 217nm, the number of probed particles is approx-
imately N ∼ 6 · 105. This number is indeed quite high, and trying to extract
the dynamical susceptibility from the aging sample is indeed quite difficult,
since as we have seen in previous chapters, the aging can mimic the signal
of the dynamical heterogeneity. So we need a sample in which aging is not
too evident, and luckily, this is the case for the rejuvenated sample.

In fig.5.21 it is possible to see the complete dataset collected on the
rejuvenated sample. Two very distinct regimes can be identified. A first
regime, in which the dynamics is the same as the one described in previous
sections displaying at first a rise in τ , then a region where τ fluctuated around
a fixed values and then a drop of τ . The second regime is characterized by a
perfectly Gaussian decay, nearly identical in both horizontal and vertical
directions and weakly q-dependent. This latter dynamics is probably due to
the term g2T , thus it is not very interesting for our current objective. This last
behaviour is the sign of a macroscopic collapse of the whole colloidal system
and the general behaviour of fig. 5.21 is in qualitative agreement with other
XPCS measures of collapsing gels [151]. What is important for the present
discussion is that the first regime is still characterized by local motions, and
that in this regime there exists a time sector in which the average relaxation
time does not change with the sample’s age. Focusing our attention on this

118



0 0.01 0.02 0.03 0.04

q [nm-1]

0

0.002

0.004

0.006

0.008

0.01

1/
 [s

-1
]

1/ = 0 q

0 = (0.191  0.004)nm/s

0 0.01 0.02 0.03 0.04

q [nm-1]

1.4

1.6

1.8

2

2.2

2.4

Figure 5.22: q-dependence of 1/τ (top) and β (bottom) for the “constant”
time interval outlined in fig. 5.21 for the horizontal orientation. For this
selection τ ∝ 1/q without adding corrections as in fig. 5.12 and β has values
close to 2 at all the probed exchanged wavevectors.

119



1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

t
W

 [s]

0

0.05

0.1

0.15

0.2

0.25

C
(t

W
,t

W
+

t)

t=  2 s
t= 20 s
t=200 s
t=1001 s
t=1601 s

Figure 5.23: C(tW , tW + t) at different values of the lag time t for q =
(0.028± 0.008)nm−1. The dynamic appears fluctuating already at small lag
times and the fluctuations remarably increase toward intermediate lag times,
i.e. close to the relaxation time τ . This behaviour is different in respect to
the sudden rearrangements of [144], thus suggesting an intermittent dynamic
of a different kind.

specific time sector is then possible to determine accurately the dynamical
properties of our system without worrying too much of possible artefacts
introduced by aging. The first quantities to be checked are the relaxation
times and the exponents as a function of q, reported in fig. 5.22. The
exponent is now very close to 2 (equal to 2 within the errobars) for nearly
all the probed q values, while the inverse of the relaxation time is now well
described by the ballistic assumption (1/τ = v0q) that characterizes the
dynamic governed by small local rearrangements. We are now ready to
look at the experimental dynamic susceptibility. Adopting the extrapolation
mechanism illustrated in chapter 3, it is possible to separate the statistical
contribution to the χ4 from the real physical fluctuations. The results are
functions peaked near τ as reported in fig. 5.24.

Even if the sample behaves like an attractive gel [144], the dynamic
is not exactly of that kind. The main difference can be found looking
at the C(tW , tW + t), reported in fig. 5.23, in a similar way as the ones
reported in [1, 104]. Differently from aging gels, we do not have sudden
jumps, sign of sudden collapses, but instead large fluctuations. It is possible
to filter out the gaussian contribution due to the stastistical noise with
the procedure described in chapter 3 and in [2], obtaining the dynamical
susceptibility χ4(t, q) associated to the measured dynamics. In fig. 5.24
a representative curve for the susceptibility at fixed q compared to the
corresponding g2−1. This filtered susceptibility is, in principle, proportional
to the true dynamical heterogeneity (χhet4 = Nχ4, where N is the number
of particles in the scattering volume). With the exception of the lowest
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Figure 5.24: extrapolated χ4 and measured g2 − 1 for a fixed q along the
horizontal direction. The χ4 presents a sharp peak in the proximity of τ and
smaller contributions in correspondence of the g2 − 1 ripples at larger times,
while it is consistent with 0 for small lag times.

q-values, the susceptibilities present a clear peaked shape with maximum
values χ4(t∗) located at times t∗ ∼ τ . In fig. 5.25 a false color plot of χ4(t, q)
is reported, and it is easy to see how the χ4 signal develops with a bright
peak at q ∼ 0.016nm−1 in correspondence to the first neighbour peak in the
S(q). This behaviour is more evident if we focus only on χ4(t∗), as reported
in fig. 5.26, and compare it to the structure factor. In this picture, the
experimental dynamical susceptibility is multiplied by the estimated number
of particles. Thus the numbers on the y axis of figure 5.26 represent the total
number of particles participating a collective rearrangement. It must be
pointed out that CRRs smaller than ∼ 100 particles cannot be detected with
these data as a consequence of the uncertainties over the extrapolated values.
Nevertheless, we can infer that the number of particles, participating in a
same collective motion is quite similar to the one observed in other structural
rearrangements of colloidal samples. Normalizing the values of χ4 with the
squared contrast of the g2 (A ∝ fq) leads to a linear dependence on q, similar
to the one observed on colloidal gels in refs.[1, 104]. This means that the
structural information displayed by the dynamical susceptibility came from
the non-ergodicity level (fq). The drop of dynamical heterogeneity for larger
length-scales can be related to the fact that increasing the probed lengths
one is approaching the the macroscopic, and homogeneous, limit.
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Figure 5.25: Map in false colours of χ4(t, q). It is evident how the prin-
cipal peak of the χ4 is present only a q-values larger than qmax, i.e. the q
corresponding to the first neighbour peak. This means that the cooperative
motion is limited only at very short distances. At q-values larger than
qmax we can observe that the maximum of the χ4 maintain itself approx-
imately constant with the exceptions of two local minima, which are in
correspondence of the structure’s factor minima.
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Figure 5.26: Top: maximum value of the observed χ4 multiplied by the
total number of particles in the scattering volume. This number corresponds
to the number of particles undergoing a collective motion. In our case we
have a maximum in correspondence to the inter particle distance (qmax),
where ∼ 500 particles are participating to the motion and after that the
peak value stabilizes at ∼ 400 particles. Bottom: normalized values of
χ4/A

2; this normalization emphasizes only the temporal fluctuations. In
fact recalling what we have seen at the end of chapter 3, all the contribution
to the dynamical susceptibility depends on the squared mean value of the
contrast (A2).
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5.7 Visible PCS
We have seen that the mismatch in the refractive index causes the con-
centrated samples of the larger colloidal particles to be too opaque to be
probed with visible light. However, colloidal glasses obtained with smaller
particles (diameter ∼ 100 nm), immediately after production are reasonably
transparent. The scattered light photons are enough to observe a reliable
g2 − 1 in multi-speckle PCS experiment allowing the study of the out of
equilibrium glassy dynamics even for these colloidal glasses, however the
presence of a non-negligible multiple scattering, poses limitations to the
time-scale that can be effectively probed, since the more the sample ages,
the more opaque it becomes, progressively enhancing the multiple scattering
contribution. Qualitatively this can be seen by an increase of the Tyndall
effect, i.e. illuminating the sample with white light it will appears lightly
blue and the transmitted light will be orange, as can be seen from fig 5.27.

5.7.1 Experimental set-up
The experimental set-up employed in these measurements is similar, in
principle, to the one described in cap. 4, i.e. we perform a multi-speckle
experiment with a 532 nm CW laser. In fig. 5.27 the details for this new
configuration are reported. The main difference with respect to the one
described in chapter 4, comes from the collecting optics, now composed by a
couple of lenses with focal lengths f1 = 50mm and f2 = 500mm, arranged
to magnify the scattering volume by a factor of ∼ 10. The detector now
is a ORCA-Flash4.0 V3 Digital CMOS camera from Hamamatsu. It is
characterized by a chip of 2048 X 2048 pixels, each pixel is 6.5×6.5µm2, and
the frame rate can be at maximum 2655 fps (selecting a ROI of 2048 X 8
pixels). Here the limiting aperture is given by the collecting lens’s diameter
(39 mm), and the resulting speckle size is lc ≈ 8µm, thus slightly larger than
the single pixel dimension.

5.7.2 Experimental results
The samples probed with this optical set-up was created following two dif-
ferent procedures. A first set of samples were created following the same
preparation protocol described for the SAXS experiments, let’s call it “slow
procedure” since dispersing the colloidal glass with only the vortex mixer
requires quite a long time. These samples were characterized by fast aging
compressed functions, as it can be seen in fig. 5.28. The observed aging
here follows a more complex behaviour than the one observed in SAXS
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Figure 5.27: (a) details of the detection apparatus. A low-pass filter cuts off
visible radiation with wavelength larger than 540 nm clearing the signal from
the sample’s luminescence. (b) details of the sample’s stage and collecting
optics. The green arrow indicates the optical path of the incoming laser
beam, the sample is located on a XYZ movement inside a small container full
of decalin (not shown here) to reduce the scattering at the sample’s interfaces.
The signal is collected at a scattering angle of 90◦ with a convergent lens
F1 ∼ 50mm and projected on the detector with a lens F2 ∼ 500mm. (c)
picture of a sample prepared inside a thin walled capillary after 3 weeks
from production ,the sample is still transparent but it is already visible the
orange transmitted light and blue reflexes. During the measurements the
optical path between F1 and the low-pass filter is completely screened in
order to reduce stray-light detection.
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Figure 5.28: example for a fast-aging sample. Left autocorrelation matrix
of the scattered intensity. Right C(tw, tw + t) of the sample’s early stages,
time elapsed since the beginning of the measurement: 150s. Even with
visible light, the autocorrelation is described by a compressed exponential
function with parameters: τ = (672± 3)s and β = 1.66± 0.02.The nominal
concentration φ ∼ 0.36

experiments. The growth of the relaxation time follows an exponential law
at the very beginning of the sample’s life (red line in fig. 5.29). After a
certain waiting time this regime is eventually replaced by a slower linear
dependence similar to the one observed in SAXS experiments (green line in
fig. 5.29). This articulated aging is not a novelty in soft disordered systems
and has been observed in a wide variety of systems as clay suspensions
[74, 75], colloidal glasses and gels [144, 147] and nanoemulsions [148]. This
evolution typically follows a significant perturbation of the system, such
as a quench from a fluid to a disordered solid or a large mechanical stress,
and this dynamics therefore likely reflects the relaxation of internal stress
introduced during the perturbation [147].

The second set of samples were produced adding a step in the previous
protocol. Immediately after the colloidal system has been concentrated, it is
mechanically stirred with a glass rod until all the larger clusters of densely
packed particles are dispersed in the sample’s volume. Then the couvette
is again placed on the vortex mixer to obtain homogeneous sample. Since
the time required for this last step is significantly shorter with respect to
the first protocol, we call this latter approach “fast procedure”. The most
striking difference is that here, the intermediate scattering function appears
always stretched with exponent β ∼ 0.42. Another striking difference is the
slow aging of this new kind of samples, with a growth in the relaxation time
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Figure 5.29: Top: aging of the relaxation time. The early stage is
compatible with an exponential growth (τ(tW ) = t0 exp(γtW ) with γ =
(1.20± 0.03)10−3s−1,t0 = (582± 16)s), while later tW are better described
by a linear relation (τ(tw) = atW + b a = 1.42 ± 0.05,b = (826 ± 113)s).
Bottom: Aging of the compressing exponent, it starts from values close to 2
and approach values close to 1.5.
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Figure 5.30: Example for a stretched autocorrelation observed in a colloidal
glass obtained with the fast procedure. Relaxation time τ = (132.9± 0.7)s
and β = 0.42± 0.02. The nominal concentration is φ ∼ 0.37

of about 1.7% per hour (de facto aging produces appreciable changes only
comparing measures taken in different days). Despite the fact that these
samples maintain quite fast dynamics, always in the range of hundreds or
thousands of seconds, see figures 5.29 and 5.30, the time before the multi-
ple scattering starts to significantly affect the signal is not much different
than for samples displaying compressed relaxation, and is limited to 3-4 days.

Thus, the second preparation protocol gives rise to a dynamical response
that one would expect in an undercooled liquid or in a glass. Unluckily,
we do not have yet a study of the q-dependence for these samples, being
the measurements carried out with an optical set-up at a fixed angle, so
we cannot be sure if this dynamics is of diffusive origin.The presence of a
”compressed” relaxation and the non diffusive dynamics is often explained
taking in account the presence of internal stresses in the glass [144, 86]; hence
the origin of this peculiar dynamics in the present case, could be related to
the sample preparation protocol. This means that, thanks to the mechanical
stirring adopted in the second preparation protocol, we are able to relax the
stresses that had built up after the first densification. This interpretation
can also explain the fact that a sample produced with the fast procedure
can manifest again a compressed dynamics if placed again in a centrifuge
for long enough time or with high enough acceleration.

The relation between the preparation protocols and the microscopic
dynamic has been already observed in the past. A detailed investigation on
this relation has been carried out by Angelini and coworkers [75, 152, 153]
and it has been clearly observed that, for colloidal glasses of laponite in

128



10-2 10-1 100

t/

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no
rm

al
iz

ed
 g

2
-1

 0.36 slow procedure
 0.37 fast procedure

Figure 5.31: Comparison between stretched and compressed relaxations
observed in two colloidal glasses with similar nominal concentrations. Since
the compressed colloidal glass shows a very fast aging, the autocorrelation
function here reported is taken with an average over rather narrow ∆tW
interval (∆tW = 50s).

deionized water, the emergence of a compressed exponential is linked to the
shear rejuvenation of sufficiently old samples [152]. These results have been
related to a glass-glass transition expected for systems composed of highly
charged and highly anisotropic colloidal particles [153] and thus, in principle,
one should not generalize these findings to the whole world of colloidal glasses.
However, the dichotomous behavior between compressed and stretched decay
has been observed in other disordered systems [144, 4, 134].

5.8 Conclusions
In this chapter we have studied in detail the characteristics of a colloidal
glass composed by silica nanoparticles in a water-lutidine binary mixture.
All the reported measurements were carried out in the “repulsive” glass
regime, where the particles interact with a long-range attractive and short
range repulsive potential. We have discussed the structure and dynamics
of large particles with diameter of 450 nm on very short length-scales with
SAXS experiments. From these experiments we have seen that the dynamics
in these systems arises mainly from a radial strain velocity, which is faster
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along the horizontal plane and close to zero along the vertical axis. We have
seen that the time average and angular average of this anisotropic decay
can introduce significant changes in the shape of the final autocorrelation
function, which is well approximated by a compressed exponential with
exponent close to 2. This strain velocity tends to slow down with sample age,
giving rise to a full aging regime for the relaxation times. From the complex
time evolution of the rejuvenated sample we can infer that the dynamical
mechanisms that can develop inside a colloidal glass are not always limited
to only this velocity field (the final collapse observed in the measurement
reported in fig.5.21), and that the slowing down of this velocity can be
suspended for a significant time interval, i.e. the presence of a large “aging
free” time sector highlighted in fig.5.21. From the dynamical susceptibility of
this velocity induced decay we can observe that the dynamical heterogeneities
manifest only at short length-scales (for distances shorter than the inter-
particle separations), and that they involve several hundreds of particles.
From multi-speckle experiments based on visible light we are able to observe
a qualitatively similar behaviour in samples composed by smaller particles
(100 nm in diameter), with similar aging behaviour and highly compressed
relaxations. Due to the limitations of the optical technique we weren’t able
to confirm the presence of the strain velocity field in the same way of the
SAXS experiments. However we observed that modifying the preparation
protocols, it is possible to change the dynamics, retrieving the diffusive-like
stretched exponential behaviour.Moreover, from qualitative observations we
observed that the strain induced dynamics is obtained when an equilibrated
sample is “violently” centrifuged. This fact suggests the stresses introduced
inside the sample’s bulk during its preparation as origin of this non diffusive
dynamics, and among the various processes the most critical appear to
be the loading of the capillary. During the centrifugation, the colloidal
glass, which has very weak mechanical properties, is subjected to a strong
gravitational stress, this stress is transferred from the vertical axis to the
radial and tangential directions, and here stopped by the pressure exerted
by capillary walls. Once the centrifuge has stopped the stress along the
vertical axis is released more quickly than the one accumulated on the radial
direction, being the latter hindered by adhesive forces between the sample
and the capillary walls. Thus after a transient initial time the dynamics of
the sample is due principally to the residual radial and tangential stresses
as depicted in the drawing of figure 5.32.
One last consideration comes from the observation that in the SAXS

measurements, no sign of density gradients across the sample has been
detected, and that the local structure didn’t changed during the whole
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Figure 5.32: Pictorial representation of the dynamical structure developed
inside a stressed colloidal sample. Different small regions composed by
hundreds of particles move along radial direction toward (blue arrows) and
from (red arrows) the vertical z axis.
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acquisitions. This fact, with the presence of clear signatures of dynamical
heterogeneities, suggests that the dynamics developing inside the stressed
colloidal samples is not originated from a macroscopic density gradient and
that the particle’s motions does not point all in a single direction, but instead
group of particles wiggle along radial and/or tangential directions.
This is still a qualitative interpretation of the collected data, and even if the
research is not in its earliest stages it is far to be considered concluded. In
the near future we hope to characterize more accurately this phenomenon,
with a development of a more rigorous theoretical framework, and extend
our studies also to the fully attractive colloidal glass.
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Chapter 6

XPCS on oxides

In previous chapters we have seen that performing photon-correlation ex-
periments at various wave-vectors provides information on very different
length-scales, and smaller λprobe grants access to larger q vectors. The limits
to the accessible ranges are mainly due to the incident wavelength, and
of course to practical constraints like beam divergence or geometry of the
experimental chamber. Thus it is quite straightforward to see that in the
hard X-ray regime with photon energies of ∼ 8keV (λ ∼ 0.15nm) the inter-
atomic distances (typically few Ȧ) become accessible in transmission XPCS
experiments. In this case, the angles necessary to reach these length-scales
are larger than 10◦ and one refers to these configurations as Wide Angle
X-ray Photon Correlation (WAXS) experiments. This chapter will be focused
on the refinement of the research carried out by me and Pintori on borate
glasses (the previous results can be found in [154] ) and to introduce some
recent results on silica.

6.1 Beam-induced dynamics
The translatory motions in all glassy systems at temperatures well below Tg
are supposed to be completely “frozen”, and this fact can be considered in a
certain manner as a consequence of the glass state definition. Thus, it was
very surprising when, probing the atomic motions at very short length-scales
in a sodium silicate Ruta and coworkers discovered a strong departure from
Arrhenius behaviour at low temperatures [155]. In their work a complete
decorrelation of the intermediate scattering function was observed even at
fractions of Tg indicating a dynamics several orders of magnitude faster than
the one measured with macroscopic probes like visible laser radiation or
viscosity measurements.
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As suggested in [154], this deviation can be described with a simple relation
of the kind

1
τ

= 1
τα

+ 1
τind

(6.1)

where τα is the natural, temperature dependent, structural relaxation time,
and τind is the characteristic time of a new process visible only with X-ray
probes. This process was readily identified as a beam-induced effect [156]
in which the observed relaxation time is strictly related to the total flux
impinging on sample as it can be seen from the measurements performed on
silica reported in fig. 6.1. The results found in [156] can be summarized as
follows :

• The incident X-ray flux induces atomic motions at temperatures well
below Tg. The time scale for this motion is inversely proportional to
the photon flux absorbed by the sample.

• At fixed flux, the dynamics remain stationary and is independent of
the accumulated dose.

• The decay time depends in a reversible way, and almost “instanta-
neously” on the incident flux.

• The shape of the autocorrelation function is independent of flux,
suggesting that the observed phenomenon is strongly related to the
intrinsic dynamics of the glass.

• This induced dynamics is observed for simple oxides glasses, while
metallic glasses do not appear to be affected by X-rays in XPCS
experiments.

These observations suggest the presence of a complex beam activated process
which differs from the classical radiation damage reported in XPCS studies
on soft materials under many aspects. The typical beam damage usually
appears with a dynamics varying with the global absorbed dose resulting
often in pronounced aging phenomena that are usually triggered by significant
structural damage. For oxide glasses an alteration of the local structure
is observed, qualitatively a reduction of the structure factor’s peak and
a increase of the intensity at low q, but it becomes evident only at high
absorbed doses. Despite the occurrence of this structural alteration at
larger accumulated doses, the observed dynamics is not strictly related
to that damage. In fact, if that would be the case, the dynamics would
evolve with the accumulated dose (and thus the decay time as well) and
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Figure 6.1: Instantaneous, reversible and stationary dynamics. (a) Two-
time correlation function measured in vitreous silica at T = 295K and
Qp = 15nm−1 by varying the intensity of the incoming flux. Left to right
in frame number: F0 ∼ 1 · 1011ph/s, F1 ∼ 3 · 1010ph/s, F0 ∼ 1 · 1011ph/s,
F2 ∼ 1.2 · 1010ph/s, and F0 ∼ 1 · 1011ph/s. (b) Characteristic decay times τ
as a function of the flux intensities used in panel (a). (c) Shape parameters
β as a function of the flux intensities used in panel (a). Figure taken from
[156].

would not be reversible when the flux is changed. This kind of beam-
induced dynamics (BID) closely resembles the one observed in transmission
electron microscopy experiments performed on extremely thin silica samples
[157], where the probing particles act also as a pump, fuelling the observed
process. Depending on the specific intents this effect could represent an
hindrance to the determination of some physical properties, for example
the competition between the intrinsic and induced dynamics expressed by
relation 6.1. However, given its close relation with the sample’s properties,
it can also represent an opportunity to study other physical properties, once
a clear understanding of the BID mechanisms is provided.

6.2 Alkali-borate glasses
In the work carried out by Pintori and coworkers the role played by absorption
and local structure to the determination of the beam induced relaxation
time was inspected, and the materials of choice for this task were the borate
glasses, because they are thoroughly studied in literature and offer a great
control on the details of the microscopic structure.
Let’s begin with the building block of this family of materials: the B2O3
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Figure 6.2: schematic representation of the atomic structure of a boroxol
ring (left) and of the disordered network (right). The red circles represent
the larger oxygen atoms, while the grey ones represent the smaller boron.

unit, already encountered in Chapter 4. At an atomic length-scale, the
fundamental unit of this glass is composed by one boron atom linked to
three oxygens as depicted in fig 6.2. These triangular units tend to arrange
in intermediate structures called boroxol rings that finally build up all the
atomic network, thus the elementary unit of B2O3 is composed by these flat,
planar boroxol rings. However several studies demonstrated that not all the
atoms are participating in the formation of such intermediate structure, and
that the presence of boroxol rings markedly decreases in the high temperature
melt [158, 159, 160]. The exact fraction of boron atoms contained in a boroxol
ring in the glassy state is still debated. However, combining experimental
data and molecular dynamic simulations it was possible to determine an
upper limit of ∼ 75%[161].

Adding a certain fraction of alkali oxide M2O (where M stands for a
generic alkaline atom) to the glass, the physical properties of the obtained
material will start to change and we can observe yet another anomaly involv-
ing B2O3. In fact it was early observed that increasing the alkaline molar
fraction the thermal expansion coefficient does not increase monotonically as
in the other glass formers, but instead presents a minimum at concentrations
of ∼ 20%, and the sharpness of such minimum depends on the atomic species
of the alkali mixed with the B2O3. This anomaly arises as a consequence
of the formation of new kinds of structural units. In particular, the experi-
ments show that the addition of metal oxide to B2O3 causes a progressive
increase of the number of four-coordinated borons (N4) at the expense of
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Figure 6.3: , Fraction of four coordinated borons in alkali borate glasses,
LB=lithium borate, NB=sodium borate, KB= potassium borate etc. Image
taken from [163]

three-coordinated ones, changes the network structures introducing new
types of borate structural groups, and that the metal ions do not participate
in the network formation [162]. In figure 6.3 the abundance of the N4 groups
at various molar ratios for different alkali borate glasses is reported. It is
clearly visible that for alkaline atoms concentrations (R) up to ∼ 40%, we
have a nearly linear dependence of N4 on R. This abundance of tetrahedral
groups can be explained considering that a four coordinated boron atom will
constitute a negatively charged BO−4 unit in which the excess of negative
charge is taken by the boron from the alkali ion to form the fourth B −O
bond. The positive alkali ion will then place itself near the BO−4 to provide
local charge neutrality. Alongside this generation of N4 sites, the alkaline
ions provide the formation of non bridging oxigens on a BO3 unit, and also
in this case the charge neutrality is provided by an adjacent alkali ion. This
latter process enters in competition with the N4 formation explaining the
local maximum of fig. 6.3.
Neutron diffraction experiments have shown that the short range boron-
oxigen structures are nearly identical for different alkali atoms or different
molar concentrations. A detailed analysis on the peak of the structure factor
reveals two different nearest-neighbour distances 0.137nm and 0.147nm,
which can be attributed to the BO3 and BO4 groups respectively [162].

137



6.3 Previous results and phenomenological
model

The peculiar microscopic dynamics summarized in paragraph 6.1, is actually
function to the incident photon flux. Thus speaking of relaxation times
expressed in seconds could be misleading, and a clearer way to represent
the decorrelation time can be defined as the number of frames necessary
to produce a decorrelation Nframes = τ/tlag, where tlag is the lag time
separating two different frames (tlag = texp + tread where texp is the exposure
time and tread is the read-out time). A more quantitative relation between
the relaxation time and the incident flux F0 can be found to be [154]

τ

tlag
= A

F0 · texp (1− e−µL) · εin/U
(6.2)

where 1/µ is the X-ray attenuation length, L is the sample’s thickness, εin is
the incident photon energy, and A is a parameter that describe the sample’s
response do the induced dynamic. U = ρV Na/M is the number of atoms
(or elementary units) present in the scattering volume V , ρ is the sample’s
density, Na is the Avogadro constant, and M is the molar mass.
After a time τ/tlag a fraction of elementary units equal to 1/e has moved of
a distance of 1/q, in this amount of time F0 · texp

(
1− e−µL

)
(τ/tlag) photons

have been absorbed by the sample, and then we can express the number of
atoms (or atomic units) that move per absorption events as:

Nunits = 1
e
· U

F0 · texp (1− e−µL) (τ/tlag)
(6.3)

thus Nunits ∝ 1/τ ,we will shortly see the relevance of this quantity.
To understand how the relaxation process was related to absorption it was
decided to study a series of alkali borate glasses (M2O)x(B2O3)1−x, where
M = Li,Na,K at fixed molar fraction x = 0.14. By varying the modifiers
keep in its concentration fixed, the final network configurations were nearly
the same, while the energy absorbed from the incident X-ray beam changed
considerably. It was clearly demonstrated that the decay time does depend
considerably on the number of photons absorbed by the sample, brutally
summarizing, the heavier the atom faster the relaxation. For samples with
similar local structure but different atomic weights, τ scales simply with
absorption, but the number of units that has moved per photon (Nunits)
does not change appreciably for the three different borate glasses as reported
in fig. 6.4, while it differs appreciably from the value estimated for pure
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Figure 6.4: Left: decay times obtained from the XPCS mea-
surements on B2O3 (green stars), (K2O)0.14(B2O3)0.86 (blue triangles),
(Na2O)0.14(B2O3)0.86 (pink diamonds), (Li2O)0.14(B2O3)0.86 (black squares)
. The data were taken at the peak of the structure factor and plotted as
a function of the mean flux 〈f〉 = F0texp/tlag. Right, Nunits for the differ-
ent glasses, the solid lines represent the mean values of Nunits:〈NB2O3〉 =
600± 20,〈NLBO〉 = 170± 10,〈NNBO〉 = 170± 20, 〈NKBO〉 = 174± 4. Image
from [154]

diboron trioxide.

This result suggested a link between the local structure and Nunits, it
was decided then to perform a series of measures on different lithium borate
glasses ((Li2O)x(B2O3)1−x) at different molar concentrations (x =0.14, 0.22,
0.3, 0.5). As reported in fig. 6.5, it was observed a clear decrease in the
value of those Nunits with the increasing number of tetrahedral units in the
glass.

We can further refine this concept of the number of elementary units
that had changed their position after the absorption of a photon, but we
must discern between two equally plausible scenarios. The first one sees the
generation of a photoelectron after the absorption of the X-ray photon. This
photoelectron then starts to travel inside the atomic network interacting
with the atoms through elastic and inelastic scattering events, and eventually
it will loose all its energy. A certain fraction of the inelastic scattering events
have produced an atomic displacement giving rise to the detected dynamical
signal. We can refer to this interpretation as to the cascade-relaxation
process.
In a second scenario, the absorption of a photon induces the breaking of
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Figure 6.5: Nunits as a function of the fraction of N4 units for
(Li2O)x(B2O3)1−x glasses at different molar fractions. Image from [154]

an atomic bond and the initial displacement of a single atom. Because the
formation of an atomic disordered network is always accompanied by the
creation of local stresses, the initial rearrangement produces a cooperative
motion in the neighbouring atoms in the attempt to release the stored elastic
energy. In this case we have a stress-relaxation process.
With the present knowledge it is not possible to decide which one of the above
mentioned models describes more precisely the experimental observations.
Moreover one scenario does not exclude the other. In the stress-relaxation
framework we can further discuss the meaning of Nunits. Defining v = V/U
as the volume of a single elementary unit, where V is the scattering volume,
we obtain that the portion of scattering volume that has rearranged its
internal structure per absorbed photon is given by Vcorr = Nunits · v. Making
the assumption that all the atoms contained in Nunits are clustered in the
same volume, then it is possible to define a length-scale

ξ = 3

√
3

4π
1
e
· V

F0 · texp (1− e−µL) (τ/tlag)

that describes the rearranging region. ξ would then describe the physical
extension of the CRR induced by the X-ray interaction with the atoms
constituting the glass, and a quite suggestive fact is that the numerical
values obtained for this quantity are all of the order of few nanometers [154],
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similar to the ones fond in literature for systems close to Tg [164].

6.4 Sample preparation
To obtain alkali borate glasses with the desired final properties we had to
establish a production procedure taking into account several constraints
and complications not present in the preparation of pure B2O3 glasses. The
most delicate complication comes from the necessity to introduce the alkali
metals in the B2O3 glass. Typically alkali oxides are quite corrosive and
react violently with water, thus it was decided to make alkali carbonates as
a starting ingredient. These carbonates decompose in the alkali oxide and
CO2 at temperatures close to the melting point of B2O3, thus when loading
the crucibles one has to keep in mind that at high temperatures the melt
will be “inflated” by CO2 suddenly released by the carbonate and if the
starting volumes are too large, the alkali borate foam will exit the crucible
contaminating the furnace. Another important constraint comes from the
tendency of the alkali oxides to be expelled from the melt if the temperature
is too high, thus limiting the amount of time in which the sample can be held
well above Tm to remove bubbles; and obviously, the alkali-borate glasses do
not share the amazing stability against crystallization of pure B2O3, thus
melt-quench techniques must be adopted. The detailed procedure to obtain
these glasses can be found in [154]. After the annealing process the samples
were polished to reach thickness of ∼ 40− 50µm and immediately vacuum
sealed.

6.5 Experimental set-up
In this chapter we will see results coming from different experiments per-
formed at different synchrotron radiation sources. The experiments per-
formed at ESRF, were realized at beamline ID10 in wide angle configuration.
The beamline details are the same of the previous chapter. In particular
we used a configuration with 10 × 10µm2 spot size and 8.1keV incident
radiation. The main difference is given by the different detector, now a deep
depletion Andor Ikon-M camera able to detect single X-ray photons. The
camera has 1024x1024 pixels and a pixel size of 13 µm, and was placed at
a distance of D ∼ 750mm from the sample in order to match the speckle
and pixel sizes. Due to the rather poor signal, for the computation of the
two-times correlation matrix the whole 1024x1024 chip was used, leaving us
with an angular resolution δθ ∼ 1◦.
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The other XPCS measurements were performed at the Beampline P10 at the
PETRA III synchrotron in Hamburg, Germany. An X-ray beam, produced
by an undulator source, was focused by a Be compound refractive lens
and the radiation was selected by a Si(111) monochromator. Hard X-rays
originating from higher order monochromator reflections were suppressed
by two Si mirrors reflecting at a grazing incident angle of 0.2◦. The spa-
tially coherent part of the beam was selected by rollerblade slits opened to
3× 3µm, providing a flux of ∼ 6 · 1010 photons per second per 100 mA. This
configuration results in a longitudinal coherence length of ∼ 1.5µm and a
transverse coherence length of ∼ 3× 3µm2. The speckle size is given by the
usual formula lc = 1.22λD/d, where λ = 0.15nm, d is the beam diameter,
and D = 400mm the sample-detector distance, producing lc ∼ 24µm. The
detector was a Princeton CCD (1340× 12300 pixels, 20× 20µm2 pixel size).
The samples were mounted on a specifically designed sample holder with an
circular hole (4-5 mm diameter with a 2 mm hole for the X-rays, and 120 µm
deep), see fig. 6.6. The temperature was kept fixed to 300K and monitored
with a thermocouple inserted close to the sample holder. The total flux
impinging on sample was controlled by means of a series of absorbers, each
of them composed by a number, ranging from 0 to 8 of Si foils 25µm thick.
Right along the transmitted beam path a photodiode was placed to monitor
the beam intensity and to measure the the sample thickness with the usual
Lambert-Beer law I = I0 exp(−µL).

6.6 Experimental results
Despite SAXS and WAXS experiments share nearly identical configurations,
when ones goes to collect the photons at large angles the conditions that
have to be fulfilled to perform an experiment change quite dramatically. As
anticipated in chapter 3, the optimal sample thickness is dictated not only
by the material’s attenuation length but also by the longitudinal coherence.
This latter condition is often the strictest, and then for all kinds of samples
the final thickness is limited to be few tens of micrometers, thus smaller
than the absorption length for most of the oxides glasses. This means that
the measurements will be carried out with very low signals on the majority
of samples. This drop in signal is partially compensated by larger detectors
(with pixel arrays of ∼ 1000 × 1000 pixels) covering larger solid angles.
Even with these expedients the final signal is still quite low, as can be seen
from fig.6.7, where the histogram of the recorded analog-to-digital units
(ADUs) obtained from 1000 images in a WAXS experiment is reported. It is
evident the presence of three sharp peaks, above a monotonically decreasing
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Figure 6.6: Some relevant components of the WAXS set-up at P10. (a):
drawing of the sample holder for transmission experiments. The samples
are held inside the small copper block fixed to the larger temperature-
controlled support (also made of copper); image taken from http://photon-
science.desy.de. (b) picture of the WAXS set-up, the Princeton CCD and the
sample environment are clearly visible, (c) close-up of the signal’s exit path;
the scattered photons exit the sample chamber trough a kapton window,
cross a small air gap and then enter the vacuum pipe connected to the CCD
. This configuration does not allow to detect scattering angles between 7◦
and 14◦.
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Figure 6.7: Histogram obtained from 1000 images of a WAXS experiment
performed on GeSe2, each image has been collected with an exposition of
0.6s. The arrows point out the occurrence of one, two or three photons
impinging on the same pixel during the acquisition. The most frequent ones
are obviously the single photon events, here corresponding to approximately
Csingle = 1120ADUs, the other peaks are located at values multiples of
Csingle.

background due to electronic noise. The three peaks correspond to as much
recorded events. The highest, located at Csingle = 1120ADUs, represents the
total number of single photon events wile the others correspond to two and
three photons impinging on the same pixel at the same time. It is instructive
to notice that these latter events are quite rare, if we consider the numbers
shown in fig.6.7 normalized per number of images, then we clearly see that
on a typical frame there are only ∼ 1000 single photon events and less than
ten double-photon events, while a three-photon event occurs approximately
only once every 10 images. Given this shortage of photons it is useful to
pre-elaborate the recorded images with a so called “dropletization algorithm”.
The tasks of this algorithm are to identify the pixels that have been struck
by an elastically scattered X-ray photon and produce an image where the
only non-zero pixels are the ones corresponding to a recorded photon. In
all the WAXS analyses carried out in the present thesis it a dropletization
algorithm developed by L. Lurio, M. Sutton and M. Sprung was used.
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6.6.1 The short range structure and its response to
strong irradiation

In the works of Ruta et al. [156] it is shown that, for silicates, the local
structure remains initially stable against beam damage and starts to change
only after a considerable amount of absorbed radiation. In the measurements
performed at P10, this initial “stable” condition is not always encountered,
since the smaller beam spot produces much higher fluences. The deformation
of the structure factor can be qualitatively described by a slight change
of the first peak position and a decrease and a broadening of the peak,
accompanied by an increase of the scattered photons at low q. All these
features are indicators of an increasing disorder in the glass, and suggest
that after an initial transient the system can reach a (driven) equilibrium
configuration. Obviously, for even higher absorbed doses, the X-rays will
start to produce macroscopic defects visible in the I(q) as a sharp increase
of the small angle contribution. This latter phenomenon occurs on longer
time-scales than the initial transient and it does not affect appreciably the
dynamics at larger q. As a rule of thumb, we can divide the life of a glass
subjected to intense X-ray radiation in three stages:

1. a first stage, in which the local structure changes and the induced
dynamics is not stationary;

2. a second stage, in which the local structure is not affected anymore
and the induced dynamics is stationary;

3. a third and last stage, in which the X-rays begin to produce significant
damage and only the dynamics at short length-scales is unaffected.

In figure 6.8, the intensity profiles measured at two different values of the
total absorbed dose are reported, it must be noted that the characteristic
time of the first stage is much longer than the detected BID. The decrease and
broadening of the structure factor’s first peak is probably due to the damping
in amplitude of the corresponding real-space oscillations at intermediate-
range distances; this effect is qualitatively compatible with the heating of the
scattering volume described in [165]. The slight change of the peak position
however, was not observed in the work of Majérus et al. [165] and it seems
to be a feature of the X-ray induced sample modification.
It is important to point out that all these phenomena are not explainable
with heating of the sample alone. For the present case of lithium borate,
the heat capacity is Cpg ≈ 1.77J/g/K [166] and the mass of the sample
is typically m ∼ 0.12g. In the extreme hypothesis that all the incoming
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Figure 6.8: Left: I(q) at different values of absorbed X-ray radiations
blue circles 0.2 · 109Gy, red circles 4 · 109Gy. The general properties of the
peak (position, width and height) have been tracked with a Lorentzian fit
(black line). Right: time evolution of the first structure factor’s peak width
(a), position (b) and intensity(c), the red lines are exponential fits with
characteristic times of τwidth = (500± 170) frames (τwidth = (1.7± 0.5)103s),
τposition = (257±140) frames (τposition = (0.8±0.4)103s), τintensity = (340±70)
frames (τintensity = (1.1± 0.2)103s) respectively.

X-rays are absorbed and that there is no thermal contact between the sample
and the sample holder, the heat deposited on the sample is ∼ 0.68mJ/s
and after 104s (the order of magnitude of the longest exposure time) the
temperature of the sample would be increased by about ∼ 32K, still well
below the glass transition temperature Tg ≈ 700K [166]. These numbers are
clearly an upper limit, here we haven’t taken in account that only a small
part of the incoming beam is actually absorbed, that the X-rays impinge on
a small area and that the heat can be transferred outside the sample to the
environment. They give us a superior limit for the real sample’s temperature.
So, temperature does not play a crucial role for this class of beam induced
dynamics (BID):

6.6.2 Beam-induced dynamics
The low number of scattered photons in this class of experiments, lead to
a very poor statistics when computing the autocorrelation matrix which
results much less clear to read, as exemplified in fig. 6.9. To get a reliable
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Figure 6.9: Example of a two-time autocorrelation matrix obtained in a
WAXS measure on a (Li2O)0.5(B2O3)0.5 sample (left), and its respective
autocorrelation matrix (right). To improve the accuracy of the fitting
algorithms, the autocorrelations were binned with a logarithmically spaced
sampling (yellow dots). The best fit to the cure (red line) gives us a value
for the contrast of A = 0.017 ± 0.002, relaxation time τ = (78 ± 8)s and
stretching exponent β = 0.55± 0.08.

autocorrelation function one has inevitably to average over conspicuous time
intervals, thus, in contrast to what happened in previous chapters, a lot of the
approaches adopted to exploit the advantages of the two-time autocorrelation
function cannot be implemented here. We can still perform a measurement of
the evolving dynamics relying on sub-matrices, but consecutive sub-matrices
will result correlated, i.e. two consecutive time windows will be overlapped
to a certain extent.
In the autocorrelation matrix of fig.6.9, it is possible to see a slight speeding
up of the dynamics with time. This latter process is indeed related with
the modification induced by the X-rays [154], and is not surprising that the
change in local structure is reflected also in a change of the relaxation time
since, as demonstrated in [154], the two are deeply connected.

A missing piece for the interpretation of the BID is a complete study of
the q-dependence. To do so, we will recover the measurements performed
at P10 on the borate glass (Li2O)0.5(B2O3)0.5 taken at a fixed fluence for
different exchanged wave-vectors, and the results will be put toghether whith
oher measurements performed on the same system at ID10. Here the data
from P10 are elaborated in a slightly different way whith respect to [154].
Since the detector covers a relatively large solid angle (δθ = 3.7◦), the
detector area was divided in three regions, increasing the q resolution. To
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Figure 6.10: Top: relaxation times (expressed in frames) obtained for a
(Li2O)0.5(B2O3)0.5 sample at two different accumulated doses, as a reference
the I(q) of the non irradiated sample is reported (yellow dots). Bottom:
stretching parameters at different q-values for the two different accumulated
doses. The data points labelled as “low dose” correspond to a sample
for which an amount of radiation ranging from 0Gy to 2.4 · 109Gy has
been absorbed, while the points identified with “high dose” correspond to
a sample for which the absorbed radiation ranges between 2 · 109Gy and
4.1 · 109Gy. The measurements were carried out using full beam intensity
with an exposure time of 1s.
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Figure 6.11: ratio between the relaxation times shown in fig.6.10, for all
the investigated q values. The ratio is consistent within the uncertainty of
1σ(dot-dashed line) with the mean value (dashed line)

prevent that the slowly varying structure factor could affect the results for
the dynamics, each image was normalized with the instantaneous I(q), i.e.
for each dropletized image an intensity profile was obtained, this profile was
then smoothed and used to normalize the dropletized image an then sent
into the autocorrelation algorithm. In fig. 6.10 the observed relaxation times
(expressed in frames) and stretching exponents are reported, these results are
obtained with such method for two different representative total absorbed
doses (i.e. the dose absorbed at the end of the time window employed to
compute the autocorrelation). The first time window corresponds to a fresh
sample that starts slowly to rearrange its local structure, while the second
to a sample whose pair distribution function has been already modified and
has entered in the completely stationary regime.

These two sets of relaxation times appear to maintain the same general
features, in both cases the dynamics is described by a stretched exponential,
in both cases there is a slight slowing down in correspondence to the first
neighbour’s peak, reminiscent of a de Gennes narrowing effect, and in both
cases more substantial slowing down at larger length-scales. The physical
hidea behind the de Gennes narrowing is the fact that maxima in the
structure factor of liquids and amorphous solids occur at scattering vectors
corresponding to the most probable interatomic separation, i.e. they are
due to the highly correlated and long-living atomic arrangements [167].The
interesting thing is that, as shown in fig. 6.11, the ratio between the
relaxation time of the fresh sample and that of the irradiated one appears
to be substantially constant in q, suggesting a simple dependence between
the local structure and the BID.
Because of the instrumental characteristics of the WAXS set-up at P10 it
was not possible to acquire data at intermediate wave-vectors, thus the
formulation of any q dependence of the relaxation time would result quite
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Figure 6.12: comparison between the scans performed at P10 (red dots),
and ID10 (blue circles) of the structure factor’s peak. The samples were
(Li2O)0.5(B2O3)0.5 glasses produced in two distinct periods. The repro-
ducibility of the structural data, allow a comparison between the induced
dynamics observed in the two experiments.

hasty without more details.

comparison with ESRF data

As found in [156] and [154] the BID strongly depends on the total absorbed
dose, thus experimental parameters like the total flux produced by the
unduators and the spot size of the focused X-ray beam play a crucial role.
The best way to compare different data that come from different instruments
is to rely on the number of units (or atoms) that move after the absorption
of a single photon defined in eq.6.3. This latter quantity is a material’s
intrinsic property and thus should be independent of the particular beamline
details. The only caveat might come from the way the beamline parameters
are determined, since a precise determination of the spot-size and total flux
is not an easy task, and some systematic errors could lurk behind the corners.
To this purpose, a number of measurements on the same silica sample at the
same scattering angle has been performed on the two different beamlines.
The values obtained in different experiments with the same instrument have
been averaged, and the ratio between the two values of Nunits has been found
to be NESRF

units /NPetra
units = 1.3± 0.3.

Now that we know that the instrumental parameters of the two beamlines
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Figure 6.13: comparison between the measured Nunits obtained from the
same kind of lithium-borate glass in two different beamlines. Blue and red
triangles are obtained from the relaxation times reported in fig. 6.10, the
yellow triangles are obtained from a set of measurements carried out at ID10.
The dashed line is a power law fit (Nunits = N0 · qα) on the datasets at low
doses with N0 = 18± 9 and α = 0.5± 0.2.

are consistent, we can put together the results of (Li2O)0.5(B2O3)0.5 glasses
obtained from the two different instruments. Since the glasses studied in
the two experiments were not prepared in the same batch, a scan of the
S(q) was taken before and after each run; the final shape of the structure
factors differs between the experiments, because the total amount of absorbed
radiation was in general different, but the shapes of the fresh samples overlap
reasonably well, as shown in fig.6.12.

We can finally proceed to fill the gaps in the τ(q) dependence shown
in fig.6.10. The measurements performed at ID10 were taken at q-values
unreachable at Petra: two close to the edges of the inaccessible region and
one in the middle of it, and other three around the first neighbour peak, to
get additional reference points. Since the spot size at ID10 (10 × 10µm2)
is much larger than the one provided at P10 (3× 3µm2), the total fluence
is decreased by about a factor ten, thus in the attempt to maintain the
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same flux per frame it was decided to impinge on sample at full beam
with exposition time of 5s. Nevertheless, the total absorbed dose at the
end of the measurements are lower than the total dose absorbed at Petra.
For this reason it was decided to limit the comparison only to the lower
irradiated samples. The result, reported in fig.6.13 shows a reasonably good
agreement between the low dose data obtained at Petra (blue triangles)
and the ones that came from ESRF (yellow triangles), combined these data
can be described in first approximation by a power law N = N0 · qα with
exponent α = 0.5 ± 0.2. The de Gennes narrowing of τ is traduced in
Nunits as a plateau region that begins with a small “peak” at the exchanged
wave-vector qc ∼ 10nm−1.

6.6.3 SAXS measurements on silica
Here we will introduce the first results from a very recent experiment
performed on vitreous SiO2 at P10. This time, the measurements were
carried out in SAXS configuration with a large area detector called EIGER
X 4M. The detector consists of 4×2 modules with 75×75µm2 pixel size and
an active area of 2070×2167 pixels (155.2×162.5mm2) placed at 5.05m from
the sample. With a such enormous active area, the covered q range spans
from ∼ 0.005nm−1 to ∼ 1nm−1, giving the opportunity to probe at the same
time both the movements at large length-scales and the rearrangements
happening at the nanoscale. Moreover, a smaller scattering angle means a
more forgiving condition for the coherence length, thus a higher contrast, as
it can be seen from the autocorrelation reported in fig.6.14, there the fitted
value for the contrast is one order of magnitude larger then the one reported
in fig.6.9.

The results, reported in fig.6.15, show that τ(q) is a monotonically de-
creasing function which can be described by a power law τ(q) = τ0q

αSAXS ,
with τ0 = (0.37 ± 0.03)103s, αSAXS = 1.22 ± 0.07. The exponent of the
relaxation function is compressed at all probed q values, and even here we
can observe a markedly monotonically decreasing behaviour for β(q), which
seems to reach values compatible with a simple exponential. The large un-
certainties over of β(q) at large q values is due to the drop in contrast shown
in the third panel of fig.6.15. This sudden drop can be readily described
with the considerations reported in cap.3, in fact, in XPCS measurements,
the contrast can be described, in first approximation, as the ratio between
one coherent volume and the total scattering volume contrast ≈ Vcoh/Vscatt,
using the relations of the path length difference we get contrast ≈ R/ sin(θ)2

where θ is the scattering angle and R is a quantity related to the ratio
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Figure 6.14: Left:autocorrelation matrix for the SAXS measurement on
silica at q = (0.47 ± 0.06)nm−1. Right: autocorrelation function (blue
line) with best fit to the data (red line). The fitted contrast is now A =
0.140 ± 0.002,with relaxation time τ = (1.01 ± 0.03)103s and stretching
exponent β = 1.18± 0.03.

between the longitudinal coherence and the sample thickness. This rather
simple model, being formulated on approximations valid for the SAXS regime,
is able to describe reasonably well the contrast values at small angles, but
fails (luckily) to describe the contrast at larger q-values.

We can attempt to compare these SAXS data with the WAXS results
reported in [156]. In the latter dataset however, some details needed for
a rigorous comparison between data produced on different beamlines are
missing, but, thanks to the fact that silica was used to “tune” the two
beamlines, we can rescale the values of [156] on a datapoint with well
known experimental parameters (the yellow diamond in fig. 6.16), and we
can obtain a robust comparison between the two datasets. Also at these
large q-values the relaxation time is described by a power law of the kind
τ = τ0/q

α
WAXS, with αWAXS = 0.5±0.1, quite similar to the one observed for

(Li2O)0.5(B2O3)0.5. This change means that the spatial length-scale becomes
progressively less important for τ upon approaching sorter distances in
qualitative agreement with what has been observed for the lithium borate
glass. A direct comparison between the two glasses is reported in fig.6.17
and the intriguing similarities between the two materials confirm the general
origin of the BID effect.
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Figure 6.15: Results for τ(q) (top left panel) and β(q) (top right) of the
SAXS measure performed on amorphous silica. The analysis has been
carried out keeping a fixed q-resolution of δq/q = 2.3%. The increase of
the uncertainty for β at larger q-values is due to the decrease of about one
order of magnitude in the contrast of the autocorrelation function (bottom).
The red dashed line in the right panel is a simple fit of the contrast with
R/ sin(θ)2 where θ is the scattering angle and R = (33± 1)10−6 is a quantity
related to the ratio between the scattering volume and the coherence volume.
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squares) and the SAXS measurement (blue circles). In the top panel, are
reported the relaxation times observed in the different experiments, on the
bottom panel the same results are expressed as the number of units that has
moved after the absorption of a photon, due to the lack of a precise measure
of the photon flux and sample thickness in the WAXS data the conversion
of the latter to Nunits is performed rescaling firstly the τ values on the
relaxation time measured at a fixed q-value at P10 (yellow diamond), then
all the data-points are converted in Nunits. The data seem to evidence two
distinct regimes described by a power-law with different exponents 0.5± 0.1
for the WAXS measure and 1.22± 0.07 for the SAXS one.
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6.7 Final remarks
In summary, we have seen how intense X-ray irradiation can modify the
local structure of a lithium borate glass. The absorption of X-rays at high
doses induces also a change in the observed BID at all measured exchanged
wave-vectors, nearly doubling the number of atoms that rearranges after
the absorption of a photon, as can be seen in fig.6.11. This latter fact, in
contrast with the structure factor’s modification, is not compatible with
a simple heating of the sample since, as outlined in [154], Nunits is seen
to decrease with increasing temperature, in borate glasses. On the other
hand, Nunits is seen to increase with decreasing the fraction of tetrahedrally
bonded atoms (fig.6.5).From the q-dependence of τ , or equivalently of Nunits,
of the lithium borate samples we observe a power-law scaling of the kind
Nunits = N0 · qα with α = 0.5± 0.2.
A more trustworthy q dependence of the BID’s characteristic time is found
in the SAXS measurements recently performed on amorphous silica. Here it
has been clearly observed that the relaxation times follow a power-law of
the kind τ(q) = τ0/q

α with an exponent of αSAXS = 1.22± 0.07, and that
approaching smaller distances this trend switches to a milder q-dependence.
This tendency is in qualitative agreement with the WAXS results of Ruta
et al.[156], where a power law with exponent αWAXS = 0.5± 0.1 has been
found. In this latter set of data there is no clear evidence of the plateau
found in the lithium borate glass, but this can be a consequence of the
coarser sampling adopted. Either way, in both regimes the dynamic cannot
be attributed to diffusive processes. Another interesting fact comes from the
strong similarity between the lithium borate data and the WAXS results
for silica as can be seen in fig. 6.17 suggesting that the q-scaling, in WAXS
regime, is independent of the probed system.
The stress-relaxation scenario is described more appropriately by the models
developed for the intermittent dynamics in soft solids [145, 8] than the ones
describing the atomic diffusion in undercooled liquids. The results obtained
from the SAXS measurements on silica, show a compressed exponent β that
changes with q in qualitative agreement with what observed in simulations
on soft materials [8]. Also the observed τ(q) in the SAXS regime matches
what has been observed in [8]. Discrepancies arise in the WAXS regime
and this can be due either to the fact that the probed q-range is different
from the one covered by the simulations, or to the fact that the mechanisms
involved in the BID at short length-scales are more complex.
Another interesting detail that could be explained by the theoretical models
of [145, 8], is the different shape parameter of the autocorrelation function
observed in different glasses. In the lithium borate reported in this Thesis
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the autocorrelations are stretched with β ∼ 0.5, while in silica is compressed
at all probed q-values; for more examples see [154]. In the simulations the
shape parameter, as well as the q-dependence of τ , depends on the ratio
between the energy of the thermal bath (here replaced by the energy delivered
by the X-rays) and the stress heterogeneity frozen-in during solidification.
For certain values of this ratio β can assume values smaller than 1, thus
producing indeed a stretched exponential.
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Chapter 7

Conclusions

In this Thesis we have studied the dynamics in three disordered systems
under very different conditions; a) a strong glass former B2O3 in its glass
transition region probed in the macroscopic limit, b) a colloidal suspension
in its arrested state probed in a broad q-range with visible light and X-rays,
and c) oxide glasses well below their glass transition temperature but under
the influence of strong X-ray radiation. The main conclusions of the individ-
ual chapters are reported below.

a) The B2O3 glass was investigated with the intent to measure the α
structural relaxation below the glass transition temperature with a PCS
technique. During the measurements in the glass transition range the aging
phenomenon was inevitably encountered, and the capabilities the two-time
autocorrelation functions obtained in a multispeckle set-up were exploited to
study in detail the time evolution of the structural relaxation. A campaign
of dedicated experiments was then carried out to characterize the aging with
a set of progressively deeper temperature jumps, and following the system
until an almost complete recovery of the equilibrated undercooled liquid
condition had been reached. It has been discovered that:

a.i) in the early stages of the glass’s life, there is an apparent violation of the
time aging-time superposition produced by the presence of mechanical
stresses inside the sample’s bulk originated as a consequence of the
initial cooling;

a.ii) the presence of internal stresses does not alter the distribution of
relaxation times that contribute to the stretched relaxation function,
and with an appropriate choice of the experimental parameters or of
the fitting function it is possible to obtain a stretching exponent β
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compatible with the one of the equilibrated undercooled liquid (i.e.
the time aging-time is retrieved);

a.iii) the time required by the system to reach the equilibrium condition and
to completely dissipate the internal stresses (or equivalently the time
necessary to recover the equilibrium value of the stretching exponent)
is about 14 · τα, where τα is the structural relaxation time of the
equilibrated system;

a.iv) the evolution of the structural relaxation τα(tW ) is described by the
Tool,Moynihan,Narayanaswamy model [102, 35, 103], resulting strongly
dependent on the fictive temperature;

a.v) the aging can heavily affect the dynamical susceptibility with signals
similar to the ones related to the dynamical heterogeneity; however
thanks to simple mathematical considerations and a detailed knowledge
of the aging quantities it is possible to effectively model these aging-
dependent contributions.

b) Silica nanoparticles dispersed in a near critical water-lutidine 2,6 mixture
constitute a system with great potential for future applications in the
studies of inter-particle interactions in disordered systems. Changing the
temperature in a specific range it is possible to finely tune the energy
potential between particles switching from a repulsive colloidal system to
an attractive one and vice-versa. In this Thesis the efforts were dedicated
to characterize the purely repulsive colloidal system in a set of photon-
correlation experiments performed both in the visible and in the X-ray
regime. In the X-ray experiment it was observed, similarly to what previously
reported in literature, that:

b.i) samples of large colloidal particles are able to avoid crystallization
preserving the amorphous structure only at volume fractions greater
than ∼ 45%;

b.ii) the dynamics is intermittent, described by compressed relaxation
functions (β > 1) with an hyper-diffusive behaviour (τ(q) ∝ 1/q);

b.iii) the samples are in an out of equilibrium condition displaying a relax-
ation time growing linearly with the sample’s age.

From our data, we obtained also other new findings :

b.iv) the analysis of the autocorrelation functions at different azimuthal
angles evidenced that the motions inside the sample are due to a radial
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velocity field with cylindrical symmetry. Considerations concerning the
stability of the structure factor’s peak suggests a motion characterized
by relaxation events sparse in the system and with velocity field directed
radially both towards the centre of the sample and pointing outward,
without a net particle’s flux;

b.v) a sample with a stationary dynamic regime was obtained. From
this stationary regime it was possible to extrapolate the dynamical
susceptibility of the observed motion and relate its peak value to the
number of particles participating in the cooperative rearrangement;

b.vi) a sharp increase of number of particles participating in cooperative
rearrangements (from ∼ 20 particles to ∼ 500 particles) is observed in
correspondence to the first neighbours peak, indicating that a typical
cooperative rearranging region moves over an inter-particle distance in
a relaxation time.

Visible PCS measures on analogous samples composed by smaller colloidal
particles, confirmed the picture observed in the XPCS experiment and evi-
denced that the above considerations can be extended to all colloidal glasses
of silica in water-lutidine. Moreover it was observed that the kind of dy-
namic developing in a colloidal glass is extremely sensitive to the preparation
protocol. In fact, changing the procedure adopted for its preparation it was
found that the autocorrelation functions can also be described by a slower
than exponential (stretched) decay.

c) Several XPCS experiments performed on oxide glasses evidenced the
presence of atomic motions even at room temperature, well below the glass
transition temperature. It eventually was found that these motions are
microscopic rearrangements induced by the X-ray beam, and thus that
XPCS experiments on oxide glasses (but also chalcogenides and polymers)
have to be interpreted as a pump-probe measurement where the same X-
rays act both as a pump and as a probe. In this Thesis measurements on
(Li2O)0.5(B2O3)0.5 and silica glasses are reported. From these experiments
it was possible to observe:

c.i) The relaxation time is inversely proportional with the absorbed flux
(τ ∝ 1/F ), in agreement with previous works [156, 154]

c.ii) The shape of the first structure factor’s peak changes with increasing
X-ray absorbed dose, indicating the occurrence of a modification of the
local order. This alteration is associated with an initial non stationary

161



regime in the observed intermediate scattering function, followed by a
stationary regime once the system’s structure has ceased to change.

c.iii) The relaxation times in these regimes (initial non stationary and final
stable) are observed to be proportional to each other, and the shapes
of the autocorrelation functions are the same in both regimes.

c.iv) The relaxation times are a non monotonic decreasing function of q
with a local maximum in the region near the structure factor’s peak.

From this beam-induced dynamics it is possible to define the number of
particles (Nunits) that have moved over a distance 2π/q in a characteristic
time τ after the absorption of a photon. This latter quantity appears to be
a characteristics of the system under study and can be used to compare the
results obtained in different experiments. For the lithium borate glass it was
observed that this number of particles grows approximately linearly with
q and then reaches a region with a weaker q-dependence. This qualitative
result has been confirmed by a recent SAXS measurement on vitreous silica
where we found that:
c.v) a clear nearly linear q-dependence of Nunits (or equivalently 1/τ ∼ q)

for q values up to ∼ 1nm−1;

c.vi) compressed relaxation functions with an exponent β(q) described by a
monotonically decreasing function of q.

Comparing these results with the measurements previously performed on
silica at larger angles reported in [156] a cross-over region between 1nm−1

and 2nm−1 in which 1/τ(q) acquires a sublinear dependence on the ex-
changed wave-vector can be identified. Currently a reliable model able to
describe the mechanism of the beam induced dynamics is still lacking, but
the prediction of models developed for soft collapsing systems seem to be
able to qualitatively describe many of the observed features, suggesting that
the stress-release mechanism plays a central role in this class of phenomena.

Combining the results of those individual chapters we can attempt to
give an answer to some of the questions outlined in Chapter 1.

I) Stress-release processes and compressed ex-
ponential relaxations
In all three experiments we have seen the contributions to the dynamics
of a feature always present in glasses: the internal stresses trapped as a
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consequence of the glass production. In the macroscopic limit studied in
chapter 4, the presence of internal stresses produced a rigid shift of the
whole speckle-pattern thus adding a Gaussian contribution to the detected
intermediate scattering function. The autocorrelation functions appeared
then with a mild initial slope, characteristic of the stretched exponentials,
truncated by a sudden fast decorrelation compressing the overall intermediate
scattering function’s shape.
In the colloidal systems of chapter 5, the presence of anisotropic internal
stresses on micrometer length-scales is at the basis of all the relaxations
observed in XPCS and of a good number of visible PCS experiments. Even
here, the relaxation is described by a compressed exponential, and once the
anisotropic dependence has been identified the shape parameter β is always
very close to 2 at all length-scales.
Lastly, in the XPCS measurements on silica we have seen an induced process
which can be described quite accurately by a stress-release scenario that
takes place at nanometric length-scales. Also for SiO2, the shape of the
intermediate scattering function is compressed, and β(q) shows to be a
clearly decreasing function of q in the small angle regime.
Grouping these findings we can support the empirical conclusion stating
that compressed relaxation functions are the signature of stresses embedded
within the sample. It is intriguing, in fact, how the same process acting
on diverse length-scales, macroscopic in B2O3, microscopic in the colloidal
system and (most probably) nanoscopic in silica glass, comes always into
play into the observation of the intermediate scattering function through
the most disparate processes, and how at the end a compressed relaxation
is always present, see fig.7.1. It has to be noted however, that in the case
of the aging B2O3, the shape of the α structural relaxation is not affected
by the presence of stresses (in fact the compressed term can be ruled out
with an appropriate choice of experimental parameters). The q-dependence
of the relaxation times observed in both the colloidal glass (chapter 5) and
the oxides (chapter 6) indicate always a non-diffusive behaviour following
a power law τ(q) ∝ 1/qα with α close to 1, and also this nearly linear
q-dependence is always associated with the stress-relaxation mechanisms in
soft solids [144, 8].

II) Spatial and temporal heterogeneity
The dynamical heterogeneity (χ4) is a key quantity for the glass transition.
In this Thesis, a clear observation of χ4 can be found only in the chapter
dedicated to the colloidal glasses in which is was possible to determine
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Figure 7.1: Examples of the various effects on the autocorrelation function
of the stresses that can develop inside a glass. Top : aging autocorrelation
function of boron trioxide truncated by the fast macroscopic relaxation, the
latter manifests itself with a compressed relaxation with β = 2. Center:
autocorrelation function at large q-values for a stressed colloidal sample,
this autocorrelation is taken averaging over all the azimuthal angles and the
compressing exponent is β = 1.51± 0.001. Bottom: compressed relaxation
function observed in the beam induced dynamics of a silica sample at small
angles. The compressing exponent is here β = 1.18± 0.03.
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of a photon (blue diamonds). The q axes are rescaled with the value qmax,
where qmax is the position of the structure factor’s peak for the colloids and
for the borate glass.

the number of particles participating in a collectively rearranging region
(CRR), see fig.5.26. In the stress-relaxation scenario of the beam induced
dynamics we can obtain the quantity Nunits, which is the number of atoms
participating to the induced collective rearrangement obtaining an atomic
equivalent concept to what observed in the colloidal glass. Moreover, in this
interpretation we get another suggestive similarity between the behaviour
of the number of particles of fig.5.26, and the number of (Li2O)0.5(B2O3)0.5
atoms of fig.6.13. Looking at the general trend, we can see that N rises
from small values in the low q-limit and then reaches a sort of plateau at
small-length scales. In fig.7.2 the two curves are reported and rescaled in
q for a better comparison. This behaviour suggests that the dynamics in
these samples is characterized by groups of Nmax particles moving over a
characteristic distance (the inter-particle distance for colloids).
At the end of Chapter 4 we have seen that a clear signal of the dynamical
susceptibility can also arise in presence of aging and that, provided a detailed
knowledge of the time evolution of the physical quantities, it is possible
to reproduce quite accurately the experimental σ2

g2−1. In principle one can
then employ these considerations to get rid of the aging contribution in the
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χ4 observed in out-of equilibrium systems (for example the aging colloidal
samples). However, at present, it was not possible to perform such a task
without obtaining large uncertainties in the final result. The principal
limitation right now is due to the fact that in order to obtain χ4 we have
inevitably to average over a certain time window and when the change of
the relaxation time over this time window is too large, then the contribution
due to the CRR’s fluctuations will be inevitably cancelled by the growing
relaxation time and cannot be retrieved with the simple model of Chapter
4. Thus the only way to preserve the information on the desired dynamical
heterogeneity is to select small enough time windows, but in doing so, the
statistics will inevitably limit the quality of the result.

III) Aging and rejuvenation
Aging is a phenomenon common to all glasses and we have found it in many
situations in Chapters 4 and 5 of this Thesis.

The aging of B2O3 can be described as the result of two distinct processes:
the mechanical relaxation and the proper microscopic evolution. The latter
can be described reasonably well by the phenomenological model of Tool,
Moynihan and Narayanaswamy [102, 35, 103] where the evolution of the
dynamical properties is completely described by the fictive and sample’s
temperatures and the memory of the past thermal history. Thus all the
aging here is a thermally activated mechanism. For the colloidal sample, on
the other hand, the dynamics is the consequence of the release of the elastic
energy trapped inside the material during its production, and its slowing
down is a consequence of the depletion of the mechanical energy reservoir.
On the other hand, when one compares the mechanical relaxation of B2O3
with the colloidal sample’s aging we can see a very similar behaviour of
the velocity’s time evolution 1, see fig.7.3. In fact in both cases we have a
particle’s motion that quickly slows down as the system looses its elastic
stresses, eventually reaching a region where the stress-induced velocity is
overrun by the α structural relaxation.
Also for the beam induced dynamics in (Li2O)0.5(B2O3)0.5 of Chapter 6 a
non stationary dynamics can be identified, but this time we observe a speed-
up of the relaxation function and speaking of rejuvenation is more appropriate.
This rejuvenation is accompanied with a progressive modification of the
average local structure operated by the X-rays, thus suggesting a link between

1recalling briefly, in the aging B2O3 the Gaussian parameter of eq.4.8 is described by
Γ(tW ) = v(tW )/σ, where σ is the squared sum of the speckle and pixel’s sizes, while for
the colloidal sample τ(tW ) = 1/(q · v(tW )).
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these two processes.

7.1 Future perspectives
Within this Thesis it was possible to find an answer to some questions, but
a number of other ones remains unanswered.
For some of the general questions formulated in Chapter 1 (i.e. the points
iv) v) and vi) ), we have found only qualitative answers and a more complete
explanation for these issues will require more experiments on more different
systems. Moreover, from each individual chapter we can find several inter-
esting paths to follow.
Regarding the PCS measures on the aging B2O3 it has yet to be found
a model able to explain the interplay between the stress release and the
microscopic aging of the structural relaxation. In fact, the parameters of
the Tool,Moynihan,Narayanaswamy model [102, 35, 103] obtained for τα are
quite different from the ones obtained at higher temperatures, and among
the possible explanations the influence of the external stresses cannot be
excluded.
Regarding the colloidal glasses, the natural prosecution of the investigation
is to exploit the water-lutidine properties to observe the change of the dy-
namical heterogeneity when changing the inter-particle interaction. For the
repulsive glasses described in this Thesis, a piece that is still missing is a
quantitative explanation for the compressed relaxation’s origin; currently we
have a qualitative picture in terms off stress-relaxation able to describe most
of the features observed in these systems, but we are lacking of experiments
able to provide a more detailed picture.
The phenomenon of the beam induced dynamics is still a young and mostly
unexplored field. Currently, the main questions in this topic concerns the
identification of the process (or processes) that make possible the beam
induced dynamics, understanding which one between the cascade-relaxation
and stress-relaxation models is able to better describe the experiments. Cur-
rently, some hints are tilting the scale towards the stress-relaxation process,
but in practice the situation is far from being clear. A great help in this
direction might came from experiments able to measure the time-scales over
which the Nunits atoms rearrange after the absorption of a photon. Another
important question is on the role is played by the stresses that are frozen in
the glass once it has been produced.

The disordered systems are an ancient, yet largely unexplained field of
condensed matter and material science. With the present Thesis I hope
to provide even only a small step towards a better understanding of the
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dynamical mechanisms governing the glassy state, and towards a more precise
control on the physical properties of the materials that can be obtained from
this class of extremely versatile systems.
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