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Abstract

The deployment of low power wireless networks is notoriously e↵ort-demanding, as costly

in-field campaigns are required to assess the connectivity properties of the target location

and understand where to place the wireless nodes. The characteristics of the environment,

both static (e.g., obstacles obstructing the link line of sight) and dynamic (e.g., changes

in weather conditions) cause variability in the communication performance, thus a↵ecting

the network operation quality and reliability. This translates into di�culties in e↵ectively

deploy, plan and manage these networks in real-world scenarios, especially outdoor. De-

spite the large literature on node placement, existing approaches make over-simplifying

assumptions neglecting the complexity of the radio environment.

Airborne and satellite Remote Sensing (RS) systems acquire data and images over wide

areas, thus enabling one to derive information about these areas at large scale. In this

dissertation, we propose to leverage RS systems and related data processing techniques to

i) automatically derive the static characteristics of the deployment environment that a↵ect

low power wireless communication; ii) model the relation between such characteristics

and the communication quality; and iii) exploit this knowledge to support the deployment

planning. We focus on two main scenarios: a) the deployment of Wireless Sensor Networks

(WSNs) in forests; and b) the communication performance of Internet of Things (IoT)

networks based on Long Range (LoRa) wireless technology in the presence of mixed

environments.

As a first major contribution, we propose a novel WSN node placement approach

(LaPS) that integrates remote sensing data acquired by airborne Light Detection and

Ranging (LiDAR) instruments, a specialized path loss model and evolutionary computa-

tion to identify (near-)optimal node position in forests, automatically and prior to the

actual deployment. When low-power WSNs operating at 2.4 GHz are deployed in forests,

the presence of trees greatly a↵ects communication. We define a processing architecture

that automatically derives local forest attributes (e.g., tree density) from LiDAR data ac-

quired over the target forest. This information is incorporated into a specialized path loss

model, which is validated in deployments in a real forest, enabling fine-grained, per-link

estimates of the radio signal attenuation induced by trees. Combining the forest attributes

derived from LiDAR data with the specialized path loss model and a genetic algorithm,

LaPS provides node placement solutions with higher quality than approaches based on

a regular placement or on a standard path loss model, while satisfying the spatial and



network requirements provided by the user. In addition, LaPS enables the exploration of

the impact of changes in the user requirements on the resulting topologies in advance,

thus reducing the in-field deployment e↵ort.

Moreover, to explore a di↵erent low-power wireless technology with starkly di↵erent

trade-o↵s, we consider a LoRa-based IoT network operating in i) a free space like commu-

nication environment, i.e., the LoRa signal is transmitted from an high altitude weather

balloon, traverses a free-of-obstacles space and is received by gateways on the ground;

and ii) a mixed environment that contains built-up areas, farming fields and groups of

trees, with both LoRa transmitters and receiving gateways close to the ground. These

scenarios show a huge gap in terms of communication range, thus revealing to which

extent the presence of objects a↵ects the coverage that LoRa gateways can provide. To

characterize the mixed environment we exploit detailed land cover maps (i.e., with spatial

grain 10⇥10m2) derived by automatically classifying multispectral remote sensing satel-

lite images. The land cover information is jointly analyzed with LoRa connectivity traces,

enabling us to observe a correlation between the land cover types involved in LoRa links

and the trend of the signal attenuation with the distance. This analysis opens interesting

research venues aimed at defining LoRa connectivity models that quantitatively account

for the type of environment involved in the communication by leveraging RS data.
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Chapter 1

Introduction

Remarkable advancements in sensing technologies led to the current availability of a vari-

ety of forefront monitoring instruments ranging from distributed networks of in-situ sen-

sors to remote sensing systems for Earth observation. Both of them are applied to an ever-

increasing number of domains as environmental monitoring [135, 145, 155, 97, 51, 133], dis-

aster management [49, 67, 146, 48], surveillance [148, 66, 34, 94], and smart spaces [41, 56].

On the one hand, distributed networks of embedded devices as Wireless Sensor Networks

(WSNs) perform direct and in-situ measurements of physical parameters (e.g., temper-

ature) while exploiting low-power wireless communication to self-organize as a network

and accomplish cooperative data collection tasks. On the other hand, Remote Sensing

(RS) satellite/airborne systems acquire data (mainly images) over wide areas performing

remote and indirect measurements of the properties of objects, areas or phenomena, by

exploiting the propagation and reflection properties of electromagnetic radiation. In this

dissertation we focus on the challenges posed by real-world outdoor environments on the

deployment of low-power networks (e.g., WSNs) and exploit Remote Sensing systems and

data to model low-power communication performance in outdoor scenarios and support

the deployment task.

The physical layer at the base of the protocol stack of WSNs is defined by low-power

wireless communication techniques operating in the unlicensed ISM bands. These tech-

niques are key in rendering the system flexible (i.e., no wired connection is required) and

able to operate for relatively long periods of time (low power consumption). Moreover,

the wireless communication itself is often exploited as a source of information in appli-

cations as localization [12], target tracking [148] or wildlife monitoring [121]. Low-power

wireless technology is indeed a constant presence in the evolution of distributed and per-

vasive embedded systems, including the emerging contexts of Cyber-Physical-Systems

(CPS) and Internet of Things (IoT). In fact, the physical input/output in CPS, and the

“things” in IoT, are connected to the Internet mostly via low-power wireless communi-

1



CHAPTER 1. INTRODUCTION

cation, both short-range (e.g., as defined by the IEEE 802.15.4 standard) and long-range

(e.g., LoRa™ in the LoRaWAN specification). However, low-power wireless communica-

tion carries also some criticality, in that the link behavior is significantly a↵ected by the

surrounding environment, thus rendering the e↵ective deployment of low-power networks

extremely challenging.

Motivation. Almost two decades of developments in the context of WSNs enabled

their successful application in a number of real world deployments [145, 22, 96, 154,

92]. However, real-world deployments often reveal di�culties in e↵ectively deploying and

managing such low-power networks, especially in outdoor scenarios [155, 87, 157, 57]. This

is mostly due to the variability and unpredictability of the link behavior. Due to the link

unpredictability costly trial-and-error pilot campaigns are required to understand where

and how to place the wireless nodes, in order to achieve a satisfactory deployment.

The variability of short-range low-power links in real-world deployments has been ex-

tensively observed [153, 142, 154, 92, 105, 125] and significant e↵ort has been devoted

to its analysis [160, 161, 140, 43, 159, 88, 128, 117, 15]. This variability is imputable to

several reasons, mostly related to the fact that the communication quality is strongly af-

fected by the surrounding environment [69, 99, 144]. More precisely, the communication

performance is a↵ected by both static and dynamic components. The static compo-

nents are the communication distance and the fixed characteristics of the deployment

environment, namely the presence and position of objects with size comparable to the

radio wavelength. These objects may obstruct the radio propagation and/or cause re-

flections, which in turn can constructively or disruptively a↵ect the line-of-sight signal

(i.e., multipath e↵ect). The dynamic components are due to variations in the weather

conditions (e.g., rain and temperature) [26, 27, 28, 18, 37, 9], multipath e↵ects caused

by the presence of moving reflectors or screens (e.g., human body), and interference due

to concurrent transmissions [25, 16]. The static components determine a baseline on the

communication performance, on top of which the dynamic components act, i.e., given a

strong and a weak link in static conditions, the former is likely stronger than the latter

also in the presence of comparable dynamics. Therefore, understanding and modeling

the static components (i.e., the focus of this dissertation) can significantly support the

planning of outdoor deployments, which still remains a challenging task to accomplish in

practice.

In particular, the e↵ectiveness of the device positioning, in terms of achievable com-

munication quality, is largely determined by the static elements that are present in the

environment. For instance, the deployment of a WSN in a forest (e.g., for a forest fire de-

tection application) is a↵ected by the presence of trees, their position and their structural

characteristics (e.g., trunk diameter). Similarly, LoRa long-range communication perfor-
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mance are di↵erent in a build-up urban area and in open farming fields. The deployment,

to be e↵ective, should be tailored to the target environment. In this respect, both tools

for the in-field connectivity assessment [74, 55, 141] and deployment approaches based

on pilot connectivity measurements collected on-site [85, 129] are available. However,

their application requires costly in-field e↵ort. Other planning approaches are aimed at

identifying a priori optimal device placements [83, 23], but they mostly rely on oversim-

plified radio channel models and, therefore, perform poorly in real-world applications.

We survey the related work on the challenges posed by specific types of environments on

the di↵erent low-power wireless technologies we consider in this thesis in the correspon-

dent chapters. In general, low-power wireless models accounting for the static and locally

specific characteristics of outdoor deployment environments are lacking.

Combining remote sensing and low-power networks. In this dissertation, we pro-

pose to fill this gap exploiting Remote Sensing (RS) systems and related data process-

ing techniques. In particular, RS data can provide detailed and large-scale information

about the static characteristics of the target deployment area, as for instance position

and density of trees in a forest and/or fine-grained maps representing the land cover type

(e.g., buildings or farming fields). These characteristics can be extracted and exploited

in an automatic fashion, thus enabling a systematic analysis aimed at i) understanding

and modeling the impact of such characteristics on the communication performance; and

ii) developing e↵ective network planning strategies. RS data are therefore intended by

us as a mean to derive prior knowledge about both the characteristics of the target de-

ployment environment and their e↵ect on the communication. This prior knowledge may

provide insights on the reliability of the deployment, as well as models for simulation and

guidelines to support it.

Di↵erent RS systems exist, providing di↵erent types of data and information. Pas-

sive RS systems (e.g., multispectral and hyperspectral sensors) exploit the sun as source

of radiation that illuminates the scene under investigation and detect and measure the

radiation that is reflected by the objects in the scene in di↵erent spectral channels. By

processing the images generated by passive systems, information about the composition

of materials and the horizontal structure of the scene can be retrieved (e.g., land cover

classes can be identified by analyzing their spectral signature, up to the classification of

di↵erent species of trees [45, 53]). Active RS systems, e.g., Light Detection and rang-

ing (LiDAR) and Radio Detection and Ranging (RADAR), generate the source radia-

tion themselves and capture the geometrical characteristics of the scene, i.e., horizontal

and vertical structure, as well as the backscattering properties. Airborne LiDAR, for

instance, provides detailed 3D information about the structure of forests and their geom-

etry [97, 116, 17, 68, 111], allowing the estimation of tree metrics at the level of both single
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tree (e.g., trunk diameter [68, 118]) as well as group of trees (e.g., tree density [108, 111]).

RS systems and WSNs have a huge potential for interplay. Indeed, they are often

applied to similar applications (e.g., environmental monitoring and surveillance). In ad-

dition, their fusion has been investigated in several studies (e.g., [114, 137]), which, how-

ever, mainly focus on combining data and/or information provided by the two technologies

about the investigated phenomena (e.g., in-situ measurements of physical parameters and

information derived from RS data). In contrast, their combination for the modeling of

low-power wireless communication w.r.t. the environment characteristics, which is the

subject of this thesis, has been only marginally explored [78, 6, 113].

Goal and contributions. This dissertation explores the potential of RS systems and

data to support the deployment of low-power networks in outdoor environments. The

general goal is:

leveraging RS data to model low-power wireless connectivity as a function of local

characteristics of the deployment environment, estimate those characteristics within

an automatic and scalable framework, and develop e↵ective strategies for the deploy-

ment planning.

More specifically, the main contributions of this dissertation can be summarized as:

1. the definition of a conceptual framework aimed at exploiting RS data to assess a

priori the local characteristics of a target deployment environment, analyze, model

and predict their impact on low-power wireless communication over possibly large

and di↵ering target areas, and define e↵ective deployment strategies by enabling one

to explore the connectivity properties in an area of interest without having to run

pilot campaigns;

2. the definition of a specialized radio attenuation model for low-power short range

communication (i.e., IEEE 802.15.4 at 2.4 GHz) in forest environments exploiting a

LiDAR based representation of the forest structure;

3. the development of an automatic node placement approach for WSNs in forest

environments combining a LiDAR-based forest representation, a specialized radio

model and an evolutionary optimization algorithm to derive e↵ective node place-

ment, prior to the deployment, accounting for both the structure of the target forest

and the user requirements;

4. the joint analysis of LoRa communication traces and land cover maps derived from

satellite multispectral images aimed at deriving LoRa connectivity models that ac-

count for the characteristics of the communication environment (e.g., presence of

buildings and farming fields along the communication path).
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Figure 1.1: From RS data and in-field connectivity traces to deployment planning.

The proposed conceptual framework is depicted in Figure 1.1, which summarizes

the three main successive steps leading to the achievement of the goal. We aim at exploit-

ing RS data as the base of this framework, leveraging their wide coverage and detail. The

research field of remote sensing systems and data processing is rather broad, we therefore

provide an high level overview of the RS systems that we use in this context in Chap-

ter 2, while the specific processing we apply for information extraction is detailed in the

following chapters. By processing the raw RS data (e.g., LiDAR data and multispectral

images) we can automatically estimate the attributes that characterize the deployment

environment, e.g., tree density and land cover types (step 1). Such attributes can then

be compared and analyzed together with real connectivity traces collected in the field, so

as to enable a systematic evaluation of their e↵ects on links leading to understand their

role and importance in a↵ecting communication performance (i.e., identifying which at-

tributes mainly a↵ect low-power wireless links, to which extent, and how). The attributes

that result more significant in this perspective are then combined and exploited to define

and calibrate a radio propagation model, thus allowing the estimation of the expected

communication performance at specific locations (step 2). This model is then applied to

predict the link quality, according to a given placement of transmitters and receivers, or

to identify a favorable node placement among those possible in the target site, and, more

in general, to develop RS-based tools and strategies for deployment planning (step 3).

This process is entirely applied (from step 1 to step 3) to static WSN deployments

in forest environments. In this case, short range low-power communication at 2.4 GHz,

according to the IEEE 802.15.4 standard, is considered, with TMote Sky as reference

hardware platform. As we describe in Chapter 3, we leverage airborne Light Detection and

Ranging (LiDAR) instruments and related automatic data analysis systems to determine

local forest attributes (e.g., tree density) that, once factored into a specialized radio

path loss model, enable accurate estimation of the received signal power. The approach,

which is validated on connectivity traces collected in the field, is automatic, i.e., it does

not require in-field campaigns, and fine-grained, i.e., it enables per-link estimates.

Then, we develop an automatic node placement approach, called LaPS, to identify
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e↵ective WSN node placements in the forest accounting for i) the forest characteristics;

ii) the related e↵ect on communication; and iii) the user requirements. Exploiting in

combination a LiDAR-based representation of the forest structure, the specialized radio

path loss model and an evolutionary optimization method, LaPS provides placement solu-

tions automatically and prior to the actual deployment. Specifically, LaPS exploits genetic

algorithms to e�ciently explore the space of possible placement solutions that satisfy the

requirements, evolving towards an optimized placement in the target forest area. This is

done by evaluating the fitness of placement configurations in terms of quality and num-

ber of the communication links available to network nodes, while honoring the spatial

and network requirements specified by the user. LaPS and the companion toolchain is

presented in Chapter 4.

In Chapter 5, we consider LoRa low-power long-range wireless technology and, unlike

802.15.4, we implement only the first steps of the conceptual framework, namely step 1

and partly step 2, taking advantage of existent radio path loss models. In particular, we

target the analysis of end-device to gateway communication in a mixed environment,

which presents build-up areas, farming fields and groups of trees. Multispectral images,

provided by the Sentinel-2 satellite constellation, are automatically processed to derive

information about the land-cover types that characterize such a diversified environment,

i.e., maps representing the land-cover classes (e.g. buildings, trees or farming fields) with

10 m spatial resolution. The land cover information is analyzed in combination with a set

of connectivity traces collected outdoor, through controlled experiments in The Things

Network (TTN), i.e., a LoRa-based open IoT network. Several insights about the impact

of the land covers on the communication performance are derived, which constitute the

premise for the definition of land-cover aware connectivity models for LoRa.

Finally, we conclude and explore possible venues for future research in Chapter 6.

We argue that the contribution of this thesis may significantly help the definition of

realistic low-power connectivity models for outdoor environments and support the devel-

opment of e↵ective deployment strategies.
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Chapter 2

Remote Sensing in a Nutshell

Remote Sensing (RS) systems measure the properties of surfaces and objects without

coming in direct contact with them. This is achieved by illuminating the scene under

investigation with a source of electromagnetic radiation and measuring, through sensors,

the radiation that is reflected by the objects in the scene. Sensors are usually mounted on

satellites, airplanes or UAVs, therefore acquiring data (mostly images) over wide areas.

By processing RS data many properties of the reflecting objects can be retrieved at a

large scale and automatically, and therefore with a limited cost in comparison to ground

campaigns. Di↵erent properties can be derived, depending on the type of system and

its specific characteristics [91, 34, 134]. Passive systems (i.e., optical systems) mostly

use the sun as source of radiation and they capture the spectral response of the objects

(spectral signature) in di↵erent spectral bands. The spectral response depends on the

physical properties of the objects (e.g., their material). Active systems as Light Detection

and Ranging (LiDAR) generate the source radiation themselves and mainly capture the

geometry of the scene under investigation, as well as the backscattering properties (in

terms of Laser Cross Section).

RS systems and data are exploited for a number of applications including forest analy-

sis and land cover mapping, i.e., the application domains we focus on in this dissertation.

In particular, we leverage airborne LiDAR data for forest analysis, in that it enables high-

precision estimation of tree and forest features [97, 116, 139, 68, 13, 82], and multispectral

satellite images for land-cover mapping, since by automatically classifying multispectral

images fine-grained land-cover maps can be derived [71, 103, 106]. We concisely summa-

rize the main characteristics of LiDAR and passive optical systems, and then motivate

their selection in the context of this work.
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LiDAR systems. LiDAR is an active system where the source of radiation (i.e., laser

pulses) is generated by the system itself. A laser scanner, usually mounted on an airplane,

transmits pulses with a nadir-looking geometry (i.e., towards the scene under investiga-

tion). Each pulse hits objects (e.g., trees) at di↵erent heights during its propagation, gen-

erating a reflection (called return) at every hit, that backpropagates towards the scanner.

Figure 2.1: Airborne LiDAR acquisition mech-

anism.

The scanner measures the time elapsed be-

tween the transmission of the pulse and

the reception of its reflected component,

as well as the intensity of the reflection.

The time interval is converted into dis-

tance, yielding a 3D cloud of point mea-

surements (see Figure 2.2). This mecha-

nism, shown in Figure 2.1, enables the 3D

reconstruction of the trees in a forest. The

representation can be very precise in both

the horizontal and vertical direction, thus

enabling the retrieval of information about

shape, size, and position of trees, whose

precision is strictly dependent on the spa-

tial density of the emitted laser pulses in

the data acquisition phase.

LiDAR data have been extensively used for the estimation of forest structural pa-

rameters both at stand level (i.e., by considering groups of trees) [72, 108] and single-tree

level [68, 82] (e.g., tree height or trunk diameter at breast height). The most accurate esti-

mates of forest parameters are achieved with high-density LiDAR data (i.e., >5 points/m2).

An example of high density LiDAR data is shown in Figure 2.2.

Figure 2.2: Sample of high density LiDAR data acquired in Trentino, Italy.
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Passive systems. Passive systems (e.g., multispectral and hyperspectral scanners) are

passive sensors that exploit the sun as source of electromagnetic radiation. They mea-

sure the radiation that is reflected by the surface under investigation in di↵erent spectral

bands. Objects with di↵erent physical properties have di↵erent reflection characteristics

in the di↵erent bands (i.e., di↵erent spectral signatures). As a consequence they can be

detected and identified by analyzing the spectral behavior of their reflections. Multispec-

tral systems measure the reflected radiation in 3 to about 13 spectral bands and such

measurement is represented in multispectral images (see Figure 2.3). In contrast, hyper-

spectral systems measure the reflection in hundreds of narrow bands providing very high

spectral resolution (i.e., very precise spectral signatures) at the cost of reduced spatial

resolution. For this reason, in this work we focus on high spatial resolution multispectral

images, which can be acquired over wide areas at a low cost. In particular, the Sentinel-2

(S2) satellite constellation provides multispectral global coverage with very high revisit

frequency (i.e., 5 days at the equator) and high spatial resolution (i.e., 10 m), with the

Copernicus open access platform making available the images for free. An example of

Sentinel-2 multispectral image is shown in Figure 2.4. In particular, Figure 2.4a represents

the true color composition of the bands Red, Green and Blue and Figure 2.4b represents

the false color composition of the bands NearInfraRed, Red and Green. Their comparison

shows how di↵erent materials and types of objects display di↵erent reflection properties

in the di↵erent spectral channels. Multispectral satellite images are widely applied to

large-scale monitoring of the Earth surface and they are exploited for a variety of services

as land-cover and land-use mapping [71, 103, 51] and detection of changes [94, 119, 91].

 































 
























 

Figure 2.3: Multispectral and hyperspectral imaging.
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(a) (b)

Figure 2.4: Sentinel-2 multispectral image acquired over The Netherlands. True color composi-

tion of the bands Red, Green and Blue (a) and false color composition of the bands NearInfraRed,

Red and Green.

Selection of Remote Sensing data. In this work, we aim at leveraging RS data to

model: i) the e↵ect of the structural characteristics of forests on low-power short range

wireless communication; and ii) the e↵ect of mixed environments (e.g., urban and rural)

on low-power long range LoRa communication.

In the context of forest analysis, the RS techniques most commonly used are passive

optical systems and active LiDAR systems [97, 116, 139, 68, 13, 82]. Optical systems

(either multispectral or hyperspectral) represent mostly the horizontal structure of forests,

and are therefore suited for the identification of forest areas and for the classification of

tree species. In contrast, airborne LiDAR provides detailed three-dimensional information

about the forest structure [97, 116, 68, 82], thus enabling the accurate estimation of the

structural parameters of trees. For this reason, we focus on LiDAR only to characterize

the forest environment. However, optical instruments, despite providing little information

about the vertical structure of the forest, can be an alternative to LiDAR data, since their

lower precision is compensated by a lower cost. their free availability. Further, the two

technologies can be seen as complementary. The spectral information provided by passive

systems, depending on the spatial and spectral resolution, may allow us to identify forest

areas, classify tree species, or quantify the amount of green leaves in the canopy [53, 45].

The work in [115] explores the joint use of the two technologies, studying the tradeo↵s

between cost of data and accuracy of the forest parameter estimation. In this work we

consider only LiDAR due to the high level of detail it provides w.r.t. forest structural

description (both horizontal and vertical); the possibilities opened by its integration with

optical data is part of our planned future work.
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To characterize the impact of the environment on LoRa communication, we take into

account that LoRa communication range is in the order of kilometers. Therefore, the

communication links traverse di↵erent types of area (e.g., built-up areas, farming fields

and groups of trees), which a↵ect di↵erently the communication performance. In this

context, the availability of Sentinel-2 multispectral images at global scale and every few

days constitutes an asset, in that by classifying multispectral images we can automatically

identify di↵erent land-cover classes (e.g., Building, Trees and Fields), exploiting their

di↵erent spectral response [71, 103, 131, 134, 34]. Accurate land cover maps can be

derived to represent the type of environment which is traversed by LoRa communication

links, thus characterizing with high spatial detail (i.e., with spatial granularity 10⇥10 m2)

the diversified LoRa communication environment.
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Chapter 3

LiDAR to Estimate Signal Attenua-

tion in Forests

The last decade witnessed a surge of applications where low-power wireless communica-

tion is employed to monitor natural ecosystems. In most cases, wireless sensor networks

(WSNs) are deployed to either study a given environment [22] or habitat [96], or to protect

it by detecting hazards such as forest fires [67]. Recently, however, low-power wireless has

been employed also as a means to detect proximity among the wildlife that dwells in the

natural environment [123, 121].

To these scenarios, low-power wireless communication brings unprecedented flexibility.

However, it also brings a great deal of complication, due to the fact that its performance,

critical to system operation, are strictly dependent on the specific environment. For in-

stance, in the former case of a WSN with fixed nodes, its planning (number and position

of nodes) must take into account the target environment and its e↵ect on network per-

formance. However, a similar issue arises also in the aforementioned proximity detection

studies where the animal-borne low-power wireless nodes act as a “proximity sensor”,

recording beacons exchanged among nodes. Again, the distance at which detection may

occur strongly depends on the environment, and changes based on the movement patterns

of the animal; knowledge about its impact is key to enable a correct scientific inference

from proximity data.

These problems are exacerbated in the forest environment, our focus in this chap-

ter, where the heterogeneous vegetation creates local e↵ects that amplify complexity.

This long-standing issue is a barrier to environmental scientists willing to adopt WSN

The contents of this chapter have been originally published in: “Estimating low-power radio signal

attenuation in forests: A LiDAR-based approach”, Demetri Silvia, Picco Gian Pietro, and Bruzzone

Lorenzo, in Distributed Computing in Sensor Systems (DCOSS), 2015 International Conference on (pp. 71-80).

IEEE.
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technology, leaving them with the sole option of engaging in e↵ort-demanding pilot de-

ployments [62, 99, 92].

Indeed, despite the large literature on radio propagation in the presence of vegetation,

the problem of deriving accurate estimates for low-power wireless is still largely unsolved.

The majority of existing approaches rely on distance as the main parameter a↵ecting per-

formance, implicitly assuming a homogeneous environment in the target area. However, it

is well-known that this assumption does not hold in general for low-power wireless [140].

In the case of forests, vegetation and its heterogeneity (in species and/or density) are

the dominant factor determining performance, as confirmed empirically by a few studies.

Marfievici et al. [99] report significant di↵erences among species, assessed by directly im-

mersing the same WSN deployment (i.e., same nodes and topology) in di↵erent forests.

Liu et al. [92] observe, in a single large-scale deployment, that despite the regular place-

ment of nodes, the irregularity of the forest makes the radio signal propagation irregular,

and the network behavior largely unpredictable.

These aspects are only partly accounted for in existing radio propagation models tai-

lored to forests, which carry two main limitations:

1. they assume a priori knowledge of vegetation attributes, whose estimation process

remains often undefined, and in practice is commonly performed by means of costly

in-field observations—therefore, the problem is simply moved to a di↵erent layer;

2. the estimation of vegetation attributes is typically coarse-grained, spanning relatively

large areas; in principle, instead, a fine-grained estimate on a per-link basis would

be desirable, given the high level of variation observed in the forest environment.

In this chapter, we propose a solution to both problems based on remote sensing,

a technology already applied to forest monitoring. Remote sensing systems, typically

satellite-based or airborne, acquire data (e.g., images) over wide areas and, through sig-

nal processing techniques, enable fine-grained, automatic estimation of tree and forest

attributes. Here, we focus on a specific technology, Light Detection and Ranging (Li-

DAR), whose characteristics we concisely summarized in Chapter 2. The use of LiDAR

data allows us to:

1. estimate forest attributes through automatic data analysis, therefore removing the

need for in-field campaigns;

2. derive estimates that are very precise, to the point of identifying, e.g., the position

of each individual tree and its diameter. We exploit this rich information to enable

fine-grained estimates on a per-link basis, i.e., accounting for the presence of trees

on each link.

In Section 3.1, we concisely survey the state of the art on radio propagation models

accounting for the presence of vegetation. Our approach is described in Section 3.2. The
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starting point is an existing path loss model [14], itself an extension of the common log-

normal one, that i) takes explicitly into account the impact of trees on communication,

and ii) assumes that the latter occurs at trunk level—a common choice in several of

the aforementioned WSN deployment scenarios. The model in [14] relies on a vegetation

index (VD) that depends on the average tree density and diameter throughout the area

of interest, that are assumed to be known a priori. Our first contribution is the definition

of a processing chain that, based on LiDAR data, automatically and accurately estimates

these forest attributes. However, we show that, based on these attributes, significantly

better estimates of the received signal power can be achieved. Instead of averaging these

attributes over a macro-area, we perform a fine-grained analysis where the impact of trees

is ascertained only around each individual link, therefore enabling more accurate, per-link

estimates. In particular, this allows us to determine whether a link enjoys a clean line of

sight, and therefore a free space path loss model is a better fit, or instead it is obstructed

by trees.

The accuracy of our approach in general, and of per-link estimates in particular, is eval-

uated in Section 3.3 based on small-scale WSN deployments where we gather RSSI (Re-

ceived Signal Strength Indicator) traces in an area where both LiDAR data and human-

derived ground truth are available. Our results show that the accuracy we obtain with

our per-link approach is significantly superior to existing approaches, including the model

in [14], automatically tuned with our LiDAR-based approach. Specifically, accuracy is

largely within ±6 dBm—the accuracy of RSSI readings from the radio transceiver.

3.1 Related Work

The potential of low-power wireless communications to enable unobtrusive and dense

monitoring led to a number of real-world deployments in natural scenarios [22, 96, 121].

However, the connectivity assessment before deploying the network proved to be extremely

di�cult in harsh environments, with both pre-deployment network planning and data

interpretation practices lacking of proper support. Although the node placement problem

has been addressed by the WSN community [158, 84, 6], the proposed approaches are

often based on non-realistic assumptions (e.g., isotropic communication range), rarely

satisfied in real outdoor settings. Several studies report about the experimental evidence

of the environment e↵ect on WSN links [99, 92, 154, 40], including the impact of trees

on communication performance when forests are considered. This experimental evidence,

together with the lack of methods for a priori connectivity assessment suitable in forest

environments, motivate our investigation.

Over the last decades, several radio propagation models accounting for the presence

of vegetation have been presented. The theoretical approach at the base of mechanistics
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models [130] involves the solution of Maxwell’s equations with boundary conditions for

each source of scattering along the propagation path. This approach is complex and often

not applicable in practice. Therefore, several approximate and simpler empirical models,

including the Weissberger [152] and COST 235 [101] models, which we describe in Sec-

tion 3.3.4, have been developed. These models, however, are developed for scenarios in

which communication links are distant from the ground and traverse the canopy. There-

fore, they are not appropriate for the aforementioned common WSN applications, which

rely on links that are closer to the ground and traverse the forest at the level of its trunks,

as we show in Section 3.3.4.

Another conventional approach is based on the log-normal path loss model [126]. As

we discuss in Section 3.2.1, the critical aspect in its application is the estimation of its

parameters, whose values are strictly dependent on the specific environment being con-

sidered. These parameters are usually determined empirically by regression analysis of

in-field measurements. As a consequence, results are site-specific and suitable only for

environments very similar to those where measurements were performed [143]. This ap-

proach has been applied for instance in [58], which specifically focused on the ISM radio

bands used by WSNs, and considers propagation paths relatively near to the ground,

mainly a↵ected by trunks. The authors explicitly consider situations where trees are ob-

structing the line of sight between transmitter and receiver nodes, deriving distinct models

for di↵erent obstruction configurations. Nevertheless, these models still lack generality,

being based on regressions from location-specific measurements.

To the best of our knowledge only two works [6, 78] mention explicitly the use of re-

mote sensing in support to WSN deployments. In [6], LiDAR is mentioned as a source of

information to characterize forests and trees. However, the whereabouts of information

extraction are entirely neglected; LiDAR is simply one of the possible inputs to the 3D

grid-based algorithm for deploying relay nodes, which is the focus of the paper. A sim-

plistic radio model is considered for simulations, where nodes have a fixed and isotropic

transmission range that is assumed to depend on the average tree height over the area of

interest.

The analysis presented in [78], instead, is closely related to our work since it focuses

on RS-based techniques for path loss prediction. The authors investigate the relationship

between the path loss exponent n and vegetation indexes derived from Landsat 8 satellite

multispectral images. These indexes (e.g., the Normalized Di↵erence Vegetation Index,

NDVI) are “greenness indicators” denoting the amount of live green vegetation. The

“green” part of plants absorbs the solar radiation in the visible (red) spectral bands

and reflects it in the near-infrared band; NDVI is computed as the normalized di↵erence

between the two. The spatial granularity of the analysis is inherently determined by the
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geometrical resolution of the images used, which represents the side of the ground area

covered by each image pixel. This resolution is 30 m for Landsat 8—a far cry from the

50 cm used in our work. The work also partly uses a dataset estimated from even lower-

resolution (250 m) MODIS images. The correlation between NDVI and path loss exponent

is obtained by regression from RSSI measurements collected in a WSN deployment in an

aspen boreal forest. However, this correlation appears to hold only when trees are in-

leaf. Arguably, during the out-of-leaf period the amount of green leaves of the canopy is

no longer the main factor a↵ecting the communication, especially in a site characterized

by deciduous trees and dense understory. In these conditions other factors predominate,

which cannot be captured by the proposed greenness indicators.

3.2 Approach

Several models for radio propagation through vegetation have been proposed, both mech-

anistic [130] and empirical [101, 152, 143, 14, 58], as discussed in Section 3.1. The work

we describe here is based on the empirical model in [14], as it shares our focus on commu-

nication at the trunk level. This model is an extension of the log-normal path loss model,

where its parameters are expressed as a function of local forest attributes, based on a large

set of measurements in forests with di↵erent species. However, this model (and most of

the literature) assumes that vegetation is uniform in the area where radio attenuation

must be estimated—an overly optimistic assumption that leads to imprecise estimates of

the connectivity among individual links.

In the rest of this section we illustrate our remote sensing approach, based on LiDAR

data and signal processing techniques. We overcome the two limitations above by:

1. estimating the model coe�cients via automatic forest attribute extraction, which

can be reliably performed over large areas without in-field campaigns;

2. providing fine-grained, per-link analysis of radio signal attenuation, greatly improv-

ing the overall accuracy of the resulting estimates, as shown quantitatively in Sec-

tion 3.3.

3.2.1 Radio Signal Propagation in a Forest

The widely adopted log-normal path loss model [126] is defined in Equation (3.1) and

PL[dB] = PL(d
0

) + 10 · n · log
✓

d

d0

◆
+X� (3.1)

describes both the logarithmic decay of the average signal power as a function of the

distance d from a transmitter and the random variation of the received power around

the average. The level of attenuation in the signal power is modeled as a function of

three main parameters: i) PL(d
0

), the path loss at a known reference distance d
0

in the
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far field; ii) n, the path loss exponent representing the attenuation rate w.r.t. distance;

iii) �, the standard deviation of a zero-mean Gaussian random variable X representing

the variation around the average.

These parameters are strictly dependent on the environment at hand. Their value is

di�cult to determine in general due to the wide variability of the characteristics of the

environment itself. In our case, trees are known to cause scattering, reflection, di↵raction

and absorption phenomena, depending on the radio frequency, the size of trunks, branches

and leaves, and the path interception materials. Therefore, these parameters are usually

estimated empirically, by curve fitting on large amounts of measurements collected in the

target location [58].

Azevedo et al. [14] observed a linear relation between the path loss model parame-

ters and the local vegetation characteristics. For instance, for our frequency of interest

f = 2.4 GHz, the parameters of the log-normal path loss model take the form:

PL(d
0

) = � 0.82 · VD + 40.1

n = 0.1717 · VD + 2.2043

� = 4.4

(3.2)

where path loss parameters are expressed as a linear function of a vegetation index VD

defined exclusively as a function of detailed local vegetation attributes. Indeed, VD is

defined as

VD = TD ·D (3.3)

where TD [trees/m2] is the average density of trees, and D [cm] is the average diameter

of their trunks.

This is a significant advancement w.r.t. the problem of predicting the impact of veg-

etation on wireless communication. However, one key piece of information enabling the

practical application of this model is missing in [14]: how to estimate the vegetation

index VD reliably and cheaply. This is precisely what we address next, as one of the

contributions of our work.

3.2.2 Determining Forest Attributes with LiDAR

We estimate the average diameter D and density TD of trees in an automatic fashion by

processing high-density raw LiDAR data. The latter are actually LiDAR returns, which

can be visualized as three-dimensional point clouds. An example is shown in Figure 3.2a,

where each point represents the height at which the forest trees or ground were hit by the

laser pulse.

These raw LiDAR data points are processed automatically, yielding a map in which

each individual tree is represented, along with its attributes of position and trunk diam-
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eter. The processing, shown in Figure 3.1, unfolds through three main phases, described

next:

1. pre-processing : it extracts a digital Canopy Height Model (CHM), i.e., a high reso-

lution raster dataset that maps the tree height as a discrete surface;

2. single-tree identification: the crown of each tree is determined by properly segment-

ing the CHM raster image;

3. estimation of forest attributes : the position and dendrometric attributes (i.e., height,

crown radius, and trunk diameter) of each tree are determined.

Preprocessing. The LiDAR raw data are pre-processed in two steps. First, the Digital

Elevation Model (DEM) is subtracted from each raw data point. The DEM represents

the terrain and its morphology, mapping each pixel to the height of the terrain, with

a precision that depends on the resolution of the technique used. The DEM is derived

by the LiDAR data according to a standard technique [13]. This operation allows us to

adjust and correct the raw data by extracting the actual elevation from the ground of

each point. Second, from these corrected data points we generate a raster image with a

geometrical resolution of 50 cm (i.e., each pixel represent a 50⇥50 cm2 ground area) by

assigning to each pixel the maximum height value of the points (as obtained from the

previous step) belonging to the corresponding area. The output is the CHM raster image.

Single-tree identification. The next step is to detect each tree in the site under investi-

gation, and to delineate its crown. To this end we apply a segmentation technique similar

to [72]. We first perform a convolutional prefiltering on the CHM, to emphasize local

maxima and tree crowns. Then, we apply the set level method [82] to detect local peaks

and identify the tree tops. The latter represent the seeds we use to initialize a segmen-

tation procedure based on the region growing technique. In each step, the region around

each seed is expanded by including all the neighboring pixels. The process is iterated as

long as the canopy height value of those pixels is higher than a predefined threshold (i.e.,

the height is decreased less than 80% w.r.t. the seed) and the region diameter does not

exceed a maximum acceptable value, 15 m in our case.

The output of this processing stage is a tree map representing the dominant layer of

terrain 
subtraction

& data 
rasterization

pre-processing

raw 
LiDAR
 data

segmentation

tree
identification

estimation of 
dendrometric 

attributes

forest attributes
 extraction

Canopy 
Height 
Model

tree 
map

position and 
diameter 
of each 

tree trunk  

Figure 3.1: Extracting tree attributes from raw LiDAR data.
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(a) (b) (c)

Figure 3.2: (a) High-density LiDAR data sample (b) LiDAR points corresponding to a single

tree (c) Tree map example

the forest with a 50 cm spatial resolution. Each tree crown in our scene is delineated

and the position of the trunk, corresponding to the position of the tree top, is estimated.

An example showing the relation between the source raw LiDAR data and the resulting

region delineating the crown is shown at the bottom of Figure 3.2b; the position of the

tree trunk is the dot inside the region. Figure 3.2c shows an example tree map containing

several of these regions (i.e., crowns and trunks). The area shown is actually one we used

in the experiments we describe in Section 3.3; the bold circles represent the position of

WSN nodes.

Estimation of forest structural attributes. The tree map allows us to determine the

average density of trees TD , as number of trees per square meter. Moreover, it provides

information about the position of those trees, which is exploited next to derive our per-link

estimates of the radio signal power.

However, a last processing step is necessary to extract the diameter Dt of each tree t.

We estimate the Diameter at Breast Height (DBH) of each tree trunk using the approach

presented in [68]. We model the diameter as a function of the tree height HL and crown

radius KL as follows:

Dt = b0 + b1 HL + b2 KL + b3 H
2
L + b4 K

2
L (3.4)

The tree height HL can be easily derived directly from the CHM value corresponding to

the tree top pixel (or seed). Indeed, in the previous step we directly map this value to

the maximum height of the pre-processed LiDAR points belonging to the corresponding

50⇥50 cm2 area. The crown’s horizontal area is approximated by the area covered by

all the pixels belonging to the corresponding region, from which the crown radius KL is

easily computed as the radius of the circle whose area is equivalent to the region area.
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We determine the coe�cients {b0, ..., b4} by applying a multi-linear regression that

relates a small set of ground truth measurements (i.e., trunk diameter), collected by the

local forest service in the location where we performed our experiments, with the tree

height and crown radius, namely, with HL, KL, H2
L, and K2

L. We can then apply these

coe�cients to Eq. (3.4) and estimate the diameter of all the trees belonging to the entire

target forest site.

It is worth noting that in-field tree measurements are not strictly necessary, as other

diameter estimation approaches exist that do not rely on them. One prominent example

are the height-diameter allometric equations widely adopted for forest inventories, which

represent the relation between the diameter and the other tree dimensions according to

the tree species at hand [97].

3.2.3 Automatic Model Tuning and Link-Level Estimate

We now describe how we exploit the automatic processing just described towards building

estimates of the radio signal power in the target forest site. We distinguish two cases, we

hereafter refer to as area and link. area refers to estimates derived using the original

model by Azevedo et al. [14], which considers a single vegetation index VD across the

area at hand (i.e., the entire area being considered for the deployment). The contribution

we put forth here is the automatic computation of VD . link, instead, refers to our

own adaptation of this model, enabling more accurate per-link estimates, for which the

vegetation index VD is individually computed.

AREA model. We exploit the output of the processing of LiDAR data to automatically

compute the index VD , necessary to derive estimates based on the model in [14].

We compute the tree density TD by simply counting the overall number of trunks

determined in the previous step and dividing by the area of interest. Similarly, we easily

compute the average diameter D based on the individual diameter estimates Dt. The

vegetation index VD is simply the product of TD and D, as per Eq. (3.3); substituting

the value of VD in Eq. (3.2) yields the value of path loss coe�cients; substituting the

latter in Eq. (3.1) yields the expected path loss PL in the target area, i.e., the expected

amount of attenuation in the signal power depending on the distance.

The interesting quantity from an engineering point of view, however, is the expected

received power P rx [dB]. This can be computed as a function of path loss, at given distance

and for a given frequency, by the following

P rx = P tx +G tx +Grx � PL (3.5)

where P tx is the transmission power, and G tx and Grx the receiving and transmitting

antenna gains, respectively.
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In other words, Eq. (3.5) enables us to predict, in a given forest area, the received

power as a function of distance.

LINK model. The fact that we are able to obtain automatically predictions of received

power using area is already per se a significant advancement of the state of the art. Nev-

ertheless, the area model is rather coarse, as it assumes that the influence of vegetation

is homogeneous across the target area. Unfortunately, it is well-known that typical forest

vegetation can not be treated as a single homogeneous dielectric mean [143] and that

vegetation irregularity causes, in turn, signal propagation to be irregular [92], leading to

non-uniform link connectivity even with a uniform placement of nodes.

Interestingly, area does not exploit all the information that can be extracted from

the processing of raw LiDAR data. Only the average tree density and average tree

diameter are considered, as prescribed by Eq. (3.3), while our processing actually yields

the individual position of each tree t, along with its diameter Dt. Next, we show how this

information can be exploited into a link-level model which takes into account the forest

attributes on a per-link basis, i.e., between each node pair, leading to the significant

accuracy improvements we discuss in Section 3.3.

The idea behind our link model is very simple, yet very e↵ective. It exploits the

detailed knowledge about the position and diameter of each tree to compute a vegetation

index VD ij specific to the link between node i and j:

1. if VD ij = 0, the link enjoys a clean line of sight: therefore, the link behavior is

better approximated by the free space path loss model

PL
free

[dB] = 20 log(d) + 20 log(f)� 27.55 (3.6)

where d [m] is the distance and f [MHz] the frequency.

2. otherwise, if VD ij 6= 0, the behavior of the link is better estimated by a “localized”

version of Eq. (3.5) where the area-specific VD is replaced by the link-specific VD ij.

node 
i j

50 cm 

(a)

tree 
i jt

(b)

Figure 3.3: Determining the presence of trees on the line of sight.
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Figure 3.3 illustrates the concept. VD ij = TD ij · Dij is computed only within the

rectangular area (hereafter called the link area) whose length is the line connecting the

nodes i and j composing the link, and whose height is the pixel resolution used for

processing, i.e., 50 cm in this paper. TD ij is trivially computed by dividing the number

of trees in the link area by the area of the latter, while Dij is simply the average diameter

computed over the trees in the link area. If there are no trees in the link area (TD ij = 0),

the link enjoys a clean line of sight (clean-LOS) as shown in Figure 3.3a. Otherwise, if

VD ij 6= 0, some trees are contained in the aforementioned area, and the link is obstructed

(obstructed-LOS) as shown in Figure 3.3b. Since the notion of obstruction is defined

by considering the entire link area, a link may be obstructed even if no tree is actually

sitting on the line connecting the two nodes, as in the case where tree t did not exist

in Figure 3.3b. The actual processing to classify links based on line of sight is very

simple, and simply consists of checking whether the set of pixels belonging to the link

area intersects the set of pixels in which the positions of trunks are mapped.

3.3 Validation

We validate our LiDAR-based approach for the automatic assessment of low-power radio

signal attenuation in forests by comparing our predictions with RSSI traces we collected

in small-scale WSN deployments in a real forest. First, we present the selected location

and describe our WSN deployments, the LiDAR data set we used, and how we acquired

in-field RSSI traces. Then, we report and discuss our experimental results.

3.3.1 Experimental Location

Our study area is a typical alpine forest site in Val di Sella (Trentino, Italy), 1000 m above

sea level. It is a mixed forest with trees belonging to the European beech (Fagus sylvatica)

and Norway spruce (Picea Abies) species. No understory is present, the green-leaved part

is composed by only a single layer of canopy. We selected this location because it is of

particular interest for the local forest service. Therefore, this choice allowed us to exploit

(a) (b)

Figure 3.4: (a) Experimental location and net-

work topologies. (b) Node setup.

the availability of both high-density Li-

DAR data and, for validation, ground

truth data collected in-field by the forest

service itself. We consider two di↵erent

land plots in our study, shown in Figure

3.4a, each with an extension of ⇠1700 m2.

One is located in the middle of the forest,

and the geographical position of its central

point is 46� 00 53.6400 N, 11� 220 2.5100 E. We

refer to this as internal plot. The second
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site, which we refer to as the edge plot, is on the edge of the forest, close to a clearing,

with center at 46� 00 47.4500 N, 11� 250 52.1600 E.

3.3.2 LiDAR Dataset and Related Processing

The LiDAR dataset we use has been acquired by an Optech ALTM 3100EA sensor

mounted on an airborne platform. The laser scanner emits pulses with wavelength

1064 nm. For each pulse, up to four returns (i.e., points associated up to the fourth object

hit by the laser pulse) were recorded, providing an average point density >5 pt/m2. This

dataset has been acquired over our target location on September 4, 2007. Given that our

target is a dense old-growth forest, it is reasonable to assume that its structure at trunk

level is not changed significantly between the LiDAR data acquisition and our RSSI traces

collection. This assumption has been confirmed also by the local forest service.

By applying to the raw data the processing chain described in Section 3.2.2 we obtain

a tree map for the whole area comprising both the internal and edge plots. We visually

evaluate the accuracy of the obtained map by overlapping it both with the CHM and with

an ortophoto, shown in Figure 3.4a, representing the same area with the same resolution.

We assessed a good agreement between the crowns delineated in our tree map and the

trees discernible in the other images.

We quantitatively evaluate the precision of the tree map and of the extracted tree

attributes by exploiting the availability of a set of measurements gathered in our internal

study site by the local forest service, which performed forest inventory by surveying trees

in sample locations. One of these surveys targets a circular land plot with a 20 m radius,

enclosed in our internal site. The forest service mapped 35 trees in this plot, noting their

species along with height and trunk diameter at breast height. In comparison, in the

same circular plot our processing chain detected 37 trees, of which 32 correspond to an

actual one (i.e., 91% of trees are correctly detected). More precisely, we obtained 5 wrong

detections or false positives (i.e., tree tops which actually do not correspond to trunks)

and 3 missed detections or false negatives (i.e., missed tree tops/trunks). For the same set

of trees, the multilinear regression we applied for the estimation of trunk diameters gives

a coe�cient of determination R2 = 0.7 and a Root Mean Squared Error RMSE = 2.75 cm

w.r.t. ground truth values.

As a consequence, the di↵erence between the estimated and ground truth values of

TD , D and VD is 0.0016 trees/m2, 0.45 cm, and 0.02, respectively. This translates into

a di↵erence in the estimated received signal power <0.05 dBm for link distances in the

range [0, 60] m. This di↵erence can be safely considered negligible in our context, as it is

well below the RSSI reading accuracy of the radio chip. Therefore, we conclude that our

raw LiDAR data allows us to estimate the relevant vegetation parameters with adequate

precision.
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3.3.3 Low-power Wireless RSSI Traces and Their Collection

The RSSI traces were collected during November 2013, with sunny weather. We deployed

the same WSN in both forest plots and collected traces from 12:30 to 14:30 in the internal

plot, and from 15:00 to 17:00 in the edge plot. During the experimental campaign we

placed a LASCAR EL-USB-2+ data logger in the same site where we deployed the network

to sample both temperature and relative humidity every 15 minutes, to accurately monitor

the meteorological conditions experienced by the network. Temperature and humidity

were almost stable during each time interval, ranging from -2.5� to -3�, and from 35%

to 30%, in the internal plot, and from -3� to -4� and from 30% to 25% in the edge plot,

respectively.

Node placement. The WSN we deployed is composed of 9 nodes, placed in a 3⇥3 grid

topology, to characterize the connectivity in a square portion—a sample “forest slice”—of

our target environment. Nodes were powered by D-size batteries and placed in waterproof

boxes. Care was taken to ensure the same vertical mounting (i.e., antenna orientation)

for all nodes while placing them in boxes. Boxes were then latched onto tree trunks with

elastic bands at 1.7 m from the ground, as depicted in Figure 3.4b. Since boxes were

attached to trees, and these hardly ever form a perfect grid, the actual topology (Figure

3.4a) only approximated the intended one.

Hardware platform. We use the popular TMote Sky hardware platform, operating

within the ISM 2.4 GHz frequency band according to the IEEE 802.15.4 standards. The

radio module mounted on the platform is ChipCon 2420, which includes a digital Di-

rect Sequence Spread Spectrum (DSSS) baseband modem coupled with a digital o↵set-

QPSK modulator, providing an e↵ective data rate of 250 kbps. We exploit the integrated

inverted-F microstrip antenna, which is pseudo-omnidirectional with gain of 3.1 dBi.

Software platform. The in-field collection of RSSI traces was performed using TRI-

DENT [74], a tool developed in our group for the untethered execution of communication

experiments and collection of connectivity traces. The tool automatically produces the

TinyOS code to be installed on TMote Sky motes, based on the experiment configuration

input by the user.

The communication links are probed by exchanging radio messages. More precisely,

each mote broadcasts a message in a round-robin fashion, to avoid collisions, while all the

others are listening to the radio channel. Each time a message is received the reception

event is locally recorded by the receiving node, together with the corresponding RSSI

value. In addition, nodes sample and locally store the ambient noise floor level. The

same procedure is repeated until a user-configured number of messages is sent by each

network node. The completion of this process defines a round. Each round is characterized

by a set of parameters—time interval between two consecutive transmissions or Inter
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Packet Interval (IPI), transmission power, radio channel—that can be set and configured

in the experiment design phase. The results of the experiment (i.e., the sequence of

packet receptions and their quality indicators) are stored in the local memory and can

be recovered by means of both multi-hop forwarding among network nodes or direct USB

connection.

Experiment setup and execution. Our experiment is composed of four 30-minutes

rounds, in which each node of the network sends 200 messages with IPI equal to 9 s. All

nodes play both sender and receiver roles. The result is a round-robin sending process in

which at every second one node is transmitting a packet, while the others are listening.

We choose to keep an interval of 1 s between transmissions to avoid possible clock drifts

that can cause collisions among senders, given that we are using no Medium Access

Control (MAC) protocol. Nodes always transmit on channel 18 (i.e., at 2.44 GHz with

a bandwidth of 3 MHz). We alternate rounds with transmission power -1 dBm and -8

dBm, which we refer to as high power and low power respectively.

This experimental setting allows us to probe each linkij (i.e., the link from nodei to

nodej) every 9 s; we collect the raw packets, along with per-round and overall statistics.

We expected to probe 72 links for each site, considering separately linkij and linkji.

However, the actual number of links we probed (i.e., 30 for each site) is lower than

expected because some nodes malfunctioned halfway through the experiments, and were

therefore excluded from the analysis. For each linkij the traces we collect consist of a

sequence of records for each round. Each record represents the reception of a message

along that link and contains RSSI and noise floor related to the reception of that message.

The results in this paper are based on the analysis of the 41,794 data points we collected

overall.

3.3.4 Results

In this section, we present our experimental results, validating our approach against the

actual received signal power measured in our WSN deployment. Our goal is to assess to

which extent: i) conventional empirical channel models for vegetated environments match

the real RSSI traces we collected at trunk level; ii) LiDAR data allows us to automatically

describe and represent local vegetation characteristics and enable received signal power

predictions in a forest area; iii) we can improve the prediction accuracy by analyzing trees

configuration and its impact at per link level.

The RSSI values in our traces represent the sum of the received radio signal power and

the noise power. Therefore, we can convert those values to a received power indicator—

comparable with the predictions of the models—and compute the corresponding P rx by

subtracting, in Watt scale, the noise floor level from RSSI. This step, in addition, makes
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our analysis independent from possible hardware di↵erences, in terms of noise figure,

between nodes.

Shortcomings of conventional empirical channel models. As a term of comparison,

we first estimate the path loss PL by applying both the Weissberger model [152] and the

COST 235 model [101]. These conventional models estimate the excess attenuation due

to vegetation as a quantity L
veg

[dB]. The overall path loss in this model is obtained as

PL
free

+ L
veg

, where the first term is the free space path loss as per Eq. (5.2). The excess

attenuation L
veg

is expressed as a function of the radio frequency f , in GHz, and the

depth of foliage d, in meters. For Weissberger, the excess attenuation is

LvegW [dB] =

(
0.45 f 0.284d 0  d  14

1.33 f 0.284d0.588 14 < d  400

For COST 235, which distinguishes between in-leaf (IL) and out-of-leaf (OL) situations,

excess attenuation is defined as:

LvegCOST [dB] =

8
<

:
15.6 f�0.009d0.26 in� leaf

26.6 f�0.2d0.5 out� of � leaf

To perform our comparison, based on the above we compute the corresponding ex-

pected received power P rx (at given distance and for a given frequency) according to

Eq. (3.5). For the COST 235 model we consider both the in-leaf and out-of-leaf settings,

given the mixed nature (i.e., coniferous/deciduous) of our forest plots.

Figure 3.5 compares the per-distance average of the real measurements collected in-field

against the estimated received power according to Weissberger and COST 235 models,

as a function of the link distance. We show only the plots for the low-power setting,

because the plots for the high-power setting show similar results. COST 235 estimations,

both in-leaf and out-of-leaf, do not fit well our data. Although the Weissberger model

behaves slightly better, it still significantly underestimates the received power for most of

the links. As a consequence, its application for network planning and deployment in this

forest would likely lead to overprovisioning.

The reason behind the discrepancy between these models and the real traces is that

the former are not su�ciently representative of our specific forest environment. This is

not surprising, as these models are intended as generic, “one-size-fits-all” solutions, which

account for vegetation by making the assumption that it is homogeneous, and as such

they fail to capture the intrinsic variability displayed by the complex forest environment.

In addition, these models were built for communication links that traverse the canopy

(as most of the empirical models developed in the past), which is not the scenario we

are considering. Finally, they have been derived empirically by curve fitting and, even
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though the measurement sets on which they are based is large, they clearly cannot cover

all possible forest configurations at the same time.

LiDAR-based estimates: AREA. We now show that our LiDAR-based automatic

approach for estimating the parameters of the model described in Section 3.2 provides

more accurate predictions. Table 3.1 shows the vegetation index and its constituents for

both our deployments, as estimated by the processing chain described in Section 3.2.2.

Based on these values, we compute the path loss coe�cients as a function of VD as per

Eq. (3.2) and, by applying Eq. (3.5) and Eq. (3.1), we define the curve of the expected

received signal power as a function of distance.

site D [cm] TD [trees/m2] VD

internal 24.2 0.0355 0.8598

edge 25.2 0.0372 0.9366

Table 3.1: Vegetation parameters in our deploy-

ment sites.

The results are shown in Figure 3.5. We

can visually assess that the trend of our

experimental data is well captured by such

curve. We quantitatively evaluate the per-

formance by comparing our in-field data

and the estimated received power for the

reference distances of our links. In particu-

lar, we consider the average received power

computed on our low power and high power traces, in the internal and edge sites, sep-

arately. For instance, the average estimation error for the internal site at low power is

4.06 [dBm] with a standard deviation of 3.31, minimum 0.25 and maximum 12.1. A

complete account of the estimation errors for both sites and power settings is shown in

Table 3.2.
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Figure 3.5: Received signal power according to

real RSSI traces and various prediction models
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LiDAR-based estimates: LINK. Despite the promising result, there are still signifi-

cant discrepancies between the real data and the area prediction model. Next, we show

that the link model we introduced in Section 3.2.3, thanks to its ability to select the most

appropriate path loss model, leads to further and significant improvement in estimation

accuracy.

Figure 3.6 shows the real power received, as derived from our RSSI traces, for both

clean-LOS (triangles) and obstructed-LOS (dots) links, together with the estimation

curves given by area and the free space path loss model. From the chart, it is evi-

dent that the latter can better predict the behavior of clean-LOS links for which, across

both deployment sites, our diversified estimation strategy reduces the average error from

6.22 dBm to 1.86 dBm at low power, and from 14.21 dBm to 2.71 dBm at high power.

Table 3.2 o↵ers the complete error statistics (average, standard deviation, minimum and

maximum) of this “dual-model” link prediction technique vs. area, across di↵erent de-

ployment sites, power settings, and line-of-sight situations (clean vs. obstructed). By

automatically identifying clean-LOS and obstructed-LOS links and applying our diversi-

fied strategy accordingly, we significantly and systematically reduce the estimation error

for all the locations and power settings we considered in our experiments.

Figure 3.7 o↵ers a di↵erent, graphical view of the comparison by plotting the real

received power against the one predicted by area and link. The diagonal on the plot

depicts the perfect estimate with zero error; the closer a point is to this line, the more

accurate the corresponding prediction is. Moreover, the charts also show the ±6 dBm

error band; we chose this value as this is the accuracy of the RSSI readings of the CC2420

radio chip our WSN nodes are equipped with. Figure 3.7a compares the performance

of area and link w.r.t. clean-LOS and obstructed-LOS links, represented by black and

white dots, respectively. It is interesting to note that area consistently understimates the

received power for clean-LOS points. In link, these points are e↵ectively “shifted” closer
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(b) Deployment site: Internal vs. edge.

Figure 3.7: Prediction accuracy of area and link w.r.t. a ±6 dBm error band.
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avg error std dev min max % in ±6 dBm % in ±1 dBm

site area link area link area link area link area link area link

l
o
w

p
o
w
e
r

internal 4.06 2.52 3.31 1.99 0.25 0.03 12.10 7.20 76.64 96.67 20.00 33.33

clean-LOS 6.48 1.97 2.18 2.08 4.21 0.03 9.40 4.94 50.00 100.00 0.00 50.00

obstructed-LOS 3.18 2.72 3.25 1.97 0.25 0.14 12.1 7.20 86.36 95.54 27.27 27.27

edge 5.57 3.11 3.32 3.02 0.39 0.40 15.04 12.50 56.67 86.67 6.67 26.67

clean-LOS 6.07 1.80 1.91 1.48 3.55 0.39 8.77 4.27 57.14 100.00 0.00 35.71

obstructed-LOS 5.11 4.33 4.27 3.58 0.39 0.39 15.04 12.50 56.25 75.00 12.54 18.75

all 4.81 2.81 3.38 2.55 0.25 0.03 15.04 12.50 66.67 90.00 13.33 30.00

clean-LOS 6.22 1.86 1.97 1.68 3.55 0.03 9.40 4.94 54.55 100.00 0.00 40.91

obstructed-LOS 3.29 3.37 3.76 2.81 0.25 0.14 15.04 12.50 73.68 86.84 21.05 23.68

h
i
g
h

p
o
w
e
r

internal 8.20 2.73 4.72 1.69 0.77 0.26 17.58 5.49 36.67 100.00 6.67 13.33

clean-LOS 14.49 2.94 2.08 2.06 12.33 0.83 17.58 5.49 0.00 100.00 0.00 12.50

obstructed-LOS 5.91 2.65 2.97 1.58 0.77 0.26 10.19 5.39 50.00 100.00 9.09 13.64

edge 10.18 4.15 4.89 4.97 0.73 0.43 17.11 14.12 30.00 83.33 3.33 23.33

clean-LOS 14.06 2.57 1.94 1.66 11.00 0.43 17.11 5.23 0.00 100.00 0.00 28.57

obstructed-LOS 6.79 5.53 4.08 6.40 0.73 0.42 14.60 14.12 56.25 68.75 6.25 18.75

all 9.19 3.44 4.87 3.75 0.73 0.26 17.58 14.12 33.33 91.67 5.00 18.33

clean-LOS 14.21 2.71 1.96 1.77 11.00 0.43 17.58 5.49 0.00 100.00 0.00 22.73

obstructed-LOS 6.28 3.86 3.46 4.48 0.73 0.26 14.60 14.12 52.63 86.84 7.90 15.79

Table 3.2: Experimental results

to the diagonal, as the e↵ect of the attenuating VD coe�cient is removed from the path

loss model. All of the clean-LOS points are within the ±6 dBm error band. On the other

hand, area appears to partly overestimate the e↵ect of vegetation. Moreover, the white

points in link are in general less spread and much closer to the diagonal. Figure 3.7b

compares the performance of area and link w.r.t. the deployment site, i.e., internal vs.

edge. In this case, link provides in general better predictions in both cases.

The rightmost part of Table 3.2 shows the fraction of predictions falling within the

reference ±6 dBm error band for both area and link, for all the combinations of de-

ployment sites, power settings, and link types. The quantitative data confirm that link

systematically improves over area; apart from the dramatic improvement for clean-LOS

links, obstructed-LOS ones have a significant improvement in the case of high power. We

also show data for the narrower error band of ±1 dBm, to assess how close the two mod-

els approximate the perfect estimate. Once again, link gets systematically closer; the

best result is for clean-LOS, low-power, internal plot, where 50% of the links are within

±1 dBm of the real value with link, and 0% with area.

Although link represents an improvement in estimation performance, there are still

discrepancies that the current model cannot account for. We argue that these are mainly

due to the e↵ect of obstructing trunks which are very close to the node, e.g., the trunks

on which nodes are latched onto. This is addressed in Chapter 4.

3.4 Conclusions

The goal of accurately predicting the behavior of low-power wireless communication is still

a rather elusive one, especially in forests, where the irregularity of vegetation exacerbates
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complexity. In this chapter, we presented a LiDAR-based approach that is automatic,

i.e., it does not require the in-field campaigns commonly adopted to perform radio (or

vegetation) surveys, and fine-grained, i.e., it enables received signal power estimates on a

per-link basis. We validated our approach on real RSSI traces from two small-scale WSN

deployments in a forest, and shown that it achieves unprecedented accuracy in estimating

the received signal power.

Despite the encouraging results, however, further work is required to explore how

the presented approach is a↵ected by other, complementary variables (e.g., forests with

di↵erent foliage or a denser understory, and environmental conditions as rain or variations

in temperature). In addition, further research is needed to investiagte the impact of other

forest attributes—e.g., the distance between a node and a tree trunk, to assess their actual

impact on connectivity and consequently on our estimates. Finally, a practical use of our

technique would be its integration in a network planning tool where, starting from an

initial seed placement of nodes, the optimal placement is automatically derived. Both

the impact of the distance between a node and a tree trunk and the integration of this

approach in a network planning tool are addressed in Chapter 4.
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Chapter 4

LaPS: LiDAR-assisted Placement of

WSNs in Forests

Wireless Sensor Networks (WSNs) enable in-situ, unattended monitoring of outdoor nat-

ural environments with unprecedented density and flexibility. In the context of forests,

which are the main focus of this chapter, they have been employed in several appli-

cations with di↵erent goals, e.g., including forest fire detection, microclimate monitor-

ing, wildlife monitoring [67, 121, 145, 49, 138]. In this context, a major challenge is to

achieve a proper node placement, as it strongly a↵ects the behavior of communication

links [159, 44, 92, 113, 63], and therefore the connectivity of the deployed network and

the application performance and reliability at large. However, deploying WSNs in the real

world remains a very challenging task, especially in outdoor environments [142, 63, 96];

forests further exacerbate the challenge due to the presence of trees and vegetation im-

pairing low-power radio communication [99, 40, 154].

In principle, a large literature on network design and node placement optimization

exists [158, 23, 122, 83, 5, 77], surveyed in Section 4.1. However, the modeling of low-

power wireless communication in these approaches lacks realism, as they often neglect the

specific features of the real-world target scenario. Since the characteristics of the target

environment may vary wildly, they are likely to disrupt the model assumptions, yielding

estimates that are unrealistic and of little practical use.

As a consequence, the placement problem is often tackled directly in-field, by means

of e↵ort-demanding experimental campaigns. A common approach is to define an initial

placement “guess” based on the spatial (e.g., node density) and network (e.g., expected

signal strength or number of neighbors) requirements germane to the application, and

The contents of this chapter are planned to be published in: “LaPS: LiDAR-assisted Placement of

Wireless Sensor Networks in Forests”, Demetri Silvia, Picco Gian Pietro, and Bruzzone Lorenzo, in ACM

Transactions on Sensor Networks (TOSN).
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on the nominal data found in datasheets and derived by idealized radio communication

models. Next, the quality of such placement is evaluated in-field by means of connec-

tivity tests, for which several supporting tools exist [74, 42, 141]. However, due to the

aforementioned peculiarity of the target environment, it is rarely the case that this initial

guess is satisfactory; the position of nodes typically must be nudged based on the outcome

of the tests, which must therefore be re-executed, leading to a trial-and-error cycle that

repeats until a satisfactory network configuration is found. The e↵ort required by this

process obviously increases with the scale of the network and the complexity of the target

environment.

In this respect, the forest environment represents both a challenge and an opportunity.

The challenge is the fact that, as already pointed out, trees and vegetation impair the

radio signal. However, the opportunity is that a significant fraction of this impact is

induced by trees, and is therefore permanent, i.e., not time-variant, at least not on a short

time scale; in other words, the attenuation they induce could be in principle estimated

beforehand, and form the basis for determining a satisfactory node placement. This is

precisely the goal of this chapter.

Approach and contributions. We present an automatic node placement approach and

companion tool, called LaPS (LiDAR-assisted Placement for wireless Sensor networks),

that optimizes the positions of WSN nodes prior to deployment by taking into account

the real characteristics of the target forest.

The node placement identified by LaPS is subject to a set of simple user-defined spatial

and network requirements (Section 4.2) specifying desired properties about the placement

of nodes and the resulting network connectivity. In this work, the quality of the network

layout output by LaPS is assessed in terms of the overall number of communication links

and their average expected receive power; however, alternative formulations can be easily

encoded, thanks to our flexible design.

A second input to LaPS is the information about the forest structure. To this end, we

rely on remote sensing and specifically airborne Light Detection and Ranging (LiDAR)

technology (introduced in Chapter 2), as it has been extensively applied to forest analysis

and management [97, 116, 139, 68, 13, 82] for the accurate estimation of forest attributes

(e.g., tree position, trunk diameter, tree density) and as it is becoming increasingly avail-

able for forestry applications.

User requirements and raw LiDAR data are fed to the LaPS toolchain, for which we

provide an overview in Section 4.3. The first component of the toolchain transforms the

raw LiDAR data into a higher-level representation of forest attributes we call a tree map

(Section 3.2.2). This information provides the crucial parameters of a specialized radio

model that enables accurate per-link estimates of communication quality by taking into
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account the attenuation induced by trees, as we described in Chapter 3.

The tree map representing the target forest area and the radio model configured with

this information are both input, along with user requirements, to an evolutionary op-

timization method (Section 4.4) that constitutes the last component of the toolchain.

Specifically, we exploit genetic algorithms to explore the space of possible placement solu-

tions and evolve towards an optimized placement. This is done by evaluating the fitness

of placement configurations in terms of quality and number of the communication links

available to network nodes, while honoring the spatial and network requirements specified

by the user.

To the best of our knowledge, we are the first to exploit LiDAR information with

the goal to i) characterize the attenuation induced by trees, and ii) exploit this and the

acquired knowledge about tree positions to identify an optimal placement of WSN nodes.

Before moving to the evaluation of our placement approach, we discuss the configura-

tion of the LaPS tool (Section 4.5) we use for it. This entails not only providing specific

examples of user constraint, but also the identification of two parameters, the expected

received power and the distance of nodes from trunks, whose minimum value has a rele-

vant impact on the quality of the output solutions and whose value must be determined

experimentally.

Finally, we evaluate the quality of the node placements output by LaPS (Section 4.6).

We analyze various performance metrics, including the overall average expected received

power and number of links in the network, along with topological properties quantifying

its degree of connectivity and therefore intrinsic robustness. We compare against i) a

grid-based approach that “blindly” places nodes in each spatial cell without taking into

account the presence of trees, and ii) a line-of-sight approach that uses the first portion

of our LaPS toolchain to determine the links that are unencumbered by trees and for

which the standard path loss radio model applies. In essence, the first baseline disregards

both the information about the forest structure and the corresponding customized radio

model, while the second disregards only the latter. By showing that the placements

output by LaPS are significantly better than both baselines we confirm that the additional

complexity introduced by LaPS is indeed worthwhile. This becomes even more evident

when we introduce a four-fold scale-up of the test network, in which the baselines above

cannot even find an acceptable solution.

We conclude our evaluation by quantifying the improvement in quality between the

placement solution output by LaPS and the average one. The latter e↵ectively provides

a measure of the placement that in-field campaigns are likely to identify. Our results

confirm that the improvement attainable by LaPS is significant, thanks to its ability

to quickly explore several alternate placements. Therefore, LaPS can provide solutions
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that i) are of higher quality, and ii) without requiring the significant e↵ort of in-field

campaigns. Further, and along the same lines, LaPS enables the exploration of slightly

di↵erent network and/or performance parameters, to an extent that would be simply

prohibitive if performed in-field.

The chapter ends in Section 4.7 with brief concluding remarks including opportunities

for future work.

4.1 Related Work

Genetic algorithms and WSN node placement. In the last two decades, several

studies exploited genetic algorithms towards the planning of mobile networks, in particular

for cellular base stations placement and configuration [104, 90, 98]. The e↵ectiveness of

these approaches inspired the application of this technique also in the context of WSNs

placement optimization.

However, many of these approaches (e.g., [54, 23, 24, 6]) adopt a grid or some other

regular pattern (e.g., a tessellation) as the reference network layout, and select candidate

positions for the optimal node placement only among the vertexes of this regular pattern

(e.g., at the crossing of grid lines). This intuitive abstraction simplifies the mathematical

treatment of the problem and reduces the search space. However, from a practical stand-

point, while it is meaningful for some applications—and indeed we consider it ourselves—it

is at odds with several real scenarios, as it neglects specific (and often irregular) spatial

requirements of applications. In contrast, our approach supports arbitrary spatial require-

ments where nodes must be deployed in designated areas; the requirements we consider

include the common case where nodes must be fastened to trees, yielding an intrinsically

irregular structure of the resulting network and search space.

Another significant idealization of the placement problem concerns the communication

range, which is typically assumed perfectly isotropic. In part, this is a consequence of the

fact that the majority of approaches in theWSN literature aim at jointly optimizing energy

consumption and sensing coverage, i.e., minimizing the former without compromising the

latter [122, 23, 79]. In this respect, modeling the range of both communication and sensing

as a perfect circle is a natural abstraction that, again, greatly simplifies the mathematical

treatment. The price to pay, however, is the inability to transfer these approaches in the

real world, where communication range is known to be far from isotropic [159].

For instance, the authors of [23] exploit genetic algorithms to optimize a cluster-based

approach by determining the best clustering scheme, the operational mode of nodes (e.g.,

active vs. inactive, slave vs. cluster-head), and their transmission power. However, candi-

date node positions are restricted to those belonging to a regular grid layout. Communi-

cation range is one of the design parameters considered in the optimization; however, it is
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assumed to depend only on the transmission power, and the impact of the deployment en-

vironment is neglected. Similarly, the multi-objective approach presented in [79] optimizes

sensor coverage and lifetime, with the additional assumption of a fixed communication

and sensing range. Another multi-objective optimization technique is presented in [54] in

the context of precision agriculture. Again, the focus is on the selection of node status by

taking into account application-specific requirements related to the operation mode, but

no e↵ect of the agricultural field is considered in evaluating the connectivity of the net-

work. Analogous considerations hold for the approach in [151], where the optimization of

sensing coverage and network connectivity is centered around the sleep intervals schedul-

ing for energy conservation while providing di↵erent degrees of coverage through their

dynamic reconfiguration. However, the connectivity estimation is, once again, unrealistic.

The same holds for [122] that, after explicitly mentioning the challenges of real deploy-

ments and the di�culty of acquiring prior information about the environment, proceed

to optimize radio coverage and energy consumption based on a circular communication

range of fixed radius.

In contrast, Krause et al. [84, 85] propose a placement approach that simultaneously

optimizes sensing and communication quality, avoiding the simplistic assumption of fixed

communication range. They take into account the variability of the link quality and define

the communication cost by probabilistic models that are learned in an initial small pilot

deployment. However, it is hard to learn a realistic probability distribution of the link

quality in a forest through a small pilot deployment, due to the intrinsic inhomogeneity

of such environment. The e↵ective application of this approach in forests would require

significant, therefore costly, pilot campaigns to learn representative models.

The common idealistic assumption of fixed and isotropic communication range is

shared also by the multi-objective optimization of node position and transmission power

presented in [83]. However, this work has an additional point of contact with ours, in that

it introduces k-connectivity constraint on the resulting network, aimed at ensuring some

degree of robustness. In our approach, we consider this and other networking constraints,

and analyze their impact on a wider notion of robustness based both on topological prop-

erties and consideration common in the design of WSN networking protocols.

Finally, and more generally, LaPS sharply departs from the aforementioned strongly

idealized settings by i) taking into account the peculiarity of communication range in

WSN with a specialized attenuation model ii) whose parameters are directly informed by

the characteristics of the forest area targeted by the deployment, automatically derived

via our LiDAR-based toolchain.

Modeling the non-isotropic communication range of WSNs. As already men-

tioned, the problem of radio range irregularity is anyhow well known, and it has been
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addressed in the recent literature. However, it is treated mainly in statistical terms,

specifically: i) in terms of Degree of Irregularity (DOI), originally defined in [65] as the

maximum range variation per unit degree change in the direction of radio propagation;

or ii) refined and incorporated in the Radio Irregularity Model (RIM) presented in [162],

where the DOI is improved by introducing a random weight for each direction, according

to a Weibull distribution, to represent the random variance experimentally observed at

each direction; or iii) by describing the statistical behavior of the reception rate [159, 43].

Cerpa et al. [43] characterize the communication links using non-parametric statistical

models that describe the reception likelihood and its confidence interval considering fea-

tures of links and groups of links (e.g., distance, asymmetry, uniformity of transmitters

and receivers). Zuniga et al. [159] identify three di↵erent regions (i.e., connected, transi-

tional and disconnected), which present di↵erent communication characteristics according

to the link distance. Links belonging to the connected region are stable and symmetric,

featuring high reception rate; links in the disconnected region are almost completely lossy

and unreliable, whereas links in the intermediate transitional region are highly variable

and unpredictable. However, both these studies, despite considering di↵erent deployment

environments (e.g., indoor and outdoor), do not explicitly take into account the specific

characteristics of such environments in the analysis. In other words, although these for-

mulations are derived from experimental evidence, they represent an attempt to generalize

a behavior which is intrinsically determined by the specificity of the deployment scenario.

In LaPS, we make a step forward in reconciling the intrinsic generality of modeling

and the specificity of the environment at hand, by exploiting the peculiarity of the forest

setting. The specialized radio propagation model we defined in Chapter 3 is the corner-

stone of our approach. Although we cannot reproduce every specific aspect of the target

environment a↵ecting communication (e.g., temperature, humidity), we exploit the fact

that its quality is severely impacted by the presence of trees, whose position does not

change over a short time scale. As a consequence, the attenuation they introduce can be

itself modeled and taken into account when determining the optimal node placement.

Exploiting digital models of the environment. The idea of exploiting digital models

of a target area and incorporating them in network planning approaches to increase their

realism has been applied almost two decades ago by Krzanowsky et al. [86]. Digital

Elevation Models (DEMs) and land cover maps were included in a genetic process to

tune the expected signal attenuation and compute a more realistic cell coverage, therefore

improving the positioning of base stations in wireless networks. More recently, the authors

of [113] presented a connectivity model that takes into account topographic and vegetation

features, similarly derived from a DEM and land cover maps. However, this model relies

on a machine learning algorithm whose training requires the collection of a significant
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amount of in-field connectivity measures in the target deployment environment.

DEMs are often obtained from satellite or airborne remote sensing systems, whose

capabilities have also been explored in this context. In [132] the authors describe how

to extract building footprints from LiDAR data with the goal of supporting the design

of wireless communications systems in urban areas. These urban features are incorpo-

rated in microcell ray tracing models and exploited to assess the visibility status between

transmitter and receiver (i.e., visible or obstructed), therefore enabling the selection of a

proper radio model (i.e., free space loss vs. single-knife edge di↵raction). Similarly, in [89]

the line of sight between the satellites and the receiver in a GPS system is evaluated using

LiDAR and 3D ray tracing, to assess the positioning accuracy. The work we present here

is inspired by these works, in the sense that we similarly exploit the high accuracy of Li-

DAR to build a detailed model of the environment, and incorporate it into a propagation

model. However, these approaches are not directly applicable to our case, as they focus

on an urban setting instead of a forest one; further, the peculiarity of the latter, and

specifically the need to take into account the attenuation induced by each tree, requires

a much more fine-grained approach than these works o↵er.

On the other hand, only few studies in the WSN literature attempted to increase the

degree of realism by considering the target scenario and its impact on the e↵ectiveness of

node placement. In [5], DEMmodels are used to estimate the line of sight of PIR sensors in

a mountainous region, and determine via an evolutionary approach the optimal placement

maximizing sensing coverage. The approach in [77] similarly takes into account coarse-

grained elements of the environment (e.g., the presence of vegetation or rivers) known

to degrade the sensing capabilities by a given percentage. Another attempt to explicitly

reckon with the specific environment where the WSN is deployed is presented in [10],

which also includes a radio model that i) estimates the range on quantized directions

around the node by accounting for the presence of obstacles, and ii) introduces time-

variant environment-dependent components (e.g., a climate factor and an environmental

attenuation factor). The results obtained through simulations show that the average range

indeed varies based on these factors. However, these are not quantified and the estimation

of the corresponding coe�cients not discussed; global knowledge about the environmental

factors and their impact on communication is instead implicitly assumed.

In contrast, the radio attenuation model at the core of LaPS is validated by in-field ex-

periments; further, to the best of our knowledge, we are the first to exploit remote sensing

and specifically LiDAR to derive the fine-grained model of the environment enabling an

accurate estimation of attenuation and, ultimately, a significantly better node placement.
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4.2 Requirements and Goals

We focus on the deployment of WSNs in forests, typically to directly monitor their envi-

ronment or the animals dwelling in it. Given that the target location is typically harsh

and not easy to reach, simplifying the WSN deployment process is crucial, as discussed

at the beginning of this chapter.

Two factors determine the e↵ectiveness of a WSN deployment in our context. On one

hand, spatial requirements must be honored, determining how nodes should be distributed

in the environment to fulfill the application needs. On the other hand, a node placement

that satisfies only these constraints is not su�cient; network requirements must also be

fulfilled, to ensure good connectivity among nodes and other properties to be exploited

by network protocols towards reliable and e�cient communication.

In principle, both spatial and network requirements strongly depend on the appli-

cation at hand; our approach and associated tools are general enough to accommodate

a wide spectrum of requirements. However, in this dissertation, we focus on common

requirements we informally state next in Section 4.2.1 and Section 4.2.2.

4.2.1 Spatial Requirements

Global: REGULAR vs. IRREGULAR. In some applications, e.g., including forest fire

detection and microclimate monitoring [49, 67, 63], it is desirable to place nodes in a

way that guarantees a spatially uniform sensing with a desired and controlled density. In

principle, this could be achieved by organizing nodes in a regular grid, which is indeed

a popular choice in placement approaches [158]. In practice, however, an exact grid is

often not feasible (e.g., due to irregularity of the target environment) or even desirable

(e.g., network concerns may suggest a slightly di↵erent placement). For this reasons,

deployments typically exploit a tessellation of the target area [158, 24, 6] into tiles (e.g.,

triangles or squares); each node must be contained in one of the tiles. Hereafter, we refer

to this deployment scenario as regular.

Other applications are driven by di↵erent spatial requirements. For instance, in wildlife

monitoring [123, 124] biologists are often interested in monitoring specific sites in the

target area (e.g., close to water and feeding sources, or where animal traces are frequently

found). Nodes are typically required to be placed near these sites (e.g., within a given

radius around a position); in some cases, however, a node may be required to be placed

in a designated, geo-referenced position. Moreover, extra relay nodes may be required,

whose position is not subject to strict spatial requirements. We refer to this deployment

scenario as irregular.
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Node: FREE vs. TRUNK. In addition to the global spatial requirements above, some

applications pose also constraints w.r.t. the physical placement of nodes themselves. More

precisely, in what we refer to as the free placement, the nodes can be placed anywhere

in the target area, e.g., on the ground or atop poles. However, this option is not viable

in some locations, e.g., to avoid that nodes are relocated by weather events or animals,

or due to the danger of damaging the tree roots, respectively. Therefore, a common

alternative is to fasten the nodes directly to the trees themselves; we refer to this placement

as trunk. Clearly, these two options implicitly define two di↵erent search spaces for

the node placement problem, since the trunk admits acceptable node positions only in

correspondence of the tree trunks.

4.2.2 Network Requirements

Network requirements ultimately depend on the specific network stack adopted. However,

the reliability of the latter is in turn directly a↵ected by the connectivity of the network,

which we capture by posing requirements on two fundamental metrics on each network

node:

• Minimum expected received power. This metric e↵ectively defines, in the most basic

(and therefore general) way, the minimum acceptable quality of a link. By enforcing

this requirement globally, we ensure that all links in the network are “good enough”.

We further elaborate on this notion in Section 4.5.1.

• Minimum number of neighbors. This metric builds on the previous one by consider-

ing, among all node neighbors, only those with good links. By guaranteeing that a

minimum number of these neighbors are available, this metric ensures that each node

has enough communication options—a critical factor for reliability, e.g., in routing

protocols.

4.2.3 Goal: Optimal Node Placement

The goal of our approach is to find an optimal node placement, defined informally as a

positioning assignment for all nodes of the network that:

• satisfies both the spatial and network requirements above, and

• maximizes the quality of the resulting communication network.

Again, several formulations are possible for the latter aspect. Hereafter, we rely on

the same basic notions of received power and number of neighbors we exploited in Sec-

tion 4.2.2, and identify the optimal placement as the one that maximizes:

• the total number of acceptable links in the network, and
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• the average expected received power across all of these acceptable links.

Although these metrics are very basic, when their value is jointly optimized by our

approach (Section 4.3) they bear a direct e↵ect in shaping the topological characteristics

of the network, e.g., how connected is the resulting network graph or how many source-to-

sink paths exist in a potential routing topology, as we show in the evaluation (Section 4.6).

4.3 LiDAR-assisted Node Placement: An Overview

We now provide the reader with a bird’s eye view of the approach we employ to achieve

the goal of optimal placement, for which we exploit the availability of LiDAR information.

Figure 4.1 o↵ers a pictorial representation of the key components and their relationships.

We exploit in combination three main building blocks:

1. LiDAR-based forest representation (Section 3.2.2). It takes as input the geographical

representation of the target forest area and the associated LiDAR data and deter-

mines the position of trees and the diameter of their trunks in the area of interest,

encoded as a tree map;

2. LiDAR-based radio attenuation model (Section 3.2.3). It enables a priori estimation

of the received power of the radio signal based on the aforementioned tree map.

3. Evolutionary optimization (Section 4.4). It is the last and most important step,

whose inputs are the key parameters of the placement problem, namely, the number

of nodes and the spatial and network requirements and constraints (4.2). These are

combined with the above knowledge about tree positions and their impact on radio

propagation and exploited by a genetic algorithm that e�ciently explores the search

space of feasible placements (i.e., those satisfying spatial and network requirements)

and selects the best one.

We next describe in detail how the search for the optimal placement is implemented.




























Figure 4.1: LiDAR-assisted node placement.
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4.4 Evolutionary optimization

As shown in Figure 4.1, the evolutionary optimization combines the knowledge derived

from LiDAR about the forest structure and its e↵ect on the communication quality (Chap-

ter 3) with user-defined requirements (Section 4.2) about the number and position of

nodes, and outputs a (sub-)optimal placement satisfying these requirements in the target

forest area.

The latter cannot be found simply by exhaustive search, which rapidly becomes un-

feasible as the number of nodes and/or size of the target area increase. Therefore, we

exploit genetic algorithms, a well-known class of numerical optimization procedures in-

spired by biological evolution that proved e↵ective in optimization problems similar to

ours [54, 23, 79, 83, 86, 77].

This class of approaches examines a search space by manipulating and evaluating

a set of possible solutions, i.e., a population of individuals ; in our case, an individual

is a candidate placement configuration, represented by simply concatenating all node

positions. We describe how the latter are determined and in general how the forest area

is modeled in Section 4.4.1.

An individual can be considered as acceptable only if it satisfies constraints repre-

senting the problem at hand; Section 4.4.2 provides a formalization of the constraints

for our problem, which descend from the spatial and network requirements outlined in

Section 4.2. Further, an individual is associated with a fitness value, representing a mea-

sure of quality of the individual and determined by an application-specific function; we

describe the one we use in Section 4.4.3.

The initial population is created by randomly generating a predefined number of indi-

viduals (30 in our current implementation). New populations are generated by applying

genetic operators to selected individuals, identified by a parent selection procedure. The

genetic operators are crossover, which recombines individuals, and mutation, which in-

troduces random variations on individuals based on a predefined probabilistic criterion.

Populations evolve iteratively through so-called generations; after each iteration, the fit-

ness of each individual is recomputed and becomes the basis for parent selection in the

next generation. Eventually, the process converges to a (near)-optimal solution compliant

with the constraints; a global optimum is not guaranteed, but the e↵ect of local optima

is mitigated thanks to the random component in the parent selection and application of

genetic operators, as described in Section 4.4.4.

Figure 4.2 illustrates our evolutionary optimization based on genetic algorithms.
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Figure 4.2: Evolutionary optimization of placement via genetic algorithms.

4.4.1 System model

We define a 2D optimization problem aimed at finding a (near-)optimal node placement

in a target forest area. The positions of the nodes determine the communication quality,

depending on the local forest characteristics. Even a small displacement of the nodes can

significantly modify communication performance. By taking into account this observation,

we propose an approach that is more fine-grained than those based on regular grids or

patterns (e.g., regular triangle tessellation) [158, 24, 6].

The problem is defined starting from the deployment reference scenario (Section 4.2.1)

and two initial variables: 1) the node set N = {n1, · · · , nN}, with cardinality N = |N|,
and 2) a target forest area A, for which LiDAR data are available.

By processing raw LiDAR data (Section 3.2.2), we first estimate position and diameter

of tree trunks and then represent A by a 2D tree map with size h ⇥ w. A sample forest

area A and the corresponding tree map are shown in Figure 4.3a and 4.3b, respectively.

A uniform quantization is applied to A, with quantization cells defined by the resolution

of the tree map (i.e., 50 ⇥ 50 cm). The size of the quantization cell represents the

spatial granularity we adopt in the analysis, with one quantization cell approximating

one possible position where a node can be placed, if the constraints are fulfilled.

Then, we consider N target spatial tiles, where a tile is an area in which one and only

one node is allowed to be placed. The size of the spatial tile depends on the reference

scenario and on the application requirements (Section 4.2.1):

• regular: the target area is divided into N equal-size square spatial tiles. Their size

is application-dependent and chosen to cover the whole target area with N nodes.

Figure 4.3c shows an example of 9 tiles covering a sample target area, along with

trunk positions derived from the tree map.

• irregular: the N spatial tiles are sub-areas of A arbitrarily shaped and sized

according to the application requirements. An example is reported in Figure 4.3d.
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(a) Forest area (b) Tree map








(c) 9 equal-size square

spatial tiles and trunk

positions





(d) 9 arbitrary spatial

tiles and trunk positions

Figure 4.3: Division of a sample forest area into 9 spatial tiles (equal-size square spatial tiles for

regular scenario and arbitrary spatial tiles for irregular scenario).

The design variables are the positions of each network node in the target area. The

set of these positions describes the overall node placement, encoded in a 2D scalar vector

P = {(x1, y1), (x2, y2), · · · , (xi, yi), · · · , (xN , yN)}

where the position of a node ni is defined by its scalar coordinates (xi, yi) in the target

area.

A placement P implicitly identifies also a set of links L(P). A network link lij 2 L(P)
connects node ni in position (xi, yi) with nj in (xj, yj), i 6= j. L(P) represents all links

connecting the nodes in P, and therefore |L(P)| = N(N�1)
2 . In practice, however, only a

subset of these links are interesting towards our problem, i.e., those whose nodes are in

communication range. We denote with P
rx

(lij) the expected received signal power for link

lij, computed based on the link approach (Section 3.2.3) as a function of the distance

between ni and nj, the presence of trunks on the link line-of-sight, and the transmission

power. P
rx

is at the core at one of the constraints of our placement problem, as described

next.

4.4.2 Constraints

Along the lines of Section 4.2, we define separately the spatial and network constraints

characterizing the placement problem. Unless otherwise noted, the constraints hold

8i, j 2 {1, · · · , N}. Interestingly, these constraints are fundamental not only to capture

application and system requirements, but also to narrow the search space and conse-

quently reduce the computational overhead.
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Spatial constraints. We impose the presence of exactly one node in each target spatial

tile:

A1 : (xi, yi) 2 tilei (4.1)

regardless of the shape of the tile (i.e., a square for regular, an arbitrary shape for

irregular).

Apart from this fundamental constraint, others can be defined that further control the

placement. For instance, we introduce the following constraints for regular:

A21 : dist((xi, yi), tilei) � B (4.2)

A22 : dist((xi, yi), (xj, yj)) � D (4.3)

where dist returns the Euclidean distance1, and B andD are threshold values. Essentially,

these constraints aim at preserving some degree of uniform coverage: A21 avoids node

positions too close to the tile boundary, and A22 imposes a minimum distance between

nodes.

Similar constraints can be defined for the irregular scenario, as shown in Fig-

ure 4.3d. However, their precise definition is not particularly interesting, and therefore

omitted. In general, alternative and application-dependent constraints are possible. For

example, in the context of a forest fire detection application it may be desirable to place

temperature sensors where trees are relatively dense and, alternatively, it may be better

to measure wind speed in clearings. These constraints can be easily formulated based on

the tree map, and automatically accounted for in the companion tool.

Network constraints. We formalize the requirements in Section 4.2.2 with the following

constraints:

C1 : P
rx

(lij) � P (4.4)

C2 : |Lk| � M, Lk = {lij 2 L
acc

(P) | i = k}} (4.5)

C1 sets the minimum expected received power P that defines when a link yields acceptable

communication quality; we investigate the appropriate value of P in Section 4.5.1. C2

defines the minimum number M of well-connected neighbors required for each node.

The definition of the latter constraint relies on the set of acceptable links, which in

principle contains all links satisfying C1, Lacc

(P) = {lij 2 L(P) | C1}. In practice, however,

an additional constraint is needed to set the minimum distance T of a node from a trunk,

along the link line-of-sight :

C3 : dist((xi, yi), (xt, yt)) � T ^ dist((xj, yj), (xt, yt)) � T, 8(xt, yt) 2 trees(lij) (4.6)
1For the sake of simplicity we slightly abuse the notation by assuming that it also returns the (minimum)

distance of (x
i

, y

i

) from any of the sides of tile
i

.
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where trees(lij) returns the position of all tree trunks that intersect link lij. The set of

acceptable links is accordingly defined as

L
acc

(P) = {lij 2 L(P) | C1 ^ C3} (4.7)

The additional constraint C3 is necessary to exclude from the candidate placement

situations where tree trunks are on the link line-of-sight and very close to one of the

communicating nodes. In these extreme cases, communication quality is significantly

degraded; further, this significant degradation is also less accurately captured by the

propagation model. We further elaborate on these topics and provide a value for T in

Section 4.5.2.

Note how C3 holds regardless of the node spatial placement, i.e., free vs. trunk, as

it is a condition on the link and not on the node. Specifically, recall from Section 4.2.1

that in a trunk scenario nodes are latched on trees, and their distance from the trunk

is therefore 0 m. As a consequence, given a node, all links “behind” the trunk it is

attached to violate C3 and are discarded, while all links “in front” are candidates for

further evaluation.

4.4.3 Fitness Function

We now illustrate the definition of the fitness function F (P) that is the basis for evaluating
and comparing the candidate placement solutions fulfilling the constraints.

We define F (P) based on two components, which descend from the requirements and

goals in Section 4.2. The first one is the total number of acceptable links in the network

L
acc

= |L
acc

(P)| (4.8)

while the second component is the average expected received power across all acceptable

links

P
rx

=
X

l
ij

2L
acc

(P)

P
rx

(lij)

|L
acc

(P)| (4.9)

Maximizing the first value increases the chances to build a network that is connected as

well as robust, while maximizing the second increases the overall communication quality.

As we show in our evaluation (Section 4.6.2), their joint optimization yields significantly

better placements w.r.t. using each component alone. Therefore, we take both components

into account in the fitness function:

F (P) = L
acc

+ �P
rx

(4.10)

Both terms are normalized between 0 and 1, based on the minimum and maximum

values attainable. A tuning parameter � determines which term is predominant and how
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strongly. A preliminary analysis showed that the best performance is achieved when

� = 1, yielding a range [0, 2] of variation for the fitness value. Finally, the link connecting

node i with node j is counted only once both in L
acc

and P
rx

, i.e., links lij and lji are not

distinguished.

4.4.4 Parent Selection and Genetic Operators

An individual (P, F (P)) is represented by the combination of a candidate placement P and

the corresponding value of the fitness function, F (P). New populations are generated by

iteratively applying a parent selection procedure and a genetic operator, and recomputing

the fitness value.

The parent selection procedure selects parent individuals for reproduction, to generate

o↵springs. We apply the binary tournament selection [127] approach, where two individu-

als are selected at random and their fitness compared; the individual with better fitness is

selected as parent. Tournament selection is executed until a pool of parents of predefined

size (e.g., half the population) is selected.

The genetic operator performs crossover and mutation [127] on the pool of selected

parents to produce o↵springs. Specifically, we execute one-point crossover with proba-

bility 0.9 and uniform mutation with probability 0.1. The former randomly selects two

di↵erent parents, randomly selects a crossover point (i.e., an index in the vector P of

positions associated to an individual), and swaps the node positions beyond this point

between the two parents. The latter applies the following mutation to a single parent cho-

sen at random: each node position in its P is replaced, with probability 1
N
, with another

position in the same spatial tile, uniformly chosen at random among acceptable ones.

These probability values favor the exploration of the possible combinations of node

positions currently considered as parents before introducing new random ones. The o↵-

springs are then checked against constraints; individuals that do not comply with the

constraints are discarded, while the fitness value is recomputed for the others. The lat-

ter compliant o↵springs are merged with their parents into an intermediate population,

from which a number (equal to the population size) of individuals with the best fitness

is selected, and a new generation is created. Elitism is included, i.e., the current best

individual of each generation always survives into the next one.

4.5 Configuring Spatial and Network Constraints

The node placement approach in Section 4.3 is based on constraints modeling spatial and

system requirements, which are in turn based on configuration parameters whose values

we discuss here.

We devote particular attention to constraints C1 and C3 in Section 4.5.1 and Sec-

tion 4.5.2, as determination of the corresponding thresholds P and T strictly depends
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constraint parameter value definition

C1 P �85 dBm minimum expected received power at a node

C2 M 3 minimum number of acceptable links per node

C3 T 5 m minimum trunk-node distance

A21 D 10 m minimum distance of a node from the tile border

A22 B 25 m minimum link length

Table 4.1: Configuring application and network constraints.

on experimental evidence. We o↵er quantitative considerations based on our own ex-

perimental setup that, due to the characteristics of the hardware and environment, is

likely to cover a broad spectrum of applications. On the other hand, the methodology

we describe can be used to replicate ad hoc examples for di↵erent hardware and/or forest

environments, enabling one to easily determine the appropriate values for P and T .

Finally, in Section 4.5.3 we discuss the other parameters, which instead depend on

generic network and spatial requirements. The values chosen, used in the evaluation

(Section 4.6), are meant solely to exemplify the flexibility and usefulness of our tool.

Table 4.1 provides a summary of these values in the context of the constraints in which

they are used.

4.5.1 Determining the Minimum Expected Received Power

Constraint C1 relies on a threshold P meant to filter out communication links likely to

be too unreliable. In ideal conditions, the value of P is simply the receiver sensitivity

threshold. For example, the CC2420 datasheet specifies a value of �94 dBm; indeed, this

was the minimum power level measured for received packets in the experimental campaign

we describe in Section 4.5.2.

However, outdoor environments are far from ideal, due to several environmental factors

(e.g., temperature and humidity or multipath e↵ects) that a↵ect the radio signal; using

the value above is known to lead to unreliable results, as shown by several empirical

studies (e.g., [99, 142, 15, 159]). Small signal variations can cause abrupt changes in the

ability to receive packets, rendering links unstable. The metric commonly used in these

studies is Packet Receipt Ratio (PRR), computed as the number of packets received on

a link over the number of those sent. It has been shown [159] that when the reception

power is close to the receiver sensitivity threshold, links belong to a transitional region

with highly variable PRR; instead, when the reception power is well above threshold,

links belong to a connected region where they exhibit high PRR. Hereafter, we aim at

ensuring the highest communication quality, therefore retaining only links that belong to

the connected region. Other, less conservative choices are easily supported by setting a

di↵erent value for the threshold P .
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Figure 4.4: PRR vs. average received

power.

The relation between PRR and RSSI has

been analyzed in the literature in several ex-

perimental observations. In [80], for in-

stance, a good PRR is observed for an aver-

age RSSI > �87 dBm. The measurements we

report in Section 4.5.2 confirm these findings.

Figure 4.4 shows the PRR as a function of

the average received power, computed every

100 packets sent. The charts shows no packet

loss for RSSI � �85 dBm; we therefore select

P = �85 dBm as the threshold for C1.

4.5.2 Determining the Minimum Trunk-Node Distance

Constraint C3 specifies the minimum distance T between the nodes composing a link

and the trees on the link line-of-sight. Indeed, when nodes are too close to a tree, the

attenuation induced by the latter increases abruptly; further, this increase is not captured

accurately by the model in Section 3.2.3.



 



 















Figure 4.5: Determining the minimum

trunk-node distance T : experimental

setup.

To determine the threshold value T beyond

which these phenomena occur, we run dedicated

in-field experiments in Monte Bondone, near

Trento, using TMote Skymotes as in the val-

idation of the LiDAR-based radio attenuation

model in Section 3.3. The experimental setup

is described in Figure 4.5. We select an isolated

trunk and place two nodes at di↵erent distances

on its opposite sides; the trunk is therefore on

the line of sight of the communication link be-

tween the nodes. We consider a maximum link

length of 60 m, and explore di↵erent positions of the trunk inside the link by varying i) the

distance of the tree from one of the nodes, and ii) the link length, i.e., the distance be-

tween the two nodes. More precisely, the trunk “moves” w.r.t. one of the nodes in 5 m

increments, from 0 to 30 m; at the latter distance, the trunk is in the center of the link.

The link length varies from 5 to 60 m; this is achieved in 5 m increments, except for

lengths > 40 m, for which the increment is 10 m. For each configuration of trunk distance

and link length, 100 packets are sent by each node by alternating its packet transmissions

(TX) at 1 pkt/s with the other node; overall, one packet is sent on the link every 500 ms.

We repeated this process with two TX powers, �1 and �8 dBm, obtaining similar results;

here, we report only those with the higher TX power. Moreover, we repeated experiments
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(a) Trunk diameter: 20 cm.
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(b) Trunk diameter: 40 cm.

Figure 4.6: Average � and standard deviation of the error between the attenuation model in

Section 3.2.3 and our measurements when a tree trunk is near to one of the communicating

nodes.

with two isolated trees of di↵erent diameter, 20 and 40 cm. Overall, we collected ⇡29600

data points.

We report the average and standard deviation of the error � between our measurements

and the estimates of the link model in Section 3.2.3, as a function of the distance d

between the trunk and the communicating node; further, we separate the cases in which

the latter node (which can be on either side of the tree) is transmitting or receiving. � is

computed for a given distance d on all the link lengths involved; e.g., the value � computed

for d = 5 m in TX mode is the average of the values for all links in which either node is

transmitting at 5 m from the trunk. However, each individual model estimate depends on

the link length; therefore, we compare each link measurement against its corresponding

distance-dependent estimate, and obtain the error averaged across all link lengths. The

specific diameter at hand is similarly accounted by the model for individual estimates.

Figure 4.6 shows the results. We observe that the communicating status of a node

does not a↵ect significantly the estimation error: whether the trunk is at distance d from

a transmitter or a receiver, the e↵ect is approximately the same. On the other hand, the

trunk diameter a↵ects the relationship between estimation error � and distance d; however,

the error � is overall in line with the results we obtained in Section 3.3, except when

d < 5 m. In this case, our model significantly overestimates the received power by failing

to account for the severe attenuation induced by the trunk, regardless of its diameter. The

experiments with trunk diameter 40 cm show that this strong attenuation holds not only

when the trunk is immediately in front of the communicating node (d = 0 m) but also at

distance 1 and 2 m; unfortunately, we were not able to gather additional measurements

due to logistical reasons.

Based on these considerations, hereafter we conservatively set T = 5 m in constraint C3.
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4.5.3 Other Parameters

The other parameters in Table 4.1 are set as follows. The minimum number M of accept-

able links for a given node (C2) is key to build a robust network, as it bears a direct impact

on the connectivity of the network graph, analyzed quantitatively in Section 4.6. We set

M = 3, based on the consideration that lower values may easily lead to the creation of

several “branches” o↵ the graph. However, in Section 4.6.4 we also show that relaxing

this constraint may be convenient to cope with scale.

As for spatial constraints, we set in A21 the minimum distance of a node from the tile

border to B = 10 m, and in A22 the minimum link length to D = 25 m. These values,

respectively 1⁄5 and 1⁄2 of the tile side, are mostly meant to be illustrative, and clearly

depend on the application at hand. Further, as discussed in Section 4.4.2, we show the

constraint definition only for the case of a regular placement; irregular ones can be

similarly defined.

4.6 Evaluating the Quality of Node Placement

We now evaluate the performance of our toolchain, configured as described in Section 4.5.

We consider spatial constraints stemming the uniformity of the deployment (regular vs.

irregular) and the mechanics of node positioning (free vs. trunk), as described in

Section 4.2. We exploit the same LiDAR dataset acquired for the forest location described

in Section 3.3, in which we consider the 150 ⇥ 150 m2 area shown in Figure 4.3a, with

center at N 46� 00 48.54600, E 11� 250 52.12200.

We define the performance metrics and comparison baselines in Section 4.6.1, followed

in Section 4.6.2 by a quantitative analysis of the fitness function F (P) confirming that the

linear combination of P
rx

and L
acc

indeed yields better results w.r.t. the independent use

of these components. We then evaluate the performance of our approach first in a 9-node

deployment inside the aforementioned area (Section 4.6.3), followed by a 36-node deploy-

ment that allows us to investigate the e↵ect of scaling up the network (Section 4.6.4).

Finally, we o↵er a summary of the evaluation and a discussion of the main benefits of

LaPS (Section 4.6.5).

4.6.1 Performance Metrics and Comparison Baselines

Performance metrics. We analyze quantitatively the networks output by our placement

tool based on the same fundamental metrics at the core of our optimization approach

(Section 4.2.3), i.e., the total number L
acc

of acceptable links and the average expected

received power P
rx

across them.

Moreover, we also evaluate the robustness of these network from a topological stand-

point i) based on well-known connectivity and centrality metrics from graph theory, and
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ii) in terms of average number of paths to the sink. The latter is a relevant metric in, e.g.,

data collection applications based on a tree overlay, as it quantifies the options available

to a routing protocol in building (and reconfiguring) routes from each source to the sink.

The first type of metrics deserves further explanation. Connectivity is defined as

the minimum number of elements (i.e., nodes or links) that, if removed, disconnect the

remaining nodes from each other; the higher the connectivity, the more robust the network.

To measure this aspect, we report the average number |Lk| of neighbors with acceptable

quality, and compute [47]: i) binary connectivity (or connectedness) k, whose value is 1

if at least one path exists between all pairs of nodes, 0 otherwise; ii) vertex connectivity

kv, and iii) edge connectivity ke, respectively denoting the minimum number of vertexes

and edges that, if removed, disconnect the graph.

An alternative view on robustness is o↵ered by the notion of betweenness centrality,

defined as

bx =
NX

i=1

NX

j=i+1

sij(x)

sij

where sij(x) is the number of shortest paths between i and j passing through x and sij
is the total number of shortest paths between i and j [52]. We actually use the value

normalized between 0 and 1, obtained by dividing bx by the total number (N�1)(N�2)
2 of

node pairs (x excluded). Betweenness centrality quantifies the extent to which each node

lies on the shortest paths between other nodes, and therefore expresses the disruption

induced by the removal of such node on the communications among other nodes. We

report directly this metric and also exploit it in a force-based representation of the network

layout which visually conveys information about the fragility of the network.

Comparison baselines. As mentioned in Section 4.1, existing placement approaches

for WSNs neglect the impact of the environment on communication, let apart taking

into account the presence of trees. Therefore, we compare the solutions found by our

approach against two closely-related baselines: i) a blind regular placement where nodes

are organized in an exact grid without taking into account the forest characteristics, and

ii) a line-of-sight placement in which no link is obstructed by tree trunks, and therefore

the standard path loss model can be applied (Section 3.3).

The blind regular placement is a common choice in the literature [24, 23, 54, 158] as it is

intuitive and, in principle, of straightforward application in real deployments. Comparing

against this placement strategy allows us to assess whether detailed knowledge of the tree

positions is at all useful.

In contrast, the line-of-sight placement exploits precisely this information, derived

from LiDAR data via our toolchain, towards a di↵erent goal. Indeed, this variant uses

alternate constraints w.r.t. those in Section 4.4.2, aimed at selecting only those network
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topologies whose links are unobstructed by trees; in this situation, the specialized radio

attenuation model in Section 3.3 becomes superfluous, and the standard path loss model

can be used instead. Therefore, comparing against this line-of-sight placement allows

us to assess whether a specialized radio model is truly necessary. Interestingly, however,

even in the case of a negative answer the proposed toolchain still constitutes a novel asset,

enabling the selection of the topologies, if any, whose links enjoy a free line of sight.

4.6.2 A Closer Look at the Fitness Function

We begin our evaluation by providing quantitative evidence that our definition of the

fitness function F (P) as a linear combination of P
rx

and L
acc

yields better performance

than using either component alone. To better elicit trends, we refer to the scenario

regular/free and neglect the spatial constraints A21 and A22. Figure 4.7 and 4.8 show

the evolution of the genetic search and the resulting network layouts when F (P) is P
rx

,

L
acc

, or their linear combination in Eq. 4.10.

By optimizing only the average reception power P
rx

we obtain, as expected, a place-

ment with very high overall communication quality (P
rx

= �71.95 dBm) in only 121 gen-

erations; Figure 4.7a shows the corresponding evolution of the genetic search. However,

the price to pay is that the total number of acceptable links is only2 L
acc

= 16. Figure 4.7b

shows the evolution of L
acc

during the search; we observe that this value actually decreases

as better configurations optimizing P
rx

are found. Moreover, the resulting network layout

in Figure 4.8a shows two node clusters connected by only one link; constraint C2 on the

minimum number of neighbors is satisfied, although by means of a very fragile topology

prone to partitioning. On the other hand, by optimizing only the number of acceptable

links, we more than double their number (L
acc

=36, Figure 4.7b) after only 84 genera-

tions, and remove the clustering e↵ect from the resulting network topology (Figure 4.8b).

However, this time the price to pay is a significant decrease in the overall link quality

(P
rx

= �76.88 dBm, Figure 4.7a).

The definition of F (P) in Eq. 4.10, which combines P
rx

and L
acc

with equal weight,

strikes a good balance between the two extremes above. Figure 4.7c reports the value

of F (P) 2 [0, 2] (Section 4.4.3), monotonically increasing as generation elapse, while

Figure 4.7a and 4.7b show separately the evolution of its two components. The best

solution is found after 136 generations, yielding L
acc

= 35 and P
rx

= �75.43 dBm; one

link less w.r.t. optimizing only L
acc

, but with slightly higher overall power. Further,

Figure 4.8c shows that the clustering e↵ect observed when optimizing only P
rx

is absent

here, as when optimizing L
acc

. However, in comparison with Figure 4.8b, we observe a

marked tendency to concentrate the nodes in the center of the target area and place them

2Remember from Section 4.4.3 that links l
ij

and l

ji

are not distinguished, and counted as one.
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Figure 4.7: Evolution of the genetic search for P
rx

(black), L
acc

(orange), and their linear com-

bination (black dashed). Curves show the performance metric associated to the best individual

in the corresponding generation.

50 m

(a) (b) (c)

Figure 4.8: Network layouts obtained by optimizing (a) P
rx

(b) L
acc

(c) their linear combination

(� = 1). Black dots are trunk positions, red squares are node positions, black lines are acceptable

links.

very close to each other, as this increases the quality of the resulting links. Nevertheless,

this undesirable e↵ect is mitigated precisely by the spatial constraints A21 and A22 we

neglected here, but consider in the following sections.

4.6.3 Analyzing and Comparing Node Placements

We now analyze the performance of our placement approach when applied to a 9-node

network similar to the one we used in Section 3.3, and compare it to the blind regular

and line-of-sight baselines defined in Section 4.6.1. We consider all scenario combinations

of regular vs. irregular and free vs. trunk placement, subject to all constraints

in Section 4.2. For irregular, as shown in Figure 4.10b we defined a mix of circular

and squared regions examplifying spatial tiles required by the application, along with a

point F representing a geo-referenced position for which no spatial tolerance is allowed.

Note that the specialized radio model defined in Section 3.2.3 has been validated under
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the following experimental conditions: i) absence of snow or rain; ii) low temperature

and humidity; iii) absence of leaves in the understory vegetation; and iv) almost flat

terrain morphology. These conditions implicitly define the assumptions underpinning the

evaluation discussed here.

Core metrics. Table 4.2 shows the final outcome in terms of fitness value F (P), total
number of acceptable links L

acc

, and average received power P
rx

on these links, while

Figure 4.9 shows the evolution of these values over generations. We observe that the

evolution of these metrics is comparable across the various scenarios. The fitness value

(Figure 4.9a) is similar in all cases; the highest value of F (P) = 1.39 is achieved in

the case regular free, i.e., the least constrained scenario. Similarly, the resulting

topologies have the same number of links in the network (L
acc

= 34) and, on average,

per node (|Lk| = 7.55). This is somewhat surprising considering that the constraints

of the four scenarios considered are quite di↵erent and, as shown in Figure 4.10a–4.10b

and Figure 4.11a–4.11b, yield network layouts of di↵erent shape. On the other hand, the

di↵erent complexity of the four scenarios is reflected to some extent in the average received

power, which is higher in regular and in free w.r.t. their irregular and trunk

counterparts. Interestingly, the value of P
rx

remains relatively stable across generations

(Figure 4.9c), unlike the value of L
acc

that increases rapidly (Figure 4.9b); this is likely

due due to the constraint A22 on the minimum link length distance.

In comparison, the commonly-used and intuitive blind regular placement yields sig-

nificantly worse results. We obtain this placement by forcing each node exactly in the

barycenter of each tile when allowed by a free placement or, for a trunk placement, next

F (P) L

acc

P

rx

|L
k

| k k

v

k

e

LaPS

regular

free 1.39 34 -77.58 7.55 1 6 6

trunk 1.34 34 -78.32 7.55 1 6 6

irregular

free 1.36 34 -78.05 7.55 1 6 6

trunk 1.31 34 -78.79 7.55 1 6 6

blind regular

regular

free — 17 -78.37 3.77 1 2 2

trunk — 11 -79.62 2.44 0 0 0

line-of-sight

regular

free 1.29 32 -77.67 7.11 1 6 6

trunk 1.15 28 -76.91 6.22 1 5 5

irregular

free 1.29 31 -76.98 6.88 1 5 5

trunk 1.11 28 -77.57 6.22 1 5 5

Table 4.2: Core metrics for all scenario combinations and baselines: 9 nodes.
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to the tree closest to the barycenter. However, the blind regular placement guarantees

the fulfillment of C2 neither in free nor in trunk; the value of F (P) cannot therefore be
computed. This is shown also in the resulting network layouts of Figure 4.10c and 4.11c;

in the trunk case, one of the nodes does not even belong to the network, and other two

are connected via a single link. Finally, the acceptable links are only one half and one

third of those obtained by our approach in free and trunk, respectively, and with a

lower average power in both cases.

In contrast, the performance of the line-of-sight placement is significantly better and

approaches that of LaPS. The average received power P
rx

is actually higher than LaPS

(except for the regular free case), since the line-of-sight placement enjoys communi-

cation links unobstructed by trees. On the other hand, the number of acceptable links is

lower, both for the network as a whole and for individual nodes; the resulting topologies

are shown in Figure 4.10d and 4.11d. Finally, it is interesting to compare the evolution

of fitness value for LaPS and line-of-sight (Figure 4.12). In the free case, the value of

F (P) for the latter mirrors the one of the former, despite reaching only slightly worse

performance at convergence. However, in the more restrictive trunk case, the search

problem becomes more complex and the genetic optimization is unable to find solutions

fulfilling the constraints for more than 300 generations.
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Figure 4.9: Evolution of the fitness value and its components in all scenario combinations.
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(a) regular

F

(b) irregular (c) blind regular (d) line-of-sight

Figure 4.10: Network layouts obtained with free node placement.

(a) regular

F

(b) irregular (c) blind regular (d) line-of-sight

Figure 4.11: Network layouts obtained with trunk node placement.
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Figure 4.12: Evolution of the value of the fitness function and of its components: LaPS vs.

line-of-sight in a regular global placement with free and trunk node placement.
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Connectivity metrics. From Figure 4.10 and 4.11 we can visually ascertain that the

resulting network topologies are “well connected”. We now quantitatively assess this

aspect, which significantly a↵ects the robustness of the network, by exploiting the graph-

based metrics outlined in Section 4.6.1, whose values are shown in Table 4.2.

LaPS always yields connected networks (k = 1); to partition them, at least 6 nodes

or links (kv = ke = 6) must fail simultaneously. In contrast, the blind regular placement

yields a very vulnerable network in the free case, where the loss of only two nodes

or links is su�cient to cause a partition; further, the network is not connected in the

trunk case, as already noted. The line-of-sight placement yields networks that are only

marginally less connected than those generated by LaPS. In the regular free case the

only di↵erence is a slightly lower number of neighbors (|Lk| = 7.11), while in the other

scenarios only 5 failing nodes or links su�ce to partition.

Figure 4.13 o↵ers an alternative view based on the value of the normalized betweenness

centrality. We can observe that this value is similar for all nodes of the networks generated

by LaPS, yielding a very robust topology; on the contrary, the blind regular placement

yields highly unbalanced topologies in which a handful of nodes are critical, both in terms

of reliability (e.g., causing a partition upon crash) and performance (e.g., as potential

routing bottlenecks). The corresponding analysis for the line-of-sight placement yields

values similar to LaPS, and is therefore omitted. On the other hand, the performance of the

two approaches diverges when the network scale is increased, as discussed in Section 4.6.4.

Paths to the sink. We conclude our analysis by investigating the e↵ectiveness of place-

ment solutions from a di↵erent point of view, closer to the routing layer, and explicitly

compare the number of attainable paths to a sink node. Indeed, the more paths available

the more options a protocol can exploit to build and reconfigure the routing topology,

therefore increasing resilience to failures and link dynamics. For each network layout

(a) LaPS free (b) blind regular free (c) LaPS trunk (d) blind regular trunk

Figure 4.13: Betweenness centrality. The graphs layout emphasize readability and do not reflect

the real topology.
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sink #paths
#paths

3 hops

#paths

2 hops
sink #paths

#paths

3 hops

#paths

2 hops

LaPS

regular

free central 65890 350 60 upper left 82200 300 48

trunk central 52516 324 58 upper left 59105 307 53

irregular

free central 74371 331 55 upper left 76705 321 51

trunk central 68108 348 60 upper left 69206 332 58

blind regular

regular

free central 390 59 19 upper left 511 27 8

trunk central 19 12 8 upper left 23 9 4

line-of-sight

regular

free central 42078 298 56 upper left 46536 280 50

trunk central 16320 204 44 upper left 18032 190 38

Table 4.3: Number of paths to the sink for the di↵erent placement solutions and scenarios:

overall number of paths, overall number of paths with cost  3 hops and  2 hops.

hitherto examined we compute all possible (acyclic) paths from each node to one identi-

fied as a sink. We study two sink positions yielding di↵erent path lengths: in the center

and in the upper left corner.

Table 4.3 reports the overall number of paths (i.e., the sum on all the possible start-

nodes in the network) for both free and trunk placement modes and both regular

and irregular scenarios. In addition, we report and compare the overall number of

short paths (i.e., composed of 2 and 3 hops). We can observe that LaPS yields the highest

number of paths for all scenarios, both in global terms as well as by considering only short

(and therefore in principle more desirable) paths. Interestingly, the number of available

paths to a sink node is not directly accounted for in the genetic evolution. Therefore, this

is an indirect result of the definition we adopted for the fitness function. However, the

number of paths for the various scenarios do not necessarily follow a precise trend, as they

are strongly dependent on the specific constraints (e.g., in irregular) or the particular

displacement of tree trunks. The only clear trend is the expected increase in the number

of paths when the sink is in the upper left corner. Finally, the aforementioned weakness

of the blind regular placement is reflected also here, where the overall number of paths

is two orders of magnitude lower then those provided by LaPS, while the line-of-sight

placement consistently generates less paths to the sink, as a consequence of its slightly

lower connectivity.

4.6.4 Scaling the Network

In the previous section we showed that, even in a small 9-node network, LaPS brings

remarkable advantages w.r.t. the commonly-used blind regular placement. This confirms
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that the knowledge and modeling of the forest structure, acquired via LiDAR data and

the LaPS toolchain, plays a key role. On the other hand, the di↵erence with a line-of-sight

placement that leverages the same information to avoid trees, rather than taking their

attenuation into account with our specialized radio model, was less marked.

In this section we show that the di↵erence between these two placement approaches

becomes substantial as the size of the target network increases.

Settings. We consider a 36-node network deployed over a target area of 300 ⇥ 300 m2,

i.e., a fourfold increase in both network size and target area. We assume the same spatial

sampling granularity of ⇠50 m used so far. Moreover, to minimize the bias induced by

the di↵erent tree density and enable a direct comparison with the results in Section 4.6.3

we simulate the larger area by replicating and spatially recombining the 9 squared tiles

composing the smaller target area previously used. The resulting target area (Figure 4.15)

is four times larger than the previous one (Figure 4.10) but has, by design, the same tree

density.

Hereafter, we focus only on the regular scenario but consider both free and trunk

variants. However, unlike Section 4.6.3, we do not report about the overall number of

paths because, at this scale, an exhaustive search of all possible paths from each node to

the sink cannot be performed in polynomial time (#P-complete problem).

FREE node placement. At the scale considered, the placement problem becomes signif-

icantly more challenging, even in the less constrained free case. Indeed, the line-of-sight

approach is unable to find a solution in 1000 generations, as shown in Figure 4.14; the

fitness value cannot be computed, and the genetic search essentially becomes a random

search, since no solution fulfilling all the constraints is found. This is a consequence of

our strict formulation of the genetic search, solutions unable to fulfill the constraints are

discarded to avoid misguiding the evolution process.

In contrast, LaPS converges to a solution fulfilling all constraints, characterized by

L
acc

= 161 links and an average reception power of P
rx

= �78.04 dBm, as shown in Ta-

ble 4.4. This demonstrates that, as the scale of the network and/or target area increases,

it may become impossible to find a solution in which all links enjoy a free line of sight.

LaPS removes this assumption and, thanks to its specialized radio model, can take the

tree attenuation into account to identify the best topology.

The latter is shown in Figure 4.15a, evidencing a balanced structure without clusters.

For comparison, Figure 4.15b reports the network layout corresponding to the line-of-sight

placement providing the largest number of links, L
acc

= 79. However, this topology fails

to fulfill constraint C2 about the minimum number of acceptable neighbors.

The connectivity metrics in Table 4.4 also show that the line-of-sight placement, al-

though connected, is quite fragile: a single node or link failure is enough to cause a
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F (P) L

acc

P

rx

|L
k

| k k

v

k

e

LaPS

regular

free 0.56 161 -78.04 8.94 1 5 5

trunk 0.54 143 -77.49 7.94 1 4 4

LaPS, M = 2

regular trunk 0.53 141 -77.48 7.83 1 4 4

line-of-sight

regular

free — 79 -77.81 4.38 1 1 1

trunk — 68 -77.51 3.77 0 0 0

line-of-sight, M = 2

regular trunk 0.35 104 -76.95 5.77 1 2 2

Table 4.4: Core metrics for all scenario combinations and baselines: 36 nodes.

partition. On the contrary, LaPS yields a rather robust network where kv = ke = 5

simultaneous failures are required to disconnect the network. This aspect can be bet-

ter appreciated by comparing Figure 4.16a and 4.16b, which visualizes the betweenness

centrality using a force-based approach, as in Figure 4.13. The line-of-sight topology

is noticeably less uniform; not only three of the nodes are linked to others via a single

connection, but two of the “internal” nodes are significantly more central than others,

potentially becoming a tra�c bottleneck or a point of failure.

TRUNK node placement. Next, we move to the trunk node placement mode, which

makes the problem even more challenging at this scale because the overall number of

possible node positions is significantly reduced w.r.t. the free case. Again, the line-of-

sight approach is unable to find acceptable solutions in 1000 generations (Figure 4.14). In

contrast, LaPS manages to find solutions fulfilling all constraints in 876 generations (see

Figure 4.14), providing a topology with good quality at the 1000th generation, as shown in

Table 4.4 and in the network layout of Figure 4.15c. In LaPS, although P
rx

is comparable

to line-of-sight, the number of links in the network and per node is significantly higher (i.e.,

L
acc

= 143 and |Lk| = 7.94 vs. L
acc

= 68 and |Lk| = 3.77). As a result the LaPS network

is connected with kv = ke = 4, as well as balanced and uniform (Figure 4.16c), while in

the line-of-sight case two nodes are isolated and one “internal” node shows a very high

betweenness centrality score, thus rendering the network prone to further partitioning

(see Figure 4.16d).
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Figure 4.14: Evolution of the fitness function and of its components for 36 nodes in a 300⇥300 m2

forest area, scenario regular.

(a) LaPS free (b) line-of-sight free (c) LaPS trunk (d) line-of-sight trunk

Figure 4.15: Network layouts for 36 nodes in a 300⇥300 m2 forest area, scenario regular.
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Figure 4.16: Betweenness centrality for 36 nodes in a 300⇥300 m2 forest area, scenario regular.
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Weakening the network constraints. These results suggest that, to obtain a good

line-of-sight placement in the 36-node scenario, we have to accept some compromise on

the constraints. In principle, any of the spatial and network constraints we defined in

Section 4.5 could be relaxed: the ability to quickly explore di↵erent tradeo↵s is precisely

one of the strengths of our approach.

For instance, we show here the e↵ect of weakening constraint C2 by setting the mini-

mum number of acceptable neighbors to M = 2. We consider the more restrictive trunk

node placement and investigate the e↵ect of weaking C2 on both line-of-sight and LaPS.

The line-of-sight approach converges to a placement solution that fulfills this relaxed con-

straint and that provides L
acc

= 104 links overall. However, the corresponding network,

although connected, can be visually ascertained (Figure 4.18b) as more sparse and fragile

than the LaPS solutions, both with M = 3 (Figure 4.16c) and M = 2 (Figure 4.18a).

Indeed, the connectivity metrics show that it is su�cient to remove two nodes or links

(kv = ke = 2) to partition the network; further, some nodes appear to be critical to

performance and reliability (Figure 4.18b). Nevertheless, it is interesting to note that,

despite the relaxed C2 allows nodes with only M = 2 acceptable neighbors, in practice

this situation occurs only for 2 nodes (i.e., node 24 and 30). All of the other nodes have

at least 3 neighbors and the average number of neighbors |Lk| = 5.77 is relatively high.

With the same relaxed constraint, LaPS yields a balanced network with a rather uni-

form betweenness centrality (Figure 4.18a). The network layout is shown in Figure 4.17a

and provides L
acc

= 141 acceptable links (Table 4.4), only slightly less than those obtained

in both free and trunk settings with M = 3, as well as comparable average received

power and, most important, connectivity. Interestingly, in this case all of the nodes have

at least 3 neighbors. This suggests that: i) the constraints actually specify a lower bound

on the desired solutions that can be overreached along the evolutionary search (as in this

(a) LaPS (b) line-of-sight

Figure 4.17: Network layouts for 36 nodes in

a 300 ⇥ 300 m2 forest area, scenario regu-

lar trunk, M = 2.

(a) LaPS (b) line-of-sight

Figure 4.18: Betweenness centrality for 36 nodes

in a 300 ⇥ 300 m2 forest area, scenario regu-

lar trunk, M = 2.
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case); and ii) the lower is such bound the higher is the number of acceptable topologies

that is explored, therefore relaxing a constraint may also lead to the identification of a

(near-)optimal solution, depending on the constraint and on the specific forest at hand

(e.g., in this case LaPS with M = 3 and LaPS with M = 2 converge to comparable

solutions in the same number of generations).

4.6.5 Summary and Discussion

The analysis we presented in this section confirms that LaPS is a powerful tool to un-

derstand and examine, automatically and prior to the in-field deployment, what are the

attainable tradeo↵s between the application and network requirements and the e↵ective-

ness of the placement that can be actually achieved in the target forest. Further, it

also shows that LaPS is able to find very good placements that would be impractical, if

not impossible, to find with the trial-and-error approach typically applied in these cases,

due to the necessarily limited exploration; the placements yielded by the latter in-field

campaigns are therefore more prone to ine�ciency and over-provisioning.

However, are these in-field topologies significantly worse than the best one output

by LaPS? This aspect can be quantified by analyzing the value of the fitness function

F (P). Indeed, if we assume that the in-field network topologies are contained in the

search space explored by our evolutionary optimization, we can characterize them with

a value of F (P). By looking at the actual range of values for F (P) generated during the

evolutionary search, we can have a measure of the “distance” from the optimal case.

To this end, we focus on the 9-node network we analyzed in Section 4.6.3, as this

represents a rather simple scenario where one would expect that the benefits provided by

LaPS are somehow reduced—although our comparison against a common blind regular

placement already showed this is not the case. Table 4.5 reports, for all acceptable

solutions (i.e., fulfilling all constraints) and across all combinations we considered, the

maximum (best) value of F (P) corresponding to the final output placement, along with

the average and standard deviation; Figure 4.19 also shows the empirical cumulative

distribution function (CDF) of F (P) values.

These statistics show that, for all considered scenarios, the final solutions to which

LaPS converges are significantly better than the average of all those explored. In other

words, the distribution of F (P) values is rather broad, and therefore the probability to
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regular irregular

free trunk free trunk

average 0.94 0.94 0.90 0.90

stddev 0.26 0.23 0.22 0.26

best 1.39 1.34 1.36 1.31

Table 4.5: Statistics and best value of the fit-

ness for all the feasible solutions obtained in all

scenarios and placement modes
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Figure 4.19: Empirical CDF of the fit-

ness values obtained with 450 gener-

ations in all scenarios and placement

modes

select, with an in-field deployment, a severely under-performing placement is quite high;

for instance, Figure 4.19 shows that the probability to obtain F (P) < 1 is higher than

50% for all scenarios. Table 4.6 further analyzes the quality of placements for given values

of F (P), using the combination regular free as an example; it is easy to see that the

di↵erence between the best value and the others is significant. Further, the value of F (P)
is computed only for network topologies that fulfill all constraints; ensuring that this is the

case for an in-field deployment is a rather laborious task in itself, even for the small-scale

9-node network considered.

Of course, there is a computational overhead associated to LaPS. On a rather low-

scale laptop (Apple MacBook 2008, MacOSX 10.7.5) computing a single generation for

the 9-node setup we considered takes about 3 minutes, which become 15 minutes for

the 36-node one. These figures are the consequence of the many variables at stake,

which in turn witness the complexity of the problem. However, we observe that the

current implementation can be significantly optimized, as our goal was simply to build a

prototype to demonstrate the feasibility and e↵ectiveness of our techniques. In particular,

a distributed implementation, amenable for exploiting parallelism on multiple servers in a

data center or in the cloud, can be devised by leveraging the vast literature on distributed

Table 4.6: Quality of placement for specific values of F (P) (regular free).

F (P) P

rx

(dBm) L

acc

|L
k

|
0.7 (min) �78.72 21 4.2

0.94 (median) �78.63 26 5.6

1.39 (max) �77.58 34 7.55
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genetic algorithms [95]. In any case, we observe that the o✏ine, unsupervised computing

time required by LaPS, even on the scale we reported, is a negligible cost when compared

with the human e↵ort currently required by in-field deployments.

Based on these considerations, we argue that the availability of LiDAR data, prop-

erly processed in LaPS via the synergistic application of several techniques, constitutes a

formidable asset in e↵ectively and e�ciently exploring the space of alternative placement

before tackling an e↵ort-demanding in-field deployment. Interestingly, finding the best

placement is not the only possible use of LaPS, and not necessarily the most interesting

or useful. Indeed, LaPS can be exploited also to quickly explore the implications of slight

changes in the spatial or network constraints, as we exemplified at the end of Section 4.6.4,

therefore navigating the space of inherently conflicting tradeo↵s. Needless to say, a similar

analysis would be prohibitive to perform in-field, and impossible to carry out o✏ine in

the absence of precise information about the tree positions and a specialized radio model

exploiting it.

4.7 Conclusion

The e↵ective deployment of a WSN in a real forest is known to be di�cult and costly

to achieve. Methods of practical applicability, capable of providing realistic placement

guidelines while ensuring a connected and e�cient network, are essentially lacking. De-

ployments are often performed in-field via trial and error, a process likely to yield networks

with a quality inferior to what potentially achievable, and involving a very high e↵ort.

In contrast, in this chapter we presented LaPS, a node placement approach that exploits

the increasing availability of LiDAR data in the context of forestry applications to provide

an informed node placement layout automatically and prior to the deployment, accounting

for both the actual forest structure and its e↵ect on the network.

LaPS enables o↵-line automatic exploration and evaluation of placement options in a

target forest via three main components: i) a representation of the forest derived from

LiDAR data, yielding the position and diameter of each tree ii) a specialized radio atten-

uation model exploiting this knowledge to predict the power received on each link iii) an

optimization strategy based on a genetic evolution process that, along with the other

two components, drives the exploration of candidate node placements towards an e�cient

(sub-)optimal solution. We have shown how, in a real forest scenario, LaPS outperforms

alternative placement strategies based on a regular placement or a purely topological free

line-of-sight by yielding networks that are significantly more connected and robust. Our

results also show that the LiDAR-based forest representation and the specialized radio

model are key in achieving this superior performance, especially as the problem size scales,

as they drive the search for the best placement with fundamental variables of the target
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environment. Further, our tool is flexible and open, as it allows great expressiveness in

specifying application and network constraints, as well as the desired quality of the solu-

tion, encoded in the fitness function. More generally, the ability to quickly explore the

impact of changes in the constraints provided by LaPS is an invaluable asset in improving

the quality of WSN operation while minimizing the e↵ort of its in-field deployment.

The contribution presented here also o↵ers opportunities for future work along at least

two dimensions. On one hand, although LaPS takes into account the main disruption to

communication in a forest (i.e., the position and dimension of its trees), other factors

a↵ecting connectivity are currently not considered (e.g., temperature and humidity, or

terrain morphology) that can be derived by LiDAR as well. One possible avenue of future

research is the integration into LaPS of these variables, some of which are already partially

addressed in the literature [99, 28, 27, 154]. This (rather complex) endeavour could likely

exploit also the aforementioned flexibility in the (re)definition of constraints and fitness

function, whose concrete use in other types of applications is actually an interesting

research topic per se.

The other dimension concerns the conceptual contribution put forth in this disserta-

tion, namely, the observation that the vagaries of low-power wireless communication can

be tamed, or at least mitigated, automatically and prior to deployment with the help of

remote sensing technology. We showed concretely that this can be achieved for the short-

range low-power radios that have been commonplace in the last decade. Nevertheless, new

radios are appearing that o↵er di↵erent tradeo↵s between range, bandwidth, and energy

consumption. An example is LoRa [93], whose sensitivity to the environment in general,

and vegetation in particular, has already been observed [73, 30, 120], as we discuss in

Chapter 5. The surge of 5G [4] may further exacerbate this problem. These contexts

are clearly di↵erent from the specific ones we tackled in this chapter. However, we argue

that the contributions we put forth can be adapted and in general serve as inspiration for

techniques that similarly exploit remote sensing to reduce the human e↵ort involved in

deploying in-field several low-power wireless devices and, at the same time, improve the

expected quality of the resulting placement.
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Chapter 5

Analyzing the Impact of Land Cover

Type on LoRa

LoRa, which stands for Long Range Wireless, is a trademark of Semtech communication

technology based on chirp spread spectrum modulation (CSS) [109]. CSS spreads the

signal on a wide frequency band by varying, in time, the frequency of the chirp carrier

signal. This modulation technique improves the robustness against interference and en-

ables the reception of very low power signals (i.e., up to 20 dB lower than the noise floor),

thus rendering the communication more resilient to the power loss induced by the signal

propagation. As a consequence, it provides comparable low power characteristics as Fre-

quency Shifting Keying (FSK), but significantly increases the communication range (i.e.,

in the order of kilometers).

LoRa long range and low power characteristics enable to build Low-Power Wide-Area

Networks (LPWANs) based on simple single-hop topologies. It is exploited to achieve

single-hop end-device to gateway communication in LoRaWAN, an open software protocol

standardized by the LoRa Alliance [7, 8, 93], which covers the Data Link and Network

layer on top of LoRa. LoRaWAN typically follows a star-of-stars topology, i.e., end-devices

communicate by single hop with gateways, which in turn are connected to network servers

via IP connection. It is widely adopted in the context of IoT networks, e.g., The Things

Network (TTN) [1] is an open free to use IoT network based on LoRaWAN.

LoRa communication range. LoRa communication range is typically in the kilometers,

with LoRA chirp spread spectrum enabling the selection of several settings that define

di↵erent tradeo↵s between communication range, data rate and power consumption. The

LoRa configurable parameters [109] are:

• Spreading Factor (SF), representing the number of chips used to encode each sym-

bol. SF may vary between 6 and 12, the larger the more robust is the communication

w.r.t. noise. By increasing the SF the receiver sensitivity threshold improves, provid-

The contents of this chapter are planned to be extended and submitted to a major conference.
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ing longer communication range but also higher energy consumption, in that longer

packets are sent (i.e., each symbol is encoded into more chips).

• Bandwidth (BW) can be 125, 250 or 500 kHz. The larger the bandwidth the higher

the data rate. In turn, increasing BW reduces sensitivity and range, as well as

increases the time in the air (i.e., energy consumption).

• Coding Rate (CR) for error detection and correction. CR can take the values 4/5,

4/6, 4/7 or 4/8. The larger is CR the more robust is the communication, but

increasing CR also requires to send longer packets, thus consuming more energy.

• Transmission Power (TP) ranges from -4 to 20 dBm. The higher is TP the higher

is the signal strength at the cost of increasing the power consumption.

The capability of configuring several parameters di↵erentiates LoRa transceivers from

other popular mote radios, like those considered in other chapters, which enable one to

vary the communication range only by tuning the transmission power TP. The impact

of LoRa settings on the achievable communication range has been empirically observed

in several studies (e.g., [11, 73, 38, 29]). Moreover, it has been observed that the com-

munication range is strongly dependent on the specific environment. In particular, very

di↵erent, and sometimes contradictory, communication ranges are reported in outdoor

scenarios [30, 156, 120, 73, 81].

This variability in the communication range a↵ects the coverage that a gateway is

able to provide, depending on its placement and on the characteristics of the surrounding

environment. In the context of an IoT scenario, e.g., as implemented in TTN, it is

important to deploy each gateway so as to ensure the coverage of a target area of interest

(e.g., to provide connectivity to a university campus, or to a specific part of it). Therefore,

a better understanding and modeling of the e↵ect of the environment characteristics

on LoRa communication can support the definition of environment-representative LoRa

connectivity models, as well as gateway coverage models. In this respect, a quantitative

representation of the static characteristics of the environment and of their impact on

communication can support the development of e↵ective network planning strategies.

Information about such characteristics can be retrieved by processing Remote Sensing

data, thus aiding the analysis and the modeling of their e↵ect on communication. This is

the focus of this chapter.

We exploit multispectral satellite images to automatically derive information about

the static characteristics of the communication environment, thus enabling the joint

analysis of such characteristics and LoRa communication performance.

More precisely, we automatically classify Sentinel-2 multispectral images, as described in

Section 5.3, to derive land cover maps with spatial resolution of 10 meters. The land cover
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classes (e.g., Building, Trees or Fields) describe the type of landscape which is present on

the ground and that, in this context, represent the communication environment. In other

words, the land cover classes describe, with granularity 10⇥ 10 m2, the landscape which

is traversed by the LoRa signal along its propagation.

We analyze two LoRa connectivity datasets collected through the TTN gateways in

The Netherlands. The first dataset is representative of a free space like communication

environment, with a LoRa end-device flying on top of an high altitude weather balloon

that communicates with the TTN gateways on the ground1. In this scenario, which is

analyzed in Section 5.2, the communication path is mostly traversing the free space, thus

enabling to achieve a communication range in the order of hundreds kilometers (i.e., a

maximum range of 245 km is reached). The second dataset is collected with the end-

device transmitting at few meters above the ground and across both urban areas and

farming fields2, as described in Section 5.4. It represents a diversified ground communi-

cation environment, which shows very di↵erent communication ranges compared to the

previous free space like case (i.e., a maximum range of ⇠10 km is achieved). In addition,

the communication performance appear very susceptible to the specific (i.e., per-link)

characteristics of the surrounding environment. The land cover information retrieved

from the multispectral satellite images is analyzed together with the connectivity traces.

The analysis is performed in terms of both Packet Reception Rate (PRR) and Received

Signal Strength Indicator (RSSI), and provides several insights about the e↵ect of the

land cover on LoRa communication. In particular, the predominant land cover class that

characterizes the communication path results e↵ective in relating the signal power decay

rate with the distance. Moreover, the high resolution land cover maps provide detailed

information about the relative position of the land cover classes w.r.t. both end-device

and gateway. This information, combined with the respective height of end-device and

gateway, can be related with significant di↵erences in the communication performance,

e.g., we experimentally observe that a group of trees in the vicinity of the end-device

completely obstruct the line-of-sight with the gateway, causing no packet reception, while

just 300 meters apart, the communication path traverses only fields and we measure a

PRR of 80%. This preliminary analysis provides promising results that encourage to fur-

ther investigate (e.g., on bigger connectivity datasets) the usefulness of land cover maps

to define LoRa connectivity models that account for the land cover type characteristics.

1Mr. Thomas Telkamp performed the experiments with the balloon and gathered the data.
2Members of the Embedded Software Group at TU Delft performed the experiments and gathered these data,

with special thanks to Lichen Yao, Minfeng Li, Lu Liu and Xin Liu.
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5.1 Related Work

The availability of o↵-the-shelf LoRa long-range and low-power transceivers fostered the

adoption of the technology in a number of commercial and trial deployments. The per-

formance analysis of LoRa-based networks, both in terms of coverage and scalability, is

therefore gaining interest in the context of IoT LPWAN [39, 120, 11, 149, 59]. The cover-

age that LoRa gateways can provide a↵ect the performance that protocols can achieve in

real deployments and greatly impact the design of IoT systems and applications. There-

fore, realistic coverage estimation is crucial to provide coverage guarantees, satisfactory

service and resource optimization (e.g., number of deployed gateways) [39], as well as

to enable reliable scalability analysis, which are inherently based on assumptions on the

coverage and on the communication performance (e.g., range and reliability) [149, 59].

To provide a coverage planning for the city of Padova (Italy), Centenaro et al. [39] es-

timate the number of gateways required to enable city-wide LoRaWAN coverage. They

experimentally obtain a coverage estimate of 2 km in a high buildings area and therefore

conservatively assume a nominal range of 1.2 km, thus planning to cover an area of about

1000 km2 with 30 gateways.

However, the actual LoRa communication range is under debate [107, 30, 156, 120,

73, 81], in that real-world observations show both a significant gap w.r.t. theoretical

expectations [75, 76] and significant variability depending on the specific environment

at hand. Bor et al. [30] observed a range of 2.6 km in rural areas and of 100 m in a

built-up environment, while in the central business district of Glasgow (Scotland) the

communication range varies from 1 to 20 km [156]. In Hyde Park (London), Kartakis

et al. [81] achieve 2.4 km with semi-line of sight conditions, while reaching 450 m in a

built-up area. Petajajarvi et al. [120] report a range of 15 to 30 km in a urban/maritime

environment and a maximum range of 90 m is measured in a mountain forest with dense

vegetation [73].

In addition, LoRa configurable parameters (i.e., PHY settings) determine di↵erent

trade-o↵s between range, consumption and data rate. The impact of LoRa settings is in-

deed explicitly considered in several studies [11, 73, 38, 29]. The authors of [29] evaluate

the e↵ectiveness of channel separation using SF and test the reliability of Carrier Activity

Detection (CAD) with di↵erent SF/BW combinations, which may enable power-e�cient

duty-cycling exploiting non-destructive concurrent transmission. In [38], instead, a quan-

titative assessment of the impact of PHY settings on Packet Reception Rate (PRR) is

presented. The authors perform extensive experimental campaigns indoor, outdoor, and

underground observing: i) a drastic decrease of LoRa links reliability at high tempera-

tures; and ii) the convenience of using energy hungry PHY setting to increase the link

quality instead of relying on retransmission schemes. In particular, they conclude that at
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the edge of the communication range it is more e↵ective to use fastest PHY settings with

high transmission power. However, the edge of the communication range is not quantified

and its value still remains an environment-dependent variable. In this respect, the selec-

tion of the environments for the experimental campaigns is usually narrow and/or generic

(i.e., indoor, outdoor or urban, sub-urban) and does not reflect the actual location-specific

limitations posed by the real-world deployments targeted by IoT applications. Indeed,

similar type of environments (e.g., urban) often give rise to di↵erent and/or contradictory

experimental results in terms of communication range (e.g., [30, 156, 120, 81]) and the

need of deployment guidelines steadily fosters further observations.

There is a lack of systematic understanding about how the technology behaves under

real conditions and about the impact of real conditions on the technology. Guidelines

in this respect could significantly support IoT developers to face the challenges posed by

placing LoRa technologies in real spaces, including devices and technologies coexistence

and scalability issues.

In [59], the authors analyze the scalability limits of LoRa due to co-spreading factor

interference (i.e., interference due to concurrent transmission of devices using the same

SF), concluding that it is worse than what was originally promised. They evaluate the

coverage probability by exploiting stochastic geometry and observe that when collision

occur between packets with the same SF, the stronger signal can be successfully received

if it is at least 6 dB stronger than any other. Therefore, the capability to accurately

(i.e., with 6 dBm accuracy) predict the expected received power is fundamental to en-

able reliable collision modeling and realistic scalability analysis. The expected received

signal power is estimated by considering the path loss attenuation, which in the paper is

computed assuming the path loss exponent equal to 2.7 in sub-urban environments and

to 4 in urban environments. However, these approximations may not be representative

enough for real scenarios, in that the attenuation as a function of distance usually varies

also within environments belonging to the same category (e.g., urban and sub-urban) and

it is not isotropic in practice, due to the intrinsic non-homogeneity of the propagation

environment.

A complementary perspective is presented in [149], which focuses on analyzing the

impact of inter-network interference due to independent LoRa networks operating over

the same deployment area. The authors investigate the e↵ectiveness of solutions aimed

at reducing such impact, namely exploiting directional antennae and/or increasing the

number of gateways. They conclude that the use of multiple gateways improves LoRa

performance in the presence of inter-network interference, besides being also an e�cient

way to scale LoRa networks [30]. In the simulations, the best improvement is obtained

by placing the additional gateways so to ensure that all devices are in reach of at least
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one of them, under the assumption of circular (i.e., isotropic) coverage. However, in

real scenarios, the desired interference mitigation can be guaranteed only by properly

accounting for the non-uniform spatial coverage that gateways can provide.

The development of models and tools capable to provide realistic coverage estimates

(i.e., a realistic representation of the problem) is of paramount importance to enable

performance analysis and planning methodologies that, taking into account the actual

deployment environment, represent more closely the behavior of real networks, thus lead-

ing to conclusions and insights applicable in practice.

5.2 Free-space Like Communication

In this section, LoRa end-device to gateway communication is analyzed considering a

free-space like communication environment. The end-device is placed on a flying balloon

and communicates with the TTN gateways on the ground. More precisely, a high altitude

weather balloon is launched on 15th March 2017 at around 1 PM in The Netherlands.

The balloon follows the wind direction until it lands 3 hours later, when the helium is

consumed, covering a land distance (i.e., the distance between the launch position and

the landing position) of 164.4 km. The balloon carries a GPS receiver and a LoRa device,

which periodically broadcasts one packet. The packets are received by the TTN gateways

on the ground. The 3D trajectory of the balloon is shown in Figure 5.1a, together with the

gateways (red dots) that received the packets sent from the balloon. Figure 5.1b shows

the same trajectory in 2D reporting also the balloon altitude in color scale. The altitude

of the balloon, which reaches a maximum of 22.61 km, is also reported as a function of

time in Figure 5.3a.

The communication dataset is composed of all of the packets that are received by TTN

gateways. TTN servers provide, for each received packet, RSSI and SNR measured by

the gateway, reception timestamp, spreading factor, bandwidth, coding rate, frequency

channel and the gateway coordinates (when available). In addition, the payload of the

balloon packet is provided, which includes the balloon GPS coordinates, battery voltage,

as well as temperature, pressure and altitude measured by a BMP280 barometer. Overall

the dataset is composed of 8578 packet receptions. All of the received packets have

Spreading Factor (SF) 7, Bandwidth (BW) 125 KHz and Coding Rate (CR) 4/5. The

frequency channel, instead, varies. For every transmission the end-device selects the

channel in a pseudo-random fashion respecting local regulation (i.e., the frequency plan

EU 863-870) and the maximum transmit duty cycle imposed by LoRaWAN on each sub-

band (i.e., 1%). Eight channels with central frequencies 867.1, 867.3, 867.5, 867.7, 867.9,

868.1, 868.3, 868.5 MHz are used quite uniformly. The occurrence of channel usage is

depicted in Figure 5.2.

74



5.2. FREE-SPACE LIKE COMMUNICATION

(a) 3D balloon trajectory
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(b) 2D balloon trajectory

Figure 5.1: Balloon trajectory and receiving TTN gateways (red dots) in Latitude/Longitude

geographic coordinate system a) 3D representation b) 2D representation with balloon altitude

color label.

Figure 5.2: Occurrence of frequency channel.

5.2.1 Analysis of LoRa Communication Performance

The communication between the LoRa transmitter on the balloon and the TTN gateways

on the ground is analyzed along the balloon flight. The balloon connected to 141 gateways

overall. The number of visible gateways Nvg, i.e., the number of gateways receiving the

balloon packets, is reported as a function of time in Figure 5.3b, which shows that Nvg

varies along the flight. The balloon altitude is reported in Figure 5.3a as a function of

time. By comparing Figure 5.3a and Figure 5.3b, we can observe that in the first part

of the flight, Nvg tends to increase as the balloon altitude increases. In particular Nvg

rapidly increases from 2 to 30, between 13:00 and 13:04, i.e., when the balloon altitude

rises from 0.157 km to 0.359 km. Then, the increasing trend of Nvg continues between

13:05 and 13:55, despite being less pronounced, with the balloon altitude varying from

75



CHAPTER 5. ANALYZING THE IMPACT OF LAND COVER TYPE ON LORA

Mar 15, 2017   Time
13:00 14:00 15:00 16:00

0

10

20

30

Al
tit

ud
e 

[k
m

]

(a) Balloon altitude

13:00 14:00 15:00 16:00
Time Mar 15, 2017   

0

20

40

60

80

N
um

 g
at

ew
ay

s
(b) Number of receiving gateways Nvg in time

Figure 5.3: Balloon altitude in time and number of gateways receiving the balloon data in time.
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Figure 5.4: Distance of the balloon from the visible gateways in time

0.36 km up to 7.42 km and Nvg achieving value 68. After, from ⇠14:00 to 15:30, Nvg

tends to decrease, while the balloon altitude is continuously increasing up to ⇠20 km.

Finally, in the last part of the trajectory, during the landing phase, Nvg shows a quick

drop when the balloon rapidly moves from ⇠20 km altitude to the ground.

A first observation is that when the balloon rises from the ground up to ⇠7.5 km,

as well as when it lands on the ground, its altitude appears to significantly a↵ect the

capability of the device to establish connections with the gateways. As the balloon rises,

the transmitting LoRa device gets line-of-sight communication with more and farther

gateways, getting rid of the obstructions that typically characterize the communication
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at the ground level (e.g., buildings).

Next, we investigate the e↵ect of the balloon-gateway distance on the established

connections. The average balloon-gateway distance, computed on the visible gateways,

is shown in time in Figure 5.4b. The balloon-gateway distance is computed as a 3D

distance between the balloon and the gateway GPS coordinates and altitudes, considering

the World Geodetic System 1984 (WGS84) as reference ellipsoid. Note that the distance

is computed only for those gateways that report their GPS coordinates (i.e., 126 out of

141).

Interestingly, the average distance between end-device and visible gateways reaches 130

km along the flight, with a maximum communication range of 245 km being achieved (see

Figure 5.4b). Note that the spreading factor is 7 and the coding rate is 4/5, i.e., the less

favorable settings for the communication range. This result significantly di↵ers from every

other “ground” observation reported in the literature, thus underlining once again, to

which extent the environment can a↵ect the communication range. In particular, a LoRa

device flying on a balloon represents a close to ideal scenario in which the communication

path is mostly traversing the free space and such a condition enables the achievement of

a communication range in the order of hundreds kilometers.

Figure 5.4b shows that the average distance between the balloon and the visible gate-

ways tends to increase over time, apart from the very last part of the flight (i.e., the

balloon landing). Indeed, in Figure 5.1 we can observe that most of the visible gateways

are closer to the launch position of the balloon than to the landing position. However,

it is worth noting that the standard deviation of the distances between the balloon and

the visible gateways, which is also reported in Figure 5.4b, is considerable. This means

that gateways at very di↵erent distances are receiving the same balloon packets. We then

look at the distance from each individual gateway as a function of time, which is shown

with a di↵erent color in Figure 5.4a. We can observe a diversified behavior depending

on the relative position and motion of the balloon w.r.t. to each gateway. Mostly the

distances increase in time, i.e., the balloon gets farther from the gateway while proceed-

ing along its trajectory. Sometimes the distances first decrease and then increase, i.e.,

the balloon first gets close to some gateways and then it moves apart. In few cases the

distance is consistently decreasing, i.e., the balloon is approaching the gateway. There-

fore, the balloon connects with gateways placed at significantly di↵erent distances in the

same time interval and this holds for almost the whole flight. In addition, the relative

motion between the balloon and the gateways is diversified. These factors should be taken

into consideration while investigating the communication performance in this scenario in

order to better understand the underlying phenomena a↵ecting LoRa connectivity. In-

deed, in Section 5.2.4 we analyze more in detail the received signal strength for a subset
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of representative gateways, which are selected by explicitly considering (also) di↵erent

balloon-gateway distances, as well as di↵erent balloon-gateway relative motions.

In summary: i) the LoRa communication range in the considered free space like sce-

nario exceeds 200 km; ii) the number of visible gateways Nvg appears to increase with

the device altitude; and iii) along the balloon flight, very diversified conditions occur in

terms of relative position and motion between the transmitting device and the gateways.

5.2.2 Packet Reception

The packet reception for each visible gateway is shown as a function of time and as

a function of the balloon-gateway distance in Figures 5.5a and 5.5b, respectively. Each

gateway is represented by a di↵erent color. The 126 considered gateways (i.e., those which

reported their location and for which the distance from the balloon can be computed) are

represented in the y-axis of the charts with an integer identifier ranging from 1 to 126.

We observe a very diversified packet reception behavior for the various gateways. Some

remain connected for almost the whole flight (e.g., the gateway identified by number 78),

some others show an intermittent connection (e.g., 31) and other gateways are connected

for only one or some time intervals (e.g., 7 and 43). Similarly, by comparing the packet

reception with the distance, we find gateways very far (⇠200 km) which remain connected

for almost the whole flight (e.g., gateway 1) and gateways very close (⇠20 km) which

remain connected for only half an hour, (e.g., gateway 11).
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Figure 5.5: Reception in time and vs. distance for all the visible gateways.
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By analyzing the receptions we can only ascertain that di↵erent gateways show di↵er-

ent behaviors both in time and w.r.t. to distance. However, by analyzing the reception

power we can make some interesting observations and considerations related to the pos-

sible factors determining such discrepancies. We therefore, move the investigation of our

dataset at the very physical level, namely analyzing the dataset from the point of view of

the reception power.

5.2.3 Average Received Signal Strength

Figure 5.6a shows the RSSI value as a function of distance for all of the receptions in the

dataset, while Figure 5.6b represents the average RSSI and standard deviation vs. the

distance. In addition, the expected received power computed according to the Free Space

Model [126] is depicted (black dashed line). More precisely, the expected received power

P rx is computed by applying the Friis formula of Equation (5.1),

P rx = P tx +G tx +Grx � FSPL (5.1)

where FSPL is the free space path loss, P tx is the transmission power, G tx and Grx are

the transmitting and receiving antenna gains. The transmission power is not encoded in

the packet, since it is not part of the protocol. We therefore assume P tx =14 dBm, i.e.,

the maximum transmission power and default setting for RN2483 LoRa-based wireless

module. We also assume no antenna gains G tx = Grx = 0, thus reproducing a worst-case

scenario. FSPL is given by Equation (5.2), where d is the distance in meters and f is the

frequency in MHz, 868 MHz in our case.

FSPL = 20log(d) + 20log(f)� 27.55 (5.2)

In addition, Figure 5.7 reports the average absolute error between the Free Space Model

and the measurements ± the error standard deviation. By comparing Figures 5.6a, 5.6b

and 5.7 we see that in this free space-like scenario the Free Space curve well captures the

trend of the measured RSSI for distances greater than 10 km (i.e., for such distances the

error is in average lower than 10 dBm). For distances shorter than 10 km the average

error tends to be larger, i.e., the Free Space model does not accurately represent the

actual attenuation experienced by the signal. Moreover, for distances shorter than 10

km the standard deviation of the measured RSSI tends to be larger, thus denoting high

variability in the RSSI measurements. We further investigate this discrepancy in the next

section, by analyzing the behavior of RSSI vs. distance on a per-gateway basis.
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Figure 5.6: Measured RSSI vs. distance
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Figure 5.8: RSSI vs. distance for di↵erent gate-

ways

5.2.4 Per-gateway Received Signal Strength

Observing the RSSI vs. distance for the di↵erent gateways, which is depicted with di↵er-

ent colors in Figure 5.8 (i.e., each color is associated to one gateway), we can ascertain

the diversity characterizing the signal attenuation with the distance for the di↵erent gate-

ways. This diversity is reflected also in the di↵erent per-gateway behaviors we observed

previously analyzing the reception patterns both in time and w.r.t. distance. Moreover,

the RSSI variability appears particularly emphasized for the shorter distances. A variety

of factors and physical parameters contribute in determining such diversified behavior.
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5.2. FREE-SPACE LIKE COMMUNICATION

Among them we have di↵erences in the hardware of the gateways (e.g., di↵erent antennas

with di↵erent gains and hardware losses), di↵erences in the relative antenna orientation be-

tween the balloon device and the gateway, and therefore between their correspondent non-

isotropic radiation patterns, in addition, the relative movement of the balloon w.r.t. the

gateways is neither regular nor uniform, the weather (e.g., rain) may be changed in time,

and we likely have di↵erent scenarios on the ground where the gateways are placed.

Next, we further investigate the aforementioned diversity analyzing more in detail the

communication for some representative gateways. We focus on a subset G composed of 7

gateways. G = {7, 50, 61, 72, 79, 106, 116}, where the numbers refer to the integer gateway

identifiers we previously adopted. Table 5.1 summarizes some relevant characteristics

related to the gateways in G, namely, the gateway identifier we use in this analysis Gid and

the correspondent TTN unique identifier TTNid, the overall number of received packets

Nrx, the duration of the time interval during which the gateway received the balloon

packets Tc (i.e., the time elapsed between the first and the last reception) and the range

of distances for which the packets are received Dc (i.e., the range between the shorter

G

id

TTN

id

N

rx

T

c

D

c

7 eui-0000024b080602ed 98 1h 30’ 0.01 - 93

50 eui-1dee0855a73c5652 75 1h 55’ 172 - 238

61 eui-1dee15a874d24644 179 2h 38’ 40 - 104

72 eui-84eb18↵fee38ec6 120 2h 20’ 133 - 154

79 eui-aa555a00080605b7 173 2h 45’ 2 - 151

106 eui-b827eb↵fee7e242 123 1h 48’ 49 - 108

116 eui-↵feb827eb5d8d35 79 1h 13’ 1 - 53

Table 5.1: Selected gateways and correspondent connection characteristics: gateway integer

identifier (Gid), TTN identifier (TTNid), number of receptions (Nrx), connection duration (Tc)

and connection distances from-to [Km] (Dc).
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Figure 5.9: Distance in time (a), reception in time (b) and reception vs. distance (c) for the 7

gateways in subset G.
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distance of reception and the greater distance of reception). Note that the packet reception

rate is not necessarily constant in Tc and Dc.

These gateways have been selected since they show di↵erent and representative charac-

teristics, in terms of time span between the first and the last reception, range of distances

and relative movement of the balloon w.r.t. them. The di↵erent combinations of these

characteristics can be visually ascertained by comparing Figure 5.9a, Figure 5.9b and

Figure 5.9c, which show, for each gateway, the distance in time (i.e., the balloon-gateway

relative motion), the reception in time and the reception as a function of distance, re-

spectively. Some receive packets at very long distances (e.g., Gid = {72, 50}), others do
not reach such communication range (e.g., Gid = {7, 116}). The balloon is moving away

from gateways Gid = {7, 79, 116}, which are the closest to the launch location and receive

packets from the beginning of the flight. In particular, Gid = 79 is the gateway that

maintained the contact for the longest period of time (i.e., 2h 45’), as well as for the

widest range of distances (i.e., from 2 to 151 km). The relative movement of the balloon

w.r.t. Gid = 61 undergoes an inversion along the fligth: the balloon first approaches the

gateway and after moves away, with the distance ranging from 50 to 100 km and the

contact being maintained for a long time (i.e., 2h 38’). Finally, the ballon is approach-

ing Gid = 106 (i.e., the distance decreases in time), with the communication starting

at ⇠100 km.

Figure 5.10 shows the RSSI as a function of distance for the various gateways in G,

which are distinguished by di↵erent colors. In addition, Figure 5.11 shows the average

error and standard deviation between the RSSI measurements and the Free Space Model

for each gateway in G, separately. First, we observe that for the gateways with which

the communication occur only for distances � 50 km , i.e., Gid = {50, 72, 61, 106}, RSSI
matches well the Free Space Model, with average error consistently lower than 10 dBm.

This underlines that in this case the communication scenario is actually “free space like”.

In the case of Gid = 61, the balloon first approaches the gateway and then moves apart

(as shown in Figure 5.12a). Figure 5.12b, which reports the RSSI in time for Gid = 61,

shows that the relationship between RSSI and distance is reflected in time as an e↵ect

of the balloon-gateway relative motion. More precisely, as the balloon approaches the

gateway and the distance decreases in time, the RSSI value tends to increase in time.

The trend is then inverted when the balloon moves apart from the gateway and RSSI

tends to decrease.

Next, we move to the gateways that are close to the launch position of the balloon,

namely Gid = {116, 7, 79}, to observe the RSSI vs. distance behavior for distances shorter

than 50 km. This is particularly interesting because it is on short distances (i.e.,  10 km)

that we previously observed a significant average error between the measured RSSI and the
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Figure 5.10: RSSI vs. distance for the subset of gateways G and Free Space Model.
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Figure 5.11: Average absolute error ± standard deviation between RSSI measurements and Free

Space prediction for each gateway in G.

Free Space Model (Section 5.2.4). The same behavior is encountered also in this subset of

data, as shown in Figure 5.11. We separately analyze the communication with these three

gateways. The distance in time, the RSSI in time and the RSSI vs. distance are shown

for gateways Gid = {116, 7, 79} in Figures 5.13, 5.14 and 5.15, respectively. The RSSI

measured by Gid = 79 fits very well the Free Space Model (see Figure 5.15c), apart from

some samples in the very first kilometers, whose value spans in the range [-120 -80] dBm.

In contrast the trend observed for Gid = 7 and Gid = 116 present stronger decay rates,

with the communication being lost at shorter distances (i.e., 90 and 50 km, respectively)

and faster (see Figures 5.14b and 5.13b).

These three di↵erent trends in the decay of RSSI with the distance, which can be better

compared in Figure 5.16, can be considered as representative of the wide variability ob-

served in the overall RSSI samples for distances  50 km. The three gateways have likely

di↵erent hardware (e.g., antennas), however it is interesting to note that the environment

surrounding them, as well as the height at which they are placed, di↵er (see Figure 5.17).

83



CHAPTER 5. ANALYZING THE IMPACT OF LAND COVER TYPE ON LORA

Time
13:00 14:00 15:00 16:00

40

60

80

100

120

D
is

ta
nc

e 
[K

m
]

(a)

Time
13:00 14:00 15:00 16:00

-130

-120

-110

-100

-90

-80

R
SS

I [
dB

m
]

(b)

0 50 100 150 200 250
Distance [km]

-130

-120

-110

-100

-90

-80

R
SS

I [
dB

m
] Measurement

Free space model

(c)

Figure 5.12: Gid = 61 (a) distance vs. time (b) RSSI vs. time (c) RSSI vs. distance
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Figure 5.13: Gid = 116 (a) distance vs. time (b) RSSI vs. time (c) RSSI vs. distance
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Figure 5.14: Gid = 7 (a) distance vs. time (b) RSSI vs. time (c) RSSI vs. distance
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Figure 5.15: Gid = 79 (a) distance vs. time (b) RSSI vs. time (c) RSSI vs. distance
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Figure 5.17: Gateways Gid = {116, 7, 79}, di-
rection of the balloon trajectory (B) and com-

munication paths (yellow dashed lines)

More precisely, Gid = 79 is placed at 38 m height and in its vicinity, considering the

direction of the balloon trajectory, there are agricultural fields. In contrast, Gid = 7 is

placed at only 5 m height in a residential area (i.e., it is surrounded by residential build-

ings). and Gid = 116 is at 11 m height in front of trees w.r.t. the balloon movement. The

combination of the environment static characteristics surrounding the gateway w.r.t. the

balloon position are likely concurrent factors in determining their di↵erent power decay

rate with the distance and therefore their di↵erent communication range. In Section 5.4

we show how this kind of e↵ect is exacerbated when the transmitting device is placed close

to the ground, where much stronger power decay rates and much shorter communication

ranges are observed.

5.2.5 Summary

From this analysis, we can conclude that: i) increasing the altitude of the LoRa transmit-

ter (in the order of kilometers) we obtain a free space like communication environment,

thus increasing the capability to establish connections with more gateways; ii) in a free

space like environment LoRa communication range can achieve the order of hundreds kilo-

meters, i.e., much greater than what commonly reported on the ground; iii) the Free Space

Model captures reasonably well the RSSI vs. distance behavior for distances � 10 km (in

the considered scenario); iv) for distances  10 km (in the considered scenario) the combi-

nation of gateway altitude and surrounding environment play a role in a↵ecting the attenu-

ation rate of the received power with the distance and therefore the communication range.
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5.3 Mapping the Land Cover with Satellite Multispectral Im-

ages

This section describes how information about the land-cover characteristics is automati-

cally derived by processing Sentinel-2 (S2) multispectral (MS) images. Satellite RS tech-

nologies have been widely applied to large-scale monitoring of the Earth surface and

latest-generation equipment (e.g., S2 satellite constellation) can acquire and provide op-

tical images at global scale with high spatial and temporal resolutions. These images

are exploited for a variety of services as land-cover and land-use mapping, detection

of changes, water management, forest monitoring, risk management (e.g., floods, land-

slides) [71, 94, 19, 91]. In particular S2 MS images, which are available through the

Copernicus Open Access Hub [2], recently proved to be e↵ective in the context of green-

house detection [110], build-up areas identification [119] and water bodies mapping [51].

Our goal is to automatically derive a classification map representing the land-cover

types (i.e., the land-cover classes) that characterize the area where the LoRa communi-

cation traces we analyze have been collected. Accurate land-cover maps are derived from

S2 MS images, exploiting the spectral response of the di↵erent land-cover classes and

applying supervised classification techniques [134, 71, 103, 131]. We apply a pixel-based

classification approach based on kernel methods and in particular Support Vector Ma-

chines (SVM) [106, 70, 35, 61, 103, 32], due to their good generalization capabilities, high

classification accuracy and relatively simple design through few control parameters.

This section is organized as follows. First, we describe the Sentinels and in particular

the Sentinel-2 constellation, which provides the MS images we use (Section 5.3.1). We then

describe our MS dataset and define the land-cover classes of interest (Section 5.3.2). Next,

we define the features we use for classification, specifying the image pre-processing we per-

form (Section 5.3.3), and detail the SVM classification approach we apply (Section 5.3.4).

Finally, the obtained classification results are reported and discussed in Section 5.3.5.

5.3.1 The Sentinel Constellation

The Sentinels are a family of satellites developed and launched by the European Space

Agency (ESA) in the context of the Copernicus programme, which is aimed at providing

global monitoring information for environment and security applications. More precisely,

the Sentinels are a series of dual satellite constellations that supply satellite data at

European and international levels, with Copernicus providing an open access platform

through which such data are available for services and applications [3, 2].

In particular, the Sentinel-2 constellation [100, 50] is dedicated to the pair of twin

polar-orbiting satellites Sentinel-2A and Sentinel-2B, launched in June 2015 and March

2017, respectively. This satellite pair, orbiting sun-synchronously at 786 km altitude,
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S2 Band CW [nm] B [nm] R [m]

B1 - Coastal aerosol 443 20 60

B2 - Blue 490 65 10

B3 - Green 560 35 10

B4 - Red 665 30 10

B5 - Vegetation Red Edge 705 15 20

B6 - Vegetation Red Edge 740 15 20

B7 - Vegetation Red Edge 783 20 20

B8 - Near InfraRed (NIR) 842 115 10

B8A - Vegetation Red Edge 865 20 20

B9 - Water vapour 945 20 60

B10 - Short Wave InfraRed (SWIR) - Cirrus 1375 30 60

B11 - Short Wave InfraRed (SWIR) 1610 30 20

B12 - Short Wave InfraRed (SWIR) 2190 180 20

Table 5.2: Bands of the Sentinel-2 Mutispectral Imager (MSI) with the correspondent central

wavelength CW [nm], bandwidth B [nm] and spatial resolution R [m].

operate simultaneously to realize a global multispectral Earth-observation system with

high revisit frequency. They systematically acquire MS images over land and coastal

areas (from -56° to 84° latitude), with revisit frequency of 5 days at the equator, which

becomes 2-3 days at mid-latitudes. S2 MS images have 13 spectral bands in the visible,

near-infrared and short wave infrared range, with spatial resolution ranging between 10

meters and 60 meters, depending on the spectral band. The available bands are reported

in Table 5.2 together with the correspondent central wavelength [nm], bandwidth [nm]

and spatial resolution [m].

5.3.2 Multispectral Dataset and Land-cover Classes

The classification process is performed on three S2 MS images, or tiles, covering the target

area of interest in The Netherlands (i.e., where the LoRa communication traces we analyze

are collected3). Each tile represents a ground area of approximately 100⇥100 km2 and

the area covered by the three tiles, identified as 31UET, 31UFT and 31UFU, is shown

in Figure 5.18. These MS images have been acquired on 26th May 2017 with no cloud

coverage. Given the exploratory purpose of our analysis, in such a first stage we do not

consider multitemporal series of images but single-date images, assuming that the land

cover of our target area does not significantly change in the time period we focus on (i.e.,

July 2017). The true color composition (i.e., Red, Green and Blue bands) of the S2 MS

image representing a portion of tile 31UET, which covers a part of the west coast of The

Netherlands, is shown in Figure 5.19a.

3Note that the LoRa connectivity dataset analyzed in this dissertation covers only one portion of one tile (i.e.,

31UET). We plan to analyze a much larger LoRa dataset covering all of the three tiles we refer to in this section.
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Figure 5.18: Area covered by the considered Sentinel-2 MS images (tiles 31UET, 31UFT and

31UFU).

Land-cover classes. Seven land-cover classes of interest are defined. The definition

of these classes is based on two main criteria: i) usefulness in characterizing the LoRa

communication environment, since they may di↵erently a↵ect the LoRa propagation; and

ii) possibility to discriminate them in the spectral domain of MS images, due to their

di↵erent spectral signatures. The seven classes are: Water, Field (i.e., farming field or

grassland), Soil (i.e., bare soil), Building, Greenhouse (i.e., plastic covered greenhouses

for indoor farming), Road and Trees. In particular, Building, Greenhouse and Trees

are supposed to significantly a↵ect the radio signal attenuation at 868 MHz, when the

communication path traverse them relatively close to the ground. In contrast, Field,

Soil and Road are expected not to cause additional attenuation other than the loss due

to communication distance. We specifically consider the classes Water and Greenhouse,

since they are significantly present in the study area. Note that the e↵ectiveness of S2

MS images for detecting some of these classes (i.e., Water, Building and Greenhouse) has

been specifically observed in recent studies [51, 119, 110].

5.3.3 Features and Pre-processing

The goal of the classification task is to associate each pixel of the MS images to the class

that optimizes a predefined classification criterion, to obtain a land-cover map M . A

MS image is composed of m ⇥ n pixels. Each pixel is represented by F features and the

classification task is accomplished in the feature space. In our case, a MS image (i.e., a

tile) is composed of 10980 ⇥ 10980 pixels (i.e., m = n = 10980) and we represent each

pixel with F = 13 spectral features. Eleven spectral features are defined by the S2 MS
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bands (i.e., all apart from Band 10, as it is used to perform cirrus detection and does

not contain surface information, and Band 8A, which is mainly used as reference channel

to perform atmospheric corrections). Moreover, two indexes are computed and used as

additional features: the Normalized Di↵erence Vegetation Index (NDVI) [133], and the

Normalized Di↵erence Water Index (NDWI) [102]. These indexes are based on spectral

ratios that emphasize the spectral properties of vegetation and water, thus rendering more

easy their detection. NDVI is computed as per Equation 5.3, exploiting the Near InfraRed

(NIR) and Red bands (i.e., B8 and B4), while Equation 5.4 defines NDWI as a function

of the Green and NIR bands (i.e., B3 and B8).

NDV I =
NIR�R

NIR+R
=

B8�B4

B8 +B4
(5.3) NDWI =

G�NIR

G+NIR
=

B3�B8

B3 +B8
(5.4)

The spectral features are retrieved from Sentinel-2 level 1C products: MS images

with radiometric corrected radiances, geometrically corrected (i.e., ortho-rectified) and

geo-referenced (i.e., spatially registered on a global reference system). In addition, the

following additional pre-processing steps are performed: 1) the bands with 20 and 60 m

resolution (see Table 5.2) are resampled to 10 m in the spatial domain to ensure that each

band has the same pixel size; and 2) all the features are quantile normalized (98%) in the

interval [0 1], thus removing outliers.

5.3.4 Classification Approach

The considered classification problem involves multiple non-linearly-separable classes.

Therefore, the classification task is accomplished by applying nonlinear kernel methods, in

particular SVM [36], and adopting the one-against-all (OAA) strategy, which represents

a state-of-the-art multiclass approach used for SVMs [31]. This classification method is

supervised, i.e., it is based on a training phase that exploits a set of labeled samples. A

set of image pixels is manually associated to the correspondent class label via photo in-

terpretation. In particular, a training set of labeled samples is used for the learning phase

of SVM and a test set of labeled samples is used to evaluate the classification accuracy.

The multiclass OAA strategy involves as many parallel SVMs as the number of con-

sidered classes, i.e., seven in this case. Each SVM solves a binary classification problem

defined by one class against all the others. The final (multiclass) classification map is de-

rived according to a “winner-takes-all” rule on the intermediate results. Each SVM finds

the optimal discriminant function f(x) that best separates the considered two classes in

the feature space, while properly penalizing the misclassified samples [147, 33]. The vec-

tor x 2 RF represents a pixel in the F-dimensional feature space. The non-linear SVM

approach is based on the mapping of x (i.e., �(x)) into a higher dimensional space where

the classes, which are not linearly separable in the original feature space, can be linearly
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separated by an hyperplane. The discriminant function f(x) in the original feature space

is defined in Equation 5.5 as a function of a weight vector w and a bias b 2 R.

f(x) = w · �(x) + b (5.5)

The optimal hyperplane minimizes the cost function  (w, ⇠) defined in Equation 5.6,

subject to the constraints of Equation 5.7, where ⇠i are the slack variables introduced to

account for non-separable data, N is the number of training samples and yi 2 {!A,!B} are
the binary class labels targeted by each binary SVM. In our case the set of seven classes of

interest is ⌦ = {!1, . . . ,!7} = { Water, Field, Soil, Building, Greenhouse, Road, Trees }.
Each of the seven parallel SVMs solves the binary problem between classes !A = !i and

!B = ⌦ � !i with !i 2 ⌦. C is a regularization parameter that tunes the shape of

the discriminant function determining the amount of penalty to associate to misclassified

samples (i.e., increasing the value of C increases the penalty associated to misclassified

samples).

 (w, ⇠) =
1

2
kwk+ C

NX

i=1

⇠i (5.6)

(
yi(w · (x) + b) � 1� ⇠i i = 1, 2, · · ·N
⇠i � 0 i = 1, 2, · · ·N

(5.7)

The Lagrangian formulation enables the dual representation of the discriminant function

as per Equation 5.8 in terms of Lagrange multipliers ↵i and kernel function K(·, ·), which
should satisfy the Mercer’s theorem.

f(x) =
X

i2S

↵i yi K(xi,x) + b (5.8)

The Lagrange multipliers ↵i weight each training sample depending on its importance in

determining the discriminant function and they can be estimated by quadratic program-

ming methods [147]. In particular, the training samples associated to nonzero Lagrange

multipliers (i.e., xi with i 2 S and S ⇢ N) are the support vectors that identify the most

important samples in determining the discriminant function. In this case a radial basis

function (RBF) kernel [36] is adopted, which is defined as per Equation 5.9 and tuned by

the parameter �, which determines its width.

K = exp(�� kxi � xk2) (5.9)

This classification approach requires the selection of few key parameters, namely the

kernel parameters (i.e., � in our case) and the regularization parameter C. � determines

the smoothing of the discriminant function, while C determines the amount of penalty to
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associate to misclassified samples. The control parameters (C, �) are estimated through a

model selection process aimed at i) accurately discriminating the classes; and ii) minimiz-

ing the expected generalization error. The model selection is accomplished by applying a

grid search strategy, in which the grid is defined by a discretized range of C and � values.

Each pair of (C, �) values in the grid is used to train an SVM and evaluate its classification

performance by n-fold cross-validation [20]. Namely, the training samples are randomly

divided into n folds. n�1 folds are used to train the SVM and the classification accuracy

is evaluated on the nth fold, according to the OAA procedure. The process is repeated n

times exchanging the training/evaluation folds and the average classification accuracy of

the n results is computed. The (�,C) pair providing the best cross-validated estimate of

the classification accuracy is selected and used for the final SVM training. Finally, the

trained model is applied to predict the class labels of the whole MS image and obtain

the land-cover classification map M . This result is evaluated on an independent set of

test samples in terms of Overall Accuracy (OA), Producer’s Accuracy (PA) and User’s

Accuracy (UA). OA is the percentage of test pixels correctly classified. PA and UA are

per-class metrics that relate to the error of omission and to the error of commission, re-

spectively. PA is the percentage of correctly classified pixels for the given class. UA is

the percentage of correctly classified pixels computed w.r.t. the overall number of pixels

that have been associated to the given class.

5.3.5 Classification Results

Each tile is classified independently after collecting tile-specific reference data. In par-

ticular, a training set composed of 200 samples for each class and a test set with 100

samples for each class are prepared for each tile. The training sets are used to perform

the model selection and the SVM training, while the test sets are exploited to assess the

classification accuracy.

A grid-search model selection based on 5-fold cross-validation (i.e., n = 5) is per-

formed on each tile, testing C between 100 and 1000 with a step size increment of 20 and

� between 0.1 and 2 with a step size increment of 0.1 [46, 150]. Table 5.3 summarizes

the best performing tuning parameters (C, �) obtained for each tile, together with the

Tile C � Accuracy (%)

31UET 620 1.2 96.21

1UFT 980 0.6 94.68

31UFU 660 1.4 90.78

Table 5.3: Selected regularization parameter C and width of the RBF kernel � for the three tiles

and average 5-fold cross-validation accuracy.
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correspondent average 5-fold cross-validation accuracy. These (C, �) values are used to

train the SVM classifier for the correspondent tile. The resulting classification perfor-

mances computed on the test sets are reported in Table 5.4 in terms of Overall Accuracy

(OA), Producer’s Accuracy (PA) and User’s Accuracy (UA). Table 5.4 shows good overall

accuracy for the three tiles (i.e., OA � 90% ), despite OA for tile 31UFT (i.e., 92%) is

slightly lower than OA for the other two tiles (i.e., 95% and 98.3%). We can observe that

for tile 31UFT the most penalized classes are Building and Road, with PA = 70% and

PA = 80%, respectively. Comparing these PA values and the corresponding UA values we

can deduce that these two classes tend to be confused (i.e., not well discriminated), likely

due to relatively similar spectral signatures. A similar behavior, but less pronounced, is

found for tile 31UFU. The analysis we want to perform is aimed at relating the land-cover

characteristics with LoRa communication performance. In this respect, confusing Build-

ing and Road pixels might be critical in principle, in that these two classes are expected to

a↵ect di↵erently LoRa communication. However, the percentage error is not major (see

Table 5.4) and it tends to occur on sparse pixels (see Figure 5.20b) representing a ground

area of 10 ⇥ 10 m2 each, while LoRa communication range is in the order of kilometers.

Therefore, such an error is not expected to critically a↵ect the analysis of the land-cover

types that characterize LoRa communication paths.

Tile 31UET Tile 31UFT Tile 31UFU

OA PA UA OA PA UA OA PA UA

Water 100 100 100 100 100 99

Filed 99.5 100 95 96 99 94.2

Soil 99.5 98.5 98 88.3 98 85.2

Building 98.3 92.5 96.3 92 70 77.7 95 86 92.4

Greenhouse 100 100 100 100 100 99

Road 97 94.2 80 82.5 86 98

Trees 100 99.5 100 97 97 99

Table 5.4: Classification results: Overall Accuracy % (OA) for each tile, Producer’s Accuracy

% (PA) and User’s Accuracy % (UA) for each class in each tile.
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The classification result can be visually assessed by comparing Figure 5.19a and Fig-

ure 5.19b. Figure 5.19a shows the true color composition of the RGB bands representing a

portion of tile 31UET, namely a 35 ⇥ 35 km2 area covering the west coast of the Nether-

lands, around Delft, where the communication experiments we describe in Section 5.4

are performed. Figure 5.19b depicts the correspondent classification map. In addition, a

detail of tile 31UFT, representing a 4 ⇥ 5 km2 area, is shown in Figure 5.20a, with the

correspondent classification map being reported in Figure 5.20b. We can visually assess

that the classification result is satisfactory, despite some sparse misclassified pixels in the

classes Building and Road can be noticed (e.g., along the highway in Figure 5.20b). These

classification results can be further improved by applying more sophisticated approaches

than the pure pixel-based approach we use. For instance, the contextual information [136]

can be taken into account and/or morphological profiles [21] can be exploited.
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(a) (b)

Figure 5.19: True color composition of the S2 MS Red, Green and Blue bands (a) and classifica-

tion map (b) of a 35 ⇥ 35 km2 area in the west coast of The Netherlands centered at 5779530N,

591970E UTM Zone 31 North (WGS-84).

(a) (b)

Figure 5.20: True color composition of the S2 MS Red, Green and Blue bands (a) and classifi-

cation map (b) of a 4 ⇥ 5 km2 area in the center of The Netherlands centered at 5765970.00N

640730E UTM Zone 31 North (WGS-84).
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5.4 Ground-level Communication

In this section, the outdoor performance of LoRa communication is evaluated consider-

ing a “ground-level” scenario, i.e., with LoRa devices transmitting at few meters from

the ground. This is a typical real-world application scenario, which usually presents a

diversified communication environment, in that the landscape characteristics may vary

from link to link, as well as along each link. For instance, the communication path can

traverse build-up areas or farming fields, or both. We focus on analyzing the relationship

between the landscape characteristics and the communication performance. To this end,

we represent and model the di↵erent landscape characteristics in terms of land cover, i.e.,

the land cover type, or class, describes the type of landscape which is traversed by the

LoRa signal along its propagation. This analysis is accomplished taking advantage of the

land cover maps obtained by automatically classifying Sentinel-2 multispectral images, as

described in Section 5.3. The land cover maps represent the seven classes characterizing

the environment, namely {Water, Field, Building, Greenhouse, Road, Trees}, with 10 m

spatial resolution.

In order to analyze and compare the LoRa communication performance w.r.t. the dif-

ferent land cover types, we perform a set of experiments aimed at collecting connectivity

traces over di↵erent type of areas (Section 5.4.1). We then analyze such traces in combi-

nation with the land cover maps to understand and model their correlation (Sections 5.4.2

and 5.4.3). In particular, the focus is on analyzing the correlation between PRR/RSSI

and i) the distance between the transmitting device and the gateway; and ii) the land

cover type.

5.4.1 Experimental Settings

The LoRa communication performance is tested across urban and rural areas of Delft

(The Netherlands). More precisely, the aim of the experiment is to sample and examine

the uplink communication (i.e., end-device to gateway) for di↵erent distances and in the

presence of di↵erent land cover types. The end-device is composed of a LoRa transceiver

based on a Dragino LoRa shield v1.3 embedding a RF96 radio chip and mounting an

external antenna with gain 2 dBi. The device is registered on TTN and configured to

connect to the in-range TTN gateways. TTN servers provide information about the

packets that are received by the TTN gateways. This information is retrieved from TTN

servers through MQTT protocol. The LoRa settings we use are: Spreading factor (SF)

7, Bandwidth (BW) 125 KHz and Coding Rate (CR) 4/5. The transmission power is set

to 14 dBm.

95



CHAPTER 5. ANALYZING THE IMPACT OF LAND COVER TYPE ON LORA

Figure 5.21: Measurement sites (yellow dots)

along the four routes R1, R2, R3, R4 and po-

sition of gateways G A, G B and G C

We focus on communication up to 6 km

with sampling granularity of ⇠1 km on the

link length. The measurement campaign

is planned as follows: we take as reference

position the location of the gateway placed

at the 22nd floor of the EEMCS department

building of TU Delft. Hereafter, we refer

to this gateway as GA. GA is placed at

62 m above the ground, therefore it is ex-

pected to be a good receiver, since, due

to its height, has greater chances to favor

line-of-sight communication. Starting from

the reference position four routes in dif-

ferent directions are considered. The four

routes (labeled as R1, R2, R3, and R4) and

GA are shown in Figure 5.21. The routes

are approximately radial w.r.t. to the ref-

erence. The aim was to cover with radial

routes di↵erent directions, however, due to

practical obstacles (e.g., fences preventing

the access to farming fields) the routes had

to be adapted accounting for the accessible areas. The end-device stops every ⇠1 km,

along each route, to transmit 30 packets. One packet is sent every 40 seconds. We test

23 measurement sites in total, 6 for each route (apart from R2 where measurements are

taken for only 5 sites). The GPS coordinates of each measurement site is recorded. The

tests are performed on the 7th of June 2017 for R1 and R3 and on the 12th of June 2017

for R2 and R4. Figure 5.21 shows the four routes together with the measurement sites

(yellow dots) and the reference position of GA (red dot).

Across the measurement campaign, also other TTN gateways received the transmitted

packets, depending on the transmission site at hand. In particular, two other gateways

received our packets and they are reported in Figure 5.21 with labels GB and GC. The

dataset collected with this campaign is composed of the GPS position of each measurement

site, together with the packets received by each of the three gateways involved and the

related information provided by TTN. This information consists in application and device

identifiers, packet payload, time of reception, frequency, modulation scheme, data rate,

coding rate, gateway identifier, RSSI, SNR and GPS coordinates of the gateway. Overall,

the dataset is composed of 482 receptions.
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In addition, another set of measurements is performed inside the EEMCS building,

very close to gateway GA. More precisely, the LoRa transmitter is placed 1 meter far

from the gateway, sending one packet every 45 seconds for 2 hours and 30 minutes,

i.e., from 11:30 to 14 on the 15th June 2017. All the packets are received from GA

resulting in 200 communication samples provided by TTN. These measurements are used

to experimentally derive a reference path loss to which refer the path loss analysis for

all the other measurements. This reference path loss is the term PL(d0) in the log-

normal path loss model, as defined per Equation (3.1). In this model the e↵ect of the

propagation environment is represented by the path loss exponent n and by the gaussian

random variable X�. The value of PL(d0) is sometimes set to the free space path loss

at distance d0, or, alternatively it can be determined by measurements performed at

d0 [126, 60], which is the approach we follow. PL(d0) is measured in the far-field region

of the gateway antenna and at a close-in reference distance, d0 = 1m, i.e., at a distance

smaller than any practical distance used in the communication system. As we describe

in detail in the next Section, the value of PL(d0) that we experimentally derive is used

as anchor point in the fitting of the other measurements with the aim of estimating the

path loss exponent n according to the di↵erent land cover characteristics.

5.4.2 Analyzing the E↵ect of Land Cover on LoRa Links

The goal is to analyze the quality of communication with the three gateways GA, GB and

GC for the di↵erent measurement sites. The quality of communication is evaluated both

in terms of Packet Reception Rate (PRR) and Received Signal Strength Indicator (RSSI).
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Figure 5.22: PRR vs. distance for all the mea-

surements sites (R1, R2, R3, and R4) and all

the gateways (GA, GB and GC)

First, we consider PRR as a function of

distance, which is reported for all the mea-

surement sites in Figure 5.22. We can ob-

serve that PRR is: i) highly variable for

distances ranging from 0 to 7 km; ii) con-

sistently  0.2 between 7 and 11 km; and

iii) consistently 0 for distances greater than

11 km. In addition, Figure 5.22 shows that

no packet reception (PRR = 0) occurs at

almost every distance � 2 km, and that

when packet reception occurs, PRR shows

a decreasing trend with the distance.

Next, we look at each gateway and each route, separately. Figure 5.23a reports the

PRR of GA as a function of distance showing a diversified reception behavior along the

di↵erent routes. R1, which passes exclusively through buildings, shows a drastic drop in
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Figure 5.23: PRR vs. distance for GA (a) GB (b) and GC (c), all routes (R1, R2, R3 and R4).

PRR after 3 km, while R2 and R3, which mostly traverse farming fields, exhibit better

reception, apart from one specific site in R2 (at ⇠3 km) where no packet is received

by GA. We will further investigate this specific case in Section 5.4.4. Interestingly, GA

receives no packets from the farming fields in R4. It only receives very few packets from

one single R4 measurement spot at ⇠1 km. In this respect, we must underline that GA

is placed indoor and on the very north-west side of the building, i.e., on the side of R1

in Figure 5.21. Therefore, the body of the building is exactly and entirely in between the

gateway and the measurement spots along R4. The shielding e↵ect that the building is

causing on the communication from R4 can likely explain the almost complete absence of

reception for this route. 4

GB is placed at 6 m height in the built-up area we traverse along route R1. As it can

be noticed in Figure 5.21, we pass very close to it (i.e., 67 meters apart) while performing

the experiments. As reported in Figure 5.23b, GB shows decent reception for very short

distances in the urban route R1 (i.e., PRR � 0.7 for distance < 1 km), with a rapid drop

to PRR=0.4 at 1 km and a complete loss of connection farther than 2 km. In addition,

GB receives around the 40% of the packets sent from one site in R2, located in the nearby

field area.

Finally, GC receives several of the packets sent from the farming fields along R3 and

R4, reaching the communication range of ⇠10 km, as shown in Figure 5.23c. However, the

PRR is variable, reaching 0.6 at maximum and remaining consistently <0.2 for distances

greater than 7 km. Unfortunately, the altitude above the ground of this gateway is not

available from TTN. We may only argue it is relatively high, given the long range reception

capability it shows.

Overall, we observe a diversified reception behavior for the di↵erent gateways as well as

for the di↵erent characteristics of the environment where the communication occur (e.g.,

4This same shielding e↵ect w.r.t. the south-east direction has been observed also in other TTN data apart

from this measurement campaign.
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Figure 5.24: Percentage occurrence of the seven land cover classes {Water, Field, Building (B),

Greenhouse (GH), Road, Trees} along the link paths connecting the end-device with GA along

R1 (a) R3 (b) and R2 (c) for each measurement site. The correspondent distance is reported in

the legend.

built-up areas vs. open field areas). Therefore, we analyze more in detail the relationship

between the PRR and the characteristics of the environment exploiting the land cover map

we derived from Sentinel-2 images. More precisely, we retrieve from the map the sequence

of land cover classes that are present along the path connecting the transmitting device

position and the receiving gateway position, for each link. The spatial granularity of the

sequence is defined by the geometric resolution of the Sentinel-2 multispectral images (i.e.,

10 m), from which the land cover map is derived. Then, we compute the occurrence (i.e.,

the percentage presence) of each land cover class in the sequence that is associated to

each link. Figure 5.24a shows the occurrence of the seven considered land cover classes

along the link paths that connect the sites in R1 with GA. Each subplot refers to one site

and the subplots are ordered by increasing site-GA distance. The approximated distances

are reported in the legends for comparison. Class Building (abbreviated as B in the plot)

is the prevailing class in the link paths for all of the six measurement sites in R1, with

the percentage of presence ranging from 32% to 61%, depending on the site. In contrast,

Figure 5.24c shows that for route R3 the prevailing class is Field (from 38% to 62%),

apart from the closest measurement site at ⇠1 km from GA. For this site Building prevails

(31%), and the classes Field and Road are also significantly present, covering the 24% and

26% of the link path, respectively. Figure 5.24b shows that for the links established along

R2 the Field class is the most present (i.e., consistently �30%). In this case, however,

the predominance is less pronounced with a considerable presence of Building at 3 km
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(25%) and Trees at 4 km (28%). We previously observed (see Figure 5.23a) that the GA

PRR vs. distance behavior diverge significantly on R1 and R3, for distances >3 km, with

PRR > 0.6 and PRR < 0.2, respectively. These trends reflect a strong predominance of

di↵erent land cover classes along the links (i.e., Building on R1 and Field on R3) as shown

in Figures 5.24a and 5.24c. A similar consideration can be done by comparing the PRR

behavior for distances >3 km of R1 (Building dominated) and R2 (Field dominated).

0 2 4 6 8 10 12
Distance [km]

0

0.2

0.4

0.6

0.8

1

PR
R

Building
Field

Figure 5.25: PRR vs. distance for Building and

Filed dominated links in black and green, re-

spectively.

By computing the land cover sequence

and the predominant land cover class for

all of the links involved in the experimen-

tal campaign, we observe that all of the

the links showing PRR > 0 are character-

ized by prevailing class Building or Field.

We classify and label these links according

to the correspondent prevailing class and

then compare the PRR vs. distance behav-

ior w.r.t. these classes, as shown in Fig-

ure 5.25. The PRR for Building dominated

links is represented in black and the PRR

for Field dominated links in green. Since

the gateways are usually placed in built-up

areas, we do not have short range measurements for the Field class to directly compare

with Building. However, we see that the Field packets are received at longer distances

and, mostly, with better PRR than the Building packets at comparable distance. Since

examining the PRR we can only ascertain a di↵erence in the packet reception capability in

the presence of di↵erent land cover types, we move the investigation at the very physical

level to analyze the causes determining such reception behavior, namely we analyze the

impact of the land cover on the signal propagation and attenuation.

RSSI analysis. Figure 5.26 reports the RSSI vs. distance for all the available RSSI

measurements (i.e., when PRR > 0). The expected reception power according to the

Free Space Model is also reported for comparison (black dashed line). We note that the

Free Space Model significantly di↵er from the measurements, overestimating the expected

reception power with an average error in the order of 20 dBm. This quantitatively shows

the di↵erence in the attenuation experienced by the signal between this “ground” sce-

nario and the previously considered free space like scenario. In addition, Figure 5.26

reports the expected reception power according to the path loss model proposed by Bor

et al. [30]. The authors estimate the log-normal path loss model parameters, namely

PL(d0), n and �, from a set of experimental measurements performed in a built-up envi-
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Figure 5.26: RSSI vs. distance for all the

measurements (blue), Free Space model (black

dashed line) and Bor’s model (plain black

line).
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Figure 5.27: RSSI vs. distance for Building

dominated links (black dots) and Field domi-

nated links (green dots) and Free Space model

(black dashed line).

ronment with a Semtech SX1272 LoRa transceiver and Spreading Factor 12. In particular,

they estimate PL(d0) = 17.41 dB, with d0 = 40m, n = 2.08 and � = 3.57. The Bor’s

model significantly underestimates our RSSI measurements, likely due to the di↵erent

(e.g., more densely built-up) communication environment where the measurements have

been collected. However, as we show and discuss later on, this discrepancy is much less

pronounced w.r.t. one subset of our measurements, namely the Building dominated com-

munication traces between the transmission sites along R1 and the low-altitude gateway

GB.

Next, we compare the RSSI vs. distance of Building dominated links and Field dom-

inated links, which are reported in Figure 5.27 in black and green, respectively. The

communication range is larger for Fileds than for Building, as we noticed also in the PRR

analysis. In addition, we can identify a di↵erence in the RSSI decay rate with the distance

between the two classes. It is particularly interesting to further investigate this aspect

by comparing the di↵erent classes for the di↵erent gateways. Figure 5.28 shows the RSSI

vs. distance distinguishing both the class Building/Field and the receiving gateway. We

observe the strongest decay rate for GB Building (i.e., gateway at 6 m height), followed

by GA Building (i.e., gateway at 62 m height). GA Field decays more smoothly and GC

Field exhibits the less pronounced decay rate, reaching the longest communication range.

5.4.3 Analyzing the Power Decay Rate

The di↵erent trends in the power decay rate are quantified by separately fitting the clusters

of measurements corresponding to each gateway/class combination. The fitting is based
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Figure 5.28: RSSI vs. distance for the di↵er-

ent gateways and link dominating land cover

class Building/Field, Free Space model (black

dashed line) and fitting curves for GA Build-

ing, GA Field, GB Building and GC Field.
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ban/suburban according to the dominating

land cover class.

on the log-normal path loss model. More precisely, the fitting function f(n, d) is defined

by Equation (5.10), which relates the RSSI measurements with the model parameters n

and d through the Friis Equation (5.1).

f(n, d) = Ptx +Gtx +Grx � PL(d0)� 10 · n · log10
✓

d

d0

◆
(5.10)

d is the distance in meters, n is the path loss exponent we want to determine through

fitting (i.e., the fitting parameter), Ptx = 14 dBm is the transmission power we used in

the experiments, Gtx = 2 dBi is the gain of the transmitting antenna and Grx = 2 dBi

is the gain of the receiving antenna. GA mounts a typical half-wave dipole antenna with

gain 2 dBi; we assume that also GB and GC mount a similar antenna. We use as anchor

point the path loss at the reference distance d0 = 1m (PL(d0)) that we experimentally

measured for GA. The experiment provided a stable connection with average path loss

PL(d0) = 23.9 dB and standard deviation 1.1 dB.

We solve the non linear curve fitting problem by least squares. The value of n that

best fits the nonlinear function f(n, d) to the RSSI measurements is searched starting

from n0 = 2 (i.e., the free space path loss exponent). We do not fit the data for GB

Field and GC Building, due to the very few measurements available, i.e., only 11 samples

at one single distance for the former and 17 samples for the latter. Table 5.5 reports

the fitting results we obtain for the di↵erent gateway-land cover class combinations, in

terms of path loss exponent n, shadowing �, i.e., the standard deviation of the gaus-

sian random variable X� in Equation (3.1), and average error in dB between the fitted
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model and the measurements. We see that n is much larger for Building than for Field

([3.46, 3.98] vs. [2.88, 3.18]), indicating a stronger attenuation rate in the former class.

subset n � avg err [dB]

GA Building 3.46 3.73 5.34

GB Building 3.98 8.05 8.94

GA Field 3.18 3.13 4.38

GC Field 2.88 2.64 4.03

Table 5.5: Least square estimate of the path loss

exponent n, standard deviation � of the gaussian

random variable X� and average error between

the fitted model and the measurements.

Moreover, for comparable classes, n in-

creases as the gateway height decreases,

e.g., n = 3.46 for GA Building (62 m

height) vs. n = 3.98 for GB Building (6 m

height), thus indicating a stronger atten-

uation for the lower gateway. � is in the

order of 3 dB, and the error is in the order

of 5 dB, apart from GB Building, where �

and the error reach more than 8 dB. This

is due to the high variability in the RSSI

measured in the site at 64 m from GB (see

Figure 5.28). This variability is likely caused by dynamic components as the presence

of mobile obstructors or reflectors (e.g., cars) in the very proximity of the transmit-

ter/receiver.

The fitting results can be visually evaluated in Figure 5.28, which reports the curves

corresponding to the expected received power according to the log-normal path loss model

tuned with the di↵erent values of n. Each curve is represented with the color of the

corresponding measurements, i.e., red for GB Building, blue for GA Building, green for

GA Field and black for GC Field. We see that the trends are well captured. In addition, we

can note that the fitting curve for GB building (red) is closer to the Bor’s model (orange)

than the other fitting curves, thus indicating that the signal attenuation characteristics

observed by Bor et al. are closer to those we observed in our built-up environment

when a low altitude gateway is considered. This comparison underlines that i) a number

of factors a↵ect the communication, including the gateway altitude combined with the

specific environment characteristics; and ii) it is hard to define one general model able to

e↵ectively capture the complexity and variety of real-world scenarios, without explicitly

taking into account their di↵erent characteristics and the related e↵ects.

Finally, we compare the fitting results with the Okumura-Hata model [126, 112, 64].

It is an empirical path loss model defined as per Equation (5.11), which takes explicitly

into account the height of the transmitter (hm) and of the receiver (hb). hm and hb are in

meters, the distance d is in kilometers and the term a(hm) is a correction factor for hm,

which is defined as per Equation 5.12 for small-medium cities.

L

U

[dB] = 69.55 + 26.16 log10(f)� 13.82 log10(hb

)� a(h
m

) + (44.9� 6.55 log10(hb

)) log10(d) (5.11)

a(h
m

)[dB] = (1.1 log10(f)� 0.7)h
m

� (1.56 log10(f)� 0.8) (5.12)

In addition, the corrections in Equation 5.13 and Equation 5.14 are applied for suburban
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and rural environments, respectively, with K 2 [35.94 40.94].

L

SU

[dB] = L

U

� 2

✓
log10

✓
f

28

◆◆2

� 5.4 (5.13)

L

R

[dB] = L

U

� 4.78 (log10(f))
2 + 10.33 log10(f)�K (5.14)

We apply the urban (small-medium cities) model for the Building dominated links and

the suburban correction for the Field dominated links. In the latter case, we select the

suburban correction (instead of the rural correction), since the analysis of the land cover

occurrence along the link paths (see Figure 5.24) shows that, despite the predominance of

Field, Building is anyhow present. The transmitter height is hm = 1.5m and the receiver

height hb is the height of the considered gateway, i.e., hb = 62m for GA and hb = 6m for

GB. The height of GC is not available, we therefore do not compute the Okumura-Hata

model for this gateway. In Figure 5.29 we compare our fitted models with the Okumura-

Hata predictions, driven by the land cover dominating class. We see that the fitted curves

are very similar to the Okumura-Hata curves, i.e., the di↵erence is in the order of only 1

dB. This result underlines that the signal attenuation rates described by Okumura and

Hata are very similar to those observed for the LoRa signal, as long as the communication

environment (e.g., the predominant land cover class along the link paths) is taken into

account.

This analysis provides several insights about the e↵ect of the static characteristics

of the environment on the communication and shows how some of these characteristics

can be quantitatively represented and accounted for by leveraging multispectral satellite

images. In addition, this analysis suggests that i) the predominant land cover class along

the link is a reasonable representation that enables to capture the general trend of the

attenuation rate in the considered dataset; and ii) information about the predominant

land cover can be exploited to drive the selection of a proper Okumura-Hata model with

the aim of predicting the expected LoRa signal attenuation rate in real outdoor scenarios.

However, despite the predominant land cover shows to be useful to capture the general

trend of the signal attenuation, it is not precise enough to represent all the links we

observed, or more precisely, the links we could not observe since PRR = 0. We further

investigate the land cover characteristics for these links in the next section.

5.4.4 Fine-grained Land Cover Analysis

Figure 5.23a shows that one measurement spot along R2 (i.e., at 2.8 km from GA) ex-

hibits no packet reception from GA (PRR = 0), despite presenting the same land cover

dominating class (i.e., Field) as the other spots in R2. To further investigate this behavior

we analyze the land cover more in detail and observe that the percentage occurrence of

the land cover classes in the vicinity of the transmitter in this measurement site presents

peculiar characteristics, which do not reflect the overall occurrence for the whole link.
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Figure 5.30: Occurrence of the land cover class

in the whole link path, in the first kilometer

from the transmitter and in the first 50m from

the transmitter, for the measurement site at

2.8 km from GA in R2, where PRR = 0.

Figure 5.31: Occurrence of the land cover class

in the whole link path, in the first kilometer

from the transmitter and in the first 50m from

the transmitter, for the measurement site at

3.1 km from GA in R2, where PRR = 0.8.

Figure 5.30 shows the land cover occurrence in the whole link path (first subplot), in

the first kilometer from the transmitter (second subplot) and in the very first 50 m from

the transmitters (third subplot). We see that Field is predominant in the overall path,

but in the first kilometer Trees is 41% present and in the very first 50m we find 100%

Trees, i.e., trees are exactly in front of the transmitting device (1.5 m high) w.r.t. GA,

thus obstructing the line-of-sight communication with the gateway. Indeed, no packet is

received from this location. On the contrary, Figure 5.31 shows the same analysis for

the close measurement site in R2, at 3.1 km from GA. In this case, 80% of packets are

received (PRR = 0.8) and Field remains predominant in the whole path, as well as in

the first kilometer from the transmitter and in the first 50 m from the transmitter. Simi-

larly, the presence of the entire EEMCS department building in front of GA is completely

obstructing the communication with the sites along R4.

We can conclude that the relative position of the land cover type w.r.t. both transmitter

(i.e., end-device) and receiver (i.e., gateway) matters, and it acts in combination with the

respective height of transmitter and receiver. Clearly, the height of buildings and trees

is relevant and could be accounted for through the availability of LiDAR data or other

sources of information as cadastral maps. However, also in the absence of such data, high

resolution land cover maps provide a detailed representation of the horizontal structure of

the scene, in that they provide information about the spatial distribution of objects in the

environment and about their relative positions w.r.t. the communication devices. This

information can be exploited to further investigate the interaction between the structure
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of the communication environment and the communication performance, with the aim of

improving the modeling and prediction of LoRa connectivity.

5.4.5 Conclusion

Land cover classification maps derived from multispectral satellite images can support

both the analysis and the modeling of LoRa outdoor communication performance, by

quantitatively introducing the representation of the static characteristics of the environ-

ment. More precisely, these land cover maps allow to automatically assess what kind of

objects are present and where they are placed in the communication environment, thus

enabling the development of systematic analysis accounting for their presence and e↵ect

on communication. We showed that the predominant land cover along the link path rep-

resents a first indicator for capturing the signal attenuation trend. However, in order

to better model LoRa connectivity, the characteristics of the environment should be ac-

counted for with more detail. To this end, the high level of spatial detail characterizing

the land cover maps we are considering represents a powerful instrument. It remains

an open issue how to take full advantage of such level of detail in this context, opening

interesting venues for further investigation. We plan to analyze bigger datasets of LoRa

connectivity traces, presenting more variability in the land cover characteristics. One op-

tion is to investigate the applicability of machine learning techniques to learn and model

the relationship between the transmission parameters (e.g., LoRa settings as Spreading

Factor), the end device and gateway altitudes, the fine-grained land cover characteristics

along the link paths, as well as other environmental factors as temperature and weather

conditions. This approach could lead to the development of connectivity models for out-

door LoRa communication to be applied for the prediction of the expected communication

performance.
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Chapter 6

Conclusion and Outlook

In this dissertation, we addressed the challenges posed by real-world outdoor environments

on the deployment of low-power wireless networks. In particular, we focussed on the e↵ect

of the static characteristics of the environment on low-power wireless links. The main

contribution we put forward is to demonstrate the potential carried by remote sensing

systems and the related data analysis techniques for the definition of realistic low-power

connectivity models in outdoor scenarios and for the development of e↵ective deployment

strategies. In this context, we showed that remote sensing systems and data represent a

powerful mean for i) identifying the static properties of the environment that a↵ect low

power communication performance; ii) automatically and quantitatively represent such

properties; and iii) develop connectivity models and deployment strategies that take them

into account.

We exploited LiDAR data to analyze the impact of the forest structure on short-

range low-power wireless at 2.4 GHz. This analysis enabled the definition of a specialized

LiDAR-based radio attenuation model for trunk-level communication in forests. In ad-

dition, we showed how prior knowledge about the forest structure derived from LiDAR

can be exploited to develop informed node placement planning strategies accounting for

both the actual forest structure and its e↵ect on the network, automatically and prior

to the deployment. The evolutionary optimization implemented in LaPS combined with

the LiDAR-derived inputs (i.e., a representation of the forest attributes and the special-

ized radio model) provided significant gains w.r.t. the simplistic approaches commonly

used. Moreover, LaPS proved to be a valuable instrument for assessing the connectivity

of a target forest and evaluate the attainable trade-o↵s between user requirements and

robustness of the network, prior to the actual in-field deployment.

Then, we have quantified the gap in communication range that the presence of objects

in the environment causes when LoRa low-power technology is exploited in the context

of IoT networks. Specifically, we compared the communication performance achieved

in a free-space like scenario (i.e., when a LoRa transmitter on an high altitude balloon

communicates with gateways on the ground) against those achieved in a ground level
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communication scenario characterized by a diversified environment. Moreover, we have

analyzed the e↵ect of the type of environment (i.e., land-cover type) on LoRa commu-

nication performance by leveraging multispectral satellite images. We showed how high-

detailed land-cover maps (i.e., with spatial resolution 10 m) can enable e↵ective analysis

that relate the land cover characteristics with the signal attenuation, which in turn a↵ects

LoRa communication range. These contributions can be applied to plan the deployment

of WSNs in forests and to enable the development of LoRa connectivity models that

account for the actual communication environment.

Despite the promising and valuable results, further investigation can significantly im-

prove the connectivity models in both considered contexts. Clearly, such further devel-

opment requires to gather additional connectivity measurements performing more in-field

experiments, which was a very e↵ort-demanding part of this work. The signal attenuation

model for low-power short-range communication in forests can be refined by considering

other environmental variables as temperature and weather conditions, as well as other

important static features as the terrain morphology and the presence of foliage. In this

respect, LiDAR can support the quantitative representation of both these static features.

In addition, optical images can be exploited to derive indicators as the Normalized Dif-

ference Vegetation Index (NDVI) and the Leaf Area Index (LAI) that can provide further

information about the status of vegetation. These additional sources of information can

be integrated in the formulation of the node placement problem and included in the LaPS

methodology. LaPS is indeed open and flexible, in that new constraints can be easily

added and the fitness function, which drives the search for (near-)optimal placement solu-

tions, can be enriched with additional terms. Moreover, the genetic algorithms that carry

out the evolutionary search process are widely applied in the context of multi-objective

optimization problems, thus rendering LaPS suitable for encompassing further aspects of

the problem.

In the context of LoRa connectivity modeling, the preliminary analysis we presented is

mostly based on the predominant land cover class along the link path. One relevant topic

for future research is the refinement of this preliminary analysis to take full advantage

of the high level of spatial detail that characterizes the land cover maps we derive from

Sentinel-2 multispectral images. However, this fine detail increases the dimensionality of

the problem and the complexity of the modeling. Methods that are capable to properly

handle such level of detail and e↵ectively take advantage of it must be delineated. In this

respect, a promising line of investigation is the evaluation of the e↵ectiveness of machine

learning techniques for learning the complex relation between the numerous parameters

in play, e.g., the fine-grained land cover information, the di↵erent LoRa communication

settings, and other environmental variables as the weather conditions. The modeling
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of this complex relation can lead to the definition of accurate connectivity models that

can support the e↵ective deployment of LoRa gateways in the context of real-world IoT

applications, accounting for the actual environment surrounding the gateways and for the

specific coverage requirements posed by the application.

We argue that the analysis and the methodologies we presented advance the state of

the art on low power connectivity modeling and network planning in real world environ-

ments. We envision that our contributions can pave the way for further improvements in

the understanding and quantitative modeling of the factors that make the link behavior

di�cult to predict, thus fostering the development of realistic simulations and rendering

the deployment of low power networks more predictable.
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Carlo Alberto Boano, and Mário Alves. Radio link quality estimation in wireless sen-

sor networks: A survey. ACM Transactions on Sensor Networks (TOSN), 8(4):34,

2012.

[16] Nouha Baccour, Daniele Puccinelli, Thiemo Voigt, Anis Koubaa, Claro Noda, Hos-

sein Fotouhi, Mario Alves, Habib Youssef, Marco Antonio Zuniga, Carlo Alberto

Boano, et al. External radio interference. In Radio Link Quality Estimation in

Low-Power Wireless Networks, pages 21–63. Springer, 2013.

[17] Emmanuel P. Baltsavias. A comparison between photogrammetry and laser scan-

ning. ISPRS Journal of photogrammetry and Remote Sensing, 54(2-3):83–94, 1999.

[18] Kenneth Bannister, Gianni Giorgetti, and Sandeep K. S. Gupta. Wireless sensor

networking for hot applications: E↵ects of temperature on signal strength, data col-

lection and localization. In Proceedings of the 5th Workshop on Embedded Networked

Sensors (HotEmNets 08). Citeseer, 2008.

[19] W.G.M. Bastiaanssen, E.J.M. Noordman, H. Pelgrum, G. Davids, B.P. Thoreson,

and R.G. Allen. SEBAL model with remotely sensed data to improve water-

resources management under actual field conditions. Journal of irrigation and

drainage engineering, 131(1):85–93, 2005.

[20] A.I. Belousov, S.A. Verzakov, and J. Von Frese. A flexible classification approach

with optimal generalisation performance: support vector machines. Chemometrics

and intelligent laboratory systems, 64(1):15–25, 2002.

[21] Jon Atli Benediktsson, Martino Pesaresi, and Kolbeinn Amason. Classification and

feature extraction for remote sensing images from urban areas based on morpho-

112



BIBLIOGRAPHY

logical transformations. IEEE Transactions on Geoscience and Remote Sensing,

41(9):1940–1949, 2003.

[22] Jan Beutel, Stephan Gruber, Andreas Hasler, Roman Lim, Andreas Meier, Chris-

tian Plessl, Igor Talzi, Lothar Thiele, Christian Tschudin, Matthias Woehrle, et al.

PermaDAQ: A scientific instrument for precision sensing and data recovery in en-

vironmental extremes. In Proceedings of the 2009 International Conference on In-

formation Processing in Sensor Networks, pages 265–276. IEEE Computer Society,

2009.

[23] Amol P. Bhondekar, Renu Vig, Madan Lal Singla, C. Ghanshyam, and Pawan Ka-

pur. Genetic algorithm based node placement methodology for wireless sensor net-

works. In Proceedings of the international multiconference of engineers and computer

scientists, volume 1, pages 18–20. Citeseer, 2009.

[24] Edoardo S. Biagioni and Galen Sasaki. Wireless sensor placement for reliable and

e�cient data collection. In Proceedings of the 36th Annual Hawaii International

Conference on System Sciences, pages 10–pp. IEEE, 2003.
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[31] Léon Bottou, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon,

Lawrence D. Jackel, Yann LeCun, Urs A. Muller, Edward Sackinger, Patrice Simard,

et al. Comparison of classifier methods: a case study in handwritten digit recogni-

tion. In Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Image

Processing., Proceedings of the 12th IAPR International. Conference on, volume 2,

pages 77–82. IEEE, 1994.

[32] Lorenzo Bruzzone, Mingmin Chi, and Mattia Marconcini. A novel transductive SVM

for semisupervised classification of remote-sensing images. IEEE Transactions on

Geoscience and Remote Sensing, 44(11):3363–3373, 2006.

[33] Christopher J.C. Burges. A tutorial on support vector machines for pattern recog-

nition. Data mining and knowledge discovery, 2(2):121–167, 1998.

[34] James B. Campbell and Randolph H. Wynne. Introduction to remote sensing. Guil-

ford Press, 2011.

[35] Gustavo Camps-Valls and Lorenzo Bruzzone. Kernel-based methods for hyperspec-

tral image classification. IEEE Transactions on Geoscience and Remote Sensing,

43(6):1351–1362, 2005.

[36] Gustavo Camps-Valls and Lorenzo Bruzzone. Kernel methods for remote sensing

data analysis. John Wiley & Sons, 2009.

[37] Benji Capsuto and Je↵ Frolik. A system to monitor signal fade due to weather

phenomena for outdoor sensor systems. In Fifth International Conference on Infor-

mation Processing in Sensor Networks (IPSN 2006), 2006.

[38] Marco Cattani, Carlo Alberto Boano, and Kay Römer. An experimental evaluation
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