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Abstract

The deployment of low power wireless networks is notoriously effort-demanding, as costly
in-field campaigns are required to assess the connectivity properties of the target location
and understand where to place the wireless nodes. The characteristics of the environment,
both static (e.g., obstacles obstructing the link line of sight) and dynamic (e.g., changes
in weather conditions) cause variability in the communication performance, thus affecting
the network operation quality and reliability. This translates into difficulties in effectively
deploy, plan and manage these networks in real-world scenarios, especially outdoor. De-
spite the large literature on node placement, existing approaches make over-simplifying
assumptions neglecting the complexity of the radio environment.

Airborne and satellite Remote Sensing (RS) systems acquire data and images over wide
areas, thus enabling one to derive information about these areas at large scale. In this
dissertation, we propose to leverage RS systems and related data processing techniques to
i) automatically derive the static characteristics of the deployment environment that affect
low power wireless communication; i7) model the relation between such characteristics
and the communication quality; and 4ii) exploit this knowledge to support the deployment
planning. We focus on two main scenarios: a) the deployment of Wireless Sensor Networks
(WSNs) in forests; and b) the communication performance of Internet of Things (IoT)
networks based on Long Range (LoRa) wireless technology in the presence of mixed
environments.

As a first major contribution, we propose a novel WSN node placement approach
(LaPS) that integrates remote sensing data acquired by airborne Light Detection and
Ranging (LiDAR) instruments, a specialized path loss model and evolutionary computa-
tion to identify (near-)optimal node position in forests, automatically and prior to the
actual deployment. When low-power WSNs operating at 2.4 GHz are deployed in forests,
the presence of trees greatly affects communication. We define a processing architecture
that automatically derives local forest attributes (e.g., tree density) from LiDAR data ac-
quired over the target forest. This information is incorporated into a specialized path loss
model, which is validated in deployments in a real forest, enabling fine-grained, per-link
estimates of the radio signal attenuation induced by trees. Combining the forest attributes
derived from LiDAR data with the specialized path loss model and a genetic algorithm,
LaPS provides node placement solutions with higher quality than approaches based on
a regular placement or on a standard path loss model, while satisfying the spatial and



network requirements provided by the user. In addition, LaPS enables the exploration of
the impact of changes in the user requirements on the resulting topologies in advance,
thus reducing the in-field deployment effort.

Moreover, to explore a different low-power wireless technology with starkly different
trade-offs, we consider a LoRa-based IoT network operating in i) a free space like commu-
nication environment, i.e., the LoRa signal is transmitted from an high altitude weather
balloon, traverses a free-of-obstacles space and is received by gateways on the ground;
and 4i) a mixed environment that contains built-up areas, farming fields and groups of
trees, with both LoRa transmitters and receiving gateways close to the ground. These
scenarios show a huge gap in terms of communication range, thus revealing to which
extent the presence of objects affects the coverage that LoRa gateways can provide. To
characterize the mixed environment we exploit detailed land cover maps (i.e., with spatial
grain 10x10m?) derived by automatically classifying multispectral remote sensing satel-
lite images. The land cover information is jointly analyzed with LoRa connectivity traces,
enabling us to observe a correlation between the land cover types involved in LoRa links
and the trend of the signal attenuation with the distance. This analysis opens interesting
research venues aimed at defining LoRa connectivity models that quantitatively account

for the type of environment involved in the communication by leveraging RS data.
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Chapter 1

Introduction

Remarkable advancements in sensing technologies led to the current availability of a vari-
ety of forefront monitoring instruments ranging from distributed networks of in-situ sen-
sors to remote sensing systems for Earth observation. Both of them are applied to an ever-
increasing number of domains as environmental monitoring [135, 145, 155, 97, 51, 133], dis-
aster management [49, 67, 146, 48], surveillance [148, 66, 34, 94|, and smart spaces [41, 56].
On the one hand, distributed networks of embedded devices as Wireless Sensor Networks
(WSNSs) perform direct and in-situ measurements of physical parameters (e.g., temper-
ature) while exploiting low-power wireless communication to self-organize as a network
and accomplish cooperative data collection tasks. On the other hand, Remote Sensing
(RS) satellite/airborne systems acquire data (mainly images) over wide areas performing
remote and indirect measurements of the properties of objects, areas or phenomena, by
exploiting the propagation and reflection properties of electromagnetic radiation. In this
dissertation we focus on the challenges posed by real-world outdoor environments on the
deployment of low-power networks (e.g., WSNs) and exploit Remote Sensing systems and
data to model low-power communication performance in outdoor scenarios and support

the deployment task.

The physical layer at the base of the protocol stack of WSNs is defined by low-power
wireless communication techniques operating in the unlicensed ISM bands. These tech-
niques are key in rendering the system flexible (i.e., no wired connection is required) and
able to operate for relatively long periods of time (low power consumption). Moreover,
the wireless communication itself is often exploited as a source of information in appli-
cations as localization [12], target tracking [148] or wildlife monitoring [121]. Low-power
wireless technology is indeed a constant presence in the evolution of distributed and per-
vasive embedded systems, including the emerging contexts of Cyber-Physical-Systems
(CPS) and Internet of Things (IoT). In fact, the physical input/output in CPS, and the

“things” in IoT, are connected to the Internet mostly via low-power wireless communi-
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CHAPTER 1. INTRODUCTION

cation, both short-range (e.g., as defined by the IEEE 802.15.4 standard) and long-range
(e.g., LoRa™ in the LoRaWAN specification). However, low-power wireless communica-
tion carries also some criticality, in that the link behavior is significantly affected by the
surrounding environment, thus rendering the effective deployment of low-power networks

extremely challenging.

Motivation. Almost two decades of developments in the context of WSNs enabled
their successful application in a number of real world deployments [145, 22, 96, 154,
92]. However, real-world deployments often reveal difficulties in effectively deploying and
managing such low-power networks, especially in outdoor scenarios [155, 87, 157, 57]. This
is mostly due to the variability and unpredictability of the link behavior. Due to the link
unpredictability costly trial-and-error pilot campaigns are required to understand where
and how to place the wireless nodes, in order to achieve a satisfactory deployment.

The variability of short-range low-power links in real-world deployments has been ex-
tensively observed [153, 142, 154, 92, 105, 125] and significant effort has been devoted
to its analysis [160, 161, 140, 43, 159, 88, 128, 117, 15]. This variability is imputable to
several reasons, mostly related to the fact that the communication quality is strongly af-
fected by the surrounding environment [69, 99, 144]. More precisely, the communication
performance is affected by both static and dynamic components. The static compo-
nents are the communication distance and the fixed characteristics of the deployment
environment, namely the presence and position of objects with size comparable to the
radio wavelength. These objects may obstruct the radio propagation and/or cause re-
flections, which in turn can constructively or disruptively affect the line-of-sight signal
(i.e., multipath effect). The dynamic components are due to variations in the weather
conditions (e.g., rain and temperature) [26, 27, 28, 18, 37, 9], multipath effects caused
by the presence of moving reflectors or screens (e.g., human body), and interference due
to concurrent transmissions [25, 16]. The static components determine a baseline on the
communication performance, on top of which the dynamic components act, i.e., given a
strong and a weak link in static conditions, the former is likely stronger than the latter
also in the presence of comparable dynamics. Therefore, understanding and modeling
the static components (i.e., the focus of this dissertation) can significantly support the
planning of outdoor deployments, which still remains a challenging task to accomplish in
practice.

In particular, the effectiveness of the device positioning, in terms of achievable com-
munication quality, is largely determined by the static elements that are present in the
environment. For instance, the deployment of a WSN in a forest (e.g., for a forest fire de-
tection application) is affected by the presence of trees, their position and their structural
characteristics (e.g., trunk diameter). Similarly, LoRa long-range communication perfor-

2



mance are different in a build-up urban area and in open farming fields. The deployment,
to be effective, should be tailored to the target environment. In this respect, both tools
for the in-field connectivity assessment [74, 55, 141] and deployment approaches based
on pilot connectivity measurements collected on-site [85, 129] are available. However,
their application requires costly in-field effort. Other planning approaches are aimed at
identifying a priori optimal device placements [83, 23|, but they mostly rely on oversim-
plified radio channel models and, therefore, perform poorly in real-world applications.
We survey the related work on the challenges posed by specific types of environments on
the different low-power wireless technologies we consider in this thesis in the correspon-
dent chapters. In general, low-power wireless models accounting for the static and locally

specific characteristics of outdoor deployment environments are lacking.

Combining remote sensing and low-power networks. In this dissertation, we pro-
pose to fill this gap exploiting Remote Sensing (RS) systems and related data process-
ing techniques. In particular, RS data can provide detailed and large-scale information
about the static characteristics of the target deployment area, as for instance position
and density of trees in a forest and/or fine-grained maps representing the land cover type
(e.g., buildings or farming fields). These characteristics can be extracted and exploited
in an automatic fashion, thus enabling a systematic analysis aimed at i) understanding
and modeling the impact of such characteristics on the communication performance; and
ii) developing effective network planning strategies. RS data are therefore intended by
us as a mean to derive prior knowledge about both the characteristics of the target de-
ployment environment and their effect on the communication. This prior knowledge may
provide insights on the reliability of the deployment, as well as models for simulation and
guidelines to support it.

Different RS systems exist, providing different types of data and information. Pas-
sive RS systems (e.g., multispectral and hyperspectral sensors) exploit the sun as source
of radiation that illuminates the scene under investigation and detect and measure the
radiation that is reflected by the objects in the scene in different spectral channels. By
processing the images generated by passive systems, information about the composition
of materials and the horizontal structure of the scene can be retrieved (e.g., land cover
classes can be identified by analyzing their spectral signature, up to the classification of
different species of trees [45, 53]). Active RS systems, e.g., Light Detection and rang-
ing (LiDAR) and Radio Detection and Ranging (RADAR), generate the source radia-
tion themselves and capture the geometrical characteristics of the scene, i.e., horizontal
and vertical structure, as well as the backscattering properties. Airborne LiDAR, for
instance, provides detailed 3D information about the structure of forests and their geom-
etry [97, 116, 17, 68, 111], allowing the estimation of tree metrics at the level of both single

3



CHAPTER 1. INTRODUCTION

tree (e.g., trunk diameter [68, 118]) as well as group of trees (e.g., tree density [108, 111]).
RS systems and WSNs have a huge potential for interplay. Indeed, they are often
applied to similar applications (e.g., environmental monitoring and surveillance). In ad-
dition, their fusion has been investigated in several studies (e.g., [114, 137]), which, how-
ever, mainly focus on combining data and/or information provided by the two technologies
about the investigated phenomena (e.g., in-situ measurements of physical parameters and
information derived from RS data). In contrast, their combination for the modeling of
low-power wireless communication w.r.t. the environment characteristics, which is the
subject of this thesis, has been only marginally explored [78, 6, 113].
Goal and contributions. This dissertation explores the potential of RS systems and
data to support the deployment of low-power networks in outdoor environments. The
general goal is:

leveraging RS data to model low-power wireless connectivity as a function of local
characteristics of the deployment environment, estimate those characteristics within
an automatic and scalable framework, and develop effective strategies for the deploy-
ment planning.

More specifically, the main contributions of this dissertation can be summarized as:

1. the definition of a conceptual framework aimed at exploiting RS data to assess a
priori the local characteristics of a target deployment environment, analyze, model
and predict their impact on low-power wireless communication over possibly large
and differing target areas, and define effective deployment strategies by enabling one
to explore the connectivity properties in an area of interest without having to run

pilot campaigns;

2. the definition of a specialized radio attenuation model for low-power short range
communication (i.e., IEEE 802.15.4 at 2.4 GHz) in forest environments exploiting a
LiDAR based representation of the forest structure;

3. the development of an automatic node placement approach for WSNs in forest
environments combining a LiDAR-based forest representation, a specialized radio
model and an evolutionary optimization algorithm to derive effective node place-
ment, prior to the deployment, accounting for both the structure of the target forest
and the user requirements;

4. the joint analysis of LoRa communication traces and land cover maps derived from
satellite multispectral images aimed at deriving LoRa connectivity models that ac-
count for the characteristics of the communication environment (e.g., presence of

buildings and farming fields along the communication path).
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Figure 1.1: From RS data and in-field connectivity traces to deployment planning.

The proposed conceptual framework is depicted in Figure 1.1, which summarizes
the three main successive steps leading to the achievement of the goal. We aim at exploit-
ing RS data as the base of this framework, leveraging their wide coverage and detail. The
research field of remote sensing systems and data processing is rather broad, we therefore
provide an high level overview of the RS systems that we use in this context in Chap-
ter 2, while the specific processing we apply for information extraction is detailed in the
following chapters. By processing the raw RS data (e.g., LIDAR data and multispectral
images) we can automatically estimate the attributes that characterize the deployment
environment, e.g., tree density and land cover types (step 1). Such attributes can then
be compared and analyzed together with real connectivity traces collected in the field, so
as to enable a systematic evaluation of their effects on links leading to understand their
role and importance in affecting communication performance (i.e., identifying which at-
tributes mainly affect low-power wireless links, to which extent, and how). The attributes
that result more significant in this perspective are then combined and exploited to define
and calibrate a radio propagation model, thus allowing the estimation of the expected
communication performance at specific locations (step 2). This model is then applied to
predict the link quality, according to a given placement of transmitters and receivers, or
to identify a favorable node placement among those possible in the target site, and, more
in general, to develop RS-based tools and strategies for deployment planning (step 3).

This process is entirely applied (from step 1 to step 3) to static WSN deployments
in forest environments. In this case, short range low-power communication at 2.4 GHz,
according to the IEEE 802.15.4 standard, is considered, with TMote Sky as reference
hardware platform. As we describe in Chapter 3, we leverage airborne Light Detection and
Ranging (LiDAR) instruments and related automatic data analysis systems to determine
local forest attributes (e.g., tree density) that, once factored into a specialized radio
path loss model, enable accurate estimation of the received signal power. The approach,
which is validated on connectivity traces collected in the field, is automatic, i.e., it does
not require in-field campaigns, and fine-grained, i.e., it enables per-link estimates.

Then, we develop an automatic node placement approach, called LaPS, to identify

5
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effective WSN node placements in the forest accounting for i) the forest characteristics;
i1) the related effect on communication; and 4ii) the user requirements. Exploiting in
combination a LiDAR-based representation of the forest structure, the specialized radio
path loss model and an evolutionary optimization method, LaPS provides placement solu-
tions automatically and prior to the actual deployment. Specifically, LaPS exploits genetic
algorithms to efficiently explore the space of possible placement solutions that satisfy the
requirements, evolving towards an optimized placement in the target forest area. This is
done by evaluating the fitness of placement configurations in terms of quality and num-
ber of the communication links available to network nodes, while honoring the spatial
and network requirements specified by the user. LaPS and the companion toolchain is
presented in Chapter 4.

In Chapter 5, we consider LoRa low-power long-range wireless technology and, unlike
802.15.4, we implement only the first steps of the conceptual framework, namely step 1
and partly step 2, taking advantage of existent radio path loss models. In particular, we
target the analysis of end-device to gateway communication in a mixed environment,
which presents build-up areas, farming fields and groups of trees. Multispectral images,
provided by the Sentinel-2 satellite constellation, are automatically processed to derive
information about the land-cover types that characterize such a diversified environment,
i.e., maps representing the land-cover classes (e.g. buildings, trees or farming fields) with
10 m spatial resolution. The land cover information is analyzed in combination with a set
of connectivity traces collected outdoor, through controlled experiments in The Things
Network (TTN), i.e., a LoRa-based open IoT network. Several insights about the impact
of the land covers on the communication performance are derived, which constitute the
premise for the definition of land-cover aware connectivity models for LoRa.

Finally, we conclude and explore possible venues for future research in Chapter 6.

We argue that the contribution of this thesis may significantly help the definition of
realistic low-power connectivity models for outdoor environments and support the devel-
opment of effective deployment strategies.



Chapter 2

Remote Sensing in a Nutshell

Remote Sensing (RS) systems measure the properties of surfaces and objects without
coming in direct contact with them. This is achieved by illuminating the scene under
investigation with a source of electromagnetic radiation and measuring, through sensors,
the radiation that is reflected by the objects in the scene. Sensors are usually mounted on
satellites, airplanes or UAVs, therefore acquiring data (mostly images) over wide areas.
By processing RS data many properties of the reflecting objects can be retrieved at a
large scale and automatically, and therefore with a limited cost in comparison to ground
campaigns. Different properties can be derived, depending on the type of system and
its specific characteristics [91, 34, 134]. Passive systems (i.e., optical systems) mostly
use the sun as source of radiation and they capture the spectral response of the objects
(spectral signature) in different spectral bands. The spectral response depends on the
physical properties of the objects (e.g., their material). Active systems as Light Detection
and Ranging (LiDAR) generate the source radiation themselves and mainly capture the
geometry of the scene under investigation, as well as the backscattering properties (in
terms of Laser Cross Section).

RS systems and data are exploited for a number of applications including forest analy-
sis and land cover mapping, i.e., the application domains we focus on in this dissertation.
In particular, we leverage airborne LiDAR data for forest analysis, in that it enables high-
precision estimation of tree and forest features [97, 116, 139, 68, 13, 82], and multispectral
satellite images for land-cover mapping, since by automatically classifying multispectral
images fine-grained land-cover maps can be derived [71, 103, 106]. We concisely summa-
rize the main characteristics of LIDAR and passive optical systems, and then motivate

their selection in the context of this work.
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LiDAR systems. LiDAR is an active system where the source of radiation (i.e., laser
pulses) is generated by the system itself. A laser scanner, usually mounted on an airplane,
transmits pulses with a nadir-looking geometry (i.e., towards the scene under investiga-
tion). Each pulse hits objects (e.g., trees) at different heights during its propagation, gen-
erating a reflection (called return) at every hit, that backpropagates towards the scanner.

The scanner measures the time elapsed be-

tween the transmission of the pulse and
> ;’i - the reception of its reflected component,

laser return signal | return as well as the intensity of the reflection.
waveform 0] distance

illumination
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Figure 2.1: Airborne LiDAR acquisition mech- SPaPe, size, and position of trees, whose

o precision is strictly dependent on the spa-
tial density of the emitted laser pulses in
the data acquisition phase.

LiDAR data have been extensively used for the estimation of forest structural pa-
rameters both at stand level (i.e., by considering groups of trees) [72, 108] and single-tree
level [68, 82] (e.g., tree height or trunk diameter at breast height). The most accurate esti-
mates of forest parameters are achieved with high-density LIDAR data (i.e., >5 points/m?).

An example of high density LiDAR data is shown in Figure 2.2.

Figure 2.2: Sample of high density LiDAR data acquired in Trentino, Italy.



Passive systems. Passive systems (e.g., multispectral and hyperspectral scanners) are
passive sensors that exploit the sun as source of electromagnetic radiation. They mea-
sure the radiation that is reflected by the surface under investigation in different spectral
bands. Objects with different physical properties have different reflection characteristics
in the different bands (i.e., different spectral signatures). As a consequence they can be
detected and identified by analyzing the spectral behavior of their reflections. Multispec-
tral systems measure the reflected radiation in 3 to about 13 spectral bands and such
measurement is represented in multispectral images (see Figure 2.3). In contrast, hyper-
spectral systems measure the reflection in hundreds of narrow bands providing very high
spectral resolution (i.e., very precise spectral signatures) at the cost of reduced spatial
resolution. For this reason, in this work we focus on high spatial resolution multispectral
images, which can be acquired over wide areas at a low cost. In particular, the Sentinel-2
(S2) satellite constellation provides multispectral global coverage with very high revisit
frequency (i.e., 5 days at the equator) and high spatial resolution (i.e., 10 m), with the
Copernicus open access platform making available the images for free. An example of
Sentinel-2 multispectral image is shown in Figure 2.4. In particular, Figure 2.4a represents
the true color composition of the bands Red, Green and Blue and Figure 2.4b represents
the false color composition of the bands NearInfraRed, Red and Green. Their comparison
shows how different materials and types of objects display different reflection properties
in the different spectral channels. Multispectral satellite images are widely applied to
large-scale monitoring of the Earth surface and they are exploited for a variety of services
as land-cover and land-use mapping [71, 103, 51] and detection of changes [94, 119, 91].
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Figure 2.3: Multispectral and hyperspectral imaging.
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Figure 2.4: Sentinel-2 multispectral image acquired over The Netherlands. True color composi-
tion of the bands Red, Green and Blue (a) and false color composition of the bands NearInfraRed,
Red and Green.

Selection of Remote Sensing data. In this work, we aim at leveraging RS data to
model: i) the effect of the structural characteristics of forests on low-power short range
wireless communication; and i) the effect of mixed environments (e.g., urban and rural)

on low-power long range LoRa communication.

In the context of forest analysis, the RS techniques most commonly used are passive
optical systems and active LiDAR systems [97, 116, 139, 68, 13, 82]. Optical systems
(either multispectral or hyperspectral) represent mostly the horizontal structure of forests,
and are therefore suited for the identification of forest areas and for the classification of
tree species. In contrast, airborne LIDAR provides detailed three-dimensional information
about the forest structure [97, 116, 68, 82|, thus enabling the accurate estimation of the
structural parameters of trees. For this reason, we focus on LiDAR only to characterize
the forest environment. However, optical instruments, despite providing little information
about the vertical structure of the forest, can be an alternative to LIDAR data, since their
lower precision is compensated by a lower cost. their free availability. Further, the two
technologies can be seen as complementary. The spectral information provided by passive
systems, depending on the spatial and spectral resolution, may allow us to identify forest
areas, classify tree species, or quantify the amount of green leaves in the canopy [53, 45].
The work in [115] explores the joint use of the two technologies, studying the tradeoffs
between cost of data and accuracy of the forest parameter estimation. In this work we
consider only LiDAR due to the high level of detail it provides w.r.t. forest structural
description (both horizontal and vertical); the possibilities opened by its integration with
optical data is part of our planned future work.

10



To characterize the impact of the environment on LoRa communication, we take into
account that LoRa communication range is in the order of kilometers. Therefore, the
communication links traverse different types of area (e.g., built-up areas, farming fields
and groups of trees), which affect differently the communication performance. In this
context, the availability of Sentinel-2 multispectral images at global scale and every few
days constitutes an asset, in that by classifying multispectral images we can automatically
identify different land-cover classes (e.g., Building, Trees and Fields), exploiting their
different spectral response [71, 103, 131, 134, 34]. Accurate land cover maps can be
derived to represent the type of environment which is traversed by LoRa communication
links, thus characterizing with high spatial detail (i.e., with spatial granularity 10x10 m?)

the diversified LoRa communication environment.
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Chapter 3

LiDAR to Estimate Signal Attenua-

tion in Forests

The last decade witnessed a surge of applications where low-power wireless communica-
tion is employed to monitor natural ecosystems. In most cases, wireless sensor networks
(WSNs) are deployed to either study a given environment [22] or habitat [96], or to protect
it by detecting hazards such as forest fires [67]. Recently, however, low-power wireless has
been employed also as a means to detect proximity among the wildlife that dwells in the
natural environment [123, 121].

To these scenarios, low-power wireless communication brings unprecedented flexibility.
However, it also brings a great deal of complication, due to the fact that its performance,
critical to system operation, are strictly dependent on the specific environment. For in-
stance, in the former case of a WSN with fixed nodes, its planning (number and position
of nodes) must take into account the target environment and its effect on network per-
formance. However, a similar issue arises also in the aforementioned proximity detection
studies where the animal-borne low-power wireless nodes act as a “proximity sensor”,
recording beacons exchanged among nodes. Again, the distance at which detection may
occur strongly depends on the environment, and changes based on the movement patterns
of the animal; knowledge about its impact is key to enable a correct scientific inference
from proximity data.

These problems are exacerbated in the forest environment, our focus in this chap-
ter, where the heterogeneous vegetation creates local effects that amplify complexity.

This long-standing issue is a barrier to environmental scientists willing to adopt WSN

The contents of this chapter have been originally published in: “Estimating low-power radio signal
attenuation in forests: A LiDAR-based approach”, Demetri Silvia, Picco Gian Pietro, and Bruzzone
Lorenzo, in Distributed Computing in Sensor Systems (DCOSS), 2015 International Conference on (pp. 71-80).
IEEE.
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technology, leaving them with the sole option of engaging in effort-demanding pilot de-
ployments [62, 99, 92].

Indeed, despite the large literature on radio propagation in the presence of vegetation,
the problem of deriving accurate estimates for low-power wireless is still largely unsolved.
The majority of existing approaches rely on distance as the main parameter affecting per-
formance, implicitly assuming a homogeneous environment in the target area. However, it
is well-known that this assumption does not hold in general for low-power wireless [140].
In the case of forests, vegetation and its heterogeneity (in species and/or density) are
the dominant factor determining performance, as confirmed empirically by a few studies.
Marfievici et al. [99] report significant differences among species, assessed by directly im-
mersing the same WSN deployment (i.e., same nodes and topology) in different forests.
Liu et al. [92] observe, in a single large-scale deployment, that despite the regular place-
ment of nodes, the irregularity of the forest makes the radio signal propagation irregular,
and the network behavior largely unpredictable.

These aspects are only partly accounted for in existing radio propagation models tai-
lored to forests, which carry two main limitations:

1. they assume a priori knowledge of vegetation attributes, whose estimation process
remains often undefined, and in practice is commonly performed by means of costly
in-field observations—therefore, the problem is simply moved to a different layer;

2. the estimation of vegetation attributes is typically coarse-grained, spanning relatively
large areas; in principle, instead, a fine-grained estimate on a per-link basis would
be desirable, given the high level of variation observed in the forest environment.

In this chapter, we propose a solution to both problems based on remote sensing,
a technology already applied to forest monitoring. Remote sensing systems, typically
satellite-based or airborne, acquire data (e.g., images) over wide areas and, through sig-
nal processing techniques, enable fine-grained, automatic estimation of tree and forest
attributes. Here, we focus on a specific technology, Light Detection and Ranging (Li-
DAR), whose characteristics we concisely summarized in Chapter 2. The use of LiDAR
data allows us to:

1. estimate forest attributes through automatic data analysis, therefore removing the
need for in-field campaigns;

2. derive estimates that are very precise, to the point of identifying, e.g., the position
of each individual tree and its diameter. We exploit this rich information to enable
fine-grained estimates on a per-link basis, i.e., accounting for the presence of trees
on each link.

In Section 3.1, we concisely survey the state of the art on radio propagation models

accounting for the presence of vegetation. Our approach is described in Section 3.2. The
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starting point is an existing path loss model [14], itself an extension of the common log-
normal one, that i) takes explicitly into account the impact of trees on communication,
and 4i) assumes that the latter occurs at trunk level—a common choice in several of
the aforementioned WSN deployment scenarios. The model in [14] relies on a vegetation
index (VD) that depends on the average tree density and diameter throughout the area
of interest, that are assumed to be known a priori. Our first contribution is the definition
of a processing chain that, based on LiDAR data, automatically and accurately estimates
these forest attributes. However, we show that, based on these attributes, significantly
better estimates of the received signal power can be achieved. Instead of averaging these
attributes over a macro-area, we perform a fine-grained analysis where the impact of trees
is ascertained only around each individual link, therefore enabling more accurate, per-link
estimates. In particular, this allows us to determine whether a link enjoys a clean line of
sight, and therefore a free space path loss model is a better fit, or instead it is obstructed
by trees.

The accuracy of our approach in general, and of per-link estimates in particular, is eval-
uated in Section 3.3 based on small-scale WSN deployments where we gather RSSI (Re-
ceived Signal Strength Indicator) traces in an area where both LiDAR data and human-
derived ground truth are available. Our results show that the accuracy we obtain with
our per-link approach is significantly superior to existing approaches, including the model
in [14], automatically tuned with our LiDAR-based approach. Specifically, accuracy is
largely within +6 dBm—the accuracy of RSSI readings from the radio transceiver.

3.1 Related Work

The potential of low-power wireless communications to enable unobtrusive and dense
monitoring led to a number of real-world deployments in natural scenarios [22, 96, 121].
However, the connectivity assessment before deploying the network proved to be extremely
difficult in harsh environments, with both pre-deployment network planning and data
interpretation practices lacking of proper support. Although the node placement problem
has been addressed by the WSN community [158, 84, 6], the proposed approaches are
often based on non-realistic assumptions (e.g., isotropic communication range), rarely
satisfied in real outdoor settings. Several studies report about the experimental evidence
of the environment effect on WSN links [99, 92, 154, 40], including the impact of trees
on communication performance when forests are considered. This experimental evidence,
together with the lack of methods for a priori connectivity assessment suitable in forest

environments, motivate our investigation.

Over the last decades, several radio propagation models accounting for the presence
of vegetation have been presented. The theoretical approach at the base of mechanistics
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models [130] involves the solution of Maxwell’s equations with boundary conditions for
each source of scattering along the propagation path. This approach is complex and often
not applicable in practice. Therefore, several approximate and simpler empirical models,
including the Weissberger [152] and COST 235 [101] models, which we describe in Sec-
tion 3.3.4, have been developed. These models, however, are developed for scenarios in
which communication links are distant from the ground and traverse the canopy. There-
fore, they are not appropriate for the aforementioned common WSN applications, which
rely on links that are closer to the ground and traverse the forest at the level of its trunks,
as we show in Section 3.3.4.

Another conventional approach is based on the log-normal path loss model [126]. As
we discuss in Section 3.2.1, the critical aspect in its application is the estimation of its
parameters, whose values are strictly dependent on the specific environment being con-
sidered. These parameters are usually determined empirically by regression analysis of
in-field measurements. As a consequence, results are site-specific and suitable only for
environments very similar to those where measurements were performed [143]. This ap-
proach has been applied for instance in [58], which specifically focused on the ISM radio
bands used by WSNs, and considers propagation paths relatively near to the ground,
mainly affected by trunks. The authors explicitly consider situations where trees are ob-
structing the line of sight between transmitter and receiver nodes, deriving distinct models
for different obstruction configurations. Nevertheless, these models still lack generality,

being based on regressions from location-specific measurements.

To the best of our knowledge only two works [6, 78] mention explicitly the use of re-
mote sensing in support to WSN deployments. In [6], LIDAR is mentioned as a source of
information to characterize forests and trees. However, the whereabouts of information
extraction are entirely neglected; LiDAR is simply one of the possible inputs to the 3D
grid-based algorithm for deploying relay nodes, which is the focus of the paper. A sim-
plistic radio model is considered for simulations, where nodes have a fixed and isotropic
transmission range that is assumed to depend on the average tree height over the area of

interest.

The analysis presented in [78], instead, is closely related to our work since it focuses
on RS-based techniques for path loss prediction. The authors investigate the relationship
between the path loss exponent n and vegetation indexes derived from Landsat 8 satellite
multispectral images. These indexes (e.g., the Normalized Difference Vegetation Index,
NDVI) are “greenness indicators” denoting the amount of live green vegetation. The
“green” part of plants absorbs the solar radiation in the visible (red) spectral bands
and reflects it in the near-infrared band; NDVI is computed as the normalized difference
between the two. The spatial granularity of the analysis is inherently determined by the

16



3.2. APPROACH

geometrical resolution of the images used, which represents the side of the ground area
covered by each image pixel. This resolution is 30 m for Landsat 8—a far cry from the
50 cm used in our work. The work also partly uses a dataset estimated from even lower-
resolution (250 m) MODIS images. The correlation between NDVT and path loss exponent
is obtained by regression from RSSI measurements collected in a WSN deployment in an
aspen boreal forest. However, this correlation appears to hold only when trees are in-
leaf. Arguably, during the out-of-leaf period the amount of green leaves of the canopy is
no longer the main factor affecting the communication, especially in a site characterized
by deciduous trees and dense understory. In these conditions other factors predominate,

which cannot be captured by the proposed greenness indicators.

3.2 Approach

Several models for radio propagation through vegetation have been proposed, both mech-
anistic [130] and empirical [101, 152, 143, 14, 58], as discussed in Section 3.1. The work
we describe here is based on the empirical model in [14], as it shares our focus on commu-
nication at the trunk level. This model is an extension of the log-normal path loss model,
where its parameters are expressed as a function of local forest attributes, based on a large
set of measurements in forests with different species. However, this model (and most of
the literature) assumes that vegetation is uniform in the area where radio attenuation
must be estimated—an overly optimistic assumption that leads to imprecise estimates of
the connectivity among individual links.
In the rest of this section we illustrate our remote sensing approach, based on LiDAR
data and signal processing techniques. We overcome the two limitations above by:
1. estimating the model coefficients via automatic forest attribute extraction, which
can be reliably performed over large areas without in-field campaigns;
2. providing fine-grained, per-link analysis of radio signal attenuation, greatly improv-
ing the overall accuracy of the resulting estimates, as shown quantitatively in Sec-
tion 3.3.

3.2.1 Radio Signal Propagation in a Forest
The widely adopted log-normal path loss model [126] is defined in Equation (3.1) and
d
PL[dB] = PL(dy) + 10 - n - log (d—> + X, (3.1)
0

describes both the logarithmic decay of the average signal power as a function of the
distance d from a transmitter and the random variation of the received power around
the average. The level of attenuation in the signal power is modeled as a function of
three main parameters: i) PL(dy), the path loss at a known reference distance dy in the
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far field; 4i) n, the path loss exponent representing the attenuation rate w.r.t. distance;
i11) o, the standard deviation of a zero-mean Gaussian random variable X representing
the variation around the average.

These parameters are strictly dependent on the environment at hand. Their value is
difficult to determine in general due to the wide variability of the characteristics of the
environment itself. In our case, trees are known to cause scattering, reflection, diffraction
and absorption phenomena, depending on the radio frequency, the size of trunks, branches
and leaves, and the path interception materials. Therefore, these parameters are usually
estimated empirically, by curve fitting on large amounts of measurements collected in the
target location [58].

Azevedo et al. [14] observed a linear relation between the path loss model parame-
ters and the local vegetation characteristics. For instance, for our frequency of interest
f = 2.4 GHz, the parameters of the log-normal path loss model take the form:

PL(dy) = —0.82-VD+40.1
n = 0.1717- VD + 2.2043 (3.2)
o = 44

where path loss parameters are expressed as a linear function of a vegetation index VD
defined exclusively as a function of detailed local vegetation attributes. Indeed, VD is
defined as

VD =TD-D (3.3)

where TD [trees/m?| is the average density of trees, and D [cm)] is the average diameter
of their trunks.

This is a significant advancement w.r.t. the problem of predicting the impact of veg-
etation on wireless communication. However, one key piece of information enabling the
practical application of this model is missing in [14]: how to estimate the vegetation
index VD reliably and cheaply. This is precisely what we address next, as one of the

contributions of our work.
3.2.2 Determining Forest Attributes with LIDAR

We estimate the average diameter D and density 7'D of trees in an automatic fashion by
processing high-density raw LiDAR data. The latter are actually LiDAR returns, which
can be visualized as three-dimensional point clouds. An example is shown in Figure 3.2a,
where each point represents the height at which the forest trees or ground were hit by the
laser pulse.

These raw LiDAR data points are processed automatically, yielding a map in which
each individual tree is represented, along with its attributes of position and trunk diam-
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