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General Abstract 

The present thesis is a collection of contributions concerning the application of the 

clearing principle in real and financial markets. In particular, two issues are 

deepened. The first concerns the effect of bilateral clearing of interbank deposits in 

the reduction of systemic risk. The second focuses on the endogenous formation 

process of clearing houses that manage payments. The methodology applied in the 

three contributions is the network analysis combined with agent-based models and 

computer simulations. The work is structured in four sections. The first defines and 

describes the more popular clearing agreements from a legal and economic point of 

view and provides a presentation of the three collected papers. The second section 

investigates the effect of bilateral netting on financial stability during a liquidity 

crisis. The third section analyzes how bilateral netting affects the resilience of an 

interbank credit network in the event of a shock affecting the assets of an 

intermediary. The fourth section analyzes the endogenous formation of clearing 

houses in both corporate barter circuits and interbank payment networks. 
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Long Abstract 

This thesis is a collection of contributions developed during the Phd program at the 

University of Trento under the supervision of Prof. Edoardo Gaffeo. The red thread 

that binds these contributions is the compensation mechanism and the application 

of the network analysis to credit network investigation, respectively from the 

theoretial and methodological point of view. 

 

The work is structured in 4 sections. The first introductory section deals with a 

presentation of bilateral and multilateral netting agreements. In particular, an 

overview of the regulatory environment and the economic rationality of these 

agreements is provided first. The introduction continues developing a presentation 

of the network analysis as a methodology applied to the investigation of credit 

networks in which the prerequisites for reading the three documents are found. 

Lastly, we introduce the three contributions collected with a general overview of 

the issues explored in each of them. 

 

The first contribution examines the impact of the On Balance Sheet (OnBS) 

bilateral netting on the systemic risk in contexts of liquidity crisis. In particular, we 

compare the performance of a mandatory enforcement of several types of OnBS 

netting agreements to the one of the gross standard settlement for different metrics 

mapping the financial stability. So placed, the identification of the optimal policy 

proposal becomes a multi-objective maximization problem. To this end, we have 

identified the M.O.O.R.A (multi-objective optimization on the basis of ratio 

analysis) method as a tool to discriminate the various treatments. Finally, we find 

that a mandatory policy to bilaterally net mutual interbank exposures between the 

shocked and the unshocked banks is the the optimal policy option for a wide array 

of parameters and topologies tested.   In addition to enriching the crisis management 

literature, this contribution is part of the research stream that investigates the 

development of financial crises and systemic resilience through the application of 

static networks. Specifically within the literature that uses fixed point algorithms à 

la Eisenberg and Noe (2001) and Lee (2013). 

The second contribution investigates the impact of a mandatory enforcement of the 

OnBS bilateral netting on the financial stability for crisis situations generated by 

shock that originates on the external assets of a bank intermediary. To this end, we 

compare contagion dynamics under OnBS netting and a standard gross settlement 

through the lenses of a mean-field model and computer simulations. We found that 

OnBS netting tends to reduce the number of defaults, preserves the aggregate 

amount of bank capital and takes its toll on retail deposits. Hence, our analysis 

provides support for a policy mix that combines bilateral netting with a national 

insurance scheme for retail deposits. This contribution is included in the literature 

that investigates the default cascades through the application of the static credit 
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networks. In particular, within the class of models that uses the Furfine’s algorithm 

(2003). 

 

The third contribution deals with the endogenous formation of clearing houses in 

real and financial environments. More precisely, the formation process of the 

clearing houses is investigated as an act of coordination among agents by means of 

an agent based model and computer simulations. In particular, the conditions for 

the formation of clearing houses within real and financial payment networks are 

investigated. The first case concerns the creation of corporate barter circuits, the 

second investigates the development of clearing houses that managed interbank 

payments in the Free Banking America. We find out that the clearing houses 

activation is critically affected by the presence of transaction costs, spatial frictions, 

business cycles and credit network topologies. Given the heterogeneity of the cases 

presented, our work can be inserted into different strands of literature such as those 

dealing with credit networks, clearing houses, trade credit, institutional and 

monetary economics. 

 

 

 

 

 

 

 

 

 

 

  



5 

  

 

 

  



6 

  

Table of Contents 

Introduction .............................................................................................................. page 16  

    Payment system and settlement modes .................................................................. page 17 

    Bilateral netting ...................................................................................................... page 18 

    Multilateral netting ................................................................................................. page 22 

    Methodology .......................................................................................................... page 24 

    Papers overview ..................................................................................................... page 30 

    References .............................................................................................................. page 40 

First Contribution. Bilateral netting and systemic liquidity shortages in banking networks

 .................................................................................................................................... page 41 

    Introduction ............................................................................................................ page 41 

    Netting as a systemic crisis management tool ........................................................ page 45 

    The model ............................................................................................................... page 49 

    Random networks ................................................................................................... page 59 

    Disassortative networks .......................................................................................... page 63 

    Concluding remarks ............................................................................................... page 69 

    References… .......................................................................................................... page 70 

Second Contribution. The economics of netting in financial networks ............... page 73 

    Introduction ............................................................................................................ page 73 

    Literature review .................................................................................................... page 74 

    How bilateral netting works ................................................................................... page 76 

    Netting in random networks ................................................................................... page 80 

    Core-periphery networks ........................................................................................ page 92 

    Concluding remarks ............................................................................................... page 95 

    References .............................................................................................................. page 97 

    Appendix ................................................................................................................ page 99 



7 

  

Third Contribution. Endogenous clearing house formation in real and financial markets

 .................................................................................................................................... page 123 

    Introduction and literature review .......................................................................... page 123 

    The model ............................................................................................................... page 128 

    Simulation outputs .................................................................................................. page 136 

    Potential of clearing ............................................................................................... page 141 

   Free banking case ................................................................................................... page 142 

    Concluding remarks ............................................................................................... page 146 

   References .............................................................................................................. page 147 

    Appendix ................................................................................................................ page 149 

 

 



8 

  

List of Tables 

INTRODUCTION 

Table 4.1. Indexes and definitions ............................................................................. page 28 

FIRST CONTRIBUTION 

Table 3.1. Stylized balance sheet and identification analytic .................................... page 49 

Table 3.2. Summarizing treatments ............................................................................ page 55 

Table 3.3. M.O.O.R.A. objectives setting .................................................................. page 58 

Table 3.4. Overview of the simulation framework .................................................... page 58 

Table 4.1. Parameters and calibration for the Erdős–Renyi topology ....................... page 59 

Table 4.2. M.O.O.R.A simulation parameters and calibration for the Erdős–Rényi topology.

 .................................................................................................................................... page 61 

Table 5.1. Parameters and calibration for the small-world topology ......................... page 63 

Table 5.2. M.O.O.R.A simulation parameters and calibration for the Small World topology

 .................................................................................................................................... page 64 

Table 5.3. Parameters and calibration for the core-periphery topology  .................... page 66 

Table 5.4. M.O.O.R.A. simulation parameters and calibration for the Core-Periphery topology. 

Parameters not reported are equal to the ones employed in the Erdős–Rényi case. .. page 67 

 

SECOND CONTRIBUTION 

Table 4.1. Stylized balance sheet of a bank ............................................................... page 84 

Table 4.2. Metrics overview ....................................................................................... page 86 

Table 4.3. Parameter values for benchmark simulations ........................................... page 87 

Table 4.4. Deposits loss concentration for homogeneous loans ................................ page 89 

Table 4.5. Deposits loss concentration for heterogeneous loans ................................ page 91 

Table 5.1. Parameter values for simulations, core-periphery networks ..................... page 93 

Table 5.2. Deposits loss concentration for core periphery ......................................... page 95 

Table A.2.1 Graphs presentation summary. ............................................................... page 101 

 



9 

  

THIRD CONTRIBUTION 

Table 1.1. Principles and settlement modes ............................................................... page 121 

Table 3.1. Parameters values (GS-MNS) ................................................................... page 137 

Table 3.2. Outputs for homogeneous topology (GS-MNS). The table shows the mean and the 

variance of the number of clearing houses activated. ................................................ page 138 

Table 5.1. Parameters values (BNS-MNS) ................................................................ page 143 

Table 5.2. Simulation outputs (BNS-MNS). The table shows the mean and the variance of the 

number of clearing houses activated. ......................................................................... page 144 

Table A.1. Number of clearing houses for concentrated topology (GS-MNS). The table shows 

the mean and the variance of the number of clearing houses activated. .................... page 149 

Table A.2. Number of clearing houses, without spatial friction (GS-MNS). The table shows the 

mean of the number of clearing houses activated. ..................................................... page 150 

Table A.3. Volume of clearing, without spatial friction (GS-MNS). The Table shows the 

percentage portion of credits handled by the clearing houses of size 6 in the first row. For the 

other sizes the table represents the percentage portion of the credits remained after the extraction 

procedure of the previous size managed by the clearing houses.   ............................. page 151

 

 

 

 

 

 

 

 

 

 



10 

  

List of Figures 

INTRODUCTION 

Figure 2.1. Settlement Netting ............................................................................................................. page 19 

Figure 2.2. a) Before Novation Netting ................................................................................................ page 20 

Figure 2.2. b) After Novation Netting .................................................................................................. page 20 

Figure 2.3. a) Before Closing out netting ............................................................................................. page 22 

Figure 2.3. b) After Closing out netting ............................................................................................... page 22 

Figure 3.1. a) Before multilateral netting ............................................................................................. page 23 

Figure 3.1. b) After multilateral netting ............................................................................................... page 23 

Figure 4.1. Adjacency Matrix. ............................................................................................................. page 24 

Figure 4.2. Matrices A and B respectively identify an undirected and a directed network .................. page 25 

Figure 4.3. Matrices C and D respectively identify an undirected and a directed weighted network .. page 25 

Figure 4.4. Erdos Renyi random networks. The graphs A, B and C are generated respectively by (N=25; p=0.1), 

(N=25; p=0.2) and (N=25; p=0.3) ........................................................................................................ page 26 

Figure 4.5. The graph a is a lattice ring with 4 connections per node. The graph b is the same as a except for the 

re-wiring of 3 connections. .................................................................................................................. page 27 

Figure 4.6. Watts and Strogatz random network generated by (N=25; β=0.3). ................................... page 27 

Figure 4.7. Barabasi and Albert random networks composed of a)100 b)75 c)50 nodes ..................... page 28 

Figure 5.1. The balance sheets ............................................................................................................. page 31 

Figure 5.2. The shock and the beginning of the contagion .................................................................. page 31 

Figure 5.3. Contagion dynamic ............................................................................................................ page 32 

Figure 5.4. Netting procedure .............................................................................................................. page 33 

Figure 5.5. The shock and the contagion process ................................................................................. page 34 

Figure 5.6. Balance sheets .................................................................................................................... page 35 

Figure 5.7. Asset shock on Bank A ...................................................................................................... page 35 

Figure 5.8. Beginning of the Contagion ............................................................................................... page 36 

Figure 5.9. Netting procedure and shock on Bank A ........................................................................... page 37 

Figure 5.10. Contagion process ............................................................................................................ page 37  



11 

  

FIRST CONTRIBUTION 

Figure 2.1.Upper graph) Values ρ= 
∑ (𝑎𝑖𝑗−�̅�)(𝑎𝑗𝑖−�̅�)𝑖≠𝑗

∑ (𝑎𝑖𝑗−�̅�)
2

𝑖≠𝑗

of for the German interbank market (DEU) over the period 

2002:Q1-2012:Q3.Lower graph) Values of 𝑟 =
𝐿↔

𝐿
   for the Euro-area e-MID market (E-MID) over the period 

2002:Q1-2012:Q3.Sources: Roukny et al. (2014) and Brandi et al. (2016), respectively………………..page 46  

Figure 3.1. Different topologies for the lending (summation over rows) portion of the interbank market. (a): Erdős–

Renyi network, with a common probability of attachment p = 0.2; (b): Small-world network; Lattice ring with 2 

connections per node and β=0.3 (c): Core-periphery network, with probabilities of attachment for core and 

periphery banks equal to pl = 0.8 and psl = 0.2, respectively. Core banks are red coloured. .................... page 52 

 

Figure 4.1. Performance profiles over the interconnectedness spectrum for the different crisis management options, 

when the topology of the interbank market is Erdős–Rényi. The case analysed is for 4 distressed banks due to a 

25% deposit withdrawal each. In the first quadrant the Troubled Banks metric, in the second the Liquidity 

Shortages, in the third the Distance to Illiquidity and in the fourth the Depth of Interbank Market ......... page 60 

Figure 4.2 M.O.O.R.A outputs. Each treatment is tested against the standard gross settlement when the topology 

of the interbank market is Erdős–Rényi. The three axis dimensions are the number of the shocked banks (range 4-

20), the percentage probability of connection between nodes and the M.O.O.R.A overall 

performance……………………………………………………………………………………..………..page 62 

Figure 5.1. Performance profiles over the interconnectedness spectrum for the different crisis management options 

(β parameter on x axis), when the topology of the interbank market is small-world. The case analysed is for 4 

distressed banks due to a 25% deposit withdrawal each. In the first quadrant the Troubled Banks metric, in the 

second the Liquidity Shortages, in the third the Distance to Illiquidity and in the fourth the Depth of Interbank 

Market. ...................................................................................................................................................... page 64 

Figure 5.2 MOORA outputs. Each treatment is tested against the standard gross settlement when the topology of 

the interbank market is Small-World. The three axis dimensions are the number of the shocked banks (range 4-

20), the beta re-wiring probability between nodes and the MOORA overall performance.. ..................... page 65 

Figure 5.3. Performance profiles over the interconnectedness spectrum for the different crisis management options, 

when the topology of the interbank market is core-periphery. The case analysed is for 4 hub banks disturbed by a 

25% deposit withdrawal each. In the first quadrant the Troubled Banks metric, in the second the Liquidity 

Shortages, in the third the Distance to Illiquidity and in the fourth the Depth of Interbank Market ......... page 67 

Figure 5.4 M.O.O.R.A outputs. Each treatment is tested against the standard gross settlement when the topology 

of the interbank market is Core Periphery. The three axis dimensions are the number of the shocked banks (C=core 

bank, P=peripherals bank), the connection probability of the hub nodes and the MOORA overall performance.

 .................................................................................................................................................................. page 68



12 

  

SECOND CONTRIBUTION 

Figure 3.1. Complete network ................................................................................................................... page 77 

Figure 3.2. Complete network with homogeneous loans after netting ...................................................... page 77 

Figure 3.3. Complete network with heterogeneous loans after netting ..................................................... page 78 

Figure 3.4. Disconnected network............................................................................................................. page 78 

Figure 3.5. Circular network ..................................................................................................................... page 79 

Figure 3.6. Core-periphery network .......................................................................................................... page 79 

Figure 3.7. Core-periphery after netting .................................................................................................... page 80 

Figure 4.1. The blue light-shaded area represents the increase of second-round imported losses associated to netting, 

expressed as a region of interbank lending  and tangible capital e .......................................................... page 84 

Figure 4.2. Default profiles, homogeneous loans ...................................................................................... page 86 

Figure 4.3. Capital erosion profiles, homogeneous loans ......................................................................... page 87 

Figure 4.4. Deposit erosion profiles, homogeneous loans ......................................................................... page 89 

Figure 4.5. Default profiles, heterogeneous loans ..................................................................................... page 90 

Figure 4.6. Capital erosion profiles, heterogeneous loans ......................................................................... page 91 

Figure 4.7. Deposit erosion profiles, heterogeneous loans ........................................................................ page 91 

Figure 5.1 The figure shows the default dynamics when a shock hits a large hub bank or a small peripheral one for 

the two treatments. Large shock. Parameters: α=0.5, ȵ=0.5 and γ =0.03. ................................................. page 94 

Figure 5.2.  Capital erosion profiles for all level of capitalization and for all treatments. Large shock. Parameters: 

α=0,5 and ȵ=0,5. ....................................................................................................................................... page 94 

Figure 5.3.  Deposit erosion profiles. Large shock. Parameters: α=0,5 and ȵ=0,5. The figure includes the dynamics for 

all levels of capitalization and for all treatments. ............................................................................................. Page 95 

Figure 5.4. The figure shows the default dynamics when a shock hits a large hub bank or a small peripheral one for 

the two treatments. Small shock. Parameters: α=0.5, ȵ=0.5 and γ =0.03. ................................................. page 96 

Figure A2.1. Default dynamics large and small banks. Medium shock (100%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,03 ......................................................................................................................................................... page 102 

Figure A2.2. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,045 ....................................................................................................................................................... page 103 

Figure A2.3. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,045 ....................................................................................................................................................... page 103 

Figure A2.4. Default dynamics large and small banks. Small shock (50%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,045 ....................................................................................................................................................... page 104 

Figure A2.5. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,06 ......................................................................................................................................................... page 104 



13 

  

Figure A2.6. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,06  ........................................................................................................................................................ page 105 

Figure A2.7. Default dynamics large and small banks. Small shock (100%). Parameters: α=0,5 ȵ=0,5 and capital γ 

=0,06 ......................................................................................................................................................... page 105 

Figure A2.8. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,03 ......................................................................................................................................................... page 106 

Figure A2.9. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,03 ......................................................................................................................................................... page 106 

Figure A2.10. Default dynamics large and small banks. Small shock (25%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,03 ......................................................................................................................................................... page 107 

Figure A2.11. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,045 ....................................................................................................................................................... page 107 

Figure A2.12. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,045 ....................................................................................................................................................... page 108 

Figure A2.13. Default dynamics large and small banks. Small shock (25%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,045 ....................................................................................................................................................... page 108 

Figure A.14. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,06 ......................................................................................................................................................... page 109 

Figure A.15. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,06 ......................................................................................................................................................... page 109 

Figure A.16. Default dynamics large and small banks. Small shock (25%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,06 ......................................................................................................................................................... page 110 

Figure A.17. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,03 ......................................................................................................................................................... page 110 

Figure A.18. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,03 ......................................................................................................................................................... page 111 

Figure A.19. Default dynamics large and small banks. Small shock (25%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,03 ......................................................................................................................................................... page 111 

Figure A.20. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,045 ....................................................................................................................................................... page 112 

Figure A.21. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,045 ....................................................................................................................................................... page 112 

Figure A.22. Default dynamics large and small banks. Small shock (250%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,045 ....................................................................................................................................................... page 113 

Figure A.23. Default dynamics large and small banks. Big shock (100%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,06 ......................................................................................................................................................... page 113 

Figure A.24. Default dynamics large and small banks. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,06 ......................................................................................................................................................... page 114 



14 

  

Figure A.25. Default dynamics large and small banks. Small shock (25%). Parameters: α=0,4 ȵ=0,6 and capital γ 

=0,06 ......................................................................................................................................................... page 114 

Figure A.26. Capital erosion. Medium shock (50%). Parameters: α=0,5 ȵ=0,5 ....................................... page 115 

Figure A.27. Capital erosion. Small shock (25%). Parameters: α=0,5 ȵ=0,5 ............................................ page 115 

Figure A.28. Capital erosion. Big shock (100%). Parameters: α=0,4 ȵ=0,6 ............................................. page 116 

Figure A.29. Capital erosion. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 ....................................... page 116 

Figure A.30. Capital erosion. Small shock (25%). Parameters: α=0,4 ȵ=0,6 ............................................ page 117 

Figure A.31. Capital erosion. Big shock (100%). Parameters: α=0,3 ȵ=0,7 ............................................. page 117 

Figure A.32. Capital erosion. Medium shock (50%). Parameters: α=0,3 ȵ=0,7 ....................................... page 118 

Figure A.33. Capital erosion. Small shock (25%). Parameters: α=0,3 ȵ=0,7 ............................................ page 118 

Figure A.34. Deposit absorption. Medium shock (50%). Parameters: α=0,5 ȵ=0,5 ................................. page 119 

Figure A.35. Deposit absorption. Small shock (25%). Parameters: α=0,5 ȵ=0,5 ...................................... page 119 

Figure A.36. Deposit absorption. Big shock (100%). Parameters: α=0,4 ȵ=0,6 ....................................... page 120 

Figure A.37. Deposit absorption. Medium shock (50%). Parameters: α=0,4 ȵ=0,6 ................................. page 120 

Figure A.38. Deposit absorption. Small shock (25%). Parameters: α=0,4 ȵ=0,6 ...................................... page 121 

Figure A.39. Deposit absorption. Big shock (100%). Parameters: α=0,3 ȵ=0,7 ....................................... page 121 

Figure A.40. Deposit absorption. Medium shock (50%). Parameters: α=0,3 ȵ=0,7 ................................. page 122 

Figure A.41. Deposit absorption. Small shock (25%). Parameters: α=0,3 ȵ=0,7 ...................................... page 122 

 

 

 

 

 

 

 

 

 

 

 

 



15 

  

THIRD CONTRIBUTION 

Figure 2.1. Adjacency matrix for a network of N=3 ................................................................................. page 129 

Figure 2.2. Payment matrix for the network described in Xexample and TV=300 ................................... page 130 

Figure 2.3. Payment matrix GS and BNS ................................................................................................. page 130 

Figure 2.4. Clearing House accounts ........................................................................................................ page 131 

Figure 2.5. Model sequences for GS vs MNS ........................................................................................... page 132 

Figure 2.6. Graph a) GS-MNS case b) BNS-MNS case. On the x axis the percentage level of connectivity (scales 1 * 

10-1) and on the y axis the percentage of agents who apply for the clearing house. For y = 1 the clearing house is 

activated Three flat interest rate curves tested.. ........................................................................................ page 135 

Figure 2.7. Graph a) GS-MNS case b) BNS-MNS case. On the x axis the percentage level of connectivity (scales 1 * 

10-1) and on the y axis the percentage of agents who apply for the clearing house. For y = 1 the clearing house is 

activated. Three levels of default probability tested. ................................................................................. page 136 

 

 

 

 

 

 

 

 

 

 

  



16 

  

INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

  

1.  PAYMENT SYSTEM AND SETTLEMENT MODES 

The payment system is one of the foremost institutions characterizing a modern economy and it can 

be defined as a set of rules, contracts and procedures that allow the transfer of monetary wealth. A 

retrospective not only enables us to look at the current functioning of payment systems in advanced 

economies, but also makes it possible to clearly identify the two principles that underlie settlement 

procedures: the liquidity principle and the clearing principle. The liquidity principle pertains to the 

idea that transactions amongst agents adhering to a system are carried out on a gross basis and through 

the transfer of payment means. From a technical perspective, the principle finds a direct equivalent 

in the settlement procedure commonly known as Real Time Gross Settlement (RTGS). In addition to 

the gross settlement, the main feature of RTGS systems is timing, since payments are made 

continuously. Typical examples of such settlement modes are the Swiss interbank payment system 

SIC or the European Target2. The main advantage of such settlement mode is the immediate 

extinction of obligations arisen amongst members of the payment system; the main disadvantage is 

the weight of the procedure in terms of the costs for acquiring the necessary resources. The clearing 

principle is based, instead, on the idea that the agents participating in a payments system hold 

simultaneously credit and debit obligations toward the system. Therefore, an effective settlement 

method of the aforementioned obligations would consist in the offsetting and the expenditure of 

payment means only for their net value. Contrary to Real Time’s payment systems, netting procedures 

take place on a fixed date for all obligations arising between agents over a set period of time. Within 

the payment system, the clearing principle is reflected in the Deferred Netting System (DNS). DNS 

have two categories, bilateral (BNS) and multilateral (MNS). In the former category, bilateral netting 

is applied at a specific date exclusively for reciprocal obligations between two agents; in the latter, 

netting is carried out for all the obligations that a single agent holds towards the system. Usually, 

netting procedures take place in a clearing house where members of the system have an account. 

Therefore, the netting procedure turns out to be a complex process, which can be made of three 

phases: the exchange of proofs of purchase of obligations to be settled; the tally of net balances; the 

transfer of the net balances to the members’ accounts. The main advantages of clearing systems are 

to be found in the decrease of liquidity costs and of the operational risk during the execution of the 

payments. The main disadvantage is to be found in the credit risk that, inevitably, emerges whenever 

payments are not regulated continuously; such risk pertains to the possible default of one or more 

members of the clearing house. An example of payment systems making use of clearing is the Italian 

Bi-comp for retail payments. Note that from the difference between the two principles emerges a 

tradeoff: on the one hand, the liquidity principle grants security against the credit risk; on the other 

hand, the costs necessary to settle each transaction can restrain the efficiency of the system. 

Historically, regulators have been particularly careful not to tip the scales in favor of none of the 

systems, weighing the costs and the advantages of both. It is not uncommon to identify both 

settlement modes within the same payment system. For example, in regard to wholesale payments, 

in Italy TARGET2 (T2) is particularly relevant. T2 allows the regulation in the central bank currency 

of individual transactions denominated in Euro using an RTGS system. However, TARGET2 is 

flanked by EURO1, which allows the execution of transactions in MNS, with an end-of-day 

settlement through TARGET2.   
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Often, due to their analogy, it is easy to confuse the settlement regime in place within the payment 

system with the settlement procedures established by companies, States or individuals on real or 

financial markets. The former regards the manner in which central banks, private banks, operators 

who provide payment services (etc.) transfer monetary wealth on their own account or on behalf of 

their clients. The latter concerns the settlement procedure for contracts stipulated outside of the 

payment system for the ordinary occurrences of economic life. For this second instance as well, the 

principles stated for the payment system are valid. Other settlement procedures for obligations will 

flank the payment system. For example, to the RTGS and DNS procedures described above, a type 

of settlement known as Gross Settlement (GS) is typically added, allowing counterparties to opt for 

a gross payment (as for RTGSs) but not continuous (as for DNSs). In order to clarify the difference 

between payment system and settlement agreements, we discuss the case of two companies holding 

two reciprocal credit and debit obligations and whose settlement is implemented through a netting 

agreement. At the contract expiring date, the net debtor issues his bank the order to execute the 

payment towards the bank of the net creditor’s account. The two banks could be members of a system 

that operates under the RTGS regime: in such case, they companies would settle their exposures using 

the principle of clearing, whereby the transfer of wealth between them would be handled by the banks 

through a system that operates in accordance with the principle of liquidity. The theoretical 

contributions gathered in the present thesis revolve around the theme of payment agreements in real 

and financial markets. The first and second contributions discussed here will focus on the impact that 

bilateral netting agreements between banks can have on systemic risk. The third will investigate the 

dynamics of multilateral clearing within a real and financial payments networks. The following 

section presents an overview of the types of agreements that will be discussed in this thesis.    

2. BILATERAL NETTING 

Bilateral netting is a tool commonly used in real and financial markets. With general reference to the 

Italian system, the clearing principle is made explicit in the article no. 1241 of the civil code, which 

states: “Quando due persone sono obbligate l’una verso l’altra, i due debiti si estinguono per le 

quantità corrispondenti, secondo le norme degli articoli che seguono”1 (1242-1252), providing 

normative framework. Equally important is article no. 1252, which states: “Per volontà delle parti 

può aver luogo compensazione anche se non ricorrono le condizioni previste dagli articoli 

precedenti. Le parti possono anche stabilire preventivamente le condizioni di tale compensazione.”2 

The following contributions will consider the three most common forms of bilateral netting, namely 

payment netting, novation netting and close-out netting. 

2.1. Settlement netting 

Settlement netting or payment netting is a type of agreement in which two parties decide to clear the 

liquidity fluxes to be transferred at a set date. This type of agreement does not have an impact on the 

nominal value of obligations in place between the two contracting parties, since its object is limited 

to the quantity of the pre-established payment means to transfer. The purpose of this type of 

                                                           
1  “When two persons are obliged to one another, the two debts are extinguished for the corresponding quantities, according to the 

norms of the following articles”   
2 “By the will of the parties involved, compensation may take place even if the conditions set out in the previous articles do not 

occur. The parties may also establish the conditions for such compensation in advance”. 
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agreement is to reduce the liquidity risk and the operational risk, in addition to alleviate the costs of 

obtaining financial liquid resources. The decrease of the liquidity risk is caused by the clearing 

procedure itself, which reduces the absolute amount of liquidity to be transferred, so that the 

probability that one of the two parties involved does not possess the means of payment necessary to 

close the transaction is lowered. Furthermore, netting allows both parties to lower the costs of 

obtaining payment means. Such costs can be either direct, if the contracting party lacks means of 

payment, or indirect, if one considers the opportunity cost of an alternative usage of such means of 

payment. In regard to the decrease of the operational risk or to the possibility of suffering losses 

deriving from the inadequacy or failure of procedures, technical systems, or unforeseen events, 

whenever the exposures amongst agents are reduced, the potential impact of the manifestation of such 

risk is reduced as well. Usually the payment netting is defined in a clause of a more general agreement 

(Master Agreement), although autonomous payment netting agreements are not rare (Stand Alone 

Payment Netting Agreement); however, sometimes they might be required by law. Figure 2.1 shows 

an example of payment netting. 

Figure 2.1. Settlement netting 

 

2.2. Novation netting 

The term “novation netting” refers to a type of contract or clause which allows to extinct mutual 

obligations between two parties, creating a new obligation that absorbs the multiplicity of fluxes of 

the previous obligations in a single net flux. Contrary to settlement netting, this type of clause has a 

significant impact on the financial and legal statements of the contracting parties, redefining 

obligations and claims amongst parties. After the novation netting there will be only one creditor, the 

net creditor counterparty, and only one debtor, the net debtor counterparty. The value of previous 

obligations, which is necessary to determine the value of the “renewed contract”, is established 

through standard procedures or defined by the counterparties. Within the Italian context, the legal 

basis for the novation principle is to be found in article no. 1230 of the civil code; as for the clearing 

principle, instead, it is to be found to the aforementioned articles no. 1241 and 1252. The economic 

purpose of novation netting agreements is primarily to reduce the liquidity risk of the counterparty, 

to reduce management costs of multiple contracts, to mitigate the operational risk at the deadline, and 

to reduce credit risk. Management costs of various contracts and of risk evaluation of such contracts 

decrease, and so do potential policies aimed at hedging single operations. The liquidity risk decreases 

because, on the one hand, the lower the net exposition, the lower the probability that the net debtor 

requests a payment extension; and because, on the other hand, it allows the net creditor to extinguish 

his exposition without the need to recuperate liquid resources. Operational risk decreases in the same 
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way as described for payment netting. The credit risk emerges from the bankruptcy of the 

counterparty; as a consequence of netting procedure, credit risk decreases for the exposure of the new 

contract is lower than that of the initial contracts. 

Figure 2.2. a) Before Novation Netting 

 

Figure 2.2. b) After Novation Netting                    

 

2.3. Closing out netting 

Closing out netting clauses are generally part of the Master Agreements and have ample circulation 

amongst banks and financial intermediaries for operations concerned with derivatives or for interbank 

deposits. Usually, Master Agreements are a type of agreement reached amongst parties which define 

the terms regulating one or more transactions as well as the services characterizing the object of the 

contract. Within the financial community, bank and sector associations tend to create and present 

some typified schemes of Master Agreements in order to standardize operators’ behaviour and 

therefore lower the uncertainty and the bargaining costs of the operations. Amongst the most 

commonly used schemes are the ones regulating derivatives transactions (see the ISDA Master 

Agreement) and the ones on deposit netting (see IDNA Master Agreement sponsored by BBA). The 

closing out clause allows for the clearing of the bilateral expositions of two agents upon the 

occurrence of a contingency, typically the default of the counterparty. The purpose of such 

agreements is to reduce credit and liquidity risk. These types of clauses are situated within the 

financial collateral agreements. The European legislation defines such types of clauses in the 

2002/47/EC directive (amended by the 2009/49/EC), which has been in force in Italy since the 

implementation of the Legislative Decree no. 170 of May 21, 2004. In this, article 1.f) states:  

“‘close-out netting provision’ means a provision of a financial collateral arrangement, or of an arrangement of 

which a financial collateral arrangement forms part, or, in the absence of any such provision, any statutory rule 

by which, on the occurrence of an enforcement event, whether through the operation of netting or set-off or 

otherwise:  
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(i) the obligations of the parties are accelerated so as to be immediately due and expressed as an 

obligation to pay an amount representing their estimated current value, or are terminated and 

replaced by an obligation to pay such an amount; and/or 

(ii) an account is taken of what is due from each party to the other in respect of such obligations, and 

a net sum equal to the balance of the account is payable by the party from whom the larger amount 

is due to the other party;” 

 

Netting clauses and agreements are mentioned by the Basel Accords II3 and III concerning possible 

“discounts” on capital reserves in countries where agreements are legally enforceable. For what 

concerns European legislature, the Regulation 573/2013 on the prudential capital requirements for 

credit institutions and the Banking Recovery and Resolution Directive 2014/59 / Eu consider 

legitimate the use of netting agreements. The applicability of the close-out netting is the main issue 

of this type of clause, due to the heterogeneity of national legal systems. Therefore, the contracting 

parties must obtain solid legal opinions in order to avoid the risk of not being able to use the guarantee 

at the time of the counterparty's failure (Regulation no.573/2013 article 194 point 1). This opinion 

has been strengthened and articulated by the EBA:  

“On the issue of whether an opinion must be specific to the relevant transaction covered and to the technique 

employed by the institution or whether it can be a generic one, it depends mainly on the nature of the two. If 

an institution engages in the same type of transaction, with counterparties located in the same jurisdiction and 

uses the same credit risk mitigation technique, then it can rely on the same opinion. For example, if an 

institution uses a master netting agreement for which a generic opinion exists, it can use that opinion as long 

as the latter clearly indicates that the agreement is legally effective and enforceable in all the jurisdictions 

relevant to the transactions covered by that agreement”4. 

With regard to the Banking Recovery and Resolution Directive 2014/59 / EU, the applicability of the 

close-out netting clauses is guaranteed by Article 77, stating:  

 

“Member States shall ensure that there is appropriate protection for title transfer financial collateral 

arrangements and set-off and netting arrangements so as to prevent the transfer of some, but not all, of the 

rights and liabilities that are protected under a title transfer financial collateral arrangement, a set-off 

arrangement or a netting arrangement between the institution under resolution and another person and the 

modification or termination of rights and liabilities that are protected under such a title transfer financial 

collateral arrangement, a set-off arrangement or a netting arrangement through the use of ancillary powers”.  

 

A further economic motivation to use close-out-netting clauses, in addition to the ones in common 

with the aforementioned payment and novation netting, is the possibility to eliminate “cherry picking” 

behaviors in case of the counterparty’s default. Take into consideration, for example, the case in 

which two banks are under a swap contract. When the default occurs, the bank in crisis could 

internalize the inflows while neglecting its own outflow obligations towards the counterparty. 

Furthermore, the decrease of the liquidity risk assumes greater importance in the event of the 

counterparty’s default, in comparison to the instances in which netting agreements are closed in 

periods of regular counterparties’ activity. This is because often times the default party does not hold 

enough liquid resources, so that, even if the creditor covered by financial insurance had access to 

                                                           
3 Paragraph no. 188 Basel II 
4 https://www.eba.europa.eu/single-rule-book-qa/-/qna/view/publicId/2013_23 
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these resources before other categories of creditors, such resources could yet prove to be insufficient. 

The clearing procedure reduces the probability of this occurrence.  

Figure 2.3. a) Before Closing out netting      

 

Figure 2.3. b) After Closing out netting 

 

3. MULTILATERAL NETTING 

Multilateral netting is a practice enabling the application of the clearing principle in the event of debit 

and credit relations amongst three or more individuals. Usually, in the Italian system, clearing 

agreements are of private nature and are based on contractual limitations (contracts of confirmation 

or adhesion; for the case of corporate barter circuits sometimes the institution of permuta is 

considered). Given the higher complexity of the procedure, multilateral netting is usually performed 

by a specialized operator, the clearing house. The clearing house is the authority which agents address 

to offset their debits and credits. The clearing procedure is made of three phases. In the first phase, 

an exchange of information takes place between the parties involved and the clearing house; in the 

second phase, the tally of the net balances is carried out; in the third phase, the payment is finalized. 

In some cases, mainly in the clearing houses of payment systems, adherence to a clearing house does 

not extinguish the obligations relating to the contracts that are to be offset until the conclusion of the 

procedure. In other cases, as it happens in the clearing houses for some kind of derivatives, the 

clearing house is interposed within a bilateral relationship and gives rise to two new ones between 

itself and the respective counterparties, extinguishing the previous relationships.5 From an economic 

perspective, it can be seen that the adherence to the clearing house and the relations amongst the 

agents are grouped together in a single balance on the account of each participant. By design, the sum 

of all the actions of the agents is zero. The advantage for the agents is similar to the advantages 

                                                           
5 For an in-depth analysis of the legal principles that can delimit the field the clearing houses see: Olivieri, G. (2002), 

Compensazione e circolazione della moneta nei sistemi di pagamento, Milano, Giuffrè; Santoro, V. (2007), Il diritto dei sistemi di 

pagamento, Milano, Giuffrè. 
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described for bilateral netting – i.e. lowering of the operational risk and of the liquidity risk. The 

clearing house provides the offsetting service under the payment of commission allowing for the 

sustainment of the management costs. The clearing house’s management entails a credit and liquidity 

risk. By interposing itself between the agents, the clearing house needs to be able to accommodate 

creditors and to collect debtors’ payments. The credit risk manifests itself whenever a debtor defaults 

and is not able to extinguish his obligation. In order to mitigate the credit risk, the clearing houses 

usually request collaterals, apply the margins system and are equipped with capital. In regard to the 

liquidity risk, in addition to the margins system, the supervisor of the clearing house is equipped with 

financial resources to face possible liquidity shortages.      

Figure 3.1. a) Before multilateral netting 

 

Figure 3.1. b) After multilateral netting 
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Agent1 holds a credit of 20 vs clearing house; Agent2 
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4. METHODOLOGY 

 

The methodology used in the three contributions presented in this thesis is network analysis. After a 

first development in the sciences such as physics, biology, epidemiology and medicine, this 

methodology has spread as a useful tool for the analysis of social dynamics and it is nowadays 

commonly used in sociology, anthropology, psychology and economics. In economics it is widely 

employed in the study of trade and financial dynamics. 

The main feature of network analysis is to consider the economic environment as a set of relationships 

represented by a graph composed of nodes and links. The former represent agents, companies, banks 

or, more generally, the actors of an economic system, the latter the economic relationships that exist 

between them. In this section we will explain and briefly show the types of graphs that will be 

presented in this thesis and how it is possible to construct and interpret them. The purpose of this 

introduction to network analysis is to provide the reader with the prerequisites for addressing the 

reading of the contributions collected in this thesis. Within each contribution the reader can find the 

descritpion and the building procedure for the all the topologies presented, for a detailed overview of 

the network theory and its application in the social sciences we suggest taking Jackson (2010) as a 

reference point. 

 

4.1. The graphs 

 

A graph is the representation of a network and it is composed of nodes and links. The simplest way 

to define a graph of N nodes is through the explication of the adjacency matrix. Figure 4.1 shows the 

adjacency matrix X of dimension N2 of a graph composed by N nodes. 

 

Figure 4.1. Adjacency Matrix.  

 
 

 Each term 
jix ,
 ( Nji  , ) of the matrix can assume values 0 and 1 which indicate the presence or 

not of a relationship between the subject i and the subject j, respectively 1 in the former and 0 in the 

latter case. An adjacency matrix can be directed or undirected, in the first case the direction of the 

relationship between two nodes is highlighted while in the second not. For this reason, the two 

adjacency matrices are defined differently. 

 For the directed graph, the relation between the agents i and j is identified by the terms jix ,  and ijx ,

. When the terms jix ,  and ijx ,   are respectively 1 and 0 such relation is directed from i to j, viceversa 

in the case in which jix ,  is 0 and ijx ,  is 1. When both elements of the matrix are 1, a bilateral 

relationship is recorded. 
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 As far as undirected graphs are concerned, the adjacency matrix only indicates the presence of a 

relation between two nodes without identifying the direction. In this case the adjacency matrix is 

symmetric, so when the term 
jix ,
 is equal to 1 the term 

ijx ,
 is 1 too. The principal diagonal is 

composed of zeros for both adjacency matrices considered, that because it would be non sense to 

report the relationship that an agent has with himself. Figure 4.2 shows an example of directed and 

undirected adjacency matrices. 

Figure 4.2. Matrices A and B respectively identify an undirected and a directed network 

A) 
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The presented adjacency matrices are commonly referred to as unweigheted given that they signal the 

relationships between two nodes but do not indicate their “scale”. One way to represent the difference 

between the relationships that exist in a network is to attribute weights to links. Figure 4.3 shows two 

weighted adjacency matrices, respectively for directed and undirected cases. Looking at the matrices 

shown, it easy to notice that the terms are no longer dichotomous variables but instead they are 

positive real values. 

 

Figure 4.3. Matrices C and D respectively identify a directed and an undirected weighted network 
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The construction of adjacency matrices, weighted and unweighted, can occur through the retrieval of 

empirical data or can be generated randomly. In this work we consider random credit networks 

generated by stochastic processes. In addition to being random, the networks that will be presented 

have the characteristic of being static. In network theory, the word static indicates the fact that all 

connections and nodes of a network are generated at a given time. The static term is opposed to the 

dynamic one, it indicates processes where the number of nodes and connections varies over time 

according to the behaviors of the network members or by exogenous imposition. In the continuation 

of this section we present some features of the best known random networks. 

 

4.2. Random networks   

 

The topology of random networks is dictated by stochastic processes that define the level of 

connection of the nodes. In this section we present three of the most known topologies. The networks 
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that are presented in each contributions can be traced back to these three types (albeit in some cases 

with some minor variation).  

The first topology we take in consideration is the Erdos Renyi. The main feature of this type of 

random graph is that each node has the same attachment probability of the others. An Erdos Renyi 

network can be identified by only two variables, the number of nodes N and the attachment probability 

p.  This type of network generates uniform topologies as the expected value of the number of links 

afferent each node is constant. Increasing the value of p increases the number of connections afferent 

to each node. The Figure 4.4 shows three types of Erdos Renyi networks for three different connection 

levels. 

 

Figure 4.4. Erdos Renyi random networks. The graphs A, B and C are generated respectively by (N=25; p=0.1),( N=25; 

p=0.2) and (N=25;p=0.3) 

a) b) c)  

 

 

The second popular topology is the Small World one. The principal feature of this topology is that 

the nodes belonging to this network can be reached by others by means of a small number of 

intermediate steps. The process of generating this topology is based on the operation called re-wiring. 

Starting from a circular structure, the re-wiring consists initially in deleting some links within the 

network and then reassign them randomly. This procedure was developed by Watts and Strograz, in 

Figure 4.5 we represent the functioning of this algorithm by means of a simple example. Considering 

the topologies a and b, the differences between them are due to the re-wiring of three links. Due to 

the re-wiring effect, the shortest distance between the two nodes marked in red is different. Precisely, 

it is equal to 6 steps for the graph a and of two steps for graph b. Assuming that the probability of re-

wiring of each link is β (0 <β <1), the graph tends to resemble a random homogeneous graph as the 

parameter β approches one. Figure 4.6 shows a Watts and Strogratz random network for a β=0.3. 
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Figure 4.5. The graph a is a lattice ring with 4 connections per node. The graph b is the same as a except for the re-

wiring of 3 connections. 

 

a) b)  

 

 

Figure 4.6. Watts and Strogatz random network generated by (N=25; β=0.3) 

 

The third type of random networks is that generated by means of power law distributions. The main 

feature of these types of networks is that of having a low number of nodes possessing a high number 

of connections and the remaining majority of nodes characterized by a lower one. One way to generate 

this type of topology is by using the Barabasi and Albert’s algortihm. This procedure consists of 

several steps. The first is to identify a set of nodes. To this set are added one at a time additional nodes 

characterized by connection probability proportional to the number of links held by the nodes existing 

in the system. From the analytical point of view, the probability that a new node is connected to an 

already existing i-th node can be expressed by the formula (1). 

Pnew= Number of links of the node i / Number of total nodes of the system                   (1) 

The Figure 4.7 shows three networks of different sizes generated by the same initial set of nodes and 

connections using the Barabasi and Albert’s method. It easy to note that there are some nodes with a 

high number of connections alongside a larger number of nodes characterized by a smaller number 

of links and visually identifiable by the lower concentration of blue color near the node. 
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Figure 4.7. Barabasi and Albert random networks composed of a)100 b)75 c)50 nodes                                                                                                                                              

a) b) c)  

One of the ways to describe and analyze networks is through the use of appropriate indicators. In 

general, indicators can provide information on individual nodes or on the network as a whole. For 

example, the index degree provides us with information on the number of links of a node. This index, 

for direct networks, can be decomposed into the two indexes In and Out-Degree, which respectively 

indicate the connections comming in and out of a node. If we wanted to know the average connection 

level per node in the network, we could use the average degree index calculated as the sum of the 

degree of each node and divided by the total number of nodes. We present the Table 4.1 that 

introduces some of the most famous indexes to the reader. The indexes used in the contributions are 

defined and explained in detail in the respective contributions. 

Table 4.1. Indexes and definitions 

Indexes and definitions Description  

Degree of a node The number of connetions a node has to other 

nodes. 

Degree Distribution  The probability distribution of the degrees over 

the network. 

Distance The shortest path in terms of number of links 

between two nodes. 

Diameter  Largest distance between two nodes. 

Average Path Lenght  Mean of the distances between nodes. 

Betweenness Centrality  Measure of the ability of a node to connect 

other nodes. 

Closeness Centrality Measure of how easy a node can be in contact 

with other nodes. 

Triplet (closed/open) When three nodes are connected each other by 

three (closed) or by two (open) undirected ties. 

Clustering  Concentration index obtained by dividing the 

number of closed triplets by the number of all 

triplets (open+closed). 

Reciprocity How many nodes in a directed graph are linked 

to each other by reciprocal linkages. 
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4.3. Focus on random credit network 

In this work we consider credit networks. Which means that the links among the nodes of a network 

represent debit and credit relationships. The adjacency matrix of a network illustrates the outstanding 

obligations. By convention, we hypothesize that the credit relationships of the creditors with respect 

to the debtors are represented in the lines of the adjacency matrix. So, reading the matrix from left to 

right allows to identify the credit positions 
jix ,
 of the i-th creditor towards the j-th debtor. Since the 

credit of agent i towards agent j can also be defined as the debt of agent j towards agent i, the j-th 

column is associated with the debts of the j-th agent. To identify the value of network obligations and 

build the weighted adjacency matrix, we proceed by steps. The first step is to choose whether to 

determine exogenously the total value of system credits or, alternatively, to leave this value as the 

determinant of an endogenous procedure.  In the first case the total credit value of the system is set at 

the beggining of the process and the identification of the value of the individual credits follows a path 

from the general to the particular. More precisely, a criterion of distribution of the fixed value has to 

be identified. To make the concept clearer we provide a couple of simple examples. If the purpose of 

the network builder is to identify homogeneous credits, after having fixed the total amount of credit 

value the easiest way is to divide the total credit value by the total number of links. On the other hand, 

assuming that the objective is that to assign the same credit value stock to each node, it can be reach 

by divide the total credit value by the number of nodes. Finally, the value of each single loan has to 

be set. The endogenous procedure usually follows the reverse path fixing the value of each credits 

and then computing the systemic amount. Commonly, for these type of networks the value of 

individual credits is assign by resorting to probabilistic distribution. The probabilistic method for 

assigning the value of individual credits consists in the extraction of the value from a predetermined 

probability distribution. This technique is usually empoyed for medium-large networks. This is due 

to the fact that in order to have adherence between the desired distribution and the realization of the 

stochastic process it is necessary to reach a "critical mass" in terms of the number of nodes and 

connections. 

The application of network analysis to investigate credit dynamics implies considerable advantages. 

First of all, it allows to present the agents of an economic system in terms of budgets and, starting 

from financial statements, to show the relationships that arise among the network participants. 

Secondly, network analysis makes it possible to contextualize a given credit phenomenon within the 

economic system and to highlight its relevance. This relevance may not be the result of the 

phenomenon itself, but rather of the location within the financial network where it happended. 

Thirdly, network analysis provides the tools for a direct investigation of the network as a whole that 

can be very useful for regulators and policy makers to get a general understanding of economic 

dynamics. Regarding the application of static network analysis to credit networks, it can be useful 

from different points of view. In the presence of empirical data, network analysis allows to identify 

the network topology and to give an accurate description. In non-empirical investigation, static 

analysis allows the creation of artificial credit networks with topologies close to real ones on which 

to test policy proposals, analyze contagion dynamics and assess the level of network resilience to a 

shock. The static analysis is therefore particularly indicated if one has to analyze a sudden 

phenomenon or an event that does not extend over time. The weakness of this methodology is that it 

does not allow the analysis of repeated phenomena, of strategic interaction and of the modification 
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of the network topology in response to economic phenomena. In contrast to static analysis there is 

the dynamic one that allows to analyze the evolution of a network over time, this evolution can be 

the result of stochastic variables or the product of the interaction between agents. Interesting for the 

economic analysis is the application of network analysis to strategic behavior, given that such 

behavior depends structurally on the position that an economic actor assumes within the system and 

on the interaction with other actors. The strength of these models is that by setting appropriately the 

behavioral rules of the agents it is possible to give a realistic representation of different economic 

phenomena as well as to provide possible explanations on the economic forces that have contributed 

to develope a certain topology. Moreover, this methodology is able to represent complex and repeated 

dynamics over time among heterogeneous agents, increasing in this way the level of realism of the 

models based on this approach. The main limitation consists in the difficulty of identifying the 

behavioral rules of the agents. Indeed, agent behaviours can be considerably heterogeneous and 

change according to undefined patterns. 

5. PAPERS OVERVIEW 

Once the clearing agreements are presented, the contexts in which the effects of such agreements are 

tested will be briefly shown. In regard to bilateral netting contracts, we will observe their effects on 

the reduction of systemic risk due to crises that develop in the interbank market. For what concerns 

the multilateral netting system, we will develop an agent based model that analyzes the endogenous 

formation of the clearing houses in real and financial markets.  

 

5.1. First Contribution 

In the first contribution, we will attempt to analyse the effect of interbank deposit netting during the 

process of contagion of a financial crisis. In particular, using network analysis as the chosen 

methodology to study interbank dynamics, we will investigate whether a mandatory enforcement of 

bilateral netting agreements by the supervisory authorities can have relevant effects on the systemic 

risk. Then, we will compare the netting performance to the standard gross settlement mode. The focus 

of this first contribution is on crises triggered by bank runs as in Lee (2013)6. Lee algorithm fits into 

the class of models that analyzes a liquidity crisis through network analysis like Gai and Kapadia 

(2010) and Gai, Haldane and Kapadia (2011). As stated in Hurd (2015), the peculiarity of Lee’s 

algorithm is that of having adapted the Eisenberg and Noe (2001) algorithm to a liquidity crisis. In 

this way the model presented in this paper is part of a broad line of literature that uses the methodology 

developed by Eisenbeg and Noe (2001). We will define the systemic risk using four metrics apt to 

evaluate the severity of a financial crisis and we test their dynamics for networks characterized by 

different topologies, loans heterogeneity, and shock of different magnitudes. Specifically, we will 

take into consideration the number of banks going through a period of illiquidity; the entity of such 

illiquidity; the degree of liquidity of the system at the end of a contagion process and the depth of the 

interbank market. Having set the metrics, an evaluation of the trade-offs that the policymaker faces 

when different welfare objectives return contrasting results. Once defined in this way, in fact, the 

                                                           
6 Bank run and liquidity crisis are phenomena for which there is a huge strand of literature. Within this is contribution the reader will 

find a literature review dealing with network and liquidity crisis models, for a broader perspective and without pretension of 

exhaustiveness we suggest Eichengreen (2002), Reinhart and Rogoff (2009), Kindleberger (1978), De Soto (2006), Rick (2016), 

Allen and Gale (2007). 
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main goal of financial stability can be immediately translated into a multiobjective decision-making 

problem. In order to better convey the study, a basic example shall be provided.  

Figure 5.1. The balance sheets   

 
 

 

 

Figure 5.2. The shock and the beginning of the contagion 
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Figure 5.3. Contagion dynamic  

 

 

Consider a simple financial system formed by two banks A and B, as shown in Figure 5.1 The 

accounting reports of the banks are constituted on the asset side by interbank credits, external assets, 

and external liquidity reserves. On the liability side, accounting reports are constituted by equity, 

external deposits, and interbank debts. Bank A is hit by a shock that may represent a bank run that 

will drain its liquidity reserves and force it to recall its interbank credits to obtain the necessary 

liquidity. External assets are hypothesized as hardly liquidable, therefore whenever a bank has 

exhausted its external liquid reserves and called interbank loans back, it must obtain liquidity from 

the Central Bank. We will define this case liquidity shortage. In the case depicted in the Figure 5.2, 

Bank A is hit by a shock of 0.20 and will face the need for liquidity using its liquid reserves for 0.05 

and calling back the interbank loans to bank B for 0.15. In this case the shock is equal to the sum of 

the interbank and external liquid assets; if it was lower, the shocked bank would employ interbank 

and external liquid assets proportionally. Bank B will internalize A’s request for 0,15 and will front 

it using 0.075 of liquid reserves and calling back 0.075 of interbank loans to A (following the 

aforementioned proportionality). Bank A, at this stage, will be forced to ask the central bank for a 

credit line in order to repay Bank B which, in turn, will use the resulting liquidity to extinguish the 

payments still due to A (Figure 5.3). Summing up, for the gross settlement case, Bank A marks a 

liquidity shortage of 0.075 and sees its liquid and interbank resources dried up; on the opposite end, 

Bank B does not need to resort to the central bank, although it uses the major part of its liquid 

resources. Considering the four metrics employed, one bank needs the Central Bank aid, the total 

liquidity shortage amount is 0,075, the external liquidity after contagion is 0,025 and the interbank 

markets consists of Bank B credit towards A for 0,025. How would the enforcement of the bilateral 

deposit netting by the supervisory authorities have changed the dynamic? If, upon the occurrence of 
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a bank run, authorities applied bilateral netting to their own interbank deposits, the scenario would 

change, as the Figure 4.4 shows. In this context, given the decrease of the interbank assets’ volume 

due to the clearing, Bank A is able to call back a lower absolute value of receivables having to mark 

a liquidity shortage of 0.1 (Figure 5.5). Bank B internalizes a request for 0.05 to be covered with 0.05 

of liquidity (Figure 5.5). Notice how the crisis dynamic is substantially different from the former. If 

we consider the metrics applied, we observe that in this second case: the number of banks asking for 

help to the Central Bank is one; the value of the liquidity shortage is higher in the net case; Bank B 

is able to preserve more liquidity with respect to the gross settlement case; during the netting process 

and the contagion process all the interbank availabilities are employed. 

Figure 5.4. Netting procedure 
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Figure 5.5. The shock and the contagion process 

 

                                  

Evidently, a mandatory enforcement of bilateral netting is not neutral towards the development of the 

financial market contagion, as well as towards the metrics taken into consideration. In the first 

contribution these dynamics are analyzed for complex financial networks. This paper adds to the 

extant literature which employs network analysis for the study of financial crises. It makes an original 

contribution to the field in two ways. Firstly, to the best of our knowledge, this is the first work to 

address the close-out netting issue in the context of liquidity crises. Secondly, the paper elaborates a 

wide-ranging and multidimensional approach to systemic risk, highlighting the trade-off which 

regulators might be confronted by during a liquidity financial crisis.        

5.2. Second Contribution 

The second contribution analyses the effect of bilateral netting agreements as a crisis management 

tool utilized by supervising authorities and governments. Differently to what was done for the first 

contribution, we will study: the ability of bilateral netting to alleviate financial crises triggered by a 

shock hitting a bank’s external assets; the health condition of the system after the contagion process 

for what concerns bank capitalization; the “risk shifting” effects innate to the netting procedure. Three 

metrics are adopted to compare the benchmark gross settlement performance with the net case 

performance: default number; capitalization level of the system at the end of the contagion process; 

impact on external deposits to the bank system. A simple example shall be provided in order to grant 

a qualitative understanding of the issue addressed by the second contribution. To this purpose, we 

take into consideration a fictitious financial system, made of three banks – bank A, B and C- linked 

by interbank credits and debits. The balance sheet of each bank is made of the asset from interbank 

credits and external assets, the liability from an equity share, external deposits, and interbank debts. 

As the Figure 5.6 shows, Bank A is tied to bank B and C, which, in turn, are tied to each other.  
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Figure 5.6. Balance sheets 

 

 

 

 

 

Figure 5.7. Asset shock on Bank A 
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Figure 5.8. Beginning of the contagion  

 

The example shows a shock of hitting all the external assets of Bank A, that is,140. The shock wipes 

out all the external of the Bank A triggering a default dynamic exactly comparable to the one 

developed in Nier et al. (2007). Since the shock is higher in value than the amount of the bank’s 

equity, Bank A defaults. The fraction of the shock, which is not absorbed by the capital, will be 

transmitted to Banks B and C, while a minor part is absorbed by the depositors of bank A (Figure 

5.7). This is due to the lower seniority of interbank deposits in comparison to external deposits. At 

this stage, Bank B and C import losses on interbank credits towards A (Figure 5.8). Given that Bank 

B and C are not sufficiently capitalized, they will default. Furthermore, B will export a loss towards 

the other banks of the system.  Notice how, in this basic example, the shock is able to cause a domino 

effect bringing all three banks to default and draining the capital of the entire system. What would 

have happened if a close-out netting clause among banks was in place?  Following the rise of the 

shock, the implementation of the netting would have isolated each other banks A and C (Figure 5.9). 

As in the previous instance, Bank A would have gone into default; however, a higher fraction of the 

loss would have been laid off on the external deposits of Bank A. Notice how the shock distribution 

amongst the participants differs from the previous case. Bank B would import losses, causing the 

default of the bank and a higher portion of loss is covered by Bank B deposits (Figure 5.10). Bank C 

is completely isolated on the asset side thanks to the netting procedure, avoiding the contagion 

process. In the simple example proposed above, the implementation of the netting clause avoids the 

defaults of the intermediary C and manages to preserve the capital better than in the standard case. 

By contrast, those who hold deposits in Bank A and B, would be subjected to losses, which would 

otherwise be laid off on interbank debts. In this contribution we present an investigation of this issue 

for different topologies, shock magnitudes, bank sizes, and loan heterogeneities.  The paper’s 

originality lies in the attempt to provide a theoretical framework for understanding the subject of 

bilateral netting in the context of an asset shock. The paper adds to the extant literature which employs 

network analysis for the study of default cascades. As is the case with the former contribution, also 
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this one shows how policy guidelines in a time of crisis change according to the network topology, 

to the kind of shock, and to the kind of intermediary which is hit; furthermore, it emphasizes how the 

regulator’s choices, in most cases, are driven by the importance that he attaches to the specific 

objectives to be met.        

Figure 5.9. Netting procedure and shock on Bank A 

 

Figure 5.10. Contagion process 
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4.3. Third Contribution 

The third paper focuses on the endogenous formation of clearing houses within payments networks.  

To this purpose, we develop an agent-based model elucidating what dynamics lead the agents to 

regulate their transactions through gross settlement, bilateral netting or multilateral netting when these 

systems are in competition with each other. In this contribution as well, we recognized network 

analysis as the best-suited methodology to expose the dynamics which informs the contexts under 

scrutiny. In particular, the contribution attempts to observe the use of multilateral clearing by some 

company circuits. Notwithstanding, the model can also be employed to provide an explanation of the 

birth of the first clearing houses, which handled interbank payments in United States in the times of 

free banking as well as, more generally, in contexts where multiple actors engage in credit and debit 

relations with each other. The reasons for the use of clearing mechanism are multiple. Typically, the 

reduction of both liquidity and operational risk in ordinary settlement procedures. A motivation of 

non secondary importance concerns the fact that clearing allows to add a funding channel to the 

traditional ones. Reducing the net exposures among counterparties this procedure prevents them for 

having to collect liquidity on the market or for having to draw on their liquidity stocks. 

 

For real markets, drawing on the experience of clearing houses for commercial credits such as Wir 

and Sardex, we investigate whether, within a payment network amongst companies, a space for 

multilateral netting can exist. To this purpose, we made use of the aforementioned agent-based model 

in which agents are able to decide whether to regulate their transactions in a gross system or in a 

clearing house. The essential variables for the choice have been: interest rates, credit risk, 

expectations on interest rates trend, and management costs of the clearing house. Such variables will 

be applied to various business cycle scenarios, tested for various network topologies of payments and 

for a spatial friction limiting the coordination amongst agents through Monte Carlo simulations. The 

results of simulations are indicative of how, upon the presence of coordination frictions, managing 

the development of clearing houses is challenging, except for specific phases of the business cycle. 

Thus, the model confirms the uniqueness of the aforementioned experiences in real markets. 

Subsequently, in order to investigate whether there is a potential incentive to applicate to multilateral 

clearing, an algorithm is developed that allows to identify the order of magnitude of credits that can 

be settled within a clearing house given a network of payments. From the outcome of this procedure, 

notice that for large clearing houses there is a great potential with results which, in the most favorable 

cases, reach almost all the receivables of the system settled in clearing houses.  From the findings of 

the present study, it appears clear that, despite the existence within the system of a high number of 

multilateral netting possibilities, which might be preferred by agents to gross settlement, the presence 

of frictions limiting the coordination amongst agents causes the possibilities of multilateral netting to 

remain the only options. Nonetheless, considering the combined effect of the recent legislation of 

payment system (PSD2) and the growth of large platforms for the exchange and sale of goods amongst 

companies (for example the Amazon B2B sector), it is not difficult to foresee an increase in the use 

of multilateral compensation for two reasons. The first is that platforms that allow the meeting of 

demand and supply of goods and services ease the coordination amongst agents. Indeed, the platform 

manager could easily become manager of a clearing house, similarly to circuits as Wir and Sardex. 

The second is that the possibility that clearing services could be offered by actors external to the bank 

channel, could push banks to conduct such activity for fear of a decrease in market shares.  
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As for the financial payments networks, the model is also suitable for the investigation of the 

dynamics which led to the formation of the first American clearing houses in the times of Free 

Banking. To this purpose, we adjusted the model accounting for some of the characteristics of that 

particular interbank market where the competition between bilateral and multilateral netting systems 

was born. As in the case of the real payments networks, we took into account a large set of variables 

and economic scenarios. The results point to a link between the birth of interbank clearing houses and 

the reduction of transaction and operational costs. The main contribution of this work consists in the 

addition of a model of endogenous formation of clearing houses to the extant literature on payments 

systems, whereas settlement methods, overall, have been often considered exogenous variables. With 

regard to the contexts of study, the paper also adds to the literature on trade credit, for clearing houses 

amongst companies can also be considered a form of financing in competition with trade credit and 

with standard banking methods. Finally, this work contributes to the literature on monetary policy, 

for the clearing houses arisen in the times of the American Free Banking can be seen as forerunner 

institutions of the contemporary central banking system.   
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Abstract 

The cross holding of interbank deposits represents an optimal ex-ante co-insurance 

arrangement whenever the uncertainty concerning banks’ liquidity needs is idiosyncratic 

and imperfectly correlated. When a shock to aggregate liquidity demand occurs, however, 

such an arrangement could be detrimental – depending on the topological structure of 

interlinkages - as financial exposures become a means to spread risk. If the ex-post facto 

is an excess demand for liquidity, therefore, regulators could sever potential channels of 

contagion by forcing banks to net their mutual debt obligations. Starting from these 

premises we employ simulation techniques with simple interbank structures to obtain two 

results. First, a state-contingent mandatory policy to bilaterally net mutual interbank 

exposures comes with a trade-off between the benefits of thwarting the channels of 

contagion and the harms of a greater concentration of the remaining netted expositions. 

Second, the balance between the two prongs of the trade-off depends on the metric used 

by regulators to define financial stability and the topological structure characterizing the 

interbank market.    

 

 

1. INTRODUCTION 

Due to their peculiar role in the financial plumbing and a vast availability of ready-to-use data, 

interbank lending markets have recently become a hot topic for theoretical and empirical research. 

Among the many facets explored by the literature7, the one we select as our starting point is the role 

of lending and borrowing in interbank markets as a form of liquidity co-insurance. We shall argue 

that the implications of this theoretical view are conducive to a clear-cut crisis management 

prescription aimed at curbing a contagion, namely to mandate banks to net their mutual lending 

exposures on a contingent basis. Exploring the pros and cons of such a proposal is the main goal of 

this paper.  

                                                           
* The authors benefitted from the comments and suggestions by participants to the 22nd Annual Workshop on Economic Science with 

Heterogeneous Interacting Agents, the 5th International Workshop on Computational Economics and Econometrics and 5th Finest 

Anniversary Conference. The views expressed in this paper are those of the authors and do not necessarily reflect the position of the 

Bank of Italy. The usual waiver of liabilities applies. 
‡ Bank of Italy. 
7 A search on Google Scholar for the keyword “interbank market” limited to the time span following the global freeze of mid-2007 

returns more than 23.000 items. We refer the reader to the surveys by Hüser (2015), Glasserman and Young (2016) and Green et al. 

(2016) for discussions focused on different aspects 
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In doing so, we offer two contributions to the research exploiting numerical simulation techniques to 

model financial systems as interacting networks8. First, we complement the stream of papers dealing 

with liquidity cascades (Cifuentes et al., 2005; Gai et al., 2011; Lee, 2013; Chinazzi et al., 2015) by 

exploring how the bilateral netting of mutual claims affects the resilience of banking systems to 

funding runs. Second, our work centers on the crisis management strategy a regulator can activate in 

fostering financial stability. While the standard approach in the network literature (Aldasoro et al., 

2017; Erol and Ordoñez, 2017) is to analyze how regulation at the level of nodes – through the 

imposition of capital and liquidity ratios, or the periodic submission of “living will” plans – can 

implement a safer financial environment by focusing on crisis prevention, we argue that the 

complementary goal of managing systemic liquidity crisis could be pursued by regulatory tools 

affecting the structure of links connecting intermediaries among themselves, along the lines discussed 

by Loepfe et al. (2013) with regards to asset-based overlapping risk exposures. 

As shown e.g. in Allen and Gale (2000) and Freixas et al. (2000), by mutually exchanging funds, 

banks may hedge themselves against liquidity shocks arising from uncertainty in the timing or 

geographical destination of their depositors’ consumption. Provided that the idiosyncratic risks they 

face are not perfectly correlated, the ex-ante swapping of claims allows banks experiencing liquidity 

deficits to be funded by banks experiencing liquidity surpluses ex-post9. The unpleasant side of the 

story is that, while such an arrangement turns out to be optimal whenever the total amount of liquidity 

to be reallocated inside the system is large enough (Castiglionesi and Wagner, 2013), it could prove 

deleterious when a negative shock to the aggregate demand for liquidity occurs. Interbank deposit 

exposures can now act as shock transmitters and lead to a spread of losses through contagion-like 

liquidity cascades over the whole net of lending/borrowing relationships. A major result – 

corroborated by means of diverse analytical methods – is that in this case the resilience of the system 

is a function of the topological structure characterizing interconnections10. Furthermore, the 

interaction between the severity of the systemic shock and market connectivity is crucial in 

determining the ability of the system to resist contagion: for small aggregate shocks higher 

connectivity helps to restrict the likelihood of default cascades, but for larger shocks the opposite 

holds true (Ladley, 2013; Cabrales et al., 2017). 

A far less explored implication of the co-insurance motive for reciprocal exposures in interbank 

markets is that once an aggregate liquidity shock has occurred, the ex-ante rationale to exchange 

deposits may lose significance. As emphasized by Haldane (2009), a sensible approach to avoid 

contagion is in this case to “hide”. In addition to liquidity hoarding (Gai and Kapadia, 2010; Heider 

et al., 2015), a possible “hiding” strategy when mutual deposits exist is to net them bilaterally. This 

helps a safe node to insulate itself from negative spillovers mediated through a withdrawal of the 

claims infectious banks have deposited in its coffer. Furthermore, bilateral netting should not imply 

any welfare loss besides that which is generated by the failure of the institutions originally affected 

                                                           
8 See, among the others, Nier et al. (2007), Gai et al. (2011), Krause and Giansante (2012), Anand et al. (2013) and Gaffeo and 

Molinari (2015). 
9 An optimal co-insurance scheme can be obtained also in a circular arrangement in which each bank is allowed to make an interbank 

deposit only in the adjacent bank, so that all relationships are unidirectional. See the incomplete market structure represented in 

Figure 2 of Allen and Gale (2000). However, note that in this case an interbank market ensures optimal risk-sharing only if the chain 

of lending relationships is such that banks receiving liquidity shocks of different signs are located alternately. The informational 

requirement for this arrangement to work is much more demanding than the one required when banks exchange claims mutually. A 

bank has not only to be informed about the distribution of the idiosyncratic liquidity shocks in each state of the world, but also on the 

exact position of any single bank in that distribution. The point goes normally unnoticed. 
10 Allen and Gale (2000), Battiston et al. (2012), Elliott et al. (2014), Acemoglu et al. (2015). 
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by an exogenous disturbance given that, from a post-shock point of view, the reciprocal exchange of 

deposits is essentially counterproductive. 

Starting from these premises, in this paper we study the implications of mandating banks swapping 

deposits to enter into on-balance-sheet (OnBS) netting agreements11, in order to assess whether this 

tool could successfully complement the lending-of-last-resort measures a central bank customarily 

deploys to contain a systemic financial crisis (Cecchetti and Disyatat, 2010).12 An OnBS netting deal 

is a bilateral arrangement that allows two parties to offset the mutual debt obligations they have 

registered on their books. By signing the new agreement, the two pre-existing gross claims are 

contractually replaced by the single net amount that the net-debtor owes to the net-creditor.  

Under the regulatory framework outlined in the Basel Accords, such arrangements are permitted on 

a voluntary basis as privately stipulated contracts, while the rulebooks currently in place focus on the 

manner in which the net exposure resulting from a close-out netting effective upon a default13 has to 

be accounted for, how liquidity and capital requirements must be adjusted once the triggering event 

occurs, and under what conditions regulators are allowed to delay automatic close-out and termination 

rights to facilitate the orderly resolution of a distressed bank. While from a micro-prudential 

perspective it can be easily envisaged that OnBS netting arrangements end up affecting the seniority 

structure of debt, the implicit insurance against risks associated to borrowing and lending, and the 

drawing of internal limits for counterparty credit risk, their possible macro-prudential implications 

represent an almost uncharted territory. 

In fact, the literature investigating the effect of OnBS bilateral netting on the resilience of interbank 

lending networks is not only small, but it also returns discordant outcomes. Upper and Worms (2004) 

use data on the German interbank market to argue that the bilateral netting of mutual exposures could 

shrink the aggregate loss in asset values during an episode of crisis from 76% to 10%. However, 

results for Belgium (Degryse and Nguyen, 2007) and the U.K. (Duan and Zhan, 2013) suggest a much 

weaker effect in reducing contagious defaults, whilst Eisinger et al. (2006) show that for Austria the 

consequence of introducing a bilateral netting arrangement is virtually irrelevant. As argued by Upper 

(2011), it is not clear whether this combination of mixed results have to be traced back to undetected 

differences in market microstructures, alternative hypotheses on the conditioning events, or the 

methodologies with which missing data on balance-sheet variables and unobserved linkages are 

obtained.  

In order to explore the aptitude of interbank netting arrangements to tame systemic disruptions, we 

develop a financial network model suitably amended to make room for the possibility that mutual 

claims could indeed be netted on a bilateral basis. Building upon the algorithm for calculating total 

changes in liquidity proposed by Lee (2013), we use the model to study how funding shocks spread 

and get amplified through interbank linkages under alternative settlement arrangements. Our 

contribution considers shocks large enough to trigger a liquidity crisis. Given the size of the shock 

we try to investigate whether its degree of dispersion has an impact on the severity of the crisis.  In 

our framework, liquidity shortages first arise when banks experience an unforeseen run on their 

                                                           
11 We use this expression to distinguish our topic from the much more explored issues of netting interbank off-balance-sheet exposures 

associated to OTC derivatives on the one hand (Bliss and Kaufman, 2006; Cont and Kokholm, 2014; Garratt and Zimmerman, 2017), 

and netting settlement agreements in payment systems on the other one (Angelini et al., 1996; Freixas and Parigi, 1998)). 
12 As will become clearer below, in our model the central bank counteracts a major liquidity turmoil through outright purchases of 

illiquid assets in the open market. 
13 In a close-out netting agreement two parties agree that in the case of default of one of them, the obligations they have on each 

other are immediately terminated, the termination values are calculated and netted to arrive at a net single amount. 
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deposits. This exogenous funding shock forces buffeted banks to recall their interbank assets and 

deploy their liquid reserves (if available) to meet their depositors’ demand for funds. A randomly 

chosen bank can hence be hit directly by a deposit shock or indirectly by the additional funding 

shock(s) imposed on it by other banks seeking to recover some additional liquidity in the interbank 

market. For this reason, ultimate liquidity needs might exceed the initial exogenous shock and bring 

about systemic liquidity shortages that could pose a threat to the whole system. Illiquidity driven 

disruptions are recorded whenever a bank faces liquidity needs in excess of its liquid assets (i.e. the 

sum of its interbank assets and liquid reserves set aside to comply with regulatory requirements). 

We admit the possibility for a supervisory authority to regulate these operations by selecting the banks 

forced to activate OnBS netting procedures. Five experimental treatments are explored. The first is a 

benchmark case in which netting is simply prohibited, so that contagion dynamics unravel in a 

network where all interbank exposures are gross. A full netting process characterizes the second case, 

where all banks are required to net their mutual claims regardless of whether they are experiencing a 

run on their deposits or not. We then test three hybrid treatments, in which a partial netting process 

is implemented so that netted and gross interbank claims coexist. In our third case, OnBS netting is 

required only among the banks that do face a run on deposits. In the fourth case, the banks hit by an 

exogenous liquidity shock are forced to activate a netting settlement with safe counterparts only. 

Finally, in the fifth treatment a netting of mutual exposures is compulsory for non-affected banks 

only. The three latter policy options respond in varying degrees to alternative policy strategies aimed 

at limiting contagion, that is the attempt to isolate infected or susceptible nodes, respectively. 

We evaluate how a mandatory enforcement of these netting protocols affect the performance of the 

interbank market under different scenarios on the size and distribution of exogenous liquidity shocks, 

as well as on the topological structure of interlinkages. As regards shocks, we first assume that only 

a small number of banks experience a hefty run on their deposits. We then take the very same shock 

in aggregate terms and gradually spread it across a larger number of banks (each therefore suffering 

a smaller deposit withdrawal), ending with the case in which the run affects uniformly all banks. To 

accommodate the possibility that results could be driven by the topological architecture of interbank 

relationships, in addition to random Erdős–Rényi networks, we perform simulations also for small-

world and core-periphery structures. Finally, recognizing that the very notion of financial stability is 

multifaceted, the post-shock resilience of the system is evaluated along several – potentially 

conflicting – dimensions, namely the fraction of banks involved in the contagion, the ensuing 

systemic shortfall of liquidity, the distance to a potential condition of illiquidity of the banks that 

during the crises succeeded in preserving a positive liquidity position, and the volume of interbank 

transactions when the crisis comes to a halt.  

Our simulations make clear that the relative benefits and disadvantages of the netting regulatory 

option are firmly rooted on a typical “risk-sharing vs. risk-spreading” trade-off. On the one hand, it 

decreases the number of channels through which first- and higher-round infections spill over through 

the network. This implies that the potential for contagion can be reduced in proportion to the total 

value of the mutual obligations that are offset. On the other hand, it contributes to concentrate losses 

not only on the banks hit by the original shock, but also on the ones whose original stock of 

unbalanced interbank positions disallow them to insulate. In other words, the benefit of reducing a 

spreading of contagion comes with an increase of the risk absorbed by the banks unable to fully 

disconnect themselves from the system. 
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We find that the balance between these two forces depends critically on the topological structure of 

the market. If the interbank market is characterized by a core-periphery architecture, substituting the 

standard gross settlement mode with a mandatory netting one does not provide on average significant 

advantages – although it does not do worse either – when the supervisory welfare criterion is defined 

in terms of the number of banks recording a liquidity strain, the total amount of liquidity shortage in 

the system, or the depth of the interbank market. The netting option works systematically better, 

however, when the policy target is that of assuring that the system comes out of the crisis in the best 

possible shape to face future negative shocks. Once characterized as a multiobjective problem on a 

suitably defined criterion space, therefore, a contingent-based mandatory netting scheme represents 

an optimal solution to pursue the multidimensional goal of financial stability. The actual magnitude 

of the Pareto improvement depends on the size and the distribution of the initial shock.  

For core periphery and small-world topological structures, however, the netting option represents an 

efficient crisis management tool as soon as the central bank targets the distance to illiquidity of 

survived banks or the post-contagion trading volume in the interbank market, but it performs 

significantly worse than the gross settlement mode whenever the policy goal is that of minimizing 

the shortfall of aggregate liquidity. In these cases, a policymaker faces a conundrum that can be 

resolved only if the several dimensions substantiating the broad concept of financial stability are 

organized hierarchically.   

The remainder of the paper is as follows. Section 2 offers a brief introduction to OnBS netting 

arrangements in light of the current regulatory environment and discusses how they could be related 

to the issue of financial stability at large. Section 3 introduces the model. Section 4 illustrates results 

for the case of random interbank networks. Section 5 extends the analysis to alternative topologies. 

Section 6 concludes. 

 

2.  NETTING AS A SYSTEMIC CRISIS MANAGEMENT TOOL  

The plausibility of the theoretical explanation for the existence of interbank markets based on mutual 

insurance resides in the empirical salience of bilateral deposit exchanges among banks. In the parlance 

of network theory, the scope for co-insurance can be measured by assessing how many nodes in a 

directed graph are linked to each other by reciprocal linkages. This measure – called reciprocity - can 

be calculated at least in two ways. First, by brute force as the ratio between the number of links 

pointing in both directions 𝐿↔ and the total number of links L, so that r represents the average 

probability a link is reciprocated. 

                                             𝑟 =
𝐿↔

𝐿
                                       (1) 

 In order to overcome problems of scale and double-counting of self-loops potentially affecting r, a 

second metric developed in the literature is the correlation coefficient 𝜌 between the entries (given 

by aij = 1 if a link from i to j exists, and aij = 0 otherwise) of the associated adjacency matrix. Is 

definded by (2) 

                               𝜌 =
∑ (𝑎𝑖𝑗−�̅�)(𝑎𝑗𝑖−�̅�)𝑖≠𝑗

∑ (𝑎𝑖𝑗−�̅�)
2

𝑖≠𝑗

                             (2) 

where �̅� =
∑ 𝑎𝑖𝑗𝑖≠𝑗

𝑛(𝑛−1)
 is the average density and n is the total number of nodes in the network 

(Garlaschelli and Loffredo, 2004).   
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Regardless of the measure one might employ, real interbank networks tend to display a substantial 

amount of reciprocity. Figure 2.1 reports the value of r for the Euro-area e-MID market (Brandi et 

al., 2016), and of  for a sample of large bilateral liability exposures among German banks (Roukny 

et al., 2014), in both cases measured at a quarterly frequency over the time span 2002:Q1-2012:Q3. 

While the degree of reciprocity observed in these interbank markets has decreased in the aftermath 

of the 2007-09 global financial crisis, the scope for closing down possible channels of contagion 

through the bilateral netting of mutual exposures appears significant. The point is generally 

recognized by practitioners and trade associations, and both communities have long advocated for an 

extensive use of bilateral netting agreements as a means to mitigate counterparty risks and improve 

the liquidity of financial markets (British Banking Association, 2002; Mengle, 2010). 

 

Figure 2.1.  Upper graph) Values of =
∑ (𝑎𝑖𝑗−�̅�)(𝑎𝑗𝑖−�̅�)𝑖≠𝑗

∑ (𝑎𝑖𝑗−�̅�)
2

𝑖≠𝑗

   for the German interbank market (DEU) over the period 

2002:Q1-2012:Q3. Lower graph) Values of  𝑟 =
𝐿↔

𝐿
   for the Euro-area e-MID market (E-MID) over the period 2002:Q1-

2012:Q3. Sources: Roukny et al. (2014) and Brandi et al. (2016), respectively.  

 

 

 

 

It is somehow surprising, therefore, that among the set of tools that regulators are envisaged to deploy 

to mitigate the cross-sectional dimension of systemic risk, the option to curb externalities by 

mandating some kind of netting between the cross-holdings of interbank deposits is virtually absent14. 

                                                           
14 See e.g. Bank of England (2009), van der Zwet (2011), Schoenmaker and Wierts (2011), Dewatripont and Freixas (2012) and 

Constâncio (2014), where the issue of netting is totally neglected. 
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Sections 401-407 of the United States’ Federal Deposit Insurance Corporation Improvement Act of 

1991, for instance, admit and recognize the benefits of netting the payment obligations that financial 

institutions hold on behalf of their clients, but remain silent on the admissibility and usefulness of 

netting the deposits that banks exchange among themselves on the Fed Funds market. In turn, the 

legal framework of the European Union guarantees a legal protection only to privately-signed 

interbank bilateral close-out netting agreements (Directive 2002/47/EC, as amended by Directive 

2009/49/EC), but for specific provisions that give regulators the power to delay their enforcement in 

order to guarantee the well-ordered resolution of a distressed bank (Banking Recovery and Resolution 

Directive 2014/59/EU).      

While close-out netting agreements can be conceived as a tool to limit the first round of a contagion15, 

we argue that a generalized enforcement of bilateral netting also among initially unaffected banks 

could help in mitigating higher-round effects, and therefore increase the resilience of the whole 

system. Specifically, this could be achieved by allowing a regulator to mandate the use of a novation 

netting agreement – according to which two parties cancel their mutual obligations out, and 

simultaneously replace them with a new obligation for the net amount – to a pre-defined set of 

interconnected banks as soon as the risk of a liquidity cascade materializes.  

A major problem confronting regulators in the wake of a systemic financial crisis is that of designing 

a coherent structure encompassing a multitude of agencies, instances and constraints. Defining the 

boundaries of the mandate to mitigate the systemic risk they received is probably the most compelling 

task. Since financial stability is a highly multidimensional concept (Schinasi, 2004; Borio and 

Drehmann, 2009) and there is a potential for conflict between different dimensions, any operational 

framework supporting the prevention and management of financial crisis delivers, in fact, an array of 

working objectives. For instance, the Directive 2014/59/EU is explicit in recognizing that the set of 

tools available for recovering and resolving unsound or failing banks should aim to “[…] prevent 

insolvency or, when insolvency occurs, […] to preserve the systemically important functions of the 

institution concerned, […] while minimising the impact of an institution’s failure on the economy and 

financial system”.16  

A crucial point to be addressed below is therefore that of defining a list of policy objectives a 

contingent-based mandatory netting scheme should aim for. Taking stock of the goals major central 

banks around the world declare to pursue in promoting financial stability (Jeanneau, 2014), we will 

assess the diverse netting options against four different dimensions of social welfare: i) To limit the 

number of units involved in the contagion; ii) If a contagion is unavoidable, to limit the strain of 

liquidity for the system as a whole; iii) To safeguard the financial health of safe banks; iv) To ensure 

that the interbank market does not come to a freeze.  

The following steps will outline a set of corresponding metrics – a task we shall leave to the next 

Section – and an evaluation of the trade-offs that the policymaker faces when different welfare 

objectives return contrasting results. Once defined in this way, in fact, the main goal of financial 

stability can be immediately translated into a multiobjective decision-making problem (Miettinen, 

1999; Chankong and Haimes, 2008).  

                                                           
15 Recall that close-outs come into force just upon a default triggering event and can thus be exercised only by the counterparties 

directly exposed to the defaulted entity. 
16 See Sections 1 and 5 of the BRR Directive. 



48 

  

In formal terms, the problem can be expressed as follows. Let a high-level performance criterion be 

served through the minimization of the function: 

 

                                    𝐹𝑠(𝑧) = 𝑚𝑖𝑛[𝑓1
𝑠(𝑧), 𝑓2

𝑠(𝑧), ⋯ , 𝑓𝑚
𝑠 (𝑧)|𝑧𝜖𝑍],  (3) 

 

where m  2 is the number of possibly conflicting objective functions f(.), z  Z defines the action 

space, and s  S indexes the topology/microstructure scenario in which the optimization takes place. 

In our case, the high-level performance criterion is financial stability at large, the individual objective 

functions are the four dimensions of social welfare recalled above, while the set of policy actions 

comprises the alternative schemes for regulating mutual claims a regulator can choose from. 

For any given structural scenario, an action z’ Pareto dominates another action z’’ if the two following 

conditions are met: 

1. For all objectives, fi(z’)  fi(z’’)  i  1,2,…,m.  

2. For at least one objective, fj(z’) < fj(z’’)  j  1,2,…,m. 

This situation is particularly fortunate, as an optimal solution for the high-level performance criterion 

exists irrespective of the relative importance the policymaker attributes to individual objectives. If 

this occurs, a financial crisis can be successfully managed by means of a single policy tool, ensuring 

that all the many facets of financial stability can be composed into a coherent picture.  

If either of these conditions are violated two alternatives are possible. On the one hand, finding a 

Pareto-optimal solution requires the identification of ways to prioritize conflicting objectives, so that 

the multiobjective problem can be suitably transformed into a single-objective one admitting a Pareto 

frontier. On the other hand, the problem has to be solved by means of a multi-objective optimization 

method able to identify the most effective policy proposal without having to create a priority order. 

In this work we decided to opt for the second option. Among the popular mutli-objective 

maximization methods we chose the M.O.O.R.A method, where the acronym M.O.O.R.A stands for 

Multi-Objective Optimization on the basis of Ratio Analysis (for an economic application of this 

method see Brauers and Zavadskas 2006). Thanks to this methodology we managed to identify which 

netting policy proposal was the best one for the majority of the cases tested. 

The use of this method has the merit of considering the financial stability as a complex problem, the 

main limit of the approach consists in the attribution of the same weights to each financial safeguard 

objective. 

From the current regulatory context there are no clear indications in terms of priority of objectives, 

even if the passage from the Directive 2014/59/EU reported above seems to suggest that regulators 

are aware of the necessity to explicit their priorities when managing a crisis. In this normative contest 

the application of the M.O.O.R.A method seems to us to be the more appropriate. Moreover, we are 

sure that approaching the issue of financial stability as a multiobjective decision-making process 

yields a fresh new perspective to the study of the optimal regulation of financial markets, a point that 

will be taken up repeatedly below.17  

 

                                                           
17 A similar view is advanced in Nier (2009), where the multidimensionality of financial regulation is referred to the coexistence of the 

two main goals of consumer protection and systemic risk mitigation. We claim that the even latter – i.e., financial stability writ large – 

is a multidimensional object in itself.    
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3. THE MODEL 

In this Section we describe how artificial financial networks with different topologies are built, the 

various settlement arrangements we study, the algorithm employed to calculate systemic liquidity 

shortages when contagion occurs, and the metrics used to assess the post-shock behavior of the 

interbank network. Our simulations advance according to a standard sequential procedure. At the 

beginning we characterize the network of interconnections among banks, as well as the assets and 

liabilities booked in their balance sheets. Then, we hit one or more banks by means of an exogenous 

shock to the liability side of the balance sheet. Finally, we apply different settlement treatments and 

comparatively assess the network’s performance along several dimensions.   

 

3.1   Set-up of the network 

The simplest way to computationally derive the network structure of an interbank system is to build 

a directed adjacency matrix using two main drivers: the number of links pointing out from each node, 

and the total number of banks. The first driver is captured by the probability pij that a credit obligation 

between bank i (depositor) and bank j (debtor) – defined as 1ij - happens, with i  j and i, j = 1, …, N. 

This operation returns, for each node i, the set of its borrowers i. If also 1ji occurs, the possibility to 

net the two mutual expositions arises. The benchmark structure we consider is an Erdős–Rényi 

random network, where each node has a uniform attachment probability. In order to assess the role 

of market interconnectedness in propagating liquidity shocks, in what follows we will allow p to vary. 

In turn, the size of the network is invariably given by N = 25.18 

Once the non-weighted network of relationships among banks has been shaped, the second step 

consists in assigning to each intermediary a stylized balance sheet consistent with a double-entry 

bookkeeping system (Table 3.1). 

 

Table 3.1 Stylized balance sheet and identification analytic. 

 

Assets Liabilities 

Interbank loans ili  Interbank borrowings ibi       

External liquid assets qi External deposits di 

External illiquid assets zi Equity ei 

Total assets= ili + qi + zi Total liabilities ibi + di + ei 

 

 

 

 

 

 

                                                           
18 This is the number used in the pioneering work of Nier et al. (2007). We refer to Gaffeo and Molinari (2015) for a discussion aimed 

at justifying this choice. 
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Identification analytic 

Number of banks, n 

Total Interbank assets, IA 

Total assets, TA= IA/(1 - ω); (0.5 <  < 1) 

Total External assets, EA=TA-IA  

Interbank loans of Bank i, ili = IA/n  

Number of borrowers of bank i, ni 

Loan of Bank i to j, xij = ili /ni 

External assets of Bank i, EAi = EA/n  

Equity, ei = (EAi + ili)* γ     

Interbank borrowings ibi =
nJ

ijx ,     

External deposits di = (EAi + ili)- ei - ibi 

External liquid assets, qi = δ *di 

      External illiquid assets zi =EAi - qi   

 

On the asset side, bank i is endowed with an amount of illiquid external assets zi, liquid assets qi and 

interbank lending ili. On the liability side, in turn, each bank counts interbank borrowing ibi, deposits 

di and tangible equity ei. By construction, the sum of the components on the asset side and of those 

on the liability side are equal (ili + qi + zi = ibi + di + ei). We will assume that banks, when facing 

withdrawals, will recover funds by selling liquid external assets and interbank assets in constant 

proportion first. Only after all these assets are fully depleted, they can recur to illiquid external assets.  

 

These latter can be liquidated at face value by selling them to the central bank, who consequently 

expands its balance sheet to accommodate the banking sector’s demand for extra liquidity by boosting 

the level of cash reserves. In the wake of the crisis, therefore, the central bank operates as a lender of 

last resort to avoid fire sales of assets and backing market functioning. The actual tool used to inject 

liquidity, which we left un unmodelled in what follows for simplicity’s sake, is assumed to be an 

unsterilized outright asset purchasing program assimilable to the quantitative easing policy adopted 

by several central banks around the world in response to the 2007-09 global financial turmoil and the 

ensuing Euro-area sovereign debt crisis.The presented dynamic is the same as that developed by Lee 

(2013). In this way our work fits into that line of literature that uses fixed point algorithms to 

investigate crises in static credit networks. The functioning Lee's algorithm is presented in section 

3.3. Given that the actual monetary policy of many central banks is still far from normalized and that 

the history of financial crises teaches us that the crisis management tools used tend to enter into the 

range of policy options also for subsequent crises, we consider Lee’s framework as employable 

although we are aware of the fact that this algorithm is not able to map all the economic contexts.   
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In order to populate the balance sheet of each bank, we start by exogenously fixing the amount of 

interbank assets IA and we assign an equal portion of them to each bank, ili = IA/n. We then obtain the 

amount of total assets as TA = IA/(1 - ω), where 0.5 <  < 1, as well as the corresponding amount of 

external assets as EA = TA − IA . The value of each single loan that bank i extends to a counterpart j 

(xij) is finally achieved by dividing ili by the number of borrowers it is linked to. We can thus represent 

the interbank network by means of a weighted matrix X, where the horizontal summation returns ili 

=
nJ

jix ,
 and vertical summation ibi = 

nJ

ijx ,
. Note that interbank loans are slightly heterogeneous, 

given that the number of interbank debtors each bank has is potentially different. The stock of tangible 

equity of each bank is computed by multiplying the corresponding total assets by a parameter 0 < γ < 

1 measuring its leverage ratio. By difference we can then compute the amount of deposits, subtracting 

from the amount of total assets the value of each interbank borrowing plus the amount of equity. 

Finally, to obtain the level of liquid external assets (qi) we multiply the volume of deposits by a 

parameter 0 < δ < 1, and we consequently decrease external assets to make sure that the double-entry 

bookkeeping holds. This guarantees that the network is fully identified, and individual balance sheets 

are consistent with aggregates. 

 

3.2.   Alternative topologies 

A quickly expanding empirical literature has pointed out that real interbank markets tend to display 

small-world and disassortative mixing structures in which low degree nodes form links with high 

degree nodes (Iori et al., 2008; Craig and von Peter, 2014; Fricke and Lux, 2015). As a robustness 

check we therefore extend our analysis to two topological architectures different from the purely 

random Erdős–Rényi case. Figure 3.1 illustrates comparable instances of the three structures we will 

deal with in simulations, from which the main features of the degree distribution characterizing each 

one of them can be appreciated. 

The first alternative topology we take into consideration is a network exhibiting small-world 

properties. This topology is characterized by the fact that the nodes belonging to the financial system 

can be reached by others by means of a small number of intermediate steps. The generating procedure 

of small world network is based on the operation called re-wiring. Starting from a circular structure, 

the re-wiring consists in deleting some links within the network and then reassign them randomly in 

order to reduce the number of average steps to reach other nodes of the network.  Here, starting from 

a lattice ring characterized by two connections per node to which we apply a β re-wiring level. The β 

parameter assumes a range of values between 0 and 1, in the first case the re-wiring is absent and 

therefore the starting lattice ring does not undergo variations, in the second case all the links undergo 

re-wiring and therefore the topology is identical to an Erdos Renyi network. 

An additional disassortative structure is obtained by dividing the bank population into two samples, 

namely a core and a periphery. The banks in the core (hubs) are not only more connected, but also 

bigger than the peripheral ones. We model this architecture by choosing the number of hubs (Nlarge), 

so that the number of banks in the periphery is obtained by difference (Nsmall = N-Nlarge). We then 

assign a probability ps = 0 to the links among peripheral banks, a probability pl measuring how a hub 

connects to all kinds of banks, and a probability psl regulating the attachment between small and hub 

banks. 
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Figure 3.1 Different topologies for the lending (summation over rows) portion of the interbank market. (a): Erdős–

Rényi network, with a common probability of attachment p = 0.2; (b): Small-world network; Lattice ring with 2 

connections per node and β=0.3 (c): Core-periphery network, with probabilities of attachment for core and periphery 

banks equal to pl = 0.8 and psl = 0.2, respectively. Core banks are red coloured.  

 

 

          (a)                                           (b)                                             (c) 

   

 

 

In order to allocate a balance sheet to each node we exogenously fix the benchmark size of three 

different types of interbank loans. The bigger one characterizes lending contracts among hubs, the 

medium size corresponds to the lending from peripheral to hub banks, and the smaller one represents 

the lending between hub and small banks. Given the interplay between attachment probabilities and 

loan sizes, the network is populated by highly interconnected big banks which can be net borrowers 

or lenders, depending on the value of the parameters, and small banks belonging to the periphery 

which are not interconnected among themselves. We divide the benchmark values of interbank loans 

by the number of links each bank has, in order to keep the size of total lending constant as the 

attachment probability characterizing hubs varies. In this way we are able to obtain credit networks 

that do not change the relative size of banks as the connection levels change. We do this to have 

comparable credit networks. Once the structure of interbank expositions has been shaped, we apply 

the same procedure described for the Erdős–Rényi case to fill in the remaining parts of individual 

balance sheets. 

 

3.3   Contagion 

We define the total liquidity of bank i as the sum of its interbank assets plus the total amount of its 

external liquid assets:  

 

    .   

                       𝑙𝑖 = ∑ 𝑥𝑖,𝑗 + 𝑞𝑖𝑗∈𝑁    (4)  

 

Subsequently, we identify the proportion of interbank loans over the total amount of liquid assets as 

i,j = xi,j/li, for i, j  N, and the amount of external liquid assets over the total of liquid assets as i,n+1 

= qi/li, for i  N. This allows us to define the system in terms of a relative liquidity assets matrix , 

and to use the latter in modelling contagion. 
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The algorithm we employ to calculate the complete sequence of knock-on effects arising from a 

liquidity shock is the one developed by Lee (2013). As shown in Hurd (2016), this is formally 

identical to the fictitious default algorithm developed by Eisenberg and Noe (2001) to derive the 

equilibrium clearing vector of payments over a contagion, the only differences being the nature of the 

shock that triggers a crisis and the direction of the contagion. More precisely, while in the Eisenberg-

Noe’s algorithm the propagation process begins with a loss on the asset side – so that it spreads from 

a debtor to a creditor bank - in the Lee’s algorithm the cascade begins with a deposit withdrawal on 

the liabilities side, and then it runs from a creditor to its debtors.   

Operationally, the contagion process begins when an exogenous deposit run hits a given sample of 

intermediaries. In order to understand how the relative magnitude and distribution of shocks affect 

results, we will consider three different scenarios. In the first one, an arbitrarily chosen small number 

of banks k  N is disturbed by a major drawing of deposits, a situation we label “concentrated shock”. 

In the other two scenarios, we spread the same aggregate amount of deposits’ withdrawal over a larger 

sample of banks k’ > k (“dispersed shock”) and over the almost whole population N (“generalized 

shock”), respectively. While keeping constant the absolute size of the shock allows an immediate 

comparison between the three cases, spreading it over different samples returns situations 

characterized by funding runs of different relative magnitude and distribution.    

A bank affected by the shock needs to collect an adequate amount of liquidity to cover the unforeseen 

withdrawal of deposits by using its liquid assets and, once liquid ammunitions have been exhausted, 

by selling illiquid assets to the central bank at face value. It follows that the shock, as it hits, can be 

defined as: 

 

         

                                          ∆𝑑𝑖 = ∑ ∆𝑥𝑖,𝑗𝑗∈𝑁 + ∆𝑞𝑖 + ∆𝑧𝑖  .   (5)  

 

Each affected bank responds by recalling an amount of interbank assets  xi,j = i,jmin(di, li), an 

amount of liquid external assets qi = i,n+1min(di, li), and one of illiquid external assets zi = 

max(0, di - li). As stated before, the chosen algorithm assumes that liquid assets are utilized before 

the liquidation of external illiquid assets. An improvement of this algorithm should insert fire selling 

on external assets. In this way Lee’s algorithm would be more realistic. The total change in liquid 

assets for a given bank i can exceed the exogenous shock di, while the exact value of such change 

can be efficiently computed by solving the system of equations: 

 

     ], min[ , i

Nj

jijii dlll += 


 ,  i  N.   (6) 

 

As soon as the mapping describing the liquidity knock-on mechanism converges, the Knaster-Tarski 

Fixed Point theorem guarantees that at least one exact solution to (6) exists and it can be calculated 

in a finite number of iterations. This is verified if the mapping is monotone and nondecreasing in the 

outflow of liquidity experienced by banks, a condition that holds true due to the seniority structure 

we have assumed before. Furthermore, if the relative liquid exposure matrix  is irreducible 

substochastic, the equilibrium clearing vector of funding withdrawals is unique.  
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The liquidity need of bank i is thus given by: 

 

    
ij

Nj

ij

n

i dll +=


, ,    (7)  

 

corresponding to the sum of the deposit withdrawal it originally faces from its depositors and the 

request of liquidity by the set of its creditors needing liquidity. Every time 𝑙𝑖
𝑛 > 𝑙𝑖, a bank experiences 

a liquidity shortage computed as 𝑙𝑖
𝑠 = 𝑙𝑖

𝑛 − 𝑙𝑖. If 𝑙𝑖
𝑠 > 0, the bank is forced to enter into the outright 

asset purchase program deployed by the central bank. We define a systemic liquidity shortage (SLS) 

as the sum of the liquidity shortages suffered by all the banks belonging to the network.   

 

3.4.  Settlement procedures 

The potential of a mandatory OnBS netting scheme as a crisis management policy is assessed by 

comparing the performance of five settlement treatments. The first one is the standard gross 

settlement (G) mode, which represents our benchmark. In this case we left unchanged the weighted 

matrix of interbank loans X obtained through the two initiation stages discussed above. The second 

treatment is a full netting (FN) scenario, where each bank is allowed to offset his bilateral credit/debit 

obligations. The matrix X is consequently rearranged by applying an algorithm that computes the net 

mutual exposition between any two banks )( ,, ijji xx − . To exemplify, if the original 2x2 matrix X is:  

 

X =  









01

20
 

 

when the regulator forces an OnBS netting it becomes: 

 

X’= 








00

10

.

 

 

Then we test three intermediate cases of partial netting. In the first case (P-I) we assume that the 

bilateral netting of mutual expositions is mandatory only for the banks that receive the external shock. 

In the others two cases the netting treatment is applied between distressed and non-distressed banks 

(P-II), and among non-distressed banks only (P-III), respectively. For example, consider the network 

be composed of four banks interlinked by mutual exposures as in the matrix X below. Suppose that 

the first two intermediaries are hit by a run. The weighted matrix X now becomes X ,  X’’ and X’’’ 

for the three partial netting schemes just recalled, respectively. 

 

X= 



















0222

1011

1102

1110

;  X’=



















0222

1011

1101

1100

;  X’’=



















0211

1000

0002

0010

; X’’’=



















0122

0011

1102

1110

.
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This example also makes clear that any kind of netting reinforces the strict substochasticity of the 

associated relative exposures matrix , that represents a necessary and sufficient condition for the 

uniqueness of the payments clearing vector solving the fixed point problem (6).19 In other words, if 

the network X is such that a clearing vector exists and is unique, the same holds true for X’, X’’ and 

X’’’ as well. Table 3.2 summarizes the treatments. 

 

Table 3.2. Summarizing treatments 

Settlement Description 

Gross   Neting is not applied.  

P-I Bilateral netting among the shocked banks 

P-II Bilateral netting among shocked and unshocked banks 

P-III Bilateral netting among the unshocked banks 

FN Bilateral netting among all banks of the networks 

 

3.5. Metrics for policy objectives 

The settlement options described above are assessed comparatively against four metrics measuring 

different dimensions of financial stability. The first is the troubled banks rate, defined as the fraction 

of banks forced to resort to the assistance of the central bank to sell their illiquid assets as the 

contagion proceeds. Operationally, we define a binary variable tbi, for i  N, which takes the value 1 

if the ith bank goes short of liquidity at some point, and 0 if the bank withstands the contagion process 

without the need to liquidate any of the illiquid assets it has on its books. The troubled banks rate Tb 

is computed as: 

 

𝑇𝑏 = ∑
𝑡𝑏𝑖

𝑁𝑖𝜖𝑁 .              (8) 

The second metric measures the dearth of systemic liquidity, obtained by adding up the individual 

liquidity shortages ls relative to the size of individual external illiquid assets z.  

 

𝑙𝑠 =
∑ 𝑙𝑖

𝑠
𝑖𝜖𝑁

∑ 𝑧𝑖𝑖𝜖𝑁
                (9) 

                                                           
19 See Theorem 2.2 in Hurd (2016, pp.25-27). 
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 Complementary to the previous metric, which focuses on the extensive margin, this one allows us to 

measure the intensive margin of the liquidity shortfall experienced by the whole market. By 

combining the two indicators, one can gain information on the latitude and magnitude of the 

exceptional liquidity injection the central bank is bound to extend in managing the liquidity crisis. As 

a result, our analysis permits to appreciate how alternative options on the way interbank exchanges 

are settled might interact with standard lender-of-last-resort functions deployed by monetary 

authorities. 

The third index measures the percentage erosion of liquid means faced by the banks withstanding 

contagion without having to prematurely liquidate illiquid assets. As such, it can be read as an average 

distance to illiquidity in the case a new shock occurs, which we take as a proxy for the health of the 

banking system in its post-contagion state. The distance to illiquidity for viable banks is therefore 

computed as the ratio between the total amount of liquid external assets employed (∑ 𝐸𝑞𝑖𝑖𝜖𝑁 )    to 

confront the unexpected withdrawal of external or interbank deposits and the total amount of initially 

available liquid assets (∑ 𝑞𝑖𝑖𝜖𝑁 ) , where summations are taken over the set of banks that during the 

crisis episode never resorted to the lender-of-last-resort facility made available by the central bank. 

The Distance to illiquidity is then given by: 

 

       𝐷𝑡𝑖 =
∑ 𝐸𝑞𝑖𝑖𝜖𝑁     

∑ 𝑞𝑖𝑖𝜖𝑁
   (10) 

 

The domain of this variable is by construction defined in the interval [0, 1]. The upper bound is 

reached when almost all the liquidity of untroubled banks is employed during the contagion process. 

On the contrary, the metrics tends to zero when their aggregate stock of liquidity has been preserved 

despite the crisis. 

The final metric deals with the post-contagion depth of the market expressed in terms of the volume 

of interbank deposits. It is computed as the difference between the total interbank assets before the 

shock occurs (∑ 𝐼𝐴𝑖)𝑖𝜖𝑁   and the interbank assets employed during the contagion or in the netting 

process ∑ 𝐸𝐼𝐴𝑖𝑖𝜖𝑁  all divided by ∑ 𝐼𝐴𝑖𝑖𝜖𝑁 . Higher values of this index signal that the scope for co-

insurance in managing idiosyncratic liquidity needs under post-crisis normal conditions has not been 

impaired during the turmoil generated by the funding run. So, we define the the Depth metric as:  

 

    𝐷𝑒𝑝𝑡ℎ =
∑ 𝐼𝐴𝑖𝑖𝜖𝑁 −∑ 𝐸𝐼𝐴𝑖𝑖𝜖𝑁

∑ 𝐼𝐴𝑖𝑖𝜖𝑁
   (11) 

 

  

 

3.6 M.O.O.R.A method analytic  

The M.O.O.R.A is a multi-objective maximization method. This means that this methodology allows 

to identify the best alternative where there are a discrete number of objectives to be achieved. From 

the operational point of view this method consists of three phases. 
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In the first phase we define the i goals and the j alternatives  to be tested (i  N, j  M). Once 

objectives and alternatives are identified, the values assumed by each alternative with respect to each 

objective are assigned. We define 
jis ,
 the value of the j-th alternative to the i-th objective. 

The second phase consists in determining the ratios through a normalization of the values of each 

alternative with respect to each objective. This procedure transforms each  
jis ,
 into 

jiNs ,
,  and it 

consisits in dividing the value 
jis ,
 for the square root of the sum of the squares of the values obtained 

from all the different alternatives as expressed by the equation (12). 



=
m

j

ji

ji

ji

s

s
Ns

2

,

,

,     (12) 

The normalization process is necessary in order to be able to proceed with the optimization since it 

transforms the values reported by each alternative for each objective to a scale from 0 to 1. 

The third and last phase is composed by two parts. The first consists in the choice of the objectives 

that must be maximized and those that will be minimized. So, we named g the number of variables 

to be maximized and consequently (g-N) the number of variables to be minimized. The last step of 

the procedure consists in identifying the Nyj normalized aggregate score of each alternative. This 

value is analytically obtained through the (13). 
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 In the (13) the g variables that must be maximized appear with a positive sign while the (N-g) 

variables to be minimized appear with a negative sign. Once the Nyj value is obtained for each 

alternative it is possible to identify the optimal value through the sorting. 

In our case the optimal policy that the regulator should undertake results from the combination of the 

alternatives, the 5 settlement methods, and the objectives, indicated by the 4 metrics. As we have 

defined the metrics in the previous section, the variables to be minimized are the number of banks 

that register an illiquidity position, the systemic liquidity shortage and the distance to default. The 

only variable to be maximized is the depth of the interbank market given that the greater the value of 

this metric the greater the level of safeguarding of this market will be. Table 3.3 summarizes the 

objectives setting. 
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Table 3.3. M.O.O.R.A objectives setting.  

 

Metrics Maximization /Minimization 

Troubled banks (Tb) Minimize 

Total liquidity shortages (𝑙𝑠) Minimize 

Distance to illiquidity (Dti) Minimize 

Depth of the interbank market (Depth) Maximize 

 

 

3.6. Overview 

The framework we offer to weigh in the pros and cons of forcing the netting of interbank bilateral 

exposures when a liquidity crisis occurs is rather complex. It seems worthwhile to summarize in Table 

3.4 the various instances we consider for: i) the two key variables driving the dynamics of contagion, 

i.e. the topological structure of the market and the type of shock hitting the system; ii) the crisis 

management option chosen by the regulator; iii) the goal used to evaluate the social welfare of any 

given policy prescription.  

Table 3.4. Overview of the simulation framework. 

 

Topological 

Scenarios 

Distribution  

of shocks (degree of 

dispersion in terms of 

number of banks 

shocked) 

Settlement 

Treatments 

(Alternatives) 

Welfare criteria 

(Objectives) 

Erdős–Rényi 

 

Small-world 

 

Core-periphery 

Concentrated 

 

Dispersed 

 

Generalized 

Gross 

 

Full netting 

 

Partial netting I 

 

Partial netting II 

 

Partial netting III 

Troubled banks       

rate (∑
𝑡𝑏𝑖

𝑁𝑖𝜖𝑁 ) 

Liquidity shortfall 

(
∑ 𝑙𝑖

𝑠
𝑖𝜖𝑁

∑ 𝑧𝑖𝑖𝜖𝑁
) 

Distance to illiquidity 

(
∑ 𝐸𝑞𝑖𝑖𝜖𝑁

∑ 𝑞𝑖𝑖𝜖𝑁
) 

Depth of the market   

(
∑ 𝐸𝐼𝐴𝑖𝑖𝜖𝑁

∑ 𝐴𝑖𝑖𝜖𝑁 𝐼
) 
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In what follows, for each topology we will first present a specific case where we will report profiles 

corresponding to the value registered by the welfare system at the end of the contagion process - 

calculated as the fixed point of the cascade mapping generated by the fictitious default algorithm () - 

for different levels of interconnectedness. This presentation will allow us to indicate the main 

dynamics with respect to each metric taken into consideration. Then, for each topology, we provide 

the results of the M.O.O.R.A process which indicates the best policy option for different shock 

dispersion degrees and connectivity levels. 

 

4. RANDOM NETWORKS 

We start our analysis from the Erdős–Rényi topology. Table 4.1 summarizes the baseline simulation 

parameters. Since our scope is purely explorative, none formal external validation has been 

performed. Nevertheless, calibration values are fully consistent with the ones customarily used in the 

literature we are building upon (Niet et al., 2007; Gai and Kapadia, 2010; Lee, 2013).  

 

Table 4.1. Parameters and calibration for the Erdős–Rényi topology. 

 

Parameter Description Baseline calibration 

N Number of banks 25 

 External assets ratio 0.83 

 Leverage ratio 0.04 

 External liquid assets ratio 0.03 

P Interconnectedness probability (range) (0.2, 1) 

d Size of the funding shock as a % of deposits 25% 

K Number of shocked banks (each bank is 

shocked equally) 

4  

 

Figure 4.1 reports results for a concentrated shock scenario, in which the depositors of four randomly 

chosen banks suddenly withdraw 25% of their deposits. The upper-left panel of the figure shows that 

the five types of interbank settlement perform in a fully comparable fashion as far as the troubled 

banks rate is concerned. Systemic liquidity shortages are slightly stronger under the FN and the P-II 

treatments (upper-right panel), however, especially at the high end of the connectivity spectrum. The 

situation is completely reversed along the distance to illiquidity dimension (lower-left panel), where 

both FN and P-II engender a considerable advantage with respect to the P-I, P-III and G cases, 

respectively.  
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Figure 4.1. Performance profiles over the interconnectedness spectrum for the different crisis management options, 

when the topology of the interbank market is Erdős–Rényi. The case analysed is for 4 distressed banks due to a 25% 

deposit withdrawal each. In the first quadrant the Troubled Banks metric, in the second the Liquidity Shortages, in the 

third the Distance to Illiquidity, and in the fourth the Depth of Interbank Market 

 

 

 

These findings are the consequence of two distinct effects. The first one implies a typical balancing 

between a risk-sharing and a risk-spreading effect. On the one hand, OnBS netting schemes cut 

several potential channels of contagion by isolating the banks with interbank positions that can be 

netted almost in full. On the other hand, any netting settlement operates to disconnect the interbank 

market, lowering the risk-sharing associated with a mutual exchange of interbank deposits. In 

particular, the decreased scope for sharing liquidity risks comes with a stronger concentration of 

liquidity calls to those debtors who cannot fully net their position towards distressed banks. From this 

point of view, netting settlements contribute to increase financial instability. Moreover, there is a 

second effect weighing the liquidity shortage registered at the aggregate level against the distance to 

illiquidity of untroubled banks, that depends on the relative magnitude of the external run disturbing 

intermediaries. For a funding shock large enough, the netting of mutual claims increases the 

internalized portion of the unexpected depositors’ withdrawal. As a result, it tends to increase the 

liquidity shortfall of shocked banks on the one hand, while lowering the liquidity calls towards the 

remaining part of the network on the other one. This is the reason why the distance to illiquidity tend 

to be structurally lower in the netting treatments including shocked banks. In fact, the internalization 

of a larger portion of knock-on losses implies a lower liquidity need during the whole contagion 

process. Whilst the two effects tend to offset each other in terms of the faction of banks incurring into 

liquidity troubles, this is not the case for the other welfare metrics. In the FN and P-II treatments, the 

concentration effect increases systemic liquidity shortages if compared to the standard G treatment, 

as well as to the P-I and P-II ones. Symmetrically, the losses’ aggregation process allows FN and P-

II to outperform all other treatments as far as the index of financial health after contagion is concerned. 
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The lower-right panel of Figure 4.1 illustrates the post-crisis depth of the interbank market under the 

five settlement protocols. In the four treatments considering the netting of mutual exposures, results 

are driven by two components. The first is the internal dynamics associated to novation wiping out 

interbank contracts, while the second is the contagion process forcing intermediaries to call back 

interbank credits. For the G treatment, on the contrary, the only reason for the shrinkage of the 

interbank market is due to the standard dynamics of the liquidity cascade.  

From this quadrant emerges the excellent performance of the Partial Netting II which is able to 

preserve the interbank market better than all other treatments, significantly reducing the contagion 

process. 

We note that the disaggregated analysis by metric allows to identify the trade offs in the field and 

consequently the strengths and weaknesses of each policy proposal. What is very difficult to identify 

from this perspective is the combined output obtained by each policy option. We therefore move to 

the M.O.O.R.A analysis to get this type of information. Table 4.2 shows the parameters and the 

calibration of the shocks for the simulations undertaken with the M.O.O.R.A method. 

 

Table 4.2. M.O.O.R.A parameters and calibration for the Erdős–Rényi topology. 

 

Parameter Description Baseline calibration 

N Number of banks 25 

 External assets ratio 0.83 

 Leverage ratio 0.04 

 External liquid assets ratio 0.03 

P Interconnectedness probability (range) (0.2, 1) 

d Size of the funding shock as a % of deposits 

(range) 

25-5% 

K Number of shocked banks (each bank is 

shocked equally. (range) 

4-20 
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Figure 4.2. M.O.O.R.A outputs. Each treatment is tested against the standard gross settlement when the topology of 

the interbank market is Erdős–Rényi. The three axis dimensions are the number of the shocked banks (range 4-20), the 

percentage probability of connection between nodes and the M.O.O.R.A overall performance. 

 

 

 

Figure 4.2 is divided into 4 quadrants. In each quadrant we show the comparison in terms of 

M.O.O.R.A output between one of the netting proposals and the standard gross treatment. 

The figure shows the P-II is the best treatment for most levels of connection probability and shock 

distribution. Only for highly distributed shocks the G settlement performs in line or better than the P- 

II. This happens because the positive effect due to the isolation between the affected and non-affected 

banks fades away as the number of shocked banks tends to almost the entire system. As seen for the 

disaggregated analysis, the level of connection of the network shows a positive relation with respect 

to the performance of the P-II. This dynamic is a consequence of the fact that as the number of links 

between nodes increases the netting opportunities between agents increase too. In this way the 

isolation effect of the P-II becomes stronger. 

For what concerns the other policy proposals we note how the G treatment dominates for almost the 

whole domain defined by the parameters. This is due to different reasons. In the case in which the FN 

is taken into consideration, the negative performance that this treatment scores in terms of reduction 

of depth of the interbank market seems to be the main discriminant for its underperformance. 

Analyzing the performance of the P- I we note that this treatment shows results in line with the gross 

settlement generalizing what was seen in the disaggregated analysis. With regard to the P-III, a 

particularly negative performance is recorded for concentrated shock. This happens because the P-III 

is strongly affected by a fallen of depth in the interbank market inherent in the netting procedure. In 
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fact, concentrated shocks correspond to a large number of non-affected banks that carry out netting. 

On the contrary, for generalized shocks the reverse dynamics that tends to drive a convergence 

between the two treatments. 

 

5. DISASSORTATIVE NETWORKS 

The random architecture analysed so far represents a natural benchmark to consider. As already 

recalled, however, real-world interbank networks have been shown to possess strongly disassortative 

mixing degree distributions, with a few banks having substantially more connections than the average 

degree. Since the key idea at the root of a crisis management strategy based on a mandatory OnBS 

netting is that of cutting links to contain contagion, it seems interesting to explore how its 

implementation could perform in topologies alternative to the random one. 

 

5.1   Small-world networks 

The first robustness check we fulfil refers to a small-world topology. Table 5.1 summarizes the 

baseline simulation parameters characterizing this experiment.  

 

Table 5.1. Parameters and calibration for the small-world topology. Parameters not reported are equal to the ones 

employed in the Erdős–Rényi case. 

 

Parameter Description Baseline calibration 

N Number of banks 25 

           D Node degree of the starting lattice ring 2 

β β re-wiring parameter (range) 0.45-0.70 

d Size of the funding shock as a % of deposits 25% 

K Number of shocked banks (each bank is shocked 

equally. Range) 

4  

 

Figure 5.1 reports the results for the concentrated shock scenario, in which the depositors of 4 banks 

suddenly withdraw 25% of their deposits. As usual, we apply the four netting treatments and the 

benchmark gross settlement mode in a comparative fashion. The first noteworthy feature is that, in 

line to what we observe for random networks, the different profiles over the whole interconnectedness 

range for the fraction of troubled banks are essentially undistinguishable for the Gross, Partial Netting 

I and II, signalling that the contagion-preserving and the loss-concentration effects tend to offset each 

other. FN and P-III scored a bad performance compared to the other treatments showing a dominance 

of the loss concentration over the contagion-preserving effect.  The balance between the two prongs 

of the trade-off drives the slight bad performance of the P-II treatments as regards the metric 

measuring liquidity shortages, as well as is good score in the distance to illiquidity metric. On the 

contrary, the FN performs badly as regard as liquidity shortage without scoring a good performance 

on the distance to default. This is probably due to the negative effect in term of higher number of 

distressed banks scored by FN respect to P-II. Due to their relative inability to isolate the shock 

affecting the stressed banks, in turn, P-I and P-III turn out to be systematically less effective than the 
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other netting treatments. Moreover, the P-III treatment due to the large number of netted contracts , 

lowers the depth of the interbank market without being able to score an improvement along the other 

welfare dimensions. All in all, the P-II treatment is effective in the distance to illiquidity dimension, 

and it is also the best treatment in preserving the deepness of the interbank market.  

Figure 5.1. Performance profiles over the interconnectedness spectrum for the different crisis management options (β 

parameter on x axis), when the topology of the interbank market is small-world. The case analysed is for 4 distressed 

banks due to a 25% deposit withdrawal each. In the first quadrant the Troubled Banks metric, in the second the Liquidity 

Shortages, in the third the Distance to Illiquidity and in the fourth the Depth of Interbank Market 

 

 

Now, we procede with M.O.O.R.A investigation. Table 5.2 indicates the values of the set of 

parameters employed. 

Table 5.2. M.O.O.R.A parameters and calibration for the Small World topology. 

 

Parameter Description Baseline calibration 

N Number of banks 25 

           D Node degree of the starting lattice ring 2 

Β Beta re-wiring parameter (range) 0.1-0.7 

d Size of the funding shock as a % of deposits (range) 25%-5% 

K Number of shocked banks (each bank is shocked 

equally. Range) 

4 -20 
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Figure 5.2. MOORA outputs. Each treatment is tested against the standard gross settlement when the topology of the 

interbank market is Small-World. The three axis dimensions are the number of the shocked banks (range 4-20), the beta 

re-wiring probability between nodes and the MOORA overall performance. 

 

 

 

Figure 5.2 presents the results of the MOORA procedure for the 4 treatments of netting versus the 

standard gross settlement mode. Compared to the homogeneous topology analyzed in the previous 

section, we observe that there are marked differences between treatments. As far as the FN is 

concerned, for all the domain defined by the parameters the netting treatment underperforms the gross 

settlement. This output is mainly due to the very low performance that the FN treatment scores in the 

metric concerning the depth of the interbank market without being able to get an improvement along 

the other welfare dimensions. The P-I treatment shows a performance in line and sometimes higher 

than the G treatment for concentrated shock. On the contrary, as the level of shock dispersion 

increases the two treatments tend to diverge with the prevalence of the G treatment. This is due to the 

fact that for generalized shocks the number of netted contracts surges, inducing in that way a poor 

performance of the P-I treatment in the metric dealing with the depth of the interbank market. 

 The P-II netting is the best treatment for highly and medium concentrated shocks. The dominance of 

this treatment is mainly due to the ability of P-II in preserving liquidity and ensuring the depth 

interbank market depth during contagion. Nevertheless, when the shock is generalized, the number 

of banks performing netting is very limited and therefore the netting benefits on the reduction of 

contagion are not significant. 

Finally, the P-III treatment. The netting between the unaffected banks is below the standard gross 

settlement for all parameter levels. This treatment tends to burn too much interbank obligations for 

concentrated shocks, inducing in this way a prevalence of the concentration effect on the isolation 
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effect. With regard to generalized shocks, the P-III treatment is penalized by the poor application of 

the netting. 

 

5.2.   Core-periphery networks 

As a last experiment, we test our model on a core-periphery topology. Table 5.2 summarizes the 

baseline simulation parameters. This topology is characterized by a few large banks that are flanked 

by many small ones. As for the previous topologies we begin with the disaggregated analysis. We 

first shock 4 core banks by means of a 25 % withdrawal of its deposits. Table 5.3 shows the value of 

the parameters employed in our simulations. 

 

Table 5.3. Parameters and calibration for the core-periphery topology. Parameters not reported are equal to the ones 

employed in the Erdős–Rényi case. 

 

 

 In this case, all the partial netting treatments previously described can also be tested. As shown in 

Figure 5.3, FN and P-II outperform the other treatments in preserving financial stability after 

contagion. The other three metrics remained approximately equal, a finding that can be explained as 

follows. Since safe banks – i.e., those not hit by the exogenous shock – belong to the periphery and 

are not connected to each other, P-III collapsed to G. Moreover, P-I generates a contagion dynamic 

similar to those of G. Although shocked banks are forced to net their mutual exposures, the very fact 

that all the hubs are hit by the same shock left their liquidity needs unchanged. FN and P-II score a 

better performance with respect to the distance to illiquidity, due to the fact that the loss-concentration 

effect associated to netting acts to limit the volume of liquidity drained from the system by shocked 

banks. 

 

 

 

 

 

 

Parameter Description Baseline calibration 

Nlarge Number of hubs 4 

psl Small-to-hub interconnectedness probability 0.4 

pl Hub interconnectedness probability (range) (0.4, 1) 

lp Small-hub, hub-small and hub-hub loan size 1 – 3 – 5 

d Size of the funding shock as a % of deposits  25%  

K Number of shocked banks (each bank is shocked 

equally) 

4  
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Figure 5.3. Performance profiles over the interconnectedness spectrum for the different crisis management options, 

when the topology of the interbank market is core-periphery. The case analysed is for 4 hub banks disturbed by a 25% 

deposit withdrawal each. In the first quadrant the Troubled Banks metric, in the second the Liquidity Shortages, in the 

third the Distance to Illiquidity and in the fourth the Depth of Interbank Market. 

 

 

Now we procede to M.O.O.R.A investigation, Table 5.4 shows the parameter values employed in our 

simulations. 

Table 5.4 M.O.O.R.A. parameters and calibration for the core-periphery topology. Parameters not reported are equal 

to the ones employed in the Erdős–Rényi case. 

 

 

Parameter Description Baseline calibration 

Nlarge Number of hubs 4 

psl Small-to-hub interconnectedness probability 0.4 

pl Hub interconnectedness probability (range) (0.3, 0.9) 

lp Small-hub, hub-small and hub-hub loan size 1 – 3 – 5 

dh 

 

ds 

Size of the hub bank funding shock as a % of 

deposits (range) 

Size of the small bank funding shock as a % of 

deposits (range) 

 25-50%  

 

8-18 

Kh 

 

Ks 

 

 

Number of shocked hub banks (each bank is shocked 

equally) 

Number of shocked peripherical banks (each bank is 

shocked equally) 

2-4 

 

6-18  
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Figure 5.4. M.O.O.R.A outputs. Each treatment is tested against the standard gross settlement when the topology of 

the interbank market is Core Periphery. The three axis dimensions are the number of the shocked banks (C=core bank, 

P=peripherals bank), the connection probability of the hub nodes and the MOORA overall performance. 

 

 

 

 

 

 

Observing Figure 5.4, a positive overall netting performance is recorded for core periphery 

topologies. The analysis of the performance of the FN in the first quadrant shows an almost structural 

dominance of this treatment compared to the G settlement standard. This outcome seems to be driven 

mainly by the good performance of the FN in preserving liquidity during the contagion process. The 

result is robust for concentrated shocks that hit the hub banks and for the shocks dispersed on 

peripheral banks. Considering the PN-I, we note how this treatment registers a positive performance 

when the shock is dispersed on small banks. This is due to the fact that the PN-I treatment tends to 

disconnect peripherals banks from each other enhancing the isolation effect. In this way the liquidity 

requests from the shocked peripheral banks are directed towards the large hub banks able to meet 

these needs. With regard to the shocks concentrated on hub banks, there is a substantial equality 

between the two treatments. 

For what concerns the P-II treatment, there is a clear dominance of netting compared to the G 

settlement driven mainly by its excellent performance in terms of liquidity savings during the 

contagion process. The result is robust for different levels of hub banks' connection and for the degree 

of shock dispersion. Finally, we consider the treatment P-III which registers a performance slightly 

lower than the standard G settlement for shock concentrated on the hub banks, while a performance 

that tends to be comparable to the G treatment as regards generalized shocks. 
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6.  CONCLUDING REMARKS 

The key objective of this paper was to shed light on the effects exerted by a contingent-based OnBS 

netting prescription on the mitigation of systemic financial disruptions. In particular, we have 

employed numerical simulations to investigate whether a deposit run could trigger a systemic 

liquidity crisis more easily in an environment in which a standard gross settlement mode is applied 

in settling interbank lending exposures, in comparison to an environment in which alternative OnBS 

netting schemes are used as a crisis management tool. The impact of OnBS netting has been 

assessed against several metrics capturing the multidimensionality of financial stability, such as the 

fraction of banks asking for a liquidity support to the central bank, systemic liquidity shortages, the 

distance to illiquidity for the banks that never went short of liquid means during the whole crisis, 

and depth of the interbank market after contagion. Once the values of these metrics have been 

identified we proceeded using the MOORA multi-objective optimization method in order to identify 

the most appropriate policy proposal. 

 

Our simulations highlight that the scope for forcing banks to net their mutual claims in an attempt to 

defuse possible channels of contagion implies that regulators face a crucial trade-off, whose balance 

varies depending on the inner dynamics of clearing arrangements. A bilateral netting settlement mode 

tends to concentrate interbank liquidity calls towards a lower number of counterparties. This effect 

weakens the potential to share liquidity risks associated to mutual interbank loans, worsening the 

prospect to be exposed to a financial pain for all the banks who are not allowed to fully disconnect 

themselves. In turn, given that novation agreements reduce the interbank depth, a netting of bilateral 

exposures contributes to cut several channels of contagion. The interplay between these two forces 

determines the final outcome. 

 

As regards the Erdos Renyi and small world topologies, the M.O.O.R.A method identifies the P-II  as  

optimal treatment. The advantage of this treatment compared to the others is to be found in its ability 

to preserve the aggregate liquidity of the system and the depth of the interbank market during the 

process of contagion. As we proceed to more realistic core-periphery and small world structures, 

M.O.O.R.A method outlined a clear policy prescription for disperse and generalized shocks. The P-

II treatment outperforms the other crisis management options even for these topologies. Summarizing 

our analysis, we found the best policy option is to isolate the banks affected by the shock from those 

not affected. In this way netting acts as a “sanitary belt” which is able to preserve financial stability. 

 

By allowing banks to participate in an outright asset purchase program orchestrated by the central 

bank, the present model neglects completely market illiquidity. This assumption was retained in order 

to keep liquidity runs detached from the dynamics generated by failure cascades affecting the assets’ 

side. Future improvements should relax this hypothesis. Our intuition is that, in this case, another 

important trade-off would enter the scene as soon as an OnBS netting scheme was made mandatory 

to face a systemic liquidity shortfall, in that the higher fire selling losses generated in a more 

interconnected market should be weighed against the relative financial position of those banks that 

(partially) succeed in insulating themselves from contagion at the cost of bearing more concentrated 

liquidity shortages.  
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Abstract 

Can on-balance-sheet (OnBS) netting of interbank deposits be employed to prevent 

financial contagion and improve the resilience of a banking system? The aim of this 

paper is to investigate whether a collective enforcement of this kind of agreements 

could reduce the systemic risk during a crisis. To this end, we compare contagion 

dynamics under OnBS netting and a standard gross settlement through the lenses of a 

mean-field model and computer simulations. We find that OnBS netting tends to 

reduce the number of defaults, preserve the aggregate amount of bank capital but takes 

its toll on retail deposits. Hence, our analysis provides support for a policy mix that 

combines a bilateral netting enforcement with a national insurance scheme for retail 

deposits. The desirability of netting increases when the system is highly connected, 

susceptible to large shocks especially when vulnerabilities are first detected in banks 

located in the core of the network.  

 

1. INTRODUCTION 

This paper focuses on the application of on-balance-sheet (OnBS) bilateral netting agreements in 

interbank networks. At odds with the typical offsetting of OTC derivative transactions, OnBS netting 

is a contractual arrangement that allows two financial institutions to offset mutual debit-credit 

relationships that are booked on their balance sheets, by signing a novation agreement such that a 

single net amount is contractually substituted for the previous individual gross amounts they owed to 

each other or by stipulating a contract such that the former procedure is conditional on the default of 

the counterparty. The aim of the paper is to investigate whether a mandatory enforcement of this kind 

of settlement contracts could control or even prevent default cascades in financial networks and boost 

their systemic resilience in the run-up of a crisis. We first clarify the system-wide mechanics of OnBS 

netting agreements in minimal-scale network topologies, in order to assess intuitively under which 

circumstances a policymaker mandating the offsetting of gross interbank exposures by means of 

OnBS netting arrangements could succeed in maintaining financial stability. The variables we track 

in our comparative exercise as measure of systemic performance are the aggregate stock of capital 

which is wiped out by a crisis contagion process, the number of defaults occurring through contagion, 

and the portion of the shock absorbed by deposits of the whole system. We show that the enforcement 
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of a comprehensive obligation to net interbank claims represents an effective crisis-management 

policy whenever the initial shock is big enough, while for smaller disturbances the consequences for 

contagion are mixed. Moreover, we find that the degree of heterogeneity of interbank loans plays a 

key role in driving these outcomes. We then offer results from a mean-field approximation and agent-

based simulations performed within more complex structures, in order to provide a comparison 

among the two types of settlement in more realistic scenarios as regard the number of banks, the 

network topology and the level of capitalization. Following a standard approach in the literature, we 

characterize different instances of the financial network by means of two key drivers - the 

connectedness probability and the number of nodes in the system - and we allow for the possibility 

that a contagion cascade could be triggered by a targeted shock wiping out a large portion of a bank’s 

external assets. In Erdös-Rényi networks, mandatory OnBS netting definitely dominates gross 

settlement for default and capital metrics for different levels of leverage ratios, interbank market sizes, 

connectedness and degrees of heterogeneity in loans. As we move to core-periphery structures, 

however, we find that the magnitude of the triggering shock is a crucial variable in determining which 

arrangement dominates. In particular, while a strong dominance of OnBS netting occurs for default 

and capital metrics in almost all the cases tested whenever a big shock occurs, for smaller shocks the 

final output depends in a non-linear way on the network topology, the banks’ size, the depth of the 

interbank market and the leverage ratio. The metrics relating to the portion of the shock absorbed by 

deposits displays a structurally better performance in the case of gross settlement for both tested 

topologies. This is mainly due to the fact that bilateral netting, by reducing the amount of interbank 

debts, fosters the bank hit by the shock to absorb a greater share of the losses through its deposits in 

contrast to the gross settlement case. Our investigation returns clear policy implications. As the risk 

of a systemic disruption looms large, the option to mandate a generalized novation of interbank gross 

exposures through OnBS netting agreements falls only conditionally within the set of crisis-

management tools aimed at preserving financial stability. The prompt availability of data on the 

scope, size and functioning of real-world financial networks is a thus a key prerequisite for its 

deployment. Furthermore, since the offsetting of mutual interbank exposures tends to concentrate the 

effects of an external shock on the stakeholders of the buffeted bank, the presence of a deposit 

insurance scheme is a compelled complementary policy measure that has to be deployed.  The 

remainder of the paper is organized as follows. Section 2 presents a literature review. Section 3 

illustrates with elementary examples the intuition at the basis of netting mutual exposures in interbank 

markets. Section 4 is devoted to a more detailed analysis by means a mean-field approximation and 

agent-based simulations in random networks. An extension to core-periphery topologies is offered in 

Section 5. Section 6 concludes. 

2. LITERATURE REVIEW20 

In this work we analyze the impact of OnBS netting in contexts of financial crisis engendered by 

shocks that hit an intermediary’s assets. Our contribution adds to the strand of the literature which 

employs network analysis as a methodology for the study of the dynamics of contagion within 

interbank credit networks (Nier et al 2007; Gai et al 2010; Battiston et al. 2012; Krause and Giansante 

2012).21 Such literature includes several clear-cut findings on the relationship between the topology 
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of the interbank network and the contagion. One key finding is the non-linear relationship between 

the degree of connectivity and the number of defaults due to failure cascades occurring in an interbank 

network, usually called U or M shaped relationship. According to the latter, the increase of the 

connectivity of an interbank network tends to multiply the channels of contagion to a point where the 

risk sharing effect, which is due to the high connection level, prevails against the risk spreading effect 

(for the generalization of this finding to dynamic modelling, see Georg 2013). Nier et al. (2007) have 

highlighted the importance of the capitalization level, of the concentration level of the topology, and 

of the depth of the interbank market for the probability of a default cascade. Other works have put 

emphasis on fire selling as an amplifying factor of the contagion (Chifuentes 2007) as well as on 

financial accelerators (Battiston et al. 2012b), liquidity shocks (Gai and Kapadia 2011), resolution 

procedures (Gaffeo and Molinari 2015), and bank-size heterogeneity (Caccioli et al. 2012). In the 

present work, many of the findings emerged from the aforementioned literature will be confirmed. In 

particular, we will analyze the effect of the OnBS from three perspectives. As for the first perspective, 

we focus on the qualitative analysis of small-size networks with the aim of identifying the basic 

dynamics underpinning bilateral netting. The analysis of small credit networks has been performed 

by Allen and Gale (2000) and Lee (2013) to study the processes of contagion engendered by liquidity 

shocks. The advantage of focusing on small networks consists in the provision of an immediate 

understanding of the contagion process; the main disadvantage, on the other hand, is that moving 

from a simple structure to a complex one does not only change the scale but, in many cases, also the 

nature of the phenomenon under scrutiny. In this light, we consider the analysis of small networks as 

a starting point to be followed by mean field analyses and, eventually, simulations of networks 

composed by heterogeneous agents. As for the second perspective, thus, we focus on mean field 

methodology, which has been employed by May and Aranaminphaty (2010) to analyze default 

cascades in relation to the shocks that hit an intermediary’s assets. Horst (2007) resorts to the same 

methodology to develop a credit rating model analyzing the contagion process of a network of 

companies. Borovykh et al. (2017) develops a mean field approximation model with the aim of 

studying the effect of financial accelerators and of fire selling on system risk. In general, the main 

strength of the mean field approach consists in the ability to analytically identify the conditions under 

which cascade phenomena can occur (see Barucca et al. 2017 for a review). The main limitation, on 

the other hand, consists in the strong assumptions of homogeneity imposed by such approach. As for 

the third and last perspective of our analysis, therefore, we built artificial credit networks populated 

with banks by following a procedure similar to that one of Nier et al. (2007). By doing so, we were 

able to compare the performance of bilateral netting with a theoretical benchmark supported by the 

extant and then analyze more realistic networks characterized by core-peripheries structures closer to 

the instances of the empirical work considered (Boss 2004; Mistrulli 2005; Fricke and Lux 2012; 

Craig and Von Peter 2014; Langfield et al. 2014). 

Few works have investigated the relationship between OnBS netting and system risk. Unfortunately, 

these works delivered inconsistent results. The empirical analyses of Degryse and Nguyen (2007) and 

Duan and Zhan (2013) highlight a modest effect of deposit netting on the reduction of systemic risk, 

for what respectively concerns the interbank systems of Belgium and the United Kingdom. On the 

other hand, Upper and Worms (2004) note a strong effect of bilateral netting on the decrease of 

systemic risk, whereas Esinger et al. (2006) show a substantial irrelevance of bilateral netting to the 

data concerned with the Austrian interbank market. The inconsistency of these results is primarily 

due to the different topologies of the interbank markets of the countries considered and to the modes 
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of estimation of the interbank loans, other than to the level of the shocks taken into account. Here we 

seek to provide a theoretical framework capable of accounting for such a heterogeneous set of results. 

Bilateral netting is also relevant to the distribution of systemic risk across the classes of creditors of 

the financial intermediaries. Emmons (1995) shows how the OnBS netting works as a transfer tool of 

the credit risk from non-senior to senior creditors. The model analyzed by Emmon leaves out default 

cascades; our work can be seen as complementary to his contribution, for we analyze the risk shifting 

effect of the netting and the distribution of the losses engendered by a shock on the assets among 

different classes of creditors in contexts of default cascades. 

            

3. HOW BILATERAL NETTING WORKS 

In this Section we provide an introductory discussion on how OnBS netting can affect the network 

topology by constraining interbank market transactions. We took into consideration four simple 

topologies, with the explicit aim of assessing whether this kind of settlement agreements could be 

reasonably tested in more complex environments. We limit ourselves to a qualitative proof-of-

principle analysis by focusing on three variables: i) topology; ii) magnitude of the shock; iii) interbank 

loans’ size.  

3.1 Complete network 

The first network we analyse is a complete one, as shown in Figure 3.1. This type of topology is 

characterized by the fact that each bank is linked to all the others by means of reciprocal interbank 

credit and debit obligations. The equity of each bank is defined as ei, i  (1, n), n is set to 4, the 

interbank debt that bank i has towards any of the other intermediaries of the network is ibi while the 

interbank asset is ili. Deposits and non-interbank assets are labelled respectively as di and ai.  At the 

beginning we thus assume that every loan has an equal size. We will relax this hypothesis later on. 

Suppose that B1 is buffeted by an idiosyncratic shock f. If the default condition (1) holds true:  

                                                              f > e1                                               (1) 

B1 defaults. In this case, B1 spreads out towards the whole system an amount of losses equal to l, as 

defined in equation (2): 

                                                         l= min [t, ibi]                                       (2) 

where t = f – e1. Now B2, B3 and B4 import an amount of losses equal to 𝑚 =
𝑙

𝑛−1
  each, and their 

default condition is given by: 

                                                           𝑚 ≥ 𝑒𝑖≠1                                           (3) 

It easy to grasp that the magnitude f of the shock is the key parameter to understand the severity of 

contagion. Considering the gross settlement treatment first, we observe that for sufficiently small f 

the losses imported by 𝐵𝑖≠1 are capable to hurt them but not high enough to force them to default 

(𝑚 < 𝑒𝑖≠1). In this case the “risk sharing effect” – defined as the possibility to split l among a high 

number of counterparties – prevents a default cascade. Figure 3.2 shows how a netting procedure 

isolates B1 from the others by cutting all the links of the network. This happens because we assume 
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loans equality. In this case the shock is totally absorbed by B1’s depositors and shareholders only, f 

= e1 + d1. It is important to note that if the shock f is large enough, netting is able to prevent three 

defaults at the expenses of Bank1 depositors. In other words, the possibility to isolate a given number 

of nodes from contagion – lethal or not – ends up concentrating losses on the stakeholders of the 

buffeted bank. 

Figure 3.1. Complete network with homogenous loans.  

 

                        

Figure 3.2. Complete network with homogeneous loans after netting. 

 

As we relax the assumption of homogeneous loans, a fraction of the original shock can be transmitted 

from the defaulting bank to its net creditors even for a netted settlement mode. The effect on defaults 

is uncertain and depends critically on the variance of the deposit loans’ size. For the sake of simplicity, 

we consider the case in which all loans are identical and equal to 5, but for the expositions between 

the first two banks. In particular, we assume that B1 owes 15 to B2, while B2 holds a debt towards 

B1 of 5. Equity is set at 5 for every bank. Figure 3.3 represents the interbank market after the netting 

treatment. Since B1 is still a net debtor towards B2, the offsetting of bilateral expositions cannot be 

complete. If the shock f is equal to 12, the amount of losses imported by B2 is 7. For this reason, B2 

defaults. Note that if the netting had not been applied, risk sharing would have succeeded in avoiding 

the failure of B2, given that under the gross settlement mode the loss imported by each intermediary 

would have been equal to 7/3. 
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Figure 3.3. Complete network with heterogeneous loans after netting. 

 

 

3.2. Disconnected network  

In Figure 3.4 we represent a disconnected network with two independent subsamples of banks. In this 

context, independence means that there are not cross-sample credit-debit obligations. In this particular 

case, netting reduces or equalizes the amount of losses imported by the un-shocked bank for all 

possible values of  f. Moreover, this happens independently of the loan size and the magnitude of the 

shock. The reasons are mainly two. First, the magnitude of the losses spread out by B1 thins during 

the netting procedure and it is zero for homogeneous loans. Second, there is none possibility of 

sharing risk, due to the dis-connectedness of the interbank market. When netting is applied and the 

shock f is high enough depositors of Bank1 score higher losses. 

Figure 3.4. Disconnected network. 

 

 

3.3. Incomplete network 

A circular incomplete network is represented by an interbank market where each bank is at the same 

time net creditor and debtor towards two different intermediaries (Figure 3.5). In this particular 

topology, netting has no role given the absence of reciprocal obligations. So, when the shock f hits 

B1, netting could not be the solution for avoiding a financial contagion which inevitably fades away 

moving along interbank market. 
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Figure 3.5. Circular network. 

 

 

3.4. Tiered network 

Real financial networks usually show a core-periphery structure. This means that interbank markets 

are characterized by a few big banks with high degree of connection linked to many small banks with 

a lower one. We portray this kind of topology in Figure 3.6, where B1 is a net debtor towards B2 and 

B4 and holds a balanced position towards B3. Considering homogeneity in loans and a gross 

settlement scenario, when the hub is buffeted by a big shock f we score a default for all the small 

banks linked to it. In the case in which f is small enough, the risk sharing effect spreads the smaller 

losses across lenders, preventing a default cascade.   

Figure 3.6. Core-periphery network. 

 

 

We observe in Figure 3.7 that a netting procedure isolates one of the three small banks. If the 

magnitude of the shock f is small, the concentration of the losses towards B2 and B4 is not sufficient 

to wipe out all their equity buffer. On the other hand, whenever f looms larger the imported losses by 

B2 and B4 could be sufficiently high to force them to default. In this case, a netting enforcement 

would not be appropriate.  
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Figure 3.7. Core-periphery after netting. 

 

 

Summarizing, for this topology the magnitude of the shock should be the leading indicator triggering 

a “netting policy”. Loan heterogeneity, in turn, affects our analysis by presenting the same traits 

explained for the complete topology. 

4. NETTING IN RANDOM NETWORKS 

The simple examples discussed above have allowed us to highlight how the interplay of shocks’ size, 

heterogeneity of mutual expositions as well as their topological architecture can shape the impact of 

a regulatory policy mandating the close-out netting of interbank loans. We now extend this analysis 

to more complex market structures. This task is accomplished by recurring to both analytical and 

computational methods. Let us start from the case of a purely random network.  

4.1 A mean-field approximation 

In order to assess analytically the impact of bilateral netting in a large web of interconnected banks, 

we first apply the mean-field approximation technique proposed by May and Arinaminpathy (2010) to 

study contagion in interbank networks characterized by an Erdős-Rényi topology G(n, p), where n is 

the number of nodes and p is the common probability of forming a link. For the sake of simplicity, 

we set the number of banks to N = 25. For each bank, we normalize total assets to 1. The gross value 

of interbank assets is defined as , so that external assets are given by a = 1 − . Structured in this 

way the network is populated by banks of equal size and composition of the accounting balance sheet. 

Finally, e represents tangible net worth and z the average number of interbank lenders.  In what 

follows a randomly chosen bank is hit by an exogenous shock that wipes out a fraction f of its external 

assets. To make the chain of defaults clearer, we split the analysis in subsequent phases of contagion. 

4.1.1. Phase 1  

In phase 1, an idiosyncratic shock: 

 

                                       S(1) = f (1 −  )            (4)   

causes the bankruptcy of a randomly chosen bank if:   
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                                           S(1) > e.                                     (5) 

Given the Erdős-Rényi topology, under the standard gross settlement mode the average degree of 

each node reads as:  

                                       z = p (N − 1).                                (6) 

Netting can be applied only if two nodes are linked by reciprocal edges. Since in a random network 

the average probability of finding a reciprocal link between two connected vertices is equal to the 

average probability of finding a link between any two vertices, the netted average degree of a 

representative node is equal to: 

 

                         �̂� = 𝑧(1 − 𝑝) = 𝑝(𝑁 − 1) − 𝑝2(𝑁 − 1) = �̂�(𝑁 − 1)           (7)  

 

where �̂� = 𝑝(1 − 𝑝). Equation (7) contributes to highlight the trade-off that regulators face when 

trying to tame contagion by imposing close-out netting agreements. In this case, the average per-

capita loss that the defaulting bank transmits to each one of its lender is: 

                           𝐿𝑜𝑠�̂� =
[𝑆(1)−𝑒]

�̂�
>

[𝑆(1)−𝑒]

𝑧
= 𝐿𝑜𝑠𝑠.                (8) 

In other terms, while the closing of bilateral exposures causes a reduction of possible channels of 

contagion, the total loss imported by any lender who is not allowed to disconnect itself from the 

defaulted bank is larger. At a systemic level, this generates a trade-off between a risk-shielding effect 

and a loss-concentration effect. As we will show below, the weigh between the two prongs of the 

trade-off depends on the interconnectedness of the interbank market. Given that along the mean-field 

approximation all interbank loans are equal, if �̂� is lower than z by a percentage  > 0, 𝜃 decreases by 

the same proportion when compared to . Hence, we can adopt the following change of notation to 

redefine �̂� and 𝜃 respectively as: 

 

                                           �̂� = 𝑧(1 − 𝜙),     (9) 

                                                                𝜃 = 𝜃(1 − 𝜙).   (10) 

 

For the homogeneous Erdos Renyi network we are studying,  = p.   

4.1.2. Phase 2  

We now proceed to determine the impact of the first wave of contagious losses imported by the 

lenders of the initially shocked bank. When close-out netting is allowed, on average this amount is 

given by:  
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          𝑆(2) =
𝑚𝑖𝑛[�̂�,  𝑆(1)−𝑒]

�̂�
   (11) 

 

that, as soon as S(2) > e, causes a cascade of additional defaults. Figure 4.1 illustrates the average 

“phase 2” propagation of the original shock over the whole network by applying the same graphical 

solution used by May and Arinaminpathy (2010). The yellow light-shaded area represents the region, 

expressed in the (𝑒, 𝜃) space, in which the creditors of the originally affected bank will receive a 

second-round disturbance causing them to fail if interbank loans are settled on a gross basis. The blue 

light-shaded area, in turn, returns the increase in imported losses when a close-out netting settlement 

is imposed.    

Figure 4.1. The blue light-shaded area represents the increase of second-round imported losses associated to netting, 

expressed as a region of interbank lending  and tangible capital e.  

 

 

The mean-field approximation allows us to calculate exactly the number of banks involved in this 

phase of contagion. For a network composed of 25 banks and p = 0.2, for instance, while in the gross 

settlement mode second-round effects distress 5 banks, in the case of close-out netting – in which the 

“netted” �̂� becomes 0.16 – only 4 banks are bound to import fatal losses.22 Higher values of p widths 

the gap between p and �̂�, shrinking the number of creditor banks involved in the second-round 

propagation of the shock. At the same time, however, the increase in interconnectedness causes the 

dashed red line to rotate upward and the continuous red line to rotate rightward, meaning that each 

single bank affected by contagion faces a larger amount of losses.  

                                                           
22 These numbers are the nearest integers of the exact values 4.8 and 3.8, respectively. 
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4.1.3 Phase 3  

Higher-round effects are more difficult to calculate, since now the source of contagion is not univocal 

as in the previous phase but can be due to a multiplicity of nodes that became infected during the 

second-round stage. Furthermore, a single bank that possesses enough capital to survive a first attack 

may contribute to spread the contagion further, with the result that the cascading process can backfire 

and causes it to fail later on. In general terms, under the netting settlement the shock transmitted 

during “phase 3” by a “phase 2” distressed bank to one of its counterpart is: 

 

              𝑆(3) =
𝑚𝑖𝑛[�̂�,

𝑚𝑖𝑛(�̂�,𝑆(1)−𝑒)

�̂�
−𝑒]

�̂�
    (12) 

 

while the bank absorbing this shock goes bankrupt if kc S(3) > e , where kc is the number of times a 

bank is hit during this phase, under the assumption that contagious events are binomially distributed.  

According to the calculations reported in May and Arinaminpathy (2010), under the gross settlement 

mode the third-round stage of contagion evolves so that eight banks are hit once, four banks are hit 

twice, and one bank is hit three times. Using the same approach, it turns out that when defaulting 

banks are allowed to activate bilateral netting agreements eight banks are hit once, two banks are hit 

twice, while none bank is hit three or more times. As we count the total number of times at least a 

single node is involved in the default cascade during the second and third stages, the gross mode 

reports a score of 18 (5 nodes in phase 2 and 13 nodes in phase 3), that we can compare with a total 

score of 14 for the netting case (4 in phase 2 and 10 in phase 3, respectively). Once again, it is 

straightforward to show that as the probability of interconnectedness increases, the risk-sheltering 

advantage of allowing defaulting banks to net their mutual interbank exposures looms larger. By the 

same token, the loss-concentration effect magnifies the damages for all the banks that are not able to 

isolate themselves through the offset of mutual exposures. 

4.2. Simulations 

4.2.1 Initialization procedure 

The results from the analytical model just discussed are now checked by means of the well-known 

computational framework developed by Nier et al. (2007), so that we can easily compare contagion 

dynamics under netting with those obtained in the standard case with gross interbank exposures. More 

in detail, we aim to assess how netting agreements affect the non-linear relationship between the 

number of insolvency-driven defaults and the degree of interconnectedness detected in an array of 

previous works. In what follows, we explain the network generating process, characterize the default 

cascade, introduce the three metrics employed to assess contagion dynamics, explain the netting 

algorithm and finally discuss the results of our Monte Carlo simulation exercises. We characterize a 

financial network through two main parameters, namely the number of banks (nodes) populating the 

network (N) and the level of connectivity defining the probability (p) that a credit-debit obligation 

arises between any two banks. Following Nier et al. (2007), we begin our analysis with a random 

Erdős-Rényi topology, in which all nodes share the same attachment probability. Recognizing that 
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real financial cobwebs are often described as core periphery structures, we shall afterward investigate 

the extent to which our benchmark results are robust as we consider to tiered networks made up by a 

few highly connected nodes (i.e. hubs with a high p) surrounded by many lowly connected ones (i.e. 

the periphery with a low p). Once the network of interconnections has been shaped, we assign to each 

intermediary a balance sheet consistent with a double-entry book keeping system. On the asset side, 

each bank i is endowed with an amount of external assets ai and interbank lending ili. On the liability 

side, each bank scores interbank borrowing ibi, deposits di and its stock of equity ei (see Table 4.1). 

By construction, the sums of asset side components (A) and of the liability ones (L) are equal (Li = ibi 

+ di + ei; Ai = ai + ili, Li = Ai).              

Table 4.1. Stylized balance sheet of a bank. 

 

Assets Liabilities 

               li bi 

          

               ai 

di 

ei 

 

In order to obtain stock consistency, we proceed by applying a three-step procedure. The first step 

consists in fixing the amount of total asset (TA) available in the network and, at the same time, the 

proportion ω of external assets (EA). Then, we set the value of the total amount of interbank assets 

IA = TA – EA and compute the size of each single loan dividing IA by the total number of links of the 

network. Following this procedure all loans are of equal size, and later on we will relax this hypothesis 

allowing for heterogeneous nominal values for interbank contracts. We obtain the total amount of 

interbank lending and borrowing of each intermediary by multiplying the standardized size of a loan 

by the number of total number borrowers and lenders of each bank i. We represent the network 

cobweb of the interbank market by means of an adjacency matrix X where the sums over rows yield 

the 𝑖𝑙𝑖 = ∑ 𝑥𝑖,𝑗𝑗∈𝑁  and the sums over columns 𝑖𝑏𝑖 = ∑ 𝑥𝑗,𝑖𝑗∈𝑁 : 
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 We then recover the amount of total assets for each bank. As in Nier et al. (2007), we initially set the 

bank’s external assets equal to 𝑎�̅� = 𝑚𝑎𝑥(0, 𝑖𝑏𝑖 − 𝑖𝑙𝑖). As we sum all the external assets ∑ 𝑎�̅�𝑖∈𝑁 , we 

are able to assign to each bank a common residual portion of total external assets computed as 
(𝐸𝐴−∑ 𝑎𝑖̅̅ ̅𝑖∈𝑁 )

𝑁
 on top of its idiosyncratic component 𝑎�̅�, so that 𝑎𝑖 =

(𝐸𝐴−∑ 𝑎𝑖̅̅ ̅𝑖∈𝑁 )

𝑁
+ 𝑎�̅�. The stock of 

capital of each bank is computed by multiplying its total assets by the leverage ratio γ. We compute 

the amount of deposits of each bank by subtracting to the amount of total assets the value of each 

interbank borrowing and the amount of equity.  Once completed, this array of sequential steps allows 

us to fully characterize a balance-sheet-consistent network. We exogenously trigger contagion 

dynamics by hitting the artificial financial system by means of an idiosyncratic shock that buffets all 

the external assets of a randomly chosen bank. The shocked bank covers the losses first with its 

capital. The residual shock (if any) in excess of the bank’s equity base is then spread evenly among 

the interbank creditors of the defaulting bank and, if necessary, to retail depositors that act as the 

ultimate sink bearing the leftover loss (phase1). As explained e.g. in Furfine (2003), a default cascade 

can unravel as follows.23 First, the loss imported by each creditor of the shocked bank is absorbed by 

its equity. Shall this not be enough to absorb the imported loss, the creditor bank will also default 

(phase 2) and the further losses are again distributed among his creditors, possibly bringing about an 

additional wave of defaults (phase 3). If the cumulated imported losses are high enough, they could 

lead to a systemic collapse of the whole system through a domino effect, which stops when the 

exogenous shock fully propagates to non-interbank liabilities (i.e. equity and retail deposits).     

In order to assess the degree of disruption induced by the contagion cascade, we resort to three metrics 

that capture different dimensions of systemic risk. The choice of the metrics is a consequence of the 

type of shock we have modeled. Shock on external assets fuels the dynamics of contagion transmitted 

by the interbank obligations and absorbed, in a last resort, by capital or external deposits. Therefore, 

we highligths these two dimensions.  

We focus first on the default variable defined as the total number of banks which holds zero capital 

at the end of the contagion. We set a default variable 𝐷𝑒𝑓 = ∑ 𝑑𝑒𝑓𝑖𝑖∈𝑁 , where each def takes the 

value of 1 when the bank i becomes insolvent (i.e. when equity turns negative) and 0 when the bank 

survives to the contagion process. Notice that this is the foremost metric that the regulator observes 

in order to understand the deepness of a crisis. As a second distress metric, we look at capital erosion 

measured at the end of the contagion. This gives us a measure of post-contagion financial system’s 

health status, from which one can gauge its capacity to face future turmoil. Our metric of capital 

erosion (CE) is computed as 𝐶𝐸 =
(𝐹𝐶−𝐼𝐶)

𝐼𝐶
, where IC and FC are the sum of the net worth of each 

intermediary respectively before and after the crisis. The third and final index focuses on the deposit 

side of the story and is computed as 𝐷𝐷 =
𝐷𝐷

𝑆
, where DD is total amount of deposits burnt during the 

contagion process, while S is the absolute value of external assets wiped out by the idiosyncratic 

shock. The Table 4.2 summarizes the set of metrics.  

 

 

 

 

                                                           
23 Notice that this is equivalent to the dynamics developed in the mean-field approximation exercise of Section 4.1. 
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Table 4.2.  Metrics overview. 

 

Metrics Analytic Description 

Default (Def) 𝐷𝑒𝑓 = ∑ 𝑑𝑒𝑓𝑖𝑖∈𝑁 , Total number of banks which 

holds zero capital at the end of 

the contagion process. 

Capital Erosion (CE) 
𝐶𝐸 =

(𝐹𝐶 − 𝐼𝐶)

𝐼𝐶
 

Total percentage capital 

erosion measured at the end of 

the contagion process. 

Distressed Deposit (DD) 𝐷𝐷 =
𝐷𝐷

𝑆
, Percentage portion of the 

shock absorbed by the external 

deposits. 

 

 To model the netting settlement, we resort to a netting operator F that re-arranges interbank credit-

debit obligations. The procedure consists in allowing banks to offset their mutual exposures every 

time there is a bilateral reciprocal relationship between them. This occurs every time a bank i at the 

same time borrows from and lends to another specific bank j of the network. Formally, each element 

of the weighted adjacency matrix X is filtered through the netting operator as follows: 

 

                             𝑥𝑖𝑗
𝑛 = 𝐹(𝑥𝑖𝑗) = 𝑚𝑎𝑥(0, 𝑥𝑖𝑗 − 𝑥𝑗𝑖),   i, j = 1, …, n  (13) 

When the network is populated by homogenous loans, the netting algorithm resets to zero reciprocal 

claims by severing both links between the two banks affected by the netting algorithm. In case of 

heterogeneous loans, the offsetting procedure still reduces bilateral exposures but it cuts only one of 

the two links. For example, let us consider the following weighted adjacency matrix X: 

 

𝑋 = [

0 1
1 0

0 2
2 0

5 2
0 0

0 1
3 0

] 

 

featuring some interbank exposures that are unidirectional, some that are bidirectional and 

homogeneous, and finally some bidirectional but heterogeneous ones. As one can see from the filtered 

matrix X’, all unidirectional links remain unchanged, all homogenous reciprocal links disappear and 

among the heterogeneous reciprocal ones, only the smallest in size disappears, while the largest one 

is cut down to its netted amount:   

𝑋′ = [

0 0
0 0

0 2
0 0

5 0
0 0

0 0
2 0

] 
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4.2.2 Test with homogeneous loans 

Table 4.3. shows the values of the network parameters used in simulations.  

Table 4.3. Parameter values for benchmark simulations. 

Interconnectedness 0-100 

Network size (N) 25 

Shock size as a % of external assets 100% 

Interbank asset relative to total assets 20% 

Bank Capitalization/Total Assets 1%-2%-3% 

 

Figure 4.2. displays the average default rate as a function of p. The defaults profiles under the gross 

settlement (reported as “no net” in Figure 4.2 and those that follow) replicate the findings in Nier et 

al. (2007). The perfect replicability and comparability with a work well known in the literature is the 

main reason for choosing the size of the shock at 100%. Later, moving towards more realistic 

topologies, we model shocks of different sizes.  

For example, when the system is undercapitalized at 1% a clear M-shape relationship between the 

default rate and connectivity is detectable. How do these profile change when netting is enforced 

during the contagion process?     

Figure 4.2. Default profiles, homogeneous loans. 
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We observe that netting is more effective than the gross treatment in shielding the system from 

widespread default cascade. The contagion profiles observed when netting is at work are in fact 

consistently lower than those found under the standard rule. The advantage of netting over the gross 

settlement procedure increases when the bank capitalization decreases. More in detail, for lowly 

capitalized network, the usual M-shaped curve disappears and the global maximum of the default 

profile for netted networks is lower than the local minimum found in networks with gross exposures. 

Another important finding for scarcely capitalized network is that the higher the connectivity, the 

stronger is the benefit of netting. This is due to the inner dynamics of the trade-off emerging when 

netting is enforced, namely that between concentration effects and risk-sharing ones. More precisely, 

the netting treatment cuts the channels through with contagion runs while, at the same time, forcing 

the shocked bank to internalize a loss higher than the one it would score under the gross settlement 

mode. On the one hand, netting contributes to lower the “real shock” spread by the buffeted bank and 

hence reduces systemic risk. On the other hand, it can diminish the overall risk-sharing capacity of a 

fully interconnected system. In our simulations the concentration effect overwhelms the risk sharing 

one and netting ultimately outperforms the standard treatment under a wide range of scenarios within 

the parameters space spanned by our experiments. 

Let us now examine how bank capital responds to netting during the contagion. Figure 4.3 displays 

the extent of capital erosion under gross and net settlements and shows that netting allows for a 

significant equity saving. Such advantage in terms of preserving capital is stronger for highly 

connected network and the result is consistent for every level of capitalization. In general, in this kind 

of model a shock runs in the network from debtors to creditors through interbank claims, and it is 

absorbed by capital and deposits, as explained earlier. It follows that we expect a negative correlation 

between the value of deposits and equity erosion. 

 

Figure 4.3. Capital erosion profiles, homogeneous loans. 

 

Figure 4.4 shows an increase in deposit erosion when netting agreements are employed. For all 

capitalization levels, there is a monotonic relationship between the connectivity level and the 

difference of deposit erosion between the two treatments. In other words, the higher the level of 
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connection among banks, the higher the portion of shocked charged on depositors at the initial stage 

for netting treatment. This can be rationalized recognizing that the number of netted contracts 

increases with the degree of interconnectedness. Therefore, the netting-induced shrinking of the 

interbank market depth tends to eliminate a class of junior debtors making depositors more vulnerable 

when a bank faces a consistent shock. There is also an effect due to the level of capital. The lower the 

level of capital of each bank, the greater the share of shock spread in the interbank market and, 

ultimately, the higher is the diffusion of contagion. The interplays between connectivity and capital 

effects seems to explain why the divergence between the two treatments is more pronounced for low 

levels of capital. 

 Table 4.4 shows instead how the losses absorbed by deposits are concentrated among the depositors 

of the bank hit by the shock in both treatments. At low connection levels of the network, more than 

90% of the affected deposits is concentrated in the shocked bank, whereas at lower-middle, medium, 

and high connection levels, almost all of the affected deposits are detained by the shocked bank. The 

concentration of deposits losses is well-suited indicator to understand the diffusion level of the 

contagion.  

Figure 4.4. Deposit erosion profiles, homogeneous loans. 

 

Table 4.4 Deposits Loss Concentration for homogeneous loans.24  

Conn. 3% net 3 %gross 2% net 2% gross 1% net 1% gross 

0-20 0,94 0,93 0,93 0,92 0,92 0,91 

20-40 0,99 0,99 0,98 0,98 0,99 0,98 

40-60 1 1 1 0,99 0,99 0,99 

60-80 1 1 1 1 0,99 0,99 

80-100 1 1 1 1 1 1 

                                                           
24 Table reports DDf/DD, where DDf is the amount of deposit eroded at the shocked bank. Level of connectivity p in the rows (mean 

of the range), treatments and capital level in the columns. 
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4.2.3 Test with heterogenoeus loans 

Next, we introduce heterogeneity in loan size for the same kind of network we have just tested. 

Heterogeneity is introduced slightly twisting the interbank asset assignment procedure. More 

precisely, after having fixed the value of interbank asset IA = TA – EA, we compute the total interbank 

lending for each bank as ili=IA/N. In this way each bank is endowed with same amount of interbank 

asset. Finally, we divide ili by the number of links randomly assigned to each bank. Since the number 

of activated links is potentially different for each bank, individual loans can change size from one 

bank to another. It must be pointed out that, given that the attachment probability p is equal for every 

bank, the implied variance of the nominal value of loans is not high, which is appropriate for this type 

of topology characterized by banks of similar size and equal degree of connection.The main 

difference compared to the previous procedure is that we set a homogeneous loan size for each bank 

made up of non-homogeneous contracts. On the contrary, previously, banks were built with a non-

equal value of interbank credit, but each single loan was of the same value. 

 The outputs of our simulations are reported in the three figures (4.5, 4.6, 4.7, respectively) hereunder.  

 

Figure 4.5. Default profiles, heterogeneous loans.  
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Figure 4.6. Capital erosion profiles, heterogeneous loans. 

 

Figure 4.7. Deposit erosion profiles, heterogeneous loans.  

 

Table 4.5 Deposits Loss Concentration for heterogeneous loans. Table reports DDf/DD, where DDf is the amount of deposits 

eroded at the shocked bank. Level of connectivity p in the rows (mean of the range), treatments and capital level in the columns. 

Conn. 3% net 3 % gross 2% net 2% gross 1% net 1% gross 

0-20 0,95 0,95 0,95 0,95 0,96 0,94 

20-40 0,99 0,99 0,99 0,99 0,99 0,99 

40-60 1 0,99 1 1 1 0,99 

60-80 1 1 1 1 1 0,99 

80-100 1 1 1 1 1 0,99 

For what concern default dynamics, we observe that outputs are very similar to those of the 

homogeneous treatment, even if the M-shape relationship is less pronounced for less capitalized 
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networks. Moreover, the average number of defaults is lower with respect to the homogeneous cases 

for the gross settlement, while it is almost unchanged for the netting treatment. Netting supremacy is 

robust to the introduction of heterogeneity for almost all Monte Carlo simulations. In Figure 4.6 we 

show the capital preservation at the end of contagion process. Also for this variable the outputs are 

very similar to the homogeneous cases, showing a strong netting capital preservation. More precisely, 

we detect an increase in the gap between the two treatments once the connection probability increases. 

The last graph shows the deposits erosion. As illustrated before, the output remains the same one 

observed with homogeneous loans while the concentration of losses charged over the deposits 

remains unaffected as shown in Table 4.5.     

5. CORE-PERIPHERY NETWORKS  

As a robustness check we move towards a more realistic network structure by addressing the case of 

a core-periphery topology. Furthermore, the capitalization level is assumed in line with the one 

registered in real data. In particular, we compare results for levels of leverage equal to 3%, 4.5% and 

6%. Tiered networks are shaped by modifying the procedure described above in a minimal way. In 

particular, we divide the population of N banks into two subsets, one composed of 4 hub banks and 

the other one of 21 normal banks.  

Loans are not homogeneous, as we identify four types of loan sizes. Two specific intra-group types 

of loan, respectively on contracts among large banks only (lb) and contracts among small banks only 

(sb). Cross-subset interbank markets are characterized by loans from large to small banks (ls), and by 

loans from small to large ones (sl). We obtain this type of heterogeneity as follows. First, we assign 

a proportion µ of interbank and external assets to small banks, and 1- µ to the larger ones. Then, we 

took a proportion α from the amount of the small banks’ interbank assets, and we divide it by the 

number of links among small banks, obtaining the value of sb. Similarly, we proceed multiplying the 

amount of small interbank assets by (1- α) and then dividing by the number of small banks interbank 

credits towards large banks in order to quantify sl. The value of lb and ls are computed in the same 

way multiplying the amount of large banks interbank assets by ȵ and (1- ȵ) and then dividing again 

for the number of links among large and large to small banks. Subsequently, the identification 

procedure of the network proceeds like in the case of Erdös-Rényi; the only exception lies in the fact 

that the proportions of external assets attributed to large and small banks are respectively 1- µ e µ. 

Finally, we model heterogeneous shocks considering three types of sizes respectively: large (100% 

of external assets), medium (50% of external assets) and small (25% of external assets).  

 

 

 

 

 

 

 



93 

  

Table 5.1. Parameter values for simulations, core-periphery networks. 

Network size N 25 

Number of hub and small banks 4-21 

Hub banks connectivity 0.2-1 

Small banks connectivity 0.2 

Shock size (portion of external assets) 1-0.5-0.25 

Interbank asset proportion respect to total assets 0.3 

Small banks proportion µ of interbank assets  0.5 

Intra-group proportion α of small banks interbank assets  0.3-0.4-0.5 

Intra-group proportion ȵ of hub banks interbank assets 0.7-0.6-0.5 

Inter-group proportion 1-α of small banks interbank assets 0.7-0.6-0.5 

Inter-group proportion 1- ȵ of hub banks interbank assets 0.3-0.4-0.5 

General level of capitalization 3%-4,5%-6% 

 

Considering the ample spectrum of parameters employed, here we focus on results for the case of a 

large shock affecting a hub or a peripheral bank, respectively.25 More precisely, we separate the 

contagion dynamics generated by a shock on one small banks from the cascades originating by a 

shock disturbing one hub bank. The rational for this choice is that of emphasizing the different role 

that each type of bank plays in a contagion process. The key importance of the capitalization level in 

driving results will be touched upon as a latter point. The output of our simulations is rather clear. 

For what concerns the dynamics of defaults, we identify an overall strong dominance of the netting 

treatment (Figure 5.1). Looking at the graph, we observe that netting and gross treatments perform 

barely equally when an idiosyncratic shock hits an intermediary who belongs to the periphery. In this 

case the trade-off between the loss-concentration and the risk sharing effects is balanced. In turn, by 

looking at the default dynamics generated by a shock to the core we observe a consistent divergence 

between the two treatments, with a clear advantage associated to netting. This is due to the fact that 

the offsetting of mutual exposures ensures to isolate the big distressed hub not only from the 

periphery, but also from the other core banks. The gap between the two treatments is consistent when 

the magnitude of shock is large or medium, reaching a 40% difference. Lower gaps are scored for 

small shocks, even if the dominance of netting remains a constant for all the simulations. We find a 

positive relation between the advantage of netting and the level of connectivity, mainly due to the 

loss-internalization effect.   

                                                           
25 For a comprehensive exploration of all the possible combinations see the Appendix. 
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Figure 5.1.  The figure shows the default dynamics when a shock hits a large hub bank or a small peripheral one for 

the two treatments. Large shock. Parameters: α=0.5, ȵ=0.5 and γ =0.03.  

 

For what concerns the metric measuring the depletion of aggregate capital we observe a picture fully 

consistent with the one just discussed (Figure 5.2). In this case we focus on the profiles emerging by 

averaging over shocks to large and small banks, but we explore different levels of capitalizations. 

The portion of capital burnt out during the contagion process is inversely related to the level of 

capitalization. Hence, a system characterized by an initial higher leverage is associated with a relative 

worst performance in terms of depleted capital. By charging a higher portion of the shock on 

depositors, the internalization effect lowers the amount of losses spread through the system. This 

effect becomes stronger the higher is the level of connectivity of the hub, since this is associated to a 

lower depth of the interbank market.  

Figure 5.2.  Capital erosion profiles for all level of capitalization and for all treatments. Large shock. Parameters: α=0,5 

and ȵ=0,5.  

 

Finally, we look at deposits dynamics in Figure 5.3. For what concerns this metric the gross treatment 

performs better. As explained before, this is the logical consequence of the results observed for the 
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other two metrics. We detect an inverse relationship between the amount of equity and the portion of 

the shock absorbed by depositors. This means that the higher is the level of capitalization, the lower 

is the burden charged on depositors. Table 5.2 shows how the losses absorbed by depositors in the 

case of the default of a hub bank are concentrated almost exclusively in the shocked bank. The finding 

is true for all capitalization levels, types of settlement, and connection levels.  

Figure 5.3.  Deposit erosion profiles. Large shock. Parameters: α=0,5 and ȵ=0,5. The figure includes the dynamics for all 

levels of capitalization and for all treatments.  

 

Table 5.2.  Deposits Loss Concentration for core periphery.26 Table reports DDf/DD, where DDf is the amount of deposit 

eroded at the shocked bank. Level of connectivity ph in the rows (mean of the range), treatments and capital level in the columns. The 

table considers only the shocks on the hub banks. 

Conn. 3% net 3 % gross 4,5% net 4,5%gross 6% net 6%gross 

20-40 0,98 0,98 0,99 0,98 0,99 0,99 

40-60 0,99 0,99 0,99 0,99 0,99 0,99 

60-80 0,99 0,99 0,99 0,99 0,99 0,99 

80-100 0,99 0,99 0,99 0,99 0,99 0,99 

 

As a final point, it is worthwhile to notice that the relative performance of netting in a core-periphery 

network is a function of the intensity of the shock. Figure 5.4 replicates the same experiment 

conducted so far, but for the magnitude of the disturbance hitting banks, that now amounts to 25% of 

external assets. 

 

                                                           
26 Table reports DDf/DD, where DDf is the amount of deposit eroded at the shocked bank. Level of connectivity ph in the rows 

(mean of the range), treatments and capital level in the columns. The table considers only the shocks on the hub banks 
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Figure 5.4. The figure shows the default dynamics when a shock hits a large hub bank or a small peripheral one for the 

two treatments. Small shock. Parameters: α=0.5, ȵ=0.5 and γ =0.03. 

 

When the small shock impacts a bank belonging to the core, the final number of defaults is lower, but 

the relative performances of the two treatments are reversed.   

6. CONCLUDING REMARKS 

The main aim of this paper was to investigate the impact of OnBS bilateral netting in improving 

systemic financial stability. In particular, this kind of agreements tends to isolate banks cutting 

interbank links off. This procedure has mainly two effects. On the one hand, it lowers the channels 

of contagion limiting the number of banks involved in the default chain. On the other hand, netting 

lowers the risk sharing ensured by interbank mutual expositions, concentrating losses towards a fewer 

number of intermediaries. The effect of these two opposite forces is uncertain. Our simulations have 

shown a dominance of the loss-concentration over the risk sharing effect for a wide range of 

parameters, different topologies and shock sizes. The dominance of netting over the default and equity 

metrics is mainly due to the fact that the concentration effect allows to charge a higher portion of the 

initial shock on the depositors of the hit bank. In this way, netting tends to preserve the rest of the 

financial system. 

Our work corroborates several findings already known in the extant literature on standard settlement 

procedures and extend them to the topic of bilateral netting. In particular, we identify an inverse 

relationship between capitalization level of the network and financial contagion phenomena, other 

than a non-linear relationship of the U shape kind between connection level and default cascades. In 

the case of heterogeneity of the size of the banks populating the network, large-size banks confirm to 

be risk spreaders. As for the relationship between this work and the empirical literature, our results 

can provide an explanation for the discordant empirical results. In particular, our analysis finds a 

substantial irrelevance of the OnBS netting to networks which are adequately capitalized vis-à-vis 

homogeneous topologies and small-magnitude shocks. On the contrary, the effect of the clearing 

procedure demonstrates to be considerably relevant to the prevention of default cascades vis-à-vis 

medium and large shocks, network with lower-middle capitalization, and heterogeneity of the size of 

the intermediaries.   
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Some policy suggestions follow naturally. First, regulatory authorities should be able to identify the 

shock that the system faces as soon as it appears. Then, they have to evaluate the degree of 

interconnectedness of the distressed bank, his size and his location in the interbank network. Finally, 

in the case the shock hit a hub banks a netting enforcement combined with an intervention of national 

deposits insurance fund would be efficient in preserving market stability.  
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A.1. Analytics of the mean-field approximation of Section 4 

 

A.1.1. Phase 2 (early phase of contagion) 

In phase two we detect the impact of the first wave of losses imported by the lenders of the bank 

defaulted in phase one. In the case of a gross settlement mode, the per-capita loss imported by z banks 

is represented by the condition: 

 
     S(II)= [ ,S(I)- e] min /z    (A.1) 

     
 

Considering the netting case, in turn, the loss imported by each loss the z


 banks )(IIS


 becomes: 

                                                          )(IIS


= [𝜃,S(I)- e] min / z


   (A.2) 

 
For two treatments, respectively, the z and z


 lenders fail if:  

 

             eIIS )(     (A.3) 

            eIIS )(


 .    (A.4) 

 
Solving for conditions (A.3) and (A.4), we obtain the threshold values: 

 

                
)1/()( fefc +−=        (A.5)      

            
)1/()(  −+−= fefc


.       (A.6) 

 
If 𝜃 < 𝜃𝑐 the default condition for the gross case is indicated by the following condition: 

 

              ez * .      (A.7)          
 

Having substituted )1(*  −=


for the netted case, we find that the default condition is the same 

as the gross case as shown in the following expression: 

 

           ez *)1(*)1(*  −− ,    (A.8) 

 

while if c   and c


 , the conditions for the two treatments become: 

 

            fze /))1(*(1 +−     (A.9) 

                  fze /)))1(1(*(1  −+− .    (A.10) 

 
Finally, for the gross case the condition on capital for not defaulting is represented by: 

 

           )1))1(*/( ++ fzfe     (A.11) 

 

while for the netted case the equivalent expression is:  

 

                 )1)*()1(*/( +−+ zfzfe .     (A.12) 
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A.1.2. Phase III (crisis propagation)  

During the previous phase each bank could import losses only from the bank failed in phase I. In this 

phase, we must take into consideration also multiple imported losses, that is the imported losses 

coming from different defaulted banks. In the gross settlement mode, the imported losses for each 

bank are defined by: 

 
         S(III)={ ,[ , S(I)- e] min /z- e }min/z,  (A.13)       

 
while for netting treatment the condition is represented by: 

 

                      �̂� (III)={𝜃,[ 𝜃, S(I)- e] min / z


- e }min/ z


,                     (A.14) 
 
 
The default conditions now read as: 

 

       
eIIISkc )(*               (A.15) 

       
eIIISkc )(*


        (A.16)       

 
where kc is the number of times a bank is hit in phase III. Solving (A.15) and (A.16) we obtain the 

default condition for the two treatments, respectively. For  c  and c


>


, where *z = z/k and *z


= 

kz /


, we have: 

 

                )*)1(*( * zze +      (A.17) 

                )1/()*)1(*( *  −+ zze


   or    zze *)1(* *+ .  (A.18) 

 

On the other hand, when  c  the gross settlement default condition is:  

 

              fzzze /)))*(1(*(1 *++−       (A.19) 

 
while for netting treatment: 

 

                   fzzze /)))*(1(*(1 *
++− .   (A.22) 

 
Even in this phase, the required capital for not failing is higher for the netting treatment:  

 

          ))*(1***/( ** zzzzzfzffe ++++    (A.23) 

         ))*(1***/( ** zzzzzfzffe


++++ .   (A.24) 
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A.2. Additional simulation results 

The figures that follow report simulation results obtained under a large set of alternative 

parameterizations for the core-periphery network topology. The expression “large” refers to a shock 

on banks forming the core, while “small” to a shock on banks on the periphery. Table A.2.1 shows 

the order of presentation of the graphs. For completeness, the list reports also the graphs inserted in 

the main text (mt).  

Table A.2.1. Graphs presentation summary. 

Metric  
General level of 

capitalization 

Intra-group proportion of 

interbank assets for small 

(α) and hub banks (ȵ) 

Shock size 

 

Figure 

 

Default Number 

γ = 0.03 
 

 

α = 0.5; ȵ = 0.5 

 

 

Large shock (100%) Pag 94 

Medium shock (50%) A.2.1. 

Small shock (25%)  Pag 96 

γ = 0.045 
Large shock (100%) A.2.2. 

Medium shock (50%) A.2.3. 

Small shock (25%) A.2.4. 

γ = 0.06 
Large shock (100%) A.2.5. 

Medium shock (50%) A.2.6. 

Small shock (25%) A.2.7. 

γ = 0.03 

 

α = 0.4; ȵ = 0.6 

 

Large shock (100%) A.2.8. 

Medium shock (50%) A.2.9. 

Small shock (25%) A.2.10. 

γ = 0.045 
Large shock (100%) A.2.11. 

Medium shock (50%) A.2.12. 

Small shock (25%) A.2.13. 

γ = 0.06 
Large shock (100%) A.2.14. 

Medium shock (50%) A.2.15. 

Small shock (25%) A.2.16. 

γ = 0.03 

α = 0.3; ȵ = 0.7 

Large shock (100%) A.2.17 

Medium shock (50%) A.2.18 

Small shock (25%) A.2.19 

γ = 0.045 
Large shock (100%) A.2.20 

Medium shock (50%) A.2.21. 

Small shock (25%) A.2.22. 

γ = 0.06 
Large shock (100%) A.2.23. 

Medium shock (50%) A.2.24. 

Small shock (25%) A.2.25. 

Capital Erosion 
All levels of 

capitalization 

α = 0.5; ȵ = 0.5 
Large shock (100%) Pag 94 

Medium shock (50%) A.2.26. 

Small shock (25%) A.2.27. 

α = 0.4; ȵ = 0.6 
Large shock (100%) A.2.28. 

Medium shock (50%) A.2.29. 

Small shock (25%) A.2.30. 

α = 0.3; ȵ = 0.7 
Large shock (100%) A.2.31. 

Medium shock (50%) A.2.32. 

Small shock (25%) A.2.33. 
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… continue 

Metric 
General level of 

capitalization 

Intra-group proportion of 

interbank assets for small 

(α) and hub banks (ȵ) 

Shock size 

 

Figure 

 

 

Deposits Erosion 

 

 

All levels of 

capitalization 

α = 0.5; ȵ = 0.5 

Large shock (100%) Pag 95 

Medium shock (50%) A.2.34. 

Small shock (25%) A.2.35. 

α = 0.4; ȵ = 0.6 

Large shock (100%) A.2.36. 

Medium shock (50%) A.2.37. 

Small shock (25%) A.2.38. 

α = 0.3; ȵ = 0.7 

Large shock (100%) A.2.39. 

Medium shock (50%) A.2.40. 

Small shock (25%) A.2.41. 

 

 

 

 

Figure A.2.1. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.5, ȵ = 0.5 and 

capital γ =0.03. 
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Figure A.2.2. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.5, ȵ = 0.5 and 

capital γ = 0.045. 

 

 

Figure A.2.3. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.5, ȵ = 0.5 and 

capital γ = 0.045. 
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Figure A.2.4. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.5, ȵ = 0.5 and 

capital γ = 0.045. 

 

 

Figure A.2.5. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.5, ȵ = 0.5 and 

capital γ = 0.06. 
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Figure A.2.6. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.5, ȵ= 0.5 and 

capital γ = 0.06. 

 

 

Figure A.2.7. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.5 ȵ = 0.5 and 

capital γ = 0.06. 
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Figure A.2.8. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.03. 

 

 

Figure A.2.9. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.03. 
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Figure A.2.10. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.03. 

 

 

Figure A.2.11. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ =0.045. 
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Figure A.2.12. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.045. 

 

 

 

Figure A.2.13. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.045. 
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Figure A.2.14. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.06. 

 

 

 

Figure A.2.15. Default dynamics large and small banks. Medium shock (50%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.06. 
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Figure A.2.16. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.4, ȵ = 0.6 and 

capital γ = 0.06. 

 

 

Figure A.2.17. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.03. 
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Figure A.2.18. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.03. 

 

 

 

Figure A.2.19. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.03. 
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Figure A.2.20. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.045. 

 

 

 

Figure A.2.21. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.045. 
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Figure A.2.22. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.045. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2.23. Default dynamics, large and small banks. Large shock (100%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.06. 
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Figure A.2.24. Default dynamics, large and small banks. Medium shock (50%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.06. 

 

 

Figure A.2.25. Default dynamics, large and small banks. Small shock (25%). Parameters: α = 0.3, ȵ = 0.7 and 

capital γ = 0.06. 
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Figure A.2.26. Capital erosion. Medium shock (50%). Parameters: α = 0.5, ȵ = 0.5. 

 

      

Figure A.2.27. Capital erosion. Small shock (25%). Parameters: α = 0.5, ȵ = 0.5. 
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Figure A.2.28. Capital erosion. Large shock (100%). Parameters: α = 0.4, ȵ = 0.6. 

 

 

Figure A.2.29. Capital erosion. Medium shock (50%). Parameters: α = 0.4, ȵ = 0.6.  
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Figure A.2.30. Capital erosion. Small shock (25%). Parameters: α = 0.4, ȵ = 0.6. 

 

 

Figure A.2.31. Capital erosion. Large shock (100%). Parameters: α = 0.3, ȵ = 0.7. 
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Figure A.2.32. Capital erosion. Medium shock (50%). Parameters: α = 0.3, ȵ = 0.7. 

 

 

Figure A.2.33. Capital erosion. Small shock (25%). Parameters: α = 0.3, ȵ = 0.7. 



119 

  

 

FigureA.2.34. Deposit erosion. Medium shock (50%). Parameters: α = 0.5, ȵ = 0.5. 

 

 

Figure A.2.35. Deposits absorption. Small shock (25%). Parameters: α = 0.5, ȵ = 0.5. 
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Figure A.2.36. Deposits absorption. Large shock (100%). Parameters: α = 0.4, ȵ = 0.6. 

 

 

Figure A.2.37. Deposit erosion. Medium shock (50%). Parameters: α = 0.4, ȵ= 0.6. 
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Figure A.2.38. Deposits absorption. Small shock (25%). Parameters: α = 0.4, ȵ = 0.6. 

 

 

Figure A.2.39. Deposits absorption. Large shock (100%). Parameters: α = 0.3, ȵ = 0.7.  
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Figure A.2.40. Deposit absorption. Medium shock (50%). Parameters: α = 0.3, ȵ = 0.7. 

 

 

Figure A.2.41. Deposit absorption. Small shock (25%). Parameters: α=0.3, ȵ = 0.7. 
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Endogenous clearing house formation in payment networks 

 

Edoardo Gaffeo†       Lucio Gobbi†     

 

Abstract 

This paper analyzes the endogenous formation of clearing houses within payments networks. More 

precisely, the process of formation of a clearing house as an act of collective coordination is 

investigated. This dynamic presents elements of analogy between real and financial environments. 

To this purpose, we developed an agent based model elucidating dynamics that lead the agents to 

regulate their transactions through gross settlement, bilateral netting or multilateral netting when these 

systems are in competition. In particular, the conditions for the formation of clearing houses within 

real and financial payment networks are investigated, focusing on two real cases. The first case 

concerns the creation of corporate barter circuits à la Wir, while the second investigates the 

development of clearing houses that managed interbank payments in the Free Banking America. The 

main difference between the analysis on real and financial markets concerns the type of frictions 

considered. In the first case we analyze a friction of spatial coordination, in the second case the 

presence of transaction costs. Our work shows how the formation of clearing houses that manage 

payments derives critically from the topology of the payment network, from the phases of the business 

cycle, from the transaction costs, and from the agents' ability to interact and coordinate with each 

other. 

 

1. INTRODUCTION AND LITERATURE REVIEW 

 

The payment system is one of the main institutions that define a modern economy, the goal of which 

is to allow the exchange of goods and services whilst avoiding the complications and the 

inefficiencies tied to barter. The principles regulating payment systems are similar to those ones 

which define payment agreements: the main differences are that the latter are concerned with the 

wealth to be transferred, whereas the former are concerned with the methods of the transfer upon 

which the parties have already agreed.   

Payment systems are typically categorised according to the different procedures and the timeframe in 

which they allow the extinguishing of the obligations between two agents. We tend to distinguish 

between two types of systems: The Real Time Gross Settlement (RTGS) and the Net Settlement (NS). 

RTGS is a system in which credits and debts between agents are continuously regulated through 

payments established by the legislator, by private regulations and by customs. The main advantage 

of RTGS is the elimination of the insolvency risk, since contracts amongst the parties involved are 

settled through payment. The main disadvantage of said system is the cost of locating the necessary 

financial means, to which the operational risk during the execution of the payment is added. 

Whenever the system does not involve continuous payments, we talk about Gross Settlement (GS).  
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Typically, the GS is used on real markets and the rationality in the use of this settlement method 

consists mainly in the fact of being a form of financing that the creditor grants to the debtor. 

The Netting Settlement (NS) deviates from the RTGS both in timing and in regulatory procedure. In 

specific terms, the structures of NS allow to clear two or more obligations at the same time through 

a bilateral netting settlement (BNS) or a multilateral netting settlement (MNS). Netting procedures 

allow to lower the expository level between the agents, reducing the liquidity costs necessary at the 

time of execution. Thus, on the one hand we reduce both liquidity costs and operational risk; on the 

other hand, by postponing the execution time of the payment, a credit risk surfaces, which 

disincentivizes the use of the procedure altogether. In general, two settlement principles can be 

identified in the payments system as well as in the real market: the “liquidity” principle and the 

clearing principle. These "principles" are taken as ideal types and therefore serve as theoretical 

benchmarks. Specifically, the principle of liquidity requires the extinction of an obligation by means 

of legal tender, on the contrary the principle of clearing allows the extinction of a debt through the 

use of a credit27. Economic practice gives us a more complex reality where the concept of liquidity is 

rather elastic and not defined over time. Here we refer to these theoretical extremes that will be useful 

in the construction of the models, for a contextualization on the theme of liquidity and its creation is 

suggested without pretension of exhaustiveness Amato and Fantacci (2012), Biondi (2018), Graziani 

(2003), Hicks (1974), Keynes (1936,1950), Ricks (2015). The table summarizes the benchmarks and 

payment methods considered in this work. 

 

Table 1.1 Principles and settlement modes 

Principles 

Liquidity principle Obligations between agents are extinguished at face value by means of central bank 

money. 

Clearing principle  The bonds between the agents are offset and only the net exposure is extinguished by 

central bank money. Compensation can take place between mutual obligations 

(Bilateral clearing) or between obligationss relating to more than 2 agents 

(Multilateral clearing) 

Settlement modes under liquidity principle 

Type of settlments Timing Advantages/Disadvantages Type of market 

Real time gross settlement Continous Null credit risk/ high liquidity costs 

and operational risk 

Real and financial 

markets 

Gross settlement  Deferred Funding channel /Credit risk, liquidity 

costs and operational risk.  

Real markets 

Settlement modes under clearing principle 

Type of settlments Timinig Advantages/disadvantages Type of market 

Multilateral clearing  Deferred Low liquidity costs and operational 

risk, funding channel/ High credit risk 

Real and financial 

markets 

Bilateral clearing  Deferred Low liquidity costs and operational 

risk, funding channel/ High credit risk 

Real and financial 

markets 

 

 

                                                           
27Indeed, even the legal tender is a credit towards the central bank. Here we consider all the credits without the legal 

tender. 
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With regard to the real market, the present study will attempt to scrutinize the dynamics according to 

which agents choose to regulate their obligations through MNS or GS systems whenever they coexist 

in such contexts. Specifically, starting from the experience of clearing houses such as Wix, Sardex 

and similar (Lucarelli and Gobbi 2016, Stodder 2009, Stodder and Lietaer 2016), we will investigate 

the reason why the aforementioned experiences are isolated and whether or not it is possible to draw 

innovative guidelines from these examples on how to manage payments between companies. The 

circuits that are discussed here are clearing houses for credits and debits amongst network members; 

these circuits can be seen as an advanced form of trade credit. 

In the real market it is not uncommon for companies to give credit to each other in the form of a 

deferred payment; this option is usually referred to as trade credit and is quite widespread. Hence, a 

new source of financing emerges between suppliers and customers which departs from the traditional 

ones, namely the banking system and the capital market. Two main theoretical strands account for 

the emergence of trade credit: non-financial and financial. As for the non-financial strand, the most 

relevant theories identify the rationale of trade credit with the lowering of transaction costs (Ferris 

1981), with trade credit being a de facto price discrimination (Schwartz and Whitcomb 1979, Brennan 

et al. 1988), with the granting to the buyer of the possibility of inspecting the purchased goods (Long 

et al. 1993), and with the fostering of a long-term relationship between the buyer and the seller 

(Summer and Wilson 2002). As for the financial strand, most theories highlight that suppliers can 

grant credit to their customers more efficiently than the banking system can. Such advantage would 

depend on the ability of the supplier to minimize losses in the case of the customer’s default (for 

instance Petersen and Rajan 1997; Frank and Maksimovic 2005; Fabbri and Menichini 2010) other 

than to cheaply acquire information about the latter, thus managing to grant credit to those who could 

not obtain it from the baking system (Biais and Gollier 1997; Burkart and Ellingsen 2004 among the 

others). Finally, some works highlight that suppliers tend to gran trade credit to smaller and credit-

constrained customers (for instance McMillan and Woodruff 1999; Marotta 2005) while others put 

emphasis on the market power of buyers and sellers (Goncalves et al 2018, Fabbri and Klapper 2016 

among the others). For a literature review, see Seifert et al. (2013). Overall, the aforementioned 

contributions set out to investigate the bilateral relationship between supplier and customer; just few 

of them attempt at analysing the trade credit process in a multilateral perspective (Kim and Shin 2007, 

Fabbri and Klapper 2008). According to the latter, the companies which grant trade credit are often 

the same ones which benefit from it from their suppliers. The matching of incoming to outgoing 

financial flows is indicative of the companies’ intention to balance assets and liabilities. This intention 

can be considered as an informal step towards multilateral clearing which is the core of the 

functioning of corporate barter circuits such as Wir and Sardex (Stodder 2009, Stodder and Lietaer 

2016.)     

The Swiss system Wir, in particular, is centred on the homonymous cooperative bank. Wir Bank was 

founded in 1934 by 16 members and, despite having implemented changes to its statute and its 

operating procedures over the decades, the keystone of its activity has not been substantially altered 

yet, and the number of participants in the system has reached 70.000 units. The core business of Wir 

Bank is the management of the clearing system, which is based on an internal account unit called 

Wir. Wir is tied to the Swiss franc through a fixed exchange rate, which serves principally for the 

accounting of the operators since the conversion between the two currencies is allowed only in 

exceptional cases and carried out exclusively by WirBank. All the members of the circuit have a 

checking account at Wir Bank where, whenever an exchange of goods or services takes place, the 
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incoming and outgoing flows of transactions are recorded. In particular, a credit will be issued to the 

seller's account and a debt will be recorded on the buyer's account. At the end of the transaction the 

creditor, who is now a Wir credit holder, will be able to use his availability to acquire goods and 

services from other circuit members. The debtor, instead, having made the transaction through the 

credit guaranteed by the clearing house, will pay an interest rate on his overdrafts. Wir circulate only 

within the clearing house and cannot be converted into Swiss francs or any other currency except for 

specific reasons. For creditors, joining the system is advantageous because credits in Wir can circulate 

as currency and without discounts within the circuit and, therefore, the holder of a credit does not 

have to wait for the payment to be liquidated before using his own availabilities. For debtors, the 

main advantage is the possibility to access a credit at lower costs than loans at the official currency 

rate. This is because Wir is created endogenously by the bank, therefore eliminating the cost of 

obtaining the resource; thus, the bank imposes on the debtor only the cost necessary to cover the 

credit risk and the operating costs. This advantage will be particularly accentuated in the occurrence 

of business cycle fluctuations giving rise to the counter cyclical trend in the number and value of 

transactions carried out within the circuit (Stodder 2009). In general, it is convenient for a company 

to join the circuit if its activity is such as to allow it to pay its debits with credits generated by 

transactions with other members. Wir Bank’s functioning is based on the interest expense paid by the 

debtors of the clearing house and on the fees charged on circuit members. The disadvantages of the 

system mainly correspond to constraining the purchase capacity within the circuit, to the risk of not 

being able to spend the assets in Wir due to a low variety of offer, and to the possibility of not 

obtaining remuneration on current accounts at the clearing house.  

Sardex system is a clearing system working with principles and rules similar to the ones that regulate 

Wir and it can be considered as an answer to the credit crunch that hit the Italian economy and the 

Sardinia region in 2010. Such system is not managed by a bank but by a company not authorized to 

banking activity that allows circuits members to offset their debits and credits denominated in Sardex. 

Similar to the previous case, Sardex is also tied to the official currency through a fixed exchange rate  

but it is not convertible. The exchange rate indentification is mainly used for accounting reasons. 

Each company joining the system is paired up with a broker specialized in the sector of classification 

of the company, with the responsibility of reporting the possibilities of spending and purchasing 

within the system. Therefore, active and passive positions of circuit members are being balanced. 

Client fees cover operating and service costs. The denomination of your own productive assets in a 

limited circulation currency is possibly the foremost deterrent to the activation of similar circuits, 

because potential new members may have doubts on the possibility of interfacing with a number of 

counterparties sufficient to cover their own financial exposures within the circuit. Operating costs 

during this stage can be considerable and, in most cases, they can be higher than the benefits of 

becoming a member. Wir Bank and Sardex operating principles lend themselves to analyses on 

monetary policy and the nature of currency (Amato and Fantacci 2012, 2013). In general, we can 

argue that systems of this kind lower the costs of financing the working capital of members, feed an 

internal demand to the circuit, and decrease the need for liquidity of the system. 

As for the payment system, we discuss a case study of endogenous formation of a clearing house, 

namely the New York clearing house (1853) established in the times of the Free-Banking America as 

described by Gorton (1984). Theoretically speaking, free banking consists in a monetary system with 

no barriers to entry the banking sector and where all banks can issue their own currency, the value of 

which is determined by the market forces just like general goods. The most renowned cases of free 
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banking occurred in Scotland (1716-1845) and in the United States (1837-1864). While the former is 

considered a success story, the latter is regarded as a case of high monetary instability which led to 

the formation of some key institutions of the contemporary monetary systems (Gorton 1984, 1985). 

Gorton illustrates how, during the first phase of the American Free Banking, the financial system was 

populated with small-size banks issuing checks to their account holders. Checks played a particularly 

prominent role in the large cities where most economic activities were concentrated, for people in 

business considered the check a more practical and secure means than cash to regulate their 

transactions. The checks clearing mechanism which was in operation among the banks is described 

by Gorton as follows:  

 

“Before 1850 banks cleared checks with a daily exchange and settlement-each bank sent a porter to make the 

round of all the other banks. The porter carried a ledger book, check drawn on the other banks, and bags of 

gold. At each stop the porter turned over checks drawn of that bank and picked up check drawn on his bank. 

If the value of the checks he presented exceeded the value of those he picked up, he collected the difference in 

gold. If the balance netted out against his bank, he paid in gold” (Gorton 1984 pp.4).  

 

In the light of the description, such payments system can be categorized as a bilateral netting system 

whereby the banks cleared the net value of their mutual exposures in cash (i.e. gold). Other than to 

the liquidity costs, the “porters” system was subject to the operational risk of incurring into a robbery 

during the settlement. According to Gorton, the number of banks and transactions involved in the 

system increased to the extent that the inefficiencies due to the parallel increase in transaction and 

liquidity costs, other than in operational risks, led the transactors to conduct the settlements 

multilaterally, in a specific place, once a week. Hence, in 1853 the first clearing house of America 

saw the light in New York, and since then many others came to life across the country. Therefore, in 

accordance with Gorton’s argument, as soon as the payments network became complex enough, 

multilateral netting overtook bilateral netting. Here we seek to identify what conditions enable the 

endogenous formation of a clearing house when BNS and MNS are in competition with each other in 

contexts similar to the one described above.  

The aim of the present paper is to reflect on whether the multilateral netting may have a spontaneous 

spreading once the netting circuit is managed by a clearing house. The originality of the work consists 

mainly in presenting a process of endogenous creation of the clearing houses vis-à vis the extant 

literature on netting rules, which usually considers the presence of clearing houses as exogenously 

determined (see Chu and Lai 2007 for a literature review).To this purpose, we developed an agent-

based model suitable for analysing the economic dynamics which emerge in the real markets and in 

the payment systems whenever the agents can freely decide the type of settlement to resort to.   

For what concerns the real markets, our model is characterized by the investigation of the agents’ 

behaviour according to the variation in the topology of the payment network, to the presence of spatial 

frictions which might prevent the interaction amongst all members of the system, and to different 

contexts that may represent different phases of the business cycle. We tested the competitiveness 

between GS and MNS. Our findings point to the coordination problems between agents, to the 

different phases of the business cycle, and to the different topologies of the payment network as the 

main factors which obstruct the formation of a clearing house, turning corporate barter networks à la 

Wir into isolated cases. Following from this, we verified if, loosening the spatial friction of the model, 

a multilateral netting system was more likely to emerge. Our simulations suggest the existence of a 
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strong potential for multilateral clearing in all the topologies and the phases of the business cycle that 

we tested. The suppression of such potential is mainly due to the aforementioned problems which, 

however, could be mitigated by technological innovation. The emergence of large internet platforms 

connecting thousands of companies, such as Amazon B2B, can ease the coordination problems 

between them, engendering new opportunities which are currently unavailable. Therefore, we reckon 

that the topic of multilateral clearing between companies will grow more and more important in the 

future, and that the present work can be the starting point of a wider research agenda.      

For what concerns the payment systems, we adapted our agent-based model to the free-banking 

context described by Gorton through the addition of the transaction and operational costs associated 

with the type of settlement typical of that context. We tested the model for two competing system of 

settlement, namely the BNS and the MNS, and for different economic scenarios, payment networks, 

and transaction costs. In most cases, the results of our simulations are consistent with the argument 

developed by Gorton.    

The paper will be divided into other five sections: in the second section, we will describe the technical 

aspects of the models and the underlying dynamics; in the third, we will present the results of the 

simulations of the spatial friction model for enterprise circuits; in the fourth section, we will analyse 

the potential of clearing for enterprise small circuits while in the fifth we test the free banking story. 

The last section is dedicated to the conclusions. 

 

2. THE MODEL 

 

2.1. The Network Analysis and Payment Network 

The methodology used for this work is network analysis. This methodology is well-suited for the 

study of credit networks and is widely employed for the analysis of both interbank markets and real 

markets. As for the interbank markets, since Allen’s and Gale’s (2000) analysis of the process of 

contagion of a financial crisis in a small network composed of four banks, numerous theoretical and 

empirical contributions have added up to the extant literature exploring how financial crises develop 

within complex networks (for a non-exhaustive review, see Nier et al. 2007, Gai and Kapadia 2010, 

Battiston et al. 2012, Gaffeo and Molinari 2015). As for credit networks between companies, network 

analysis has been employed for studying how crises spread in supply chains where trade credits are 

in operation (Boissay 2006, Battiston et al. 2007, Delli Gatti et al. 2010, Lee et al. 2016). Furthermore, 

an implicit advice on the methodology to employ was provided by Gorton himself, who describes the 

functioning of the free banking system as follows:  

“The system had the simplicity of Indian camps in which each tepee had a path leading to every other tepee. 

But as the number of the banks grew, these paths became a tangled web” (Gorton 1984 pp.4).  

The web of credit and debit relations among the agents is exactly what network analysis enable us to 

detect and is of paramount importance to identify what obligations can be cleared bilaterally, 

multilaterally, or regulated in GS.  In the following section, we will present the network model and 

we will show some basic dynamics which will guide the simulations. A first segment will describe 

the shaping of the payment network and, subsequently, the agents’ behavioural schemes. The aim of 

the research is to reveal which forces compel the agents either to join a multilateral netting circuit or 

to regulate their transactions through GS vs MNS or BNS vs MNS. To this end, we construct an 
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artificial economic system composed of N nodes, where each node represents an agent (a firm or a 

bank) and where the nodes are linked to each other by debit credit obligations. The simplest way to 

model a network of this type is through an adjacency matrix X, that is a matrix composed of N rows 

and N columns in which each single value of Njix ji  ,, can assume the value of zero or one, 

respectively in the presence or the absence of a debt-credit relationship between agent i and j. In 

particular, the i-th row represents the credit agreements that the agent holds towards the other agents, 

while the j-th column represents the agent's debit contracts j towards the rest of the network. It follows 

that, by construction, the main diagonal of X is composed of zeros as shown in Figure 2.1. We set an 

illustrative matrix Xexample among all the possible adjacency matrix with 3 agents which can be 

generated by a random process. 

Figure 2.1. Adjacency matrix for a network of N=3. 
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Necessary parameter for contracts attribution is the probability jip ,  that the two agents be connected 

to each other, thus p is the main driver determining the topology of payments. In the present study, 

we will consider two topologies of payments: uniform and concentrated. For the uniform topology, 

commonly known as Erdos Renyi, the probability that two agents be connected to each other is the 

same. For the concentrated topology, the probabilities of among-agents connectivity are not 

homogenous; another probability of connectivity hp  characterizes few nodes and the rest by a lower

sp .Following the identification of the adjacency matrix, attributing value to the obligations between 

agents is necessary in order to define the payments network. We define therefore the weighted 

adjacency matrix by means of a procedure which is split in three phases: first phase is to identify the 

total value of the obligations TV in the system. Once TV is fixed, a credit quota of TV/N is attributed 

to each agent. In the last phase, for each agent the quota is divided by the equivalent number of credits. 

The number of credits is obtained by summing the values of the corresponding adjacency matrix row.  

This procedure shows a network characterized by agents who have an equal total credit value divided 

into a number of different contracts and therefore heterogeneous. The net financial position of each 

agent, calculated as the sum of the receivables minus the sum of the debts of each agent, may be in 

debit, credit or balanced position. The strength of this procedure consists mainly in the fact of 

considering heterogeneous obligations allowing a well-founded investigation of the dynamics of 

clearing. The weakness could concern the fact that the heterogeneity between obligations can not 

assume high values, this limitation does not seem relevant to homogenous networks but could 

influence the analysis of concentrated topologies. The calibration of our model on the base of 

empirical data could correct this point of weakness. In order to facilitate the understanding of the 

procedure, we propose an example.  

Consider the topology defined by the adjacency matrix Xexample and a TV value equal to 300. 

Following the aforementioned procedure, firstly, we identify the final quota of credits for each agent 
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as equal to 100 (300/3), secondly, we divide said quota by the number of debtors for each agent, 

respectively 1 and 1, 2. The weighted adjacency matrix X’ in Figure 2.2 represents the outcome of 

the process.  As a result, Agent 1 is a net creditor of 50 to the system, as he has a credit of 100 to 

Agent 2 and a debit of 50 to Agent 3; Agent 2, on the other hand, has a negative net position equal to 

-50 given that the value of his credits (100) is less than the value of his debits (150); Agent 3 has a 

zero-position given that his total credits and debits have a value of 100. 

Figure 2.2. The weighted adjacency matrix for the network described in Xexample and TV=300 
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2.2. Settlement methods 

Once determined the payment matrix, we will proceed by describing possible settlement methods. 

Three systems will be taken into consideration: the GS, the BNS and the MNS. In the standard GS 

system, debits are extinguished by means of nominal payments without any type of clearing. In 

reference to the payment matrix X’ described above, this indicates that Agent 1 will bear a monetary 

outlay of 50, Agent 2 will bear one equal to 150 whilst Agent 3 one equal to 100. The BNS presents 

with the same characteristics as the GS with the difference that the bilateral arrangements between 

the agents are offset. Technically, this payment method transforms the payment matrix X ' into an X' 

' matrix where the bilateral positions are compensated according to the formula ijji xx ,, − (Figure 2.3). 

Figure 2.3. Payment matrix GS and BNS 
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In conclusion, we take into consideration the MNS which can be differentiated from the previous 

methods both by expiration and by execution. A feature of netting systems is the presence of a new 

agent within the payment system, the clearing house. Agents apply to clearing houses in order to 

compensate for their positions. Usually said procedure takes the form of a novation agreement, that 

is, a transformation of bilateral exposures between agents into a single net position towards the 

clearing house. The task of the clearing house is to offset debits and credits of the agents, to collect 

its own debits and to liquidate its own creditors. Figure 2.4 shows the "weighted adjacency matrix" 

of the clearing house for the payment system identified with Xexample. Each i-th row represents the 

account of the i-th agent to the clearing house; by construction the sum of the exposures to the 

Clearing House is zero. This is due to the fact that the agent's credit towards agent j is at the same 

time the agent agent's debt to agent i. Thus, when all exposures are added, agent's credit to agent j is 

eliminated by agent's debt to agent i. 
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Figure 2.4. Clearing House accounts  
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2.3 Model operability, Time frame and Variables 

Having described payment network and settlement agreements, we proceed to describe the procedure 

according to which agents select their chosen payment option among the ones offered. 

In general, the model presented has to be used only to investigate the dynamics of the activation of 

the clearing house and how this can be influenced by spatial frictions, transaction costs, payment 

topologies and business cycles. Upon activation of a clearing house there exists a minimum mass of 

agents who rationally decide to adhere to the room on the basis of their preferences, the economic 

context, the topology of credit network and without a prior story. For this reason, the choice of static 

networks and optimizing behavior of the agents can provide a good approximation of the phenomenon 

of coordination of a minimum mass of agents. Our model is not suitable for the analysis of the 

functioning and growth in size of the clearing houses once the institution has been set up. For this 

kind of analysis, it is necessary to use dynamic models and networks characterized by the strategic 

and repeated interaction among the agents. 

 Initially, agents’ behaviour in the case of a binary choice between GS or MNS is analysed; at a later 

stage, BNS and MNS will be taken into account. The system is made up of two intervals and each of 

them is, in turn, divided into two more sub-intervals. Within the first half of the first interval, 

exchanges arise amongst agents and credit and debit reports are assigned to each agent. After 

identifying the payment network, agents are grouped exogenously. 

 The dimension of the group formation coincides with the dimension of the clearing house to which 

agents can have access to. Within the second half of the first interval, agents are called to decide 

whether to settle their positions by means of liquidity or whether to participate in a clearing house to 

compensate them. In the first half of the second interval, clearing houses compensate the positions 

amongst the agents who choose to become members, then they levy a commission from all the 

members for the service provided and eventually they recover credits from the agents. In the second 

half of the second interval, the clearing house can fail, thus avoiding liquidating net creditors. 

Otherwise, the house will liquidate its own creditors. Figure 2.5 depicts the graphic of the model’s 

sequences. As for the case where the competing systems are the BNS and the MNS, the scenario is 

similar to the one presented above, except for the fact that the BNS replaces the GS and, under such 

circumstances, only one group comprising the totality of the agents is considered.    
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Figure 2.5. Model sequences for GS vs MNS 

 

We establish that the utility function of the agents depends solely on the monetary variable in linear 

fashion, and that the value of a unit of currency in interval 1 is the same of a unit of currency in 

interval 2. For what concerns the GS vs the MNS case, agents decide which payment system to make 

use of, jointly analysing a set of variables such as interest rate, probability of default, commissions to 

the clearing house and net exposure.  

Interest rate (it) represents the necessary cost to obtain liquidity that the agents are subject to. In our 

model, agents are not provided with initial liquidity; however, we hypothesize that they would be 

able to obtain any amount of liquid resources. The burden of such loan is defined by the interest rate 

in force within the interval in question. The borrowed currency can only be spent in the interval in 

which it is firstly requested. Agents are aware during interval 1 of the interest rates of interval 1 and 

2.   

The Default Probability (pd) is the variable that expresses the risk of default of the clearing house. 

Each clearing house is provided with a credit collection unit such as to always obtain its credits in the 

first half of interval 2. Nonetheless, due to technological or fraudulent reasons, the clearing house can 

fail before the liquidation of its own debts towards agents in the second half of the second interval. 

Agents are aware of the probability of failure of clearing houses. The default probability is equal for 

each clearing house.  

In this way we are able to incorporate credit risk within our framework without incurring in 

computational problems that would inevitably arise if we consider the individual credit risk of each 

agent. Potential creditors of the clearing house must carefully assess the risk of bankruptcy of the 

clearing house as in the event of a manifestation of this risk the entire credit would become 

uncollectable. Extensions of our model could include margins or collaterals as insurance tools. 

The fee is the commission rate to pay in order to benefit from clearing services. The fee is proportional 

to the volume of obligations cleared. The term fee encompasses also the cost of collecting the resource 
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necessary for the payment of commission. We set a proportional fee as for many derivatives clearing 

houses and for some classes of members of the Wir circuit. An alternative solution would be to 

consider a flat fee. A proportional fee increases the weight of the commissions with the increase in 

the volume of compensated credits, which tends to penalize the membership of a large room. On the 

other hand, a flat fee tends to encourage the creation of a large room where the fixed cost of the 

operation is distributed over a larger volume of credit.  

The direct exposition (∆) indicates the agent net exposure within the group.  

The size is the dimension of the clearing house, that is the number of agents necessary for the 

activation of a clearing house. The size corresponds also to the dimension of the group formation 

created. Within the group agents will have to decide whether to activate a clearing house with other 

members or whether to regulate said obligations with a GS approach, the same as the approach 

towards agents outside of the group formation. 

As for the case where the competing systems are the BNS and the MNS, there are no significant 

differences on a conceptual level. With the aim of adapting the model to the different dynamics of 

the American Free Banking context, we add the relevant transaction and operational costs if the agents 

opt for the BNS and we leave the model unchanged if they opt for the MNS. 

The transaction-operational costs (trc) is a variable taken into consideration only for the banking 

network. This variable comprises all the costs related to the activity carried out by the porters in the 

system described by Gorton, including the operational cost entailed by the procedure. The cost is 

proportional to the value of the payments that every bank has to make. This is due to three reasons. 

The first reason is that the operational risk is directly connected with the amount of gold carried by 

the porters, which in turn is directly connected with the value of the payments to be made. The second 

reason is that, in such system, the size of the banks was similar; in consequence, it is reasonable to 

assume that the variance of the payment amounts was quite low. This implies that the more the value 

of the payments to be made, the more the number of banks to which the porter has to go, thus 

increasing transaction costs. Finally, the third reason is that the bigger the value of the payments to 

be made in gold, the more expensive the transportation of the commodity.      

 

2.4. Decision making process 

The agents' decision-making process is similar for the two cases investigated. We will begin by 

describing the case for the circuits between companies (GS vs MNS) and, subsequently, the case 

concerning the system of interbank payments (BNS vs MNS). 

For what concerns the real payment network, during interval 1, each agent needs to decide whether 

to take part to the clearing house according to conditions (1) and (2) valid respectively for the net 

creditor and the net debtor as compared to the group formation. Within the group we define each 

single credit from the agent i to agent s as siL ,  and each single debt as siB ,  .   
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The left side of the condition (1) includes the creditor’s payoff in case he makes use of the GS to 

regulate the relations within the group. Said payoff consists of the monetary value deriving from 

credits minus the cost of obtaining the liquidity on nominally regulated debts. On the right, the 

expected payoff in the event of subscription to the clearing house. The value depends on the net 

position at the conclusion of the procedure minus the expected loss on net credits and the commission 

to the clearing house. Said commission is proportional to the offset values.  

For the case of a net debtor ( 0i ), condition (2) has the same method of calculating payoffs in the 

GS case. In regard to multilateral netting, the settlement cost of this position is subtracted to the 

negative net position, in addition to the commission on the volume of the compensated obligations.  

As for the case of free banking, we considered an instance where the competing systems are the BNS 

and the MNS, and the conditions of choice are defined by (3) and (4) for respectively the net creditor 

and the net debtor.  
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It can be noted that two differences stand out in comparison with the previous case. The first 

difference lies in the term BN which, contrary to B, internalizes the bilateral netting, reducing the 

amount of payment means that the debtor must find if he does not participate in the clearing house. 

This increases the competitiveness of the BNS. The second difference lies in the term trc which 

represents the transaction and operational costs, being proportional to the payments due. In order to 

identify the leading dynamics of the agents’ choices in regard to the system to be implemented, we 

propose an example of a uniform network composed of 25 agents united in a single group. The total 

value of the assets of the system is 100000. The size of the potential clearing house is 25. The systems 

taken into account by the agents are the GS-MNS and the BN-MNS. Only for this example, we set 
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the transaction costs trc=0 in order to be able to detect the differences between GS and BNS modes 

in a clearer way when connectivity varies. A default probability of 5% is taken into consideration, 

three different levels of flat curves of interest rates (1%, 5% and 10%).  

Figure 2.6. Graph a) case GS-MNS b) case BNS-MNS.On the x axis the percentage level of connectivity (scale 1*10-

1 ) and on the y-axis the percentage of agents who apply for the clearing house. For y=1 the clearing house is activated. 

Three flat interest rate curves tested.  

           

Figure 2.6.a shows the pecentage of agents asking for access to the clearing house as the 

interconnectedness amongst agents changes whenever the concurrent payment systems are GS and 

MNS. Y axis range is 0-1, the clearing house is activated when all the agents have the incentive to 

enter and therefore the percentage of agents is equal to 1. It can be seen how agents do not have any 

incentive to take part of the clearing house when the interest rates curve takes low values, with the 

exception of particularly high connectivity levels. This is because liquidity costs are as low as to 

encourage agents to avoid the risk of the clearing house failing as well as the weight of commissions. 

The agents will agree to become members only for particularly high connectivity levels, given that 

the net exposure towards the house lowers with the rise of the interconnectedness. As interest rates 

rise and as liquidity costs increase consequently, agents will prefer to apply for the clearing house 

already at low connectivity levels.  

Figure 2.6.b shows agents’ behaviour when the concurrent settlement systems are BNS and MNS. By 

contrast to the previous case, a non-linear relation can be seen between connectivity level and 

applications for the clearing house. The reason behind such phenomenon is that, whenever the 

probability of interconnectedness amongst agents rises, a concomitant rise in bilateral exposures is 

registered. This dynamic will increase the number of bilaterally netted positions, thus allowing for a 

cost reduction of the non-participation to the clearing house. In detail, with the growth of connectivity 

from the lower end of the domain to the upper one, the net debits to be welded first increase, until 

reaching a maximum point for an average connectivity level, then they fall almost symmetrically in 

the second half of the probability domain. This explains why the incentive to take part to the clearing 

house increases in the first half of the probability domain, and why it decreases in the second half. 

The same dynamic presents itself for each of the three rate curves observed. As for the example of 

GS-MNS treatments, rate curves have a positive relation to the number of agents applying for the 

clearing house. In contrast to the previous case, for the BNS the interval of connectivity during which 
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it is possible to activate the clearing house will be shorter and, in case of an interest rate low curve, 

null.   

Figure 2.7. Graph a) case GS-MNS b) case BNS-MNS.On the x axe the percentage level of connectivity (scale 1*10-1 

) and on the y-axis the percentage of agents who apply for the clearing house. For y=1 the clearing house is activated.  

Three levels of default probability tested 

             

Figure 2.7a shows how the choice dynamic varies as the default probability of the clearing house 

fluctuates. We consider a flat interest rate curve at 5% and three default probability levels of the 

clearing house, fixed at 1%, 5% and 10% respectively. As it shown by the graphic, we can observe 

how, when the default probability is high, the house can be activated only for high connectivity levels. 

The linear rapport between interconnectedness probability and agents' inclination to apply to the 

clearing house is because the higher the level of p the lower the value of i  for each agent. In the 

extreme case of p=100 and equal value of obligations amongst agents, the clearing house would be 

activated for whichever level of default probability, on the ground that all the positions would be 

offset and agents should only have to pay commission expenses. A negative relation between default 

probability of the clearing house and agents’ admissions requests to it is observed. Intuitively, the 

higher the risk of do not recover the credit, the lower the number of members. Figure 2.7b takes into 

consideration the same dynamic for the BNS-MNS. For this process as well, the default probability 

has a negative relation to the number of agents willing to participate to the clearing house. However, 

in contrast to the previous instance, the probability domain for the activation of the clearing house 

can be null in case of a high default probability. This is because in the BNS treatment, agents will 

accept to become members of the clearing house only for low risk credits, given the savings inherent 

to bilateral netting.    

 

3. SIMULATION OUTPUTS 

 

3.1. Exogenous groups analysis  

The first case study is structured accordingly to exogenous group analysis in a context where GS and 

MNS are in competition. After defining the payment matrix, we proceed to randomly group agents in 

groups of various dimensions. The dimension of the group is an indicator of the size of the clearing 

house that could be activated by agents belonging to each group. Exogenous grouping can be seen as 
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a friction limiting the creation of clearing houses; in this framework, in fact, agents are not free to 

look for a counterparty with whom to offset their credits. Such instance reduces the domain of 

activation of the clearing houses.   

In our case, the exogenous groups analyses carried out are two, respectively 5 and 12 of scope, to 

which is added the only possible 25 scope group (the only one possible given the correspondence 

with the total amount of agents of the system). The selection process of the payment options is up to 

the individual and its functioning is as previously presented in the above section of the paper. Four 

possible scenarios in which the interest rates curves are combined with the default probability curves 

of the clearing house are taken into consideration. We test a scenario in which the interest rate curve 

as well as the default probability curve are increasing; a scenario in which the interest rate curve as 

well as the default probability curve are decreasing; a scenario in which the interest rate curve is 

increasing, and the default rate curve is decreasing; a scenario in which the interest rate curve is 

decreasing, and the default rate curve is increasing. Three phases along the curves are considered. 

Each phase is identified by two interest rates, by the default probability of the clearing houses and by 

three agents’ connectivity levels. We test two topologies, uniform and concentrated. The metric we 

take into consideration in this section is the number of clearing houses resulting from the model for 

agents’ selection. Table 3.1 identifies the parameters based on which we will perform Monte Carlo 

simulations. 

 

Table 3.1. Parameters values (GS-MNS) 

Scenario Phase Pd il i2 

1 1 1% 2% 2% 

2 5% 2% 5% 

3 10% 5% 7% 

2 1 10% 7% 7% 

2 5% 7% 5% 

3 1% 5% 2% 

3 1 10% 2% 2% 

2 5% 2% 5% 

3 1% 5% 7% 

4 1 1% 7% 7% 

2 5% 7% 5% 

3 10% 5% 2% 

 

Homogeneous Topology P (0,3-0,5-0,7) 

Concentrated Topology Ph range (0,3-0,5-0,7) 

 Ps fixed (0,1) 

N 25 

Nh 4 

Ns 21 

TV 100000 

Fee 0,5 % 
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Table 3.2. Output for homogeneous topology (GS-MNS). The table shows the mean and the variance of the number of 

clearing houses activated. 

Homogeneous Topology (GS-MNS) 

 Phase 1 Phase 2 Phase 3 

Connectivity 0,3 0,5 0,7 0,3 0,5 0,7 0,3 0,5 0,7 

Size 5 

Scen.1 mean 

and (var.) 

0,66 

(0,65) 

1,70 

(1,39) 

3,50 

(1,10) 

0,05 

(0,05) 

0,10 

(0,09) 

0,30 

(0,22) 

0,05 

(0,05) 

0,35 

(0,34) 

1,10 

(0,07) 

Scen.2 mean 

and (var.) 

0,30 

(0,25) 

0,74 

(0,70) 

1,65 

(0,55) 

0,75 

(0,55) 

1,90 

(0,83) 

3,60 

(1,35) 

1,45 

(0,89) 

3,55 

(1,44) 

4,65 

(0,23) 

Scen.3 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,15 

(0,14) 

0,05 

(0,05) 

0,10 

(0,09) 

0,30 

(0,22) 

0,74 

(0,70) 

2,30 

(0,64) 

3,90 

(0.93) 

Scen.4 mean 

and (var.) 

1,45 

(0,89) 

3,45 

(1,41) 

4,80 

(0,16) 

0,75 

(0,55) 

1,90 

(0,83) 

3,60 

(1,35) 

0,10 

(0,09) 

0,25 

(0,19) 

0,75 

(0,80) 

Size 12-13 

Scen.1 mean 

and (var.) 

0,80 

(0,40) 

1,45 

(0,36) 

2,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,20 

(0,13) 

0,00 

(0,00) 

0,05 

(0,05) 

1,11 

(0,51) 

Scen.2 mean 

and (var.) 

0,05 

(0,05) 

0,65 

(0,45) 

1,60 

(0,30) 

0,30 

(0,22) 

1,65 

(0,23) 

2,00 

(0,00) 

1,60 

(0,35) 

2,00 

(0,00) 

2,00 

(0,00) 

Scen.3 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,20 

(0,13) 

0,45 

(0,36) 

1,70 

(0,22) 

2,00 

(0,00) 

Scen.4 mean 

and (var.) 

1,80 

(0,23) 

1,95 

(0,05) 

2,00 

(000) 

0,30 

(0,22) 

1,65 

(0,23) 

2,00 

(0,00) 

0,00 

(0,00) 

0,65 

(0,55) 

0,94 

(0,40) 

Size 1 

Scen.1 mean 

and (var.) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

0,00 

(0,00) 

0,01 

(0,01) 

0,55 

(0,09) 

0,10 

(0,01) 

0,65 

(011) 

0,90 

(010) 

Scen.2 mean 

and (var.) 

0,65 

(0,23) 

0,95 

(0,05) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

Scen.3 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,01 

(0,01) 

0,55 

(0,09) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

Scen.4 mean 

and (var.) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

0,10 

(0,09) 

0,70 

(0,22) 

1,00 

(0,00) 

 

Table 3.2 illustrates the results of our simulations; the table indicates the average number of clearing 

houses activated and its variance for each scenario. For the sake of clarity the graphical analysis has 

been abandoned in favour of tables. Graphs would have been composed by too many overlapping 

lines, even candle graphs.  We begin by analysing the results for the homogenous topology. In order 

to explain the outputs, we have identified four effects.  

The reported effects derive from an analysis of the maximizing behavior of agents on the basis of 

their preference system. Once combined, these effects determine the results of simulations. 

Effect 1. The first effect is due to the rise in interconnectedness amongst agents. A consequence of 

the first effect is a reduction trend of the net exposures towards the potential clearing house. Ceteris 

paribus, as the connectivity level increases, the number of agents applying for the clearing house 

increases.  

Effect 2. The second effect takes into consideration the interest rate curve. Ceteris paribus, each time 

agents are confronted with a decreasing rates curve, they are also given an incentive to enter the 
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clearing house because the liquidity cost in interval 2 is lower than that in interval 1. The opposite 

holds true in case of an increasing curve, for which the liquidity cost in interval 2 will be higher than 

that in interval 1. For a flat interest rate curve, effect 2 does not prompt action towards either of the 

two treatments.  

Effect 3. The third effect pertains to the absolute value of the interest rate in interval 1. The relation 

between interest rate in interval 1 and willingness of agents to offset is positive. Ceteris paribus, the 

higher the interest rate, the higher the number of agents wanting to offset their credits and debits.  

Effect 4. The fourth effect takes into consideration the default probability of clearing houses. In this 

instance, the relation to the willingness of agents to offset is negative. Ceteris paribus, the higher the 

default probability, the lower the number of agents willing to offset.  

 

3.2. Small-size Clearing Houses, 5 scope group 

In regard to the first scenario, Table 3.2 shows that the average number of activated chambers is, on 

average, low. In phase 1, effect 1 and 4 stimulate the development of chambers while effect 3 acts as 

a brake towards such choice. For high connectivity levels, less of 4 out of 5 possible rooms are 

activated. In phase 2 the number of houses activated is on average close to zero and this is mainly 

due to effect 2 and effect 4. In phase 3 the effects tend to balance, the number of rooms increases 

slightly and for maximum connectivity levels it reaches the unit permanently.  

Analysing the second scenario, an increase in the number of chambers formed going from phase 1 

into phase 3 can be seen; this is mainly due to effects 2 and 4. In phase 1, effect 3 and 4 tend to 

compensate each other flattening towards zero the number of houses of medium-low level; for high 

connectivity levels, effect 1 prevails on the others. In phase 2 and 3, effects 1, 3 and 4 stimulate the 

development of houses, which almost reach 5 units per high levels of connectivity on average.  

 In regard to the third scenario, in the first two phases the number of houses is close to zero, given the 

effects 3 and 4 in phase one and effect 2 in phase 2. In phase 3 with three effects, we are barely able 

to reach one single stable house for high connectivity levels. In regard to the fourth scenario, we 

observe a downward trend for the number of houses going from phase one to phase three. In phase 

one, for high connectivity levels, it is possible to reach the five houses with very high frequency. This 

is because almost all the effects move in the same direction.  In phase two, we register an average fall 

of clearing houses due to effect 4, fall that persists in phase three, due mainly to effects 3 and 4. 

 

3.3. Medium-size Clearing Houses, 12-13 scope groups 

For medium-size houses agents are grouped into two formations, 12 and 13 agents respectively, thus 

widening the domain for compensation possibility but at the same time complicating the instance in 

which all the agents are given incentives to activate the clearing house of their reference-frame. In 

regard to the first scenario, during phase one, effects 1 and 4 dominate effect 3, pressing through high 

connectivity levels all the agents to participate to the clearing houses. In phase two, effects 2 and 4 

reduce the number of houses to a value close to zero; phase three, in a similar manner, displays a few 

active clearing houses, with the exception of high levels of connectivity where, through a high number 

of simulations, it is possible to activate a house owing to the positive thrust of effect 3.  The second 

scenario displays a growth in the number of houses going from phase 1 into phase 3. In phase 1 effects 

1 and 3 are dominated by effect 4 through low levels of connectivity; in phase 2 effects 1 and 4 
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dominate over effect 2 pressing through high levels of connectivity all the agents to offset. A similar 

dynamic presents itself in phase 3. The thirds scenario is characterized in phase 1 by a null 

development of houses due to the strength of effect 4, whilst in phase 2 by the joint thrust of effects 

2 and 4. In phase 3, effects 1, 3 and 4 dominate effect 2. In the fourth scenario, three effects out of 

four move towards offsetting in phase 1, therefore two clearing houses are always activated for 

medium-high connectivity levels. In phase 2, effects 1 and 2 tend to dominate effect 4, even though 

the two houses can be activated only for high connectivity levels.    

3.4. Big size, 25 scope group 

As a final point, we analyse the largest possible grouping, the 25-scope group. Such a large grouping 

formation allows agents to offset the all of their obligations within the house. For that reason, this 

fact occurs within many phases and we can consider the data shown by Table 3.2 as probability of 

occurrence.   In the first scenario, phase 1 presents, once again, the development of the clearing house 

propelled by effect 4. In phase 2, the house is activated only for high levels of connectivity; 

nonetheless, the number of simulations where this occurs is slightly above average. In phase 3, due 

to the positive influence of effect 1, for high levels of connectivity, the house is active at 90% of 

probability while for a medium connectivity it reaches the average 65%. In the second scenario, the 

house is activated for almost all connectivity levels and rates, because in phase 1, effect 1 and 3 

dominate effect 4. In regard to phases 2 and 3, the clearing house is always active, given that almost 

all the effects move towards clearing.  In the third scenario, the house is structurally active only in 

phase 3, due to the domination of effects 1, 3 and 4 over effect 2 in this phase.  In the fourth scenario, 

the house is usually active; only in phase 3 for medium-low levels of connectivity, effects 3 and 4 

dominate effects 1 and 2.  

We can claim that in the case where the agents are not spatially constrained the domain of activation 

of the clearing house is extremely higher than the other cases. It is a confirmation of our thesis which 

look at the coordination problem. 

 

3.5. Concentrated topology 

In this case, payments display a particular topology: only a few agents make numerous payments and 

numerous agents make only a few payments, mainly towards a highly connected minority. In such 

instances, clearing houses are usually never activated. As Table A1 in the Appendix shows, of the 

various scenarios tested only the case in which the largest grouping was present succeeds in obtaining 

the activation of the house structurally. In particular, for small sized groups, simulations at best can 

detect the activation of two houses but only with a much lower frequency compared to the number of 

simulations performed. The low connectivity level of the majority of agents within the network does 

not provide the incentives to offset; presumably, the critical mass of number payments for the 

majority of the agents is missing. For the case of two clearing houses, the houses themselves are 

usually never activated if not during some extremely favourable phases of the second and the fourth 

scenario. For the second scenario, in phase 3, effects 1, 2 and 4 move towards clearing, whilst only 

effect 3 is pushing towards the opposite direction, thus resulting in one active house for almost all the 

simulations.  In the fourth scenario, in phase 1, it is possible to activate a house given that effect 1, 3 

and 4 move towards clearing and, at the same time, effect 2 is neutral. Concerning the one-house 
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grouping, comparably to the two-group instance, there are only two phases of activation of the 

clearing house and this is due to the same effects described for the two-houses case.  

In summary, for this topology of payment, the number of active houses is extremely low, and it is 

tied to specific phases of the proposed scenarios. The low level of interconnectedness among the 

majority of agents seems to be the main cause of the obtained results. In order to understand whether 

the 5-scope and the 12-scope grouping is a significant determinant, it is necessary to test the case in 

which agents choose partners in a context dominated by less urgent frictions.   

 

3.6. Summary 

In this section, the possibility of creation of clearing houses according to three types of grouping has 

been analysed. Tests have been carried out through two systems, GS-MNS and BNS-MNS, for two 

topologies of payments. Each topology has been studied through the lens of four different economic 

scenarios. The results can be summarized into the following core concepts: 

1. Competition between GS and MNS systems leaves room for the coexistence of the two 

systems.  

2. In the contest characterized by spatial friction credits and debits compensation is lower respect 

to the cases without this type of friction.  

3. In homogeneous networks, more chambers are formed compared to concentrated topologies, 

regardless of the considered scenario. 

4. The result of the tested topologies is that the economic cycle considerably influences the 

choice of agents in regard to the payment methods to be used. 

5. The variable that indicates connectivity is significant for most of the phases and scenarios. 

 

4. POTENTIAL OF CLEARING 

 

The results expressed by the previous section suggest the difficulty in developing clearing houses 

along the lines of the Wir-Sardex model, when frictions limiting the possibility of organization among 

agents are present. In the absence of frictions, the issue of maximizing agents’ payoff would become 

extremely costly from a computational perspective.  Consider the hypothetical instance in which an 

agent evaluates whether to apply to a size 5 clearing house, where the possible combinations of a 

system populated by 25 agents become 25!/20!5!=53130 and each of them has to be confronted with 

all the possible combinations and sequences per different sizes. Therefore, the question we address 

in this section is not which the optimal configuration for clearing houses is, but, merely, whether the 

system might support a potential for multilateral netting.  Due to the new aim of the research, the 

procedure presented in the previous section has been modified, in order to openly distinguish the 

effects of the elimination of “spatial friction”. In detail, we hypothesize that, once the payment 

network had been identified, public authority, which we hypothesize would be able to map accurately 

the network and agents’ preferences, would fix a size indicative of the dimensions of the group 

subsequently extract, one at a time, all the possible combinations associated with that size. 

Furthermore, we supposed that the public authority would have the power to compel agents to form 

a clearing house every time their feasibility conditions described in section 2.e are fulfilled. 
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Consequently, an optimal configuration is not achieved. It is achieved, however, a feasible incentive 

configuration which specifies the possible size of the multilateral netting. We take into consideration 

6, 5, 4 and 3 size houses, starting with the extraction of the largest-size combinations. The same 

procedure is adopted for both topologies tested in section three. We consider the first and the second 

scenario of the previous section. Our reference metrics are the number of clearing houses constituted 

and the portions of the value of the credits handle by the clearing houses. Results shown by the Tables 

A2 and A3 in the Appendix concern the system in which GS-MNS are in competition. 

For the homogeneous topology, an extremely high application rate towards larger-size houses is 

immediately evident. This is due to both the fact that the higher the size, the higher the number of 

potential clearing contracts, and to the order of the extraction. In the first scenario we notice a 

substantial number of houses in phase 1, reaching on average 31 units of 6 size for high levels of 

connectivity. Typically, larger size houses absorb the majority of debit-credit relationship among 

agents. Thus, only a few smaller size houses will be activated. In phase 2, in contrast with the results 

shown by the previous section, it is possible to achieve up to 27 houses of 6 size and, in a structural 

manner, smaller size houses. Similarly, in phase 3, despite effects 2 and 4 disincentivize the 

development of houses, for highly connected cases it is possible to develop on average as many as 28 

houses of 6 size. Concerning the volume of offset credits in this scenario, phase 1 registers a range of 

75-95%, a slight decrease is registered in phase 2 and 3, still granting, however, a 60-90% of credits 

handle by the clearing houses. The second scenario, more favourable to multilateral netting, allows 

to register a higher number of houses formed, with peaks of 37 developed houses of 6 size for highly 

connected networks. The value of offset credits in clearing houses nearly achieves 100% per highly 

connected networks in phase 2, if we consider the credits handle by the clearing houses of different 

sizes. Moreover, it achieves consistently more than 85% in phase 1 and 70% in phase 3 considering 

the entire system. 

In regard to the concentrated topology, in contrast with the spatial friction cases of the previous 

section, the simulations we performed point to the activation of a relevant number of houses and 

offset credits. Analysing the first scenario, the least favourable scenario to clearing between the two, 

it emerges that in all phases a minimum average of 7 to a maximum average of 12 houses are 

activated. The total value of credits managed by the clearing houses goes from a minimum average 

of 50% to a maximum average of slightly more than 80%. 

In regard to the second scenario, the most favourable to netting, a slight increase can be noticed in 

the number of active houses able to reach 14 units in phase 3 with high levels of connectivity and a 

netting range varying from 55% and 85% of the total of credits in the system.   

 

5. FREE BANKING CASE 

In this section we present the results of the scenario where the BNS and the MNS payment systems 

are in competition with each other as illustrated in section 2. In particular, we investigate the process 

of endogenous formation of a clearing house in the context of an interbank payment network whose 

features resemble the free banking system described by Gorton. To this purpose, we focused on 

homogeneous topologies that better represent the relations among banks of similar size, which are 

generally characterized by payment orders with a low variance. Furthermore, because clearing 

procedures occurred weekly, we assumed interest rate curves to be flat. We also took into account 
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three levels of transaction costs and three default probabilities for the clearing house as shown in the 

Table below. As is the case with GS vs. MNS, we identified 4 effects which determine the results of 

our simulations.       

Effect 1. The first effect concerns the connection probability. As described in section 2, when it comes 

to the BNS, the probability of connection between the agents engenders an incentive to the formation 

of the clearing house in the first half of the connectivity domain. In the second half, on the contrary, 

effect 1 will obstruct the formation of the clearing house due to the possibility of netting a high 

number of obligations in a bilateral way. 

Effect 2. The second effect concerns the liquidity cost. We test three flat interest rate curves – low, 

medium, and high. With the increase of the interest rate from the low to the high curve, the liquidity 

costs increase too; as a consequence, the incentives to join the clearing house grow. Hence, effect 2 

shows a positive association with the activation of the clearing house.  

Effect 3. The third effect concerns the operational and transaction costs. As illustrated in the second 

section, with the increase of the transaction costs within the BNS, the incentives to the formation of 

the clearing house increase too. Therefore, effect 3 shows a positive association as well with the 

activation of the clearing house.  

Effect 4. The fourth effect concerns the default probability of the clearing house. The higher the 

default probability, the lower the incentive to join the clearing house. Effect 4 thus shows a negative 

association with the formation of the clearing house.    

According to Gorton, as the number of transactions between intermediaries increased, the increase in 

operational and transaction costs would not have made the bilateral netting system sustainable. From 

a theoretical point of view the result is not so obvious. The increase in the number of transactions 

certainly increases the cost of transactions, but also could increase the possibility of netting 

bilaterally. This trade off is the basis of our investigation. Table 5.1 shows the network and scenario 

parameters. 

Table 5.1 Parameters values (BNS-MNS) 

Scenario 1 

i1=2%, i2=2% 

trc=0,1%  

Default probability=1,3 and 5% 

 

trc=0,5% 

                      trc=1% 

Scenario 2 

i1=3,5%, i2=3,5% 

trc=0,1%  

Default probability=1,3 and 5% 

 

trc=0,5% 

                      trc=1% 

Scenario 3 

i1=5%, i2=5% 

 

trc=0,1%  

Default probability=1,3 and 5% 

 

trc=0,5% 

                      trc=1% 

 

Homogeneous Topology P (0,3-0,5-0,7) 

N 25 

TV 100000 

Fee 0,5 % 

 

 

 



144 

  

Tabella 5.2 Simulation outputs (BNS-MNS). The table shows the mean and the variance of the number of clearing 

houses activated. 

Homogeneous topology BNS-MNS 

Transaction 

costs 

0, 1% 0,5% 1% 

Connectivity 0,3 0,5 0,7 0,3 0,5 0,7 0,3 0,5 0,7 

Prob 5 

Scen.1 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

Scen.2 mean 

and (var.) 

0,15 

(0,13) 

0,25 

(0,19) 

0,10 

(0,09) 

0,35 

(0,23) 

0,50 

(0,26) 

0,15 

(0,13) 

0,75 

(0,19) 

0,77 

(0,20) 

0,30 

(0,22) 

Scen.3 mean 

and (var.) 

0,88 

(0,66) 

0,95 

(0,05) 

0,70 

(0,22) 

0,90 

(0,09) 

0,95 

(0,05) 

0,75 

(0,19) 

1,00 

(0,00) 

1,00 

(0,00) 

0,85 

(0,13) 

Prob 3 

Scen.1 mean 

and (var.) 

0,00 

(0,00) 

0,05 

(0,05) 

0,00 

(0,00) 

0,35 

(0,24) 

0,50 

(0,26) 

0,00 

(0,00) 

0,65 

(0,23) 

0,70 

(0,22) 

0,05 

(0,05) 

Scen.2 mean 

and (var.) 

0,85 

(0,09) 

0,86 

(0,12) 

0,30 

(0,22) 

1,00 

(0,00) 

1,00 

(0,00) 

0,35 

(0,22) 

1,00 

(0,00) 

1,00 

(0,00) 

0,70 

(0,25) 

Scen.3 mean 

and (var.) 

1,00 

(0,00) 

1,00 

(0,00) 

0,45 

(0,26) 

1,00 

(0,00) 

1,00 

(0,00) 

0,50 

(0,26) 

1,00 

(0,00) 

1,00 

(0,00) 

0,70 

(0,22) 

Prob 1 

Scen.1 mean 

and (var.) 

0,75 

(0,19) 

0,45 

(0,25) 

0,00 

(0,00) 

0,95 

(0,05) 

0,60 

(0,25) 

0,05 

(0,05) 

1,00 

(0,00) 

0,75 

(0,25) 

0,15 

(0,13) 

Scen.2 mean 

and (var.) 

0,90 

(0,07) 

0,93 

(0,07) 

0,10 

(0,09) 

0,95 

(0,05) 

0,95 

(0,05) 

0,45 

(0,26) 

1,00 

(0,00) 

1,00 

(0,00) 

0,80 

(0,16) 

Scen.3 mean 

and (var.) 

0,90 

(0,10) 

0,95 

(0,05) 

0,75 

(0,19) 

0,95 

(0,05) 

0,95 

(0,05) 

0,90 

(0,09) 

1,00 

(0,00) 

1,00 

(0,00) 

1,00 

(0,00) 

 

The Table 5.2 presents the results for each scenario tested. They report the mean and variance of the 

number of activated clearing houses. Mean values can also be considered as activation probabilities 

insofar as they are determined through the number of positive cases divided by the number of possible 

cases. Below we analyse the results of each scenario in relation to the cases of a high, medium, and 

low default probability of the clearing house. 

 

5.1 High default probability of the clearing house 

The first case to be considered is the one whereby the clearing house is marked by a high default 

probability. When it comes to the first scenario, where liquidity costs are low, the activation of the 

clearing house does not occur at any level of the tested operational and transaction costs as well as at 

some levels of connection among the bank participating in the system. As follows, in this scenario 

effects 2 and 4 significantly prevail against effects 1 and 3. 

In the second scenario, where liquidity costs are medium, the activation of the clearing house can be 

observed in several cases. In particular, when operational and transaction costs rise from 0,1% to 1%, 

it can be noted that the probability of activation of the clearing house triples and, on average, reaches 
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75% at medium connection levels – while being subject to a variation between 15% and 70% at low 

connection levels. For all the levels of operational and transaction costs, the maximum probability of 

activation occurs at medium connection levels: this is due to effect 1 which crucially contributes to 

limit the activation of the clearing house at high connection levels.  

In the third scenario, the probability of activation of the clearing house is very high, leading to the 

structural activation of the latter both at medium and at low connection levels in combination with 

high operational and transaction costs. In general, it is effect 2 to determine the results of this scenario; 

the impact of effects 1 and 3, though still present, is significantly lower.       

 

5.2 Medium default probability of the clearing house 

Where the clearing house is marked by a medium default probability, the impact of effect 4 is 

generally less intense than in the previous case. 

As for the first scenario with low operational and transaction costs, the clearing house is rarely 

activated, whereas with medium and high operational and transaction costs the activation probabilities 

can respectively hit 50% and 70% on average. In this scenario as well, effect 1 tends to prevail against 

the BNS at high connection levels. 

The second scenario features the dominance of effects 1 and 2, structurally determining a high 

probability of activation of the clearing house at medium and low connection levels. At high 

connection levels, though, effect 1 tends to decrease the activation probability, an outcome 

considerably mitigated by effect 3 which push the average activation probability up to 70% for high 

transaction costs. 

The dynamics of the third scenario are similar to the former: in this case, the structural activation of 

the clearing house occurs also in the presence of low operational and transaction costs, especially 

thanks to effects 1 and 2.     

 

5.3 Low default probability of the clearing house 

When the default probability of the clearing house is low, effect 4 tends to rise the average probability 

of activation. There are plenty of cases in which the activation of the clearing house is structural. 

With particular regard to the first scenario, the activation probability is high, by virtue of effect 1, at 

medium and low connection levels also for low operational and transaction costs. At high connection 

levels, the combination of effect 1 and 4 keeps down the probability of activation of the clearing 

house. 

As for the second scenario, the probability of activation of the clearing house is high due to the 

combination of effects 2 and 4. In this case, effect 4 eventually prevails against effect 1, leading the 

probabilities of activation to hit 80%. Finally, in the third scenario, the activation of the clearing house 

proves to be structural because, except of effect 1 at high connection levels, all effects come out 

positive towards multilateral clearing.    

 

 

 



146 

  

5.4 Summarizing 

The results of the present section enable us to confirm the thesis put forward by Gordon whereby the 

clearing houses for the management of interbank payments emerged with the purpose of mitigating 

liquidity and transaction costs. Indeed, in the presence of near zero operational and transaction costs, 

only for very high connection levels combined with low liquidity costs or high probability of failure 

of the clearing house the BNS system is cheaper than the MNS. 

 

6. CONCLUDING REMARKS 

In this work we sought to deepen the dynamics leading to the endogenous formation of clearing 

houses. In particular, we focused on two specific cases. The first one concerns corporate barter 

networks like Wir and Sardex. The second one concerns the emergence of clearing houses for 

interbank payments in the Free Banking American as described by Gorton (1984). When it comes to 

corporate networks, we developed an agent-based model encompassing the endogenous formation of 

clearing houses in contexts where multilateral clearing and gross settlement systems are in 

competition with each other. We integrated the model with a spatial friction which could represent 

the problems of coordination between the agents and, subsequently, we tested the model for different 

payment topologies as well as for economic scenarios exemplifying various phases of the business 

cycle.  

The results of our analysis show how the presence of a spatial friction significantly obstructs the 

endogenous formation of clearing networks between companies. Besides, the activated networks 

could be unstable if the different phases of the business cycle are taken into account; as a consequence, 

the number of transactions handed by the clearing houses is variable, as demonstrated by Stooder’s 

(2009, 2016) empirical analyses.  

In section 4, we attempted to evaluate whether a potential for multilateral clearing exists by relaxing 

the spatial friction. The results of such evaluation are indicative of the fact that, even for a low number 

of groups tested (6, 5, 4 and 3 size groups) the value of cleared credits can reach extremely high rates. 

Such example occurs for various topologies as well as for the vast majority tested scenarios. If the 

aforementioned results are combined with the results from fixed and exogenous grouping, it is 

possible to notice, on one hand, the difficulty in the spontaneous development of clearing houses 

whenever frictions are present, on the other hand, the enormous potential for clearing per low size 

houses. If reducing the general need for liquidity by the banking system is deemed an important policy 

to pursue for the system efficiency, a possible solution to implement the offset could be for the 

banking system itself to mandate this service. A sufficiently large bank will be able to offer its clients 

the possibility of admission to clearing houses, at least for smaller sizes. In this respect, the path 

would be opposite to the one followed by Wir Bank, which made a start as a clearing house and grew 

to become a bank. If such hypothesis appeared to be precipitate, one should think about the conjoint 

effect that the new EU directive on the PSD2 payment systems and the spread of platforms for the 

exchange of goods between companies, such as Amazon B2B, might have on the supply of payment 

services. On the grounds of the new legal framework, the managers of these platforms could provide 

their customers with a system of credit clearing, being able to mitigate the coordination problems 

among the companies thanks to the significant number of actors participating in the system. Following 
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from this, the competition might sway the banking system towards the same practice, revolutionizing 

the mode of financing commercial credits.  

 For what concerns the second case, we adjusted the agent-based model through the addition of the 

transaction costs which characterized the Free Banking system. Hence, we tested the model for an 

homogenous payments topology and for different economic scenario. The results of our simulation 

suggest that the strong incentive to the multilateral clearing of interbank payments is to be attributed 

to the inflated liquidity and transaction costs that featured in the original Free Banking system 

described by Gorton.   

Our work leaves room to further theoretical and empirical interventions. As for the clearing between 

companies, from a theoretical perspective it would be worth investigating the pros and cons of 

multilateral clearing vis-à-vis other forms of trade credit commonly employed by the firms. From an 

empirical perspective, it should be tested what topologies of real payments would be convenient to 

finance through clearing. Lastly, as for the case of the Free Banking system, it would be interesting 

to calibrate the mode on the basis of historical data.  
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APPENDIX 

TABLE A.1. Number of clearing houses for concentrated topology (GS-MNS). The table shows the mean and the 

variance of the number of clearing houses activated. 

Concentrated Topology (GS-MNS) 

           Phase 1           Phase 2           Phase 3 

Connectivity 0,3 0,5 0,7 0,3 0,5 0,7 0,3 0,5 0,7 

Size 5 

Scen.1 mean 

and (var.) 

0,30 

(0,32) 

0,55 

(0,68) 

0,85 

(0,76) 

0,35 

(0,34) 

0,50 

(0,36) 

0,65 

(0,34) 

0,45 

(0,26) 

0,34 

(0,35) 

0,45 

(0,36) 

Scen.2 mean 

and (var.) 

0,45 

(0,26) 

0,69 

(0,61) 

0,70 

(0,25) 

0,60 

(0,35) 

0,75 

(0,51) 

0,85 

(0,45) 

0,90 

(0,51) 

1,35 

(0,55) 

1,60 

(0,77) 

Scen.3 mean 

and (var.) 

0,40 

(0,35) 

0,65 

(0,45) 

0,75 

(0,51) 

0,35 

(0,34) 

0,50 

(0,36) 

0,65 

(0,34) 

0,75 

(0,82) 

0,60 

(0,50) 

0,85 

(0,51) 

Scen.4 mean 

and (var.) 

0,95 

(0,78) 

1,50 

(0,89) 

1,55 

(0,47) 

0,60 

(0,35) 

0,75 

(0,35) 

0,85 

(0,45) 

0,40 

(0,30) 

0,41 

(0,29) 

0,45 

(0,35) 

Size 12-13 

Scen.1 mean 

and (var.) 

0,10 

(0,09) 

0,05 

(0,05) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

Scen.2 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,01 

(0,01) 

0,00 

(0,00) 

0,00 

(0,00) 

0,30 

(0,21) 

0,75 

(0,19) 

0,95 

(0,15) 

Scen.3 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(000) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,05 

(0,05) 

0,00 

(0,00) 

Scen.4 mean 

and (var.) 

0,35 

(0,29) 

0,75 

(0,30) 

1,05 

(0,05) 

0,01 

(0,01) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

Size 25 

Scen.1 mean 

and (var.) 

0,45 

(0,26) 

0,60 

(0,23) 

0,60 

(0,25) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

Scen.2 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,50 

(0,26) 

1,00 

(0,00) 

1,00 

(0,00) 

0,55 

(0,26) 

1,00 

(0,00) 

1,00 

(0,00) 

Scen.3 mean 

and (var.) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,45 

(0,26) 

0,80 

(0,16) 

1,00 

(0,00) 

Scen.4 mean 

and (var.) 

0,80 

(0,15) 

0,90 

(0,09) 

1,00 

(0,00) 

0,50 

(0,26) 

1,00 

(0,00) 

1,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 

0,00 

(0,00) 
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TABLE A.2. Number of clearing houses, without spatial friction (GS-MNS). The table shows the mean of the number 

of clearing houses activated. 

Number of clearing houses 

Homogeneous Topology (GS-MNS) 

           Phase 1           Phase 2           Phase 3 

Scenario 1 

Connectivity 0,3 0,5 0,7 0,3 0,5 0,7 0,3 0,5 0,7 

Size 6 mean  15,3 24,3 31,7 13,5 19,7 27,2 13,2 20,8 28,8 

Size 5 mean 0,3 0,1 0,2 0,9 2 0,3 0,6 1 0,5 

Size 4 mean 0,2 0,2 0,4 1,2 1,2 1,1 0,6 0,9 0,6 

Size 3 mean 0,1 0,2 0,1 0,6 1,3 1,8 0,7 0,5 0,9 

Scenario 2 

Size 6 mean 30,1 22,1 29,9 18,7 27,9 36,6 14,2 24,1 33,6 

Size 5 mean 0,3 0,2 0,2 0,2 0,3 0,2 0,4 0,5 0,2 

Size 4 mean 0,2 0,3 0,4 0,2 0,2 0,2 0,6 0,5 0,6 

Size 3 mean 0,2 0,4 0,4 0,1 0,2 0,3 0,4 0,1 0,2 

Concentrated Topology (GS-MNS) 

Scenario 1 

Size 6 mean 6,9 9,6 11,7 5,6 7,7 9,2 5,8 7,6 9,7 

Size 5 mean 0,3 0,2 0,2 0,9 0,8 1,2 0,6 0,6 0,7 

Size 4 mean 0,1 0,2 0,2 0,9 0,1 0,8 0,5 0,6 0,7 

Size 3 mean 0,1 0,1 0,2 0,4 0,6 0,9 0,6 0,5 0,4 

Scenario 2 

Size 6 mean 6 8 10,6 8,4 11,6 13,1 8,7 12 13,9 

Size 5 mean 0,7 0,5 0,4 0,2 0,1 0 0,2 0,2 0,1 

Size 4 mean 0,3 0,4 0,3 0,1 0,3 0,1 0,2 0,1 0,9 

Size 3 mean 0,3 0,3 0,3 0,1 0 0,2 0,1 0 0,2 
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TABLE A.3. Volume of clearing, without spatial friction (GS-MNS). The Table shows the percentage portion of 

credits handled by the clearing houses of size 6 in the first row. For the other sizes the table represents the percentage 

portion of the credits remained after the extraction procedure of the previous size managed by the clearing houses.   

Volume of clearing 

Homogeneous Topology (GS-MNS) 

           Phase 1           Phase 2           Phase 3 

Scenario 1 

Connectivity 0,3 0,5 0,7 0,3 0,5 0,7 0,3 0,5 0,7 

Size 6 mean 78,4 89,6 94,5 63,0 70,1 82,7 63,1 77,7 87,8 

Size 5 mean 4,2 4,0 6,1 7,4 15,4 12,5 5,4 8,6 5,7 

Size 4 mean 2,9 2,0 9,2 8,0 7,5 9,4 4,0 6,6 5,6 

Size 3 mean 1,3 2,0 0,7 3,4 6,4 5,8 3,9 3,0 6,7 

Scenario 2 

Size 6 mean 92,1 83,7 90,2 82,3 90,0 95,8 66,9 83,2 90,1 

Size 5 mean 5,7 2,0 3,5 3,4 7,1 8,2 3,2 6,5 3,9 

Size 4 mean 3,0 2,6 5,1 2,9 2,8 4,1 4,3 5,3 4,0 

Size 3 mean 1,7 3,1 4,6 0,4 1,6 5,7 2,3 1,2 2,6 

Concentrated Topology (GS-MNS) 

Scenario 1 

Size 6 mean 61,8 72,0 81,5 44,1 57,7 63,9 47,5 57,2 68,5 

Size 5 mean 3,8 3,3 2,7 9,7 7,1 9,8 6,5 8,3 9,0 

Size 4 mean 0,6 2,5 2,3 7,6 8,3 10,4 4,2 5,6 6,9 

Size 3 mean 1,0 1,1 1,6 2,2 4,2 6,3 3,8 3,8 3,4 

Scenario 2 

Size 6 mean 51,3 63,2 75,8 65,9 77,6 84,6 43,3 46,6 36,2 

Size 5 mean 7,4 5,5 4,9 2,2 1,7 0,0 5,0 4,3 3,2 

Size 4 mean 3,8 2,4 3,8 1,2 3,3 0,7 4,1 2,9 1,7 

Size 3 mean 2,1 2,2 1,9 0,8 0 1,8 3,3 1,3 2,4 

 

 

 

 

 

 

 


