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Abstract 
 

A new approach to obtain visible luminescence from sol-gel derived SiOC films is 

proposed. This novel method is based on a simple processing route to produce 

nanostructured multicomponent ceramics. According to this route, hybrid sol-gel 

derived precursors are converted to ceramic materials by a pyrolysis process in 

controlled atmosphere at 800-1000°C. Higher temperatures lead to formation of Si-rich 

SiOC, C-rich SiOC or stoichiometric SiOC according to the starting composition. The 

final composition, which is relevant to line emission, can be easily controlled through a 

number of processing parameters like the composition of the preceramic gel and the 

heat treatment conditions. Thus, this new processing method seems very well suited for 

the production of white emitting materials since the Si- and C-based emission can be 

tuned across the visible spectral range from UV-blue to red by controlling film 

composition. A further advantage of this method is that the thin films can be formed on 

Si or quartz wafers and this can serve as starting material to process more complex 

photonic devices such as waveguides or LEDs. 

 

In the amorphous state (800-100°C), all SiOC films showed UV-blue luminescence 

peaking at about 410 nm, which is attributed to defect states present in the matrix such 

as dangling bonds. The increase of the pyrolysis temperature ( ≥1100°C) led to the 

partition of SiOC and formation of SiC, C and Si phases. The intense green-yellow 

luminescence observed in stoichiometric SiOC films caused by the presence of SiC and 

very low amount of free C. On the other hand, Si rich SiOC film showed a very broad 

and extremely intense white luminescence peak centred at 620 nm covering almost all 

visible range (430 nm-900 nm) at 1200 °C. This behaviour is explained by the 

simultaneous presence of SiC, C and Si in the film. External quantum efficiency 

measurements yielded 11.5% and 5% efficiencies in Si rich SiOC and stoichiometric 

SiOC films, respectively, pyrolysed at 1200°C. On the other hand, C rich SiOC films 

did not show any noticeable improvement in PL, indicating that C excess in the SiOC 

system is detrimental for the luminescence behaviour.  

 

Solutions which used in thin film production have been characterized extensively by 

means of several characterization properties. Moreover, the related powders and bulks 
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have been characterized for the sake of coherency and widen the study. In addition, a 

study on volumetric shrinkage of films and powders has been done. The results showed 

that the shrinkage in films happens almost 200°C earlier than powder and higher 

amount of siloxane release due to the low dimension, the shrinkage is higher than 

powders.  

 

The last part of the study dedicated to two different systems, SiBOCs and SiOCNs, in 

order to understand the effect of the boron addition on SiOC system and study the 

optical properties of the SiOCN. Tunable (color emission change) SiOC films is 

obtained with high quantum efficiency by adding very few amount of boron in SiOC. 

Moreover, the processing temperature is decreased and very broad emission is obtained. 

Finally, results showed that SiOCN PDC gives very high emission in UV range and 

they are promising materials for UV-LEDs.  
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Introduction 
 

Historically, the interest for the polymer pyrolysis route to advanced ceramics (PDC 

route) was driven by the search for ceramic fibers with high thermo-mechanical 

performance [Verbeek, 1973; S. Yajima, 1976]. A peculiar feature of the new 

processing route is the possibility of producing ceramics at lower temperatures 

compared to the classical ceramic production from powders. This property made the 

PDCs possible candidates for producing glow plugs for diesel engines, micro-gears, 

micro-cellular foams and brakes [R. Riedel, 1995]. The recent studies are focused on 

more complicated structures like MEMs [L.A. Liew, 2001]. Moreover, some 

unexpected properties were reported such as electrical, magnetic, optical properties and 

high temperature viscoelasticity [P. A. Ramakrishnan, 2001; A. Saha, 2003; J. C. Pivin, 

2000; A. Scarmi, 2005].  

 

In the literature optical properties of PDCs have been mentioned only few times but the 

preliminary results suggested that they can be good candidates for LEDs [J. C. Pivin, 

2000, G. Das, 2008, G. D. Soraru, 2003]. However, almost none of the reported works 

focused only on optical properties of the PDCs but, indeed, the optical characterization 

was in general presented as a complementary result. Therefore, we aimed to perform a 

complete study on optical properties of PDCs.  

 

In literature two classes of PDCs have been studied; SiOCs and SiCNs. SiOCs have 

been studied more by sol-gel method instead the SiCNs are produced by the polymer 

pyrolysis method [Greil, 2000]. Since most of the commercial precursors of SiCNs 

contain abundant amount of graphitic carbon, which are known to absorb visible light, 

in principle, they could not suit very well for optical application. On the other hand, 

many studies on SiOCs showed the possibility of varying the composition in a very 

wide range from Si rich SiOC system to stoichiometric SiOC (used to express that it 

contains very few amount of free carbon) or C rich SiOC [G. D. Sorarù, 1995]. It has 

been indicated that the compositional changes can be achieved just by changing few 

experimental details. Therefore, in our study we have focused on the sol-gel method to 

produce different types of SiOCs, with the aim of characterizing their optical behaviour 

and to correlate it with their nanostructure.  
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From a the technological point of view, for many years worldwide research has been 

focused on finding Si based material to be used as LED due to mature technology of Si. 

Si has been investigated and several other matrixes or doping elements have been 

reported to increase the efficiency of the Si based LEDs. On the other hand, C, when it 

is in the cluster size, is known to give emission. Therefore, working on Si-rich and C-

rich SiOC as well as stoichiometric will give a more complete vision about optical 

properties of the SiOCs.  

 

Most of the LED fabrication is based on thin film production on a semiconductor 

substrate. This choice can be explained thinking that film production is faster and lower 

amount of material is required when we compare them with powders or bulk samples. 

Therefore, the study is based on production of the SiOC films. The film production 

consists of the following steps: (i) solution preparation and spin coating, which takes 

couple of hours and (ii) drying stage, which requires only 1 day at 80°C. After these two 

steps the films can be stored for several months. Since the resultant films are very thin 

(around 300 nm), only very low amount of material is required and very large areas can 

be coated easily. On the other hand, almost one month is necessary for bulk/powder 

preparation. Indeed, in these cases the gelation is slow and the drying step is quite 

longer compared to thin films.  

 

Another key advantage of the films above bulk/powders is higher 

compositional/structural homogeneity which can be achieved due to the very low 

diffusion distance of the film compared to bulk/powders. It is well known that the long 

diffusion distance that the gases produced during pyrolysis have to go through to reach 

the sample surface may be the reason for the compositional gradient often found in bulk 

PDC [T. Rouxel, 2001]. Therefore, the limited thickness of the film should give us the 

possibility to decrease the diffusion distance and a result, it is expected that thin film 

will show homogeneous and reproducible characteristic. 

  

On the contrary, due to very low thickness, the films they are very difficult to 

characterize with by means of classical methods (SEM, XRD, NMR etc.). Especially 

the structural analyses are very hard to perform on films. Moreover, the SiCO films are 

expected to be amorphous and this reduces even more the range of characterization 
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techniques which can be successfully applied. Accordingly, several advanced 

characterization methods such as XPS, SIMS, ellipsometer, ATR-FTIR have been used 

to understand the films deeply. Sometimes to give more accurate information about one 

property several methods have been used and reported in this study (e.g. for thickness 

measurements ellipsometer, FE-SEM, profilometer have been used). As a result the 

SiOC films with different compositions have been characterized by means of several 

different characterization methods and it has been demonstrated that they are very 

promising materials for LED applications with their high efficiencies.  

 

A part of this study has also been dedicated to the characterization of powder samples. 

The reason for this being the fact that powders can be characterized easier (with 

conventional techniques like XRD, TG/DTA, NMR etc) than thin films. However, we 

are aware of the fact that, due to the different diffusion distance of powders and thin 

films (less then 500 microns compared to less then 10 microns) the structure and 

composition of the two set of samples can be slightly different and this possible 

difference has always been taken in to account in our analysis. A particular study, aimed 

to find out possible differences in the pyrolitic conversion of thin films and bulk 

samples has been carried out comparing the shrinkage during pyrolysis of the two set of 

samples.  

 

Finally, to widen the perspective of SiOCs, some other systems, SiBOC and SiOCN, 

have been examined. These studies have been performed to test the possibility to 

improve the optical properties. The study on boron added SiOC films is devoted to 

optical properties and it showed that different range of colors (tunable films) with high 

optical efficiency can be obtained by adding very small amount of boron. To clarify the 

effect of boron we have characterized the SiBOC structure on powdered samples. 

 

Finally we have also performed the optical characterization of a SiOCN PDC system. In 

this case the material has been obtained by pyrolysis of a commercial polymer. Since 

this system is rich of free carbon the optical characterization has been limited to 

samples pyrolyzed at low temperatures, when the graphitic phase is not yet fully 

developed. Accordingly, we found that SiOCN PDC show very high emission in UV 

range and they are promising materials for UV-LEDs.  
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This thesis consists of six chapters and starts with a short literature survey aiming to 

explain in details the materials and their structure/properties, the production methods 

and the review of the work done until now. The following chapter (Chapter 2) gives 

the experimental details of the measurements performed during all through the PhD 

study. For the sake of the coherency, the study on SiOC gels and powders which is 

linked to SiOC films is reported in Chapter 3. In this chapter, SiOC gels, which are 

used to produce film and relevant powders pyrolysed at different temperatures, were 

characterized. The Chapter 4, which is the main part of the PhD study, focuses only on 

SiOC thin films with different compositions. Many different characterization methods 

have been reported in this section (AFM, SEM, FE-SEM, FTIR, DCA, profilometer, 

SIMS, XPS, GA-XRD, UV-VIS, PL measurements, Stability measurements-

Weathering Resistance). This chapter ends with a comparison of two systems (film and 

bulk) by means of shrinkage during pyrolysis. Finally, Chapter 5 is given as a 

collection of all the other studied systems (SiBOC and SiOCN). These chapters are 

completed by the conclusion of PhD study and references.  
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Chapter I. Literature Review  
 

1.1. Polymer Derived Ceramics 

 

Polymer Derived Ceramics (PDCs) have been proposed over 30 years ago as precursors 

for the fabrication of mainly Si-based advanced ceramics. Advanced non-oxide Si-based 

materials such as Si3N4, or SiC are commonly produced by inorganic solid state 

reactions at high temperatures. For instance SiC is synthesized by the reaction of silica 

with carbon according to the Acheson process at 2200°C. Furthermore, silicon nitride is 

fabricated either by the reaction of the elements or by the nitridation of silica in the 

presence of carbon at the 1500°C. Moreover, to get a compact product from these 

powders, high sintering temperatures in the range of 1700-2100°C and the addition of 

sintering aids have to be used because of their predominantly covalent nature.  

 

In the early 70s, the first works appeared in the literature which showed that highly 

refractory SiC ceramics could be produced at much lower temperature 800-1200°C by 

thermal decomposition of organosilicon preceramic polymers polymer [Verbeek, 1974; 

G. Winter, 1975]. In 1976 the pioneering work of Yajima [S. Yajima, 1976] in Japan 

showed that SiC ceramic fibers with excellent high thermal stability could be produced 

by pyrolysis in inert atmosphere of polycarbosilane precursor fibers. This process is 

called preceramic polymer pyrolysis and recently several groups has been working on 

this subject in order to improve the processing as well as finding new application fields 

[R. Riedel, 1995].  

 

Polymer Derived Ceramics (PDCs) can be considered as a new family of nanostructured 

ceramic materials derived from inorganic polymeric precursors [R. Raj, 2001]. 

According to this route, the pre-ceramic polymer is shaped, cross-linked and pyrolyzed 

in controlled atmosphere (inert or reactive) at temperature exceeding 800°C and 

converted into self-similar ceramic devices and components [X. Liu, 2009]. PDCs have 

shown extraordinary properties, especially at ultra-high temperature such as oxidation 

and creep resistance [S. Modena, 2005; L. An, 1998], chemical durability [G.D. Soraru, 

2002], electrical conductivity (from insulating up to semiconducting behaviour) [S. 

Trassl, 2003] and photo and electro-luminescence [Loner, 2001]. Such unusual 
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properties originate from the very peculiar nanostructure of these ceramics in which 

various nanocrystalline phases grow in-situ into an amorphous C-containing matrix [A. 

Saha, 2006; G. Gregori, 2006].  

 

Nowadays, polymer derived method has been used not only to process ceramic fibers 

but also to produce some complex Si-C-O, Si-(E)-C-O, Si-C-N and Si-(E)-C-N (E = B, 

Al, Ti etc.) ceramic systems (polymer derived ceramics, PDCs) which can not be 

synthesized via other methods [A. Quaranta, 2009]. A large variety of precursors for 

ceramic products in the compositional systems such as Si-N, Si-C-N, Si-O-C, Si-C-Al-

O-N have already been synthesized, most of them in laboratory scale. Figure 1.1 

presents a scheme of major silicon containing preceramic polymer systems [Greil, 

2000]. 

 

 
 

Figure 1.1. Preceramic polymer compositions in the system Si-O-C-N-B [Greil, 2000]. 

 

1.1.1. Sol-Gel Method 

 

The sol-gel method is relevant in the PDCs technology since it allows the synthesis of 

pre-ceramic networks with tailored chemical composition which can be subsequently 

pyrolyzed to get SiOC glasses with controlled composition and nanostructure.  
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Sol-gel process can be categorized into three routes. The first one called “colloidal” 

method involves the dispersion of colloidal particles in a liquid to form a sol and then 

the destabilization of the sol to produce a gel which is subsequently dried, to form a 

porous ceramic, and fired to crystallize and/or densify the material [J.D. Mackenzie, 

1988]. The second method involves the production of powders precipitated from the sol. 

The resulting powders are then dried and processed using traditional ceramic processing 

techniques. The third approach is the polymerization of organometallic compounds such 

as alkoxides to produce a gel with a continuous network [Mehrotra, 1990].  

 

A “colloid” is a suspension in which the dispersed phase is so small that gravitational 

forces are negligible and interactions are dominated by short-range forces, such as van 

der Waals attractions and surface charges. The inertia of dispersed phase is so small that 

it exhibits Brownian motion, a random walk driven by momentum imported by 

molecules of the suspending medium. A “sol” is a colloidal suspension of solid particles 

in a liquid [C.J. Brinker, 1990].  

 

Most typical sol-gel precursors are metal alkoxides. Metal alkoxides have the general 

formula M(OR)x where M is a metal or a metalloid element and R is an alkyl or related 

group. The applicability of metal alkoxides for the sol-gel technique is determined by 

their solubility, volatility (in order to purify the precursors) and their oligomerization 

capability. Oligomerization of the metal alkoxides affects the homogeneity of the final 

product.  

 

In general, sol-gel technique is based on the hydrolysis of the metaloxide and further 

condensation reactions of the fully and/or partially hydrolysed alkoxides to 

corresponding oligomeric species. The reaction is called hydrolysis, because a hydroxyl 

ion becomes attached to the metal atom 

 

 

M(OR)x + H2O → M(OH)x + xROH        Eq. 1.1 

  

Two partially hydrolyzed molecules can link together in a condensation, such as  

 

 

(OR)x −1 M − OH + HO − M(OR)x −1 →(OR)x −1 M − O − M(OR)x −1 + H2O  Eq. 1.2 
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or  

 

 

(OR)x −1 M − OR + HO − M(OR)x −1 →(OR)x −1 M − O − M(OR)x −1 + ROH   Eq. 1.3 

 

These reactions cause the formation of a metal-oxygen-metal bridge, which constitutes 

the backbone of any oxide ceramic structure. Continued condensation leads to an 

increase in the density of metal-oxygen-metal cross-links until eventually gelation or 

precipitation occurs [J. B. Wachtman, 1993].  

 

The basic principle of the sol-gel process is to form a solution of the elements of the 

desired compounds in an organic solvent, polymerize the solution to form a gel, and dry 

and fire this gel to displace the organic components and form a final inorganic oxide.  

 

Important and typical precursors for making sol-gel solutions are alkoxides of the 

general composition M(O-R)n, where R is an alkyl radical (CH3, C2H5, etc.). Their 

properties and reactions affect the preparation process and determine the product 

features. Inorganic and organic salts can also be used for introducing some oxides into 

multicomponent systems. The precursors are dissolved in a suitable organic solvent to 

form the solution. In order to get the solution with a high concentration of necessary 

components and proper viscosity, surface tension and boiling point, the solvent must be 

carefully selected.  

 

In order to obtain a suitable solution for making films, various properties of solution are 

adjusted. Different precursors show a wide range of reactivity toward H2O which makes 

the preparation of multicomponent homogeneous systems difficult and also presents 

difficulties with premature gelation during film processing. The gelation of a solution 

means the formation of a network in the solution. The hydrolysis and polycondensation 

of organometallic compounds such as alkoxides leads gelation. During the drying stage 

the wet coating is converted to a relatively dry, harder coating and considerable 

shrinkage of the coating occurs. It is at this stage that problems related to film cracking 

and surface smoothness in the final film become most acute. The annealing step 

converts the gel coating into a densified complex oxide film. This process includes the 

removal of residual –OH or –OR groups by polycondensation reactions, pyrolysis of the 
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organic compounds or groups left in the film into carbon, oxidation of the carbon, and 

gradual densification of the film [Karakuscu, 2006]. 

   

1.1.2. Types of  PDCs Produced by Sol-Gel Method  

 

1.1.2.1. SiOCs  

 

Silicon oxycarbide glasses are amorphous solids derived from the structure of silica 

glass in which part of the divalent oxygen atoms have been replaced with 

tetracoordinated carbon atoms. The ideal composition of a silicon oxycarbide phase 

consisting only of Si-O and Si-C bonds, with no Si-Si, C-O, and C-C bonds, is SiCxO2(1-

x), in which one tetravalent carbon atom substitutes for two divalent oxygen atoms. This 

substitution leads to the presence, in the amorphous network, of carbidic carbon units, 

[C(Si)4], which strengthen the structure by increasing its bond density. Thus, all of the 

physical and chemical properties directly related to the structure of the amorphous 

network, such as the elastic modulus, hardness, density, viscosity, glass transition 

temperature, and chemical durability, are expected to increase with the amount of 

incorporated carbon. Moreover, it is possible to have nano-sized SiC from the 

oxycarbide glass by in situ formation at high temperatures ( ≥ 1400°C).  Silicon 

oxycarbide glasses can be produced by pyrolysis in an inert atmosphere of 

polysiloxanes. These precursors can be synthesized via the sol-gel route starting from 

organically modified silicon alkoxides, R'x-Si(OR)4-x. R' is usually a methyl group.  

However, other organic groups containing more C atoms were introduced in silica gels 

such as ethyl, propyl, phenyl or vinyl. In contrast, with phenyl or unsaturated side 

chains, the residual C content is much higher and leads to the formation of an important 

free carbon phase. Methyl-substituted silica gels thus appear as the most suitable 

precursors for silicon oxycarbide glasses [G. D. Sorarù, 1995]. 

 

The composition regimes of SiOC system are shown in the composition diagram in 

Figure 1.2.  Amorphous phase is generally formed in carbon-rich regimes, relative to 

the stoichiometric mixtures of the crystalline forms.  The possibility of synthesizing 

PDC of different composition in the ternary Si-C-O phase diagram depends from the 

possibility of synthesizing pre-ceramic precursors with tailored architecture and 

chemical composition [S. Dirè, 1999; Sorarù, 1994]. Accordingly, stoichiometric silicon 
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oxycarbide glasses, whose composition lies on the tie line between SiC and SiO2 

(indicated with arrow in Figure 1.2), have been obtained from pre-ceramic polymers 

with tailored composition [G. D. Sorarù, 1995]. This result has been achieved using the 

sol-gel method for the synthesis of the pre-ceramic network. Indeed, the sol-gel process 

gives the possibility, through the use of different molecular precursors, to precisely 

tailor the composition of the resulting polymeric network [G. D. Sorarù, 1995(b)]. 

Moreover, the sol-gel method allowed the formation of PDC compositions inside the Si-

SiO2-SiC compatibility triangle [H. Bréquel, 2004] and even in the binary Si-SiO2 

system [D’Andrea, 1995]. These last compositions are actually used for the synthesis of 

Si/SiC nanocrystals and of Si nanocrystals embedded into an amorphous SiO2 matrix, 

respectively [A. Karakuscu, 2009].  

 

 
Figure 1.2. Composition regime for polymer-derived ceramic (PDC) silicon 

oxycarbides. Circles with dark gray color represent the well studied area in the 

literature. The circle with light gray color indicates the Si-rich SiOC region and the 

arrow   shows the stoichiometric SiOC line [A. Karakuscu, 2009]. 

 

PDCs are intrinsically fairly complex systems, as they undergo profound modifications, 

when exposed to temperatures higher than the usual pyrolysis conditions (1000°C). At 

elevated temperature, a devitrification process of the initial amorphous network leads to 

a local crystallization of different phases. This process is linked to the redistribution of 

the chemical bonds, phase separation and finally nucleation and growth of nanocrystals. 
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The modifications occurring within these amorphous materials strongly depend on the 

starting composition. Nevertheless, some major common aspects can be recognized: (i) 

during annealing, the entire bulk of these materials undergo a phase separation process; 

(ii) the free carbon phase-when present undergoes a graphitization process; (iii) with 

increasing temperature, the local formation of nanocrystals is typically observed [Greil, 

2000]. 

 

The modelling of SiOC system is a very recent subject. Although some models are 

proposed, there are still some open points in the literature about the structure of SiOC. 

Kroll modelled the “free carbon” phase in silicon oxycarbide glasses using a low-

density structure of a-SiOC, into which a part of the graphite structure is embedded. 

This work based on comparing stoichiometric SiOC (SiC0.33O1.33) with SiOC containing 

“free carbon” (SiC0.33O1.33 + 0.62C) (Figure 1.3). A treatment at 800°C shows the 

reaction of the “free carbon” phase with the surrounding a-SiOC host by multiple bond 

formation, resulting in a decrease of the total energy. Further annealing at 1600°C 

decreases the energy further, but the more radical conditions also create a particular 

interface structure between segregation and host. The weakness of the modelling lies on 

the fact that H is not involved in the modelling and it has been known that H release in 

SiOCs may continue till high pyrolysis temperatures ( ≥ 1200°C) [Kroll, 2005].  
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Figure 1.3. Left: The initial structure of Si48C16O64. Right: The model of a-SiOC:Cf, 

Si48C16O64 + 30C, with the carbon strip inserted into the pore after the annealing at 

elevated temperatures (3 ps at T = 800°C and 5 ps at T = 1600°C). For both structure 

the simulation box is outlined. Inset. The bonding environment of the graphitic 

segregation of the model of a-SiOC:Cf. The periodicity and the length of the simulation 

box in the direction of the carbon strip is indicated [Kroll, 2005]. 

 

Another model is proposed for the nanodomains in polymer-derived SiOC. This model 

is constructed from three constituents: clusters of silica tetrahedra that form the heart of 

the domain, the surrounding monolayer of mixed bonds of the type SiCnO4-n where n 

gives the fourfold coordination of silicon to carbon and oxygen, and the graphene cage-

like network that encases the domains. The carbon bonded to silicon is called sp3 or 

carbidic carbon and the carbon in graphene is sp2 or graphitic carbon. A conceptual 

molecular make up of such a structure is drawn in Figure 1.4 [A. Saha, 2006]. 
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Figure 1.4. A concept of the molecular make-up of the nanodomains. Note that the 

interdomain boundary consists of graphene layers with mixed Si–C–O bonds forming 

the interface with the silica domains [A. Saha, 2006]. 

 

The model predicts the domain size as a function of the carbon content. These 

predictions found to be in reasonable agreement with the measurements of the 

nanodomains in SiOC synthesized with varying carbon contents. However, similar to 

previous model, it is only based on high temperature behavior of the ceramic and do not 

contain hydrogen contribution at lower temperatures. Meanwhile, this model is the most 

accepted model on high temperature behavior of the SiOC recently.  

 

1.1.2.2. SiBOCs  

 

SiBOC system is a very recent subject which has been first mentioned in 1998 [G. D. 

Soraru F. B., 1998]. Studies in the literature showed that, when boron is introduced in 

SiOC system, β-SiC crystallization is enhanced while it inhibits the formation of 

crystalline SiO2. Thus, the matrix and surface cracking associated with the phase 

transformation of cristobalite during cooling and heating, which could deteriorate the 

mechanical strength, can be avoided. Boron also promotes the formation of the 

borosilicate clusters in terms of amounts and size. 

 

At T ≥ 1500 °C, boron was found to enhance the growth of segregated sp2-carbon 

nanocrystals. Nanocrystalline sp2 C forms thicker graphite nanocrystals in SiBOC 
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system. Therefore, SiBOC system has been proposed as a possible candidate for Li ion 

batteries since highly porous SiBOC with ordered graphite nanocrystals can be obtained 

after etching [R. Peña-Alonso, 2007]. However, limited studies have been found in 

literature on SiBOC system and therefore, it remains as an open field with undiscovered 

properties and applications.  

 

1.1.3. Polymer Pyrolysis Method 

 

Polymer pyrolysis method starts with the synthesis of the precursor polymers or 

oligomers from monomer units. The precursors are then cross-linked in order to form 

organometallic pre-ceramic networks three dimensions. The organometallic networks 

are transformed into amorphous covalent ceramics by heat treatment (organic/inorganic 

transition) in controlled atmosphere (Ar, He, N2, etc.). Additionally, the amorphous 

ceramics can be crystallized by further annealing at high temperature. Figure 1.5 

describes a flow chart for the standard preparation process of precursor-derived 

ceramics [Peng, 2002]. 

 

 
 

Figure 1.5. A flow chart for the preparation of precursor-derived ceramics [Peng, 

2002]. 
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Typical reactions during the polymer pyrolysis are shown as follows to produce SiN or 

SiN/SiC composite from polysilazane [R. Riedel, 1995]:  

 

i. Synthesis of Si-based oligomers or polymers from low molecular weight 

compounds: 

 

 

RHSiCl2
NH2 →   RHSiNH[ ]n + 2NH4Cl /R = alkyl    Eq. 1.4 

 

ii. Enhanced chemical or thermal cross-linking of the as-synthesized polymers 

giving high molecular weight compounds suitable for polymer-to-ceramic 

transformation with high yields: 

 

 

RHSiNH[ ]n
strong base

 →    RHSiNH[ ]n −m RSiN[ ]m + mH2    Eq. 1.5 

 

iii. Finally, pyrolysis of the cross-linked polymer providing the desired ceramic 

material: 

 

 

RHSiNH[ ]n −m RSiN[ ]m
1000°C / Ar →    SixCyNz + H2 + RH    Eq. 1.6 

 

 

 

RHSiNH[ ]n −m RSiN[ ]m
1000°C / NH3 →    Si3N4 + H2 + RH    Eq. 1.7 

 

1.1.4. Types of  PDCs Produced by Polymer Derived Method 

 

1.1.4.1.  SiCNs and SiOCNs 

 

In SiCN system, upon pyrolysis at 1000°C, the structure of these amorphous materials 

can be generally described as a random network of Si–C–N atoms. However, if the 

carbon fraction present in the starting precursor is high enough, then, upon pyrolysis, 

part of it remains excluded from the “silicon backbone” constituting the amorphous 

network and creates the so-called (excess) free carbon phase. Further thermal treatments 

at temperatures above 1000°C induce the rearrangement of the amorphous network the 

main aspects of the structural evolution of PDCs upon annealing at temperatures 
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exceeding 1000°C [M. Monthioux, 1996]. It has been reported via TEM analysis that 

free carbon was the first phase to crystallize, irrespective of the Si/C ratio in the 

considered system, giving origin to the basic structural units (BSUs) of graphitic 

carbon. The excess of carbon seemed to stabilize the network hindering the nucleation 

of SiC crystals. However, at 1484°C (N2-atmosphere, 1 atm), the carbothermal 

reduction of silicon nitride occurs: 

 

 

 

Si3N4 + 3C →3SiC + 2N2        Eq. 1.8 

 

which is generally considered as the onset of the material degradation. 

 

Carbothermal reaction and the compositional changes during the heat treatment of 

SiCNs is given in Figure 1.6. The general composition of polysilazane-derived 

ceramics can be given as Si3+xCx+yN4, which is shown as A in Figure 1.6-a, remains 

metastable at T<1440°C. Above this temperature (T>1440°C) SiCNs give off nitrogen 

till the system reaches the tie line composition as Si3+xCxN4, which is shown as B in 

Figure 1.6-b, and finally crystallises to give Si3N4 and SiC [D. Galusek, 1999].  
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Figure 1.6. Schematic illustration of amorphous poly(hydridomethyl)silazane derived 

SiCN after pyrolysis at (a) T ≤1440°C and (b) its crystallisation path at T>1440°C, in 

respective isothermal sections of the ternary SiCN phase diagram. Compositions are 

given in atom% and the oxygen content in amorphous SiCN is neglected [D. Galusek, 

1999]. 

 

In the literature, usually no differentiation has been done between SiCN and SiOCN due 

to the experimental difficulties to avoid oxygen contaminations during the synthesis of 

SiCN system. Therefore, SiCNs nearly always contain significant amounts of oxygen 

[T. J. Cross, 2006]. Due to this, many experiments on SiCN (even not always 

mentioned) have been done in glove box system and treated under very pure 

atmospheres. Correspondingly, ammonia atmosphere has found to be the only proper 

atmosphere to produce pure SiCN without oxidation [T. Cross, 2006(b)]. However, this 

property of polysilazanes makes the processing complicated and lowers the 

commercialization.  Therefore, in our work, we aimed to produce SiOCN films in 

laboratory conditions with stable oxidation to simplify the production process and 
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compare the optical properties with the SiOC system. For this purpose, we have used a 

commercial polysilazene namely Ceraset® (KiON) having relatively low reactivity 

toward oxygen. Its chemical structure is shown in Figure 1.7 [Ceraset®].  

 

 
Figure 1.7. Chemical structure of the polysilazane, Ceraset®-KiON [Ceraset®]. 

 

Ceraset Polysilazane is versatile, low viscosity liquid thermosetting resin. It has been 

patented and known as “KiON Ceraset Polysilazane 20”. This polysilazane contains 

repeat units in which silicon and nitrogen atoms are bonded in an alternating sequence 

and cyclic and linear features exist.  

 

According to the studies in literature, the cross-linking solidification of CerasetTM takes 

place around 250°C by hydrosilylation of vinyl groups followed by a transamination 

reaction between 280°C and 400°C [Y.-L. Li, 2001]. During the subsequent 

ceramization step, the major thermolysis reaction involves dehydrogeneration between 

Si-H and N-H groups, and condensation of Si-CH3 and N-H groups around 600-800 °C. 

These reactions yield an amorphous Si-C-N ceramic accompanied by the formation of 

the gaseous by-products of hydrogen and methane. Further heat treatment at high 

temperature induces the Si-C-N ceramics to crystallize into nano-sized silicon carbide 

and silicon nitride [H. Schmidt, 2004].  

 

Curing can be achieved at lower temperatures through the addition of a small quantity 

of a free radical generator, typically peroxide. Typically 0.1 wt% to 5 wt% of the 

peroxide are sufficient to initiate curing. Dicumyl peroxide is soluble in the liquid 

polymer and typically about 0.5 – 1wt% peroxide based on the weight of the polymer is 

used. This peroxide/polymer solution is stable at room temperature for at least six 

months. Heating the peroxide/polymer solution causes the peroxide to undergo 

decomposition into radical species which initiate the thermosetting reaction. At 
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temperatures above 150°C the thermosetting is rapid and may be extremely exothermic. 

This converts liquid polysilazane based resins to a solid, cross-linked polymer.   

 

1.2.  Thin Film Production and Spin Coating  

 

In recent years, thin film science has grown world-wide into a major research area. The 

importance of coatings and the synthesis of new materials for industry have resulted in a 

tremendous increase of innovative thin film processing technologies. Currently, this 

development goes hand-in-hand with the explosion of scientific and technological 

breakthroughs in microelectronics, optics and nanotechnology [R.W. Siegel, 1997]. 

Presently, rapidly changing needs for thin film materials and devices are creating new 

opportunities for the development of new processes, materials and technologies. 

 

There exists a huge variety of thin film deposition processes and technologies which 

originate from purely physical or purely chemical processes. The more important thin 

film processes are based on liquid phase chemical techniques, gas phase chemical 

processes, glow discharge processes and evaporation methods [D. A. Glocker, 1998]. 

Conventional CVD and PVD processes are used routinely to synthesize thin film 

systems. Such process technologies are rather complex and expensive. On the other 

hand, sol-gel is inexpensive and enables the synthesis of thin film materials with 

complex chemical compositions. The main advantage of sol-gel method is the high 

degree of compositional control, inherent with other solution synthesis routes for multi-

element, inorganic materials. Therefore, it is proposed to be one of the key technologies 

to synthesize epitaxial oxide, nitride and carbide films for a variety of different 

applications, e.g. opto-electronic device applications, hard coatings and dielectric thin 

films [Wegner, 2000]. 

 

Spin coating method is widely used to prepare thin films from sol-gel or polymer 

solutions. In general, four distinct stages of the spin coating process are reported to be 

crucial for homogeneity of the films [D.E. Bornside, 1987]. As it is shown in Figure 

1.8, the first stage is the deposition of the coating fluid onto the substrate. Usually this 

dispense stage provides a substantial excess of coating solution compared to the amount 

that will ultimately be required in the final coating thickness. For many solutions it is 

often beneficial to dispense through a sub-micron sized filter to eliminate particles that 
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could lead to flaws. Indeed, in our studies we have used a filter with 0.2 µm pore size to 

overcome this problem as well as avoid the impurities. Another potentially important 

issue is whether the solution wets the surface completely during the dispense stage. If 

not, then incomplete coverage can result.   

 

The second stage is when the substrate is accelerated up to its final desired rotation 

speed. This stage is usually characterized by aggressive fluid expulsion from the 

substrate surface by the rotational motion. The third stage is when the substrate is 

spinning at a constant rate and fluid viscous forces dominate fluid thinning behaviour. 

This stage is characterized by gradual fluid thinning. Fluid thinning is generally quite 

uniform, though with solutions containing volatile solvents; it is often possible to see 

interference colours “spinning off”, and doing so progressively more slowly as the 

coating thickness is reduced. Edge effects are often seen because the fluid flows 

uniformly outward, but must form droplets at the edge to be flung off. Thus, depending 

on the surface tension, viscosity, rotation rate, etc., there may be a small bead of coating 

thickness difference around the rim of the final substrate.  

 

The fourth stage is when the substrate is spinning at a constant rate and solvent 

evaporation dominates the coating thinning behaviour. As the prior stage advances, the 

fluid thickness reaches a point where the viscosity effects yield only rather minor net 

fluid flow. At this point, the evaporation of any volatile solvent species will become the 

dominant process occurring in the coating. In fact, at this point the coating effectively 

“gels” because as these solvents are removed the viscosity of the remaining solution 

will likely rise.  
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Figure 1.8. Stages of the spin coating process [D.E. Bornside, 1987]. 

 

The third stage is when the substrate is spinning at a constant rate and fluid viscous 

forces dominate fluid thinning behaviour. This stage is characterized by gradual fluid 

thinning. Fluid thinning is generally quite uniform, though with solutions containing 

volatile solvents; it is often possible to see interference colours “spinning off”, and 

doing so progressively more slowly as the coating thickness is reduced. Edge effects are 

often seen because the fluid flows uniformly outward, but must form droplets at the 

edge to be flung off. Thus, depending on the surface tension, viscosity, rotation rate, 

etc., there may be a small bead of coating thickness difference around the rim of the 

final substrate. The fourth stage is when the substrate is spinning at a constant rate and 

solvent evaporation dominates the coating thinning behaviour. As the prior stage 

advances, the fluid thickness reaches a point where the viscosity effects yield only 

rather minor net fluid flow. At this point, the evaporation of any volatile solvent species 

will become the dominant process occurring in the coating. In fact, at this point the 

coating effectively “gels” because as these solvents are removed the viscosity of the 

remaining solution will likely rise. 
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Chapter II. Characterization Techniques  
 

2.1. Thermal and Structural Analysis  

 

2.1.1. TGA 

 

Weight loss of the powdered sample was followed by thermogravimetric analysis 

(TGA) in a STA 409 Netszch apparatus. It should be noted that, weight loss of the 

samples gives valuable information about not only the temperature stability but also the 

pyrolysis nature (decomposition, reactions and ceramic yield, etc.) of the sample. TGA 

method is one of the most crucial methods for the PDCs due to the importance of the 

ceramic yield. 

 

In the TGA experiments, inert gas (Ar and N2) was used in order to avoid oxidation. 

Experiments were performed under Ar flow of 100 ml/min with a heating rate of 

10°C/min. Sample weight losses were examined up to 1500°C in order to see the high 

temperature stability of the investigated systems.  

 

2.1.2. Dilatometer Measurements 

 

Dilatometric experiments were performed in order to investigate the thermal expansion 

of the gel. By this method, total shrinkage during pyrolysis in inert atmosphere up to 

1400°C has been studied. Disc samples having approximately 1.5 mm thickness and 7.7 

mm diameter were obtained by cutting and polishing of a dried gel rod. Samples were 

loaded into Netszch 402/E dilatometer and the expansion and contraction of the sample 

along its diameter was recorded as a function of temperature. Experiments were 

performed under Ar (100 ml/min) with a heating rate of 5°C/min. 

 

2.1.3. FTIR 

 

Bonding structure of the films, gels and pyrolysed samples were investigated by 

Fourier-Transform Infrared Spectroscopy (FTIR). Fittings of the possible components 

were done by dmfit program [D.Massiot, 2002]. Nicolet Avatar 330 FTIR was used in 
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transmission mode to follow the structural evolution with increasing pyrolysis 

temperature for the all samples on Si substrate. For the films made on SiO2 substrate, 

reflectance mode of FTIR (Attenuated total reflection-FTIR, ATR-FTIR) was used. In 

this method, a single ZnSe crystal has been used and the typical measurement condition 

is shown in Figure 2.1. In this method an infrared beam is directed onto an optically 

dense crystal with a high refractive index at a certain angle. This internal reflectance 

creates a transient wave that extends beyond the surface of the crystal into the sample 

held in contact with the crystal. This transient wave protrudes only a few microns (0.5 μ 

- 5 μ) beyond the crystal surface and into the sample [PerkinElmer, 2009]. 

 

 
 

Figure 2.1. Schematic of experimental set up of Attenuated total reflection-FTIR (ATR-

FTIR) [PerkinElmer, 2009].  

 

2.1.4. NMR 

 
29Si and 13C solid-state NMR were employed to study the structure of the gels and 

pyrolysed samples. The investigations are primarily focused on the characterization of 

the amorphous gel structure, where NMR has been known to be very suitable. In 

addition, NMR data are provided for the transformation from the organic (gel) to 

inorganic (powder pyrolysed at 1000°C) state.  

 

Solid State NMR experiments were carried out on a Bruker Avance 400 WB 

spectrometer, operating at 79.493 MHz for 29Si and 100.145 MHz for 13C. Samples 

were packed in 4 mm diameter zirconia rotors. Experimental conditions for 29Si MAS 

was 4.3 μs 90° pulse, -2dB power, 20s for recycle delay, and 8 kHz of rotating speed. 

Q8M8 was used as primary shift scale references for 29Si. For 13C NMR, CP with proton 
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decoupling, -0.5 db of power and 4 us of power length, rotating speed of 8 kHz, 15 s of 

recycle delay and 200 scans was used. 

 

2.1.5. EPR  

 

The EPR spectra are conventionally detected by modulating the applied magnetic field 

with an oscillating magnetic field (lock-in detection), which makes spectrum looks like 

the first derivative of the EPR absorption. Bruker Elexsys E500 equipped with a Bruker 

SHQ resonator is used in all measurements. All the measurements were performed at 

room temperature and quartz sample tubes were used. The acquisition parameters are 

very important for EPR measurements. The modulation frequency kept at 100 kHz and 

the modulation amplitude depended on the spectrum and is specified for each sample. 

the analog-digital conversion time (ADCT), which determined the vertical resolution 

and the amplitude of the signal, was set to 10 ms. the receiver time constant (time 

constant of a filter in the acquisition system), determined the signal-to-noise ratio by 

filtering out the high frequency noise- the larger the time constant, the higher the SNR- 

was set to 1.28 ms.  

 

The intensity I is the surface under the absorption spectrum, therefore it is the double 

integral of the EPR spectrum and it is calculated by numerical double integration of the 

EPR spectrum. 

 

 

I = dB0 f B0'( )d
−∞

B0
∫

−∞

+∞

∫ B0'       Eq. 2.1 

 

The intensity is proportional to the absolute quantity of spins in the sample tube. To be 

comparable, the intensities of different EPR spectra must normalized with respect to 

instrumental parameters and to sample mass: 

 

scansofnbmasssamplepowermicrowaveamplitudeulationmodADCT
II

gainreceivernorm
   10  20/ ×××××

=   Eq. 2.2 

 

Sample dependent parameters have been given in the following table (Table 2.1) to 

report the details of the EPR measurements of all samples. Analyses were done in  
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Laboratoire de Chimie de la Matiere Condensee de Paris, France, under supervision of 

Dr. Laurent Binet.  

 

Table 2.1. EPR measurement details 

Sample Temperature 
Modulation 

amplitude (G) 
Microwave 

power (mW) 
Receiver gain (dB) 

THDH1 

800°C 0.2 0.016 55 
1000°C 0.2 0.032 40 
1200°C 0.2 0.032 30 
1400°C 0.2 0.127 50 

THDH2 

800°C 0.5 0.02 50 
1000°C 0.5 0.12 30 
1200°C 0.5 0.12 30 
1400°C 0.2 0.12 20 

TH 

800°C 0.2 0.05 50 
1000°C 0.2 0.05 40 
1200°C 0.2 0.05 60 
1400°C 0.5 0.05 60 

 

Experimental ESR spectra represent absorption derivative with respect to the magnetic 

field. All spectra were normalized with sample mass and with respect to relevant 

experimental parameters (receiver gain, modulation amplitude, microwave power, ADC 

conversion time), so that the intensities of the spectra are comparable. The magnetic 

fields were also rescaled to a common microwave frequency: 9.385634 GHz, so that the 

line positions are also comparable. g-values were calculated by following equation: 

 

 

g =
714.484 × 9.385634(GHz)
resonance  field  (Gauss)

      Eq. 2.3 

 

The resonance field (absorption maximum) is measured at the intercept with the 

baseline. Spin concentrations were calculated from the ESR intensity (= double integral 

of the ESR spectrum). A DPPH standard sample containing a known spin quantity was 

used to calibrate the ESR intensity. 
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2.1.6. X-ray Diffraction (XRD) 

 

Glancing angle mode was used for the XRD analysis of films since this method gave the 

possibility to get more information from the film rather than substrate which is most of 

the time amorphous SiO2. X-ray diffractometer (Bruker D8 Advance Super Speed) is 

equipped with Cu rotating anode (wavelength 0.154 nm) and Goebel mirror (horizontal 

divergence 0.03° FWHM) yielding 109 photons/s in the primary beam. Analyses were 

performed in Institute of Inorganic Chemistry of Slovak Academy of Sciences, 

Bratislava, Slovakia.  

 

On the other hand, focusing method of XRD was used for powdered sample 

characterization. X-Ray diffraction analysis was conducted (Model D/Max-B, Rigaku 

Co., Tokyo, Japan) at 40 kV and 30 mA with CuKα radiation (λ=0.15418 nm) and a 

graphite monocromator. The data collection was conducted in the range 2Θ = 10°-90° 

with a step of 0.1 and an acquisition time of 20 sec. X-ray characterization yielded not 

only the information about the microstructure of the samples but also the information 

about the particle sizes. The evaluation of crystalline particle size was estimated by 

Scherer formula.  

 

2.1.7. Elemental Analysis 

 

The quantitative analysis of oxygen and hydrogen was performed with ELTRA ONH 

2000 instrument. The elements N, H and O can be analyzed individually or 

simultaneously over a wide range of sample matrixes and concentrations. The basic 

principle of quantitative analysis is high temperature combustion of organic and many 

inorganic solid or liquid samples. The gaseous combustion products are purified, 

separated into their various components and analyzed with an Infrared detector (IR) in 

the case of oxygen and Thermo conductivity detector (TCD) in the case of nitrogen and 

hydrogen.  

 

Quantitative determination of carbon was done using ELTRA CS 800 C/S instrument. 

This system is the capable instrument based on combustion technique for the rapid 

simultaneous or individual determination of carbon and sulphur in steel, metals, alloys, 

ores, ceramics, minerals, etc. This instrument can be supplied with up to four 
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independent infrared cells. The respective cells with the appropriate path length and 

sensitivity can be individually selected to offer optimum precision for the analysis of 

high and low levels of both sulphur and carbon.  Elemental analysis of SiOC powders 

were performed in University of Stuttgart, Max Planck Institute for Metals Research 

(Germany).  

 

2.1.8. XPS 

 

XPS analyses have been devoted to obtain the surface concentration for the elements of 

interested and a possible difference in chemical bonding. XPS analysis depth is around 

10 nm. Surface chemistry of the films deposited on silica was examined by X-ray 

photoelectron spectroscopy (XPS), SPECS analyser Phoibos100 with 5 channeltrons 

detection working at 2.10-10 Torr, equipped with an Xray gun non monochromated Mg 

Kα source (1253.6 eV). XPS analyses were performed in ITC-irst, Center for Scientific 

and Technological Research, Trento (Italy). 

 

2.1.9. Mass Spectroscopy  

 

Laser Ionization Time of Flight Mass Spectrometry (LITOF-MS) was performed to get 

structural information on SiOC glasses. This method is a quite recent method and it is 

especially suitable for investigation of the intermediate-range order in glasses, where it 

can measure the presence and relative abundance of mesounits composed of 7–20 or 

more atoms [D. Stentz, 2000]. These measurements were performed in Physics 

departments of Coe College, Iowa (USA). The sketch of the experimental set-up is 

given in Figure 2.2.  

 



 28 

 
 

Figure 2.2. Sketch of the experimental arrangement of the LITOF mass spectrometer. 

Not shown are the camera trained on the sample and the sample insertion rod. The 

source region is conical to allow better access for the laser beam [D. Stentz, 2000]. 

 

2.2. Surface Properties and Thickness Analysis 

 

2.2.1. SEM and FE-SEM 

 

The surface and morphological feature of the films has been investigated by Jeol JSM-

5500 Scanning Electron Microscopy (SEM). Since SEM is an easy and fast method to 

detect the surface quality, it has been used to optimize the films (homogeneity, defect, 

crack free morphology, etc.), especially early stage of the study.  

 

Additionally, field emission SEM is used on some samples to understand the surface 

morphology in more details. The microscope is an ESEM-FEG XL-30, FEICompany, 

NL, equipped with a Field Emission Gun and EDAX X-ray microanalysis. The images 

were acquired in High-Vacuum mode at 15-20 kV. The analyses were performed at the 

Microbiology and Virology Laboratory, S. Chiara Hospital, Trento (Italy). 
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2.2.2. AFM 

 

Surface qualities and roughness of the films were investigated by NT-MDT P47H 

Atomic Force Microscopy (AFM), with a scanning size of 50 μm. AFM was used also 

in some thickness measurements. AFM measurements were done in physics department, 

university of Trento (Italy). 

 

2.2.3. Profilometer 

Film thicknesses were determined by using a Hommel tester T8000 profilometer. In the 

measurement the depth of a scratch created with a razor blade in the coating is measured 

both as coated and pyrolysed films. The sensitivity of the profilometer measurements 

was rather low below 400 nm. Therefore, several thickness measurements by different 

characterization methods were done in this study. However, due to easiness of this 

method, most of the reported thickness measurements were done by profilometer. 

 

2.2.4. SIMS 

 

Elemental profile variations through the cross section of the films were studied by 

Cameca SC-Ultra Secondary Ion Mass Spectrometry (SIMS). SIMS analyses are 

focused on the depth profiling of hydrogen, carbon, oxygen and silicon. In particular 

these profiles aim at identifying possible out diffusion of C and H, as consequence of 

pyrolysis and films densification. A gold capping layer -about 20nm thick- has been 

deposited on the samples surface. This conductive capping layer and an electron beam 

are used to compensate the electronic charge on the sample surface.  

 

As coated films showed different response to sputtering, compared to the pyrolyzed 

ones due to polymeric features of the as coated films. Therefore, the profile was 

corrected according to the etching rate after the measurements. All the depth profiles 

have been aligned on Y axis (in counts per second) to the signal of each species in the 

SiO2 substrate and the profiles depth has been measured for each sputtered crater with a 

mechanical profilometer Tencor P15. SIMS measurements were performed in ITC-Irst, 

Center for Scientific and Technological Research, Trento (Italy). 
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2.2.5. Ellipsometer  

 

Shrinkage of the films during pyrolysis was followed up to 800°C by in-situ thermal 

ellipsometric analysis. Ellipsometry measurements were performed on UV-Vis variable 

angle spectroscopic ellipsometer (VASE) from Woollam, and data analysis was 

performed with the WVase32 software. Measurements were fitted over the transparent 

range (550-1000 nm). A single Cauchy layer was used to model the deposited films, 

asymmetric optical properties emanating from unidirectional contraction were not 

observed, and therefore, no correction was applied. Gradients in the thickness were also 

not observed, as previously reported. For in-situ ellipsometric analysis, the ellipsometer 

was fitted with a home-built covered heating unit connected to a programmable 

temperature regulator (developed in conjunction with SOPRA). Small holes were 

present to allow a thermocouple and beam access to the sample as well as gas flow. The 

pyrolysis environment was adjusted by Ar flow between 1 and 5 L/min of through the 

sample stage at. Ellipsometer measurements were performed in Laboratoire de Chimie 

de la Matière Condensee de Paris Université, Pierre et Marie Curie Paris (France). 

 

2.3. Surface contact angle and Energy measurements 

 

The experiments were performed using a Cahn microbalance DCA 322 which is able to 

collect data at a speed of 1 Hz. (It has to be noted that the low speed in collecting data 

can work as a kind of low band filter with respect to the effective force values, due to 

the higher frequency of the used acoustic vibration.) To the balance it was added a 

vibration apparatus composed by a loudspeaker (diameter 6 cm, nominal impedance 8 

Ω, 0.250 W) driven by a function generator (model MK 1050 by Mitek). Upon the 

vibrating diaphragm, it was placed a plastic ring to hook a 4 cm Teflon beaker filled 

with the measure liquid. In this way, the vibrating parts were made close together to 

avoid unwanted or accidental movements of the becker. All the DCA runs were 

performed at room temperature (22 ± 2°C) [C. Della Volpe, 2001].  

 

As a measure liquid, ultrapure water (18.5 MΩ cm–1 produced by a Millipore Milli-Q 

device) was employed, using only fresh liquid for each experiment. The ethylene glycol 

(C2H6O2) and Bromonaphtalene (αBr-C10H7) were also used for the surface energy 

measurements. Measurements were done in the supervision of Prof. C. Della Volpe. 
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2.4. Optical Analysis of Materials 

 

2.4.1. Photoluminescence 

 

Photoluminescence measurements (PL) were recorded at room temperature using a 

spectrometer operating with an Argon Laser (365nm) as excitation source with a 2 mW 

power on the sample. The fluorescence light was collected from the front face of the 

samples in reflection mode. Interferential filters were used to clean the excitation 

wavelength in order to minimize the scattered stray light. All the spectra were corrected 

for the wavelength dependent response of the detection system. To have a quantitative 

indication of the PL intensity two approaches were used: (i) PL intensities of the films 

were compared with a reference film with Si nanocrystals as a benchmark and (ii) 

relative External Quantum Efficiencies (EQEs) of the films pyrolysed at 1200°C were 

calculated. As for the first approach, reference silicon nanocrystals have been produced 

by thermal annealing silicon-rich silicon oxide (SiOx) films prepared by PECVD 

(plasma enhanced chemical vapour deposition) in order to obtain strong room-

temperature photoluminescence (200 nm thickness, 42% atomic Si content, 1100ºC and 

1 hr annealing conditions). The reference gave red emission at 820 nm due to Si 

nanocrystals as it is described in previous works [F. Iacona, 2000; N. Daldosso, 2007].   

 

In the second approach, EQE, defined as the ratio of the number of photons emitted by 

the sample to the number of photoexcited electron-hole pairs, is a relevant figure of 

merit for LED applications. To measure the photon flux emitted from our samples, we 

calibrated the collection system (collecting lenses, monochromator, photomultiplier, 

photon counting unit) with a red LED whose EQE is known.  By using this calibration, 

we measured the spectrally integrated luminescence intensity emitted by our films under 

photo-excitation and converted it into an emitted photon flux. The so-evaluated photon 

flux was corrected by the numerical aperture of the collecting system by assuming that 

the film is a lambertian point source. Then we measured the total absorbed power by the 

film by measuring with a standard power-meter calibrated at 365 nm, the total laser 

power incident on the sample, the power transmitted by the sample, the power reflected 

by the sample and the power absorbed by the quartz substrate. The difference among 

these quantities gives the power absorbed by the film, and knowing the wavelength of 
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the laser we deduced the absorbed photon flux. The ratio between the emitted and the 

absorbed photon fluxes yields the external quantum efficiency of the film [R. Guider, 

2009; see Appendix I].  

 

For the last part of the study (Chapter 5), PL measurements were recorded on Cary 

Eclipse in air, Varian Spectrophotometer using a Xenon lamp as the excitation source, 

sensitive across the whole wavelength range. Several different excitation wavelengths 

have been used to analyze the PL properties of SiOCN films. 

 

2.4.2. UV-Vis analysis 

 

The transmission spectra of the SiOC films were recorded over the region 190–800 nm 

using a Carry 3, UV–Vis spectrophotometer. Absorption spectra were used to determine 

the absorption optical band–gaps of the films (Tauc band–gap).  

 

The transmittance of the films exhibited characteristic of inter-band transitions. The 

band-to-band transitions are described by the relation [Pankove, 1971];  

 

 

α hv( ) = A hv − Eg( )n
        Eq. 2.4 

 

where α(hν) is the absorption coefficient, A is a constant, which does not depend on 

photon energy, n depends on the nature of optical transition, hν the photon energy and 

Eg is the band gap. The absorption coefficient in the fundamental absorption region was 

determined from the transmission spectra as a function of frequency ν using the relation: 

 

 

α hv( ) =
1
t

 
 
 

 
 
 ln

1
T

 
 
 

 
 
         Eq. 2.5 

  

where t is the film thickness and T the transmittance of the film [N. F. Mott, 1971]. All 

optical measurements of the films and powdered samples were done in physics 

department, University of Trento (Italy).   
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Chapter III. Synthesis and Characterization of SiOC 

gels and powders 
 

Solutions which used in thin film production have been characterized extensively by 

means of several characterization properties. More specific methods like EPR and 

LITOF-MS have been performed to get a more detailed understanding of the formation 

and the structural change of the free-carbon phase. Moreover, the related powders and 

bulks have been characterized for the sake of coherency and widen the study and they 

are reported here in this chapter.  

 

In this chapter, gels prepared from Triethoxysilane (TH) precursor are extensively 

studied because this system is the least studied among all SiOCs in literature. Moreover, 

some preliminary studies of the films of this precursor showed promising optical 

properties [Modena, 2004]. Therefore, although characterization of the stoichiometric 

SiOC, prepared from a mixture of triethoxysilane and methyldiethoxysilane (THDH2) 

has been mentioned in this chapter, the study has been more focused on TH system (Si 

rich).  

 

3.1. Background information  

 

In the literature, SiOC gels obtained from cohydrolysis of triethoxysilane, HSi(OEt)3, 

(TH) and methyldiethoxysilane, HMe-Si(OEt)2, (DH) give the possibility of precisely 

controlling the oxygen and carbon content in the gel by varying the relative amount of 

the two alkoxides. Figure 3.1 is given to illustrate the compositions discussed in this 

chapter. For these compositions, the amount of carbon is related to the amount of 

oxygen according to the solid line in Figure 3.1 and it ranges from 0 (pure TH) to 1 

(TH/DH=1) [G. D. Sorarù, 1995(b)]. In the figure, the dotted line shows the relationship 

between the C and O contents in the stoichiometric oxycarbide phase. The two lines 

cross each other for a value of O/Si = 1.33, corresponding to a TH/DH molar ratio of 2. 

In this case, the carbon content of the gel matches the carbon amount of the 

corresponding oxycarbide phase and therefore this composition (B in Figure 3.1) has 

been selected for the synthesis of stoichiometric SiOC composition. If the TH/DH molar 

ratio is higher than 2 (sample C), the corresponding SiOC glass contains Si-Si bonds, 
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while if the TH/DH ratio is lower than 2, such as in sample A, the final SiOC network 

contains C-C bonds and shows the tendency to form a free carbon phase. Gel precursors 

obtained from pure TH lead to the formation of silica-based network with Si-Si bonds 

and considerably low amount of Si-C bonds. This system is considered as Si rich SiOC 

system [A. Karakuscu, 2009]. 

 

 
Figure 3.1. C/Si vs O/Si for gel samples obtained from cohydrolysis of triethoxysilane 

(TH) and methyldiethoxysilane (DH) (solid line) and for the stoichiometric oxycarbide 

phase (dotted line). The compositions of the studied gels (A, B, and C) are also 

reported. [G. D. Sorarù, 1995(b)] 

 

3.2. Experimental details  

 

Polymer pyrolysis method from sol-gel derived triethoxysilane (TH) and 

methyldiethoxysilane (DH) precursors have been used to produce gels. Powders with 

stoichiometric and Si rich SiOC compositions have prepared by TH/DH=2 and TH ratios, 

respectively. For the easiness, the precursor ratios are given as sample labels. 

Triethoxysilane, HSi(OEt)3, and methydiethoxysilane, HMe-Si(OEt)2, have been 

purchased from ABCR (97% pure) and used without further purification. Ethanol has 

been used as solvent with a molar ratio of EtOH/Si=2. Water amount and pH have been 

chosen in order to obtain a gelation time of a couple of hours (pH =4.5, HCl). Wet gels 

were dried at temperatures changing from RT to 110°C for a month in order to give 

time for gelation. Cylindrical specimens with a diameter of ca 7-8 mm and few cm long 

 

TH/DH Gel 
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were accordingly obtained from dried gels. Before pyrolysis gel powders were grinded 

using an agata mortar. In order to check the structural evaluation through the pyrolysis, 

powders kept in a C-furnace under Ar flow (100 ml/min) with a heating rate of 5°C/min 

at different temperatures, in the range 800-1500°C with 1 hour holding time at the 

maximum temperature. 

 

Gel samples and selected pyrolyzed SiOC powders were analyzed for oxygen, carbon, 

and hydrogen composition. Weight loss of the gel powders was followed by TGA. 

Fourier-Transform Infrared (FTIR) analyses of powder samples, before and after 

pyrolysis, were studied in the range of 4000-400 cm-1. 29Si MAS NMR and 13C MAS 

NMR were performed on gel and pyrolysed samples. EPR measurements were 

performed on all the set of the samples in order to compare the results of the powders 

from Si rich to C rich SiOC system. XRD analyses were done to detect the 

crystallization behaviour during pyrolysis. The evaluation of crystalline particle size 

was also carried on X-ray patterns according to the Scherer’s formula.  

 

3.3. Results  

 

3.3.1. Gel characterization 

 

Elemental analysis results are reported in Table 3.1. For the TH gel, C/Si ratio was 

found to be 0.2 which indicates that the network is not fully condensed and some 

residual ethoxy groups are present. Since each ethoxy group bears 2 carbon atoms the 

chemical analysis indicates that, as an average, 10% of Si sites have one non hydrolyzed 

ethoxy group. On the other hand, the elemental analysis of THDH2 gave elemental 

compositions close to theoretical values showing that di-functional group 

(methyldiethoxysilane) addition decreased the non hydrolysed group and no unexpected 

increase in C is observed due to non hydrolysed groups.  
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Table 3.1. Elemental analysis of powdered TH samples gel and pyrolysed at 1000°C and 

1400°C 

Sample Si (wt. %) C (wt. %) O (wt. %) H (wt. %) 
Empirical 

formula 

Gel 42.6 ± 0.6 3.7 ± 0.1 51.3 ± 0.5 2.4 ± 0.1 SiO2.1C0.2H1.6 

1000 °C 47.2 ± 0.6 3.0 ± 0.1 49.7 ± 0.5 0.1 ± 0.05 SiO1.8C0.1H0.1 

1400 °C 46.2 ± 0.6 2.4 ± 0.1 51.4 ± 0.5 ND SiO1.9C0.1 

 

Table 3.2. Elemental analysis of powdered THDH2 samples gel and pyrolysed at 

1400°C. 

Sample Si (wt. %) C (wt. %) O (wt. %) H (wt. %) 
Empirical 

formula 

Gel 52 ± 0.6 8.8 ± 0.2 35.2 ± 0.4 4 ± 0.1 SiO1.18C0.39H1.93 

1000°C 52.9 ± 0.6 7.4 ± 0.3 39.7 ± 0.6 <0.03 SiO1.31C0.33 

1200 °C 48.2 ± 0.6 7.5 ± 0.2 44.3 ± 0.5 <0.01 SiO1.61C0.36 

 

 

The gels were also characterized by FT-IR spectroscopy (see Figure 3.2) in order to get 

insights in the chemical bonding of its structure. The presence of Si-H bonds gives rise 

to the bands at 2256 cm-1 (Si-H stretching), 2180 cm-1 (Si-H stretching) and 830 cm-1 

(Si-H bending) [G.D. Soraru, 1995(c)].  Peaks at 1150, 1070 and 460 cm-1 are related to 

the Si-O vibration of the siloxane network. Si-CH3 (bending) bands at 1265 and 760 cm-

1 are attributed to the presence of DH (methyldiethoxysilane) in solution (Figure 3.2-a). 

Vibration of residual Si-OEt groups should give a band at 1100 cm-1, which is not 

clearly present in the FT-IR spectrum of the gel, probably due to their low 

concentration.  
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Figure 3.2. FTIR spectra of gel and pyrolysed (a) THDH2 and (b) TH samples. 

Corresponding bands are shown on the figure.  

 

The 29Si MAS NMR of the TH gel sample is reported in Figure 3.3. The spectrum 

shows peaks in two distinct regions: around -82 ppm due to silicon atoms bonded to 3 

oxygen atoms and one H atom, HSiO1,5 also known as TH units, and in the range -100-

110 ppm typical of silicon atoms bonded to four oxygen atoms such as those of silica 

glass, SiO4 also known as Q units. The presence of Q units is due to a partial oxidation 

of Si-H bonds during the sol-gel reaction with formation of new Si-O bonds. In the Q 

unit region the component at low field (peak at -108 ppm) can be assigned to silicon 

sites with four bridging oxygen known as Q4 sites, and the peak at -99 ppm to silicon 

 

(a) 

(b) 
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atoms bearing three bridging and one terminal oxygen, known as Q3 sites, Si(OSi)3OX, 

X = H or Et [H. El Rassy, 2005]. The spectrum has been simulated to extract the 

percentage of the various silicon sites (see Table 3.3). Q3 units are around the 14% of 

the total Si units. This value is close to the value estimated by chemical analysis (10%) 

assuming that the terminal groups are mainly due to non hydrolyzed ethoxy moieties. 

The presence of Si-OEt group in the siloxane network has been also verified by 13C CP-

MAS NMR (see Figure 3.4). In this spectrum the Si-OCH2CH3 groups give raise to the 

peak at 59.9 ppm (-OCH2- units) and at 16.7 ppm (-CH3) groups.  

 
Figure 3.3. 29Si NMR of TH and THDH2 samples as (a) gel and (b) pyrolysed at 1000°C. 
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(b) 
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Figure 3.4. 13C CP-NMR of THDH2 and TH gels. 

 
29Si MAS NMR and 13C CP-MAS NMR of the THDH2 gel showed very low amount of 

non hydrolysed ethoxy groups. Namely, only 3 % of Q3 units were detected in 29Si 

NMR of the gel. The main two peaks at 84 ppm and 64 ppm belong to the precursors TH 

unit from triethoxysilane (TH) and DH from methyldiethoxysilane (DH) precursor, 

respectively. Moreover, very small amount of Q4 units were also detected in similar 

studies on the same gel [G. D. Sorarù, 1995].  

 

In the 13C MAS NMR spectrum of the THDH2 sample the only peak present is at 1 ppm 

due to methyl groups bonded to silicon, Si-CH3, of the DH units. The other alkoxy group 

peaks, which were present in the NMR spectrum of the TH sample, are not evident in the 
13C NMR spectrum [G. Trimmel, 2003]. Therefore, it is verified by elemental analysis 

and NMR that the addition of difunctional alkoxides to the TH system favours the 

complete hydrolysis leading to a gel free of residual alkoxy groups. 

 

 

 

 

 

 

 

 

TH 

THDH2 
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Table 3.3. Quantitative analysis of the 29Si NMR spectra of THDH2 and TH gels. 

 

Table 3.4. Quantitative analysis of the 29Si NMR spectra of the THDH2 and TH powders pyrolysed at 1000°C. 

 

  SiO4   CSiO3   SiC2O2  

 Sample δ (ppm) %  δ (ppm) %  δ (ppm) % 

1000°C THDH2 107.7 60  65.3 36  27.2 4 

 TH 108.2 87  70.1 13  -  

 
 

  
SiO4  Si(OSi≡)3(OX)  HSiO3 

 Mixed TH-DH bonds 
HSiCO2 

   TH
1- (DH)  (DH)-TH

2- (DH) 

 Sample δ (ppm) %  δ (ppm) %  δ (ppm) %  δ (ppm) %  δ (ppm) %  δ (ppm) % 

Gel  THDH2 108.6 3  101.3 3  83.9 50  74.9 6  64.1 2  33.5 36 

 TH 109.3 63  101.2 14  83.9 23  -   -   - 
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3.3.2. Gel-to-Ceramic transformation 

 

TGA and dilatometer analysis are given in Figure 3.5. TGA analysis reveals a 

continuous weight loss from 200 up to 800°C in both SiOC samples. No significant 

weight loss can be observed above 800°C. The total weight loss for Si rich SiOC system 

(TH) is only 3.1 % which is among the lowest weight loss reported for the SiOC system 

[P. Colombo, 1994]. However, stoichiometric SiOC (THDH2) gel showed 6.5 % of 

weight loss due to higher release of H2 and CH4.  

 

Figure 3.5. TGA and dilatometer measurements of gel samples.  

 

Dilatometer measurements give complementary information to the TGA analysis. Gel 

samples expend till ≈ 300°C then they shrink up to 1200°C with a total linear shrinkage 

 

(a) 

(b) 

TH 

THDH2 

THDH2 
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of ≈ 25%. For the TH sample, unlike the TGA, which shows a continuous 

transformation from 200 to 800°C, the dilatometry analysis reveals three distinct 

shrinkage steps: from 300 to 400 °C, from 400 up to 1100°C and from 1100 to 1200°C. 

The low temperature event may be related to the reactivity of the residual ethoxy groups 

(already detected by 13C MAS NMR and chemical analysis) and/or hydroxyl moieties 

which are known to be the first units to react during gel pyrolysis [R. Campostrini, 

1995]. The second event, from 400 up to 1100°C spans over the temperature range 

typical for the ceramization process and in this case could be related to the evolution of 

hydrogen and low molecular weight species such as SiH4 [Mutin, 2002; R. Campostrini, 

1995]. It is worth of noticing that the shrinkage continues even above 800°C when the 

TGA does not show any weight loss. This phenomenon could be associated to the 

completion of the evolution of hydrogen, H2, which occurs without appreciable weight 

loss but results into a significant densification of the matrix [G.D. Sorarù, 1990]. Above 

1000°C the residual hydrogen in the silica-based network is quite low (see Table 3.1) 

and the shrinkage step from 1100 to 1200°C is probably associated to a different 

mechanism: a viscous sintering process of the porous glass. Indeed, it is known that 

triethoxysilane-derived glasses are still porous at 1000°C [G.D.Sorarù, 1996], with a 

specific surface area up to 70 m2/g, and they can viscous sinter when the temperature 

becomes close to the glass transition temperature, which is, for SiO2-based glasses 

around 1100-1150 °C. A similar sintering phenomenon was already reported for a SiOC 

glass in the temperature range 1200-1300°C [G.D.Sorarù, 2000].   

 

3.3.3. Structural characterization of the SiOC glasses 

 

Chemical analysis of the SiOC glasses pyrolyzed at 1000 and 1400°C reveal that C is 

still present in the glass structure and that above 1000°C the composition is stable up to 

1400°C (see Table 3.1 and 3.2). 

 

3.3.3.1. NMR Study 

 

Characterization of the amorphous TH glass obtained at 1000°C has been performed by 
29Si MAS NMR (see Figure 3.3) and the percentage of the various silicon sites, as 

obtained from the simulation of the spectrum, are reported in Table 3.4. The spectrum 

shows one main peak at -108 ppm assigned to SiO4 sites (87%) and a smaller 
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component (13%) at -70 ppm that could be assigned to Si atoms bonded to three O 

atoms and one C atom forming CSiO1,5 sites (T units). However the peak at -70 ppm 

could also be compatible with the existence of Si-Si bonds belonging to mixed silicon 

units such as Si(SixCyOz) with x+y+z=4 [G. D. Sorarù, 1995(b)]. Indeed, the NMR 

resonance at -70 ppm is very broad and spans over a chemical shift range from -60 up to 

-85 ppm which include the chemical shift for metallic silicon at –80 ppm [J. S. 

Hartman, 1987]. Similarly, 29Si NMR of the THDH2 sample showed rather large two 

peaks centred at 107 ppm corresponding to SiO4 and 65 ppm related to SiCO3 units. 

Although the spectrum is rather noisy, another peak at around 27 ppm can be seen and it 

is attributed to SiC2O2 units. 

 

In conclusion, the NMR study confirmed, for the THDH2 sample, the formation of a 

silicon oxycarbide glass in which mixed silicon oxycarbide units containing 1 and 2 Si-

C bonds per Si atoms, are present. For the TH composition, the NMR investigations 

revealed the presence, of Si-C bonds belonging to CSiO3 units, while the presence of Si-

Si bonds cannot be clearly either confirmed or disproved.  

 

3.3.3.2. EPR Study 

 

EPR is widely used to detect the presence of defect states, namely dangling bonds in the 

structure. It is known that during polymer-to-ceramic transformation in PDCs, bond 

cleavage and recombination processes occur and this causes formation of dangling 

bonds such as radicals [S. Trassl, 2002; I. Menapace, 2008;  G.D. Sorarù, 1990]. The 

relation between these radicals and optical properties have been discussed in literature 

for Si/SiO2 [M. Baran, 2004]. Therefore, for the sake of the optical characterization of 

SiOC films, the EPR study is very essential.  

 

C dangling bonds, which is known to be present in most of the SiOCs, have been 

studied in the literature extensively by EPR. It is known that very low amount of free C 

can be detected in almost all the SiOCs eventhough no graphitic carbon can be detected 

by XRD at higher temperature. Relatively, in our work THDH2 is considered as 

stoichiometric glass and, theoretically, it does not contain free carbon. Indeed the 

experimental composition of this sample was found to be close to the theoretical one. 
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However, the traces of the carbon or other possible defect states are expected to be 

present in TH as well as THDH2. Therefore, EPR study has been done for both systems.  

 
Figure 3.6.(a) EPR spectra of THDH2 pyrolysed at 800 °C. (b) higher magnification of 

the spectrum is shown with the possible components.  

 

The EPR spectrum of THDH2 sample pyrolysed at 800°C (Figure 3.6-a) showed one 

main intense line at g=2.0026 which is assigned to C radicals [A. Stesmans, 2008; S. I. 

Andronenko, 2006]. However, in higher magnification some interesting features, 

coming from other possible defect centers, are observed in EPR spectrum (Figure 3.6-

b).  

 

The presence of features (peaks marked by a star and doublet with 73.5G splitting) 

flanking symmetrically may suggest another interpretation for the origin of the EPR 

 
 

(a) 

(b) 
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peak as well as C dangling bonds. Actually, a similar line with the same g-value and 

with two peaks separated by ≈15G on both s ides of the line has already been reported in 

SiO2 [A. Stesmans, 1995, A. Stesmans, 1994] and assigned to the so-called EX center 

(Si vacancy) in SiO2. The two peaks separated by 15G are attributed by these authors to 

hyperfine coupling with 29Si (I=1/2).  

 

Moreover, the four peaks marked by a star could be part of a same ESR signal. The 

particular ratio of 2 between the splitting of the outer peaks and the splitting of the inner 

peaks is unlikely a coincidence. The signal could then be the signature of 2 EX centers 

coupled by magnetic dipolar interaction. The splitting D of the inner peaks is then 

related to the distance between the two centers by the equation 3.1. From D = 15G, the 

distance R between the two centers is found as R≈1 nm. 

 

     

 

D =
µ0
4π

gβ
R3          Eq. 3.1 

 

The peaks separated by 73.5 G were already observed in silica and were assigned to the 

hyperfine coupling with a proton in an E' center (oxygen vacancy in SiO2) [A. 

Stesmans, 2008]. However, since the g-value 2.0026 in our case does not match that 

reported for the E' center, we interpreted that these two peaks correspond to the 

coupling with a proton in the EX center.  

 

On the other hand, TH spectrum exhibits several signals different from THDH2 (Figure 

3.7). There are at least four detected signals at g=2.0008, at g=2.0028, at g= 2.0045 and 

g=2.0063. The peak at g=2.0028 can be assigned to C radicals while the peak at 

g=2.0008 can be assigned to O vacancies in silica, which is discussed before as E’ 

center. The presence of E’ center in this sample is reasonable since TH is oxygen 

deficient compared to silica. 

 

The assignment of the last two peaks is not so straightforward. Either they correspond to 

the same specie with axial g-tensor (g//=2.0063 and g perpendicular=2.0045), or they 

belong to two different species. In the literature the signal at g=2.0045 is mentioned as 

indication of oxygenated carbonaceous radicals whereas signal at g=2.0063 is reported 

as carbon- vacancy related defects in SiC [N. T. Son, 1999].  
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Figure 3.7. EPR spectra of TH sample pyrolysed at 800 °C. Possible defect states are 

indicated.  

 

To understand the evolution of the radical species during pyrolysis, EPR analyses were 

performed on samples pyrolysed at different temperatures in the range 800-1400 °C and 

the results are shown in Figure 3.8. To understand better the evolution of the defect 

states in the samples, g factors as well as spin concentrations have been calculated from 

EPR spectra since both of them (g factors and spin concentrations) are very important 

indications for the formation of radicals. The total spin concentration changes with 

temperature are plotted for both samples (THDH2 and TH) and reported in Figure 3.9.  

 

THDH2 showed only C-related radicals with a g value around g=2.0025 up to the 

maximum pyrolysis temperature. On the other hand, the EPR spectra recorded on TH 

sample showed a very complex structure at every pyrolysis temperature (Figure 3.8-b). 

It should be noted that the total spin concentration is radically decreasing and at 1400°C 

reaching minimum (namely, ~1017), indicating that the defect states concentration is 

very low at this temperature. Whereas, in all the EPR spectra of TH two components at 

g=2.0028 (C dangling bonds) and at g=2.0008 (E' center (oxygen vacancy in SiO2))   

are clearly visible. In addition, other EPR peaks are also present in the TH spectra 

which make the full assignment quite difficult and not yet complete at this time. 
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Figure 3.8. EPR spectra of carbon related dangling bonds in (a) THDH2 and (b) TH 

powders pyrolysed at different temperatures (800-1400°C).  

 

Both samples at 800 °C showed the same amount of total radical concentration 

(2.5×1018-3.3×1018 spin/gram) (Figure 3.9). However, for the THDH2 composition the 

radical concentration increases with the temperature up to 1200 °C while for the TH 

sample continuously decreases. This result agrees with the literature data showing, for 

polycarbosilane-derived PDC, a maximum of C-dangling bonds at 1200°C [S. Trassl G. 

M., 2002]. On the other hand, TH sample shows only a decrease in the total radical 

concentration with the pyrolysis temperature, which is a different behaviour from 

common PDCs.   

 

 

 

 

(a) 

(b) 
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Figure 3.9. Dangling bonds concentration as a function of temperature for sample 

THDH2 and TH. (spin concentration is shown exponential). 

 

3.3.3.3. XRD study 

 

The evolution of the XRD spectra recorded on TH and THDH2 glasses pyrolyzed at 

different temperatures in the range of 1000-1500°C are shown in Figure 3.10. In TH 

sample, the likely presence of Si-Si bonds at low temperatures (1000-1200°C) leads to 

the crystallization of elemental silicon at higher temperatures (1300-1500°C) (see 

Figure 3.10-b). Up to 1200°C the system is totally amorphous and at 1300°C, Si 

crystallization starts as shown by the diffraction peaks at 28°, 47° and 57°. A very broad 

component around 35°, which belongs to β-SiC phase, starts to became visible at 

1400°C and develops into a clear peak at 1500°C. The β-SiC crystal size has been 

estimated ~ 7 nm by the Scherer formula. Although the existence of wide particle size 

distribution is known, to have a general idea about particle size changes as a function of 

temperatures, particle sizes for the all crystalline phases present in the system are 

estimated in the Table 3.5. The concomitant presence of Si and SiC crystals is a clear 

evidence that the pyrolysis product obtained in this study from a triethoxysilane-derived 

gel is indeed a Si-rich SiOC glass and not only a Si-rich SiO2 glass.  

 

THDH2 

TH 
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Similar to literature results, THDH2 sample did not show evidence of crystallization until 

1300°C, and then the diffraction peaks related to SiC start to appear and its crystalline 

size increased quite gradually (Figure 3.10-a). However, even at 1500°C very broad 

peak suggests that there is wide distribution of crystalline size. Another relevant 

difference between the two studied SiOC glasses consists in the crystallization of 

cristobalite for the TH glass pyrolyzed at 1500°C while for the SiOC with higher amount 

of C silica crystallization is prevented (Figure 3.10 and Table 3.5). 

 
Figure 3.10. X-ray spectra of (a) THDH2 (stoichiometric SiOC) (b) TH (Si rich SiOC) 

samples pyrolysed at different temperatures (1200 -1500°C). Crystalline phases have 

been indicated above the spectra ( SiO2, ▲ SiC and ● Si). 

 

Table 3.5. Estimated particle sizes (mean value) of phases present in the SiOC samples 

by using Scherer formula.  

Sample 

Particle size (nm) 

Stoichiometric SiOC-THDH2  Si rich SiOC-TH 

β-SiC [111]  SiO2 [111] Si [111] SiC [111] 

1300°C 0.5  - 8.1 1.1 

1400°C 0.8  - 14.5 1.1 

1500°C 1.6  21.7 21.9 7.5 

 

 

 

 

(a) (b) 



 50 

 

3.3.3.4. Laser Ionization Time of Flight Mass Spectrometry Study 

 

The structure of amorphous ceramics such as glasses is composed of short-range units 

(nanounits) which interlink to form larger, intermediate-range components (mesounits). 

These mesounits are essential in determining the overall properties of the glass, but they 

are very difficult to investigate. Often, they are characterized by studying crystalline 

compounds with the same stoichiometries. Vibrational techniques such as Raman 

spectroscopy unambiguously identify these groups, but Raman is not able to quantify 

their presence, which remains an open and important question in glass studies. To 

understand the structure of mesounits in SiOCs, high-resolution time-of-flight mass 

spectroscopy driven by laser ionization (LITOF-MS) has been used. To simplify the 

experiments and obtain comparable results, well known, stoichiometric SiOC (THDH2) 

is studied at different pyrolysis temperatures (800 and 1400°C).  

 

In all samples SiO2 units was detected and its intensity increased drastically from 800°C 

to 1400°C by a factor of 5. Meanwhile, Si3C6 and C4 units were detected only at 

1400°C.  These can be due to the phase separation of SiC, SiO2 and C at higher 

temperatures. The only mixed units detected at 800°C were Si2C2O and Si2C3O. As the 

time increases other mixed units were detected such as SiC2O2, SiC5O2, Si2C5O, 

SiC5O3, SiC7O2 and Si2C3O4. However, some of these units overlapped other mixed 

units that have the same mass and distribution like Si2C3O4 is overlapping with SiC8O2 

and Si2C7O. Therefore this method gave us an idea of the some possible mixed units but 

it is not possible to define the exact structure of the mesounits (especially the large 

ones). More interestingly, presence of mixed C3O6, which were not reported in SiOCs, 

is detected in SiOC sample at 1400°C.  

 

3.4. Discussion  

 

Thermal analysis (TGA) showed us that organic-to-inorganic transformation is a 

continuous process which ends around 800°C and no other major weight losses are 

detected above this temperature. Therefore, the pyrolysis temperature of the films is 

decided to start from 800°C.  
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Si rich SiOC formation from pure triethoxysilane is for the first time reported here. 

Triethoxysilane is a silicon alkoxide precursor which leads, upon hydrolysis and 

condensation (sol-gel process) to Si-H containing silica gels [M. Pauthe, 1989; G.D. 

Soraru, 1995(b)]. Heat treatment of these gels in inert atmosphere results in the 

formation of silicon-rich silica system which is known as sub-stoichiometric silica 

(SiOx) [V. Belot, 1992]. The pyrolitic transformation from the Si-H containing gel to 

the Si-containing SiO2 occurs with the condensation of Si-H moieties forming Si-Si 

bonds and gaseous H2 [Mutin, 2002]. The final product, Si-rich SiO2, has been reported 

in literature with its unique photoluminescence properties [G. D. Soraru, 2003].  

 

It is well known in the sol-gel science that residual, non hydrolized alkoxy groups are 

usually present in alkoxide-derived silica gels and that these moieties act like a C source 

during the pyrolysis in inert atmosphere [C.J. Brinker, 1990]. Accordingly, pure Si/SiO2 

materials can be obtained only if the amount of residual organic groups is minimized. 

On the other hand, the small but not negligible presence of alkoxy groups in the starting 

gel can offer the opportunity to synthesized Si-rich SiOC. The non-hydrolysed groups 

are shown by NMR and formation of SiC at high temperatures is reported by means of 

several other characterization methods. Therefore, we have decided to use this precursor 

to produce Si rich SiOC films. Additionally, films with different compositions 

(stoichiometric and C rich) are produced by using triethoxysilane and 

methyldiethoxysilane with different ratios. 

 

Meanwhile, several other structural characterization methods (i.e. EPR and LITOF-MS) 

are done to understand better the amorphous structure at low temperatures. The further 

optical studies, which will be discussed in Chapter 4, can be done in the light of these 

results. As a general perspective, it has been already reported in literature that the defect 

states in PDCs causes high luminescence and one of the few methods to study defect 

states is EPR. Relatively new results coming from LITOF-MS showed the interesting 

mesounits which can not be seen by other methods and gave valuable information about 

structure.  
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3.5. Conclusions 

 

It is known that there are limited numbers of techniques which are available for the 

characterization of thin films, whereas many different characterizations can be 

performed on powders. This was the main reason for us to study the TH and THDH2 

SiOC glasses in the powder form and to get insights into their amorphous/nanostructure. 

This information can be valuable hints to understand luminescent behaviours of these 

glasses either in the form of bulk and thin films.  

 

Structural study on TH precursor showed many important facts about this precursor. In 

our study, triethoxysilane has been chosen as precursor for Si-rich SiOC glasses. During 

the hydrolysis and condensation, Si-OR groups are first replaced by Si-OH and then 

condensations reactions form Si-O-Si bonds. Si-H bonding leads, during pyrolysis, to 

Si-Si bonding. Due to lack of full condensation the presence of residual alkoxy group 

have been observed in the gel sample by FTIR and 13C NMR. Degree of condensation 

has been also calculated as 97.5, from 29Si MAS-NMR. A similar degree of 

condensation has been reported in the literature and it was explained by the low 

mobility of trifunctional groups [R. Campostrini, 1996]. At high temperatures ( ≥ 

1000°C) the very few residual alkoxy groups produced C in the system that can react 

with excess Si and forms SiC which has been shown by XRD. Therefore, the resultant 

ceramic became Si rich SiOC and with an increase in pyrolysis temperature 

Sinc+SiCnc/SiO2 has been achieved.  
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Chapter IV. Processing and Characterization of SiOCs 

films  
 

4.1. Background information  

 

Light Emitting Diodes (LEDs) are currently studied with the aim of increasing the 

efficiency and reducing the cost of lighting systems for several applications, such as 

automotive or domestic applications. Among the different inorganic materials, Si-based 

LEDs show many potential advantages since silicon is a cheap and abundant element 

and has a mature processing technology. Moreover, if Si is used in combination with 

SiC and/or C, it could provide a suitable heat-resistant material for white light 

applications. The most encouraging results have been obtained when Si, SiC and C have 

a cluster size of few nanometers [S. Y. Seo, 2004; A. Perez-Rodrıguez, 2003]. 

However, production of Si, SiC and C nanoclusters embedded in a dielectric matrix 

such as SiO2 is not straightforward and the most widely used approach is ion 

implantation [A. Perez-Rodrıguez, 2003; S. Y. Seo, 2004; G. R. Lin, 2005]. 

 

In our study, the SiOC films produced from pyrolysis of sol-gel derived silane 

precursors are proposed to produce white emitting materials. This novel method is 

based on a simple processing route to produce nanostructured multicomponent ceramics 

[R. Raj, 2001]. According to this route, sol-gel derived precursors are converted to 

ceramic materials by a pyrolysis process in controlled atmosphere at 800-1000°C. 

Higher temperatures lead to formation of Si-rich SiOC, C-rich SiOC or stoichiometric 

SiOC according to the starting composition. At temperatures higher than 1200°C, 

formation of SiC inside SiO2 matrix is expected due to the phase separation of 

multicomponent SiOC [H. Bréquel, 2004]. The final composition, which is relevant to 

line emission, can be easily controlled through a number of processing parameters like 

the composition of the preceramic gel and the heat treatment conditions. Thus, this new 

processing method seems very well suited for the production of white emitting materials 

since the Si- and C-based emission can be tuned across the visible spectral range from 

UV-blue to red by controlling film composition. A further advantage of this method is 

that the thin films can be formed on Si or quartz wafers and this can serve as starting 

material to process more complex photonic devices such as waveguides or LEDs. 



 54 

 

4.2. Experimental Details 

 

SiOC thin films with three different chemical compositions were produced by the 

polymer pyrolysis method from sol-gel derived precursors. To understand the effect of 

Si and C on the luminescence behaviour of the SiOC system, precursor compositions 

were chosen to give C-rich, stoichiometric and Si-rich SiOC films. Accordingly, to 

obtain C-rich SiOC and stoichiometric SiOC films triethoxysilane (TH) and 

methyldiethoxysilane (DH) were used with TH/DH molar ratios of 1 and 2, respectively 

[H. Bréquel, 2004]. On the other hand, two different Si-rich SiOC films were prepared 

by TH/DH ratio of 9 and from TH without any addition of DH. To seek of clarity, the 

precursor ratios will be used to label the samples and they are shown in the phase 

diagram, Figure 4.1.   

 

 
Figure 4.1. Phase diagram of Si-C-O. Inset. Studied compositions have been shown 

with the corresponding precursor ratios used for labelling.    

 

For all compositions, ethanol was used as solvent with a ratio of EtOH/Si=2. Proper 

amount of H2O (pH =4.5, HCl) was added to the alkoxide solutions in order to induce 

hydrolysis and to have a gelling period long enough to allow sufficient time for film 
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production. The selected solution was spun at 3000 rpm for 1 minute on ultrasonically 

cleaned SiO2 (Heraeus -HSQ300) and Si (n-type) substrates. The gel films were 

stabilized at 80°C for 24 hours before pyrolysis. The pyrolysis process was carried out 

in a C-furnace under Ar flow (100 ml/min) with a heating rate of 5°C/min at different 

temperatures, in the range 800-1250°C with 1 hour holding time at the maximum 

temperature.   

 

Surface quality of the films was investigated by SEM and AFM. Surface properties of 

the films were examined by Wilhelmy technique. The method gave important 

information not only about the change in hydrophobicity of the sample during the 

polymer to ceramic transformation but also the surface energy of the films by measuring 

advancing and receding contact angles. Elemental profile variations through the cross 

section of the films were studied by SIMS. Profilometer measurements were performed 

to investigate the film thicknesses. Chemical composition of the films was examined by 

XPS. The chemical nature of bonds present in the film was studied by XPS and FTIR. 

Photoluminescence measurements (PL) were recorded and evaluated according to the 

experimental details given in Chapter 2.4.1. The time-resolved photoluminescence 

(TRPL) technique is used to measure lifetime of the films (For further details see 

Appendix II). The transmission spectra of the SiOC films were recorded in order to 

determine the absorption optical band–gaps of the films (Tauc band–gap).  

 

4.3. Results And Discussion  

 

Surface morphology and of the films were examined by SEM and AFM. SEM analysis 

shows that at every pyrolysis temperature homogeneous and crack free films are 

produced even at the edges. Average roughnesses were measured from the AFM images 

and falls in the range 0.5 – 2.5 nm. The roughness increases up to 1100°C and then it 

stabilizes. Optimized surface properties have been obtained after adding a drying step at 

80°C for 24h. Figure 4.2 shows the SEM and AFM images for films deposited without 

(Figure 4.2-a) and with (Figure 4.2-b) the drying step. Large cracks were present in the 

film in Figure 4.2-a which were completely disappeared in Figure 4.2-b after drying 

step. 
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Figure 4.2. SEM images of samples annealed at 1200°C before (a) and after (b) 

optimisation. The inset shows AFM images of the same samples 

 

FTIR spectra of the sol-gel derived, pre-ceramic films are given in Figure 4.3. Si-H 

bonds from triethoxysilane (TH) gave rise to peaks at 2243 cm-1 (ν (stretching)) and at 

831 cm-1 (δ (bending)). Similarly, Si-H bonds from DH lead to bands at 2173 cm-1 (ν) 

and at 760 cm-1 (rocking). Si-CH3 stretching vibrations were associated with the peak at 

1261 cm-1. In particular, Si-H peaks at 2180 and 2250 cm-1 confirmed the presence of 

both silicon precursors in the THDH films. Moreover, the FTIR spectrum of the THDH1 

film shows a higher intensity of the 2173 cm-1 peak in agreement with THDH ratio used 

for the synthesis. Si-O stretching peaks are present in the range 1140-1065 cm-1[A. 

Karakuscu, 2008; G.D. Soraru, 1995]. Finally, the peak observed at 610 cm-1 is caused 

by the Si substrate.  

 

 

(a) 
 

(b) 
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Figure 4.3. FTIR spectra of as-coated SiOC films with different compositions.  

Corresponding bands are shown on the figure with possible relevant precursor.  

 

In order to understand the change in the bonding structure of the films during the 

pyrolysis, stoichiometric SiOC films pyrolysed at different temperatures were analysed 

by FTIR. The FTIR in transmittance mode have been used to analysis the films on Si 

substrate. However, due to the reaction between the SiOC film and the Si substrate at 

high temperatures ( ≥ 1200°C), results were given only up to 1100°C (see Chapter 4.4). 

Figure 4.4 shows the corresponding results from the samples as deposited and annealed 

at 800°C, 1000°C and 1100°C, respectively. The intensities of the bands at 450 and 

1090 cm-1 belong to Si-O-Si rocking and stretching vibrations of SiO2 increased with 

the increase in pyrolysis temperature [G. Das, 2007]. The peaks at 831 cm-1 and 2243 

cm-1, due to Si-H bonds from triethoxysilane (TH), vanished as the pyrolysis 

temperature increase. Similarly, Si-H bonds from DH at 760 cm-1, 1250 cm-1 and 2173 

cm-1 disappeared at 800°C. For pyrolysis temperatures higher than 800°C, a band at 820 

cm-1 appeared. This vibration is related to Si-C bonding and its intensity increased 

radically with the annealing temperature [G. D. Sorarù, 1996]. Finally the film 

pyrolysed at 1100°C, basically showed two vibrations at 450 cm-1 belonging to Si-O 

and at 820 cm-1 related to Si-C vibration. The wide band centred at 1084 cm-1 with a 
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shoulder at 1220 cm-1 is a combination of many bonding and considered as a complex 

range of Si-O and Si-O-C vibrations [G. Das, 2007].  

 

  
Figure 4.4. FTIR spectra of as deposited and annealed stoichiometric SiOC films 

(THDH2).  

 

Since the FTIR measurements in transmittance mode could not give more information 

on the bonding state of the films pyrolysed at high temperatures ( ≥1200°C), some 

FTIR-ATR measurements were performed for the films coated on SiO2 substrate and 

given in Figure 4.5. We need to remind that the knowledge of the bonding structure of 

the films on SiO2 was crucial for the study, since we performed all the following optical 

characterization on films on SiO2 substrate. Moreover, as it will be discussed later on, 

the Si substrate could not be used for pyrolysis temperatures higher than 1200 °C. 

Therefore, ATR-FTIR measurements were performed to complement the transmittance 

FTIR measurements.  

 

In the spectra of as-coated film (Figure 4.5), Si-H bonds of the TH precursor gave rise 

to peaks at 2243 cm-1 and 831 cm-1 while Si-H bonds of DH units led to a corresponding 

band at 2173 cm-1[ G. D. Sorarù, 1996]. Si-CH3 stretching and rocking vibrations were 
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revealed by the peaks at 1261 cm-1 and 760cm-1. Peak at 1065 cm-1 with a shoulder at 

1140 cm-1 was assigned as Si-O bonds in the siloxane network similar to transmittance 

FTIR.  

 
Figure 4.5. FTIR-ATR spectra of as-coated, and pyrolyzed SiOC thin films at different 

temperatures 800- 1250 °C.  

 

At 800-900°C the Si-H and Si-CH3 related bands at 2200-2150 and 760 cm-1 

respectively are absent suggesting that the polymer to ceramic transformation is 

complete. At the same time a complex and broad absorption band is observed in the 

range 1300-900 cm-1 with a local peak at 1000 cm-1 assigned to the vibration of Si-O 

bonds. It is assumed that this broad band includes contribution of Si-O and Si-C bonds. 

The presence of inorganic Si-C bonds similar to those of silicon carbide, is also 

suggested by the formation of a new peak at 780 cm-1. 

 

At higher pyrolysis temperatures (1000-1100°C) the broad peak around the Si-O 

vibration becomes more defined suggesting that an organization process of the SiOC 
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network is active in this temperature range. In particular a peak appears at 1140 cm-1 

which is assigned to Si-O vibration, the main absorption around 1000 cm-1 reveals a 

shoulder at 920 cm-1 related to Si-C vibrations and finally the Si-C absorption at 780 

cm-1 becomes more intense suggesting the formation of new Si-C bonds. Above 1100°C 

the FTIR investigations do not show any major evolution: only the shoulder at 920 cm-1 

grows as an individual peak, indicating a further increase the number of Si-C bonds or 

ordering of amorphous network [J.Y. Fan, 2006; A. Karakuscu, 2008]. As a result in 

ATR-FTIR, films pyrolysed at higher temperatures ( ≥1200°C) could be analysed. 

Moreover, the existence of Si-C vibrations is verified for the films on SiO2 substrate.  

 

Wettability is an important property of solid surfaces and is governed by both the 

chemical composition and the surface topography. Since the surface chemistry of the 

films changes with the pyrolysis from polymer to ceramic, they give different 

hydrophobicity behaviour through the pyrolysis. Moreover, contact angle analysis is 

useful to measure surface energies of the films.   

 

A variety of different methods have been used to study the wetting of solid surfaces by 

liquids. They involve measuring the contact angle θ formed by the liquid at the solid–

liquid–vapor triple line. The contact angle is related to the solid–liquid interfacial 

tension, γSL, solid surface free energy, γSV, and liquid surface tension, γL, through 

Young's equation [Young, 1805]: 

 

 

Cosθ =
γ SL − γ SV

γ L

        Eq. 4.1 

 

The study of wetting under dynamic conditions was performed using the Wilhelmy 

plate method, in which dynamic contact angles (DCA) are measured by recording the 

force acting on the solid as it moves through the liquid/air interface at constant speed. 

Dynamic contact angle and contact angle hysteresis measurements are usable method to 

measure hydrophobicity of the surface. Although in literature several models exists in 

literature, Wilhelmy plate technique is used as an indirect method of contact angle 

measurement due to being the most accurate method for measuring dynamic contact 

angles. This method measures the advancing contact angle (θadv) during immersion of 

the solid plate, and the receding one (θrev) during the emersion process. The difference 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6TFK-4VXTSP4-1&_mathId=mml28&_user=1613343&_cdi=5229&_rdoc=1&_acct=C000053963&_version=1&_userid=1613343&md5=bac2e436b6a2ae3824c1ebd192ed0bdb�
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between the two angles is defined as the contact angle hysteresis and it is reported to be 

related to many different factors such as surface roughness, changes in the organization 

of molecules on the solid surface, surface heterogeneity, etc [H. Chen, 2009].   

 

The results of Dynamic Contact Angle (DCA) analysis are reported in Table 4.1 where 

advancing and receding contact angles obtained in three different liquids are compared. 

Water, ethylene glycol (C2H6O2) and Bromonaphtalene (αBr-C10H7) is used to compare 

the contact angles. The advancing angle is taken as the largest possible angle and the 

receding is the smallest possible contact angle. Both were measured at thermodynamic 

equilibrium. Polymer to ceramic transformation can be easily followed from the contact 

angle results. Pyrolysed thin film has lower θ values corresponding to an increase in the 

surface energy. As coated film showed strong hyrophobic behaviour whereas pyrolysed 

film showed hyrophilic behaviour (Figure 4.6).  

 

Table 4.1. Contact angles versus pyrolysis status 

 

 

Sample 
θadv 

(H2O) 

θrev 

(H2O) 

θadv 

(C2H6O2) 

θrev 

(C2H6O2) 

θadv 

(αBr-C10H7) 

θrev 

(αBr-C10H7) 

As-coated 100 98.3 63.6 60.1 56 49.7 

1200 °C 40.4 - 12.4 - 12.1 - 
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Figure 4.6. The photograph of the surfaces of the “as coated” stoichiometric SiOC film 

wetted with different liquids to measure advancing and receding contact angles: (a) 

Water droplet (b) ethylene glycol (C2H6O2) droplet and (c) Bromonaphtalene (αBr-

C10H7) droplet. The film pyrolysed at 1200°C showed high hyrophilicity, therefore only 

(d) water droplet could be used to measure the surface kinetics. 

 

The specific surface energy of a solid were calculated from contact angle measurements 

using liquids which exhibit different and known polar and disperse components. 

Corresponding to FTIR results, hydrophobic behaviour of the non pyrolysed thin film is 

caused by the presence of Si-CH3 and Si-H groups and with pyrolysis these bonds 

replace by Si-C bonds. Therefore, the hydrophilicity is suddenly decreasing, while the 

surface energy of the ceramic film increases. Surface energies of thin films before and 

after pyrolysis step is calculated according to SURFTEN 4.0 and found as 29 mJ/m2 and 

49 mJ/m2, respectively. These results are comparable with the methyl-modified silica 

films [C. Della Volpe, 1997; J. Yang, 2009]. 

 

In order to see the chemical homogeneity through the cross section of the film SIMS 

measurements were performed. Carbon and hydrogen depth profiles measured by SIMS 

 

a               b 
  
 
 
 
  

 
c       d 
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analysis of the as-coated and pyrolysed films are given in Figure 4.7. For this analysis, 

a gold 20 nm thick capping layer was deposited on the sample surfaces in order to have 

a conductive capping layer. This layer is indicated in the figure and affected the first 

few nanometers of the measurements. A homogeneous carbon distribution is observed 

in the cross section of each film (Figure 4.7-a). Furthermore, H depth profiles of the 

films did not show any hydrogen after 1000°C indicating that the pyrolysis is complete 

at that temperature (Figure 4.7-b). Indeed, film pyrolysed at 1200°C showed the same 

H content as the reference SiO2 substrate - shown in Figure 4.7-b as the straight black 

line – which also corresponds to the detection limit of the equipment.  
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Figure 4.7. (a) Cs12C and (b) Cs1H SIMS depth profiles on THDH2 films as-coated, 

pyrolysed at 800°C and 1200°C. Capping layer, film and substrate are shown with 

dashed line. 

 

Thickness measurements by profilometer are consistent with the SIMS results. 

According to profilometer results, films showed a sharp linear shrinkage, namely 

around 30%, from the as-coated stage up to 900°C. From that temperature, the 

shrinkage slowed down and after 1100°C, films showed no more shrinkage, which 

indicates the stabilization of the films. These findings are in good agreement with the 
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TGA (Thermo-Gravimetric Analysis) performed on the corresponding gels which 

indicate that the pyrolitic transformation is complete at 1000°C (Figure 3.5). Thickness 

values of the films are given in Table 4.2. The slight differences between the SIMS and 

profilometer values are ascribed to the sample to sample variation in the thickness of the 

starting film. However, shrinkage results were found similar, showing the coherence of 

the measurements.  

 

Table 4.2. Thickness values for different temperatures (as-coated, 800 °C and 1200 °C) 

and calculated linear shrinkage values. 

Films 
  Thickness   Linear Shrinkage 

 As-coated 800°C 1200°C  1200°C 

TH /DH1  800 nm 540 nm 480 nm  40% ±1 

TH /DH2  910 μm 630 nm 490 nm  45% ±3 

TH  1.210 μm 810 nm 640 nm  47% ±2 

 

The elemental compositions of SiOC films pyrolysed at 1200°C, deduced by XPS 

measurements, are given in Table 4.3. THDH2 film pyrolysed at 1200°C has a chemical 

composition close to the expected one with negligible amount of graphitic sp2 C present 

[H. Bréquel, 2004]. On the other hand, TH films showed an un-expected presence of 

carbon, since the precursor has no Si-C bonds and theoretically it should lead to films 

comprising only Si and O. Nevertheless, a similar behaviour was also observed in XRD 

(X-ray Diffraction) analysis of the powder samples of the same precursor and 

crystallization of SiC was detected at high pyrolysis temperatures ( ≥1400°C) (discussed 

in details Chapter 3).  The presence of C in the pyrolyzed material from TH precursor 

has to be related to residual alkoxy groups left behind by the hydrolysis step. Indeed, it 

is known that the degree of condensation of gels prepared from mixtures of TH and DH 

precursors decreases by increasing the amount of trifunctional units [G. D. Sorarù, 

1995(c)] and that the un-condensed terminal groups consist of residual hydroxyl as well 

as alkoxy groups. During pyrolysis the alkoxy groups transform into free carbon which 

is retained in the silica-based structure. At high pyrolysis temperatures this carbon can 

react with free silicon in the TH system and gives SiC. In this work TH system has been 

chosen to give Si rich SiOC system. On the other hand, THDH1 is a well known system 

to produce C rich SiOCs [H. Bréquel, 2004]. 
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Table 4.3. XPS elemental composition of the investigated SiOC glasses pyrolysed at 

1200 °C. 

Films  Si (at. %) C (at. %) O (at. %) Empirical 

formula 

Theoretical 

Composition[4] 

TH/DH2 38.3 13.3 48.5 SiC0.35O1.27 SiC0.33O1.33 

TH 36.8 8.0 55.2 SiC0.22O1.50 SiO1.5 

 

XPS measurements gave valuable information about bonding structure as well as 

chemical composition of the films. C1s and Si2p core line analysis by XPS revealed the 

bonding structures of the films, which are coherent with FTIR and XPS elemental 

analysis. By increasing the pyrolysis temperature both core line analyses showed 

significant shift, towards the Si-C bonding peak region. In Figure 4.8a, Si2p XPS 

analyses of THDH2 films were given for pyrolysis temperatures 800 °C and 1200 °C in 

order to reveal this peak shift. At 800 °C, the film showed a narrow peak centred at 

103.5 eV which was assigned to a Si-O bonding such as those typically observed in 

silica. Increasing the temperature, the peak shifted toward lower binding energies 

typical of silicon atoms bonded to carbon atoms such as in SiC. At 1200°C the Si2p 

peak shifted to 102.7 eV and broadened asymmetrically. The peak fitting of the THDH2 

film pyrolysed at 1200 °C is given in Figure 4.8b in order to illustrate the 

corresponding components. Features have been assigned to the presence of mixed 

silicon oxycarbide units such as CSiO3 and C2SiO2, based on published reference data 

[G. D. Sorarù, 1996(b); R.J.E Corriu, 1997].    
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Figure 4.8. Si2p core line XPS analysis of THDH2 films (a) pyrolysed at 800°C and 

1200°C, (b) peak fitting of film pyrolysed at 1200°C.  

 

C1s core line analysis of THDH2 films pyrolysed at different temperatures and related 

peak fitting for the film pyrolysed at 1200°C are given in Figures 4.9-a and 4.9-b, 

respectively. C1s XPS survey showed not a shift but a broadening towards 283.5 eV 

which is the binding energy of C-Si bonds [R.J.E Corriu, 1997]. C1s and Si2p analysis 

of the THDH2 films at 1200°C clearly showed the presence of silicon oxycarbide 

network in which Si-C bonds are present in mixed silicon oxycarbide units; parallel to 

the studies on SiOCs known to lead SiC phase separation at high temperatures [H. 

Bréquel, 2004].  
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Figure 4.9. C1s core line XPS analysis of THDH2 films (a) pyrolysed at 800°C and 

1200°C, (b) peak fitting of film pyrolysed at 1200°C.  

 

The evolution with the pyrolysis temperature of the Si2p peak of TH films (Figure 

4.10a) showed only a slight shift from 103.6 to 103.4 eV suggesting possible formation 

of Si-C bonds belonging to mixed SiOC units. As it can be seen in Figure 4.10-b, the 

Si2p peak of the TH film pyrolysed at 1200°C could not be convoluted by only one 

peak; instead another component appeared at 102.8 eV which was assigned to CSiO3 

units.  Excess Si could not be observed by Si2p analysis due to the fact that TH films 

contained very low amount of Si and/or Si amount was close to detection limit of the 
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XPS equipment. Additionally, no peak shift or broadening was observed in the C1s XPS 

analysis. 

 

 
Figure 4.10. Si2p core line XPS analysis of TH films (a) pyrolysed at 800°C and 

1200°C, (b) peak fitting of film pyrolysed at 1200°C.  

 

THDH9 films, which have relatively high C content with respect to TH, showed very 

similar Si2p core analysis and shown in Figure 4.11. The shift towards the Si-C 

bonding increase in pyrolysis temperature is evident in Si2p XPS analysis. The 

convolutions of the peaks for samples pyrolysed at 1250°C are given in insets. With 

temperature increases, more mixed Si-O-C bonding is formed due to phase separation. 

However, the expected carbon amount is definitely less that THDH2 films and should be 
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more than TH films, which caused in Si2p peak the shifting more noticeable than TH 

films but less detectable than THDH2 films[G. D. Sorarù, 1995(c)].  

 
Figure 4.11.  Si2p core line XPS analysis of THDH9 films (a) pyrolysed at 800°C, 

1200°C and 1250°C, (b) Peak fitting of film pyrolysed at 1250°C.  

 

In all SiOC films, the same evolution in PL was observed with increasing pyrolysis 

temperature. At low temperatures, the amorphous state, which is rich in defects, gave 

rise to an intense UV-blue band detected at about 410 nm. Since the pump light 

wavelength was close to this band, only the tail of the emission was observed. The 
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increase of the pyrolysis temperature led to the disappearance of this band and the 

appearance of another band in the green-yellow range at 560 nm, in parallel with XPS 

analysis showing the formation of the Si-C bonds at higher temperatures. PL behaviour 

suggests that when the pyrolysis temperature is raised from “low” degrees (800-

1000°C) to “high” degrees (1100-1250°C), phase separation of SiC inside SiOC takes 

place, whereas this system is totally amorphous at low temperatures. Thus, the PL 

spectra will be discussed in the following at low temperatures and high temperatures, 

separately.  

 

Photoluminescence spectra of the SiOC films at low pyrolysis temperatures (800°C) are 

shown in Figure 4.12-a. All peak intensities in PL spectra were normalized to the 

luminescence of a representative Si nanocrystals sample. At 800°C, TH films showed 

the highest emission intensity and with increasing carbon content PL peak intensity 

decreased which is the case in THDH1 films, the lowest emission observed in SiOC 

films. .  

 

PL intensity evolution versus pyrolysis temperature is shown in Figure 4.12-b. In the 

figure, peak intensities were normalized by the TH PL peak intensity for the easiness of 

comparison. The PL intensities diminished with respect to temperature, vanishing for 

temperatures higher than 1000°C in all SiOC films.  
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Figure 4.12. (a) Photoluminescence spectra of films pyrolysed at 800°C; (b) change in 

PL peak intensity versus temperature. PL peak intensities are normalized by the PL 

peak intensity of the TH film pyrolysed at 800°C. 

 

In order to illustrate the evolution of the photoluminescence spectra in the low 

temperature range (800°C - 1000°C) the PL spectra of the THDH2 and TH films are 

given in Figure 4.13. The disappearance at elevated temperatures of the UV-blue peak 

can be explained by the fact that at low temperature (800-1000°C) the amorphous 

network of the SiOC ceramics is rich in defects, such as dangling bonds, whereas the 

high temperature annealing (1100-1200°C) allows the reorganization of the structure 

and leads to a reduction of such defects [R.J.E Corriu, 1997].  
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Figure 4.13.(a) Photoluminescence spectra of the THDH2 and (b) TH films pyrolysed at 

low temperatures (800 - 1000°C).  

 

The PL spectra of the SiOC films at 1200°C are shown in Figure 4.14a with the 

normalized peak intensities as a function of temperature shown in the Figure 4.14b. PL 

intensity of TH and THDH2 films strongly increased with the temperature, reached a 

maximum at 1200°C and then drastically reduced at 1250°C. Conversely, the weak PL 

intensity of C-rich SiOC (THDH1) films did not show any increase with the temperature. 

The low photoluminescence intensity of the THDH1 sample is certainly related to the 

presence of a high excess of free carbon which absorbs the emitted light. 

 

 

 

(a) 
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Figure 4.14. (a) Photoluminescence (PL) spectra of films pyrolysed at 1200°C; (b) 

change in the PL peak intensity of the films versus temperature. PL peak intensities are 

normalized by the PL peak intensity of the TH films pyrolysed at 1200°C. 

 

From 1000°C and up to 1200°C, the green-yellow band did not move spectrally in 

THDH2 (stoichiometric SiOC) films and stayed at 560 nm. This band could be assigned 

to the formation of SiC phase which is known to emit in the green range (550-570 nm) 

(Figure 14(a) and 15(a)) [A. Karakuscu, 2008; M. B. Yu, 2000]. Moreover, it is know 

that for pyrolysis temperature above 1000°C silicon oxycarbide glasses undergo a phase 

separation process with the formation of β-SiC phase [H. Bréquel, 2004]. Indeed, SiC 

bond formation was also verified with the XPS analysis at high temperatures (Figure 

4.9, 4.10, 4.11). Additionally, in the sol-gel derived stoichiometric SiOCs, very small 

amount of free carbon may remain in the films after pyrolysis and cannot be easily 
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detected by analysis [C. Turquat, 2001]. These small amounts of free C can give 

luminescence in the yellow range (580 nm) and can influence the photoluminescence by 

broadening or causing asymmetric PL bands [J. C. Pivin, 1998]. Therefore, the 

asymmetric band observed in THDH2 films at 560 nm with a tail in the yellow could not 

be assigned only to SiC clusters but also to a contribution of a low amount of free C.  

However, the C amount in the films should be kept very low in order to improve the 

emission. In fact, C-rich SiOC films showed poor luminescence although their carbon 

content was very low (≤ 0.075 mol%) [H. Bréquel, 2004]. 

 

The PL spectra of THDH2 and TH films, pyrolysed at high temperatures are given in 

Figure 4.15(b). Similar to THDH2 films, TH films showed a green-yellow band at 560 

nm up to 1100 °C. The luminescence at 1100°C can therefore be assigned to the same 

combination of SiC and C clusters as in THDH2. However, at 1200°C Si-rich SiOC (TH) 

films showed a sudden broadening with an increase in intensity. In previous study [G. 

D. Soraru, 2003], a very wide luminescence peak centred at 600 nm was reported at 

1050°C in polymer derived silica based ceramics. Peak emission was explained by very 

small Si nanocrystal formation or by silicon-oxide related defect. Sincs formation was 

shown at higher pyrolysis temperature and caused a narrowing of the PL peak and red 

shift [G. D. Soraru, 2003]. Accordingly, in TH films, the sudden widening at 1200°C of 

the luminescence can be explained by a phase separation of Si inside silicon oxycarbide 

network. Moreover, the presence SiC and C clusters in the system as well as the size 

distribution of the emitting sites could contribute to further widen the range of optical 

emission thus explaining the very unusual width of the measured PL band which 

extends beyond the visible range (430 nm-900 nm).  
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Figure 4.15. Photoluminescence spectra of (a) THDH2 and (b)TH films pyrolysed at 

high temperatures (1100-1250 °C) (Please note the scale differences) . 

 

Photographs of the TH films pyrolyzed at different temperatures from 800°C to 1250°C 

under blue light excitation are shown in Figure 4.16. The strong emission from the 

edges of the samples is caused by waveguide effects of the quartz substrate. The colours 

of the visible photoluminescence range from UV-violet for 800°C to blue at 1000°C and 

yellow-orange for 1250°C. At 1250°C the substrate starts to show an opaque 

appearance which could be indicative of thermal stability-related problems and can be 

the reason of the sudden PL intensity decrease at this temperature. 

 

 

 

(a) 

(b) 



 77 

 
Figure 4.16. Photograph of the TH films pyrolysed from 800°C to 1250°C under UV 

laser excitation. The exposure line differs for each photograph. 

 

The unusual broadness of the PL peak of Si rich SiOC thin film at 1200°C, drive us to 

study another system, between THDH2 and TH composition. Therefore, THDH9 system 

having more carbon and less Si compared to TH is studied optically.   

 

The luminescence behaviour of the film is given in Figure 4.17 for low and high 

temperatures. At low temperatures, films showed similar behaviour with other SiOC 

films. However, the intensity at 900°C gave higher PL luminescence than other systems. 

Since the wavelength of the laser is very close to the emission peak, it was not possible 

to define the peak position at lower temperatures. However, from the photo of the films 

under UV lamp, very intense emission coming from film at 900°C can be seen, given in 

Figure 4.18. The origin of the emission at low temperatures suggested to be caused by 

defect states present in amorphous structure at these temperatures (800-1000°C). This 

peak shifted to 570 nm and fixed for the films pyrolysed at high temperatures. This peak 

is suggested to be originated by SiC clusters with contribution of C due to asymmetric 

band. Correspondingly, THDH9 film showed a large second peak centred around 650 nm 

at 1200°C. The peak shape is an indication of contribution of two different emitting 

centers. Having known that Si clusters start giving luminescence in the red range (~ 650 

nm), this large peak can be proposed as a results of Si clusters with the contribution of 

SiC and C as discussed previously [A. Karakuscu, 2009]. With an increasing Si amount 

the intensity increase radically and gave a very broad emission peak as in TH film at 

1200°C. Thus, the optimized Si contents in TH film made it to be the largest and most 

intense luminescence obtained in SiOC system.  
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At 1250°C, the emission in green-yellow range decreased and the Si related red 

emission could not be observed. It can be due to either the red shift caused the peak be 

outside the detection range or we lost the emission due to the substrate effect, which 

discussed before.  

 

 
Figure 4.17. Photoluminescence spectra of the THDH9 films pyrolysed (a) at low 

temperatures (800 -1000°C) and (b) at high temperatures (1100 -1250°C). 

 

 

(a) 

(b) 
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800 °C        900 °C  1000 °C 1100 °C 1200 °C 1250 °C 

1cm 

 

Figure 4.18. Photograph of the THDH9 films, pyrolysed from 800°C to 1250°C, under 

UV laser excitation.  

 

Finally, in order to evaluate the potential of our films, we measured their external 

quantum efficiency (EQE). The EQE is defined as the ratio of the number of photons 

emitted by the film to the number of photoexcited electron-hole pairs. To measure the 

photon flux emitted from our samples, we calibrated the collection system (collecting 

lenses, monochromator, photomultiplier, photon counting unit) with a red LED whose 

response is known.  By using this calibration, we measured the spectrally integrated 

luminescence intensity emitted by our films under photo-excitation and converted it into 

an emitted photon flux. The so-evaluated photon flux was corrected by the numerical 

aperture of the collecting system by assuming that the film is a lambertian point source. 

We considered that the total absorbed power by the active thin film is equal to the total 

laser power incident on the sample less the power transmitted by the sample, the power 

reflected by the sample and the power absorbed by the quartz substrate. We measured 

all these values with a power-meter calibrated at 365nm. Knowing the wavelength of 

the laser, we deduced the absorbed photon flux. The ratio between the emitted and the 

absorbed photon fluxes yields the external quantum efficiency of the film. We found the 

external quantum efficiency of the TH films pyrolysed at 1200°C was 11.5 %; whereas, 

THDH2 and THDH9 films showed 5% efficiency. Since THDH1 films did not show 

noticeable luminescence, they had relatively low quantum efficiency. The EQE values 

are encouraging as it compares to the best results reported in the literature about Si 

nanomaterials so far, which is around 1% [L.B. Ma, 2006, D. Jurbergs, 2006].  

 

Lifetime measurements were done on THDH2 films pyrolysed at 800°C and 1200°C. 

Results showed similar lifetime values for both of the sample as 13.9 ns for film 

pyrolysed at 800 °C and 16.2 ns for the film pyrolysed at 1200°C. The small increase in 
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the lifetime may be caused by phase separation of the SiC at 1200°C. However, the 

lifetime of the SiC as well as defect states are very short (few nanoseconds). Therefore 

the comparison between these two systems (defects and SiC) and consequently the films 

pyrolysed at low and high temperatures (800°C and 1200°C) is very difficult (see 

Appendix II).  

 

Experimental absorption data with the corresponding Tauc band fittings for TH/DH2 

films are given in Figure 4.19. In the high energy region of absorption edge, α(hν )2 

versus hν plot was taken as an evidence for direct band gap. The intercept of the straight 

line on the hν axis gives the optical bands gaps which are shown in Figure 4.19-b with 

the emission band gaps as a function of pyrolysis temperature. The absorption energy 

decreased from 800°C to 1100°C and then slightly increased. However, the change from 

800°C to 1250°C is quite low (less than 0.2 eV) and can be considered stable around 4.4 

eV. On the other hand, the emission gap changed radically from low temperatures (800-

900°C) to high temperatures (1000-1200°C) but as it is discussed before, the emission 

did not changed the position in these ranges. It should be noted that the exact PL peak 

positions could not be detected for the samples pyrolysed at low temperatures and for 

the sample pyrolysed at 1250°C. Whereas for the sake of the discussion, emission gaps 

for the films pyrolysed at 800°C and 900°C are taken as 3 eV. The fact that no 

noticeable absorption or emission band changes are observed in THDH2 films can be 

considered as stability of the emission. 
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Figure 4.19. (a) Plot of α(hν )2 versus photon energy of SiOCstoichiometric (THDH2) thin 

film annealed at the indicated temperatures. The dashed lines are fittings by using 

equation (UV-Vis) (b) emission and absorption band-gap energies as a function of the 

pyrolysis temperature. 

 

TH films showed higher absorption band gap, 5.7-5.2 eV, than the optical band gap of 

THDH2 films, 4.6-4.2 eV, up to 1100°C (Figure 4.20). This can be due to the fact that 
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TH film contains less C, which is considered to be the absorption centre [L. Ferraioli, 

2008] and higher amount of SiO2 (Egap= 8 eV) compared to THDH2 films (Table 4.3). 

At 1200°C, Tauc band–gap decreases rapidly to 4.2 eV and at the same time, the 

emission energy showed a gradual red shifting towards 1.9 eV (640 nm). Both trends 

can be associated to the absorption effect of free C presents in the system, which is 

more detectable at high temperatures due to the phase separation; or to the formation of 

Si, which has a low optical band gap (Egap=1.0-1.1 eV).  

 

 
Figure 4.20. Emission and absorption band-gap energies as a function of the pyrolysis 

temperature. 

 

4.4. Substrate Effect 

 

SiOC films on SiO2 substrate did not show any reaction between film and substrate 

even at high temperatures ( ≥1250°C), (see Figure 4.21-a). Therefore, all the results 

reported until now are on SiO2 substrate. Similarly, no reaction was observed in SiOC 

films on Si substrate up to 1100°C (Figure 4.21-b).  
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Figure 4.21. SEM images of Si-rich SiOC film (TH) (a) on SiO2 substrate pyrolysed at 

1200°C and (b) on Si substrate pyrolysed at 1100°C. 

 

However, after 1100°C, surface defects were detectable even with naked eye for films 

deposited on Si substrate. For more detailed study FEG-SEM is used to detect the 

reaction between film and Si substrate. The reacted areas can be seen clearly with 

porous appearance in Figure 4.22. The reaction starts from a defect centre and grows in 

interface direction. Some voids are visible in cross section and they appear as dark 

squared sites in backscattering images given in Figure 4.23. These voids are explained 

by Si depletion in literature [K. C. Kim, 2001].  

 

 

 

 

(a)                                                            (b) 
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Figure 4.22.  FEG-SEM images of Si-rich SiOC film (TH) on Si substrate. (Pyrolysed at 

1200°C) 

 

 
Figure 4.23. (a) Backscattering and (b) cross sectional FEG-SEM images of Si-rich 

SiOC film (TH) on Si substrate. (Pyrolysed at 1200°C) 

 

Another mechanism may take place during the SiC formation and cause bubble 

formation, which can be seen on the edge of the non-reacted films in Figure 4.22. Due 

to the nature of the SiOC system, higher temperature leads the phase separation. During 

phase separation SiO2, SiC and C rich areas can be formed and meanwhile CO and SiO 

release is reported [K. C. Kim, 2001]. In literature SiO2 layer is also used as a sacrificial 

layer on Si substrate and reacted with the C instead of silicon substrate at high 
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temperatures (>1000°C). The possible reactions are given as followings [R. Sharma, 

2008]: 

 

 

SiO2(s) + C(s) →SiO(g) + CO(g)            Eq. 4.2 

 

 

SiO(g) + 2C(s) →SiC(s) + CO(g)       Eq. 4.3 

 

Glancing angle XRD is used for the analysis of films since this method gives the 

possibility to get more information coming from the film rather than substrate. To 

understand the effect of the substrate, films coated on SiO2 and Si substrates were 

analysed. Parallel to SEM results, film coated on SiO2 substrate did not show any 

crystallization even pyrolysed at 1200°C (Figure 4.24). Whereas, XRD spectrum of the 

film on Si substrate gave Si and SiC crystallization at the same temperature given in 

Figure 4.25. In this figure, the same film pyrolysed at 1100°C is given in order to show 

that crystallization starts at 1200°C, since film pyrolysed at 1100°C is totally 

amorphous.  

 
Figure 4.24. XRD spectrum of the Si rich SiOC film (TH) on SiO2 substrate pyrolysed 

at 1200 °C. 
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Figure 4.25. XRD spectra of the Si rich SiOC film (TH) on Si substrate pyrolysed at 

1100°C and 1200°C. 

 

The reaction between Si substrate and film is found as the limiting factor to use the 

films on Si substrate at temperatures higher than 1100°C. However, the reaction can be 

slowed down or overcome by applying a passive etching by HNO3 on Si substrate. 

However, the PhD study is more focused on optical properties of the films therefore this 

reaction is studied to understand the origin of the photoluminescence.   

 

The PL spectra of the TH films on Si substrate are given in Figure 4.26 for films 

pyrolysed at low temperatures (Figure 4.26-a) and high temperatures (Figure 4.26-b). 

PL spectra showed the same luminescence tendency as it is on SiO2 substrate (Figures 

4.13 and 4.15). The emission in the UV-blue range is totally disappeared at 1000°C and 

the yellow green peak rise with the further increasing temperature. Although some 

minor differences exist between films on SiO2 and Si substrate, the radical difference is 

detected for the films at 1200°C, at which the crystallization of SiC is detected by XRD. 

To visualize the difference in PL, two PL peaks of the films on Si and SiO2 substrate are 

shown in Figure 4.27.  
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Figure 4.26. Photoluminescence spectra of TH films on Si substrate pyrolysed at (a) low 

temperatures (800-1000°C) and (b) high temperatures (1100-1200°C)  

 

Very broad luminescence covering almost all visible range is suggested to be originated 

from SiC clusters in films coated on SiO2 film. Similar broad band is also observed in 

film on Si substrate. However, the very intense peak between 500 and 650 nm changed 

 

(a) 
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the symmetry of the PL peak. The peak centred at 550 nm like in stoichiometric SiOC 

films (Figure 4.15) giving us the idea that this peak can be originated from SiC clusters.   

 
Figure 4.27. Photoluminescence spectra of Si rich SiOC films (TH) on SiO2 and Si 

substrates, pyrolysed at 1200°C. 

 

To get further into the luminescence origin, we used the advantage of Ar laser, which 

gave us the possibility to get information from very small areas due to its low dimension 

(~100 μm). Therefore the PL measurements can be performed on the areas where the 

reaction between film and Si substrate took place and on the non-reacted film. PL 

spectra are shown with FEG-SEM image in Figure 4.28. Non-reacted film showed the 

same PL spectrum as film on SiO2. Therefore, it can be suggested that the 

crystallization, which is detected by XRD, occurring only on reacted areas, where SiC 

crystallization gave rise to the peak centred 550 nm.  
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Figure 4.28. Photoluminescence spectra and relevant FEG-SEM image of Si rich SiOC 

films (TH) on Si substrates, pyrolysed at 1200°C. 

 

4.5. Stability Measurements/ Weathering Resistance 

 

Luminescent thin-films are of great interest since they may offer high performance in 

flat panel displays. Thus, many studies have been conducted for the purpose of 

developing LED devices using various phosphors in order to get white emission. 

However, luminescence levels of the phosphorous-based LED devices are still not high 

enough for practical purposes. The low luminescence levels are suspected to be due to 

their chemical instability and hygroscopic nature [C. W. Wang, 1998]. Therefore, the 

performance of materials, which are proposed for LED applications, needs to be 

examined in light of their environmental stability. Environmental instability is 

essentially attributed to interaction with oxygen and water vapour. In this study, SiOC 

films were exposed to moisture/stability test in order to confirm the performance and 

applicability of the products. The experimental procedure has been suggested by 

Siemens Corporate Technology, Munich. The department working in Siemens is 

specialized on development of LEDs and they strongly advise us to check the 
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environmental stability of our films in order to evaluate a possible use of SiOC thin film 

in commercial field [Liepold, 2008]. These kinds of stability tests in literature are 

reported also as weathering resistance tests and most of them are suggested by 

companies as an indication of stability or applicability of the product [H. Lee, 2009].  

 

The stability test under moisture and temperature (80°C, 80% humidity) were carried 

out by placing samples on a self-made climate chamber consisting on a desiccator with 

some water as it is shown in Figure 4.29 placed into an oven at 80ºC for 10 days.  

 

 
 

Figure 4.29. Self-made system used in the moisture/temperature stability tests 

 

The stoichiometric films showed no change in the luminescence intensity. The PL 

spectra of the stoichiometric SiOC films (THDH2) after the moisture/stability test are 

given in Figure 4.30. SiOC films showed very high luminescence even after staying 10 

days in a high humid atmosphere. We verify the stability of the SiOC films pyrolysed 

either at low temperature or high temperature. Therefore, SiOC is a good candidate for a 

possible commercial LED application.  
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Figure 4.30 (a) Photoluminescence spectra of the THDH2 films pyrolysed at 800°C and 

1200°C before and (b) after the moisture/stability test.  

 

4.6. Shrinkage behaviour of SiOC films and powders 

 

4.6.1. Background information  

 

Polymer derived ceramics (PDC) have been known for more than 3 decades and are an 

active field of research due to their unique properties such as high temperature stability 

[T. Ishikawa, 1998], multifunctionalities [L. G. Zhang, 2008; G. D. Sorarù, 2005; L. A. 

Liew, 2003] and exceptional shaping flexibility [Colombo, 2008]. According to this 
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route, during the pyrolysis process in inert atmosphere, the PDCs are formed step by 

step from the molecular precursor trough solid state reactions [D. Bahloul-Hourlier, 

2005]. So far, many ceramic systems have been synthesized; however, due to the 

commercial availability of rather cheap precursors, SiCO and SiCN are the most studied 

[R. Raj, 2001].  

 

During the polymer-to-ceramic transformation stage, molecular species produced by the 

solid state reactions are released in the gas phase and account for the weight loss, which 

can vary between few percent, for the ultrahigh ceramic yield precursors [G. D. Sorarù, 

1997], up to 50-60 %wt [R. Riedel, 2006]. Related to the gas evolution and the 

corresponding volume shrinkage is the difficulty to produce dense bulk components. 

The only bulk samples reported in the literature are either rods or thin plates having the 

smallest dimension below ≈1-1.5 mm [T. Rouxel, 2001; S. R. Shah, 2002]. 

Accordingly, the structural characterization and measurement of physical properties of 

PDC are usually performed either on millimetre-sized bulk samples or on 10-100 μm 

sized powders. Moreover, since the pyrolysis gases has to diffuse from the sample 

through the structure to the surface it is generally accepted that the diffusion distance 

can play a role in controlling the ceramic yield and consequently the composition and 

properties of the final ceramics [T. Rouxel, 2001].  

 

PDC thin films, with thickness below 1 μm have been reported in the literature [A. 

Karakuscu, 2009]. For these ultra thin components the question if their pyrolytic 

transformation - and consequently their composition and properties- can be estimated 

through experiments performed on larger scale samples is still open. For example, 

Colombo et al. [P. Colombo, 1994] have shown that processing thin SiC films from 

polycarbosilane with standard grade Ar gas results in the complete oxidation of the 

coating to SiO2 and SiC films can be obtained only using ultra pure gases or ultra-high 

vacuum atmosphere. At the same time, polycarbosilane-derived SiC powders, fibers, or 

bulk components have been reported in the literature using standard grade Ar or He 

atmosphere [G. D. Sorarù, 2000]. Obviously, in these cases, the higher dimension of the 

powders, fibers or bulk samples prevents the complete oxidation and allows the 

formation of the expected SiC material.  

 

In this study we compare the pyrolytic behaviour of 3-D bulk samples and thin films of 
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sol-gel-derived hybrid siloxane, precursors for SiCO glasses, by studying their 

shrinkage during pyrolysis from room temperature up to 1200°C. The chosen system 

has been extensively investigated and allows producing small millimeter sized PDC 

components as well as thin films [T. Rouxel, 2001; A. Karakuscu, 2009]. The film 

shrinkage has been investigated using in-situ thermal ellipsometry while bulk samples 

were studied by classical dilatometry.  

 

4.6.2. Experimental 

 

Stoichiometric SiOC composition has been chosen for this study. Thin films and bulk 

samples production has been explained previously. Xerogels were obtained after drying 

the gel by increasing the temperature slowly up to 110°C for 20 days. By this way, 

crack formation due to fast release of solvent was prevented and xerogel rods 7-8 mm in 

diameter with length of 3-4 cm were obtained. 

 

Dilatometric experiments were performed in order to evaluate the thermal expansion of 

the gel and total shrinkage during pyrolysis up to 1400°C. Disc sample having 

approximately 1.5 mm thickness and 7.7 mm diameter was obtained by cutting and 

polishing a xerogel rod. Sample was loaded into a Netszch 402/E dilatometer and the 

expansion and contraction of the sample along its diameter was recorded as a function 

of temperature. Experiment was performed under Ar (100 ml/min) with a heating rate of 

5°C/min. The samples survived the dilatometric test without breaking -or even 

developing cracks- allowing for the measurement of their dimensions ex-post at room 

temperature. Measuring the shrinkage along the disc diameter and thickness provided a 

means to assess if the volume contraction is isotropic.  

 

Shrinkage of the films during pyrolysis was followed up to 800°C by in-situ thermal 

ellipsometric analysis. Ellipsometry measurements were performed on a UV-vis 

variable-angle spectroscopic ellipsometer and data analysis was performed with the 

WVase32 software. For in-situ ellipsometric analysis, the ellipsometer was fitted with a 

home-built covered heating unit connected to a programmable temperature regulator. 

The pyrolysis environment was adjusted by flowing between 1 and 5 l/min of Ar gas 

through the sample stage at.  
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For pyrolysis temperature above 800°C the film shrinkage was followed by ex-post 

measurements by standard ellipsometry. Accordingly, the gel films were pyrolyzed in a 

C-furnace under Ar flow (100 ml/min) with a heating rate of 5°C/min at different 

temperatures, in the range 800-1200°C with 1 hour holding time at the maximum 

temperature. It has been already known that, the C furnace keeps the PO2 low enough to 

allow for the retention of C in the pyrolyzed SiOC film [P. Sajgalik, 1992] and prevents 

oxidation to SiO2.  

 

Weight loss of the powdered sample (sieved down to 80 μm) was followed by 

Thermogravimetric analysis (TGA) in a STA 409 Netszch apparatus. The experiment 

was performed under Ar flow of 100 ml/min with a heating rate of 10°C/min. 

 

In order to compare the shrinkage of 3-D bulk samples and thin films we need to remind 

that the shrinkage of 3-D samples is isotropic (see after for the results proving this 

behaviour) while the volume shrinkage of the film is accommodated only in the z 

direction being the shrinkage in the plane constrained by the bonding with the substrate. 

Accordingly, the raw data, i.e. the linear shrinkage measured by dilatometer and the 

linear shrinkage measured by ellipsometry cannot be directly compared. It is the volume 

shrinkage that contains important information in order to evaluate the pyrolysis 

behaviour of the two types of samples (film vs bulk). Bearing in mind that the film 

shrinks only in the thickness, h, its volumetric change is equal to:  
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4.6.3. Results and Discussion  

 

The dimensional changes of the bulk sample after the dilatometric measurement is 

reported in Table 4.4. It can be seen that the linear shrinkage is isotropic and reaches 

22% from RT up to 1400°C while the volume shrinkage is 52.7%. 

 

Table 4.4. Dimensional and weight changes of bulk sample after dilatometric test. 

 

Sample 
Dimensions (mm) 

Volume (mm3) Weight (mg) Density (g/cc) 
Thickness Diameter 

gel 1.53 7.69 71.06 89.70 1.26 

1400°C 1.19 5.99 33.53 84.80 2.53 

Change (%) 

gel to 1400°C 22 22 53 5.5 100 

 

The organic-to-inorganic transformation was followed by TGA and is reported in 

Figure 4.31. The precursor gel shows a small weight loss up to 350°C (1.2 wt%) due to 

the removal of residual OH and/or OEt groups, a 4.3 wt% loss between 350 and 550°C 

associated to the evolution of silanes formed through redistribution reactions between 

Si-H, Si-O and Si-C bonds and a final ceramization step (1.4 wt%) with evolution of 

CH4 and H2 [R. Campostrini, 1996]. Above 800°C the weight of the sample is stable.   
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Figure 4.31. TGA curve of the gel sample with corresponding weight losses indicated 

by arrows. 

 

The volumetric changes of the film and bulk sample are compared in Figure 4.32. The 

shrinkage of the film is measured up to 800°C with in-situ ellipsometry and above that 

temperature, at 1000 and 1200°C, the thickness is measured after the pyrolysis with 

standard technique.  
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Figure 4.32. Volumetric changes of bulk sample, calculated from dilatometer (-●-) and 

film measured by in situ ellipsometer (-◄-) and standard ellipsometer () 

 

Both bulk and film samples show an initial volume expansion, reach a maximum and 

then start to shrink. For bulk samples the inversion is gradual and spans over a 

temperature range of 100-150°C. The maximum temperature can be estimated at around 

300-350°C in good agreement with previous data [P. Sajgalik, 1992]. Above 350°C the 

3D sample shows a first shrinkage step up to 600°C and a second step (less steep) up to 

1200-1300°C. This dilatometric behaviour of the 3-D sample can be compared with the 

corresponding TGA curve recorded on micron sized powders (see Figure 4.31) and the 

following information can be obtained: (i) the temperature at which the sample starts to 

shrink corresponds to the temperature at which the gel starts to decompose; (ii) the main 

weight loss step, from 350 to 600°C, is associated to the first shrinkage step up to 550-

600°C, (iii) the last weight loss step leads to an extended continuous shrinkage from 600 

up to 1200-1300°C, well beyond the temperature at which the pyrolysis can be 

considered complete from the TGA curve (ca 800-900°C). This behaviour could be 

related either to the escape of very low amount of H2, below the resolution of the TG 

instrument or to a structural rearrangement occurring without any compositional 

changes. 
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The comparison between the film and bulk volume shrinkage is reported in Figure 4.32. 

Interestingly, the film also shows an expansion stage exactly as the bulk sample; 

however, the film abruptly inverts his trend and, above 200°C, begins to shrink. The 

volume shrinkage of the film can also be divided into two stages: a rapid shrinkage from 

200°C up to 400-450°C and a second stage, from 500°C up to 1200°C, in which the 

shrinkage rate is constant (and lower than the first stage). Above 1200°C we do not 

have and data points since the film becomes unstable and starts to react with the 

substrate. 

 

These results clearly show that the thin film transforms easier and to a larger extent 

compared to the bulk: indeed, the maximum temperature above which the film starts to 

shrink is around 100–150°C lower than the bulk and also the volumetric shrinkage is 

between 10 to 15% vol. higher for the film compared to the bulk sample. The higher 

shrinkage of the film is probably due to larger evolution of gaseous species, mainly in 

the low temperature regime (from 200°C up to 400°C). In this temperature range high 

molecular weight species such as SiH4, CH3SiH3 are formed [R. Campostrini, 1996] and 

for these relatively large molecules the diffusion distance can play an important role in 

controlling the diffusion rate. On the other side, at higher temperature the shrinkage rate 

is similar for the two type of sample (see Figure 4.32 where the shrinkage curves are 

almost parallel above 500°C) and this results could be explained knowing that, in this 

temperature range, smaller H2 and CH4 molecules are formed and their diffusion rate 

could be less dependent from the diffusion distance. 

 

The porosity formation in the film, due to the observed decomposition processes are 

investigated by in situ ellipsometer, measuring the refractive index which is given in 

Figure 4.33 and the standard ellipsometer measurements are also shown for higher 

temperatures (>800°C). Up to 250°C, a sharp decrease in refractive index is observed as 

a result of pore creation in the film. Then pores are closing and this leads an increase in 

refractive index. At this stage, film showed a constant shrinkage (Figure 4.32) which 

indicates that the pore formation and collapse is continuous. In the second stage, 

refractive index decreased once again till 550°C and followed by a densification step, 

which cause final refractive index to reach to 1.57. 
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Figure 4.33. Index of refraction of the film measured by in situ ellipsometer (-●-) and 

standard ellipsometer () 

 

4.7. Conclusions  

 

Homogeneous and crack free SiOC films with different compositions were produced via 

polymer pyrolysis of sol-gel derived films. Three compositions were chosen to study the 

effect of Si and C in the SiOC films; C rich SiOC, stoichiometric SiOC and Si rich 

SiOC (mentioned as THDH1, THDH2 and TH; respectively). Films showed different 

luminescence behaviour at low temperatures (800-1000°C) and high temperatures 

(1100-1250°C). In the amorphous state (800-1000°C), all SiOC films showed UV-blue 

luminescence peaking at about 410 nm, which is attributed to defect states present in the 

matrix such as dangling bonds. The increase of the pyrolysis temperature (≥ 1100°C) 

led to the partition of SiOC and formation of SiC, C and Si phases. The intense green-

yellow luminescence observed in stoichiometric SiOC films caused by the presence of 

SiC and very low amount of free C. On the other hand, Si rich SiOC film (TH) showed a 

very broad and extremely intense white luminescence peak centred at 620 nm covering 

almost all visible range (430-900 nm) at 1200°C. This behaviour is explained by the 



 100 

simultaneous presence of SiC, C and Si in the film. External quantum efficiency 

measurements yielded 11.5% and 5% efficiencies in TH and THDH2 films, respectively, 

pyrolysed at 1200°C. On the other hand, C rich SiOC films did not show any noticeable 

improvement in PL, indicating that C excess in the SiOC system is detrimental for the 

luminescence behaviour. 

 

The reaction between film and Si substrate at high pyrolysis temperatures ( ≥ 1200°C) is 

verified by FEG-SEM, SEM and XRD analyses. The reaction is supposed to occur 

between C rich areas and Si substrate. The bubble formation can be also originated by 

reaction between SiO2 rich areas and C rich areas present in the film due to the phase 

separation of SiOC, which is known to be taken place at high temperatures. Whereas, no 

reaction between film and Si substrate is observed at temperatures lower than 1200°C. 

This is also verified by the similar PL spectra of the films on SiO2 and Si substrate. PL 

measurements were done on reacted areas in order to suggest the origin of the 

luminescence. Due to the peak intensity which is centred at 550 nm increased in reacted 

areas similar to the stoichiometric SiOC films; this peak is assigned to be caused by SiC 

crystals.  

 

Finally, a study on volumetric shrinkage of films and powders has been done. The 

results showed that the shrinkage in films starts almost 200°C lower than powder 

samples. The shrinkage related to the evolution of silanes is higher in the film compared 

to bulk and this result can be explained by the very short diffusion distance that the 

large silane molecules gave to overcome to reach the free surface of the sample 

compared to bulk system. The difference in the silane release may also cause a 

difference in final composition. Indeed, SiC cluster formation in a sol-gel derived SiOC 

films was suggested to start at low temperatures (1000°C) compared to the 

corresponding bulk [A. Karakuscu, 2009]. Therefore, as it is suggested many times, the 

powders and films should be considered as two separate systems to study on.   
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Chapter V. Other systems studied 
 

Study on optical properties of Si based materials is attracting the attention for many 

years due to their abundance. However, the emission centers in the Si based materials 

are very hard to define because in most of the cases the emission is obtained from 

clusters (>1 nm) other than crystals. The detection of this emission centers as we have 

discussed Chapter 4 is quite difficult. However, by changing the composition, some 

comparison can be made between the systems, which can give another perspective for 

understanding the origin of the emission. Therefore, in this part two other systems have 

been studied to understand the effect of boron and nitrogen: SiBOC and SiOCN.  

 

SiBOC system is known to give several advantages over SiOC system. The 

crystallization of SiC is found to start earlier than boron-free SiOCs [G. D. Soraru, 

1998]. Additionally, crystalline SiO2 formation is inhibited and larger sp2 carbon 

nanocrystals are formed in SiBOCs, which makes SiBOC a good candidate for Li 

battery applications [R. Pena-Alonso, 2007]. However, neither films nor optical 

properties have been explored in literature. Therefore, the study on SiBOCs has been 

done not only to compare this system with SiOCs but also to investigate deeper the 

SiBOC system, which is still an open and unexplored field in PDCs.   

 

In the first part of the study, the gels and relevant powders have been characterized 

thermally and structurally to understand the effect of the boron addition on pyrolytic 

transformation. SiOC gels with a compositional range from stoichiometric to Si rich 

SiOC have been used for the boron addition. However, although very few studies could 

be found in the literature about SiBOCs, most of them were focused on structural 

characterization of stoichiometric SiOCs. Therefore, this system will not be discussed 

structurally in the first part in order not to repeat the similar findings.  

 

In the second part of the study, the SiBOC films produced by boron addition in the 

stoichiometric SiOC solution have been discussed. The study is dedicated to optical 

properties of the films but several other characterizations have been done to understand 

the structure of the film better (XPS, profilometer, FTIR, SEM etc.). Photoluminescence 

properties as well as UV-Vis measurements have been performed and discussed.  
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Production of SiCNs is extensively reported in literature by polymer pyrolysis method.  

Nowadays several commercial polysilazanes are in the market and many studies 

focused on production of ceramic components from these commercial polymers. On the 

other hand, the production of the pure SiCNs is quite complicated due to high oxidation 

rate of the polysilazenes. However, by an alternative approach, SiOCNs can be 

produced easily in open atmosphere with controlled oxidation. Therefore, in our study 

SiOCN films were synthesized by open atmosphere route. Optical properties of the 

resultant films were then studied by PL measurements and FTIR analyses have been 

performed in order to understand the possible relationship between bonding and 

emission. 

 

5.1. SiBOC Ceramics 

 

SiBOC ceramics are quite new materials; they have been studied only for 10 years and 

the few studies present in the literature focused on boron added to stoichiometric SiOC 

system. On the other hand, some compositions like Si rich SiOC ceramics have not been 

investigated. Therefore, in this work, Si rich SiBOC ceramics are investigated 

structurally and PL analysis has been performed.  

 

5.1.1. Experimental Details 

 

Two different Si rich SiBOC gels have been prepared from THDH9 and TH compositions 

(see Chapter 3.1, Chapter 4.2). For the seek of clarity, the samples have been labelled 

with the TEB prefix to indicate the boron addition. TEB-THDH9 solution has been 

prepared by using triethoxysilane (TH) and methyldiethoxysilane (DH) precursors with a 

ratio of 9.  Boron addition has been done by triethylborate (TEB) having a ratio 

B/Si=0.1. Whereas, TEB-TH gels has been prepared by TH with and addition of TEB 

(B/Si =0.3). Solution preparations, as well as drying step have been done according to 

the same route to prepare Si rich SiOC ceramics (Chapter 3.2). Gels have been 

pyrolysed in a carbon furnace under Ar flow at temperatures in the range of 800–

1400°C. Thermal evolution of gels has been studied by TGA. Crystallization and 

bonding structure of the powders has been investigated by XRD and FTIR, respectively. 
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Photoluminescence properties of the films are studied by Photoluminescence (PL) 

measurement. For the easiness, boron free SiOC powders are given as a benchmark.  

 

5.1.2. Results And Discussion  

 

As it can be seen in Figure 5.1, boron addition decreased the weight loss; modify the 

pyrolitic transformation, with a significant increase of the ceramic yield. The structural 

transformation of boron free sample has been discussed in details in Chapter 3.3.2. To 

briefly summarize, three step are present in the boron free sample; the sample is stable 

till 200°C and only H2O removal is seen, from 200°C to 600°C the organic to inorganic 

transformation caused high weight loss (3%), and between 600°C and 800°C the weight 

loss slow down due to H2 and CH4 gas formation. After 800°C, samples are stable. 

Since THDH9 contains more carbonaceous groups in the structure than TH, the third 

stage showed higher weight loss due to higher organic release [G. D. Sorarù, 1995].   

 

The introduction of boron in borosilicate gels leads to an increase in low temperature 

weight loss (up to 350°C) due to evolution of water from B–OH species [G. D. Sorarù, 

1997]. This weight loss step, which immediately starts from RT and continues till 

350°C, confirms that the presence of boron has a strong influence on the pyrolysis 

pathway of the precursor gel. Note that the gas formation starts 200°C lower that boron 

free sample. From 350°C up to 550°C, redistribution reactions leads to the evolution of 

low molecular weight siloxane species. After this temperature the weight loss rate 

decreased and only formation of H2 and CH4 is expected [G. Trimmel, 2003; L. 

Pederiva, 2002]. Boron added samples sowed the same tendency and slightly the same 

weight losses. TEB-TH showed only 1.7% whereas TEB-THDH9 gave 1.9% final weight 

loss at 800°C. It needs to be noted that boron addition in THDH9 system improved the 

ceramic yield more drastically (from 9% to 2%) than in TH system, in which ceramic 

yield is increased from 3% to 1.5% by boron addition.   



 104 

 
Figure 5.1. TGA measurements of SiOC and SiBOC gel samples.  

 

The bonding structure of boron added powders are investigated by FTIR and given in 

Figure 5.2 and 5.3. The bands related to boron addition are shown with an asterisk. 

Boron added gel sample showed B-OH and B-O stretching bonding at 3200 cm-1 and 

1400 cm-1, respectively. Additionally, B-O stretching peak at 1400 cm-1 is an indication 

of boron oxide formation at high temperatures. The pyrolysis leads the Si-O-B bonding, 

which gave rise the peak at 910 cm-1 [M. A. Villegas, 1988]. This peak could not be 

distinguished in TEB-THDH9 sample pyrolysed at 1400°C since Si-C bonding gave a 

very broad band in this range also in THDH9 sample. This wide peak covers in range of 

950 cm-1 and 650 cm-1, where Si-C, Si-O-B and Si-O-C bands are present. This peak 

seems to be the only difference between TH and THDH9 glasses, pyrolysed at 1400°C. It 

can be due to the higher carbon presence in THDH9 system causing mixed bonds. Other 

than boron related peaks, SiBOC showed similar features with SiOC samples.  

 

TEB-TH 

TH 

TEB-THDH9 

THDH9 

(a) 

(b) 
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Figure 5.2. FTIR spectra of (a) gel and (b) pyrolysed TEB-TH and TH powders. Asterisk 

is given to indicate boron related bands.  

 

 

TEB-TH 

TH 

 

(a) 

TEB-TH 

TH 
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Figure 5.3. FTIR spectra of (a) gel and (b) pyrolysed TEB- THDH9 and THDH9. Asterisk 

is given to indicate boron related bandings.  

 

In TEB-TH system, Si crystallization is started at 1200°C and gave a broadening in x-

ray spectrum, shown in Figure 5.4-a. The asymmetric peak appeared at 1000°C is 

clearly an indication of Si crystallization, whereas the size of the Si nanocrystals is too 

low to be detected. The crystallization of SiC and Si started spontaneously at 1200°C, 

unlike boron free sample (Figure 3.10, Table 3.5). The particle sizes of crystalline 

phases are estimated in the Table 5.1. Clearly, boron addition enhanced crystallization 

of both phases and lowers the crystallization more than 200°C.  

 

 

 

 

TEB-THDH9 

THDH9 
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TEB-THDH9 

THDH9 
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Crystallization of Si is detected at 1000°C in TEB- THDH9 system, earlier than TEB-TH 

system. However, the crystallization rate is rather low and the Si crystal size reached to 

15 nm at 1400°C instead in TEB-TH system it reached estimated up to 0.2 µm. This 

trend is not the same for SiC crystallization. Higher carbon presence in the system led 

larger SiC crystals at 1400°C in TEB- THDH9 (Table 5.1).  

 

 

 
Figure 5.4. X-ray spectra of SiBOC samples pyrolysed at different temperatures (1000-

1400°C). Crystalline phases have been indicated above the spectra ( Si and ●SiC). 

 

Table 5.1. Estimated particle sizes of phases present in the boron added SiOC samples 

by using Scherer formula 

Sample 

 Particle size (nm) 

TH  THDH9 

Si [111] SiC [111]  Si [111] SiC [111] 

1000°C - -  1.3 - 

1200°C 3.8 0.9  3.4 0.9 

1400°C 210.9 2.8  15.3 4.4 

 

In conclusion, boron added Si rich SiOC glasses showed interesting features.  

Crystallization of SiC and Si phases started 200°C lower than boron free sample. The 

modification in pyrolitic transformation is detected by TGA and boronsilicate 

 

TEB-TH 

 

TEB-THDH9 

 (a) (b) 
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occurrence is detected by FTIR. With the help of boron, the system forced to give faster 

crystallization starting from lower temperatures. 

 

5.2. SiBOC films  

 

SiCn embed in SiO2 are of great interest to produce Light-Emitting Diode (LED) due to 

the high emission of SiC nanocrystals.  However, with a conventional processing route 

it is very difficult to obtain SiCn/SiO2 composite. To overcome this problem the use of 

the Polymer Pyrolysis Route has been proposed in Chapter 3 and 4. According to this 

process, SiC nanocrystals can be grown in situ in the silica matrix from a silicon 

oxycarbide glass (SiOC) obtained from suitable precursors. However, the SiC 

crystallization temperature from SiOC is usually above 1200°C and this temperature can 

be too high to avoid film/substrate reactions. Therefore, by introducing boron into the 

SiOC, it is aimed to decrease the crystallization temperature and allow the synthesis of 

the aimed SiCn/SiO2 films at T ≤1250°C. Accordingly, the aim of this study is to 

produce SiBOC thin films and to investigate their optical properties. 

 

5.2.1. Experimental Details 

 

SiBOC thin films are produced by sol-gel method using a mixture of triethoxysilane 

(TH) and methyldiethoxysilane (DH) with a TH/DH molar ratio of 2 to obtain silicon 

oxycarbide glass with a negligible amount of free C. Triethylborate, B(OCH2CH3)3, 

with B/Si ratio of 0.1 is used as a source of boron and added to the solution after adding 

proper amount of ethanol and water [G. D. Sorarù, 1997]. Thin films, which will be 

called as TEB-THDH2 for the easiness, are deposited on Si and SiO2 substrate by spin 

coating and pyrolysed in a carbon furnace under Ar flow at temperatures in the range of 

800–1250°C. Surface properties of the SiBOC films are investigated by SEM. 

Thicknesses of the films are investigated by profilometer measurements. The bonding 

characteristics and photoluminescence properties of the films are studied by Fourier-

Transform Infrared Spectroscopy (FTIR) and Photoluminescence (PL) Measurement, 

respectively. UV-Vis measurement has been done to measure the optical band gaps of 

the films.   
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5.2.2. Results And Discussion  

 

For simplicity, results have been compared with THDH2 films prepared by the same 

composition without triethylborate addition. The homogeneity of the films has been 

verified by SEM. Cross-section of the TEB-THDH2 film, given in Figure 5.5, showed a 

continuous uniform crack free behaviour. In order to follow the thickness evolution with 

respect to pyrolysis temperature, the thickness measurement done by profilometer is 

shown in Figure 5.6.  The values of the shrinkage measured at 1250°C are also given in 

the inset. In agreement with the literature on SiBOC glasses, shrinkage of TEB-THDH2 

thin films showed lower shrinkage than THDH2 thin films [P. Colombo, 1994]. 

Therefore, even the starting thicknesses were similar; the resultant pyrolysed THDH2 

films were thinner than TEB-THDH2 films. As it is reported in index the SiBOC films 

have not been studied in the literature and the other reference with asterisk is taken from 

polycarbosilane film, shrinkage of which is the only reported PDC film in literature [P. 

Colombo, 1994].  

 

 
 

Figure 5.5. SEM micrograph of as-coated TEB-THDH2 thin film in cross section.  

 Substrate 

 Film  
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Figure 5.6. Thicknesses of the TEB-THDH2 and THDH2 thin films pyrolysed at different 

temperatures. Inset. Shrinkage values of the films pyrolysed at 1200°C. 

 

The bonding structure of the as coated films is investigated by FTIR (Figure 5.7). B-O 

stretching bond at around 1400 cm-1 in as coated films is an indication of boron 

existence in the structure [M. A. Villegas, 1988]. Two peaks at 1100 cm-1 and 1060 cm-1 

are assigned to Si-O-Si vibrations in SiOC. However, the total assignment of the wide 

peak from 1250 cm-1 to 1000 cm-1 is not easy because it is a complex combination of 

many peaks, namely Si-O and Si-O-C (as it is discussed in SiOC films). The peak 

assigned as an indication of SiOC network formation at centred at 1100 cm-1, is more 

evident in TEB- THDH2 [G. Das, 2007]. This can be attributed to a more ordered 

structure in TEB-THDH2 films. Finally, Si-H bending peak at 830 cm-1 is less evident in 

TEB-THDH2 films, most probably because of the hydrolysis of Si-H bonds induced by 

the presence of triethylborate in the sol-gel solution.   

 

 THDH2 TEB-THDH2 
 Shrinkage 45 % ±3 36 % ±3 
Literature 75.7 * - 

 

 

 

TEB-THDH2 

THDH2 
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Figure 5.7. FTIR spectra of as-coated TEB-THDH2 and THDH2 films. Corresponding 

band is indicated.   

 

With the pyrolysis, the boron related peaks became more noticeable as shown in Figure 

5.8. B-O stretching vibration is still visible at 1400 cm-1, B-O-Si bond formation gave 

raise a peak at 915 cm-1 and peak at 545 cm-1 corresponds to O-B-O bending bond [C. 

Gervais, 2001]. In TEB-THDH2 film, the intensity of Si-C bonding at 800 cm-1 is higher 

and narrower than in THDH2 film, which is an indication of ordered structure. TEB- 

THDH2 film showed very intense Si-C bonding at around 610 cm-1, which is less evident 

in THDH2 film.  
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Figure 5.8. FTIR spectra of TEB-THDH2 and THDH2 films pyrolysed at 1100 °C. 

Corresponding bands are indicated. 

 

XPS is used to measure the bonding evolution of the resultant TEB-THDH2 films and 

Si2p XPS analysis showed in Figure 5.9. The films showed a significant shifting 

towards the Si-C bonding region with increasing pyrolysis temperature. This is 

suggested to be the result of phase separation process happening at 1200°C. The peak 

deconvolution for the Si2p peak at 1200°C is also given to demonstrate the development 

of the bonding structure of the film.  
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Figure 5.9. Si2p core line XPS analysis of TEB-THDH2 films (a) pyrolysed at 800°C 

and 1200°C, (b) peak fitting of film pyrolysed at 1200°C. Possible components used for 

the fitting are shown in Figure 5.9-b. 

 

Optical properties of the TEB-THDH2 films are examined by PL and UV-Vis 

measurements (Figure 5.10). PL emission band showed a strong red-shift from 400 nm 

to 700 nm by shifting through all visible color range. The films pyrolysed at 800°C 

showed a very broad emission centred around 420 nm in UV-blue range. However, the 

excitation wavelength is very close to the emission band, therefore the real shape and 

emission centre could not be defined certainly. Similar to 800°C, film pyrolysed at 

900°C had a very broad emission band covered all visible range with a centre at 600 

 

(a) 

(b) 
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nm. Therefore, the film appeared as very light yellow-green in photo under UV- lamp 

(Figure 5.11). Without narrowing the PL peak, emission shifted slightly towards 

yellow-orange to red with the pyrolysis from 1000°C to 1100°C. Pyrolysis at 1200°C 

should have caused phase separation and free carbon formation in the film. 

Correspondingly, it is well known that boron enhances the growth of segregated sp2-

carbon nanocrystals, which caused high absorption. Therefore, films pyrolysed at 

≥1200°C were not discussed here.  

 
Figure 5.10. Photoluminescence spectra of the TEB-THDH2 thin films pyrolysed at 

temperatures in the range of 800-1100°C. 

 
Figure 5.11. Photograph of the SiBOC thin films pyrolysed from 800°C to 1100°C 

under UV laser excitation. 

 

In order to understand the absorption behaviour of the TEB-THDH2 films, UV- Vis 

measurements were done and the transmittance spectra are shown in Figure 5.12. The 

transmittance of the films is decreasing with increasing the pyrolysis temperature. Film 

pyrolysed at 800°C is almost totally transparent for almost all visible colours ( ≥420 

nm). Increasing pyrolysis temperature led red shift as well as a decrease in transparency. 

 

     800°C          900°C                       1000°C         1100°C 
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Optical absorption edge is below than 200 nm for all the films. The oscillation in the 

graphs observed in films pyrolysed at 800°C and 900°C is due to the interference of the 

reflected lights from the substrate. This phenomenon is less evident at higher 

temperatures (≥1000°C) due to high shrinkage after 900 °C (see Figure 5.6).  

 
Figure 5.12. UV-visible spectra of TEB- THDH2 thin films pyrolysed at 800–1100°C 

 

The absorption band gap and emission values are reported in Figure 5.13 as a function 

of pyrolysis temperature. Absorption values are higher than SiOC films however they 

followed the same trend (Chapter 3, Figure 3.13). Decrease in absorption and emission 

wavelengths are an indication of phase separation as well as free carbon formation.  
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Figure 5.13. Band-gap energy changes of the TEB-THDH2 films as a function of the 

pyrolysis temperature. 

 

TEB-THDH2 thin films showed very interesting PL features with external quantum 

efficiency as 4%, which is comparable to THDH2 films. They showed quantum 

confinement which has not been reported till recently in literature for SiC system [J.Y. 

Fan, 2006]. One of the main reasons, why quantum confinement is not easily achieved 

in SiC, is supposed that luminescence dominated by many surface or defect states. 

Correspondingly, boron is well known to have a reducing effect on defects [R. Pena-

Alonso, 2007]. Therefore, by adding very small amount of boron, quantum confinement 

can be achieved in SiOC system, which can give us the possibility to tune the emission 

through the all visible color range. It should be noted that the emission band gap at all 

temperature showed very broad band gap by covering also all the spectrum. Parallel to 

emission, transparency of the films are quite high till 1000°C (~ 90%), and after this 

temperature because of phase separation, free carbon caused a decrease in absorption 

band gap.  

 

In conclusion, the TEB-THDH2 films were studied structurally and optically and their 

properties are compared with THDH2 films for the clarity. TEB-THDH2 films showed 

lower shrinkage parallel to the SiBOC ceramics reported in literature. In addition, the B-

O-Si bonding is verified with FTIR. The boron addition caused phase separation process 
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earlier than SiOC system, which gives us the possibility to observe quantum 

confinement (red shift) in the PL spectra. Therefore, the films are good candidate to be 

used for LED applications in the visible range from UV-blue to red. Moreover, the 

emission band found to be very broad, covering larger than visible spectrum, at every 

pyrolysis temperature. Finally, the external quantum efficiency is found to be close to 

THDH2 films, namely 4%. A slight decrease in PL intensity can be explained by the 

effect of carbon, which is segregated with the boron addition.  

 

5.3. SiOCN Films 

 

Silicon oxycarbonitride (SiOCN) ceramics are promising materials for microelectronics 

and optoelectronics, owing to high-temperature oxidation resistance, tunable band gap 

characteristics, adjustable transparency in the visible and IR regions, and high-

temperature thermal stability [R. Riedel, 1995; T.J. Cross, 2006]. SiOCN films can be 

deposited by various techniques, including CVD [A. Bendeddouche, 1997] and pulsed 

laser deposition [T. Tharigen, 1999]. In this work polymer-derived ceramic (PDC) route 

has been applied to produce SiOCN films by direct pyrolysis of commercially available 

polysilazane precursor and their photoluminescence (PL) properties have been studied 

[K. B. Sundaram, 2000]. 

 

The structural evolution occurring during the pyrolysis process of the polymer derived 

films was investigated by using FT-IR absorption spectroscopy. PL of the resultant 

films pyrolyzed at different temperatures showed wide and intense luminescence. 

Tunable emission is observed by PL measurements changing from UV range (300 nm) 

to yellow-orange (600 nm). Finally, energy band gap of the films are used to understand 

the origin of the luminescence.   

 

5.3.1. Experimental Details 

 

Commercially available polysilazane, known as CerasetTM (KiON Corp., Clariant, 

USA), was used as precursor. As a curing agent 0.5% of dicumyl peroxide is added at 

80°C and total curing at room temperature took place in couple of days. Films on Si and 

SiO2 substrates have been prepared by spin coating at 300 rpm for 1 min. The 

stabilization of the films has been done at 110°C for 24 hours. Cross-linking is supposed 
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to start at this temperature and is expected to end around 400°C. Accordingly, the as-

spun films have been kept at this temperature and then annealed in Ar or N2 up to 

400°C with an holding time of 1 hour. These procedure lead to the synthesis of crack-

free polymeric films, suitable for the subsequent pyrolysis process at higher 

temperatures.  

 

Further pyrolysis has been done at 500-800°C to see the effect of temperature on 

structural and optical properties. The heating rate in all the process has been kept at 

5°C/min. Bonding structure of the films has been analyzed by FTIR and the fittings of 

the possible components were done by dmfit program [D.Massiot, 2002]. In order to use 

this fitting program, different from other previous results, FTIR spectra are reported in 

absorption instead of transmittance. Whereas, optical properties were examined by PL 

and UV-Vis analyses. PL measurements were recorded in air on Cary Eclipse, Varian 

Spectrophotometer using a Xenon lamp as the excitation source, sensitive across the 

whole wavelength range. Several different excitation wavelengths have been used, 

whereas samples pyrolysed at 400°C and 600°C showed strong emission in the range of 

250 nm excitation lamp. However, the film pyrolysed at 800°C gave an emission well 

beyond the range of 250 nm excitation lamp therefore Ar laser excitation (365 nm) is 

used to excite this sample.  

 

5.3.2. Results And Discussion  

 

Stability of the SiOCN films is one of the most critical problems in production. The 

SiCN precursors have high oxidation rate and therefore, they are always studied under 

glove box. However, in order to increase the commercialization, the handling conditions 

need to be improved. Therefore the basic aim of this study is to produce a reproducible 

SiOCN films by controlling oxidation with experimental details. By optimizing 

pyrolysis conditions, films aimed to be produced stable by avoiding the continuous 

oxidation and preventing the structural changes in the film knowing that very small 

structural changes may affect the optical properties drastically. 

 

Both data sheet of commercial precursor (CerasetTM) and some studies on SiCNs in the 

literature indicated that 400°C is a critical temperature for cross-linking to be 

accomplished. Therefore, films kept at this temperature for 30 min for further pyrolysis 
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process. Moreover, the bonding structure of the film, pyrolysed at 400°C for 1 hour, 

was studied by FTIR and measurements are repeated after 1 and 6 months. The spectra 

showed that there is a radical change in bonding structure from initial stage to the 

measurement done month later (Figure 5.14). However, stored samples (1 month and 6 

month later) showed same features, which can be an indication of stabilization of the 

films after 1 month.  

 
Figure 5.14. FTIR spectra of SiOCN films pyrolysed at 400°C for 1 hour. The 

experiment is repeated after 1 month.  

 

The water absorption gave rise a broad peak appeared between 3600 cm-1 and 3000 cm-

1. However, this bond centred at 3380 cm-1 is also considered as N-H vibration, which is 

more visible in initial film [S. R. Shah, 2002]. Similarly, small peak at 1720 cm-1 

belonging to C=O vibration is seen only in spectrum of the initial film and it is not 

clearly detectable in film examined stored films (1 month later and 6 months later) [T.J. 

Cross, 2006]. More dramatic changes are observed in the complex system at 1240-835 

cm-1. Thus, these regions are examined by the fitting program separately for samples 

measured initially and examined after 1 month. The spectra are shown in Figure 5.15 

with possible peak fittings.  
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Figure 5.15. FTIR spectra (1240-835 cm-1) of SiOCN films pyrolysed at 400°C for 1 

hour. (b) The experiment is repeated after 1 month.  

 

The active oxidation mechanism caused a drastic change in the bonding structure of the 

film. The produced film (initial) showed Si2-NH vibration at 1190 cm-1 as well as 

 

(a) 

(b) 
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intense peak at 1120 cm-1 belonging to Si-N vibration [T.J. Cross, 2006]. These two 

peaks replaced by Si-O bonding at 1141 cm-1 and mixed Si-O-C bonding at 1094 cm-1 

[G. Das, 2007]. It is a clear indication of instability of the film at 400°C. Moreover, 

there is a decrease in Si-N bond appeared at 954 and 905 cm-1 due to oxidation but still 

visible after 1 month of soaking time. For both films, the Si-C peak contribution at 850 

cm-1 is visible.  

 

The oxidation rate decreased radically after 1 month of storage and there is only slight 

difference in the Si-N bonding even after 6 months of storage. Therefore, for further 

optical studies film pyrolysed at 400°C and stored for 6 months are used as a 

representative of 400°C. Other films pyrolysed at higher temperatures (500-800°C) did 

not show any noticeable structural changes in FTIR during the storage and therefore 

these samples are investigated further on to understand the optical potential of the 

SiOCN films. Moreover, the film pyrolysed at 500°C did not show any noticeable 

structural or optical changes different than 400°C so it is not considered in the 

discussion.  

 

The FTIR spectra of SiOCN film pyrolysed at different temperatures are shown in 

Figure 5.16. The transmittance spectrum of the dried film showed different features: 

peak around 3379 cm-1 attributed to the N-H bond, peaks between 3051-2907 cm-1 and 

at 1407 cm-1 related to C-H related vibrations, peak at 1720 cm-1 assigned to the C=O 

bond and a small broad band at 1598 cm-1 related to the C=C vibration. The intense 

band at 2145 cm-1 is attributed to Si-H bond. Si-CH3 stretching gave rise a peak at 1270 

cm-1, whereas Si-C bending and Si-O rocking can be seen at 780 cm-1 and 440 cm-1, 

respectively [S. R. Shah, 2002]. The bond structure of the films has changed during 

pyrolysis (400-800°C). Si-H vibration around 2160 cm-1 disappeared totally at 600°C. 

On the other hand, Si-N vibrations at 2970 cm-1 and 1410 cm-1 could be seen even at 

600°C but not visible at 800°C. 
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Figure 5.16. FTIR spectrum of SiOCN dried film and pyrolysed films at 400-800°C. 

 

Because of the complexity of the area in the range of 1240-835 cm-1, this range studied 

separately for the dried film and with the possible convoluted peaks given in Figure 

5.17. This area is a complex combination of Si-N, Si-C and Si-H bonds. The 

convolution has been done in order to give a perspective to possible bonds, however, it 

needs to be mentioned that this area contains many other possible vibrations (Si-O, Si-

O-C etc.). Therefore, this study is nothing but a possible suggestion about the bonding. 

The Si-N vibrations gave rise to peaks at 1112 cm-1, 954 cm-1 and 906 cm-1; whereas 

Si2-NH bond caused a peak at 1194 cm-1. Si-O vibration at 1029 cm-1 showed that the 

oxidation process started but system is still containing Si-H vibration, which can be 

seen at 873 cm-1. Si-C wagging bond is visible at 858 cm-1.  
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Figure 5.17. FTIR spectrum of dried SiOCN film in the range of 1240-835 cm-1 with 

possible peak fittings. 

 

For the film pyrolysed at 800°C, the peak range modified to 1350-700 cm-1 in order to 

not to lose the information coming from new appeared peaks (Figure 5.18). During 

pyrolysis Si2-NH bond at 1194 cm-1 and Si-H bond at 873 cm-1 disappeared completely 

indicating that inorganic to organic transformation is accomplished. The Si-O vibrations 

at 1141 cm-1 and 1029 cm-1 increased their intensity during pyrolysis. On the other 

hand, the possible Si-O-C bond at around 1095 cm-1 decreased its intensity and totally 

disappeared at 800°C. The area between 1240 cm-1 and 1000 cm-1 has totally changed 

its shape at 800°C and gave rise a broad peak centred at 1157 cm-1 and intense peak at 

1072 cm-1. The peak at 1157 cm-1 was assigned to Si-O bonding however due to its 

broadness; it can contain other vibrations like Si-N vibration at around 1112 cm-1. On 

the other hand, the Si-O peak at 1072 cm-1 was very close to the value in SiO2 (1060 

cm-1). Thus, it can be an indication of starting of phase separation. Similarly, a radical 

decreased in peak intensity of Si-N wagging vibrations at 950 cm-1 and 905 cm-1 are 

detected, respectively. However, these components were still visible even at 800°C. The 

intensity of the peak centred at 780 cm-1 decreased radically after 600°C but Si-C 

components were still visible in spectrum. All the peaks between 850 cm-1 and 720 cm-1 
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assigned to Si-C vibrations. Very small component at 1220 cm-1 was suggested to be 

caused by C-C vibrations. 

 
Figure 5.18. FTIR spectrum of SiOCN film pyrolysed at 800°C in the range of 1350-

700 cm-1 with possible peak fittings. 

 

FTIR results reveal that the system is still dynamic at 400°C and cross-linking is 

continuing at this temperature. The change in the bonding structure of the film affected 

also the luminescence behaviour; which can be seen in Figure 5.19. Film pyrolysed at 

400°C and measured after production showed an intense UV emission centred at 360 

nm with a hump at 320 nm. The peak at 320 nm diminished in PL spectra of the same 

sample measured after 1 month. Looking at the bonding structure of both sample, the 

most radical changes appeared to be in Si2-NH and Si-N bonding. The decrease in the 

intensity of these bonds seems to be caused to a decrease in the PL peak at 320 nm. 

Relatively, the Si-C and Si-N bond areas (950-840 cm-1) seems to be separate from Si-O 

vibration area (1240-950 cm-1), which is the result of cross-linking. As the cross-linking 

takes place, the chains rearrange and increase branching. In the literature, the cross-

linking is reported to be caused an increase in emission intensities. Indeed, in our 

sample the intensity of the emission increases by more than 10 times within 1 month of 

storage. Films after 1 month of storage did not show any difference in PL spectra 
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(similar to FTIR) indicating that the cross-linking rate is decreased and the samples are 

stable for storage in air.  

 
Figure 5.19. Photoluminescence spectra of the SiOCN films pyrolysed at 400°C 

measured after pyrolysis and 1 month of storage.  

 

PL spectra of films pyrolysed at different temperatures are shown in Figure 5.20. 

Pyrolysis 600°C caused a slight shift towards the visible range but the emission is still 

in UV range with a peak centered at 380 nm. The decrease in the intensity of the Si-N 

peak at 927 cm-1 in FTIR affected the PL peak at 320 nm and caused a parallel decrease. 

On the other hand, the emission centered at 360-380 nm (3.4-3.3 eV) is caused by the 

uncondensed Si-CH3, C-H and Si-H bonds, which are indicating that inorganic to 

organic transformation did not completed at 600°C. The slight red shift can be also 

explained by the continuing of cross-linking process.  
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Figure 5.20. (a) Photoluminescence spectra of the SiOCN films pyrolysed at 400-

800°C. (b) Photograph of the SiOCN thin films under UV laser excitation. 

 

Further increase in pyrolysis temperature caused radical red shift to visible range, which 

can be seen also in Figure 5.20. The real shape of the emission could be detected by Ar 

laser (365 nm) and given in Figure 5.21. SiOCN films pyrolysed at 800°C showed an 

emission centered at 650 nm possibly due to the replacement of Si-CH3 and C-H 

bonding by Si-C bonds. The organic to inorganic transformation led the separation of 

the areas of Si-O, Si-N and Si-C bonds, which is visible in FTIR of film pyrolysed at 

800°C. In literature, similar red shift is explained by the existence of the C radicals in 

the system. C dangling bond is suggested to be caused a radical red shift (from 320 nm 

to 550 nm) starting from low temperatures (200°C) to high temperatures (600°C). 

Meanwhile, a small C-C bond contribution at 800°C in FTIR is observed and this 

graphitic carbon can be the cause of the red shift and decrease in PL intensity. PL 

spectrum of the sample at 600°C is shown in Figure 5.21-b to compare the PL 

intensities of the samples. Even only the tail of the emission can be seen (the emission is 

 

 

(b) 
 
As coated          400°C                500°C         600°C  800°C 
 
                     

(a) 
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centered at 380 nm, Figure 5.20), it gave very high intensity with respect to the Si 

reference, which is showing that SiOCN film give very intense emission in UV range 

and they can be good candidates for UV-LED.   

 

Figure 5.21 (a) Photoluminescence spectrum of the SiOCN film pyrolysed at 800°C 

and (b) together with 600°C.  

 

Tauc band calculations showed that the Egap is decreasing dramatically pyrolysis at 

800°C to 4.5 eV (Figure 5.22). The Egap is almost stable at 5.6 eV for the lower 

 

 

(a) 

(b) 
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pyrolysis temperatures, which is corresponding to the PL results. It is an indication that 

the system is stable at temperatures lower than 800°C and the emission is obtained from 

the same source of the emitting centers. The radical changes observed at 800°C are due 

to the inorganic to organic change of the structure and it led a radical red shift in the 

emission.   

 
Figure 5.22. Plot of α(hν)2 versus photon energy of SiOCN thin films annealed at the 

indicated temperatures. The dashed lines are fittings by using Eq. 2.4 and 2.5. 

 

5.4. Conclusions 

 

Parallel to previous studies on boron added SiOCs, boron addition increased the 

crystallization of SiC and enhanced the growth of segregated sp2-carbon nanocrystals 

C. the effect of these two mechanisms were detected in optical analysis. The quantum 

confinement, a continuous red shift in emission spectrum due to cluster size increase, is 

observed with pyrolysis temperature increase. The boron addition did not only decrease 

the phase separation temperature of the SiC but also decreased defects states, which 

does not let us see the quantum confinement in SiOC. The emission intensity as well as 

quantum confinement increased radically by boron addition. However, luminescence 

intensity decreased radically after 1100°C, and therefore not discussed in the study 
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which is probably due to higher free C formation. This study showed that, the 

luminescence quality can be improved extremely by addition of boron. Moreover, the 

processing temperature can be decreased and very broad emission can be obtained.  

 

The study on boron added Si rich SiOC powders were more focused on structural 

properties of these systems, since they were not studied in the literature. The structural 

properties of these powders indicated that starting of crystallization temperature is 

decreased radically (300°C) and crystallization rate is found to be very high compared 

to SiOC system. The crystal size of Si in SiBOC found to be more than 10 times bigger 

than in SiOC at 1400°C. The high crystallization rate led us detect the emission coming 

from Si at 1000°C although it is not observed in boron free SiOC powders. As the 

pyrolysis temperature increases, emission coming from Si clusters either red shift to out 

of spectra or diminished due to high crystalline size and emission only coming from β-

SiC can be seen at 1200°C. Finally at 1400°C, the PL peak shift to UV range like in 

boron free samples due to possible α-SiC formation.  

 

In the last part, we have studied on SiOCN system to understand the possible 

relationship between bonding of the structure and emitting centers. Study showed that 

the system is highly dynamic and continue both cross-linking and oxidation if the 

pyrolysis performs lower than 400°C. After this temperature the emission is stable and 

gives high UV emission at around 360 nm. The intensity of the emission increases with 

the cross-linking increases. Moreover, transformation from organic to inorganic stage 

caused a disappearance of the Si-CH3, C-H and Si-H bonds, which led emission shift 

radically towards visible range and gave very high red emission at 650 nm. A possible 

contribution of free carbon at this temperature may be another reason of the red 

emission at this temperature.  

 



 130 

Conclusion on PhD Study 
 

A new approach to obtain visible luminescence from sol-gel derived SiOC films is 

proposed in this PhD study. This novel method is based on a simple processing route to 

produce nanostructured multicomponent ceramics. According to this route, hybrid sol-

gel derived precursors are converted to ceramic materials by a pyrolysis process in 

controlled atmosphere at 800-1000°C. Higher temperatures lead to formation of Si-rich 

SiOC, C-rich SiOC or stoichiometric SiOC according to the starting composition. The 

final composition, which is relevant to line emission, can be easily controlled through a 

number of processing parameters like the composition of the preceramic gel and the 

heat treatment conditions. Thus, this new processing method seems very well suited for 

the production of white emitting materials since the Si- and C-based emission can be 

tuned across the visible spectral range from UV-blue to red by controlling film 

composition. A further advantage of this method is that the thin films can be formed on 

Si or quartz wafers and this can serve as starting material to process more complex 

photonic devices such as waveguides or LEDs. 

 

By optimizing the synthesis conditions, homogeneous, crack free and stable SiOC films 

have been obtained even at high temperature pyrolysis and demonstrated by surface 

analyses.  Bonding structure of the films during the pyrolysis is investigated by means 

of several characterization methods (FTIR, XPS and SIMS) and the existence of the 

mixed Si-O-C bonds is verified at higher temperatures ( ≥1200°C). The change in 

bonding structure at 1200°C leads us to suggest the starting of the phase separation at 

this temperature. 

 

Wettability of the films are investigated by contact angle measurements and showed 

high hydrophobicity in as-coated stage due to existence of Si-CH3 bonds. On the other 

hand hydrophilicity increased radically with pyrolysis.  

 

Films showed different luminescence behaviour at low temperatures (800-1000 °C) and 

high temperatures (1100-1250°C). In the amorphous state (800-100°C), all SiOC films 

showed UV-blue luminescence peaking at about 410 nm, which is attributed to defect 

states present in the matrix such as dangling bonds. The increase of the pyrolysis 
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temperature (≥ 1100°C) led to the partition of SiOC and formation of SiC, C and Si 

phases. The intense green-yellow luminescence observed in stoichiometric SiOC films 

caused by the presence of SiC and very low amount of free C. On the other hand, Si rich 

SiOC film (TH) showed a very broad and extremely intense white luminescence peak 

centred at 620 nm covering almost all visible range (430 nm-900 nm) at 1200 °C. This 

behaviour is explained by the simultaneous presence of SiC, C and Si in the film. 

External quantum efficiency measurements yielded 11.5% and 5% efficiencies in TH 

and THDH2 films, respectively, pyrolysed at 1200°C. On the other hand, C rich SiOC 

films did not show any noticeable improvement in PL, indicating that C excess in the 

SiOC system is detrimental for the luminescence behaviour.  

 

Solutions which used in thin film production have been characterized extensively by 

means of several characterization properties. Moreover, the related powders and bulks 

have been characterized for the sake of coherency and widen the study.   

 

Structural study on TH precursor showed many important facts about this precursor. In 

our study, triethoxysilane has been chosen as precursor for Si-rich SiOC glasses. By 

FTIR and 13C NMR, residual alkoxy group have been observed in the gel sample due to 

lack of full condensation. These residual alkoxy groups produced C in the system that 

can react with excess Si and forms SiC at high temperatures ( ≥ 1000°C), which has 

been shown by XRD. Therefore, the resultant ceramic became Si rich SiOC and with an 

increase in pyrolysis temperature Sinc+SiCnc/SiO2 has been achieved.  

 

In addition, a study on volumetric shrinkage of films and powders has been done. The 

results showed that the shrinkage in films happens almost 200°C earlier than powder 

and higher amount of siloxane release due to the low dimension, the shrinkage is higher 

than powders. This can be considered as an indication that the pyrolytic transformation 

in films occurs earlier than powders. The compositional difference due to high siloxane 

release may also cause a difference in final composition.  

 

The last part of the study dedicated to two different systems, SiBOCs and SiOCNs, in 

order to understand the effect of the boron addition on SiOC system and study the 

optical properties of the SiOCN. 
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Mainly, the boron addition causes the crystallization of SiC and enhanced the growth of 

segregated sp2-carbon nanocrystals C. they strongly affected the optical properties 

which were investigated by PL and UV-Vis measurements. The quantum confinement, 

a continuous red shift in emission spectrum due to cluster size increase, is observed with 

pyrolysis temperature increase. In other words, tunable (color emission change) SiOC 

films is obtained with high quantum efficiency by adding very few amount of boron in 

SiOC. Moreover, the processing temperature is decreased and very broad emission is 

obtained.  

 

The study on boron added Si rich SiOC powders were more focused on structural 

properties of these systems, since they were not studied in the literature. The structural 

properties of these powders indicated that starting of crystallization temperature is 

decreased radically (300°C) and crystallization rate is found to be very high compared 

to SiOC system. The crystal size of Si in SiBOC found to be more than 10 times bigger 

than in SiOC at 1400°C by XRD study.  

 

Finally optical characterization of a SiOCN PDC system showed very promising optical 

properties. In this case the film is obtained from a commercial polymer precursor. Since 

this system is rich of free carbon the optical characterization has been limited to 

samples pyrolyzed at low temperatures, when the graphitic phase is not yet fully 

developed. Study showed that the system is highly dynamic and continue both cross-

linking and oxidation if the pyrolysis performs lower than 400°C. After this temperature 

the emission is stable and gives high UV emission at around 360 nm. The intensity of 

the emission increases with the cross-linking increases. Moreover, transformation from 

organic to inorganic stage caused a disappearance of the Si-CH3 and C-H bonds, which 

led emission shift radically towards visible range and gave very high red emission at 

650 nm. A possible contribution of free carbon at this temperature may be another 

reason of the red emission at this temperature. Accordingly, results showed that SiOCN 

PDC gives very high emission in UV range and they are promising materials for UV-

LEDs.  
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Appendix  
 

As it is indicated before, optical measurements were performed in Physics Department 

in University of Trento by Romain Guider with the supervision of Prof. Lorenzo Pavesi. 

Photoluminescence as well as lifetime measurements were done to understand the 

optical properties of the films deeply and the results were discussed in the thesis. 

However, due to the complexity of these measurements, the experimental details of the 

measurements were not included in the main chapters and given as an appendix. The 

following chapters are taken from thesis of Romain Guider [Guider, 2009] in order to 

clarify the measurement conditions and improve the understanding of the analyses. 

 

I. External Quantum Efficiency of SiOC samples 
 

The luminescence properties of conjugated polymers are of considerable interest, both 

because of the fundamental information that can be obtained about exciton formation 

and decay, and because of the potential applications for conjugated polymers as the 

emissive material in light-emitting diodes LED [J.H. Burroughes, 1990; H. Sirringhaus, 

1998]. Measurements of the photoluminescence quantum yield of high refractive index 

samples, such as thin films of polymeric semiconductors, are problematic owing to 

difficulties in determining the angular distribution of the emission, reflectivity, and 

absorbance. In the context of conjugated polymers, there is great interest in establishing 

the absolute quantum efficiency for PL as this is considered to determine the limits to 

the efficiency of electroluminescent diodes. A quantitative measurement of external PL 

efficiency is useful for a number of other reasons. For instance, in conjunction with 

time-resolved PL measurements, it provides a means of determining the radiative and 

non radiative decay constants [I. D. W. Samuel, 1993]. Luminescence in conjugated 

polymers is believed to be the result of radiative decay of singlet excitons. Competing 

non-radiative processes provide additional means of decay, and therefore reduce the 

efficiency of luminescence. Possible non-radiative mechanisms in the solid state include 

inter-chain processes (e.g. excimer formation), and quenching of excitons by extrinsic 

or conformational defects. If radiative and non-radiative decay are monomolecular 

processes with rates τr and τnr, respectively, the overall luminescence decay will be 

exponential, with a lifetime, τ, given by 
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111 −−− += nrr τττ         Eq. 1 

 

The efficiency for radiative decay of singlet excitons is then given by 

 

r

q
τ
τ

=          Eq. 2 

 

The efficiency of radiative decay of singlet excitons, q, sets an upper limit on the 

quantum efficiency which can be obtained in a polymer LED.  

In a photoexcitation experiment, a useful figure which can be measured is the 

photoluminescence (PL) efficiency, defined as the number of photons emitted in 

photoluminescence per absorbed photon. This figure depends both on q and on the 

fraction a of absorbed photons which lead to the formation of singlet excitons. a is 

called the branching index. The PL efficiency, or external radiative quantum efficiency, 

η, is defined by Equation 3. 

 

aq
n
n

a

e ⋅==η         Eq. 3 

 

Where ne is the number of photons emitted and na is the number of photons absorbed. 

PL efficiency measurements in solution are relatively simple because it is usually 

appropriate to assume an isotropic angular distribution for the emission. However, this 

is not true for thin solid films. For molecular and polymeric materials, anisotropy in the 

distribution of chromophores leads to an anisotropy in the emission dipole-moment. In 

addition, waveguiding effects also modify the angular distribution of the emission. In 

order to apply the method described above, it would be necessary to map out the 

angular distribution for the emission. This is inconvenient and is not always possible. A 

standard technique for measuring thin-film PL quantum efficiencies involves the use of 

an integrating sphere.  
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Figure 1.1. Schematic description of the experimental set-up for PL measurements. 

 

In order to evaluate the potential of our films, we measured their external quantum 

efficiency (EQE). To measure the photon flux emitted from our samples, we calibrated 

the collection system described in Figure 1.1 (collecting lenses, monochromator, 

photomultiplier, photon counting unit) with a red LED whose responsivity is known. By 

using this calibration, we measured the spectrally integrated luminescence intensity 

emitted by our films under photo-excitation and converted it into an emitted photon 

flux. The so-evaluated photon flux was corrected by the numerical aperture of the 

collecting system by assuming that the film is a lambertian point source. We considered 

that the total absorbed power by the active thin film is equal to the total laser power 

incident on the sample (Elaser) less the power transmitted by the sample (Etrans), the 

power reflected by the sample (Erefl) and the power absorbed by the quartz susbstrate 

(E’refl). We illustrated all these energy in Figure 1.2.  
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Figure 1.2. Schema of absorption, transmission and reflection energy in a case of (a) a 

thin film and (b) of a substrate.  

 

We measured all these values with a power-meter calibrated at 365nm. Knowing the 

wavelength of the laser, we deduced the absorbed photon flux. The ratio between the 

emitted and the absorbed photon fluxes yields the external quantum efficiency of the 

film.  

 

The first step of our measurements was the calibration of the spectrometer with a visible 

LED. In our case, we used a red LED. After measuring the power emitted at a know 

intensity, we made the spectrum of the LED at the spectrometer. On Figure 1.3, we 

show the spectrum of the LED. Before making a relation between the area of the 

spectrum and the power emitted, we corrected the spectrum by the fact that no all the 

light emitted enter in the spectrometer. In fact, the focusing optics is collecting the light 

only in an angle of 10° in front of our emitting device. In the case of our LED, it means 

that only 90% of the total emitting power is entering into our spectrometer. So we 

multiplied our measured emitted power by 0.9. 
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In our case, we measured a power of 9nW corresponding to an area of 2.1x106 for our 

spectrometer.  

 
Figure 1.3.  Luminescence Spectrum of red LED. 

 

The first measurement of External Quantum Efficiency that we made was on colloidal 

suspension of Silicon Nanocrystals. Samples of n- or p-type Si that have been 

electrochemically etched to form porous Si can be ultrasonically dispersed into 

methylene chloride, acetonitrile, methanol, toluene, or water solvents, forming a 

suspension of fine Si particles that is luminescent, due to quantum confinement effects. 

In our case, these samples will be use as a reference and will help us to understand if 

our measurements are relevant or not. We measured first the power absorbed by the 

substrate of our suspension, in our case ethanol. As for a thin film in figure 3.8, we 

measured the energy of the laser incident on our sample, the energy reflected by our 

sample and the energy transmitted by our sample. The difference between the first one 

and the two others gave us the energy absorbed by our substrate (E’abs).  We made the 

same measurements for a sample including our silicon nanocrystals and we can deduce 

the energy absorbed by our nanocrystals using equation 1.4. 

 

absrefltranslaserabs EEEEE '−−−=      Eq. 1.4 
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Now, we measure the energy emitted by these nanocrystals. We made a spectrum in the 

same conditions as the measurements before. Figure 1.4 represents the spectrum of 

various colloidal suspensions of Silicon Nanocrystals with different concentration of 

nanocrystals.  

 

 
Figure 1.4. PL spectra of colloidal suspension of Sinc in ethanol at different 

concentration. (inset) Photography of the sample under UV laser beam. 

 

Before correlated these spectra with certain energy, we should measure how many 

emitted light is going into our spectrometer. We supposed that our nanocrystals in 

suspension have a spherical emission. It means that only 0,88% of the light emitted by 

our sample is going inside our spectrometer. We should by consequence correct the area 

of our spectrum by this number. We made multiples measurements with various 

concentrations of nanocrystals, to have a better value of our external quantum 

efficiency. Table 1.1 resumed the results. 
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Table 1.1. External Quantum Efficiency of colloidal suspension of Sincs in function of 

their concentration 

Concentration of nanocrystals (μL) in 

1mL ethanol solution 

Eabs 

(μW) 

Eemitted  

(μW) 
E.Q.E. 

50 μL 14,7 0,7 4,6% 

100 μL 31,8 1,4 4.3% 

200 μL 53,9 2,8 5,2% 

 

To conclude, we found an external Quantum Efficiency around 5% for this colloidal 

suspension of Silicon Nanocrystals. This result is very close to various results found in 

the literature, which oscillate between 1% and 10% [L.B. Ma, 2006, D. Jurbergs, 2006]. 

 

The use of a spectrometer in these efficiency measurements provides several advantages 

over methods described previously in the literature. Absorption and PL are measured 

simultaneously, so the effects of sample degradation are minimized. We consider that 

the major advantage of this method is that it provides a means of determining quantum 

efficiencies for highly luminescent samples in a very fast way. With this method, we are 

able to make a reliable measurement of the luminescent properties of the sample. The 

method therefore greatly extends the range of materials which can be investigated. 

 

After the demonstration of the procedure, we can no measure the external quantum 

efficiency of our SiOC samples. To verify that our substrate is not influencing our 

luminescence measurements, we made a spectrum of it to verify that it has no 

luminescence in the luminescence range of our SiOC samples.  

 

 

 1250 °C  1200 °C    1100 °C         1000 °C   900 °C     800 °C 
 

Figure 1.5. Photograph of the TH films pyrolysed from 800 °C to 1250 °C under UV 

laser excitation. 
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We found a value of about 5% for the film annealed at 1200°C. This value is 

encouraging as it compares to the best results reported in the literature about Si 

nanomaterials so far [C. Turquat, 2001; J. C. Pivin M. S.-V., 1998]. 

 

Photographs of the TH films pyrolyzed at different temperatures from 800 to 1250°C 

under blue light excitation are shown in Figure 1.5. The strong emission from the edges 

of the samples is caused by waveguide effects of the quartz substrate. The colours of the 

visible photoluminescence range from UV-violet for 800 °C to blue at 1000 °C and 

yellow-orange for 1250 °C. At 1250 °C the substrate starts to show an opaque 

appearance which could be indicative of thermal stability-related problems and can be 

the reason of the sudden PL intensity decrease at this temperature. 

 

The external quantum efficiency of the TH films pyrolysed at 1200 °C was 11.5 %; 

whereas, THDH2 films showed 5% efficiency. Since THDH1 films did not show 

noticeable luminescence, they had relatively low quantum efficiency. These external 

quantum efficiency values are very promising and make SiOC a potential material for 

LED applications. 
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II. Lifetime measurements 
 

The time-resolved photoluminescence (TRPL) technique is a contactless method to 

characterize recombination and transport in photovoltaic materials.  TRPL is measured 

by exciting luminescence from a sample with a pulsed light source, and then measuring 

the subsequent decay in photoluminescence (PL) as a function of time. A wide variety 

of experimental configurations can accomplish this. Most experiments excite the sample 

with a pulsed laser source, and detect the PL with a photodiode, streak camera, or 

photomultiplier tube (PMT) set up for upconversion or single-photon counting. The 

system response time, wavelength range, sensitivity, operational difficulty, and cost 

vary widely for each configuration. 

 

The temporal behaviour of the observed PL from porous Si, following a short excitation 

pulse, exhibits a ‘‘stretched exponential’’ decay line shape explains in Equation 2.1 [L. 

Pavesi, 1994; J. Linnros, 1999]: 

 

( )

















−=

β

τ
tItI exp0                  Eq. 2.1 

 

where I(t) and I0 are the PL intensity during the decay and at t = 0, respectively. Decay 

time τ and dispersion factor β are characteristic wavelength-dependent constants of the 

decay, β being related to the curvature of the decay. In general, β<1 represents a 

distribution of independent single exponentials (from nanocrystals of a certain size as 

determined by the observation wavelength) with different lifetimes. Pavesi et. al. [L. 

Pavesi, 1994] argues that the stretched decay line shape follows, generally, from a 

disordered system of interconnected crystals in which migration of excitons is possible, 

accompanied by capture and delayed release of excitons. The observed PL intensity is a 

probe of the decaying carrier concentration where nonradiative recombination is 

believed to dominate at room temperature [V. Grivickas, 1995].  

 

Applying this model to a colloidal suspension of Si nanocrystals embedded in water, 

samples that we used before to test our measurements of external quantum efficiency, 

one would argue that a single exponential decay would be expected as such a system 
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would be equivalent, in a first approximation, to a system of isolated luminescent 

centers surrounded by infinite oxide barriers. 

580 600 620 640 660 680 700 720 740 760
0,60

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00

1,05

1,10

 D
isp

er
sio

n 
fa

ct
or
 β

Wavelength (nm)

 
Figure 2.1. Dispersion factor b extracted from PL decay data by fitting a stretched 

exponential line shape to the data for a colloidal suspension of Si nanocrystals 

 
As we can see on Figure 2.1, the ‘‘stretched exponential’’ model yielded higher β 

values for decreasing nonradiative lifetimes. In other words, the decay parameter β 

signifies the amount of exciton diffusion and trapping in the system in relation to a 

characteristic recombination time, β=1 being characteristic of a system behaving as 

isolated crystals. Indeed, this behaviour should be observed for low nanocrystal 

densities and, at high densities, for some smaller fraction of crystals being isolated. 

Comparing with our experiment, we found very similar results, with a β value very 

close to one when we are in a configuration of smaller fraction of Silicon crystals being 

isolated.  

 

Examples of time resolved decays of the dominant emission (550nm) from a SiOC 

sample at low (800°C) and high temperature annealing (1200°C) are displayed in 

Figure 2.2. The solid lines show the ‘‘stretched exponential’’ fitting results to the 

experimental data. Two decay time constants of 13.9 and 16.2 ns were obtained. It 
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should be noted that the decay times of about 16 ns are at least one order of magnitude 

slower than thus found in the literature.  

 

 
 

Figure 2.2. Time resolved PL decays curves of SiOC samples annealed at 800°C and 

1200°C. Red solid lines are stretched exponential fits to the decays. 

 
To have a better value of our lifetime, an average lifetime ‹ τ › was calculated with 

Equation 2.2, where Γ represents the gamma function [C. P. Lindsey, 1980].  

 









Γ=

ββ
ττ 1

        Eq. 2.2 

 

Low β values indicate a highly skewed distribution of rates, and thus the average 

lifetimes can be up to an order of magnitude greater than τ. The best-fit parameters τ 

and β were determined and the corresponding average lifetime calculated (Table 2.1). 
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Table 2.1. τ, β and the corresponding average lifetime ‹ τ › calculated with equation 6. 

Sample τ β ‹ τ › 

800°C 13.9 0.76 16.4 

1200°C 16.2 0.76 16.8 
 

 

The observed decay time is in the order of that for known bands of SiO2. In fact, for the 

2.2 eV band, the decay times are around 25 ns [I. A. Movtchan, 1996]. Another very 

important observation is that we did not see any difference between sample annealed at 

800°C and 1200°C, whereas the luminescence of the two samples is very different, and 

as we suppose the SiC contents also. But as SiC lifetime is in the order of the 

nanoseconds [S. J. Xu, 2000], and as we are working in a SiO2 matrix with a higher 

lifetime, it is impossible for us to confirm the presence of SiC nanocrystals in our 

sample with this method. 

 

Finally, this method confirms the fact that we do not have any presence of Si 

nanocrystals in our sample. As everybody know, lifetime of Si nanocrystals are in the 

order of 10-150 μs [J. Linnros, 1999], which is much slower than the one that we found 

in our samples. It confirms our hypothesis about the origin of the photoluminescence 

due to interaction between SiC and C clusters.    
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