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Abstra
t

Re�e
tarray antennas are re�e
tor stru
tures whi
h 
ombine 
hara
teristi
s

of both re�e
tor and array antennas. They exhibit ele
tri
ally large apertures

in order to generate signi�
ant gain as 
onventional metalli
 re�e
tor antennas.

At the same time they are populated by several radiating elements whi
h 
an be


ontrolled individually like 
onventional phased array antennas. They are usually

�at and 
an be folded and deployed permitting important saving in terms of vol-

ume. For these reasons they have been 
onsidered sin
e several years for satellite

appli
ations. Initially 
onstituted by trun
ated metalli
 waveguides and mainly


onsidered for radar appli
ations, they are now mainly 
onstituted by a diele
tri


substrate, ba
ked by a metalli
 plane (groundplane) on whi
h mi
rostrip elements

with variable shape/size/orientation are printed. These elements are illuminated

by the primary feed. The re�e
ted wave from ea
h element has a phase that 
an

be 
ontrolled by the geometry of the element itself. By a suitable design of the

elements that make up the re�e
tarray, it is therefore possible to 
ompose the

phase front of the re�e
ted waves in the desired dire
tion (steering dire
tion),

and to ensure that the obtained overall radiation pattern exhibits a se
ondary

lobe pro�le whi
h meets the design spe
i�
ations. Re�e
tarrays may be used to

synthesize pen
il or shaped beams. The synthesis methods 
ommonly used to

a
hieve this goal are based on three di�erent steps: (a) 
al
ulation of the near

�eld �phase distribution� that the wave re�e
ted by the re�e
tarray must exhibit

to get the desired far-�eld behaviour; (b) dis
retization of su
h distribution into


ells of size 
omparable to that of the elements of interest (i.e., the pat
hes); (
)


al
ulation of the geometry of ea
h elementary 
ell that will provide the desired

re�e
tion 
oe�
ient. The �rst step (a) is a Phase Only approa
h and permits

already to a
hieve fast preliminary indi
ations on the performan
e a
hievable.

A

urate results require the implementation of the steps (b) and (
) as well and

it is thus of fundamental importan
e to have te
hniques 
apable of e�
iently and

a

urately 
al
ulating the re�e
tion 
oe�
ient asso
iated with a given geometry

of the element [in order to e�
iently solve the step (
)℄. This 
oe�
ient is math-

emati
ally represented by a 2x2 
omplex matrix, whi
h takes into a

ount the

relationships between 
o-polar and 
ross-polar 
omponents of the in
ident (due

to the feed) and re�e
ted �eld. This matrix naturally depends on the geometry

of the element, the dire
tion of in
iden
e of the wave (azimuth and elevation)

and the operating frequen
y of the system. The 
omputation of the re�e
tion


oe�
ient is usually performed using ele
tromagneti
 full-wave (FW) simulators;

the 
omputation is however time 
onsuming and the generation of the unit 
ell

s
attering response database be
omes often unfeasible.

In this work, an innovative strategy based on an advan
ed statisti
al learning

method is introdu
ed to e�
iently and a

urately predi
t the ele
tromagneti
 re-



sponse of 
omplex-shaped re�e
tarray elements. The 
omputation of the s
atter-

ing 
oe�
ients of periodi
 arrangements, 
hara
terized by an arbitrary number of

degrees-of-freedom, is �rstly re
ast as a ve
torial regression problem, then solved

with a learning-by-example strategy exploiting the Ordinary Kriging paradigm.

A set of representative numeri
al experiments dealing with di�erent element ge-

ometries is presented to assess the a

ura
y, the 
omputational e�
ien
y, and

the �exibility of the proposed te
hnique also in 
omparison with state-of-the-art

ma
hine learning methods.

Keywords

Re�e
tarrays, S
attering Matrix, Computational Ele
tromagneti
s, Statisti
al

Learning, Ordinary Kriging.
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Chapter 1

Introdu
tion

In the re
ent years, re�e
tarrays have emerged as a 
ost-e�e
tive and reliable

te
hnologi
al solution in many appli
ative domains - in
luding satellite 
ommu-

ni
ations [1℄[2℄, radar [3℄, and IoT [4℄ - where a radiating system 
hara
terized

by a low pro�le, a light weight, a high gain/e�
ien
y, and an a

urate 
ontrol

of the beam 
ontour is required [5℄[6℄. Compared to traditional re�e
tor anten-

nas [7℄, these devi
es 
an guarantee several advantages in
luding lower thi
kness,

�at/
onformal shapes, in
reased robustness, and (potentially) re
on�gurability

[8℄[9℄ thanks to the layout 
onsisting of a feed that illuminates a passive array

of mi
rostrip pat
hes, whi
h in turn properly fo
uses/shapes the re�e
ted beam

by 
ontrolling the (non-uniform) s
attering properties of the re�e
tarray surfa
e

[7℄[10℄. However, the synthesis of high-performan
e re�e
tarrays is still a very


hallenging task from both the methodologi
al and the pra
ti
al viewpoint, even

more when wideband operations and/or a 
areful 
ontrol of the 
ross-polarization


omponents of the re�e
ted �eld are needed [11℄. Generally speaking, 
omplex

pat
h shapes are usually adopted to �t these requirements be
ause of the wider

set of degrees-of-freedom (DoF s) potentially enabling an enhan
ed 
ontrol of the

antenna s
attering properties [2℄[12℄[13℄[14℄[15℄. Unfortunately, designing a re-

�e
tarray featuring 
ompli
ated element geometries often turns out to be in pra
-

ti
e a very 
hallenging task. To determine the optimal shape of ea
h re�e
tarray

element (i.e., setting the DoF s of the re�e
tarray pat
hes), the relationships

between the des
riptors of both the unit 
ell (e.g., geometry/size of the pat
h

metallizations) and the illumination (e.g., the polarization/frequen
y/angle-of-

arrival of the in
ident �eld) with the asso
iated s
attering 
oe�
ients must be

known [11℄[15℄. This knowledge is analyti
ally available only for �simple� unit


ells [16℄[17℄ des
ribed by few DoF s. Otherwise, s
attering matrix -vs-des
riptors

look-up tables (LUT s), whi
h are o�-line 
omputed through extensive full-wave

(FW ) simulations [18℄[19℄[20℄, are usually built [2℄[14℄[15℄[18℄. Be
ause of the

exponential grow of the number of LUT s entries with the DoF s of the unit 
ells

[20℄, advan
ed re�e
tarray geometries 
hara
terized by arbitrary variations of

many des
riptors are realisti
ally impossible to handle be
ause of the infeasible

1



generation and storage of the asso
iated unit 
ell s
attering response databases

(UCS-DBs). To over
ome these latter issues towards the ful�lment of advan
ed

and more 
hallenging tele
ommuni
ation standards, an innovative methodology

for the quasi- or real-time predi
tion of the ele
tromagneti
 response of 
omplex

re�e
tarray elements is hereinafter introdu
ed. The evaluation of the s
attering


oe�
ients of generi
 re�e
tarray unit 
ells (i.e., featuring an arbitrary num-

ber of DoF s) is �rstly re-
ast as a regression problem and then solved with a

learning-by-example (LBE ) strategy able to exploit the information provided by

a redu
ed set of FW simulations (namely the �examples�) performed on
e and

o�-line. More spe
i�
ally, the statisti
al learning method is based on the Or-

dinary Kriging (OK ) [21℄[22℄[23℄ here 
ustomized to the ve
torial problem at

hand. Su
h guidelines and methodologi
al 
hoi
es have been motivated by the

following 
onsiderations:

• the s
attering features of 
omplex re�e
tarray unit 
ells (e.g., the Phoenix

unit 
ells [12℄[13℄[24℄) are often smoothly dependent on their geometri
al

features [2℄[14℄[15℄. Therefore, it is expe
ted that a suitable equivalent

meta-model may be dedu
ed to reliably predi
t the s
attering features as-

so
iated to a unit-
ell instead of 
omputing and storing a huge UCS-DB ;

• standard interpolation methods [25℄ 
annot be employed for ele
tromag-

neti
 predi
tion purposes owing to the highly non-linear nature of the

relation between the unit-
ell des
riptors and the 
orresponding ele
tro-

magneti
 response [2℄[14℄[15℄;

• among existing state-of-the-art LBE strategies, OK has emerged as a

very 
ompetitive predi
tion tool when high-�delity/noiseless input/training

samples are available [21℄[22℄[23℄.

As for the main innovative 
ontributions of this work, they in
lude (a) the in-

trodu
tion of a 
omputationally-e�
ient strategy for predi
ting the s
attering

response of re�e
tarray elements featuring arbitrarily 
omplex unit 
ells; (b) the

development of a numeri
al tool that, whether integrated within a system-by-

design (SbD) loop [26℄, 
ould enable the optimal synthesis of next-generation

re�e
tarray antennas with 
ontrolled 
o- and 
ross-polar radiation patterns; (
)

the 
ustomization of an advan
ed LBE te
hnique based on the OK for the pre-

di
tion of 
omplex-valued s
attering matri
es of periodi
 planar stru
tures, thus

useful not only for re�e
tarrays, but also generalizable to analogous ele
tromag-

neti
 engineering problems (e.g., the analysis of frequen
y-sele
tive surfa
es and

metasurfa
es); (d) the derivation of pra
ti
al guidelines (e.g., referen
e setups

for various trade-o�s between time saving and predi
tion a

ura
y) for an easy

and reliable use of su
h an OK -based re�e
tarray meta-modeling te
hnique.

2



CHAPTER 1. INTRODUCTION

Thesis outline

The outline of the thesis is as follows. Chapter 2 is dedi
ated to a deep analy-

sis of some sele
ted Learning-by-Example strategies whi
h have been taken into

a

ount for the problem of e�
iently 
omputing the ele
tromagneti
 response

of generi
 re�e
tarrays unit 
ells. More in details, the two-step predi
tion pro-


ess is summarized and then a detailed analysis of the training phase and of the

predi
tion phase is 
arried out. In Chapter 3 the 
omputation of the s
attering


oe�
ients of simple re
tangular unit 
ells is des
ribed. It is then explained the

di�
ulty of 
omputing the response for unit 
ells with more 
omplex shapes.

The ne
essity of an innovative methodology for the quasi or real-time predi
tion

of the response of 
omplex re�e
tarray elements is here emphasized. Chapter 4

des
ribes the proposed methodology: the re�e
tarray modeling problem is math-

emati
ally formulated and the OK -based predi
tion method is deeply analyzed.

Representative numeri
al results are reported to illustrate the features and to

assess the potentialities of the proposed approa
h. Moreover, 
omparative anal-

yses on the a

ura
y and the 
omputational e�
ien
y of this latter versus FW

simulation methods and 
ompetitive/most-advan
ed state-of-the-art regression

te
hniques are 
arried out. Eventually, some 
on
lusions and �nal remarks fol-

low.
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Chapter 2

Learning-by-example (LBE)
strategies

2.1 Motivation and obje
tive of learning-by-examples

strategies

Learning-by-examples strategies are 
omputer-aided approa
hes whi
h allow deal-

ing with problems 
hara
terized by an un
ountable number of features and vari-

abilities.

In the �eld of EM engineering the 
omputational 
ost of 
lassi
 synthesis (or

imaging) strategies are mainly linked to the great amount of time required by

EM simulators. Full-wave solvers, based for example on the method of moments

(MoM), �nite element method (FEM) or �nite-di�eren
e time-domain (FTDT)

are time-
onsuming. As an example, 
onsidering evolutionary optimization prob-

lems where there is the need to repeat a large number of simulations, the total


ost is dire
tly related to the CPU time ne
essary to evaluate the �tness of a

single trial solution. If we denote with

• P : the number of individuals;

• I: the number of iterations performed by the algorithm;

• ∆t: the CPU time required to 
ompute the �tness of a single individ-

ual/trial solution;

we have that the total 
ost of a single optimization is given by

Cost = P × I ×∆t

In this framework LBE methods drasti
ally redu
e the 
omputational e�ort

by emulating or predi
ting the behaviour of the high-�delity simulations.

5



2.1. MOTIVATION AND OBJECTIVE OF LEARNING-BY-EXAMPLES

STRATEGIES

Predi
tion as a �two-step pro
ess�

We 
an summarize the main loop involving a predi
tor as a substitute of the EM

simulator in the following two steps

1. Training. This step is related to how sele
t samples whi
h are the most

representative of the real fun
tion behavior. In other words, the aim is to

redu
e the number of simulations required to produ
e an a

urate global

representation of the fun
tion to predi
t over the whole domain. The train-

ing pro
ess is 
omposed by three logi
al phases:

(a) Redu
tion of the Degrees of Freedom (DoFs) of the fun
-

tional spa
e. Given a fun
tional spa
e of K variables, there is the

possibility that the fun
tion doesn't depend equally on all the variables

(i.e., some of them have more �impa
t� on the output w.r.t. others).

This task is thus devoted to redu
e the number of input variables (i.e.,

the number of DoFs) from K to H (with H < K).

(b) �Exhaustive� representation of the fun
tional spa
e. Given

a fun
tional spa
e of H (≤K) variables, it is ne
essary to properly

sele
t samples in order to build a training set able to 
olle
t the most

information from the fun
tion over all the input spa
e. In addition

the minimum number of training samples needed to a

urately train

the model has to be de�ned;

(
) Predi
tionModel building: this step is strongly related to previous

step and is aimed at building the surrogate model whi
h will be used

to map the input to the output spa
e in order to emulate the behavior

of a real system.

In order to deal with step 1.(a) some of the existing methods for the re-

du
tion of the DoFs are:

• Sammon Mapping;

• Prin
ipal Component Analysis (PCA);

• Partial Least Squares (PLS);

• Fisher Linear Dis
riminant Analysis (LDA);

• Step-wise Dimension Redu
tion;

• Su�
ient Dimension Redu
tion;

• Non-Linear PCA;

In order to deal with step 1.(b) the proper method for sampling the fun
-

tional spa
e has to be 
hosen. Some known methods are:

One-Shot sampling strategies

6



CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

• Uniform Grid Sampling (GRID);

• Uniform Random Sampling (RND);

• Latin Hyper
ube Sampling (LHS);

Iterative adaptive sampling strategies

• LOLA− V oronoi adaptive sampling;

• MSE − Based adaptive sampling;

• EIGF − Based adaptive sampling;

2. Test or Predi
tion. Starting from the training steps, this task is devoted

to predi
t the fun
tion in every point of its domain/support. Methods of

predi
tion 
an be 
lassi�ed into two main 
lasses:

• Interpolation te
hniques

� Nearest neighbor interpolator;

� Linear (Delaunay) interpolator;

� Polynomial interpolator;

� Spline interpolator;

• Learning-by-Example (LBE) te
hniques

� ANN (Arti�
ial Neural Network);

� RBFN (Radial Basis Fun
tion Network);

� SV R (Support Ve
tor Regression);

� GP (Gaussian Pro
ess, or �Kriging� when regression is 
onsid-

ered);

7



2.2. TRAINING PHASE: REDUCTION OF THE DOFS OF THE

FUNCTIONAL SPACE

2.2 Training phase: Redu
tion of the DoFs of the

fun
tional spa
e

2.2.1 What is dimensionality redu
tion?

Main goal

The main goal of dimensionality redu
tion te
hniques is to redu
e the number

of unknowns of a given problem from K to H , with

H < K

Why should we use dimensionality redu
tion?

Redu
ing the number of unknowns has many bene�ts when dealing with

regression:

1. Redu
e the 
omputational 
omplexity (and 
onsequently the time)

of the training and test phase of a given predi
tor;

2. [Strongly related to point 1℄ Enhan
e the predi
tion a

ura
y. In gen-

eral, all the predi
tion te
hniques work better if the number of unknowns

is not too high;

3. De
rease the number of required training samples (N). One of the
main problems when training a predi
tor is the so-
alled �
urse of dimen-

sionality�, whi
h 
auses an exponential growth of the number of training

samples (N) required to model a fun
tion with the dimension of the input

spa
e (K).

It is important to observe that many spa
e redu
tion te
hniques have not been

introdu
ed as tools for improving predi
tion. In many 
ases, spa
e redu
tion

is used to simply improve the way data is visualized, in order to make it more

understandable by the interested user.

Where dimensionality redu
tion makes sense in regression?

This �gure shows a parti
ular ben
hmark fun
tion of K = 2 variables. It is

de�ned as

y (x1, x2) = cos (x1)

8
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Figure 2.1: Fun
tion y (x1, x2) = cos (x1), 
omputed for {x1, x2} ∈ [−10,+10].
(a) 3D plot and (b) 2D plot.

In this 
ase, variable x2 has no impa
t on the output value (i.e., on the

fun
tion value y (x1, x2)), sin
e this latter depends only on the values assumed

by the variable x1. By 
onsidering this parti
ular example, one should now have

a more 
lear idea of what are the main steps that should be performed by a spa
e

redu
tion te
hnique:

1. Analyze the relationship between the input variables and the


omputed output. In this 
ase, analyze the impa
t of both x1 and x2 on
y (x1, x2);

2. Determine what are the input variables showing the largest im-

pa
t on the output. In this 
ase, understand that x2 is meaningless;

3. Redu
e the number of variables, keeping only the variables that impa
t

on the fun
tion value. In this 
ase, x2 should be dis
arded.

Variable sele
tion vs. variable extra
tion

Spa
e redu
tion te
hniques 
an be 
lassi�ed into two main 
lasses:

1. Variable sele
tion: it is the pro
ess of sele
ting a subset of relevant

variables for use in model 
onstru
tion;

2. variable extra
tion: is the pro
ess of 
reating new variables by 
ombin-

ing the the original ones.

When variable sele
tion and when variable extra
tion?

Variable sele
tion should be performed when some of the input variables have

a smaller impa
t on the fun
tion value with respe
t to the others. These variables


an be dis
arded, by keeping the H most signi�
ant ones.

9



2.2. TRAINING PHASE: REDUCTION OF THE DOFS OF THE

FUNCTIONAL SPACE

For example, 
onsidering the fun
tion reported in Fig. 2.1 the variable x2
has no impa
t on the output, so it 
an be simply dis
arded. All the information

is indeed 
ontained in the value of variable x1.
On the 
ontrary, variable sele
tion 
an fail if we 
onsider the same fun
tion,

but rotated by an angle ϑr

y (x1, x2) = cos [x1cos (ϑr)− x2sin (ϑr)]
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Figure 2.2: Fun
tion y (x1, x2) = cos [x1cos (ϑr)− x2sin (ϑr)], 
omputed for

{x1, x2} ∈ [−10,+10] . ϑr = 30 [deg℄. (a) 3D plot and (b) 2D plot.

In this 
ase, the fun
tion value depends on a dire
tion whi
h is di�erent from

x1 and x2 
onsidered singularly. The goal of feature extra
tion is then to properly
identify this dire
tion as a fun
tion of x1 and x2, so that the fun
tion value will

be expressed in terms of this new variable.

Fun
tion dependent spa
e redu
tion vs. fun
tion independent spa
e

redu
tion

Spa
e redu
tion te
hniques 
an be also 
lassi�ed into

1. Fun
tion dependent (�supervised�) te
hniques: the redu
tion of the

number of variables takes into a

ount the relationship between input vari-

ables and asso
iated fun
tion response. Only variables showing the largest

impa
t on the fun
tion are 
onsidered. State-Of-The-Art te
hniques be-

longing to this 
ategory are:

(a) Partial Least Squares (PLS);

2. Fun
tion independent (�unsupervised�) te
hniques: the redu
tion

of the number of variables is performed without analyzing/knowing the as-

so
iated output. In other words, these te
hniques analyze the distribution

10
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of the training samples in the input spa
e, without 
onsidering their 
or-

relation with the fun
tion. State-Of-The-Art te
hniques belonging to this


ategory are:

(a) Prin
ipal Component Analysis (PCA);

(b) Sammon Mapping.

Linear vs. non-linear feature extra
tion

1. Linear te
hniques: the new H variables are linear 
ombinations of the

old K variables. The transformation is expressed by the multipli
ation of

the original N K-dimensional samples X for a transformation matrix W

Xnew = XW

[N ×H ] = [N ×K] [K ×H ]

2. Non-linear te
hniques: The new H variables are not linear 
ombinations

of the old N variables

Xnew = ℑ{X}

where the transformation matrix ℑ{.} is non-linear.

11
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FUNCTIONAL SPACE

2.3 Training phase: �Exhaustive� representation

of the fun
tional spa
e

There exist di�erent sampling strategies in order to build training sets with given

dimensions (N). Two main 
lasses 
an be identi�ed:

1. One-shot sampling strategies;

2. Adaptive (or sequential) sampling strategies.

2.3.1 One-shot sampling strategies: overview

In this se
tion, the following one-shot sampling strategies will be presented:

1. Uniform grid sampling (GRID);

2. Uniform random distribution sampling (RND);

3. Latin Hyper
ube Sampling (LHS);

2.3.1.1 One-shot sampling strategies: Uniform grid sampling (GRID)

Parameters:

• Variation range (min, max) for ea
h variable (xi, i = 1, ..., K);

• Number of quantization levels for ea
h variable (Qi, i = 1, ..., K);

The total number of generated samples is given by N = QK
.
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x 2

x1

2D grid sampling, Q=5, N=Q2=25 sampling points

Figure 2.3: Uniform grid sampling for the 2D 
ase, N = 25 samples. The number

of quantization levels is set to Q = 5 both for x1 and for x2, thus generating a

set of N = QK = 52 = 25 samples.
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2.3.1.2 One-shot sampling strategies: Uniform random sampling (RND)

Parameters:

• Variation range (min, max) for ea
h variable (xi, i = 1, ..., K);

• Total number of samples to generate (N).

The N samples are sele
ted a

ording to a standard uniform distribution.
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2D uniform random distribution samples, N=25 sampling points

Figure 2.4: Uniform random sampling for the 2D 
ase, N = 25 samples.

2.3.1.3 One-shot sampling strategies: Latin Hyper
ube Sampling (LHS)

In the 
ontext of statisti
al sampling, a square grid 
ontaining sample positions

is a Latin square if (and only if) there is only one sample in ea
h row and ea
h


olumn. A Latin hyper
ube is the generalization of this 
on
ept to an arbitrary

number of dimensions, whereby ea
h sample is the only one in ea
h axis-aligned

hyperplane 
ontaining it.

Parameters:

• Variation range (min, max) for ea
h variable (xi, i = 1, ..., K);

• Total number of samples to generate (N);

Constru
tion:

The N samples in a K-dimensional input spa
e are sele
ted a

ording to

these simple steps:

1. Divide the range of ea
h input variable (xk, k = 1, ..., K) into N equally

sized segments. Denote with ∆k the length of ea
h segment in the k-th
dimension.

13
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2. For ea
h dimension k (k = 1, ..., K) randomly sele
t a point inside ea
h

of the N intervals. This means that on dimension k you will get a set of

samples xk =
{
x1k, x

2
k, ..., x

N
k

}
, where (n− 1)∆k ≤ xnk ≤ n∆k;

3. Randomly 
ombine a sele
ted point for ea
h dimension (k = 1, ..., K) to

generate a new sample (xn = {xn1 , x
n
2 , ..., x

n
K}).

4. Repeat step 3 until all N 
ombinations are generated.
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2D LHS samples, N=25 sampling points

Figure 2.5: LHS sampling for the 2D 
ase, N = 25 samples.

2.3.2 Adaptive (sequential) sampling strategies: overview

In this se
tion, some state-of-the-art adaptive (or sequential) training te
hniques

will be analyzed. In parti
ular, the following strategies will be 
onsidered:

1. LOLA-Voronoi adaptive sampling (LOLA-Voronoi);

2. MSE-based adaptive sampling (maximum un
ertainty sele
tion 
riterion,

MSE);

3. EIGF -based adaptive sampling (Expe
ted Improvement For Global Fit,

EIGF).

Sequential design strategies o�er a huge advantage over one-shot experimental

designs (su
h as the Latin Hyper
ube Sampling, LHS) be
ause they 
an use

information gathered from previous data points in order to determine the lo
ation

of new data points.

14
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2.3.2.1 Adaptive (sequential) sampling strategies: basi
 idea

First, an initial bat
h of data points is evaluated using a minimal experimental

design. This design is usually one of the traditional designs from DOE (Design

Of Experiments), su
h as a Latin Hyper
ube. The initial design must be large

enough to guarantee a minimal 
overage of the domain, but should be small

enough so that there is room for improvement, allowing the sequential design

strategy to do its work.

Based on the initial experimental design, a surrogate model is built and the

a

ura
y of this model is estimated using one or more well-known error metri
s.

Then, the lo
ation of some additional samples are 
hosen by the adaptive sam-

pling strategy. Finally a new surrogate model is built using all the data gathered

so far, and the model a

ura
y is estimated again. If a stop 
riterion is not

met, the entire sample sele
tion pro
ess is started all over again. The goal is to

redu
e the overall number of samples, sin
e evaluating the samples (running the

simulations) is the dominant 
ost in the entire surrogate modeling pro
ess.

2.3.2.2 Adaptive (sequential) sampling strategies: LOLA − V oronoi
adaptive sampling

LOLA-Voronoi [27℄ is a novel hybrid sequential design te
hnique that 
ombines

an exploration metri
 based on Voronoi tessellations with an exploitation met-

ri
 using lo
al linear approximations. Sequential design strategies o�er a huge

advantage over one-shot experimental designs (su
h as the Latin Hyper
ube Sam-

pling, LHS) be
ause they 
an use information gathered from previous data points

in order to determine the lo
ation of new data points. The advantage of this

method over other sequential design is that it is independent of the model type

(Kriging, SVR, et
...). Its main disadvantage is its high 
omputational 
omplex-

ity (O(N2), where N is the training set dimension).

Steps:

1. Build an initial training set with N1 samples using a single shot sampling

te
hnique (e.g., Latin Hyper
ube Sampling, LHS);

2. Analyze the available samples and generate ∆N additional samples by

jointly maximizing the exploration and exploitation metri
s. For ea
h sam-

ple xn, n = 1, ..., N1, 
ompute the sample s
ore H as:

H (xn) = V (xn) +
E (xn)∑N1

j=1E (xn)

where:

(a) V (xn) is the estimated Voronoi 
ell size asso
iated to sample xn.

This term is related to the exploration 
apability: small values of

15
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V (xn) indi
ate a high density of samples, while high values of V (xn)
indi
ate that the region surrounding sample xn is 
hara
terized by a

low density of samples. New samples should be added where

the 
urrent samples density is low.

(b) E (xn) is an estimation of how non-linear the fun
tion is around sam-

ple xn.

E (xn) =
Z∑

i=1,i 6=n

|y (xi)− (y (xn) + g · (xi − xn))|

Where g is the estimated gradient at point xn and Z < N1 is the

number of samples 
loser to xn (they are 
alled the �neighbors� of

xn). This term is related to the exploitation 
apability: high values

of E (xn) indi
ate a high non-linearity of the real fun
tion in the region
surrounding the sample xn. New samples should be added where

the fun
tion rapidly varies.

3. Sort the input samples by H ;

4. For j = 1, ...,∆N :

(a) Sele
t the j − th highly ranked sample (xj);

(b) Generate a set {Ωj} of R random samples inside the Voronoi 
ell of

xj: {Ωj} = {ωj,1; ...;ωj,r; ...;ωj,R};

(
) Sele
t the new j-th sample in {Ωj} as the farthest sample from xj :

xN1+j = arg
{
max{Ωj} (‖xj − ωj,r‖)

}
;

(d) Compute the fun
tion value asso
iated to the new sample y (xN1+j)
and add the pair {xN1+j; y (xN1+j)} to the training set for the next

LOLA-Voronoi iteration.

5. The new training set will be 
omposed by N1+∆N samples. Go to step (2)
to generate new additional ∆N samples. Iterate until a maximum number

of training samples (Nmax) is rea
hed.

For further details on how the exploration (V (xn)) and exploitation metri
s

(E (xn)) are 
omputed, please refer to [27℄.

NOTE: the pro
ess of generating training sets with in
reasing dimensions

is 
ompletely independent from the surrogate model. New samples are in fa
t

added on the basis of the previously observed samples (observations).

Parameters:

• Dimension of the initial training set (N1);

• Step ∆N : if ∆N is low, more resolution in a
quiring information from

previous samples but more 
omputational time!
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2.3.2.3 Adaptive (sequential) sampling strategies: MSE−Based adap-
tive sampling

This strategy sele
ts new samples where the highest predi
tion un
ertainty (MSE)
is observed.

Steps:

1. Build an initial training set with N1 samples using a single shot sampling

te
hnique (e.g., Latin Hyper
ube Sampling, LHS) and 
reate a Kriging

surrogate model using these training samples;

2. Generate a set of C 
andidate points using a single shot sampling te
hnique

(e.g., Latin Hyper
ube Sampling, LHS);

3. Use the Kriging model to predi
t the C 
andidate solutions, and rank them

a

ording to the predi
tion un
ertainty (MSE);

4. Sele
t ∆N 
andidates showing the highest MSE;

5. Compute the real output of the new sele
ted samples;

6. Add the new samples and their asso
iated output to the original training

set in order to generate a new training set. This will be 
omposed by

N2 = N1 +∆N training samples;

7. Train a new surrogate model using the new training set;

8. Go to step (2) to generate additional∆N samples, iterate until a maximum

number of training samples (Nmax) is rea
hed.

Parameters:

• Dimension of the initial training set (N1);

• Step ∆N ; low ∆N implies more steps (= more 
omputational time) to

rea
h a given training dimension (N);

• Number of 
andidate points (C). Note that C ≥ ∆N . Authors in [28℄

indi
ate as a good 
hoi
e setting the number of 
andidates C = 200 ×K,

where K is the problem dimension.

2.3.2.4 Adaptive (sequential) sampling strategies: EIGF−Based adap-
tive sampling

This strategy sele
ts new samples where the highest Expe
ted Improvement For

Global Fit (EIGF ) is observed. The EIGF for a given point x is de�ned as

[28, 29℄:

17



2.3. TRAINING PHASE: �EXHAUSTIVE� REPRESENTATION OF THE

FUNCTIONAL SPACE

EIGF (x) = (ỹ(x)− y(x∗))2 +MSE (ỹ(x))

where:

• ỹ(x): predi
ted output for the point x;

• MSE (ỹ(x)): predi
tion un
ertainty (MSE) asso
iated to the predi
ted

value ỹ(x);

• y(x∗): observed (real) output at the sampled point x∗
, that is 
losest in

distan
e to the 
andidate point x.

The EIGF 
onsists of two sear
h 
omponents. The �rst (lo
al) 
omponent will

tend to be large at a point where it has the largest (response) in
rease over its

nearest sampled point. The se
ond (global) 
omponent is large for points with

the largest predi
tion un
ertainty (these tend to be far from existing sampled

points).

Steps:

1. Build an initial training set with N1 samples using a single shot sampling

te
hnique (e.g., Latin Hyper
ube Sampling, LHS) and 
reate a Kriging

surrogate model using these training samples;

2. Generate a set of C 
andidate points using a single shot sampling te
hnique

(e.g., Latin Hyper
ube Sampling, LHS);

3. Use the Kriging model to predi
t the C 
andidate solutions, and rank them

a

ording to the EIGF metri
;

4. Sele
t ∆N 
andidates showing the highest EIGF ;

5. Compute the real output of the new sele
ted samples;

6. Add the new samples and their asso
iated output to the original training

set in order to generate a new training set. This will be 
omposed by

N2 = N1 +∆N training samples;

7. Train a new surrogate model using the new training set;

8. Go to step (2) to generate additional∆N samples, iterate until a maximum

number of training samples (Nmax) is rea
hed.

Parameters:

• Dimension of the initial training set (N1);

18
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• Step ∆N ; low ∆N implies more steps (= more 
omputational time) to

rea
h a given training dimension (N);

• Number of 
andidate points (C). Note that C ≥ ∆N . Authors in [28℄

indi
ate as a good 
hoi
e setting the number of 
andidates C = 200 ×K,

where K is the problem dimension.

2.3.2.5 De�nition of the sampling metri
 (Λ)

Main idea:

A good sampling te
hnique should have the following 
hara
teristi
s:

• Pla
e many samples where the fun
tion rapidly varies, and less

samples where the fun
tion is smooth (exploitation 
apability);

• Cover the input spa
e as mu
h as possible (exploration 
apability).

The following sampling metri
 
an be de�ned, in order to measure the ability of

a given sampling strategy to respe
t the above two 
onditions:

Λ =
1

N

N∑

n=1





[
E(xn)

∑N
j=1 E(xj)

]

V (xn)





where:

• N is the number of training samples;

• E (xn) is the LOLA-Voronoi metri
 for measuring the non-linearity of the

fun
tion near the training sample xn. High values of E (xn) indi
ate an

high non-linearity near xn.

• V (xn) is the estimated Voronoi 
ell size asso
iated to the training sample

xn. Small values of V (xn) indi
ate a dense sampling near xn.

A

ording to this metri
, the following 
ases are penalized:

• Many samples where the fun
tion is smooth;

• Few samples where the fun
tion rapidly varies.
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2.4 Training phase: Predi
tion model building

This sep is aimed at building the model that will be used in the test phase.

The model is built starting from the training samples available. The problem of

building the model 
an be stated as:

PREDICTION MODEL BUILDING: Given the training set

x(i) =
[
x
(i)
1 , x

(i)
2 , ..., x

(i)
K

]
, i = 1, ..., N and sele
ted the LBE te
hnique

de�ne the estimation fun
tion

︷︸︸︷
y (·) that better represents the be-

havior of the real system y (x) for a spe
i�
 and arbitrary input spa
e
x.

Depending on the regression strategy 
hosen this step varies. In the following

the predi
iton model building is 
hara
terized for ea
h of the learning-by-example

te
hniques analyzed in next se
tion:

• Kriging: estimate the set of hyperparameters used for the 
al
ulation of

the 
orrelation between the training samples;

• Support Ve
tor Regression: de�ne weights of the dis
riminant fun
tion in

order to guarantee that the training samples deviate from the predi
ted

fun
tion a maximum quantity ε;

• Radial Basis Fun
ion Networks: de�ne the weights of the a
tivation fun
-

tion.

A detailed analysis of these te
hniques is given in next se
tions.
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2.5 Test or Predi
tion phase: Predi
tion through

interpolation te
hniques

2.5.1 Nearest neighbor interpolator

Let be given

• x(i) ∈ R
K
, x(i) =

{
x
(i)
k , k = 1, ..., K

}
: i-th training sample point in K-

dimensional spa
e, i = 1, ..., N ;

• yi = y
(
x(i)
)
: fun
tion value (output) asso
iated to the i-th training sample

point x(i)
;

• x∗ ∈ R
K
, x∗ = {x∗k, k = 1, ..., K}: K-dimensional point at whi
h we are

performing the predi
tion (i.e., the output y (x∗) is unknown and has to

be estimated given the available information from the N 
olle
ted training

samples).

Main idea:

The predi
ted value at position x∗
is equal to the value assumed by the nearest

(in terms of Eu
lidean distan
e) training sample.

Steps:

1. Cal
ulate the Eu
lidean distan
e between the test sample point x∗
and

ea
h i-th training sample as follows:

di =
∥∥x(i) − x∗

∥∥ = d
(
x(i),x∗

)
=

√√√√
K∑

k=1

(
x
(i)
k − x∗k

)2

2. The predi
ted value at position x∗
is equal to the value assumed by the

nearest (in terms of Eu
lidean distan
e) training sample

ỹ (x∗) = y

(
argmin

x(i)
{di}

)

Example: A
kley's fun
tion K = 1 variables

The following �gure shows the predi
ted output made by a nearest neigh-

bor interpolator when applied to the estimation of the 1-dimensional A
kley's

fun
tion, when a set of N = 9 uniformly-spa
ed training samples are provided.
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Figure 2.6: A
kley's fun
tion, K = 1 variables. True fun
tion vs predi
tion made

by the nearest neighbor interpolator.

Example: A
kley's fun
tion K = 2 variables

The following �gure shows the predi
ted output made by a nearest neigh-

bor interpolator when applied to the estimation of the 2-dimensional A
kley's

fun
tion, when a set of N = 25 uniformly-spa
ed training samples are provided.
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Figure 2.7: A
kley's fun
tion, K = 2 variables. (a) True fun
tion vs (b) predi
-

tion made by the nearest neighbor interpolator.

Extrapolation 
apabilities of the nearest neighbor interpolator

The nearest neighbor interpolator is able to do �extrapolation�. This pro
ess

is related to the 
apability of estimating the fun
tion value even beyond the

original observation range. When estimating the fun
tion value at a position

that lies outside the observed domain (i.e., the K-dimensional region identi�ed
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by the set of available training samples), the interpolator will simply use the

value of the nearest (in terms of Eu
lidean distan
e) training sample.
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Figure 2.8: Extrapolation 
apabilities of the nearest neighbor interpolator (ex-

ample K = 1).

2.5.2 Linear interpolation (based on Delaunay triangula-

tion)

Let be given

• x(i) ∈ R
K
, x(i) =

{
x
(i)
k , k = 1, ..., K

}
: i-th training sample point in K-

dimensional spa
e, i = 1, ..., N ;

• yi = y
(
x(i)
)
: fun
tion value (output) asso
iated to the i-th training sample

x(i)
;

• x∗ ∈ R
K
, x∗ = {x∗k, k = 1, ..., K}: K-dimensional point at whi
h we are

performing the predi
tion (i.e., the output y (x∗) is unknown and has to

be estimated given the available information from the N 
olle
ted training

samples);

• X =
{
x(i), i = 1, ..., N

}
: set of N , K-dimensional training sample points;

Main idea:

• In 1-dimensional 
ase (i.e., K = 1), the fun
tion value at position x∗ =
x∗ is given by the equation of the straight line passing between the two

neighboring points.
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• For higher dimensional spa
es (i.e., K > 1), a more 
omplex formulation is

needed, whi
h basi
ally extends the basis idea for the 1-dimensional 
ase.

In parti
ular, the 
hoi
e of the neighboring training samples that should

be used to predi
t the output at position x∗
is performed by means of a

Delaunay triangulation of the training samples in the input spa
e. The

predi
tion ỹ (x∗) is then given by a weighted sum of the fun
tion values

assumed by the samples in the neighborhood of x∗
.

Steps for the 
reation of the Delaunay graph (triangulation):

1. Let be given a set X of N K-dimensional training samples (in the following

�gures we will refer for simpli
ity to the 
ase K = 2)

Figure 2.9: Delaunay triangulation: set of N K-dimensional points, X (i.e., the

position of the training samples). Case K = 2.

2. Create theVoronoi Diagram V or (X), that is the subdivision of the plane
into Voronoi 
ells V

(
x(i)
)
for all x(i) ∈ X. The Voronoi 
ell asso
iated to

sample x(i)
is de�ned as the region of points whose distan
e (Eu
lidean) to

sample x(i)
is lower than the distan
e to all other training samples

V
(
x(i)
)
=
{
x| d

(
x,x(i)

)
≤ d

(
x,x(j)

)
∀i; j = 1, ..., N ; i 6= j

}

where d
(
x,x(i)

)
denotes the Eu
lidean distan
e between positions x and

x(i)

d
(
x,x(i)

)
=

√√√√
K∑

k=1

(
x
(i)
k − xk

)2
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Figure 2.10: Delaunay triangulation: Voronoi Diagram V or (X) of the training
samples (
ase K = 2).

3. Create the dual graph of V or (X), G (X) of the Voronoi diagram. To 
reate

the dual graph, 
onne
t two samples if and only if there exists a path


rossing only one Voronoi 
ell boundary.

Figure 2.11: Delaunay triangulation: dual graph of the Voronoi graph V or (X),
G (X) (
ase K = 2).

4. Create the Delaunay graph, D {G (X)}, 
onverting 
urved paths to straight

lines. The Delaunay diagram (or triangulation) identi�es the neighboring

points that should be 
onsidered for the estimation of the fun
tion value

at ea
h test lo
ation x∗
.
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Figure 2.12: Delaunay triangulation: Delaunay graph, D {G (X)}

Predi
ting the fun
tion value at position x∗
:

The fun
tion at position x∗
is 
omputed as a weighted sum of K + 1 inde-

pendent samples belonging to the same K-dimensional �simplex�

1

:

ỹ (x∗) =

K+1∑

k=1

αkyk

where

• αk is the weight asso
iated to the k-th neighboring training sample x(k)
;

• yk = y
(
x(k)
)
is the fun
tion value at training sample x(k)

.

The weight αk asso
iated to training sample x(k)
is 
omputed as the ratio between

the �volume� of the simplex in
luding all remaining training samples and the test

lo
ation x∗
and the �volume� of the simplex 
ontaining x∗

:

αi =
V ol

{
x(1), ...,x(i−1),x∗,x(i+1), ...,x(K+1)

}

V ol {x(1), ...,x(K+1)}

where the �volume� of aK-dimensional simplex made byK+1 points is 
omputed

as follows

V ol
{
x(1), ...,x(K+1)

}
= det

(
x(1) · · · x(K+1)

1 · · · 1

)

Note that

K+1∑

i

αi = 1

Example with K = 1

1

For K = 1 the simplex redu
es to the straight line 
onne
ting two points, for K = 2

it 
orresponds to the Delaunay triangle 
onne
ting 3 points, for K = 3 it 
orresponds to a

tetrahedron...
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1. Let be given two training samples xi and xi+1 and the asso
iated outputs

fi = y (xi), fi+1 = y (xi+1).

Figure 2.13: Delaunay triangulation: Example with K = 1.

2. Compute the �volumes� of the 1D simplex 
ontaining the lo
ation x at

whi
h we are doing the predi
tion. This 
orresponds (in absolute value) to

the length of the segment between samples xi and xi+1:

V ol {xi, xi+1} = det

(
xi xi+1

1 1

)
= xi − xi+1

3. Compute the weights asso
iated to training samples xi and xi+1:

αi =
V ol {x, xi+1}

V ol {xi, xi+1}
=

x− xi+1

xi − xi+1

αi+1 =
V ol {x, xi}

V ol {xi, xi+1}
=

x− xi
xi − xi+1

= 1− αi

Then, we have that

x = αixi + αi+1xi+1 = αixi + (1− αi)xi+1

and the predi
tion at point x is given by

ỹ (x) = αiy (xi) + (1− αi) y (xi+1)

Example with K = 2
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1. Let be given three training samples x(1)
, x(2)

and x(3)
de�ning the Delaunay

triangle for point x at whi
h we are performing the predi
tion

Figure 2.14: Delaunay triangulation: Example with K = 2.

2. Compute the �volumes� of the 2D simplex 
ontaining the lo
ation x at

whi
h we are doing the predi
tion

V ol
{
x(1),x(2),x(3)

}
= det

(
x(1) x(2) x(3)

1 1 1

)
= ±2A

{
△
(
x(1),x(2),x(3)

)}

3. Compute the weights asso
iated to the three training samples

α1 =
V ol

{
x,x(2),x(3)

}

V ol {x(1),x(2),x(3)}

α2 =
V ol

{
x(1),x,x(3)

}

V ol {x(1),x(2),x(3)}

α3 =
V ol

{
x(1),x(2),x

}

V ol {x(1),x(2),x(3)}

Then, we have that

x = α1x
(1) + α2x

(2) + α3x
(3)

and the predi
tion at point x is given by

ỹ (x) = α1y
(
x(1)
)
+ α2y

(
x(2)
)
+ α3y

(
x(3)
)
.

Example: A
kley's fun
tion K = 1 variables
The following �gure shows the predi
ted output made by a linear interpolator

when applied to the estimation of the 1-dimensional A
kley's fun
tion, when a

set of N = 9 uniformly-spa
ed training samples are provided.
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Figure 2.15: A
kley's fun
tion, K = 1 variables. True fun
tion vs predi
tion

made by the linear interpolator.

Example: A
kley's fun
tion K = 2 variables
The following �gure shows the predi
ted output made by a linear interpolator

when applied to the estimation of the 2-dimensional A
kley's fun
tion, when a

set of N = 25 uniformly-spa
ed training samples are provided.
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Figure 2.16: A
kley's fun
tion, K = 2 variables. (a) True fun
tion vs (b) pre-

di
tion made by the linear interpolator.

Extrapolation 
apabilities of the nearest neighbor interpolator

The linear Delaunay-based interpolator is not able to do �extrapolation�. This

pro
ess is related to the 
apability of estimating the fun
tion value even beyond

the original observation range. In fa
t, the predi
tion at a given test position x∗

is possible if and only if there exist a K-dimensional simplex of training samples

surrounding it.
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Linear interpolator 
an however be extended with a nearest neighbor inter-

polator in order to enable extrapolation, as shown by the above �gures.
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Figure 2.17: Linear Delaunay interpolator (a) without extrapolation (standard)

and (b) with nearest neighbor extrapolation (example K = 1).
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2.6 Test or Predi
tion phase: predi
tion through

learning-by-example te
hniques

2.6.1 Kriging: Gaussian Pro
esses (GP ) for regression

Mathemati
al formulation

The following formulation has been mainly derived by [21℄ and [30℄.

Suppose we have evaluated a deterministi
 fun
tion of K variables at N
points. Denote the i-th sampled point by

x(i) =
[
x
(i)
1 , x

(i)
2 , ..., x

(i)
K

]
(2.1)

and the asso
iated fun
tion value by

y(i) = y
(
x(i)
)

(2.2)

for i = 1, ..., N .

2

The 
lassi
al linear regression model

The simplest and most familiar way to �t a response surfa
e to su
h a data is

linear regression. In this te
hnique, the observations are treated as if they were

generated from the following model

y
(
x(i)
)
=

[
Q∑

q=1

αqβq
(
x(i)
)
]
+ ǫ(i), i = 1, ..., N (2.3)

In this equation, ea
h βq
(
x(i)
)
(q = 1, ..., Q) is a linear or nonlinear fun
tion

of x, the αq's (q = 1, ..., Q) are unknown 
oe�
ients to be estimated and the

ǫ(i)'s are normally distributed, independent error terms with mean zero and vari-

an
e σ2
. The 
on
eptual problem with linear regression is that the assumption

of independent errors is 
learly false when modeling a deterministi
 
omputer


ode. If x(i)
and x(j)

are two points that are 
lose together, then the

errors terms ǫ
(
x(i)
)
and ǫ

(
x(j)
)
(i.e., their asso
iated outputs y

(
x(i)
)

and y
(
x(j)
)
) should also be 
lose (
orrelated). In short, it makes no sense

to assume that ǫ
(
x(i)
)
and ǫ

(
x(j)
)
are independent. Instead, it is more reason-

able to assume that these error terms are related or �
orrelated�, and that this


orrelation is high when x(i)
and x(j)

are 
lose and low when the points are far

apart.

In the sto
hasti
 pro
ess approa
h, we do not assume that the errors are inde-

pendent, but rather assume that the 
orrelation between errors is related

to the distan
e between the 
orresponding points. As we will see, we do not

2

NOTE: In the following, the addressed 
omputer models are assumed deterministi
, and

thus a response from a model la
ks random error (i.e., repeated runs for the same input

parameters gives the same response from the model (e.g., the simulator)).
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use the Eu
lidean distan
e, however, sin
e this distan
e weights all the variables

equally.

Kriging (Gaussian Pro
ess Regression): Fundamentals

Based on the Bayesian statisti
s, Kriging model treats the deterministi
 re-

sponse of y (x) as a realization of a sto
hasti
 pro
ess Y (x)

Y (x) = ψ (x) + Z (x)

where

• ψ (x) is a regression (or �trend�) fun
tion;

• Z (x) is a Gaussian pro
ess.

The idea is that ψ (x) 
aptures the general trend of the real fun
tion, while

Z (x) models the errors (or �residuals�) made by ψ (x) w.r.t. the real fun
tion

y (x). The de�nition of the regression fun
tion ψ (x) leads to di�erent Kriging

meta-models:

• ψ (x) =
∑Q

q=1 αqβq (x): Universal Kriging ;

• ψ (x) = α1 = µ: Ordinary Kriging ;

• ψ (x) = 0: Simple Kriging ;

Note that αq are unknown 
oe�
ients and should be estimated. For Ordinary

Kriging, we have one single unknown 
oe�
ient α1 = µ.
The following regression models 
an be de�ned:

• Constant regression, Q = 1:

β1 (x) = 1

• Linear regression, Q = (K + 1):

β1 (x) = 1
β2 (x) = x1, ..., βK+1 (x) = xK

• Quadrati
 regression, Q = 1
2
(K + 1) (K + 2):

β1 (x) = 1
β2 (x) = x1, ..., βK+1 (x) = xK

βK+2 (x) = x21, ..., β2K+1 (x) = x1xK
β2K+2 (x) = x22, ..., β3K+1 (x) = x2xK

...
βQ (x) = x2K
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The term Z (x) is assumed to have the following sto
hasti
 behaviors

E [Z (x)] = 0
Cov

[
Z (x) , Z

(
x

′
)]

= σ2Corr
(
x,x

′
)

where

• σ2
is the pro
ess varian
e;

• Corr
(
x,x

′
)
is the 
orrelation between any two lo
ations x and x

′

.

The 
orrelation fun
tion Corr
(
x,x

′
)
is de�ned as a fun
tion of the distan
e

d
(
x,x

′
)
between samples x and x

′

and satis�es the following 
onditions:

lim
d(x,x′)→0Corr

(
x,x

′
)
= 1

lim
d(x,x′)→∞Corr

(
x,x

′
)
= 0

More in detail, the 
orrelation fun
tion used for Kriging meta-modeling is

de�ned as

Corr
(
x,x

′

)
=

K∏

k=1

Corr
(
xk, x

′

k

)

The most 
ommon de�nition of the 
orrelation between the k-th variable of

x and the k-th variable of x
′

is the following

Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
pk
)

where θk ≥ 0 and pk ∈ [1, 2], for k = 1, ..., K. This leads to the following

de�nition of 
orrelation between samples x and x
′

Corr
(
x,x

′

)
=

K∏

k=1

exp
(
−θk

∣∣∣xk − x
′

k

∣∣∣
pk
)

Note that, rather than using the Eu
lidean distan
e, the following weighted

distan
e is employed

d
(
x,x

′

)
=

K∑

k=1

θk

∣∣∣xk − x
′

k

∣∣∣
pk

(2.4)

and

Corr
(
x,x

′

)
= exp

(
−d
(
x,x

′

))
= exp

(
−

K∑

k=1

θk

∣∣∣xk − x
′

k

∣∣∣
pk

)
(2.5)
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Thus, the 
orrelation between two samples x and x
′

is a fun
tion of both

their distan
e in all K dimensions and of a set of 2K hyper-parameters Θ

Θ = {θ1, ..., θK ; p1, ..., pK}

whose values are unknown and should be estimated. Given the 
orrelation fun
-

tion de�ned in (2.4) and (2.5), when the distan
e between x and x
′

is small, the


orrelation is near one. Similarly, when the distan
e between the points is large,

the 
orrelation will approa
h to zero:

0 < Corr
(
x,x

′

)
≤ 1

The parameter θk in the distan
e formula (2.4) 
an be interpreted as measur-

ing the importan
e or �a
tivity� of the k-th variable xk. To see this, note that

saying �variable k is a
tive� means that even small values of

∣∣xk − x
′

k

∣∣
may lead

to large di�eren
es in the fun
tion values at x and x
′

. This means that even

small values of

∣∣xk − x
′

k

∣∣
should imply a low 
orrelation between the fun
tion

values y(x) and y(x
′

). If θk is very large, then it will indeed be true that small

values of

∣∣xk − x
′

k

∣∣
translate into large �distan
es� and hen
e low 
orrelation.

The exponent pk is related to the smoothness of the fun
tion in 
oordinate di-

re
tion k, with pk = 2 
orresponding to smooth fun
tions and values near pk = 1

orresponding to less smoothness.
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Figure 2.18: E�e
t of (a) hyper-parameter θk and of (b) hyper-parameter pk on

the 
orrelation fun
tion between the k-th 
oordinate of points x and x
′

.

A 
ommon 
hoi
e to redu
e the number of unknowns (and 
onsequently, the


omputational load of the training phase) is to �x the value of pk to a given

value, for k = 1, ..., K. The following 
orrelation models 
an be derived:

• Exponential 
orrelation: pk = 1, k = 1, ..., K
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Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
)

(2.6)

• Gaussian 
orrelation: pk = 2, k = 1, ..., K

Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
2
)

(2.7)

while if pk is not �xed we get the so-
alled

• Generalized exponential 
orrelation:

Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
pk
)

NOTE: the DACE toolbox doesn't allow the estimation of di�erent exponents

pk along the K dimensions.

Other 
orrelation models 
an be de�ned. In parti
ular, the Kriging MATLAB

DACE toolbox [31℄ supports the following alternative 
orrelation fun
tion

• Linear 
orrelation:

Corr
(
xk, x

′

k

)
= max

{
0, 1− θk

∣∣∣xk − x
′

k

∣∣∣
}

(2.8)

• Spheri
al 
orrelation:

Corr
(
xk, x

′

k

)
= 1− 1.5ξk + 0.5ξ3k (2.9)

where

ξk = min
{
1, θk

∣∣∣xk − x
′

k

∣∣∣
}

• Cubi
 
orrelation:

Corr
(
xk, x

′

k

)
= 1− 3ξ2k + 2ξ3k (2.10)

where

ξk = min
{
1, θk

∣∣∣xk − x
′

k

∣∣∣
}
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• Spline 
orrelation:

Corr
(
xk, x

′

k

)
= ζ (ξk) (2.11)

where

ξk = θk

∣∣∣xk − x
′

k

∣∣∣

and

ζ(ξh) =





1− 15ξ2k + 30ξ3k for 0 ≤ ξk ≤ 0.2

1.25 (1− ξk)
3 for 0.2 < ξk < 1

0 for ξk ≥ 1



 .

3

If the underlying phenomenon is 
ontinuously di�erentiable, the 
orrelation

fun
tion will likely show a paraboli
 behaviour near the origin, whi
h means

that the Gaussian, the 
ubi
 or the spline fun
tion should be 
hosen. Con-

versely, physi
al phenomena usually show a linear behavior near the origin, and

exponential, generalized exponential, linear or spheri
al would usually perform

better. Also note that for large distan
es the 
orrelation is 0 a

ording to the

linear, 
ubi
, spheri
al and spline fun
tions, while it is asymptoti
ally 0 when

applying the other fun
tions. Often the phenomenon is anisotropi
. This means

that di�erent 
orrelations are identi�ed in di�erent dire
tions. This is a

ounted

in the above 
orrelation fun
tions, sin
e di�erent parameters θk are allowed in

the K dimensions of the input spa
e.

Gaussian and exponential 
orrelation fun
tions are the most used

in pra
ti
al appli
ations, sin
e they represent a good 
hoi
e for most of the


onventional physi
al pro
esses.

We assume that the 
orrelation between two samples x and x
′

is

stationary, meaning that the set of hyper-parametersΘ is invariant with respe
t

to x.

Now 
onsider that the real value of y (x) is given at N sample points (training

lo
ations):

x(1),x(2), ...,x(N)

Kriging supposes that the sto
hasti
 pro
ess Y (x) realizes all the N given

samples:

Y
(
x(i)
)
= ψ

(
x(i)
)
+ Z

(
x(i)
)
= y

(
x(i)
)

(2.12)

Assuming a 
onstant regression fun
tion (i.e., Ordinary Kriging)

ψ (x) = α1 = µ

3

NOTE: The 
hoi
e of the 
orrelation fun
tion should be motivated by the underlying

phenomenon, e.g., a fun
tion we want to optimize or a physi
al pro
ess we want to model.
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the probability density fun
tion distribution 
onditioned on these realizations

(
alled Likelihood Fun
tion) is obtained in logarithmi
 form as:

Ln (µ, σ2,Θ) = ln
{
PDF

(
y/x(1),x(2), ...,x(N)

)}
=

= −N
2
ln (2π)− N

2
lnσ2 − 1

2
ln |R| − (y−1µ)TR−1(y−1µ)

2σ2

(2.13)

where

y =
[
y
(
x(1)
)
, y
(
x(2)
)
, ..., y

(
x(N)

)]T

1 is a N -dimensional ve
tor of ones (1 = [1, 1, ..., 1]T ), and R is an N × N

orrelation matrix whose entries are represented by the 
orrelation between

training samples (Rij = Corr
(
x(i),x(j)

)
). Note that the dependen
e of the

Likelihood Fun
tion on the hyper-parameters Θ is via the 
orrelation matrix R:

R =




Corr
(
x(1),x(1)

)
... Corr

(
x(1),x(N)

)

.
... . ...

.
Corr

(
x(N),x(1)

)
Corr

(
x(N),x(N)

)




(2.14)

The Ordinary Kriging model needs to estimate the values of µ, σ2
and Θ

based on the Maximum Likelihood Estimation (MLE). The values of µ and σ2

that maximize Ln (µ, σ2,Θ) are solved in 
losed form as

µ̂ =
1TR−1y

1TR−11
(2.15)

and

σ̂2 =
(y− 1µ̂)T R−1 (y − 1µ̂)

N
. (2.16)

Substituting (2.15) and (2.16) in (2.13) the following Con
entrated Likelihood

Fun
tion is obtained

Ln (Θ) = −
N

2
ln (2π)−

N

2
lnσ̂2 −

1

2
ln |R|

whi
h depends only on the set of hyper-parameters Θ. This fun
tion should

be maximized to get an estimate of Θ, and hen
e an estimate of the 
orrelation

matrix R. Multiple optimization algorithms 
an be used (e.g., gradient des
ent,

GA, PSO, et
.). Then, equations (2.15) and (2.16) are used to get an estimate of

µ̂ and σ̂2
. Note that when we estimate these parameters by maximum likelihood,

we are essentially �nding values of the parameters that best des
ribe the behavior

of the true fun
tion (we do not know them exa
tly, that's why we should use the

hats).

Finally, 
onsider the linear predi
tor ŷ (x) whi
h estimates y (x) at lo
ation
x (and y (x) is unknown), de�ned as
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ŷ (x) = cT (x)Y (2.17)

where

Y =
[
Y
(
x(1)
)
, ..., Y

(
x(N)

)]T
=
[
y
(
x(1)
)
, ..., y

(
x(N)

)]T

by hypothesis (2.12). The Kriging model obtains the best linear unbiased

predi
tor (BLUP ) by 
hoosing the N-dimensional ve
tor c (x) to minimize the

following mean squared error (MSE):

s2 (x) = V ar [ŷ (x)− Y (x)] = V ar [ŷ (x)− y(x)] (2.18)

subje
t to the following unbiasedness 
onstraint:

E [ŷ (x)] = E [Y (x)] = E [y(x)]

Then, c (x) is solved in 
losed form as

ĉ (x) = R−1r (x) +
R−11 (1− 1R−1r (x))

1TR−11
(2.19)

where r (x) is an N-dimensional ve
tor 
ontaining the 
orrelation between

the sample x at whi
h we are making the predi
tion and the N training samples

r (x) =




Corr
(
x,x(1)

)

...

Corr
(
x,x(N)

)




(2.20)

Substituting r (x), we get the �nal expression of the Ordinary Kriging pre-

di
tor

ŷ (x) = µ̂+ rT (x)R−1 (y − 1µ̂) (2.21)

This fun
tion models the estimate of y(x) at any lo
ation x by interpolating

the sample points with real values of y(x). On the right-hand side of equation

(2.21), the �rst term, µ̂, is the result of simply plugging x into the regression

equation, and the se
ond term represents the �adjustment� to this predi
tion

based on the 
orrelation of x with the N sampled points (whi
h are known).

Similarly, substituting (2.17) and (2.19) in (2.18) the MSE in �nal form results

in

s2(x) =MSE (x) = σ̂2

[
1− rT (x)R−1r (x) +

(
1− 1TR−1r (x)

)2

1TR−11

]
(2.22)
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This fun
tion models the un
ertainty expe
ted in ŷ (x). It indi
ates that the
a

ura
y of ŷ (x) depends largely on the distan
e from the given sampling points

(i.e., the training samples). Intuitively, the 
loser x is to the training points, the

less un
ertain the predi
tion ŷ (x).

Note that:

• If there is no 
orrelation with training samples (r (x) = 0), then we just

predi
t ŷ(x) = µ̂;

• If we are making a predi
tion at the i-th sampled point (x = x(i)
), then

ŷ
(
x(i)
)
= y

(
x(i)
)
and s2

(
x(i)
)
= 0.

• The predi
tor in equation (2.21) 
an be also written as:

ŷ(x) = µ̂+wT r (x) = µ̂+

N∑

i=1

wiri(x) (2.23)

where w = R−1(y−1µ̂) is a ve
tor of 
onstants and ri (x) = Corr
[
x,x(i)

]
,

for i = 1, ..., N . Thus, we see that the Kriging predi
tor is a linear 
om-

bination of �basis fun
tions� ri (x), for i = 1, ..., N that interpolate the

data. The basis fun
tions depend upon the 
orrelation parameters θk and

pk for k = 1, ..., K, and these are �tuned� to the training data during the

Maximum Likelihood Estimation.

Interpretation of s2 (predi
tion un
ertainty, MSE)

The 
orrelation between the new sample x and the training samples a�e
ts

our estimate of predi
tion a

ura
y. In fa
t, it makes intuitive that, if x is

very 
lose to a training sample x(i)
, we should be mu
h more 
on�dent in our

predi
tion of y (x) than we would be if x were far away from all the sampled

points. This intuition is re�e
ted in the general formula for the un
ertainty

s2(x) of the predi
tor.
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Figure 2.19: Example in 1D 
ase.

Let us model the un
ertainty at x by treating the fun
tion value y (x) as

the realization of a normally distributed random variable Y with mean ŷ (x)
and standard deviation given by s(x) =

√
s2(x). Then, the Kriging model is

approximately 99.7% 
on�dent that ŷ (x) lies inside the interval de�ned by

ŷ (x)± 3s

Note that if we are making a predi
tion at the i-th sampled point (x = x(i)
),

we get s2
(
x(i)
)
= 0. This is as it should be: with a deterministi
 fun
tion, on
e

we have sampled a point, we know its value there. Thus, our un
ertainty, as

measured by s2, should be zero. In 
on
lusion, s2 gives us a measure of how

a

urate and �reliable� is a given predi
ted value (it shouldn't be 
onfused with

the predi
tion error, that is 
omputed knowing the real value of y(x)). In Fig.

2.19 it is reported the predi
tion 
on�den
e interval of a 1D fun
tion. It is de�ned

as ŷ ± s and it is null at observed points, while it grows with the distan
e w.r.t.

the nearest training point. Fig. 2.20 shows the Predi
tion and the predi
tion

un
ertainty (MSE) of the A
kley's fun
tion when N = 25 and N = 250 training
samples and are used. The predi
tion un
ertainty is null at observed points,

while it grows with the distan
e w.r.t. the nearest training point. In
reasing the

number of training samples leads to an higher predi
tion a

ura
y and to a lower

un
ertainty.
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N = 25 training samples
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2D Ackley’s function: Kriging uncertainty (MSE), N=250 training samples (LHS)
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(
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tion (d) Predi
tion un
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Figure 2.20: Example in 2D 
ase (A
kley's fun
tion). (a) Predi
tion and (b)

predi
tion un
ertainty (MSE) of the A
kley's fun
tion using N = 25 training

samples. (
) Predi
tion and (d) predi
tion un
ertainty (MSE) of the A
kley's
fun
tion using N = 250 training samples.

Universal Kriging

While Ordinary Kriging assumes that the sto
hasti
 pro
ess Y (x) has the
form

Y (x) = µ+ Z (x)

more generally, we 
an write

Y (x) = ψ (x) + Z (x)

Universal Kriging assumes that the regression (or �trend�) fun
tion is 
om-

puted as the weighted sum of known basis fun
tions of di�erent order

ψ (x) =

Q∑

q=1

αqβq (x)
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Then, we 
an de�ne the N ×Q regression matrix B as

B =




β1
(
x(1)
)

... βQ
(
x(1)
)

.
... . ...

.
β1
(
x(N)

)
βQ
(
x(N)

)




The maximization of the Likelihood Fun
tion leads to the following de�nition

of the estimator

ŷ (x) = Mα+ rT (x)R−1 (y −Bα)

where M is a Q-dimensional ve
tor

M = [β1 (x) , ..., βQ (x)]

and the 
oe�
ients are estimated as

α =
BTR−1y

BTR−1B

The predi
tion un
ertainty (MSE) is then obtained as

s2(x) =MSE (x) = σ̂2

[
1− rT (x)R−1r (x) +

(
1−BTR−1r (x)

)2

BTR−1B

]

Note that in the 
ase of 
onstant regression (i.e., Ordinary Kriging), we have

ψ (x) = α1 = µ

B =




1
1
...
...
1



= 1

M = [1, ..., 1] = 1T

α = µ̂ =
1TR−1y

1TR−11

Going ba
k to the Universal Kriging formulation, if we predi
t at one training

lo
ation (i.e., x = x(i)
), we get that r

(
x(i)
)
is the i-th 
olumn of the 
orrelation

matrix R (Ri)
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r
(
x(i)
)
=




Corr
(
x(i),x(1)

)

...

Corr
(
x(i),x(N)

)



= Ri

Then,

rT
(
x(i)
)
R−1 =

(
R−1r

(
x(i)
))T

=
(
R−1Ri

)T
= eTi

where eiis the i-th unit ve
tor (having all zeros and a one at the i-th position).
Finally, we obtain

rT
(
x(i)
)
R−1 (y −Bα) = eTi (y −Bα) = y

(
x(i)
)
−Bα

Sin
e Bα = Mα, we get

ŷ
(
x(i)
)
= Mα+ y

(
x(i)
)
−Mα = y

(
x(i)
)

meaning that the Kriging regressor exa
tly interpolates the training data.

This is of 
ourse also valid for Ordinary Kriging. At point x = x(i)
we get

ŷ
(
x(i)
)
= µ̂+rT

(
x(i)
)
R−1 (y − 1µ̂) = µ̂+eTi (y− 1µ̂) = µ̂+f

(
x(i)
)
−µ̂ = f

(
x(i)
)

If we look at the un
ertainty, we have

s2
(
x(i)
)
=MSE

(
x(i)
)
= σ̂2

[
1− rT

(
x(i)
)
R−1r

(
x(i)
)
+

(
1− 1TR−1r

(
x(i)
))2

1TR−11

]

with

rT
(
x(i)
)
R−1r

(
x(i)
)
= rT

(
x(i)
)
ei = ri

(
x(i)
)
= Corr

(
x(i),x(i)

)
= 1

1TR−1r
(
x(i)
)
= 1Tei = 1

resulting in

s2
(
x(i)
)
=
(
x(i)
)
= σ̂2

[
1− 1 +

(1− 1)2

1TR−11

]
= 0

Note that if the point x is very far from all training samples, we have

r (x) → 0

s2 (x) → σ̂2

ŷ (x) → µ̂

Dimension of the output ve
tor y

The MATLAB DACE Toolbox [31℄ is able to handle models withG-dimensional

responses (y (x) : RK → R
G
)

y = [y1, y2, ..., yG]

All the previous equations 
an be easily expanded to a G-dimensional ve
tor

predi
ted output.

43



2.6. TEST OR PREDICTION PHASE: PREDICTION THROUGH

LEARNING-BY-EXAMPLE TECHNIQUES

2.6.2 Support Ve
tor Regression

The SVR predi
tion te
hnique is based on the Support Ve
tor Ma
hines (SVM)

[32℄-[34℄ theory. The fundamental 
hara
teristi
 of the SVR te
hnique is that it

allows de�ning an �error� margin ε on the training samples; this means that it is

assumed that the training samples 
an 
ontain a 
ertain amount of un
ertainty

but this does not interfer on the e�
ien
y and a

ura
y of the predi
tion pro-


ess. All the te
hniques based on the SVM theory are thus suited for dealing

with noisy training data, as for example the leaning problems based on observa-

tions/measurements.

Within the SVR theory, the training samples whi
h lie outside the ±ε band
(
alled ±ε-tube) are 
alled support ve
tors (see. Fig 2.21) . These samples are

fundamental for the training pro
ess of the SV R.

Figure 2.21: SVR predi
tion of a 1D test fun
tion. Among all the training

samples, only some of them are support ve
tors.

Independently from the training te
hnique used for the SVR, the expression

of the SV R predi
tor is the following:

ŷ (x) = µ+

N∑

i=1

w(i)ψ
(
x,x(i)

)
(2.24)

where ψ(i) = ψ
(
x,x(i)

)
is the i−th basis fun
tion, w(i)

is the i−th weight and

µ is a bias 
oe�
ient whi
h 
an be 
omputed exploiting the Karish-Kuhn-Tu
ker


onditions [35℄ starting from the support ve
tors. The goal of the training phase

is to �nd the best predi
tion fun
tion whi
h deviate from the training samples a

maximum quantity ε. The standard form for the training of the SVR model is

the following:
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min

(
1

2
|w|2 + C

1

N

N∑

i=1

ξ+(i) + ξ−(i)

)
(2.25)

subj.to.





y(i) −wx(i) − µ ≤ ε+ ξ+(i)

wx(i) + µ− y(i) ≤ ε+ ξ−(i)

ξ+(i), ξ−(i) ≥ 0

where ξ+(i), ξ−(i)
are the so 
alled sla
k-variables [33℄. It 
an be noti
ed that the

training pro
ess illustrated in previous equation allows 
ontrolling the tradeo� of

the �nal result in terms of 
omplexity of the model and a

ura
y by opportunely


hoosing the C parameter. The problem in Eq.2.25 
an be solved using the

Lagrange multipliers te
hnique and obtaining the 
anoni
al solution [34℄:

ŷ (x) = µ+

N∑

i=1

(
α+(i) + α−(i)

) (
x(i) · x

)
(2.26)

The equation 2.26 is valid under linear regression hypothesis. The result 
an

be extended to the 
ase where non-linear basis fun
tion are used, obtaining

ŷ (x) = µ+
N∑

i=1

(
α+(i) + α−(i)

)
ψ(i)

(2.27)

It must be pointed out that Eq. 2.26 is valid only if the following assumptions

hold true:

• ψ is 
ontinuous,

• ψ is symmetri
, whi
h means that ψ
(
x,x(i)

)
= ψ

(
x(i),x

)

• ψ is positive de�nite fun
tion, whi
h means that the 
orrelation fun
tion

ψT = ψ and has eigenvalues whi
h are stri
tly positive.

The most 
ommon 
hoi
es for the kernel fun
tion ψ are:

• Linear kernel: ψ
(
x(i),x(j)

)
=
(
x(i) · x(j)

)
;

• d-grade homogeneous polynomial kernel: ψ
(
x(i),x(j)

)
=
(
x(i) · x(j)

)d
;

• Gaussian kernel (the most used): ψ
(
x(i),x(j)

)
= e−γ‖x(i)·x(j)‖

2

;

• d-grade inhomogeneous polynomial kernel, et
..
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(a) (b)

Figure 2.22: Two-dimensional S
hwefel fun
tion. True fun
tion (a) and predi
ted

fun
tion (b) using N = 100 training samples (C = 100, γ = 10)

With the goal of illustrating the performan
es of the SVR, Fig. 2.22 shows the


omparison between the predi
ted output [Fig. 2.22(b)℄ and the 
orresponding

ben
hmark fun
tion [Fig. 2.22(a)℄. The ben
hmark fun
tion used is the 2-D

S
hwefel fun
tion. The number of training samples has been �xed to N = 100.
It 
an be noti
ed that the a

ura
y in the predi
tion is a

eptable: the position

and amplitude of the maxima and minima is 
orre
tly predi
ted, as well as as the

general behaviour of the fun
tion. However, due to the 
onsidered formulation,

the predi
ted fun
tion appears to be smoother with respe
t to the original (see

Fig 2.22(b) for x2 = −100). This phenomenon is due to the fa
t that SVR

does not interpolate the training samples; this 
an be suited for noisy training

samples but is less suited for deterministi
 data be
ause it 
an introdu
e noise

in the predi
tion of the �exa
t� training samples. In addition a further drawba
k

with respe
t to other te
hniques (su
h as Kriging) is the ne
essity to preliminary


alibrate the training samples C (
alled penalty fa
tor) and γ (for the Gaussian

kernel).

2.6.3 Parameter sele
tion via Cross-Validation (CV )

Many predi
tors, su
h as SVR, need a preliminary 
alibration phase in order

to estimate the best 
ombination of parameters whi
h will be used during the

training and testing phases. Often, su
h a 
alibration is performed by applying

a 
ross-validation approa
h on a given set of known input/output pairs (i.e., a

training set). Many 
ross-validation approa
hes exist, but the main two te
h-

niques are

1. V -fold 
ross-validation;

2. Leave-one-out 
ross-validation (LOO − CV );
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On the one hand, V -fold 
ross-validation is 
onsidered a non-exhaustive 
ross-
validation method, sin
e it does not 
ompute all ways of splitting the given

training set. Even if it is an approximated te
hnique, it is 
omputationally faster.

On the other hand, LOO − CV is an exhaustive 
ross-validation method, sin
e

it requires the training and test on all possible ways to divide the original set

into a training and a validation set.

2.6.3.1 V -fold Cross-Validation

More in details, SVR (with RBF kernel) are 
hara
terized by two main parame-

ters, namely C and γ. C is often 
alled �penalty fa
tor� and 
ontrols the trade-o�

between the training error and the model 
omplexity, while γ represents the expo-
nent in the RBF kernel. RBFN are 
hara
terized by one parameter, the spread

S. This parameter 
ontrols the smoothness of the Gaussian basis fun
tions used

in the hidden layer of the network.

Let us indi
ate with (α) the ve
tor of parameters that should be 
alibrated:

• α = (C, γ) for the SVR model with RBF kernel;

• α = S for the RBFN model.

In order to identify the best parameters, a 
lassi
al V−fold 
ross-validation ap-

proa
h is employed.

A given training set of N samples is divided into V subsets of approximately

equal size. Then, for ea
h v−th subset, a predi
tion model is trained using the

remaining V −1 subsets. The resulting model is then used to test the predi
tion

a

ura
y on the v−th subset, and the estimation error is 
omputed by means of

the Mean Squared Error, de�ned as follows:

MSEv(α) =
1

Tv

Tv∑

i=1

{yi − ỹi(α)}
2

where

• Tv is the number of samples inside the v−th subset;

• yi is the real output asso
iated to the i−th sample;

• α 
orrespond to the 
onsidered ve
tor of parameters;

• ỹi(α) is the predi
ted output asso
iated to the i−th sample for a given α.

Then, the 
ross-validationMSE for a given ve
tor of parameters α is 
omputed

as the average MSE obtained over all the V subsets

η(α) =
1

V

V∑

v=1

MSEv(α)
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The best 
on�guration is �nally identi�ed as the one minimizing the 
ross-

validation MSE

(α∗) = arg {min η(α)}

2.6.3.2 Kriging vs. Support Ve
tor Regression (SVR)

�The lun
h is not free� theorem is still valid when sele
ting the proper predi
tor.

The 
hoi
e of the predi
tion model is 
ru
ial and for sure it depends on the

spe
i�
 appli
ation. The following list of features may be drawn in order to

enable a dire
t 
omparison between Kriging (Simple, Ordinary or Universal)

and SVRs.

I denote with symbol ↑ features that appear as advantages, while symbol ↓
indi
ates a disadvantage. Symbol l indi
ates that the given feature may represent

either an advantage or a disadvantage, depending on the appli
ation.

Feature Kriging SVR

Auto-tuning of hyper-parameters YES ↑ NO ↓
Multi-dimensional output YES ↑ NO ↓
Un
ertainty measure YES (MSE) ↑ NO ↓

Interpolates training data YES l NO l
Can handle noisy training data NO ↓ YES ↑

Computational e�
ien
y LOW ↓ YES ↑
Can handle large number of variables (K ≥ 100) NO ↓ YES ↑

Table 2.1: Dire
t 
omparison between features of Kriging and SVR.

Tuning of the hyper-parameters

One of the most important advantages of Kriging over 
lassi
al Support Ve
-

tor Regression is the auto-tuning of the hyper-parameters. When using an ε-SVR
with Radial Basis Fun
tion (RBF) kernel, a preliminary tuning of the hyper-

parameters (namely, the penalty fa
tor C and the Kernel 
oe�
ient γ) must be
done in order to obtain good predi
tions.

More on noiseless/noisy training data

In its original formulation, Kriging is intended to work with determin-

isti
 data, meaning that the same output is always 
omputed/measured for a

given input ve
tor. On the 
ontrary, Support Ve
tor Regression (SVR) is

able to manage noisy training samples, where both the following 
onditions

may happen:

1. The output of a given training sample may be not 
orresponding to the

real output of the undergoing phenomenon/pro
ess. In other words, some

noise 
an be added to the real output value;
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2. More that one output value is present for the same input ve
tor (i.e., we

have multiple noisy realizations of a given training sample).

In other words, Kriging interpolates training data, meaning that the predi
ted

output for a training lo
ation 
orresponds to the training output. On the other

hand, no guarantees are given that the predi
tions made by an SVR interpolate

the training observations.

In the following, we dire
tly 
ompare the predi
tions made by both Ordinary

Kriging and ε-SVR (with RBF kernel) for the 1-D A
kley's fun
tion. N =
21 training samples are uniformly distributed inside the 
onsidered input range

−5 ≤ x ≤ 5.
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Figure 2.23: A
kley's fun
tion, K = 1 variables. Dire
t 
omparison between the

predi
tions made by Ordinary Kriging and ε-SVR.

Observations

• predi
tions made by Kriging are mu
h more a

urate than those made by

SVR. Normalized Mean Error is:

� Ordinary Kriging: NME = 4.95× 10−2

� SVR: NME = 5.95× 10−1

• Kriging interpolates training data, for
ing its predi
tion to perfe
tly mat
h

training data, whi
h are assumed to be deterministi
 realizations of the

fun
tion to predi
t;

• SVR doesn't for
e the predi
tion to interpolate the observations. Di�erent

values are then predi
ted also when estimating the output at a training

lo
ation.
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In the following �gure, a di�erent example is given. In this 
ase, our goal is to

predi
t the fun
tion

y (x) = x

within the range 0 ≤ x ≤ 10, by exploiting a set of N = 21 uniformly spa
ed

training samples 
omputed inside the same interval. Moreover, training samples

are 
orrupted by an additive white Gaussian noise, with SNR = 5 [dB℄.
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Figure 2.24: A
kley's fun
tion, K = 1 variables. Dire
t 
omparison between the

predi
tions made by Ordinary Kriging and ε-SVR.

Observations

• In this 
ase, predi
tions made by the SVR are mu
h better than those made

by the Ordinary Kriging; the 
omputed Normalized Mean Error is:

� Ordinary Kriging: NME = 1.73× 10−1

� SVR: NME = 9.92× 10−2

• given its interpolating nature, Ordinary Kriging for
es predi
tions to mat
h

all observed samples. However, this is not a desirable feature when treating

noisy realization of the underlying fun
tion to predi
t.

Final 
onsiderations and guidelines

Given the above two examples, the following �nal observations may be 
on-

sidered when sele
ting the predi
tor, problem at hand:
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• In 
ase of noiseless deterministi
 simulations, it makes sense to use a Krig-

ing predi
tor;

• when samples are 
orrupted by noise (both during the training and

during the test phases), the SVR is not only is a good 
hoi
e, but also the

only 
hoi
e (between the two 
onsidered predi
tors), sin
e Kriging - in its

standard implementation - is not able to manage noisy data.

• a new version of Kriging, 
alled �sto
hasti
 Kriging� has been introdu
ed

in in order to enable the use of noisy training sets.

2.6.4 Radial Basis Fun
tion Networks (RBFN)

The idea of Radial Basis Fun
tion Networks (RBFN) derives from the theory of

fun
tion approximation. The main features of a RBFN [36℄-[40℄ model are:

• They are two-layer feed-forward networks.

• The hidden nodes implement a set of radial basis fun
tions (e.g. Gaussian

fun
tions).

• The output nodes implement linear summation fun
tions.

• The network training is divided into two stages:

1. �rst the weights from the input to hidden layer are determined,

2. and then the weights from the hidden to output layer.

• The training/learning is very fast.

• They are very good at interpolation.

RBFN with exa
t interpolation at training samples: theory

RBFNs are a spe
ial 
lass of single hidden-layer feed forward neural networks

for appli
ation to problems of supervised learning (i.e., those problems where the

fun
tion value asso
iated to training samples is assumed to be known during the

training phase).

Let's suppose also in this 
ase to have N training samples available, where:

• x(i) ∈ ℜK ,x(i) =
{
x
(i)
k , k = 1, ..., K

}
: i−th training sample point in

K−dimensional spa
e, i = 1, ..., N ;

• yi = y
(
x(i)
)

: fun
tion value (output) asso
iated to the i−th training

sample point x(i)
.
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The exa
t interpolation of the set ofN data points in a multidimensional spa
e re-

quires that all the N K-dimensional input ve
tors x(i) =
{
x
(i)
k , k = 1, ..., K

}
, i =

1, ..., N are mapped onto the 
orresponding outputs yi, i = 1, ..., N . In other

words, the goal of exa
t interpolation is to �nd a fun
tion h (.) su
h that h
(
x(i)
)
=

yi, i = 1, ..., N .

The radial basis fun
tion approa
h introdu
es a set of N basis fun
tions (one

for ea
h training sample) of the form:

φi(x) = φ(
∥∥x− x(i)

∥∥)

where φ(·) is some nonlinear fun
tion and

∥∥x− x(i)
∥∥
denotes the Eu
lidean

distan
e between the generi
 input x and the i-th training point x(i)
.

The 
hara
teristi
 feature of radial fun
tions is that their response de
reases

(or in
reases) monotoni
ally with distan
e from a 
entral point. The 
entre, the

distan
e s
ale, and the pre
ise shape of the radial fun
tion are parameters of the

model.

The most 
ommon 
hoi
e is to 
onsider the 
ase of Gaussian basis fun
tion

(and this is the 
hoi
e adopted for the results in this report):

φi(x) = φ(
∥∥x− x(i)

∥∥) = exp

(
−

∥∥x− x(i)
∥∥2

2σ2

)
= exp

(
−

∥∥x− x(i)
∥∥2

2S

)

The term σ2 = S is often 
alled �spread� and 
ontrols the smoothness properties

of the interpolating fun
tion, as shown in next Figure:
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Figure 2.25: Impa
t of the spread value S on the width of the Gaussian basis

fun
tions.

The predi
tion made by the RBFN model at a generi
 test lo
ation x(m)
is

given by a linear 
ombination of the basis fun
tions
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ŷm = h(x(m)) =
N∑

j=1

wjφmj

where

φmj = φ(
∥∥x(m) − x(j)

∥∥) = exp

(
−

∥∥x(m) − x(j)
∥∥2

2S

)

and wj, j = 1, ..., N are weights that must be estimated during the training

phase. Thus, the interpolation 
ondition at a generi
 training sample x(i)

an be

expressed as

h(x(i)) =

N∑

j=1

wjφij = yi i = 1, ..., N

where

φij = φ(
∥∥x(i) − x(j)

∥∥) = exp

(
−

∥∥x(i) − x(j)
∥∥2

2S

)

The above 
ondition 
an be expressed also in a matrix form, ΦwT = y:




Φ11 Φ12 · · · Φ1N

Φ21 Φ22 · · · Φ2N
.

.

.

.

.

.

.

.

.

.

.

.

ΦN1 ΦN2 · · · ΦNN







w1

w2
.

.

.

wN


 =




y1
y2
.

.

.

yN




where Φ is a matrix of dimension N×N of 
omponents Φij = φ(
∥∥x(i) − x(j)

∥∥)
and w is 1×N and y is N × 1.

If Φ is a non singular matrix the solution for the parameters (i.e., the ve
tor

of weights w) 
an be found simply inverting the above relationship

w = Φ−1y

The network looks like the following:

53



2.6. TEST OR PREDICTION PHASE: PREDICTION THROUGH

LEARNING-BY-EXAMPLE TECHNIQUES

Figure 2.26: RBFN Network.

As 
an be noti
ed, the network has an input layer, a hidden layer and an out-

put layer. The input layer broad
asts the 
oordinates of the input ve
tor to ea
h

of the nodes in the hidden layer. Ea
h node in the hidden layer then produ
es an

a
tivation based on the asso
iated radial basis fun
tion. The dimensionality of

the radial fun
tions is the same as the input data. Finally, the node in the out-

put layer 
omputes a linear 
ombination of the a
tivations of the hidden nodes.

How an RBFN rea
ts to a given input stimulus is 
ompletely determined by the

a
tivation fun
tions asso
iated with the hidden nodes and the weights asso
iated

with the links between the hidden layer and the output layer.

In pra
ti
e, exa
t modeling of the training data is not always wanted be
ause

in this way a very poor predi
tive ability would be rea
hed, due to the fa
t that

all details, noise, outliers are modeled.

To have a smooth interpolating fun
tion in whi
h the number of basis fun
-

tions is determined by the fundamental 
omplexity of the data stru
ture, some

modi�
ations to the exa
t interpolation method are required.

1. The number of basis fun
tions, M , is redu
ed to a lower number, M ≪ N .

2. Bias parameters are in
luded in the linear sum. These will 
ompensate

for the di�eren
e between the average value over the data set of the basis

fun
tion a
tivations and the 
orresponding average value of the targets.

3. The determination of suitable 
enters be
omes part of training pro
ess.

4. Instead oh having a 
ommon spread parameter, σ2
, ea
h basis fun
tion is

given its own width σj , whose value is also determined during training.

The main problem with RBFN is that, sin
e they perform exa
t interpolation,

they perform poorly with noisy data. In addition they are not 
omputationally

e�
ient when many training samples are available. Indeed, the network requires
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one hidden unit (i.e. one basis fun
tion) for ea
h training data. The matrix

inversion 
ost is typi
ally O (N3).
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Chapter 3

Re�e
tarray antennas

3.1 Introdu
tion

The design, fabri
ation, and maintenan
e of large phased arrays for satellite and

terrestrial appli
ations is a very 
hallenging and expensive task, espe
ially if very

high dire
tivities are required. As a 
onsequen
e, many te
hniques have been de-

veloped in the s
ienti�
 and industrial 
ommunities in order to simplify the array

ar
hite
ture, redu
e the number of 
ontrol points, or ease the fabri
ation of the

feed network. In this s
enario, re�e
tarrays (antennas in whi
h an a
tive feeder

illuminates a large set of passive resonant pat
hes, that 
olle
tively s
atter the de-

sired beam) have emerged as a powerful and �exible solution to a
hieve e�e
tive

beam 
ontrol 
apabilities without requiring 
omplex, expensive, and bulk feed

networks (unlike phased arrays), and also without yielding the non-
onformal

geometries of standard paraboli
 re�e
tor antennas. However, the design of a

re�e
tarray is still a very 
omplex task, espe
ially if high performan
e in terms

of bandwidth and polarization purity is required. As a matter of fa
t, the de-

sign of a re�e
tarray requires a very a

urate knowledge of the relations between

the elementary re�e
tarray antenna (i.e., its shape), the frequen
y/angle of in-


iden
e/polarization of the in
oming wave, and the features (magnitude, phase,

polarization) of the re�e
ted wave. If the elementary antenna has a 
omplex

shape (required to a
hieve e�e
tive 
ross-polarization 
ontrol and large band-

width), no approximate formulas exist to predi
t su
h a relation, and expensive

full-wave methods or ad ho
 numeri
al te
hniques are 
urrently required. Unfor-

tunately, the number of simulations required to 
hara
terize a single re�e
tarray


ell grows exponentially with its number of degrees-of-freedom, therefore making

this approa
h numeri
ally unfeasible when the re�e
tarray 
ell has more than

2/3 geometri
al degrees of freedom. In the design methodology, it is therefore

of fundamental importan
e to have te
hniques 
apable of e�
iently and a

u-

rately 
al
ulate the re�e
tion 
oe�
ient asso
iated with a given geometry of the

element in order to 
al
ulate the geometry of the element that will provide the

desired re�e
tion 
oe�
ient. This 
oe�
ient is mathemati
ally represented by a
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2x2 
omplex matrix (ea
h entry has a magnitude and a phase), whi
h takes into

a

ount the relationships between 
o-polar and 
ross-polar 
omponents of the

in
ident (due to the feeder) and re�e
ted �eld. This matrix naturally depends

on the geometry of the element, the dire
tion of in
iden
e of the wave (azimuth

and elevation) and the operating frequen
y of the system.

For the design of the re�e
tarray any possible value of phase-shift must be

implemented by varying one parameter in the unit 
ell (su
h as the pat
h size

or rotation angle) in order to be able to a

urately predi
t the phase shift and

dissipative losses. One of the most important parts in re�e
tarray analysis is

the a

urate 
hara
terization of the re�e
tive elements (a

urate knowledge of

phase-shift and polarization losses for ea
h polarization of the �eld). Curves

whi
h relate the phase of the radiated �eld with 
ertain geometri
al parameters

of the re�e
tarray elements are usually adopted.

If the literature, when the arrays had too many elements, the analysis of ar-

rays of re
tangular mi
rostrip pat
hes has been 
arried out assuming the in�nite

array model and by applying Floquet's theorem, thus redu
ing the analysis to one

periodi
 
ell. This analysis 
an be used if all the elements in the re�e
tarray have

the same shape. If elements with variable size are used, the re�e
tarray must be

analyzed assuming lo
al periodi
ity (whi
h is a

urate for neighboring pat
hes

with smooth variations, assumption whi
h is normally true). In the following

the analysis of a mi
rostrip re�e
tarray with re
tangular pat
hes of variable size

is 
arried out. The limitations of this geometry are then highlighted: in order to

in
rease the performan
e of the re�e
tarray it is often ne
essary to use non
anon-

i
al pat
hes. However the analysis of more 
omplex shaped requires an in
rease

in CPU time. The proposed method based on an innovative learning-by-example

strategy allows analyzing pat
hes with arbitrarily 
omplex shape in an e�
ient

and a

urate way. The method is presented in Se
tion 4.
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3.2 Single layer re�e
tarray of re
tangular pat
hes

In the following the problem of predi
ting the power pattern generated by a

re�e
tarray when the dimensions of the pat
hes as well as the substrate thi
kness

and permittivity vary is presented and mathemati
ally modeled.

Figure 3.1: Geometry of the re�e
tarray antenna.

Let us 
onsider a simple re�e
tarray with N re
tangular pat
hes of variable

size arranged over a regular latti
e, as shown in Fig. 3.1. The origin of the z
axis is lo
ated at the interfa
e between the diele
tri
 substrate and the ground

plane, while the referen
e point (x, y) = (0, 0) is along the perpendi
ular di-

re
tion between the feeder and the re�e
tor surfa
e. Both the ground plane

and the pat
hes are assumed to be made of perfe
tly ele
tri
 
ondu
tor PEC.

The substrate is assumed to be lossy, homogeneous and isotropi
 with 
omplex

permittivity ε = ε0εr (1− j tan δ) and thi
kness d. The in
ident plane wave gen-
erated by the feeder at an angle (θi, φi) with respe
t to the referen
e system, has

the following expression

Ei = E0e
jk0(xui+yvi+z cos θi) =

[
Eθ

0

Eφ
0

]
ejk0(xui+yvi+z cos θi)

(3.1)

where E0 de�nes the amplitude and polarization of plane wave in free spa
e,

ui = sin θi cos φi and vi = sin θi sin φi , k0 = 2π/λ0 with λ0 free spa
e wavelength.
The total ele
tri
 �eld in the region des
ribed by the 
oordinate z > d is given

by the sum of the in
ident �eld, of the re�e
ted �eld and of the s
attered �eld:

Et = Ei + Er + Es (3.2)

Er indi
ates the �eld re�e
ted from an in�nite grounded diele
tri
 slab with-

out the mi
rostrip pat
hes and 
an be express as
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[
Eθ

r

Eφ
r

]
=

[
Rθ,θ 0
0 Rφ,φ

] [
Eθ

0

Eφ
0

]
ejk0(xui+yvi−z cos θi)

(3.3)

where Rjj, j = θ, φ are the re�e
tion 
oe�
ients de�ned in [41℄.

When the mi
rostrips are present, a surfa
e 
urrent J is indu
ed on ea
h


ondu
ting element and a s
attered �eld is produ
ed, whi
h 
an be expressed in

terms of the in
ident �eld Ei and of the s
attering 
oe�
ients Sjk, j, k = {θ, φ}
as

[
Eθ

s

Eφ
s

]
=

[
Sθ,θ Sθ,φ

Sφ,θ Sφ,φ

] [
Eθ

0

Eφ
0

]
ejk0(xui+yvi−z cos θi)

(3.4)

In 3.4 ea
h s
attering 
oe�
ient Sjk is given by Sj,k = E
j
s(z=0)

Ek
i (z=0)

; j, k = {θ, φ}.

If we assume that the re�e
tarray is subdivided into unit 
ells and that ea
h


ell radiates a spheri
al wave proportional to the sum of the re�e
ted Er and

s
attered Es �eld, the radiation pattern of an N elements re�e
tarray in the

dire
tion (θ, φ) is de�ned as [16℄

E (θ, φ) =
e−jk0r

r

N∑

n=1

Q (θ, φ; θn, φn) ·
[
R (θn, φn) + S (θn, φn)

]

·Ef (θn, φn) e
jk0(xn sin θ cosφ+yn sin θ sinφ)

(3.5)

where Ef is the feed pattern fun
tion,(xn, yn) are the Cartesian 
oordinates

of the n-th pat
h 
enter (see Fig. 1), (θn, φn) is the dire
tion of arrival of the

wave impinging on the n-th pat
h 
enter, Q is a term whi
h a

ounts for the

transformation from plane to spheri
al wave [16℄. The jk-th s
attering 
oe�
ient

of the s
attering matrix S (θn, φn) of the n-th pat
h is de�ned as [17℄:

Sθ,k (θn, φn) = −
1

ab cos θn

[
G (k0u

n
r , k0v

n
r ) J

(n,k̂)
x (k0u

n
r , k0v

n
r ) cosφnx̂+(3.6)

G (k0u
n
r , k0v

n
r ) J

(n,k̂)
y (k0u

n
r , k0v

n
r ) sin φnŷ

]
ejk0 cos θnd

Sφ,k (θn, φn) = −
1

ab

[
G (k0u

n
r , k0v

n
r ) J

(n,k̂)
x (k0u

n
r , k0v

n
r ) sin φnx̂−

G (k0u
n
r , k0v

n
r ) J

(n,k̂)
y (k0u

n
r , k0v

n
r ) cosφnŷ

]
ejk0 cos θnd (3.7)

(k = {θ, φ}). ab is the area of the latti
e 
ell (see Fig. 1), G is the dyadi


Green's fun
tion in spe
tral domain, Jn =
∑

k={θ,φ} J
(n,k̂)
x x̂+

∑
k={θ,φ} J

(n,k̂)
y ŷ is
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the 
urrent indu
ed on the n-th pat
h in spe
tral domain and k̂ indi
ates the

polarization of the in
ident �eld. The jk-th s
attering 
oe�
ient 
an be easily


omputed in an analyti
al way as indi
ated in (3.5) for the simple re�e
tarray

reported in Fig. 4.1 (single diele
tri
 substrate, 
ells with re
tangular shapes) by

expanding the indu
ed 
urrent Jn
in a set of basis fun
tions D

(n,k̂)
i , i = 1, ..., I

with unknown 
oe�
ients C
(n,k̂)
i , i = 1, ..., I

J
(n,k̂)
χ =

I∑

i=1

C
(n,k̂)
i,χ D

(n)
i,χ , χ = {x, y} (3.8)

and by 
omputing the unknown 
oe�
ient ve
tor solving the following system

C(n,k̂) =
(
Z(n)

)−1

V (n,k̂)
(3.9)

where

Z
(n)
il = −

1

A

∞∑

m=−∞

∞∑

u=−∞

D̃
(n)H
i

(
−k(n)x,m,−k

(n)
y,mu

)
G
(
k(n)x,m, k

(n)
y,mu

)
D̃l

(
k(n)x,m, k

(n)
y,mu

)

(3.10)

are the elements of the impedan
e matrix Z(n)
, H stands for the 
onjugate

trasnspose and i, l are number of expansions; the i-th entry of the voltage ve
tor

V (n,k̂) 
an be 
omputed as des
ribed in [41℄:

V
(n,k̂)
i = J

(n,k̂)
s0 G

(
−k(n)x ,−k(n)y

)
D̃

(n)
i

(
−k(n)x ,−k(n)y

)
ejk0 cos θn (3.11)

I f we 
onsider a more general 
ase in whi
h (a) the substrate may be multi-

layer, with ea
h layer 
hara
terized by a 
omplex permittivity

εw = ε0εrw (1− j tan δw) and by a thi
kness dw (with w = 1, ...,W ) and (b) the

unit 
ell may have arbitrary 
omplex shape and orientation angle, it is not possi-

ble to de�ne a suitable set of basis fun
tions D
(n,k̂)
i , i = 1, ..., I be
ause they are

not available. A full-wave method or an ad-ho
 te
hnique for the 
omputation

of S (θn, φn), based for example on the de�nition of subdomain basis fun
tions,

are required [42℄.

61



3.3. HOW TO DEAL WITH THE LIMITATIONS OF SINGLE-LAYER

REFLECTARRAY OF RECTANGULAR PATCHES

3.3 How to deal with the limitations of single-

layer re�e
tarray of re
tangular pat
hes

The main reason why we have to 
onsider other stru
tures than the single-layer

re�e
tarray of re
tangular pat
hes is be
ause of its inherent narrow bandwidth

performan
e [43, 44℄. This problem is due to the strongly nonlinear relation ex-

isting between the re
tangular pat
hes' size and the re�e
ted �eld. A signi�
ant

e�ort has been made in re
ent years in order to mitigate this problem and ele-

ments with linear phase response and broadband behavior have been designed;

on one side sta
ked pat
hes of variable size (see Fig. 3.2) have shown in
reased

bandwidth a
hieved by 
ombining the resonan
es of ea
h pat
h.

(a) (b)

Figure 3.2: (a) Two-layer re�e
tarray using pat
hes of variable size [45℄ and (b)

three-layer re�e
tarray using pat
hes of variable size [46℄.

However, these elements exhibit an in
rease in the 
omplexity of the manu-

fa
turing pro
ess [45, 46℄. On the other side elements with multiple resonan
es

printed on a single diele
tri
 layer have demonstrated to provide wider bandwidth

without 
ompli
ating the realization pro
ess [12, 47℄, see Fig. 3.3.

Figure 3.3: Sli
ed 
ir
ular fra
tal derived from the 
ir
ular pat
h in [47℄.
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In [48℄ a three-layer square pat
h element of variable size was designed to

a
hieve simultaneous 
overage at the Ku re
eiving (13.75-14.25 GHz) and trans-

mitting (1.7-12.2 GHz) bands. Multilayer stru
tures have been proposed to

a
hieve larger frequen
y ratios (ratios of the 
enter frequen
ies of the upper

and lower bands): in this s
enario on ea
h layer a di�erent set of elements whi
h

operates at a spe
i�
 frequen
y band is used. FSS stru
tures have then been

introdu
ed to redu
e the mutual interferen
e between the elements of di�erent

frequen
y bands [49℄. A s
hemati
 view of the antenna where an FSS ba
ked

re�e
tarray whi
h works in the Ka-band is lo
ated on top of a metal-ba
ked

re�e
tarray working in X-band is reported in Fig. 3.4.

Figure 3.4: S
hemati
 view of dual-band re�e
tarray presented in [49℄.

This latter solution be
omes however 
ostly and 
omplex to be fabri
ated;

moreover, the gain and e�
ien
y of the lower layer are redu
ed by the upper

layer. Single-layer 
on�gurations with di�erent sets of elements displa
ed on

interla
ed array grids appear to be the most viable solution to over
ome these

issues but ele
tromagneti
 
oupling between elements be
omes a problem. For

this reason, single layer 
on�gurations in
luding a single set of elements 
apable

of a
hieving a dual-band phase response have been investigated. In [50℄ a single-

layer design with two di�erent sets of elements has been studied; mutual 
oupling

was also taken into a

ount by 
onsidering all possible element 
ombinations in a

unit 
ell. The pri
e to be payed was the in
reased time 
onsumption and design


omplexity.
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REFLECTARRAY OF RECTANGULAR PATCHES

Figure 3.5: Phoenix 
y
le: evolution of the 
ell geometry over a 
omplete 360

[deg℄ 
y
le [12℄.

In re
ent years a new re�e
tarray 
ell with 
y
le evolution and with linear

phases with variations in a range bigger than 360 [deg℄ has been introdu
ed [12℄.

The problem to be over
ome was that at phase transition the geometri
al dif-

feren
es of neighboring 
ells 
ould be parti
ularly sharp, making 
oupling e�e
ts

di�
ult to be a

ounted for. The new element presented in [12℄, and reported in

Fig. allows a
hieving a full 360 [deg℄ phase 
overages at both bands with smooth

phase responses and low elements loss. It is 
omposed of two square loops and

a square pat
h and it has the 
apability of 
oming ba
k to its initial shape after

a 360
◦

phase 
y
le. Di�erently from the triple square loop element the sizes of

the outermost loop and innermost pat
hes are �xed. In [15℄ a dual-frequen
y

phase-only synthesis method has been applied to the Phoenix element to obtain

wider frequen
y ratio and higher aperture e�
ien
ies at both bands.

The phase response of the �Square Phoenix� and �Re
tangular Phoenix� unit


ells will be deeply analyzed in Se
tion 4.
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3.4 Adopted solution for the 
omputation of s
at-

tering 
oe�
ients of generi
 re�e
tarray unit


ells

Many analyti
al relations based on an equivalent 
ir
uit analysis have been de-

rived for the 
orre
t 
omputation of the phase of the �eld radiated by pat
hes

with non
anoni
al shapes [51, 52℄. However, these formulas turn out to be rather


ompli
ate and analyti
ally onerous, thus s
ar
ely attra
tive. The Method of Mo-

ments in the spe
tral domain has been demonstrated to be the best approa
h in

terms of e�
ien
y and a

ura
y, under the assumption of lo
al periodi
ity (this

assumption is valid when variations in neighboring 
ells are smooth) [53, 42℄.

This method allows analyzing every 
on�guration and is 
omputationally more

e�
ient 
ompared to other three-dimensional full-wave FEM and FDTD full-

wave 
odes. It assumes that the s
attered �eld 
an be expressed as a fun
tion of

the 
urrent distribution on ea
h 
ell, whi
h 
an be expanded as a summation of

basis-fun
tion:

J
(n,k̂)
χ =

I∑

i=1

C
(n,k̂)
i,χ D

(n)
i,χ (3.12)

where all the terms have been already des
ribed in Se
tion 3.2. In general,

there are two 
ategories of basis fun
tions D
(n)
i,χ used to represent the unknown

fun
tion, the entire domain and the subdomain basis fun
tions. Entire domain

basis fun
tion have been derived for dipole, square pat
h, 
ir
ular pat
h, 
ross,

and Jerusalem 
ross geometries. The most important advantage of entire domain

basis fun
tions is that the size of the resulting moment method matrix is usually

small and it is thus possible to solve problems for ele
tri
ally large stru
tures. In


ontrast, the number of subdomain basis fun
tions required to a

urately repre-

sent the 
urrent is often mu
h larger 
ompared to entire domain basis fun
tions.

Moreover, the Fourier transforms of the subdomain basis fun
tions do not de
ay

very rapidly.

For these reasons the Method of Moments may fail whenever subdomain basis

fun
tions have to be used to expand the unknown 
urrent indu
ed on the metalli



ell (this happens for non-
anoni
al shapes), thus not minimizing the number of

Floquet harmoni
s [42℄. In [54℄ a full-wave method based on the transmission

line te
hnique has been proposed, whi
h allows the de�nition of a generalized

s
attering matrix of ea
h grid and embedding layers (in 
ase of sta
ked pat
hes).

In [55℄ a simple equivalent-
ir
uit model has been derived in order to 
ompute

the response of generi
 frequen
y-sele
tive-surfa
e with low 
omputational e�ort.

However, this approa
h shows good agreement with the more 
omputationally

expensive MoM approa
h only up to the frequen
y at whi
h grating lobes o

ur,

thus limiting the periodi
ity of the 
ells. To the author's best knowledge the

full-wave method or ad-ho
 numeri
al te
hnique presented in the literature may
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be
ome an una�ordable solution in terms of 
omputational time whenever high

performan
es in terms of bandwidth, radiation e�
ien
y, polarization purity are

required. The reason why this happens is be
ause the more 
omplex the problem

to be addressed (in terms of antenna requirements), the higher the number of

degrees of freedom of the unit 
ell required. However, when the number of

degrees of freedom in
reases (i.e., parameters des
ribing the shape of the pat
h,

frequen
y and angles of in
iden
e on the in
oming plane waves), the number of

simulations required in
reases, too.

The method proposed in order to address the problem of e�
iently 
omputing

the response of arbitrary 
omplex re�e
tarray elements is based on an innovative

and 
ustomized statisti
al learning (SL) te
hnique. The idea is to re
ast the

problem of 
omputing the s
attering matrix of a pat
h element given its spe
i�


features as a regression problem, by pro
essing the information embedded in a

set of I/O pairs in order to predi
t the output of unknown 
on�gurations.

The evaluation of the s
attering 
oe�
ients of generi
 re�e
tarray unit 
ells

(i.e., featuring an arbitrary number of DoF s) is �rstly re-
ast as a regression

problem and then solved with a learning-by-example (LBE ) strategy able to

exploit the information provided by a redu
ed set of FW simulations (namely

the �examples�) performed on
e and o�-line. In order to 
ompute the �examples�

an EM analysis tool based on a mode-mat
hing method between the free spa
e

Floquet's mode and the aperture or pat
h modes of the single 
ell elements is

used as a FW solver [56℄[57℄. The idea beyond this method is that ea
h layer

of the re�e
tarray 
an be seen as a 
apa
itive (periodi
 distribution of metalli


pat
hes on diele
tri
 layers), indu
tive (periodi
 distribution of holes on metalli


sheets, with or without diele
tri
 support), or mixed (multi-layer 
onstituted

by 
apa
itive as well as indu
tive grids) stru
ture. The generalized s
attering

matrix of ea
h stru
ture be
omes huge if the number of intera
ting Floquet

modes in
reases (as is the 
ase of mixed stru
tures) but the method presented

in [56℄ allows to obtain a linear matrix system by expressing the voltages and


urrents on all the grid generators and by simultaneously applying the boundary


onditions in the spe
tral domain on ea
h of them.

66



Chapter 4

E�
ient predi
tion of the EM

response of re�e
tarray antennas by

an advan
ed statisti
al learning

method

The following work has been submitted for publi
ation in the IEEE Transa
tions

on Antennas and Propagation. The problem being addressed is the e�
ient and

a

urate predi
tion of the ele
tromagneti
 response of 
omplex-shaped re�e
tar-

ray elements. The addressed problem is important to the Antennas and Propaga-

tion 
ommunity sin
e the synthesis of high performan
e re�e
tarrays, even more

when wideband operations and/or a 
areful 
ontrol of the 
ross-polarization 
om-

ponents of the re�e
ted �eld are needed, needs 
omplex pat
h shapes be
ause of

the wider set of degrees of freedom (DoFs) potentially enabling an enhan
ed 
on-

trol of the antenna s
attering properties. Unfortunately, designing a re�e
tarray

featuring 
ompli
ated element geometries often turns out to be a very 
halleng-

ing task in pra
ti
e. To determine the optimal shape of ea
h re�e
tarray element

(i.e., setting the DoFs of the re�e
tarray pat
hes), the relationships between the

des
riptors of both the unit 
ell (e.g., geometry/size of the pat
h metallizations)

and of the illumination (e.g., the polarization/frequen
y/angle-of-arrival of the

in
ident �eld) with the asso
iated s
attering 
oe�
ients must be known, but this

knowledge is analyti
ally available only for "simple" unit 
ells des
ribed by few

DoFs. Otherwise, s
attering matrix-vs-des
riptors look-up tables (LUTs), whi
h

are o�-line 
omputed through extensive full-wave (FW) simulations, are usually

built, but the exponential grow of the number of entries of these latter with the

DoFs of the unit 
ells, prevent su
h an approa
h when dealing with advan
ed

re�e
tarray geometries 
hara
terized by arbitrary variations of many des
riptors

be
ause of the infeasible generation and storage of the asso
iated unit 
ell s
at-

tering response databases (UCS-DBs). Therefore, innovative methodologies for

the quasi- or real-time predi
tion of the ele
tromagneti
 response of 
omplex
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re�e
tarray elements are ne
essary.

The novelties of the presented work over the existing work 
omprise (i) the in-

trodu
tion of a 
omputationally e�
ient, reliable/a

urate, and �exible strategy

to predi
t the s
attering response of re�e
tarray elements featuring arbitrarily


omplex unit 
ells that potentially enables their use in next-generation and more

demanding re�e
tarray designs; (ii) the development and 
ustomization to the

ve
torial 
ase of an advan
ed OK te
hnique for the predi
tion of 
omplex val-

ued s
attering matri
es of periodi
 EM planar stru
tures, thus useful not only

for re�e
tarrays, but also generalisable to analogous ele
tromagneti
 engineering

problems (e.g., the analysis of frequen
y-sele
tive surfa
es and metasurfa
es); (iii)

the development of a numeri
al tool that, whether integrated within a system-

by-design (SbD) loop, 
ould enable the optimal synthesis of next-generation re-

�e
tarray antennas with 
ontrolled 
o- and 
ross-polar radiation patterns; and

(iv) the derivation of operative guidelines on the a
hievable time saving and the

arising predi
tion a

ura
y vs. the training set size for the exploitation of su
h

a OK meta-modeling in re�e
tarray response predi
tion.
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Figure 4.1: Sket
h of the re�e
tarray antenna.

4.1 Problem Statement

Let us 
onsider a mi
rostrip re�e
tarray 
onsisting of a planar array of N pat
hes

displa
ed over the xy-plane in a regular latti
e with unit 
ell d1 × d2 (Fig. 4.1)

on a grounded multilayer substrate. Ea
h n-th (n = 1, ..., N) array element is

des
ribed by B DoF s g (n) ,
{
g(b) (n) ; b = 1, ..., B

}
. The design of the pat
h

arrangement is usually 
arried out as the synthesis of the set of N des
riptor

ve
tors, G = {g (n) ∈ ℘; n = 1, ..., N}, ℘ being the set of admissible variations

of the unit-
ell geometry with respe
t to a referen
e one, su
h that the �eld

radiated by the re�e
tarray, E (θ, ϕ; f), is as 
lose as possible to a user-de�ned

one, Eref (θ, ϕ; f). More in detail, the �eld distribution E (θ, ϕ; f) is given by

[16℄[17℄[41℄

E (θ, ϕ; f) =

N∑

n=1

{[R (θn, ϕn; f) + S (θn, ϕn; f, g (n))] (4.1)

·EF (θn, ϕn; f) exp (jk0rn · r̂)}

where f is the working frequen
y, r̂ , (sin θ cosϕ, sin θ sin φ, cos θ), rn = (xn, yn, 0)
is the lo
ation of the n-th pat
h element, k0 =

2πf
c0

is the free-spa
e wavenumber

(c0 being the speed of light), and (θn, ϕn) are the elevation angle and the azimuth
one of the dire
tion of in
iden
e from the feed to the n-th element, respe
tively,
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while

EF (θn, ϕn; f) =
|rF |

|rn − rF |

EF (θn, ϕn; f)

EF (0, 0; f)
exp (jk0 |rn − rF | − |rF |) (4.2)

[
cosϕnθ̂ + sinϕnϕ̂

]

is the �eld pattern radiated by the feed on the n-th element, rF and EF (θ, ϕ; f)
being the feeder position and the element fa
tor, respe
tively. Therefore, the

synthesis of a re�e
tarray layout radiating a �eld distribution (4.1) �tting the

desired one Eref (θ, ϕ; f) requires, for ea
h n-th (n = 1, ..., N) layout element,

the knowledge of both the plane wave re�e
tion matrix,

R (θn, ϕn; f) = {Rpq (θn, ϕn; f) ; p, q = {θ, ϕ}}, and the s
attering matrix,

S (θn, ϕn; f, g (n)) = {Spq (θn, ϕn; f, g (n)) ; p, q = {θ, ϕ}} as suggested by (4.1).

Towards this end, let us noti
e that the entries of the matrix R do not gen-

erally depend on the pat
h elements and they are usually available in 
losed-

form [16℄[17℄[41℄. Otherwise, the s
attering matrix S heavily depends on the

shape/layout of the re�e
tarray unit 
ells and there are no available 
losed-form

expressions for the asso
iated entries ex
ept for simple geometries (e.g., re
t-

angular pat
hes [16℄[17℄). Thus, it is generally needed to solve the following

estimation problem

S
attering Matrix Estimation Problem. Find the estimation

fun
tion Ŝ (z) su
h that Ŝ (z) ≈ S (z), z ∈ Z.

where

z , [θ, ϕ, f, g] (4.3)

is an input ve
tor of dimensionB+3 in the feasibility spa
e Z (Z , {θ ∈ [θmin, θmax] ;
ϕ ∈ [ϕmin, ϕmax]; f ∈ [fmin, fmax]; g ∈ ℘}).
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4.2 LBE -Based Predi
tion of the Re�e
tarray Unit-

Cell Response

A dire
t approa
h to address the �S
attering Matrix Estimation Problem� when

dealing with re�e
tarray elements for whi
h no analyti
al models are available is

that of exploiting FW numeri
al solvers to exhaustively populate huge LUT s - to

be used in the design phase [15℄[18℄[20℄ - mapping the I/O relationship between

the input z and the ele
tromagneti
 response fun
tion Ŝ (z) (i.e., the output).

Towards this end, the following two steps are 
arried out:

• the elevation θ, the azimuth ϕ, the working frequen
y f , and the DoF s of

the array element g are �rst dis
retized in V [θv = θmin + (v − 1)∆θ; v =
1, ..., V ; ∆θ = θmax−θmin

V−1
℄, H [ϕh = ϕmin + (h− 1)∆ϕ; h = 1, ..., H ; ∆ϕ =

ϕmax−ϕmin

H−1
℄, W [fw = fmin + (w − 1)∆f ; w = 1, ...,W ; ∆f = fmax−fmin

W−1
℄, and

L [g
(b)
lb

= g
(b)
min + (ℑ{lb} − 1)∆g(b), lb = 1, ..., Lb; b = 1, ..., B; L =

∏B
b=1 Lb;

∆g(b) = ∆g(1), ∆g(1) ,
g
(1)
max−g

(1)
min

L1−1
℄ quantized values, respe
tively;

• a FW simulation for ea
h m-th (m = 1, ...,M ; M = V × H ×W × L)
setup of the input ve
tor zm (zm , [θv, ϕh, fw, gl], m = H × W × L ×
(v − 1) +W × L × (h− 1) + L × (w − 1) + l; v = 1, ..., V ; h = 1, ..., H ;

l = 1, ..., L; w = 1, ...,W ) is 
arried out to determine the 
orresponding

output fun
tion S (zm), thus �lling the m-th entry of the I/O UCS-DB

D , {zm,S (zm) ;m = 1, ...,M} [20℄.

Despite the simpli
ity and the a

ura
y in 
omputing the fun
tion S (z) thanks to
the use of FW solvers, su
h an approa
h has a
tually a limited appli
ability sin
e

the size of the resulting database, M , in
reases proportionally with the number

of DoF s des
ribing the shape of the re�e
tarray 
ell-element, thus making both

the storage and the 
omputation time, T FW
tot (T FW

tot , M × T FW
sim , T FW

sim being

the CPU -time for the 
omputation of a single S matrix) unmanageable when


omplex geometries are at hand.

To deal with 
omplex pat
h shapes, suitable for �tting more 
hallenging radiation


onstraints, thus over
oming the storage/
omputational-issues of database-based

methods, the use of a statisti
al LBE method based on OK [21℄ is proposed here-

inafter. Su
h a 
hoi
e is motivated by several reasons, the most important ones

being (i) the generalization 
apabilities of LBE strategies that theoreti
ally en-

able an a

urate predi
tion of the output fun
tion Ŝ (z) just starting from few

I/O �examples�, T , {zu,S (zu) ; u = 1, ..., U}, 
olle
tively indi
ated as �train-

ing set�, of dimension signi�
antly lower than that of a standard I/O database

(i.e., U ≪ M). This latter feature guarantees a non-negligible time-saving with

respe
t to the whole �lling of a FW -based database; (ii) unlike standard interpo-

lation te
hniques, reliable predi
tions also without the a-priori knowledge of the
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fun
tional properties of S (z); (iii) the 
apability of the OK to deal with noise-

less training data su
h as for the estimation of the s
attering matrix problem

[21℄[22℄[23℄; (iv) unlike other LBE methods, the e�e
tive self-
alibration/setup

of the OK 
ontrol hyper-parameters during the training phase [21℄; (v) the good

generalization 
apabilities and the numeri
al e�
ien
y of the OK already as-

sessed in very large problems [21℄[22℄[23℄, as well.

The S
attering Matrix Estimation Problem is solved with the OK method a
-


ording to the following guidelines. First the entries of the estimated s
at-

tering matrix ŜOK (z) are expressed in terms of the I = 8 
omponents of

the ve
torial auxiliary OK predi
tion fun
tion, χ (z) , {χi (z) , i = 1, ..., I}:

ŜOK
θθ (z) = χ1 (z)+jχ2 (z), Ŝ

OK
θϕ (z) = χ3 (z)+jχ4 (z), Ŝ

OK
ϕθ (z) = χ5 (z)+jχ6 (z),

and ŜOK
ϕϕ (z) = χ7 (z) + χ8 (z). Su
h an auxiliary fun
tion is de�ned as follows

[21℄[22℄

χ (z) = β (η) + [γ (z;η)]∗ [Γ (η)]−1 (Ψ− 1Uβ (η)) , (4.4)

where 1U is an all-ones 
olumn ve
tor of length U , β (η) is the ve
tor of the OK
regression parameters given by

β (η) =
(
1∗
U [Γ (η)]−1

1U

)−1
1∗
U [Γ (η)]−1Ψ (4.5)

where Ψ

Ψ , {R [Spq (zu)] , I [Spq (zu)] ; p, q = {θ, ϕ} , u = 1, .., U} (4.6)

is the matrix 
omprising the real part, R [ . ], and the imaginary one, I [ . ], of the
o�-line FW 
omputed s
attering matrix 
oe�
ients belonging to the training set

T . Moreover, γ (z;η) is a U-dimensional ve
tor whose u-th (u = 1, ..., U) entry,
γu (z;η), is the 
orrelation value between the re�e
tarray unit-
ell des
riptor z

and the u-th �example� input setup zu given by

γu (z;η) , exp (−η∗ · |z− zu|) (4.7)

when an exponential 
orrelation model is assumed, η , {ηb, b = 1, ..., B + 3}
being the set of the OK 
ontrol 
oe�
ients [21℄[22℄[23℄. Furthermore, Γ (η)is the
U ×U matrix of the auto-
orrelation values, whose u-th (u = 1, ..., U) 
olumn is

the ve
tor γ (zu;η).

The entries of ŜOK (z) are then inferred as a fun
tion of the ve
torial predi
tor

fun
tion χ (z) in (4.4) from the knowledge of the training set

T , {zu,S (zu) ; u = 1, ..., U} on
e the optimal value of the 
ontrol ve
tor η

in (4.7) is spe
i�ed [21℄[22℄[23℄. Unlike many popular LBE te
hniques, whi
h

need time-
onsuming trial-and-error 
alibration pro
edures [33℄[32℄[34℄[58℄, the


alibration step in the OK 
omes from an e�e
tive self-tuning pro
ess [21℄[22℄

where the optimal setup, ηopt
, is determined by looking for the minimum of the


on
entrated likelihood fun
tion Φ (η) de�ned as

Φ (η) =

{
U
√
det [Γ (η)]tr [µ (η)∗ µ (η)]

U

}
(4.8)
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where µ (η) , {κ [Γ (η)]}−1 [Ψ− 1Uβ (η)], κ [·] being the Cholesky fa
torization

operator, while det [·] and tr [·] stand for the determinant and the tra
e opera-

tors, respe
tively. Finally, the sear
h for ηopt = argminη {Φ (η)} is e�
iently


arried out by means of a standard te
hnique su
h as the BOXMIN multivariate

di
hotomy algorithm [59℄.

It is worth pointing out that su
h an OK -based pro
edure for solving the S
at-

tering Matrix Estimation Problem presents some key features/advantages that

in
lude (a) the straightforwardly exploitation of the multi-dimensional nature

of (4.4) for the predi
tion of the s
attering matrix S (z), (b) the self-setup of

the OK 
ontrol parameters (4.8) that avoids expensive trial-and-error 
alibra-

tion pro
edures, and (
) an impli
it and e�e
tive pro
essing of noiseless data,

sin
e the OK predi
tor exa
tly �ts the training samples (i.e., ŜOK (zu) = S (zu),
u = 1, ..., U [21℄[22℄[23℄).
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4.3 Numeri
al Results

This se
tion is aimed at numeri
ally validating the proposed OK -based approa
h

for the solution of the S
attering Matrix Estimation Problem as well as evaluating

its performan
e in 
omparison with state-of-the-art predi
tion methods, as well.

Towards this end, the OK performan
e will be assessed by means of the matrix

norm error Ξ1 and the the phase mean squared error Ξ2 de�ned as follows

Ξ1 ,
1

M

M∑

m=1

∥∥∥ŜOK (zm)− S (zm)
∥∥∥
2

‖S (zm)‖
2 (4.9)

where S denotes the exa
t FW -
omputed s
attering matrix/entries, ‖·‖ being

ℓ2-norm, and

Ξ2 =
1

4M

M∑

m=1

∑

p,q={θ,ϕ}

∣∣∣∣∣
1

π
arg

[
ŜOK
pq (zm)

Spq (zm)

]∣∣∣∣∣

2

(4.10)

where the π normalization a

ounts for the fa
t that the phase is expressed in

radians, while the 
oe�
ient

1
4
refers to the four entries of the s
attering matrix.

The values of these metri
s allow one to quantitatively evaluate the predi
tion

a

ura
y of the method (4.9) and its reliability in estimating the phase of the

entries of the s
attering matrix (4.10), whi
h is the key parameter in state-of-

the-art re�e
tarray design methods [11℄[15℄. On the other hand, a su

ess index

of using a LBE -based strategy is its 
omputational e�
ien
y for a given degree

of predi
tion a

ura
y. More spe
i�
ally, the time saving with respe
t to the

time required by the FW approa
h to �ll the same size I/O UCS-DB D

∆T ,

∣∣∣∣
T FW
tot − TOK

tot

T FW
tot

∣∣∣∣ (4.11)

where TOK
tot is the time required by the OK to determine the M entries of D

given by

TOK
tot , T FW

set + TOK
train + TOK

test (4.12)

where T FW
set , U × T FW

sim is the time for FW -
omputing the U entries of the

training set T , TOK
train is the time for theOK training pro
ess [i.e., the 
omputation

of (4.8) to be substituted in (4.4)℄, and TOK
test , (M − U)×TOK

sim is the time needed

by the OK -based approa
h to predi
t the remaining M − U entries of D, TOK
sim

being the time of a single OK predi
tion.

1

The �rst experiment is 
on
erned with the s
attering matri
es of a re�e
tarray

unit 
ell printed on a multi-layer diele
tri
 substrate (Tab. 4.I) with square

latti
e periodi
ity (d1 = λ0

3
x̂, d2 = λ0

3
ŷ, λ0 being the wavelength at the 
entral

1

For the sake of fairness, all the simulation time refer to non-optimized Matlab implemen-

tations exe
uted on a single-
ore CPU running at 2.20 GHz.
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Square ’Phoenix’ Unit Cell

dx

dy

g(1)

g(2)

g(3)

g(4)

(a)

Rectangular ’Phoenix’ Unit Cell

dx

dy

g(1)

g(2)

g(3)

g(4)

(b)

Figure 4.2: Geometry of (a) the B = 4 �Square Phoenix � unit 
ell and (b) the

B = 4 �Re
tangular Phoenix � unit 
ell.
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Table 4.1: Numeri
al Assessment (Square/Re
tangular Phoenix unit 
ell, dx =
dy =

λ0

3
) - Multilayer diele
tri
 substrate features.

Layer Thi
kness [λ0℄ Relative Permittivity

Bottom 5.84× 10−3 2.8− j1.96× 10−2

Middle 2.61× 10−1 1.03− j3.09× 10−3

Top 5.84× 10−3 2.8− j1.96× 10−2

frequen
y f0) and 
omprising multiple 
on
entri
 square metalli
 rings/slots [i.e.,

the �Square Phoenix� 
ell - Fig. 4.2(a)℄ [2℄[12℄[13℄[14℄. Su
h a geometry, whi
h

features B = 4 geometri
al DoF s [Fig. 4.2(a)℄, is known to guarantee wide phase

variations with smooth geometri
al 
hanges and to be suitable for wideband

appli
ations [2℄[12℄[13℄[14℄. Sin
e no analyti
al model is available [2℄[12℄[13℄[14℄,

the ele
tromagneti
 response of the 
orresponding re�e
tarray is numeri
ally


omputed by �rst dis
retizing its DoF s a

ording to the following setup: θmin = 0
[deg℄, θmax = 40 [deg℄, V = 9, ϕmin = 0, ϕmax = 45, H = 4, fmin = 0.9f0,

fmax = 1.1f0, W = 3, Lb = 32, g
(b)
min = 0, g

(b)
max =

λ0

3
(b = 1, ..., B), and

ℑ{lb} =

{
lb b = 1
lb ×H (lb−1 − lb) b = 2, ..., B

, (4.13)

H (·) being the Heaviside fun
tion, then applying an EM analysis tool based

on Floquet hypotheses as a FW solver [56℄[57℄ to �ll the whole database of

L ≈ 2.85 × 104 di�erent 
ell des
riptor 
on�gurations. It is worth remarking

that, despite the 
oarse sampling of the solution spa
e (only 9 angles in elevation
and 4 angles in azimuth) and the 
hoi
e of an e�
ient FW method (i.e., T FW

sim ≈
1.20× 102 [s℄), the 
omputation of the M ≈ 3.1× 106 entries of D would require

T FW
tot ≈ 3.69× 108 [s℄ (i.e., ≈ 11.7 years).

In order to predi
t the entries of S (z), the preliminary o�ine step (likewise

any other LBE method) is the 
hoi
e of the U entries of the training set T
that populate Ψ in (4.6). Towards this end, several advan
ed algorithms (e.g.,

exploiting feature extra
tion and adaptive sele
tion of the U 
on�gurations [58℄)


ould be adopted in prin
iple. Owing to the fo
us of this validation (i.e., the

analysis of the potentialities of a �bare� implementation of the proposed OK

strategy), a uniform random sampling approa
h has been adopted and the U
entries of Ψ have been randomly sele
ted from the M 
on�gurations in D. The

next step has been the OK self-
alibration, whi
h has been performed a

ording

to (4.8) to dedu
e ηopt
. This a
tually 
ompleted the training phase of the method,

sin
e the predi
tion (4.4) has been then 
arried out by simple substitution (see

Se
t. 4.2).

The plot of the resulting matrix norm error with respe
t to U shows that, as

expe
ted, the OK a

ura
y monotoni
ally improves with the size of T [e.g.,
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ΞOK
1 ⌋

U=2.0×104

ΞOK
1 ⌋

U=5.0×102

≈ 16.9% - Fig. 4.3(a)℄. Moreover, the arising value of Ξ1 is low [i.e.,

ΞOK
1

⌋
U=2.0×104

≈ 3.8× 10−2
- Fig. 4.3(a)℄ even though U ≪M (i.e.,

U
M

≈ 6.4×

10−3
). Su
h a result is even more impressive when 
ompared to the a

ura
y level

for the same setup when applying 
ompetitive state-of-the-art LBE strategies

based on Support Ve
tor Regression (SVR) [33℄[32℄[34℄[58℄[60℄ and Augmented

Radial Basis Fun
tion Network (A-RBFN ) paradigms [13℄[36℄. Indeed, both

te
hniques yield a signi�
antly worse Ξ1 regardless of U [e.g.,

ΞSV R
1

ΞOK
1

⌋
U=2.0×104

≈

342% and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 552% - Fig. 4.3(a)℄. This out
ome 
an be

theoreti
ally motivated from the fa
t that (a) unlike OK , SVR strategies do

not guarantee to �t the training samples (i.e., in general ŜSV R (zu) 6= S (zu),
u = 1, ..., U), thus they are less e�e
tive when noiseless deterministi
 data (su
h

as those produ
ed by a FW solver) are at hand [33℄[32℄[34℄[58℄; (b) thanks to its

semi-parametri
 nature and the self-tuned 
on�guration parameters, OK a�ords

a greater �exibility than A-RBFN and this results in more a

urate predi
tions

[61℄.

Now, let us analyze the 
apabilities of the OK -based method in predi
ting ∠S (z)
in view of its exploitation for the re�e
tarrays synthesis [11℄[15℄. The plot of Ξ2

versus U in Fig. 4.3(b) shows that the error is smaller than those from the SVR

and the A-RBFN for any size of the training set [e.g.,

ΞSV R
2

ΞOK
2

⌋
U=5.0×102

≈ 420% and

ΞA−RBFN
2

ΞOK
2

⌋
U=5.0×102

≈ 469%;

ΞSV R
2

ΞOK
2

⌋
U=2.0×104

≈ 466% and

ΞA−RBFN
2

ΞOK
2

⌋
U=2.0×104

≈

833%℄. Moreover, the phase behaviour turns out to be more a

urately (in per-


entage) estimated than the S (z) matrix [i.e., ΞOK
2

⌋
U=2.0×104

≈ 3.05 × 10−3
vs.

ΞOK
1

⌋
U=2.0×104

≈ 3.8 × 10−2
- Fig. 4.3(b)℄. In order to give the interested read-

ers an idea of the 
orresponden
e between the �gures of merit in Fig. 4.3 and

the asso
iated predi
tion 
apabilities, the plots of the magnitude and phase of

Sθθ (z) versus θ when f = f0 and ϕ = 45 [deg℄, U = 2.0 × 104 being the size of

the training set, for two sample geometries - not belonging to T - of the unit


ell of the re�e
tarray [i.e., Square Phoenix Cell Con�g. 1 - Fig. 4.4(a); Square

Phoenix Cell Con�g. 2 - Fig. 4.4(b)℄ with des
riptors in Tab. 4.II are reported

in Fig. 4.4(
) - Fig. 4.4(e) and Fig. 4.4(d) - Fig. 4.4(f ), respe
tively.

As expe
ted, the OK strategy outperforms other state-of-the-art te
hniques

in predi
ting the s
attering magnitude [i.e.,

∣∣SFW
θθ (z)− SOK

θθ (z)
∣∣ < 0.9 [dB℄,∣∣SFW

θθ (z)− SSV R
θθ (z)

∣∣ < 2.4 [dB℄,

∣∣SFW
θθ (z)− SA−RBFN

θθ (z)
∣∣ < 6.2 [dB℄ - Figs.

4(
)-4(d)℄ and the phase [i.e.,

∣∣∠SFW
θθ (z)− ∠SOK

θθ (z)
∣∣ < 0.5 [deg℄,∣∣∠SFW

θθ (z)− ∠SSV R
θθ (z)

∣∣ < 15 [deg℄,

∣∣∠SFW
θθ (z)− ∠SA−RBFN

θθ (z)
∣∣ < 26 [deg℄ -

Figs. 4(e)-4(f )℄. These results, besides visually 
on�rming the quantitative in-

di
ations 
oming from Figs. 3(a)-3(b), also highlight the e�e
tiveness of the

OK -based predi
tor to reliably model the S (z) variations [e.g., Fig. 4.4(e)℄

with negligible [e.g., Fig. 4.4(
)℄ or only slight [i.e., Fig. 4.4(d)℄ deviations
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Figure 4.3: Numeri
al Assessment (Square Phoenix unit 
ell, dx = dy = λ0

3
,

U ∈ [5.0× 102, 2.0× 104]) - Behavior of (a) Ξ1 and (b) Ξ2 versus the size of the

training set U .
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Square ’Phoenix’ Cell - Config. 1
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dx=λ0/3
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λ 0
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g(1)=0.250λ0

g(2)=0.229λ0
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λ 0
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Figure 4.4: Numeri
al Assessment (Square Phoenix unit 
ell, dx = dy = λ0

3
,

f = f0, ϕ = 45 [deg℄, U = 2.0× 104) - Unit 
ell geometry (a)(b) and behaviour

of (
)(d) the magnitude and (e)(f ) the phase of Sθθ (z) versus θ for (a)(
)(e)

�Con�g. 1� and (b)(d)(f ) �Con�g. 2�.
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Table 4.2: Numeri
al Assessment (Square/Re
tangular Phoenix unit 
ell, dx =
dy =

λ0

3
, B = 4) - Geometri
al des
riptors of sample unit 
ell layouts.

g(1) g(2) g(3) g(4)

Unit Cell [λ0℄ [λ0℄ [λ0℄ [λ0℄

Square Phoenix - Con�g. 1 0.237 0.216 0.175 0.154
Square Phoenix - Con�g. 2 0.250 0.229 0.150 0.129
Re
t. Phoenix - Con�g. 3 0.266 0.237 0.152 0.185
Re
t. Phoenix - Con�g. 4 0.156 0.262 0.135 0.158

from the a
tual values despite the 
omplexity of the geometry at hand [Fig.

4.2(a)℄ [2℄[12℄[13℄[14℄ and unlike the other state-of-the-art LBE methods [e.g.,

Fig. 4.4(e)℄.

To further assess and generalize these positive observations, Figure 4.5 reports the

s
atter plots of the real and imaginary parts of Sθθ (zm), m = 1, ...,M (Fig. 4.5).

As it 
an be inferred, the OK plots are 
loser to the ideal bise
tor behavior than

the SVR and the A-RBFN ones [Fig. 4.5(a) vs. Fig. 4.5(b) and Fig. 4.5(
)℄. The

same 
on
lusions hold true for the 
ross-polar 
omponent Sθφ (zm), m = 1, ...,M
(Fig. 4.6), as well. Indeed, notwithstanding the weaker magnitude [Fig. 4.6(a)

vs. Fig. 4.5(a)℄, whi
h is physi
ally motivated by the square symmetri
 nature

of the 
onsidered element [Fig. 4.2(a)℄, the proposed method is able to perform

a quite reliable predi
tion [e.g., Fig. 4.6(a)℄, while the s
atter 
louds of the SVR

[e.g., Fig. 4.6(b)℄ and the A-RBFN [e.g., Fig. 4.6(
)℄ signi�
antly deviate from

the ideal 
urve.

As for the 
omputational issues and overall e�
ien
y in dealing with the �Square

Phoenix � unit 
ells, the plots of Ttrain vs. U in Fig. 4.7 show that the training

phase for the OK -based approa
h is slightly more expensive than those of the

SVR and the A-RBFN ones [solid lines - Fig. 4.7(a)℄. This was theoreti
ally

expe
ted be
ause of the need of determining the auto
orrelation matrix Γ (η),
not required by the other state-of-the-art te
hniques, whose 
omputational load

grows quadrati
ally with the size of the training set, U . On the other hand,

the time spent for the testing phase, Ttest [dashed lines - Fig. 4.7(a)℄, is quite

similar for all the 
onsidered LBE methods. Anyway, both Ttrain and Ttest are
always negligible when 
ompared to the time for building the U-entries training
set T , T FW

set [Fig. 4.7(a)℄, even though an highly e�
ient FW solver has been

used [56℄[57℄. Thus, it turns out that the overall 
omputational 
ost, Ttot, is
dominated by the simulation time for the training set 
reation regardless of the

LBE te
hnique at hand (Ttot ≈ T FW
set ). Consequently, the behaviour of the time

saving∆TOK
versus U is almost identi
al to∆T SV R

and∆TA−RBFN
[Fig. 4.7(b)℄

and it always 
omplies with the 
ondition ∆T > 99.3% [Fig. 4.7(b)℄. Su
h an

out
ome, jointly with the results on the predi
tion a

ura
y from the analysis
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Figure 4.5: Numeri
al Assessment (Square Phoenix unit 
ell, dx = dy = λ0

3
,

U = 2.0 × 104) - A
tual versus estimated values of (a)(b)(
) Re {Sθθ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθθ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and (
)(f ) the A-RBFN predi
tion methods.
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Figure 4.6: Numeri
al Assessment (Square Phoenix unit 
ell, dx = dy = λ0

3
,

U = 2.0 × 104) - A
tual versus estimated values of (a)(b)(
) Re {Sθϕ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθϕ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and (
)(f ) the A-RBFN predi
tion methods.

82



CHAPTER 4. EFFICIENT PREDICTION OF THE EM RESPONSE OF

REFLECTARRAY ANTENNAS BY AN ADVANCED STATISTICAL

LEARNING METHOD

of the error �gures Ξ1 and Ξ2 (Fig. 4.2), proves that the proposed OK strategy


an be reliably and e�
iently exploited for �lling a very huge s
attering matrix

database (M ≈ 3.1 × 106) with a 
onsiderable time saving with respe
t to an

heavy use of an albeit e�
ient FW te
hnique (TOK
tot ≈ 2.43 × 106 [s℄ ≈ 28 days

vs. T FW
tot ≈ 3.69 × 108 [s℄ ≈ 11.7 years - Fig. 4.7), while guaranteeing a faithful

estimation of the s
attering matrix S (z) (e.g., Fig. 4.4).

But what's about the predi
tion of the ele
tromagneti
 response from re�e
tarray

unit 
ells with stronger 
ross-polar s
attering matrix entries? To give some feed-

ba
ks about this question, the B = 4 �Re
tangular Phoenix � unit 
ell [12℄[13℄

in Fig. 4.2(b) has been 
onsidered as the next ben
hmark by dis
retizing its

des
riptors/DoF s analogously to the unit 
ell in Fig. 4.2(a), but 
onsidering

ℑ{lb} =

{
lb b = 1, 2
lb ×H (lb−2 − lb) b = 3, 4

. (4.14)

This 
hoi
e 
orresponds to L ≈ 2.57 × 105 di�erent geometri
al 
on�gurations

2

yielding to M ≈ 2.7 × 107 entries of D, whi
h 
orrespond to T FW
tot ≈ 5.56× 108

[s℄ (i.e., ≈ 17.6 years) sin
e T FW
sim ≈ 2.00 × 101 [s℄. By 
omparing the plots

of the matrix norm errors of the OK , the SVR, and the A-RBFN methods

[Fig. 4.8(a)℄, it turns out that the former on
e again outperforms the others in

terms of �delity [e.g.,

ΞSV R
1

ΞOK
1

⌋
U=2.0×104

≈ 467% and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 402%

- Fig. 4.8(a)℄ with a predi
tion a

ura
y enhan
ement with the size U [e.g.,

ΞOK
1 ⌋

U=2.0×104

ΞOK
1 ⌋

U=5.0×102

≈ 15.8% - Fig. 4.8(a)℄. Moreover, the error behavior is very 
lose

to that for the simpler unit 
ell in Fig. 4.2(a) [e.g., ΞOK
1

⌋square
U=2.0×104

≈ 3.8× 10−2

vs. ΞOK
1

⌋rect
U=2.0×104

≈ 3.7 × 10−2
- Fig. 4.3(a) vs. Fig. 4.8(a)℄ even though

U ≪M (i.e.,

U
M

≈ 7.4× 10−4
).

For illustrative purposes, the plots of |Sθθ (z)| and |Sθϕ (z)| for two sample unit


ell geometries [Tab. 4.II℄ not belonging to T are shown in Fig. 4.9 [�Re
tangular

Phoenix Cell - Con�g. 3 � - Fig. 4.9(a) and Tab. 4.II℄ and Fig. 4.10 [�Re
tangu-

lar Phoenix - Cell Con�g. 4 � - Fig. 4.10(a) and Tab. 4.II℄. As it 
an be observed,

the 
omparisons among the OK , the SVR, and the A-RBFN predi
tions show

that (i) the behaviour and the values of

∣∣SOK
θθ (z)

∣∣
[Fig. 4.9(b) and Fig. 4.10(b)℄

and

∣∣SOK
θϕ (z)

∣∣
[Fig. 4.9(
) and Fig. 4.10(
)℄ mat
h very well the 
orresponding

FW results with a maximum deviation smaller than 0.6 dB [Fig. 4.10(b)℄, (ii)

the SVR and the A-RBFN predi
tions often turn out to be ina

urate [e.g., Fig.

4.9(b)℄ even providing qualitatively di�erent trends with respe
t to the a
tual

ele
tromagneti
 response. For instan
e,

∣∣SSV R
θθ (z)

∣∣Config−3
in
reases with θ until

θ = 30 [deg℄, while

∣∣SFW
θθ (z)

∣∣Config−3
de
reases in the same range [Fig. 4.9(b)℄.

2

Thanks to the lower degree of symmetry of the layout in Fig. 4.2(b) than that in Fig.

4.2(a) (i.e., one-axis symmetry vs. two-axes symmetry), a signi�
antly greater number of

geometri
al variations is feasible.
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Figure 4.7: Numeri
al Assessment (Square Phoenix unit 
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3
,

U ∈ [5.0× 102, 2.0× 104]) - Behaviour of (a) TtrainandTtest, and (b) ∆T when

using the OK, the SVR, and the A-RBFN predi
tors.
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training set U .

85



4.3. NUMERICAL RESULTS

Moreover,

∣∣SA−RBFN
θϕ (z)

∣∣Config−4
exhibits an os
illating behaviour whi
h is not

present in

∣∣SFW
θϕ (z)

∣∣Config−4
[Fig. 4.10(
)℄. Similar 
onsiderations hold true for

the plots of ∠Sθθ (z) and ∠Sθϕ (z) in 
orresponden
e with the same sample 
on-

�gurations [i.e., �Con�g. 3 � - Figs. 4.9(d)-4.9(e); �Con�g. 4 � - Figs. 4.10(d)-

4.10(e)℄:

∣∣∠SFW
θθ (z)− ∠SOK

θθ (z)
∣∣ < 0.8 [deg℄,

∣∣∠SFW
θθ (z)− ∠SSV R

θθ (z)
∣∣ < 14.5

[deg℄,

∣∣∠SFW
θθ (z)− ∠SA−RBFN

θθ (z)
∣∣ < 4.0 [deg℄ for �Con�g. 3 � [Figs. 4.9(d)-

4.9(e)℄ as it 
an be also inferred from the behaviour of Ξ2 in Fig. 4.8(b).

Su
h out
omes on the reliability of the OK -based approa
h in handling re�e
-

tarray elements featuring non-negligible 
ross-polar entries are further assessed

by the s
atter plots of the real and imaginary parts of Sθθ (zm), m = 1, ...,M
(Fig. 4.11) and of Sθϕ (zm), m = 1, ...,M (Fig. 4.12).

As for the e�
ien
y/time saving when addressing su
h a ben
hmark, Figure

4.13(a) 
on�rms that (i) as expe
ted, the OK training phase is more expensive

than the SVR and the A-RBFN ones [solid lines - Fig. 4.13(a)℄, (ii) the testing

phases of all 
onsidered LBE methods have analogous durations [dashed lines -

Fig. 4.13(a)℄, but it points out that (iii) although Ttrain and Ttest are smaller

than T FW
set regardless of the adopted method - as in the previous ben
hmark

example [Fig. 4.7(a)℄ - their values are no more negligible [e.g., TOK
train

⌋
U=2.0×104

≈

3.16 × 104 vs. TOK
test

⌋
U=2.0×104

≈ 6.15 × 104 [s℄ vs. T FW
set

⌋
U=2.0×104

≈ 4.00 × 105

[s℄ - Fig. 4.13(a)℄. This is due to the fa
t that T FW
sim is signi�
antly smaller

than in the previous test 
ase (i.e., T FW
sim

⌋
rect.

≈ 20 [s℄ vs. T FW
sim

⌋
square

≈ 120 [s℄)

as a 
onsequen
e of the higher e�
ien
y of the FW te
hnique in handling the

referen
e ele
tri
al layout [i.e., 1 slot vs. 2 
on
entri
 slots - Fig. 4.2(b) vs. Fig.

4.2(a)℄. Therefore, ∆TOK
is here slightly lower than ∆T SV R

and ∆TA−RBFN

[Fig. 4.13(b)℄, even though it must be noti
ed that ∆TOK > 99.9% even when

U = 2.0× 104 [Fig. 4.13(b)℄, whi
h turns out in TOK
tot ≈ 4.93× 105 [s℄ ≈ 5.7 days

vs. T FW
tot ≈ 5.56 × 108 [s℄ ≈ 17.6 years [Fig. 4.13℄, while guaranteeing ex
ellent

estimation a

ura
ies (Fig. 4.8).

The last numeri
al experiment is devoted to the assessment of the performan
e

of the proposed LBE method when handling geometries with a wider latti
e

periodi
ity [d1 = 0.7λ0x̂, d2 = 0.7λ0ŷ - Figs. 4.14(a)-4.14(b) vs. d1 = λ0

3
x̂,

d2 = λ0

3
ŷ - Fig. 4.2, Figs. 4.4(a)-4.4(b), Fig. 4.9(a), and Fig. 4.10(a)℄ [62℄.

Moreover, two di�erent B = 3 unit 
ells featuring either a single �Square Ring

Slot� [SRS - Fig. 4.14(a)℄ or a �Cross Slot� [CS - Fig. 14.4(b)℄ have been


onsidered [62℄[20℄. By setting V = 18, H = 10, W = 6, Lb = 16, g
(b)
min = 0,

g
(b)
max = 0.2λ0 (b = 1, ..., B),

ℑSRS {lb} =

{
lb b = 1
lb ×H (lb−1 − lb) b = 2, 3

(4.15)

ℑCS {lb} =

{
lb b = 1
lb ×H (l1 − lb) b = 2, 3

(4.16)
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Figure 4.9: Numeri
al Assessment (Re
tangular Phoenix unit 
ell - �Con�g. 3�,
dx = dy =
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3
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Figure 4.10: Numeri
al Assessment (Re
tangular Phoenix unit 
ell - �Con�g. 3�,
dx = dy =
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3
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Figure 4.11: Numeri
al Assessment (Re
tangular Phoenix unit 
ell, dx = dy =
λ0

3
,

U = 2.0 × 104) - A
tual versus estimated values of (a)(b)(
) Re {Sθθ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθθ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and (
)(f ) the A-RBFN predi
tors.
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Figure 4.12: Numeri
al Assessment (Re
tangular Phoenix unit 
ell, dx = dy =
λ0

3
,

U = 2.0 × 104) - A
tual versus estimated values of (a)(b)(
) Re {Sθϕ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθϕ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and (
)(f ) the A-RBFN predi
tors.
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resulting in L = 5.25 × 102 di�erent admissible geometri
al 
on�gurations

3

, it

turns out that D 
omprisesM ≈ 5.7×105 entries, whi
h 
orrespond to a 
ompu-

tational load of T FW
tot ≈ 1.4 × 107 [s℄ (i.e., ≈ 164 days) when using a FW solver

(T FW
sim ≈ 2.50× 101 [s℄) to �ll the whole LUT .

Although the latti
e periodi
ity is di�erent and qualitatively less smooth phase

variations arise [62℄, analogous feedba
ks on the higher a

ura
y of the OK

strategy 
an be drawn in terms of both magnitude [e.g.,

ΞSV R
1

ΞOK
1

⌋
U=2.0×104

≈

623% and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 1535% - Fig. 4.14(
);

ΞSVR
1

ΞOK
1

⌋
U=2.0×104

≈ 235%

and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 659% - Fig. 4.14(d)℄ and phase predi
tion [e.g.,

ΞSV R
2

ΞOK
2

⌋
U=2.0×104

≈ 328% and

ΞA−RBFN
2

ΞOK
2

⌋
U=2.0×104

≈ 899% - Fig. 4.14(
);

ΞSV R
2

ΞOK
2

⌋
U=2.0×104

≈ 253% and

ΞA−RBFN
2

ΞOK
2

⌋
U=2.0×104

≈ 551% - Fig. 4.14(d)℄. Con-


erning the 
omputational 
osts, on
e again it is veri�ed that the OK approa
h

is able to yield the best trade-o� between time saving [∆TOK > 96% - Figs.

4.15(
)-4.15(d)℄ and a

ura
y, thus its 
andidature as a suitable and 
ompeti-

tive tool for e�
iently [TOK
tot ≈ 5.17 × 105 [s℄ ≈ 5.9 days vs. T FW

tot ≈ 1.4 × 107

[s℄ ≈ 164 days℄ and faithfully generating large re�e
tarray s
attering matrix

databases (M ≈ 5.7× 105).

3

The number of geometri
al variations L is signi�
antly smaller than in the previous exam-

ples sin
e B = 3 (while B = 4 for the geometries in Fig. 4.2).

92



CHAPTER 4. EFFICIENT PREDICTION OF THE EM RESPONSE OF

REFLECTARRAY ANTENNAS BY AN ADVANCED STATISTICAL

LEARNING METHOD

Square ’Ring Slot’ Unit Cell

dx

dy

g(1)

g(2)

g(3)

’Cross Slot’ Unit Cell

g(1)

g(2)

g(3
)

dx

dy

(a) (b)

10-2

10-1

100

 0  4  8  12  16  20

Ξ 1
 [n

or
m

al
iz

ed
 v

al
ue

]

Number of Training Samples U (×103)

Square ’Ring Slot’ Unit Cell

OK
SVR

A-RBFN
10-2

10-1

100

 0  4  8  12  16  20

Ξ 1
 [n

or
m

al
iz

ed
 v

al
ue

]

Number of Training Samples U (×103)

’Cross Slot’ Unit Cell

OK
SVR

A-RBFN

(
) (d)

10-3

10-2

10-1

100

 0  4  8  12  16  20

Ξ 2
 [n

or
m

al
iz

ed
 v

al
ue

]

Number of Training Samples U (×103)

Square ’Ring Slot’ Unit Cell

OK

SVR

A-RBFN

10-3

10-2

10-1

100

 0  4  8  12  16  20

Ξ 2
 [n

or
m

al
iz

ed
 v

al
ue

]

Number of Training Samples U (×103)

’Cross Slot’ Unit Cell

OK

SVR

A-RBFN

(e) (f )

Figure 4.14: Numeri
al Assessment (dx = dy = 0.7λ0, B = 3, U ∈
[5.0× 102, 2.0× 104]) - Geometries (a)(b) and behavior of (
)(d) Ξ1 and (e)(f )

Ξ2 versus the size of the training set U for (a)(
)(e) the �Square Ring Slot� unit


ell and (b)(d)(f ) the �Cross Slot� unit 
ell.
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4.3. NUMERICAL RESULTS
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Figure 4.15: Numeri
al Assessment (dx = dy = 0.7λ0, B = 3, U ∈
[5.0× 102, 2.0× 104]) - Behaviour of (a)(b) Ttrainand Ttest, and (
)(d) ∆T when

using the OK, the SVR, and the A-RBFN predi
tion methods for (a)(
) the

�Square Ring Slot� unit 
ell and (b)(d) the �Cross Slot� unit 
ell.
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Chapter 5

Con
lusions

An innovative LBE method based on an Ordinary Kriging strategy has been

proposed to e�
iently and a

urately model the s
attering response of 
omplex-

shaped re�e
tarray unit 
ells. Towards this end, the evaluation of the s
attering


oe�
ients of passive elements with an arbitrary number of (geometri
al and

ele
tri
al) DoF s has been formulated as a ve
torial regression problem, whi
h

has been then solved through a 
ustomized OK te
hnique. Sele
ted and repre-

sentative results from numeri
al experiments dealing with di�erent unit 
ell ge-

ometries (in
luding 
ross-slot , ring-slot , and square/re
tangular Phoenix shapes)

have been reported to assess the a

ura
y, the numeri
al e�
ien
y as well as the

a
hievable time-saving, and the �exibility of the proposed approa
h also in 
om-

parison with other 
ompetitive state-of-the-art ma
hine learning methods based

on SVR and A-RBFN algorithms.

From the numeri
al analysis, the following main out
omes 
an be drawn:

• thanks to the OK formulation, the optimal values of the 
ontrol hyper-

parameters are reliably self-
on�gured during the training phase to provide

a faithful predi
tion of the magnitude [e.g., Fig. 4.4(
)℄ and the phase [e.g.,

Fig. 4.4(e)℄ of the s
attering 
oe�
ients of 
omplex re�e
tarray unit 
ells;

• the predi
tion a

ura
y guaranteed by the proposed methodology turns out

to be higher than that from SVR and A-RBFN methods in all 
onsidered

ben
hmark 
on�gurations [e.g., Fig. 4.3 and Fig. 4.8℄;

• although the OK training phase is slightly more time-expensive than that

for SVR and A-RBFN [e.g., solid lines - Fig. 4.7(a)℄, the arising time

saving (∆TOK > 96% - Fig. 4.15) is always very similar to that yielded

with the SVR and the A-RBFN strategies [e.g., Fig. 4.7(b)℄;

• thanks to the ex
ellent trade-o� between a

ura
y and 
omputational e�-


ien
y, the proposed predi
tion method 
an be pro�tably used to �ll very

huge s
attering matrix databases and it represents a very 
ompetitive al-

ternative to the heavy use of e�
ient FW solvers (e.g., TOK
tot ≈ 5.7 days

vs. T FW
tot ≈ 17.6 years - Fig. 4.13).
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In addition to these key-features, the main methodologi
al advan
es of this re-

sear
h work 
omprise (i) the introdu
tion of a �exible strategy to e�
iently

model the s
attering response of arbitrarily 
omplex re�e
tarray unit 
ells, thus

potentially enabling their use in next-generation and more demanding re�e
tar-

ray designs, (ii) the development and the 
ustomization to the ve
torial 
ase

of an advan
ed OK te
hnique for the predi
tion of 
omplex-valued s
attering

matri
es of periodi
 EM stru
tures, and (iii) the derivation of operative guide-

lines on the a
hievable time saving and the arising predi
tion a

ura
y vs. the

training set size for the exploitation of su
h an OK meta-modeling in re�e
tarray

response predi
tion.

Future works will be aimed at 
ombining the proposed OK algorithm with ad-

van
ed approa
hes for the sele
tion of the training samples and/or the redu
tion

of the feature spa
e [58℄. Moreover, the integration of an OK -based meta-model

in the SbD framework for the automated synthesis of large re�e
tarrays is under

development. Finally, thanks to its generality (ii), the extension of the same OK

paradigm to other popular periodi
 EM stru
tures (su
h as frequen
y-sele
tive

surfa
es and metasurfa
es) is on-going.
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