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Abstract

Reflectarray antennas are reflector structures which combine characteristics
of both reflector and array antennas. They exhibit electrically large apertures
in order to generate significant gain as conventional metallic reflector antennas.
At the same time they are populated by several radiating elements which can be
controlled individually like conventional phased array antennas. They are usually
flat and can be folded and deployed permitting important saving in terms of vol-
ume. For these reasons they have been considered since several years for satellite
applications. Initially constituted by truncated metallic waveguides and mainly
considered for radar applications, they are now mainly constituted by a dielectric
substrate, backed by a metallic plane (groundplane) on which microstrip elements
with variable shape/size/orientation are printed. These elements are illuminated
by the primary feed. The reflected wave from each element has a phase that can
be controlled by the geometry of the element itself. By a suitable design of the
elements that make up the reflectarray, it is therefore possible to compose the
phase front of the reflected waves in the desired direction (steering direction),
and to ensure that the obtained overall radiation pattern exhibits a secondary
lobe profile which meets the design specifications. Reflectarrays may be used to
synthesize pencil or shaped beams. The synthesis methods commonly used to
achieve this goal are based on three different steps: (a) calculation of the near
field “phase distribution” that the wave reflected by the reflectarray must exhibit
to get the desired far-field behaviour; (b) discretization of such distribution into
cells of size comparable to that of the elements of interest (i.e., the patches); (c)
calculation of the geometry of each elementary cell that will provide the desired
reflection coefficient. The first step (a) is a Phase Only approach and permits
already to achieve fast preliminary indications on the performance achievable.
Accurate results require the implementation of the steps (b) and (c) as well and
it is thus of fundamental importance to have techniques capable of efficiently and
accurately calculating the reflection coefficient associated with a given geometry
of the element [in order to efficiently solve the step (c)|. This coefficient is math-
ematically represented by a 2x2 complex matrix, which takes into account the
relationships between co-polar and cross-polar components of the incident (due
to the feed) and reflected field. This matrix naturally depends on the geometry
of the element, the direction of incidence of the wave (azimuth and elevation)
and the operating frequency of the system. The computation of the reflection
coefficient is usually performed using electromagnetic full-wave (FW) simulators;
the computation is however time consuming and the generation of the unit cell
scattering response database becomes often unfeasible.

In this work, an innovative strategy based on an advanced statistical learning
method is introduced to efficiently and accurately predict the electromagnetic re-



sponse of complex-shaped reflectarray elements. The computation of the scatter-
ing coefficients of periodic arrangements, characterized by an arbitrary number of
degrees-of-freedom, is firstly recast as a vectorial regression problem, then solved
with a learning-by-example strategy exploiting the Ordinary Kriging paradigm.
A set of representative numerical experiments dealing with different element ge-
ometries is presented to assess the accuracy, the computational efficiency, and
the flexibility of the proposed technique also in comparison with state-of-the-art
machine learning methods.

Keywords
Reflectarrays, Scattering Matrix, Computational Electromagnetics, Statistical
Learning, Ordinary Kriging.
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Chapter 1

Introduction

In the recent years, reflectarrays have emerged as a cost-effective and reliable
technological solution in many applicative domains - including satellite commu-
nications [1][2], radar [3], and IoT [4] - where a radiating system characterized
by a low profile, a light weight, a high gain/efficiency, and an accurate control
of the beam contour is required [5][6]. Compared to traditional reflector anten-
nas [7], these devices can guarantee several advantages including lower thickness,
flat /conformal shapes, increased robustness, and (potentially) reconfigurability
[8]|9] thanks to the layout consisting of a feed that illuminates a passive array
of microstrip patches, which in turn properly focuses/shapes the reflected beam
by controlling the (non-uniform) scattering properties of the reflectarray surface
[7][10]. However, the synthesis of high-performance reflectarrays is still a very
challenging task from both the methodological and the practical viewpoint, even
more when wideband operations and /or a careful control of the cross-polarization
components of the reflected field are needed [11|. Generally speaking, complex
patch shapes are usually adopted to fit these requirements because of the wider
set of degrees-of-freedom (DoF's) potentially enabling an enhanced control of the
antenna scattering properties [2][12]|[13][14][15]. Unfortunately, designing a re-
flectarray featuring complicated element geometries often turns out to be in prac-
tice a very challenging task. To determine the optimal shape of each reflectarray
element (i.e., setting the DoF's of the reflectarray patches), the relationships
between the descriptors of both the unit cell (e.g., geometry/size of the patch
metallizations) and the illumination (e.g., the polarization/frequency/angle-of-
arrival of the incident field) with the associated scattering coefficients must be
known [11][15]. This knowledge is analytically available only for “simple” unit
cells [16][17] described by few DoF's. Otherwise, scattering matriz-vs-descriptors
look-up tables (LUTSs), which are off-line computed through extensive full-wave
(FW) simulations [18][19][20], are usually built [2][14][15][18]. Because of the
exponential grow of the number of LUT's entries with the DoF's of the unit cells
[20], advanced reflectarray geometries characterized by arbitrary variations of
many descriptors are realistically impossible to handle because of the infeasible
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generation and storage of the associated unit cell scattering response databases
(UCS-DBs). To overcome these latter issues towards the fulfilment of advanced
and more challenging telecommunication standards, an innovative methodology
for the quasi- or real-time prediction of the electromagnetic response of complex
reflectarray elements is hereinafter introduced. The evaluation of the scattering
coefficients of generic reflectarray unit cells (i.e., featuring an arbitrary num-
ber of DoF's) is firstly re-cast as a regression problem and then solved with a
learning-by-example (LBE) strategy able to exploit the information provided by
a reduced set of FW simulations (namely the “examples”) performed once and
off-line. More specifically, the statistical learning method is based on the Or-
dinary Kriging (OK) [21][22][23] here customized to the vectorial problem at
hand. Such guidelines and methodological choices have been motivated by the
following considerations:

e the scattering features of complex reflectarray unit cells (e.g., the Phoenix
unit cells [12][13][24]) are often smoothly dependent on their geometrical
features [2|[14][15]. Therefore, it is expected that a suitable equivalent
meta-model may be deduced to reliably predict the scattering features as-
sociated to a unit-cell instead of computing and storing a huge UCS-DB,;

e standard interpolation methods [25] cannot be employed for electromag-
netic prediction purposes owing to the highly non-linear nature of the
relation between the unit-cell descriptors and the corresponding electro-
magnetic response [2][14][15];

e among existing state-of-the-art LBE strategies, OK has emerged as a
very competitive prediction tool when high-fidelity /noiseless input /training
samples are available [21][22][23].

As for the main innovative contributions of this work, they include (a) the in-
troduction of a computationally-efficient strategy for predicting the scattering
response of reflectarray elements featuring arbitrarily complex unit cells; (b) the
development of a numerical tool that, whether integrated within a system-by-
design (SbD) loop [26], could enable the optimal synthesis of next-generation
reflectarray antennas with controlled co- and cross-polar radiation patterns; (c)
the customization of an advanced LBF technique based on the OK for the pre-
diction of complex-valued scattering matrices of periodic planar structures, thus
useful not only for reflectarrays, but also generalizable to analogous electromag-
netic engineering problems (e.g., the analysis of frequency-selective surfaces and
metasurfaces); (d) the derivation of practical guidelines (e.g., reference setups
for various trade-offs between time saving and prediction accuracy) for an easy
and reliable use of such an OK-based reflectarray meta-modeling technique.



CHAPTER 1. INTRODUCTION

Thesis outline

The outline of the thesis is as follows. Chapter 2 is dedicated to a deep analy-
sis of some selected Learning-by-Example strategies which have been taken into
account for the problem of efficiently computing the electromagnetic response
of generic reflectarrays unit cells. More in details, the two-step prediction pro-
cess is summarized and then a detailed analysis of the training phase and of the
prediction phase is carried out. In Chapter 3 the computation of the scattering
coefficients of simple rectangular unit cells is described. It is then explained the
difficulty of computing the response for unit cells with more complex shapes.
The necessity of an innovative methodology for the quasi or real-time prediction
of the response of complex reflectarray elements is here emphasized. Chapter 4
describes the proposed methodology: the reflectarray modeling problem is math-
ematically formulated and the OK-based prediction method is deeply analyzed.
Representative numerical results are reported to illustrate the features and to
assess the potentialities of the proposed approach. Moreover, comparative anal-
yses on the accuracy and the computational efficiency of this latter versus FW
simulation methods and competitive/most-advanced state-of-the-art regression
techniques are carried out. Eventually, some conclusions and final remarks fol-
low.






Chapter 2

Learning-by-example (LBFE)
strategies

2.1 Motivation and objective of learning-by-examples
strategies

Learning-by-examples strategies are computer-aided approaches which allow deal-
ing with problems characterized by an uncountable number of features and vari-
abilities.

In the field of EM engineering the computational cost of classic synthesis (or
imaging) strategies are mainly linked to the great amount of time required by
EM simulators. Full-wave solvers, based for example on the method of moments
(MoM), finite element method (FEM) or finite-difference time-domain (FTDT)
are time-consuming. As an example, considering evolutionary optimization prob-
lems where there is the need to repeat a large number of simulations, the total
cost is directly related to the CPU time necessary to evaluate the fitness of a
single trial solution. If we denote with

e P: the number of individuals;
e [: the number of iterations performed by the algorithm;

e At: the CPU time required to compute the fitness of a single individ-
ual/trial solution;

we have that the total cost of a single optimization is given by

Cost =P x I x At

In this framework LBE methods drastically reduce the computational effort
by emulating or predicting the behaviour of the high-fidelity simulations.
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2.1. MOTIVATION AND OBJECTIVE OF LEARNING-BY-EXAMPLES
STRATEGIES

Prediction as a “two-step process”

We can summarize the main loop involving a predictor as a substitute of the EM
simulator in the following two steps

1. Training. This step is related to how select samples which are the most
representative of the real function behavior. In other words, the aim is to
reduce the number of simulations required to produce an accurate global
representation of the function to predict over the whole domain. The train-
ing process is composed by three logical phases:

(a)

Reduction of the Degrees of Freedom (DoF's) of the func-
tional space. Given a functional space of K variables, there is the
possibility that the function doesn’t depend equally on all the variables
(i.e., some of them have more “impact” on the output w.r.t. others).
This task is thus devoted to reduce the number of input variables (i.e.,
the number of DoF's) from K to H (with H < K).

(b) “Exhaustive” representation of the functional space. Given

a functional space of H (<K) variables, it is necessary to properly
select samples in order to build a training set able to collect the most
information from the function over all the input space. In addition
the minimum number of training samples needed to accurately train
the model has to be defined;

Prediction Model building: this step is strongly related to previous
step and is aimed at building the surrogate model which will be used
to map the input to the output space in order to emulate the behavior
of a real system.

In order to deal with step 1.(a) some of the existing methods for the re-
duction of the DoF's are:

Sammon Mapping;

Principal Component Analysis (PCA);
Partial Least Squares (PLS);

Fisher Linear Discriminant Analysis (LDA);
Step-wise Dimension Reduction;

Sufficient Dimension Reduction;
Non-Linear PCA;

In order to deal with step 1.(b) the proper method for sampling the func-
tional space has to be chosen. Some known methods are:

One-Shot sampling strategies
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e Uniform Grid Sampling (GRID);
e Uniform Random Sampling (RN D);
e Latin Hypercube Sampling (LHS);

Iterative adaptive sampling strategies

o LOLA — Voronoi adaptive sampling;
e MSFE — Based adaptive sampling;
e FIGF — Based adaptive sampling;

. Test or Prediction. Starting from the training steps, this task is devoted
to predict the function in every point of its domain/support. Methods of
prediction can be classified into two main classes:

e Interpolation techniques

— Nearest neighbor interpolator;
— Linear (Delaunay) interpolator;
— Polynomial interpolator;
— Spline interpolator;
e Learning-by-Example (LBFE) techniques
— ANN (Artificial Neural Network);
— RBFN (Radial Basis Function Network);

SV R (Support Vector Regression);

— GP (Gaussian Process, or “Kriging” when regression is consid-
ered);



2.2. TRAINING PHASE: REDUCTION OF THE DOFS OF THE
FUNCTIONAL SPACE

2.2 Training phase: Reduction of the DoF's of the
functional space

2.2.1 What is dimensionality reduction?

Main goal
The main goal of dimensionality reduction techniques is to reduce the number
of unknowns of a given problem from K to H, with

H< K

Why should we use dimensionality reduction?

Reducing the number of unknowns has many benefits when dealing with
regression:

1. Reduce the computational complexity (and consequently the time)
of the training and test phase of a given predictor;

2. [Strongly related to point 1| Enhance the prediction accuracy. In gen-
eral, all the prediction techniques work better if the number of unknowns
is not too high;

3. Decrease the number of required training samples (N). One of the
main problems when training a predictor is the so-called “curse of dimen-
sionality”, which causes an exponential growth of the number of training
samples (V) required to model a function with the dimension of the input
space (K).

It is important to observe that many space reduction techniques have not been
introduced as tools for improving prediction. In many cases, space reduction
is used to simply improve the way data is visualized, in order to make it more
understandable by the interested user.

Where dimensionality reduction makes sense in regression?

This figure shows a particular benchmark function of K = 2 variables. It is
defined as

y (21, 29) = cos (x7)

8
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Function y(x;,X,)=c0s(x;) Function y(xy,X;)=cos(x;)

Y(x.%p)

o
Y(X1.X5)

Figure 2.1: Function y (x1,22) = cos (x), computed for {1,252} € [-10,+10].
(a) 3D plot and (b) 2D plot.

In this case, variable x5 has no impact on the output value (i.e., on the
function value y (xq,x2)), since this latter depends only on the values assumed
by the variable x;. By considering this particular example, one should now have
a more clear idea of what are the main steps that should be performed by a space
reduction technique:

1. Analyze the relationship between the input variables and the
computed output. In this case, analyze the impact of both z; and x5 on

Y ('rlaxZ);

2. Determine what are the input variables showing the largest im-
pact on the output. In this case, understand that x5 is meaningless;

3. Reduce the number of variables, keeping only the variables that impact
on the function value. In this case, x5 should be discarded.

Variable selection vs. variable extraction
Space reduction techniques can be classified into two main classes:

1. Variable selection: it is the process of selecting a subset of relevant
variables for use in model construction;

2. variable extraction: is the process of creating new variables by combin-
ing the the original ones.

When variable selection and when variable extraction?

Variable selection should be performed when some of the input variables have
a smaller impact on the function value with respect to the others. These variables
can be discarded, by keeping the H most significant ones.
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FUNCTIONAL SPACE

For example, considering the function reported in Fig. 2.1 the variable xq
has no impact on the output, so it can be simply discarded. All the information
is indeed contained in the value of variable x;.

On the contrary, variable selection can fail if we consider the same function,
but rotated by an angle 9,

y (21, 29) = cos [x1cos (9,) — xasin (V,)]

Function y(x;,X,)=cos[x;*cos(8,)-x,*sin(8,)], ;=30 [deg] Function y(x;,x;)=c0s[x; *cos(8,)-x,*sin(8))], 6,=30 [deg]

Y(X1.%)
05
A RIS r,m,
‘M i oo
i A M 5 ‘W N\ m,,,l,y,m
i HW\‘\ N A A vl
Wi W"’ “\W\W\‘s",

05 \W‘ il Al 'l’

H‘\‘“‘,r,//l’ﬂ/”“”

o
Y(X1:X5)

o
o
X2

i) r/:'c't'l"'/m,\#\ iy
) -1

-0.5

Figure 2.2: Function y(x1,23) = cos|ricos (¥,) — xesin (¥,)], computed for
{1, 29} € [-10,+10] . ¥, = 30 [deg|. (a) 3D plot and (b) 2D plot.

In this case, the function value depends on a direction which is different from
x1 and w9 considered singularly. The goal of feature extraction is then to properly
identify this direction as a function of x; and x5, so that the function value will
be expressed in terms of this new variable.

Function dependent space reduction vs. function independent space
reduction

Space reduction techniques can be also classified into

1. Function dependent (“supervised”) techniques: the reduction of the
number of variables takes into account the relationship between input vari-
ables and associated function response. Only variables showing the largest
impact on the function are considered. State-Of-The-Art techniques be-
longing to this category are:

(a) Partial Least Squares (PLS);
2. Function independent (“unsupervised”) techniques: the reduction

of the number of variables is performed without analyzing/knowing the as-
sociated output. In other words, these techniques analyze the distribution

10
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of the training samples in the input space, without considering their cor-
relation with the function. State-Of-The-Art techniques belonging to this
category are:

(a) Principal Component Analysis (PCA);
(b) Sammon Mapping.

Linear vs. non-linear feature extraction

1. Linear techniques: the new H variables are linear combinations of the
old K variables. The transformation is expressed by the multiplication of
the original N K-dimensional samples X for a transformation matrix W

Xnew — XW
[N x Hl =[N x K|[K x H]

2. Non-linear techniques: The new H variables are not linear combinations
of the old N variables

X = G {X}

where the transformation matrix  {.} is non-linear.
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2.3. TRAINING PHASE: “EXHAUSTIVE” REPRESENTATION OF THE
FUNCTIONAL SPACE

2.3 Training phase: “Exhaustive” representation
of the functional space

There exist different sampling strategies in order to build training sets with given
dimensions (/). Two main classes can be identified:

1. One-shot sampling strategies;

2. Adaptive (or sequential) sampling strategies.

2.3.1 One-shot sampling strategies: overview

In this section, the following one-shot sampling strategies will be presented:
1. Uniform grid sampling (GRID);
2. Uniform random distribution sampling (RN D);
3. Latin Hypercube Sampling (LHS);

2.3.1.1 One-shot sampling strategies: Uniform grid sampling (GRID)

Parameters:
e Variation range (min, max) for each variable (x;, i =1, ..., K);
e Number of quantization levels for each variable (Q;, i = 1, ..., K);

The total number of generated samples is given by N = Q¥.

2D grid sampling, Q=5, N=Q2=25 sampling points

=
o

X2
o [ N w S (5] o ~ © ©
—T — T

Figure 2.3: Uniform grid sampling for the 2D case, N = 25 samples. The number
of quantization levels is set to ) = 5 both for x; and for x5, thus generating a
set of N = Q¥ = 5% = 25 samples.
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2.3.1.2 One-shot sampling strategies: Uniform random sampling (RN D)

Parameters:
e Variation range (min, max) for each variable (z;, i =1, ..., K);
e Total number of samples to generate (V).

The N samples are selected according to a standard uniform distribution.

2D uniform random distribution samples, N=25 sampling points
10

©

X2

o B N ®Ww ~ O O N ©
0 o .

Figure 2.4: Uniform random sampling for the 2D case, N = 25 samples.

2.3.1.3 One-shot sampling strategies: Latin Hypercube Sampling (LHS)

In the context of statistical sampling, a square grid containing sample positions
is a Latin square if (and only if) there is only one sample in each row and each
column. A Latin hypercube is the generalization of this concept to an arbitrary
number of dimensions, whereby each sample is the only one in each axis-aligned
hyperplane containing it.

Parameters:

e Variation range (min, max) for each variable (z;, i =1, ..., K);
e Total number of samples to generate (N);

Construction:
The N samples in a K-dimensional input space are selected according to
these simple steps:

1. Divide the range of each input variable (zy, k = 1,..., K) into N equally
sized segments. Denote with A, the length of each segment in the k-th
dimension.

13
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FUNCTIONAL SPACE

2. For each dimension k£ (k = 1,..., K) randomly select a point inside each
of the N intervals. This means that on dimension k you will get a set of
samples xj, = {x}, 27, ..., 2} }, where (n — 1) Ay < aff < nAy;

3. Randomly combine a selected point for each dimension (k = 1,..., K) to
generate a new sample (x" = {z7, 24, ..., 2% }).

4. Repeat step 3 until all N combinations are generated.

2D LHS samples, N=25 sampling points

=
o

X2
o - N w £ (%) (2] ~ o] ©
T T T T T

Figure 2.5: LHS sampling for the 2D case, N = 25 samples.

2.3.2 Adaptive (sequential) sampling strategies: overview

In this section, some state-of-the-art adaptive (or sequential) training techniques
will be analyzed. In particular, the following strategies will be considered:

1. LOLA-Voronoi adaptive sampling (LOLA-Voronoi);

2. M SE-based adaptive sampling (maximum uncertainty selection criterion,
MSE);

3. EIGF-based adaptive sampling (Expected Improvement For Global Fit,
EIGF).

Sequential design strategies offer a huge advantage over one-shot experimental
designs (such as the Latin Hypercube Sampling, LHS) because they can use
information gathered from previous data points in order to determine the location
of new data points.

14
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2.3.2.1 Adaptive (sequential) sampling strategies: basic idea

First, an initial batch of data points is evaluated using a minimal experimental
design. This design is usually one of the traditional designs from DOE (Design
Of Experiments), such as a Latin Hypercube. The initial design must be large
enough to guarantee a minimal coverage of the domain, but should be small
enough so that there is room for improvement, allowing the sequential design
strategy to do its work.

Based on the initial experimental design, a surrogate model is built and the
accuracy of this model is estimated using one or more well-known error metrics.
Then, the location of some additional samples are chosen by the adaptive sam-
pling strategy. Finally a new surrogate model is built using all the data gathered
so far, and the model accuracy is estimated again. If a stop criterion is not
met, the entire sample selection process is started all over again. The goal is to
reduce the overall number of samples, since evaluating the samples (running the
simulations) is the dominant cost in the entire surrogate modeling process.

2.3.2.2 Adaptive (sequential) sampling strategies: LOLA — Voronoi
adaptive sampling

LOLA-Voronoi [27] is a novel hybrid sequential design technique that combines
an exploration metric based on Voronoi tessellations with an exploitation met-
ric using local linear approximations. Sequential design strategies offer a huge
advantage over one-shot experimental designs (such as the Latin Hypercube Sam-
pling, LHS) because they can use information gathered from previous data points
in order to determine the location of new data points. The advantage of this
method over other sequential design is that it is independent of the model type
(Kriging, SVR, etc...). Its main disadvantage is its high computational complex-
ity (O(N?), where N is the training set dimension).
Steps:

1. Build an initial training set with N; samples using a single shot sampling
technique (e.g., Latin Hypercube Sampling, LH S);

2. Analyze the available samples and generate AN additional samples by
jointly maximizing the exploration and exploitation metrics. For each sam-
ple x,, n =1, ..., N1, compute the sample score H as:

E(x,)

H(x,) =V (x, -
) ( )_'_ZjllE(Xn)

where:

(a) V (x,) is the estimated Voronoi cell size associated to sample x,,.
This term is related to the exploration capability: small values of

15
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FUNCTIONAL SPACE

V (x,,) indicate a high density of samples, while high values of V' (x,,)
indicate that the region surrounding sample x,, is characterized by a
low density of samples. New samples should be added where
the current samples density is low.

(b) E (x,) is an estimation of how non-linear the function is around sam-
ple x,,.

Z

E(xa) = > lya) = (y(xa) + 9 (x —x0))l

i=1,i#n

Where g is the estimated gradient at point x, and Z < Nj is the
number of samples closer to x, (they are called the “neighbors” of
X, ). This term is related to the exploitation capability: high values
of F (x,) indicate a high non-linearity of the real function in the region
surrounding the sample x,,. New samples should be added where
the function rapidly varies.

3. Sort the input samples by H;
4. For j=1,....,AN:

(a) Select the j —th highly ranked sample (x;);

(b) Generate a set {€2;} of R random samples inside the Voronoi cell of
X0 {5} ={wj1; . wip - wiR};

(c) Select the new j-th sample in {Q;} as the farthest sample from x;:
X, 45 = arg {maxqa,} (1x; — wjrll) };

(d) Compute the function value associated to the new sample y (xn,+;)

and add the pair {xy,4;; ¥ (Xn,+;)} to the training set for the next
LOLA-Voronoi iteration.

5. The new training set will be composed by N;+AN samples. Go to step (2)
to generate new additional AN samples. Iterate until a maximum number
of training samples (N,,,.) is reached.

For further details on how the exploration (V (x,)) and exploitation metrics
(E (x,,)) are computed, please refer to [27].

NOTE: the process of generating training sets with increasing dimensions
is completely independent from the surrogate model. New samples are in fact
added on the basis of the previously observed samples (observations).

Parameters:

e Dimension of the initial training set (IV7);

e Step AN: if AN is low, more resolution in acquiring information from
previous samples but more computational time!
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2.3.2.3 Adaptive (sequential) sampling strategies: M SFE— Based adap-

tive sampling

This strategy selects new samples where the highest prediction uncertainty (MSFE)
is observed.

Steps:

1. Build an initial training set with N; samples using a single shot sampling
technique (e.g., Latin Hypercube Sampling, LHS) and create a Kriging
surrogate model using these training samples;

2. Generate a set of C' candidate points using a single shot sampling technique
(e.g., Latin Hypercube Sampling, LHS);

3. Use the Kriging model to predict the C' candidate solutions, and rank them
according to the prediction uncertainty (MSE);

4. Select AN candidates showing the highest M SF;

5. Compute the real output of the new selected samples;

6. Add the new samples and their associated output to the original training
set in order to generate a new training set. This will be composed by
N> = N; + AN training samples;

7. Train a new surrogate model using the new training set;

8. Go to step (2) to generate additional AN samples, iterate until a maximum
number of training samples (N4, ) is reached.

Parameters:

e Dimension of the initial training set (IVy);

e Step AN; low AN implies more steps (= more computational time) to

reach a given training dimension (N);

e Number of candidate points (C'). Note that C' > AN. Authors in [28]

indicate as a good choice setting the number of candidates C' = 200 x K,
where K is the problem dimension.

2.3.2.4 Adaptive (sequential) sampling strategies: EIGF—Based adap-

tive sampling

This strategy selects new samples where the highest Expected Improvement For
Global Fit (EIGF) is observed. The EIGF for a given point x is defined as
[28, 29]:
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BIGF(x) = (j(x) — y(x"))* + MSE (j(x))

where:

e y(x): predicted output for the point x;

e MSE (y(x)): prediction uncertainty (MSE) associated to the predicted

value y(x);

e y(x*): observed (real) output at the sampled point x*, that is closest in

distance to the candidate point x.

The EIGF consists of two search components. The first (local) component will
tend to be large at a point where it has the largest (response) increase over its
nearest sampled point. The second (global) component is large for points with
the largest prediction uncertainty (these tend to be far from existing sampled
points).

Steps:

1.

Build an initial training set with /N; samples using a single shot sampling
technique (e.g., Latin Hypercube Sampling, LHS) and create a Kriging
surrogate model using these training samples;

. Generate a set of C' candidate points using a single shot sampling technique

(e.g., Latin Hypercube Sampling, LHS);

. Use the Kriging model to predict the C' candidate solutions, and rank them

according to the EIGF metric;
Select AN candidates showing the highest EIGF,

Compute the real output of the new selected samples;

. Add the new samples and their associated output to the original training

set, in order to generate a new training set. This will be composed by
N; = Ny + AN training samples;

Train a new surrogate model using the new training set;

Go to step (2) to generate additional AN samples, iterate until a maximum
number of training samples (N,,q.) is reached.

Parameters:

e Dimension of the initial training set (/V;);
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e Step AN; low AN implies more steps (= more computational time) to
reach a given training dimension (N);

e Number of candidate points (C'). Note that C' > AN. Authors in [28]
indicate as a good choice setting the number of candidates C' = 200 x K,
where K is the problem dimension.

2.3.2.5 Definition of the sampling metric (A)

Main idea:
A good sampling technique should have the following characteristics:

e Place many samples where the function rapidly varies, and less
samples where the function is smooth (exploitation capability);

e Cover the input space as much as possible (exploration capability).

The following sampling metric can be defined, in order to measure the ability of
a given sampling strategy to respect the above two conditions:

E Xj)

s
1 i1 B
A=— -

N ; V (xn)

where:

e N is the number of training samples;

e F (x,) is the LOLA-Voronoi metric for measuring the non-linearity of the
function near the training sample x,,. High values of F (x,) indicate an
high non-linearity near x,,.

e V (x,) is the estimated Voronoi cell size associated to the training sample
X,,. Small values of V' (x,,) indicate a dense sampling near x,,.

According to this metric, the following cases are penalized:

e Many samples where the function is smooth;

e Few samples where the function rapidly varies.
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2.4 Training phase: Prediction model building

This sep is aimed at building the model that will be used in the test phase.
The model is built starting from the training samples available. The problem of
building the model can be stated as:

PREDICTION MODEL BUILDING: Given the training set
x() = xgi), xgi), ...,x&?] .0 =1,..., N and selected the LBE technique
define the estimation function ~y ~(-) that better represents the be-

havior of the real system y (x) for a specific and arbitrary input space
X.

Depending on the regression strategy chosen this step varies. In the following
the prediciton model building is characterized for each of the learning-by-example
techniques analyzed in next section:

e Kriging: estimate the set of hyperparameters used for the calculation of
the correlation between the training samples;

e Support Vector Regression: define weights of the discriminant function in
order to guarantee that the training samples deviate from the predicted
function a maximum quantity ;

e Radial Basis Funcion Networks: define the weights of the activation func-
tion.

A detailed analysis of these techniques is given in next sections.
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2.5 Test or Prediction phase: Prediction through
interpolation techniques

2.5.1 Nearest neighbor interpolator

Let be given

o x) ¢ MK x() = {x,(j),k =1, ...,K}: t-th training sample point in K-
dimensional space, i = 1, ..., N;

e y; =y (x): function value (output) associated to the i-th training sample
point x(;

o x* € RE x* = {z;,k=1,..,K}: K-dimensional point at which we are
performing the prediction (i.e., the output y (x*) is unknown and has to
be estimated given the available information from the /N collected training
samples).

Main idea:

The predicted value at position x* is equal to the value assumed by the nearest
(in terms of Euclidean distance) training sample.
Steps:

1. Calculate the Euclidean distance between the test sample point x* and
each i-th training sample as follows:

d; = Hx(i) —x"

K . 2
=d (x(i),x*) = Z (xg) — x,’;)
ke

1

2. The predicted value at position x* is equal to the value assumed by the
nearest (in terms of Euclidean distance) training sample

y(x) =y (arg min {di}>

Example: Ackley’s function K = 1 variables

The following figure shows the predicted output made by a nearest neigh-
bor interpolator when applied to the estimation of the 1-dimensional Ackley’s
function, when a set of N = 9 uniformly-spaced training samples are provided.
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Ackley's Function, K=1, N=9, Nearest Neighbor Interpolator

16

14
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y()

True ]
Predicted —---
Training Samples o
| |

L
-6 -4 -2 0 2 4 6

Figure 2.6: Ackley’s function, K = 1 variables. True function vs prediction made
by the nearest neighbor interpolator.

Example: Ackley’s function K = 2 variables

The following figure shows the predicted output made by a nearest neigh-
bor interpolator when applied to the estimation of the 2-dimensional Ackley’s
function, when a set of N = 25 uniformly-spaced training samples are provided.

Ackley's Function Ackley's Function, K=2, N=25, Nearest Neighbor Interpolator

Figure 2.7: Ackley’s function, K = 2 variables. (a) True function vs (b) predic-
tion made by the nearest neighbor interpolator.

Extrapolation capabilities of the nearest neighbor interpolator

The nearest neighbor interpolator is able to do “extrapolation”. This process
is related to the capability of estimating the function value even beyond the
original observation range. When estimating the function value at a position
that lies outside the observed domain (i.e., the K-dimensional region identified
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by the set of available training samples), the interpolator will simply use the
value of the nearest (in terms of Euclidean distance) training sample.

Nearest Neighbor Interpolator, K=1

Extrapolation Region Interpolation Region Extrapolation Region

1 | 1
-1 0 1 2 3 4 5 6

Predicted

Training Samples o

Figure 2.8: Extrapolation capabilities of the nearest neighbor interpolator (ex-
ample K = 1).

2.5.2 Linear interpolation (based on Delaunay triangula-
tion)

Let be given
o x( ¢ MK x0) = {x,(f),k =1, ...,K}: i-th training sample point in K-
dimensional space, i = 1, ..., N;

o y; =y (x): function value (output) associated to the i-th training sample

x .

o x* € RE, x* = {z;,k=1,..,K}: K-dimensional point at which we are
performing the prediction (i.e., the output y (x*) is unknown and has to

be estimated given the available information from the /N collected training
samples);

e X = {X(i),i =1,.., N}: set of N, K-dimensional training sample points;
Main idea:

e In 1-dimensional case (i.e., K = 1), the function value at position x* =
x* is given by the equation of the straight line passing between the two
neighboring points.
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e For higher dimensional spaces (i.e., K > 1), a more complex formulation is
needed, which basically extends the basis idea for the 1-dimensional case.
In particular, the choice of the neighboring training samples that should
be used to predict the output at position x* is performed by means of a
Delaunay triangulation of the training samples in the input space. The
prediction g (x*) is then given by a weighted sum of the function values
assumed by the samples in the neighborhood of x*.

Steps for the creation of the Delaunay graph (triangulation):

1. Let be given a set X of N K-dimensional training samples (in the following
figures we will refer for simplicity to the case K = 2)

Figure 2.9: Delaunay triangulation: set of N K-dimensional points, X (i.e., the
position of the training samples). Case K = 2.

2. Create the Voronoi Diagram Vor (X), that is the subdivision of the plane
into Voronoi cells V (x) for all x) € X. The Voronoi cell associated to
sample x(V) is defined as the region of points whose distance (Euclidean) to
sample x(* is lower than the distance to all other training samples

V(x") = {x]d (x,x?) <d(x,xV) Vi; j=1,.. ,N;i#j}

where d (x, x(i)) denotes the Euclidean distance between positions x and
(1)
X

1 (e x0) = [ 3 (o) - )

K
k=1
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Figure 2.10: Delaunay triangulation: Voronoi Diagram Vor (X) of the training
samples (case K = 2).

3. Create the dual graph of Vor (X), G (X) of the Voronoi diagram. To create
the dual graph, connect two samples if and only if there exists a path
crossing only one Voronoi cell boundary.

¢

Figure 2.11: Delaunay triangulation: dual graph of the Voronoi graph Vor (X),
G (X) (case K = 2).

4. Create the Delaunay graph, D {G (X)}, converting curved paths to straight
lines. The Delaunay diagram (or triangulation) identifies the neighboring
points that should be considered for the estimation of the function value
at each test location x*.
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Figure 2.12: Delaunay triangulation: Delaunay graph, D {G (X)}

Predicting the function value at position x*:

The function at position x* is computed as a weighted sum of K + 1 inde-

pendent samples belonging to the same K-dimensional “simplex”!:

K+1

() = oy
k=1
where

e «y is the weight associated to the k-th neighboring training sample x(*);
e y, =y (x) is the function value at training sample x*).

The weight o, associated to training sample x*) is computed as the ratio between
the “volume” of the simplex including all remaining training samples and the test
location x* and the “volume” of the simplex containing x*:

Vol {X(l)7 s X(i71)7 x*, x(”1)7 - X(K+1)}
N Vol {x0), ., x(K+D}

where the “volume” of a. K-dimensional simplex made by K +1 points is computed
as follows

;

L ... x(E+D
1 K+1 X X
Vol{x(),...,x( +)}:det( ... 1 )

Note that
K+1

Z()éizl

Example with K =1

'For K = 1 the simplex reduces to the straight line connecting two points, for K = 2
it corresponds to the Delaunay triangle connecting 3 points, for K = 3 it corresponds to a
tetrahedron...
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1. Let be given two training samples x; and x;,; and the associated outputs
fi=y(x), fix1 =y (Tig1).

Figure 2.13: Delaunay triangulation: Example with K = 1.

2. Compute the “volumes” of the 1D simplex containing the location = at
which we are doing the prediction. This corresponds (in absolute value) to
the length of the segment between samples x; and x;:

Vol {x;, x4} = det ( :il xifl ) =T — Tiy1

3. Compute the weights associated to training samples z; and x;,1:

o Vol{z,zii1} _ T i
' Vol {SCz', SCz'+1} Ti — Tiq1

Vol{r,z;}  z—ux
Vol {%‘7 $i+1} B Ti — Tit1

Qit+1 =
Then, we have that
T =0T + 01T = i + (1 — og) T4
and the prediction at point x is given by
J(x) =y () + (1 — ) y (zi41)
Example with K = 2
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2.5. TEST OR PREDICTION PHASE: PREDICTION THROUGH
INTERPOLATION TECHNIQUES

1. Let be given three training samples x(, x®) and x® defining the Delaunay
triangle for point x at which we are performing the prediction

Figure 2.14: Delaunay triangulation: Example with K = 2.

2. Compute the “volumes” of the 2D simplex containing the location x at
which we are doing the prediction
1)

2 3
Vol {X(l),X(Q),X(3)} = det < - xt® x

1 1 1 ) =+24{A (x(l),x@),x(?’))}

3. Compute the weights associated to the three training samples

Vol {X, x(?) x() }

T Vol {x, x®, xO)
Vol {xW, x,x®}
T Vol (x, x?, xO}
Vol {x(l), x?), X}
a3

~ Vol {x0, x® x®)}
Then, we have that
x = a;x 4+ apx® + azx®
and the prediction at point x is given by
J(x) = ary (x) + azy (x?) + azy (x@).

Example: Ackley’s function K = 1 variables

The following figure shows the predicted output made by a linear interpolator
when applied to the estimation of the 1-dimensional Ackley’s function, when a
set of N =9 uniformly-spaced training samples are provided.
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Ackley's Function, K=1, N=9, Linear Delaunay Interpolator
16

14
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Predicted —---
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Figure 2.15: Ackley’s function, K = 1 variables. True function vs prediction
made by the linear interpolator.

Example: Ackley’s function K = 2 variables

The following figure shows the predicted output made by a linear interpolator
when applied to the estimation of the 2-dimensional Ackley’s function, when a
set of N = 25 uniformly-spaced training samples are provided.

Ackley’s Function Ackley’s Function, K=2, N=25, Linear Delaunay Interpolator

Figure 2.16: Ackley’s function, K = 2 variables. (a) True function vs (b) pre-
diction made by the linear interpolator.

Extrapolation capabilities of the nearest neighbor interpolator

The linear Delaunay-based interpolator is not able to do “extrapolation”. This
process is related to the capability of estimating the function value even beyond
the original observation range. In fact, the prediction at a given test position x*
is possible if and only if there exist a K-dimensional simplex of training samples
surrounding it.
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Linear interpolator can however be extended with a nearest neighbor inter-
polator in order to enable extrapolation, as shown by the above figures.

Linear (Delaunay) , K=1, Without 1 Linear (Delaunay) Interpolator, K=1, Nearest Neighbor Extrapolation

Extrapolation Region Interpolation Region Extrapolation Region Extrapolation Region Interpolation Region Extrapolation Region

y(x)
y(x)

Predicted

Training Samples & Predicted

(a) ()

Training Samples o

Figure 2.17: Linear Delaunay interpolator (a) without extrapolation (standard)
and (b) with nearest neighbor extrapolation (example K = 1).
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2.6 Test or Prediction phase: prediction through
learning-by-example techniques

2.6.1 Kriging: Gaussian Processes (GP) for regression

Mathematical formulation
The following formulation has been mainly derived by [21] and [30].
Suppose we have evaluated a deterministic function of K variables at N
points. Denote the i-th sampled point by

x® = [xgi), :L‘g), ...,x&?] (2.1)

and the associated function value by

y =y (xV) (2.2)

fori=1,.. N.

The classical linear regression model

The simplest and most familiar way to fit a response surface to such a data is
linear regression. In this technique, the observations are treated as if they were
generated from the following model

+e® i =1,.,N (2.3)

Q
V) = [ )

In this equation, each [, (X(i)) (¢ =1,...,Q) is a linear or nonlinear function
of x, the a’s (¢ = 1,...,Q) are unknown coefficients to be estimated and the
€’s are normally distributed, independent error terms with mean zero and vari-
ance o2. The conceptual problem with linear regression is that the assumption
of independent errors is clearly false when modeling a deterministic computer
code. If x and x) are two points that are close together, then the
errors terms e (x() and e (x) (i.e., their associated outputs y (x)
and y (xY))) should also be close (correlated). In short, it makes no sense
to assume that € (x) and e (x\)) are independent. Instead, it is more reason-
able to assume that these error terms are related or “correlated”, and that this
correlation is high when x® and xU) are close and low when the points are far
apart.

In the stochastic process approach, we do not assume that the errors are inde-
pendent, but rather assume that the correlation between errors is related
to the distance between the corresponding points. As we will see, we do not

2NOTE: In the following, the addressed computer models are assumed deterministic, and
thus a response from a model lacks random error (i.e., repeated runs for the same input
parameters gives the same response from the model (e.g., the simulator)).
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use the Euclidean distance, however, since this distance weights all the variables
equally.

Kriging (Gaussian Process Regression): Fundamentals

Based on the Bayesian statistics, Kriging model treats the deterministic re-
sponse of y (x) as a realization of a stochastic process Y (x)

Y(x) =9 +7(x)
where
e ¢ (x) is a regression (or “trend”) function;
e 7 (x) is a Gaussian process.

The idea is that 1 (x) captures the general trend of the real function, while
Z (x) models the errors (or “residuals”’) made by ¢ (x) w.r.t. the real function
y (x). The definition of the regression function 1 (x) leads to different Kriging
meta-models:

o Y(x)= Zqul a,f, (x): Universal Kriging,
e Y (x)=ay = u: Ordinary Kriging,
e ¢ (x)=0: Simple Kriging;

Note that o, are unknown coefficients and should be estimated. For Ordinary
Kriging, we have one single unknown coefficient a; = p.
The following regression models can be defined:

e Constant regression, () = 1:
61 (X) =1
e Linear regression, ) = (K +1):
61 (X) =1
By (x) = 21, ..., Bry1 (X) = 2K

e Quadratic regression, Q = 3 (K + 1) (K + 2):

b (x) =
52 (X) = X1y ...y BK—H (X) =TK
Br 42 (X) = ﬁ, s Bo 41 (X) = T1TK
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The term Z (x) is assumed to have the following stochastic behaviors

E[Z(x)] =0 |
Cov [Z(x),Z(x)] =o*Corr (x,x)

where

e o2 is the process variance;

e Corr (x, X,) is the correlation between any two locations x and x .

The correlation function Corr (X, X/) is defined as a function of the distance
d (X, X,) between samples x and x  and satisfies the following conditions:

limd<x7x,)_>0 Corr (x,x)

=1
limd(x’x/)ﬂOo Corr (X, Xl) =0

More in detail, the correlation function used for Kriging meta-modeling is
defined as

K
Corr (X, x/) = H Corr (:L‘k, x%)
k=1
The most common definition of the correlation between the k-th variable of

x and the k-th variable of x' is the following
pk)

where 0, > 0 and p; € [1,2], for k£ = 1,..., K. This leads to the following
definition of correlation between samples x and x’
pk)

K
Corr <x, Xl) = H exp <—0k )xk — x;ﬁ

Note that, rather than using the Euclidean distance, the following weighted
distance is employed

i

Corr (xk,x;g) = exp (—Qk ’xk — 1

(2.4)

and

Corr (x, X/> = exp (—d (X, X/>> = exp (— i@k ’xk — pk) (2.5)
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Thus, the correlation between two samples x and x is a function of both
their distance in all K dimensions and of a set of 2K hyper-parameters ©

© ={01,....0k; p1,....,PK }

whose values are unknown and should be estimated. Given the correlation func-
tion defined in (2.4) and (2.5), when the distance between x and X is small, the
correlation is near one. Similarly, when the distance between the points is large,
the correlation will approach to zero:

0 < Corr (x, X/> <1

The parameter 0, in the distance formula (2.4) can be interpreted as measur-
ing the importance or “activity” of the k-th variable x;. To see this, note that
saying “variable k is active” means that even small values of ’xk — x;} may lead
to large differences in the function values at x and x. This means that even
small values of }xk - x;‘ should imply a low correlation between the function
values y(x) and y(x'). If 6 is very large, then it will indeed be true that small
values of }xk - :c;c’ translate into large “distances” and hence low correlation.
The exponent py is related to the smoothness of the function in coordinate di-
rection k, with pr = 2 corresponding to smooth functions and values near p, = 1
corresponding to less smoothness.

Impact of Hyperparameter 6y (p,=2) Impact of Hyperparameter py (6,=1)

exp(-B X))
exp(-hxyl™)

03
0.2

0.1

Figure 2.18: Effect of (a) hyper-parameter 0, and of (b) hyper-parameter p; on
the correlation function between the k-th coordinate of points x and x .

A common choice to reduce the number of unknowns (and consequently, the
computational load of the training phase) is to fix the value of py to a given
value, for £k =1, ..., K. The following correlation models can be derived:

e Exponential correlation: p, =1, k=1,.... K
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Corr (:L‘k, x%) = exp (—Qk ’xk — :101,C

) (2.6)

e Gaussian correlation: p, =2, k=1,..., K

Corr <xk,x;€> = exp (—Qk )xk — x;ﬁ 2) (2.7)

while if p; is not fixed we get the so-called

e Generalized exponential correlation:

!

Corr (azk,x;) = exp (—Gk ‘xk — Xy

")

NOTE: the DACE toolbox doesn’t allow the estimation of different exponents
pr along the A dimensions.

Other correlation models can be defined. In particular, the Kriging MATLAB
DACE toolbox [31] supports the following alternative correlation function

e Linear correlation:

Corr (SL’k, x%) = max {0, 1 — 0k ’xk — x;’} (2.8)

e Spherical correlation:

Corr (:pk x;> =1 1.5, + 0.5 (2.9)
where
& = mm{l, s, ’xk — x}c’}

e Cubic correlation:

Corr <xk,x;€) =1-3¢ +2¢ (2.10)

where

j

& = min {1, s ‘xk - a:;,C
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e Spline correlation:

Corr (azk, SL’;C) = ( (&) (2.11)
where
& =0 ’SL’k — 1,
and
1— 1562+ 308 for0<& <0.2
C(&n) = 125(1—6&)° for02<é& <1
0 foré& >1

3If the underlying phenomenon is continuously differentiable, the correlation
function will likely show a parabolic behaviour near the origin, which means
that the Gaussian, the cubic or the spline function should be chosen. Con-
versely, physical phenomena usually show a linear behavior near the origin, and
exponential, generalized exponential, linear or spherical would usually perform
better. Also note that for large distances the correlation is 0 according to the
linear, cubic, spherical and spline functions, while it is asymptotically 0 when
applying the other functions. Often the phenomenon is anisotropic. This means
that different correlations are identified in different directions. This is accounted
in the above correlation functions, since different parameters 6, are allowed in
the K dimensions of the input space.

Gaussian and exponential correlation functions are the most used
in practical applications, since they represent a good choice for most of the
conventional physical processes.

We assume that the correlation between two samples x and x'is
stationary, meaning that the set of hyper-parameters © is invariant with respect
to x.

Now consider that the real value of y (x) is given at N sample points (training
locations):

2)

X(l),X( ,...,X(N)

Kriging supposes that the stochastic process Y (x) realizes all the N given
samples:

Y (x(i)) =1 (X(i)) + 7 (X(i)) =y (x(i)) (2.12)

Assuming a constant regression function (i.e., Ordinary Kriging)

V(x)=a1=p

3NOTE: The choice of the correlation function should be motivated by the underlying
phenomenon, e.g., a function we want to optimize or a physical process we want to model.
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the probability density function distribution conditioned on these realizations
(called Likelihood Function) is obtained in logarithmic form as:

Ln (11,02,©) = In {PDF (y/xD,x® . x"M)} =

= —Jin(27) — Sino? — In|R| — (y_l")T;;(y_l“)

(2.13)

where

y = [y (<) y (@), oy (<))

1 is a N-dimensional vector of ones (1 = [1,1,...,1]"), and R is an N x N
correlation matrix whose entries are represented by the correlation between
training samples (R;; = Corr (x,x)). Note that the dependence of the
Likelihood Function on the hyper-parameters © is via the correlation matrix R.:

[ Corr (x(l),x(l)) Corr (X(l),X(N)) i

R— o (2.14)

| Corr (x™),xD)  Corr (xM), x(M)

The Ordinary Kriging model needs to estimate the values of p, o? and ©
based on the Mazimum Likelihood Estimation (M LE). The values of y and o
that maximize Ln (i, 0%, ©) are solved in closed form as

. 1"R7y
A= TR (2.15)
and .
— 1) "R (y — 1/
s Y —14) R (y—1i) (2.16)

N
Substituting (2.15) and (2.16) in (2.13) the following Concentrated Likelihood
Function is obtained

N N 1
In(©®) = ——In(27) — =Iné* — ~In |R|
2 2 2

which depends only on the set of hyper-parameters ®. This function should
be maximized to get an estimate of ®, and hence an estimate of the correlation
matrix R. Multiple optimization algorithms can be used (e.g., gradient descent,
GA, PSO, etc.). Then, equations (2.15) and (2.16) are used to get an estimate of
fi and 62. Note that when we estimate these parameters by maximum likelihood,
we are essentially finding values of the parameters that best describe the behavior
of the true function (we do not know them exactly, that’s why we should use the
hats).

Finally, consider the linear predictor g (x) which estimates y (x) at location
x (and y (x) is unknown), defined as
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j(x)=c'(x)Y (2.17)

where
Y = [Y (x(l)) sy Y (X(N))]T = [y (X(l)) v Y (X(N))]T

by hypothesis (2.12). The Kriging model obtains the best linear unbiased
predictor (BLUP) by choosing the N-dimensional vector ¢ (x) to minimize the

following mean squared error (MSE):
s* (x) = Var[§ (x) = Y(x)] = Var [j (x) — y(x)] (2.18)

subject to the following unbiasedness constraint:

Ely(x)] = EY x)] = Ely(x)]
Then, c (x) is solved in closed form as
R1'1(1-1R'r(x))
1"TR-11

where r (x) is an N-dimensional vector containing the correlation between
the sample x at which we are making the prediction and the N training samples

e(x)=R'r(x)+ (2.19)

Corr (x,x)
r(x)= (2.20)

Corr (X, X(N))

Substituting r (x), we get the final expression of the Ordinary Kriging pre-
dictor

j(x)=p+r" (x)R™ (y - 17) (2.21)

This function models the estimate of y(x) at any location x by interpolating
the sample points with real values of y(x). On the right-hand side of equation
(2.21), the first term, fi, is the result of simply plugging x into the regression
equation, and the second term represents the “adjustment” to this prediction
based on the correlation of x with the N sampled points (which are known).
Similarly, substituting (2.17) and (2.19) in (2.18) the M SE in final form results
in

2

(1-1"R7'r (x))

s°(x) = MSE (x)=6" |1 —r" (x) R™'r (x) + 1TR-11

(2.22)
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This function models the uncertainty expected in ¢ (x). It indicates that the
accuracy of ¢ (x) depends largely on the distance from the given sampling points
(i.e., the training samples). Intuitively, the closer x is to the training points, the
less uncertain the prediction g (x).

Note that:

e If there is no correlation with training samples (r (x) = 0), then we just
predict y(x) = ji;

e If we are making a prediction at the i-th sampled point (x = x(®), then
g (x") =y (x®) and s* (xV) = 0.

e The predictor in equation (2.21) can be also written as:

900 = i+ whe () = fi+ 3 wiri(x) (2.23)

where w = R™!(y —172) is a vector of constants and r; (z) = Corr [x,x"],
for i = 1,..., N. Thus, we see that the Kriging predictor is a linear com-
bination of “basis functions” r; (z), for ¢ = 1,..., N that interpolate the
data. The basis functions depend upon the correlation parameters 6, and
pr for k=1, ..., K, and these are “tuned” to the training data during the
Mazximum Likelihood Estimation.

Interpretation of s* (prediction uncertainty, MSE)

The correlation between the new sample x and the training samples affects
our estimate of prediction accuracy. In fact, it makes intuitive that, if x is
very close to a training sample x, we should be much more confident in our
prediction of y (x) than we would be if x were far away from all the sampled
points. This intuition is reflected in the general formula for the uncertainty
s?(x) of the predictor.
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Figure 2.19: Example in 1D case.

Let us model the uncertainty at x by treating the function value y (x) as
the realization of a normally distributed random variable Y with mean g (x)
and standard deviation given by s(x) = y/s?(x). Then, the Kriging model is
approximately 99.7% confident that § (x) lies inside the interval defined by

7y (x) £ 3s

Note that if we are making a prediction at the i-th sampled point (x = x),
we get s> (X(i)) = 0. This is as it should be: with a deterministic function, once
we have sampled a point, we know its value there. Thus, our uncertainty, as
measured by s?, should be zero. In conclusion, s gives us a measure of how
accurate and “reliable” is a given predicted value (it shouldn’t be confused with
the prediction error, that is computed knowing the real value of y(x)). In Fig.
2.19 it is reported the prediction confidence interval of a 1D function. It is defined
as ¢ £ s and it is null at observed points, while it grows with the distance w.r.t.
the nearest training point. Fig. 2.20 shows the Prediction and the prediction
uncertainty (MSFE) of the Ackley’s function when N = 25 and N = 250 training
samples and are used. The prediction uncertainty is null at observed points,
while it grows with the distance w.r.t. the nearest training point. Increasing the
number of training samples leads to an higher prediction accuracy and to a lower
uncertainty.
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N = 25 training samples

2D Ackley's function: Kriging prediction, N=25 training samples (LHS)

Y'(x1.%)
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(a) Prediction

2D Ackley’s function: Kriging uncertainty (MSE), N=25 training samples (LHS)

Sxy%)
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2

1.5
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(b) Prediction uncertainty (MSE)

N = 250 training samples

2D Ackley's function: Kriging prediction, N=250 training samples (LHS)

Y (X1.%)
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(¢) Prediction

Universal Kriging

2D Ackley's function: Kriging uncertainty (MSE), N=250 training samples (LHS)
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(d) Prediction uncertainty (MSE)

Figure 2.20: Example in 2D case (Ackley’s function). (a) Prediction and (b)
prediction uncertainty (MSE) of the Ackley’s function using N = 25 training
samples. (¢) Prediction and (d) prediction uncertainty (MSE) of the Ackley’s
function using N = 250 training samples.

While Ordinary Kriging assumes that the stochastic process Y (x) has the

form

Y (x)=p+ 27 (x)

more generally, we can write

V() =¢x)+2Z(x)

Universal Kriging assumes that the regression (or “trend”) function is com-

puted as the weighted sum of known basis functions of different order

Q
Y (x) = Z g (%)
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Then, we can define the N x () regression matrix B as

b1 (X(l)) Bo (X(l))

Br (x) - Bo (x)

The maximization of the Likelthood Function leads to the following definition
of the estimator

j(x) =Ma+r" (x) R (y - Ba)

where M is a ()-dimensional vector

M =[5 (x) ..., B (%)]
and the coefficients are estimated as
_ B'R'y
B"R-'B
The prediction uncertainty (M SFE) is then obtained as

(87

2

(1-B"R'r (x))

s°(x) = MSE (x)=06" |1 —r" (x) R7'r (x) + B’R-'B

Note that in the case of constant regression (i.e., Ordinary Kriging), we have

Y (x)=ar=p
1
1

B = =1
1

. 1Ry
= H= TR 11

Going back to the Universal Kriging formulation, if we predict at one training
location (i.e., x = x(), we get that r (X(i)) is the i-th column of the correlation
matrix R (Ry)
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Corr (x(i), X(l))
r (x) = _ R,

Corr (x®,x(M)
Then,
T (xR = (R (x?)) = (R'R,)" =ef

where e;is the i-th unit vector (having all zeros and a one at the i-th position).
Finally, we obtain

' (x?) R (y - Ba) = ¢/ (y - Ba) = y (x") - Ba
Since Ba = Ma, we get
§ (x) = Ma +y (x?) = Ma = y (x9)

meaning that the Kriging regressor exactly interpolates the training data.
This is of course also valid for Ordinary Kriging. At point x = x*) we get

g (x) = e (D) R (y = 14) = jite (y — 11) = it f (xV) =i = f (x1)

If we look at the uncertainty, we have

i i A N\ R i (1-1"R™'r X(i)))z
s (x( )) =MSE (x( )) = 5° [1 —r’ (x( )) R'r (x( )) + 1TR11(
with
r’ (X(i)) R'r (X(i)) =l (X(i)) e =1 (X(i)) =Corr (x(i), x(i)) =1
1"R'r (X(i)) =1"7¢, =1

resulting in

Note that if the point x is very far from all training samples, we have
r(x)—0
52 (x) — 62
§(x) = f

Dimension of the output vector y

The MATLAB DACE Toolbox [31] is able to handle models with G-dimensional
responses (y (x) : RE — RY)

Y = [Y1, Y2, s i)

All the previous equations can be easily expanded to a G-dimensional vector
predicted output.
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2.6.2 Support Vector Regression

The SVR prediction technique is based on the Support Vector Machines (SV M)
[32]-[34] theory. The fundamental characteristic of the SVR technique is that it
allows defining an “error” margin € on the training samples; this means that it is
assumed that the training samples can contain a certain amount of uncertainty
but this does not interfer on the efficiency and accuracy of the prediction pro-
cess. All the techniques based on the SV M theory are thus suited for dealing
with noisy training data, as for example the leaning problems based on observa-
tions/measurements.

Within the SVR theory, the training samples which lie outside the 4 band
(called +e-tube) are called support vectors (see. Fig 2.21) . These samples are
fundamental for the training process of the SV R.

15 ||== prediction ¢
S

=g
+ sample data
O support vectors

10 n

0 0.2 0.4 0.6 0.8 1

Figure 2.21: SVR prediction of a 1D test function. Among all the training
samples, only some of them are support vectors.

Independently from the training technique used for the SVR, the expression
of the SV R predictor is the following:

N
g (x)=p+ Z we) (X, X(i)) (2.24)
i=1

where () = ¢ (x,x?) is the i—th basis function, w® is the i—th weight and
1 is a bias coefficient which can be computed exploiting the Karish-Kuhn-Tucker
conditions [35] starting from the support vectors. The goal of the training phase
is to find the best prediction function which deviate from the training samples a
maximum quantity €. The standard form for the training of the SVR model is
the following:
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N
1 1 , ‘
min (5 lw|* + CN ;1 O 4 §(2)> (2.25)

y(i) — wx® — n <e+ §+(i)
g, e >0

where £+ ¢=() are the so called slack-variables [33]. It can be noticed that the
training process illustrated in previous equation allows controlling the tradeoff of
the final result in terms of complexity of the model and accuracy by opportunely
choosing the C' parameter. The problem in Eq.2.25 can be solved using the
Lagrange multipliers technique and obtaining the canonical solution [34]:

N

§(x) = o + Z (oﬁ(") + a—(z‘)) (X(i) - X) (2.26)

i=1

The equation 2.26 is valid under linear regression hypothesis. The result can
be extended to the case where non-linear basis function are used, obtaining

N

§(x) = p+ Z (@t 4+ a~@) y® (2.27)

i=1

It must be pointed out that Eq. 2.26 is valid only if the following assumptions
hold true:

e 1) is continuous,
e ¢ is symmetric, which means that v (x,x®) = ¢ (x¥, x)

e 1 is positive definite function, which means that the correlation function
1’ = 1p and has eigenvalues which are strictly positive.

The most common choices for the kernel function v are:
e Linear kernel: ¢ (x,x0) = (x . x0);
e d-grade homogeneous polynomial kernel: ¢ (xV,x) = (x -x(j))d;
e Gaussian kernel (the most used): ¢ (x,xV)) = e"ny(i)'x(j)HQ;
e d-grade inhomogeneous polynomial kernel, etc..
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Funzione Schwefel Funzione Schwefel, N=100, C=1000, y=10

1000 1000

900 900
800 800

700 700

Figure 2.22: Two-dimensional Schwefel function. True function (@) and predicted
function (b) using N = 100 training samples (C' = 100, v = 10)

With the goal of illustrating the performances of the SVR, Fig. 2.22 shows the
comparison between the predicted output [Fig. 2.22(b)| and the corresponding
benchmark function [Fig. 2.22(a)]. The benchmark function used is the 2-D
Schwefel function. The number of training samples has been fixed to N = 100.
It can be noticed that the accuracy in the prediction is acceptable: the position
and amplitude of the maxima and minima is correctly predicted, as well as as the
general behaviour of the function. However, due to the considered formulation,
the predicted function appears to be smoother with respect to the original (see
Fig 2.22(b) for 5 = —100). This phenomenon is due to the fact that SVR
does not interpolate the training samples; this can be suited for noisy training
samples but is less suited for deterministic data because it can introduce noise
in the prediction of the “exact” training samples. In addition a further drawback
with respect to other techniques (such as Kriging) is the necessity to preliminary
calibrate the training samples C' (called penalty factor) and « (for the Gaussian
kernel).

2.6.3 Parameter selection via Cross-Validation (CV)

Many predictors, such as SVR, need a preliminary calibration phase in order
to estimate the best combination of parameters which will be used during the
training and testing phases. Often, such a calibration is performed by applying
a cross-validation approach on a given set of known input/output pairs (i.e., a
training set). Many cross-validation approaches exist, but the main two tech-
niques are

1. V-fold cross-validation;

2. Leave-one-out cross-validation (LOO — CV);
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On the one hand, V-fold cross-validation is considered a non-exhaustive cross-
validation method, since it does not compute all ways of splitting the given
training set. Even if it is an approximated technique, it is computationally faster.
On the other hand, LOO — CV is an exhaustive cross-validation method, since
it requires the training and test on all possible ways to divide the original set
into a training and a validation set.

2.6.3.1 V-fold Cross-Validation

More in details, SVR (with RBF kernel) are characterized by two main parame-
ters, namely C' and ~. C'is often called “penalty factor” and controls the trade-off
between the training error and the model complexity, while v represents the expo-
nent in the RBF kernel. RBEFN are characterized by one parameter, the spread
S. This parameter controls the smoothness of the Gaussian basis functions used
in the hidden layer of the network.

Let us indicate with (a) the vector of parameters that should be calibrated:

e a = (C,~) for the SVR model with RBF kernel;
e o = S for the RBFN model.

In order to identify the best parameters, a classical V' —fold cross-validation ap-
proach is employed.

A given training set of N samples is divided into V' subsets of approximately
equal size. Then, for each v—th subset, a prediction model is trained using the
remaining V' — 1 subsets. The resulting model is then used to test the prediction
accuracy on the v—th subset, and the estimation error is computed by means of
the Mean Squared Error, defined as follows:

Ty

MSE,(a) = Ti > {yi — i)}

vi=1
where
e T, is the number of samples inside the v—th subset;
e y; is the real output associated to the :—th sample;
e « correspond to the considered vector of parameters;

e y;(a) is the predicted output associated to the i—th sample for a given .

Then, the cross-validation M SFE for a given vector of parameters « is computed
as the average M SFE obtained over all the V' subsets

ne) = 3" MSE,(a)
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The best configuration is finally identified as the one minimizing the cross-
validation M SFE

(cx) = arg {ming(a)}

2.6.3.2 Kriging vs. Support Vector Regression (SVR)

“The lunch is not free” theorem is still valid when selecting the proper predictor.
The choice of the prediction model is crucial and for sure it depends on the
specific application. The following list of features may be drawn in order to
enable a direct comparison between Kriging (Simple, Ordinary or Universal)
and SVRs.

I denote with symbol 1 features that appear as advantages, while symbol |
indicates a disadvantage. Symbol J indicates that the given feature may represent
either an advantage or a disadvantage, depending on the application.

‘ Feature H Kriging ‘ SVR ‘
Auto-tuning of hyper-parameters YES 1 NO |
Multi-dimensional output YES 1 NO |
Uncertainty measure YES (MSE) 1| NO |
Interpolates training data YES NO J
Can handle noisy training data NO | YES 1
Computational efficiency LOW | YES 1
Can handle large number of variables (K > 100) NO | YES 1

Table 2.1: Direct comparison between features of Kriging and SVR.

Tuning of the hyper-parameters

One of the most important advantages of Kriging over classical Support Vec-
tor Regression is the auto-tuning of the hyper-parameters. When using an e-SVR
with Radial Basis Function (RBF) kernel, a preliminary tuning of the hyper-
parameters (namely, the penalty factor C' and the Kernel coefficient ) must be
done in order to obtain good predictions.

More on noiseless/noisy training data

In its original formulation, Kriging is intended to work with determin-
istic data, meaning that the same output is always computed /measured for a
given input vector. On the contrary, Support Vector Regression (SVR) is
able to manage noisy training samples, where both the following conditions
may happen:

1. The output of a given training sample may be not corresponding to the
real output of the undergoing phenomenon/process. In other words, some
noise can be added to the real output value;
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2. More that one output value is present for the same input vector (i.e., we
have multiple noisy realizations of a given training sample).

In other words, Kriging interpolates training data, meaning that the predicted
output for a training location corresponds to the training output. On the other
hand, no guarantees are given that the predictions made by an SVR interpolate
the training observations.

In the following, we directly compare the predictions made by both Ordinary
Kriging and e-SVR (with RBF kernel) for the 1-D Ackley’s function. N =
21 training samples are uniformly distributed inside the considered input range
-5 <z <5,

Ackley’s Function, N=21 (GRID)
16

14

12

10

Function Value [Arbitrary Unit]
[oe]

True Function = =— =

2L Training Samples @

Ordinary Kriging
‘ SVR —_—

I I I I I I
-5 -4 -3 -2 -1 0 1 2 3 4 5

Figure 2.23: Ackley’s function, K = 1 variables. Direct comparison between the
predictions made by Ordinary Kriging and e-SVR.

Observations

e predictions made by Kriging are much more accurate than those made by
SVR. Normalized Mean Error is:

— Ordinary Kriging: NME = 4.95 x 102
— SVR: NME =5.95 x 107!
e Kriging interpolates training data, forcing its prediction to perfectly match

training data, which are assumed to be deterministic realizations of the
function to predict;

e SVR doesn’t force the prediction to interpolate the observations. Different
values are then predicted also when estimating the output at a training
location.
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In the following figure, a different example is given. In this case, our goal is to
predict the function

y(x) =z

within the range 0 < z < 10, by exploiting a set of N = 21 uniformly spaced
training samples computed inside the same interval. Moreover, training samples
are corrupted by an additive white Gaussian noise, with SNR =5 [dB|.

N=21 (GRID), SNR=5 [dB]

12

10

Function Value, y(x) [Arbitrary Unit]

True Function == = =
0 Training Samples @

Ordinary Kriging
SVR =—

L L L L L L L
0 1 2 3 4 5 6 7 8 9 10

Figure 2.24: Ackley’s function, K = 1 variables. Direct comparison between the
predictions made by Ordinary Kriging and e-SVR.

Observations

e In this case, predictions made by the SVR are much better than those made
by the Ordinary Kriging; the computed Normalized Mean Error is:

— Ordinary Kriging: NME =1.73 x 107!
— SVR: NME =9.92 x 1072

e given its interpolating nature, Ordinary Kriging forces predictions to match
all observed samples. However, this is not a desirable feature when treating
noisy realization of the underlying function to predict.

Final considerations and guidelines
Given the above two examples, the following final observations may be con-
sidered when selecting the predictor, problem at hand:
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e In case of noiseless deterministic simulations, it makes sense to use a Krig-
ing predictor;

e when samples are corrupted by noise (both during the training and
during the test phases), the SVR is not only is a good choice, but also the
only choice (between the two considered predictors), since Kriging - in its
standard implementation - is not able to manage noisy data.

e a new version of Kriging, called “stochastic Kriging” has been introduced
in in order to enable the use of noisy training sets.

2.6.4 Radial Basis Function Networks (RBFN)

The idea of Radial Basis Function Networks (RBFN) derives from the theory of
function approximation. The main features of a RBF'N [36]-[40] model are:

They are two-layer feed-forward networks.

The hidden nodes implement a set of radial basis functions (e.g. Gaussian
functions).

The output nodes implement linear summation functions.

The network training is divided into two stages:

1. first the weights from the input to hidden layer are determined,
2. and then the weights from the hidden to output layer.

The training/learning is very fast.

e They are very good at interpolation.

RBFN with exact interpolation at training samples: theory

RBF Ns are a special class of single hidden-layer feed forward neural networks
for application to problems of supervised learning (i.e., those problems where the
function value associated to training samples is assumed to be known during the
training phase).

Let’s suppose also in this case to have N training samples available, where:

o x) ¢ RE x() = {SL’,(;),/{Z: 1,...,K} : i—th training sample point in
K —dimensional space, i =1, ..., N;

oy = v (X(i)) : function value (output) associated to the i—th training
sample point x().
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The exact interpolation of the set of N data points in a multidimensional space re-
quires that all the N K-dimensional input vectors x(*) = {x,(j), k=1,..., K} 1=
1,..., N are mapped onto the corresponding outputs y;,¢ = 1,..., N. In other
words, the goal of exact interpolation is to find a function h (.) such that h (xV) =
yi,t=1,..., N.

The radial basis function approach introduces a set of N basis functions (one
for each training sample) of the form:

$i(x) = o(||x — xV))

where ¢(-) is some nonlinear function and HX — X(i)H denotes the Euclidean
distance between the generic input x and the i-th training point x®.

The characteristic feature of radial functions is that their response decreases
(or increases) monotonically with distance from a central point. The centre, the
distance scale, and the precise shape of the radial function are parameters of the
model.

The most common choice is to consider the case of Gaussian basis function
(and this is the choice adopted for the results in this report):

5. = 0([x — x0) = eap <_M> . <_M>
202 29

The term 02 = S is often called “spread” and controls the smoothness properties

of the interpolating function, as shown in next Figure:

Impact of the spread S

11

09 | PR
.
08 Phd e 3 ~
‘f' ~
- -
07 - s ) .

06" ’ N

@lxx))
AN
/7

0.5 - 4 \
04 L7 ~
03 |
0.2

0.1 [

‘
-1 0 1
I

Figure 2.25: Impact of the spread value S on the width of the Gaussian basis
functions.

The prediction made by the RBFN model at a generic test location x(™ is
given by a linear combination of the basis functions
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N
G = h(x™) = ij¢mj
j=1

where

, (m) _ «()]|?

and w;, j = 1, ..., N are weights that must be estimated during the training
phase. Thus, the interpolation condition at a generic training sample x* can be
expressed as

N
j=1

where

bi; = o(||xD = xV|) = eap (_ [ — XU)H2>
’ 25

The above condition can be expressed also in a matrix form, dwT = y:

Oy Py - Dy w1 Y1
Dy Doy --- Doy Wo B Y2
Ony Py - Paw WN Yn

where @ is a matrix of dimension N x N of components ®;; = ¢(|x) — x7||)
and wis 1 x N and y is N x 1.

If @ is a non singular matrix the solution for the parameters (i.e., the vector
of weights w) can be found simply inverting the above relationship

w=>&"y

The network looks like the following:
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Figure 2.26: RBFN Network.

As can be noticed, the network has an input layer, a hidden layer and an out-
put layer. The input layer broadcasts the coordinates of the input vector to each
of the nodes in the hidden layer. Each node in the hidden layer then produces an
activation based on the associated radial basis function. The dimensionality of
the radial functions is the same as the input data. Finally, the node in the out-
put layer computes a linear combination of the activations of the hidden nodes.
How an RBFN reacts to a given input stimulus is completely determined by the
activation functions associated with the hidden nodes and the weights associated
with the links between the hidden layer and the output layer.

In practice, exact modeling of the training data is not always wanted because
in this way a very poor predictive ability would be reached, due to the fact that
all details, noise, outliers are modeled.

To have a smooth interpolating function in which the number of basis func-
tions is determined by the fundamental complexity of the data structure, some
modifications to the exact interpolation method are required.

1. The number of basis functions, M, is reduced to a lower number, M < N.

2. Bias parameters are included in the linear sum. These will compensate
for the difference between the average value over the data set of the basis
function activations and the corresponding average value of the targets.

3. The determination of suitable centers becomes part of training process.

4. Instead oh having a common spread parameter, o2, each basis function is
given its own width o, whose value is also determined during training.

The main problem with RBEN is that, since they perform exact interpolation,

they perform poorly with noisy data. In addition they are not computationally
efficient when many training samples are available. Indeed, the network requires
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one hidden unit (i.e. one basis function) for each training data. The matrix
inversion cost is typically O (N3).
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Chapter 3

Reflectarray antennas

3.1 Introduction

The design, fabrication, and maintenance of large phased arrays for satellite and
terrestrial applications is a very challenging and expensive task, especially if very
high directivities are required. As a consequence, many techniques have been de-
veloped in the scientific and industrial communities in order to simplify the array
architecture, reduce the number of control points, or ease the fabrication of the
feed network. In this scenario, reflectarrays (antennas in which an active feeder
illuminates a large set of passive resonant patches, that collectively scatter the de-
sired beam) have emerged as a powerful and flexible solution to achieve effective
beam control capabilities without requiring complex, expensive, and bulk feed
networks (unlike phased arrays), and also without yielding the non-conformal
geometries of standard parabolic reflector antennas. However, the design of a
reflectarray is still a very complex task, especially if high performance in terms
of bandwidth and polarization purity is required. As a matter of fact, the de-
sign of a reflectarray requires a very accurate knowledge of the relations between
the elementary reflectarray antenna (i.e., its shape), the frequency/angle of in-
cidence/polarization of the incoming wave, and the features (magnitude, phase,
polarization) of the reflected wave. If the elementary antenna has a complex
shape (required to achieve effective cross-polarization control and large band-
width), no approximate formulas exist to predict such a relation, and expensive
full-wave methods or ad hoc numerical techniques are currently required. Unfor-
tunately, the number of simulations required to characterize a single reflectarray
cell grows exponentially with its number of degrees-of-freedom, therefore making
this approach numerically unfeasible when the reflectarray cell has more than
2/3 geometrical degrees of freedom. In the design methodology, it is therefore
of fundamental importance to have techniques capable of efficiently and accu-
rately calculate the reflection coefficient associated with a given geometry of the
element in order to calculate the geometry of the element that will provide the
desired reflection coefficient. This coefficient is mathematically represented by a
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2x2 complex matrix (each entry has a magnitude and a phase), which takes into
account the relationships between co-polar and cross-polar components of the
incident (due to the feeder) and reflected field. This matrix naturally depends
on the geometry of the element, the direction of incidence of the wave (azimuth
and elevation) and the operating frequency of the system.

For the design of the reflectarray any possible value of phase-shift must be
implemented by varying one parameter in the unit cell (such as the patch size
or rotation angle) in order to be able to accurately predict the phase shift and
dissipative losses. One of the most important parts in reflectarray analysis is
the accurate characterization of the reflective elements (accurate knowledge of
phase-shift and polarization losses for each polarization of the field). Curves
which relate the phase of the radiated field with certain geometrical parameters
of the reflectarray elements are usually adopted.

If the literature, when the arrays had too many elements, the analysis of ar-
rays of rectangular microstrip patches has been carried out assuming the infinite
array model and by applying Floquet’s theorem, thus reducing the analysis to one
periodic cell. This analysis can be used if all the elements in the reflectarray have
the same shape. If elements with variable size are used, the reflectarray must be
analyzed assuming local periodicity (which is accurate for neighboring patches
with smooth variations, assumption which is normally true). In the following
the analysis of a microstrip reflectarray with rectangular patches of variable size
is carried out. The limitations of this geometry are then highlighted: in order to
increase the performance of the reflectarray it is often necessary to use noncanon-
ical patches. However the analysis of more complex shaped requires an increase
in CPU time. The proposed method based on an innovative learning-by-example
strategy allows analyzing patches with arbitrarily complex shape in an efficient
and accurate way. The method is presented in Section 4.
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CHAPTER 3. REFLECTARRAY ANTENNAS

3.2 Single layer reflectarray of rectangular patches

In the following the problem of predicting the power pattern generated by a
reflectarray when the dimensions of the patches as well as the substrate thickness
and permittivity vary is presented and mathematically modeled.

N

Z4

Figure 3.1: Geometry of the reflectarray antenna.

Let us consider a simple reflectarray with N rectangular patches of variable
size arranged over a regular lattice, as shown in Fig. 3.1. The origin of the z
axis is located at the interface between the dielectric substrate and the ground
plane, while the reference point (z, y) = (0,0) is along the perpendicular di-
rection between the feeder and the reflector surface. Both the ground plane
and the patches are assumed to be made of perfectly electric conductor PEC.
The substrate is assumed to be lossy, homogeneous and isotropic with complex
permittivity ¢ = €oe, (1 — jtand) and thickness d. The incident plane wave gen-
erated by the feeder at an angle (6;, ;) with respect to the reference system, has
the following expression

, E° ,
Ei :E063k0($ui+yvi+ZC059i) _ [ (% :| ejko(xui—l—yvi-l—zcosei) (31)

where £ defines the amplitude and polarization of plane wave in free space,
u; = sin 0; cos ¢; and v; = sin6;sin ¢; , kg = 2w/ Ag with A\ free space wavelength.
The total electric field in the region described by the coordinate z > d is given
by the sum of the incident field, of the reflected field and of the scattered field:

L, indicates the field reflected from an infinite grounded dielectric slab with-
out the microstrip patches and can be express as
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3.2. SINGLE LAYER REFLECTARRAY OF RECTANGULAR PATCHES

Ef _ RG,G 0 Eg jko(xu;+yv;—z cos 6;)
[Eﬁ? ] B [ 0 Ryo || Ey]C (3:3)
where R

ii»J =0, ¢ are the reflection coefficients defined in [41].

When the microstrips are present, a surface current .J is induced on each
conducting element and a scattered field is produced, which can be expressed in
terms of the incident field £, and of the scattering coefficients Sj, 7,k = {6, ¢}
as

Eg _ 5979 59#25 Eg jko(zu;+yv;—z cos 6;)
{ E? ] B { Sso Sos | | B " (34)

In 3.4 each scattering coefficient S, is given by S, = E (Z 9 ,j, k={0,¢}.
If we assume that the reflectarray is subdivided into unit cells and that each
cell radiates a spherical wave proportional to the sum of the reflected E, and

scattered E, field, the radiation pattern of an N elements reflectarray in the
direction (0, ¢) is defined as [16]

e —jkor

E(0,9) = Zg 0300 0n) - [B (0n, 60) + 5 (6, 60)]

Ef( s (bn) e]ko(:vn sin 6 cos ¢4y, sin 6 sin ¢) (35)

where [, is the feed pattern function,(x,,y,) are the Cartesian coordinates
of the n-th patch center (see Fig. 1), (6,,®,) is the direction of arrival of the
wave impinging on the n-th patch center, @ is a term which accounts for the

transformation from plane to spherical wave [16]. The jk-th scattering coefficient
of the scattering matrix S (6, ¢,) of the n-th patch is defined as [17]:

1 . A
Se,k (0n7 ¢n) W [G (l{?ou kOU ) J( ) (k(]u ko’U ) COS ¢n£+ (36)
g (]{ZOU k(]U ) J( ) (k?ou ko’U )Sil’l ¢ng:| ejko cos Ond
S¢,k (ena ¢n) = _i |:G (kou k:O,U ) Jz( ) (k’QU k’ol} ) sin ¢ni_

G (kouy', kovy )Jy(" £) (kouy', kou)') cos qﬁng} eikocostnd (3 7)

(k = {0,0}). abis the area of the lattice cell (see Fig. 1), G is the dyadic

(nd) . .

Green’s function in spectral domain, J™ =37, J( )a: +D kgopy Ty Y is
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CHAPTER 3. REFLECTARRAY ANTENNAS

the current induced on the n-th patch in spectral domain and k indicates the
polarization of the incident field. The jk-th scattering coefficient can be easily
computed in an analytical way as indicated in (3.5) for the simple reflectarray
reported in Fig. 4.1 (single dielectric substrate, cells with rectangular shapes) by

7& .
expanding the induced current J" in a set of basis functions Qi(n ), 1=1,..,1

k)
with unknown coefficients an >,z =1,..,1

=ZC§Z’@ X = {o.y} (3.8)

and by computing the unknown coefficient vector solving the following system

o) — (Z(")>_1K("’E) (3.9)

where

n 1 - = n(n)H n n n n 3 n n
20 = 3 DI (KO k) G (K K,) Dy (K K)

m=—00 U=—00
(3.10)
are the elements of the impedance matrix Z™, H stands for the conjugate
trasnspose and ¢, [ are number of expansions; the i-th entry of the voltage vector

K(”E) can be computed as described in [41]:

V;(n,E) _ J,fg’@Q( K, —k N)) D™ (—k, _]{;l(/")) eIko cos On (3.11)

If we consider a more general case in which (a) the substrate may be multi-
layer, with each layer characterized by a complex permittivity
Ew = €0Emw (1 — jtand,) and by a thickness d,, (with w = 1,..., W) and (b) the
unit cell may have arbitrary complex shape and orientation angle, it is not possi-
ble to define a suitable set of basis functions Ql(n’k),i =1,..., I because they are
not available. A full-wave method or an ad-hoc technique for the computation
of S (0,,¢,), based for example on the definition of subdomain basis functions,
are required [42].
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3.3 How to deal with the limitations of single-
layer reflectarray of rectangular patches

The main reason why we have to consider other structures than the single-layer
reflectarray of rectangular patches is because of its inherent narrow bandwidth
performance [43, 44]. This problem is due to the strongly nonlinear relation ex-
isting between the rectangular patches’ size and the reflected field. A significant
effort has been made in recent years in order to mitigate this problem and ele-
ments with linear phase response and broadband behavior have been designed;
on one side stacked patches of variable size (see Fig. 3.2) have shown increased
bandwidth achieved by combining the resonances of each patch.

Furst array

AT TTE T,
Al AT First
il T i separator

> Second aray

_ Second
separaior

L L Ly s & L es
M E T T,

r— Metal ground plane

Figure 3.2: (a) Two-layer reflectarray using patches of variable size [45] and (b)
three-layer reflectarray using patches of variable size [46].

However, these elements exhibit an increase in the complexity of the manu-
facturing process [45, 46]. On the other side elements with multiple resonances
printed on a single dielectric layer have demonstrated to provide wider bandwidth
without complicating the realization process [12, 47|, see Fig. 3.3.

Figure 3.3: Sliced circular fractal derived from the circular patch in [47].
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CHAPTER 3. REFLECTARRAY ANTENNAS

In [48] a three-layer square patch element of variable size was designed to
achieve simultaneous coverage at the Ku receiving (13.75-14.25 GHz) and trans-
mitting (1.7-12.2 GHz) bands. Multilayer structures have been proposed to
achieve larger frequency ratios (ratios of the center frequencies of the upper
and lower bands): in this scenario on each layer a different set of elements which
operates at a specific frequency band is used. FSS structures have then been
introduced to reduce the mutual interference between the elements of different
frequency bands [49]. A schematic view of the antenna where an FSS backed
reflectarray which works in the Ka-band is located on top of a metal-backed
reflectarray working in X-band is reported in Fig. 3.4.

X-band feed (XY p.Z))

N Ka-band feed

%
ground plane X-band reflectarray

Figure 3.4: Schematic view of dual-band reflectarray presented in [49].

This latter solution becomes however costly and complex to be fabricated;
moreover, the gain and efficiency of the lower layer are reduced by the upper
layer. Single-layer configurations with different sets of elements displaced on
interlaced array grids appear to be the most viable solution to overcome these
issues but electromagnetic coupling between elements becomes a problem. For
this reason, single layer configurations including a single set of elements capable
of achieving a dual-band phase response have been investigated. In [50] a single-
layer design with two different sets of elements has been studied; mutual coupling
was also taken into account by considering all possible element combinations in a
unit cell. The price to be payed was the increased time consumption and design
complexity.
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Intermecdiate steps

Initial step 1 l ,l Final step
=M= HIENEN
I '1|‘ 1
Initial slot Outer slot  Inner slot

Figure 3.5: Phoenix cycle: evolution of the cell geometry over a complete 360
[deg| cycle [12].

In recent years a new reflectarray cell with cycle evolution and with linear
phases with variations in a range bigger than 360 [deg] has been introduced [12].
The problem to be overcome was that at phase transition the geometrical dif-
ferences of neighboring cells could be particularly sharp, making coupling effects
difficult to be accounted for. The new element presented in [12], and reported in
Fig. allows achieving a full 360 [deg| phase coverages at both bands with smooth
phase responses and low elements loss. It is composed of two square loops and
a square patch and it has the capability of coming back to its initial shape after
a 360 phase cycle. Differently from the triple square loop element the sizes of
the outermost loop and innermost patches are fixed. In [15] a dual-frequency
phase-only synthesis method has been applied to the Phoenix element to obtain
wider frequency ratio and higher aperture efficiencies at both bands.

The phase response of the “Square Phoenix” and “Rectangular Phoenix” unit
cells will be deeply analyzed in Section 4.
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CHAPTER 3. REFLECTARRAY ANTENNAS

3.4 Adopted solution for the computation of scat-
tering coefficients of generic reflectarray unit
cells

Many analytical relations based on an equivalent circuit analysis have been de-
rived for the correct computation of the phase of the field radiated by patches
with noncanonical shapes [51, 52]. However, these formulas turn out to be rather
complicate and analytically onerous, thus scarcely attractive. The Method of Mo-
ments in the spectral domain has been demonstrated to be the best approach in
terms of efficiency and accuracy, under the assumption of local periodicity (this
assumption is valid when variations in neighboring cells are smooth) [53, 42].
This method allows analyzing every configuration and is computationally more
efficient compared to other three-dimensional full-wave FEM and FDTD full-
wave codes. It assumes that the scattered field can be expressed as a function of
the current distribution on each cell, which can be expanded as a summation of
basis-function:

ZC (8) pio) (3.12)

where all the terms have been already described in Section 3.2. In general,
there are two categories of basis functions D( ") used to represent the unknown
function, the entire domain and the subdomaln basis functions. Entire domain
basis function have been derived for dipole, square patch, circular patch, cross,
and Jerusalem cross geometries. The most important advantage of entire domain
basis functions is that the size of the resulting moment method matrix is usually
small and it is thus possible to solve problems for electrically large structures. In
contrast, the number of subdomain basis functions required to accurately repre-
sent, the current is often much larger compared to entire domain basis functions.
Moreover, the Fourier transforms of the subdomain basis functions do not decay
very rapidly.

For these reasons the Method of Moments may fail whenever subdomain basis
functions have to be used to expand the unknown current induced on the metallic
cell (this happens for non-canonical shapes), thus not minimizing the number of
Floquet harmonics [42]. In [54] a full-wave method based on the transmission
line technique has been proposed, which allows the definition of a generalized
scattering matrix of each grid and embedding layers (in case of stacked patches).
In [55] a simple equivalent-circuit model has been derived in order to compute
the response of generic frequency-selective-surface with low computational effort.
However, this approach shows good agreement with the more computationally
expensive MoM approach only up to the frequency at which grating lobes occur,
thus limiting the periodicity of the cells. To the author’s best knowledge the
full-wave method or ad-hoc numerical technique presented in the literature may
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become an unaffordable solution in terms of computational time whenever high
performances in terms of bandwidth, radiation efficiency, polarization purity are
required. The reason why this happens is because the more complex the problem
to be addressed (in terms of antenna requirements), the higher the number of
degrees of freedom of the unit cell required. However, when the number of
degrees of freedom increases (i.e., parameters describing the shape of the patch,
frequency and angles of incidence on the incoming plane waves), the number of
simulations required increases, too.

The method proposed in order to address the problem of efficiently computing
the response of arbitrary complex reflectarray elements is based on an innovative
and customized statistical learning (SL) technique. The idea is to recast the
problem of computing the scattering matrix of a patch element given its specific
features as a regression problem, by processing the information embedded in a
set of I/O pairs in order to predict the output of unknown configurations.

The evaluation of the scattering coefficients of generic reflectarray unit cells
(i.e., featuring an arbitrary number of DoF's) is firstly re-cast as a regression
problem and then solved with a learning-by-example (LBE) strategy able to
exploit the information provided by a reduced set of FW simulations (namely
the “examples”) performed once and off-line. In order to compute the “examples”
an FM analysis tool based on a mode-matching method between the free space
Floquet’s mode and the aperture or patch modes of the single cell elements is
used as a FW solver [56][57]. The idea beyond this method is that each layer
of the reflectarray can be seen as a capacitive (periodic distribution of metallic
patches on dielectric layers), inductive (periodic distribution of holes on metallic
sheets, with or without dielectric support), or mixed (multi-layer constituted
by capacitive as well as inductive grids) structure. The generalized scattering
matrix of each structure becomes huge if the number of interacting Floquet
modes increases (as is the case of mixed structures) but the method presented
in [56] allows to obtain a linear matrix system by expressing the voltages and
currents on all the grid generators and by simultaneously applying the boundary
conditions in the spectral domain on each of them.
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Chapter 4

Efficient prediction of the EM
response of reflectarray antennas by

an advanced statistical learning
method

The following work has been submitted for publication in the IEEE Transactions
on Antennas and Propagation. The problem being addressed is the efficient and
accurate prediction of the electromagnetic response of complex-shaped reflectar-
ray elements. The addressed problem is important to the Antennas and Propaga-
tion community since the synthesis of high performance reflectarrays, even more
when wideband operations and/or a careful control of the cross-polarization com-
ponents of the reflected field are needed, needs complex patch shapes because of
the wider set of degrees of freedom (DoFs) potentially enabling an enhanced con-
trol of the antenna scattering properties. Unfortunately, designing a reflectarray
featuring complicated element geometries often turns out to be a very challeng-
ing task in practice. To determine the optimal shape of each reflectarray element
(i.e., setting the DoFs of the reflectarray patches), the relationships between the
descriptors of both the unit cell (e.g., geometry/size of the patch metallizations)
and of the illumination (e.g., the polarization/frequency/angle-of-arrival of the
incident field) with the associated scattering coefficients must be known, but this
knowledge is analytically available only for "simple'" unit cells described by few
DoFs. Otherwise, scattering matrix-vs-descriptors look-up tables (LUTSs), which
are off-line computed through extensive full-wave (FW) simulations, are usually
built, but the exponential grow of the number of entries of these latter with the
DoFs of the unit cells, prevent such an approach when dealing with advanced
reflectarray geometries characterized by arbitrary variations of many descriptors
because of the infeasible generation and storage of the associated unit cell scat-
tering response databases (UCS-DBs). Therefore, innovative methodologies for
the quasi- or real-time prediction of the electromagnetic response of complex
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reflectarray elements are necessary.

The novelties of the presented work over the existing work comprise (i) the in-
troduction of a computationally efficient, reliable/accurate, and flexible strategy
to predict the scattering response of reflectarray elements featuring arbitrarily
complex unit cells that potentially enables their use in next-generation and more
demanding reflectarray designs; (ii) the development and customization to the
vectorial case of an advanced OK technique for the prediction of complex val-
ued scattering matrices of periodic EM planar structures, thus useful not only
for reflectarrays, but also generalisable to analogous electromagnetic engineering
problems (e.g., the analysis of frequency-selective surfaces and metasurfaces); (iii)
the development of a numerical tool that, whether integrated within a system-
by-design (SbD) loop, could enable the optimal synthesis of next-generation re-
flectarray antennas with controlled co- and cross-polar radiation patterns; and
(iv) the derivation of operative guidelines on the achievable time saving and the
arising prediction accuracy vs. the training set size for the exploitation of such
a OK meta-modeling in reflectarray response prediction.
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CHAPTER 4. EFFICIENT PREDICTION OF THE EM RESPONSE OF
REFLECTARRAY ANTENNAS BY AN ADVANCED STATISTICAL
LEARNING METHOD

Feeder

Reflectarray surface

&NvYN)

Figure 4.1: Sketch of the reflectarray antenna.

4.1 Problem Statement

Let us consider a microstrip reflectarray consisting of a planar array of N patches
displaced over the zy-plane in a regular lattice with unit cell d; x dy (Fig. 4.1)
on a grounded multilayer substrate. Each n-th (n = 1,..., N) array element is
described by B DoF's g (n) = {g(b) (n); b=1, ...,B}. The design of the patch
arrangement is usually carried out as the synthesis of the set of N descriptor
vectors, G = {g(n) € p; n =1,..., N}, p being the set of admissible variations
of the unit-cell geometry with respect to a reference one, such that the field
radiated by the reflectarray, E (0, ¢; f), is as close as possible to a user-defined
one, E"/ (0, ¢; f). More in detail, the field distribution E (6, ¢; f) is given by
[16][17][41]

E0,¢:f) = Y {ROn i [)+S (On,0n; [, (n))] (4.1)

‘Er (On, n; f)exp (jkory, - T)}

where f is the working frequency, & £ (sin  cos ¢, sin@sin ¢, cos ), r,, = (Zp, Yn, 0)
is the location of the n-th patch element, ky = QZf is the free-space wavenumber

(¢o being the speed of light), and (6, ¢,,) are the elevation angle and the azimuth
one of the direction of incidence from the feed to the n-th element, respectively,
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while

|rF| EF (0n7§0n7f)
lr, — 1| Er(0,0;f)

[cos 000 + sin 0,3

EF (‘9n7 Pn; f)

exp (jko |rn — e —[rp]) (4.2)

is the field pattern radiated by the feed on the n-th element, rr and Er (0, ¢; f)
being the feeder position and the element factor, respectively. Therefore, the
synthesis of a reflectarray layout radiating a field distribution (4.1) fitting the
desired one E™/ (0, ¢; f) requires, for each n-th (n = 1,..., N) layout element,
the knowledge of both the plane wave reflection matrix,

R (O, 0n; [) = {Rpg (On, i f); g ={0,¢}}, and the scattering matrix,

S (On, 005 f,8 (1) = {Spq (Ons on; f,8(n)) 5 p.g = {0, p}} as suggested by (4.1).
Towards this end, let us notice that the entries of the matrix R do not gen-
erally depend on the patch elements and they are usually available in closed-
form [16][17][41]. Otherwise, the scattering matrix S heavily depends on the
shape/layout of the reflectarray unit cells and there are no available closed-form
expressions for the associated entries except for simple geometries (e.g., rect-
angular patches [16][17]). Thus, it is generally needed to solve the following
estimation problem

Scattering Matrix Estimation Problem. Find the estimation
function S (z) such that S (z) =~ S (z), z € Z.

where

z= 0,0, f,8 (4.3)
is an input vector of dimension B+3 in the feasibility space Z (Z £ {0 € [Ouin, Omax] ;
¢ € [Pmin, Pmax); [ € [frmin, fmax]; & € p})-
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4.2 LBFE-Based Prediction of the Reflectarray Unit-
Cell Response

A direct approach to address the “Scattering Matriz Estimation Problem” when
dealing with reflectarray elements for which no analytical models are available is
that of exploiting F'W numerical solvers to exhaustively populate huge LUT's - to
be used in the design phase [15][18][20] - mapping the I/O relationship between
the input z and the electromagnetic response function S (z) (i.e., the output).
Towards this end, the following two steps are carried out:

e the elevation 6, the azimuth ¢, the working frequency f, and the DoF's of
the array element g are first discretized in V' [0, = Opin + (v — 1) AG; v =
LV A0 = Bealan] H (o) = i+ (h— 1) Ap; h=1,... H; Ap =

@max ‘Pmm] W [fw fmln ( _ 1)Af. w = 1’ ’W; Af _ fmax fmln] and

L [g(b) =g (S -1 AGY =1, Ly b=1,..., B; L M2, Ly;

(1)

a )
Ag® = AgH Agh) & gm‘z"ig] quantized values, respectively;

e a FW simulation for each m-th (m = 1,...M; M =V x H x W x L)
setup of the input vector z,, (zn, = [0y, On, fu. ], m = H x W x L x
w—1)+WxLxh-1)+Lx((w—-1)4+lv=1,.,V;h=1,.. H,;
I =1,...,L; w=1,..,W) is carried out to determine the corresponding
output function S (z,,), thus filling the m-th entry of the I/O UCS-DB
D 2 {2,,8(2);m=1,..., M} [20].

Despite the simplicity and the accuracy in computing the function S (z) thanks to
the use of F'W solvers, such an approach has actually a limited applicability since
the size of the resulting database, M, increases proportionally with the number
of DoF's describing the shape of the reflectarray cell-element, thus making both
the storage and the computation time, TEW (TEW & M x TEW TEW heing
the CPU-time for the computation of a single S matrix) unmanageable when
complex geometries are at hand.

To deal with complex patch shapes, suitable for fitting more challenging radiation
constraints, thus overcoming the storage/computational-issues of database-based
methods, the use of a statistical LBE method based on OK [21] is proposed here-
inafter. Such a choice is motivated by several reasons, the most important ones
being (i) the generalization capabilities of LBE strategies that theoretically en-
able an accurate prediction of the output function S( ) just starting from few
1/O “examples”, T = {z,,S (z,); u=1,...,U}, collectively indicated as “train-
ing set”, of dimension significantly lower than that of a standard I/O database
(i.e., U < M). This latter feature guarantees a non-negligible time-saving with
respect to the whole filling of a FW-based database; (i7) unlike standard interpo-
lation techniques, reliable predictions also without the a-priori knowledge of the
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functional properties of S (z); (iii) the capability of the OK to deal with noise-
less training data such as for the estimation of the scattering matrix problem
[21]]22][23]; (iv) unlike other LBE methods, the effective self-calibration/setup
of the OK control hyper-parameters during the training phase [21]; (v) the good
generalization capabilities and the numerical efficiency of the OK already as-
sessed in very large problems [21][22]|23], as well.
The Scattering Matriz Estimation Problem is solved with the OK method ac-
cording to the following guidelines. First the entries of the estimated scat-
tering matrix SOK (z) are expressed in terms of the I = 8 components of
the vectorial auziliary OK prediction function, x (z) 2 {xi(z),i=1,... 1}
S5 (2) = x1 (2)+ix2 (2), S§E (2) = x3 (2)+ixa (2), SHF (2) = x5 (2)+jx6 (2),
and §gf (z) = x7(2) + xs (z). Such an auxiliary function is defined as follows
[21]]22]

X (2) =B (n) + [y ()] [T ()] (¥~ 108 (n), (4.4)
where 1y is an all-ones column vector of length U, 3 (n) is the vector of the OK
regression parameters given by

. _ -1, _
Bm) =15 1) 15T (H)" v (4.5)
where W
U2 {R[Spq (zu)], 1[Spq (24)]; pyg = {0, 0} ,u=1,..,U} (4.6)
is the matrix comprising the real part, R[.], and the imaginary one, I[.], of the

off-line FFW computed scattering matrix coefficients belonging to the training set
T. Moreover, 7 (z;m) is a U-dimensional vector whose u-th (u =1, ..., U) entry,
Y (z;m), is the correlation value between the reflectarray unit-cell descriptor z
and the u-th “example” input setup z, given by

Yu (2;1) £ exp (—0" - |2 — z,]) (4.7)

when an ezponential correlation model is assumed, n £ {m,b=1,..., B + 3}
being the set of the OK control coefficients [21][22][23]. Furthermore, T" (n)is the
U x U matrix of the auto-correlation values, whose u-th (v =1, ...,U) column is
the vector ~ (z,; n).

The entries of SOK (z) are then inferred as a function of the vectorial predictor
function x (z) in (4.4) from the knowledge of the training set

T 2 {2,,S(z,); u=1,...,U} once the optimal value of the control vector n
in (4.7) is specified [21][22][23]. Unlike many popular LBE techniques, which
need time-consuming trial-and-error calibration procedures [33][32|[34][58], the
calibration step in the OK comes from an effective self-tuning process [21][22]
where the optimal setup, n°, is determined by looking for the minimum of the
concentrated likelihood function ® (n) defined as

B (1) = { {/det [T (m)]tr [p ("7)*,“("7)]} (48)

U
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where 1 (9) 2 {& [T ()]} " [¥ — 148 (n)], &[] being the Cholesky factorization
operator, while det [-] and tr [-] stand for the determinant and the trace opera-
tors, respectively. Finally, the search for 9" = argmin, {® (n)} is efficiently
carried out by means of a standard technique such as the BOXMIN multivariate
dichotomy algorithm [59].

It is worth pointing out that such an OK-based procedure for solving the Scat-
tering Matriz Estimation Problem presents some key features/advantages that
include (a) the straightforwardly exploitation of the multi-dimensional nature
of (4.4) for the prediction of the scattering matrix S (z), (b) the self-setup of
the OK control parameters (4.8) that avoids expensive trial-and-error calibra-
tion procedures, and (¢) an implicit and effective processing of noiseless data,
since the OK predictor exactly fits the training samples (i.e., SOX (z,) = S (z,),
uw=1,..,U [21]]22][23]).
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4.3 Numerical Results

This section is aimed at numerically validating the proposed OK -based approach
for the solution of the Scattering Matrixz Estimation Problem as well as evaluating
its performance in comparison with state-of-the-art prediction methods, as well.
Towards this end, the OK performance will be assessed by means of the matriz
norm error =Z; and the the phase mean squared error =5 defined as follows

- 2
M NSO (2) = S (2m)
— A 1 H m m
1 = — 2 (49)
M mzzl IS (2
where S denotes the exact FIW-computed scattering matrix/entries, ||| being

ls-norm, and

2

(4.10)

| M
L= 2 S (Zom)
m=1p,q={0,¢} pa
where the 7 normalization accounts for the fact that the phase is expressed in
radians, while the coefficient i refers to the four entries of the scattering matrix.
The values of these metrics allow one to quantitatively evaluate the prediction
accuracy of the method (4.9) and its reliability in estimating the phase of the
entries of the scattering matrix (4.10), which is the key parameter in state-of-
the-art reflectarray design methods [11][15]. On the other hand, a success index
of using a LBFE-based strategy is its computational efficiency for a given degree
of prediction accuracy. More specifically, the time saving with respect to the
time required by the FW approach to fill the same size /0 UCS-DB D

1 arg [_Sz%K (Zm)]
T

FW OK
CFtot _ CFtot
FW
not

AT 2 (4.11)

where TOK is the time required by the OK to determine the M entries of D
given by
Tolt = Tt + Tt + Tt (4.12)

set train

where TEW & U x TEW is the time for FW-computing the U entries of the
training set 7, T2E is the time for the OK training process [i.e., the computation
of (4.8) to be substituted in (4.4)], and T2X £ (M — U)xT9X is the time needed
by the OK-based approach to predict the remaining M — U entries of D, T9K
being the time of a single OK prediction.'

The first experiment is concerned with the scattering matrices of a reflectarray
unit cell printed on a multi-layer dielectric substrate (Tab. 4.I) with square

lattice periodicity (d; = %ﬁ, d, = %?, Ao being the wavelength at the central

IFor the sake of fairness, all the simulation time refer to non-optimized Matlab implemen-
tations executed on a single-core CPU running at 2.20 GHz.
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Square 'Phoenix’ Unit Cell

Rectangular 'Phoenix’ Unit Cell

()

Figure 4.2: Geometry of (a) the B = 4 “Square Phoeniz” unit cell and (b) the
B = 4 “Rectangular Phoeniz” unit cell.
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Table 4.1: Numerical Assessment (Square/Rectangular Phoeniz unit cell, d, =

d, = %) - Multilayer dielectric substrate features.

| Layer | Thickness [Xo| | Relative Permittivity |
Bottom | 5.84 x 1073 2.8 —351.96 x 1072
Middle 2.61 x 107! 1.03 —53.09 x 1073

Top 5.84 x 1073 2.8 —51.96 x 102

frequency fy) and comprising multiple concentric square metallic rings/slots [i.e.,
the “Square Phoenix” cell - Fig. 4.2(a)] [2][12][13][14]. Such a geometry, which
features B = 4 geometrical DoF's [Fig. 4.2(a)], is known to guarantee wide phase
variations with smooth geometrical changes and to be suitable for wideband
applications [2][12]|[13][14]. Since no analytical model is available [2][12][13][14],
the electromagnetic response of the corresponding reflectarray is numerically
computed by first discretizing its DoF's according to the following setup: €, =0
[deg]v emax = 40 [deg]7 V= 97 Pmin — O, Pmax — 457 H = 47 fmin = O-9f07
frne = L1fo, W =3, L, =32, g% =0, g =2 (b=1,..., B), and

by

b=1
ox _
Sib} = { bx Hyr—1,) b=2,..B " (4.13)

H (-) being the Heaviside function, then applying an EM analysis tool based
on Floquet hypotheses as a FW solver [56]|[57] to fill the whole database of
L =~ 2.85 x 10* different cell descriptor configurations. It is worth remarking
that, despite the coarse sampling of the solution space (only 9 angles in elevation
and 4 angles in azimuth) and the choice of an efficient FW method (i.e., TEW ~
1.20 x 10 [s]), the computation of the M =~ 3.1 x 10® entries of D would require
TEW ~ 3.69 x 10® [s] (i.e., ~ 11.7 years).

In order to predict the entries of S (z), the preliminary offline step (likewise
any other LBE method) is the choice of the U entries of the training set T
that populate ¥ in (4.6). Towards this end, several advanced algorithms (e.g.,
exploiting feature extraction and adaptive selection of the U configurations [58])
could be adopted in principle. Owing to the focus of this validation (i.e., the
analysis of the potentialities of a “bare” implementation of the proposed OK
strategy), a uniform random sampling approach has been adopted and the U
entries of U have been randomly selected from the M configurations in D. The
next step has been the OK self-calibration, which has been performed according
to (4.8) to deduce n°P*. This actually completed the training phase of the method,
since the prediction (4.4) has been then carried out by simple substitution (see
Sect. 4.2).

The plot of the resulting matrix norm error with respect to U shows that, as
expected, the OK accuracy monotonically improves with the size of T [e.g.,
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=OK

W ~ 16.9% - Fig. 4.3(a)]. Moreover, the arising value of Z; is low |i.e.,
~1 Ju=5.0x102

0K s oxies X 3.8 X 1072 - Fig. 4.3(a)] even though U < M (i.e., {; ~ 6.4 X

1073). Such a result is even more impressive when compared to the accuracy level
for the same setup when applying competitive state-of-the-art LBE strategies
based on Support Vector Regression (SVR) [33][32][34][58][60] and Augmented
Radial Basis Function Network (A-RBFN) paradigms [13][36]. Indeed, both

=SVR
techniques yield a significantly worse Z; regardless of U [e.g., Zox
=1

~
~

J U=2.0x104
—A—RBFN

342% and ==5x J ~ 552% - Fig. 4.3(a)]. This outcome can be
= U=2.0x104

theoretically motivated from the fact that (@) unlike OK, SVR strategies do
not guarantee to fit the training samples (i.e., in general SSVE (z,) # S (z,),
u=1,...,U), thus they are less effective when noiseless deterministic data (such
as those produced by a FW solver) are at hand [33|[32][34][58]; (b) thanks to its
semi-parametric nature and the self-tuned configuration parameters, OK affords
a greater flexibility than A-RBFN and this results in more accurate predictions
[61].

Now, let us analyze the capabilities of the OK-based method in predicting ZS (z)
in view of its exploitation for the reflectarrays synthesis [11][15]. The plot of =
versus U in Fig. 4.3(b) shows that the error is smaller than those from the SVR

=SVR
and the A-RBFN for any size of the training set [e.g., EQWJ = 420% and
S g
o | ~ 469%; Zor | ~ 466% and = ogr— | ~
=3 U=5.0x102 =27 Ju=2.0x10t =3 U=2.0x104

833%]|. Moreover, the phase behaviour turns out to be more accurately (in per-
centage) estimated than the S (z) matrix [i.e., ZZ5| _ . &~ 3.05 x 107 vs.
B | s onior & 3-8 x 1077 - Fig. 4.3(b)|. Tn order to give the interested read-
ers an idea of the correspondence between the figures of merit in Fig. 4.3 and
the associated prediction capabilities, the plots of the magnitude and phase of
Sgg (z) versus 0 when f = fo and ¢ = 45 [deg], U = 2.0 x 10* being the size of
the training set, for two sample geometries - not belonging to 7 - of the unit
cell of the reflectarray [i.e., Square Phoenixz Cell Config. 1 - Fig. 4.4(a); Square
Phoeniz Cell Config. 2 - Fig. 4.4(b)| with descriptors in Tab. 4.IT are reported
in Fig. 4.4(c) - Fig. 4.4(e) and Fig. 4.4(d) - Fig. 4.4(f), respectively.

As expected, the OK strategy outperforms other state-of-the-art techniques
in predicting the scattering magnitude [i.e., |Sk" (z) — S~ (z)| < 0.9 [dB],
SV (z) — S5y B (z)| < 2.4 [dB], |SEY (z) — Spy "N (z)| < 6.2 [dB] - Figs.
4(c)-4(d)] and the phase [i.e., 254" (z) — £S5 (z)| < 0.5 [deg],

| 258 (2) — £S5 % (z)| < 15 [deg], |£S58" (z) — £Sp5 PN (z)| < 26 [deg] -
Figs. 4(e)-4(f)]. These results, besides visually confirming the quantitative in-
dications coming from Figs. 3(a)-3(b), also highlight the effectiveness of the
OK-based predictor to reliably model the S (z) variations [e.g., Fig. 4.4(e)]
with negligible [e.g., Fig. 4.4(c)|] or only slight [i.e., Fig. 4.4(d)] deviations
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Square 'Phoenix’ Unit Cell
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Figure 4.3: Numerical Assessment (Square Phoeniz unit cell, d, = d, = %,

U € [5.0 x 10%,2.0 x 10%)) - Behavior of (a) Z; and (b) Z; versus the size of the
training set U.
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Square 'Phoenix’ Cell - Config. 1

Square 'Phoenix’ Cell - Config. 2
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Figure 4.4: Numerical Assessment (Square Phoeniz unit cell, d, = d, =

(¢)

(f)

Ao
3 )

= fo, o = 45 |deg|, U = 2.0 x 10%) - Unit cell geometry (a)(b) and behaviour
of (¢)(d) the magnitude and (e)(f) the phase of Sgy (z) versus 0 for (a)(c)(e)
“Config. 17 and (b)(d)(f) “Config. 2".
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Table 4.2: Numerical Assessment (Square/Rectangular Phoeniz unit cell, d, =

d, = %, B = 4) - Geometrical descriptors of sample unit cell layouts.

@ g@ g®) g@
Unit Cell [Ao] [Ao] [Ao] [Ao]
Square Phoenix - Config. 1 | 0.237 | 0.216 | 0.175 | 0.154
Square Phoenix - Config. 2 | 0.250 | 0.229 | 0.150 | 0.129
Rect. Phoenix - Config. 3 | 0.266 | 0.237 | 0.152 | 0.185
Rect. Phoenix - Config. 4 | 0.156 | 0.262 | 0.135 | 0.158

from the actual values despite the complexity of the geometry at hand [Fig.
4.2(a)] [2][12]|13][14] and unlike the other state-of-the-art LBE methods [e.g.,
Fig. 4.4(e)].

To further assess and generalize these positive observations, Figure 4.5 reports the
scatter plots of the real and imaginary parts of Sgg (z,,), m = 1, ..., M (Fig. 4.5).
As it can be inferred, the OK plots are closer to the ideal bisector behavior than
the SVR and the A-RBFN ones [Fig. 4.5(a) vs. Fig. 4.5(b) and Fig. 4.5(¢)|. The
same conclusions hold true for the cross-polar component Sy, (2,,), m =1, ..., M
(Fig. 4.6), as well. Indeed, notwithstanding the weaker magnitude [Fig. 4.6(a)
vs. Fig. 4.5(a)], which is physically motivated by the square symmetric nature
of the considered element [Fig. 4.2(a)], the proposed method is able to perform
a quite reliable prediction [e.g., Fig. 4.6(a)|, while the scatter clouds of the SVR
le.g., Fig. 4.6(b)] and the A-RBFN [e.g., Fig. 4.6(c)] significantly deviate from
the ideal curve.

As for the computational issues and overall efficiency in dealing with the “Square
Phoeniz” unit cells, the plots of T}.4;, vs. U in Fig. 4.7 show that the training
phase for the OK -based approach is slightly more expensive than those of the
SVR and the A-RBFN ones [solid lines - Fig. 4.7(a)|. This was theoretically
expected because of the need of determining the autocorrelation matrix I' (n),
not required by the other state-of-the-art techniques, whose computational load
grows quadratically with the size of the training set, U. On the other hand,
the time spent for the testing phase, Ty [dashed lines - Fig. 4.7(a)], is quite
similar for all the considered LBE methods. Anyway, both T}, and T} are
always negligible when compared to the time for building the U-entries training
set T, TEW [Fig. 4.7(a)|, even though an highly efficient FW solver has been
used [56|[57]. Thus, it turns out that the overall computational cost, Ty, is
dominated by the simulation time for the training set creation regardless of the
LBE technique at hand (T}, ~ T£}V). Consequently, the behaviour of the time
saving ATOK versus U is almost identical to AT VE and ATA-FBFN [Fig. 4.7(b)|
and it always complies with the condition AT > 99.3% [Fig. 4.7(b)]. Such an

outcome, jointly with the results on the prediction accuracy from the analysis
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Figure 4.5: Numerical Assessment (Square Phoeniz unit cell, d, = d, = 22,

U = 2.0 x 10*) - Actual versus estimated values of (a)(b)(c) Re{Sps (Zm)},
m=1,...,M, and (d)(e)(f) Im{Sp (z)} when using (a)(d) the OK, (b)(e) the
SVR, and (¢)(f) the A-RBFN prediction methods.
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Figure 4.6: Numerical Assessment (Square Phoeniz unit cell, d, = d, = 3¢,

U = 2.0 x 10%) - Actual versus estimated values of (a)(b)(c) Re{Sp, (zm)},
m=1,...,M, and (d)(e)(f) Im {Sp, (z)} when using (a)(d) the OK, (b)(e) the
SVR, and (¢)(f) the A-RBFN prediction methods.
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of the error figures Z; and =, (Fig. 4.2), proves that the proposed OK strategy
can be reliably and efficiently exploited for filling a very huge scattering matrix
database (M = 3.1 x 10°) with a considerable time saving with respect to an
heavy use of an albeit efficient FW technique (TZF ~ 2.43 x 10° [s] ~ 28 days
s. TEW ~ 3.69 x 10® [s| ~ 11.7 years - Fig. 4.7), while guaranteeing a faithful
estlmatlon of the scattering matrix S (z) (e.g., Fig. 4.4).
But what’s about the prediction of the electromagnetic response from reflectarray
unit cells with stronger cross-polar scattering matrix entries? To give some feed-
backs about this question, the B = 4 “Rectangular Phoeniz” unit cell [12][13]
in Fig. 4.2(b) has been considered as the next benchmark by discretizing its
descriptors/ DoF's analogously to the unit cell in Fig. 4.2(a), but considering

b=1,2

S{b} = {szH(zb s—1) b=34 " (4.14)

This choice corresponds to L ~ 2.57 x 10° different geometrical configurations?
yielding to M ~ 2.7 x 107 entries of D, which correspond to TEW ~ 5.56 x 10%
[s] (i.e., &= 17.6 years) since TEW =~ 2.00 x 10! [s]. By comparing the plots

s1m

of the matrix norm errors of the OK, the SVR, and the A-RBFN methods
[Fig. 4.8(a)], it turns out that the former once again outperforms the others in

=SVR —RBFN
terms of fidelity [e.g., ?WJ ~ 467% and 7J ~ 402%
BT lu=2.0x104 U=2.0x104

- Fig. 4.8(a)| with a prediction accuracy enhancement with the size U [e.g.,
ElOKJ U=2.0x10%
EOKJ

1 lu=s5.0x102

to that for the simpler unit cell in Fig. 4.2(a) [e.g., 20X 71"  ~ 3.8 x 1072

~ 15.8% - Fig. 4.8(a)]. Moreover, the error behavior is very close

} U=2.0x10"
vs. Z0K| 0, o0 & 3.7 x 1072 - Fig. 4.3(a) vs. Fig. 4.8(a)| even though
U< M (ie, £ ~74x107%).

For illustrative purposes, the plots of |Sgg (z)| and |Sp, (z)| for two sample unit
cell geometries [Tab. 4.IT] not belonging to 7 are shown in Fig. 4.9 [“Rectangular
Phoeniz Cell - Config. 8 “ - Fig. 4.9(a) and Tab. 4.1T| and Fig. 4.10 [“ Rectangu-
lar Phoeniz - Cell Config. 4“ - Fig. 4.10(a) and Tab. 4.II|. As it can be observed,
the comparisons among the OK, the SVR, and the A-RBFN predictions show
that (i) the behaviour and the Values of ’SOGK (z)| [Fig. 4.9(b) and Fig. 4.10(b)]
and ’SOK )| [Fig. 4.9(c) and Fig. 4.10(c)] match very well the corresponding
FW results with a maximum deviation smaller than 0.6 dB [Fig. 4.10(b)|, (i)
the SVR and the A-RBFN predictions often turn out to be inaccurate [e.g., Fig.
4.9(b)] even providing qualitatively different trends with respect to the actual

‘S';GVR (Z) ‘Configf?)

electromagnetic response. For instance, increases with 6 until

0 = 30 [deg]|, while |S5" (z) ‘Conﬁg*s decreases in the same range [Fig. 4.9(b)].

2Thanks to the lower degree of symmetry of the layout in Fig. 4.2(b) than that in Fig.
4.2(a) (i.e., one-axis symmetry vs. two-axes symmetry), a significantly greater number of
geometrical variations is feasible.
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_ Config—4
Sﬁp RBFN (Z)}

Moreover,

present in |Sj" (z)’conflg_ﬂ‘ [Fig. 4.10(c)]. Similar considerations hold true for
the plots of ZSyg (z) and £Sy, (z) in correspondence with the same sample con-
figurations [i.e., “Config. 3” - Figs. 4.9(d)-4.9(e); “Config. 4” - Figs. 4.10(d)-
4.10(e)]: |£58Y (z) — £S5 (z)| < 0.8 [deg], |25k (z) — £S5y " (z)| < 145
[deg], |£S8" (z) — £z "PFN (z)| < 4.0 [deg] for “Config. 37 [Figs. 4.9(d)-
4.9(e)] as it can be also inferred from the behaviour of =, in Fig. 4.8(b).

exhibits an oscillating behaviour which is not

Such outcomes on the reliability of the OK-based approach in handling reflec-
tarray elements featuring non-negligible cross-polar entries are further assessed
by the scatter plots of the real and imaginary parts of Sgg (z,,), m = 1,..., M
(Fig. 4.11) and of Sy, (z,,), m =1,..., M (Fig. 4.12).

As for the efficiency/time saving when addressing such a benchmark, Figure
4.13(a) confirms that (i) as expected, the OK training phase is more expensive
than the SVR and the A-RBFN ones [solid lines - Fig. 4.13(a)]|, (i7) the testing
phases of all considered LBE methods have analogous durations [dashed lines -
Fig. 4.13(a)|, but it points out that (ii7) although T4, and Ti.q are smaller
than TEW regardless of the adopted method - as in the previous benchmark

set
example [Fig. 4.7(a)] - their values are no more negligible [e.g., TOK | ~

3.16 x 10% vs. T2 |, o aon = 615 x 10* [s| vs. TEY |, 100 = 4.00 x 10°

[s] - Fig. 4.13(a)]. This is due to the fact that TZW is significantly smaller

than in the previous test case (i.e., TS| =~ 20 [s| vs. TS ~ 120 [s])

sim Js uare
as a consequence of the higher efficiency of the F'IW technique ilql handling the
reference electrical layout [i.e., 1 slot vs. 2 concentric slots - Fig. 4.2(b) vs. Fig.
4.2(a)]. Therefore, AT?K is here slightly lower than ATSVE and ATA-RBFN
[Fig. 4.13(b)|, even though it must be noticed that AT°K > 99.9% even when
U = 2.0 x 10* |[Fig. 4.13(b)], which turns out in 2K ~ 4.93 x 10° [s| ~ 5.7 days
vs. TEWV ~ 5.56 x 10® [s] ~ 17.6 years [Fig. 4.13], while guaranteeing excellent
estimation accuracies (Fig. 4.8).

The last numerical experiment is devoted to the assessment of the performance
of the proposed LBE method when handling geometries with a wider lattice
periodicity [d; = 0.7AoX, d2 = 0.7y - Figs. 4.14(a)-4.14(b) vs. d; = 2X,
d; = 2y - Fig. 4.2, Figs. 4.4(a)-4.4(b), Fig. 4.9(a), and Fig. 4.10(a)] [62].
Moreover, two different B = 3 unit cells featuring either a single “Square Ring
Slot” [SRS - Fig. 4.14(a)] or a “Cross Slot” [CS - Fig. 14.4(b)] have been
considered [62][20]. By setting V = 18, H = 10, W = 6, L, = 16, gr(ﬁi)n =0,

g =020 (b=1,...,B),

[ b=1
SRS o b

[ b=1
~CS o b
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Figure 4.9: Numerical Assessment (Rectangular Phoeniz unit cell - “ Config. 37,
dy =d, =2, f = fo, o =45 [deg], U = 2.0 x 10%) - Unit cell geometry (a) and
behaviour of (b)(c) the magnitude and (d)(e) the phase of (b)(d) Spg (z) and
(c)(e) Sp, (z) versus 6.
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Figure 4.10: Numerical Assessment (Rectangular Phoeniz unit cell - “ Config. 3,
dy =dy, =22, f = fo, o =45 [deg], U = 2.0 x 10%) - Unit cell geometry (a) and
behaviour of (b)(c) the magnitude and (d)(e) the phase of (b)(d) Spg (z) and
(c)(e) Sp, (z) versus 6.
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Figure 4.11: Numerical Assessment (Rectangular Phoeniz unit cell, d, = d, = %,

U = 2.0 x 10*) - Actual versus estimated values of (a)(b)(c) Re{Sps (Zm)},
m=1,...,M, and (d)(e)(f) Im{Sp (z)} when using (a)(d) the OK, (b)(e) the
SVR, and (¢)(f) the A-RBFN predictors.
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Figure 4.12: Numerical Assessment (Rectangular Phoeniz unit cell, d, = d, = %,
U = 2.0 x 10%) - Actual versus estimated values of (a)(b)(c) Re{Sp, (zm)},
m=1,..,M, and (d)(e)(f) Im{Sp, (z)} when using (a)(d) the OK, (b)(e) the
SVR, and (c¢)(f) the A-RBFN predictors.
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Figure 4.13: Numerical Assessment (Rectangular Phoeniz unit cell, d, = d, = %,

U € [5.0 x 10%,2.0 x 10%]) - Behaviour of (@) Tiraimand Tiey, and (b) AT when
using the OK, the SVR, and the A-RBFN predictors.
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resulting in L = 5.25 x 10? different admissible geometrical configurations?, it
turns out that D comprises M ~ 5.7 x 10° entries, which correspond to a compu-
tational load of TEY ~ 1.4 x 107 [s] (i.e., ~ 164 days) when using a FW solver
(TEW 2~ 2.50 x 10 [s]) to fill the whole LUT.

stm

Although the lattice periodicity is different and qualitatively less smooth phase

variations arise [62], analogous feedbacks on the higher accuracy of the OK
=SVR

strategy can be drawn in terms of both magnitude [e.g., ?WJ
=17 lu=2.0x10t

~
~

—A—RBFN . =SVR
623% and = _pr— | ~ 1535% - Fig. 4.14(c); o | ~ 235%
N U=2.0x10% =07 Ju=2.0x104
and %J ~ 659% - Fig. 4.14(d)|] and phase prediction [e.g.,
=i U=2.0x10*
=SVR —A—RBFN )
?WJ ~ 328% and HQ:WJ ~ 899% - Fig. 4.14(c);
=27 Ju=2.0x104 = U=2.0x10%
=SVR =A—RBFN
?WJ ~ 253% and o ~ 551% - Fig. 4.14(d)]. Con-
=27 Ju=2.0x104 = U=2.0x10

cerning the computational costs, once again it is verified that the OK approach
is able to yield the best trade-off between time saving [AT9X > 96% - Figs.
4.15(¢)-4.15(d)| and accuracy, thus its candidature as a suitable and competi-
tive tool for efficiently |[T9K ~ 5.17 x 105 [s] ~ 5.9 days vs. TEY ~ 1.4 x 107
[s] = 164 days| and faithfully generating large reflectarray scattering matrix
databases (M = 5.7 x 10%).

3The number of geometrical variations L is significantly smaller than in the previous exam-
ples since B = 3 (while B = 4 for the geometries in Fig. 4.2).
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Figure 4.14: Numerical Assessment (d, = d, = 0.7\, B = 3, U €
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Chapter 5

Conclusions

An innovative LBE method based on an Ordinary Kriging strategy has been
proposed to efficiently and accurately model the scattering response of complex-
shaped reflectarray unit cells. Towards this end, the evaluation of the scattering
coefficients of passive elements with an arbitrary number of (geometrical and
electrical) DoF's has been formulated as a vectorial regression problem, which
has been then solved through a customized OK technique. Selected and repre-
sentative results from numerical experiments dealing with different unit cell ge-
ometries (including cross-slot, ring-slot, and square / rectangular Phoeniz shapes)
have been reported to assess the accuracy, the numerical efficiency as well as the
achievable time-saving, and the flexibility of the proposed approach also in com-
parison with other competitive state-of-the-art machine learning methods based
on SVR and A-RBFN algorithms.

From the numerical analysis, the following main outcomes can be drawn:

e thanks to the OK formulation, the optimal values of the control hyper-
parameters are reliably self-configured during the training phase to provide
a faithful prediction of the magnitude [e.g., Fig. 4.4(c¢)] and the phase [e.g.,
Fig. 4.4(e)] of the scattering coefficients of complex reflectarray unit cells;

e the prediction accuracy guaranteed by the proposed methodology turns out
to be higher than that from SVR and A-RBFN methods in all considered
benchmark configurations [e.g., Fig. 4.3 and Fig. 4.8|;

e although the OK training phase is slightly more time-expensive than that
for SVR and A-RBFN |e.g., solid lines - Fig. 4.7(a)], the arising time
saving (ATOK > 96% - Fig. 4.15) is always very similar to that yielded
with the SVR and the A-RBFN strategies [e.g., Fig. 4.7(b)];

e thanks to the excellent trade-off between accuracy and computational effi-
ciency, the proposed prediction method can be profitably used to fill very
huge scattering matrix databases and it represents a very competitive al-
ternative to the heavy use of efficient FW solvers (e.g., TOK ~ 5.7 days
vs. TEW ~ 17.6 years - Fig. 4.13).
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In addition to these key-features, the main methodological advances of this re-
search work comprise (i) the introduction of a flexible strategy to efficiently
model the scattering response of arbitrarily complex reflectarray unit cells, thus
potentially enabling their use in next-generation and more demanding reflectar-
ray designs, (i) the development and the customization to the vectorial case
of an advanced OK technique for the prediction of complex-valued scattering
matrices of periodic EM structures, and (7i4) the derivation of operative guide-
lines on the achievable time saving and the arising prediction accuracy vs. the
training set size for the exploitation of such an OK meta-modeling in reflectarray
response prediction.

Future works will be aimed at combining the proposed OK algorithm with ad-
vanced approaches for the selection of the training samples and/or the reduction
of the feature space [58]. Moreover, the integration of an OK-based meta-model
in the SOD framework for the automated synthesis of large reflectarrays is under
development. Finally, thanks to its generality (i), the extension of the same OK
paradigm to other popular periodic EM structures (such as frequency-selective
surfaces and metasurfaces) is on-going.
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