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Abstrat

Re�etarray antennas are re�etor strutures whih ombine harateristis

of both re�etor and array antennas. They exhibit eletrially large apertures

in order to generate signi�ant gain as onventional metalli re�etor antennas.

At the same time they are populated by several radiating elements whih an be

ontrolled individually like onventional phased array antennas. They are usually

�at and an be folded and deployed permitting important saving in terms of vol-

ume. For these reasons they have been onsidered sine several years for satellite

appliations. Initially onstituted by trunated metalli waveguides and mainly

onsidered for radar appliations, they are now mainly onstituted by a dieletri

substrate, baked by a metalli plane (groundplane) on whih mirostrip elements

with variable shape/size/orientation are printed. These elements are illuminated

by the primary feed. The re�eted wave from eah element has a phase that an

be ontrolled by the geometry of the element itself. By a suitable design of the

elements that make up the re�etarray, it is therefore possible to ompose the

phase front of the re�eted waves in the desired diretion (steering diretion),

and to ensure that the obtained overall radiation pattern exhibits a seondary

lobe pro�le whih meets the design spei�ations. Re�etarrays may be used to

synthesize penil or shaped beams. The synthesis methods ommonly used to

ahieve this goal are based on three di�erent steps: (a) alulation of the near

�eld �phase distribution� that the wave re�eted by the re�etarray must exhibit

to get the desired far-�eld behaviour; (b) disretization of suh distribution into

ells of size omparable to that of the elements of interest (i.e., the pathes); ()

alulation of the geometry of eah elementary ell that will provide the desired

re�etion oe�ient. The �rst step (a) is a Phase Only approah and permits

already to ahieve fast preliminary indiations on the performane ahievable.

Aurate results require the implementation of the steps (b) and () as well and

it is thus of fundamental importane to have tehniques apable of e�iently and

aurately alulating the re�etion oe�ient assoiated with a given geometry

of the element [in order to e�iently solve the step ()℄. This oe�ient is math-

ematially represented by a 2x2 omplex matrix, whih takes into aount the

relationships between o-polar and ross-polar omponents of the inident (due

to the feed) and re�eted �eld. This matrix naturally depends on the geometry

of the element, the diretion of inidene of the wave (azimuth and elevation)

and the operating frequeny of the system. The omputation of the re�etion

oe�ient is usually performed using eletromagneti full-wave (FW) simulators;

the omputation is however time onsuming and the generation of the unit ell

sattering response database beomes often unfeasible.

In this work, an innovative strategy based on an advaned statistial learning

method is introdued to e�iently and aurately predit the eletromagneti re-



sponse of omplex-shaped re�etarray elements. The omputation of the satter-

ing oe�ients of periodi arrangements, haraterized by an arbitrary number of

degrees-of-freedom, is �rstly reast as a vetorial regression problem, then solved

with a learning-by-example strategy exploiting the Ordinary Kriging paradigm.

A set of representative numerial experiments dealing with di�erent element ge-

ometries is presented to assess the auray, the omputational e�ieny, and

the �exibility of the proposed tehnique also in omparison with state-of-the-art

mahine learning methods.
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Chapter 1

Introdution

In the reent years, re�etarrays have emerged as a ost-e�etive and reliable

tehnologial solution in many appliative domains - inluding satellite ommu-

niations [1℄[2℄, radar [3℄, and IoT [4℄ - where a radiating system haraterized

by a low pro�le, a light weight, a high gain/e�ieny, and an aurate ontrol

of the beam ontour is required [5℄[6℄. Compared to traditional re�etor anten-

nas [7℄, these devies an guarantee several advantages inluding lower thikness,

�at/onformal shapes, inreased robustness, and (potentially) reon�gurability

[8℄[9℄ thanks to the layout onsisting of a feed that illuminates a passive array

of mirostrip pathes, whih in turn properly fouses/shapes the re�eted beam

by ontrolling the (non-uniform) sattering properties of the re�etarray surfae

[7℄[10℄. However, the synthesis of high-performane re�etarrays is still a very

hallenging task from both the methodologial and the pratial viewpoint, even

more when wideband operations and/or a areful ontrol of the ross-polarization

omponents of the re�eted �eld are needed [11℄. Generally speaking, omplex

path shapes are usually adopted to �t these requirements beause of the wider

set of degrees-of-freedom (DoF s) potentially enabling an enhaned ontrol of the

antenna sattering properties [2℄[12℄[13℄[14℄[15℄. Unfortunately, designing a re-

�etarray featuring ompliated element geometries often turns out to be in pra-

tie a very hallenging task. To determine the optimal shape of eah re�etarray

element (i.e., setting the DoF s of the re�etarray pathes), the relationships

between the desriptors of both the unit ell (e.g., geometry/size of the path

metallizations) and the illumination (e.g., the polarization/frequeny/angle-of-

arrival of the inident �eld) with the assoiated sattering oe�ients must be

known [11℄[15℄. This knowledge is analytially available only for �simple� unit

ells [16℄[17℄ desribed by few DoF s. Otherwise, sattering matrix -vs-desriptors

look-up tables (LUT s), whih are o�-line omputed through extensive full-wave

(FW ) simulations [18℄[19℄[20℄, are usually built [2℄[14℄[15℄[18℄. Beause of the

exponential grow of the number of LUT s entries with the DoF s of the unit ells

[20℄, advaned re�etarray geometries haraterized by arbitrary variations of

many desriptors are realistially impossible to handle beause of the infeasible
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generation and storage of the assoiated unit ell sattering response databases

(UCS-DBs). To overome these latter issues towards the ful�lment of advaned

and more hallenging teleommuniation standards, an innovative methodology

for the quasi- or real-time predition of the eletromagneti response of omplex

re�etarray elements is hereinafter introdued. The evaluation of the sattering

oe�ients of generi re�etarray unit ells (i.e., featuring an arbitrary num-

ber of DoF s) is �rstly re-ast as a regression problem and then solved with a

learning-by-example (LBE ) strategy able to exploit the information provided by

a redued set of FW simulations (namely the �examples�) performed one and

o�-line. More spei�ally, the statistial learning method is based on the Or-

dinary Kriging (OK ) [21℄[22℄[23℄ here ustomized to the vetorial problem at

hand. Suh guidelines and methodologial hoies have been motivated by the

following onsiderations:

• the sattering features of omplex re�etarray unit ells (e.g., the Phoenix

unit ells [12℄[13℄[24℄) are often smoothly dependent on their geometrial

features [2℄[14℄[15℄. Therefore, it is expeted that a suitable equivalent

meta-model may be dedued to reliably predit the sattering features as-

soiated to a unit-ell instead of omputing and storing a huge UCS-DB ;

• standard interpolation methods [25℄ annot be employed for eletromag-

neti predition purposes owing to the highly non-linear nature of the

relation between the unit-ell desriptors and the orresponding eletro-

magneti response [2℄[14℄[15℄;

• among existing state-of-the-art LBE strategies, OK has emerged as a

very ompetitive predition tool when high-�delity/noiseless input/training

samples are available [21℄[22℄[23℄.

As for the main innovative ontributions of this work, they inlude (a) the in-

trodution of a omputationally-e�ient strategy for prediting the sattering

response of re�etarray elements featuring arbitrarily omplex unit ells; (b) the

development of a numerial tool that, whether integrated within a system-by-

design (SbD) loop [26℄, ould enable the optimal synthesis of next-generation

re�etarray antennas with ontrolled o- and ross-polar radiation patterns; ()

the ustomization of an advaned LBE tehnique based on the OK for the pre-

dition of omplex-valued sattering matries of periodi planar strutures, thus

useful not only for re�etarrays, but also generalizable to analogous eletromag-

neti engineering problems (e.g., the analysis of frequeny-seletive surfaes and

metasurfaes); (d) the derivation of pratial guidelines (e.g., referene setups

for various trade-o�s between time saving and predition auray) for an easy

and reliable use of suh an OK -based re�etarray meta-modeling tehnique.
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CHAPTER 1. INTRODUCTION

Thesis outline

The outline of the thesis is as follows. Chapter 2 is dediated to a deep analy-

sis of some seleted Learning-by-Example strategies whih have been taken into

aount for the problem of e�iently omputing the eletromagneti response

of generi re�etarrays unit ells. More in details, the two-step predition pro-

ess is summarized and then a detailed analysis of the training phase and of the

predition phase is arried out. In Chapter 3 the omputation of the sattering

oe�ients of simple retangular unit ells is desribed. It is then explained the

di�ulty of omputing the response for unit ells with more omplex shapes.

The neessity of an innovative methodology for the quasi or real-time predition

of the response of omplex re�etarray elements is here emphasized. Chapter 4

desribes the proposed methodology: the re�etarray modeling problem is math-

ematially formulated and the OK -based predition method is deeply analyzed.

Representative numerial results are reported to illustrate the features and to

assess the potentialities of the proposed approah. Moreover, omparative anal-

yses on the auray and the omputational e�ieny of this latter versus FW

simulation methods and ompetitive/most-advaned state-of-the-art regression

tehniques are arried out. Eventually, some onlusions and �nal remarks fol-

low.
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Chapter 2

Learning-by-example (LBE)
strategies

2.1 Motivation and objetive of learning-by-examples

strategies

Learning-by-examples strategies are omputer-aided approahes whih allow deal-

ing with problems haraterized by an unountable number of features and vari-

abilities.

In the �eld of EM engineering the omputational ost of lassi synthesis (or

imaging) strategies are mainly linked to the great amount of time required by

EM simulators. Full-wave solvers, based for example on the method of moments

(MoM), �nite element method (FEM) or �nite-di�erene time-domain (FTDT)

are time-onsuming. As an example, onsidering evolutionary optimization prob-

lems where there is the need to repeat a large number of simulations, the total

ost is diretly related to the CPU time neessary to evaluate the �tness of a

single trial solution. If we denote with

• P : the number of individuals;

• I: the number of iterations performed by the algorithm;

• ∆t: the CPU time required to ompute the �tness of a single individ-

ual/trial solution;

we have that the total ost of a single optimization is given by

Cost = P × I ×∆t

In this framework LBE methods drastially redue the omputational e�ort

by emulating or prediting the behaviour of the high-�delity simulations.
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2.1. MOTIVATION AND OBJECTIVE OF LEARNING-BY-EXAMPLES

STRATEGIES

Predition as a �two-step proess�

We an summarize the main loop involving a preditor as a substitute of the EM

simulator in the following two steps

1. Training. This step is related to how selet samples whih are the most

representative of the real funtion behavior. In other words, the aim is to

redue the number of simulations required to produe an aurate global

representation of the funtion to predit over the whole domain. The train-

ing proess is omposed by three logial phases:

(a) Redution of the Degrees of Freedom (DoFs) of the fun-

tional spae. Given a funtional spae of K variables, there is the

possibility that the funtion doesn't depend equally on all the variables

(i.e., some of them have more �impat� on the output w.r.t. others).

This task is thus devoted to redue the number of input variables (i.e.,

the number of DoFs) from K to H (with H < K).

(b) �Exhaustive� representation of the funtional spae. Given

a funtional spae of H (≤K) variables, it is neessary to properly

selet samples in order to build a training set able to ollet the most

information from the funtion over all the input spae. In addition

the minimum number of training samples needed to aurately train

the model has to be de�ned;

() PreditionModel building: this step is strongly related to previous

step and is aimed at building the surrogate model whih will be used

to map the input to the output spae in order to emulate the behavior

of a real system.

In order to deal with step 1.(a) some of the existing methods for the re-

dution of the DoFs are:

• Sammon Mapping;

• Prinipal Component Analysis (PCA);

• Partial Least Squares (PLS);

• Fisher Linear Disriminant Analysis (LDA);

• Step-wise Dimension Redution;

• Su�ient Dimension Redution;

• Non-Linear PCA;

In order to deal with step 1.(b) the proper method for sampling the fun-

tional spae has to be hosen. Some known methods are:

One-Shot sampling strategies
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CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

• Uniform Grid Sampling (GRID);

• Uniform Random Sampling (RND);

• Latin Hyperube Sampling (LHS);

Iterative adaptive sampling strategies

• LOLA− V oronoi adaptive sampling;

• MSE − Based adaptive sampling;

• EIGF − Based adaptive sampling;

2. Test or Predition. Starting from the training steps, this task is devoted

to predit the funtion in every point of its domain/support. Methods of

predition an be lassi�ed into two main lasses:

• Interpolation tehniques

� Nearest neighbor interpolator;

� Linear (Delaunay) interpolator;

� Polynomial interpolator;

� Spline interpolator;

• Learning-by-Example (LBE) tehniques

� ANN (Arti�ial Neural Network);

� RBFN (Radial Basis Funtion Network);

� SV R (Support Vetor Regression);

� GP (Gaussian Proess, or �Kriging� when regression is onsid-

ered);
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2.2. TRAINING PHASE: REDUCTION OF THE DOFS OF THE

FUNCTIONAL SPACE

2.2 Training phase: Redution of the DoFs of the

funtional spae

2.2.1 What is dimensionality redution?

Main goal

The main goal of dimensionality redution tehniques is to redue the number

of unknowns of a given problem from K to H , with

H < K

Why should we use dimensionality redution?

Reduing the number of unknowns has many bene�ts when dealing with

regression:

1. Redue the omputational omplexity (and onsequently the time)

of the training and test phase of a given preditor;

2. [Strongly related to point 1℄ Enhane the predition auray. In gen-

eral, all the predition tehniques work better if the number of unknowns

is not too high;

3. Derease the number of required training samples (N). One of the
main problems when training a preditor is the so-alled �urse of dimen-

sionality�, whih auses an exponential growth of the number of training

samples (N) required to model a funtion with the dimension of the input

spae (K).

It is important to observe that many spae redution tehniques have not been

introdued as tools for improving predition. In many ases, spae redution

is used to simply improve the way data is visualized, in order to make it more

understandable by the interested user.

Where dimensionality redution makes sense in regression?

This �gure shows a partiular benhmark funtion of K = 2 variables. It is

de�ned as

y (x1, x2) = cos (x1)
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Figure 2.1: Funtion y (x1, x2) = cos (x1), omputed for {x1, x2} ∈ [−10,+10].
(a) 3D plot and (b) 2D plot.

In this ase, variable x2 has no impat on the output value (i.e., on the

funtion value y (x1, x2)), sine this latter depends only on the values assumed

by the variable x1. By onsidering this partiular example, one should now have

a more lear idea of what are the main steps that should be performed by a spae

redution tehnique:

1. Analyze the relationship between the input variables and the

omputed output. In this ase, analyze the impat of both x1 and x2 on
y (x1, x2);

2. Determine what are the input variables showing the largest im-

pat on the output. In this ase, understand that x2 is meaningless;

3. Redue the number of variables, keeping only the variables that impat

on the funtion value. In this ase, x2 should be disarded.

Variable seletion vs. variable extration

Spae redution tehniques an be lassi�ed into two main lasses:

1. Variable seletion: it is the proess of seleting a subset of relevant

variables for use in model onstrution;

2. variable extration: is the proess of reating new variables by ombin-

ing the the original ones.

When variable seletion and when variable extration?

Variable seletion should be performed when some of the input variables have

a smaller impat on the funtion value with respet to the others. These variables

an be disarded, by keeping the H most signi�ant ones.
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2.2. TRAINING PHASE: REDUCTION OF THE DOFS OF THE

FUNCTIONAL SPACE

For example, onsidering the funtion reported in Fig. 2.1 the variable x2
has no impat on the output, so it an be simply disarded. All the information

is indeed ontained in the value of variable x1.
On the ontrary, variable seletion an fail if we onsider the same funtion,

but rotated by an angle ϑr

y (x1, x2) = cos [x1cos (ϑr)− x2sin (ϑr)]

-10 -7.5 -5 -2.5  0  2.5  5  7.5  10-10
-7.5

-5
-2.5

 0
 2.5

 5
 7.5

 10

-2

-1.5

-1

-0.5

 0

 0.5

 1

Function y(x1,x2)=cos[x1*cos(θr)-x2*sin(θr)], θr=30 [deg]

y(x1,x2)

x1

x2

-1

-0.5

 0

 0.5

 1

-10

-5

 0

 5

 10

-10 -5  0  5  10

x 2

x1

Function y(x1,x2)=cos[x1*cos(θr)-x2*sin(θr)], θr=30 [deg]

-1

-0.5

 0

 0.5

 1

y(
x 1

,x
2)

(a) (b)

Figure 2.2: Funtion y (x1, x2) = cos [x1cos (ϑr)− x2sin (ϑr)], omputed for

{x1, x2} ∈ [−10,+10] . ϑr = 30 [deg℄. (a) 3D plot and (b) 2D plot.

In this ase, the funtion value depends on a diretion whih is di�erent from

x1 and x2 onsidered singularly. The goal of feature extration is then to properly
identify this diretion as a funtion of x1 and x2, so that the funtion value will

be expressed in terms of this new variable.

Funtion dependent spae redution vs. funtion independent spae

redution

Spae redution tehniques an be also lassi�ed into

1. Funtion dependent (�supervised�) tehniques: the redution of the

number of variables takes into aount the relationship between input vari-

ables and assoiated funtion response. Only variables showing the largest

impat on the funtion are onsidered. State-Of-The-Art tehniques be-

longing to this ategory are:

(a) Partial Least Squares (PLS);

2. Funtion independent (�unsupervised�) tehniques: the redution

of the number of variables is performed without analyzing/knowing the as-

soiated output. In other words, these tehniques analyze the distribution
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CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

of the training samples in the input spae, without onsidering their or-

relation with the funtion. State-Of-The-Art tehniques belonging to this

ategory are:

(a) Prinipal Component Analysis (PCA);

(b) Sammon Mapping.

Linear vs. non-linear feature extration

1. Linear tehniques: the new H variables are linear ombinations of the

old K variables. The transformation is expressed by the multipliation of

the original N K-dimensional samples X for a transformation matrix W

Xnew = XW

[N ×H ] = [N ×K] [K ×H ]

2. Non-linear tehniques: The new H variables are not linear ombinations

of the old N variables

Xnew = ℑ{X}

where the transformation matrix ℑ{.} is non-linear.
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2.3. TRAINING PHASE: �EXHAUSTIVE� REPRESENTATION OF THE

FUNCTIONAL SPACE

2.3 Training phase: �Exhaustive� representation

of the funtional spae

There exist di�erent sampling strategies in order to build training sets with given

dimensions (N). Two main lasses an be identi�ed:

1. One-shot sampling strategies;

2. Adaptive (or sequential) sampling strategies.

2.3.1 One-shot sampling strategies: overview

In this setion, the following one-shot sampling strategies will be presented:

1. Uniform grid sampling (GRID);

2. Uniform random distribution sampling (RND);

3. Latin Hyperube Sampling (LHS);

2.3.1.1 One-shot sampling strategies: Uniform grid sampling (GRID)

Parameters:

• Variation range (min, max) for eah variable (xi, i = 1, ..., K);

• Number of quantization levels for eah variable (Qi, i = 1, ..., K);

The total number of generated samples is given by N = QK
.
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Figure 2.3: Uniform grid sampling for the 2D ase, N = 25 samples. The number

of quantization levels is set to Q = 5 both for x1 and for x2, thus generating a

set of N = QK = 52 = 25 samples.
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2.3.1.2 One-shot sampling strategies: Uniform random sampling (RND)

Parameters:

• Variation range (min, max) for eah variable (xi, i = 1, ..., K);

• Total number of samples to generate (N).

The N samples are seleted aording to a standard uniform distribution.
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Figure 2.4: Uniform random sampling for the 2D ase, N = 25 samples.

2.3.1.3 One-shot sampling strategies: Latin Hyperube Sampling (LHS)

In the ontext of statistial sampling, a square grid ontaining sample positions

is a Latin square if (and only if) there is only one sample in eah row and eah

olumn. A Latin hyperube is the generalization of this onept to an arbitrary

number of dimensions, whereby eah sample is the only one in eah axis-aligned

hyperplane ontaining it.

Parameters:

• Variation range (min, max) for eah variable (xi, i = 1, ..., K);

• Total number of samples to generate (N);

Constrution:

The N samples in a K-dimensional input spae are seleted aording to

these simple steps:

1. Divide the range of eah input variable (xk, k = 1, ..., K) into N equally

sized segments. Denote with ∆k the length of eah segment in the k-th
dimension.
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2.3. TRAINING PHASE: �EXHAUSTIVE� REPRESENTATION OF THE

FUNCTIONAL SPACE

2. For eah dimension k (k = 1, ..., K) randomly selet a point inside eah

of the N intervals. This means that on dimension k you will get a set of

samples xk =
{
x1k, x

2
k, ..., x

N
k

}
, where (n− 1)∆k ≤ xnk ≤ n∆k;

3. Randomly ombine a seleted point for eah dimension (k = 1, ..., K) to

generate a new sample (xn = {xn1 , x
n
2 , ..., x

n
K}).

4. Repeat step 3 until all N ombinations are generated.
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Figure 2.5: LHS sampling for the 2D ase, N = 25 samples.

2.3.2 Adaptive (sequential) sampling strategies: overview

In this setion, some state-of-the-art adaptive (or sequential) training tehniques

will be analyzed. In partiular, the following strategies will be onsidered:

1. LOLA-Voronoi adaptive sampling (LOLA-Voronoi);

2. MSE-based adaptive sampling (maximum unertainty seletion riterion,

MSE);

3. EIGF -based adaptive sampling (Expeted Improvement For Global Fit,

EIGF).

Sequential design strategies o�er a huge advantage over one-shot experimental

designs (suh as the Latin Hyperube Sampling, LHS) beause they an use

information gathered from previous data points in order to determine the loation

of new data points.

14



CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

2.3.2.1 Adaptive (sequential) sampling strategies: basi idea

First, an initial bath of data points is evaluated using a minimal experimental

design. This design is usually one of the traditional designs from DOE (Design

Of Experiments), suh as a Latin Hyperube. The initial design must be large

enough to guarantee a minimal overage of the domain, but should be small

enough so that there is room for improvement, allowing the sequential design

strategy to do its work.

Based on the initial experimental design, a surrogate model is built and the

auray of this model is estimated using one or more well-known error metris.

Then, the loation of some additional samples are hosen by the adaptive sam-

pling strategy. Finally a new surrogate model is built using all the data gathered

so far, and the model auray is estimated again. If a stop riterion is not

met, the entire sample seletion proess is started all over again. The goal is to

redue the overall number of samples, sine evaluating the samples (running the

simulations) is the dominant ost in the entire surrogate modeling proess.

2.3.2.2 Adaptive (sequential) sampling strategies: LOLA − V oronoi
adaptive sampling

LOLA-Voronoi [27℄ is a novel hybrid sequential design tehnique that ombines

an exploration metri based on Voronoi tessellations with an exploitation met-

ri using loal linear approximations. Sequential design strategies o�er a huge

advantage over one-shot experimental designs (suh as the Latin Hyperube Sam-

pling, LHS) beause they an use information gathered from previous data points

in order to determine the loation of new data points. The advantage of this

method over other sequential design is that it is independent of the model type

(Kriging, SVR, et...). Its main disadvantage is its high omputational omplex-

ity (O(N2), where N is the training set dimension).

Steps:

1. Build an initial training set with N1 samples using a single shot sampling

tehnique (e.g., Latin Hyperube Sampling, LHS);

2. Analyze the available samples and generate ∆N additional samples by

jointly maximizing the exploration and exploitation metris. For eah sam-

ple xn, n = 1, ..., N1, ompute the sample sore H as:

H (xn) = V (xn) +
E (xn)∑N1

j=1E (xn)

where:

(a) V (xn) is the estimated Voronoi ell size assoiated to sample xn.

This term is related to the exploration apability: small values of

15



2.3. TRAINING PHASE: �EXHAUSTIVE� REPRESENTATION OF THE

FUNCTIONAL SPACE

V (xn) indiate a high density of samples, while high values of V (xn)
indiate that the region surrounding sample xn is haraterized by a

low density of samples. New samples should be added where

the urrent samples density is low.

(b) E (xn) is an estimation of how non-linear the funtion is around sam-

ple xn.

E (xn) =
Z∑

i=1,i 6=n

|y (xi)− (y (xn) + g · (xi − xn))|

Where g is the estimated gradient at point xn and Z < N1 is the

number of samples loser to xn (they are alled the �neighbors� of

xn). This term is related to the exploitation apability: high values

of E (xn) indiate a high non-linearity of the real funtion in the region
surrounding the sample xn. New samples should be added where

the funtion rapidly varies.

3. Sort the input samples by H ;

4. For j = 1, ...,∆N :

(a) Selet the j − th highly ranked sample (xj);

(b) Generate a set {Ωj} of R random samples inside the Voronoi ell of

xj: {Ωj} = {ωj,1; ...;ωj,r; ...;ωj,R};

() Selet the new j-th sample in {Ωj} as the farthest sample from xj :

xN1+j = arg
{
max{Ωj} (‖xj − ωj,r‖)

}
;

(d) Compute the funtion value assoiated to the new sample y (xN1+j)
and add the pair {xN1+j; y (xN1+j)} to the training set for the next

LOLA-Voronoi iteration.

5. The new training set will be omposed by N1+∆N samples. Go to step (2)
to generate new additional ∆N samples. Iterate until a maximum number

of training samples (Nmax) is reahed.

For further details on how the exploration (V (xn)) and exploitation metris

(E (xn)) are omputed, please refer to [27℄.

NOTE: the proess of generating training sets with inreasing dimensions

is ompletely independent from the surrogate model. New samples are in fat

added on the basis of the previously observed samples (observations).

Parameters:

• Dimension of the initial training set (N1);

• Step ∆N : if ∆N is low, more resolution in aquiring information from

previous samples but more omputational time!
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CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

2.3.2.3 Adaptive (sequential) sampling strategies: MSE−Based adap-
tive sampling

This strategy selets new samples where the highest predition unertainty (MSE)
is observed.

Steps:

1. Build an initial training set with N1 samples using a single shot sampling

tehnique (e.g., Latin Hyperube Sampling, LHS) and reate a Kriging

surrogate model using these training samples;

2. Generate a set of C andidate points using a single shot sampling tehnique

(e.g., Latin Hyperube Sampling, LHS);

3. Use the Kriging model to predit the C andidate solutions, and rank them

aording to the predition unertainty (MSE);

4. Selet ∆N andidates showing the highest MSE;

5. Compute the real output of the new seleted samples;

6. Add the new samples and their assoiated output to the original training

set in order to generate a new training set. This will be omposed by

N2 = N1 +∆N training samples;

7. Train a new surrogate model using the new training set;

8. Go to step (2) to generate additional∆N samples, iterate until a maximum

number of training samples (Nmax) is reahed.

Parameters:

• Dimension of the initial training set (N1);

• Step ∆N ; low ∆N implies more steps (= more omputational time) to

reah a given training dimension (N);

• Number of andidate points (C). Note that C ≥ ∆N . Authors in [28℄

indiate as a good hoie setting the number of andidates C = 200 ×K,

where K is the problem dimension.

2.3.2.4 Adaptive (sequential) sampling strategies: EIGF−Based adap-
tive sampling

This strategy selets new samples where the highest Expeted Improvement For

Global Fit (EIGF ) is observed. The EIGF for a given point x is de�ned as

[28, 29℄:
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2.3. TRAINING PHASE: �EXHAUSTIVE� REPRESENTATION OF THE

FUNCTIONAL SPACE

EIGF (x) = (ỹ(x)− y(x∗))2 +MSE (ỹ(x))

where:

• ỹ(x): predited output for the point x;

• MSE (ỹ(x)): predition unertainty (MSE) assoiated to the predited

value ỹ(x);

• y(x∗): observed (real) output at the sampled point x∗
, that is losest in

distane to the andidate point x.

The EIGF onsists of two searh omponents. The �rst (loal) omponent will

tend to be large at a point where it has the largest (response) inrease over its

nearest sampled point. The seond (global) omponent is large for points with

the largest predition unertainty (these tend to be far from existing sampled

points).

Steps:

1. Build an initial training set with N1 samples using a single shot sampling

tehnique (e.g., Latin Hyperube Sampling, LHS) and reate a Kriging

surrogate model using these training samples;

2. Generate a set of C andidate points using a single shot sampling tehnique

(e.g., Latin Hyperube Sampling, LHS);

3. Use the Kriging model to predit the C andidate solutions, and rank them

aording to the EIGF metri;

4. Selet ∆N andidates showing the highest EIGF ;

5. Compute the real output of the new seleted samples;

6. Add the new samples and their assoiated output to the original training

set in order to generate a new training set. This will be omposed by

N2 = N1 +∆N training samples;

7. Train a new surrogate model using the new training set;

8. Go to step (2) to generate additional∆N samples, iterate until a maximum

number of training samples (Nmax) is reahed.

Parameters:

• Dimension of the initial training set (N1);
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• Step ∆N ; low ∆N implies more steps (= more omputational time) to

reah a given training dimension (N);

• Number of andidate points (C). Note that C ≥ ∆N . Authors in [28℄

indiate as a good hoie setting the number of andidates C = 200 ×K,

where K is the problem dimension.

2.3.2.5 De�nition of the sampling metri (Λ)

Main idea:

A good sampling tehnique should have the following harateristis:

• Plae many samples where the funtion rapidly varies, and less

samples where the funtion is smooth (exploitation apability);

• Cover the input spae as muh as possible (exploration apability).

The following sampling metri an be de�ned, in order to measure the ability of

a given sampling strategy to respet the above two onditions:

Λ =
1

N

N∑

n=1





[
E(xn)

∑N
j=1 E(xj)

]

V (xn)





where:

• N is the number of training samples;

• E (xn) is the LOLA-Voronoi metri for measuring the non-linearity of the

funtion near the training sample xn. High values of E (xn) indiate an

high non-linearity near xn.

• V (xn) is the estimated Voronoi ell size assoiated to the training sample

xn. Small values of V (xn) indiate a dense sampling near xn.

Aording to this metri, the following ases are penalized:

• Many samples where the funtion is smooth;

• Few samples where the funtion rapidly varies.
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2.4 Training phase: Predition model building

This sep is aimed at building the model that will be used in the test phase.

The model is built starting from the training samples available. The problem of

building the model an be stated as:

PREDICTION MODEL BUILDING: Given the training set

x(i) =
[
x
(i)
1 , x

(i)
2 , ..., x

(i)
K

]
, i = 1, ..., N and seleted the LBE tehnique

de�ne the estimation funtion

︷︸︸︷
y (·) that better represents the be-

havior of the real system y (x) for a spei� and arbitrary input spae
x.

Depending on the regression strategy hosen this step varies. In the following

the prediiton model building is haraterized for eah of the learning-by-example

tehniques analyzed in next setion:

• Kriging: estimate the set of hyperparameters used for the alulation of

the orrelation between the training samples;

• Support Vetor Regression: de�ne weights of the disriminant funtion in

order to guarantee that the training samples deviate from the predited

funtion a maximum quantity ε;

• Radial Basis Funion Networks: de�ne the weights of the ativation fun-

tion.

A detailed analysis of these tehniques is given in next setions.
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CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

2.5 Test or Predition phase: Predition through

interpolation tehniques

2.5.1 Nearest neighbor interpolator

Let be given

• x(i) ∈ R
K
, x(i) =

{
x
(i)
k , k = 1, ..., K

}
: i-th training sample point in K-

dimensional spae, i = 1, ..., N ;

• yi = y
(
x(i)
)
: funtion value (output) assoiated to the i-th training sample

point x(i)
;

• x∗ ∈ R
K
, x∗ = {x∗k, k = 1, ..., K}: K-dimensional point at whih we are

performing the predition (i.e., the output y (x∗) is unknown and has to

be estimated given the available information from the N olleted training

samples).

Main idea:

The predited value at position x∗
is equal to the value assumed by the nearest

(in terms of Eulidean distane) training sample.

Steps:

1. Calulate the Eulidean distane between the test sample point x∗
and

eah i-th training sample as follows:

di =
∥∥x(i) − x∗

∥∥ = d
(
x(i),x∗

)
=

√√√√
K∑

k=1

(
x
(i)
k − x∗k

)2

2. The predited value at position x∗
is equal to the value assumed by the

nearest (in terms of Eulidean distane) training sample

ỹ (x∗) = y

(
argmin

x(i)
{di}

)

Example: Akley's funtion K = 1 variables

The following �gure shows the predited output made by a nearest neigh-

bor interpolator when applied to the estimation of the 1-dimensional Akley's

funtion, when a set of N = 9 uniformly-spaed training samples are provided.
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2.5. TEST OR PREDICTION PHASE: PREDICTION THROUGH

INTERPOLATION TECHNIQUES
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Figure 2.6: Akley's funtion, K = 1 variables. True funtion vs predition made

by the nearest neighbor interpolator.

Example: Akley's funtion K = 2 variables

The following �gure shows the predited output made by a nearest neigh-

bor interpolator when applied to the estimation of the 2-dimensional Akley's

funtion, when a set of N = 25 uniformly-spaed training samples are provided.
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Figure 2.7: Akley's funtion, K = 2 variables. (a) True funtion vs (b) predi-

tion made by the nearest neighbor interpolator.

Extrapolation apabilities of the nearest neighbor interpolator

The nearest neighbor interpolator is able to do �extrapolation�. This proess

is related to the apability of estimating the funtion value even beyond the

original observation range. When estimating the funtion value at a position

that lies outside the observed domain (i.e., the K-dimensional region identi�ed
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by the set of available training samples), the interpolator will simply use the

value of the nearest (in terms of Eulidean distane) training sample.
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Figure 2.8: Extrapolation apabilities of the nearest neighbor interpolator (ex-

ample K = 1).

2.5.2 Linear interpolation (based on Delaunay triangula-

tion)

Let be given

• x(i) ∈ R
K
, x(i) =

{
x
(i)
k , k = 1, ..., K

}
: i-th training sample point in K-

dimensional spae, i = 1, ..., N ;

• yi = y
(
x(i)
)
: funtion value (output) assoiated to the i-th training sample

x(i)
;

• x∗ ∈ R
K
, x∗ = {x∗k, k = 1, ..., K}: K-dimensional point at whih we are

performing the predition (i.e., the output y (x∗) is unknown and has to

be estimated given the available information from the N olleted training

samples);

• X =
{
x(i), i = 1, ..., N

}
: set of N , K-dimensional training sample points;

Main idea:

• In 1-dimensional ase (i.e., K = 1), the funtion value at position x∗ =
x∗ is given by the equation of the straight line passing between the two

neighboring points.

23



2.5. TEST OR PREDICTION PHASE: PREDICTION THROUGH

INTERPOLATION TECHNIQUES

• For higher dimensional spaes (i.e., K > 1), a more omplex formulation is

needed, whih basially extends the basis idea for the 1-dimensional ase.

In partiular, the hoie of the neighboring training samples that should

be used to predit the output at position x∗
is performed by means of a

Delaunay triangulation of the training samples in the input spae. The

predition ỹ (x∗) is then given by a weighted sum of the funtion values

assumed by the samples in the neighborhood of x∗
.

Steps for the reation of the Delaunay graph (triangulation):

1. Let be given a set X of N K-dimensional training samples (in the following

�gures we will refer for simpliity to the ase K = 2)

Figure 2.9: Delaunay triangulation: set of N K-dimensional points, X (i.e., the

position of the training samples). Case K = 2.

2. Create theVoronoi Diagram V or (X), that is the subdivision of the plane
into Voronoi ells V

(
x(i)
)
for all x(i) ∈ X. The Voronoi ell assoiated to

sample x(i)
is de�ned as the region of points whose distane (Eulidean) to

sample x(i)
is lower than the distane to all other training samples

V
(
x(i)
)
=
{
x| d

(
x,x(i)

)
≤ d

(
x,x(j)

)
∀i; j = 1, ..., N ; i 6= j

}

where d
(
x,x(i)

)
denotes the Eulidean distane between positions x and

x(i)

d
(
x,x(i)

)
=

√√√√
K∑

k=1

(
x
(i)
k − xk

)2
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Figure 2.10: Delaunay triangulation: Voronoi Diagram V or (X) of the training
samples (ase K = 2).

3. Create the dual graph of V or (X), G (X) of the Voronoi diagram. To reate

the dual graph, onnet two samples if and only if there exists a path

rossing only one Voronoi ell boundary.

Figure 2.11: Delaunay triangulation: dual graph of the Voronoi graph V or (X),
G (X) (ase K = 2).

4. Create the Delaunay graph, D {G (X)}, onverting urved paths to straight

lines. The Delaunay diagram (or triangulation) identi�es the neighboring

points that should be onsidered for the estimation of the funtion value

at eah test loation x∗
.
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2.5. TEST OR PREDICTION PHASE: PREDICTION THROUGH

INTERPOLATION TECHNIQUES

Figure 2.12: Delaunay triangulation: Delaunay graph, D {G (X)}

Prediting the funtion value at position x∗
:

The funtion at position x∗
is omputed as a weighted sum of K + 1 inde-

pendent samples belonging to the same K-dimensional �simplex�

1

:

ỹ (x∗) =

K+1∑

k=1

αkyk

where

• αk is the weight assoiated to the k-th neighboring training sample x(k)
;

• yk = y
(
x(k)
)
is the funtion value at training sample x(k)

.

The weight αk assoiated to training sample x(k)
is omputed as the ratio between

the �volume� of the simplex inluding all remaining training samples and the test

loation x∗
and the �volume� of the simplex ontaining x∗

:

αi =
V ol

{
x(1), ...,x(i−1),x∗,x(i+1), ...,x(K+1)

}

V ol {x(1), ...,x(K+1)}

where the �volume� of aK-dimensional simplex made byK+1 points is omputed

as follows

V ol
{
x(1), ...,x(K+1)

}
= det

(
x(1) · · · x(K+1)

1 · · · 1

)

Note that

K+1∑

i

αi = 1

Example with K = 1

1

For K = 1 the simplex redues to the straight line onneting two points, for K = 2

it orresponds to the Delaunay triangle onneting 3 points, for K = 3 it orresponds to a

tetrahedron...
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1. Let be given two training samples xi and xi+1 and the assoiated outputs

fi = y (xi), fi+1 = y (xi+1).

Figure 2.13: Delaunay triangulation: Example with K = 1.

2. Compute the �volumes� of the 1D simplex ontaining the loation x at

whih we are doing the predition. This orresponds (in absolute value) to

the length of the segment between samples xi and xi+1:

V ol {xi, xi+1} = det

(
xi xi+1

1 1

)
= xi − xi+1

3. Compute the weights assoiated to training samples xi and xi+1:

αi =
V ol {x, xi+1}

V ol {xi, xi+1}
=

x− xi+1

xi − xi+1

αi+1 =
V ol {x, xi}

V ol {xi, xi+1}
=

x− xi
xi − xi+1

= 1− αi

Then, we have that

x = αixi + αi+1xi+1 = αixi + (1− αi)xi+1

and the predition at point x is given by

ỹ (x) = αiy (xi) + (1− αi) y (xi+1)

Example with K = 2
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2.5. TEST OR PREDICTION PHASE: PREDICTION THROUGH

INTERPOLATION TECHNIQUES

1. Let be given three training samples x(1)
, x(2)

and x(3)
de�ning the Delaunay

triangle for point x at whih we are performing the predition

Figure 2.14: Delaunay triangulation: Example with K = 2.

2. Compute the �volumes� of the 2D simplex ontaining the loation x at

whih we are doing the predition

V ol
{
x(1),x(2),x(3)

}
= det

(
x(1) x(2) x(3)

1 1 1

)
= ±2A

{
△
(
x(1),x(2),x(3)

)}

3. Compute the weights assoiated to the three training samples

α1 =
V ol

{
x,x(2),x(3)

}

V ol {x(1),x(2),x(3)}

α2 =
V ol

{
x(1),x,x(3)

}

V ol {x(1),x(2),x(3)}

α3 =
V ol

{
x(1),x(2),x

}

V ol {x(1),x(2),x(3)}

Then, we have that

x = α1x
(1) + α2x

(2) + α3x
(3)

and the predition at point x is given by

ỹ (x) = α1y
(
x(1)
)
+ α2y

(
x(2)
)
+ α3y

(
x(3)
)
.

Example: Akley's funtion K = 1 variables
The following �gure shows the predited output made by a linear interpolator

when applied to the estimation of the 1-dimensional Akley's funtion, when a

set of N = 9 uniformly-spaed training samples are provided.
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Figure 2.15: Akley's funtion, K = 1 variables. True funtion vs predition

made by the linear interpolator.

Example: Akley's funtion K = 2 variables
The following �gure shows the predited output made by a linear interpolator

when applied to the estimation of the 2-dimensional Akley's funtion, when a

set of N = 25 uniformly-spaed training samples are provided.
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Figure 2.16: Akley's funtion, K = 2 variables. (a) True funtion vs (b) pre-

dition made by the linear interpolator.

Extrapolation apabilities of the nearest neighbor interpolator

The linear Delaunay-based interpolator is not able to do �extrapolation�. This

proess is related to the apability of estimating the funtion value even beyond

the original observation range. In fat, the predition at a given test position x∗

is possible if and only if there exist a K-dimensional simplex of training samples

surrounding it.
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2.5. TEST OR PREDICTION PHASE: PREDICTION THROUGH

INTERPOLATION TECHNIQUES

Linear interpolator an however be extended with a nearest neighbor inter-

polator in order to enable extrapolation, as shown by the above �gures.
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Figure 2.17: Linear Delaunay interpolator (a) without extrapolation (standard)

and (b) with nearest neighbor extrapolation (example K = 1).
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2.6 Test or Predition phase: predition through

learning-by-example tehniques

2.6.1 Kriging: Gaussian Proesses (GP ) for regression

Mathematial formulation

The following formulation has been mainly derived by [21℄ and [30℄.

Suppose we have evaluated a deterministi funtion of K variables at N
points. Denote the i-th sampled point by

x(i) =
[
x
(i)
1 , x

(i)
2 , ..., x

(i)
K

]
(2.1)

and the assoiated funtion value by

y(i) = y
(
x(i)
)

(2.2)

for i = 1, ..., N .

2

The lassial linear regression model

The simplest and most familiar way to �t a response surfae to suh a data is

linear regression. In this tehnique, the observations are treated as if they were

generated from the following model

y
(
x(i)
)
=

[
Q∑

q=1

αqβq
(
x(i)
)
]
+ ǫ(i), i = 1, ..., N (2.3)

In this equation, eah βq
(
x(i)
)
(q = 1, ..., Q) is a linear or nonlinear funtion

of x, the αq's (q = 1, ..., Q) are unknown oe�ients to be estimated and the

ǫ(i)'s are normally distributed, independent error terms with mean zero and vari-

ane σ2
. The oneptual problem with linear regression is that the assumption

of independent errors is learly false when modeling a deterministi omputer

ode. If x(i)
and x(j)

are two points that are lose together, then the

errors terms ǫ
(
x(i)
)
and ǫ

(
x(j)
)
(i.e., their assoiated outputs y

(
x(i)
)

and y
(
x(j)
)
) should also be lose (orrelated). In short, it makes no sense

to assume that ǫ
(
x(i)
)
and ǫ

(
x(j)
)
are independent. Instead, it is more reason-

able to assume that these error terms are related or �orrelated�, and that this

orrelation is high when x(i)
and x(j)

are lose and low when the points are far

apart.

In the stohasti proess approah, we do not assume that the errors are inde-

pendent, but rather assume that the orrelation between errors is related

to the distane between the orresponding points. As we will see, we do not

2

NOTE: In the following, the addressed omputer models are assumed deterministi, and

thus a response from a model laks random error (i.e., repeated runs for the same input

parameters gives the same response from the model (e.g., the simulator)).
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use the Eulidean distane, however, sine this distane weights all the variables

equally.

Kriging (Gaussian Proess Regression): Fundamentals

Based on the Bayesian statistis, Kriging model treats the deterministi re-

sponse of y (x) as a realization of a stohasti proess Y (x)

Y (x) = ψ (x) + Z (x)

where

• ψ (x) is a regression (or �trend�) funtion;

• Z (x) is a Gaussian proess.

The idea is that ψ (x) aptures the general trend of the real funtion, while

Z (x) models the errors (or �residuals�) made by ψ (x) w.r.t. the real funtion

y (x). The de�nition of the regression funtion ψ (x) leads to di�erent Kriging

meta-models:

• ψ (x) =
∑Q

q=1 αqβq (x): Universal Kriging ;

• ψ (x) = α1 = µ: Ordinary Kriging ;

• ψ (x) = 0: Simple Kriging ;

Note that αq are unknown oe�ients and should be estimated. For Ordinary

Kriging, we have one single unknown oe�ient α1 = µ.
The following regression models an be de�ned:

• Constant regression, Q = 1:

β1 (x) = 1

• Linear regression, Q = (K + 1):

β1 (x) = 1
β2 (x) = x1, ..., βK+1 (x) = xK

• Quadrati regression, Q = 1
2
(K + 1) (K + 2):

β1 (x) = 1
β2 (x) = x1, ..., βK+1 (x) = xK

βK+2 (x) = x21, ..., β2K+1 (x) = x1xK
β2K+2 (x) = x22, ..., β3K+1 (x) = x2xK

...
βQ (x) = x2K
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The term Z (x) is assumed to have the following stohasti behaviors

E [Z (x)] = 0
Cov

[
Z (x) , Z

(
x

′
)]

= σ2Corr
(
x,x

′
)

where

• σ2
is the proess variane;

• Corr
(
x,x

′
)
is the orrelation between any two loations x and x

′

.

The orrelation funtion Corr
(
x,x

′
)
is de�ned as a funtion of the distane

d
(
x,x

′
)
between samples x and x

′

and satis�es the following onditions:

lim
d(x,x′)→0Corr

(
x,x

′
)
= 1

lim
d(x,x′)→∞Corr

(
x,x

′
)
= 0

More in detail, the orrelation funtion used for Kriging meta-modeling is

de�ned as

Corr
(
x,x

′

)
=

K∏

k=1

Corr
(
xk, x

′

k

)

The most ommon de�nition of the orrelation between the k-th variable of

x and the k-th variable of x
′

is the following

Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
pk
)

where θk ≥ 0 and pk ∈ [1, 2], for k = 1, ..., K. This leads to the following

de�nition of orrelation between samples x and x
′

Corr
(
x,x

′

)
=

K∏

k=1

exp
(
−θk

∣∣∣xk − x
′

k

∣∣∣
pk
)

Note that, rather than using the Eulidean distane, the following weighted

distane is employed

d
(
x,x

′

)
=

K∑

k=1

θk

∣∣∣xk − x
′

k

∣∣∣
pk

(2.4)

and

Corr
(
x,x

′

)
= exp

(
−d
(
x,x

′

))
= exp

(
−

K∑

k=1

θk

∣∣∣xk − x
′

k

∣∣∣
pk

)
(2.5)
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Thus, the orrelation between two samples x and x
′

is a funtion of both

their distane in all K dimensions and of a set of 2K hyper-parameters Θ

Θ = {θ1, ..., θK ; p1, ..., pK}

whose values are unknown and should be estimated. Given the orrelation fun-

tion de�ned in (2.4) and (2.5), when the distane between x and x
′

is small, the

orrelation is near one. Similarly, when the distane between the points is large,

the orrelation will approah to zero:

0 < Corr
(
x,x

′

)
≤ 1

The parameter θk in the distane formula (2.4) an be interpreted as measur-

ing the importane or �ativity� of the k-th variable xk. To see this, note that

saying �variable k is ative� means that even small values of

∣∣xk − x
′

k

∣∣
may lead

to large di�erenes in the funtion values at x and x
′

. This means that even

small values of

∣∣xk − x
′

k

∣∣
should imply a low orrelation between the funtion

values y(x) and y(x
′

). If θk is very large, then it will indeed be true that small

values of

∣∣xk − x
′

k

∣∣
translate into large �distanes� and hene low orrelation.

The exponent pk is related to the smoothness of the funtion in oordinate di-

retion k, with pk = 2 orresponding to smooth funtions and values near pk = 1
orresponding to less smoothness.
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Figure 2.18: E�et of (a) hyper-parameter θk and of (b) hyper-parameter pk on

the orrelation funtion between the k-th oordinate of points x and x
′

.

A ommon hoie to redue the number of unknowns (and onsequently, the

omputational load of the training phase) is to �x the value of pk to a given

value, for k = 1, ..., K. The following orrelation models an be derived:

• Exponential orrelation: pk = 1, k = 1, ..., K
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Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
)

(2.6)

• Gaussian orrelation: pk = 2, k = 1, ..., K

Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
2
)

(2.7)

while if pk is not �xed we get the so-alled

• Generalized exponential orrelation:

Corr
(
xk, x

′

k

)
= exp

(
−θk

∣∣∣xk − x
′

k

∣∣∣
pk
)

NOTE: the DACE toolbox doesn't allow the estimation of di�erent exponents

pk along the K dimensions.

Other orrelation models an be de�ned. In partiular, the Kriging MATLAB

DACE toolbox [31℄ supports the following alternative orrelation funtion

• Linear orrelation:

Corr
(
xk, x

′

k

)
= max

{
0, 1− θk

∣∣∣xk − x
′

k

∣∣∣
}

(2.8)

• Spherial orrelation:

Corr
(
xk, x

′

k

)
= 1− 1.5ξk + 0.5ξ3k (2.9)

where

ξk = min
{
1, θk

∣∣∣xk − x
′

k

∣∣∣
}

• Cubi orrelation:

Corr
(
xk, x

′

k

)
= 1− 3ξ2k + 2ξ3k (2.10)

where

ξk = min
{
1, θk

∣∣∣xk − x
′

k

∣∣∣
}
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• Spline orrelation:

Corr
(
xk, x

′

k

)
= ζ (ξk) (2.11)

where

ξk = θk

∣∣∣xk − x
′

k

∣∣∣

and

ζ(ξh) =





1− 15ξ2k + 30ξ3k for 0 ≤ ξk ≤ 0.2

1.25 (1− ξk)
3 for 0.2 < ξk < 1

0 for ξk ≥ 1



 .

3

If the underlying phenomenon is ontinuously di�erentiable, the orrelation

funtion will likely show a paraboli behaviour near the origin, whih means

that the Gaussian, the ubi or the spline funtion should be hosen. Con-

versely, physial phenomena usually show a linear behavior near the origin, and

exponential, generalized exponential, linear or spherial would usually perform

better. Also note that for large distanes the orrelation is 0 aording to the

linear, ubi, spherial and spline funtions, while it is asymptotially 0 when

applying the other funtions. Often the phenomenon is anisotropi. This means

that di�erent orrelations are identi�ed in di�erent diretions. This is aounted

in the above orrelation funtions, sine di�erent parameters θk are allowed in

the K dimensions of the input spae.

Gaussian and exponential orrelation funtions are the most used

in pratial appliations, sine they represent a good hoie for most of the

onventional physial proesses.

We assume that the orrelation between two samples x and x
′

is

stationary, meaning that the set of hyper-parametersΘ is invariant with respet

to x.

Now onsider that the real value of y (x) is given at N sample points (training

loations):

x(1),x(2), ...,x(N)

Kriging supposes that the stohasti proess Y (x) realizes all the N given

samples:

Y
(
x(i)
)
= ψ

(
x(i)
)
+ Z

(
x(i)
)
= y

(
x(i)
)

(2.12)

Assuming a onstant regression funtion (i.e., Ordinary Kriging)

ψ (x) = α1 = µ

3

NOTE: The hoie of the orrelation funtion should be motivated by the underlying

phenomenon, e.g., a funtion we want to optimize or a physial proess we want to model.
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the probability density funtion distribution onditioned on these realizations

(alled Likelihood Funtion) is obtained in logarithmi form as:

Ln (µ, σ2,Θ) = ln
{
PDF

(
y/x(1),x(2), ...,x(N)

)}
=

= −N
2
ln (2π)− N

2
lnσ2 − 1

2
ln |R| − (y−1µ)TR−1(y−1µ)

2σ2

(2.13)

where

y =
[
y
(
x(1)
)
, y
(
x(2)
)
, ..., y

(
x(N)

)]T

1 is a N -dimensional vetor of ones (1 = [1, 1, ..., 1]T ), and R is an N × N
orrelation matrix whose entries are represented by the orrelation between

training samples (Rij = Corr
(
x(i),x(j)

)
). Note that the dependene of the

Likelihood Funtion on the hyper-parameters Θ is via the orrelation matrix R:

R =




Corr
(
x(1),x(1)

)
... Corr

(
x(1),x(N)

)

.
... . ...

.
Corr

(
x(N),x(1)

)
Corr

(
x(N),x(N)

)




(2.14)

The Ordinary Kriging model needs to estimate the values of µ, σ2
and Θ

based on the Maximum Likelihood Estimation (MLE). The values of µ and σ2

that maximize Ln (µ, σ2,Θ) are solved in losed form as

µ̂ =
1TR−1y

1TR−11
(2.15)

and

σ̂2 =
(y− 1µ̂)T R−1 (y − 1µ̂)

N
. (2.16)

Substituting (2.15) and (2.16) in (2.13) the following Conentrated Likelihood

Funtion is obtained

Ln (Θ) = −
N

2
ln (2π)−

N

2
lnσ̂2 −

1

2
ln |R|

whih depends only on the set of hyper-parameters Θ. This funtion should

be maximized to get an estimate of Θ, and hene an estimate of the orrelation

matrix R. Multiple optimization algorithms an be used (e.g., gradient desent,

GA, PSO, et.). Then, equations (2.15) and (2.16) are used to get an estimate of

µ̂ and σ̂2
. Note that when we estimate these parameters by maximum likelihood,

we are essentially �nding values of the parameters that best desribe the behavior

of the true funtion (we do not know them exatly, that's why we should use the

hats).

Finally, onsider the linear preditor ŷ (x) whih estimates y (x) at loation
x (and y (x) is unknown), de�ned as
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ŷ (x) = cT (x)Y (2.17)

where

Y =
[
Y
(
x(1)
)
, ..., Y

(
x(N)

)]T
=
[
y
(
x(1)
)
, ..., y

(
x(N)

)]T

by hypothesis (2.12). The Kriging model obtains the best linear unbiased

preditor (BLUP ) by hoosing the N-dimensional vetor c (x) to minimize the

following mean squared error (MSE):

s2 (x) = V ar [ŷ (x)− Y (x)] = V ar [ŷ (x)− y(x)] (2.18)

subjet to the following unbiasedness onstraint:

E [ŷ (x)] = E [Y (x)] = E [y(x)]

Then, c (x) is solved in losed form as

ĉ (x) = R−1r (x) +
R−11 (1− 1R−1r (x))

1TR−11
(2.19)

where r (x) is an N-dimensional vetor ontaining the orrelation between

the sample x at whih we are making the predition and the N training samples

r (x) =




Corr
(
x,x(1)

)

...

Corr
(
x,x(N)

)




(2.20)

Substituting r (x), we get the �nal expression of the Ordinary Kriging pre-

ditor

ŷ (x) = µ̂+ rT (x)R−1 (y − 1µ̂) (2.21)

This funtion models the estimate of y(x) at any loation x by interpolating

the sample points with real values of y(x). On the right-hand side of equation

(2.21), the �rst term, µ̂, is the result of simply plugging x into the regression

equation, and the seond term represents the �adjustment� to this predition

based on the orrelation of x with the N sampled points (whih are known).

Similarly, substituting (2.17) and (2.19) in (2.18) the MSE in �nal form results

in

s2(x) =MSE (x) = σ̂2

[
1− rT (x)R−1r (x) +

(
1− 1TR−1r (x)

)2

1TR−11

]
(2.22)

38



CHAPTER 2. LEARNING-BY-EXAMPLE (LBE) STRATEGIES

This funtion models the unertainty expeted in ŷ (x). It indiates that the
auray of ŷ (x) depends largely on the distane from the given sampling points

(i.e., the training samples). Intuitively, the loser x is to the training points, the

less unertain the predition ŷ (x).

Note that:

• If there is no orrelation with training samples (r (x) = 0), then we just

predit ŷ(x) = µ̂;

• If we are making a predition at the i-th sampled point (x = x(i)
), then

ŷ
(
x(i)
)
= y

(
x(i)
)
and s2

(
x(i)
)
= 0.

• The preditor in equation (2.21) an be also written as:

ŷ(x) = µ̂+wT r (x) = µ̂+

N∑

i=1

wiri(x) (2.23)

where w = R−1(y−1µ̂) is a vetor of onstants and ri (x) = Corr
[
x,x(i)

]
,

for i = 1, ..., N . Thus, we see that the Kriging preditor is a linear om-

bination of �basis funtions� ri (x), for i = 1, ..., N that interpolate the

data. The basis funtions depend upon the orrelation parameters θk and

pk for k = 1, ..., K, and these are �tuned� to the training data during the

Maximum Likelihood Estimation.

Interpretation of s2 (predition unertainty, MSE)

The orrelation between the new sample x and the training samples a�ets

our estimate of predition auray. In fat, it makes intuitive that, if x is

very lose to a training sample x(i)
, we should be muh more on�dent in our

predition of y (x) than we would be if x were far away from all the sampled

points. This intuition is re�eted in the general formula for the unertainty

s2(x) of the preditor.
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Figure 2.19: Example in 1D ase.

Let us model the unertainty at x by treating the funtion value y (x) as

the realization of a normally distributed random variable Y with mean ŷ (x)
and standard deviation given by s(x) =

√
s2(x). Then, the Kriging model is

approximately 99.7% on�dent that ŷ (x) lies inside the interval de�ned by

ŷ (x)± 3s

Note that if we are making a predition at the i-th sampled point (x = x(i)
),

we get s2
(
x(i)
)
= 0. This is as it should be: with a deterministi funtion, one

we have sampled a point, we know its value there. Thus, our unertainty, as

measured by s2, should be zero. In onlusion, s2 gives us a measure of how

aurate and �reliable� is a given predited value (it shouldn't be onfused with

the predition error, that is omputed knowing the real value of y(x)). In Fig.

2.19 it is reported the predition on�dene interval of a 1D funtion. It is de�ned

as ŷ ± s and it is null at observed points, while it grows with the distane w.r.t.

the nearest training point. Fig. 2.20 shows the Predition and the predition

unertainty (MSE) of the Akley's funtion when N = 25 and N = 250 training
samples and are used. The predition unertainty is null at observed points,

while it grows with the distane w.r.t. the nearest training point. Inreasing the

number of training samples leads to an higher predition auray and to a lower

unertainty.
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N = 25 training samples
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2D Ackley’s function: Kriging prediction, N=250 training samples (LHS)
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2D Ackley’s function: Kriging uncertainty (MSE), N=250 training samples (LHS)
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Figure 2.20: Example in 2D ase (Akley's funtion). (a) Predition and (b)

predition unertainty (MSE) of the Akley's funtion using N = 25 training

samples. () Predition and (d) predition unertainty (MSE) of the Akley's
funtion using N = 250 training samples.

Universal Kriging

While Ordinary Kriging assumes that the stohasti proess Y (x) has the
form

Y (x) = µ+ Z (x)

more generally, we an write

Y (x) = ψ (x) + Z (x)

Universal Kriging assumes that the regression (or �trend�) funtion is om-

puted as the weighted sum of known basis funtions of di�erent order

ψ (x) =

Q∑

q=1

αqβq (x)
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Then, we an de�ne the N ×Q regression matrix B as

B =




β1
(
x(1)
)

... βQ
(
x(1)
)

.
... . ...

.
β1
(
x(N)

)
βQ
(
x(N)

)




The maximization of the Likelihood Funtion leads to the following de�nition

of the estimator

ŷ (x) = Mα+ rT (x)R−1 (y −Bα)

where M is a Q-dimensional vetor

M = [β1 (x) , ..., βQ (x)]

and the oe�ients are estimated as

α =
BTR−1y

BTR−1B

The predition unertainty (MSE) is then obtained as

s2(x) =MSE (x) = σ̂2

[
1− rT (x)R−1r (x) +

(
1−BTR−1r (x)

)2

BTR−1B

]

Note that in the ase of onstant regression (i.e., Ordinary Kriging), we have

ψ (x) = α1 = µ

B =




1
1
...
...
1



= 1

M = [1, ..., 1] = 1T

α = µ̂ =
1TR−1y

1TR−11

Going bak to the Universal Kriging formulation, if we predit at one training

loation (i.e., x = x(i)
), we get that r

(
x(i)
)
is the i-th olumn of the orrelation

matrix R (Ri)
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r
(
x(i)
)
=




Corr
(
x(i),x(1)

)

...

Corr
(
x(i),x(N)

)



= Ri

Then,

rT
(
x(i)
)
R−1 =

(
R−1r

(
x(i)
))T

=
(
R−1Ri

)T
= eTi

where eiis the i-th unit vetor (having all zeros and a one at the i-th position).
Finally, we obtain

rT
(
x(i)
)
R−1 (y −Bα) = eTi (y −Bα) = y

(
x(i)
)
−Bα

Sine Bα = Mα, we get

ŷ
(
x(i)
)
= Mα+ y

(
x(i)
)
−Mα = y

(
x(i)
)

meaning that the Kriging regressor exatly interpolates the training data.

This is of ourse also valid for Ordinary Kriging. At point x = x(i)
we get

ŷ
(
x(i)
)
= µ̂+rT

(
x(i)
)
R−1 (y − 1µ̂) = µ̂+eTi (y− 1µ̂) = µ̂+f

(
x(i)
)
−µ̂ = f

(
x(i)
)

If we look at the unertainty, we have

s2
(
x(i)
)
=MSE

(
x(i)
)
= σ̂2

[
1− rT

(
x(i)
)
R−1r

(
x(i)
)
+

(
1− 1TR−1r

(
x(i)
))2

1TR−11

]

with

rT
(
x(i)
)
R−1r

(
x(i)
)
= rT

(
x(i)
)
ei = ri

(
x(i)
)
= Corr

(
x(i),x(i)

)
= 1

1TR−1r
(
x(i)
)
= 1Tei = 1

resulting in

s2
(
x(i)
)
=
(
x(i)
)
= σ̂2

[
1− 1 +

(1− 1)2

1TR−11

]
= 0

Note that if the point x is very far from all training samples, we have

r (x) → 0

s2 (x) → σ̂2

ŷ (x) → µ̂

Dimension of the output vetor y

The MATLAB DACE Toolbox [31℄ is able to handle models withG-dimensional

responses (y (x) : RK → R
G
)

y = [y1, y2, ..., yG]

All the previous equations an be easily expanded to a G-dimensional vetor

predited output.
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2.6.2 Support Vetor Regression

The SVR predition tehnique is based on the Support Vetor Mahines (SVM)

[32℄-[34℄ theory. The fundamental harateristi of the SVR tehnique is that it

allows de�ning an �error� margin ε on the training samples; this means that it is

assumed that the training samples an ontain a ertain amount of unertainty

but this does not interfer on the e�ieny and auray of the predition pro-

ess. All the tehniques based on the SVM theory are thus suited for dealing

with noisy training data, as for example the leaning problems based on observa-

tions/measurements.

Within the SVR theory, the training samples whih lie outside the ±ε band
(alled ±ε-tube) are alled support vetors (see. Fig 2.21) . These samples are

fundamental for the training proess of the SV R.

Figure 2.21: SVR predition of a 1D test funtion. Among all the training

samples, only some of them are support vetors.

Independently from the training tehnique used for the SVR, the expression

of the SV R preditor is the following:

ŷ (x) = µ+

N∑

i=1

w(i)ψ
(
x,x(i)

)
(2.24)

where ψ(i) = ψ
(
x,x(i)

)
is the i−th basis funtion, w(i)

is the i−th weight and

µ is a bias oe�ient whih an be omputed exploiting the Karish-Kuhn-Tuker

onditions [35℄ starting from the support vetors. The goal of the training phase

is to �nd the best predition funtion whih deviate from the training samples a

maximum quantity ε. The standard form for the training of the SVR model is

the following:
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min

(
1

2
|w|2 + C

1

N

N∑

i=1

ξ+(i) + ξ−(i)

)
(2.25)

subj.to.





y(i) −wx(i) − µ ≤ ε+ ξ+(i)

wx(i) + µ− y(i) ≤ ε+ ξ−(i)

ξ+(i), ξ−(i) ≥ 0

where ξ+(i), ξ−(i)
are the so alled slak-variables [33℄. It an be notied that the

training proess illustrated in previous equation allows ontrolling the tradeo� of

the �nal result in terms of omplexity of the model and auray by opportunely

hoosing the C parameter. The problem in Eq.2.25 an be solved using the

Lagrange multipliers tehnique and obtaining the anonial solution [34℄:

ŷ (x) = µ+

N∑

i=1

(
α+(i) + α−(i)

) (
x(i) · x

)
(2.26)

The equation 2.26 is valid under linear regression hypothesis. The result an

be extended to the ase where non-linear basis funtion are used, obtaining

ŷ (x) = µ+
N∑

i=1

(
α+(i) + α−(i)

)
ψ(i)

(2.27)

It must be pointed out that Eq. 2.26 is valid only if the following assumptions

hold true:

• ψ is ontinuous,

• ψ is symmetri, whih means that ψ
(
x,x(i)

)
= ψ

(
x(i),x

)

• ψ is positive de�nite funtion, whih means that the orrelation funtion

ψT = ψ and has eigenvalues whih are stritly positive.

The most ommon hoies for the kernel funtion ψ are:

• Linear kernel: ψ
(
x(i),x(j)

)
=
(
x(i) · x(j)

)
;

• d-grade homogeneous polynomial kernel: ψ
(
x(i),x(j)

)
=
(
x(i) · x(j)

)d
;

• Gaussian kernel (the most used): ψ
(
x(i),x(j)

)
= e−γ‖x(i)·x(j)‖

2

;

• d-grade inhomogeneous polynomial kernel, et..
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(a) (b)

Figure 2.22: Two-dimensional Shwefel funtion. True funtion (a) and predited

funtion (b) using N = 100 training samples (C = 100, γ = 10)

With the goal of illustrating the performanes of the SVR, Fig. 2.22 shows the

omparison between the predited output [Fig. 2.22(b)℄ and the orresponding

benhmark funtion [Fig. 2.22(a)℄. The benhmark funtion used is the 2-D

Shwefel funtion. The number of training samples has been �xed to N = 100.
It an be notied that the auray in the predition is aeptable: the position

and amplitude of the maxima and minima is orretly predited, as well as as the

general behaviour of the funtion. However, due to the onsidered formulation,

the predited funtion appears to be smoother with respet to the original (see

Fig 2.22(b) for x2 = −100). This phenomenon is due to the fat that SVR

does not interpolate the training samples; this an be suited for noisy training

samples but is less suited for deterministi data beause it an introdue noise

in the predition of the �exat� training samples. In addition a further drawbak

with respet to other tehniques (suh as Kriging) is the neessity to preliminary

alibrate the training samples C (alled penalty fator) and γ (for the Gaussian

kernel).

2.6.3 Parameter seletion via Cross-Validation (CV )

Many preditors, suh as SVR, need a preliminary alibration phase in order

to estimate the best ombination of parameters whih will be used during the

training and testing phases. Often, suh a alibration is performed by applying

a ross-validation approah on a given set of known input/output pairs (i.e., a

training set). Many ross-validation approahes exist, but the main two teh-

niques are

1. V -fold ross-validation;

2. Leave-one-out ross-validation (LOO − CV );
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On the one hand, V -fold ross-validation is onsidered a non-exhaustive ross-
validation method, sine it does not ompute all ways of splitting the given

training set. Even if it is an approximated tehnique, it is omputationally faster.

On the other hand, LOO − CV is an exhaustive ross-validation method, sine

it requires the training and test on all possible ways to divide the original set

into a training and a validation set.

2.6.3.1 V -fold Cross-Validation

More in details, SVR (with RBF kernel) are haraterized by two main parame-

ters, namely C and γ. C is often alled �penalty fator� and ontrols the trade-o�

between the training error and the model omplexity, while γ represents the expo-
nent in the RBF kernel. RBFN are haraterized by one parameter, the spread

S. This parameter ontrols the smoothness of the Gaussian basis funtions used

in the hidden layer of the network.

Let us indiate with (α) the vetor of parameters that should be alibrated:

• α = (C, γ) for the SVR model with RBF kernel;

• α = S for the RBFN model.

In order to identify the best parameters, a lassial V−fold ross-validation ap-

proah is employed.

A given training set of N samples is divided into V subsets of approximately

equal size. Then, for eah v−th subset, a predition model is trained using the

remaining V −1 subsets. The resulting model is then used to test the predition

auray on the v−th subset, and the estimation error is omputed by means of

the Mean Squared Error, de�ned as follows:

MSEv(α) =
1

Tv

Tv∑

i=1

{yi − ỹi(α)}
2

where

• Tv is the number of samples inside the v−th subset;

• yi is the real output assoiated to the i−th sample;

• α orrespond to the onsidered vetor of parameters;

• ỹi(α) is the predited output assoiated to the i−th sample for a given α.

Then, the ross-validationMSE for a given vetor of parameters α is omputed

as the average MSE obtained over all the V subsets

η(α) =
1

V

V∑

v=1

MSEv(α)
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The best on�guration is �nally identi�ed as the one minimizing the ross-

validation MSE

(α∗) = arg {min η(α)}

2.6.3.2 Kriging vs. Support Vetor Regression (SVR)

�The lunh is not free� theorem is still valid when seleting the proper preditor.

The hoie of the predition model is ruial and for sure it depends on the

spei� appliation. The following list of features may be drawn in order to

enable a diret omparison between Kriging (Simple, Ordinary or Universal)

and SVRs.

I denote with symbol ↑ features that appear as advantages, while symbol ↓
indiates a disadvantage. Symbol l indiates that the given feature may represent

either an advantage or a disadvantage, depending on the appliation.

Feature Kriging SVR

Auto-tuning of hyper-parameters YES ↑ NO ↓
Multi-dimensional output YES ↑ NO ↓
Unertainty measure YES (MSE) ↑ NO ↓

Interpolates training data YES l NO l
Can handle noisy training data NO ↓ YES ↑

Computational e�ieny LOW ↓ YES ↑
Can handle large number of variables (K ≥ 100) NO ↓ YES ↑

Table 2.1: Diret omparison between features of Kriging and SVR.

Tuning of the hyper-parameters

One of the most important advantages of Kriging over lassial Support Ve-

tor Regression is the auto-tuning of the hyper-parameters. When using an ε-SVR
with Radial Basis Funtion (RBF) kernel, a preliminary tuning of the hyper-

parameters (namely, the penalty fator C and the Kernel oe�ient γ) must be
done in order to obtain good preditions.

More on noiseless/noisy training data

In its original formulation, Kriging is intended to work with determin-

isti data, meaning that the same output is always omputed/measured for a

given input vetor. On the ontrary, Support Vetor Regression (SVR) is

able to manage noisy training samples, where both the following onditions

may happen:

1. The output of a given training sample may be not orresponding to the

real output of the undergoing phenomenon/proess. In other words, some

noise an be added to the real output value;
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2. More that one output value is present for the same input vetor (i.e., we

have multiple noisy realizations of a given training sample).

In other words, Kriging interpolates training data, meaning that the predited

output for a training loation orresponds to the training output. On the other

hand, no guarantees are given that the preditions made by an SVR interpolate

the training observations.

In the following, we diretly ompare the preditions made by both Ordinary

Kriging and ε-SVR (with RBF kernel) for the 1-D Akley's funtion. N =
21 training samples are uniformly distributed inside the onsidered input range

−5 ≤ x ≤ 5.
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Figure 2.23: Akley's funtion, K = 1 variables. Diret omparison between the

preditions made by Ordinary Kriging and ε-SVR.

Observations

• preditions made by Kriging are muh more aurate than those made by

SVR. Normalized Mean Error is:

� Ordinary Kriging: NME = 4.95× 10−2

� SVR: NME = 5.95× 10−1

• Kriging interpolates training data, foring its predition to perfetly math

training data, whih are assumed to be deterministi realizations of the

funtion to predit;

• SVR doesn't fore the predition to interpolate the observations. Di�erent

values are then predited also when estimating the output at a training

loation.
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In the following �gure, a di�erent example is given. In this ase, our goal is to

predit the funtion

y (x) = x

within the range 0 ≤ x ≤ 10, by exploiting a set of N = 21 uniformly spaed

training samples omputed inside the same interval. Moreover, training samples

are orrupted by an additive white Gaussian noise, with SNR = 5 [dB℄.
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Figure 2.24: Akley's funtion, K = 1 variables. Diret omparison between the

preditions made by Ordinary Kriging and ε-SVR.

Observations

• In this ase, preditions made by the SVR are muh better than those made

by the Ordinary Kriging; the omputed Normalized Mean Error is:

� Ordinary Kriging: NME = 1.73× 10−1

� SVR: NME = 9.92× 10−2

• given its interpolating nature, Ordinary Kriging fores preditions to math

all observed samples. However, this is not a desirable feature when treating

noisy realization of the underlying funtion to predit.

Final onsiderations and guidelines

Given the above two examples, the following �nal observations may be on-

sidered when seleting the preditor, problem at hand:
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• In ase of noiseless deterministi simulations, it makes sense to use a Krig-

ing preditor;

• when samples are orrupted by noise (both during the training and

during the test phases), the SVR is not only is a good hoie, but also the

only hoie (between the two onsidered preditors), sine Kriging - in its

standard implementation - is not able to manage noisy data.

• a new version of Kriging, alled �stohasti Kriging� has been introdued

in in order to enable the use of noisy training sets.

2.6.4 Radial Basis Funtion Networks (RBFN)

The idea of Radial Basis Funtion Networks (RBFN) derives from the theory of

funtion approximation. The main features of a RBFN [36℄-[40℄ model are:

• They are two-layer feed-forward networks.

• The hidden nodes implement a set of radial basis funtions (e.g. Gaussian

funtions).

• The output nodes implement linear summation funtions.

• The network training is divided into two stages:

1. �rst the weights from the input to hidden layer are determined,

2. and then the weights from the hidden to output layer.

• The training/learning is very fast.

• They are very good at interpolation.

RBFN with exat interpolation at training samples: theory

RBFNs are a speial lass of single hidden-layer feed forward neural networks

for appliation to problems of supervised learning (i.e., those problems where the

funtion value assoiated to training samples is assumed to be known during the

training phase).

Let's suppose also in this ase to have N training samples available, where:

• x(i) ∈ ℜK ,x(i) =
{
x
(i)
k , k = 1, ..., K

}
: i−th training sample point in

K−dimensional spae, i = 1, ..., N ;

• yi = y
(
x(i)
)

: funtion value (output) assoiated to the i−th training

sample point x(i)
.
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The exat interpolation of the set ofN data points in a multidimensional spae re-

quires that all the N K-dimensional input vetors x(i) =
{
x
(i)
k , k = 1, ..., K

}
, i =

1, ..., N are mapped onto the orresponding outputs yi, i = 1, ..., N . In other

words, the goal of exat interpolation is to �nd a funtion h (.) suh that h
(
x(i)
)
=

yi, i = 1, ..., N .

The radial basis funtion approah introdues a set of N basis funtions (one

for eah training sample) of the form:

φi(x) = φ(
∥∥x− x(i)

∥∥)

where φ(·) is some nonlinear funtion and

∥∥x− x(i)
∥∥
denotes the Eulidean

distane between the generi input x and the i-th training point x(i)
.

The harateristi feature of radial funtions is that their response dereases

(or inreases) monotonially with distane from a entral point. The entre, the

distane sale, and the preise shape of the radial funtion are parameters of the

model.

The most ommon hoie is to onsider the ase of Gaussian basis funtion

(and this is the hoie adopted for the results in this report):

φi(x) = φ(
∥∥x− x(i)

∥∥) = exp

(
−

∥∥x− x(i)
∥∥2

2σ2

)
= exp

(
−

∥∥x− x(i)
∥∥2

2S

)

The term σ2 = S is often alled �spread� and ontrols the smoothness properties

of the interpolating funtion, as shown in next Figure:
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Figure 2.25: Impat of the spread value S on the width of the Gaussian basis

funtions.

The predition made by the RBFN model at a generi test loation x(m)
is

given by a linear ombination of the basis funtions
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ŷm = h(x(m)) =
N∑

j=1

wjφmj

where

φmj = φ(
∥∥x(m) − x(j)

∥∥) = exp

(
−

∥∥x(m) − x(j)
∥∥2

2S

)

and wj, j = 1, ..., N are weights that must be estimated during the training

phase. Thus, the interpolation ondition at a generi training sample x(i)
an be

expressed as

h(x(i)) =

N∑

j=1

wjφij = yi i = 1, ..., N

where

φij = φ(
∥∥x(i) − x(j)

∥∥) = exp

(
−

∥∥x(i) − x(j)
∥∥2

2S

)

The above ondition an be expressed also in a matrix form, ΦwT = y:




Φ11 Φ12 · · · Φ1N

Φ21 Φ22 · · · Φ2N
.

.

.

.

.

.

.

.

.

.

.

.

ΦN1 ΦN2 · · · ΦNN







w1

w2
.

.

.

wN


 =




y1
y2
.

.

.

yN




where Φ is a matrix of dimension N×N of omponents Φij = φ(
∥∥x(i) − x(j)

∥∥)
and w is 1×N and y is N × 1.

If Φ is a non singular matrix the solution for the parameters (i.e., the vetor

of weights w) an be found simply inverting the above relationship

w = Φ−1y

The network looks like the following:
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Figure 2.26: RBFN Network.

As an be notied, the network has an input layer, a hidden layer and an out-

put layer. The input layer broadasts the oordinates of the input vetor to eah

of the nodes in the hidden layer. Eah node in the hidden layer then produes an

ativation based on the assoiated radial basis funtion. The dimensionality of

the radial funtions is the same as the input data. Finally, the node in the out-

put layer omputes a linear ombination of the ativations of the hidden nodes.

How an RBFN reats to a given input stimulus is ompletely determined by the

ativation funtions assoiated with the hidden nodes and the weights assoiated

with the links between the hidden layer and the output layer.

In pratie, exat modeling of the training data is not always wanted beause

in this way a very poor preditive ability would be reahed, due to the fat that

all details, noise, outliers are modeled.

To have a smooth interpolating funtion in whih the number of basis fun-

tions is determined by the fundamental omplexity of the data struture, some

modi�ations to the exat interpolation method are required.

1. The number of basis funtions, M , is redued to a lower number, M ≪ N .

2. Bias parameters are inluded in the linear sum. These will ompensate

for the di�erene between the average value over the data set of the basis

funtion ativations and the orresponding average value of the targets.

3. The determination of suitable enters beomes part of training proess.

4. Instead oh having a ommon spread parameter, σ2
, eah basis funtion is

given its own width σj , whose value is also determined during training.

The main problem with RBFN is that, sine they perform exat interpolation,

they perform poorly with noisy data. In addition they are not omputationally

e�ient when many training samples are available. Indeed, the network requires
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one hidden unit (i.e. one basis funtion) for eah training data. The matrix

inversion ost is typially O (N3).
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Chapter 3

Re�etarray antennas

3.1 Introdution

The design, fabriation, and maintenane of large phased arrays for satellite and

terrestrial appliations is a very hallenging and expensive task, espeially if very

high diretivities are required. As a onsequene, many tehniques have been de-

veloped in the sienti� and industrial ommunities in order to simplify the array

arhiteture, redue the number of ontrol points, or ease the fabriation of the

feed network. In this senario, re�etarrays (antennas in whih an ative feeder

illuminates a large set of passive resonant pathes, that olletively satter the de-

sired beam) have emerged as a powerful and �exible solution to ahieve e�etive

beam ontrol apabilities without requiring omplex, expensive, and bulk feed

networks (unlike phased arrays), and also without yielding the non-onformal

geometries of standard paraboli re�etor antennas. However, the design of a

re�etarray is still a very omplex task, espeially if high performane in terms

of bandwidth and polarization purity is required. As a matter of fat, the de-

sign of a re�etarray requires a very aurate knowledge of the relations between

the elementary re�etarray antenna (i.e., its shape), the frequeny/angle of in-

idene/polarization of the inoming wave, and the features (magnitude, phase,

polarization) of the re�eted wave. If the elementary antenna has a omplex

shape (required to ahieve e�etive ross-polarization ontrol and large band-

width), no approximate formulas exist to predit suh a relation, and expensive

full-wave methods or ad ho numerial tehniques are urrently required. Unfor-

tunately, the number of simulations required to haraterize a single re�etarray

ell grows exponentially with its number of degrees-of-freedom, therefore making

this approah numerially unfeasible when the re�etarray ell has more than

2/3 geometrial degrees of freedom. In the design methodology, it is therefore

of fundamental importane to have tehniques apable of e�iently and au-

rately alulate the re�etion oe�ient assoiated with a given geometry of the

element in order to alulate the geometry of the element that will provide the

desired re�etion oe�ient. This oe�ient is mathematially represented by a
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2x2 omplex matrix (eah entry has a magnitude and a phase), whih takes into

aount the relationships between o-polar and ross-polar omponents of the

inident (due to the feeder) and re�eted �eld. This matrix naturally depends

on the geometry of the element, the diretion of inidene of the wave (azimuth

and elevation) and the operating frequeny of the system.

For the design of the re�etarray any possible value of phase-shift must be

implemented by varying one parameter in the unit ell (suh as the path size

or rotation angle) in order to be able to aurately predit the phase shift and

dissipative losses. One of the most important parts in re�etarray analysis is

the aurate haraterization of the re�etive elements (aurate knowledge of

phase-shift and polarization losses for eah polarization of the �eld). Curves

whih relate the phase of the radiated �eld with ertain geometrial parameters

of the re�etarray elements are usually adopted.

If the literature, when the arrays had too many elements, the analysis of ar-

rays of retangular mirostrip pathes has been arried out assuming the in�nite

array model and by applying Floquet's theorem, thus reduing the analysis to one

periodi ell. This analysis an be used if all the elements in the re�etarray have

the same shape. If elements with variable size are used, the re�etarray must be

analyzed assuming loal periodiity (whih is aurate for neighboring pathes

with smooth variations, assumption whih is normally true). In the following

the analysis of a mirostrip re�etarray with retangular pathes of variable size

is arried out. The limitations of this geometry are then highlighted: in order to

inrease the performane of the re�etarray it is often neessary to use nonanon-

ial pathes. However the analysis of more omplex shaped requires an inrease

in CPU time. The proposed method based on an innovative learning-by-example

strategy allows analyzing pathes with arbitrarily omplex shape in an e�ient

and aurate way. The method is presented in Setion 4.
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3.2 Single layer re�etarray of retangular pathes

In the following the problem of prediting the power pattern generated by a

re�etarray when the dimensions of the pathes as well as the substrate thikness

and permittivity vary is presented and mathematially modeled.

Figure 3.1: Geometry of the re�etarray antenna.

Let us onsider a simple re�etarray with N retangular pathes of variable

size arranged over a regular lattie, as shown in Fig. 3.1. The origin of the z
axis is loated at the interfae between the dieletri substrate and the ground

plane, while the referene point (x, y) = (0, 0) is along the perpendiular di-

retion between the feeder and the re�etor surfae. Both the ground plane

and the pathes are assumed to be made of perfetly eletri ondutor PEC.

The substrate is assumed to be lossy, homogeneous and isotropi with omplex

permittivity ε = ε0εr (1− j tan δ) and thikness d. The inident plane wave gen-
erated by the feeder at an angle (θi, φi) with respet to the referene system, has

the following expression

Ei = E0e
jk0(xui+yvi+z cos θi) =

[
Eθ

0

Eφ
0

]
ejk0(xui+yvi+z cos θi)

(3.1)

where E0 de�nes the amplitude and polarization of plane wave in free spae,

ui = sin θi cos φi and vi = sin θi sin φi , k0 = 2π/λ0 with λ0 free spae wavelength.
The total eletri �eld in the region desribed by the oordinate z > d is given

by the sum of the inident �eld, of the re�eted �eld and of the sattered �eld:

Et = Ei + Er + Es (3.2)

Er indiates the �eld re�eted from an in�nite grounded dieletri slab with-

out the mirostrip pathes and an be express as
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[
Eθ

r

Eφ
r

]
=

[
Rθ,θ 0
0 Rφ,φ

] [
Eθ

0

Eφ
0

]
ejk0(xui+yvi−z cos θi)

(3.3)

where Rjj, j = θ, φ are the re�etion oe�ients de�ned in [41℄.

When the mirostrips are present, a surfae urrent J is indued on eah

onduting element and a sattered �eld is produed, whih an be expressed in

terms of the inident �eld Ei and of the sattering oe�ients Sjk, j, k = {θ, φ}
as

[
Eθ

s

Eφ
s

]
=

[
Sθ,θ Sθ,φ

Sφ,θ Sφ,φ

] [
Eθ

0

Eφ
0

]
ejk0(xui+yvi−z cos θi)

(3.4)

In 3.4 eah sattering oe�ient Sjk is given by Sj,k = E
j
s(z=0)

Ek
i (z=0)

; j, k = {θ, φ}.

If we assume that the re�etarray is subdivided into unit ells and that eah

ell radiates a spherial wave proportional to the sum of the re�eted Er and

sattered Es �eld, the radiation pattern of an N elements re�etarray in the

diretion (θ, φ) is de�ned as [16℄

E (θ, φ) =
e−jk0r

r

N∑

n=1

Q (θ, φ; θn, φn) ·
[
R (θn, φn) + S (θn, φn)

]

·Ef (θn, φn) e
jk0(xn sin θ cosφ+yn sin θ sinφ)

(3.5)

where Ef is the feed pattern funtion,(xn, yn) are the Cartesian oordinates

of the n-th path enter (see Fig. 1), (θn, φn) is the diretion of arrival of the

wave impinging on the n-th path enter, Q is a term whih aounts for the

transformation from plane to spherial wave [16℄. The jk-th sattering oe�ient

of the sattering matrix S (θn, φn) of the n-th path is de�ned as [17℄:

Sθ,k (θn, φn) = −
1

ab cos θn

[
G (k0u

n
r , k0v

n
r ) J

(n,k̂)
x (k0u

n
r , k0v

n
r ) cosφnx̂+(3.6)

G (k0u
n
r , k0v

n
r ) J

(n,k̂)
y (k0u

n
r , k0v

n
r ) sin φnŷ

]
ejk0 cos θnd

Sφ,k (θn, φn) = −
1

ab

[
G (k0u

n
r , k0v

n
r ) J

(n,k̂)
x (k0u

n
r , k0v

n
r ) sin φnx̂−

G (k0u
n
r , k0v

n
r ) J

(n,k̂)
y (k0u

n
r , k0v

n
r ) cosφnŷ

]
ejk0 cos θnd (3.7)

(k = {θ, φ}). ab is the area of the lattie ell (see Fig. 1), G is the dyadi

Green's funtion in spetral domain, Jn =
∑

k={θ,φ} J
(n,k̂)
x x̂+

∑
k={θ,φ} J

(n,k̂)
y ŷ is
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CHAPTER 3. REFLECTARRAY ANTENNAS

the urrent indued on the n-th path in spetral domain and k̂ indiates the

polarization of the inident �eld. The jk-th sattering oe�ient an be easily

omputed in an analytial way as indiated in (3.5) for the simple re�etarray

reported in Fig. 4.1 (single dieletri substrate, ells with retangular shapes) by

expanding the indued urrent Jn
in a set of basis funtions D

(n,k̂)
i , i = 1, ..., I

with unknown oe�ients C
(n,k̂)
i , i = 1, ..., I

J
(n,k̂)
χ =

I∑

i=1

C
(n,k̂)
i,χ D

(n)
i,χ , χ = {x, y} (3.8)

and by omputing the unknown oe�ient vetor solving the following system

C(n,k̂) =
(
Z(n)

)−1

V (n,k̂)
(3.9)

where

Z
(n)
il = −

1

A

∞∑

m=−∞

∞∑

u=−∞

D̃
(n)H
i

(
−k(n)x,m,−k

(n)
y,mu

)
G
(
k(n)x,m, k

(n)
y,mu

)
D̃l

(
k(n)x,m, k

(n)
y,mu

)

(3.10)

are the elements of the impedane matrix Z(n)
, H stands for the onjugate

trasnspose and i, l are number of expansions; the i-th entry of the voltage vetor

V (n,k̂) an be omputed as desribed in [41℄:

V
(n,k̂)
i = J

(n,k̂)
s0 G

(
−k(n)x ,−k(n)y

)
D̃

(n)
i

(
−k(n)x ,−k(n)y

)
ejk0 cos θn (3.11)

I f we onsider a more general ase in whih (a) the substrate may be multi-

layer, with eah layer haraterized by a omplex permittivity

εw = ε0εrw (1− j tan δw) and by a thikness dw (with w = 1, ...,W ) and (b) the

unit ell may have arbitrary omplex shape and orientation angle, it is not possi-

ble to de�ne a suitable set of basis funtions D
(n,k̂)
i , i = 1, ..., I beause they are

not available. A full-wave method or an ad-ho tehnique for the omputation

of S (θn, φn), based for example on the de�nition of subdomain basis funtions,

are required [42℄.
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3.3 How to deal with the limitations of single-

layer re�etarray of retangular pathes

The main reason why we have to onsider other strutures than the single-layer

re�etarray of retangular pathes is beause of its inherent narrow bandwidth

performane [43, 44℄. This problem is due to the strongly nonlinear relation ex-

isting between the retangular pathes' size and the re�eted �eld. A signi�ant

e�ort has been made in reent years in order to mitigate this problem and ele-

ments with linear phase response and broadband behavior have been designed;

on one side staked pathes of variable size (see Fig. 3.2) have shown inreased

bandwidth ahieved by ombining the resonanes of eah path.

(a) (b)

Figure 3.2: (a) Two-layer re�etarray using pathes of variable size [45℄ and (b)

three-layer re�etarray using pathes of variable size [46℄.

However, these elements exhibit an inrease in the omplexity of the manu-

faturing proess [45, 46℄. On the other side elements with multiple resonanes

printed on a single dieletri layer have demonstrated to provide wider bandwidth

without ompliating the realization proess [12, 47℄, see Fig. 3.3.

Figure 3.3: Slied irular fratal derived from the irular path in [47℄.
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In [48℄ a three-layer square path element of variable size was designed to

ahieve simultaneous overage at the Ku reeiving (13.75-14.25 GHz) and trans-

mitting (1.7-12.2 GHz) bands. Multilayer strutures have been proposed to

ahieve larger frequeny ratios (ratios of the enter frequenies of the upper

and lower bands): in this senario on eah layer a di�erent set of elements whih

operates at a spei� frequeny band is used. FSS strutures have then been

introdued to redue the mutual interferene between the elements of di�erent

frequeny bands [49℄. A shemati view of the antenna where an FSS baked

re�etarray whih works in the Ka-band is loated on top of a metal-baked

re�etarray working in X-band is reported in Fig. 3.4.

Figure 3.4: Shemati view of dual-band re�etarray presented in [49℄.

This latter solution beomes however ostly and omplex to be fabriated;

moreover, the gain and e�ieny of the lower layer are redued by the upper

layer. Single-layer on�gurations with di�erent sets of elements displaed on

interlaed array grids appear to be the most viable solution to overome these

issues but eletromagneti oupling between elements beomes a problem. For

this reason, single layer on�gurations inluding a single set of elements apable

of ahieving a dual-band phase response have been investigated. In [50℄ a single-

layer design with two di�erent sets of elements has been studied; mutual oupling

was also taken into aount by onsidering all possible element ombinations in a

unit ell. The prie to be payed was the inreased time onsumption and design

omplexity.
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Figure 3.5: Phoenix yle: evolution of the ell geometry over a omplete 360

[deg℄ yle [12℄.

In reent years a new re�etarray ell with yle evolution and with linear

phases with variations in a range bigger than 360 [deg℄ has been introdued [12℄.

The problem to be overome was that at phase transition the geometrial dif-

ferenes of neighboring ells ould be partiularly sharp, making oupling e�ets

di�ult to be aounted for. The new element presented in [12℄, and reported in

Fig. allows ahieving a full 360 [deg℄ phase overages at both bands with smooth

phase responses and low elements loss. It is omposed of two square loops and

a square path and it has the apability of oming bak to its initial shape after

a 360
◦

phase yle. Di�erently from the triple square loop element the sizes of

the outermost loop and innermost pathes are �xed. In [15℄ a dual-frequeny

phase-only synthesis method has been applied to the Phoenix element to obtain

wider frequeny ratio and higher aperture e�ienies at both bands.

The phase response of the �Square Phoenix� and �Retangular Phoenix� unit

ells will be deeply analyzed in Setion 4.
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CHAPTER 3. REFLECTARRAY ANTENNAS

3.4 Adopted solution for the omputation of sat-

tering oe�ients of generi re�etarray unit

ells

Many analytial relations based on an equivalent iruit analysis have been de-

rived for the orret omputation of the phase of the �eld radiated by pathes

with nonanonial shapes [51, 52℄. However, these formulas turn out to be rather

ompliate and analytially onerous, thus sarely attrative. The Method of Mo-

ments in the spetral domain has been demonstrated to be the best approah in

terms of e�ieny and auray, under the assumption of loal periodiity (this

assumption is valid when variations in neighboring ells are smooth) [53, 42℄.

This method allows analyzing every on�guration and is omputationally more

e�ient ompared to other three-dimensional full-wave FEM and FDTD full-

wave odes. It assumes that the sattered �eld an be expressed as a funtion of

the urrent distribution on eah ell, whih an be expanded as a summation of

basis-funtion:

J
(n,k̂)
χ =

I∑

i=1

C
(n,k̂)
i,χ D

(n)
i,χ (3.12)

where all the terms have been already desribed in Setion 3.2. In general,

there are two ategories of basis funtions D
(n)
i,χ used to represent the unknown

funtion, the entire domain and the subdomain basis funtions. Entire domain

basis funtion have been derived for dipole, square path, irular path, ross,

and Jerusalem ross geometries. The most important advantage of entire domain

basis funtions is that the size of the resulting moment method matrix is usually

small and it is thus possible to solve problems for eletrially large strutures. In

ontrast, the number of subdomain basis funtions required to aurately repre-

sent the urrent is often muh larger ompared to entire domain basis funtions.

Moreover, the Fourier transforms of the subdomain basis funtions do not deay

very rapidly.

For these reasons the Method of Moments may fail whenever subdomain basis

funtions have to be used to expand the unknown urrent indued on the metalli

ell (this happens for non-anonial shapes), thus not minimizing the number of

Floquet harmonis [42℄. In [54℄ a full-wave method based on the transmission

line tehnique has been proposed, whih allows the de�nition of a generalized

sattering matrix of eah grid and embedding layers (in ase of staked pathes).

In [55℄ a simple equivalent-iruit model has been derived in order to ompute

the response of generi frequeny-seletive-surfae with low omputational e�ort.

However, this approah shows good agreement with the more omputationally

expensive MoM approah only up to the frequeny at whih grating lobes our,

thus limiting the periodiity of the ells. To the author's best knowledge the

full-wave method or ad-ho numerial tehnique presented in the literature may

65



3.4. ADOPTED SOLUTION FOR THE COMPUTATION OF SCATTERING

COEFFICIENTS OF GENERIC REFLECTARRAY UNIT CELLS

beome an una�ordable solution in terms of omputational time whenever high

performanes in terms of bandwidth, radiation e�ieny, polarization purity are

required. The reason why this happens is beause the more omplex the problem

to be addressed (in terms of antenna requirements), the higher the number of

degrees of freedom of the unit ell required. However, when the number of

degrees of freedom inreases (i.e., parameters desribing the shape of the path,

frequeny and angles of inidene on the inoming plane waves), the number of

simulations required inreases, too.

The method proposed in order to address the problem of e�iently omputing

the response of arbitrary omplex re�etarray elements is based on an innovative

and ustomized statistial learning (SL) tehnique. The idea is to reast the

problem of omputing the sattering matrix of a path element given its spei�

features as a regression problem, by proessing the information embedded in a

set of I/O pairs in order to predit the output of unknown on�gurations.

The evaluation of the sattering oe�ients of generi re�etarray unit ells

(i.e., featuring an arbitrary number of DoF s) is �rstly re-ast as a regression

problem and then solved with a learning-by-example (LBE ) strategy able to

exploit the information provided by a redued set of FW simulations (namely

the �examples�) performed one and o�-line. In order to ompute the �examples�

an EM analysis tool based on a mode-mathing method between the free spae

Floquet's mode and the aperture or path modes of the single ell elements is

used as a FW solver [56℄[57℄. The idea beyond this method is that eah layer

of the re�etarray an be seen as a apaitive (periodi distribution of metalli

pathes on dieletri layers), indutive (periodi distribution of holes on metalli

sheets, with or without dieletri support), or mixed (multi-layer onstituted

by apaitive as well as indutive grids) struture. The generalized sattering

matrix of eah struture beomes huge if the number of interating Floquet

modes inreases (as is the ase of mixed strutures) but the method presented

in [56℄ allows to obtain a linear matrix system by expressing the voltages and

urrents on all the grid generators and by simultaneously applying the boundary

onditions in the spetral domain on eah of them.
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Chapter 4

E�ient predition of the EM

response of re�etarray antennas by

an advaned statistial learning

method

The following work has been submitted for publiation in the IEEE Transations

on Antennas and Propagation. The problem being addressed is the e�ient and

aurate predition of the eletromagneti response of omplex-shaped re�etar-

ray elements. The addressed problem is important to the Antennas and Propaga-

tion ommunity sine the synthesis of high performane re�etarrays, even more

when wideband operations and/or a areful ontrol of the ross-polarization om-

ponents of the re�eted �eld are needed, needs omplex path shapes beause of

the wider set of degrees of freedom (DoFs) potentially enabling an enhaned on-

trol of the antenna sattering properties. Unfortunately, designing a re�etarray

featuring ompliated element geometries often turns out to be a very halleng-

ing task in pratie. To determine the optimal shape of eah re�etarray element

(i.e., setting the DoFs of the re�etarray pathes), the relationships between the

desriptors of both the unit ell (e.g., geometry/size of the path metallizations)

and of the illumination (e.g., the polarization/frequeny/angle-of-arrival of the

inident �eld) with the assoiated sattering oe�ients must be known, but this

knowledge is analytially available only for "simple" unit ells desribed by few

DoFs. Otherwise, sattering matrix-vs-desriptors look-up tables (LUTs), whih

are o�-line omputed through extensive full-wave (FW) simulations, are usually

built, but the exponential grow of the number of entries of these latter with the

DoFs of the unit ells, prevent suh an approah when dealing with advaned

re�etarray geometries haraterized by arbitrary variations of many desriptors

beause of the infeasible generation and storage of the assoiated unit ell sat-

tering response databases (UCS-DBs). Therefore, innovative methodologies for

the quasi- or real-time predition of the eletromagneti response of omplex
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re�etarray elements are neessary.

The novelties of the presented work over the existing work omprise (i) the in-

trodution of a omputationally e�ient, reliable/aurate, and �exible strategy

to predit the sattering response of re�etarray elements featuring arbitrarily

omplex unit ells that potentially enables their use in next-generation and more

demanding re�etarray designs; (ii) the development and ustomization to the

vetorial ase of an advaned OK tehnique for the predition of omplex val-

ued sattering matries of periodi EM planar strutures, thus useful not only

for re�etarrays, but also generalisable to analogous eletromagneti engineering

problems (e.g., the analysis of frequeny-seletive surfaes and metasurfaes); (iii)

the development of a numerial tool that, whether integrated within a system-

by-design (SbD) loop, ould enable the optimal synthesis of next-generation re-

�etarray antennas with ontrolled o- and ross-polar radiation patterns; and

(iv) the derivation of operative guidelines on the ahievable time saving and the

arising predition auray vs. the training set size for the exploitation of suh

a OK meta-modeling in re�etarray response predition.
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REFLECTARRAY ANTENNAS BY AN ADVANCED STATISTICAL

LEARNING METHOD
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Figure 4.1: Sketh of the re�etarray antenna.

4.1 Problem Statement

Let us onsider a mirostrip re�etarray onsisting of a planar array of N pathes

displaed over the xy-plane in a regular lattie with unit ell d1 × d2 (Fig. 4.1)

on a grounded multilayer substrate. Eah n-th (n = 1, ..., N) array element is

desribed by B DoF s g (n) ,
{
g(b) (n) ; b = 1, ..., B

}
. The design of the path

arrangement is usually arried out as the synthesis of the set of N desriptor

vetors, G = {g (n) ∈ ℘; n = 1, ..., N}, ℘ being the set of admissible variations

of the unit-ell geometry with respet to a referene one, suh that the �eld

radiated by the re�etarray, E (θ, ϕ; f), is as lose as possible to a user-de�ned

one, Eref (θ, ϕ; f). More in detail, the �eld distribution E (θ, ϕ; f) is given by

[16℄[17℄[41℄

E (θ, ϕ; f) =

N∑

n=1

{[R (θn, ϕn; f) + S (θn, ϕn; f, g (n))] (4.1)

·EF (θn, ϕn; f) exp (jk0rn · r̂)}

where f is the working frequeny, r̂ , (sin θ cosϕ, sin θ sin φ, cos θ), rn = (xn, yn, 0)
is the loation of the n-th path element, k0 =

2πf
c0

is the free-spae wavenumber

(c0 being the speed of light), and (θn, ϕn) are the elevation angle and the azimuth
one of the diretion of inidene from the feed to the n-th element, respetively,
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while

EF (θn, ϕn; f) =
|rF |

|rn − rF |

EF (θn, ϕn; f)

EF (0, 0; f)
exp (jk0 |rn − rF | − |rF |) (4.2)

[
cosϕnθ̂ + sinϕnϕ̂

]

is the �eld pattern radiated by the feed on the n-th element, rF and EF (θ, ϕ; f)
being the feeder position and the element fator, respetively. Therefore, the

synthesis of a re�etarray layout radiating a �eld distribution (4.1) �tting the

desired one Eref (θ, ϕ; f) requires, for eah n-th (n = 1, ..., N) layout element,

the knowledge of both the plane wave re�etion matrix,

R (θn, ϕn; f) = {Rpq (θn, ϕn; f) ; p, q = {θ, ϕ}}, and the sattering matrix,

S (θn, ϕn; f, g (n)) = {Spq (θn, ϕn; f, g (n)) ; p, q = {θ, ϕ}} as suggested by (4.1).

Towards this end, let us notie that the entries of the matrix R do not gen-

erally depend on the path elements and they are usually available in losed-

form [16℄[17℄[41℄. Otherwise, the sattering matrix S heavily depends on the

shape/layout of the re�etarray unit ells and there are no available losed-form

expressions for the assoiated entries exept for simple geometries (e.g., ret-

angular pathes [16℄[17℄). Thus, it is generally needed to solve the following

estimation problem

Sattering Matrix Estimation Problem. Find the estimation

funtion Ŝ (z) suh that Ŝ (z) ≈ S (z), z ∈ Z.

where

z , [θ, ϕ, f, g] (4.3)

is an input vetor of dimensionB+3 in the feasibility spae Z (Z , {θ ∈ [θmin, θmax] ;
ϕ ∈ [ϕmin, ϕmax]; f ∈ [fmin, fmax]; g ∈ ℘}).
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4.2 LBE -Based Predition of the Re�etarray Unit-

Cell Response

A diret approah to address the �Sattering Matrix Estimation Problem� when

dealing with re�etarray elements for whih no analytial models are available is

that of exploiting FW numerial solvers to exhaustively populate huge LUT s - to

be used in the design phase [15℄[18℄[20℄ - mapping the I/O relationship between

the input z and the eletromagneti response funtion Ŝ (z) (i.e., the output).

Towards this end, the following two steps are arried out:

• the elevation θ, the azimuth ϕ, the working frequeny f , and the DoF s of

the array element g are �rst disretized in V [θv = θmin + (v − 1)∆θ; v =
1, ..., V ; ∆θ = θmax−θmin

V−1
℄, H [ϕh = ϕmin + (h− 1)∆ϕ; h = 1, ..., H ; ∆ϕ =

ϕmax−ϕmin

H−1
℄, W [fw = fmin + (w − 1)∆f ; w = 1, ...,W ; ∆f = fmax−fmin

W−1
℄, and

L [g
(b)
lb

= g
(b)
min + (ℑ{lb} − 1)∆g(b), lb = 1, ..., Lb; b = 1, ..., B; L =

∏B
b=1 Lb;

∆g(b) = ∆g(1), ∆g(1) ,
g
(1)
max−g

(1)
min

L1−1
℄ quantized values, respetively;

• a FW simulation for eah m-th (m = 1, ...,M ; M = V × H ×W × L)
setup of the input vetor zm (zm , [θv, ϕh, fw, gl], m = H × W × L ×
(v − 1) +W × L × (h− 1) + L × (w − 1) + l; v = 1, ..., V ; h = 1, ..., H ;

l = 1, ..., L; w = 1, ...,W ) is arried out to determine the orresponding

output funtion S (zm), thus �lling the m-th entry of the I/O UCS-DB

D , {zm,S (zm) ;m = 1, ...,M} [20℄.

Despite the simpliity and the auray in omputing the funtion S (z) thanks to
the use of FW solvers, suh an approah has atually a limited appliability sine

the size of the resulting database, M , inreases proportionally with the number

of DoF s desribing the shape of the re�etarray ell-element, thus making both

the storage and the omputation time, T FW
tot (T FW

tot , M × T FW
sim , T FW

sim being

the CPU -time for the omputation of a single S matrix) unmanageable when

omplex geometries are at hand.

To deal with omplex path shapes, suitable for �tting more hallenging radiation

onstraints, thus overoming the storage/omputational-issues of database-based

methods, the use of a statistial LBE method based on OK [21℄ is proposed here-

inafter. Suh a hoie is motivated by several reasons, the most important ones

being (i) the generalization apabilities of LBE strategies that theoretially en-

able an aurate predition of the output funtion Ŝ (z) just starting from few

I/O �examples�, T , {zu,S (zu) ; u = 1, ..., U}, olletively indiated as �train-

ing set�, of dimension signi�antly lower than that of a standard I/O database

(i.e., U ≪ M). This latter feature guarantees a non-negligible time-saving with

respet to the whole �lling of a FW -based database; (ii) unlike standard interpo-

lation tehniques, reliable preditions also without the a-priori knowledge of the
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funtional properties of S (z); (iii) the apability of the OK to deal with noise-

less training data suh as for the estimation of the sattering matrix problem

[21℄[22℄[23℄; (iv) unlike other LBE methods, the e�etive self-alibration/setup

of the OK ontrol hyper-parameters during the training phase [21℄; (v) the good

generalization apabilities and the numerial e�ieny of the OK already as-

sessed in very large problems [21℄[22℄[23℄, as well.

The Sattering Matrix Estimation Problem is solved with the OK method a-

ording to the following guidelines. First the entries of the estimated sat-

tering matrix ŜOK (z) are expressed in terms of the I = 8 omponents of

the vetorial auxiliary OK predition funtion, χ (z) , {χi (z) , i = 1, ..., I}:

ŜOK
θθ (z) = χ1 (z)+jχ2 (z), Ŝ

OK
θϕ (z) = χ3 (z)+jχ4 (z), Ŝ

OK
ϕθ (z) = χ5 (z)+jχ6 (z),

and ŜOK
ϕϕ (z) = χ7 (z) + χ8 (z). Suh an auxiliary funtion is de�ned as follows

[21℄[22℄

χ (z) = β (η) + [γ (z;η)]∗ [Γ (η)]−1 (Ψ− 1Uβ (η)) , (4.4)

where 1U is an all-ones olumn vetor of length U , β (η) is the vetor of the OK
regression parameters given by

β (η) =
(
1∗
U [Γ (η)]−1

1U

)−1
1∗
U [Γ (η)]−1Ψ (4.5)

where Ψ

Ψ , {R [Spq (zu)] , I [Spq (zu)] ; p, q = {θ, ϕ} , u = 1, .., U} (4.6)

is the matrix omprising the real part, R [ . ], and the imaginary one, I [ . ], of the
o�-line FW omputed sattering matrix oe�ients belonging to the training set

T . Moreover, γ (z;η) is a U-dimensional vetor whose u-th (u = 1, ..., U) entry,
γu (z;η), is the orrelation value between the re�etarray unit-ell desriptor z

and the u-th �example� input setup zu given by

γu (z;η) , exp (−η∗ · |z− zu|) (4.7)

when an exponential orrelation model is assumed, η , {ηb, b = 1, ..., B + 3}
being the set of the OK ontrol oe�ients [21℄[22℄[23℄. Furthermore, Γ (η)is the
U ×U matrix of the auto-orrelation values, whose u-th (u = 1, ..., U) olumn is

the vetor γ (zu;η).

The entries of ŜOK (z) are then inferred as a funtion of the vetorial preditor

funtion χ (z) in (4.4) from the knowledge of the training set

T , {zu,S (zu) ; u = 1, ..., U} one the optimal value of the ontrol vetor η

in (4.7) is spei�ed [21℄[22℄[23℄. Unlike many popular LBE tehniques, whih

need time-onsuming trial-and-error alibration proedures [33℄[32℄[34℄[58℄, the

alibration step in the OK omes from an e�etive self-tuning proess [21℄[22℄

where the optimal setup, ηopt
, is determined by looking for the minimum of the

onentrated likelihood funtion Φ (η) de�ned as

Φ (η) =

{
U
√
det [Γ (η)]tr [µ (η)∗ µ (η)]

U

}
(4.8)
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where µ (η) , {κ [Γ (η)]}−1 [Ψ− 1Uβ (η)], κ [·] being the Cholesky fatorization

operator, while det [·] and tr [·] stand for the determinant and the trae opera-

tors, respetively. Finally, the searh for ηopt = argminη {Φ (η)} is e�iently

arried out by means of a standard tehnique suh as the BOXMIN multivariate

dihotomy algorithm [59℄.

It is worth pointing out that suh an OK -based proedure for solving the Sat-

tering Matrix Estimation Problem presents some key features/advantages that

inlude (a) the straightforwardly exploitation of the multi-dimensional nature

of (4.4) for the predition of the sattering matrix S (z), (b) the self-setup of

the OK ontrol parameters (4.8) that avoids expensive trial-and-error alibra-

tion proedures, and () an impliit and e�etive proessing of noiseless data,

sine the OK preditor exatly �ts the training samples (i.e., ŜOK (zu) = S (zu),
u = 1, ..., U [21℄[22℄[23℄).
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4.3 Numerial Results

This setion is aimed at numerially validating the proposed OK -based approah

for the solution of the Sattering Matrix Estimation Problem as well as evaluating

its performane in omparison with state-of-the-art predition methods, as well.

Towards this end, the OK performane will be assessed by means of the matrix

norm error Ξ1 and the the phase mean squared error Ξ2 de�ned as follows

Ξ1 ,
1

M

M∑

m=1

∥∥∥ŜOK (zm)− S (zm)
∥∥∥
2

‖S (zm)‖
2 (4.9)

where S denotes the exat FW -omputed sattering matrix/entries, ‖·‖ being

ℓ2-norm, and

Ξ2 =
1

4M

M∑

m=1

∑

p,q={θ,ϕ}

∣∣∣∣∣
1

π
arg

[
ŜOK
pq (zm)

Spq (zm)

]∣∣∣∣∣

2

(4.10)

where the π normalization aounts for the fat that the phase is expressed in

radians, while the oe�ient

1
4
refers to the four entries of the sattering matrix.

The values of these metris allow one to quantitatively evaluate the predition

auray of the method (4.9) and its reliability in estimating the phase of the

entries of the sattering matrix (4.10), whih is the key parameter in state-of-

the-art re�etarray design methods [11℄[15℄. On the other hand, a suess index

of using a LBE -based strategy is its omputational e�ieny for a given degree

of predition auray. More spei�ally, the time saving with respet to the

time required by the FW approah to �ll the same size I/O UCS-DB D

∆T ,

∣∣∣∣
T FW
tot − TOK

tot

T FW
tot

∣∣∣∣ (4.11)

where TOK
tot is the time required by the OK to determine the M entries of D

given by

TOK
tot , T FW

set + TOK
train + TOK

test (4.12)

where T FW
set , U × T FW

sim is the time for FW -omputing the U entries of the

training set T , TOK
train is the time for theOK training proess [i.e., the omputation

of (4.8) to be substituted in (4.4)℄, and TOK
test , (M − U)×TOK

sim is the time needed

by the OK -based approah to predit the remaining M − U entries of D, TOK
sim

being the time of a single OK predition.

1

The �rst experiment is onerned with the sattering matries of a re�etarray

unit ell printed on a multi-layer dieletri substrate (Tab. 4.I) with square

lattie periodiity (d1 = λ0

3
x̂, d2 = λ0

3
ŷ, λ0 being the wavelength at the entral

1

For the sake of fairness, all the simulation time refer to non-optimized Matlab implemen-

tations exeuted on a single-ore CPU running at 2.20 GHz.
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Square ’Phoenix’ Unit Cell

dx

dy

g(1)

g(2)

g(3)

g(4)

(a)

Rectangular ’Phoenix’ Unit Cell

dx

dy

g(1)

g(2)

g(3)

g(4)

(b)

Figure 4.2: Geometry of (a) the B = 4 �Square Phoenix � unit ell and (b) the

B = 4 �Retangular Phoenix � unit ell.
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Table 4.1: Numerial Assessment (Square/Retangular Phoenix unit ell, dx =
dy =

λ0

3
) - Multilayer dieletri substrate features.

Layer Thikness [λ0℄ Relative Permittivity

Bottom 5.84× 10−3 2.8− j1.96× 10−2

Middle 2.61× 10−1 1.03− j3.09× 10−3

Top 5.84× 10−3 2.8− j1.96× 10−2

frequeny f0) and omprising multiple onentri square metalli rings/slots [i.e.,

the �Square Phoenix� ell - Fig. 4.2(a)℄ [2℄[12℄[13℄[14℄. Suh a geometry, whih

features B = 4 geometrial DoF s [Fig. 4.2(a)℄, is known to guarantee wide phase

variations with smooth geometrial hanges and to be suitable for wideband

appliations [2℄[12℄[13℄[14℄. Sine no analytial model is available [2℄[12℄[13℄[14℄,

the eletromagneti response of the orresponding re�etarray is numerially

omputed by �rst disretizing its DoF s aording to the following setup: θmin = 0
[deg℄, θmax = 40 [deg℄, V = 9, ϕmin = 0, ϕmax = 45, H = 4, fmin = 0.9f0,

fmax = 1.1f0, W = 3, Lb = 32, g
(b)
min = 0, g

(b)
max =

λ0

3
(b = 1, ..., B), and

ℑ{lb} =

{
lb b = 1
lb ×H (lb−1 − lb) b = 2, ..., B

, (4.13)

H (·) being the Heaviside funtion, then applying an EM analysis tool based

on Floquet hypotheses as a FW solver [56℄[57℄ to �ll the whole database of

L ≈ 2.85 × 104 di�erent ell desriptor on�gurations. It is worth remarking

that, despite the oarse sampling of the solution spae (only 9 angles in elevation
and 4 angles in azimuth) and the hoie of an e�ient FW method (i.e., T FW

sim ≈
1.20× 102 [s℄), the omputation of the M ≈ 3.1× 106 entries of D would require

T FW
tot ≈ 3.69× 108 [s℄ (i.e., ≈ 11.7 years).

In order to predit the entries of S (z), the preliminary o�ine step (likewise

any other LBE method) is the hoie of the U entries of the training set T
that populate Ψ in (4.6). Towards this end, several advaned algorithms (e.g.,

exploiting feature extration and adaptive seletion of the U on�gurations [58℄)

ould be adopted in priniple. Owing to the fous of this validation (i.e., the

analysis of the potentialities of a �bare� implementation of the proposed OK

strategy), a uniform random sampling approah has been adopted and the U
entries of Ψ have been randomly seleted from the M on�gurations in D. The

next step has been the OK self-alibration, whih has been performed aording

to (4.8) to dedue ηopt
. This atually ompleted the training phase of the method,

sine the predition (4.4) has been then arried out by simple substitution (see

Set. 4.2).

The plot of the resulting matrix norm error with respet to U shows that, as

expeted, the OK auray monotonially improves with the size of T [e.g.,
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ΞOK
1 ⌋

U=2.0×104

ΞOK
1 ⌋

U=5.0×102

≈ 16.9% - Fig. 4.3(a)℄. Moreover, the arising value of Ξ1 is low [i.e.,

ΞOK
1

⌋
U=2.0×104

≈ 3.8× 10−2
- Fig. 4.3(a)℄ even though U ≪M (i.e.,

U
M

≈ 6.4×

10−3
). Suh a result is even more impressive when ompared to the auray level

for the same setup when applying ompetitive state-of-the-art LBE strategies

based on Support Vetor Regression (SVR) [33℄[32℄[34℄[58℄[60℄ and Augmented

Radial Basis Funtion Network (A-RBFN ) paradigms [13℄[36℄. Indeed, both

tehniques yield a signi�antly worse Ξ1 regardless of U [e.g.,

ΞSV R
1

ΞOK
1

⌋
U=2.0×104

≈

342% and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 552% - Fig. 4.3(a)℄. This outome an be

theoretially motivated from the fat that (a) unlike OK , SVR strategies do

not guarantee to �t the training samples (i.e., in general ŜSV R (zu) 6= S (zu),
u = 1, ..., U), thus they are less e�etive when noiseless deterministi data (suh

as those produed by a FW solver) are at hand [33℄[32℄[34℄[58℄; (b) thanks to its

semi-parametri nature and the self-tuned on�guration parameters, OK a�ords

a greater �exibility than A-RBFN and this results in more aurate preditions

[61℄.

Now, let us analyze the apabilities of the OK -based method in prediting ∠S (z)
in view of its exploitation for the re�etarrays synthesis [11℄[15℄. The plot of Ξ2

versus U in Fig. 4.3(b) shows that the error is smaller than those from the SVR

and the A-RBFN for any size of the training set [e.g.,

ΞSV R
2

ΞOK
2

⌋
U=5.0×102

≈ 420% and

ΞA−RBFN
2

ΞOK
2

⌋
U=5.0×102

≈ 469%;

ΞSV R
2

ΞOK
2

⌋
U=2.0×104

≈ 466% and

ΞA−RBFN
2

ΞOK
2

⌋
U=2.0×104

≈

833%℄. Moreover, the phase behaviour turns out to be more aurately (in per-

entage) estimated than the S (z) matrix [i.e., ΞOK
2

⌋
U=2.0×104

≈ 3.05 × 10−3
vs.

ΞOK
1

⌋
U=2.0×104

≈ 3.8 × 10−2
- Fig. 4.3(b)℄. In order to give the interested read-

ers an idea of the orrespondene between the �gures of merit in Fig. 4.3 and

the assoiated predition apabilities, the plots of the magnitude and phase of

Sθθ (z) versus θ when f = f0 and ϕ = 45 [deg℄, U = 2.0 × 104 being the size of

the training set, for two sample geometries - not belonging to T - of the unit

ell of the re�etarray [i.e., Square Phoenix Cell Con�g. 1 - Fig. 4.4(a); Square

Phoenix Cell Con�g. 2 - Fig. 4.4(b)℄ with desriptors in Tab. 4.II are reported

in Fig. 4.4() - Fig. 4.4(e) and Fig. 4.4(d) - Fig. 4.4(f ), respetively.

As expeted, the OK strategy outperforms other state-of-the-art tehniques

in prediting the sattering magnitude [i.e.,

∣∣SFW
θθ (z)− SOK

θθ (z)
∣∣ < 0.9 [dB℄,∣∣SFW

θθ (z)− SSV R
θθ (z)

∣∣ < 2.4 [dB℄,

∣∣SFW
θθ (z)− SA−RBFN

θθ (z)
∣∣ < 6.2 [dB℄ - Figs.

4()-4(d)℄ and the phase [i.e.,

∣∣∠SFW
θθ (z)− ∠SOK

θθ (z)
∣∣ < 0.5 [deg℄,∣∣∠SFW

θθ (z)− ∠SSV R
θθ (z)

∣∣ < 15 [deg℄,

∣∣∠SFW
θθ (z)− ∠SA−RBFN

θθ (z)
∣∣ < 26 [deg℄ -

Figs. 4(e)-4(f )℄. These results, besides visually on�rming the quantitative in-

diations oming from Figs. 3(a)-3(b), also highlight the e�etiveness of the

OK -based preditor to reliably model the S (z) variations [e.g., Fig. 4.4(e)℄

with negligible [e.g., Fig. 4.4()℄ or only slight [i.e., Fig. 4.4(d)℄ deviations
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Figure 4.3: Numerial Assessment (Square Phoenix unit ell, dx = dy = λ0

3
,

U ∈ [5.0× 102, 2.0× 104]) - Behavior of (a) Ξ1 and (b) Ξ2 versus the size of the

training set U .
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Square ’Phoenix’ Cell - Config. 1

g(1)=0.237λ0

g(2)=0.216λ0

g(3)=0.175λ0

g(4)=0.154λ0

dx=λ0/3

d y
=

λ 0
/3

Square ’Phoenix’ Cell - Config. 2

g(1)=0.250λ0

g(2)=0.229λ0

g(3)=0.150λ0

g(4)=0.129λ0

dx=λ0/3

d y
=

λ 0
/3
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Figure 4.4: Numerial Assessment (Square Phoenix unit ell, dx = dy = λ0

3
,

f = f0, ϕ = 45 [deg℄, U = 2.0× 104) - Unit ell geometry (a)(b) and behaviour

of ()(d) the magnitude and (e)(f ) the phase of Sθθ (z) versus θ for (a)()(e)

�Con�g. 1� and (b)(d)(f ) �Con�g. 2�.
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Table 4.2: Numerial Assessment (Square/Retangular Phoenix unit ell, dx =
dy =

λ0

3
, B = 4) - Geometrial desriptors of sample unit ell layouts.

g(1) g(2) g(3) g(4)

Unit Cell [λ0℄ [λ0℄ [λ0℄ [λ0℄

Square Phoenix - Con�g. 1 0.237 0.216 0.175 0.154
Square Phoenix - Con�g. 2 0.250 0.229 0.150 0.129
Ret. Phoenix - Con�g. 3 0.266 0.237 0.152 0.185
Ret. Phoenix - Con�g. 4 0.156 0.262 0.135 0.158

from the atual values despite the omplexity of the geometry at hand [Fig.

4.2(a)℄ [2℄[12℄[13℄[14℄ and unlike the other state-of-the-art LBE methods [e.g.,

Fig. 4.4(e)℄.

To further assess and generalize these positive observations, Figure 4.5 reports the

satter plots of the real and imaginary parts of Sθθ (zm), m = 1, ...,M (Fig. 4.5).

As it an be inferred, the OK plots are loser to the ideal bisetor behavior than

the SVR and the A-RBFN ones [Fig. 4.5(a) vs. Fig. 4.5(b) and Fig. 4.5()℄. The

same onlusions hold true for the ross-polar omponent Sθφ (zm), m = 1, ...,M
(Fig. 4.6), as well. Indeed, notwithstanding the weaker magnitude [Fig. 4.6(a)

vs. Fig. 4.5(a)℄, whih is physially motivated by the square symmetri nature

of the onsidered element [Fig. 4.2(a)℄, the proposed method is able to perform

a quite reliable predition [e.g., Fig. 4.6(a)℄, while the satter louds of the SVR

[e.g., Fig. 4.6(b)℄ and the A-RBFN [e.g., Fig. 4.6()℄ signi�antly deviate from

the ideal urve.

As for the omputational issues and overall e�ieny in dealing with the �Square

Phoenix � unit ells, the plots of Ttrain vs. U in Fig. 4.7 show that the training

phase for the OK -based approah is slightly more expensive than those of the

SVR and the A-RBFN ones [solid lines - Fig. 4.7(a)℄. This was theoretially

expeted beause of the need of determining the autoorrelation matrix Γ (η),
not required by the other state-of-the-art tehniques, whose omputational load

grows quadratially with the size of the training set, U . On the other hand,

the time spent for the testing phase, Ttest [dashed lines - Fig. 4.7(a)℄, is quite

similar for all the onsidered LBE methods. Anyway, both Ttrain and Ttest are
always negligible when ompared to the time for building the U-entries training
set T , T FW

set [Fig. 4.7(a)℄, even though an highly e�ient FW solver has been

used [56℄[57℄. Thus, it turns out that the overall omputational ost, Ttot, is
dominated by the simulation time for the training set reation regardless of the

LBE tehnique at hand (Ttot ≈ T FW
set ). Consequently, the behaviour of the time

saving∆TOK
versus U is almost idential to∆T SV R

and∆TA−RBFN
[Fig. 4.7(b)℄

and it always omplies with the ondition ∆T > 99.3% [Fig. 4.7(b)℄. Suh an

outome, jointly with the results on the predition auray from the analysis
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Figure 4.5: Numerial Assessment (Square Phoenix unit ell, dx = dy = λ0

3
,

U = 2.0 × 104) - Atual versus estimated values of (a)(b)() Re {Sθθ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθθ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and ()(f ) the A-RBFN predition methods.
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Figure 4.6: Numerial Assessment (Square Phoenix unit ell, dx = dy = λ0

3
,

U = 2.0 × 104) - Atual versus estimated values of (a)(b)() Re {Sθϕ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθϕ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and ()(f ) the A-RBFN predition methods.
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of the error �gures Ξ1 and Ξ2 (Fig. 4.2), proves that the proposed OK strategy

an be reliably and e�iently exploited for �lling a very huge sattering matrix

database (M ≈ 3.1 × 106) with a onsiderable time saving with respet to an

heavy use of an albeit e�ient FW tehnique (TOK
tot ≈ 2.43 × 106 [s℄ ≈ 28 days

vs. T FW
tot ≈ 3.69 × 108 [s℄ ≈ 11.7 years - Fig. 4.7), while guaranteeing a faithful

estimation of the sattering matrix S (z) (e.g., Fig. 4.4).

But what's about the predition of the eletromagneti response from re�etarray

unit ells with stronger ross-polar sattering matrix entries? To give some feed-

baks about this question, the B = 4 �Retangular Phoenix � unit ell [12℄[13℄

in Fig. 4.2(b) has been onsidered as the next benhmark by disretizing its

desriptors/DoF s analogously to the unit ell in Fig. 4.2(a), but onsidering

ℑ{lb} =

{
lb b = 1, 2
lb ×H (lb−2 − lb) b = 3, 4

. (4.14)

This hoie orresponds to L ≈ 2.57 × 105 di�erent geometrial on�gurations

2

yielding to M ≈ 2.7 × 107 entries of D, whih orrespond to T FW
tot ≈ 5.56× 108

[s℄ (i.e., ≈ 17.6 years) sine T FW
sim ≈ 2.00 × 101 [s℄. By omparing the plots

of the matrix norm errors of the OK , the SVR, and the A-RBFN methods

[Fig. 4.8(a)℄, it turns out that the former one again outperforms the others in

terms of �delity [e.g.,

ΞSV R
1

ΞOK
1

⌋
U=2.0×104

≈ 467% and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 402%

- Fig. 4.8(a)℄ with a predition auray enhanement with the size U [e.g.,

ΞOK
1 ⌋

U=2.0×104

ΞOK
1 ⌋

U=5.0×102

≈ 15.8% - Fig. 4.8(a)℄. Moreover, the error behavior is very lose

to that for the simpler unit ell in Fig. 4.2(a) [e.g., ΞOK
1

⌋square
U=2.0×104

≈ 3.8× 10−2

vs. ΞOK
1

⌋rect
U=2.0×104

≈ 3.7 × 10−2
- Fig. 4.3(a) vs. Fig. 4.8(a)℄ even though

U ≪M (i.e.,

U
M

≈ 7.4× 10−4
).

For illustrative purposes, the plots of |Sθθ (z)| and |Sθϕ (z)| for two sample unit

ell geometries [Tab. 4.II℄ not belonging to T are shown in Fig. 4.9 [�Retangular

Phoenix Cell - Con�g. 3 � - Fig. 4.9(a) and Tab. 4.II℄ and Fig. 4.10 [�Retangu-

lar Phoenix - Cell Con�g. 4 � - Fig. 4.10(a) and Tab. 4.II℄. As it an be observed,

the omparisons among the OK , the SVR, and the A-RBFN preditions show

that (i) the behaviour and the values of

∣∣SOK
θθ (z)

∣∣
[Fig. 4.9(b) and Fig. 4.10(b)℄

and

∣∣SOK
θϕ (z)

∣∣
[Fig. 4.9() and Fig. 4.10()℄ math very well the orresponding

FW results with a maximum deviation smaller than 0.6 dB [Fig. 4.10(b)℄, (ii)

the SVR and the A-RBFN preditions often turn out to be inaurate [e.g., Fig.

4.9(b)℄ even providing qualitatively di�erent trends with respet to the atual

eletromagneti response. For instane,

∣∣SSV R
θθ (z)

∣∣Config−3
inreases with θ until

θ = 30 [deg℄, while

∣∣SFW
θθ (z)

∣∣Config−3
dereases in the same range [Fig. 4.9(b)℄.

2

Thanks to the lower degree of symmetry of the layout in Fig. 4.2(b) than that in Fig.

4.2(a) (i.e., one-axis symmetry vs. two-axes symmetry), a signi�antly greater number of

geometrial variations is feasible.
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Figure 4.7: Numerial Assessment (Square Phoenix unit ell, dx = dy = λ0

3
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U ∈ [5.0× 102, 2.0× 104]) - Behaviour of (a) TtrainandTtest, and (b) ∆T when

using the OK, the SVR, and the A-RBFN preditors.
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Moreover,

∣∣SA−RBFN
θϕ (z)

∣∣Config−4
exhibits an osillating behaviour whih is not

present in

∣∣SFW
θϕ (z)

∣∣Config−4
[Fig. 4.10()℄. Similar onsiderations hold true for

the plots of ∠Sθθ (z) and ∠Sθϕ (z) in orrespondene with the same sample on-

�gurations [i.e., �Con�g. 3 � - Figs. 4.9(d)-4.9(e); �Con�g. 4 � - Figs. 4.10(d)-

4.10(e)℄:

∣∣∠SFW
θθ (z)− ∠SOK

θθ (z)
∣∣ < 0.8 [deg℄,

∣∣∠SFW
θθ (z)− ∠SSV R

θθ (z)
∣∣ < 14.5

[deg℄,

∣∣∠SFW
θθ (z)− ∠SA−RBFN

θθ (z)
∣∣ < 4.0 [deg℄ for �Con�g. 3 � [Figs. 4.9(d)-

4.9(e)℄ as it an be also inferred from the behaviour of Ξ2 in Fig. 4.8(b).

Suh outomes on the reliability of the OK -based approah in handling re�e-

tarray elements featuring non-negligible ross-polar entries are further assessed

by the satter plots of the real and imaginary parts of Sθθ (zm), m = 1, ...,M
(Fig. 4.11) and of Sθϕ (zm), m = 1, ...,M (Fig. 4.12).

As for the e�ieny/time saving when addressing suh a benhmark, Figure

4.13(a) on�rms that (i) as expeted, the OK training phase is more expensive

than the SVR and the A-RBFN ones [solid lines - Fig. 4.13(a)℄, (ii) the testing

phases of all onsidered LBE methods have analogous durations [dashed lines -

Fig. 4.13(a)℄, but it points out that (iii) although Ttrain and Ttest are smaller

than T FW
set regardless of the adopted method - as in the previous benhmark

example [Fig. 4.7(a)℄ - their values are no more negligible [e.g., TOK
train

⌋
U=2.0×104

≈

3.16 × 104 vs. TOK
test

⌋
U=2.0×104

≈ 6.15 × 104 [s℄ vs. T FW
set

⌋
U=2.0×104

≈ 4.00 × 105

[s℄ - Fig. 4.13(a)℄. This is due to the fat that T FW
sim is signi�antly smaller

than in the previous test ase (i.e., T FW
sim

⌋
rect.

≈ 20 [s℄ vs. T FW
sim

⌋
square

≈ 120 [s℄)

as a onsequene of the higher e�ieny of the FW tehnique in handling the

referene eletrial layout [i.e., 1 slot vs. 2 onentri slots - Fig. 4.2(b) vs. Fig.

4.2(a)℄. Therefore, ∆TOK
is here slightly lower than ∆T SV R

and ∆TA−RBFN

[Fig. 4.13(b)℄, even though it must be notied that ∆TOK > 99.9% even when

U = 2.0× 104 [Fig. 4.13(b)℄, whih turns out in TOK
tot ≈ 4.93× 105 [s℄ ≈ 5.7 days

vs. T FW
tot ≈ 5.56 × 108 [s℄ ≈ 17.6 years [Fig. 4.13℄, while guaranteeing exellent

estimation auraies (Fig. 4.8).

The last numerial experiment is devoted to the assessment of the performane

of the proposed LBE method when handling geometries with a wider lattie

periodiity [d1 = 0.7λ0x̂, d2 = 0.7λ0ŷ - Figs. 4.14(a)-4.14(b) vs. d1 = λ0

3
x̂,

d2 = λ0

3
ŷ - Fig. 4.2, Figs. 4.4(a)-4.4(b), Fig. 4.9(a), and Fig. 4.10(a)℄ [62℄.

Moreover, two di�erent B = 3 unit ells featuring either a single �Square Ring

Slot� [SRS - Fig. 4.14(a)℄ or a �Cross Slot� [CS - Fig. 14.4(b)℄ have been

onsidered [62℄[20℄. By setting V = 18, H = 10, W = 6, Lb = 16, g
(b)
min = 0,

g
(b)
max = 0.2λ0 (b = 1, ..., B),

ℑSRS {lb} =

{
lb b = 1
lb ×H (lb−1 − lb) b = 2, 3

(4.15)

ℑCS {lb} =

{
lb b = 1
lb ×H (l1 − lb) b = 2, 3

(4.16)
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Figure 4.9: Numerial Assessment (Retangular Phoenix unit ell - �Con�g. 3�,
dx = dy =

λ0

3
, f = f0, ϕ = 45 [deg℄, U = 2.0× 104) - Unit ell geometry (a) and

behaviour of (b)() the magnitude and (d)(e) the phase of (b)(d) Sθθ (z) and
()(e) Sθϕ (z) versus θ.
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Figure 4.10: Numerial Assessment (Retangular Phoenix unit ell - �Con�g. 3�,
dx = dy =
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3
, f = f0, ϕ = 45 [deg℄, U = 2.0× 104) - Unit ell geometry (a) and

behaviour of (b)() the magnitude and (d)(e) the phase of (b)(d) Sθθ (z) and
()(e) Sθϕ (z) versus θ.

88



CHAPTER 4. EFFICIENT PREDICTION OF THE EM RESPONSE OF

REFLECTARRAY ANTENNAS BY AN ADVANCED STATISTICAL

LEARNING METHOD

OK SVR A-RBFN

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

P
re

di
ct

ed
 R

e[
S^ θθ

(z
m

)]
, m

=
1,

...
,M

Actual Re[Sθθ(zm)], m=1,...,M

Rectangular ’Phoenix’ Unit Cell, OK

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

P
re

di
ct

ed
 R

e[
S^ θθ

(z
m

)]
, m

=
1,

...
,M

Actual Re[Sθθ(zm)], m=1,...,M

Rectangular ’Phoenix’ Unit Cell, SVR

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1
P

re
di

ct
ed

 R
e[

S^ θθ
(z

m
)]

, m
=

1,
...

,M
Actual Re[Sθθ(zm)], m=1,...,M

Rectangular ’Phoenix’ Unit Cell, A-RBFN

(a) (b) ()

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

P
re

di
ct

ed
 Im

(S^ θθ
(z

m
)]

, m
=

1,
...

,M

Actual Im(Sθθ(zm)], m=1,...,M

Rectangular ’Phoenix’ Unit Cell, OK

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

P
re

di
ct

ed
 Im

(S^ θθ
(z

m
)]

, m
=

1,
...

,M

Actual Im(Sθθ(zm)], m=1,...,M

Rectangular ’Phoenix’ Unit Cell, SVR

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

P
re

di
ct

ed
 Im

(S^ θθ
(z

m
)]

, m
=

1,
...

,M

Actual Im(Sθθ(zm)], m=1,...,M

Rectangular ’Phoenix’ Unit Cell, A-RBFN

(d) (e) (f )

Figure 4.11: Numerial Assessment (Retangular Phoenix unit ell, dx = dy =
λ0

3
,

U = 2.0 × 104) - Atual versus estimated values of (a)(b)() Re {Sθθ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθθ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and ()(f ) the A-RBFN preditors.
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Figure 4.12: Numerial Assessment (Retangular Phoenix unit ell, dx = dy =
λ0

3
,

U = 2.0 × 104) - Atual versus estimated values of (a)(b)() Re {Sθϕ (zm)},
m = 1, ...,M , and (d)(e)(f ) Im {Sθϕ (z)} when using (a)(d) the OK, (b)(e) the

SVR, and ()(f ) the A-RBFN preditors.
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using the OK, the SVR, and the A-RBFN preditors.
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resulting in L = 5.25 × 102 di�erent admissible geometrial on�gurations

3

, it

turns out that D omprisesM ≈ 5.7×105 entries, whih orrespond to a ompu-

tational load of T FW
tot ≈ 1.4 × 107 [s℄ (i.e., ≈ 164 days) when using a FW solver

(T FW
sim ≈ 2.50× 101 [s℄) to �ll the whole LUT .

Although the lattie periodiity is di�erent and qualitatively less smooth phase

variations arise [62℄, analogous feedbaks on the higher auray of the OK

strategy an be drawn in terms of both magnitude [e.g.,

ΞSV R
1

ΞOK
1

⌋
U=2.0×104

≈

623% and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 1535% - Fig. 4.14();

ΞSVR
1

ΞOK
1

⌋
U=2.0×104

≈ 235%

and

ΞA−RBFN
1

ΞOK
1

⌋
U=2.0×104

≈ 659% - Fig. 4.14(d)℄ and phase predition [e.g.,

ΞSV R
2

ΞOK
2

⌋
U=2.0×104

≈ 328% and

ΞA−RBFN
2

ΞOK
2

⌋
U=2.0×104

≈ 899% - Fig. 4.14();

ΞSV R
2

ΞOK
2

⌋
U=2.0×104

≈ 253% and

ΞA−RBFN
2

ΞOK
2

⌋
U=2.0×104

≈ 551% - Fig. 4.14(d)℄. Con-

erning the omputational osts, one again it is veri�ed that the OK approah

is able to yield the best trade-o� between time saving [∆TOK > 96% - Figs.

4.15()-4.15(d)℄ and auray, thus its andidature as a suitable and ompeti-

tive tool for e�iently [TOK
tot ≈ 5.17 × 105 [s℄ ≈ 5.9 days vs. T FW

tot ≈ 1.4 × 107

[s℄ ≈ 164 days℄ and faithfully generating large re�etarray sattering matrix

databases (M ≈ 5.7× 105).

3

The number of geometrial variations L is signi�antly smaller than in the previous exam-

ples sine B = 3 (while B = 4 for the geometries in Fig. 4.2).
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Figure 4.14: Numerial Assessment (dx = dy = 0.7λ0, B = 3, U ∈
[5.0× 102, 2.0× 104]) - Geometries (a)(b) and behavior of ()(d) Ξ1 and (e)(f )

Ξ2 versus the size of the training set U for (a)()(e) the �Square Ring Slot� unit

ell and (b)(d)(f ) the �Cross Slot� unit ell.
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Figure 4.15: Numerial Assessment (dx = dy = 0.7λ0, B = 3, U ∈
[5.0× 102, 2.0× 104]) - Behaviour of (a)(b) Ttrainand Ttest, and ()(d) ∆T when

using the OK, the SVR, and the A-RBFN predition methods for (a)() the

�Square Ring Slot� unit ell and (b)(d) the �Cross Slot� unit ell.
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Chapter 5

Conlusions

An innovative LBE method based on an Ordinary Kriging strategy has been

proposed to e�iently and aurately model the sattering response of omplex-

shaped re�etarray unit ells. Towards this end, the evaluation of the sattering

oe�ients of passive elements with an arbitrary number of (geometrial and

eletrial) DoF s has been formulated as a vetorial regression problem, whih

has been then solved through a ustomized OK tehnique. Seleted and repre-

sentative results from numerial experiments dealing with di�erent unit ell ge-

ometries (inluding ross-slot , ring-slot , and square/retangular Phoenix shapes)

have been reported to assess the auray, the numerial e�ieny as well as the

ahievable time-saving, and the �exibility of the proposed approah also in om-

parison with other ompetitive state-of-the-art mahine learning methods based

on SVR and A-RBFN algorithms.

From the numerial analysis, the following main outomes an be drawn:

• thanks to the OK formulation, the optimal values of the ontrol hyper-

parameters are reliably self-on�gured during the training phase to provide

a faithful predition of the magnitude [e.g., Fig. 4.4()℄ and the phase [e.g.,

Fig. 4.4(e)℄ of the sattering oe�ients of omplex re�etarray unit ells;

• the predition auray guaranteed by the proposed methodology turns out

to be higher than that from SVR and A-RBFN methods in all onsidered

benhmark on�gurations [e.g., Fig. 4.3 and Fig. 4.8℄;

• although the OK training phase is slightly more time-expensive than that

for SVR and A-RBFN [e.g., solid lines - Fig. 4.7(a)℄, the arising time

saving (∆TOK > 96% - Fig. 4.15) is always very similar to that yielded

with the SVR and the A-RBFN strategies [e.g., Fig. 4.7(b)℄;

• thanks to the exellent trade-o� between auray and omputational e�-

ieny, the proposed predition method an be pro�tably used to �ll very

huge sattering matrix databases and it represents a very ompetitive al-

ternative to the heavy use of e�ient FW solvers (e.g., TOK
tot ≈ 5.7 days

vs. T FW
tot ≈ 17.6 years - Fig. 4.13).
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In addition to these key-features, the main methodologial advanes of this re-

searh work omprise (i) the introdution of a �exible strategy to e�iently

model the sattering response of arbitrarily omplex re�etarray unit ells, thus

potentially enabling their use in next-generation and more demanding re�etar-

ray designs, (ii) the development and the ustomization to the vetorial ase

of an advaned OK tehnique for the predition of omplex-valued sattering

matries of periodi EM strutures, and (iii) the derivation of operative guide-

lines on the ahievable time saving and the arising predition auray vs. the

training set size for the exploitation of suh an OK meta-modeling in re�etarray

response predition.

Future works will be aimed at ombining the proposed OK algorithm with ad-

vaned approahes for the seletion of the training samples and/or the redution

of the feature spae [58℄. Moreover, the integration of an OK -based meta-model

in the SbD framework for the automated synthesis of large re�etarrays is under

development. Finally, thanks to its generality (ii), the extension of the same OK

paradigm to other popular periodi EM strutures (suh as frequeny-seletive

surfaes and metasurfaes) is on-going.
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