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October 2018





Acknowledgements

I had a remarkable research experience during my Ph.D. journey. I am deeply indebted to
my tutor Martin Hanczyc and thesis advisor Ozan Kahramanoğulları for their invaluable
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Abstract

Biological regulatory systems are complex due to their role in living organisms in modulating
precise responses to changes in internal and external conditions. In this respect, mathematical
models have become essential tools to address their complexity for a better understanding
of their mechanisms. The vision here, based on integrating experimental and theoretical
techniques, provides a systematic means to quantitatively study the characteristics of the
interactions that occur in living organisms. The outcome of such an endeavour should provide
insights in terms of predictions and quantifications for further investigations in systems and
synthetic biology.

In this thesis, we establish an integrated modelling framework that can ensure the interac-
tion of experimental biology with the development of quantitative mathematical descriptions
of biological systems. To this end, we develop a framework to simulate and analyse bio-
logical regulatory systems by integrating different layers of regulatory information. The
work herein presents a biological model development workflow in terms of a step by step
approach, highlighting challenges and “real life” problems associated with each stage of
model development.

In the first part, we have focused on applying systems and synthetic biology modelling
tools to the phosphate system at the cellular and genetic levels in Escheria coli. Then, we have
analysed the interaction mechanisms and the dynamic behaviour of the phosphate starvation
response deactivation and evaluated the role of phosphatase activity. We have investigated
how the properties of these signalling systems depend on the network structure. Moreover, we
have constructed detailed transcriptional regulatory network models and models for promoter
design. In the second part, we have designed a multi-level dynamical set up by providing
a novel closed loop whole body model of glucose homeostasis coupled with molecular
signalling. We have then developed a system embracing the intracellular metabolic level, the
cellular level involving the dynamics of the cells, the organ level, and the processes within
the whole body. The output of each model directly has been fed with the variables and the
parameters of the next aggregated model. This allowed us to observe the metabolic changes
that occur at all levels and monitor inter-level communications for Type 2 Diabetes disease.
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the ABC transporter. This is done by relaying the signal via PhoU. When
the system is active, PhoU does not stabilise PhoR and PhoR passes to the
active state (PhoRa). PhoRa phosphorylates PhoB. Phosphorylated PhoB
then acts as a transcription factor for the operon. Deactivation: PhoR acts as
a phosphatase on phosphorylated PhoB. When environmental Pi is in excess,
Pho regulon is inhibited. PhoU stabilises PhoR. This prevents PhoR from
autophosphorylating itself. The signal is thus propagated to PhoR, resulting
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The shape resembling an AND gate requires both incoming signals to be
present for output signal. The shape resembling a single input NOT gate
requires the incoming signal to be absent to produce a signal. (1) Pi is taken
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dimers from autphosphorylating, and PhoR becomes repressive (Rr). PhoR
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and 100 µM and a time-course of 4.5 hours is considered. PhoR activity is
plotted in blue when Pi concentrations is 0 µM, it is represented with red
when external Pi concentrations is 50 µM, and orange colour is used when
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Chapter 1

Introduction

The goal of biology is to understand the functioning principles of biological systems. In
early 1950s, Watson and Crick identified the structure of DNA [171]. This identification
revolutionised the outlook on biological systems, especially from the point of evolution
as a force acting on these systems, and the complex phenomena such as diseases. Since
then, our understanding of the mechanisms of biological systems has significantly increased
[91]. Now, it is known that the functioning of living organisms is controlled by networks
of genes, proteins, small molecules, and their mutual interactions [130]. Moreover, the
interactions between different components are universal characteristics of biological systems.
The presence of such interactions determine the complexity of biological networks.

The complexity of biological phenomena highlight the need for looking at each com-
ponent and its interactions, and consequently using proper mathematical tools to analyse
and predict their functioning. Inter-disciplinary research in biology have made biological
systems more comprehensible thanks to the emerging fields of systems and synthetic biology
[27, 108]. Systems and synthetic biology are relatively new fields of biology that aim to
develop a quantitative understanding of biological systems [91]. Prediction, control, design
and understanding arise mainly from modelling biological systems by using formal models
[108].

In this dissertation, we have used various modelling techniques in combination with wet-
lab experiments to address biological questions related to Escheria coli (E. coli) phosphate
response system and human glucose homeostasis. Within this framework, this thesis contains
articles I contributed to that focus on these topics. These works, which are published in
Artificial life conference ECAL 2017 [164] and in the journal of PloS ONE [165], are
included in Chapters 4 and 5. At the time of writing, the work presented in Chapter 3 is
accepted for publication in the proceedings of ALIFE 2018.
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Here, I outline the scope of this chapter, which focuses, in particular, on models that arise
in systems and synthetic biology. Section 1.1 gives an overview of systems and synthetic
biology. Section 1.2 reviews the biological background of the systems studied in the models.
The chapter concludes in Section 1.3 with an outline of the contributions.

1.1 Systems and Synthetic Biology

Systems biology aims at developing formal understanding of complex biological systems in
their entirety by integrating all levels of information into cohesive models [158]. Biological
systems consist of large numbers of components from gene networks to complete organisms
[155]. The behaviour of a system at any given level of biological organisation is also
dependent on the outputs and properties of systems at various levels [155].

The working assumption of the systems approach to biology is that the function and
behaviour of biological systems can be understood by studying the component parts and
their interactions. A complementary point of view in systems biology is that the hierarchy of
biological levels and the ways in which they interact are also important [40]. This requires
methods for studying different levels of biological organisation [39].

Multi-level methods help to analyse each component separately and investigate the effect
of their interactions. Application of multi-level methods to biological complexity provides
new observations. Such a perspective can help to to diagnose, define disease predilection, and
develop the treatment strategies. This way, it offers an opportunity to redefine our approach
to disease [127].

The rapidly-developing discipline of synthetic biology can be defined as the engineering
of biology by exploiting the knowledge gained through systems biology [137]. The rela-
tionship between the two fields is analogous to the difference between forward and reverse
engineering. Synthetic biology aims to build new biological networks to perform specific
tasks, and modify the networks in order to achieve desired functionalities [108]. Thus, it col-
laborates with biology, mathematical modelling, information technology and biotechnology.
Such a combination of disciplines allows us to construct robust and predictable synthetic
networks. Moreover, it provides new perspectives for the production of chemicals in more
environmentally friendly manners, with objectives in bioremediation, pollutant detection,
and less expensive and more efficient energy production [25, 140].

Synthetic biology approach has a significant role in the development of bioremediation
and programmable aspects of biology for sustainable environment strategies. Microorgan-
isms can be redesigned using synthetic biology methods to produce environmental friendly
products and used in bioremediation. Examples to these include biosensors that are designed
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to signal the presence of environmental contaminants [89]. Other examples are engineered
microorganisms that are enabled to transform the hazardous environmental pollutants, and
recycle waste by converting agricultural waste into useful products [43].

Modelling in synthetic biology has contributed to the development of numerous modules
for the precise control of protein expression and new devices such as toggle switch [57], an
oscillator [42] and gene regulatory networks [109]. There is an increasing number of new
results in this field. Moreover, through the development of applications from the design of
gene circuits to robotic control, synthetic biology is becoming a global research enterprise.

The use of systems and synthetic biology models provide unprecedented opportunities
in health and fight against disease, agriculture, manufacturing, energy production, and
environmental remediation. The models in both systems and synthetic biology are able
to formalise the knowledge about the biological process. They are also able to identify
inconsistencies between hypotheses and observations [108]. Therefore, models can be used
to predict the biological behaviours in untested conditions. Larger-scale models, which
capture the interactions between hierarchical levels in the system, can provide predictions on
the broader aspects of the phenotype. From this point of view, dynamical systems, as in this
thesis, can have a fundamental role in investigations on biological systems, as well as in the
design of synthetic living devices.

1.2 Research Area

1.2.1 Phosphate management system in Escherichia coli

The world is facing the problem of various forms of environmental pollution. For example,
nutrient imbalance in water can give rise to the water contamination. Inorganic phosphate
(Pi) is one of the main nutrients contributing the water quality problems when it is high in
amount [150]. Microorganisms can be used in bioremediation to degrade Pi and to overcome
the water contamination due to Pi [94]. Microorganisms can survive in many different
environmental conditions due to their rich and versatile regulatory capabilities. Moreover,
the nutritional capacity of microorganisms is completely varied, which brings about the
possibility to use microorganisms as bioremediation of environmental pollutants. In this
respect, the development of eco-friendly bioreactors that input waste water, carbon dioxide,
and sunlight to output clean water, electricity, biomass and other mineral resources is a
frontier in biotechnology with important implications.

E. coli provide diverse mechanisms and pathways to transform and transfer the Pi [168,
169]. E. coli have been used in many scientific investigations due to their ease of genetic
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manipulation that enables them to be used in bioremediation with bioreactors [22, 166]. This
makes E. coli one of the most well studied microorganisms. Therefore, E. coli provide a well
suited test-bed for studying Pi intake together with protein-protein interactions in the intake
pathways as well as in relation to genetic components.

The aim of the work in this dissertation in the context of the European project Living
Architecture (LIAR) is to provide an integrated modelling framework across different scales to
quantify the metabolites and biochemical mechanisms that feedback to the larger scale output
of the entire system. To this aim, we have constructed detailed phosphate regulation and
transcriptional regulatory network models that describe how E. coli sense the environmental
Pi and import it into the cell. This way, we explore how the coupling of modelling with wet-
lab experiments at different scales in synthetic promoter design can drive the technologies
targeted at the inorganic phosphate intake and their use in bioremediation and synthetic
biology applications.

The physiological characteristics of Pi transport have been extensively studied, especially
in E. coli. In E. coli, there are two major phosphate transport systems; the low affinity
phosphate inorganic transport (Pit) system, and the high affinity phosphate specific transport
(Pst) system [168, 169]. Pit system is constitutive, and is generated by electron transport.
It is used by E. coli when the external inorganic phosphate is abundant [168, 169]. On the
other hand, Pst system is an ATP-binding cassette transporter (ABC transporter) and it is
active when the external Pi concentration is limited [81, 95, 168, 169]. E. coli sense the
external Pi changes via the Pst system. In other words, the Pst system is responsible for
sensing the environmental changes, also importing the Pi into the cell. Moreover, the Pst
system relays the incoming signal to the two-component system (TCS) to adapt to current
conditions. TCS allows E. coli to receive the signal on the environmental changes from Pst,
and responds to the changes by regulating the expression of Phosphate (Pho) regulon genes
[56, 95, 168, 169].

Pho regulon is a global regulatory circuit involved in bacterial phosphate management
[95, 168, 169]. Previous studies have shown that the two-component system, the sensor
kinase PhoR and the response regulator PhoB, participate in sensing the Pi level in the
environment and regulate the expression of genes that are directly involved in Pi, forming
the Pho regulon [95, 168, 169]. The expression of genes of the Pho regulon is inhibited
when the environmental Pi is in excess. This inhibition requires an inhibitory form of PhoR
and the protein PhoU. PhoU is essential for the repression of the Pho regulon under the
high-phosphate conditions [168, 169]. While the precise mechanism of how PhoU acts is
not yet understood, it is known that PhoU acts as a messenger protein and interacts with Pst
and TCS, in particular with PhoR. Moreover, the members of the Pst and TCS system and



1.2 Research Area 5

PhoU protein are induced by Pho regulon [56, 95, 168, 169]. This is a topic that I address in
Chapter 3.

Although much is known about the molecular aspects of this signal transduction pathway,
a comprehensive and structured mechanistic model of the Pho regulon is currently not
available. A better understanding of the Pho regulon system can be supported and propagated
by modelling in combination with synthetic biology methods. Results of modelling can
highlight challenges and suggest modified strategies for developing and characterising
artificial circuits. This allows us to ask whether the system as a whole may function more
robustly and operate as an artificial biological circuit capable of programmed responsiveness
towards the desired outcomes.

1.2.2 Multi-level model of glucose homeostasis

The human body requires continuous and stable glucose supply for maintaining its biological
functions. Stable glucose supply comes from the homeostatic regulation of the blood glucose
level. The maintenance of blood glucose homeostasis, which is controlled by various glucose
consuming or producing organs, tissues and hormones, is complex and vital. Moreover, the
impairment of glucose homeostasis can lead to the severe disease Type II Diabetes Mellitus
(T2DM) [46]. The development of T2DM goes through different stages of impairment
of the glucose-insulin system, and often through insulin resistance. Insulin resistance is
the impairment of the regular crosstalk between insulin and the cells [36]. The latter does
not respond adequately to normal levels of insulin [175], requiring always more insulin
to stimulate the glucose uptake. The more the cells are insulin resistant, the more severe
are the consequences for the organism. After decades of investigations, it is becoming
clear that diabetes is a complex and highly heterogeneous disease [65]. The knowledge
gap still hampers a comprehensive understanding of the etiologic processes at the level of
individual organs or tissues, and subcellular derangements ultimately affecting the whole
body metabolism.

The etiology and pathophysiology of T2DM are still partly unknown and have been
investigated for decades. The crosstalk between glucose/insulin and the cells is a very
complex mechanism, where many actors play different roles in the promotion or inhibition of
the consequent glucose uptake. In this context, mathematical models of glucose and insulin
dynamics are becoming fundamental tools for the diagnosis, description and understanding
of T2DM. Such models describe the physiology of the glucose insulin system according
to different levels of accuracy [33, 161]. A first such modelling milestone is the so called
“minimal model”, which considers only glucose and insulin and is still widely used. Models
including a broader range of physiological variables were introduced later, for instance,
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Celeste et al. [20] introduced the glucagon hormone. Toghaw et al. [161] introduced ghrelin
effects; Brubaker et al. [15] and later De Gaetano et al. [33] proposed models including the
incretin hormones.

In this work, a step forward was made by proposing a novel multi-level and closed loop
model of glucose homeostasis and insulin signaling pathway. This model simultaneously
considers glucose, insulin, glucagon, incretins, ghrelin and leptin at the same time, and key
tissues and organs such as the stomach, intestine, liver, pancreas, muscles and adipocytes.

The closed loop in the herein introduced model allows us to connect the input and the
output of the system. This possibility dramatically increases the modeller capabilities of
investigating the biological system, while providing a way of testing regulative phenomena
that work at different time scales and that can have a delayed effect on the overall dynamics
of the system. The idea here is to consider at the same time different (hierarchical) levels of
abstraction of the same biological phenomenon. Whole body, organ, cellular and molecular
levels are all strictly interconnected layers and physiological variations in one will inevitably
affect the others. As most diseases, T2DM occurs and is diagnosed at the whole body level,
but it arises and is maintained at the molecular and cellular levels. A multi-level approach
helps us to understand the mechanism of the disease. For example there are multi-scale
models that include the pancreas [51], the intestine [17] or the adipose tissue [126].

Since insulin resistance in adipocytes can influence other tissues, such as muscles and liver
[72], and obesity is one of the main risk factors for the development of T2DM, the present
work focuses on the molecular level of adipocytes and on the interactions with the whole
body level through glucose, insulin and leptin. In this thesis, a novel and comprehensive
multi level and closed loop model of whole body glucose dynamics is enriched with an
additional layer that zooms on to the adipocyte molecular processes of glucose intake.

1.3 The Thesis Outline

Biological systems involve many types of interactions, including metabolic reactions, intra
and extra-cellular interactions, protein interactions, and transcriptional regulations. Con-
sequently, biological systems form complex networks and play important roles in living
organisms to adapt to the environment, and develop different phenotypes. Many mechanisms
and interactions of these networks are still not clear. Therefore, modelling plays a key
role in the process to systematically understand, reconstruct, analyse and integrate these
complex systems. The aim of this dissertation is to develop a such framework to analyse and
reconstruct biological systems by integrating different layers of information.
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This dissertation is organised as follows:

Chapter 2: This chapter gives an overview of the general concepts in using mathemat-
ical modelling to describe biological systems. First, the concepts of model, system and
simulation are explained. Some definitions and theoretical background are presented here in
order to better understand the theories employed. This chapter serves as a basis of modelling
knowledge for later chapters of the dissertation.

Chapter 3: We study how PhoU protein interacts and PhoU regulon adapts to envi-
ronmental changes. We present comprehensive analysis of the switching response of two
component system (TCS) that reveal the impact of PhoU activity on the switch system. A full
mathematical analysis is developed for two possible interactions of the PhoU and different
external inorganic concentration levels. We present preliminary results about the modelling
and construction of the intracellular organisation of Pho regulon proteins in E. coli. We
carry out a systematic comparison of PhoU interaction predictions obtained by deterministic
models. By comparing the results of the two predicted frameworks, we conclude that the
type of biochemical mechanisms have a significant effect on the response time. The research
performed in this chapter has been funded by COSBI and the European Union project LIAR.
The work presented here appears in the proceedings of the ALIFE conference in July 2018.

Chapter 4: We present a mathematical and computational model of the E. coli TCS.
We build the model for TCS signaling mechanism together with the regulatory promoter
analysis. Our approach takes into account the key regulatory interactions of the Pho regulon
and potential synthetic promoters. We demonstrate the feasibility of using the library of
synthetic promoters in different external Pi conditions in E. coli. We detail the differential
equations of the model based on standard translation of chemical reaction networks with
respect to mass action kinetics. By using both deterministic and stochastic simulations, we
analyse the system response and the emergent dynamics. All the steps are reported, which
include model derivation, experimental design, parameter identification and model validation.
The data presented in this Chapter have been derived in collaboration with Juan Nogales
group (CNB, Madrid). Part of the work presented here has been published in the proceedings
of the ECAL conference in September 2017 [164]. The research performed in this chapter
has been done for the European Union project LIAR. At the time of writing, the work in this
chapter has been submitted to the journal of Scientific Reports.
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Chapter 5: A novel multi-level and close loop glucose homeostasis model is presented.
The glucose dynamics zoomed on the adipocyte molecular processes of glucose intake is
described in the model. We have detailed the physiology of the system for the whole body
and molecular level for healthy and diabetics conditions. All the equations, the parameters
and the initial values of the model are reported. Model results and data are expressed with
the relative parameter fitting and validation methods. The research performed in this chapter
has been funded by the COSBI. The work presented here has been published in the journal
of PloS ONE in February 2018 [165].

Chapter 6: Conclusions are drawn and possible directions for future work are suggested.



Chapter 2

Design Approaches in Systems and
Synthetic Biology

The complexity of biological phenomena inspires humans to obtain insights into the mech-
anism of biological systems in order to design new products or find solutions to various
problems of biological nature. Systems and synthetic biology are interdisciplinary ap-
proaches that aim at improving our ability to understand and predict these complex biological
mechanisms, and possibly control them.

Systems and synthetic biology both explore the biological paths by the application of
other disciplines such as physics, computer science, mathematics, chemistry, and engineering.
Systems biology sets out for a quantitative and mechanistic understanding of the functionality
of the biological systems [158]. Moreover, synthetic biology focuses on designing artificial
components to achieve particular functions of the biological systems [137]. In this endeavour,
understanding and design are interdependent aspects, therefore, there is no simple distinction
between basic and applied science [63]. Moreover, the new knowledge obtained via systems
biology guides the design of better synthetic biology tools, which can in turn provide insights
to systems biology.

This work addresses dynamic models of biochemical and multi-level molecular networks.
These models are abstractions of reality. We take up the complementary use of modelling
and computation in the study of intracellular networks and their interactions with other
cellular components. We analyse such mathematical models that simulate the behaviour of
the networks and design the analysis of evolutionarily engineered constructs.
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2.1 Dynamic Mathematical Modelling in Biology

A biological system is a complex network of interacting components. Better understanding
of complex biological systems allows us to identify and characterise the individual molecules
in the system. Moreover, it also helps us to obtain a better understanding of the interactions
between molecules and pathways. For example, the human body consists of approximately
1014 individual cells. Each of them is a complex system comprising thousands of different
proteins and other biomolecules [11]. Although we might have the information on all the
genes, we often lack an understanding of the interactions within components. The knowledge
of individual components does not reveal functions that arise through the interactions of
components. It is thus necessary to analyse the interactions and pathways for understanding
complex biochemical mechanisms as well as diseases such as diabetes.

Mathematical and computational models are major tools for understanding how com-
plex regulatory networks are connected. Mathematical models can assist in developing
more comprehensive pictures of biological processes and investigate different experimental
conditions for the biological systems. Moreover, they can be helpful for systematically
determining the relevance of a specific molecule or pathway for the overall behaviour of the
system. In other words, models can help to reveal how biological components interact and
form networks, and how the networks generate whole cell functions [130]. Comparison of
computer simulations and actual experimental data may help the researcher to identify the
features of the biological system. Therefore, numerous mathematical methods for biological
systems have been developed to address different categories of biological systems, such as
metabolic processes or signalling and regulatory pathways [103, 119, 123].

Today, modelling approaches are essential for biologists, enabling them to analyse
complex physiological processes, also for the industry, as a means for supporting drug
discovery and development programs. Moreover, modelling in systems and synthetic biology
lead to the simulation and analysis of biological systems with large numbers of components
and interactions. Biological systems under different conditions can be relatively easily
simulated in silico once a mathematical model is available. To describe the system behaviour,
the dynamical model requires identification of the variables, and the values of the variables
and how their interactions change over time. The dynamic model represents the system
itself, whereas the simulation represents the operation of the system over time. Moreover,
the simulations can serve to make qualitative predictions. Simulations can then be checked
for consistency with existing data [78].

There is a large variety of modelling approaches due to the need for organising biological
knowledge as models. This section describes two modelling approaches, which are used in
this dissertation to represent biological systems in terms of computational models. The use
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of mathematical models in the construction of intracellular signalling networks and cellular
interactions will be explained in more detail in Chapters 3 and 4 for an E. coli system and
in Chapter 5 for human glucose homeostasis. Computer simulations in many cases require
relatively low investment and less time compared with the typically more time consuming
and expensive biological experiments. Thus, modelling efforts can accelerate the wet-lab
process by narrowing down the experimental search space. Model based design is also used
in synthetic biology. It is applied for choosing of components or predicting the effective
combination for the system performance. The use of model-based design in the construction
of synthetic promoter will be explained in more detail in Chapter 4.

2.1.1 Modelling biomolecular reaction networks

Chemical reaction systems are tools for understanding biology on a molecular level using
dynamic models of intra- and extracellular processes [48]. There is a large variety of reaction
models [48] in the literature. Here, we review the most common ones that are used in
modelling dynamic biochemical interactions.

Mass action kinetics: It is the proposition that the rate of a chemical reaction is directly
proportional to the product of the concentrations of the reactants. It was first formulated
by Cato Maximilian Guldberg and Peter Waage in 1864 [67]. It remains as one of
the most common kinetic assumptions used in modelling. This is the method we use
extensively in this thesis and describe below in further detail.

Michaelis-Menten equations: Its name comes after the collaboration of biochemist Leonor
Michaelis and physician Maud Menten [112]. Michaelis-Menten equations describe
the rate of enzymatic reactions, by relating reaction rate to the concentration of the
substrates. They arise from the general reaction dynamics

E+S↔ ES↔ E+P

for an enzymatic reaction, where E is the enzyme, S is the substrate, ES is the enzyme-
substrate complex, and P is the product [14]. The enzyme directly interacts with the
substrate in a stoichiometric manner. The interaction results in the enzyme-substrate
complex, leads to equilibrium [14].

The general scheme for the Michaelis-Menten dynamics is given by the equation:

v =
Vmax[S]
KM +[S]
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Here, v is the initial velocity of the reaction and Vmax represents the maximum velocity
achieved by the system, at maximum substrate concentrations. KM, the Michaelis
constant, which shows the substrate concentration when the reaction velocity is 50%
of the Vmax. [S] is the concentration of the substrate S [14].

Michaelis-Menten equations require certain assumptions to be true. For example,
Michaelis-Menten equations are used when the steady-state assumption is valid. They
assume that the enzyme-substrate complex reaches equilibrium. The enzyme concen-
tration is considered to be lower than the substrate concentration. Moreover, only
initial velocity and initial rates of the reactions are measured.

Hill functions: It was introduced by A. V. Hill in 1910 [74] to describe the binding of
oxygen to hemoglobin. It describes the fraction of a molecule saturated by ligand as
a function of the ligand concentration [98, 172]. However, it has been widely used
in biochemistry, physiology, and mathematical models [98, 172]. The Hill function
parameter provides a measure of the ligand affinity for the receptor. The flow is
sublinear for low substrate and saturates for large substrate concentrations.

The Hill equation is commonly expressed as [122]

θ =
[L]n

(KA)n +[L]n

where θ is the fraction of the receptor protein concentration that is bound to ligand. L
is the unbound ligand concentration. (KA) is the half-maximal concentration constant.
n is the Hill coefficient. It provides a measure of the cooperativity in a binding process.

It describes the cooperativity of ligand binding in the following way [122]

n>1 Positive cooperativity: The reaction exhibits positive cooperativity with respect
to substrate binding to the protein. Therefore, the binding of one molecule of
ligand increases the binding of others.

n<1 Negative cooperativity: The reaction exhibits negative cooperativity with re-
spect to substrate binding, which means the binding of one molecule of ligand
decreases the binding of others.

n=1 No cooperativity: There is no cooperativity with respect to substrate binding to
the protein. If n = 1, the Hill equation is reduced to its more familiar form known
as the Michaelis-Menten equation.

In this thesis, we focus mainly on mass action kinetics, which can be described as systems
of chemical reaction networks. A system of chemical reactions may be formulated using the
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deterministic or the stochastic paradigms with the same formulation. Consider a system of
chemical reactions with m reactions, denoted by R1,R2, ....,Rm and n species, denoted by
X1,X2, ....,Xn. This m×n system may be represented as the following system of chemical
reactions:

R1 : w1,1X1 +w1,2X2 + · · ·+w1,nXn
k1−→ u1,1X1 +u1,2X2 + · · ·+u1,nXn

R2 : w2,1X1 +w2,2X2 + · · ·+w2,nXn
k2−→ u2,1X1 +u2,2X2 + · · ·+u2,nXn

...

Rm : wm,1X1 +wm,2X2 + · · ·+wm,nXn
km−→ um,1X1 +um,2X2 + · · ·+um,nXn

The corresponding, m×n sized, stoichiometric matrix, v, may be written as:

v =


v1,1 v1,2 · · · v1,n

v2,1 v2,2 · · · v2,n
...

...
...

...
vm,1 vm,2 · · · vm,n


in which,

vi, j = ui, j −wi, j i = 1,2, · · · ,m, j = 1,2, · · · ,n

The above notation of a system of chemical reactions and the corresponding stoichiomet-
ric matrix is common to deterministic and stochastic formulations. In spite of this similarity,
both formulations have completely different governing equations which involve widely
different physical and mathematical quantities and definitions. An important quantity is
the parameter ki associated with each reaction Ri. For the deterministic formulation, the
parameter ki, i = 1,2, · · · ,m represent the reaction rate constants, whereas for the stochastic
formulation, ki is the stochastic rate constant or the reaction parameter [16]. Note that the
deterministic reaction rate constant and the stochastic rate constants are not necessarily equal.
However, one can be converted to the other. The stochastic reaction rate can be calculated
from a deterministic rate. Deterministic simulations give a measure of concentrations of
molecules whereas stochastic simulations give the numbers of molecules.

Here, we restrict the explanations to the deterministic simulations and not further expand
on stochastic simulations. A detailed development of stochastic models can be found in
Gillespie, 1976 [59] and many other works that build on it.
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Given an m×n system as the one described before, the state of the system at time t, when
modelled as a deterministic chemical reaction network is denoted by the vector-valued
variable x(t) ∈ Rn. The ith element of x(t),xi, i = 1,2, · · · ,n, represents the concentration of
ith species Xi, i = 1,2, · · · ,n. The variable r ∈Rm denotes the vector of rate of reactions. The
rate of change of the state of the system may then be written as

d
dt

x = vT r

with the initial conditions, x(0) = x0. This system of equations obtained this way forms the
deterministic formulation of the chemical reaction system m×n.

2.1.2 Multi-level systems and models

Multi-level models have been recognised as relevant for the understanding of biological
systems because of their emphasis of a strong connection between biological levels of
functioning [130]. In particular, multi-level models are suitable for guiding biology from a
qualitative to a quantitative point of view. This can be challenging, even if each model has
similar processes and evolve on similar time- and length-scales [69].

Majority of multi-level models follow different perspectives to build the system. In order
to link different scales, two major strategies can be employed: top-down or bottom-up [151].
The top-down approach starts with a large model and breaks it down into smaller more
detailed segments. On the other hand, the bottom-up approach begins with the study of the
subsystem components and connect them to describe and predict the behaviour of the entire
system [151]. Another emerging approach is the middle out approach, which starts with an
appropriate scale and exploit expanding knowledge to include both smaller and larger scales
[151]. Each of these approaches has two subtypes with respect to their coupling. These
are input-output coupling and direct coupling [69]. In input-output coupling, each variable
depends either on the state of the low level system or on the state of the high level system.
Therefore, variables can be inputs and outputs for the individual scales. On the other hand,
in direct coupling, variables share the state between lower and higher levels. Models with
input-output coupling are generally easier to simulate and to analyse in comparison to those
with direct couplings [69].

Walpole et al. [167] introduced the terms series simulation, parallel simulation and inte-
grated simulation to categorise different approaches. Series simulation gets the information
from one scale and delivers it to be used as input for the other level (without feedback).
Parallel and integrated simulation require communication between components simulations.
They can often be computationally challenging. To overcome this, an approximation method
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based on spatial homogenisation and time-scale is employed. This method decreases the
overall complexity of the simulation. For example, on the tissue level, it is considered that all
cells behave similarly. Therefore, a representative cell is evaluated in the model. Moreover,
differences in time-scales of each processes can be used to simplify simulations.

Multi-scale models nowadays allow for the efficient simulation of coupled ODE-PDE
systems [173]. Recently, Agent Based Modelling (ABM), also known as Individual Based
Modelling (IBM), has used as time-resolved simulation of diffusion is based on time-scale
separation [80]. It has become a very popular and powerful tool because of fast increasing
computational power, which makes even large systems accessible [29].

2.2 Basic Features of Dynamic Mathematical Models

This section introduces some of the concepts in dynamic mathematical modelling that are
relevant to the material covered in the rest of this thesis.

2.2.1 State variables and model parameters

The primary components of a dynamic mathematical model symbolise the species involved
in the system. The existence of each species is assigned to a state variable within the model.
The collection of group of these state variables is called the state of the system [78]. Such a
representation provides a complete description of the system’s condition at any given time.

Besides state variables, models also include parameters, whose values are fixed. Model
parameters represent the environmental effects and interactions among system components as
well as changes in the variables. Consequently, the model parameters typically have constant
values during simulation: these values can be varied to explore system behaviour under
perturbations or in altered environments. For instance, in Chapter 3 we focus on models of
a signalling network in E. coli. In these models, external concentrations are varying state
variables.

If all of the input parameters of the model are known, the output of the model can be
computed. Therefore, the model is said to be explicit. However, sometimes the output
parameters are known, and the corresponding inputs must be solved for by an iterative
procedure, which is commonly termed as model fitting (Section 2.2.5).

2.2.2 Linearity and nonlinearity

If all the operators in a mathematical model exhibit direct proportionality, the resulting
mathematical model is defined as linear. A model is considered to be nonlinear, when the
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relationship of variables are not linear [78]. In other words, nonlinear connections do not
follow any specific order. In mathematical modelling, if the constraints are represented
entirely by linear equations, then the model is regarded as a linear model [49, 78]. If one or
more of the objective functions, which is the function that it is to be maximised or minimised
[49], or constraints are represented with a nonlinear equation, then the model is known as a
nonlinear model [78].

2.2.3 Steady-state and transient behaviour

Simulations of dynamic models are time dependent and specified as steady-state or transient.
In most of the deterministic models, biological characteristics do not change with time.
Models of biological processes reach to steady behaviours in the long run. This steady
behaviour, which models exhibit, is called a steady-state [78]. In continuous time, the steady-
state behaviour is reached when the rate of change of the variable with respect to time is zero.
In many systems, a steady-state is not achieved until some time after the system is started
or initiated. This time course that leads from the initial state to the asymptotic behaviour is
referred to as a transient state [78].

2.2.4 Deterministic and stochastic models

A mathematical model is called deterministic if its behaviour is dependent on a specified states
and conditions, without influence of any other factors [78]. Therefore, repeated simulations
under the same conditions are always in perfect agreement and can be perfectly replicated.
However, real biological systems can have implicit influences on the model. Moreover, these
influences can affect the analysis of the systems. In this regard, there are various methods to
extend deterministic models to express the possible variations in dynamics [175]. A way of
modelling these elements is by including stochastic influences. Stochastic models allow for
randomness in their behaviour. The behaviour of a stochastic model result is affected both by
specified conditions and by randomness [78]. Each repetition of a stochastic simulation thus
yields a distinct sample of system behaviour.

Another difference between deterministic and stochastic models is seen in the simulation
methods. The deterministic models are commonly simulated by solving a system of differen-
tial equations, more commonly ordinary differential equations (ODEs) due to their capability
of capturing complex dynamics such as mass action kinetics. An ODE system is a set of
differential equations that contain one independent variable such as time and one or more
ordinary differential equations with respect to that independent variable. These variables are
typically concentrations of model species.
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MATLAB software has several libraries of functions for solving ODEs. In this disserta-
tion, we have used Matlab ode15s solver for deterministic simulations. ode15s is designed
to solve both stiff and non-stiff problems. A stiff equation is a differential equation where
implicit methods for solving the equation can function better than explicit ones. Implicit
and explicit methods are approaches used in numerical analysis for obtaining numerical
approximations to the solutions of ODEs. An implicit method finds the solution by solving
an equation involving the current state of the system and the later one, while an explicit
method calculate the state of a system at a later time from the current time. For linear
systems, a system of differential equations is termed stiff if the ratio between the largest and
the smallest eigenvalue is large. Therefore, the numerical method must take small steps to
obtain satisfactory results [96].

The stochastic simulations require a probabilistic method, which involves repeated
generation of random numbers. For the case of simulating chemical reaction networks as in
this thesis, this typically involves a version of the Gillespie’s algorithm [59].

2.2.5 Model fitting algorithms

Mathematical models require parameters to describe the phenomena they are representing.
Some of these model parameters are unknown or they are given within a range. In the absence
of effective methods to determine parameter estimates, a model can produce a distorted
representation of the observed phenomena. This can cause the rejection of its mechanistic
description and mislead the data analysis. To parametrise the models, we resort to a fitting
procedure, which often uses the least square method via various optimisation algorithms.
The least square method can be described as solving an overdetermined system. The
method minimises the sum of squared differences between the data values and corresponding
modelled values to define best approximation [124].

There are various methods for optimisation including multi-start approach and Nelder-
Mead method [114] When the system is non-linear, non-linear least squares methods get
more solutions and return the local solutions. In order to provide a global solution of the
system, the procedure can be repeated starting from different set of parameter estimates, that
are encoded as different starting points. The best solution received by repeated procedure
is then selected to ensure that the result is global. This procedure is known as multi-start
approach [73]. In this dissertation, we have used Matlab lsqnonlin function from optimisation
Toolbox for multi-start approach for least squares methods. This toolbox is commonly used
to solve nonlinear least square problems that are applied for fitting experimental data.





Chapter 3

Mechanisms of Switching Response to
External Phosphate Levels in Escheria
coli

The phosphate economy in cells is essential in many biochemical processes from signal
transduction to energy metabolism to DNA and RNA synthesis. All living systems therefore
acquire and regulate phosphate in order to survive and reproduce. Escheria coli (E. coli), for
example, regulate the inorganic phosphate (Pi) uptake in order to survive under phosphate-
limiting conditions. To achieve this, E. coli have developed an accurate control mechanism,
Pho regulon, to adapt to environmental perturbations of Pi, controlled by the PhoR/PhoB two-
component regulatory system (TCS). The signalling of the TCS is delivered by interactions
with the ABC transporter via PhoU. However, the exact mechanisms of interaction are
unknown. Here, we propose mechanistic explanations for these mechanisms via a quantitative
computational analysis, whereby we model plausible ABC and TCS state transitions. We
analyse the interaction mechanism and the dynamic behaviour of TCS system deactivation in
relation to the external Pi levels. We show that the behaviour of this system depends on the
network structure. In particular, we use alternative models to demonstrate that variation in
interaction patterns affect the response time of the system. Overall we show how to model a
system where some key interactions are as yet unknown and to provide testable predictions
that can easily be verified in the lab. This way, modelling is being used to increase our
mechanistic understanding of important biological systems by defining and driving wet-lab
experiments and to increase our biological understanding of the often complex relationship
between an organism and its environment.
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3.1 Introduction

Living cells, like bacteria, face a wide range of challenging environmental conditions such
as nutrient limitation or exposure to antibiotics. Therefore, they must sense and rapidly
produce the appropriate response to their environment. Response networks of E. coli are
selected for fast and reliable adaptation to environmental conditions [19]. A mechanism
that governs these responses is given by the two-component systems (TCSs) [148]. TCSs
transmit information between a histidine kinase (HK) sensor and a cognate response regulator
(RR) by phosphorylation [148]. A particularly well-characterised example of a TCS histidine
kinase is PhoR in E. coli. PhoR responds to the changes in the external inorganic phosphate
(Pi) level and controls the phosphorylation of the response regulator PhoB [142, 168]. The
phosphorous compounds are essential nutrients for many biomolecules and have important
roles in cell function and life [168]. Therefore, through such metabolic architectures, proper
Pi signaling produces robust growth of E. coli.

Many parts of this Pi signalling pathway are known. E. coli control Pi metabolism through
global phosphate management Pho regulon [95, 142, 168]. It is central to assimilation of Pi

and regulation of Pi metabolism. It includes a number of Pi starvation-inducible genes such
as [168, 169]

• four components of the ABC transporter Pst (PstSCAB), which consist of an extracel-
lular binding protein (PstS), two transmembrane proteins (PstC, PstA) that form the
transmembrane domain (TMD), and a dimer of cytosolic peripheral proteins (PstB),
i.e., the nucleotide-binding domain;

• two that are members of the large family of two component system (TCS) that per-
form both positive and negative regulation, a sensor histidine kinase PhoR and a
transcriptional response regulator PhoB;

• the chaperone-like PhoR/PhoB inhibitory protein PhoU.

Figure 3.1 displays a schematic representation of the Pho regulon system. Limiting
concentrations of extracellular Pi activates the system, resulting in the phosphorylation of
transcription factor PhoB by PhoR [21, 142, 168]. Signal transmission occurs through
autophosphorylation of PhoR, followed by transfer of the phosphoryl group to PhoB [21, 95,
142, 168, 169]. Phosphorylated PhoB activates Pho regulon by binding to a consensus DNA
sequence within the promoters of Pho regulon genes [21, 95, 142, 168, 169].

A return to the repression state occurs by a transition from the growth state to a phosphate-
rich environment. The activation signal is interrupted by PhoR acting as a phosphatase on
phosphorylated PhoB. System deactivation upon stimulus removal has an important task of
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coordinating and regulating the cell growth [21, 95, 142, 168, 169]. Although, there has been
much research on activation dynamics of TCS [52, 149], it is not well understood how PhoR
receives the signal from PhoU and regulates the PhoB. It is known that, under environmental
Pi repleted conditions, the Pho regulon is not induced (off state) and PhoB is maintained in
the non-phosphorylated form by PhoR [21, 95].

It has been suggested that the PhoR/PhoB proteins assess Pi availability by monitoring
the activity of the ABC transporter. In addition to the ABC transporter, PhoU is also required
for Pi signal transduction [56, 139, 168]. PhoU constitutes an intermediate step between
the ABC and TCS systems, inhibiting PhoR when the ABC system actively transports Pi

[56, 139, 168]. When PhoU is mutated or deleted, PhoR continuously phosphorylates PhoB
[56]. Then, phosphorylated PhoB delivers the high expression of the Pho regulon genes.
PhoU is involved not only in the control of autokinase activity, but also in control of ABC
transporter in order to avoid an uncontrolled Pi uptake. Moreover, it is known that PhoU
and ABC transporter are also required for dephosphorylation of phospho-PhoB [168, 169].
However, the exact mechanism of PhoU action is not fully elucidated. Here, we address
these uncertainties by applying alternative models based on plausible interaction patterns.
This allows us to predict the unknown mechanisms of the system, which can be verified by
experiments.

In order to address these questions, we have analysed the signal transfer pattern from
the ABC transporter to the histidine kinase PhoR under the conditions of various external Pi

concentrations. For this, we have designed alternative models to quantify and evaluate the
events of the deactivation mechanism in the system. The main contribution of our model
is thus the mechanistic quantification of the continuous relationship between the external
Pi concentration and the PhoR activity in the cell, delivered by the signal transduction
mechanism through ABC transporter and PhoU. This, in return, provides predictions on the
effects of the ABC transporter and PhoU to the system deactivation.

In the following, we distinguish different types of interactions, and show how these
patterns can correspond to signalling mechanisms. For this, we have first implemented our
models in terms of hypothetical direct interactions between ABC transporter and PhoR.
Thus, our preliminary model includes an implicit representation of the PhoU effect on the
system. We have then extended and refined this implicit representation with an explicit
mechanistic characterisation of PhoU that supports the preliminary observations. We have
performed a computational analysis by simulations to enhance the understanding of the
effects of multiple pathways on response dynamics and protein homeostasis in different
environmental conditions. Our simulations with various mechanisms provide predictions on
the effect of the system structure and PhoU activity. In particular, we have analysed how
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strong phosphatase activity suppresses TCS activation, and quantified how fast the system is
turned off once the stimulus due to external Pi concentration is removed.

3.2 Material and Methods

In a system of E. coli, it is important to balance Pi accumulation [95, 168, 169]. When
external Pi levels are low, it becomes a growth limiting factor [133]. Therefore, the cell
invests resources to produce proteins, rather than Pi accumulation [76, 133]. However, when
the external Pi is in excess, the E. coli begins to enhance Pi accumulation and switches the
TCS off. To explain this system, we have previously designed and analysed a two component
system model that quantifies the dynamic mechanisms of auto-regulation in E. coli (for more
details see Chapter 4 and [164]). At the time of writing, the work in Chapter 4 has been
submitted to the journal. We have presented a dynamical model of Pho regulon, coupled with
a layered description of its regulation in the experimental conditions of phosphate starvation.
The model describes the dynamics of TCS together with the key regulatory promoter PhoB
and experimental data on promoters PhoA and PhoB. Moreover, we have explored and
verified emerging phenotypes with synthetic promoters and the response of the model to
variations in the external Pi levels [164]. The model is parameterized according to the feasible
range given in the literature, and fitted to the dynamic response of our experimental data. Our
model provides a dynamic description of the core determinants of Pho regulon and promoter
activities and their response to the change of external phosphate level.

In the following, to better illustrate the response of Pho regulon and TCS signalling
to the different external Pi levels, we present a model as a conceptual representation of
switching of TCS. We have considered a set of reactions for the signal of external Pi with
the TCS histidine kinase as the target for delivery. As a preliminary step, the conceptual
model contains implicit representation of the interactions with the TCS. We describe the
formation of repression complex, which involves PhoR and ABC transporter, together with
an implicit effect of PhoU protein. The model is consistent with observations in the literature,
and maintains accurate relationships between all the components in the system. This enables
the model to demonstrate the effect of PhoU protein and its integration to the system.

From an alternative perspective, Figure 3.2 shows how the regulatory system can be
represented as a logic gate. TCS can be viewed in terms of its inputs and outputs without
details of internal workings. Thus, it alllows us to implement the role of PhoU implicitly.
It is more precise representation of the signal. Inputs for deactivation of Pho regulon are
Pi, ABC, PhoU, PhoR and PhoB. With the help of schematic and logic gate representation
of the system, we have built a preliminary model to analyse how the signal for external
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Fig. 3.1 Schematic representation of the different stages of Pho regulon. Green coloured
shape represents ABC transporter, dark blue one is PhoR protein, light blue shape stands for
PhoU protein and pink stands for PhoB protein. The signalling processes of activation and
deactivation correspond to different states of PhoR.
Activation: When external inorganic phosphate (Pi) is depleted, the system is in growth
condition. Under this condition, Pho regulon is active and produces its components. ABC
transporter binds the external Pi, internalises and releases it to the cytosol. According to
the current biological model in the literature, PhoR assesses Pi availability by monitoring
the ABC transporter. This is done by relaying the signal via PhoU. When the system is
active, PhoU does not stabilise PhoR and PhoR passes to the active state (PhoRa). PhoRa
phosphorylates PhoB. Phosphorylated PhoB then acts as a transcription factor for the operon.
Deactivation: PhoR acts as a phosphatase on phosphorylated PhoB. When environmental
Pi is in excess, Pho regulon is inhibited. PhoU stabilises PhoR. This prevents PhoR from
autophosphorylating itself. The signal is thus propagated to PhoR, resulting in its inhibition
state PhoRr.

changes is delivered to TCS, especially to PhoR. Moreover, logic gate representation allows
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Fig. 3.2 A schematic representation of Pho regulatory system interactions resembling a logic
gate circuit. Figure demostrates the conceptual presentation of TCS signalling processes
from an alternative perspective. ABC transporter and PhoU proteins are expressed by the
same promoter, that is, pABCU. Similarly, PhoR and PhoB proteins are expressed by the
same promoter, that is, pPhoBR. These are depicted on the left side of the figure. Expressions
of ABC transporter, PhoU, PhoR and PhoB proteins refer to system inputs together with
external inorganic phosphate Pi. System outputs are repressive PhoR (Rr) and active PhoB
(Ba). Colours are used as described in Figure 3.1. The shape resembling an AND gate
requires both incoming signals to be present for output signal. The shape resembling a
single input NOT gate requires the incoming signal to be absent to produce a signal. (1) Pi is
taken in to cytoplasm by the ABC transporter. (2) When the Pi is abundant, ABC transporter
relays the signal of external concentration change to PhoU and activates PhoU (Ua). (3)
Active PhoU stabilises PhoR and prevents PhoR dimers from autphosphorylating, and PhoR
becomes repressive (Rr). PhoR is now inhibited that prevents activation of PhoB. Otherwise,
when the Pi is absent, shown by NOT gate, (4) PhoR is free to autphosphorylate itself. This
allows PhoR to become active, (Ra) and (5) when PhoB is present, PhoRa phosphorylates
transcription factor PhoB and activates it (Ba).

us to observe possible interaction mechanisms. This figure concerns how E. coli detects
environmental Pi to regulate genes of the Pho regulon by the TCS. It includes the proteins
are required for the Pi signaling pathway and their interactions. It is seen that Pi signaling
involves different states of the PhoR: an inhibition state, an activation state. The signal
transduction from PhoR to gene regulation via TCS has been quantified in our previous work
[164]. In the current work, this framework is used as a basis to describe mechanistically
the effect of external Pi concentration change and TCS inhibition. The model is based
on a mechanistic description of the system dynamics within a chemical reaction system
representation with respect to mass action dynamics.
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ABC transporter regulates the translocation of Pi to the cytosol. ABC transporter au-
tophosphorylates itself and switches between the closed (ABC) and open (ABCo) dimer
conformations as a result of ATP binding. External Pi (Pext) intake takes place with the
conformational changes in the ABC transporter. This causes an increase in the amount of
internal Pi (Pin) [75, 168].

ABC−→ ABCo (1)

ABCo+Pext−→ Pin+ABC (2)

PhoU is an essential protein for the repression of the Pho regulon at high Pi conditions
[56, 168]. Although the mechanism behind the Pho regulon deactivation is unknown, one
hypothesis is that PhoU inhibits the activation of PhoR by interacting with PhoR and ABC,
converts PhoR to the repressive state (PhoRr) [56, 139, 152]. It is assumed that the ABC
transporter senses the Pi levels and transfers the signal to the TCS via PhoU [56].

Therefore, as an initial step of the model component interactions, we have expressed the
inhibition as a direct interaction between ABC and PhoR. We have then constructed two
alternative models for assessing interactions between the ABC transporter and TCS with
potentially distinct mechanisms for diminished PhoR activities. These two alternative models
are abstractions that contain PhoU implicitly, which we refine below. Our motivation behind
the use of alternative reaction designs is to examine how the type of the chemical reactions
impacts the switch dynamics.

First possible interaction is:

ABC+PhoR−→ ABC+PhoRr (3a)

PhoRr−→ PhoR (4a)

and other one is expressed as:

ABC+PhoR−→ ABC_PhoR (3b)

ABC_PhoR−→ ABC+PhoR (4b)

For these two alternative models, we have implemented the deterministic ordinary differ-
ential equation (ODE) systems in Matlab by using the standard translation from the chemical
reaction network above, based on stoichiometries. The models have been tested with 0, 50,
and 100 µM external Pi. The concentrations of proteins PhoR and ABC are set to 0.22 µM
based on literature and verified by our previous work [38, 164]. The parameters for the rates
are listed in Table 3.1. The rate of reaction 1 is obtained in accordance with our previous work
[164]. The unknown rates of reaction 2 and 3 have been estimated to reproduce decreasing
dynamics of the PhoR according to the external Pi concentration change with respect to the
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switching of dynamics. The rate of reverse reaction 4 has been set to the value that delivers
the expected dynamics. We have used these values as a calibration for the control models
and explored the possible variations as described below.

Reaction N. Rate Symbol Value Unit
1 r1 25.3658 sec−1

2 r2 0.001 µM−1sec−1

3a and 3b r3a and r3b 1 µM−1sec−1

4a and 4b r4a and r4b 0.000001 sec−1

Table 3.1 The reaction rates and units of the control model.

3.3 Results and Discussion

Figure 3.3 shows a dynamic representation of the two different models used in our analysis.
Model 1 includes reactions 1, 2, 3a and 4a and Model 2 includes the reactions 1, 2, 3b and
4b. The model describe two possible mechanisms for switching off the TCS in response to
the Pi repletion. The deterministic ODE simulations display the average dynamic behaviour
of the concentrations for the simulated 4.5 hours. In the two models, the parameter values of
all the processes are the same. This guarantees that the differences in dynamics are only due
to the types of the interactions.

The ABC transporter can act as an enzyme (Model 1) or binds the histidine kinase PhoR
(Model 2) in response to an external signal. Both forms of ABC transporter mechanisms
affect the TCS with similar affinities. Both models examine the functionality of the system
without going into the details of its internal structures with respect to PhoU. When ABC
acts as an enzyme as in Model 1, it indirectly affects PhoR and inhibits PhoR activation
while being preserved. In the case of Model 2, ABC participates directly and binds the
unphosphorylated PhoR to form a complex ABC_PhoR. This complex formation causes
the stabilisation of PhoR. The stabilised PhoR does not modulate the phosphorylation and
activity of relevant proteins. The designed interaction of the regulatory system functions as
expected in response to various external Pi levels.

The plots clearly show that when the external Pi level increases, activity of PhoR decreases
in both models (Figure 3.3). Moreover, the system is able to maintain PhoR activity, thus
protein synthesis to maximal when the external Pi is 0 µM. Figure 3.3 provides a comparison
of the functional effectiveness of the two mechanisms: Model 1 has faster response time than
Model 2 for all the external Pi levels (Figure 3.3). Response time is the time to reach halfway
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Fig. 3.3 The response of the model to variations in the external Pi levels. Model 1 includes
the reactions 1, 2, 3a, and 4a and Model 2 includes 1, 2, 3b, and 4b. The simulations are
performed for the external Pi concentrations of 0, 50, and 100 µM and a time-course of 4.5
hours is considered. PhoR activity is plotted in blue when Pi concentrations is 0 µM, it is
represented with red when external Pi concentrations is 50 µM, and orange colour is used
when Pi concentrations is 100 µM. Response times are represented with vertical lines. Red
line is the response time when the external Pi concentration is 50 µM and the orange one is
for the external Pi concentration of 100 µM.

between the initial and final levels in the dynamic process [2]. It is an important measure
for the speed at which PhoR levels change as it quantifies the effectiveness, especially in
fluctuating environmental conditions.
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To better understand the TCS switching dynamics, we have performed a mathematically
controlled comparison of the two models [3]. We have set the system as equivalent as
possible by reaction rates, external conditions and initial values. This allows us to observe
the differences in the physiological behaviour between designs. The comparison analysis
was done using the specific set of parameter values reported in Table 3.1. By exploring the
effect of the changes in the reaction rates r1, r2, and r3a and r3b in orders of magnitude, we
have classified the similarity in dynamics with possible variations in the rates.

Next, we have examined the response time and PhoR degradation for alternative models
with the selected parameters. We have extended our calculations and reproduced the dynamics
in Figure 3.4. Steady-state levels of PhoR and response time have been cross-examined at
reaction rates r1, r2, and r3, allowing evaluation of the stability of the system with different
rates. We have omitted the reaction rate r4 variation because variations on this rate at this
regime imply a departure from the expected dynamics. However, variations on r4 together
with others preserve the dynamics, as we explore below.

Robust adaptation is a biological behaviour for E. coli that describes surviving in varying
environmental conditions. We have performed an analysis to predict the robustness of
network against variations of its parameters. We have observed that the model preserves
the expected dynamics under perturbations of system parameters. That is, changes on rates
result in robust adaptation of Pho regulon system. With variations on rates in Model 1, the
switch from PhoR to repressed state occurs more quickly than in Model 2 (see Figure 3.4
). As in Figure 3.4, a scaling of the system rates leads to a time scaling of the output
response. The steady-state levels are lower in the Model 2 system. Moreover, Figure 3.4
demonstrates the role of the conformational change of ABC on the switch off dynamics.
Lower autophosphorylation rate of ABC results in higher levels of PhoR repression.

The response of the Pho regulon has to be rapid enough for TCS to be switched off as
the Pi level rises. In the models under comparison, the main difference is in the interaction
of ABC and PhoR. In this situation, the response time of Model 1 is faster than Model 2
(see Figure 3.4). This comparison is thus relevant for understanding the differences in the
dynamic behaviours that are intrinsic to the differences in design. The present analysis of
the TCS switch off system thus provides a refined estimation of the phosphatase activity of
PhoR for these models. The analysis here on Model 1 and 2 is used below to discuss the
PhoU mechanism. Moreover, these models can be extended and refined to analyse the switch
off mechanism of the other TCSs in E. coli.

Figure 3.5 and Figure 3.6 display the results of the analysis, whereby we have scanned
the parameter values for r4a and r4b in orders of magnitude. We have increased the value
for the reaction rate, r4a and r4b while keeping the reaction rates r3a and r3b the same. We
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Fig. 3.4 Heatmap displaying the effects of the changes in reaction rates r1, r2, r3a and r3b.
Each parameter is varied by orders of magnitude (OM) higher and lower. The one on the
left is for response time and on the right is for PhoR level change. They are computed when
the system reaches the steady-state. For the cases that the system does not have a steady
state, response time and PhoR level change are displayed as N.A.. Response time, in seconds,
is calculated as the time needed to reach halfway between the initial and final level. The
outcome of PhoR level change is normalised with respect to the control model. The analysis
is done for Model 1 (M1) and Model 2 (M2) when external Pi (Pext) are 50 µM and 100 µM.
Red and green represent the decreasing and increasing effects, respectively. Reaction rate r4
variation is excluded because variations on it imply a departure from the expected system
dynamics.

have scanned r1 and r2 values by orders of magnitude to observe the variations in system
dynamics in Model 1 and 2. We have calculated for each set of reaction rate values the
functional effectiveness with respect to PhoR level change and the response time. We have
found that if the chosen reaction rate 2 is reduced, when the rate of reaction 4 is increased,
then robust adaptation of dynamics is preserved. Moreover, when r4 is increased, the system
has slower response time and lower PhoR level change.
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We have analysed the evolution of the E. coli in response to different external Pi con-
centrations. The analysis on two different models with variations in model parameters
demonstrate the gain of the system under a broad spectrum of circumstances, represented by
these parameters. We have observed that Model 1 has faster response time in all regimes.
With the assumption that faster response is more favourable, these results suggest that the
enzymatic interaction in Model 1 can be a prevalent regulatory pattern in biological signalling
pathways. Two-component-signaling systems constitute the most common signaling path-
ways in bacteria [6]. The complete genome sequences of several bacteria have determined
that the TCS exists in many bacteria and controls many processes such as nutrient intake,
respiration, colony growth, drug resistance, etc. Moreover, extensive genome analysis has
shown that the majority of the proteins identified in E. coli have homologues in other bacteria
[6]. Considered together, these characteristics may explain that biochemical information
transfer can be establish through enzymatic reactions in different TCS and bacteria.

Fig. 3.5 Heatmap displaying the normalised PhoR level change as a result of the variations in
r1 and r2 together with variations in r4 rate values. The analysis is performed for Model 1
(M1) and Model 2 (M2) when the external Pi concentrations are 50 µM (A) and 100 µM
(B). Rates r1 and r2 are varied by orders of magnitude higher and lower from -6 to 2. PhoR
level change from the beginning to the end of the simulation is computed and displayed. The
outcome of PhoR level change is normalised with respect to the control model.
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Fig. 3.6 Heatmap displaying the response time, in seconds, as a result of the variations in
r1 and r2 together with variations in r4 rate values. The analysis is performed for Model 1
(M1) and Model 2 (M2) when the external Pi concentrations are 50 µM (A) and 100 µM (B).
Rates r1 and r2 are varied by orders of magnitude higher and lower from -6 to 2.

Pho regulon expresses many genes that are influenced by the environmental Pi level, and
their expression is regulated by TCSs. TCS is thus a predominant form of signal transduction
in E. coli.

Our results provide a quantitative description of how different proteins interact when
the TCS is switched off as a result of the changes in external Pi concentration. The effect
of the switch off mechanism is measured in terms of PhoR level change. Our results do
not only provide predictions on the physiology of the Pho regulon, but also demonstrate
how a strong signal due to phosphatase activity can cause a fast switch off response. The
comparison of the effect of possible interaction types in our models becomes instrumental for
understanding the differences in behaviour of biological circuits created by using synthetic
biology techniques. Moreover, this work provides a framework to quantitatively analyse the
interactions of PhoU with other system compartments, for example, as in [164].

To elucidate the mechanistic function of PhoU, we refine our models with explicit
mechanism of PhoU action within the alternative models discussed above. In these refined
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models, reactions 1 and 2 are kept as same as these reactions model the ABC transporter,
which regulates the translocation of Pi to the cytosol. We have then considered the interactions
of PhoU in the system in accordance with the two models above. As a result of this, we have
replaced reactions 3 and 4 with their alternatives that integrate PhoU mechanistically. In this
refined model, PhoU interacts with ABC, gets the external Pi concentration change signal,
and then becomes active (PhoUa).

ABC+PhoU−→ PhoUa (3′)

PhoUa−→ PhoU (4′)

After passing to the active state, PhoUa transmits the signal to PhoR, inhibits PhoR
activity, and causes the repression of PhoR.

Here, in accordance with the two models above, we have provided alternative reactions
to express the affect of PhoU on the system. That is, PhoU can affect PhoR in similar ways
as in Model 1 and Model 2.

We first consider the possibility that PhoUa can act like an enzyme, drawing parallels
with Model 1.

PhoR+PhoUa−→ PhoRr+PhoUa (5a)

PhoRr−→ PhoR (6a)

Alternatively, we have considered the interaction as in Model 2. In this model, PhoU
binds to the histidine kinase PhoR in a reversible manner.

PhoR+PhoUa−→ PhoR_PhoUa (5b)

PhoR_PhoUa−→ PhoR+PhoUa (6b)

Figure 3.7 displays a dynamic representation of these two models with PhoU, which are
mathematically described by using the same procedures. PhoU Model 1 includes reactions 1,
2, 3′, 4′, 5a and 6a and PhoU Model 2 includes the reactions 1, 2, 3′, 4′, 5b, and 6b. In order
to observe the differences that originate from the inclusion of an explicit PhoU mechanism,
we have kept the parameter values as before. Therefore, the initial values are kept the same
and PhoU initial value is set to 0.22 µM as in [38]. The rates of the reactions 1 and 2 are also
set to the same values. Reactions 5a, 6a and 5b, 6b are assigned the values of the reactions
3a, 4a and 3b, 4b.

The plots in Figure 3.7 clearly display the robust adaptation of model with PhoU protein.
When the external Pi level increases, PhoR concentration decreases in both models. Moreover,
we have observed that PhoU Model 1 has a faster response time than PhoU Model 2 for
different external Pi as shown in Figure 3.7.
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Fig. 3.7 The response of the model with PhoU to variations in the external Pi levels. Model 1
includes the reactions 1, 2, 3′, 4′, 5a and 6a, and Model 2 includes 1, 2, 3′, 4′, 5b and 6b. In
all the experiments, the external Pi concentrations are 0, 50, and 100 µM and a time-course
of 4.5 hours is considered. PhoR activity is plotted in blue when Pi concentrations is 0 µM, it
is represented with red when external Pi concentrations is 50 µM, and orange colour is used
when Pi concentrations is 100 µM. Response times are represented with vertical lines. The
red line is the response time of dynamics when external Pi concentration is 50 µM and the
orange line is for an external Pi concentration of 100 µM.

These results provide an analysis of mechanistic interactions of the PhoU, PhoR, and
ABC transporter proteins. The analysis of the results above provides a framework for better
understanding Pi signal transduction in E. coli. According to our signalling complex model,
PhoR is able to sense through PhoU the conformational states of ABC transporter as a
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consequence of Pi transport and then modulate its kinase/phosphatase in accordance with the
appropriate response. This model can thus explain the mechanism that provides the adequate
response time.

3.4 Conclusion

We have previously reported a quantitative description of the activation of a Pho regulon
[164]. Here we have developed a model for understanding the role of ABC transporter
and PhoU by an examination of the switch off dynamics. Our model provides descriptions
of the possible interaction mechanisms between TCS and ABC transporter and predicts
the mechanistic behaviour for different cases under the conditions of varying external Pi
concentrations. Understanding the behaviours of TCS requires characterisation of not only
the pathway organisation, but also the dynamic rates of individual activities in the cell. In
addition, by providing testable predictions for the wet-lab, the understanding produced from
this approach provides insights for future engineering of such biological processes.

Quantitative wet-lab analysis can be used to determine the system structure. Experimental
data to estimate the amount of the protein in the cell helps us to quantify model results. The
concentrations of system components such as PhoU and PhoR proteins can help to validate
the results of model. Moreover, not only the concentrations of the proteins but also the
structure, interactions and functions of all proteins within E. coli can be elucidated by
experimental design. It is known that protein production and purification tools are designed
for identifying which factors are important in the biological system. They can also help to
find an optimum process in the mechanism. One strategy to determine protein function can
be to identify the protein–protein interactions such as interaction of transcription factor PhoB
with PhoR. Examining the phosphorylation of PhoR and PhoB proteins can be used as a
proxy for system formalization. Moreover, artificial overexpression of proteins can be used
to identify proteins involved in biological processes and examine their functions.

The model should also allow us to better understand the mechanisms for tuning the
regulatory system to be sharper and more rapid. For example variations in the ABC phospho-
rylation rate can work as an inhibitor for the regulation of PhoR due to the changes in the
external Pi concentration.

By applying such models to living systems and processes we begin to see mechanistically
how an environmental condition produces a change of state in an organism both on the
protein function level and gene expression level. It is through such an understanding that the
meaning of adaptation and embeddedness in living cells becomes apparent and quantifiable.
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Ozan Kahramanoğulları and I designed and performed simulations and sensitivity analysis.
All figures have been produced under the supervision of Ozan Kahramanoğulları. Ozan
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Chapter 4

Quantifying Dynamic Mechanisms of
Auto-regulation in Escherichia coli with
Synthetic Promoters in Response to
Varying External Phosphate Levels

Escherichia coli (E. coli) have developed one of the most efficient regulatory response mech-
anisms to phosphate starvation. The machinery involves a cascade with a two-component
regulatory system (TCS) that relays the external signal to the genetic circuit, resulting in a
response with feedback to the network. Achieving a quantitative mechanistic understanding
of this system has implications in synthetic biology and biotechnology, for example, in
applications for wastewater treatment. To this aim, we present a computational model with a
detailed description of the TCS, consisting of PhoR and PhoB, together with the regulatory
promoters and the mechanisms of gene expression. The model is parameterised according to
the feasible range given in the literature, and fitted to the dynamic response of our experi-
mental data on PhoB as well as PhoA, the product of this network that is used in alkaline
phosphatase production. Deterministic and stochastic simulations with our model predict
the regulation dynamics in higher external phosphate concentrations while reproducing the
dynamics observed in the experimental conditions of phosphate starvation. In a cycle of
simulations and experimental verification, our model predicts and explores phenotypes with
various synthetic promoter designs that can optimise the inorganic phosphate intake in E.
coli. Sensitivity analysis demonstrates that the expression of Pho-controlled genes has a
significant influence over the phosphate response. Together with experimental findings, our
model should thus provide insights for the investigations on engineering new sensors and
regulators for living technologies.
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What follows is the extended and improved work content of the article, published in the
Conference ECAL in September 2017 [164].

4.1 Introduction

Mechanisms of inorganic phosphate intake within the context of cellular processes is a topic
of extensive research effort, also due to potential applications in enhanced biological phos-
phorus removal (EBPR) from wastewater. Phosphorous, which is one of the major causes of
water quality problems, occurs in wastewater almost solely in the form of phosphates such as
inorganic phosphate (Pi). Microorganisms, which are key players in bioremediation, have
potential to treat large amounts of the pollutants and hold promise for renewable sources
[115]. In particular, the bacteria Escherichia coli can take and store excess Pi in the form of
polyphosphates [168]. An in-depth understanding of the mechanisms controlling such pro-
cesses should pave the way for metabolic engineering to lead to improvements in wastewater
treatment. Phosphorous is one of the essential elements for all life forms, since it is required
for many functional regulation mechanisms in the cell. Pi is the only form of phosphorus that
can be directly utilized by cells [168]. Thus, microorganisms have developed mechanisms to
assimilate inorganic phosphate-containing compounds. Bacterial two-component systems
(TCS) are key signal transduction networks regulating global responses to environmental
change.

The physiological characteristics of Pi transport in E. coli have been extensively studied
[2, 12, 38, 54, 168]. Nonetheless, the regulatory interactions that control the Pi transport are
complex, and they involve two major phosphate transport systems, depending on external Pi

levels. The low affinity phosphate inorganic transport (Pit) system depends on the proton
motive force; it is a coupled transporter of two different ions through the membrane [68, 168].
The phosphate specific transport (Pst) system, on the other hand, is Pi-repressible, and it is
induced when the external Pi concentration is depleted [21, 81, 169].

Mechanistically, Pi signalling is associated with the Pst system proteins. These are PstS,
PstC, PstA, PstB, which constitute an ABC transporter, and are abbreviated as PstSCAB. In
E. coli, Pst is a negative process, that is, excessive Pi is required for turning the system off.
Activation is the default state and occurs in conditions of Pi limitation [56, 168, 169]. Signal
transduction by environmental Pi requires seven proteins (PhoR, PhoB, PstSCAB, PhoU),
which are thought to interact in a membrane associated signalling complex.

Figure 4.1 displays a schematic representation of the system in the starvation condition.
When Pi is limited in quantity outside the cell, PstS binds to the Pi following its diffusion
to the cell surface [95, 168, 169]. The transmembrane domain of the ABC transporter, that
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is, PstC and PstA are integral membrane proteins that span the entirety of the membrane.
They regulate the translocation of Pi from PstS to the inner membrane [38, 95, 168, 169].
Pi intake happens with the conformational changes in the PstB as a result of ATP binding,
also known as ATP-switch model. Principal conformations of the PstB are as follows: (i.)
the formation of a closed dimer upon binding two ATP molecules; (ii.) dissociation to
an open dimer facilitated by ATP hydrolysis. The switching between the open and closed
dimer conformations induces conformational changes in the TMD resulting in substrate
translocation of Pi transport from inner membrane to the cytosol. This way, the ABC
transporter provides the required increase in the amount of phosphate in the cell [168, 169].

The low activity of the ABC transporter PstSCAB causes, in a number of steps, the
autophosphorylation of the sensor kinase PhoR, which relays the signal to the transcription
factor PhoB. The current evidence suggests that PhoR and eventually PhoB assess Pi avail-
ability by monitoring the activity of Pst transporter via PhoU [56, 95]. In mechanistic terms,
when there is sufficient Pi flux, PhoU stabilises PhoR. The resulting stable conformation pre-
vents PhoR from auto-phosphorylation. This, in return, prevents the down-stream signalling
that would otherwise result in the expression of the genes that feedback to the Pst system for
further Pi intake. In fact, when PhoU is deleted, PstB does not only continue to spend ATP
and transport Pi, but PhoR acts as a constitutive PhoB kinase, leading to high expression of
the Pho regulon genes [168, 169], and thereby, activating the expression of the Pst system.

All experimental evidence indicates that Pho regulon is controlled by external phosphate
limitation rather than internal [38]. When the surrounding environment has abundant phos-
phate, E. coli uses as few resources as possible to facilitate the phosphate intake. However,
when Pi becomes low outside the cell, it turns into a growth limiting factor and the cell
spends energy to up-regulate the expression of target genes that are used to acquire phosphate.
Previous studies have shown that the TCS plays a central role in sensing the Pi level in the
environment and regulating the expression of genes that are directly involved in the intake
[95, 168]. Here, we investigate the relationship between Pi-starvation, the TCS signalling,
and promoter activity by using a combination of wet-lab experiments and dynamic modelling.
Our model, describing the phosphate starvation response at the genetic level, is composed
of a set of ordinary differential equations and the corresponding stochastic model that are
derived from a chemical reaction network. Here we suggest a mechanism that can provide
a quantitative description of how different processes interact to form a positively-regulated
biological control system. The mechanism is based on a certain E. coli phosphate signaling
system. It explains how specific proteins can work together to provide gene expression and
increase the Pi intake. Moreover, it suggests an approach that can help to identify a wide
family of promoter mechanisms that potentially have synthetic applications.
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Fig. 4.1 The transmembrane signal transduction due to external Pi levels and the Pho reg-
ulon activity when extracellular inorganic phosphate (Pi) is in excess (left) and when it is
depleted (right). The ABC transporter consists of the extracellular domain PstS, transmem-
brane domains PstA and PstC, and intracellular domains PstB (see the main text for the
description). Left: when external Pi is in excess, the ABC transporter activity is limited
as the cell does not consume ATP for the Pi transport. According to the current model in
the literature, PhoR assesses Pi availability by monitoring the activity of Pst transporter,
and relays the signal from PstB via PhoU to PhoR. When the Pi influx is increased, PhoU
stabilises PhoR, which is depicted with the green bars around PhoU. This prevents PhoR
dimers from autphosphorylating (red). Consequently, the tanscription factor PhoB does not
become phosphorylated by PhoR. Right: Due to the ABC transporter activity, the external
Pi binds to the PstS component of the ABC transporter. It is then translocated to the inner
membrane domain of the transporter through PstC and PstA. Following this, PstB changes
its conformation by consuming ATP. Pi is internalised and released to the cytosol. When
the Pi influx through the ABC transporter reduces, PhoU does not stabilise PhoR, which is
depicted with the red bar next to PhoU. As a result of this, PhoR becomes free to perform its
auto-kinase-phosphotransferase activity, whereby it phosphorylates PhoB. Phosphorylated
PhoB then forms a dimer to act as a transcription factor for the operons, resulting in PhoA,
PhoB and PhoR expression.

E. coli relies on accurate control of TCS signaling systems to adapt to environmental
perturbations. TCS regulates physiological processes in response to environmental param-
eters and enable adaptation to changing conditions. To understand the signal transduction
mechanism in bacteria, TCS has been studied widely. Therefore, the model includes TCS
members and activation of the Pho regulon promoters pPhoB and pPhoA. In recent years
significant advances have been made in the understanding of the role of TCS and signalling
mechanisms. More than 180 different TCS and gene sequence of more than one thousand
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sensors and response regulators have been identified in different bacteria [6]. In this work,
we have described the first steps in the design of a synthetic biological system based on the
use of TCS. This should constitute a contribution to the research on genetically modified
bacteria that detect environmental changes and respond to higher inorganic phosphate levels.

One of our objectives is to construct a responsive model structure which can be used to
predict the behaviour of engineered bacteria as biological sensors that detect changes in their
environment and respond by increased synthesis and intake. An application of this would be
to reduce the need for large-scale reaction networks and may be the basis for a new generation
of bio-based materials. A quantitative model is presented, which integrates experimental
data from a promoter activity within E. coli. We have presented the initial steps towards
this application domain in the form of a design process, which integrates gene expression
data from E. coli into a computer model. In order to understand the quantitative analyses of
protein concentrations, modifications and activities in environment, we have focused on the
activation response of the TCS components PhoB and PhoR. Moreover, this model can help
us to understand the dynamic behavior of system deactivation and to quantitatively evaluate
the role of phosphatase activity under abundant external Pi conditions as in Chapter 3.

In this chapter, we have developed an approach combining experimentation and modelling.
Experimental data is used to fit the parameters to the feasible physiological range given in the
literature, and to determine the relative sensitivity to the parameters. The simulations with
our model provide a dynamic description of the mechanisms. With a combination of wet-lab
experiments and computer simulations, we use our model to quantify dynamic mechanisms
of auto-regulation in E. coli in response to varying external phosphate levels, and explore
and verify emerging phenotypes with synthetic promoters. Simulations with the model do
not only reproduce our experimental measurements, but also predict phenotypes with various
synthetic promoter designs that can optimise the Pi intake in E. coli. Sensitivity analysis
on the parameters demonstrate the influence on the expression of Pho-controlled genes and
the gain of the system under variations in transcription efficiency in response to external
phosphate concentration. The model can thus serve as a virtual lab, and can be used to test
various promoter designs for enhanced Pi intake in biotechnology applications for phosphate
sequestration.

4.2 Material and Methods

The model is based on a mechanistic description of the system dynamics within a chemical
reaction system representation with respect to mass action kinetics. To build the simulation
model, we have selected the part of the network from the TCS to gene regulation, and used
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the promoter activity as well as the levels of active transcription factor as indicators for
quantifying the response to external Pi levels. This is because the TCS proteins PhoR and
PhoB are encoded by the same operon [168]. Moreover, the ABC transporter proteins and
PhoU are encoded by the same operon [168]. The ABC transporter expression and the TCS
expression are regulated by the same transcription factor PhoB [38]. The expression of these
proteins depends on the external phosphate concentration. The Pst phosphate uptake system
regulates gene expression in response to Pi availability by interacting with the two-component
system.

When the external Pi concentration is limited, resulting in a low activity of the ABC
transporter, PhoU releases the otherwise inhibited PhoR. This allows PhoR to phosphorylate
PhoB through an autokinase/phosphotransferase activity [168, 169]. PhoR is stable as a
dimer, thus it is doubly phosphorylated.

DiPhoR↔ DiPhoRp (1)
DiPhoRp↔ DiPhoRpp (2)

PhoR is essential for the control of the activity of PhoB [52, 168, 169]. After autophospho-
rylating, PhoR relays the signal to the transcription factor PhoB. The bidirectional reactions
3 and 5 below model the association of phosphorylated PhoR dimer and PhoB, and the
unidirectional reactions 4 and 6 model the phosphotransferase. PhoB has been reported to
exist primarily as monomers and phosphorylation greatly enhances dimerisation, modelled
by reaction 7 [81].

DiPhoRpp+PhoB↔ DiPhoRpp-PhoB (3)
DiPhoRpp-PhoB→ DiPhoRp+PhoBp (4)
DiPhoRp+PhoB↔ DiPhoRp-PhoB (5)
DiPhoRp-PhoB→ DiPhoR+PhoBp (6)
PhoBp+PhoBp↔ DiPhoBpp (7)

In E. coli, the sensor histidine kinase PhoR is a bifunctional enzyme that paradoxically
performs two opposed tasks: in one direction, it catalyzes the phosphorylation of response
regulator PhoB, and in the other, it also performs the dephosphorylation of PhoBp [53, 149].
The association of PhoR dimers with phosphorylated PhoB is modelled by the bidirectional
reaction 8, whereas the phosphatase activity is given by reaction 9.

DiPhoR+PhoBp↔ DiPhoR-PhoBp (8)
DiPhoR-PhoBp→ DiPhoR+PhoB (9)
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Phosphorylated dimer structure PhoB (DiPhoBpp) is enabled for activating Pho regulon
by binding to a consensus promoter region. PhoB and PhoR in Pho regulon are encoded by
the same operon, that is, the phoBR operon. Thus, the synthesis of the regulatory proteins
PhoB and PhoR is under Pho regulon control [168–170].

Based on experimental data, we consider the PhoA and PhoB promoters, whereby the
PhoB promoter provides feedback to the system as this results in the expression of both
PhoB and PhoR. PhoR expression during Pi limitation is dependent on the upstream PhoB
promoter; the operon structure indicates that PhoR gene function requires expression from
the PhoB promoter [170]. For this, phosphorylated PhoB dimers bind to the promoter as
active transcription factors.

DiPhoBpp+pPhoA↔ pPhoAa (10)
DiPhoBpp+pPhoB↔ pPhoBa (11)

Active promoters pPhoAa and pPhoBa lead to the transcription of mRNA, which carry
the information for the subsequent translation, resulting in protein synthesis [168, 169].

pPhoAa→ pPhoAa+mRNAa (12)
mRNAa→ PhoA+mRNAa (13)
pPhoBa→ pPhoBa+mRNAb (14)
mRNAb→ PhoB+mRNAb (15)
mRNAb→ DiPhoR+mRNAb (16)

With the inclusion of the degradation/dilution terms, we obtain:

PhoA→ /0 (17)
PhoB→ /0 (18)
DiPhoR→ /0 (19)
mRNAa→ /0 (20)
mRNAb→ /0 (21)

We have implemented the deterministic ordinary differential equations (ODE) model in
Matlab by using the standard translation from the chemical reaction network above, based on
stoichiometries. The ODEs are listed in Figure B.1. We have also implemented a version
of the model for stochastic simulation, again based on mass action kinetics. The stochastic
simulations capture fluctuations due to small molecule numbers, which are not captured
by the deterministic simulations. By using the standard conversion factors for mass action
kinetics, we could use the same rates for the deterministic and stochastic simulations.



44
Quantifying Dynamic Mechanisms of Auto-regulation in Escherichia coli with Synthetic

Promoters in Response to Varying External Phosphate Levels

The initial concentrations of the model variables have been derived from the literature or
obtained from our experiments, described below. The control model has been calibrated for
an initial culture containing 0 µM external Pi. Prior to Pi starvation, the concentrations of
proteins PhoR and PhoB are approximately 0.22 µM. The concentrations of active PhoR and
active PhoB are 4 ·10−8µM and 6 ·10−8µM, as determined by Keasling et al. [38]. With a
single plasmid, average mRNA number is 2-3 in E. coli [129]. Therefore, the initial states
of mRNAa and mRNAb are set to 0.00166 µM by taking E. coli volume as 1 µm3, and the
initial promoters numbers are set to 10 for each. We assume that the ATP concentration stays
constant throughout the considered time intervals.

The rates of chemical reactions are obtained in accordance with the variability of physio-
logical ranges given in the literature [2, 12, 129]. The model includes 29 reactions, including
the reverse reactions. The control model has been used to reproduce the data and the unknown
parameters have been estimated by least square inference within the plausible physiological
ranges. When possible, parameter values are fixed or estimated by using experimental
measurements found in the literature. The parameter values taken from the literature and
their physiological ranges for the rates, if applicable, are listed in Table 4.1. The parame-
ters without a range are fitted to the experimental data by using the deterministic model to
reproduce the response curves. The parameter estimation procedure has been carried out by
using a multi-start approach. The rate values have been selected with respect to the best fit to
the physiological ranges, also listed in Table 4.1, and the dynamics in accordance with the
experimental findings in order to avoid discontinuities or states with unrealistic values.

The data for the PhoA and PhoB expression have been obtained using PCR ampli-
fied DNA from E. coli MG1655 genome and transcriptionally fused to the translational
coupler BCD2 [118] and the fluorescent ms-fgfp gene. Subsequently the PphoA::BCD2-
msfgpf fragment was cloned using the PacI/HindIII restrictions sites in pSEVA234 plasmid
(http://seva.cnb.csic.es/), generating the pSEVA237PphoA vector.

The synthetic promoter Pliar00117 was obtained by PCR using a degenerative primer and
the promoter pBG42 [178] as template. The Pliar00117 promoter was transcriptionally fused
to BCD2 and msfgfp gene. The Pliar00117::BCD2-msfgpf fragment was cloned using the
PacI/HindIII restrictions sites in pSEVA234 plasmid, generating the pSEVA237Pliar00117
vector. E. coli DH10B was used for cloning and for MsfGFP protein expression under PphoA
or Pliar00117 regulation.

Activities of the PphoA and Pliar00117 promoters have been determined as follows. E.
coli DH10B carrying pSEVA237PphoA or pSEVA237Pliar00117 have been grown over
night at 37◦C in MOPS medium [121] containing 100 µM KH2PO4 to OD600 of 2.0. The
bacterial cells have been pelleted at 1500 x g, room temperature, 10 min and washed twice in
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MOPS medium without KH2PO4. The cells have been suspended in 250 µ l of MOPS buffer
with increasing concentrations of KH2PO4 from 0 to 50 mM. The bacterial cell suspensions
have been loaded in 96-well plates and incubated at 37◦C, 200 rpm. The expression of
MsfGFP was monitored at different times in a Varioskan Flash spectral scanning multimode
reader (Thermo Scientific); excitation 488 nm, emission 509 nm.

4.3 Results and Discussion

Phosphate intake at starvation requires rapid activation of PhoB dimers. Figure 4.2
provides a schematic representation of the control model set up with the experimental data
and the formal model. The control model is set up with respect to the initial phosphate
starvation in accordance with the experimental data and the parametrisation and fitting
procedure described in Methods. In first of the two steps, the blue curves in Figure 4.2 C and
Supplementary Figure B.2 are obtained by using only the experimental values of PhoA levels.
When external Pi is abundant, the Pst system inhibits the activation of TCS, and consequently
the Pi intake; PhoA is then expressed at a basal level. However, when Pi is limiting, inhibition
of TCS is relieved, resulting in the activation of PhoA transcription. The alterations of PhoA
expression can thus be interpreted to an extent as an indicator for the changes in external
phosphate level and Pi intake.

In these simulations, in response to external Pi level at 0 µM, the system initiates the
activation of PhoR, given by the autophosphorylation of both of the monomers in the stable
dimer. This results in the subsequent transfer of phosphoryl groups. As a consequence, the
response regulator PhoB rapidly becomes active and dimerises to form active transcription
factors. The resulting rapid increase in the promoter activity delivers the mRNA transcription,
and the consequent experimentally observed levels of PhoA.

At a second step in our analysis, to highlight and contrast the role of PhoB dynamics
in the feedback mechanism, we have refined the model to include the experimental data on
PhoB expression. The resulting red curves in Figure 4.2 C and Supplementary Figure B.2 are
obtained by using the experimental levels of both PhoA and PhoB in the fitting procedure.
The rates in Table 4.1 are obtained as a result of this fitting procedure that delivered the control
model parameters, whereby we have enforced the displayed physiologically boundaries. The
difference in the phenotype between red and blue curves in Figure 4.2 C should thus highlight
the role of the feedback of the PhoB and PhoR expression to the system.

We have performed a large scale analysis of the system dynamics of the control model
in terms of the fitted parameter values within a broader range. We have first analysed the
broader effect of the the TCS disassociation rates (r3r, r5r, r7r, r8r) on the dynamics and
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Reaction Number Rate Symbol Fit Value Literature Value
1 r1 25.3658 10−100s−1

1 reverse r1r 8.1165 ≪ 10s−1

2 r2 25.3658 10−100s−1

2 reverse r2r 8.1165 ≪ 10s−1

3 r3 100 100 µM−1 s−1

3 reverse r3r 94.9411 N.A.
4 r4 21.3718 17−23s−1

5 r5 100 100 µM−1s−1

5 reverse r5r 94.9411 N.A.
6 r6 21.3718 17−23s−1

7 r7 100 100 µM−1s−1

7 reverse r7r 94.9411 N.A.
8 r8 100 100 µM−1s−1

8 reverse r8r 94.9411 N.A.
9 r9 12.95 ≪ 17s−1

10 r10 10000 10000 µM−1s−1

10 reverse r10r 1000 N.A.
11 r11 10000 10000 µM−1s−1

11 reverse 11r 1000 N.A.
12 r12 0.0540 0.0025−0.2s−1

13 r13 0.0302 0.0006−0.05s−1

14 r14 0.130 0.0025−0.2s−1

15 r15 0.035 0.0006−0.05s−1

16 r16 0.0302 0.0006−0.05s−1

17 r17 0.0001 0.000096−0.00079s−1

18 r18 0.0001 0.000096−0.00079s−1

19 r19 0.0001 0.000096−0.00079s−1

20 r20 0.0055 0.0055s−1

21 r21 0.0055 0.0055s−1

Table 4.1 Reactions and deterministic rates obtained from the physiological ranges in [2, 12,
129].
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the PhoB transcription and translation parameters that deliver the expression of PhoB (r14,
r15), which is a transcription factor. The cumulative output of different simulations with
fold changes that cover the physiological intervals for r14 and r15 as well as a broad range
for r3r, r5r, r7r, and r8r are depicted in Supplementary Figures B.3, B.4, B.5, B.6, B.7, B.8,
respectively.

In these simulations, the dissociation rates of PhoR and PhoB, that is, r3r and r5r,
have transient effects on the steady state concentrations of the complexes formed by these
molecules. However, these rates do not modify the PhoB activity or the levels of PhoA and
PhoB as shown in Supplementary Figures B.5, and B.6. Variations in the dissociation rate of
PhoB, given by r7r, affect the activity of PhoB as a transcription factor, however this has a
minor effect on the transcription and translation of PhoB and none on PhoA (Supplementary
Figure B.7). On the other hand, the dissociation rate of the inactive PhoR from the active
PhoB, given by r8r, affects the activation of PhoB as a transcription factor in a proportional
way, however its effect on promoter activity is negligible (Supplementary Figure B.8). As it
can be seen from Table 4.1, there are also other parameters that have an effect on both system
dynamics and PhoB activity. However, these are not suitable candidates for modification at
this first analysis due to their physiologic ranges, and they are discussed below.

As it can be observed in Figure 4.2, and supported by the analysis above, the simulations
that include the PhoB data for parametrisation result in faster response dynamics, measured
in terms of the time required to reach a peak state. This can be explained by the self-feeding
role of the TCS, and the resulting increased requirement for the active transcription factors
to sustain the experimentally observed protein levels due to their feedback to the network:
because PhoR and PhoB are encoded by the same operon, not only PhoB levels, but also
PhoR levels increase as a result of the changes in the reaction rates. This causes the cell to
have more sensor histidine kinase, resulting in a more immediate response. The response
time thus decreases with an increase in the amount of sensor histidine kinase as well as an
increase in its activity.

The deterministic ODE simulations lead to observations that describe the average dynamic
behaviour of the variable concentrations for the simulated 4.5 hours. To observe the possible
fluctuations in the system, we have performed stochastic simulations. This way, we have
been able to compare the mean behaviour with the regulatory dynamics that incorporates
the noise due to smaller molecular numbers. Figure 4.2 as well as Supplementary Figure
B.2 include a comparison of the deterministic and the stochastic simulations. The stochastic
simulations are performed by applying the standard conversion to obtain molecule numbers
from the concentrations. The grey fluctuating lines show the stochastic results at a single
representative simulation; the simulation shows the expected fluctuations in the model species
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with smaller numbers such as mRNA molecules as well as the qualitative agreement between
the stochastic and the deterministic simulations.

Binding and unbinding of transcription regulators are a primary mechanism for gene
regulation, whereby transcription factors operate at a much faster time-scale in comparison
to the incoming signalling cascade. While the rate of binding of transcription regulators
are known in many cells, little is known about how cells can modulate their unbinding for
regulation [23]. The unbinding rate of an active transcription factor can thus vary over many
orders of magnitude [2, 23]. Therefore, in the initial analysis, we have fixed the transcription
factor unbinding rates (r10r, r11r) to 1000s−1 as shown in Table 4.1, and analysed the system
behaviour with respect to variations.

To this end, we have experimented in stochastic simulations with different DNA unbinding
rates, that is, r10r and r11r, from 100/s up to 5000/s. In accordance with the common
practice, we have used stochasticity to quantify the noise that arises from the binding of a
regulatory protein to a promoter [87]. The resulting amplification in oscillations in stochastic
simulations, shown in Figure 4.3 as well as Supplementary Figures B.9, B.10 and B.11 are
due to the increase in the promoter unbinding rates. In Figure 4.3, we have quantified the
decrease in noise in the steady state distribution of mRNA and active promoter levels in
terms of the ratio of the standard deviation over the mean. In this respect, the deterministic
simulations display how DNA binding rates affect the mean behaviour, while the stochastic
simulations bring about the loss of coherence due to noise in gene expression. These results
indicate that lower unbinding rates, as observed in saturation conditions, are required for
stable gene regulation that is not affected by noise. This also reflects how both genetics
and noise due to environmental factors can affect the development of targeted pathway
interventions for faster Pi accumulation.

The results above show that our control model provides detailed predictions about the
complex effects of production pathways of the Pi accumulation system. The simulations
are in good agreement with the experimental data and the general concepts described in the
literature for the functionality of Pho regulon [38, 168]. The control model proposed can
thus serve as a virtual lab, which can be used to test and justify the theoretical approaches on
the Pi intake system.

PhoR tunes the Pi intake both up and down. Besides the chemical properties of the
proteins in the regulatory system [54], also the activity of the TCS proteins influence the Pi

intake. Moreover, as displayed in Figure 4.2 C, the feedback mechanism due to the increased
expression of sensor histidine kinase PhoR and the response regulator PhoB introduces a
speed-up of an hour in comparison to the simulations, where this feedback mechanism is
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Fig. 4.2 Schematic representation of the experimental data and the control model, and its
dynamics in response to varying external Pi concentrations. A. The data for the PhoA and
PhoB expression are obtained using PCR amplified DNA from E. coli MG1655 genome
and transcriptionally fused to the translational coupler BCD2 and the fluorescent ms-fgfp
gene. B. The control model has been obtained from the experimental data and the chemical
reaction network (CRN) described in Methods by applying a fitting procedure with the
physiological ranges obtained from the literature in Table 4.1, and verified by sensitivity
analysis. The deterministic ODE and stochastic simulations are performed by applying
the standard translation from CRNs based on stoichiometry. The blue colour denotes the
proteins, orange denotes the promoters in their active and inactive forms, and purple denotes
the mRNA molecules. Filled arrowheads denote the reversible reactions. The red arrows
denote degradation reactions, the green arrows denote complexations, the black arrows
denote phosphorylation and dephosphorylation, and the blue arrows denote the transcription
and translation reactions. The model species that are plotted in C and D are distinguished
with frames. C. The dynamics of the highlighted species of the control model in panel B as a
result of the fitting procedure together with the experimental data, as described in Methods,
are plotted. In the first of the two steps, the blue curves are obtained by using only the
experimental values of PhoA levels. In the second step, that delivers the control model, the
red curves are obtained by using the experimental values of both PhoA and PhoB levels.
Inclusion of the PhoB data highlights the contribution of the feedback mechanism to the
response dynamics, which is otherwise not represented. The stochastic dynamics, plotted in
grey, display the fluctuations in the control model that are due to small molecule numbers and
are not observable in the deterministic simulations. D. The response of the control model to
variations in the external Pi levels, which are represented as fold change factors, applied to the
autophosphorylation propensities of PhoR. A higher external Pi concentration corresponds to
a smaller factor and vice versa.
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Fig. 4.3 The variations in the mRNA and active promoter levels due to the unbinding rate of
the promoter and the active transcription factor. An unbinding rate of 100/sec (A) results
in much less spread in the steady state distributions in comparison to unbinding rates of
1000/sec (B) and 5000/sec (C). The variations are quantified as the ratio of the standard
deviation and the mean.
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not taken into consideration. This indicates that a faster response in terms of Pi intake is
delivered by an increase in the histidine kinase levels as well as the increase of its activity
due to signalling.

A notable feature of the Pi response system is that the sensor histidine kinase is bifunc-
tional: it participates in both phosphorylation and dephosphorylation of its cognate response
regulator. In this respect, the TCS autoregulatory design is a distinct mechanism from the
conventional positive feedback loops. The bifunctional PhoR component is an autokinase
with concomitant opposing phosphatase activity [35, 113, 159].

The dual role of PhoR is a mechanism that enhances signal robustness [53, 149]. More-
over, it has also been shown that the phosphatase activity in TCS provides a rapid dephospho-
rylation mechanism that shuts off the system, and thereby restores it to the original state [55].
Such a dynamics can be triggered, for example, by an increase in the external Pi concentration
and the consequent decrease in the autophosphorylation activity of PhoR.

We have analysed the effect of the changes in autophosphorylation rates to the system
behaviour. Because autophosphrylation becomes possible when the starvation signal prevents
PhoU from inhibiting PhoR, the propensity of autophosphorylation depends on the incoming
signal, which is a function of the external Pi levels. By decreasing the autophosphorylation
propensity by applying various fold changes, we can thus see the effect of an increase in
external Pi concentration on the system as depicted in Figure 4.2 D and Supplementary
Figure B.12. In these simulations, a decrease in PhoR activity due to increased external Pi

concentration results in a proportional decrease in the active PhoB dimers, and a decrease in
the promoter activity as well as the PhoR activity.

A complementary realisation of this mechanism is given by the association of PhoB to
PhoR, that is, r8. Although the physiological range for this parameter is narrow, as a result of a
hypothetical increase in the association rate of PhoB and PhoR, the PhoB concentration stays
low for a longer time period and the levels of active PhoB dimers decrease proportionally as
displayed in the fold change experiments in Supplementary B.13.

In our model, we assume that the growth in the cell culture within the considered time
interval is negligible. However, due to cell cycle, which has a time scale in the order of an
hour, the protein concentrations can be subject to dilution besides the active degradation of
the molecules we have considered. To this end, Supplementary Figures B.14, B.15, and B.16
explore the effect of higher degradation rates due to dilution in growth conditions, (r17, r18,
r19, r20, and r21), together with higher external Pi levels, given with a decrease in the rates
r1 and r2. As it can be seen in Supplementary Figure B.12, a decrease in the autophosphory-
lation rates does not only lower the steady state levels, but also slows down the activation of
the transcription factor by preventing the formation of an initial peak in DiPhoBpp levels.
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A concomitant increase in the degradation and dilution rates delays reaching a steady state.
However, this does not drastically alter the eventual active DiPhoBpp concentrations.

Starvation response can be obtained with synthetic promoters in the conditions of
higher external Pi concentrations. The simulation results in Figure 4.2 D and Supple-
mentary B.12 demonstrate the system’s adaptation to the stimuli due to Pi concentration,
whereby the autophosphorylation propensity of PhoR acts as a proxy for the external Pi levels.
These simulations predict how changes in the external Pi concentration affect the Pho regulon,
and in particular, how the promoter activity decreases with an increase in the external Pi

concentration. These results thus confirm that the adaptation of gene expression is clearly
dependent on the Pi response stimuli [95, 168]. Moreover, the model provides a mechanistic
explanation for the interplay between the system components under the conditions of varying
external Pi concentrations, which result in variations in the promoter activity.

It is well established that the protein production rate is greatly influenced by the specific
nucleotide sequence of the promoter [70, 82, 83]. In this respect, synthetic biology and
genetic engineering methods aim at synthesising promoters with the desired strength. To
this end, in order to observe the possible variations in gene expression due to variations in
promoter strength, we have performed a class of simulations. The results of these simulations
in Figure 4.4 display measurements of the steady state levels of PhoA promoter activity
(pPhoAa) as well as the PhoA yield of the system as the resulting product in terms of the
area under the curve (PhoA AUC).

In these simulations, we have scanned regimes with varying external Pi concentrations
simulated by applying fold changes to the rates r1 and r2 as in the simulations in Figure 4.2
D and B.12. We have applied a fold change of 1 for the control regime with 0µM external Pi,
and 0.5, 0.2 and 0.1 for increasing external Pi levels. For each external Pi regime, we have
scanned 100 different promoter designs by means of simulations that apply 10 fold change
values from 0 to 2.5 with steps of 0.25 to the promoter binding rates r10 and r11 as well as
10 such fold change values to the promoter unbinding rates r10r and r11r. The heatmaps
resulting from these 100 simulations are depicted in Figure 4.4, where the control values for
1 fold change for binding and unbinding rates are marked by dashed lines.

These results indicate that the steady state promoter activity and the PhoA yield are
highly correlated in all the regimes and for all the promoter binding and unbinding rates. As
expected, when the control system’s output in Pi starvation condition is compared with the
output in regimes with increased external Pi, we observe a decrease in PhoA yield. Moreover,
these results predict that in order to obtain the starvation response in the conditions with
higher external Pi concentration, promoter binding rates need to be increased and unbinding
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Fig. 4.4 Heatmaps for the activity of various promoter designs for pPhoA, and pPhoB
and the resulting PhoA expression (bottom-row) under different external Pi concentration
conditions. The heatmaps are ordered decreasingly from left to right according to the external
Pi concentration given by the fold changes applied to the PhoR autphosphorylation reactions
r1 and r2. The left most column with 1 as the fold change value is the starvation condition
with 0µM external Pi. Each heatmap scans 100 simulations by applying 10 different fold
change values to the promoter binding rates r10 and r11 as well as 10 different fold change
values to the promoter unbinding rates r10r and r11r. The upper row displays the resulting
steady state levels of the active promoter pPhoAa, whereas the lower row displays the yield
of PhoA gene expression measured as the area under the curve (AUC). The intersection of
the dashed lines in the left column delivers the experimentally observed regime observed in
Figure 4.2. The levels of this regime, that display the starvation response, are highlighted in
all the heatmaps.

decreased. Promoters that provide the required strengths can be obtained by modifying the
nucleotide sequences, for example, as in [34, 82, 99].

Through synthetic biology approaches, we have obtained a library of synthetic promoters
while exhibiting a broad range of sensitivity in sensing Pi in E. coli. At the time of writing,
our collaborators are working on the library and it is under development. We have tested the
predictions of the model on experimental data obtained with one of the synthetic promoter
Pliar00117 (pPliar00117) from the library under starvation conditions with 0µM external Pi
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concentration. Moreover, we have used the model to explore the effect of possible synthetic
promoter designs under various external Pi concentration conditions. The experimental data
and the simulation results with our model are depicted in Figure 4.5. The selected Pliar00117
synthetic promoter verifies the model predictions as it has a similar behaviour as the control
model for the pPhoA promoter in starvation conditions. Moreover, the model further predicts
the synthetic promoters with increased strength, given with higher binding rates and lower
unbinding rates, deliver responses similar to the starvation response, also in the presence
of higher external Pi concentrations. The simulation results indicate that, within a modular
framework, individual promoters can be easily replaced for various tasks. The simulations
mechanistically quantify how changes in the genetic components affect the behaviour of the
circuit.

Fig. 4.5 Comparison of the experimental data on PhoA expression with the synthetic promoter
Pliar00117 together with the simulation results with varying external Pi concentrations and
promoter parameters that model synthetic designs. The experimental data on the starvation
response with the synthetic promoter Pliar00117 is represented as hollow circles. As in
Figure 4.4, the plots are ordered decreasingly from left to right according to the external Pi
concentration given by the fold changes applied to the PhoR autphosphorylation reactions
r1 and r2. The left most column with 1 as the fold change value is the starvation condition
with 0µM external Pi. Each plot displays four simulations with varying fold change values
applied to promoter binding and unbinding rates that model various promoter designs. A
modified promoter (blue curve) can reproduce the starvation response in low as well as high
external Pi concentration, and reproduce the experimental data under Pliar00117 starvation
conditions.

Sensitivity Analysis To assess the sensitivity of our model to the parameters, we have
performed a two-step analysis. In the first step, we have considered the physiological interval
of the parameters given in Table 4.1. For this analysis, we have only included the rate



4.3 Results and Discussion 55

Fig. 4.6 Heatmap displaying the results of the sensitivity analysis by considering the physio-
logical interval in Table 4.1. For each parameter, the maximum and minimum values within
its physiological range are considered for simulation, and the area under the curve (AUC)
for each species is computed. The difference of the AUC for the maximum and minimum
parameter values are then normalised with the AUC of the control model. Red represents the
decreasing effect and green represents the increasing effect.

parameters that have been taken from literature and have been estimated within a given range.
For each parameter, we have run simulations by instantiating the model with the maximum
and minimum values of its physiological range, and, for each species, we have computed the
yield of the system in terms of the area under the curve (AUC). Figure 4.6 displays the results
obtained by taking the difference of the AUC for the maximum and minimum parameter
values, normalised with the AUC of the control model. The resulting heatmap quantifies
the impact of each parameter on the system dynamics with respect to plausible variations
within its physiological range. The results demonstrate that the changes in the translation
parameters are more pronounced than in the others. Moreover, in accordance with the results
above, the autophosphorylation rate of PhoR impacts the active transcription factor levels
and the transient species that lead to it.
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In the second step, we have performed a sweeping analysis by considering all the model
reactions and species within a range of 3 orders of magnitude both up and down. That is,
each reaction rate is multiplied with a fold-change factor within a spectrum of 6 orders of
magnitude, that is, from 10−3 to 103. We have then computed the AUC for each species
and normalised the outcome with the AUC of the control model. The heatmap depicted in
Supplementary Figure B.17 quantifies the impact of these changes and predicts the system
behaviour under hypothetical conditions simulated by such variations in parameters.

4.4 Conclusion

We have presented a computational model and its experimental validation for quantifying
dynamic mechanisms of auto-regulation in Escherichia coli, including the transcriptional
regulatory network, in response to varying external phosphate levels. Our model provides a
mechanistic explanation of the interplay between TCS, Pho regulon and promoter efficiency
under the conditions of varying external Pi concentrations. Being parameterised with the
physiological ranges of its components, the results provided by the model are in good
agreement with the theory and the general concepts described in the literature for the
functionality of Pho regulon [38, 168]. In particular, the output of the model in terms
of gene regulation delivers the expected system dynamics without the need for external
intervention. Moreover, the model provides predictions for the complex effects of TCS
activity and consequent dynamics. A direct validation of these predictions is provided by the
good fit of the experimental data.

Besides the deterministic simulations with the ODEs, we have employed stochastic
simulations to highlight the effect of noise in the system [147]. As expected, the stochas-
tic simulations are consistent with the deterministic simulations, which display the mean
behaviour, thus are more adequate for sensitivity analysis. Stochastic simulations, on the
other hand, capture the noise due to concomitant fast and slow reactions and the consequent
fluctuations observed in experimental observations. In particular, our stochastic simulations
highlight the fluctuations due to binding and unbinding of the transcription factors with
the promoters, which operate at a much faster time scale in comparison to the preceding
signalling cascade [44, 138, 177]. In these simulations, higher unbinding rates result in
greater fluctuations that correlate with the decrease in binding saturation, a requirement
for a robust signal. While confirming the notion that the complex networks of interacting
molecules within cells should be robust [117, 176], these results expose the additional role
of the transcription factor unbinding rate in tuning the protein synthesis.
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The simulations with our model confirm that the dynamics of TCS and its responsiveness
to both genetic and environmental perturbations play a key role in tuning the E. coli Pi

response. The model can thus serve as a virtual lab for the Pi intake system, and can be used
to explore and test various promoter designs, for example, in biotechnology applications
such as sensors for for wastewater treatment or detecting environmental pollutants to relocate
towards them.
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Chapter 5

A Novel Closed-loop Multi-level Model of
Glucose Homeostasis for Normal
Glucose Regulation and Type 2 Diabetes

Type 2 diabetes (T2DM) patients suffer a pathology that involves failure at different levels
and subsystems. It is diagnosed at the phenotypic level by inspecting fasting glucose, but it
arises and it is maintained at molecular level by impaired intracellular insulin signalling. The
pathophysiologic processes underlying the regulation of glucose homeostasis are considerably
complex at both cellular and systemic level. Therefore, we need to understand the links
between the several layers of abstraction of glucose metabolism to control the disease
progression. As a first step in this direction, researchers are developing the hierarchical
description provided by multi-level models that are able to reproduce the glucose homeostasis.

In this framework, this chapter provides a novel multi-level closed-loop model of whole-
body glucose homeostasis. This model is coupled with the molecular specifications of
the insulin signalling cascade in the adipose tissue (abstracted as adipocyte), under the
experimental conditions of normal glucose regulation and type 2 diabetes. Moreover, it is
important to observe the system in a long period and how the levels of abstraction react to
each other. The coupling of the low level model with a closed loop whole body model allows
seeing the effect on adipocytes not only after one meal but in a perpetual fashion.

To this end, we introduced the closed-loop model allows for the input and the output to be
connected in such a way that it is possible to run long self-sustained simulations. Model takes
into account key hormones like glucagon, incretins, ghrelin and leptin and key compartments
such as the liver, muscle and adipose tissue. The combination of a multi-level and closed-loop
modelling approach provided a fair dynamic description of the core determinants of glucose
homeostasis at both cellular and systemic scales.
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The ordinary differential equations of the model were used to describe the dynamics
of glucose and key regulatory hormones and their reciprocal interactions among gut, liver,
muscle and adipose tissue. The model was designed for being embedded in a modular,
hierarchical structure. The closed-loop model structure allowed self-sustained simulations
to represent an ideal in silico subject that adjusts its own metabolism to the fasting and
feeding states, depending on the hormonal context and invariant to circadian fluctuations.
The cellular level of the model provided a seamless dynamic description of the molecular
mechanisms downstream the insulin receptor in the adipocytes by accounting for variations
in the surrounding metabolic context.

What follows is the content of the article, published in the journal of PLoS ONE in
February 2018 [165].

5.1 Introduction

The glucose homeostasis is a physiological closed-loop, which is able to maintain the plasma
glucose levels within a narrow physiological range, as a result of an interaction among many
components [47, 120]. A disruption in the governance of the glucose-insulin system can
lead to variable degrees of altered glucose regulation, which may ultimately result in overt
diabetes mellitus. According to the most recent estimates, diabetes mellitus affects over 415
million individuals worldwide [46], is characterised by severe cardiovascular complications
leading to early death [37], and its prospective incidence trends highlight it as a global
burden of pandemic proportion. Most diabetes cases are classified as type 2 diabetes mellitus
(T2DM), which is the result of genetic predisposition and life style factors and it is usually
developed in adult age.

Over the past decades, a number of mathematical models of glucose and insulin dynamics
have been developed to allow the description and interpretation of such processes, which are
often not accessible to direct measurement in vivo [1]. In such models the physiology of the
glucose-insulin system in different experimental conditions are described through a set of
ordinary differential equations (ODEs) or delay differential equations (DDEs) [10, 15, 18, 20,
104, 105, 107, 131, 161]. In order to soften the burden of both experimental and modelling
complexity, more parsimonious model was proposed and successfully employed by the so
called minimal model [10], which was originally applied to estimate insulin sensitivity by
inspecting the time courses of insulin and glucose after an intravenous glucose tolerance test
(IVGTT).

In its most advanced specification, the concept of minimal models has been applied
to more physiologic experimental conditions and in some instances has been enriched by
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integrating a broader range of physiological variables, including several hormones and regu-
latory elements such as ghrelin [161], glucagon [20] and incretins [15, 33, 161]. However, at
present, there is no evidence of a comprehensive and structured model, which summarises the
dynamics governing the glucose absorption by the peripheral tissues after a meal, according
to the regulation performed by insulin and other hormones at subcellular level. This is
possibly due to the constraints inherent to the reductionist modelling approach applied so far,
an issue that is currently amenable to solution with the hierarchical description provided by
multi-level models. This approach, also referred to as hierarchical modelling, constitute an
interesting trend in mathematical modelling of biological mechanisms, because they provide
a broader and more detailed description of the system than classical single level models [29].

Recent applications of multi-level models have been proposed to describe the pathophysi-
ology of beta-cells in the endocrine pancreas [51], and the whole body effects of the altered
insulin signalling cascade in adipocytes [126], while other applications described the effects
of inflammation on the onset of T2DM and its complications [17]. A holistic, rather than
a reductionist approach, combining more levels of abstraction, is necessary to improve the
understanding of the disease and shed light on the physiopathology.

A comprehensive, hierarchical description may be reasonably applied to T2DM, because
the phenotypic hallmark of hyperglycaemia is the consequence of alterations involving
complex hormonal and signalling networks, individual tissues and cell subtypes. Recently,
Chew et al. [24] proposed a model of the glucose regulatory system combined with the
insulin signalling model of Sedaghat et al. [145]. An interesting work of Nyman et al [126]
combined the organ level model of Dalla Man et al. [106] with three different detailed
versions of insulin signalling in the adipocytes. The most detailed version includes the model
from Kiselyov et al. for the description of insulin binding to its receptor [90].

We moved one step forward, as we exploited a multi-level modelling approach to provide a
novel closed-loop whole-body model of glucose homeostasis, coupled with a layer describing
the insulin signalling cascade in adipocytes in the experimental conditions of normal glucose
regulation and type 2 diabetes mellitus. The closed-loop structure was designed to allow
self-sustained simulations, thus fostering the modeller’s opportunities of investigating the
biological system in its components, while providing a way to test regulative phenomena
that work at different time scales and possibly have a delayed effect on the overall system
dynamics. The model was tested in silico in both the conditions of normal glucose regulation
(NGR) and T2DM.

Since insulin resistance constitutes one of the key pathophysiologic determinants of
T2DM, and given the increasing relevance of the adipose tissue as an endocrine organ
influencing systemic energy balance and glucose homeostasis [72, 88], we integrated the
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herein presented whole-body model with an additional layer, drawn from the most recent
insulin signalling model proposed by Nyman et al. [127], that provides a detailed specification
of the intracellular signalling cascade in the adipocytes.

The presented hierarchical architecture of glucose homeostasis might be relevant to
strategies aimed at improving the molecular descriptions of other organs and tissues that are
here considered only at the whole-body level.

5.2 Materials and Methods

5.2.1 Glucose physiology at the whole-body level

A graphical representation of whole body glucose metabolism is shown in Figure 5.1 where
all the variables and compartments considered in the high level model that is proposed are
shown.

Under physiological circumstances, blood glucose concentration is around 5 mM, and
many organs and hormones are involved in the maintenance of this delicate equilibrium
[134]. Whole body glucose regulation mechanisms at the organ level are described by the
following sequence of events.

The breakdown of the meal constituents after oral feeding occurs at time 0, glucose
transits to the stomach and then to the intestine, and it is ultimately resulting in an inward
flux of micro- and macro-nutrients, including glucose, to the bloodstream [33]. These events
triggers the endogenous insulin secretion, which is amplified by a concomitant increase in
the circulating levels of the incretin hormones, including the gastric inhibitory polypeptide
(GIP) and the glucagon-like peptide-1 (GLP1) [33]. Among the other neuroendocrine and
gastro-intestinal tract effects, the incretins potentiate the release and the de novo synthesis
of insulin from pancreatic beta cells, thus contributing to the proper glucose disposal in
peripheral tissues and to maintain plasma glucose levels within the physiological range
[161]. The incretin effect is normally responsible for about 50 to 70% of insulin production
[161]. From the intestine, glucose is absorbed to the plasma, also causing beta cell insulin
production. Therefore, insulin release is modelled here as a consequence of direct effects
exerted by the glucose and indirect effects mediated by the incretins.

The liver has a major role in the homeostasis of glucose, which is stored as glycogen in the
postprandial state and released at fasting through endogenous hepatic gluconeogenesis. These
mechanisms play a crucial role in maintaining constant plasmatic glucose concentrations, in
case of prolonged fasting, for instance during the night. Endogenous glucose release from
the liver decreases rapidly and is suppressed by nearly 80% during five hours postprandial
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Fig. 5.1 Graphical representation of the whole-body glucose metabolism as considered in
our model, according to the notation introduced in [61]. Only the organs/tissues for which
a variable has been explicitly included in the model are depicted in the figure (other key
organs/tissues of glucose metabolism, like pancreas and brain, are not displayed in the figure
even if their effect has been indirectly taken into account in model equations, see Results).
Adipose tissue is coloured in yellow to highlight that it is the part for which a model at the
cellular level is also provided (see Figure 5.2). Green ovals (hormones) and orange rectangles
represent model variables; arrows represent mass transfer (white head), stimulation (black
head) and inhibition (T head).

period. Endogenous glucose production is suppressed by high levels of both glucose and
insulin [58, 106, 154]. Insulin acts on the liver by inhibiting gluconeogenesis and glycogen
breakdown [58]. Another important player in liver glucose metabolism is glucagon, a
hormone secreted from pancreatic alpha cells. Glucagon has the opposite effect of insulin,
stimulating glycogen breakdown as plasma glucose levels decrease [64, 134]. Glucagon
secretion is inhibited by hyperglycemia and stimulated by hypoglycemia [64, 134, 154, 156].
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Glucose tissue uptake happens when insulin binds to its cell receptors on target organs,
including, among others, the liver, muscle and adipose tissues, where glucose is stored as
glycogen [102]. The most substantial percentage of glucose (15% - 20%) is utilised from
skeletal muscle, while the adipose tissue utilises 2% to 4%, while relatively smaller glucose
proportions eventually reach the brain, kidney, blood cells, adipose tissue and the splanchnic
organs the rest is utilised from the brain, kidney, blood cells and splanchnic organs [134].

Glucose metabolism is also regulated by hunger and satiety, through a number of finely
regulated biological mechanisms. Among the several hormones potentially involved in the
regulation of glucose homeostasis, we focused on the reciprocal interactions occurring among
insulin, ghrelin and leptin [28], as their mathematical specifications were available from
existing literature Hunger is here defined as the amount of food needed by organism [79].
Leptin, is a hormone so called satiety hormone, is mainly secreted from from peripheral
tissues (mainly the white adipose tissue) after glucose uptake, and its production rate is
directly related to the size of adipose tissue mass in the body [26, 84]. After its production
leptin is transported from plasma to the brain where its signal is responsible for hunger
inhibition [26]. Fall in serum leptin levels -as it happens during prolonged starvation- in fact
leads to downstream neuroendocrine alterations that prevent reproduction, reduce thyroid
function, activate the hypothalamic-pituitary-adrenal axis, and inhibit the growth hormone
[26, 50, 143].

On the other side, ghrelin, this counteracts leptin, acts as the hunger hormone. It is
secreted from the empty stomach, stimulating oral glucose intake [141], and it is inhibited
by insulin [9,34] [160, 161]. It circulates in the blood and serves as a peripheral signal to
the central nervous system to stimulate appetite [161]. Ghrelin, contrarily to leptin, acts on
the short term. Plasma ghrelin concentration has been shown to increase before a meal and
to decrease to its minimum concentration about one hour after food intake. Fasting plasma
ghrelin and leptin levels are negatively correlated.

The latter, hunger is also inhibited by high levels of plasma glucose and insulin [66, 135,
153]. Also insulin regulates hunger: directly, signalling satiety to the brain, and indirectly,
inhibiting ghrelin release [161]. In order to build a closed-loop model, oral glucose intake
is represented as the amount of glucose needed from the organism, an abstracted hunger
signal, and it is computed considering the current levels of leptin, plasma glucose, insulin
and ghrelin.

5.2.2 Insulin signalling at the cellular (adipocyte) level

A schematic representation of the molecular level model for insulin signalling in the adipocyte
is shown in Figure 5.2. The cellular part of the hierarchical model was taken from [134]
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and then modified. Insulin surrounding the adipocyte binds to the insulin receptor (IR) on
the cell surface. The insulin receptor is composed of two extracellular α subunits and two
transmembrane β subunits linked together by disulphide bonds. Binding of insulin to α

subunit induces a conformational change resulting in the autophosphorylation of a number of
tyrosine residues present in the β subunit. These residues are recognised by phosphotyrosine-
binding (PTB) domains of adaptor proteins such as members of the insulin receptor substrate
family (IRS). Together with the autophosphorylation process the insulin binding with the
receptors causes the endocytosis of the IR.

Receptor activation leads to the phosphorylation of key tyrosine residues on the insulin
receptor substrate protein 1 (IRS1) inside the cell. These phosphorylations are used as
docking sites by downstream effector molecules. The subsequent signalling cascades in-
volve phosphoinositide 3-kinase (PI3K), protein kinase B (PKB) and mammalian target of
rapamycin (mTOR).

Insulin signalling is involved in different intersected pathways, such as glycogen synthesis,
protein synthesis and cell survival. Among these, the next important step in this path is
the phosphorylation of PKB at Thr 308 from IRS1 and at Ser 473 from mTOR complex
2 (mTORC2). Both phosphorylations are needed in order for PKB to be fully active and
specific to its substrate. Targets of PKB include glycogen synthase kinase-3 (GSK3), which
is involved in control of glycogen synthesis, and AS160, which is involved in the control
of glucose uptake. Indeed AS16 regulates the translocation of vesicles including glucose
transporter 4 (GLUT4) from the cytosol to the plasma membrane. The vesicles merge into
the membrane where GLUT4.

5.2.3 The hierarchical model

The construction of a hierarchical model for glucose homeostasis and insulin signalling
is based on the connection between the two levels of abstraction: the whole body and the
cellular levels. To connect the two levels of abstraction, the knowledge of physiology of the
human body has been necessary.

Plasma insulin and glucose are the variables linking the whole-body level to the cellular
one. The whole body model contains the adipocyte tissue glucose mass which uptakes
glucose plasma via plasma insulin. Instead, the cellular level as it was built in [127] takes
as input insulin and glucose as the constant value of 100 nM and 5 mM, respectively. The
output of the cellular model is the glucose uptake from the adipose cell.

Concerning the link between the whole body model and the intracellular one, the presence
of the interstitial fluid for both insulin and glucose is crucial to combine the two levels of
abstraction and to get a more realistic result. This because the insulin signalling occurs in
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Fig. 5.2 Graphical representation of the model describing the insulin signalling in adipocytes
at the cellular level, according to the notation introduced in [61]. Solid arrows represent
state modification, while dashed arrows indicate reaction stimulation. Protein complexes
are coloured in yellow, green ovals represent the active and inactive feedback protein, while
the orange rectangles represent all the other components of the cellular model. The plasma
membrane of the adipose cell is represented in yellow and it separates the cytosol (light
yellow horizontal lines) from the interstitial fluid (blue and white vertical lines). The variables
I and G indicate insulin and glucose concentration in plasma (compartment not represented),
which regulate the amount of interstitial insulin (INSA) and glucose (GtA), respectively. For
the sake of simplicity, we highlighted the five variables linking the cellular level to the whole
body description (namely plasma insulin, interstitial insulin, plasma glucose, interstitial
glucose and intra-adipocitary glucose) by adding the corresponding names in parenthesis.

cells that are not surrounded by plasma but by the interstitial fluid. Interstitial fluid is a thin
layer of fluid which surrounds the tissue cells of multicellular animals.

The interstitial fluid is found in the interstices, the space between cells, and acts as a kind
of fuelling station [174]. Water, ions, and small solutes are continuously exchanged between
plasma and interstitial fluids across the walls of capillaries. Plasma, the major component in
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blood, communicates freely with interstitial fluid in other words, the nutrients in interstitial
fluid come from blood capillaries [174].

Therefore, whole body model and the cellular one were combined together adding two
new equations: one for the interstitial insulin and one for the interstitial glucose. The connec-
tion between the levels is designed to work through the interstitial fluid, which has not been
modelled as a separate compartment, but rather assuming that the interstitial concentrations
of insulin and glucose (i.e. the amount surrounding the cell) would proportionally correspond
to those of insulin and glucose in the plasma. The equation for the interstitial insulin was
taken from the literature [106]. The input of the cellular model is interstitial insulin, which
depends directly on the value of plasma insulin, so on the whole body model. Interstitial
insulin binds its receptor on the cell membrane and prompts the auto-phosphorylation of the
receptor and its endocytosis. The internalised phosphorylated receptor starts a cascade of
phosphorylation and activation events, according to the model introduced by Nyman et al.
[127], here simplified in some parts according to [13]. The model takes into account key
actors, such as insulin receptor substrate 1 (IRS1), feedback protein X_P, PKB, mTORC1
and mTORC2 complexes, P70 ribosomal S6 kinase, ribosomal protein S6 and Akt substrate
(AS160), which regulate the translocation of GLUT4 from the cytosol to the plasma mem-
brane. The output of the cellular model is connected with the whole-body model: the amount
of glucose uptake by the adipocyte (intra-adipocitary glucose) is regulated by the amount of
GLUT1 and GLUT4 on the plasma membrane [126, 127].

5.2.4 The mathematical model

We introduce a closed-loop multi-level mathematical model describing glucose homeostasis
in NGR and T2DM conditions. In order to be consistent with the previous results the
molecular level of the model describing the insulin signalling in adipocytes has been fitted
by considering the same experimental data used in the paper of Nyman et al. [127].

The proposed model includes 40 ODEs and 80 kinetic parameters. They were imple-
mented in Matlab 2015b and numerically simulated by means of the state of the art ODE
solver ode15s. Initial values and parameters have been obtained from the literature and
estimated by the steady state analysis or nonlinear optimisation (for details see the Table C.1,
and Table C.2)

All the ODEs of the hierarchical model are listed below starting from the ones of the
whole body level, then the two of the interstitial compartment and at the end all the ones of
the cellular level.

The whole-body model is described by Eqs. (1) to (14), as follows.
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Eq. (1) describes stomach glucose dynamics (S):

dS(t)
dt

= b9H(t)−b8S(t) S(0) = S0 (1)

The first term represents ingested glucose, which depends on glucose intake (H, Eq. (12))
and on rate (b9). The second term models stomach emptying and depends on the amount of
stomach glucose and transfer rate (b8) according to [33, 161].

Eq. (2) models intestine glucose transit (L), as described by Toghaw et al [161]:

dL(t)
dt

= b8S(t)−b10L(t) L(0) = L0 (2)

The first term represents the glucose entry from stomach, which coincides with the
amount of glucose exiting the stomach in Eq. (1). The second term accounts for the glucose
absorption into the plasmatic compartment, which depends on the amount of glucose in the
intestine (L) and on the rate (b10).

The dynamic of plasma glucose concentration (G) dynamics is described in Eq. (3).

dG(t)
dt

= f
b10L(t)

v
+ f

b5C(t)
v

−b1G(t)−b3I(t)G(t) G(0) = G0 (3)

The first term, as from Toghaw et al. [161], represents the glucose appearance in plasma
from the intestine, where b10 is the intestine to plasma transfer rate, v is the glucose distri-
bution volume and f is a fraction of absorption, accounting for the part of glucose is lost
in the transfer. The second term describes the liver glucose production, where the glucose
coming from the liver (C, see Eq. (7)) is multiplied by the transfer rate b5 and by f/v,
similarly to the first term. The third and fourth terms represent blood glucose elimination
through insulin-independent and insulin-dependent mechanisms, respectively. The third term
models glucose uptake from brain and other tissues such as, blood cells, renal medulla and
splanchnic tissue, which is insulin independent and depends only on G and on the rate b1.
Instead the last term models the glucose uptake from adipose and muscle tissues, which de-
pends both on plasma insulin concentration (I, see Eq. (4)), and G and the rate (b3) [161] [33].

Eq. (4) represents the dynamics of plasma insulin concentration (I):

dI(t)
dt

= b4G(t)+ cW (t)G(t)−b2I(t) I(0) = I0 (4)
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The first and second terms are simplifications of the insulin dynamics described by
Toghaw et al. [161]. The first term describes the glucose-dependent insulin secretion where
b4 is glucose dependent insulin secretion rate. The second term represents the incretin-
dependent insulin production, which is proportional to plasma glucose and incretins concen-
tration (W, see Eq. (5)), c being the incretin-dependent insulin secretion rate. The last term
represents insulin elimination, which depends on I and on insulin disappearance rate constant
(b2).

Eq. (5) describes the variation in concentration of plasma incretins concentration (W)
[161] [160]:

dW (t)
dt

= b6L(t)+b7W (t)+ s W (0) =W0 (5)

The first term accounts for incretins appearance due to the glucose transit through the
intestine (L): it depends on L and on the incretin production rate b6. The second term
represents incretin elimination, depending on W and their disappearance rate constant b7.
The last term is the constant incretin appearance rate (s).

In Eq. (6) the dynamics of plasma glucagon (E) is described, according to Sulston et al.
[154]:

dE(t)
dt

= c0 +
c1

c2 + I(t)e
(Ge −G(t))u(Ge −G(t))− c3E(t) E(0) = E0 (6)

The first term models the basal level of glucagon secretion c0, which happens at normal
fasting glucose levels. The second term represents the dependency of glucagon secretion
from plasma glucose concentration where u(Ge−G(t)) indicates the Heaviside step function:

u(Ge −G(t)) =
{

1 when Ge −G(t)≥ 0
0 when Ge −G(t)< 0

When G is above the threshold level Ge this part of glucagon secretion is suppressed,
resulting in an equilibrium value of glucagon achieved when dE(t)

dt = 0, that is, when E = c0
c3

.
Otherwise, the term represents glucagon secretion in the α cells of the pancreas, with the
secretion increasing at low glucose levels but being suppressed by high insulin levels, accord-
ing to parameters c1 and c2. The parameter e models insulin effectiveness to represent the
cell sensitivity too insulin action, which is compromised in insulin resistance and in T2DM:
this rate will be at its maximum in the NGR condition while it is lower in T2DM according
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to [154]. The last term describes plasma glucagon elimination, which depends on E and its
degradation rate c3 [154].

The variable C, described in Eq. (7), represents the glucose mass in the liver ready to be
secreted, which has been produced from the glycogen breakdown:

dC(t)
dt

= b23 −b25I(t)e−b22G(t)+b21E(t)−b5C(t) C(0) =C0 (7)

The equation is obtained by combining the works of Dalla Man et al. [106] and Sulston
et al. [154], where variable and parameter units have been converted in accordance with the
model. The first term models the basal rate of liver glucose production, b23. The second and
third terms represent the inhibiting effect of I and G on liver glucose production, according
to the rate constant b25 and b22 and the parameter modelling insulin effectiveness (e). The
fourth term accounts for the plasma glucagon (E) effect in stimulating glycogen breakdown,
where b21 is the rate of liver glucose production, which is glucagon dependent [154]. The
last term represents the glucose transfer from liver to plasma according to the transmission
rate b5. [161]

Eq. (8) describes the dynamics of glucose mass in the muscle tissue (M):

dM(t)
dt

= 0.1
v
f

b3G(t)I(t)e−b27M(t) M(0) = M0 (8)

The first term represents glucose entry in the tissue, which depends on glucose and insulin
concentrations, on the insulin effectiveness (e) [154], and on the utilisation rate b3. The
scaling factors 0.1 v

f have been introduced to convert plasma glucose concentration to a mass
and to set the muscle glucose uptake to the 10% of the whole body glucose uptake [134]. The
last term in the equation represents muscle glucose elimination, which depends on muscle
glucose mass (M) and on the elimination rate b27.

Eq. (9) represents the adipose tissue glucose mass (A):

dA(t)
dt = k8GLUT 4m(t) GtA(t)

KmG4+GtA(t)
+GLUT 1 GtA(t)

KmG1+GtA(t)
− kglucA(t) A(0) = A0

(9)

Eq. (9) is one of the links between the whole body model and the cellular one and includes
variables from both. The first two terms of equation come from the work of Nyman et al.
[126]. These terms represent glucose entry in adipocytes mediated by glucose transporter 1
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(GLUT1) and by glucose transporter 4 at the adipocyte membrane (GLUT4m). GLUT1 and
GLUT4m are variables of the cellular model. GLUT1 does not depend on time in Eq. (9)
because its amount is assumed to be constant according to [126, 127]. Both terms depend
on interstitial glucose concentration (GtA, see Eq. (14)), where KmG4 and KmG1 are two
parameters modelling the saturation of glucose internalisation. The last term of the equation
represents glucose elimination from the adipose tissue, which depends on the amount of
internalised glucose on the elimination rate kgluc.

Eq. (10) describes the dynamics of plasma leptin (Y):

dY (t)
dt

= b13A(t)Fat −b14Y (t) Y (0) = Y0 (10)

The first term represents leptin secretion, which depends on the amount of glucose in adi-
pose tissue (A) [97, 116], on leptin secretion rate b13 and on the Fat parameter indicating the
averaged total fat mass in humans [62]. The second term models plasma leptin degradation,
which depends on Y and on the constant elimination rate b14 according to [62, 157].

The dynamics of the ghrelin concentration in plasma (Q) is described in Eq. (11):

dQ(t)
dt

= (b12exp−lS(t))exp−mI(t)−b11Q(t) Q(0) = Q0 (11)

The first term represents ghrelin secretion, which is modelled as being exponentially
inhibited both by the presence of S and I. The equation term depends also on three parameters:
the S-dependent decay rate l, the ghrelin secretion rate b12 and the I-dependent decay rate m.
The last term of the equation accounts for the linear elimination of ghrelin, which depends
on the elimination rate b11 [160, 161].

Eq. (12) describes the glucose intake (H):

dH(t)
dt

=
b17Q(t)

b18Y (t)+1
exp−rI(t)−b19G(t)H(t)−b9H(t) H(0) = H0 (12)

H indicates the amount of glucose needed from the body in the current state. In order
to build a close loop model, glucose intake has been modelled equal to this signal, which
can be thought of as the hunger signal. The latter has been initially introduced in the rat
model of Jacquier et al. [79] and here corresponding equation has been adapted to model
human physiology. The first term represents the effect of plasma insulin (I), leptin (Y) and
ghrelin (Q) on hunger. I and Y inhibit food intake while Q increases it. The effect of leptin
and ghrelin is mediated by the parameters b18 and b17, respectively, according to [60, 79].



72
A Novel Closed-loop Multi-level Model of Glucose Homeostasis for Normal Glucose

Regulation and Type 2 Diabetes

Insulin exponentially inhibits H through the r parameter by modelling the negative effect
on appetite which arises when the I is high. The second term describes the glucose intake
reduction that depends on plasma glucose and on H itself [66]. The last term accounts for the
glucose absorption to the stomach, which depends on the amount of ingested glucose and on
the glucose transfer rate b9.

Eq. (13) and Eq. (14) provide the link between the whole body model and the molecular
one, by modelling the interstitial insulin (INSA) and the interstitial glucose (GtA) surrounding
adipocytes:

dINSA(t)
dt

=−p2U INSA(t)+ p2U(I(t)− Ib) INSA(0) = INSA0 (13)

dGtA(t)
dt

=−q1GtA(t)+q2(G(t)−Gb) GtA(0) = GtA0 (14)

The first equation is derived from Dalla Man et al. [106], the second one has been written
by following the same modelling approach. The first term in both the equations models
degradation, according to the parameters p2U and q1, respectively. The second term de-
scribes the amount of plasma insulin (I) and plasma glucose (G) that moves to the interstitial
compartment. In both the cases, we assume that only the part exceeding the basal level
can be considered, where Ib and Gb are the basal levels of insulin and glucose in plasma,
respectively, and p2U and q2 are the rates regulating the transfer.

Equations from 15 to 41 describes the insulin signalling cascade in adipocytes, starting
from the binding of interstitial insulin INSA with the free insulin receptor on the adipocyte
membrane (IR) and ending with the translocation of GLUT4 from the cytosol to the plasma
membrane. Eqs from (15) to (39) are derived from Nyman et al. [127], while Eqs (40) and
(41) are from Brannmark et al. [13]. The cellular model reconnects with the whole body
model through Eq. (9), where the increase of glucose mass in adipose tissue is modelled
according to the amount of GLUT4 and GLUT1 [126, 127].

The last five equations of the Nyman’s model introduced in [127] were not included here,
as they describe regulative phenomena related to S6 and S6K which are not relevant for the
scope of the present work. Therefore, Eqs (40) and (41), which model the dynamics of S6
and S6K, were taken from Brannmark et al. [13].

All the cellular equations are modelled through mass action kinetics as from [127] and
[13]. The description and the value of all the parameters are provided in Table C.2 Here we
reported the list of model equations with a short description of the variables. We refer to the
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next section Model simulations for the description of the cellular dynamics and to [127] and
[13] for any additional insight.

Eq. (15) describes the dynamics of the free insulin receptor (IR) on the adipocyte
membrane:

dIR(t)
dt =−k1aIR(t)INSA(t)− k1basalIR(t)+ k1rIRi(t)+ k1gIR_Y P(t) IR(0) = IR0

(15)

Eq. (16) describes the dynamics of the phosphorylated insulin receptor (IR_YP). Phos-
phorylation can be insulin independent (parameter k1basal ) and dependent (parameter k1c):

dIR_Y P(t)
dt = k1basalIR(t)+ k1cIRins(t)− k1dIR_Y P(t)+ k1gIR_Y P(t)

IR_Y P(0) = IR_Y P0

(16)

Eq (17) represents the dynamics of the insulin receptor that is bound to insulin but not
already phosphorylated (IRins):

dIRins(t)
dt

= k1aIR(t)INSA(t)− k1cIRins(t) IRins(0) = IRins0 (17)

Eq (18) represents the phosphorylated insulin receptor that has been endocytosed from
the adipocyte (IRi_YP):

dIRi_Y P(t)
dt = k1dIR_Y P(t)− k1 f IRi_Y P(t)X_P(t) IRi_Y P(0) = IRi_Y P0 (18)

Eq. (19) represents the dynamics of the free internalised insulin receptor (IRi):

dIRi(t)
dt

= k1 f IRi_Y P(t)X_P(t)− k1rIRi(t) IRi(0) = IRi0 (19)

Eqs from (20) to (23) describe the insulin receptor substrate 1 (IRS1) in its four phos-
phorylation forms. IRS1 is not phosphorylated, IRS1_YP is phosphorylated at the tyrosine
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site, IRS1_YP_S307P is phosphorylated at both the tyrosine and serine sites, IRS1_S307P is
phosphorylated only at the serine site:

dIRS1(t)
dt = k2bIRS1_Y P(t)+ k2gIRS1_S307P(t)− k2aIRi_Y P(t)IRS1(t)− k2basalIRS1(t)

IRS1(0) = IRS10
(20)

dIRS1_Y P(t)
dt = k2aIRS1(t)IRi_Y P(t)+ k2dIRS1_Y P_S307P(t)− k2bIRS1_Y P(t)

+k2cIRS1_Y P(t)mTORC1a(t)k f b IRS1_Y P(0) = IRS1_Y P0

(21)

dIRS1_Y P_S307P(t)
dt = k2cIRS1_Y P(t)mTORC1a(t)k f b − k2dIRS1_Y P_S307P(t)

−k2 f IRS1_Y P_S307P(t) IRS1_Y P_S307P(0) = IRS1_Y P_S307P0

(22)

dIRS1_S307P(t)
dt = k2basalIRS1(t)+ k2 f IRS1_Y P_S307P(t)− k2gIRS1_S307P(t)

IRS1_S307P(0) = IRS1_S307P0

(23)

Eqs (24) and (25) represent the dynamics of the feedback protein X that, in its active
form X_P, enhances the dephosphorylation of the internalised insulin receptor:

dX(t)
dt

= k3bX_P(t)− k3aX(t)IRS1_Y P(t) X(0) = X0 (24)

dX_P(t)
dt

=−k3bX_P(t)+ k3aX(t)IRS1_Y P(t) X_P(0) = X_P0 (25)
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Eqs from (26) to (29) describe the four different forms of the protein kinase b: not
phosphorylated (PKB), phosphorylated only at the threonine site (PKB_T308P), only at the
serine site (PKB_S473P) and at both sites (PKB_T308P_S473P):

dPKB(t)
dt =−k4aPKB(t)IRS1_Y P(t)+ k4bPKB_T 308P(t)+ k4hPKB_S473P(t)

PKB(0) = PKB0

(26)

dPKB_T 308P(t)
dt = k4aPKB(t)IRS1_Y P(t)− k4bPKB_T 308P(t)+

−k4cPKB_T 308P(t)mTORC2a(t) PKB_T 308P(0) = PKB_T 308P0

(27)

dPKB_S473P(t)
dt =−k4ePKB_S473P(t)IRS1_Y P_S307P(t)− k4hPKB_S473P(t)

+k4 f PKB_T 308P_S473P(t) PKB_S473P(0) = PKB_S473P0

(28)

dPKB_T 308P_S473P(t)
dt = k4cPKB_T 308P(t)mTORC2a(t)− k4 f PKB_T 308P_S473P(t)

+k4ePKB_S473P(t)IRS1_Y P_S307P(t)

PKB_T 308P_S473P(0) = PKB_T 308P_S473P0
(29)

Eqs (30) and (31) describe the protein complex mTORC1 (mammalian target of ra-
pamycin mTOR in complex with raptor) in its inactive (mTORC1) and active (mTORC1a)
forms:

dmTORC1(t)
dt = k5bmTORC1a(t)−mTORC1(k5a1PKB_T 308P_S473P(t)+

+k5a2PKB_T 308P(t)) mTORC1(0) = mTORC10

(30)
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dmTORC1a(t)
dt =−k5bmTORC1a(t)+mTORC1(k5a1PKB_T 308P_S473P(t)+

+k5a2PKB_T 308P(t)) mTORC1a(0) = mTORC1a0

(31)

Eqs (32) and (33) represent the protein complex mTORC2 (mammalian target of ra-
pamycin mTOR in complex with rictor) in its inactive (mTORC2) and active (mTORC2a)
forms:

dmTORC2(t)
dt =−k5cmTORC2(t)IRi_Y P(t)+ k5dmTORC2a(t)

mTORC2(0) = mTORC20

(32)

dmTORC2a(t)
dt = k5cmTORC2(t)IRi_Y P(t)− k5dmTORC2a(t)

mTORC2a(0) = mTORC2a0

(33)

Eqs (34) and (35) describe AS160, the substrate of PKB, and its phosphorylated form
AS160_T642P:

dAS160(t)
dt = k6bAS160_T 642P(t)−AS160(t)(k6a1PKB_T 308P_S473P(t)+

+k6a2PKB_S473P(t)) AS160(0) = AS1600

(34)

dAS160_T 642P(t)
dt =−k6bAS160_T 642P(t)+AS160(t)(k6a1PKB_T 308P_S473P(t)+

+k6a2PKB_S473P(t)) AS160_T 642(0) = AS160_T 6420
(35)

Eqs (36) and (37) represent glucose transporter 4 inside the adipocyte cytosol (GLUT4)
and on the cell membrane (GLUT4m):

dGLUT 4m(t)
dt = k7aAS160_T 642P(t)GLUT 4(t)− k7bGLUT 4m(t)

GLUT 4m(0) = GLUT 4m0

(36)
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dGLUT 4(t)
dt =−k7aAS160_T 642P(t)GLUT 4(t)+ k7bGLUT 4m(t)

GLUT 4(0) = GLUT 40

(37)

Eqs (38) and (39) describe the dynamics of the S6 kinase (S6K) and its phosphorylated
form S6K_T389P:

dS6K(t)
dt = k9bS6K_T 389P(t)− k9amTORC1a(t)S6K(t) S6K(0) = S6K0 (38)

dS6K_T 389P(t)
dt =−k9bS6K_T 389P(t)+ k9amTORC1a(t)S6K(t)

S6K_T 389P(0) = S6K_T 389P0

(39)

Eqs (40) and (41) represent the ribosomal protein S6 and its phosphorylated form
S6_S235_S236P:

dS6(t)
dt = k9b2S6_S235_S236P(t)− k9 f 2S6(t)S6K_T 389P(t) S6(0) = S60 (40)

dS6_S235_S236P(t)
dt =−k9b2S6_S235_S236P(t)+ k9 f 2S6(t)S6K_T 389P(t)

S6_S235_S236P(0) = S6_S235_S236P0

(41)

Initial values of all the model variables are listed in Table C.1, for both NGR and T2DM
conditions. They have been derived from the literature or obtained by nonlinear optimisation
constrained to the variability of physiological ranges. Initial values have been selected to
find the best balance between human physiology and reliability of the model dynamics in
order to avoid discontinuities or states with unrealistic variable values, such as negative
values or values outside the physiological ranges listed in Table 5.1. For what concerns the
cellular model, the variability range of model variables used during the optimisation has been
inferred in silico: Nyman’s model has been simulated according to [127] and the minimum
and maximum values reached by each variable have been considered.

Simulations start at time 0, at which is considered as morning fasting state. In order to
represent equally the physiological ranges for each glucose intake period, we set S0 = 4mmol



78
A Novel Closed-loop Multi-level Model of Glucose Homeostasis for Normal Glucose

Regulation and Type 2 Diabetes

Variable Description Symbol Range Reference
Plasma glucose concentration G 4.5 -11 mM [161] [58]
Plasma insulin concentration I 38 - 400 pM [71]
Plasma incretin concentration W 5 - 50 pM [146]

Plasma glucogan concentration E 28.68 - 47.04 pM [71]
Liver glucose mass C 0 - 8 mmol [136]

Muscle tissue glucose mass M 2 - 13 mmol [136]
Adipose tissue glucose mass A 30 - 120 mmol [136]
Plasma leptin concentration Y 0 - 0.6 nM [4]

Plasma ghrelin concentration Q 8 - 146 pM [45]
Amount of glucose intake H N.A.

Stomach glucose mass S N.A.
Intestine glucose mass L N.A.

Table 5.1 Physiological ranges of the whole body variables in the normal glucose regulation
(NGR) condition. The ranges for H, S and L have not been specified (N.A. not available), as
there is no clear upper limit to the amount of food (or glucose) one could ingest

and L0 = 10mmol in the model. The amount of glucose needed from body is set to H0 =

200mmol, derived from the amount of needed glucose reported in [41].

Fasting plasma glucose is set to G0 = 5mM and fasting plasma insulin to I0 = 60pM
as reported in literature by [134]. Moreover, plasma incretin fasting level is assigned to
W0 = 10pM [77], fasting plasma glucagon level is E0 = 37.7pM [71], plasma ghrelin fasting
level Q0 = 120pM and basal plasma leptin concentration Y0 = 0.4nM [92] [45]. Initial
value for fasting glucose mass in muscle tissue M0 was reported by Pratt et al. [136] to be
0.1mmol/l. The unit of measurement of this value was changed to be consistent with adipose
tissue glucose mass and the other system variables. For this reason, we calculated the glucose
mass in muscle tissue, M0 as 25mmol. It is known that volume of skeletal muscle is 25 l, and
skeletal muscle tissue density is 1.06 kg/l [136]. In the NGR simulation, skeletal muscle
was estimated to be 40% of body weight. Same method is applied for the initial value of
glucose mas in liver. After converting units from Pratt et al. [136], the glucose mass in liver
ready to be secreted has been set to C0 = 3mmol. Adipose tissue glucose mass initial value
was computed taking into account the presence of the molecular level. Therefore, the initial
vale A0 was set to 53.19 mmol in order to remain physiological range for each oscillation as
reported in [136].

There are not many reported initial values in literature for the interstitial compartment
because of difficulty of calculating with experiments. Therefore, Nyman et al. [126] reported
an initial value for interstitial insulin (INSA) of 0 pM. However, such a small value can
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create some negative values for INS in the first time of the simulation. For this reason, in this
model the initial value of INSA was increased to 20 pM, the minimum value allow to avoid
negative values in the first part of the simulation. However, interstitial glucose initial value
GtA0 was set to 135 mg/kg as reported by Dalla Man et al. [106]. For the cellular part of the
hierarchical model all initial values were taken from the model of Nyman et al. [127] and
then re-optimised in the physiological range according to their value when interstitial insulin
goes back to INSA0.

In order to simulate T2DM condition, initial values of model variables were modified
again according to the literature and the model behaviour. By following the similar strategy as
in NGR case, fasting stomach and intestine glucose are set to S0 = 14mmol and L0 = 25mmol,
respectively. The amount of ingested glucose is set to H0 = 240mmol derived from the
amount of needed glucose per day in T2DM case [41]. Fasting plasma glucose was reported
to be G0 = 7.5mM and fasting insulin I0 = 180pM for diabetic individuals [161]. Since
plasma incretin levels in diabetes are controversial, its fasting value is set equal to as in the
healthy case (W0 = 10pM). Fasting plasma glucagon is known to be higher in T2DM and
it is reported to be E0 = 42pM in [71]. Instead, plasma ghrelin in T2DM is lower and is
set to Q0 = 60mM as reported in [45]. Fasting plasma leptin was set to Y0 = 1.93nM due to
the model behaviour oscillations. Fasting value for glucose mass in muscle tissue and liver
remain unchanged in T2DM case. Adipose tissue glucose mass is affected directly by the
presence of the molecular level in the model. Initial value A0 is set to 32 mmol taking into
account the molecular model dynamics in T2DM and physiological behaviour.

For the interstitial compartment there is a lack of data in the literature for diabetics
condition. For this reason, interstitial insulin initial value INS0 is set to 70 pM and interstitial
glucose Gt0 to 216 mg/kg making a proportion between initial values for plasma and intersti-
tial levels. The proportion was made to maintain the same ratio, between plasma value and
interstitial value, in healthy also for diabetic. For the cellular level, as reported from Nyman
et al. [127], the sum of insulin receptor (in all its forms) decreases from 100% to 55% in
T2DM compared to the healthy case. Similarly, the total number of glucose transporter 4
(GLUT4 and GLUT4m) is half in T2DM compared to the healthy case. All initial value
for molecular state variables were computed as for the healthy case according to their value
when interstitial insulin goes back to INSA0.

Parameter estimates have been determined following different methodologies. When a
reference from the literature was available, parameter estimates were directly taken from the
literature or derived by following the same procedure indicated in the reference paper. We
refer to Table C.2 for any further insight on the employed estimation procedures and for a
complete list of all parameter estimates computed for the NGR and T2DM conditions.
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Parameters b4, b5, b12, b13, b17, b27, c and c3 have been estimated through steady state
analysis, that is, by imposing a steady state condition at time 0 on the corresponding equations
as indicated in the literature. In the other cases, parameters have been estimated by nonlinear
optimisation constrained to obtain values within the physiological ranges discussed in the
literature. The remaining parameters b9, r, kgluc, q1 and q2 were derived by unconstrained
optimisation to obtain a model dynamics consistent with physiology, that is, a dynamics
without discontinuities or unrealistic variable values (i.e., negative values or values outside
physiological ranges). For what concerns the cellular model, parameters are all taken from
[127] and [13], except for k1a, which has been re-estimated within the same optimisation
range of [127] in order to have the minimum value of the IRins dynamics of Eq. (17)
consistent with that reported by Lodish et al. [101] and to preserve the model fits introduced
by Nyman et al. [127] and provided in Figures 5.5 and 5.6.

5.3 Results

The model has been simulated for 1000 minutes (three consecutive meals) starting from an
initial condition representing the fasting state (t=0). The model initial values and parameter
estimates have been computed as introduced in Methods and they are reported in Tables
C.1 and C.2, respectively. Figure 5.3 shows the dynamics of each model variable at the
whole body level. The green and black lines represent the NGR and T2DM conditions.
The physiological upper and lower ranges for each variable are shown in blue (higher line,
HL) and red (lower line, LL) straight lines, according to the available estimates from the
literature (see also Table 5.1). The model exhibited an oscillatory behaviour in both the NGR
and T2DM conditions through alternate parameter sets that accounted for the reciprocal
interaction among the constituting variables in the two conditions.

In order to define a closed loop model, the output signal representing the amount of
glucose needed from the body was connected with the input signal representing oral glucose
uptake. This allowed to simulate the body’s behaviour by means of a system that auto
feeds itself without the need of external intervention. System variables exhibit an oscillatory
behaviour that is consistent with physiology by considering both each variable in respect of
the others, and the concentration ranges computed during the simulation. It can indeed be
observed that the model dynamics in the healthy case have all system variable fluctuations
within the indicated physiological range.

In the NGR condition, the system started at fasting by simulating an oral glucose intake
(Figure 5.3.1) and, after a time lag accounting for the transit time among compartments, was
followed by subsequent transitions through the stomach (Figure 5.3.2) to the intestine (Figure
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Fig. 5.3 Model dynamics at the whole body level. Each plot represents one variable dynamics.
The normal glucose regulation (NGR) and T2DM conditions are shown in green and black,
respectively. The red and blue lines delimit the physiological lower and upper ranges of
variables (see also Table 5.1)

5.3.3). The glucose absorption from the intestine to the bloodstream was characterised by
a further time lag (Figure 5.3.4) and it triggered the increase in circulating insulin levels
(Figure 5.3.5). We modelled the glucose transit through the intestine as a stimulus for the
secretion of incretins (Figure 5.3.6), which ultimately resulted in an amplification of the
endogenous insulin secretion. The secretion of glucagon (Figure 5.3.7) was modelled as
being inhibited by high glucose and insulin concentrations, and increased in case of markedly
low plasma glucose levels, thus stimulating the endogenous glucose output from the liver
(Figure 5.3.8). The glucose uptake by the muscle and adipose tissues was favoured in case
of high insulin concentrations, thus resulting in a net increase of the glucose mass in these
tissues (Figures 5.33.9 and 5.3.10).

The whole-body model has been linked to the adipocyte cellular level through the
interstitial fluid surrounding the individual cells. Here we assumed the interstitial fluid being
in direct communication with the plasma. Therefore, the two layers of abstraction (i.e. the
whole-body and the adipocyte levels) were bound through the interstitial insulin and glucose
(INSA and GtA, Figure 5.2) in a conceptual framework closely mirroring the physiology
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of insulin signalling. The interstitial fluid, rather than the plasma, is surrounding the cells
targeted by insulin, it flows in our model from the plasma to the interstitial space with a
time shift (Figure 5.4), and then binds its membrane receptors, triggering the downstream
cascade of signalling events. The inactive and un-phosphorylated components of the cascade,
such as the unbound insulin receptor (IR) or the un-phosphorylated protein kinase B (PKB),
proportionally decreased at incremental concentrations of interstitial insulin (Figures 5.4.3
and 5.4.7). The opposite occurred to the active and phosphorylated components, such as the
bound insulin receptor (IRins) or the phosphorylated insulin receptor substrate 1 (IRS1_YP),
which increased at higher levels of interstitial insulin (Figures 5.4.4 and 5.4.6), thus allowing
the activation of the insulin signalling cascade and eventually leading to the translocation
of glucose transporter type 4 (GLUT4) to the cell membrane. The output of the cellular
layer was linked to the whole-body output through the amount of GLUT4 on the adipocyte
membrane, which directly affected the glucose uptake by the adipose tissue (Figure 5.4.11).
This latter variable was in fact shared between the two layers together with interstitial insulin
and glucose.

In the T2DM condition, the initial value of several model variables, such as plasma
glucose and insulin, and some of the parameters, were modified, as described in Methods
and reported in Tables C.1, in order to simulate a T2DM condition of a drug-naïve individual
patient. It can be observed that, as compared to NGR, glucose dynamics (Figures 5.3.1 to
5.3.4) showed a broader range in the T2DM condition, as well as that of insulin, incretin
and glucagon (Figures 5.3.5 to 5.3.7). The total mass and the output rate of hepatic glucose
production were reduced (Figure 5.3.8), as well as glucose uptake by muscle and adipose
tissues (Figures 5.3.9 and 5.3.10). According to T2DM pathophysiology, insulin effectiveness
was reduced in the T2DM condition. Despite higher absolute insulin levels, the glucose
uptake mechanism was impaired in the muscles, adipocytes and liver. The impaired insulin
signalling cascade affects glucose uptake, resulting in decreased glucose uptake by the
adipose tissue and leptin secretion. An increased leptin concentration was observed in the
T2DM experimental condition (Figure 5.3.11), as the individual fat mass was set to an
increased level, according to Grasman et al. [62].

The estimates of some model parameters, including the number of IRs and GLUT4, and
the positive feedback from mTORC1, have been modified, according to Nyman et al. [127],
to simulate the T2DM condition at the cellular level. The diminished total number of IRs led
to reduced IR binding and phosphorylation (Figures 5.4.3, 5.4.4 and 5.4.6). Similarly, the
reduced total concentration of GLUT4 affected the amount of GLUT4 eventually docking to
the adipocyte membrane (Figure 5.4.9). The reduced positive feedback from mTORC1 had a
more general regulatory effect on all the components of the insulin signalling cascade starting
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from a lower level of IRS1_YP, where the protein complex mTORC1 acts directly (Figure
5.4.6). All changes applied in the previously described model parameters harmonically
worked together to reduce the amount of GLUT4, eventually leading to reduced glucose
uptake by the adipocytes (Figure 5.4.11).

Fig. 5.4 Model dynamics of the insulin signalling in adipocytes at the cellular level (only a
subset of key variables is represented). The normal glucose regulation (NGR) and T2DM
conditions are shown in green and black, respectively.

In order to test the consistency of the model with physiology, we fitted the same exper-
imental values employed by Nyman et al. [127] at the cellular level in both the NGR and
T2DM conditions, as shown in Figures 5.5 and 5.6, respectively. According to the physiol-
ogy governing the reciprocal interactions among leptin, insulin and ghrelin, we were also
able to roughly reproduce the fluctuations of circulating ghrelin levels, which are typically
characterised in humans by a marked reduction after meal ingestion and by a rebound to
baseline before the next meal [46,47]. Of note, although we were unable to capture, by
design, the circadian fluctuations of ghrelin (which usually increases after an overnight fast)
and other hormones, our model successfully reproduced the physiologic dynamics of ghrelin
by inversely paralleling those of insulin (Figures 5.3.5 and 5.3.12). Conversely, in accordance
with the role of leptin as prototypical regulator of energy homeostasis and its dependence
from adipose tissue mass, the dynamics of leptin returned by the model in both T2DM and
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NGR conditions showed much dampened fluctuations, as compared to those of ghrelin and
insulin (Figure 5.3.11).

Fig. 5.5 Model simulation and data fitting, normal glucose regulation (NGR) condition.
Each plot represents the corresponding time courses for the indicated insulin signalling
intermediaries. The experimental data are taken from Nyman et al. [127] and are represented
with circles and error bars (a.u. indicates arbitrary units). The time course represents the
model simulation.

5.4 Discussion

The aim of this work was to introduce a closed-loop multi-level model of human glucose
homeostasis, describing, in a hierarchical multi-scale system architecture, the contribution of
its main determinants to the NGR and T2DM conditions, at both the whole-body and cellular
(adipocyte) levels. The modelling strategy merged two different physiological levels, the
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Fig. 5.6 Model simulation and data fitting, T2DM condition. Each plot represents the corre-
sponding time courses for the indicated insulin signalling intermediaries. The experimental
data are taken from Nyman et al. [127] and are represented with circles and error bars (a.u.
indicates arbitrary units). The time course represents the model simulation.

organ and the cellular one, to ground the basis for the inclusion of the other main players in
glucose homeostasis (such as muscle, pancreatic and liver cells) as additional compartments
of the cellular level.

The model was successfully tested in silico for NGR and T2DM conditions, which have
been described through alternate initial conditions and parameter estimates . The output of
the model (whole-body glucose needs) coincided with the input (oral glucose intake) in a
closed-loop fashion, which allowed to perpetually simulate whole body dynamics, according
to a self-feeding system. Whenever possible, model equations have been directly derived
from the literature and then adapted in order to work together through the identification of
suitable initial states and parameter estimates. The shape of model equations has been left
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unchanged in most instances for consistency with those introduced in the original works. This
approach provides the following advantages: (i) it allows to rely on very established model
equations, that have been extensively analysed in the literature to describe the physiology of
interest; (ii) it does not require to estimate de novo several parameters (as it would be required
in case of equation reshaping), which can rather be derived directly from the literature; (iii) it
allows a fairer comparison of the results herein presented with those already discussed in
the literature. However, this modelling strategy has the disadvantage that some equations
could look different, even if they model similar processes. For example, saturation has been
modelled either by considering Michaelis-Menten terms as in Eq. (9) or by relying on more
abstracted exponential terms as in Eq. (11). We remark that this discrepancy does not affect
the reliability of model simulations because the set of ODEs has been parameterised to have
all model variables within their physiological ranges during the simulations. Therefore,
model equations are computed in the same conditions considered in the papers where they
have been originally introduced.

The closed-loop system, which has the unique advantage to simulate experimental
conditions for long time windows without external intervention, was achieved through the
inclusion of the hunger signal, here intended as the amount of glucose needed from the body.
Hunger description was possible through leptin and ghrelin, which work as complementary
molecules to regulate food intake and energy balance in close concert to insulin [28, 163].
Ghrelin is a fast-acting hormone secreted when the stomach is empty [9] and it stimulates
food intake. Leptin concentration depends on fat mass [84] and acts on the long term,
without major changes within hours or days (Figure 5.3.11), as a “satiety” signal to the
brain [8, 50]. Of note, although T2DM individuals are often characterised by increased
leptin concentrations due to increased fat mass, a mechanism of leptin resistance occurs, thus
making them relatively insensitive to leptin [143].

The dual role of the liver as both glucose storage and production site is a novel feature
of our model, since the inclusion of both the regulative effects of insulin and glucagon
has never been considered in previous models [86, 106]. Glucagon is a hormone secreted
from pancreatic alpha cells at low glycemic conditions, which signals the liver to release
glucose from glycogen storages, thus maintaining the euglycaemic state at fasting [125].
Sub-diabetic hyperglycemic states and overt T2DM are often characterised by high fasting
plasma glucose levels, due to an excessive glucose output from the liver, as a consequence of
liver insensitivity to insulin or abnormally high glucagon [[30].

Although a number of models have been previously developed by including the dynamics
of glucagon [20, 86, 154], incretins [15, 160, 161], leptin [132] and ghrelin [161], we have
considered all these factors together for the first time. The inclusion of these components, as
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well as the distinction of adipose and muscle glucose uptake, previously reported together
[154], provided a better description of the reciprocal connections existing between the whole-
body and the cellular levels and allowed us to physically “close the loop” among different
layers of abstraction.

Of note, we have observed that, as compared to the NGR state, the T2DM condition in
the model displayed slower dynamics. Although the reciprocal changes in ghrelin (decrease)
and insulin (increase) would drive the need for increased glucose intake, the resulting
emptying rate of the stomach is slower, as well as the glucose uptake from adipose tissue
and muscles, thus leading to a delayed dynamics in the whole system. These dynamics may
be interpreted in light of the constituting principle regulating the model, which takes into
account the supposed individual energy requirements. Therefore, our model correctly reflects
the physiological response of the organism to maintain the glucose homeostasis within a
physiological range in case of an imbalance between energy requirements and energy intake
(i.e. overfeeding) often observed in patients with T2DM.

Our study has however a number of limitations that should be addressed. We do ac-
knowledge the peculiar use of the term “closed-loop” herein employed, which is usually
linked, in the dictionary of the diabetes community, to the so-called “artificial pancreas”, i.e.
a system that is able to automatically predict in silico the adjustments of external insulin
delivery needed to keep the circulating plasma glucose within a narrow range of physiologic
fluctuations. In the context of the present study, we were not limiting the term “closed-loop”
to a sort of “artificial beta cell”. We rather sought to describe the governance of glucose
homeostasis by applying a broader, holistic approach. It should however be pointed out
that our modelling effort lacks of a comprehensive description of the hormonal networks
and molecular cascades occurring at each organ and tissue involved in the regulation of
glucose homeostasis. The rationale surrounding our choice of focusing on the intracellular
molecular cascade occurring within the adipocytes was not solely dictated by the relevance of
the adipose tissue as an “endocrine organ” influencing systemic energy balance and glucose
homeostasis [24,25], but also by the availability of detailed mathematical specifications of
the insulin signalling cascade recently provided by the group of Nyman et al. [127].

Furthermore, it could be argued that a whole-body description similar to the one herein
proposed can be defined without the addition of a cellular level. However, the integration
of the two levels of abstraction within a single model allows the detailed observation of
the reciprocal effects of changes occurring between the constituents of the cellular and
whole-body levels. Thus, the hierarchical modelling strategy allows to simply zoom in on
specific areas of interest (in our case, the adipocytes) in order to investigate regulatory effects
that may occur between the two levels of abstraction. For instance, the action of a molecule
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on a receptor could be easily included in the specifications of the cellular level, and its effects
at the whole-body level could be observed, thus allowing the identification of the changes
in the organ variables caused by variations of the cellular ones. Therefore, the addition of a
level in a hierarchical modelling structure does not imply that the rest of the model would
not stand by itself, but it is rather there to allow the consideration of other (e.g. molecular)
effects within a wider framework.

The functioning of the biological systems involve various structural levels. It includes
proteins, cells, tissues, organs and whole body process and interactions between them.
The multi-level nature represents a challenge for researchers and clinicians. Multi-level
modelling can provide a conceptual framework for the integration of information and improve
the capability of generating experiments and testing hypotheses about systems.

Traditional approaches to modelling focus on one level and it is assumed that processes at
other levels are negligible from the point of view of model variables. However, for the cases
where strong interconnections exist between levels, a function at a given level can depend on
the sublevels but also on higher levels. In such a context, the need to model at multi-level is
preferable due to physiological interactions of the system. Multi-level modelling approach
offers an alternative view to understand the integration of information from cellular, tissue
and organ levels up to the whole body level. With the aim of gaining a deeper insight over
biological complexity, modelling the interaction of the smaller scales with larger scales
can support the understanding of the biological system as well as the experimental data.
It enhances the clinical decision-making, allow predictions and improve the diagnosis for
individual patients. This way, multi-level approach provides a detailed understanding of
the relation between the whole body and cellular levels. Without properly addressing this
fundamental relation, controlling the disease progression can be slower and unsufficient.

Nevertheless, despite its intrinsic limitations, our hierarchical modelling effort demon-
strated sufficient robustness to provide a fair description of the core determinants of glucose
homeostasis at both cellular and systemic scales. As such, given its unique modular architec-
ture, the multi-level model herein tested constitutes a promising backbone to annex further
layers of detail.

The model describes the normal glucose regulation and the diabetic states through
alternate parameter sets, where the constraints for those parameters have been mostly derived
from the available literature as detailed in Materials and Methods. This approach is blind to
distinguish between primary changes that drive disease progression and secondary changes
that are consequences or adaptations to the primary ones. Other independent research groups,
such as Topp et al. [162] and De Gaetano et al. [32], have addressed, at variance with our
approach, the argument of glucose homeostasis regulation from a pathogenesis modelling
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standpoint. Topp et al. [162] for instance, have specifically investigated the link between
beta-cell mass and beta-cell function by a set of nonlinear ODEs, where the glucose and
insulin dynamics are designed to be fast relative to beta-cell mass dynamics. On the contrary,
when we compared with our model the estimates obtained in the T2DM condition to those
from the NGR state, it was impracticable to distinguish whether the reduction in the secretory
capacity (parameter b4) reflected reduced beta-cell mass or function, or both. Of note, even
in the absence of a pre-specified and detailed mathematical description of the beta-cell
function machinery, the value of this parameter was not imposed in advance, but it rather
represents a consequence of the steady state analysis applied to the equation modelling
insulin concentration in plasma (Eq. (4)), according to what introduced by Toghaw et al.
[161]. As previously anticipated, and similarly to the case of other key determinants of
glucose homeostasis, this encouraging result may be considered as a rough indicator of the
goodness of the model, which leaves the beta-cell component open to further hierarchical
refinements.

5.5 Conclusion

Coupling the cellular level model with a closed-loop whole body model allowed us to
evaluate the behaviour of adipocytes not only during one meal but in a perpetual fashion.
The simulation of the system over such a long time frame highlighted the reciprocal reactions
occurring between the two levels of abstraction, i.e. the organ and the cellular levels. The
model provided a seamless dynamic description of the molecular mechanisms downstream
the insulin receptor in adipocytes, thus demonstrating the usefulness of a multi-level approach
to the modelling of glucose homeostasis at both cellular and systemic scales. As for the
potential applications, the herein proposed model architecture is intrinsically open to integrate
supplementary layers of specifications for individual components. As such, more detailed
and advanced versions of the present model could potentially be applied to investigate in
silico the effect of specific drugs pointing to one or more of the model constituents or to
identify currently unmet molecular targets amenable to pharmacological intervention.
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Chapter 6

Discussion and Future Directions

Biological systems consist of large numbers of interacting components and involve processes
operating across a variety of spatial, temporal and biological scales. Systems biology aims
at facilitating the global understanding of natural living systems by focusing on complex
interactions within biological systems. Synthetic biology takes advantage of this better
understanding and focuses on the design, construction and optimisation of new-to-nature
biological functions. Mathematical and computational modelling constitute a part of the
systems and synthetic biology visions, these two interdependent fields provide a method
for formally defining and analysing the structure and function of a biological entities as
engineered systems. Along these lines, the results in this dissertation have addressed the
analysis and design of time dependent signalling mechanism and the study of multi-level
models by the application of systems and synthetic biology methods. The models described
here, as models in general, rest on assumptions and abstractions. They, thus, may be refined
or extended according to the context they are used in. We discuss in this chapter the contribu-
tions of this research and some of the possible developments and further extensions.

Pho regulon in E. coli. Water pollution is one of the universal problems with great impact
on environment. Industrial and daily life waste contains inorganic and organic matters, such
as inorganic phosphate, which cause the contamination of groundwater [100]. In this respect,
bioreactors can play significant role to produce polished water from waste water. In this part
of my Ph.D. research, in a collaboration with our partners in the European project Living
Architecture (LIAR) we provide a modelling framework, which combines protein-protein
interaction, signal transduction and transcriptional regulatory network. This model provides
a detailed description of inorganic phosphate regulation of E. coli. E. coli can take inorganic
phosphate and store excess phosphate in the form of polyphosphates [168, 169]. When the
environmental inorganic phosphate levels are scarce, E. coli will spend energy to upregulate
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expression of genes used to acquire inorganic phosphate from the environment. These genes
comprise the Pho regulon, which is controlled by a two component system, PhoR and PhoB,
Pst system (ABC transporter PstSCAB) and PhoU protein. Some of the protein-protein
interactions of these 7 proteins in phosphate signal transduction has remained indeterminate
in the literature.

We proposed models that describe the interactions between Pst system, PhoU and PhoR,
whereby the external inorganic phosphate level changes from abundant to limited. The aim
of this study is to answer questions on the type of interaction between Pst system and PhoU
and between PhoR and PhoU. When the environmental inorganic phosphate levels are high,
the phosphate signal is inhibited and E. coli stops to spend energy for the intake of inorganic
phosphate. This causes the down-regulation of the gene expression [168, 169]. It is known
that PhoU mediates the formation of a signalling complex between the Pst system (ABC
transporter) and PhoR [56]. However, it is not known how PhoU functions or interacts within
the signalling pathway. PhoU takes active role in inhibition of the system.

The primary technique we have used to characterise the function of PhoU is a control
model, which has the PhoU effect implicitly. The control model describes a direct interaction
mechanism between Pst and PhoR for different external inorganic phosphate concentrations.
We describe the interactions within a chemical reaction network representation and use the
standard translation from chemical reaction networks to ODEs based on stoichiometry and
reaction rates. To better study how these interactions might affect the signal transduction, we
have proposed alternative reactions to analyse the protein-protein interactions. The implicit
control model with alternative reactions provides a simple setting to study the deactivation
of PhoR and the consequent response in terms of inorganic phosphate intake. As a further
step, we have simulated the system with an explicit model variable for PhoU, which acts as a
messenger for PhoR sensor histidine kinase. Alternative interactions as described in control
model have been kept the same. We have been able to identify possible protein-protein
interactions between PhoU and Pst, as well as PhoR. This method of testing the interaction
of PhoU within the Pho regulon has provided a quantitative description of how proteins
interact. Moreover, it allowed us to construct the TCS switch off mechanism as a function of
the change of the external inorganic phosphate concentration. For our purposes, this system
is an effective confirmatory tool to verify the activation of PhoU protein and deactivation
mechanism of Pho regulon.

Besides determining, Pst, PhoR and PhoU interactions and the consequent Pho regulon
inhibition, we have established a model to analyse the active Pho regulon. It is known that
when Pho regulon is active PhoU does not interact with PhoR and Pst. This causes E. coli
intake inorganic phosphate and up-regulate the gene expression [168, 169]. We have used a
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combination of deterministic and stochastic simulations to provide a dynamic account of the
mechanistic interplay between the phosphate starvation response system variables. We have
validated the model experimental data on PhoA and PhoB promoters. Moreover, we have
used our model to explore the effect of synthetic promoters to develop a multi-task consortia
based on signalling and regulatory mechanisms for different levels of inorganic phosphate
concentration. We have quantified the effect of each single protein in the pathway through
sensitivity analysis, identifying the main regulatory reactions of the two component system.
We have used the available experimental data in literature as well as our own experimental
data to identify the parameters of the model for corresponding variables.

With these insights, this work offers a mechanistic understanding of inorganic phosphate
intake, realised by Pho regulon in a way that connects signalling with the genetic level. It
provides a quantitative description of how different proteins interact to form a biological
control system. It also describes the control of the phosphate-starvation response at the
genetic level. Our work provides measurements of protein, phosphorylation, and promoter
activity levels that are fundamental to define features of TCS circuits. One of the major
outcomes is that our results do not only explain the observed experimental data, but also
provide predictions on the physiology of the Pho regulon and insights for the synthetic
promoter design. Moreover, our work has implications for applications in artificial life and
for others in biotechnology that exploit such mechanisms. As the model architecture is
intrinsically open to integrate supplementary layers, together with experimental findings, it
should provide insights in investigations on engineering new dynamic sensors and regulators
for living technologies.

For future applications, we suggest that the approach followed in Chapter 3 is promising
for identifying the type of the PhoU interaction with the Pst system. Our model provides
predictions for quantifying the response to increased levels of inorganic phosphate. The model
can thus help to quantify the response of PhoU protein in Pho regulon system. Moreover,
it allows one to design Pho regulon circuits and analyse its expected behaviour. Having
learned more about the nature of communication between the proteins in Pho regulon, we
can propose different mutations for tuning the active site. This quantitative model should
help to optimise the system design, and guide the system analysis.

Additionally, synthetic signalling promoter systems discussed in Chapter 4 can be used
to implement an artificial promoter logic in E. coli. This can result in programmable artificial
gene networks that can control cell behaviour such as Pi intake. Through synthetic biology
approaches, a library of synthetic promoters sensing Pi can be created and expressed while
exhibiting a broad range of sensitivity. This library can be used to trigger a bioremediation
process upon detection of high amount of inorganic phosphate in water. Moreover, the



94 Discussion and Future Directions

reactions required for the accumulation of Polyphosphate (PolyP) in E. coli can be added to
its corresponding metabolic model in Chapter 4. Therefore, the impact of PolyP accumulation
on the bioremediation of phosphate contamination in wastewater can be increased.

In this thesis, we use modelling as an investigative tool to describe physiological re-
sponses of Pho regulon triggered by external Pi levels. Approaches explained in Chapter 3
and 4 are particularly suitable to characterise the genetic mechanisms of expression involved
in the regulation of biological processes of inorganic phosphate. To further analyse the nature
of Pho regulon, we are currently integrating the Pho regulon deactivation network in Chapter
3 with active Pho regulon network in Chapter 4. This integration should allow us to analyse
the interactions of the system components and retrieve and compare data.

Multi-level modelling of glucose homeostasis. Type 2 Diabetes Mellitus (T2DM) is a
major problem of modern society. Between 2010 and 2030, there is an expected 70%
increase in numbers of adults with diabetes in developing countries and a 20% increase in
developed countries [85]. T2DM is characterised from the inability of the body to maintain
healthy blood glucose concentrations. Many organs and tissues in the human body have
roles in preserving a correct glucose homeostasis, through absorption, uptake and release
of different molecules and hormone production. However, the etiology of diabetes has not
been clearly understood yet. Therefore, description and interpretation of the underlying
physiology through various methods, such as mathematical models, is essential.

We have introduced a closed-loop, multi-level model of glucose and insulin metabolism
at the whole body level, connecting the low level cellular model for adipocyte metabolism.
The ability to map all interactions of system variables is a general strategy of our model.
First, a knowledge base of the biological structure of states is acquired through the literature.
In a second step, mathematical relations, which demonstrate the changes of states of systems
are shown by equations. The model is based on differential equations. Parameters have
been taken from available literature or optimised. To aid the model validation and design,
sensitivity analysis is performed on the whole body glucose model for healthy and T2DM
individuals. This analysis was successfully used to test the robustness of the results, and to
understand the relationships between the variables and the parameters.

Normally, our body is equipped with physiological and biochemical responses to counter-
act day-to-day fluctuations in food intake, which is intrinsically linked to hunger. The closed
loop system has been possible through the description of hunger dependent on leptin and
ghrelin. Ghrelin is a fast-acting hormone, of which the circulatory levels show food intake
related changes. It is known that the daytime secretion of ghrelin is increased, thus regulating
food intake [26]. Our model suggests that, ghrelin is the one of the main responsible factor
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for the food intake. Moreover, leptin is known as satiety hormone and effects the food
intake. However, it is observed that its concentration varies in the long term. Although
diabetic subjects may have higher leptin concentration, as they usually have a higher fat mass,
they develop a resistance mechanism that make them insensitive to leptin, known as leptin
resistance [143]. Ghrelin and leptin are complementary molecules, inversely correlated,
within the same regulating mechanism, informing the central nervous system in normal
conditions about food intake necessity and energy balance [163].

The explicit role of the liver in glucose storage and production is also demonstrated in the
model. Hepatic glucose metabolism has a fundamental role in T2DM development, especially
regarding impaired fasting glucose (IFG), considered a pre-diabetic stage. IFG is due to the
excessive release of glucose from the liver and can depend on liver insensitivity to insulin
or on abnormally high glucagon, [30] which is observed in diabetic subjects. Glucagon
has a key role in the regulation of glucose homeostasis. It is produced by alpha cell and
keeps blood glucose levels high enough for the body to function. The incretin hormones,
which stimulate insulin secretion in the absence of plasma glucose, also have a main role on
glycemic control and their secretion and action is impaired in diabetes [111].

A main novelty of our whole body model is the inclusion of all the main physiological
actors described as fundamental in glucose metabolism. These variables are important
because they allow for a better description of the system for the implementation of the closed
loop system and for the connection with molecular signaling. Here, we have shown that the
closed-loop whole body glucose regulation model can also be used functionally to understand
the biology, estimate parameters, and improve intuitions. Moreover, we have demonstrated
that our model is able to correctly reproduce the dynamics of whole body glucose cycle and
food intake.

Another main contribution of this work is the closed-loop model, which is able to perform
routine operations independently and simulate for longer time and would provide complete
explanations. Moreover, the closed-loop model is more stable and able to update itself.
It allow us match the output of the model (glucose needed from the body) with the input
(glucose intake).

We have created a hierarchical system adding the adipocyte glucose metabolism using
a simplified version of the model from Nyman et al. [127]. One of the aims of the present
work is to merge two different physiological levels to lay the basis for the inclusion of the
other main players in the system (such as muscle, pancreatic and liver cells). The connection
between the two levels happens through the interstitial fluid. We considered that only a
portion of plasmatic values would surround the cell in accordance with human physiology.
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Adding the low level model to a closed loop system allowed us to see the effect during
long time period. The opportunity to observe the system in a long term period of time can
also allow us to see how the two biological levels, the organ and the cellular ones, react to
each other. An impaired insulin signalling cascade affects glucose uptake level resulting in
decreased adipose glucose and leptin secretion.

Insulin secretion from the organ level impacts the cellular level: the two levels of the
model are interdependent as it is in the body. A holistic representation of the system, with
the inclusion of the main components, should allow the description and interpretation of a
more realistic system, allowing to simulate, for instance, different hypothesised molecular
mechanisms responsible for disease development, or the action of available or experimental
therapeutic molecules.

In the current work, the dynamics of the T2DM is also illustrated. With the modified
model parameter for T2DM, it is possible to test how glucose homeostasis would occur and
how body would react to glucose intake for T2DM. The results of the present work have
shown that the reductions in glucose uptake from tissues may help to explain some of the
differences of the metabolic responses between NGR and T2DM. The result indicate that
T2DM is slower to return to baseline levels than NGR and long-acting forms have developed.
It is known that steady state process takes more length of time in type 2 diabetic individuals
[136, 161]. Moreover, in type 2 diabetes, individuals have more glucose intake. That can
be the result of insulin resistance. Body muscles do not get the energy, which is taken from
the food intake. Insulin resistance prevents glucose from entering the muscle and providing
energy. Therefore, especially the muscles and other tissues send a “hunger” message to get
enough energy into the body.

Some of the aspects of the model can be improved with the collection of data, among
which glucose and insulin concentrations after a glucose test as well as incretin levels. Con-
sidering that a meal is usually composed of proteins and fats, not only of glucose. This will
be considered in future model developments. This will also be important for extending the
model to type 1 diabetes. Including such phenomena can result in a better description of the
system and help enhancing our understanding of the mechanisms behind these adaptations.
An immediate extension of the research presented in this dissertation is to use the proposed
methodology to explore the other component functions in greater detail. This may provide in-
formation on the mechanisms, which are more important in producing the system behaviours
and are observed in patients with diabetes.
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Models of biological systems will continue to have a key role in future system and
synthetic biology research. This is because models help us to understand the biological
mechanisms and develop the tools that are needed for constructing the biological systems.
They can concisely communicate a large amount of information about systems via uniform
representations. They will speed up the identification of disease mechanisms, biomarkers and
drug discovery process. Moreover, modelling will be in great demand to design or modify
the systems for new functions. It will allow us to create new artificial biological systems
that do not exist in nature but have beneficial purposes. Modelling will keep pushing the
boundaries of biology and it will be possible to model a greater variety of biological systems.
The more structures are determined by modelling, the identification of missing links and
information will become easier.

Most of the knowledge in science comes from performing experiments. However, ex-
perimental data can be constructed with evidence obtained from other sources such as
modelling. Increasing amount of research in modelling has produced enormous amounts
of data and is accelerating the knowledge discovery of biological systems. Modelling of
biological systems helps us to gain a deeper conceptual insight into the organism of interest
and correlate the experimental and theoretical studies. Combination of experimental data
and simulation resullts generate hypothesis that are consistent with the data. Mathematical
and computational models are used to interpret data and make predictions about different
experimental conditions. They can cover abstractions that provide insights into the systems,
which are responsible for a particular behaviour. Moreover, mathematical models overcome
the challenges for experimental designs. They enable the simulation of complex biological
systems and generate hypotheses and suggest experimental design. Mathematical models
can explore the wealth of experimental data (Big Data) and find fundamental correlations
and contingencies, changing the way experimental research, development and applications
are conducted.
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Appendix A

Here, we represent the Supplementary Materials for Chapter 3.

dABC(t)/dt =−r1.ABC(t)+ r2.ABCo(t).Pext(t)

dABCo(t)/dt = r1.ABC(t)− r2.ABCo(t).Pext(t)

dPext(t)/dt =−r2.ABCo(t).Pext(t)

dPin(t)/dt = r2.ABCo(t).Pext(t)

dPhoR(t)/dt =−r3a.ABC(t).PhoR(t)+ r4a.PhoRr(t)

dPhoRr(t)/dt = r3a.ABC(t).PhoR(t)− r4a.PhoRr(t)

Fig. A.1 The ODEs for the Model 1 reactions in Chapter 3.

dABC(t)/dt =−r1.ABC(t)+ r2.ABCo(t).Pext(t)
−r3b.ABC(t).PhoR(t)+ r4b.ABC_PhoR(t)

dABCo(t)/dt = r1.ABC(t)− r2.ABCo(t).Pext(t)

dPext(t)/dt =−r2.ABCo(t).Pext(t)

dPin(t)/dt = r2.ABCo(t).Pext(t)

dPhoR(t)/dt =−r3b.ABC(t).PhoR(t)+ r4b.ABC_PhoR(t)

dABC_PhoR(t)/dt = r3b.ABC(t).PhoR(t)− r4b.ABC_PhoR(t)

Fig. A.2 The ODEs for the Model 2 reactions in Chapter 3.
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dABC(t)/dt =−r1.ABC(t)+ r2.ABCo(t).Pext(t)

dABCo(t)/dt = r1.ABC(t)− r2.ABCo(t).Pext(t)

dPext(t)/dt =−r2.ABCo(t).Pext(t)

dPin(t)/dt = r2.ABCo(t).Pext(t)

dPhoU(t)/dt =−r3′.ABC(t).PhoU(t)+ r4′.PhoUa(t)

dPhoUa(t)/dt = r3′.ABC(t).PhoU(t)− r4′.PhoUa(t)

dPhoR(t)/dt =−r5a.PhoUa(t).PhoR(t)+ r6a.PhoRr(t)

dPhoRr(t)/dt = r5a.PhoUa(t).PhoR(t)− r6a.PhoRr(t)

Fig. A.3 The ODEs for the PhoU Model 1 reactions in Chapter 3.

dABC(t)/dt =−r1.ABC(t)+ r2.ABCo(t).Pext(t)

dABCo(t)/dt = r1.ABC(t)− r2.ABCo(t).Pext(t)

dPext(t)/dt =−r2.ABCo(t).Pext(t)

dPin(t)/dt = r2.ABCo(t).Pext(t)

dPhoU(t)/dt =−r3′.ABC(t).PhoU(t)+ r4′.PhoUa(t)

dPhoUa(t)/dt = r3′.ABC(t).PhoU(t)− r4′.PhoUa(t)
−r5b.PhoUa(t).PhoR(t)+ r6b.PhoUa_PhoR(t)

dPhoR(t)/dt =−r5b.PhoUa(t).PhoR(t)+ r6b.PhoUa_PhoR(t)

dPhoUa_PhoR(t)/d=r5b.PhoUa(t).PhoR(t)− r6b.PhoUa_PhoR(t)

Fig. A.4 The ODEs for the PhoU Model 2 reactions in Chapter 3.
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Appendix B

Here, we represent the Supplementary Materials for Chapter 4.
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dGfp(t)/dt = r18.mRNAa(t)− r22.Gfp(t)

dDiPhoR(t)/dt = r6r.DiPhoRp(t)− r6.DiphoR(t) + r11.DiPhoRp-PhoB(t)+ r21.mRNAb(t)
−r24.DiPhoR(t)− r13.DiPhoR(t).PhoBp(t)+ r13r.DiPhoR-PhoBp(t)+ r14.DiPhoR-PhoBp(t)

dDiPhoRp(t)/dt = r6.DiPhoR(t)− r6r.DiPhoRp(t)− r7.DiPhoRp(t)+ r7r.DiPhoRpp(t)
+r9.DiPhoRpp-PhoB(t)+ r10r.DiPhoRp-PhoB(t)− r10.DiPhoRp(t).PhoB(t)

dDiPhoRp-PhoB(t)/dt = r10.DiPhoRp(t).PhoB(t)− r10r.DiPhoRp-PhoB(t)
−r11.DiPhoRp-PhoB(t)

dDiPhoRpp(t)/dt = r7.DiPhoRp(t)− r7r.DiPhoRpp(t)− r8.DiPhoRpp(t).PhoB(t)
+r8r.DiPhoRpp-PhoB(t)

dDiPhoRpp-PhoB(t)/dt = r8.DiPhoRpp(t).PhoB(t)− r8r.DiPhoRpp-PhoB(t)
−r9.DiPhoRpp-PhoB(t)

dPhoB(t)/dt =−r8.DiPhoRpp(t).PhoB(t)+ r8r.DiPhoRpp-PhoB(t)− r10.DiPhoRp(t).PhoB(t)
+r10r.DiPhoRp-PhoB(t)+ r20.mRNAb(t)+ r23.PhoB(t)+ r14.DiPhoR-PhoBp(t)

dPhoBp(t)/dt = r9.DiPhoRpp-PhoB(t)−2.r12.PhoBp(t)2 + r11.DiPhoRp-PhoB(t)
+2.r12r.DiPhoBpp(t)+ r13r.DiPhoR-PhoBp(t)− r13.DiPhoR(t).PhoBp(t)

dDiPhoR-PhoBp(t)/dt = r13.DiPhoR(t).PhoBp(t)− r13r.DiPhoR-PhoBp(t)
−r14.DiPhoR-PhoBp(t)

dDiPhoBpp(t)/dt = r12.PhoBp(t)2 − r12r.DiPhoBpp(t)− r15.DiPhoBpp(t).pPhoA(t)
+r16r.pPhoBa(t)+ r15r.pPhoAa(t)− r16.DiPhoBpp(t).pPhoB(t)

dpPhoA(t)/dt =−r15.DiPhoBpp(t).pPhoA(t)+ r15r.pPhoAa(t)

dpPhoAa(t)/dt = r15.DiPhoBpp(t).pPhoA(t)− r15r.pPhoAa(t)

dpPhoB(t)/dt =−r16.DiPhoBpp(t).pPhoB(t)+ r16r.pPhoBa(t)

dpPhoBa(t)/dt = r16.DiPhoBpp(t).pPhoB(t)− r16r.pPhoBa(t)

dmRNAa(t)dt = r17.pPhoAa(t)− r25.mRNAa(t)

dmRNAb(t)/dt = r19.pPhoBa(t)− r26.mRNAb(t)

Fig. B.1 The ODEs for the model reactions in Chapter 4.
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Fig. B.2 The deterministic ODE simulation results that are fitted with only the experimental
data on PhoA expression levels are plotted in blue. The deterministic ODE simulation results
that are fitted with the experimental data on both PhoA and PhoB expression levels are plotted
in red. In all the experiments, the external Pi concentration is 0µM and a time-course of 4.5
hours is considered. For the simulations that consider both PhoA and PhoB data, stochastic
simulation results, plotted in grey, are also provided. In the simulations that include both of
the PhoA and PhoB data, the values for r14 and r15 in Table 1 in the main text are obtained by
increasing these parameters from 0.05 to 0.13 and from 0.03 to 0.035, respectively. Similarly,
the disassociation rates, r3r, r5r, r7r, and r8r are increased from 74.94 to 94.94 to obtain
comparable DiPhoBpp levels.
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Fig. B.3 The cumulative output of simulations under the effect of random perturbations on
the reaction rate r14. The reaction rates in the model can vary within a range in different cell
types and cellular environments. Therefore, we applied sensitivity analysis to quantify the
model outputs with respect to such random perturbations. The rate is modified by applying
a varied range of fold changes between 0.01 to 2, which are larger than the physiological
range. The 1 fold change is plotted in black.
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Fig. B.4 The cumulative output of simulations under the effect of random perturbations on
the reaction rate r15. The reaction rates in the model can vary within a range in different cell
types and cellular environments. Therefore, we applied sensitivity analysis to quantify the
model outputs with respect to such random perturbations. The rate is modified by applying
a varied range of fold changes between 0.01 to 2, which are larger than the physiological
range. The 1 fold change is plotted in black.
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Fig. B.5 The cumulative output of simulations under the effect of random perturbations on
the reaction rate r3r. The reaction rates in the model can vary within a range in different
cell types and cellular environments. We applied sensitivity analysis to quantify the model
outputs with respect to such random perturbations. The rate is modified by applying a varied
range of fold changes between 0.1 to 10. The 1 fold change is plotted in black.
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Fig. B.6 The cumulative output of simulations under the effect of random perturbations on
the reaction rate r5r. The reaction rates in the model can vary within a range in different
cell types and cellular environments. We applied sensitivity analysis to quantify the model
outputs with respect to such random perturbations. The rate is modified by applying a varied
range of fold changes between 0.1 to 10. The 1 fold change is plotted in black.
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Fig. B.7 The cumulative output of simulations under the effect of random perturbations on
the reaction rate r7r. The reaction rates in the model can vary within a range in different
cell types and cellular environments. We applied sensitivity analysis to quantify the model
outputs with respect to such random perturbations. The rate is modified by applying a varied
range of fold changes between 0.1 to 10. The 1 fold change is plotted in black.
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Fig. B.8 The cumulative output of simulations under the effect of random perturbations on
the reaction rate r8r. The reaction rates in the model can vary within a range in different
cell types and cellular environments. We applied sensitivity analysis to quantify the model
outputs with respect to such random perturbations. The rate is modified by applying a varied
range of fold changes between 0.1 to 10. The 1 fold change is plotted in black.
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Fig. B.9 Stochastic simulation results when DNA unbinding rates r10 and r11 are set to
100s−1 together with deterministic simulation results. The unbinding kinetics can have a
significant impact on the stochastic dynamics of gene expression network. When the promoter
unbinding rate increases, the promoter activity, which works at a faster time-scale, leads
to much more noisy fluctuations (see Supplementary Figures B.10 and B.11). A stochastic
simulation with this modified rate is plotted in gray. The deterministic simulations with our
model (red) and the deterministic simulations with the changes above (green) display similar
dynamics.
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Fig. B.10 Stochastic simulation results when DNA unbinding rates r10 and r11 are set to
500s−1 together with deterministic simulation results. The unbinding kinetics can have a
significant impact on the stochastic dynamics of gene expression network. When the promoter
unbinding rate increases, the promoter activity, which works at a faster time-scale, leads
to much more noisy fluctuations (see Supplementary Figures B.9 and B.11). A stochastic
simulation with this modified rate is plotted in gray. The deterministic simulations with our
model (red) and the deterministic simulations with the changes above (green) display similar
dynamics.
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Fig. B.11 Stochastic simulation results when DNA unbinding rates r10 and r11 are set to
5000s−1 together with deterministic simulation results. The unbinding kinetics can have a
significant impact on the stochastic dynamics of gene expression network. When the promoter
unbinding rate increases, the promoter activity, which works at a faster time-scale, leads
to much more noisy fluctuations (see Supplementary Figures B.9 and B.10). A stochastic
simulation with this modified rate is plotted in gray. The deterministic simulations with
the changes above with slower unbinding rates (green) lead to slightly slower dynamics in
comparison to deterministic simulations with our model with this rate set to 1000s−1 (red).
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Fig. B.12 Simulation results with varying external Pi concentrations. A decrease in the
external Pi concentration is modelled as a fold change, listed in the legend, which is applied
to the autophosphorylation reactions of PhoR. A fold change of 1 gives the starvation
condition with 0µM external Pi. A lower fold change value represents an increased PhoU
activity. Active PhoU inhibits PhoR, and thereby prevents it from autophosphorylating,
which otherwise relays the signal downstream to the promoters pPhoA and pPhoB.
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Fig. B.13 Deterministic simulations with the model with varying fold changes applied to
r8, the association rate of PhoR and PhoB, whereby PhoR acts as a phosphatase. The plots
display the effect of the perturbations on DiPhoBpp in comparison to the case, where the
fold change is 1.
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Fig. B.14 Deterministic simulation with the model with varying fold changes applied to
degradation and dilution terms r17, r18, r19, r20, and r21. Together with the Supplementary
Figures B.15 and B.16, the plots display the effect of degradation and dilution under the
conditions of reduced phosphorylation rates for PhoR resulting from an increase in external
Pi concentration.
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Fig. B.15 Deterministic simulation with the model with varying fold changes applied to
degradation and dilution terms r17, r18, r19, r20, and r21 with a concomitant fold change of
0.5 applied to r1 and r2. Together with the Supplementary Figures B.14 and B.16, the plots
display the effect of degradation and dilution under the conditions of reduced phosphorylation
rates for PhoR resulting from an increase in external Pi concentration.
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Fig. B.16 Deterministic simulation with the model with varying fold changes applied to
degradation and dilution terms r17, r18, r19, r20, and r21 with a concomitant fold change of
0.1 applied to r1 and r2. Together with the Supplementary Figures B.14 and B.15, the plots
display the effect of degradation and dilution under the conditions of reduced phosphorylation
rates for PhoR resulting from an increase in external Pi concentration.
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Fig. B.17 Heatmap displaying the results of the sensitivity analysis by considering all the
model parameters. Each parameter is varied by 3 orders of magnitude higher and lower and
the area under the curve (AUC) for each species is computed. The outcome is normalised
with the AUC of the original model. Red represents the decreasing effect and green represents
the increasing effect. The model is sensitive to a parameter when a variation in the input
parameter causes a change in the model output. The amount of change quantifies the
sensitivity. The sensitivity analysis results predict the system behaviour under varying
conditions.
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Here, we represent the Supplementary Materials for Chapter 5.

Unlike type 1 diabetes, type 2 diabetes patients’ pancreas can usually produce insulin
at normal levels; the problem is instead the ineffective use of the insulin produced. The
adipocytes and muscle cells become less and less sensitive to insulin, which leads to increased
levels of glucose in the bloodstream. Over time, diabetes can damage the heart, blood vessels,
eyes, kidneys and nerves. Both genetics and environmental factors, such as excess body
weight and physical inactivity, influence the outbreak of type 2 diabetes. Thus, the first step
in treatment of the disease is a change of diet and more physical activity.

Also on a cellular level in type 2 diabetes there are many aspects to consider. One of
these aspects is the insulin signalling network. Many research teams attempt to understand
the mechanisms in the network and more details are discovered all the time. Mutations in the
gene expressing IR do exist but are rare. Phosphorylation of IRS1 can be both increased and
decreased. There can be defects at numerous points in the regulation system of the glucose
transport. In this project the type 2 diabetes conditions at the cellular level was recreated
according to Nyman et al. [127] through three parameters: the total number of IRs, the
total number of GLUT4 and the entity of the positive feedback from the protein complex
mTORC1, which have been all decreased according to literature. All the changes described
work together to reduce the amount of GLUT4 that reaches the adipocyte membrane, which
finally leads to a reduced glucose uptake from the adipose cell consistent with the type 2
diabetes conditions.
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Table C.1 Initial values of model variables in agreement with a morning fasting state. For
each variable two initial values are provided, one for the normal glucose regulation (NGR)
condition and one for T2DM. Values have been computed according to the estimation
procedure described in the text.

Symbol NGR Estimation Pro-
cedure

T2DM Estimation Pro-
cedure

S0 4 mmol optimised around
0 to avoid discon-
tinuities in the dy-
namics

14 mmol optimised around
0 to avoid discon-
tinuities in the dy-
namics

L0 14 mmol optimised around
0 to avoid discon-
tinuities in the dy-
namics

25 mmol optimised around
0 to avoid discon-
tinuities in the dy-
namics

G0 5 mM taken from [134] 7.5 mM optimised in the
range 8.05±1.82
mM from [161]

I0 60 pM taken from [134] 180 pM optimised in the
range 171 ± 74
pM from [161]

W0 10 pM optimised in the
range 10-19.4 pM
from [77]

10 pM as in NGR

E0 34 pM optimised in
the range
37.86 ± 9.18
pM from [71]

36 pM optimised
in the range
42.19 ± 10.67
pM from [71]

C0 3 mmol optimised in the
range 3-5 mmol
from [136]

3 mmol as in NGR

M0 2.5 mmol optimised around
the value from
[136] ±5%

2.5 mmol as in NGR

Table C.1: Continued on next page
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Table C.1: continued from previous page

Symbol NGR Estimation Pro-
cedure

T2DM Estimation Pro-
cedure

A0 53.19 mmol optimised in
the range 30-75
mmol from [136]

32 mmol unconstrained op-
timisation

Y0 0.4 nM optimised in the
range 0.11-1.75
nM from [92]

1.93 nM unconstrained op-
timisation

Q0 120 pM optimised in the
range 72.8-146.1
pM from [45]

53 pM optimised in the
range 50.6-78.9
pM from [45]

H0 200 mmol minimum daily
glucose need
taken from [41]
divided by the
number of meals

240 mmol minimum daily
glucose need
taken from [41]
divided by the
number of meals

INSA0 20 pM unconstrained op-
timisation

70 pM derived to pre-
serve the same
ration I0/INSA0

of the NGR
condition

GtA0 135 mg/kg taken from [106] 216 mg/kg derived to pre-
serve same the
ration G0/GtA0

of the NGR
condition

IR0 92.9271 optimised in the
range 1.3298-
99.8724 from
[127]

43.4601 optimised in the
range 0.7319-
54.9280 from
[127]

Table C.1: Continued on next page
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Table C.1: continued from previous page

Symbol NGR Estimation Pro-
cedure

T2DM Estimation Pro-
cedure

IR_Y P0 0.0047 optimised in the
range 0.0019-
0.0438 from
[127]

0.0058 optimised in the
range 0.0010-
0.0241 from
[127]

IRins0 6.7692 optimised in the
range 0-98.3174
from [127]

11.1869 optimised in the
range 0-54.0728
from [127]

IRi_Y P0 0.0433 optimised in the
range 0.0200-
0.3684 from
[127]

0.0340 optimised in the
range 0.0128-
0.2007 from
[127]

IRi0 0.2557 optimised in the
range 0.1057-
2.4239 from
[127]

0.3131 optimised in the
range 0.0581-
1.3338 from
[127]

IRS10 70.8957 optimised in the
range 32.8904-
82.2711 from
[127]

85.3981 optimised in the
range 74.9450-
86.2120 from
[127]

IRS1_Y P0 0.0015 optimised in the
range 0.0012-
0.0079 from
[127]

0.0027 optimised in the
range 0.0010-
0.0128 from
[127]

IRS1_Y P_S307P0 1.6060 optimised in the
range 0.3945-
12.9125 from
[127]

0.1011 optimised in the
range 0.0108-
2.6372 from
[127]

IRS1_S307P0 27.4967 optimised in the
range 17.3332-
61.8749 from
[127]

14.4981 optimised in the
range 13.7761-
23.9259 from
[127]

Table C.1: Continued on next page
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Table C.1: continued from previous page

Symbol NGR Estimation Pro-
cedure

T2DM Estimation Pro-
cedure

X0 90.8250 optimised in the
range 82.7446-
92.1517 from
[127]

85.6979 optimised in the
range 74.2898-
93.2612 from
[127]

X_P0 9.1750 optimised in the
range 7.8483-
17.2554 from
[127]

14.3021 optimised in the
range 6.7388-
25.7102 from
[127]

PKB0 45.0895 optimised in the
range 2.3591-
66.7261 from
[127]

41.7141 optimised in the
range 5.4955-
75.9049 from
[127]

PKB_T 308P0 10.9438 optimised in the
range 1.4914-
33.8840 from
[127]

17.8142 optimised in the
range 6.3922-
50.9079 from
[127]

PKB_S473P0 29.6843 optimised in the
range 9.4834-
37.0490 from
[127]

39.1462 optimised in the
range 11.1110-
61.5802 from
[127]

PKB_T 308P_S473P0 14.2824 optimised in the
range 2.1594-
71.6300 from
[127]

1.3253 optimised in the
range 0.0771-
33.7498 from
[127]

mTORC10 48.0015 optimised in the
range 15.8212-
84.0562 from
[127]

87.8940 optimised in the
range 28.3447-
96.6769 from
[127]

Table C.1: Continued on next page
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Table C.1: continued from previous page

Symbol NGR Estimation Pro-
cedure

T2DM Estimation Pro-
cedure

mTORC1a0 51.9985 optimised in the
range 15.9438-
84.1788 from
[127]

12.1060 optimised in the
range 3.3231-
71.6553 from
[127]

mTORC20 99.6572 optimised in the
range 97.7928-
99.8383 from
[127]

99.7289 optimised in the
range 98.9110-
99.8963 from
[127]

mTORC2a0 0.3428 optimised in the
range 0.1617-
2.2072 from
[127]

0.2711 optimised in the
range 0.1037-
1.0890 from
[127]

AS1600 56.5941 optimised in the
range 24.6694-
83.3321 from
[127]

76.9252 optimised in the
range 37.2542-
93.1897 from
[127]

AS160_T 642P0 43.4059 optimised in the
range 16.6679-
75.3306 from
[127]

23.0747 optimised in the
range 6.8103-
62.7458 from
[127]

GLUT 4m0 49.1528 optimised in the
range 27.0715-
62.6541 from
[127]

16.9725 optimised in the
range 6.5848-
29.1440 from
[127]

GLUT 40 50.8472 optimised in the
range 37.3459-
72.9285 from
[127]

33.0275 optimised in the
range 20.8560-
43.4152 from
[127]

Table C.1: Continued on next page
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Table C.1: continued from previous page

Symbol NGR Estimation Pro-
cedure

T2DM Estimation Pro-
cedure

S6K0 86.3744 optimised in the
range 83.8342-
95.5400 from
[127]

95.5986 optimised in the
range 89.0410-
99.0364 from
[127]

S6K_T 389P0 13.6256 optimised in the
range 4.4600-
16.1658 from
[127]

4.4014 optimised in the
range 0.9636-
10.9590 from
[127]

S60 40.4757 optimised in the
range 36.5506-
67.6139 from
[13]

69.5055 optimised in the
range 45.9399-
90.6217 from
[13]

S6_S235_S236P0 59.5243 optimised in the
range 32.3861-
63.4494 from
[13]

30.4945 optimised in the
range 9.3783-
54.0601 from
[13]

Table C.1: It ends from the previous page.

Table C.2 Parameter estimates of the model in the normal glucose regulation (NGR) and
T2DM conditions. Values have been computed according to the estimation procedure
described in the text.

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Insulin indepen-
dent glucose util-
isation

b1 0.0059 min−1 calculated
as in [161]

0.0049 min−1 taken from
[161]

Insulin disappear-
ance rate

b2 0.1262 min−1 taken from
[31]

0.04 min−1 taken from
[161]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Insulin dependent
glucose utilisation

b3 0.00005
(pM.min)−1

taken from
[31]

0.00002
(pM.min)−1

taken from
[161]

Glucose depen-
dent insulin
secretion

b4 0.4543
pM/mM.min

calculated
by steady
state as in
[161]

0.15
pM/mM.min

calculated
by steady
state as in
[161]

Glucose transfer
from liver to
plasma

b5 0.185 min−1 calculated
by steady
state as in
[161]

0.3320 min−1 calculated
by steady
state as in
[161]

Intestine glu-
cose dependent
incretin secretion

b6 0.0102
pM/mmol.min

set equal to
the estimate
computed
for T2DM
according
to [110]

0.0102
pM/mmol.min

optimised
in the range
0.0102-
0.0104
pM/mmol.min
from [161]

Incretin disap-
pearance rate

b7 0.03 min−1 set equal to
the estimate
computed
for T2DM
according
to [110]

0.03 min−1 optimised
in the range
0.03-0.06
min−1 from
[161]

Stomach glucose
emptying rate

b8 0.022 min−1 optimised
in the range
0.020 ±
0.002
min−1 from
[144]

0.022 min−1 optimised
in the range
0.020 ±
0.002
min−1 from
[144]

Glucose transfer
rate to the stom-
ach

b9 0.022 min−1 unconstrained
optimisa-
tion

0.022 min−1 unconstrained
optimisa-
tion

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Instestine glucose
eptying rate

b10 0.022 min−1 optimised
in the range
0.020 ±
0.002
min−1 from
[144]

0.022 min−1 optimised
in the range
0.020 ±
0.002
min−1 from
[144]

Ghrelin disappear-
ance

b11 0.02 min−1 set equal to
the estimate
computed
for T2DM

0.02 min−1 taken from
[161]

The appearance
constant for
ghrelin

b12 28.66 pM/min calculated
by steady
state as in
[161]

7 pM/min calculated
by steady
state as in
[161]

Leptin secretion
rate

b13 0.0000095
nM/mmol.min.kg

calculated
by steady
state

0.000061
nM/mmol.min.kg

calculated
by steady
state

Leptin disappear-
ance

b14 0.0278 min−1 taken from
[62]

0.0278 min−1 as in NGR

Ghrelin depen-
dent glucose
intake appearance

b17 0.7
mmol/pM.min

calculated
by steady
state

1.2
mmol/pM.min

calculated
by steady
state

Leptin inhibition
on glucose intake

b18 0.35 nM−1 taken from
[60]

0.23 nM−1 calculated
by as in [7]

Glucose effect
rate on glucose
intake

b19 0.004
(mM.min)−1

taken from
[66]

0.004
(mM.min)−1

taken from
[66]

Glucogan action
on the liver

b21 0.008764
mmol/pM.min

taken from
[154]

0.008764
mmol/pM.min

as in NGR

Glucose action on
the liver

b22 0.0021 min−1 taken from
[106]

0.008764
mmol/pM.min

taken from
[106]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Liver glucose con-
stant production

b23 0.08 mmol/min taken from
[106]

0.12 mmol/min taken from
[106]

Insulin action on
the liver

b25 0.00026
mmol/pM.min

taken from
[106]

0.00014
mmol/pM.min

taken from
[106]

Muscle glucose
disappearance

b27 0.014 min−1 calculated
by steady
state

0.0099 min−1 calculated
by steady
state

Incretin depen-
dent insulin
secretion

c 0.1060
(mM.min)−1

calculated
by steady
state as in
[161]

0.035
(mM.min)−1

calculated
by steady
state as in
[161]

Glucagon basal
secretion

c0 1.8854
(pM/min)

taken from
[154]

1.8854
(pM/min)

taken from
[154]

Glucose action on
glucagon

c1 198
(pM/mM.min)

taken from
[154]

198
(pM/mM.min)

taken from
[154]

Insulin action on
glucagon

c2 94
(pM/mM.min)

set equal to
the estimate
computed
for T2DM

94
(pM/mM.min)

optimised
to have
the plasma
glucagon
dynamics
inside the
range dis-
cussed in
[71]

Glucagon disap-
pearance

c3 0.0554 min−1 calculated
by steady
state as in
[154]

0.0524 min−1 calculated
by steady
state as in
[154]

Insulin effective-
ness

e 1 taken from
[154]

0.2 taken from
[154]

Table C.2: Continued on next page
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Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

The fraction of ab-
sorbed glucose

f 0.9 taken from
[161]

0.9 taken from
[161]

Averaged total fat
mass in humans

Fat 22 kg calculated
as in [62]
assuming
a stan-
dard body
weight of
75 kg

27 kg calculated
as in [62]
a stan-
dard body
weight of
90 kg

Glucose threshold
value

Ge 5 mM taken from
[93]

8 mM taken from
[93]

Glucose in stom-
ach dependent de-
cay rate of ghrelin

l 0.006 mmol−1 calculated
as in [161]

0.006 mmol−1 calculated
as in [161]

Insulin dependent
decay rate of ghre-
lin

m 0.04 pM−1 calculated
as in [161]

0.01 pM−1 calculated
as in [161]

Insulin dependent
decay rate of ghre-
lin glucose intake

r 0.04 pM−1 unconstrained
optimisa-
tion

0.01 pM−1 unconstrained
optimisa-
tion

Incretin constant
secretion

s 0.03 pM/min set equal to
the estimate
computed
for T2DM
[110]

0.01 pM/min optimised
around
value ±5%
as calcu-
lated in
[15]

Glucose distribu-
tion volume

v 15 l calculated
as in [161]

18 l calculated
as in [161]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Insulin binding
with IR

k1a 0.00333
(pM.min)−1

optimised
in the range
1e−6 − 1e6

from [127]

0.00333
(pM.min)−1

optimised
in the range
1e−6 − 1e6

from [127]
Basal phosphory-
lation of IR

k1basal 0.0368 min−1 taken from
[127]

0.0368 min−1 taken from
[127]

Phosphorylation
of IRins

k1c 0.877 min−1 taken from
[127]

0.877 min−1 taken from
[127]

Endocytosis pro-
cess of the recep-
tor

k1d 31.0 min−1 taken from
[127]

31.0 min−1 taken from
[127]

Feedback from
protein X

k1 f 0.368 min−1 taken from
[127]

0.368 min−1 taken from
[127]

Basal dephospho-
rylation of IR

k1g 1940 min−1 taken from
[127]

1940 min−1 taken from
[127]

Recycling rate of
IRi

k1r 0.547 min−1 taken from
[127]

0.547 min−1 taken from
[127]

Phosphorylation
of IRS1 from the
receptor

k2a 3.23 min−1 taken from
[127]

3.23 min−1 taken from
[127]

Phosphorylation
of IRS1 in the
serine site from
mTORC1a

k2c 5760 min−1 taken from
[127]

5760 min−1 taken from
[127]

Basal phosphory-
lation of IRS1 in
the serine site

k2basal 0.0423 min−1 taken from
[127]

0.0423 min−1 taken from
[127]

Dephosphorylation
of IRS1 in the
tyrosine site

k2b 3420 min−1 taken from
[127]

3420 min−1 taken from
[127]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Dephosphorylation
of IRS1 in the
serine site

k2d 281 min−1 taken from
[127]

281 min−1 taken from
[127]

Dephosphorylation
of IRS1 in the
tyrosine site

k2 f 2.91 min−1 taken from
[127]

2.91 min−1 taken from
[127]

Dephosphorylation
of IRS1 in the
serine site

k2g 0.267 min−1 taken from
[127]

0.267 min−1 taken from
[127]

Activation of X
protein

k3a 6.90 min−1 taken from
[127]

6.90 min−1 taken from
[127]

Deactivation of X
protein

k3b 0.0988 min−1 taken from
[127]

0.0988 min−1 taken from
[127]

Phosphorylation
of PKB in the
threonine site
from IRS1

k4a 5790 min−1 taken from
[127]

5790 min−1 taken from
[127]

Dephosphorylation
of PKB in the
threonine site

k4b 34.8 min−1 taken from
[127]

34.8 min−1 taken from
[127]

Phosphorylation
of PKB in the
serine site from
mTORC2

k4c 4.46 min−1 taken from
[127]

4.46 min−1 taken from
[127]

Phosphorylation
of PKB in the
serine site from
IRS1

k4e 42.8 min−1 taken from
[127]

42.8 min−1 taken from
[127]

Dephosphorylation
of PKB in the
threonine site

k4 f 144 min−1 taken from
[127]

144 min−1 taken from
[127]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Dephosphorylation
of PKB in the
serine site

k4h 0.536 min−1 taken from
[127]

0.536 min−1 taken from
[127]

Activation of
mTORC1 com-
plex from PKB

k5a1 1.84 min−1 taken from
[127]

1.84 min−1 taken from
[127]

Activation of
mTORC1 com-
plex from PKB

k5a2 0.0551 min−1 taken from
[127]

0.0551 min−1 taken from
[127]

Deactivation of
mTORC1

k5b 24.8 min−1 taken from
[127]

24.8 min−1 taken from
[127]

Activation of
mTORC2 com-
plex

k5c 0.0858 min−1 taken from
[127]

0.0858 min−1 taken from
[127]

Deactivation
of mTORC2
complex

k5d 1.06 min−1 taken from
[127]

1.06 min−1 taken from
[127]

Phosphorylation
of AS160 from
PKB

k6a1 2.65 min−1 taken from
[127]

2.65 min−1 taken from
[127]

Phosphorylation
of AS160 from
PKB

k6a2 0.410 min−1 taken from
[127]

0.410 min−1 taken from
[127]

Dephosphorylation
of AS160

k6b 65.2 min−1 taken from
[127]

65.2 min−1 taken from
[127]

Translocation of
GLUT4 to the
membrane

k7a 51.0 min−1 taken from
[127]

51.0 min−1 taken from
[127]

Translocation of
GLUT4 to the cy-
tosol

k7b 2290 min−1 taken from
[127]

2290 min−1 taken from
[127]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

GLUT4 glucose
uptake

k8 0.5275
mmol/min

taken
from [126]
changing
units

0.5644
mmol/min

taken
from [126]
changing
units

GLUT1 glucose
uptake

GLUT1 0.0283
mmol/min

taken
from [126]
changing
units

0.032
mmol/min

taken
from [126]
changing
units

Dependence
on interstitial
glucose saturated

kmG4 146.851 mg/kg taken from
[126]

146.851 mg/kg kept same

Dependence
on interstitial
glucose saturated

kmG1 1.082 mg/kg taken from
[126]

1.082 mg/kg kept same

Intra-adipocitary
glucose elimina-
tion rate

kgluc 0.25 min−1 unconstrained
optimisa-
tion

0.25 min−1 unconstrained
optimisa-
tion

Interstitial insulin
rate of change

p2U 0.033 min−1 taken from
[106]

0.033 min−1 kept same

Interstitial glu-
cose elimination
rate

q1 0.0031 min−1 unconstrained
optimisa-
tion

0.0025 min−1 unconstrained
optimisa-
tion

Glucose trasfer
rate from plasma
to interstitium

q2 0.4054
(mg/kg)/mM.min

unconstrained
optimisa-
tion

0.4365
(mg/kg)/mM.min

unconstrained
optimisa-
tion

Phosphorylation
of S6K

k9a 0.0013 min−1 taken from
([127]

0.0013 min−1 taken from
[127]

Dephosphorylation
of S6K

k9b 0.0444 min−1 taken from
[127]

0.0444 min−1 taken from
[127]

Dephosphorylation
of S6

k9b2 30.9966 min−1 taken from
[13]

30.9966 min−1 taken from
[13]

Table C.2: Continued on next page
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Table C.2: continued from previous page

Parameter
description

Symbol NGR Estimation
Procedure

T2DM Estimation
Procedure

Phosphorylation
of S6

k9 f 2 3.3289 min−1 taken from
[13]

3.3289 min−1 taken from
[13]

Positive feedback
from mTORC1 re-
duced in T2DM
condition

k f b 1 taken from
[127]

0.15 taken from
[127]

Table C.2: It ends from the previous page.

C.1 Sensitivity analysis

A state of the art sensitivity analysis has been computed for each variable of the whole body
model to assess the effect on the model dynamics of each estimated parameter. During the
analysis, we did not consider the cellular model because its equations and parameters have
been all taken from [127], [13] and [101] and therefore we refer to such references for any
additional insight related to this layer of the model. Following the same approach, we did
not consider the parameters of the whole body model that have been taken from literature
without the need of being estimated. Conversely, the effect of each estimated parameter
has been analysed by considering their estimate both in the NGR condition and in T2DM,
according to the values reported in C.2. For computing the analysis, each parameter estimate
has been perturbed by multiplying its value by a parameter k varying in the range 0.5 - 2
(from halved to doubled parameter estimate). For each value of the k parameter, we ran a
model simulation and then we measured the impact on the system dynamics of each model
variable in terms of AUC ratio:

AUCk
ratio = AUCk

perturbed/AUCoriginal

where AUC indicates the area under the curve provided by the corresponding simulated
behaviour in time. This allowed us to compute the set of charts included in Supplementary
figures, which show the variation of the AUC ratio of each model variable for each value of
k in the two modelled conditions (NGR and T2DM). To improve the readability of results,
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only the parameters with

maxAUCk
ratio −minAUCk

ratio ≥ 15

have been included in the plots.
Interestingly, the computed AUC ratios exhibit close-to-linear differentiable patterns with

respect to the value of k, when the parameter is close to 1. This could indicate that model
equations have the right structure to allow parameter identifiability. Only few parameters
exhibit not-differentiable points in the behaviour of their AUC ratio, but this is due to the
thresholds employed in the model, which are all justified by literature. Moreover, all the
estimated parameters affect the dynamics of at least one model variable, which is another
key requirement for parameter identifiability. The only parameter that showed to have a
negligible impact on the dynamics of all model variables in the NGR condition is c2, but this
does not constitute a problem because it has been estimated in the T2DM condition, where
an impact on the system dynamics can be appreciated. This can be easily checked by looking
at the two heatmaps provided in Supplementary Figure C.1 and Figure C.2, which further
resume the results of the sensitivity analysis. The two figures, one for the NGR condition
and one for T2DM, depict in one single image the differences between the two AUC ratios
computed with the maximum and the minimum considered value of k

AUCk=2
ratio −AUCk=0.5

ratio

for each model variable and for each estimated parameter (differences lower than 0.15
have been not displayed). This provides a general view of the impact of each estimated
parameter in both the NGR and T2DM conditions.
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Fig. C.1 Heatmap resuming the results of the sensitivity analysis by considering the parameter
estimates computed for the normal glucose regulation (NGR) condition. For each parameter,
the differences between the two AUC ratios computed with the maximum and the minimum
considered value of k are provided with respect to each model variable of the whole body
model. Values lower than 0.15 have been considered negligible and are not displayed in the
heatmap. The parameter c2 does not affect model dynamics in the NGR condition, however,
it has been estimated in the T2DM condition, where an impact on the system dynamics can
be appreciated.
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Fig. C.2 Heatmap resuming the results of the sensitivity analysis by considering the parameter
estimates computed for the T2DM condition. For each parameter, the differences between
the two AUC ratios computed with the maximum and the minimum considered value of k
are provided, with respect to each model variable of the whole body model. Values lower
than 0.15 have been considered negligible and are not displayed in the heatmap.
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Fig. C.3 Oral glucose intake chart providing the sensitivity analysis of estimated parameters
for each variable of the whole body model in the NGR condition

Fig. C.4 Stomach glucose intake chart providing the sensitivity analysis of estimated parame-
ters for each variable of the whole body model in the NGR condition



C.1 Sensitivity analysis 151

Fig. C.5 Intestine glucose intake chart providing the sensitivity analysis of estimated parame-
ters for each variable of the whole body model in the NGR condition

Fig. C.6 Plasma glucose chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition
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Fig. C.7 Plasma insulin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition

Fig. C.8 Plasma incretin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition
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Fig. C.9 Plasma glucagon chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition

Fig. C.10 Liver glucose chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition
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Fig. C.11 Muscle glucose chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition

Fig. C.12 Adipose glucose chart providing the sensitivity analysis of estimated parameters
for each variable of the whole body model in the NGR condition
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Fig. C.13 Plasma leptin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition

Fig. C.14 Plasma ghrelin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the NGR condition
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Fig. C.15 Oral glucose intake chart providing the sensitivity analysis of estimated parameters
for each variable of the whole body model in the T2DM condition

Fig. C.16 Stomach glucose intake chart providing the sensitivity analysis of estimated
parameters for each variable of the whole body model in the T2DM condition



C.1 Sensitivity analysis 157

Fig. C.17 Intestine glucose intake chart providing the sensitivity analysis of estimated
parameters for each variable of the whole body model in the T2DM condition

Fig. C.18 Plasma glucose chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition
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Fig. C.19 Plasma insulin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition

Fig. C.20 Plasma incretin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition
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Fig. C.21 Plasma glucagon chart providing the sensitivity analysis of estimated parameters
for each variable of the whole body model in the T2DM condition

Fig. C.22 Liver glucose chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition
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Fig. C.23 Muscle glucose chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition

Fig. C.24 Adipose glucose chart providing the sensitivity analysis of estimated parameters
for each variable of the whole body model in the T2DM condition
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Fig. C.25 Plasma leptin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition

Fig. C.26 Plasma ghrelin chart providing the sensitivity analysis of estimated parameters for
each variable of the whole body model in the T2DM condition
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