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ABSTRACT 

 

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in 

adults. The search for new effective chemotherapeutic agents to treat GBM has proven 

challenging throughout the last few decades. As a result, very limited pharmacological 

treatment is currently available.  

GBM aggressiveness is associated with its glioblastoma stem cells (GSCs) component, 

which is responsible for resistance to therapy. Therefore, new specific pharmacological 

approaches directed to eradicate GSCs are endowed with a great therapeutic potential. 

GSCs have been shown to rely on mitochondrial respiration for their high energy demand. In 

order to have a functional mitochondrial respiration process, the five complexes forming the 

oxidative phosphorylation (OXPHOS) chain have to be built by the coordinate assembly of 

proteins translated by either the cytosolic or the mitochondrial ribosomes.  

Given their endosymbiotic origin and despite the evolutionary changes occurred the 

mitochondrial ribosomes (mitoribosomes) still share structural and functional similarities with 

the bacterial ones, particularly considering the functional ribosomal core. In the light of these 

similarities, we hypothesized that antibiotics targeting bacterial ribosomes could be exploited 

to inhibit mitoribosomes, affecting mitochondrial translation and OXPHOS assembly, and 

hence leading to detrimental effect on GSCs viability. 

We performed a high-content imaging driven screening of several bacterial ribosome 

targeting antibiotics and identified quinupristin/dalfopristin (Q/D) as the most promising 

compound due to its cytotoxic and mitotoxic effects on GSCs. 

We demonstrated that Q/D effectively prevents GSCs expansion, resulting to be over an 

order of magnitude more effective in GSCs growth inhibition than temozolomide, the only 

drug used in first line GBM therapy. We then investigated the mechanism of action of Q/D, 

proving that it inhibits mitochondrial translation and, as a consequence, it decreases the 

functionality of the OXPHOS complexes reducing mitochondrial respiration capacity. 

Moreover, we obtained the structure of this compound bound to the human mitoribosome 

using cryo-electron microscopy, which provides the basis for further development of more 

potent analogs.  

Finally we proved the efficacy of Q/D in vivo using a xenograft mouse model of GBM. 

Our results suggest that mitochondrial translation represents a therapeutic target for GBM 

and show that Q/D, acting via inhibition of mitochondrial translation, is extremely effective 

against GSCs. Interestingly, Q/D has been approved by the Food and Drug Administration 
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(FDA) in 1999 and, therefore, its toxicological and pharmacokinetic properties are known, 

making this antibacterial antibiotic a candidate drug for repurposing for GBM treatment. 

Given the urgent medical need for novel therapeutic approaches in GBM treatment, Q/D 

represents a promising therapeutic solution that is worth further preclinical and clinical 

investigations. 
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THESIS ORGANIZATION 

 

The thesis is organized in eight main chapters: Introduction, Hypothesis and Aims, Results, 

Discussion, Conclusions, Ongoing work, Future Perspectives and Experimental Procedures.  

The introduction chapter describes the background at the base of this project, focusing on 

evidence published before and during the period in which this work has been carried out. The 

introduction starts describing glioblastoma multiforme (GBM) as a disease, reviews the 

standard of care used in GBM treatment and continues focusing on the glioblastoma cancer 

stem cell (GSC) component, with particular attention on GSCs metabolism. It moves on with 

some hints on mitochondrial respiration metabolism, on oxidative phosphorylation 

(OXPHOS) chain and on mitochondrial translation. It concludes with reviewing the current 

evidence on targeting mitochondrial metabolism in cancer therapy. 

The second chapter outlines the hypothesis and the scope of the current work, which 

ultimately aims at the identification and characterization of a novel molecule able to affect 

selectively the GSC component. Given the importance of functional mitochondrial translation 

for GSCs survival and based on the similarities existing between bacterial and mitochondrial 

ribosomes, the hypothesis underlying the whole project is the potential exploitation of 

bacterial ribosome targeting antibiotics as a tool to target mitochondrial translation and 

eradicate GSCs.  

The results chapter describes how quinupristin/dalfopristin (Q/D) was selected among the 

different bacterial ribosome targeting antibiotics tested, how its effect on different GSCs, 

grown both in adherence and as neurospheres, was characterized, how its mechanism of 

action was studied and, lastly, how its efficacy in vivo was evaluated using a patient-derived 

GSCs xenograft mouse model. 

The fourth chapter provides a discussion of the obtained results, with a special focus on the 

possible use of a combination of drugs acting on different levels of cellular metabolism or of 

drugs acting on GSCs and on the cells comprising the tumor bulk. Moreover, a discussion on 

blood-brain barrier (BBB) penetration and alternative routes of administration is provided. 

The fifth chapter contains the main conclusions of the work. 

The sixth chapter presents an overview of the ongoing work, which sets the basis for the 

future perspectives outlined in chapter seven. 

The experimental procedures and methodologies used in this work are presented in chapter 

eight.   
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1. INTRODUCTION 

 

1. 1 GLIOBLASTOMA MULTIFORME 

Glioblastoma multiforme (GBM) is the most common and aggressive malignant primary brain 

tumor in adults, accounting for 47.1% of all malignant central nervous system (CNS) tumors 

and for the majority (56.1%) of all gliomas. It has an incidence rate of 3.2 per 100,000 people 

and a median age at diagnosis of 64 years (Brodbelt et al., 2015; Ostrom et al., 2017). 

Although the therapy involves radical treatments, such as surgical resection of the tumor 

followed by radiotherapy and chemotherapy, patients survive, on average, 12 to 15 months 

post-diagnosis, with a 5-year survival rate of 5.5% (Ostrom et al., 2017). GBM aggressively 

infiltrates normal surrounding brain parenchyma, rendering complete surgical resection very 

difficult. Temozolomide (TMZ) is currently the only chemotherapeutic drug used in the clinic 

in combination with radiotherapy to treat newly diagnosed GBM. TMZ increases the median 

survival of radiation treated patients from 12.1 months to 14.6 months (Stupp et al., 2005). 

Unfortunately, the tumor recurs, underlying the importance of developing new and more 

effective therapies. Strenuous efforts have been made in the past years to develop novel 

strategies to cure GBM, with unsuccessful outcomes (reviewed in Khosla, 2016).  

 

1.1.1 The disease 

GBM is a diffuse infiltrating form of glioma with predominantly astrocytic differentiation. It is 

classified as grade IV, the highest and most severe form accordingly to the World Health 

Organization (WHO) Classification of CNS Tumors (Louis et al., 2016). GBM is 

predominantly located in the supratentorial region, with the highest occurrence in the frontal 

lobe, followed by the temporal and parietal lobes (Larjavaara et al., 2007).  

As the name implies, glioblastomas are a genetically and morphologically heterogeneous 

group of tumors, characterized by anaplasia, with nuclear and cellular pleomorphism, 

significant anisokaryosis and increased nuclear-cytoplasmic ratio. In addition, GBM tumors 

present pseudopalisading necrosis regions, as well as microvascular endothelial proliferation 

and atypical mitotic figures (reviewed in Urbanska et al., 2014). These tumors are extensively 

vascularized as a result of an overactivated angiogenesis, even though this process is often 

inefficient, leading to areas of hypoxia, necrosis, and edema (Ricci-Vitiani et al., 2010). 

Figure 1.1 shows two magnetic resonance imaging (MRI) images of a 60-year-old male 

glioblastoma patient. 
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Figure 1.1 Primary glioblastoma multiforme. Axial T1 C+ fat saturated MRI (left) and Sagittal 

T1 C+ fat saturated (right) MRI images showing a mass abutting the right ventricular trigone and 

presenting peripheral enhancement and central necrosis. Case courtesy of A.Prof Frank Gaillard, 

Radiopaedia.org, rID: 37092. 

 

From a genetic perspective, GBM are highly diverse, being characterized by an intra and 

inter-tumor heterogeneity. Typical molecular changes include various deletions, 

amplifications, and point mutations, which activate signal transduction in the receptor 

tyrosine kinase (RTK)/ RAS/ phosphoinositide 3-kinase (PI3K) signaling pathway, or disrupt 

the retinoblastoma (Rb) or the p53 signaling pathways, leading to uncontrolled proliferation, 

enhanced survival, angiogenesis and infiltration and decreased apoptosis induction (Brennan 

et al., 2013; McLendon et al., 2008). Based on characteristic gene expression signatures, 

GBM can be stratified into four distinct molecular subclasses: proneural, neural, classical and 

mesenchymal, each presenting different clinical behavior, prognosis and sensitivity to 

therapy. The proneural subtype correlates with a more favorable survival compared to the 

others, whereas tumors with a classical signature have been shown to respond better to 

concurrent radio and chemotherapy. Interestingly, GBM recurrence is often accompanied by 

a phenotypic shift toward the mesenchymal subtype, which represents the most aggressive 

one (Phillips et al., 2006; Verhaak et al., 2010). 

According to another study based on global DNA methylation patterns GBM can be further 

stratified into six epigenetic subgroups: IDH, K27, G34, RTK I (PDGFRA), RTK II (Classic), 

and mesenchymal. Each group presents characteristic global DNA methylation patterns, 

specific hotspot mutations, DNA-copy-number alterations and transcriptomic patterns 

(Sturm et al., 2012). The six epigenetic groups identified correlate well with the previous 

described GBM classification. In detail, the IDH cluster displays proneural expression 

patterns, the K27 cluster also shows a clear enrichment of the proneural signature, the RTK 

II (Classic) cluster is enriched for “classical” expression profiles, the RTK I (PDGFRA) 

cluster is highly enriched for proneural expression, the mesenchymal cluster correlates with 

the mesenchymal gene expression cluster, and the G34 cluster presents a mixed gene 
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expression pattern (Sturm et al., 2012). According to these findings, this classification 

refines the previously reported one (Verhaak et al., 2010), further dividing the proneural 

subtype into subgroups with distinct genomic aberrations and adding new information for 

the other groups. 

GBM stratification and a deep knowledge on the mutations characterizing the different 

tumor subgroups are fundamental and are at the basis for a “precision medicine” approach 

in the treatment of GBM. By knowing the molecular pathways altered in a specific subgroup, 

it is possible to rationally select the best therapeutic regimen for a given patient or to select 

the patients who could benefit the most from a given therapy (Prados et al., 2015). For 

example, it has been reported that EGFR-amplified/overexpressing glioblastoma patients 

strongly benefit from a metronomic administration of temozolomide (longer treatment 

compared to the standard schedule), with a strong increase in the patient overall survival 

(34 months for patients with high expression of EGFR versus 14 months for patients with 

low expression of EGFR) (Cominelli et al., 2015). Most probably, a combination of drugs 

targeting the multiple alterations present in a specific subgroup would represent the best 

therapeutic option (Prados et al., 2015).  

According to the increasing importance of molecular-based stratification systems, the 2016 

WHO Classification of CNS Tumors used for the first time molecular parameters in addition 

to histological features to classify brain tumors. In the case of GBM the parameter used to 

stratify patients by WHO is the presence or the absence of point mutations in the genes 

encoding for isocitrate dehydrogenase (IDH) (Louis et al., 2016). Therefore, the new 

classification recognizes two major entities for GBM: IDH-wt and IDH-mutant GBM (Louis et 

al., 2016). GBM IDH-wild type accounts for 90% of the cases and corresponds to the so-

called "primary GBM". This GBM type occurs de novo, without evidence of a less malignant 

precursor. It is characterized by EGFR amplification or overexpression, with EGFRvIII being 

the most common mutation, PTEN mutation or deletion, and loss of chromosome 10. Giant 

cell glioblastoma, gliosarcoma and the epithelioid glioblastoma are included in this group 

(Louis et al., 2016; reviewed in Ohgaki and Kleihues, 2013). GBM IDH-mutant type accounts 

instead for the remaining 10% of the cases and corresponds to the so-called "secondary 

GBM". IDH1 mutation is associated with a better outcome and an increased overall survival. 

This GBM type develops from less malignant (low-grade) precursors, such as diffuse 

astrocytoma (WHO grade II) or anaplastic astrocytoma (WHO grade III). In addition to IDH 

mutations, TP53 mutations, and 19q loss have been observed (Louis et al., 2016; reviewed 

in Ohgaki and Kleihues, 2013). 
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1.1.2 The standard of care: radiotherapy plus temozolomide  

The standard treatment for GBM patients involves neurosurgery followed by radiotherapy 

and temozolomide (TMZ) based-chemotherapy.  

Surgical removal of the tumor represents the first line of treatment and has an immediate 

effect on patients' lives, including alleviation of tumor mass effects (i.e. reduction of the 

increased intracranial pressure and relief from symptoms, such as headache, nausea, 

vomiting), and reversal of neurological deficits, leading to an improvement in the quality of 

life. Whenever possible, a total removal of the tumor mass is recommended. In fact, although 

even a complete mass removal is not curative, it has been associated with a better outcome 

and quality of life, and a prolonged progression-free survival (Stummer et al., 2008). Given 

the highly infiltrative nature of GBM, total mass removal is not often feasible. Moreover, it is 

important to take into account the fine balance between the maximal removal of the tumor 

and the preservation of the neurological functions. To help neurosurgeons to maximize the 

extent of surgical resection, multiple tools have been developed in the last years, including 

intraoperative use of sophisticated imaging techniques, such as intraoperative magnetic 

resonance imaging (IoMRI) (Senft et al., 2011) and high field IoMRI (Mohammadi et al., 

2014), as well as the development of novel tumor specific fluorescent agents, such as 5-

aminolevulinic acid (5-ALA) (Hadjipanayis et al., 2015). 5-ALA is a newly FDA approved 

compound that, after oral administration, is able to cross the blood-brain barrier (BBB) and 

is metabolized by glioma cells to a fluorescent metabolite (protoporphyrin IX). The 

metabolite fluorescence allows tumor tissue visualization and localization in a real-time 

manner, so that the fluorescence-guided surgery permits a greater extent of resection 

(Hadjipanayis et al., 2015).  

The second line of treatment for GBM patients is represented by radio and chemotherapy.  

In 2000-2002, Roger Stupp, in cooperation with the European Organization for Research 

and Treatment of Cancer (EORTC) Brain Tumor and Radiotherapy Groups and the National 

Cancer Institute of Canada (NCIC) Clinical Trials Group, performed a randomized phase III 

study for newly diagnosed GBM patients, comparing radiotherapy and concomitant 

temozolomide followed by 6 cycles of standard dose temozolomide versus radiotherapy 

alone (Stupp et al., 2005). This study showed that both the median survival and the overall 

survival were improved in patients treated with concomitant temozolomide (TMZ) compared 

to those of patients treated with radiotherapy alone (Stupp et al., 2005, 2009), as shown in 

Table 1.1. 
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Table 1.1 Median and overall survival for radiotherapy alone- or concomitant TMZ-

treated patients 

TREATMENT MEDIAN SURVIVAL OVERALL SURVIVAL 

    2 years 3 years 4 years 5 years 

Radiotherapy 12.1 10.9% 4.4% 3.0% 1.9% 

Radiotherapy + TMZ 14.6 27.2% 16.0% 12.1% 9.8% 

 

Showing the clinically meaningful and statistically significant survival benefit given by TMZ, 

this research has become a landmark for the treatment of GBM. Nowadays, the "Stupp 

regimen" is the "standard of care" for newly diagnosed GBM patients. After neurosurgery, 

patients receive radiotherapy, consisting of fractionated focal irradiation at a dose of 2 Gy per 

fraction given once daily/five days per week over a period of six weeks, for a total dose of 60 

Gy, with concomitant TMZ at a dose of 75 mg/m2/day, given 7 days per week from the first 

day until the last day of radiotherapy. After a 4-week break, patients then receive up to six 

cycles of adjuvant TMZ for 5 days every 28 days. The dose of adjuvant TMZ is of 150 

mg/m2/day for the first cycle and then it is increased to 200 mg/m2/day beginning with the 

second cycle (Strik et al., 2012; Stupp et al., 2005). Since TMZ is stable at acid pH, has a 

bioavailability approximately of 100% and, due to its lipophilic nature, is capable of crossing 

the blood-brain barrier (BBB), it is administered orally, in capsules. TMZ, whose structure is 

represented in Figure 1.2, is a pro-drug, which is spontaneously hydrolyzed to 5-(3-

methyltriazen-1-yl)imidazole-4-carboxamide (MTIC) at physiological pH. MTIC is an 

alkylating agent, which is able to add a methyl group to purine bases of DNA, to form O6-

methylguanine, N7-methylguanine and N3-methyladenine, causing cell cycle arrest at G2/M 

and leading to apoptosis (Lee, 2016; Newton and Otero, 2015).  

 

Figure 1.2 Temozolomide structure 

The most widely studied mechanism of resistance to TMZ in GBM is the expression of the 

O6-methylguanine DNA-methyltransferase (MGMT), a DNA repair protein able to remove 

methyl adducts from O6-methylguanine and repair DNA damage, preventing the apoptotic 

effect of TMZ. The MGMT gene is epigenetically silenced in about 50% of GBMs by promoter 

methylation, resulting in increased sensitivity to TMZ. Although not sufficient, MGMT 
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promoter methylation is a relevant prognostic marker in predicting therapeutic response to 

TMZ (Crinière et al., 2007; Hegi et al., 2005). Nevertheless, given the lack of other 

therapeutic options for patients with unmethylated MGMT promoter, the clinical utility of 

MGMT remains poor. Recently, the addition of alternating electrical fields to maintenance 

TMZ chemotherapy has demonstrated a statistically significant improvement in progression-

free and overall survival in newly diagnosed GBM patients (from 16 months to 20.9 months), 

according to a randomized prospective phase III trial (Stupp et al., 2015, ibid. 2017).  

TMZ, concomitant and adjuvant to radiotherapy, is so far the only drug proved to prolong 

survival in newly diagnosed GBM, particularly with a methylated MGMT gene promoter. Yet, 

prognosis remains dismal, glioblastoma almost invariably recurs, and the patient survival 

remains very poor. When GBM recurs, there is not an established standard therapeutic 

regimen. Treatments differ between patients and include repeated surgery or radiotherapy 

and second-line therapies, such as nitrosoureas, antiangiogenic drugs, EGFR-targeted 

therapies or experimental protocols (Paolillo et al., 2018). Nevertheless, numerous 

experimental trials have failed to prolong survival and, despite all the new therapeutic 

attempts, only 5.5% of patients survive 5 years after diagnosis (Ostrom et al., 2017). 

Therefore, the development of new and more effective therapies is urgently needed. 

 

1.2 GLIOBLASTOMA STEM CELLS (GSCs) 

A major problem when treating GBM is that the tumor population is highly heterogeneous. 

Within the different cell types composing the tumor mass, the subgroup of glioblastoma stem 

cells (GSCs) is considered responsible for tumor initiation, progression, invasion, drug 

resistance and therefore disease recurrence (Bao et al., 2006; Chen et al., 2012; Galli et al., 

2004; Singh et al., 2004). Hence, new therapies selectively targeting GSCs could lead to 

their eradication, preventing recurrence. 

GSCs have been shown to depend on mitochondrial metabolism for their energy production. 

Inhibition of oxidative phosphorylation (OXPHOS), but not glycolysis, abolishes GBM cell 

clonogenicity (Janiszewska et al., 2012). Importantly, a high OXPHOS activity in GBM 

tumors, detected by measuring complex IV functionality, is a strong and independent 

negative prognostic factor for the overall survival of GBM patients (Griguer et al., 2013). The 

dependence of GSCs on mitochondrial activity suggests that inhibition of mitochondrial 

metabolism could become a new therapeutic approach in tumors (Marchetti et al., 2015). 

Therefore, OXPHOS undoubtedly represents an attractive target for the treatment of GBM, 

allowing to affect selectively the cancer stem cells compartment. 
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1.2.1 Stochastic vs Cancer Stem Cells (CSCs) model  

GBM is characterized by a complex inter-patient as well as intra-tumor heterogeneity 

(Reardon and Wen, 2015). Intra-tumor heterogeneity refers to the presence of multiple and 

molecularly different cell subpopulations within the tumor. This has been demonstrated by 

Aubry and colleagues who showed that GBM biopsies taken from different zones of the 

same tumor present a molecularly heterogeneous signature (Aubry et al., 2015). This 

phenomenon contributes to tumor aggressiveness, chemotherapy resistance and disease 

relapse (Stieber et al., 2014; Yap et al., 2012). 

As depicted in Figure 1.3, two models have been proposed to explain intra-tumor 

heterogeneity: a stochastic or clonal evolution model and a cancer stem cells (CSCs) 

hierarchy model.  

 

 

Figure 1.3 Representation of the different models of tumorigenesis. In the stochastic or 

clonal evolution model (left), all tumor cells are considered to arise from a single cancer cell and to 

possess equal tumorigenic potential, whereas according to the CSCs hierarchy model (middle) the 

tumor presents a hierarchical architecture, with a small population of highly tumorigenic CSCs, which 

are able to self-renew and to differentiate into all the phenotypically different cell types forming the 

tumor. The clonal evolution and the CSCs based models are not mutually exclusive. The CSC 

plasticity model (right) combines the previous two models, introducing the concept of dynamic 

stemness: under specific tumor micro-environmental stimuli, a non CSC can undergo a plasticity 

transition and reacquire CSC features and tumorigenic potential (adapted from Hamaï et al., 2014).  
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In the clonal evolution model, first proposed by Prof. Nowell in 1976, a tumor arises from a 

single cell of origin endowed with growth advantages conferred by an oncogenic mutation. 

Genetically unstable daughter cells can acquire other genetic and epigenetic alterations, 

allowing subsequent selection of more aggressive subclones. Importantly, clonal selection 

can differ in time and space due to diverse stimuli and demands deriving from the different 

tumor areas. According to this theory, different subclones possess the same tumorigenic 

potential (Cabrera et al., 2015; Nowell, 1976; Rich, 2016). In the CSCs hierarchy model, 

instead, only a small subpopulation of stem cells is endowed with self-renewal properties and 

tumorigenic potential. CSCs proliferate consistently and are able to differentiate into all the 

phenotypically different cell types forming the tumor. As a result, tumors present a 

hierarchical architecture, comprising highly tumorigenic CSCs that proliferate and 

differentiate into intermediate progenitors and terminally differentiated non tumorigenic 

progeny. CSCs are, therefore, considered responsible for tumor initiation, progression, and 

heterogeneity (Cabrera et al., 2015; Lan et al., 2017; Rich, 2016). 

The clonal evolution and the CSCs based models are not mutually exclusive. The 

progression of tumor heterogeneity is a complex process that could be explained by an 

alternative model, the so-called cancer stem cells plasticity model, able to combine the 

previously two theories. According to this model, several genetically distinct cancer stem 

clones deriving from a common ancestor may exist within a single tumor. Each cancer stem 

cell accumulates epigenetic and genetic alterations over time and, upon proliferation and 

differentiation, forms intermediate progenitors and terminally differentiated non tumorigenic 

progeny. The progenitors and the progeny can, under specific tumor micro-environmental 

stimuli, such as chemotherapeutic agents, undergo a plasticity transition and reacquire CSC 

features and tumorigenic potential (Auffinger et al., 2014; Cabrera et al., 2015; Rich, 2016).  

 

1.2.2 GSCs identification and features 

Glioblastoma stem cells (GSCs) were first identified in parallel by several groups at the 

beginning of 2000s (Galli et al., 2004; Ignatova et al., 2002; Singh et al., 2004; Yuan et al., 

2004). GSCs are a minor fraction of cancer cells characterized by long-term proliferation and 

self-renewal capabilities, established through proliferation, subspheres formation and limiting 

dilution assays. Moreover, they are multipotent, being able to differentiate into the three 

major neural cell types, i.e. mature neurons, astrocytes and oligodendrocytes. Lastly, GSCs 

are able to establish tumors with all the GBM typical features upon xenograft transplantation 

into recipient mice. Singh et al. demonstrated that as few as 100 GSCs were enough for the 

establishment of a GBM tumor in immunocompromised mouse, whereas 100,000 non-GSCs 
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were not able to initiate tumor formation (Singh et al., 2004). GSCs features are summarized 

and represented in Figure 1.4. 

 

 

 

Figure 1.4 Glioblastoma stem cells’ features. 1. Self-renewal. 2. Expression of neural stem cell 

markers. 3. Differentiation capability. 4. Long-term tumorigenic ability in vitro. 5. Capability to establish 

GBM tumors upon xenograft transplantation into recipient mice (adapted from Gürsel et al., 2011). 

 

Culture conditions for GSCs isolation and expansion have been adapted from those originally 

used for neural stem cells (NSCs). Accordingly, GSCs are grown in suspension as 

neurospheres in serum-free medium, enriched with growth factors, such as epidermal growth 

factor (EGF) and fibroblast growth factor (FGF2) (Kim et al., 2015; Ledur et al., 2017). 

Alternatively, GSCs can be grown in adherence on laminin-coated flasks, allowing for 

uniform access to growth factors, suppression of differentiation and expansion of pure stem 

cell populations (Pollard et al., 2009). Despite the lack of a strict consensus due to significant 

inconsistency of marker expression among GBM tumors, GSCs can be identified and 

enriched using different cellular markers. Several surface markers have been proposed, such 

as CD133, CD44, SSEA-1, L1CAM, A2B5 and INTEGRIN α6 (reviewed in Brescia et al., 

2012; Lathia et al., 2015), as well as typical NSCs markers that have been found widely 

expressed also in GSCs, i.e. SOX2, NESTIN, NANOG, OLIG2, MYC, BMI1, and MUSASHI1 

(reviewed in Brescia et al., 2012; Lathia et al., 2015). Most probably, given the complex GBM 

heterogeneity, a single marker is not sufficient to identify GSCs in every tumor, but a 

combination of markers will possibly best define GSCs (reviewed in Brescia et al., 2012). 
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GSCs, as NSCs, reside in the so-called niches, which correspond to anatomical regions 

characterized by a unique microenvironment comprising tumor, glial and endothelial cells, 

blood vessels, infiltrating and resident immune cells (reviewed in Hambardzumyan and 

Bergers, 2015). GSCs interact dynamically with the niche, secreting factors that influence the 

microenvironment and being, in turn, influenced and maintained in a stem cell-like state by 

the niche signaling. Calabrese and colleagues showed for the first time that disruption of the 

niche microenvironment depletes GSCs and arrests tumor growth (Calabrese et al., 2007). 

Within a single tumor, morphologically and functionally distinct tumor niches exist. GBM 

displays three specialized tumor niches: the perivascular tumor niche, the hypoxic tumor 

niche, and the vascular invasive-tumor niche. In the perivascular tumor niche GSCs are 

located close to the endothelial cells that line capillaries and cause vascular basement 

membrane degradation by secreting vascular endothelial growth factor (VEGF), therefore 

resulting in abnormal, greatly enlarged vessels that are susceptible to leakiness and 

microhemorrhages. The hypoxic tumor niche presents a regressed or non-functional 

vasculature, leading to necrotic zones surrounded by hypoxic palisading tumor cells. GSCs 

are enriched in this sort of niches, because hypoxia promotes stemness and self-renewal 

and protects tumor cells from radio and chemotherapy. Finally, the vascular invasive-tumor 

niche is present at the outer edge of the tumor, where GSCs use the normal blood vessels to 

migrate and invade the surrounding normal parenchyma (reviewed in Hambardzumyan and 

Bergers, 2015; Sundar et al., 2014).  

The poor prognosis associated to GBM is linked to therapeutic resistance and tumor 

recurrence. GSCs have been attributed a crucial role in resistance to radiotherapy and 

chemotherapy for several reasons. Firstly, O6-methylguanine-DNA-methyltransferase 

(MGMT), the key repair enzyme for temozolomide induced DNA adducts, has been reported 

to be expressed at higher levels in GSCs as compared to non-stem cells (Liu et al., 2006). 

Bao et al. demonstrated that GSCs are capable of activating the DNA damage checkpoint 

response and to increase the DNA repair capacity following radiotherapy. Moreover, the 

CD133 marker positive cell fraction was shown to survive ionizing radiation and 

consequently, was enriched after radiotherapy both in vitro and in vivo (Bao et al., 2006). 

Chen and colleagues clarified that the subgroup of endogenous mouse tumor cells 

responsible for the regeneration of the tumor after TMZ treatment presents very similar 

properties to those proposed for GSCs (Chen et al., 2012). Finally, GSC population was 

shown to be increased after TMZ treatment, both in vitro and in vivo (Auffinger et al., 2014). 

This phenomenon was due to a phenotypic shift in the non-GSCs toward a stem cell state, 

supporting the GSCs plasticity model. The newly converted GSCs expressed stemness and 
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pluripotency markers and were able to generate tumors upon intracranial transplantation in 

recipient mice (Auffinger et al., 2014).  

Based on the described evidence, GSCs are considered responsible for tumor initiation, 

progression, invasion, drug resistance and, thus, disease recurrence. Therefore, therapies 

targeting GSCs are very attractive for GBM treatment.  

 

1.2.3 CSC and GSC metabolism 

Altered metabolism is recognized as a developing hallmark of cancer (Hanahan and 

Weinberg, 2011). For many decades, tumor metabolism has been thought to heavily rely on 

aerobic glycolysis, a phenomenon known as the "Warburg effect" (Warburg, 1956). In the 

past years, some studies have supported the "Warburg effect", showing an increased 

glycolysis and a reduced mitochondrial oxidative phosphorylation (OXPHOS) capacity but 

other studies have demonstrated that mitochondria and OXPHOS play an essential role in 

tumorigenesis and tumor progression (reviewed in Jose et al., 2011; Moreno-Sánchez et al., 

2014). Early evidence on the importance of mitochondria in tumorigenesis came from 

experiments performed on rho0 cells which, devoid of any mitochondrial DNA and 

consequently having a reduced OXPHOS activity, demonstrated a dramatic reduction in 

tumorigenic potential and increased vulnerability to cytotoxic drugs (Cavalli et al., 1997; 

Hayashi et al., 1992). These results have been recently supported by a study based on 

melanoma and breast cancer rho0 cells (Tan et al., 2015).  

It has become clear that the bioenergetic profile of tumors is variable, with inter- and intra-

tumor differences in glycolytic and mitochondrial metabolism. Cancer cells continuously 

reprogram their metabolism to adapt to environmental pressures and metabolic flexibility is 

an established cancer feature (reviewed in Berridge et al., 2010; DeBerardinis and Chandel, 

2016; Pavlova and Thompson, 2016). Despite Warburg's first statement about the 

mitochondrial respiration impairment in cancer cells ("...the respiration of all cancer cells is 

damaged...(which) must be irreversible since...never returns to normal", Warburg, 1956), it 

has been demonstrated that mitochondria and OXPHOS play an essential role in cancer, 

with OXPHOS being the major source of ATP in many cancer types, even in the presence of 

enhanced rate of glycolysis (reviewed in Moreno-Sánchez et al., 2014; Zu and Guppy, 2004).   

Accumulating evidence suggests that the cancer stem cell (CSC) subpopulations rely on 

mitochondrial respiration for their energy demand (reviewed in Sancho et al., 2016; Viale et 

al., 2015). The OXPHOS dependence has been proven for CSCs of various tumor types, 

including leukemia, breast, pancreatic and ovarian cancer (Pastò et al., 2014; Sancho et al., 
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2015; Škrtić et al., 2011; Viale et al., 2014; Vlashi et al., 2014). GSCs have also been 

demonstrated to rely on OXPHOS. Vlashi and colleagues showed that the metabolic state of 

GSCs differs from that of the tumor bulk, with GSCs being less glycolytic and having higher 

mitochondrial OXPHOS capacity compared to differentiated counterpart (Vlashi et al., 2011). 

Janiszewska et al. demonstrated that GSCs depend on OXPHOS for their energy demand 

and survival and that inhibition of OXPHOS suppresses cell clonogenic potential. They 

associated the oncofetal insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) to 

OXPHOS regulation and maintenance, proving that IMP2 delivers complex IV chain subunit-

encoding mRNA to mitochondria and, at the same time, binds and interacts with two 

nuclearly-encoded subunits of complex I, NDUFS3 and NDUFS7, which are part of the 

subcomplex form of complex I in early assembly. They hypothesized that IMP2 could 

function as a complex I chaperone, facilitating the assembly and/or the translocation of the 

subcomplex form of complex I into mitochondria while at the same time delivering complex IV 

chain subunit-encoding mRNA. Depletion of IMP2 in GSCs resulted in a decrease oxygen 

consumption rate and in a subsequent diminished tumorigenesis in vitro and in vivo 

(Janiszewska et al., 2012). Increased complex IV activity in tumors has been associated with 

tumor progression after chemotherapy failure. Pharmacological or genetic inhibition of 

complex IV, which is overexpressed in TMZ resistant cells, reverts TMZ chemoresistance 

(Oliva et al., 2010, 2011). Importantly, a high OXPHOS activity in GBM tumors, detected by 

measuring complex IV functionality, is a strong and independent negative prognostic factor 

for the overall survival of GBM patients. Patients with low complex IV activity survived, on 

average, for 14.3 months, whereas the median survival time for patients with high complex IV 

activity was 6.3 months (Griguer et al., 2013). Recently, the FGFR3-TACC3 (F3-T3) gene 

fusion, described in a small subset of human GBM cases (3%) (Singh et al., 2012), have 

been shown to induce mitochondrial biogenesis and to activate OXPHOS (Frattini et al., 

2018). 

 

1.3 OXPHOS AND MITOCHONDRIAL TRANSLATION 

Mitochondria are cytoplasmic organelles involved in a variety of cellular metabolic functions, 

essential for cellular homeostasis maintenance (McBride et al., 2006). Due to the 

fundamental role played in energy production, mitochondria are often referred as the 

“powerhouse” of the cell. In fact, among many other cellular functions, mitochondria are 

responsible for ATP synthesis, which takes place through the oxidative phosphorylation 

(OXPHOS) process.  
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The essential protein core of OXPHOS consists of five multi-subunit complexes, namely I, II, 

III, IV and V, located within the inner mitochondrial membrane. In order to assemble each 

complex (with the exception of complex II), genes from the mitochondrial and nuclear 

genomes have to be coordinately expressed. The mitochondrial genome encodes only 13 

out of all the proteins forming these complexes (Anderson et al., 1981). The 13 mtDNA-

encoded proteins are translated by the mitochondrial translation system on the mitochondrial 

ribosomes, also called mitoribosomes (O’Brien, 1971). Therefore, inhibition of mitochondrial 

translation would hamper OXPHOS complexes formation, leading to impairment of 

complexes functionality and ATP production and finally resulting in cellular detrimental 

effects. 

 

1.3.1 The oxidative phosphorylation process 

The oxidative phosphorylation (OXPHOS) represents the last step of the cellular respiration 

process and it is endowed with a high capacity of ATP production, quantified in almost 30 

ATP molecules per one molecule of glucose (Rich, 2003). The concept of oxidative 

phosphorylation was first proposed by Prof. David Keilin (Keilin, 1925; Keilin 1966) and its 

mechanism was elucidated by Prof. Peter Mitchell (Mitchell, 1961), who in 1978 won the 

Nobel Prize in Chemistry for his contribution to the understanding of biological energy 

transfer through the formulation of the chemiosmotic theory. 

OXPHOS is the metabolic pathway that couples the sequential transport of high-energy 

electrons through the electron transport chain (ETC) to the synthesis of ATP driven by the 

so-called chemiosmosis process. During OXPHOS, electrons derived from NADH and 

FADH2, produced in the previous steps of cellular respiration, are gradually transferred to 

molecular O2 via a series of transmembrane protein complexes comprising the ETC. In 

detail, in the ETC electrons are transferred sequentially from an electron donor molecule to a 

more electronegative electron acceptor molecule, which then acts as electron donor towards 

a more electronegative electron acceptor molecule till the electrons are transferred to O2, the 

ultimate electron acceptor. The energy released in the electron transfer promotes the 

transport of H+ through the mitochondrial inner membrane toward the intermembrane space, 

with the generation of an electrochemical gradient, which, in turn, drives the synthesis of ATP 

from ADP through a process called chemiosmosis (Mitchell, 1961). 

 

 

 

https://en.wikipedia.org/wiki/Mitochondrion#Energy_conversion
https://en.wikipedia.org/wiki/Mitochondrion#Energy_conversion
https://en.wikipedia.org/wiki/Chemiosmosis
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The electron transport chain (ETC) is composed of four transmembrane multi-subunit 

complexes, namely I, II, III, and IV, located within the inner mitochondrial membrane. At the 

end of the ETC, ATP synthase or complex V is responsible for ATP synthesis (Figure 1.5). 

 

Figure 1.5 Oxidative phosphorylation chain. The oxidative phosphorylation (OXPHOS) chain 

consists of five multi-subunit complexes, located in the mitochondrial inner membrane.  Complex I, II, 

III and IV are responsible for the sequential transport of high-energy electrons deriving from NADH, 

FADH2 to molecular O2 and for the generation of an electrochemical gradient, which, in turn, drives the 

synthesis of ATP by ATP synthase (or complex V) through a process called chemiosmosis (Adapted 

from Abcam oxidative phosphorylation).  

 

Complex I, also known as NADH dehydrogenase or NADH-ubiquinone oxidoreductase, is the 

first enzyme of the respiratory chain. It is composed of 45 protein subunits and catalyzes the 

transfer of two electrons from NADH to ubiquinone (also called coenzyme Q). These 

electrons are initially transferred from NADH to flavin mononucleotide (FMN) and then, 

through an iron-sulfur carrier, to ubiquinone that is reduced to ubiquinol. The redox energy 

released during this process is used by complex I to translocate protons from the 

mitochondrial matrix toward the intermembrane space. Therefore, complex I acts as a proton 

pump, translocating 4 H+ for each electron pair transferred from NADH to ubiquinone, and 

contributing to the generation of the electrochemical gradient (reviewed in Hirst, 2013). 

Complex II, also called succinate dehydrogenase or succinate-CoQ reductase, is the only 

complex of the ETC to be entirely nuclearly encoded. It consists of 4 polypeptides and 

catalyzes the transfer of two electrons from FADH2, produced in the Krebs cycle from the 

oxidation of succinate, to ubiquinone. Complex II permits the transfer of electrons to 

ubiquinone in parallel to complex I. However, this mechanism is not associated with a 

significant decrease in free energy and H+ are not pumped across the membrane at this level 

(reviewed in Cecchini, 2003).  
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Ubiquinone, which receives electrons from complexes I and II, is a lipid-soluble molecule that 

is able to freely diffuse within the membrane transferring electrons to complex III. Complex 

III, also known as ubiquinone-cytochrome c oxidoreductase, is composed of 11 protein 

subunits and catalyzes the reoxidation of ubiquinol with the sequential transfer of electrons to 

the cytochrome c, a water-soluble electron carrier bound to the outer face of the 

mitochondrial inner membrane. Complex III acts also as a proton pump, translocating 4 H+ to 

the intermembrane space and contributing to the generation of the electrochemical gradient 

(Berry et al., 2000; Lange and Hunte, 2002).  

Complex IV, also called cytochrome c oxidase, is the last electron carrier of the ETC. It 

consists of 13 protein subunits and catalyzes the transfer of electrons from cytochrome c to 

molecular oxygen O2, with the formation of water. Four electrons are required to reduce each 

molecule of O2, and two water molecules are formed in the process. At the same time, 

complex IV acts as proton pump, pumping 2 H+ into the intermembrane space for each 

electron pair transferred and contributing to the generation of the electrochemical gradient 

(reviewed in Richter and Ludwig, 2003). The electrochemical gradient generated by proton 

translocation across the inner membrane establishes a proton-motive force, which is 

characterized by two components: a difference in electric potential (ΔΨ) and a difference in 

proton concentration (Δ pH). Given the highly hydrophobic core of the inner membrane 

phospholipid bilayer, protons cannot diffuse down-gradient back into the matrix, but they 

need a channel protein forming a hydrophilic tunnel across the membrane. ATP synthase, or 

complex V, is composed of 17 polypeptides, which constitute two functional domains: the F1 

domain, which is a water-soluble portion located in the mitochondrial matrix, and the F0 

domain, which, instead is located in the inner mitochondrial membrane. The F0 domain 

allows protons to flow down the electrochemical gradient, and the energy released in this 

process causes rotation of two rotary motors: the ring of c subunits in F0 (relative to subunit 

a), along with subunits γ, δ and ε in F1, to which it is attached. The rotation is coupled to the 

synthesis of ATP from ADP and inorganic phosphate (Pi) in the F1 sector. ATP is then 

released into the mitochondrial matrix (reviewed in Walker, 2013). 

This entire process constitutes OXPHOS. Overall, OXPHOS produces 5 molecules of ATP 

per every two molecules of NADH (4 electrons) oxidized by one molecule of O2. This balance 

represents the maximal efficiency achievable by OXPHOS. Under certain physiological 

conditions the efficiency of OXPHOS can decrease, due to the leaking of the ETC chain 

(reviewed in Papa et al., 2012). 

As said, each OXPHOS complex comprises different protein subunits. In order to form each 

complex, with the exception of complex II, genes from the mitochondrial and nuclear 
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genomes have to be coordinately expressed and assembled. Table 1.2 summarizes the 

nuclear and mitochondrial protein contribution to each OXPHOS complex. 

Table 1.2 Nuclear and mitochondrial protein contribution to each OXPHOS complex 

  
Subunits 

Polypeptides 
encoded by 

mtDNA 

Polypeptides 
encoded by 
nuclear DNA 

Complex I 
NADH dehydrogenase 

45 7 38 

Complex II 
Succinate ubiquinone oxidoreductase 

4 0 4 

Complex III 
Ubiquinol Cytochrome c oxidoreductase 

11 1 10 

Complex IV 

Cytochrome c oxidoreductase 
13 3 10 

Complex V 

ATP synthase 
17 2 15 

 

1.3.2 Mitoribosomes and mitochondrial translation 

According to the endosymbiotic theory, mitochondria arose from an α-proteobacterial 

ancestor, which was engulfed by an eukaryotic cell 1.45 billion years ago (Gray, 2012; Gray 

et al., 1999; Sagan, 1967). Although the majority of the mitochondrial proteins are encoded 

by nuclear genes, mitochondria have conserved their own DNA (mtDNA), and their own 

transcriptional and translational apparatus systems. The human mitochondrial DNA (mtDNA) 

is a double-stranded, circular molecule of 16.5 kb containing 37 genes, which code for 13 

polypeptides translated from 11 mt-mRNA species (9 monocistronic and 2 bicistronic), two 

mt-rRNAs and 22 mt-tRNAs (Anderson et al., 1981,  Figure 1.6). All the 13 mtDNA-encoded 

polypeptides are highly hydrophobic protein subunits of the OXPHOS complexes and are 

synthesized by the mitochondrial translation system on the mitoribosomes.  

 

 

 

 

 

Figure 1.6 Mitochondrial genome. 

MtDNA codes for 13 polypeptides, two mt-

rRNAs and 22 mt-tRNAs (adapted from Ott et 

al., 2016). 
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The human mitoribosome is a large ribonucleoprotein complex composed of 82 proteins and 

three ribosomal RNA species (Amunts et al., 2015). Each mitoribosome comprises a small 

ribosomal subunit (28S, mt-SSU) and a large ribosomal subunit (39S, mt-LSU) (O’Brien, 

1971). The small ribosomal subunit is believed to be involved in messenger RNAs (mRNAs) 

binding and deciphering through selection of the cognate aminoacyl–transfer RNA (aa-tRNA) 

molecules. On the other hand, the large subunit is involved in peptide bond formation, which 

is catalyzed by the peptidyl transferase center (PTC) (Ban et al., 2000; Nissen et al., 2000).  

Models of the mammalian 55S mitoribosome and its subunits approaching full atomic 

resolution were published in 2014 and 2015 (Amunts et al., 2015; Brown et al., 2014; Greber 

et al., 2014b, 2014a, 2015), allowing for the building of near-complete models of the 16S and 

12S mitoribosomal RNAs and the assignment of all mammalian mitoribosomal proteins. 

Compared to the ancestral bacterial ribosome, the mitoribosome presents a different overall 

appearance that reflects structural changes occurred through evolution, including ribosomal 

RNA reduction and gain of mitochondrial-specific ribosomal proteins. 36 out of the 82 

mitoribosomal proteins are mitochondrial-specific, 22 located in the 39S subunit (Greber et 

al., 2014a) and 14 in the 28S subunit (Amunts et al., 2015). The mitoribosomal-specific 

proteins have been suggested to structurally compensate for the interactions mediated by 

missing rRNA segments, as observed in the region around uL24m (Greber et al., 2014b), 

and to provide additional functions, such as membrane association (Greber et al., 2014b) 

and mRNA recruitment (Amunts et al., 2015; Greber et al., 2014a). 5S rRNA, a fundamental 

component of bacteria ribosome, is absent from the 55S mitoribosome. Interestingly, in the 

cryo-EM structure of the 39S subunit, a tRNA molecule was detected in the central 

protuberance (CP) in a location close to the position of domain β of 5S rRNA in bacteria 

(Greber et al., 2014b). The tRNA molecule, which was termed CP tRNA, interacts with 

several ribosomal proteins at the CP, architecturally substituting for the absence of the 5S 

rRNA (Greber et al., 2014b) and functioning as a stable structural scaffold to organize the 

structure of the CP (Greber et al., 2014a).  

Although mitochondrial rRNA is encoded by the mitochondrial genome, interestingly, all 82 

mitoribosomal proteins are nuclear-encoded, translated in the cytosol and imported into the 

mitochondrial matrix (reviewed in Neupert, 2015). 

Despite these evolutionary changes, the mitoribosome still shares several similarities with its 

bacterial ancestors. In fact, the functional mitoribosomal core comprising the codon-

recognition sequences on the mt-SSU and the peptidyl transferase centre (PTC) in the mt-

LSU has been conserved (Amunts et al., 2015; Brown et al., 2014; Greber et al., 2014b, 

2014a, 2015). Moreover, the presence of the E-site in human mitoribosomes has been 

confirmed (Amunts et al., 2015). Mitoribosome have been found attached to the 

mitochondrial inner membrane (Englmeier et al., 2017; Liu and Spremulli, 2000), where the 
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hydrophobic proteins they synthesize through mitochondrial translation can be directly 

inserted and be assembled with the nuclear-encoded proteins to form the multi-subunit 

OXPHOS complexes. 

 
Mitochondrial translation, as the bacterial and cytosolic translation, can be divided into four 

main steps (reviewed in Christian and Spremulli, 2012; Hällberg and Larsson, 2014; Mai et 

al., 2017; Ott et al., 2016). A representative description of the mitochondrial translation 

process is depicted in Figure 1.7. Each step is performed within the mitoribosome, which 

operates in conjunction with several translation factors.  

 

 

 

Figure 1.7 Mitochondrial translation process. Mitochondrial translation starts with the initiation 

step, where an mt-encoded mRNA is recruited and loaded onto the ribosomal small subunit and 

subsequently a start codon is selected and recognized by the initiator mt-tRNA (fMet-tRNA), which 

carries a formylated methionine. The second step of translation is represented by elongation. Here, 

the codons in the mRNA are read sequentially and the cognate amino acids are integrated into the 

nascent polypeptide chain. The elongation cycle is then repeated several times, until the polypeptide 

chain is completed and a stop codon is positioned in the A site, with translation termination. The 

nascent chain then leaves the ribosome through the exit tunnel and is inserted in the mitochondrial 

inner membrane. Finally, the recycling step restores mt-SSU and mt-LSU (Figure credit: Mai et al., 

2017). 
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Mitochondrial translation starts with the initiation step, where a mt-encoded mRNA is 

recruited and loaded onto the ribosome and subsequently a start codon is selected and 

recognized by the initiator mt-tRNA (fMet-tRNA). Unlike bacteria, mitochondria contain only 

two initiation factors (IFs), namely mtIF2 and mtIF3. A homolog of the “universal” translation 

initiating factor IF1 has never been observed in mitochondria; however the mtIF2 possesses 

a region which has been shown to be functionally equivalent to IF1 (Gaur et al., 2008). 

Therefore, it is thought that mtIF2 plays the role of two bacterial initiating factors (IF1 and 

IF2). MtIF2 presents a molecule of GTP bound to its structure (mtIF2:GTP), which is 

important for its function (Spencer and Spremulli, 2005). Mitochondrial initiation starts when 

mtIF3 binds the mitochondrial small subunit (mt-SSU) preventing premature reassociation 

of the mt-SSU to the mt-LSU (Koc and Spremulli, 2002). The mt-SSU mtIF3 complex is then 

bound by a molecule of mtIF2:GTP, followed by the recruitment of a mt-mRNA to the mt-

SSU and the placement of the start codon in the P site of the mt-SSU. The majority of the 

mitochondrial mRNAs are almost completely leaderless, therefore lacking the canonical 

Shine–Dalgarno sequence located in the 5’ untranslated region (5’UTR) typical of bacterial 

transcripts (Montoya et al., 1981; reviewed in Temperley et al., 2010). For these mRNA 

species, the start codon is at or very near the 5’ end of the mRNA, with a maximum of 3 

nucleotides preceding the start codon. In the case of the ND4L/ND4 and ATP8/ATP6 

bicistronic mRNAs, instead, two 5’UTRs of 296 and of 161 nucleotides are present 

preceding the open reading frame (ORF) encoding for ND4 and for ATP6 respectively 

(Montoya et al., 1981; reviewed in Temperley et al., 2010). The starting codons used in 

mammalian mitochondria are represented by the most common AUG, but also by AUA and 

AUU (Anderson et al., 1981). MtIF2:GTP favors the recognition of the start codon in the P 

site of the mt-SSU by the initiator mt-tRNA which carries formylated methionine (fMet-

tRNAMet) (reviewed in Christian and Spremulli, 2012). Once this step has been completed 

successfully, the GTP bound to mtIF2 is hydrolyzed to GDP, the IFs are released and, thus, 

the mitochondrial large subunit (mt-LSU) can associate to the mt-SSU, forming the 

mitochondrial monosome (reviewed in Christian and Spremulli, 2012). 

The second step of translation is represented by elongation. Here, the codons in the mRNA 

are read sequentially and the cognate amino acids are integrated into the nascent 

polypeptide chain. In this phase, the elongation factor Tu (mtEFTu) bound to a molecule of 

GTP forms a ternary complex with an aminoacyl-tRNA (aa-tRNA), and this ternary complex 

enters the A site of the mitoribosome. If a correct codon-anticodon pair forms, GTP is 

hydrolyzed to GDP, with the subsequent release of mtEFTu:GDP from the mitoribosome. 

The elongation factor Ts (mtEFTs) mediates the exchange of GDP for GTP on mtEFTu, with 

mtEFTu:GTP complex restoration (Cai et al., 2000). The formation of the peptide bonds 

between the amino acids carried by the aa-tRNA present in the A and P sites is catalyzed by 
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the peptidyl transferase center (PTC) in the mt-LSU (Nissen et al., 2000). In detail, the PTC 

catalyzes the transfer of the peptide chain of the tRNA in the P site on the aa-tRNA newly 

entered in the A site, elongating the peptide chain by one amino acid. Subsequently, the 

mitochondrial elongating factor G1 (mtEFG1) favors the translocation of the peptidyl-tRNA 

from the A site to the P site, with the simultaneous movement of the deacylated tRNA from 

the P to the E site (Bhargava et al., 2004; reviewed in Spremulli et al., 2004). The presence 

of the E-site in human mitoribosomes has been recently confirmed (Amunts et al., 2015). The 

elongation cycle is then repeated several times, until the polypeptide chain is completed and 

a stop codon is positioned in the A site, with translation termination. In mammalian 

mitochondria the stop codons are represented by the triplets UAA and UAG. When a stop 

codon is located in the A site, it is recognized by the mitochondrial release factor 1a protein 

(mtRF1a) (Soleimanpour-Lichaei et al., 2007), which mediates the hydrolysis of the ester 

bond between the nascent polypeptide chain and the last mt-tRNA, resulting in the release of 

the nascent polypeptide. The nascent chain then leaves the ribosome through the exit tunnel 

and is inserted in the mitochondrial inner membrane. 

Finally, the recycling step restores mt-SSU and mt-LSU. After chain release, two recycling 

factors, the mitochondrial ribosome recycling factors 1 and 2 (mtRRF1 and mtRRF2) favor 

the dissociation of the two ribosomal subunits, and the release of mt-mRNA and decylated 

mt-tRNA (Rorbach et al., 2008; Tsuboi et al., 2009). Re-association of the mt-SSU and mt-

LSU is prevented by the formation of an mtIF3:mt-SSU complex. 

 

1.4 TARGETING MITOCHONDRIAL METABOLISM IN CANCER 

THERAPY 

The strong reliance of cancer stem cells on mitochondrial activity for their energy demand 

(reviewed in Sancho et al., 2016; Viale et al., 2015) suggests that mitochondrial metabolism 

could represent a new therapeutic target in tumors (reviewed in Ashton et al., 2018; 

Marchetti et al., 2015; Martinez-Outschoorn et al., 2017; Weinberg and Chandel, 2015). Key 

experiments supporting this idea have been published in the last years and some molecules 

able to interfere with mitochondrial metabolism are already in clinical trials as anti-cancer 

agents (Kuntz et al., 2017; Molina et al., 2018; Ravà et al., 2018; Reed et al., 2016). 

The most studied example is represented by the anti-diabetic drug metformin, which has 

been shown to reversibly inhibit OXPHOS complex I (Wheaton et al., 2014), resulting in 

cytotoxic effects in different cancer stem cell lines, including breast (Song et al., 2012), 

pancreatic (Gou et al., 2013), colon (Zhang et al., 2013) and also glioblastoma (Würth et al., 

2013). In addition, epidemiological studies have pointed out that diabetic patients taking 
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metformin are less susceptible to develop cancer (Evans et al., 2005) and that those who 

have already developed cancer and take metformin have an increased survival rate (Tan et 

al., 2011). Metformin is currently in hundreds of ongoing clinical trials to evaluate its 

antineoplastic therapeutic efficacy. Like metformin, the more lipophilic biguanide phenformin 

has also shown anti-cancer properties by inhibiting complex I (Appleyard et al., 2012; Birsoy 

et al., 2014). Atovaquone is a FDA approved naphtoquinone with antipneumocystic and 

antimalaric activity (Nixon et al., 2013). It is an ubiquinone analogue able to inhibit complex 

III in parasites but also in breast cancer cell lines, resulting in MCF7-derived CSCs 

propagation inhibition and apoptosis induction (Fiorillo et al., 2016). Inhibition of complex IV 

has also been demonstrated to have potential therapeutic effects in cancer treatments. 

Among others, Oliva and colleagues have recently shown encouraging results for two 

different small molecule inhibitors of complex IV in GBM (Oliva et al., 2016, ibid. 2017). Both 

molecules were able to significantly inhibit GSC proliferation and to decrease the size and 

volume of tumor-treated mice xenografts (Oliva et al., 2016) and to increase the median 

overall survival of treated mice (Oliva et al., 2017). 

Beside OXPHOS complexes inhibitors, there are many other molecules able to interfere with 

mitochondrial metabolism at different levels (reviewed in Marchetti et al., 2015; Weinberg 

and Chandel, 2015). Several antibiotic classes developed to target bacterial ribosome have 

shown mitochondrial toxicity due to their off-target on mitochondrial ribosomes (Greber and 

Ban, 2016; Guan, 2011; Soriano et al., 2005; De Vriese et al., 2006; Zhang et al., 2005). The 

off-target effects of bacterial ribosome targeting antibiotics are easily explained on the basis 

of the mitochondrial evolutionary origin and on the fact that the functional mitoribosomal core 

has been preserved during evolution (Amunts et al., 2015; Brown et al., 2014; Greber et al., 

2014b, 2014a, 2015). The similarity between the mitochondrial and the bacterial translation 

systems sets the basis for the potential exploitation of ribosome-targeting antibiotics as 

inhibitors of mitochondrial translation and, hence, as agents interfering with OXPHOS 

functionality in tumors. This rationale has already produced interesting results for acute 

myeloid leukemia (AML) (Škrtić et al., 2011), where the glycylcycline tigecycline was able to 

selectively kill leukemia stem cells and to decrease tumor mass in xenografts mice models. 

These promising results have led to a phase I clinical trial with 27 adult patients with relapsed 

and refractory AML (Reed et al., 2016). This study established the maximum tolerated dose 

(300 mg/day) but unfortunately did not show significant clinical response in patients (Reed et 

al., 2016), suggesting the need to find drug schedules that permit more sustained target 

inhibition. 

Very recently, William et al. showed that doxycycline, another tetracycline antibiotic, prevents 

TMZ-induced increase of GSCs tumorigenicity (William et al., 2018), supporting the idea of 

mitochondrial translation inhibition as anti-cancer targeted therapy in GBM. 
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2. HYPOTHESIS AND AIMS 

 

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in 

adults, with a median survival of 15 months post-diagnosis and a 5-year survival rate of 

5.5%. The sole clinically available drug, temozolomide, prolongs life of 2.5 months only. 

Therefore, novel therapeutic approaches are urgently needed. Given the aggressive nature 

of the glioblastoma stem cell (GSC) component that is responsible for tumor initiation, 

progression, invasion, drug resistance and consequently disease recurrence, novel therapies 

should aim at specifically targeting and eradicating this cell population.  

Recent evidence has shown that GSCs, as well as other cancer stem cells, rely on 

mitochondrial oxidative phosphorylation (OXPHOS) for their high energy demand. 

Importantly, a high OXPHOS activity in GBM tumors is a strong and independent negative 

prognostic factor for GBM patients’ overall survival. Therefore, OXPHOS is undoubtedly an 

attractive target in the treatment of GBM. The essential protein core of OXPHOS 

components is assembled with the contribution of proteins translated by the mitochondrial 

ribosomes. According to the endosymbiotic theory, mitoribosomes are known to derive from 

a bacterial ancestor. Despite the evolutionary changes occurred, the functional 

mitoribosomal core of the mitoribosome, comprising the codon-recognition sequences on the 

mt-SSU and the peptidyl transferase centre (PTC) in the mt-LSU has been conserved. In the 

light of the similarities shared by the mitoribosome and its bacterial ancestors, bacterial 

ribosome targeting antibiotics could be exploited to inhibit mitoribosome, affecting 

mitochondrial translation and OXPHOS assembly, and hence leading to detrimental effect on 

GSCs viability. 

Based on this hypothesis, this study aimed at: 

 identifying one or more molecules among the different classes of bacterial ribosome 

targeting antibiotics endowed with a mitotoxic and cytotoxic potential on GSCs, using 

both high- and low-throughput screening approaches.  

 characterizing the mechanism of action of the selected molecule using different 

molecular assays.  

 validating the potential anticancer activity of the selected molecule in vivo using a 

patient-derived GSCs xenograft mice model.  

Considering the urgent medical need for novel therapeutic approaches in the context of GBM 

treatment, the ultimate ambitious goal of this project was to provide a new candidate 

molecule for further preclinical and clinical evaluation.  
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3. RESULTS  

 

3.1 A HIGH-CONTENT SCREENING IDENTIFIES STREPTOGRAMINS 

AS THE MOST EFFECTIVE CLASS TARGETING GSCS 

3.1.1 The Model  

In order to identify a bacterial ribosome-targeting antibiotic class able to induce cyto- and 

mito-toxicity in glioblastoma stem cells (GSCs), we decided to perform a high-content 

imaging screening using two GSC lines, namely COMI and VIPI. 

COMI and VIPI cell molecular characterization 

COMI and VIPI lines, whose isolation and characterization have been previously reported 

(Ropolo et al., 2009; Vecchio et al., 2014, 2015), were a kind gift from Dr. Antonio Daga 

(Azienda Ospedaliera Universitaria San Martino di Genova, Italy). These lines derive from 

two male patients diagnosed with grade IV GBM and have both been classified as belonging 

to the RTK II (Classic) cluster according to their EGFR amplification (Vecchio et al., 2015). 

Biological grouping performed by Vecchio et al. was based on correlations with mutational 

status and DNA copy number variations of the main genes, TP53, IDH1, H3F3A, EGFR, 

PDGFRA and CDKN2A, which characterize the subgroups proposed by Sturm et al. (Sturm 

et al., 2012). Table 3.1 reports COMI and VIPI biological group characterization performed 

by Vecchio and colleagues (Vecchio et al., 2015). 

Table 3.1 COMI and VIPI biological group characterization 
a)

 

CELLS 
Biological 

Group 
TP53 IDH1 H3F3A EGFR PDGFRA CDKN2A 

COMI RTK II  (Classic) wt wt wt Ampl wt Del 

VIPI RTK II (Classic) mut wt wt Ampl wt Del 

 

a) Wt: wild type; mut: mutation or copy number variations; ampl: genes locus amplification; del: gene deletions. TP53 

gene is considered mutated when either copy number changes or mutations are present. Adapted from (Vecchio et 

al., 2015). 
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GSCs grown in adherence maintain their stemness properties 

To better evaluate the effect of the screened drugs on the cellular phenotype, we decided to 

perform our screening on the two GSC lines grown as adherent cultures.  

GSC lines are usually cultured in suspension as neurospheres. Recently, Pollard et al. have 

demonstrated that GSCs can also be efficiently grown as adherent cultures without losing 

their stemness properties (Pollard et al. 2009). In addition, Rahman and colleagues have 

shown no statistically meaningful differences between GSCs when grown in both ways 

(Rahman et al., 2015). Therefore, I optimized the growth of COMI and VIPI lines as adherent 

cultures using laminin as substrate (Figure 3.1a). I also demonstrated that these cells still 

maintained their stemness properties by analyzing the expression levels of stemness (SOX2 

and NESTIN), and differentiation (GFAP, O4 and MAP2) markers by immunofluorescence. 

Both lines expressed high levels of stemness markers (SOX2 and NESTIN) but low or null 

levels of astrocytic (GFAP), oligondedrocytic (O4) and neuronal (MAP2) differentiation 

markers (Figure 3.1b). 

 

Figure 3.1 GSCs grown as adherent cultures maintain their stemness properties.  

a. Two grade IV GBM patient-derived GSC lines, COMI and VIPI, were adapted to grow as adherent 

cultures on laminin. b. COMI and VIPI grown as adherent cultures maintain their stemness properties, 

as assessed by immunofluorescence using SOX2 and NESTIN as stemness markers and GFAP 

(astrocytic differentiation), O4 (oligodendrocytic differentiation) and MAP2 (neuronal differentiation) as 

differentiation markers. Representative immunofluorescence images. n=2 biological replicates. 

 

GSCs rely on OXPHOS respiration for their energy production  

To confirm that GSC lines indeed rely on OXPHOS rather than on glycolysis to supply ATP 

for their energy demand, I treated them with OXPHOS and glycolysis inhibitors for 72h and 

assessed their viability. As depicted in Figure 3.2, all the OXPHOS inhibitors used (rotenone, 

antimycin A and oligomycin, 1 μM each, as described for rotenone in (Janiszewska et al., 

2012)) significantly decreased cellular viability, whereas the glycolysis inhibitors 2-deoxy-D-

glucose (2-DG) and sodium dichloroacetate (DCA) did not. This is in line with already 

published data (Janiszewska et al., 2012; Vlashi et al., 2011). 
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Figure 3.2 GSCs grown as adherent cultures rely on OXPHOS respiration for their 

energy production. COMI and VIPI cells respond to OXPHOS inhibitors (rotenone, oligomycin and 

antimycin A, 1 μM each) but not to glycolysis inhibitors (2-deoxy-D-glucose (2-DG) 250 μM and 

dichloroacetic acid (DCA) 5 mM). Cell viability was assessed by Hoechst 33342 and propidium iodide 

(PI) 72h after treatment. PI positive cells were subtracted from Hoechst 33342 positive cells, in order 

to calculate the number of live cells. n=3 biological replicates, mean ± SD. *p < 0.05 **p < 0.01 ***p < 

0.001, unpaired two-tailed t test. 

 

3.1.2 A high-content screening identifies the antibiotic classes 

most effective on GSCs 

We reasoned that mitochondrial translation inhibition could be explored to selectively target 

the GSC compartment, which relies on OXPHOS for energy supply. Based on the bacterial 

evolutionary origin of mitochondria (Gray, 2012; Gray et al., 1999; Sagan, 1967), on the 

structural similarity between the bacterial ribosome and the mammalian mitoribosome 

(Amunts et al., 2015; Greber et al., 2015), as well as on the documented fact that several 

bacterial ribosome-targeting antibiotics damage human mitochondria in patients (Greber and 

Ban, 2016; Guan, 2011; Soriano et al., 2005; De Vriese et al., 2006; Zhang et al., 2005), we 

hypothesized that bacterial ribosome-targeting antibiotics could be exploited to affect the 

mitoribosome and, hence, OXPHOS complexes assembly and functionality. 

By mining the abundant pharmacology of antibiotic drugs acting on bacterial ribosomes 

(reviewed in Tenson and Mankin 2006; Lambert 2012), I designed a focused custom-made 

library consisting of 54 molecules (71 molecules including redundant compounds 

conjugated to different salts or derived from two different companies). The majority of these 

compounds can be grouped into eight molecular classes of antibiotics known to act via 

inhibition of bacterial ribosomes, among which most are approved by FDA for treating 

bacterial infections in humans. These classes include the tetracyclines, the streptogramins, 
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the aminoglycosides, the lincosamides, the macrolides, the amphenicols, the 

oxazolidinones and the pleuromutilins. The 54-molecule library also included eight 

compounds which have a known inhibitory effect on the bacterial translation apparatus, but 

do not belong to a specific molecular class and have been, hence, classified as 'other'. 

Lastly, I included three additional compounds (rotenone, oligomicyn A, and FCCP) as 

positive controls. In detail, rotenone acts via complex I inhibition, oligomycin A is an ATP 

synthase inhibitor, and FCCP uncouples the H+ gradient from ATP synthesis.  Table 3.2 

reports all the compounds tested in the high-content screening on GSCs.  

 

Table 3.2 Compounds evaluated in the high-content screening on GSCs 

CLASS COMPOUND SUPPLIER 
a)

 

TETRACYCLINES 

CHLORTETRACYCLINE HYDROCHLORIDE MSD, cat. 1500186 

DEMECLOCYCLINE HYDROCHLORIDE S, cat. S4279 

DEMECLOCYCLINE HYDROCHLORIDE MSD, cat. 1500226 

DOXYCYCLINE HYDROCHLORIDE MSD, cat. 1500266 

MECLOCYCLINE SULFOSALICYLATE MSD, cat. 1501118 

METHACYCLINE HYDROCHLORIDE S, cat. S2527 

METHACYCLINE HYDROCHLORIDE MSD, cat. 1501104 

MINOCYCLINE HYDROCHLORIDE MSD, cat. 1500414 

OXYTETRACYCLINE MSD, cat. 1500457 

OXYTETRACYCLINE S, cat. S1773 

OXYTETRACYCLINE DIHYDRATE S, cat. S2052 

ROLITETRACYCLINE MSD, cat. 1505684 

TETRACYCLINE HYDROCHLORIDE S, cat. S2574 

TETRACYCLINE HYDROCHLORIDE MSD, cat. 1500566 

TIGECYCLINE S, cat. S1403 

LINCOSAMIDES 

CLINDAMYCIN HYDROCHLORIDE MSD, cat. 1500193 

CLINDAMYCIN S, cat. S2830 

CLINDAMYCIN PALMITATE HYDROCHLORIDE MSD, cat. 1505470 

LINCOMYCIN HYDROCHLORIDE S, cat. S2479 

LINCOMYCIN HYDROCHLORIDE MSD, cat. 1500368 

AMPHENICOLS 

CHLORAMPHENICOL MSD, cat. 1500174 

CHLORAMPHENICOL S, cat. S1677 

CHLORAMPHENICOL HEMISUCCINATE MSD, cat. 1500173 

CHLORAMPHENICOL PALMITATE MSD, cat. 1500172 

FLORFENICOL MSD, cat. 1505978 

THIAMPHENICOL MSD, cat. 1503136 
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AMINOGLYCOSIDES 

AMIKACIN SULFATE MSD, cat. 1500111 

APRAMYCIN MSD, cat. 1505249 

CAPREOMYCIN SULFATE MSD, cat. 1500157 

DIHYDROSTREPTOMYCIN SULFATE MSD, cat. 1500249 

GENETICIN MSD, cat. 1505302 

GENTAMICIN SULFATE MSD, cat. 1500314 

HYGROMYCIN B MSD, cat. 1505362 

KANAMYCIN A MONOSULFATE MSD, cat. 1500360 

KANAMYCIN B SULFATE MSD, cat. 1500812 

NEOMYCIN SULFATE MSD, cat. 1500427 

NETILMICIN SULFATE MSD, cat. 1505482 

RIBOSTAMYCIN SULFATE MSD, cat. 1503939 

SISOMICIN SULFATE MSD, cat. 1500536 

SPECTINOMYCIN DIHYDROCHLORIDE MSD, cat. 1500538 

SPECTINOMYCIN HYDROCHLORIDE S, cat. S2510 

STREPTOMYCIN SULFATE MSD, cat. 1500541 

TOBRAMYCIN MSD, cat. 1500579 

MACROLIDES 

AZITHROMYCIN S, cat. S1835 

CLARITHROMYCIN S, cat. S2555 

DIRITHROMYCIN MSD, cat. 1504144 

ERYTHROMYCIN MSD, cat. 1500280 

ERYTHROMYCIN S, cat. S1635 

ERYTHROMYCIN ESTOLATE MSD, cat. 1501176 

ERYTHROMYCIN ETHYLSUCCINATE MSD, cat. 1500279 

NATAMYCIN MSD, cat. 1505560 

OLEANDOMYCIN PHOSPHATE MSD, cat. 1500675 

ROXITHROMYCIN MSD, cat. 1503276 

ROXITHROMYCIN S, cat. S2506 

TILMICOSIN MSD, cat. 1505112 

TROLEANDOMYCIN MSD, cat. 1502203 

TYLOSIN TARTRATE MSD, cat. 1505312 

STREPTOGRAMINS 
VIRGINAMYCIN M1 Sigma Aldrich, cat. V2753 

DALFOPRISTIN + QUINUPRISTIN (7:3 w/w) Santa Cruz Biotech., cat. sc-391726 

OXAZOLIDINONES 
LINEZOLID S, cat. S1408 

TEDIZOLID Santa Cruz Biotech., cat. sc-475055 

PLEUROMUTILINS 
VALNEMULIN HYDROCHLORIDE S, cat. S4216 

TIAMULIN Sigma Aldrich, cat. 34044 
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OTHER 

ACTINONIN MSD, cat. 210477 

ANISOMYCIN MSD, cat. 1503906 

AURINTRICARBOXYLIC ACID MSD, cat. 1505163 

FUSIDIC ACID MSD, cat. 1500311 

HELVOLIC ACID Santa Cruz Biotech., cat. sc-396538 

L-1-TOSYLAMIDE-2-PHENYLETHYL 
CHLOROMETHYL KETONE 

Santa Cruz Biotech., cat. sc-201297 

MUPIROCIN MSD, cat. 1505706 

THIOSTREPTON Santa Cruz Biotech., cat. sc-sc-203412 

POSITIVE CONTROL 

FCCP Cayman Chemical, cat. 15218 

OLIGOMICYN A Cayman Chemical, cat. 11342 

ROTENONE MSD, cat. 200013 

a) MSD = MicroSource Discovery library; S = Selleck Translation Inhibitors library 

 

I then screened the compound library on the two GSC lines (COMI and VIPI) using a high-

content screening approach, which allowed to consider both cytotoxicity and mitotoxicity 

parameters. The screening was done in technical triplicate, and all the steps were performed 

in an automated way with the help of the High Throughput Screening (HTS) facility present at 

CIBIO. The cells were seeded, and 24h later treated with the drugs at a concentration of 100 

µM for 24h, and subsequently stained and fixed. As readouts for the screening I used 

DRAQ5, which allowed to assess morphological features related to cytotoxicity, and the 

mitochondrial staining MitoTracker Orange (MTO), which accumulates in healthy 

mitochondria, allowing to observe features related to mitotoxicity. The data were acquired 

using Operetta High-Content Imaging System and analyzed using the Harmony Software 

Figure 3.3a gives an outline of the screening workflow. 

As positive controls for late cellular toxicity deriving from OXPHOS inhibition I utilized 

rotenone, oligomycin A and FCCP at the same concentration and length of treatment used 

for the antibiotics being tested (100 μM, 24h). At this concentration and time point all the 

three OXPHOS inhibitors clearly induced strong cytotoxic effects, causing alteration in cell 

morphology and cell death. Moreover, since these compounds act by directly inhibiting 

OXPHOS chain, the effect they induced on cellular toxicity represented the maximum 

cytotoxic effect I could obtain by hampering the OXPHOS process via mitochondrial 

translation inhibition. Instead, I used FCCP acute administration (100 μM, 30min) as positive 

control accounting for mitochondrial toxicity. At this concentration and length of treatment, 

FCCP clearly caused mitochondrial toxicity by altering mitochondrial membrane potential, but 

did not have any effect on cellular morphology or viability. Figure 3.3b reports representative 

images from the “positive control” treatments. 
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Figure 3.3 Screening workflow and representative images from the positive control 

treatments used in the screening. a. An outline of the screening workflow. Each treatment was 

performed in technical triplicate. All screening steps were performed in automated manner, data were 

acquired using Operetta High-Content Imaging System and analyzed using the Harmony Software. b. 

Example images of control treatments used in the screening. Rotenone, Oligomycin A and FCCP 

“long treatments” (100μM, 24h) were used as positive controls for cellular totoxicity, whereas FCCP 

acute administration (100μM, 30min) was used as positive control for mitochondrial toxicity. 

 

In order to evaluate the drug effect on the cells, different morphological features related 

either to cellular or mitochondrial toxicity were extracted and evaluated. The informative 

content of a feature was assessed by testing whether the positive controls resulted in 

statistically significantly different measurements of that specific feature (t-test, FDR < 0.05). 

Based on this, six morphological features were selected, three of them related to cellular 

toxicity and three of them related to mitochondrial toxicity. The features were proven to be 

non-redundant between each other, as depicted in Figure 3.4a, which gives the correlation 

existing between the different features. Figure 3.4b shows the behavior of the selected 

features for the positive control compounds. 

In detail, the cellular toxicity was described by the cell number, the nucleus area and the 

nucleus roundness features, while the mitochondrial toxicity was described by the area of 

disrupted mitochondria, the number of MTO-selected spots detected in the cytoplasmic 

regions of cells (mitochondrial spot number), and the area covered by the mitochondrial spot 

features (mitochondrial spot area). Table 3.3 describes the selected features. 
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Figure 3.4 Characterization of the features used in the screening analysis.  

a. Relationship between features related to cellular and mitochondrial toxicity shown with pairwise 

Pearson’s correlation coefficients. b. Behavior of features for positive control compounds. The data 

were normalized to vehicle treatment (DMSO, yellow) while different positive controls were adopted 

depending on whether they possessed informative content for cytotoxicity or mitotoxicity (purple). 
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Table 3.3 Description of the features used in the screening 

FEATURE DESCRIPTION TOXICITY 

Cell number 
Total number of DRAQ5-selected nuclei per well. This 

parameter represents the number of cells per well. 
Cellular 

Nucleus area 
Mean area covered by DRAQ5-selected nuclei per well (pixel 

unit). 
Cellular 

Nucleus 

roundness 
Mean roundness of DRAQ5-selected nuclei per well. Cellular 

Area of disrupted 

mitochondria 

Mean per well of the total area covered by > 10 μm
2
 regions of 

MTO dye accumulation identified in each cell (pixel unit). This 

parameter identifies the area of aggregation of disrupted 

mitochondria. 

Mitochondrial 

Mitochondrial 

spot area 

Mean per well of the total area of MTO-selected spots detected 

in the cytoplasmic regions of cells (pixel unit). 
Mitochondrial 

Mitochondrial 

spot number 

Mean per well of the number of MTO-selected spots detected 

in the cytoplasmic regions of cells. 
Mitochondrial 

 

With the help of our bioinformatician, I evaluated each compound of the library by assessing 

the size of the effect it induced on the six selected features. A feature was defined as 

affected by a given compound when it was found to deviate from the median value of all 

compounds by a distance larger than 1.5 times the median absolute deviation (Figure 3.5a). 

In order to identify the most effective classes of drugs, each compound was first given an 

individual score based on the number of features affected and then each class was scored 

based on the average scores of the compounds it contained (see Table 3.4). Three classes, 

namely streptogramins, pleuromutilins and tetracyclines, presented a class score higher than 

25% for at least one of the cell lines tested. Streptogramins presented a class score of 

83.33% for COMI and of 66.67% for VIPI, pleuromutilins presented a class score of 50% for 

both COMI and VIPI, and tetracyclines presented a class score of 28.89% for COMI and of 

11.11% for VIPI (Figure 3.5b).  

In the light of these results, these three most promising classes were chosen for further 

evaluation.  
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Figure 3.5 Hit identification. a. Hit identification by cytotoxicity-related features (DRAQ5 staining) 

and mitochondria-related feature (MitoTracker Orange staining) analysis on COMI and VIPI cells. b. 

Class score. Each compound was first given an individual score based on the number of features 

affected, and then the scores of all compounds in a given class were averaged to obtain the class 

score. Streptogramins, pleuromutilins and tetracyclines emerged as the most promising classes and 

were selected for further studies. 



41 
 

Table 3.4 Class score calculation 

  

COMI  VIPI  

CLASS COMPOUND 
No of 

positive 
features 

Compound 
Score (%) 

Total 
class 

score (%) 

No of 
positive 
features 

Compound 
Score (%) 

Total 
class 

score (%) 

Tetracyclines 

Chlorotetracycline HCl (MSD) 4 66.67 

28.89 

3 50 

11.11 

Demeclocycline HCl (S) 4 66.67 2 33.33 

Demeclocycline HCl (MSD) 6 100 3 50 

Doxycycline HCl (MSD) 4 66.67 0 0 

Meclocycline sulf. (MSD) 0 0 0 0 

Methacycline HCl (S) 3 50 0 0 

Methacycline HCl (MSD) 1 16.67 0 0 

Minocycline HCl (MSD) 0 0 0 0 

Oxytetracycline (MSD) 0 0 0 0 

Oxytetracycline (S) 0 0 0 0 

Oxytetracycline HCl (S) 0 0 0 0 

Rolitetracycline (MSD) 2 33.33 0 0 

Tetracycline HCl (S) 1 16.67 2 33.33 

Tetracycline HCl (MSD) 0 0 0 0 

Tigecycline (S) 1 16.67 0 0 

Aminoglycosides All tested compounds 0 0 0 0 0 0 

Macrolides 

Azithromycin 2 33.33 

5.13 

3 50 

10.26 

Clarithromycin (S) 0 0 0 0 

Dirithromycin (MSD) 1 16.67 2 33.33 

Erythromycin (MSD) 0 0 0 0 

Erythromycin (S) 0 0 0 0 

Erythromycin ethylsuc. (MSD) 0 0 0 0 

Natamycin (MSD) 0 0 0 0 

Oleandomycin phosphate (MSD) 0 0 1 16.67 

Roxithromycin (MSD) 1 16.67 1 16.67 

Roxithromycin (S) 0 0 0 0 

Tilmicosin (MSD) 0 0 1 16.67 

Troleandromycin (MSD) 0 0 0 0 

Tylosin tartrate (MSD) 0 0 0 0 

Lincosamides All tested compounds 0 0 0 0 0 0 

Streptogramins 
Virginiamycin M1 6 100 

83.33 
4 66.67 

66.67 
Dalfo+Quinu 4 66.67 4 66.67 

Oxazolidinones All tested compounds 0 0 0 0 0 0 

Amphenicols All tested compounds 0 0 0 0 0 0 

Pleuromutilins 
Valnemulin HCl (MSD) 4 66.67 

50 
4 66.67 

50 
Tiamulin 2 33.33 2 33.33 

Other 

Actinonin (MSD) 1 16.67 

16.67 

0 0 

20.83 

Anisomycin (MSD) 3 50 1 16.67 

Aurintricarboxylic acid (MSD) 2 33.33 1 16.67 

Fusidic acid (MSD) 0 0 0 0 

Helvolic acid 0 0 0 0 

TPCK 1 16.67 4 66.67 

Mupirocin (MSD) 0 0 0 0 

Thiostrepton 1 16.67 4 66.67 
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3.1.3 Hit classes validation: streptogramins are selected 

In a further step to validate the previous results, I bought other commercially available 

compounds belonging to the three hit classes and evaluated their effect on cellular growth. In 

detail, I bought 7 compounds belonging to the streptogramin class, 9 belonging to the 

tetracycline class and 2 belonging to the pleuromutilin class.  

Streptogramins are a class of antibiotics consisting of a mixture of two structurally different 

compounds: the group A (or M) streptogramins, which are polyunsaturated macrolactones, 

and the group B (or S) streptogramins, which are cyclic hexadepsipeptides (Barrière et al., 

1998). Group A and B streptogramins are usually produced by the same Streptomyces 

strain, in a fixed 70:30 (w/w) ratio (Bonfiglio and Furneri, 2001). Streptogramin A and B are 

known to act synergistically in bacteria (Di Giambattista et al., 1989), and therefore are 

usually used in combination in a fixed 70:30 (w/w) ratio. While streptogramins are used as 

combination of two chemically different compounds, tetracyclines and pleuromutilins are 

used in therapy as single agents.  

According to this use, I tested tetracyclines and pleuromutilins as single agents, whereas I 

assayed streptogramins both as single agents and as combination of group A and B 

compounds in a 70:30 (w/w) ratio. I treated COMI and VIPI cells with a range of drug 

concentrations (0.1, 0.3, 1, 3, 10, 30 and 100 μM) for 48h, and then I assessed the cellular 

viability using Hoechst 33342 and propidium iodide (PI) staining. Hoechst 33342 and PI are 

both DNA dyes but, while Hoechst 33342 is capable to penetrate both live and dead cells, PI 

enters only the cells with a compromised cytoplasmic membrane, i.e. dead cells. By 

subtracting PI positive cells from Hoechst 33342 positive cells, it is possible to count the 

number of living cells. I normalized the data obtained for each concentration tested on the 

number of cells present in the control (DMSO-treated cells) and then, by plotting the data 

using GraphPad Prism software, I constructed dose-response curves for each compound 

(Figure 3.6). In general, VIPI cells were more resistant to treatments than COMI cells. 

Moreover, the compounds belonging to the three classes had different behaviors. While the 

majority of compounds belonging to the streptogramin and the tetracycline classes were able 

to affect cellular growth in a dose-dependent manner for both cell lines, the pleuromutilins 

(valnemulin and tiamulin) had a minimal effect on cellular growth. Valnemulin affected 

cellular growth only at the highest dose tested (100 μM), and tiamulin did not affect it at all. 
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Figure 3.6 Hit classes validation and selection: dose-response curves. Representative 

curves are shown for all compounds tested for streptogramins (tested both as single agents and as 

group A and B combinations), tetracyclines and pleuromutilins. The cells were treated with compounds 

for 48h, after which they were stained with Hoechst 33342 and PI, and the number of live cells was 

evaluated using Operetta-High Content Imaging System and Harmony software. Dose-response 

curves were plotted using GraphPad Prism software. 
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In order to better compare the potency of the tested drugs, I calculated for each compound 

the growth inhibition 50 (GI50) value deriving from the dose-response curves. The GI50 value 

is defined as the compound concentration causing the 50% inhibition of the cellular growth, 

and is, therefore, a parameter to evaluate a compound cytotoxicity. Compounds with the 

lowest GI50 values are the most potent in reducing or inhibiting cellular growth and are, 

therefore, the most interesting. Figure 3.7 shows the GI50 values for all the tested 

compounds, which are grouped according to the class they belong to. 

I set an arbitrary threshold at GI50 value equal to 50 μM and focused on the compounds 

having GI50 values lower than the fixed threshold for both cell lines.  

 

 

 

 

Figure 3.7 Hit classes validation and selection: GI50 values. The GI50 values calculated from 

the dose-response curves constructed for all the tested compounds, which are divided according to 

the class they belong to. Streptogramins were tested both as single agents and as combinations of 

group A and B compounds in a 70:30 (w/w) ratio.  

 

The streptogramin class, both as single agents and as combinations of group A and B 

compounds, presented the highest number of compounds/combinations with GI50 values 

lower than 50 μM. The chemical structures of the streptogramins tested are given in Figure 

3.8. 
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Figure 3.8 Chemical structures of the streptogramins tested. Streptogramins consist of a 

mixture of two structurally different compounds: the group A (or M) streptogramins, which are 

polyunsaturated macrolactones, and the group B (or S) streptogramins, which are cyclic 

hexadepsipeptides. Virginiamycin M1, dalfopristin and griseoviridin belong to group A, whereas 

virginiamycin S1, virginiamycin B, quinupristin and viridogrisein belong to group B. The core scaffold is 

presented in black, whereas the chemical substituents specific for the different compounds are 

highlighted in pink. Dalfopristin and virginiamycin M1 emerged as the most potent compounds among 

group A, whereas quinupristin emerged as the most potent compounds among group B.  
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Dalfopristin and virginiamycin M1, which share a very similar chemical scaffold, emerged as 

the most potent compounds among group A streptogramins. Griseoviridin, which belong to 

group A but presents a chemical scaffold totally different to that of dalfopristin and 

virginiamycin M1, showed less activity, with GI50 values of 74.1 μM for COMI and of 60.7 μM 

for VIPI. These data clearly indicated that the chemical scaffold shared by dalfopristin and 

virginiamycin M1 inhibit GSC proliferation more effectively than that of griseoviridin. Among 

group B streptogramins, quinupristin emerged as the most potent. Notably, virginiamycin S1 

and virginiamycin B, which differ from quinupristin for few small substituent groups, were 

much less potent than quinupristin.  

In general, streptogramins used as combinations of group A and B compounds were more 

potent than streptogramins used as single agents. Only the combinations between 

griseoviridin and the members of the group B streptogramins, with the exception of 

quinupristin, had GI50 values higher than 50 μM, proving again that the scaffold shared by 

dalfopristin and virginiamycin M1 is more prosing. Among all, the combinations between 

quinupristin/virginiamycin M1 (Q/VM1) and quinupristin/dalfopristin (Q/D) (70:30 w/w) 

emerged as the most potent in inhibiting GSCs growth. 

No compounds belonging to the pleuromutilin class had GI50 values lower than 50 μM. 

 Among all the tetracyclines tested, only two compounds, namely tigecycline and 

demeclocycline, had a GI50 value lower than 50 μM for both cell lines. An additional 

compound, meclocycline, had a GI50 value of 25.3 μM for COMI and of 54.5 μM for VIPI. The 

chemical structures of the tetracycline compounds tested are presented in Figure 3.9. 

Compared to the basic “tetracycline” chemical scaffold, demeclocycline, tigecycline and also 

meclocycline present a substituent group in position 7. Both demeclocycline and 

meclocycline present an electron-withdrawing group (fluorine atom) in this position. 

Considering that both molecules presenting a fluorine atom in position 7 emerged among the 

three most potent tetracyclines, the presence of this substituent could be important for the 

biological activity of this class. Tigecycline is substituted in position 7 with an electron-

donating group (dimethylamino group). The importance of this group for the biological activity 

is not clear given that minocycline, which also presents a dimethylamino group in position 7, 

had GI50 values around 100 μM for both COMI and VIPI cells. In position 9, tigecycline 

presents a tert-butyl-glycylamido side chain, which has been reported to increase the 

antibacterial activity of the compound (Jenner et al., 2013) and, therefore, could also play a 

crucial role in mitoribosome binding and GSC growth inhibition. 
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Figure 3.9 Chemical structures of the tetracycline compounds tested. The basic 

tetracycline structure consists of four six-membered rings (A, B, C and D) fused together to form a 

octahydro napthacene. The core scaffold is substituted with several hydroxyl and carbonyl groups. 

The core scaffold is presented in black, whereas the chemical substituents specific for the different 

compounds are highlighted in pink. Demeclocycline and tigecycline emerged as the most potent 

compounds among all the tetracycline compounds tested.  

In summary, among all the bacterial ribosome-targeting antibiotic classes, streptogramins 

used as combination of group A and B compounds were identified as the most effective in 

inhibiting GSC growth based on the GI50 values. In detail, the combinations 

quinupristin/virginiamycin M1 (Q/VM1) and quinupristin/dalfopristin (Q/D) (70:30 w/w) were 

selected for further investigation.  

 

3.2 QUINUPRISTIN/DALFOPRISTIN (Q/D) AS LEAD COMPOUND 

3.2.1 Q/D is the most cytotoxic among the streptogramins and is 

selected as lead compound 

As previously described, virginiamycin M1 and dalfopristin (Figure 3.8) share a common 

chemical scaffold and are structurally very similar. Interestingly, dalfopristin is a virginiamycin 

M1 semi-synthetic derivative, which is known to hydrolyze very rapidly to virginiamycin M1 at 

pH 7.4 and 37°C (half-life of 11 min; Noeske et al. 2014). Therefore, it is not surprising that 
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dalfopristin and virginiamycin M1 and their respective combinations with quinupristin (Q/D 

and Q/VM1) have similar activities.  

Notably, the Q/D (30:70 w/w) combination has been approved as an antibiotic by FDA in 

1999 with the name of Synercid
®
 for treating infections caused by susceptible strains of 

vancomycin-resistant Enterococcus faecium (VREF) and for treating complicated skin and 

skin structure infections caused by Staphylococcus aureus (methicillin-susceptible) 

or Streptococcus pyogenes (Gurk-Turner, 2000). Based on its promising GI50 value and on 

the already existing FDA approval as antibiotic, the Q/D combination was selected as lead 

compound. The chemical structure of the Q/D combination is represented in Figure 3.10.  

 

Figure 3.10 Chemical structure of the Q/D combination selected as lead compound. 

Q/D is composed of quinupristin, group B streptogramins, and dalfopristin, group A streptogramins, in 

30:70 w/w ratio.  

 

3.2.2 Q/D has a universal activity on GSC lines  

Subsequently, I evaluated the cytotoxicity of Q/D on a larger panel of GSCs. The panel was 

composed of COMI and VIPI and of other six GSC lines, namely 030616, GB6, GB7, GB8, 

G144 and G166. 030616 line was a kind gift from Rossella Galli (San Raffaele Hospital, 

Milan, Italy), whereas the other five GSC lines were a kind gift from Prof. Luciano Conti 

(CIBIO, University of Trento, Italy). All the GSC lines derive from patients who were 

diagnosed with GBM and were characterized as GSCs (Alessandrini et al., 2015; Conti et al., 

2012; Pollard et al., 2009; Vecchio et al., 2014, 2015). I treated the eight GSC lines, which 

were grown as adherent cultures on laminin, with a range of Q/D concentrations for 48h and 

then I assessed the cellular viability using Hoechst 33342 and PI staining. Next, I constructed 

dose-response curves and calculated the deriving growth inhibition 50 (GI50) values, which 

ranged from 4.2 to 24 μM for all the lines tested, confirming the inhibitory effect of Q/D on 

GSCs growth (Figure 3.11). In detail, GI50 values for COMI and VIPI were of 6.5 μM ±1.1 

and 20.2 μM ±1.4, respectively.  
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Figure 3.11 Q/D effect on a panel of eight GSC lines.  GI50 values of Q/D on a panel of 8 

GSCs (indicated on the x-axis). The cells were treated with several concentrations of Q/D (0.1, 0.3, 1, 

3, 10, 30 and 100 μM) for 48h, after which they were stained with Hoechst 33342 and PI, and the 

number of living cells was evaluated using Operetta-High Content Imaging System and Harmony 

software. The GI50 values were calculated from n=3 biological replicates (n=4 technical replicates 

each), mean ± SD. 

 

Similar results were obtained by our collaborators in the laboratory of Dr. Lucia Ricci-Vitiani 

at the Istituto Superiore di Sanità in Rome, who tested Q/D on a panel of GSC lines derived 

from 18 patients (three cell lines were isolated from different areas of the tumor in three 

patients). Table 3.5 reports information on the clinical data of the patients and on the 

molecular characterization of the derived cell lines. 

Table 3.5 Patient clinical data and GSC line molecular characterization  

GSC 
LINE 

DATE AGE 
(years) 

SEX OS  
(mos) 

PFS  
(mos) 

MGMT 
EGFR 

vIII 
PTEN VEGF Ki67  

(%) 

1 02/12/2003 40 M 12,5 6 M Neg Normal Iper 20 

23 24/05/2004 77 M 2 1 UM Neg Normal Iper 50 

28 12/07/2004 72 M 11,5 6 M Neg Ipo Iper 5 

30 02/08/2004 44 M 7,5 5 M Pos Normal Iper 10 

61 19/04/2005 59 M 6 3 UM Pos Normal Normal 35 

62 05/05/2005 64 M 14 10 M Neg Normal Iper 10 

67 06/06/2005 48 M 2 1 UM Neg Ipo Iper 20 

68 07/06/2005 58 M 10,5 4 UM Neg Normal Normal 10 

70 14/07/2005 67 F 9 6 UM Pos Ipo Iper 20 

74 18/08/2005 70 F 8 2 UM Pos Normal Iper 15 

76 25/08/2005 48 F 16 11 UM Neg NA Iper 15 

83 21/11/2005 52 M 8 3 UM Pos Normal Iper 40 

112 08/01/2007 49 F 6 3 M Pos Ipo Iper 18 

120 01/03/2007 53 M 16,5 8 UM Neg Normal Iper 30 

147 21/02/2008 69 F 11 7 UM Neg Normal Iper 25 

148 25/02/2008 55 M 8 5 UM Neg Normal Iper 70 

151 04/04/2008 69 M 72 60 M Neg Ipo Iper 30 

163 05/01/2009 56 M 2 1 UM Neg Ipo Normal 15 
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The 21 GSC lines derived from the 18 patients were grown in suspension as neurospheres 

and treated with Q/D for 48 and 72h. The GI50 values derived ranged from 2.5 to 32.5 μM 

after 48h of treatment and from 1.7 to 12.2 μM after 72h of treatment (Figure 3.12), in line 

with the values that I obtained. 

 

Figure 3.12 Q/D has a universal activity on GSC lines. The GSCs wide sensitivity to Q/D was 

tested by calculating the GI50 values on a panel of 21 GSC lines (indicated on the x-axis) derived from 

18 tumor samples at 48 and 72h post-Q/D treatment using CellTiter-Glo Assay, n=4, technical 

replicates. 

 

With the help of our bioinformatician, I tried to correlate the GI50 values determined at the two 

different time points with the clinical and molecular data available. However, no correlation 

resulted to be significant (p-value > 0.05) as reported in Table 3.6. 

 

Table 3.6 Correlation between GI50 values and clinical and molecular data  

 
AGE 
(years) 

SEX OS  
(mos) 

PFS  
(mos) 

MGMT 
EGFR 

vIII 
PTEN VEGF Ki67  

(%) 

GI50 

(48h) 
0.58 0.31 0.29 0.39 0.73 0.87 0.59 0.22 0.54 

GI50 

(72h) 
0.72 0.28 0.26 0.30 0.79 0.90 0.58 0.48 0.90 

 

In a parallel experiment, I also confirmed the cytotoxic effect of Q/D on GSCs grown as 

neurospheres. I seeded 10 COMI cells per well in media containing various Q/D 

concentrations and measured the growth of neurospheres over the course of nine days 

(Figure 3.13a). By measuring the area of the sphere, I observed that 1 μM Q/D treatment 

slightly inhibited neurosphere growth while 5 and 10 μM treatment nearly completely 

abolished its formation (Figure 3.13b). 
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Figure 3.13 Q/D affects GSC sphere growth. a-b. Effects of Q/D treatment on GSCs grown in 

suspension. Ten COMI cells were seeded in each well and treated with Q/D (1, 5 and 10 μM). Cell 

growth was monitored over the course of nine days. a. Example images from days 0, 4 and 9. b. 

Sphere area quantification over the course of nine days. Data was collected using Operetta-High 

Content Imaging System and analyzed using Harmony Software. n=30 technical replicates, mean ± 

SEM. One representative experiment is shown, n=3 biological replicates.  

 

3.2.3 Q/D combination is selectively cytotoxic for GSCs compared 

to normal cells, is more potent than TMZ on GSCs, and decreases 

GSCs neurosphere forming ability  

A good anticancer drug should be able to discriminate between normal and cancer cells and 

specifically target the latter.  

I evaluated the selectivity of Q/D for GSCs by assessing its effect in inhibiting the growth of 

normal astrocytes derived by differentiation from human neural fetal stem cells (CB660) and 

of normal lung fibroblasts (MRC5). I treated CB660 and MRC5 cells with different 

concentration of Q/D for 48h and assessed the cellular viability using Hoechst 33342 and PI 

staining. Next, I constructed dose-response curves and calculated the deriving growth 

inhibition 50 (GI50) values, which were of 68.3 μM ±15.5 and 72.7 μM ±15.7 for CB660 and 

MRC5, respectively. Figure 3.14a shows the GI50 values for CB660 and MRC5 cells (in 

purple) compared to those for the 8 GSC lines (in gray) reported in Figure 3.11. Considering 

that the GI50 values of the GSC lines tested ranged from 4.2 to 24 μM, Q/D proved to be 3 to 

16 times more selective for GSC lines compared to normal cell lines, showing a discrete 

therapeutic window.  
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GSCs are characterized by self-renewal capabilities (Galli et al., 2004; Singh et al., 2004; 

Yuan et al., 2004). Since Q/D inhibits GSCs growth, I wondered whether it could impact on 

GSCs self-renewal and maintenance. Therefore, I investigated the functional effects of Q/D 

on GSCs, by examining the neurosphere forming ability upon Q/D treatment. I treated COMI 

cells grown in suspension with various concentrations of Q/D for 72h and subsequently 

dissociated them and seeded 10 or 100 cells per well. After 10 days, I evaluated 

neurosphere formation, considering and counting the neurospheres with a diameter bigger 

than 100 μm (Figure 3.14b). Q/D decreased the neurosphere forming ability of COMI cells in 

a dose-dependent manner, implicating its substantial impact on GSCs maintenance. 

 

 

 

Figure 3.14 Q/D is selectively cytotoxic for GSCs and decreases GSC neurosphere 

forming ability. a. GI50 values of Q/D on 8 GSC lines compared to GI50 values of Q/D on astrocytes 

derived from human fetal neural stem cells (CB660) and on human lung fibroblasts (MRC5). The cells 

were treated with Q/D (0.1, 0.3, 1, 3, 10, 30 and 100 μM) for 48h, after which they were stained with 

Hoechst 33342 and PI, and the number of live cells was evaluated using Operetta-High Content 

Imaging System and Harmony software. The GI50 values were calculated from n=3 (biological 

replicates, n=4 technical replicates each), mean ± SD. b. Neurosphere formation assay. COMI grown 

in suspension were pre-treated with different concentration (2.5, 5 and 10 μM) of Q/D for 72h, after 

which the spheres were dissociated and 10 or 100 cells/well were plated in 96 well plate. The number 

of spheres greater than 100 μm was quantified after 10 days. n=20 technical replicates, mean ± SEM. 

***p < 0.001, unpaired two-tailed t test. One representative result is shown, n=3 biological replicates.  
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GSCs are known to be resistant to TMZ (Chen et al., 2012). I compared the cytotoxic effect 

of the Q/D combination to that of TMZ on two different GSC lines. I treated COMI and VIPI 

cells with various concentrations of either Q/D or TMZ, constructed dose-response curves 

and calculated the deriving GI50 values. Q/D combination proved to be at least 14 times more 

potent than TMZ for GSCs. In fact, Q/D had GI50 values of 6.5 μM ±1.1 and 20.2 μM ±1.4 for 

COMI and VIPI, respectively, whereas TMZ GI50 values were of 96.5 μM ±15.2 for COMI and 

of 337.7 μM ±35.5 for VIPI (Figure 3.15). Notably, VIPI were 3 times more resistant than 

COMI to both Q/D and TMZ treatments. Unfortunately, no data on the methylation status of 

the MGMT gene, which could explain the different sensitivity to TMZ, are available for COMI 

and VIPI lines. According to the molecular characterization of COMI and VIPI performed by 

Vecchio and colleagues (Table 3.1, (Vecchio et al., 2015)), VIPI line presents a mutated form 

of TP53 gene, which could contribute to its more drug-resistant phenotype.  

 

 

Figure 3.15 Q/D is more potent than TMZ on GSCs.  Representative dose-response curves for 

Q/D and temozolomide (TMZ) on COMI and VIPI cells. The cells were treated with Q/D or TMZ (0.1, 

0.3, 1, 3, 10, 30 and 100 μM) for 48h, after which they were stained with Hoechst 33342 and PI, and 

the number of live cells was evaluated using Operetta-High Content Imaging System and Harmony 

software. The GI50 values were calculated from n=3 biological replicates, n=4 technical replicates 

each, mean ± SD. 
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3.3 Q/D INHIBITS MITOCHONDRIAL TRANSLATION, LEADING TO 

OXPHOS IMPAIRMENT 

3.3.1 Q/D inhibits mitochondrial translation in GSCs leading to 

OXPHOS dysregulation and impairment 

As an antibiotic Q/D combination exerts its bactericidal activity by inhibiting the bacterial 

ribosome, thus preventing protein synthesis. Following our initial working hypothesis 

grounded on the evolutionary similarity between bacterial and mitochondrial ribosomes, we 

reasoned that a bacterial ribosome-targeting antibiotic could exert inhibitory effects also on 

mitoribosomes. I, therefore, started to investigate the effect of Q/D on mitochondrial 

translation and mitochondrial metabolism. 

35S-methionine metabolic labeling allows to detect nascent proteins, which are being actively 

translated by either the cytosolic or the mitochondrial translation system. If the translation 

apparatus is inhibited, a decrease or absence of newly synthesized proteins is observed. To 

perform 35S-methionine metabolic labeling experiments, I moved to Dr. Joanna Rorbach’s 

lab, at the Karolinska Institute, where I investigated Q/D effect on both mitochondrial and 

cytosolic nascent proteins. Q/D was very effective in inhibiting mitochondrial translation and 

nearly completely abolished it at 0.5 μM concentration in COMI cells treated for 24h. 

Importantly, no effects on cytosolic translation were noted at this or even at 5 fold higher Q/D 

concentrations (up to 2.6 μM tested, Figure 3.16a). 

I further confirmed Q/D effects on mitochondrial and cytosolic translation by performing 

immunofluorescence and immunoblotting on COMI and VIPI cells treated for 48h (Figure 

3.16b,c). In detail, I studied the expression levels of cytochrome c oxidase subunit 1 

(COX1) and cytochrome c oxidase subunit 4 (COX4), two proteins belonging to complex IV 

of the electron transport chain (ETC). COX1 is mitochondrially encoded and translated by 

the mitochondrial translation system, whereas COX4 is nuclearly encoded and translated by 

the cytosolic translation system. If Q/D acts by inhibiting selectively mitochondrial 

translation, a selective decrease in COX1 expression levels, but not in those of COX4, 

should be observed. Upon treatment with Q/D, the expression of COX1 was markedly 

decreased, whereas the expression of COX4 remained unchanged (Figure 3.16b,c), 

confirming selective mitochondrial translation inhibition. 

A decrease in mitochondrially translated proteins could also be due to a decrease in the 

levels of mRNAs coding for those proteins. On the other hand, inhibition of translation could 

also lead to a compensatory upregulation of mRNA levels coding for those proteins whose 

translation is blocked. To clarify this point, I assessed Q/D effects on the levels of mRNAs 
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coding for COX1 and COX4. Upon treatment with a range of Q/D concentrations, I did not 

observe any significant changes in mRNAs levels (Figure 3.16d). Taken together, these 

results prove that mitochondrial translation is the primary target of the Q/D combination.  

 

Figure 3.16 Q/D inhibits mitochondrial translation in GSCs. a. 
35

S metabolic labeling assay 

on mitochondrial (left) and cytosolic (right) translation on COMI cells after 24h treatment with Q/D 

(0.5 μM for mitochondrial translation and 0.5, 1.4 and 2.6 μM for cytosolic translation). Emetine was 

used to inhibit cytosolic translation when assessing for mitochondrial translation inhibition. One 

representative result is shown, n=3 biological replicates. b. Effects of Q/D (1 μM) on COX1, COX4 

proteins as assayed by immunofluorescence on COMI cells after 72h treatment. Top. Representative 

images. Bottom. Fluorescence intensity quantification. One representative result is shown, n=3 

biological replicates. c. Effects of increasing concentrations of Q/D (0.5, 1, 2 and 5 μM) on COX1, 

COX4 and beta tubulin proteins as assayed by immunoblotting on COMI and VIPI cells after 48h 

treatment. One representative result is shown, n=2 biological replicates. d. Effects of increasing 

concentrations of Q/D (0.5, 1, 2 and 5 μM) on COX1 and COX4 mRNA levels as assayed by RT-

qPCR on COMI and VIPI cells after 48h treatment. Data presented as fold change over control. n=4-

5 biological replicates, mean ± SD. Unpaired two-tailed t test. 
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The 13 polypeptides synthesized by the mitoribosomes are coordinately assembled with the 

cytosolic-translated polypeptides to correctly form the OXPHOS complexes (Couvillion et 

al., 2016; Richter-Dennerlein et al., 2016). The 13 mitochondrially translated proteins are 

essential for functional OXPHOS complexes. By performing blue native polyacrylamide gel 

electrophoresis (BN-PAGE) followed by in-gel activity assays on COMI and VIPI cells, I 

investigated Q/D effects on OXPHOS complexes functionality. The activity of complex I, IV 

and V, which are formed by both mitochondrially and cytosolically translated proteins, was 

decreased upon Q/D treatment, whereas the activity of complex II, which is composed 

entirely of nuclearly encoded proteins, was unaffected (Figure 3.17a). In particular, when 

performing in-gel activity on complex V I observed the emergence of two new bands in the 

treated samples, with a lower size compared to that observed in the untreated cells. In line 

with Nijtmans and colleagues, the band with the highest molecular weight can be attributed 

to a full F1F0 ATP synthase, whereas the lower bands can be assigned to a non-full ATP 

synthase intermediate form, composed of the F1 domain plus several polypeptides 

belonging to the F0 domain, and to the F1 domain, respectively (Nijtmans et al. 1995, Figure 

3.17a). Upon mitochondrial translation inhibition the ATP synthase intermediate form and 

the F1 domain, which are composed of only cytosolically translated proteins, can still be 

assembled, whereas assembly of the complete complex is impaired, leading to decreased 

steady-state levels of F1F0  ATP synthase (Nijtmans et al., 1995). 

In parallel, I assessed the complexes protein levels using BN-PAGE followed by 

immunoblotting and confirmed that protein levels of complex I, IV and V were decreased by 

Q/D treatment, but not those of complex II (Figure 3.17b). Also in this case, it was possible 

to detect protein bands for the ATP synthase intermediate form and for the F1 domain, when 

incubating with the antibody directed to complex V (Ab anti-ATP5A).  

Dysfunctional complexes should lead, in consequence, to a decreased mitochondrial 

respiratory capacity. Using high-resolution respirometry, the oxygen consumption and the 

mitochondrial respiratory capacity of COMI and VIPI cells treated with Q/D were measured. 

For both cell lines, 1 μM Q/D treatment caused a decreased in oxygen consumption by 

complex I, and complex I and II and a loss in the reserve respiratory capacity, detected as a 

decrease in the maximal oxygen consumption after injection of the mitochondrial uncoupler 

FCCP. Complex II oxygen consumption was, instead, not significantly altered by Q/D 

treatment (Figure 3.17c). Overall, these results demonstrate that Q/D treatment has 

detrimental effects on the functionality of the OXPHOS chain.  

A defective mitochondrial oxidative phosphorylation could lead cells to metabolically switch 

toward glycolysis for ATP supply. I investigated the effect of Q/D treatment on the cellular 

glycolytic metabolism, by measuring the levels of L-lactate, which is the final product of the 



57 
 

glycolytic pathway. Upon Q/D treatment, I observed a small but significant increase in the L-

lactate production starting from 1 μM for both COMI and VIPI cells (Figure 3.17d). 

 

Figure 3.17 Q/D dysregulates and impairs OXPHOS in GSCs. a. Effects on the functionality 

of OXPHOS complexes as assessed using BN-PAGE and in-gel activity assay on COMI and VIPI cells 

after 48, 72 and 96h of Q/D treatment (1 μM). Fifty micrograms of the mitochondrial extracts were 

loaded onto gels. Coomassie® staining serves as loading control. One representative result is shown, 

n=2 biological replicates. b. Immunoblotting subsequent to BN-PAGE to assay for proteins belonging 

to complex I, V, IV and II. One representative result is shown, n=2 biological replicates. c. Oxygen 

consumption of COMI and VIPI cells upon 48h treatment with Q/D (1 μM) as measured using 

Oxygraph-2k. Cells were evaluated for routine (R), complex I (CI), complex I and II (CI&II), uncoupled 

(ETS) and complex II (CII) respiration. Representative results of n=3 biological replicates. d. Effects of 

increasing concentrations of Q/D on L-lactate production in COMI and VIPI cells after 48h treatment of 

Q/D. The L-lactate levels were normalized on number of cells as estimated by Hoechst 33342 

staining. n=3 technical replicates, mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, unpaired two-tailed t 

test. One representative result is shown, n=3 biological replicates. 
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3.3.2 Q/D inhibits translation by directly binding to the 

mitoribosome 

To obtain the proof that Q/D inhibits mitochondrial translation by directly binding to the 

mitoribosome, our collaborators in the laboratory of Alexey Amunts at the SciLifeLab in 

Stockholm used cryo-electron microscopy (cryo-EM) to determine the structure of the 

mitoribosome extracted from HEK293 cells treated with 5 μM of Q/D for 24h. The structure 

solved at 3.9Å resolution revealed that Q/D binds to the large ribosomal subunit (mt-LSU), 

with dalfopristin in the peptidyl-transferase center (PTC) and quinupristin at the entrance of 

the exit channel (Figure 3.18a). The cryo-EM density for dalfopristin indicates that, as 

expected, it was hydrolyzed with the loss of the diethylaminoethylsulfonyl group to form 

virginiamycin M1 (Figure 3.18b), an effect reported also in the pharmacology studies on Q/D 

(Bearden, 2004). By comparing the Q/D bound structure to the previously published unbound 

state (Amunts et al., 2015), it was possible to identify a number of molecular rearrangements 

induced by Q/D binding. The most prominent molecular rearrangement is the 90 degrees 

shift of adenine 2725 (A2725) (Figure 3.18c). Other residues affected by Q/D presence are 

uracil 2993 and 3072 (U2993 and U3072, Figure 3.18c), although uracil 3072 was not well 

resolved in the unbound structure (EMD2876), probably due to inherent flexibility. 

Structure of Q/D bound to E.coli and D. radiodurans ribosome have been previously resolved 

(Harms et al., 2004; Noeske et al., 2014), with dalfopristin binding within the PTC and 

quinupristin at the entrance of the exit channel, as in our structure. A comparison with those 

structures shows that bacterial counterpart of A2725 (bacterial A2062) adopts a similar shift, 

whereas the equivalent of U3072 (bacterial U2585) is displaced by nearly 180 degrees, 

which has not been observed in the mitoribosome due to the absence of the 

diethylaminoethylsulfonyl group of dalfopristin that was hydrolyzed in the cellular media. In 

addition, a shift in the mitoribosomal U2993 that could not be detectedd in the bacterial 

counterpart was observed.  

The high resolution cryo-EM structure defines the specific binding site of Q/D on the human 

mitoribosome and the consequent rearrangements it induces. Since Q/D was added to the 

cells and not during any of the purification steps, the structural data suggest that it is able to 

penetrate the mitochondrial outer and inner membranes and that it exerts the inhibitory effect 

on mitochondrial translation by directly binding to the mitoribosome.  
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Figure 3.18 Cryo-EM structure of Q/D bound to the mitoribosome. a. Overall binding 

location of dalfopristin (hydrolyzed to virginiamycin M1) and quinupristin in the large subunit (LSU) of 

the human mitochondrial ribosome. HEK293 cells were incubated with 5 μM Q/D for 24h, after which 

mitoribosomes were prepared for cryo-EM. The two compounds are found just in the entrance to the 

exit tunnel after the peptidyl transferase center (PTC). b. View of the cryo-EM density around 

virginamycin M1 (green) and quinupristin (purple). The two compounds make interactions with the 

surrounding rRNA. c. Detailed comparison between the human mitochondrial ribosomal rRNA when 

bound to virginiamycin M1 and quinupristin (yellow) and when unbound (PDB ID: 3J9M, gray). Sky 

blue arrows indicate the rRNA movement to accommodate the molecules. 

 

3.3.3 Inhibition of mitochondrial translation leads to Q/D-induced 

cytotoxicity on GSCs 

I next investigated whether inhibition of mitochondrial translation and in consequence 

dysregulation of OXPHOS might be functionally related to Q/D-induced cytotoxicity on GSCs. 

First, I assessed the mitochondrial mass of eight GSC lines (COMI, VIPI, 030616, GB6, GB7, 

GB8, G144 and G166) by counting the number of COX4 positive spots per area of cytoplasm 

(approximate measurement of mitochondrial mass). Then, I treated the GSC lines with 

different concentration of Q/D (2.5, 5 and 10 μM) for 48h and, with the help of our 
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bioinformatician, I correlated the cell line susceptibility to Q/D treatment to their mitochondrial 

mass (Figure 3.19). I found that the cellular viability after Q/D treatment was negatively 

correlated to the mitochondrial mass (r=-0.882, p<0.001 at 2.5 μM; r=-0.758, p<0.05 at 5 μM; 

and r=-0.682, p=0.06 at 10 μM treatments), indicating that GSCs with higher mitochondrial 

mass are more susceptible to Q/D-induced cytotoxicity.  

 

Figure 3.19 GSCs with higher mitochondrial mass are more susceptible to Q/D-

induced cytotoxicity. Correlation analysis of mitochondrial mass (assessed by 

immunofluorescence with COX4 antibody and analysis of the number of COX4 spots per area of 

cytoplasm) and viability (Hoechst 33342 and PI staining) after 48h of Q/D treatment at 2.5, 5 and 10 

µM for 8 GSC lines (COMI, VIPI, 030616, GB6, GB7, GB8, G144 and G166). n=3-5 biological 

replicates, mean, ± SD. Correlation values (r) and p values were calculated using the Pearson 

correlation coefficient.  

 

GSCs are known to reside in dedicated tumor niches, anatomical regions defined by a 

unique microenvironment and presenting morphologically and functionally distinct features. 

GSCs have been found enriched also in the so called hypoxic niches (Li et al., 2009), 

characterized by hypoxic conditions. However, hypoxia does not preclude OXPHOS-reliance, 

in fact it has been shown that 1% oxygen is sufficient for GSCs to maintain OXPHOS 

(Janiszewska et al., 2012). In this context, we tested the sensitivity of COMI and VIPI cells to 

Q/D under different O2 concentrations by assessing their viability after Hoechst 33342 and PI 

staining (Figure 3.20a). The O2 concentration conditions used were: 21%, which I called 

“normoxic conditions”, since it is the concentration of O2 at which cells are normally grown in 

vitro and at which I usually performed the experiments, 1%, which I called “hypoxic 

conditions” and 0%, which I called “anoxic conditions”, meaning that no O2 was present. I 

also investigated the effect of Q/D on mitochondrial translation by COX1 and COX4 

immunoblotting under these different O2 concentrations (Figure 3.20b). I observed that cell 

viability of untreated cells was not affected under hypoxic conditions (1% O2) and that the 

cells still responded to Q/D treatment in a dose-dependent manner (Figure 3.20a).  
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Moreover, the decrease in COX1 protein levels upon Q/D treatment was similar to that in 

normoxic conditions (21% O2) (Figure 3.20b). Instead, anoxic conditions (0% O2) deeply 

affected the viability of both lines but there was no further loss of viability upon Q/D treatment 

and the effect on the decrease of COX1 levels was no longer present. Further experiments 

could clarify the absence of effect of Q/D on COX1 protein levels under anoxic conditions 

(0% O2).  

Taken together, these findings show that under hypoxic conditions (1% O2) Q/D can perfectly 

exert its cytotoxic effects due to mitochondrial translation inhibition, indicating that Q/D could 

also be able to affect those GSCs present in hypoxic niches. 

 

 

Figure 3.20 GSCs grown in hypoxic conditions (1% O2) are sensitive to Q/D treatment. 

a. COMI and VIPI cells were treated with Q/D (1, 5, 10 μM for COMI and 1, 5, 10, 20, 40 μM for VIPI) 

under different oxygen concentrations (21%, 1% and 0%) for 48h and the viability was assessed after 

Hoechst 33342 and PI staining. n=4 technical replicates, mean ± SD. Representative result of n=3 

biological replicates. b. Effects of varying oxygen and Q/D concentrations (1 and 2.5 μM) on COX1, 

COX4 and beta tubulin protein expression as assayed by immunoblotting on COMI and VIPI cells after 

48h of treatment. Representative result of n=2 biological replicates. 

 

I, then, examined the effect of Q/D treatment on the differentiated GSC progeny. To this aim, 

I differentiated three GSC lines (namely COMI, VIPI and GB7) by culturing them in media 

deprived of growth factors and supplemented with 10% FBS for 14 days, and assessed the 

level of differentiation by checking the expression of stemness (SOX2 and NESTIN) and 

differentiation (GFAP) markers by immunofluorescence, as reported in Figure 3.21a.  



62 
 

COMI and GB7 cells differentiated to a greater extent than VIPI, as evidenced by a higher 

increase in the expression of GFAP and decrease of SOX2 and NESTIN upon differentiation 

(Figure 3.21b).  

 

Figure 3.21 Differentiation analysis of GSCs. a,b. Immunofluorescence staining on COMI 

(top), GB7 (middle) and VIPI (bottom) cells for stemness (SOX2 and NESTIN) and differentiation 

(GFAP) markers. COMI, GB7 and VIPI lines were grown in standard cancer stem cell medium or 

differentiated for 14 days in medium deprived of growth factors and supplemented with 10% FBS. a. 

Representative immunofluorescence images. b. Quantification of the normalized intensity of 

immunostaining of SOX2, NESTIN and GFAP. n=6000 objects for stem cells and n=1000 objects for 

differentiated cells, mean, ± SEM. Representative result of n=2 biological replicates. 

 

Next, I assessed the mitochondrial mass of the three GSC lines and of their differentiated 

progeny by measuring the number of MitoTracker Orange positive spots per area of 

cytoplasm (approximate measurement of the mitochondrial mass). In parallel, I treated the 

cells (GSCs and their differentiated progeny) with different concentrations of Q/D for 48h, I 

assessed cellular viability, constructed dose-response curves and calculated the deriving 

GI50 values. The differentiated progeny of all the three GSC lines tested presented higher 

GI50 values compared to their stemness counterpart, indicating that the differentiated cells 
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are less sensitive to Q/D treatment (Figure 3.22a). In detail, for COMI and GB7 lines, which 

differentiated to a greater extent than VIPI, the change in the GI50 values between stem and 

differentiated cells was remarkable. In fact, the GI50 values were of 6.5 μM ±1.1 and of 73.5 

μM ±17.8 for COMI cells and their differentiated progeny, respectively, and of 4.3 μM ±0.8 

and of 33.0 μM ±9.9 for GB7 cells and their differentiated progeny, respectively. The GI50 

values increased from 7 to 11 fold upon differentiation in these two cell lines. The decrease 

in sensitivity of the differentiated cells corresponded to a lower mitochondrial mass as shown 

in Figure 3.22b. For VIPI cells, instead, which differentiated less than COMI and GB7, the 

change in the GI50 values between stem and differentiated cells was modest. The GI50 values 

were of 20.2 μM ±1.4 and of 33.0 μM ±9.3 for VIPI cells and their differentiated progeny, 

respectively. The smaller decrease in Q/D sensitivity of the less differentiated VIPI cells is 

also concordant with the lack of change in the mitochondrial mass, and could be due to 

worse differentiation efficiency. Taken together, these results demonstrate that differentiated 

cells show lower responsiveness to Q/D, suggesting that Q/D is preferentially more active on 

GSCs than on differentiated cancer cells.  

 
 

Figure 3.22 Differentiated GSCs are less sensitive to Q/D compared to their stemness 

counterpart. a. Representative dose-response curves for COMI, GB7 and VIPI cells (stem) and 

their differentiated counterpart (differentiated, diff). The cells were treated with Q/D (0.1, 0.3, 1, 3, 10, 

30 and 100 μM) for 48h, after which they were stained with Hoechst 33342 and PI and the number of 

live cells was evaluated using Operetta-High Content Imaging System and Harmony software. The 

GI50 values were calculated using n=4-7 biological replicates, mean ± SD. b. COMI, GB7 and VIPI 

lines were grown in standard cancer stem cell medium or differentiated for 14 days in medium 

deprived of growth factors and supplemented with 10% FBS. Mitochondrial mass was assessed by 

counting the number of MitoTracker Orange positive spots per area of cytoplasm as defined with Cell 

Mask staining. Analysis was performed using Operetta High-Content Imaging System and Harmony 

Software. n=10 technical replicates, mean ± SD. Representative result of n=3 biological replicates.   
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3.4  Q/D DYSREGULATES CELL CYCLE AND INDUCES 

AUTOPHAGY 

I next investigated the effect of Q/D on cell cycle, by performing EdU-PI staining upon 

treatment with increasing concentrations of Q/D (48h), and by measuring the percentage of 

cells in each phase of the cell cycle (Figure 3.23a,b). Increasing concentrations of Q/D led to 

a marked dose-dependent decrease in the number of cells in the S-phase, indicating 

inhibition of proliferation. In addition I observed a significant increase in the number of cells in 

the G0/G1 phase at 5 μM D/Q treatment, indicating an accumulation of cells in this phase, 

followed by an increase in the number of cells in the G2/M starting at 5 μM and culminating 

at 10 μM D/Q treatment (Figure 3.23a,b). These results suggest that Q/D critically 

dysregulates cell cycle progression. 

 

Figure 3.23 Q/D dysregulates cell cycle progression. a-b. Effects of Q/D on the cell cycle in 

COMI cells assayed using EdU incorporation and PI staining. a. Representative images of one 

biological replicate. b. Quantification of the percentage of cells in each phase. n=3 biological 

replicates, mean ± SD. *p < 0.05 **p < 0.01 ***p < 0.001, unpaired two-tailed t test.  

 

As Q/D decreases cell proliferation and dysregulates cell cycle, I next studied the cell death 

mechanism induced by Q/D. I performed a flow cytometric analysis using Annexin V and PI 

staining, and estimated the percentage of apoptotic cells by calculating the percentage of 

Annexin V positive cells (Figure 3.24a,b). Treatments with a concentration of Q/D 

corresponding to the GI50 value for this cell line (6.5 μM) did not lead to a statistical 

significant increase in the percentage of apoptotic cells, which was observed only at higher 

Q/D concentration (10 μM) (Figure 3.24a,b). Further experiments to elucidate the fate of the 

cells treated with Q/D are necessary and are currently being performed in our laboratory. 
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Figure 3.24 Q/D and apoptosis. a-b. Assessment of apoptosis upon treatment with Q/D (6.5 and 

10 μM) in COMI cells by Annexin V and PI staining. a. Representative images of one biological 

replicate. b. Quantification of Annexin V positive cells. n=6 biological replicates, mean ± SD. **p < 

0.01, unpaired two-tailed t test. 

 

Since induction of autophagy upon drug treatment has been reported in some cases 

(Angeletti et al., 2016; Shchors et al., 2015), I investigated whether GSCs treated with Q/D 

undergo autophagy induction. Autophagy is a self-degradative mechanism that has been 

linked to cellular starvation and metabolic stress. In cancer, autophagy has been indicated 

either as a cell death mechanism, or as an adaptive and protective survival promoting 

mechanism (Angeletti et al., 2016). In both the cases, upon autophagy induction, the 

autophagosomes are formed and then, in the presence of a functional autophagic flux, the 

autophagosomes fuse with the lysosomes, resulting in lysosomal cargo degradation. 

Autophagy induction can be assessed by performing immunofluorescence (IF) and 

immunoblotting using the autophagy marker LC3B. Upon induction of autophagy, the LC3B 

isoform I (LC3B-I) gets converted into the isoform II (LC3B-II) through lipidation. LC3B-II is 

observed as LC3-positive puncta in IF or as a faster migrating LC3 band in SDS-PAGE 

(Mizushima et al., 2010). Autophagy can be better observed in the presence of lysosomal 

inhibitors, which prevent cargo degradation and lead to LC3B-II accumulation (Jawhari et al., 

2016). 

I treated GSCs with the lysosomal inhibitors chloroquine (CQ), bafilomycin (Baf) and 

ammonium chloride (NH4Cl) alone or in combination with Q/D, and further evaluated if Q/D 

induces autophagic flux by visualizing the LC3B autophagic marker. First, I performed 

immunofluorescence analysis and observed autophagosomes formation by assessing the 

LC3B puncta formation (Figure 3.25a). All treatments resulted in an increase in the number 

of LC3B puncta, which were further augmented when Q/D was used in combination with 

lysosomal inhibitors (Figure 3.25b). I obtained the same results by immunoblotting using 

anti-LC3B antibody. Here, I observed an increase in the LC3B-II band upon treatments, 
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which was stronger in the Q/D combination treatments (Figure 3.25c,d). Overall, these 

results suggest that Q/D causes an increase in the autophagic flux.    

 

Figure 3.25 Q/D induces autophagy. a-d. Effects of Q/D treatment (6.5 μM) on autophagy in 

COMI cells. a. Autophagy induction was assessed by immunofluorescence using anti-LC3B antibody. 

Treatment with chloroquine (CQ), bafilomycin (Baf) and ammonium chloride (NH4Cl) was used to 

assay for autophagic flux. Example images for each treatment condition are shown. b. The number 

of LC3B puncta per cell was quantified from at least 25 cells for each condition using ImageJ 

Software. One representative result is shown, n=2 biological replicates. c. Autophagy induction was 

assessed by immunoblotting on LC3B protein. Representative images of one biological replicate. d. 

LC3B-II form was quantified using densitometric analysis and normalized on β-tubulin. One 

representative result is shown, n=3 biological replicates. e. Evaluation of the role of autophagy in Q/D 

cytotoxic activity on GSCs. COMI cells were treated with Q/D 2 μM (black bars), chloroquine (CQ) 5, 

10 and 20 μM (gray bars) or with the combination of all doses of the two drugs for 48h (pre-treatment 

with CQ for 3h); Cell viability was assessed by Hoechst 33342-PI assay. n=3 biological replicates, 

mean ± SD. *p < 0.05 **p < 0.01 ***p < 0.001, ANOVA followed by Dunnett's post-hoc test.  
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As previously described, autophagy has been indicated not only as a cell death mechanism 

but also as a protective mechanism. Thus, I investigated whether Q/D induced autophagy 

could have a pro-death or pro-survival function in GSCs. I inhibited the autophagic flux using 

chloroquine (CQ) and investigated the cell sensitivity to Q/D. If autophagy induction functions 

as a pro-death mechanism, I would expect a decrease in the drug sensitivity when combined 

with CQ, whereas I would expect an increase in sensitivity in the case of a pro-survival 

function. I observed a small but significant decrease in the viability upon the combination 

treatment (Figure 3.25e). Therefore, these results suggest that autophagy is a pro-survival 

mechanism, which is activated by GSCs to counteract the anti-proliferative effect induced by 

Q/D treatment. These data are in line with those reported by Angeletti and colleagues on 

GSCs treated with givinostat, a pan-histone deacetylase inhibitor endowed with anti-

proliferative and pro-apoptotic activities (Angeletti et al., 2016). 

 

3.5  Q/D IS ACTIVE IN VIVO, BEING ABLE TO REDUCE THE 

GROWTH AND INVASION OF GSC BRAIN XENOGRAFTS 

Human GSCs grown under serum-free culture conditions are able to generate tumors that 

reproduce the histological and molecular features of the parent neoplasm when orthotopically 

injected in immunocompromised mice (Eramo et al., 2006; Galli et al., 2004; Singh et al., 

2004).  A feature of the deriving tumor xenografts is the highly infiltrative cellular growth 

pattern that closely mimics the behavior of malignant human gliomas. Our collaborator group 

headed by Prof. Roberto Pallini at the Università Cattolica del Sacro Cuore, in Rome, tested 

the effect of systemic administration of Q/D in vivo on tumor xenografts generated by GSCs 

injection. To produce tumor xenografts, they used a stable GFP-expressing GSC line (GFP-

GSC#1) endowed with a high propensity to invade the brain. At eight weeks after 

implantation, the mice were treated with Q/D (200 mg/kg ip in PBS) or with PBS as control, 

three times a week for three weeks. One week after discontinuation of therapy, the mice 

were sacrificed and the brains were analyzed. Control mice (n=4) harbored tumors that 

invaded the homolateral striatum, piriform cortex, corpus callosum, anterior commissure, 

internal capsule, optic tract, septal nuclei, and fimbria (Figure 3.26a). In Q/D-treated mice 

(n=4; Figure 3.26a), these brain regions were also populated by tumor cells, however, the 

degree of brain invasion was dramatically reduced. The treatment with Q/D significantly 

lowered the density of tumor cells in the thalamus, fimbria, and optic tract of the grafted brain 

(Figure 3.26b for quantification).  
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Figure 3.26 Q/D reduces the growth and invasion of GSC brain xenografts. a. Coronal 

brain sections of GFP-expressing GSC xenografts (upper panels), scale bar 1000 μm. Details of brain 

regions invaded by GSCs (lower panels), scale bar 200 μm. b. Number of GFP-expressing GSCc per 

high-power field in Q/D-treated and in control mice brain xenografts.  

 

Being Q/D an already FDA approved drug, its pharmacokinetic properties have been studied 

in depth. In 1997, Bergeron and Montay reported a study on the pharmacokinetic profile of 

Q/D performed in rats, monkeys and healthy human volunteers (Bergeron and Montay, 

1997). Using a radiolabelled form of Q/D, they studied its distribution profile both in rat and in 

monkey animal models. Q/D did not penetrate into the central nervous system in significant 

amount. Moreover, Q/D levels in the brain were the lowest among all the organs tested, with 

values around 0.01 mg of equivalent Q/D per gram of tissue (Bergeron and Montay, 1997). 

Clearly, Q/D is not able to cross an intact blood-brain barrier (BBB). In this contest, the 

evaluation of the integrity of the BBB in the GSC brain xenografts used to evaluate Q/D 

efficacy in mouse models was important to have a complete picture of Q/D activity in vivo. 
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The integrity of the blood-brain barrier (BBB) in the tumor region was assessed by 

performing immunofluorescence against the BBB glucose transporter Glut1, which stains for 

the endothelial component of the BBB. The microvasculature of the tumor xenografts showed 

different degrees of BBB integrity. In the tumor core, most of the microvessels lacked a 

continuous Glut1 staining, suggesting a completely disrupted BBB, whereas in the periphery 

of the tumor, microvessels with an unharmed BBB were frequently found (Figure 3.27a,b). 

  

 

 

Figure 3.27 Assessment of blood brain barrier (BBB) in brain xenografts of GFP-

expressing GSC#1. a. The microvasculature of the tumor xenografts shows different degrees of 

BBB changes, as assessed by anti-Glut1 immunofluorescence.  In the tumor core (upper panel), 

most of microvessels lack continuous Glut1 staining (arrow), suggesting disruption of BBB. In the 

periphery of tumor (lower panel), microvessels with preserved BBB are frequently found 

(arrowheads). GSCs, green; astrocytes, red; nuclei, blue. Scale bar, 25 μm. b. Single tumor cells 

spreading along perivascular spaces of the BBB, which is either disrupt (arrow) or preserved 

(arrowhead).  GSCs, green; BBB, red; endothelium, white; nuclei, blue. Scale bar, 150 μm.  
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In parallel, the presence of Q/D-induced systemic toxicity was evaluated by performing 

histological analysis on different organs (liver, spleen, lung and kidney). A small vacuolation 

of epatocytes around the arterioles and central vein of hepatic lobules was detected in Q/D 

treated mice, but no pathological changes were detected in the other systemic organs 

(Figure 3.28). 

 

 

Figure 3.28 Histological examination of liver (top left), spleen (top right), lung (bottom 

left) and kidney (bottom left). Mice were treated i.p. with 200 mg/kg of Q/D three times a week 

for 3 weeks. Treatment with Q/D resulted in vacuolation of hepatocytes located around the arteriole 

and central vein of hepatic lobules. No pathological changes were detected in the other systemic 

organs.  

 

Taken together, these results show that Q/D administrated by i.p. injection is able to 

overcome the BBB when it is partially compromised and to reduce the growth of GSCs also 

in vivo, potently reducing the degree of brain invasion.  
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4. DISCUSSION 

 

Strenuous efforts have been made in the past years searching for novel therapeutic 

strategies in the treatment of GBM, although none of the studies has produced satisfying 

outcomes (Khosla, 2016), underlying the urgent medical need for developing novel 

approaches and more effective drugs. GBM aggressiveness is associated with its 

glioblastoma stem cells (GSCs) component that is responsible for tumor invasiveness and 

therapy resistance (Bao et al., 2006; Chen et al., 2012). Hence, new therapies specifically 

leading to GSCs eradication could affect tumor invasiveness and prevent disease 

recurrence. Cancer stem cells (CSCs) of different tumor types, including glioblastoma stem 

cells (GSCs) (Janiszewska et al., 2012; Vlashi et al., 2011), have been shown to depend on 

mitochondrial respiration for their high energy demand (reviewed in Sancho et al., 2016; 

Viale et al., 2015). A growing body of literature suggests that targeting mitochondria, and in 

particular mitochondrial respiration, in tumors results in destabilization of energy homeostasis 

in cancer stem cells therefore providing a new target for therapy (reviewed in Ashton et al., 

2018; Marchetti et al., 2015; Martinez-Outschoorn et al., 2017; Weinberg and Chandel, 

2015). 

We reasoned that by inhibiting mitochondrial translation we could hamper oxidative 

phosphorylation (OXPHOS) complex formation, leading to detrimental effect on GSCs 

viability. Based on the evolutionary similarity between mitochondrial and bacterial translation 

systems (i.e. ribosomes) (Amunts et al., 2015; Brown et al., 2014; Greber et al., 2014b, 

2014a, 2015), we decided to evaluate the cytotoxic potential of bacterial ribosome-targeting 

antibiotics on GSCs. 

We performed a high-content imaging driven screening on a library of compounds known to 

affect bacterial translation that led to the identification of three classes of antibiotics, namely 

streptogramins, pleuromutilins and tetracyclines, having cytotoxic and/or mitotoxic effect on 

two GSC lines (Figure 3.5). The potential use in cancer therapy has already been described 

for tetracyclines, and in particular for tigecycline, which acts by directly inhibiting 

mitochondrial translation in myeloid leukemia stem cells (Kuntz et al., 2017; Škrtić et al., 

2011). The promising results obtained by Skrtić et al. have led to a phase I clinical trial to 

evaluate tigecycline in the treatment of acute myeloid leukemia (clinicaltrials.gov ID: 

NCT01332786). Recently, another tetracycline antibiotic, doxycycline, has been shown to 

prevent TMZ-induced increase of GSCs tumorigenicity in GBM (William et al., 2018), 
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supporting the idea of mitochondrial translation inhibition as anti-cancer targeted therapy in 

GBM. Interestingly, streptogramins have not been assayed as cancer therapy before. 

We evaluated the cytotoxic effects of several commercially-available members of the three 

selected classes on GSCs growth and identified the streptogramins class as the most 

effective on GSCs (Figure 3.6 and Figure 3.7). In our hands, streptogramins were more 

potent than tetracyclines in reducing GSCs growth in vitro. Among all the streptogramins, 

the combination of quinupristin/ dalfopristin (Q/D) was identified as the most effective 

compound. Compared to tigecycline and doxycycline, Q/D resulted at least two times more 

cytotoxic on GSCs (6 times on COMI cells compared to tigecycline and 8 times on COMI 

cells compared to doxycycline). Interestingly, in the previously reported studies tigecycline 

and doxycycline were not chosen based on a comparative study of bacterial ribosome 

inhibitors (Škrtić et al., 2011; William et al., 2018), as Q/D was in our case. 

Q/D is an FDA-approved drug traded as Synercid
® and used in the hospitals for the 

treatment of infections associated with vancomycin-resistant Enterococcus faecium and 

complicated skin and skin structure infections caused by methicillin-susceptible 

Staphylococcus aureus or Streptococcus pyogenes (Delgado et al., 2000; Gurk-Turner, 

2000). Quinupristin belongs to group B streptogramins, whereas dalfopristin belongs to 

group A streptogramins. Quinupristin and dalfopristin are produced by semisynthesis 

starting from virginiamycin S1 and virginiamycin M1, respectively, and are used in a specific 

30:70 (w/w) ratio. Streptogramin A and B are known to act synergistically in bacteria (Di 

Giambattista et al., 1989) and this has been proven for Q/D as well (Barriere et al., 1992).  

We showed that Q/D is cytotoxic on a wide panel of GSCs, both grown as adherent cultures 

and as neurospheres (Figure 3.11, Figure 3.12 and Figure 3.13). We also demonstrated 

that this combination is able to reduce the neurosphere formation ability of GSCs (Figure 

3.14b), a feature associated to the tumorigenic nature of this cell population. A critical point 

when evaluating a potential anticancer drug is to determine its ability to discriminate 

between cancer and normal cells. We showed that Q/D preferentially targets GSCs rather 

than normal astrocytes or normal fibroblasts (Figure 3.14a), showing a discrete therapeutic 

window. GSCs are known to be resistant to radio and chemotherapies (Bao et al., 2006; 

Chen et al., 2012). Indeed, we showed that Q/D is over ten times more potent than the 

currently used drug TMZ on GSCs (Figure 3.15). Importantly, the concentration of Q/D 

necessary to inhibit the 50% of GSCs growth (GI50 values) corresponds to concentrations 

achievable in patients’ blood, which vary between 10.7 and 24.2 μg/mL, with an injection of 

12.6 to 29.4 mg/kg respectively (corresponding to 14 – 32 μM) (Bergeron and Montay, 

1997). 
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A critical role of OXPHOS in the energetic metabolism of GBMs and GSCs has been 

recently emerging by different lines of evidence. The degree of activation of the OXPHOS 

chain in GBM tumors has been associated to GBM malignancy, since high levels of 

complex IV functionality are an independent negative prognostic factor in GBM (Griguer et 

al., 2013). Targeting the function of this complex by two different small molecule inhibitors 

was recently shown to be effective on GSCs both in vitro and in vivo (Oliva et al., 2016, ibid. 

2017). Moreover, acquisition of chemoresistance to TMZ in glioblastomas is associated with 

increased mitochondrial coupling and decreased reactive oxygen species (Oliva et al., 

2011), thus linking altered OXPHOS also to chemoresistance. Interestingly, remodeling of 

OXPHOS chain complexes as adaptation to TMZ selection could be different from a general 

overactivation (Oliva et al., 2010). Moreover, depletion of the oncofetal insulin-like growth 

factor 2 mRNA-binding protein 2 (IMP2), which is elevated in aggressive GBMs and 

promotes translation of the mtDNA encoded OXPHOS proteins thus maintaining OXPHOS 

functionality, also induces GSCs loss of clonogenic potential and tumorigenicity in vivo 

(Janiszewska et al., 2012). Taken together these data reinforce the connection between 

altered OXPHOS activity and GSC aggressiveness and/or treatment resistance. 

A compelling evidence of this relationship was provided with a study describing the molecular 

outcome of the rare FGFR3-TACC3 (F3–T3) gene fusion present in 3% of GBM cases and in 

other kind of cancers (Frattini et al., 2018; Singh et al., 2012). This fusion activates OXPHOS 

and mitochondrial biogenesis and has been shown to possess a powerful oncogenic activity 

(Frattini et al., 2018). Importantly, increased OXPHOS activity triggered by F3-T3 confers 

special sensitivity to OXPHOS inhibitors. 

In this exciting landscape of increasing awareness of the oncogenic role of dysregulated 

OXPHOS in GBM, we identified Q/D as a potent cytotoxic drug able to affect GSCs growth 

and provided important insights into the molecular mechanism of its action. We proved that 

Q/D acts via mitochondrial translation inhibition (Figure 3.16a, left panel) and therefore, by 

reducing mtDNA encoded proteins’ expression levels (Figure 3.16b,c). This is in line with 

previous findings describing a similar mechanism of action for tigecycline in leukemia cells 

(Škrtić et al., 2011). We also showed that Q/D does not have any effect on cytosolic 

translation, even at five times higher concentrations of that used to inhibit mitochondrial 

translation (Figure 3.16a, right panel). We demonstrated that Q/D impairs OXPHOS 

complexes functionality and decreases mitochondrial respiratory capacity as a consequence 

of mitochondrial translation inhibition (Figure 3.17a,b,c). Furthermore, using Cryo-electron 

microscopy (Cryo-EM) we confirmed that Q/D binds to the mitoribosome by solving the 

structure of the mitoribosome with the drug bound inside at 3.9 Å resolution (Figure 3.18). In 

detail, the data indicate that Q/D binds to the large ribosomal subunit mt-(LSU), with 

dalfopristin in the peptidyl-transferase center (PTC) and quinupristin at the entrance of the 
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exit channel, as it happens in bacteria (Harms et al., 2004; Noeske et al., 2014). In our 

hands, dalfopristin was hydrolyzed to virginiamycin M1 in the cell culture media as previously 

described by Noeske and colleagues who reported that dalfopristin hydrolyzes very rapidly at 

pH 7.4 and 37°C (Noeske et al., 2014). 

The fact that the density for quinupristin and virginiamycin M1 was observed from samples 

prepared using cells treated with Q/D for a period of 24 hours, indicates that not only these 

two compounds are able to directly bind to the mitoribosome but also that the molecules are 

able to penetrate three biological membranes to reach the mitochondrial matrix. The electron 

density revealed additional important aspects on Q/D binding to the mitoribosome and on the 

residues shifts Q/D induces. 

Importantly, the structural information obtained by solving Q/D-mitoribosome structure 

paves the way toward a rational design of chemical analogues with potential improved 

potency and specificity and opens the route to medicinal chemistry optimization. By this 

approach it is possible to define the structural positions that can be chemically modified to 

confer a specific biological advantage. Even if we already showed that Q/D is capable to 

cross the outer and inner mitochondrial membrane and to accumulate in the mitochondrial 

matrix, a rational design driven by the structural information could guide the introduction of 

chemical moieties directed to increase the mitochondria-targeting potential of the drugs. A 

clear proof-of-concept of this approach has been recently demonstrated for metformin and 

biguanides (Cheng et al., 2016). Metformin is an anti-diabetic drug which has been shown 

to reversibly inhibit OXPHOS complex I (Wheaton et al., 2014), resulting in cytotoxic effects 

in different cancer stem cell lines, including breast, pancreatic, colon and also glioblastoma 

(Gou et al., 2013; Song et al., 2012; Würth et al., 2013; Zhang et al., 2013). Cheng and 

colleagues enhanced metformin antitumor activity by increasing its mitochondrial-targeting 

potential through the insertion of a positively-charged unit on a lipophilic substituent in the 

molecular structure. The synthetic derivative Mito-Met10 was almost 3 orders of magnitude 

more efficacious than metformin in inhibiting pancreatic cancer cell proliferation (Cheng et 

al., 2016). 

On the other side, our structure could also help in the design of antibacterial analogues with 

higher bacterial ribosome selectivity and deprived of off-target mitochondrial side effects. 

Q/D treatment leads to inhibition of mitochondrial respiration and dysfunctional OXPHOS 

complexes but it also slightly increases glycolysis (Figure 3.17d), therefore indicating that 

the cells try to compensate for ATP production loss by altering their bioenergetic 

homeostasis. This metabolic flexibility has been previously demonstrated by showing that 

inhibition of either glycolysis or OXPHOS has only marginal effects on the overall ATP 
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content, suggesting that the inhibition of glycolysis could be compensated by OXPHOS and 

vice versa (Vlashi et al., 2011). The ability to upregulate glycolysis appears to be cell type 

dependent, as for example pancreatic cells treated with mitochondrial respiration inhibitors 

were unable to compensate in this way (Viale et al., 2014). Future experiments will reveal the 

nature of this metabolic reprogramming and whether additional inhibition or dysregulation of 

compensatory metabolic pathways activated by mitochondrial metabolism inhibition could 

have a beneficial effect on tumor elimination. Promising results obtained by the simultaneous 

inhibition of glycolysis and mitochondrial metabolism have been reported. Sahra and 

colleagues showed that the mitochondrial complex I inhibitor, metformin, and 2-deoxyglucose 

used in combination were able to severely affect ATP production, leading to a dramatic 

cytotoxicity in prostate cancer cells, without any significant effect on normal prostate 

epithelial cells. Moreover, the combination of the two drugs was much more harmful 

compared to either the single drug used alone (Sahra et al., 2010). In line with these results, 

metformin cooperates with the FDA-approved GLUT4 inhibitor, ritonavir, to kill multiple 

myeloma cancer cells both in vitro and in vivo (Dalva-Aydemir et al., 2015), and the 

mitochondrial-targeted drugs Mito-CP and Mito-Q synergize with 2-deoxyglucose to 

significantly reduce breast cancer cells tumor in a xenograft mouse model (Cheng et al., 

2012). 

Our current findings show that under hypoxic conditions (1% oxygen) Q/D can perfectly 

inhibit mitochondrial translation and exerts its cytotoxic effects (Figure 3.20). This finding is 

central for future Q/D therapy of GBM, given the largely hypoxic nature of these tumors. 

GSCs have been found enriched in different tumor niches, comprising also the highly hypoxic 

niches (Li et al., 2009). Hypoxia have been demonstrated to not preclude OXPHOS; in fact it 

has been shown that 1% oxygen is sufficient for GSCs to maintain OXPHOS (Janiszewska et 

al., 2012).  

We showed that Q/D preferentially targets GSCs rather than their differentiated progeny 

(Figure 3.22a). The preferential GSCs targeting by Q/D raises a fundamental key question. 

Would this be sufficient to eradicate GBM tumor or would the differentiated progeny then 

revert to a GSCs phenotype and lead to tumor relapse? It has been demonstrated that, 

under specific stimuli such as chemotherapeutic agents, GSCS progeny can undergo a 

plasticity transition and reacquire GSC features and tumorigenic potential (Auffinger et al., 

2014). Therefore, it has been suggested that the combination of conventional treatments and 

GSCs or, more in general, CSCs targeted therapy should have better and faster therapeutic 

effects in total tumor elimination and patients’ outcome improvement compared to 

monotherapies (reviewed in Cojoc et al., 2015). As for example, Chen and colleagues 
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showed that the combination of TMZ and GSCs ablation impeded tumor development in a 

gliomas mouse model. On the other hand, GSCs ablation alone was only successful in 

arresting tumor growth (Chen et al., 2012). On the same line, the co-delivery of doxorubicin 

and thioridazine, reported to be selectively cytotoxic for CSCs, showed a stronger antitumor 

effect both in vitro and in vivo in breast cancer tumors compared to monotherapies (Ke et al., 

2014). In the light of these considerations, the co-administration of Q/D and TMZ could be 

taken into account for more effective and faster therapeutic effects for GBM treatment. 

A critical point to consider when studying a drug candidate for the treatment of GBM is its 

ability to cross the blood-brain barrier and to reach the brain. The blood-brain barrier (BBB) is 

a highly selective semi-permeable membrane fundamental for central nervous system (CNS) 

homeostasis regulation and protection from toxins, pathogens and exogenous agents (Abbott 

et al., 2010; Daneman and Prat, 2015). It is the site for blood-CNS exchange, providing a 

total area of between 12 and 18 m2 in the human adult (Abbott et al., 2010). The BBB is 

composed of a network of capillaries paved by vascular endothelial cells, which are highly 

connected by adherens and tight junctions and are surrounded by a discontinuous layer of 

pericytes. Microglia, nerve terminals and astrocyte end-feet encircle endothelial cells and 

cover the basal lamina of brain capillaries, playing an important role in BBB integrity 

maintenance (Abbott et al., 2010; Daneman and Prat, 2015).  

The BBB regulates tightly the blood-CNS exchange. Very small molecules, gaseous 

molecules and solutes can cross the barrier by passive diffusion, depending on their physico-

chemical properties. Essential nutrients uptake is mediated by carriers or receptors. On the 

other hand, potentially harmful exogenous compounds are efficiently extruded by different 

efflux transporters, such as ATP Binding cassette proteins (Abbott, 2013; van Tellingen et al., 

2015). 

Despite the common belief that GBM patients present a leaky and disrupted BBB, 

accumulating clinical evidence suggests that this is not completely true (Sarkaria et al., 

2018). GBM are characterized by a highly infiltrating nature and consist of different regions 

endowed with different degrees of BBB integrity. While the BBB is completely compromised 

in bulky tumor areas, it is slightly leaky or even intact in more invasive peripheral tumor 

regions (Sarkaria et al., 2018; van Tellingen et al., 2015, Figure 4.1). Therefore, the 

evaluation of drug distribution across the BBB is still essential when designing therapies for 

treating GBM. In fact, compounds and macromolecules that are normally excluded from the 

brain by an intact BBB can cross the barrier and reach the brain in those regions where the 

BBB is compromised, but not where the BBB is still unharmed. Cancer cells that are not hit 

by chemotherapy would, then, be free to proliferate and give rise to tumor recurrence. 



77 
 

 

 

Figure 4.1 BBB integrity in different GBM regions. Glioblastoma BBB is completely 

compromised in bulky tumor areas (left panel), whereas it is slightly leaky (middle panel) or even 

completely unharmed (right panel) in more peripheral tumor regions (van Tellingen et al., 2015). 

 

By using patient-derived GSCs mouse brain xenografts, we evaluated the ability of Q/D to 

exert its anticancer effect in vivo. Systemically administered Q/D was able to dramatically 

reduce the degree of brain invasion (Figure 3.26a,b), decreasing the density of tumor cells 

in the thalamus, fimbria, and optic tract of the grafted brain. 

In a previous study aimed at evaluating Q/D pharmacokinetic properties, Q/D was proposed 

not to be able to cross the BBB (Bergeron and Montay, 1997). In our xenografts of patient-

derived GSCs, Glut1 immunofluorescence indicated that the tumor infiltrated brain harbors 

microvessels with regions presenting an unharmed BBB and other regions presenting a 

completely disrupted BBB (Figure 3.27). The partial BBB disruption explains the successful 

response to Q/D observed in the treated mice. A better understanding of Q/D ability to cross 

the BBB in GBM is warranted. In addition, alternative ways of administration or delivery could 

be explored. Numerous strategies to circumvent the BBB and to improve the delivery of 

agents to brain tumors have been investigated in the last decades. For example, the BBB 

can be transiently and reversibly opened using different agents, such as osmotic or 

biochemical disruptors, ultrasounds or magnetic radiation, resulting in an increased 

permeability. The use of ultrasounds and magnetic radiation is relatively safer compared to 
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osmotic or biochemical disruptors, since they allow a site-specific local BBB opening, 

preventing side effects caused by BBB generalized opening, such as neurological toxicity, 

aphasia and hemiparesis (reviewed in Tajes et al., 2014; van Tellingen et al., 2015). 

Alternatively, therapeutic agents can be delivered directly into the brain tumor parenchyma. 

One of the most promising approaches is the convection enhanced delivery, based on 

intraparenchymal placed microcatheters which, by creating a positive pressure gradient, 

allow the direct and continuous drug injection (reviewed in Jahangiri et al., 2017). 

Therapeutic agents can be directly delivered into the tumor resection cavity also by the use 

of biodegradable drug-impregnated polymer wafer implanted into the brain upon tumor 

surgical resection, as in the case of Gliadel wafers (Brem et al., 1995). Lastly, therapeutic 

agents can be entrapped, dissolved, encapsulated or attached to specific drug carrier 

systems, which are able to cross the BBB and deliver their “cargo” to the brain. Several drug 

carrier systems are being studied, including microspheres, liposomes, nanoparticles and 

exosomes (reviewed in Patel and Patel, 2017). 
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5. CONCLUSIONS 

 

By performing a high-content imaging driven screening on a focused library of bacterial 

ribosome targeting antibiotics, we identified quinupristin/dalfopristin (Q/D) as a promising 

lead compound candidate due to its cytotoxic and mitotoxic effects on GSCs.  

Q/D belongs to the streptogramin family of antibiotics and is traded with the name of 

Synercid
®
. Q/D was approved by the Food and Drug Administration (FDA) in 1999 to treat 

infections caused by susceptible strains of vancomycin-resistant Enterococcus faecium 

(VREF) and to treat complicated skin and skin structure infections caused 

by Staphylococcus aureus (methicillin-susceptible) or Streptococcus pyogenes. 

We demonstrated that Q/D effectively prevents GSCs clonogenic expansion and that it 

exerts a cytotoxic effect on a wide panel of GSCs grown both as adherent cultures and as 

neurospheres. We showed that Q/D is over an order of magnitude more potent than TMZ, 

the only drug used in first line GBM therapy. In addition, Q/D displays a discrete degree of 

selectivity for GSCs compared to normal cells, such as astrocytes or lung fibroblasts. We 

also provided detailed evidence on Q/D mechanism of action. We showed that it acts via 

mitochondrial translation inhibition, leading to OXPHOS dysregulation and mitochondrial 

respiration capacity reduction. Moreover, using cryo-electron microscopy we obtained the 

structure of Q/D bound to the human mitoribosome, which provides the basis for the 

development of potentially more potent derivatives. Finally, we tested Q/D efficacy in vivo 

using xenograft mouse models of GBM and showed that it is able to dramatically reduce the 

degree of tumor cell brain invasion, decreasing the density of GFP-expressing GSCs in the 

thalamus, fimbria, and optic tract of the grafted brain. 

 

Our results suggest that mitochondrial translation represents a therapeutic target for GBM 

and show that Q/D, acting via inhibition of mitochondrial translation, is effective against 

GSCs.  

Drug repurposing of clinically used drugs for new useful therapeutic applications is an 

effective way of fast-tracking new drugs since toxicological and pharmacokinetic properties 

are already known. In this context, the extent of Q/D action, its degree of specificity, its 

successful effect in xenotransplanted mouse models after systemic administration and its 

known pharmacokinetics and toxicological profile make this antibacterial antibiotic a 

candidate drug for repositioning in GBM treatment. Given the urgent medical need for novel 

therapeutic approaches in GBM treatment, Q/D represents a promising therapeutic solution 

that is worth further preclinical and clinical investigations. 
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6. ONGOING WORK  

 

6.1 DALFOPRISTIN IS SELECTED AS LEAD COMPOUND 

Given that Q/D combination is already FDA approved as antibiotic and that its 

pharmacokinetic and toxicological properties are known, we speculated that it could be 

repurposed for GBM treatment. Nevertheless, quinupristin (Q) and dalfopristin (D) chemical 

structures could be modified in order to improve their affinity toward the mitoribosome and, 

hence, potentially increase their specificity and potency. By solving the structure of the 

mitoribosome with bound Q/D we defined the specific binding site of the two molecules and 

the consequent rearrangements they induce. This structural information gave us the 

possibility to investigate the design of new chemical derivatives. In order to determine 

whether to focus on one or both the molecular scaffolds we evaluated Q and D as separate 

molecules, taking into account both their cytotoxicity and their ability to inhibit mitochondrial 

translation.  

Firstly, I assessed Q and D effect on cell growth by treating for 48h two GSC lines (COMI 

and VIPI) with a range of drug concentrations. I then determined cell viability using Hoechst 

33342 and PI, constructed dose-response curves and calculated the deriving GI50 values 

(Figure 6.1a). Both Q and D resulted to be cytotoxic for GSCs more or less to the same 

extent of Q/D combination (Synercid
®

). Next, I determined the effect of the single molecules 

on mitochondrial translation by 35S metabolic labeling and immunoblotting (Figure 6.1b, c). 

While D was able to inhibit mitochondrial translation as efficiently as Q/D combination, Q was 

not. The lack of mitochondrial translation inhibition by Q could be explained by the 

observation that streptogramins B alone have a lower affinity for the ribosome compared to 

streptogramins A and B combination, as previously described in bacteria (Contreras and 

Vázquez, 1977; Parfait et al., 1978). In fact, streptogramins A binding to the bacterial 

ribosome induces a “prepositioning” of A2062 residue (corresponding to A2725 in the 

mitoribosome), which creates a more defined binding pocket for the subsequent binding of 

streptogramins B (Noeske et al., 2014). On the contrary, streptogramins A do not need 

streptogramins B to bind to the bacterial ribosome, even though their activity in bacteria is 

potentiated by the presence of streptogramins B. 

Based on these results, we decided to start the “derivatives design” by focusing on 

dalfopristin structure. 
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Figure 6.1 Dalfopristin is selected as lead compound. a. Representative dose-response 

curves for Q/D, quinupristin (Q) and dalfopristin (D) on COMI and VIPI cells. Chloramphenicol (CAM) 

was used as positive control. The cells were treated with Q/D or Q or D for 48h, after which they were 

stained with Hoechst 33342 and PI, and the number of live cells was evaluated using Operetta-High 

Content Imaging System and Harmony software. The GI50 values were calculated from n=3 biological 

replicates, n=4 technical replicates each, mean ± SD. b. 
35

S metabolic labeling assay on mitochondrial 

translation on COMI cells after 24h treatment with Q/D, Q or D. Emetine was used to inhibit cytosolic 

translation. One representative result is shown, n=3 biological replicates. c. Effects of increasing 

concentrations of Q/D (top, as in Figure 3.16c), D (middle) or Q (bottom) on COX1, COX4 and beta 

tubulin proteins as assayed by immunoblotting on COMI cells after 48h treatment. One representative 

result is shown, n=2 biological replicates. 
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6.2 COMPUTATIONAL APPROACH FOR STRUCTURE BASED 

DESIGN 

The cryo-EM structure of Q/D bound to the mitoribosome that we obtained set the basis for 

the design of more specific and potent derivatives. Computational methods have proven to 

be a powerful toolbox for the optimization of drug candidate molecules. In order to identify 

the best derivatives to be synthesized, we have recently started a collaboration with Prof. 

Stefano Moro at the University of Padova, who is currently using structure-based ligand 

design (SBLD) approaches to select D derivatives with higher affinity for the human 

mitoribosome (Figure 6.2).  

 
 

Figure 6.2 Docking calculation 3D view of dalfopristin in its binding site inside the 

mitoribosome. The mitoribosomal RNA secondary structure is represented in gray while the 

protein portion secondary structure is represented in yellow. The ribonucleosides that define the 

putative antibiotic binding site recognition site are represented by their colored Connolly surface 

based on the local electrostatic potential (in red the negative potential regions, in blue those with 

positive potential, in white those with potential close to zero, kcal/mol). Dalfopristin (D) makes 

interactions with several residues of the binding site. Hydrogen bonding interactions are represented 

by dashed lines, one involving the carbonyl oxygen at position 7 of the dalfopristin moiety and the 

guanine 2724 of the ribosome structure (left), and one involving the hydroxyl oxygen at position 14 of 

the dalfopristin moiety and the guanine 2992 of the ribosome structure (right). The interaction energy 

(IEcomplex) based on the force field potential (AMBER10) is calculated in -110 kcal/mol (IEcomplex = 

Epcomplex – EpRNA – Eplig). 
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By introducing new substituent groups in suitable positions on D scaffold, it is possible to 

increase the number and the strength of the interactions between D and the mitoribosome, 

resulting in more stable D derivative-mitoribosome complexes. The selection of the most 

promising D derivatives will therefore be based on the energy values of the corresponding 

derivative-mitoribosome complexes and on the interactions involved. In addition, state-of-

the-art open sources algorithms, such as StarDrop, will be used to evaluate the drug-

likeness of the identified derivatives and to predict in silico their ADME (adsorption, 

distribution, metabolism, excretion) profiles. 

 

6.3 DEFINING DALFOPRISTIN DERIVATIVES 

Dalfopristin (D) and virginiamycin M1(VM1) are polyunsaturated 23-membered rings group 

A streptogramins (Barrière et al., 1998). VM1 is produced by different Streptomyces strains, 

such as Streptomyces pristinaespiralis and Streptomyces virginiae, whereas D is produced 

by semisynthesis starting from VM1 (Bonfiglio and Furneri, 2001). A fully synthetic route to 

VM1 consisting of 8 linear steps and presenting a final yield of 15% has been published for 

the first time only very recently (Li and Seiple, 2017).  

In order to produce a first series of derivatives, we decided to adopt a semisynthetic 

approach starting from D. There are several positions on D scaffold where it is possible to 

introduce novel chemical moieties by semisynthesis (Figure 6.3) and many D derivatives 

have already been synthesized in the light of developing more potent antibiotic derivatives. 

 

Figure 6.3 Possible sites of structural modification on dalfopristin scaffold. 

By observing the molecule arrangement in the mitoribosome binding site, we noticed that 

the replacement of the ketone group in position C16 with a small substituent, such as a 

halogen atom, could increase the interaction with the mitoribosome.  
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In addition, we noted that the conjugated diene that is present in the D scaffold (C10-13) 

assumes a cisoid conformation upon binding. This observation led us to investigate the 

possibility to perform a Diels-Alder reaction on this position. Diels-Alder adducts of D have 

not been previously described, hence we decided to start our “derivative semisynthesis” by 

generating a series of Diels-Alder adducts (“Diels-Alder series”). 

 

6.4. SEMISYNTHESIS OF A FIRST DALFOPRISTIN DIELS ALDER 

ADDUCT  

The amount of D necessary to perform semisynthetic chemistry is not easily and cost-

effective accessible, e.g. 1 mg of the molecule costs 280 Euros from Santa Cruz 

Biotechnology. Therefore, we decided to buy the commercially available Q/D combination 

(Synercid
®

) and to separate D by liquid chromatography from the drug mixture. After trying 

different solvent combinations, I found that dichloromethane (DCM) and ethanol (EtOH) in a 

8:2 v/v ratio had the highest separatory power on silica gel as stationary phase (Retention 

factor, RfD = 0.86, RfQ = 0.16) . Next, I used this solvent mixture as eluent to separate D and 

Q by a preparative layer chromatography (PLC) and obtained pure D, with a recovery yield 

of 85%. Dalfopristin identity was confirmed by nuclear magnetic resonance spectroscopy 

(NMR) (Figure 6.4) and electrospray mass spectrometry (ESI-MS) analyses (m/z = 692 

[M+H]+). 

 

Figure 6.4 1H NMR (CDCl3, 400MHz) spectrum of dalfopristin (D). 
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Next I performed a Diels-Alder reaction using maleic anhydride as dienophile. I evaluated 

several reaction conditions, including different reaction times and temperatures, microwave 

irradiation and the presence of AlCl3 (Li et al., 2008). The best reaction condition (1.5 

equivalents of maleic anhydride and 1 equivalent of AlCl3 in DCM 3h at -35°C followed by 

reflux for 12h) (Scheme 6.1) allowed to obtain a first D derivative (1) which I further purified 

by PLC using DCM:EtOH = 8.2 (v/v) as eluent. 1HNMR (Figure 6.5a) and ESI-MS spectra 

(m/z = 789 [M+H]
+
, and m/z = 787 [M-H]

-
) (Figure 6.5b) are in agreement with the predicted 

structure. We are currently fully characterizing the structure of the obtained compound by 

2D heterocorrelated NMR experiments.  

 

Scheme 6.1 Reaction conditions to produce 1. Dalfopristin was reacted with 1.5 equivalents 

of maleic anhydride and 1 equivalent of AlCl3 in DCM 3h at -35°C followed by reflux for 12h. The 

parts of the molecules reacting together are highlighted in pink.  
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Figure 6.5 Maleic anhydride Diels-Alder adduct (1) characterization. a. 
1
H NMR (CDCl3, 

400MHz) spectrum. b. ESI-MS spectra, showing the signals at m/z 811 [M+Na]
+
 and m/z 789 [M+H]

+
 

in positive ion mode, and m/z 787 [M-H]
-
 in negative ion mode. 

 

Further high-performance liquid chromatography (HPLC) analysis will allow to define whether 

the obtained product is a single isomer or not. The stereochemistry of the obtained maleic 

anhydride Diels Alder adduct represents a critical point and extensive NMR experiments 

could help in its definition. Additional docking calculation considering the different isomeric 

forms could determine if the isomer(s) we obtained is/are the one(s) with the strongest 

interaction capability. 
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7. FUTURE PERSPECTIVES 

 

In the light of the successful result obtained by performing the Diels-Alder reaction using 

maleic anhydride as dienophile, we plan to produce more derivatives belonging to the 

“Diels-Alder series” using 1,4 benzoquinone and maleimide as dienophiles, whose 

structures are reported in Figure 7.1. Contrarily to the maleic anhydride adduct that 

presents a H-bond acceptor (O), the maleimide adduct presents a H-bond donor group (NH) 

pointing toward the pocket of the binding site, which confers the ability to interact with H-

bond acceptor residues. Diels-Alder derivatives of dalfopristin (D) have not been previously 

described, and therefore represent novel molecules whose biological activity is worth of 

further investigation. 

 

Figure 7.1 Diels-Alder derivatives of dalfopristin. 1,4 benzoquinone-Diels-Alder derivative 

(left) and maleimide-Diels-Alder derivative (right). The new groups introduced in the scaffold of 

dalfopristin are highlighted in pink. 

Next, we will move toward the exploration of the positions on the D scaffold where it is 

possible to introduce new chemical moieties. These positions are represented by C14, C16 

and C26, as depicted in Figure 7.2. 

As pointed out by docking calculation, the binding site pocket present around the hydroxyl 

group in position C14 could accommodate small substituents, possibly able to act as H 

bonds donors, such as NH2, NHOH, NHNH2. In addition, we could also try to functionalize 

the hydroxyl group to small carbanilates (-OCONH2, -OCONHMe) as reported in Lam et al., 

1993 (Figure 7.2). 
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The replacement of the ketone group (C=O) in position C16 with a small substituent, such 

as a halogen atom (Figure 7.2), could increase the interaction with the mitoribosome as 

predicted by docking calculation. The R configuration at this position has been reported to 

possess a greater biological activity compared to the S configuration (Bacque et al., 2005), 

therefore we will focus on producing R isomers. 

Finally, the position in C26 has been largely studied from a chemical point of view, because 

it allows to introduce side chains able to increase the water solubility of streptogramin A 

molecules. The diethylaminoethylsulfonyl chain present on the dalfopristin scaffold is known 

to be easily hydrolyzed at pH 7.4 (Noeske et al., 2014). Starting from virginiamycin M1 and 

exploiting a Michael addition reaction, we will add several N-alkyl or S-alkyl chemical 

moieties in position C26. The “alkyl” chain (CH2)n will present a variable length (with n=2-4) 

and will end with a tertiary amine, which could also be a cyclic amine, such as a pyrrolidine, 

a piperazine or a morpholine. The presence of an amino group offers the possibility of 

obtaining conjugates salts, further increasing the compound’s water solubility. 

 

 

Figure 7.2 Derivatives of dalfopristin in C14, C16, C26 positions. R1 = OH, NH2, NHOH, 

NHNH2, OCONH2, OCONHMe. R2 = H, R3 =OH, NH2, F, Cl, I, Br, CN, SCN, NCS, N3, CF3. R2 =R3 = 

O. R4 = N-Alkyl, S-alkyl. 

 

Most if not all the derivatives which are obtainable introducing chemical moieties in C14, 

C16 and C26 positions have been already reported, therefore their chemical synthesis 

should be easily performed. Even if these molecules are not completely new, their activity in 

the context of GBM, and more in general in the context of cancer, have never been 

evaluated before. Moreover, considering that the modification introduced would increase the 

affinity for the mitoribosome, these derivatives are endowed with a greater therapeutic 

potential compared to dalfopristin.  
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The choice of the derivatives to be synthesized will be guided both by docking calculation, 

which will allow to select the most promising compounds based on the interactions with the 

binding site, and by predicting in silico their ADME properties and the BBB penetration 

parameters. 

Each newly synthesized derivative will be fully characterized and its chemical purity will be 

assessed by HPLC analysis.  

The synthesized derivatives (30-40 molecules) will be tested in vitro on COMI and VIPI cells 

for their ability to inhibit cellular growth using the Hoechst 33342-PI assay previously 

described in the Results chapter. The derivatives with the strongest effect on cell growth 

(~10 molecules) will be then evaluated for their capability to cross the BBB in vitro, using a 

BBB in vitro model, such as BBB-like endothelial monolayers obtained by differentiation of 

iPSCs (Lauschke et al., 2017). 

Finally, the compounds endowed with the greatest potential to cross the BBB (3 molecules) 

will be tested in vivo in comparison to dalfopristin for their ability to reduce tumor cells 

invasion in a patient derived-GSCs xenograft mouse model as described in the Results 

chapter. 



90 
 

8. EXPERIMENTAL PROCEDURES 

 

8.1 CELL CULTURE 

Human glioblastoma stem cell lines COMI and VIPI were kind gifts from Antonio Daga 

(Azienda Ospedaliera Universitaria San Martino di Genova, Italy), and 030616 from 

Rossella Galli (San Raffaele Hospital, Milan, Italy). COMI, VIPI and 030616 were cultured in 

DMEM/F-12 and Neurobasal media (Thermo Fisher Scientific, 1:1 ratio), supplemented with 

GlutaMAX (2 mM; Thermo Fisher Scientific), B27 supplement (1%; Thermo Fisher 

Scientific), Penicillin G (100 U/mL; Sigma Aldrich), recombinant human fibroblast growth 

factor-2 (bFGF) (10 ng/mL; R&D Systems), recombinant human epidermal growth factor 

(EGF) (20 ng/mL; R&D Systems) and heparin (2 μg/mL; Sigma Aldrich) at 37°C, 5% CO2. 

Cells were grown either as spheres in suspension or as adherent cultures on laminin-coated 

flasks where they maintain intact self-renewal capacity (Pollard et al., 2009).  

Human glioblastoma stem cell lines GB6, GB7, GB8, G144, G166 and the human fetal 

neural stem cell line CB660 were kind gifts from Luciano Conti (CIBIO, University of Trento, 

Italy) and were cultured as adherent cultures on laminin-coated flasks in Euromed-N media 

(Euroclone), supplemented with GlutaMax (2 mM), B27 supplement (2%), N2 (1%; Thermo 

Fisher Scientific), Penicillin G (100 U/mL), recombinant human fibroblast growth factor-2 

(bFGF) (20 ng/mL), and recombinant human epidermal growth factor (EGF) (20 ng/mL) at 

37°C 5% CO2. Culture flasks were coated with laminin (10 μg/mL, Thermo Fisher Scientific, 

cat. 23017015) and incubated for 3h at 37°C or overnight at 4°C prior to use.  

Human lung fibroblasts, MRC5, were cultured in EMEM media (Thermo Fisher Scientific), 

supplemented with 10% FBS, GlutaMAX (2 mM; Thermo Fisher Scientific) and Penicillin G 

(100 U/mL) at 37°C, 5% CO2. 

For GSCs differentiation, cells were grown on laminin-coated plates in the above media 

without growth factors and with the addition of 10% FBS (Thermo Fisher Scientific) for 10-

14 days. For astrocyte differentiation, CB660 cells were grown on laminin-coated plates in 

the above media without growth factors and with the addition of 5% FBS for 3 weeks. 

For hypoxia and anoxia experiments, cells after treatment were grown in a hypoxic chamber 

(Invivo2 200, Baker Ruskinn, Hypoxic, 1% O2) or in anoxic conditions using an anaerobic jar 

(2.5 L, Mitsubishi Gas Chemical America) and an anaerobic atmosphere generator bag 

(Genbox, cat. 96124).  
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8.2 HIGH CONTENT SCREENING AND SCREENING ANALYSIS 

A custom-made library was created using compounds available from the Selleck Translation 

Inhibitors and MS Discovery libraries, and additional compounds acquired from other 

companies (Table 3.2, at pages 34-36). All compounds were solubilized in dimethyl 

sulfoxide (DMSO, Sigma Aldrich) and stored frozen prior to use. COMI and VIPI cells were 

plated in 96-well microtiter plates in 150 μL of media at plating densities of 6,000 and 4,500 

cells/well, respectively, and incubated for 24h prior to drug treatment. The drugs were 

added to a final concentration of 100 μM and the plates were incubated for 24h at 37°C. 

Each treatment was performed in a technical triplicate. The positive control wells were 

treated with FCCP, rotenone and oligomycin A at 100 μM for 24h or with FCCP (Cayman 

Chemical, cat.15218) at 100 μM for 30min at 37°C. Next, cells were stained with 200 nM 

MitoTracker Orange (Thermo Fisher Scientific, cat. M7510) and incubated for 30min at 

37°C. Subsequently, cells were fixed by direct addition of paraformaldehyde solution to a 

final concentration of 4% v/v and incubation for 15min at room temperature, followed by a 

wash with 200 μL of PBS using. The cells were then stained with 5 μM DRAQ5 (Cell 

Signaling, cat. 4084) for 20min at room temperature protected from light. Drug dilution and 

addition was performed using Tecan Evo 200 liquid handler, whereas fixing, PBS washing 

and dyes dispensation were performed using BioTek EL406 washer dispenser. The plates 

were read using the Operetta-High Content Imaging System (Perkin Elmer). Compound 

precipitation was visually assessed and interfering compounds were excluded from the 

analysis. 

In order to perform phenotypic profiling of the compound-induced toxicity effects, the image 

data were visualized and analyzed using the Harmony Software. Six informative features 

describing cellular compactness and intracellular fluorescence distribution were extracted to 

describe cellular or mitochondrial toxicity phenotypes (Table 3.3, at page 39).  

The data were plate-wise normalized by computing the compound percentage of the vehicle 

control treatment (DMSO) for each feature. The informative content of a feature was 

assessed by testing whether the feature values for the positive controls were significantly 

different from the vehicle treatment (t-test, FDR < 0.05). For each library compound we 

assessed the size of the effect induced on each feature. A compound was defined as a hit 

for a given feature when the feature deviated from the median value of all compounds by a 

distance larger than 1.5 times the median absolute deviation. Individual compounds were 

scored by the number of affected features. When a feature was affected by a compound, it 

accounted for one over the number of informative features (in this case ⅙, since the 

number of considered features is 6). Therefore, when all the features were affected, the 
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maximal attainable score for a given compound was one (or 100%). We next assigned a 

percentage score to each class of compounds by calculating the average of the scores 

attained by all the compounds included in each class.  

 

8.3 VIABILITY ASSAYS 

For the evaluation of the effect of OXPHOS and glycolysis inhibitors on GSCs viability, cells 

were plated in a 96 laminin-coated well plate (2,500 cells/well of COMI and VIPI) and 

treated the following day with rotenone (1 μM, Sigma Aldrich, cat. R8875), Oligomycin (1 

μM, Sigma Aldrich, cat. O4876), Antimycin A (1 μM, Sigma Aldrich, cat. A8674), 2-

deoxyglucose (2-DG, 250 μM, Sigma Aldrich, D8375) and dichloroacetic acid (DCA, 5 mM, 

Sigma Aldrich, cat. 347795) for 72h. Each treatment was performed in technical triplicate. 

For the evaluation of the effect of streptogramins, including quinupristin/dalfopristin (Q/D), 

tetracyclines and pleuromutilins on GSCs viability, cells were seeded into 96-well laminin-

coated microtiter plates in 150 μL of media at plating densities ranging from 3,500-6,000 

cells/well. The plates were incubated for 24h prior to drug treatment. Serial drug dilutions 

were prepared in PBS to provide a total of seven drug concentrations plus control. 10 μL of 

these dilutions were added to each well, and the plates were incubated for additional 48h. 

Each treatment was performed in technical quadruplicate. The following compounds were 

tested: Dalfopristin (D) (Santa Cruz, cat. sc-362728), Quinupristin (Q) (Bioaustralis, cat. 

BIA-Q1354), Quinupristin-dalfopristin mesylate complex (Q/D) (Santa Cruz, cat. sc-391726), 

Virginiamycin M1 (Sigma Aldrich, cat. V2753), Virginiamycin B (Santa Cruz, cat. sc-

362038), Virginiamycin S1 (Apollo Scientific, cat. BIV1004), Griseoviridin (Apollo Scientific, 

cat. BIBR1137), Viridogrisein (Apollo Scientific, cat. BIBR1132), Tetracycline (Sigma 

Aldrich, cat. 87128-25G), Methacycline HCl (Sigma Aldrich, cat.37906-100MG-R), 

Oxytetracycline (Sigma Aldrich, cat PHR1537-1G), Doxycycline HCl (Sigma Aldrich, cat. 

D3447-500MG), Demeclocycline HCl hydrate (Sigma Aldrich, cat. 46161-100MG), 

Meclocycline Sulfosalicylate (Sigma Aldrich, cat. M1388-500 MG), Minocycline HCl (Santa 

Cruz, cat. sc-203339), Pipacycline (Santa Cruz, cat. sc-391690), Tigecycline (Santa Cruz, 

cat. sc-394197), Valnemulin (MicroSource Discovery library) and Tiamulin (Sigma Aldrich, 

cat., 34044). 

After the drug treatments, the cells were stained with Hoechst 33342 (1μg/mL; Thermo 

Fisher Scientific, cat. H1399) and propidium iodide (PI, 1μg/mL; Sigma Aldrich, cat. P4170) 

and incubated for 20min shaking in the dark. The plates were then read using Operetta-

High Content Imaging System (Perkin Elmer) and analysed using the Harmony Software. 

The number of viable cells was calculated by subtracting PI positive cells from the total 
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number of cells estimated by Hoechst 33342 staining and normalized on the non-treated 

control. 

For cytotoxicity analysis on GSCs grown as neurospheres, the cells were mechanically 

dissociated and plated at a density of 2x104 cells/mL in a 96-well plate, in triplicate. Q/D was 

added 24 hours after cell plating. ATP levels were measured using the CellTiter-Glo® 

Luminescent Cell Viability Assay (Promega, cat. G7570) as per the manufacturer’s 

instructions after 48h and 72h of treatment.  Percentage viability was calculated upon 

normalization on the non treated control. This experiment was performed at the Istituto 

Superiore di Sanità by Lucia Ricci-Vitiani’s group. 

Dose-response curves were plotted and growth inhibition 50 (GI50) values calculated using 

the GraphPad Prism software. 

For cytotoxicity analysis on COMI cells grown as neurospheres, the cells were mechanically 

dissociated and ten cells/well were plated in Ultra-Low attachment round bottom 96 well 

plates (Costar) and treated with desired Q/D concentrations. The cells were centrifuged at 

300g for 30sec, followed by the first acquisition using Operetta-High Content Imaging 

System (Perkin Elmer). The images were subsequently acquired over the course of 9-10 

days. The area of the spheres formed was assessed using the Harmony Software. 

 

8.4 NEUROSPHERE FORMATION ASSAY  

COMI cells grown in suspension were plated at a density of 50,000 cells/mL and treated 

with Q/D for 72h. The spheres were then dissociated and the cells were counted and plated 

at a density of 10 or 100 cells/well in a 96 well plate without the drug. After 10 days, the 

spheres formed were stained with 1 μM Calcein AM (Thermo Fisher Scientific, cat. 

C3100MP; for 20 min at 37°C), imaged using Operetta-High Content Imaging System 

(Perkin Elmer) and analyzed using Harmony Software. Only spheres greater than 100μm 

were quantified. The experiment was performed in a biological triplicate, with 20 technical 

replicates each.  

 

8.5 MITOCHONDRIAL AND CYTOSOLIC PROTEIN SYNTHESIS 

ASSAY 

Cells were plated 24 h prior to treatment (180,000 cells/well of COMI cells in a 6 well plate) 

and incubated with Q/D, D or Q for further 24h prior to [35S]-methionine labeling. To assay 

for mitochondrial protein synthesis, growth medium was removed and cells were washed 
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twice with methionine/cysteine-free DMEM medium, followed by an incubation in 

methionine/cysteine-free DMEM medium containing 96 μg/mL Cysteine, 1% B27 

supplement, 1% GlutaMax; 1% Sodium Pyruvate, 10 ng/mL bFGF, 20 ng/mL EGF, 2 μg/mL 

heparin and 80 μg/mL emetine (Sigma Aldrich, cat. E2375) for 15 min at 37°C. 

Subsequently, [35S]-methionine (Perkin Elmer, cat. NEG709A005MC) was added to a final 

concentration of 166.6 μCi/mL and the labeling was performed for 20 min at 37°C. The cells 

were then detached and pelleted at 4,000 rpm for 5min. The pellet was washed three times 

with 1 mL of PBS. Cell pellets were resuspended in protein lysis buffer containing protease 

inhibitors and 1.25 U/µL benzonase. Protein concentrations were measured with PierceTM 

BCA Protein Assay Kit (Thermo Fisher Scientific, cat. 23227) and equal amount of protein 

samples were separated on SDS-PAGE gels (NuPAGETM 12% Bis-Tris Protein Gels, 

Thermo Fisher Scientific, cat. NP0343BOX). The labelled proteins were visualized and 

quantified using a PhosphorImager system and ImageQuant software (Molecular Dynamics, 

GE Healthcare). To assay for cytosolic translation, the above procedure was used without 

the addition of emetine. 

 

8.6 IMMUNOBLOTTING 

Total cell lysates were prepared from cells. Briefly, cells were washed with PBS and 

resuspended in lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 0.25% 

NP-40, 0.1% Triton X-100, 0.1% SDS) supplemented with protease inhibitors. Protein 

concentrations were quantified with PierceTM BCA Protein Assay Kit (Thermo Fisher 

Scientific, cat. 23227). Equal amounts of protein were separated on SDS-PAGE and 

transferred to nitrocellulose or PVDF (for anti-LC3 antibody only) membrane. Membranes 

were probed with anti-MTCO1 (COX1, Abcam, cat. ab14705), anti-COX4 (Cell Signaling, 

cat. 4850), anti-β-tubulin (Santa Cruz, cat. sc-53140), anti-LC3 (Cell Signaling, cat. 3868S), 

and secondary HRP-conjugated antibodies (Santa Cruz Biotechnology). Detection was 

performed using Amersham ECL Prime or Select Western Blotting Detection Reagent (GE 

Healthcare Life Sciences) and ChemiDoc Imaging System (Bio-Rad). Data were analyzed 

using ImageLab software. 

 

8.7 IMMUNOFLUORESCENCE 

The cells were fixed either with paraformaldehyde solution (4% v/v final, 15 min incubation 

at room temperature) or with 100% ice-cold methanol (5 min incubation at room 

temperature, only for LC3B IF), followed by two washes with PBS. The cells were then 



95 
 

permeabilized with 0.3% Triton X-100 - 3% BSA in PBS for 45 min at room temperature. 

The primary and secondary antibodies were diluted in 3% BSA-PBS solution. The 

incubation with the primary antibody was carried out at 4°C overnight, whereas the 

incubation with the secondary antibody was performed for 1h at room temperature. Cell 

morphology was determined by staining with HCS CellMask™ Deep Red Stain (Thermo 

fisher Scientific, cat. H32721, 1:2000, 20 min, room temperature). The plates were then 

read either using Operetta-High Content Imaging System (Perkin Elmer) and analyzed by 

the Harmony Software or using the Leica TCS SP5 confocal microscope and processed by 

imaging softwares ImageJ (version v1.51w) and Photoshop. For the latter, images were 

acquired on a Leica TCS SP5 confocal microscope with a 63x oil immersion objective, 2x 

zoom, 1024x1024 resolution, 200Hz speed, lasers Argon 488 nm and Diode laser 633 nm, 

step 0.89μm. Z-stack images were acquired and LC3 puncta quantification was performed 

on image stacks of region of interests containing single cells, using the “3D Maxima finder” 

plugins of ImageJ. Both size and intensity threshold constraints were applied to the 

quantification. 

 

8.8 RNA EXTRACTION, REVERSE TRANSCRIPTION AND 

QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION 

Total RNA was extracted using QIAzol reagent (QIAGEN) according to the manufacturer’s 

instructions. Reverse transcription was performed on 500 ng of RNA using iScript Reverse 

Transcription Supermix (BioRad, cat.no.170-8891, unique blend of oligo(dT) and random 

hexamer primers) on C1000 Thermal Cycler (BioRad). The total cDNA obtained was diluted 

1:100, and quantitative real-time PCR was performed on 2 μL of sample using 2x qPCR 

SyGreen Mix Separate ROX (PCR Biosystems, cat.no. PB20.14-05) following the 

manufacturer’s instructions on CFX384 Real-Time System (BioRad). All assays were 

performed in triplicate in 4-5 independent experiments. Data was analysed using CFX 

Manager software (BioRad). Relative expression values of each target gene were 

normalized to GAPDH and 18S RNA level. The following primers were used at 500 nM 

concentration:     

COX1: 5’- CTATACCTATTATTCGGCGCATGA-3’ and 5’-CAGCTCGGCTCGAATAAGGA -

3’,  

COX4: 5’-GCCATGTTCTTCATCGGTTTC-3’ and 5’-GGCCGTACACATAGTGCTTCTG-3’,  

18S: 5’-GGACATCTAAGGGCATCACA-3’ and 5’-AGGAATTGACGGAAGGGCAC-3’,  

GAPDH: 5’-CAACGAATTTGGCTACAGCA-3’ and 5’-AGGGGTCTACATGGCAACTG-3’. 
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8.9 BN-PAGE AND IN GEL COMPLEX ACTIVITY ASSAY 

Cells were plated in two T75 flasks (700 000 cells/flask) and treated with Q/D after 24h for 

additional 48h, 72h and 96h. Mitochondria were isolated in the following manner: cells were 

detached, pelleted and resuspended in 750 μL of MIB+BSA buffer (0.32 M sucrose, 1 mM 

EGTA pH 8, 20 mM Tris-HCl, pH 7.2, 0.1% fatty acid-free BSA). The cells were 

homogenized using Potter-Elvehjem homogeniser (60 strokes) and centrifuged at 1,000 g 

for 5min at 4°C. The supernatant was collected and the pellet resuspended in MIB+BSA, 

rehomogenised (20 strokes) and centrifuged again. The supernatant was collected and 

pooled with the first one, then centrifuged at 12,000g for 10 min at 4°C to pellet the 

mitochondria. The pellet of mitochondria was subsequently washed once with MIB+BSA, 

once with MIB, resuspended in 100 μL of ACNA buffer (1.5 M aminocaproic acid (Sigma 

Aldrich, cat. A2504), 50 mM BisTris, pH 7) and quantified using Qubit™ Protein Assay 

Kit (Thermo Fisher Scientific, cat. Q33212). Digitonin (Sigma Aldrich, cat. D5628-1G) was 

added to a final concentration of 1% w/v, the samples were vortexed and incubated on ice 

for 20 min, followed by a centrifugation at 14,000g for 30min at 4°C. The supernatant was 

mixed with the loading buffer, and 50 µg of protein was separated on Blue Native PAGE 

gels (NativePAGETM 3-12% BisTris Protein Gels, Thermo Fisher Scientific, cat. 

BN1001BOX). The conditions of incubation for the complexes have been adapted from 

(Nijtmans et al., 2002). Briefly, the gels were incubated overnight at room temperature with 

the respective complex substrates: Complex I:  2 mM Tris HCl, pH 7.4; 0.1 mg/mL NADH 

(Sigma Aldrich, cat. N8129-50MG); 2.5 mg/mL iodonitrotetrazolium chloride (Sigma Aldrich, 

cat. I8377-1G); Complex II: 4.5 mM EDTA, 0.2 mM phenazine methosulfate (Sigma Aldrich, 

cat. P9625-500MG), 84 mM succinic acid (Sigma Aldrich, cat. S2378-100G) and 0.5 mg/mL 

iodonitrotetrazolium chloride (Sigma Aldrich, cat. I8377-1G); Complex IV:  0.5 mg/mL 3.3'-

diamidobenzidine tetrahydrochloride (DAB) (Sigma Aldrich, cat. D5637-1G), 50mM 

phosphate buffer pH 7.4, 1 mg/mL cytochrome c (Sigma Aldrich, cat. C2506-1G), 0.2 M 

sucrose, 20 µg/mL (1 nM) catalase (Sigma Aldrich, cat. C9322-1G), Complex V: 3.76 

mg/mL glycine, 5 mM MgCl2; Triton X-100, 0.5 mg/mL lead nitrate (Sigma Aldrich, cat. 

203580), 8 mM ATP (Sigma Aldrich, cat. A7699-5G), pH 8.4.  

 

8.10 IMMUNOBLOTTING AFTER BN-PAGE 

Proteins separated on Blue Native PAGE gels (NativePAGETM 3-12% BisTris Protein Gels, 

Thermo Fisher Scientific, cat. BN1001BOX) were transferred to PVDF membrane (25 V, 

4°C, O/N, wet-transfer, transfer buffer with 20% MeOH and 2 mL of 10% SDS in 1L). 
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Membranes were stripped to remove the blue-staining (Restore™ PLUS Western Blot 

Stripping Buffer, Thermo Fisher Scientific, cat. 46430, 3 min) and probed with anti-OXPHOS 

complex I (39kDa subunit; clone 20C11, Thermo Fisher Scientific, cat. A21344), anti-SDHA 

complex II (2E3GC12FB2AE2, Abcam, cat. ab14715), anti-OxPhos complex III (core 1 

subunit; clone 16D10, Thermo Fisher Scientific, cat. A21362), anti-OxPhos complex IV 

(subunit 1; clone 1D6E1A8, Invitrogen cat. 459600), anti-ATP5A complex V (15H4C4, 

Abcam, cat. ab14748) and Amersham ECL secondary HRP-conjugated antibodies (GE 

Healthcare). Proteins detection was performed using Clarity™ Western ECL Substrate 

Detection Reagent (Biorad, cat. 1705061). 

 

8.11 HIGH-RESOLUTION RESPIROMETRY ASSAY 

High-resolution respirometry was performed using a 2 mL chamber OROBOROS 

Oxygraph-2k (Oroboros Instruments) at 37°C. Respiration rates were calculated as the 

negative time derivative of oxygen concentration measured in the closed respirometer and 

expressed per number of viable cells and corrected by residual oxygen consumption (ROX, 

after antimycin A addition). The amplified signal was recorded on a computer with online 

display of the calibrated oxygen concentration and oxygen flux (DatLab software for data 

acquisition and analysis; Oroboros Instruments). Cells were plated 24h prior to treatment 

and incubated with Q/D for further 48h. The cells were then detached and 1,000,000 cells 

were injected into each chamber. Oxygen consumption was evaluated for cellular ROUTINE 

respiration, and then cells were permeabilized with digitonin 4.1 uM (Fluka, cat. 37008) in 

MiR05 medium (10 mM KH2PO4, 60 mM lactobionic acid (Sigma Aldrich, cat. 153516), 20 

mM HEPES, 3 mM MgCl2, 0.5 mM EGTA, 20 mM taurine (Sigma Aldrich, cat. T0625), 110 

mM D-sucrose and 1 mg/mL BSA fatty acid free). Complex I activity was measured after 

malate (2 mM, Sigma Aldrich, cat. M1000), glutamate (10 mM, Sigma Aldrich, cat. G1626) 

and ADP (5 mM, Calbiochem, cat. 117105) injection, and complex I and II activity after 

additional succinate (10 mM, Sigma Aldrich, cat. S2378) injection. The ETS capacity 

(maximum uncoupled respiration) was induced by stepwise titration of carbonyl cyanide p-

(trifluoromethoxy) phenylhydrazone (FCCP, Sigma Aldrich, cat. C2920) (typically 3–4 steps, 

1 ul each of 1 mM FCCP). Complex II activity was measured after the addition of rotenone 

(0.5 uM, Sigma Aldrich, cat. R8875). Residual respiration (ROX) was measured after 

inhibition with antimycin A (2.5 µM, Sigma Aldrich, cat. A8674).   
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8.12 LACTATE ASSAY 

Cells were plated in a 96 well plate (4,000 cells/well of COMI and 3,500 cells/well of VIPI) 

and treated the following day with Q/D for 48h. Media was collected and the lactate 

production was measured using Glycolysis Cell-Based Assay Kit (Cayman Chemical, cat. 

600450 ) according to the manufacturer’s instructions. The cells were then fixed with 4% v/v 

paraformaldehyde for 15 min at room temperature and stained with Hoechst 33342 (1 

μg/mL). The nuclei were quantified using Operetta-High Content Imaging System (Perkin 

Elmer) and analysed by the Harmony Software. The lactate production was normalized on 

the number of cells.  

 

8.13 CRYO-ELECTRON MICROSCOPY DATA COLLECTION, IMAGE 

PROCESSING, MODEL BUILDING AND REFINEMENT 

Cryo-EM experiments were performed by Alexey Amunts’s group at SciLifeLab, Stockholm. 

Human mitoribosomes and grids were prepared as described previously (Amunts et al., 

2015) with some modifications. Briefly, 2 liters of HEK293S TetR GnTi- cells lacking N-

acetyl-glucosaminyltransferase I were grown to a final concentration of 4.2 x 106 cell/mL. 

Prior to cell collection and mitoribosome isolation, the cells were treated with 5 µM Q/D for 

24h. Three μL of purified mitochondrial ribosomes at a concentration of 3.6 Abs at 280 nm 

was incubated for 30sec on glow-discharged holey carbon grids (Cu Quantifoil R2/2), onto 

which a home-made continuous carbon film had previously been deposited, prior to 

vitrification in a Vitrobot MKIV (3 second blot, 4 C, 100 % humidity). Images were collected 

on a 300 kV FEI Titan Krios electron microscope, a slit width of 20 eV on a GIF-Quantum 

energy filter. A Gatan K2-Summit detector was used in counting mode at a magnification of 

130,000 (yielding a pixel size of 1.05 Å), and a dose rate of ~5.2 electrons per pixel per 

second. Exposures of 8ses (yielding a total dose of 38 eÅ-2) were dose-fractionated into 20 

movie frames that were stacked into a single MRC stack using newstack. 4225 images 

were collected using EPU automatic data collection with defocus values ranging from 0.4 to 

4.5 µm. 

Collected micrographs were corrected for local-frame movement as well as dose filtered 

using UcsfDfCorr (Zheng et al., 2017). The contrast transfer function parameters were 

estimated using GCTF-0.5 (Zhang, 2015), for all other image processing steps RELION-

2.1.b1 (Kimanius et al., 2016). 578,573 particles were picked using reference based picking, 

where bad particles were removed by particle sorting (546,701 particles retained) and 
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subjected to reference-free 2D class averaging, resulting in 387,428 particles for 3D 

classification. 4 classes containing 138,030 particles were pooled and subjected to 3D auto-

refinement, yielding a map of the human mitochondrial ribosome. However, since there was 

some heterogeneity visible in the reconstruction, the particles were subjected to further fine 

angular classification and 100,000 particles were selected for another 3D auto-refinement 

step. Since Q/D is known to interact with the bacterial large subunit and in order to improve 

the quality of the map, masked focused-refinement was used to focus on the LSU. The 

resolution of the final reconstruction was 3.9 Å. 

Reported resolutions are based on gold-standard refinement applying the 0.143-criterion on 

the FSC between reconstructed half-maps. The FSC was corrected for the effects of a soft 

mask on the using high-resolution noise substitution. All 3D refinements used a 70 Å low-

pass filtered initial model, the first of which was a previous low resolution reconstruction of 

the human mitochondrial ribosome (EMDB-2876 (Amunts et al., 2015)). Before 

visualization, all density maps were corrected for the modulation transfer function of the 

detector, and then sharpened by applying a negative B-factor that was estimated using 

automated procedures (Rosenthal and Henderson, 2003).  

The quality of the map allowed unambiguous model building with Coot (Emsley and 

Cowtan, 2004). Stereochemical refinement was performed using phenix.real_space_refine 

as implemented in the PHENIX suite (Adams et al., 2010). The final model was validated 

using MolProbity (Chen et al., 2010).  

 

8.14 MITOCHONDRIAL MASS  

Mitochondrial mass was assayed by staining the mitochondria with MitoTracker Orange 

(Thermo Fisher Scientific) or anti-COX4 antibody (Abcam) as described in the 

immunofluorescence section at pages 94-95. Concomitant staining with Hoechst 33342 

(1μg/mL; Thermo Fisher Scientific, cat. H1399) and HCS CellMask™ Deep Red Stain 

(Thermo fisher Scientific, cat. H32721) was performed to visualize cell nuclei and define 

cytoplasmic region respectively. 10-15 images per well (3 wells each condition) were 

acquired using Operetta High Content Imaging System (Perkin Elmer) in widefield mode 

with a 20X objective. The focus plane was optimized for each fluorescence channel to 

obtain the best resolution and signal to noise ratio.  Image analysis was performed using 

the Harmony Software (Perkin Elmer). Dedicated alghorithms were chosen to define cell 

regions and spots and the resulting analysis sequence was applied automatically on all 

images. A total of 2000-3000 cells per well were analysed and the number of mitochondria 

was estimated by counting the number of MitoTracker Orange or COX4 positive spots 
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present in the cytoplasmic region defined using HCS CellMask™ Deep Red Stain and 

expressed as square pixel (px2) (number of spots/Area of cytoplasm). 

 

8.15 CELL CYCLE ASSAY 

Cells were plated 24h prior to treatment (120,000 cells/well of COMI cells in a 6 well plate) 

and incubated with Q/D for additional 48h. Cell cycle analysis was conducted using FACS 

(BD FACSCanto II) after staining with Click-IT EdU Flow Cytometry Assay kit (Thermo 

Fisher Scientific, cat.C10634) according to the manufacturer’s instructions. The experiment 

was performed in a biological triplicate. Data were processed by BD FacsDIVA V8.0.1™ 

software.  

 

8.16 APOPTOSIS ASSAYS  

Apoptosis was assessed using FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen, 

BD Biosciences, cat. 556547). Cells were plated 24h prior to treatment (270,000 cells/6cm2 

plate of COMI cells) and incubated with Q/D for further 48h. 200,000 cells were stained 

according to the manufacturer's instructions and analyzed using FACS (BD FACSCanto II). 

Data were processed by BD FacsDIVA V8.0.1™ software. 

 

8.17 AUTOPHAGY ASSAYS  

To assess for autophagic flux, cells were plated 24h prior to treatment and incubated with 

6.5 μM Q/D for further 48h. In addition, for immunoblotting the cells were treated with 60 µM 

chloroquine for 24h (Sigma Aldrich, cat. C6628), 6.5 nM bafilomycin for 3h (Sigma Aldrich, 

cat. B1793) or 5 mM NH4Cl for 3h (Sigma Aldrich, cat. A9434). Immunoblotting was 

performed as described in the Immunoblotting section, at page 94. LC3B-II was quantified 

by densitometric analysis (Image Lab 2.0.1 software, Biorad) and normalized on β-tubulin 

as a loading control. For immunofluorescence analysis, cells were plated 24h prior to 

treatment and incubated with 6.5 μM Q/D for further 48h. In addition, the cells were 

treated with 60 µM chloroquine, 6.5 nM bafilomycin or 10 mM NH4Cl for 24h. 

Immunofluorescence for LC3 staining was carried out according to the procedure described 

in the Immunofluorescence section, at pages 94-95. Cell morphology was determined with 

staining with HCS CellMask™ Deep Red Stain (Thermo fisher Scientific, cat. H32721).  
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In order to evaluate the role of autophagy in the cytotoxic activity of Q/D, COMI cells were 

seeded into 96-well microtiter plates in 150 μL of media at plating densities of 4,000 

cells/well. The plates were incubated for 24h prior to drug treatment. Cells were pretreated 

with chloroquine (5,10 and 20 µM) for 3h and then treated with 6.5 µM of Q/D for further 

48h. The cells were stained with Hoechst 33342 (1μg/mL; Thermo Fisher Scientific, cat. 

H1399) and propidium iodide (PI, 1μg/mL; Sigma Aldrich, cat. P4170) and incubated for 20 

min shaking in the dark. The plates were then read using Operetta-High Content Imaging 

System (Perkin Elmer) and analysed using the Harmony Software. The number of viable 

cells was calculated by subtracting PI positive cells from the total number of cells estimated 

by Hoechst 33342 staining and normalized on the control. Each treatment was performed in 

technical quadruplicate and in biological triplicate. 

 

8.18 INTRACRANIAL IMPLANTATION OF GSCs IN 

IMMUNOCOMPROMISED MICE AND ANALYSIS OF BRAIN 

XENOGRAFTS 

In vivo experiments were performed by Roberto Pallini’s group at the Università Cattolica 

del Sacro Cuore, in Rome. Experiments involving animals were approved by the Ethical 

Committee of the Istituto Superiore di Sanità, Rome, Italy.  NOD-SCID mice (4–6 weeks old; 

Charles River, Italy) were implanted intracranially with 2 x 105 green fluorescence protein 

(GFP)-expressing GSC#1 cells resuspended in 5 μL of serum-free DMEM. For grafting, the 

mice were anesthetized with intraperitoneal injection of diazepam (2 mg/100 g) followed by 

intramuscular injection of ketamine (4 mg/100 g).  Animal skulls were immobilized in a 

stereotactic head frame and a burr hole was made 2 mm right of the midline and 1 mm 

anterior to the coronal suture, and cells were slowly injected using the tip of a 10-μL 

Hamilton microsyringe placed at a depth of 3.5 mm from the dura.  After grafting, the 

animals were kept under pathogen-free conditions in positive-pressure cabinets (Tecniplast 

Gazzada, Varese, Italy) and observed daily for neurological signs.  Beginning 8 weeks after 

implantation, the mice (n=4) were treated with Q/D (200 mg/kg ip in PBS) three times 

weekly for 3 weeks. Control animals (n=4) were treated with PBS. Body weight was 

monitored weekly. One week after discontinuation of therapy, the mice were deeply 

anesthetized and transcardially perfused with 0.1 X PBS (pH 7.4), then treated with 4% 

paraformaldehyde in 0.1 X PBS. The brain was removed, stored in 30% sucrose buffer 

overnight at 4°C, and serially cryotomed at 40 μm on the coronal plane. Sections were 

collected in distilled water, mounted on slides, and cover-slipped with Eukitt.  Images were 

obtained with a Laser Scanning Confocal Microscope (IX81, Olympus Inc, Melville, NY). In 
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control and Q/D-treated xenografts the density of tumor cells was assessed by counting the 

number of GFP-expressing GSCs in 10 non-superimposing 200x fields across the 

thalamus, fimbria, and optic tract of the right brain hemisphere.   

In order to perform immunofluorescence to assess BBB integrity, brain sections were 

incubated in ice-cold 100% methanol for 10 minutes at room temperature. After a wash in 

PBS for 5 minutes, sections were incubated in PBS containing 5% normal donkey serum for 

45 minutes and then incubated in 1:200 rabbit anti-Glucose Transporter-1 (Glut-1) (Merck 

Millipore, Burlington, MA) antibody, overnight at 4°C. After washes in PBS, sections were 

incubated for 1 hour at room temperature with an anti-rabbit secondary antibody (Vector 

Laboratories). Confocal images were generated using a Zeiss 510 Meta confocal 

microscope. Differences in density of GSCs between the Q/D-treated and control group 

were evaluated using Student’s t-test.  

 

8.19 QUANTIFICATION AND STATISTICAL ANALYSIS 

Results were reported as mean ± SD (standard deviation) or mean ± SE (standard error of 

the mean), as indicated in the figure legend. Details of each analysis are in figure legends. 

All in vitro experiments were repeated at least two times and animal experiments were 

performed once. All the experiments with representative images (including western blot and 

immunofluorescence) have been repeated at least twice and representative images are 

shown.  

 

8.20 SEMISYNTHESIS OF A FIRST DALFOPRISTIN DIELS ALDER 

ADDUCT 

Reagents and solvents were purchased from Sigma Aldrich or Merck VWR and used 

without further purification.  

Thin layer chromatography (TLC) was carried out to monitor reactions using Merck 

Kieselgel 60 PF254 TLC plates. Different spots were visualized using short wave ultraviolet 

light (254nm) and/or Ce(SO4)2 staining. Solvent conditions are reported and the retention 

factors (Rf) for the respective compounds are stated. Preparative thin layer chromatography 

(PLC) was used for compounds purification and was performed on 20 x 20 cm Merck 

Kieselgel 60 F254 0.5 mm plates. 
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Microwave-assisted reactions were carried out using a mono-mode CEM Discover reactor 

in a sealed vessel, monitoring the temperature of reaction mixtures by an external infrared 

control system.  

All evaporations were performed at reduced pressure. 

The structure of all reported compounds was elucidated through the use of proton (1H) 

nuclear magnetic resonance (NMR) technique.  NMR spectra were recorded on a Bruker-

Avance 400 spectrometer by using a 5 mm BBI probe with 90° proton pulse length of 8 

μsec at a transmission power of 0 db; 1H at 400 MHz were registered in CDCl3, which was 

previously treated on basic alumina to avoid acidic traces. Chemical shift (δ) values are 

given in part per million (ppm). 

Electrospray ionization (ESI)-MS mass spectra was performed on a Bruker Esquire-LC 

spectrometer with an electrospray ion source used in positive or negative ion mode by 

direct infusion of a methanolic solution of the sample, under the following conditions: source 

temperature 300C, drying gas N2, 4 L/min, positive ion mode, ISV 4 kV, OV 38.3 V, scan 

range 100–1,000 m/z. 
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