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Abstract

Time-resolved fluorescence measurements enable the study of structure of

molecular systems and dynamical processes inside them. This is possible

because of a very high sensitivity of fluorescence lifetime to the physical

and chemical properties of micro-environment in which fluorophores are

situated. However, proper detection of the fluorescence lifetime is a chal-

lenging task, due to the fact that the fluorescence decay time of commonly

used fluorophores lies in a nanosecond range. This puts strict requirements

on the parameters of the fluorescence detectors.

The features of single-photon avalanche diodes (SPAD) make these op-

tical detectors a good alternative to conventional photomultiplier tubes and

micro-channel plates. CMOS technology allows cointegration of a SPAD

and electronic circuits on the same substrate and provides advantages in

time resolution and noise characteristics. Monolithic integration of sig-

nal processing circuits and detectors on the same chip allows using such

detectors without additional external hardware.

New SPAD sensors with improved characteristics are produced every

year. However, the designers consider various performance metrics while

the importance of each particular detector characteristic depends on its

application. Therefore, the validation and optimization of SPAD charac-

teristics should be performed in a close connection with the analysis of a

specific system, wherein this detector will be used.

This work was aimed at developing of a model able to describe a typical
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fluorescence experiment with SPAD-based detector. The model simulates

all essential parts of the fluorescence experiment starting from the light

emission, through photo-physical processes occurring inside a bio-sample,

to a detector itself and read-out electronics.

The ability of the developed model to simulate various light sources

(laser and micro-LED), fluorescence measurement techniques (time-correlated

single photon counting and time-gating) was verified. The simulated results

were in good agreement with the experimental data and the model proved its

flexibility. Furthermore, the model provided the explanation of the distor-

tions in experimental fluorescent curves measured under a very high ambi-

ent light when pile-up effects appear. Finally, a set of virtual experiments

were established to investigate the influence of noisy pixels in SPAD array

on a lifetime estimation and to study the feasibility of time-filtering instead

of conventional optical filtering. Simulation results are in good agreement

with data available in literature.

Keywords [single photon avalanche diode, fluorescence decay, simulation

modelling, time-correlated single photon counting, time-gating]
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Chapter 1

Introduction

1.1 The Context

Fluorescence lifetime detection is a well-known and widely used method

of study of biological objects. This is due to the fact that the excited

state lifetime is highly sensitive to the fluorophore’s chemical environment.

For example, an increase of porphyrin markers fluorescence lifetime (in

comparison to the control cells) allows detection of tumours at very early

stages [1]; also, fluorescence allows measurement of oxygen concentration

inside cells since oxygen is a quencher of the fluorescence [2]. In gen-

eral, time-resolved fluoresce provides information about the size and the

shapfjhngdfge of molecules and dynamic processes that happen in the so-

lution in a nanosecond scale. Also the Förster resonance energy transfer

(FRET) technique, as a part of fluorescence lifetime detection, can be used

to determine the structure of complex molecules, such as proteins [3].

The typical equipment for fluorescence lifetime measurement includes

a narrow-wavelength light source to excite the selected fluorophore, an

optical system to separate the excitation and fluorescent light and a high-

sensitivity photodetector. Due to some limitations in the performance of

light sources, the frequency-domain measurements were historically the

first ones. In 1921, Wood [4] measured small phase changes to determine

1



1.1. THE CONTEXT CHAPTER 1. INTRODUCTION

the time interval between the absorption and emission of light. About

40 years later, the time-domain measurements became possible due to the

flashlamps serving as excitation sources [5]. With the appearance of sub-

nanosecond pulsed light sources, the capabilities of the time-domain mea-

surements have been increased. At the present time, the most popular

excitation light source is a picosecond pulsed laser.

Major changes also occurred on the detector side. PhotoMultiplier

Tubes (PMTs) were the first detectors used in fluorescence measurements.

They provide low noise and fairly high quantum detection efficiency in

the visible range of radiation, but on the other hand they are bulky, frag-

ile, expensive, require high supply voltage (2–3 kV) and are sensitive to

electromagnetic fields and mechanical vibrations. All of this makes PMTs

inapplicable for the construction of large arrays.

Solid-state single photon detectors became available much later. These

devices, called “Single Photon Avalanche Diodes” (SPAD), operate biased

above the breakdown voltage and generate macroscopic current pulses in

response to the absorption of single photons. Since their operation prin-

ciples are similar to those of Geiger counters, SPADs are also known as

Geiger-mode Avalanche PhotoDiodes (GM-APDs). SPADs are an attrac-

tive alternative to PMTs due to the advantages of solid-state devices, such

as: magnetic field immunity, robustness, long operative lifetime, small size,

lower cost, lower operation voltage and suitability for building of integrated

systems.

The progress in CMOS technology allows fabrication of the SPAD with

additional advantages, such as low power consumption and high fabrica-

tion yield. This further decreases the cost and allows for the fabrication

of monolithic arrays for large-area detection. Moreover, cointegration of

SPADs and electronic circuits on the same substrate provides advantages

in terms of time and noise characteristics. In addition, the on-chip imple-

2
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mentation of the signal processing allows the use of such detectors without

additional external hardware.

1.2 The Problem

The area of SPAD-based detectors is developing constantly and quickly.

Different techniques of SPAD fabrication result in devices with different

characteristics. Current research focuses mainly on the improvement of

particular characteristics using different performance metrics and without

consideration of the system context or specific application requirements.

This results in appearance of detectors with one perfect characteristic while

the others are not that good. Moreover, the development of new SPADs

is a time- and money-consuming process, yet their suitability to a specific

experiment is hard to predict.

On the other hand, there exists a wide range of works in theoretical

and simulation-based investigations of single parts and internal processes

of SPAD. Usually, they consider the SPAD on its own, without any relation

to the application area. The study of the characteristics of SPAD-based

detectors from a system perspective, taking into account the whole exper-

imental setup and measurement technique, is missing.

1.3 The Solution

To study the properties of SPAD-based detectors in the context of fluo-

rescence lifetime measurement experiment, we build a model of a typical

experimental setup, from light source to read-out electronics. While the

model is particularly focused on SPAD-based detectors, there are no re-

strictions for the rest of the experimental equipment. The proposed model

is flexible enough to simulate various light sources (for example, laser or

3



1.4. AIMS CHAPTER 1. INTRODUCTION

LED) and different measurement techniques (such as time-correlated single

photon counting and time-gating). The flexibility of the system enables it

to easily adapt to different experimental setups and thus to be successfully

employed in the wide variety of SPAD application areas.

Finally, the model can be used to predict both qualitative and quantita-

tive results for a given experimental setup. This allows the manufacturers

and researchers to save the time and efforts required for natural experi-

ments, and thereby facilitates the development of detector systems that

demonstrate the optimal performance in their target application.

1.4 Aims

The aim of this project was to create a tool that will allow the performance

analysis and optimization of a SPAD-based system. The tool should take

into account the knowledge about the influence of each SPAD characteristic

on the global performance of the detection system. To reach this goal, the

following tasks have been defined:

• Develop the simulation model of a SPAD detector together with read-

out electronics.

• Develop the simulation model of biophysical processes of light prop-

agation and spectral/time domain light transformation within a fluo-

rescent sample.

• Integrate the described unit models into the general model of the sys-

tem, with consideration of geometry setup and the used measurement

technique.

• Analyse the influence of certain SPAD characteristics on the global

quality of the measurement system. Determine the optimal trade-off

between opposing characteristics.

4
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1.5 Structure of the Thesis

Chapter 2 provides an overview of the fluorescence process and its charac-

teristics. Different types of fluorescence measurement are reviewed, with a

particular focus on time-resolved techniques, such as time-correlated single

photon counting and time-gating. The chapter also explains the operation

principles of single photon avalanche diodes and summarizes the state-of-

the-art of SPAD-based detectors.

A survey of existing works in theoretical and simulation-based analysis

of SPAD-based detector performance, the analytical and simulation models

of some parts and internal processes of SPAD are presented in Chapter 3.

Also, an overview of the simulation of some biological objects that were

investigated by means of detection of fluorescence lifetime, is provided.

Simulation modelling as a tool for the analysis of complex systems is

introduced in Chapter 4. There we provide a complete description of the

proposed model of fluorescence measurement setup and of the simulation

workflow. We also describe the methods used, the assumptions made and

other details of the modelling.

The experimental validation of the system is presented in Chapter 5.

The qualitative and quantitative ability of the proposed model and its

flexibility are verified by the simulation of different light sources, measure-

ment techniques and experimental setups. The chapter also presents the

results of the analysis of time-filtering efficiency and influence of noisy pix-

els in SPAD array on lifetime estimation for fluorescence-based bioaffinity

assays.

Chapter 6 concludes the work and proposes a number of improvements

of the model that might further increase the accuracy of the simulation

and enable the consideration of more complex systems.

5
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Chapter 2

Fluorescence experiment and SPAD

detectors

This chapter provides an overview of the fluorescence process and its char-

acteristics. Different types of fluorescence measurement are reviewed, with

the main focus on time-resolved techniques, such as time-correlated single

photon counting and time-gating. The operation principles of single pho-

ton avalanche diodes are described and some state-of-the-art SPAD-based

detectors are presented.

2.1 Fluorescence

Fluorescence is a process of light emission by a substance that has absorbed

light of a different wavelength. The characteristics of the fluorescence are:

• absorption and emission spectra,

• lifetime of excited state,

• degree of polarization,

• fluorescent anisotropy,

• energy,

• quantum yield.

7
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CHAPTER 2. FLUORESCENCE EXPERIMENT

AND SPAD DETECTORS

Due to the Stokes shift the maximum of fluorescence emission spectrum is

shifted to long-wave region in comparison to the maximum of the absorp-

tion spectrum [6, p. 13]. The absorption and emission spectra in frequency

scale usually conform to the mirror symmetry rule [7, Section 1.3.2] (see

Figure 2.1).

Figure 2.1: An example of the absorption and emission spectra [7, p. 4].

The absorption of light quantum by a fluorescent molecule transfers

this molecule into an excited state as the result of electron transition to

the higher energy level (S0 → S1) (see Figure 2.2). This process takes

10−16−10−15 s. This time is not enough for the molecule nucleus to change

its position and velocity (Franck–Condon principle) [8, Section 2.4]. This

results in the growth of internal vibrational and potential energy. Further

vibrational relaxation takes place in 10−12 − 10−11 s. The system comes

8
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Figure 2.2: The Jablonski diagram. S0 is the ground state; S1, S2, ..., Sn is the system

of singlet excited states; T1, T2, ..., Tm is the system of triplet states. The processes are:

A — absorption; IC — internal conversion; ICC — intercombination conversion; ND

— nonradiative deactivation; F — fluorescence; NDT — nonradiative deactivation from

triplet state; P — phosphorescence.

to the thermal equilibrium of the excited state. After a while occurs the

transition to the ground state (S1 → S0) with emission of a light quantum,

i.e. fluorescence. The vibrational energy content under this transfer grows

again with subsequent relaxation in 10−12 − 10−11 s.

The excited state (S1) can be deactivated by different ways besides

light emission. The possible options of excitation and deactivation are

illustrated by the Jablonski diagram [7, Chapter 1] in Figure 2.2. An in-

crease of the probability of nonradiative transitions leads to the quenching

of fluorescence.

The lifetime of the excited state is determined by the total probability

of the deactivation of this state

τ =
1

k + r + Γ
, (2.1)
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where k is the rate constant of nonradiactive deactivation (ND transition

in Figure 2.2, r is the rate constant of conversion into triplet states (ICC

transition), Γ is the emission rate constant of the fluorophore (F transition).

High values of the rate constants result in fluorescent lifetime of about

10−9 − 10−8 s.

The fluorescence quantum yield is defined as the ratio of the number of

emitted photons to the number of photons absorbed by the system

QY =
Γ

Γ + k + r
. (2.2)

The QY tends to unity when the sum of the rate constants of nonradiative

deactivations (k+r) tends to zero. The quantum yield of intrinsic (natural)

fluorophores is around 0.1, while for special fluorescent probes the QY

reaches 0.98. The energy yield is always less than unity because of the

Stokes loss.

2.2 Time-resolved fluorescence detection

Fluorescence detection is a widely used technique due to its high time

resolution and good sensitivity to composition changes of a sample. It is

used in defectoscopy, microbiology, medicine, biophysics, etc. There are

two main types of measurement of fluorescence lifetime: the frequency-

domain and time-domain techniques.

2.2.1 Frequency-domain technique

In the frequency-domain technique, the fluorescent sample is excited by

continuously modulated light. The fluorescence emission displays a phase

shift and a modulation decrease (see Figure 2.3). The lifetimes can be

determined as

τϕ =
tan(ϕem − ϕex)

ω
, (2.3)
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τM =
1

ω

√

√

√

√

1
(

Mem

Mex

)2

− 1
, (2.4)

where τϕ is the lifetime based on the phase shift, τM is the lifetime based

on the modulation depth decrease, ϕem, ϕex and Mem, Mex are phase and

modulation depth of the emitted and exciting lights, respectively; ω is the

angular modulation frequency.

In the case of monoexponential decay τϕ and τM are equal. In the

case of multi-exponential decay τϕ < τM and the measurements should be

repeated for multiple modulation frequencies [9, Section 2.3.1].
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Figure 2.3: Frequency-domain lifetime measurement. The fluorescence emission demon-

strates a phase shift and a modulation decrease in comparison with sinusoidally modulated

excitation light.

2.2.2 Time-domain technique

In the time-domain, the fluorescence lifetime measurements can be done

using two techniques: time-correlated single photon counting (TCSPC)

and time-gating detection. In the former, the sample is excited by pulsed

light source and the arrival time of the first fluorescent photon is recorded

with a very high time resolution. The fluorescence decay curve is obtained

11
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by the detection of arrival time of a large number of photons. The light

intensity is set to such a value that the probability to detect a photon per

pulse is less than or equal to 1%, otherwise the intensity decay can be

distorted to shorter times (pile-up effect) [7, Chapter 2].

In the case of monoexponential decay the fluorescence lifetime can be

estimated as the slope of the fluorescence decay in logarithmic scale

I(t) = Io exp(−t/τ) ⇒ τ is the slope of log I(t) vs t . (2.5)

In the case of multi-exponential decay more complex methods should be

used. For example, the lifetime in this case can be obtained using the fol-

lowing scheme. Firstly, the convolution of assumed fluorescence decay with

a known instrumental response is calculated. Then the result is compared

with the measured experimental decay curve using statistical fitting crite-

rion, such as the chi-square test. The quality of the fit can be judged by the

chi-square value and the autocorrelation of weighted residuals. The advan-

tage of the described experimental technique is that the actual fluorescence

decay is measured directly; the disadvantage is its relative slowness.

Time-gating

In the time-gating detection, the number of photons detected during two

or more fixed time intervals are collected. For the measurement of a mono-

exponential fluorescence decay (see Figure 2.4), two time intervals with

equal width are usually enough. The fluorescence lifetime τ in this case is

calculated using

τ =
T1 − T2

ln(V2/V1)
, (2.6)

where T1 and T2 are the time delays between the excitation pulse and the

onset of the first and the second time intervals, respectively; V1 and V2 are

the integrated intensities (i.e. number of counts) of these time intervals [10]

(see Figure 2.4).

12



CHAPTER 2. FLUORESCENCE EXPERIMENT

AND SPAD DETECTORS 2.2. TIME-RESOLVED FLUORESCENCE DETECTION

In the case of a multi-exponential fluorescence decay (which is the case

for vast majority of biological samples) more time intervals and a correc-

tion of instrumental response are required. Therefore, the task of lifetime

characterization becomes nontrivial.

Figure 2.4: Mono-exponential fluorescence decay. Adapted from [11].

Figure 2.5: Modified time-gated measurement technique [12].

A slightly modified time-gated technique can be utilized in the SPAD

detectors. The photons are collected during a nanosecond observation win-

dow (OW) synchronized with the light pulse (see Figure 2.5). The measure-

ments are repeated the prescribed number of times to obtain a statistically

significant result. The number of detected photons is allocated to a time

slot. The observation window is then shifted by a picosecond time step and

the measurement repeated from the start. Fluorescence decay convolved

13
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with the rectangular OW is prepared when the time range of interest has

been fully scanned. The drawback of this schema, in comparison to the

ordinary one, is demonstrated by photobleaching: the fluorophores are al-

ready bleached when the OW is shifted to the long time fluorescence tail,

the detector counts only dark photons, and as a result the detected lifetime

is shorter than the real one.

The integration of SPAD detectors into the CMOS process enables the

manufacturers to embed the control and signal processing circuits into the

same chip. This gives more flexibility in the selection of OWs’ widths and

positions. For example, the scheme with non-uniform observation windows

is useful for increasing the efficiency of time-gating: longer OWs are used

in the end of fluorescence decay (when the intensity is lower) to increase

the collected number of counts.

Modern CMOS SPAD detectors use up to 4 observation windows [13]

with width from 408 ps to 48 ns [14] and the accuracy in the positioning

on time scale of 60 ps [15].

2.2.3 Typical fluorescence detection setup

A typical time-domain fluorometer is shown in Figure 2.6. The pulsed light

goes through optical system and excites the fluorescence. The excitation

source can be either a pulsed laser, a LED or a flash-lamp. This part of

optical system can consist of a monochromator (narrow-band filter), an

attenuator and a collecting lens. The electrical pulse associated with the

optical pulse is generated and routed to the synchronization input of the

data processing module. Meanwhile, the emitted fluorescence is collected

at right angle with respect to the incident beam, and detected after passing

through the optical system. This part of the optical system usually includes

an excitation filter and a collecting lens. An MCP, PMT, CCD camera or

SPAD can be used as a detector. Data processing depends on chosen
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technique (see Section 2.2.2).

Data
processing

Excitation light

Optical
system

Emitted
light

Fluorescent
sample

Photodetector

Light source

Figure 2.6: Typical time-domain fluorescence detection setup.

The photodetector determines the accuracy of the measurements. But

the general performance is defined by all parts of the setup, from the light

source to the lifetime extraction algorithm.

2.3 Single photon avalanche diode

Single-photon avalanche diodes (SPAD) are a class of semiconductor de-

vices based on a p-n junction, reverse biased above breakdown voltage [16].

The electric field in the junction depletion region is so high that a single

photon absorbed in this area can trigger a self-sustaining avalanche [17, 18].

The operation principle of an ideal SPAD is the following. In the qui-

escent state, when no current flows through the device and an excess bias

voltage Ve is applied to the SPAD (see Figure 2.7), the electric field in

the depletion region is high enough to create an avalanche caused by the

smallest fluctuation. A single photon absorption in the depletion region

results in the creation of an electron-hole pair that is immediately acceler-

ated. This action results in a self-sustaining impact ionization avalanche
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Figure 2.7: A simplified SPAD diagram.

process. The current immediately grows up to a constant level that is de-

pendent on the excess bias voltage Ve and diode series resistance R. The

external quenching circuit reduces the applied bias voltage, Vb, to a value

lower than the breakdown voltage Vbd, which leads to the quenching of an

avalanche. The operation cycle is completed by the reset of the excess bias

voltage to its initial value. Thus, the output of the detector is a current

pulse with a constant peak amplitude. The leading edge of this pulse indi-

cates the time of photon arrival. The detector is insensitive to any photons

arriving in the time between the start of the avalanche and the bias voltage

being reset. This period is called the dead time of the SPAD.

Time resolution. Obviously, real SPADs differ from the ideal ones. The

first characteristic of the imperfection is time resolution. Time resolution,

or time jitter, is a statistical distribution of the delay between actual arrival

time of the photon to the sensor and the leading edge of the output pulse.

A typical SPAD time resolution curve has a fast peak followed by a slow

exponential tail (see Figure 2.8).

The peak is due to the fact that the photons absorbed in the depletion

region need different time to build up the avalanches. The full width at the

half maximum (FWHM) of the peak is the time resolution of the detector.

It can be improved by increasing the maximum electric field at the active

junction, i.e. by increasing the excess bias voltage Ve. The tail is due to
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Main peak

Diffusion tail

Figure 2.8: A typical time resolution curve of SPAD detector. The curve has a fast peak

with FWHM=35 ps followed by a slow exponential tail with FWHM=80 ps. Adapted

from [19].

the fact that minority carriers, which are created by the photons absorbed

in neutral region, reach the depletion region by diffusion. Evidently, the

diffusion tail depends on the photon wavelength. In some SPADs reported

in the literature, the diffusion tail was greatly reduced by changing SPAD

structures [20, 21].

Photon detection probability. The next characteristic of a real SPAD is the

photon detection probability (PDP) which is defined as the ratio between

the number of incoming photons and the number of the output current

pulses. At the same time, the PDP is the product of the quantum efficiency

and probability that the primary e-h pair will trigger the avalanche. The

former depends on a wavelength; the latter has a direct relation with the

excess bias voltage, which is true for fast, free from diffusion tail, devices

(see Figure 2.9).
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Figure 2.9: Typical photon detection probability curves of CMOS SPAD detector at

different excess bias voltage [15].

Dark count rate and afterpulsing. Internal noise of the device is a charac-

teristic which strongly affects the performance of the detector. It is called

dark count rate (DCR) — that is, the avalanche triggering rate of the

detector held in the darkness. The DCR has three constituents:

• thermal generation with a Poisson distribution and excess bias voltage

dependence;

• generation caused by electron tunnelling from the valence band to the

conduction band at a high field strength;

• afterpulsing, that is re-triggering of the avalanche in the absence of

photon absorption caused by trap level generation.

The dark count rate caused by tunnelling is independent of the temper-

ature but strongly depends on the excess bias voltage [22]. The thermal

constituent of the dark count rate can be reduced by cooling down the de-

tector; however, the lifetime of traps becomes longer in this case [23], [24].

The afterpulsing can be reduced by either increasing the hold-off time,

18



CHAPTER 2. FLUORESCENCE EXPERIMENT

AND SPAD DETECTORS 2.3. SINGLE PHOTON AVALANCHE DIODE

which leads to worse performance in terms of time [24], or by decreasing

the excess bias voltage, but this affects the photon detection efficiency [23].

A good example of the afterpulsing decreasing approach is the autotun-

ing circuit for afterpulsing reduction in GM-APD proposed in [25]. The

circuit, based on silicon delay lines, enabled the selection of the optimal

hold-off time from 16 fixed times in 5–660 ns range. The autotuning did

not require any interaction with the user or computer for selecting the

optimum. The process completed in less than 20 sec.

All the characteristics described above, except the photon detection

probability, depend on the quenching circuit being used. The purpose of

the quenching circuit is to limit the maximum current flow through the

device and to restore the device, so it can count subsequent photons.

Passive quenching. The simplest way to quench an avalanche is to connect

the quenching resistor Rq in series with the cathode of SPAD, so it will

stop the self-sustaining avalanche current (see Figure 2.10(a)) [26]. The

avalanche current discharges the total capacitance C (made up by the sum

of the junction capacitance Cj and the stray capacitance Cs) and induces

the voltage drop over Rq. As it can be seen in Figure 2.10(b), the voltage

on the diode decreases from the excess bias voltage Ve to the breakdown

voltage Vbd. Then the voltage starts to restore slowly with the time constant

RqC.

During the recovery time, when the diode voltage is higher than the

breakdown voltage but has not yet reached the intended final bias value, a

photon can trigger an avalanche; however, the avalanche triggering prob-

ability depends on the time and is lower than that available at the final

voltage. At the same time, the avalanche can be re-triggered by a trapped

carrier (afterpulsing), increasing dark count rate, and worsen count rate.

The pulses with amplitude smaller then the comparator threshold are dis-

19



2.3. SINGLE PHOTON AVALANCHE DIODE

CHAPTER 2. FLUORESCENCE EXPERIMENT

AND SPAD DETECTORS

Rc

Rq

Vout

hn

Ve

Cj Cs

(a) Passive quenching circuit

6 6.5 7 7.5 8 8.5 9
0

0.5

1

1.5

2

2.5

0

0.5

1

Time (µs)

   
   

   
   

V
ol

ta
ge

 (V
)  

   
   

 C
ur

re
nt

 (m
A

)

(b) Waveforms by passive quenching

Figure 2.10: a) The simplest passive quenching circuit with quenching resistor Rq in the

order of a few hundred kΩ; b) waveforms of the avalanche current (upper) and of the

voltage applied to SPAD (lower).

carded. It introduces a dead time but this time is not constant. This

results in nonlinearity at hight count rates [22]. The drawbacks of the slow

recovery can be diminished, but not removed, by reducing of the stray

capacitance.

Active quenching. The active quenching (see Figure 2.11) does not have

the drawbacks typical for the passive one. As soon as the avalanche is

detected, the circuit forces the quenching by setting the bias voltage Vb to

breakdown voltage Vbd or even below. After certain controlled time (named

hold-off time), the bias voltage is reset to the initial state Ve by applying

an additional voltage. It results in shorter quenching and recovery times

then those in the case of passive quenching. The active quenching leaves an

opportunity to deal with afterpulsing: the bias voltage can be put below

the breakdown voltage and retained for a time sufficient to release the

trapped carriers.

A comparison between passive and active SPAD recharge in terms of
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Figure 2.11: Schematic circuit diagram of the active quenching of SPAD [22].

time costs and afterpulsing is presented in Figure 2.12. The population

of filled traps has an exponential dependence on time. With the passive

recharge, the bias voltage Vb quickly reaches the avalanche threshold volt-

age, thus allowing afterpulsing. With the active recharge, Vb achieves the

avalanche threshold voltage when the majority of traps have been released.

A comparison of the active and passive quenching is presented in Ta-

ble 2.1.

Figure 2.12: The recharge process in passive and active quenching circuits [27].
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Table 2.1: Comparison of active and passive quenching.

Active quenching Passive quenching

• Fixed and controlled dead time.

• Shorter recovery time ⇒ higher

count rate.

• Adjustable hold-off time and after-

pulsing.

• Simple to organize.

• Long recovery time ⇒ smaller count

rate.

• Nonlinearity at high count rates.

• Time dependent avalanche trigger-

ing probability.

2.3.1 State of the art SPAD characteristics

Performance comparison of different SPAD detectors is difficult not only

because of the lak of unified criterion for performance estimation but also

because the characteristics reported in the literature have been measured

under different conditions (e.g. different Ve and temperature). Therefore,

several devices with unique characteristics are presented below with the

indication of used measurement conditions, where possible. A summary of

the reviewed SPADs is presented in Table 2.2.

A small-area single SPAD with SiO2 shallow-trench-isolation ring pro-

duced with 0.18 µm CMOS technology presented in [27] had dead time

equal 3 ns. However, dark count rate was 200 kHz and photon detection

efficiency was 11% at 450 nm. A similar SPAD reported in [28] had 26.7 ps

FWHM and only 96.1 ps FW(1/100)M of time jitter.

For InGaAs/InP SPAD with 25 µm diameter, photon detection effi-

ciency at 1310 ns was equal to 45% [29]. DCR was 70 kHz. The smallest

time jitter for this device was 30 ps, measured at 6.5 V excess bias voltage.

All characteristics were measured at 200K temperature.

Single SPADs with a double-epitaxial structure, large active area and

fairly good photon detection efficiency were proposed in [19, 23]. Photon
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detection efficiency was 55% (at 500 nm) and 68% (at 550 nm) at Ve of

10 V, dark count rate was 1 kHz and 50 kHz (at room temperature) for

active area diameters of 50 µm [19] and 200 µm [23], respectively. Both

devices had 35 ps time resolution.

Richardson et al. [30] reported single SPAD with 8 µm diameter fabri-

cated in 130-nm CMOS technology. The device had 20 Hz DCR at room

temperature and PDP between 20% and 25% in range 440-570 nm (these

values were received at 1 V bias). FWHM of time jitter was ∼200 ps

and the device demonstrated wavelength dependance of time resolution

width below 30% of peak value. This dependance is explained by different

absorption depth for photons with different energy.

A single SPAD implemented in high-voltage CMOS technology had suf-

ficiently good characteristics and an interesting plateau in PDP(λ) depen-

dence [31]. The peak value of PDP was 34.4% at 470 nm, and from 450 nm

to 520 nm the PDP did not vary more than 1.5% from the maximum. Dark

count rate for this device was 50 Hz at a temperature of 24◦C. The time

resolution was equal to 80 ps. All data were measured at Vbd = 50 V and

Ve = 5 V.

A fully integrated system of 128×128 single photon avalanche diode sen-

sors fabricated in CMOS technology has been presented in [32]. Maximum

PDP was 35% and 40% at 460 nm and excess bias voltage of 3.3 V and

4 V, respectively. The median DCR across the whole device was 600 Hz at

20◦C and peak-to-peak spreading over different single pixels was less than

100 Hz.

Pancheri and Stoppa [13] presented a 64-SPAD array fabricated in 0.35 µm

high voltage CMOS with active area 15.8×15.8µm and 34% fill factor. Each

pixel contained four single SPADs working in parallel and four time-gates

with adjustable width in the range of 0.8 – 10 ns.

A 32×32 array of fully integrated SPADs with time-to-digital converters
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(one per pixel) was presented in [33, 34]. The detector was implemented

in 130 nm CMOS technology. The time jitter of SPADs was 144 ps and of

the entire system – 185 ps.

Table 2.2: The summary of observed SPADs.

Characte-

ristic

0.18µm

CMOS

[27, 28]

InGaAs/InP

[29]

Single double-

epitaxial

[19, 23]

130nm CMOS

[30]

Area 2µm × 2µm �25 µm �50, �200 µm �8 µm

Dead time 3 ns — — —

DCR 200 kHz 70 kHz 1 kHz, 50 kHz 20 Hz

PDP 11% at 450 nm 45% at

1310 nm

55%(500 nm)

68%(550 nm)

20% – 25% at

440 – 570 nm

Time respo-

nse FWHM

26.7 ps, 96.1 ps

= FW(1/100)M

30 ps 35 ps 200 ps

Characte-

ristic

HV CMOS

[31]

0.35µm HV

CMOS1[13]

130nm CMOS1

[34]

0.35µm

CMOS1 [32]

Area — 15.8 × 15.8 µm �10 µm —

Dead time — 200 ns — 100 ns

DCR 50 Hz 1 kHz 100 kHz 600 Hz

PDP 34.4% at

470 nm

32% at 450 nm 34% at 450 nm 35% at 460 nm

Time respo-

nse FWHM

80 ps 160 ps 144 ps —

Different technologies have different advantages and disadvantages. The

CMOS process, in comparison with dedicated technologies, usually pro-

duces SPADs with worse performance (in terms of DCR, PDP and after-

pulsing). However, CMOS enables production of SPAD arrays with high

fill factors. All silicon SPADs, irrespective of technology, are not suitable

for detection of light with wavelengths higher than 1000 nm. In this case,

InGaAs/InP SPADs with separate absorption, charge, and multiplication

1This is SPAD array

24



CHAPTER 2. FLUORESCENCE EXPERIMENT

AND SPAD DETECTORS 2.4. SUMMARY

(SACM) structure should be used.

2.4 Summary

In this chapter the fluorescence process and its characteristics were con-

sidered. The methods of fluorescence detection in frequency and time-

domain were described. The main focus was given to the time-correlated

single photon counting and time-gating techniques of fluorescence decay

measurement. We also discussed the operation principles of SPAD, their

characteristics and features of quenching circuits. At the end the short

overview of characteristics of modern single photon avalanche diodes was

presented.
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Chapter 3

State of the art of SPAD and

fluorescence modelling

This chapter presents an overview of the previous works in the field of

SPAD and fluorescence modelling.

In 1997, Spinelli and Lacaita [35] developed a 2-dimensional model of an

avalanche spreading over the entire SPAD detector area. In their model,

an avalanche multiplication process started from photon absorption point

and then it spreaded by a diffusion-assisted process. The authors came

to the conclusion that the timing resolution of a SPAD is limited by two

factors: avalanche multiplication noise and spreading mechanism. Also,

they found that photon-assisted spreading is negligible in comparison to

the diffusion-assisted one. These modelling results are confirmed by the

experimental results presented by Li and Davis [36], who found that a

device with circular active area has the best time resolution when the light

beam is focused in the center of the depletion region.

Kagawa [37] has shown theoretically that in Geiger-mode avalanche pho-

todiodes the dark count probability decreases with the increase of multi-

plication layer thickness, while detection efficiency does not change. Three

years later, Sugihara et al. [38] reported the existence of a critical thickness

of the multiplication layer for GaInAs/InP single photon avalanche diodes.
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Their numerical investigation shows that further increase of the multipli-

cation layer thickness will rise the dark count probability. Similar results

were reported by Ramirez and Hayat [39]. There, the authors investigated

the behaviour of DCR and PDP in two modes: at low temperature, when

the field-assisted mechanism of dark carriers generation is dominant, and at

room temperature, when dominates the generation/recombination mecha-

nism. For the first case, the increase of the multiplication layer thickness

results in improvements of PDP versus DCR. In the second case, the PDP

versus DCR characteristics showed weaker performance with the growth of

the multiplication region.

An analytical model of dark count probability and single-photon quan-

tum efficiency was proposed by Kang et al. [40]. The model linked these

performance parameters with other SPAD parameters and operation con-

ditions, such as detrap time constant, gain-bandwidth product, gate repe-

tition rate, etc.

Jackson et al. [41] calculated the theoretical minimum dark count rate at

the room temperature for 20 µm Geiger mode avalanche photodiode. The

model used for this calculation was based on the analytical solution for dark

counts from [42] and the results from commercially available process and

device simulators. The authors found that the minimum dark count rate for

a 20 µm device with defect-free depletion region is around 30-40 Hz. Later,

temperature dependence of dark counts was measured by Jackson et al. [43]

for the same device. They found that the dark count rate increases by an

order of magnitude per each 20◦C for the temperature range between -10◦C

and +25◦C (the measurements were performed with the detector biased at

10 V above breakdown and with 125 ns hold-off time). On the other hand,

the decrease of the detector temperature increases the trap lifetime and

thus afterpulsing. However, this effect was not observed in [43] due to long

hold off time used in the measurements.
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The optical crosstalk, as a limiting factor for fabrication of high-density

SPAD arrays, has been investigated in several works. Jackson et al. [44]

considered the optical crosstalk as light propagation between SPAD pix-

els through direct optical paths. Two– and three–dimensional models of

optical coupling between two adjacent pixels were developed. The model

considered the light absorption in silicon, the photon emission was con-

sidered as a function of reverse bias current. The emitting detector was

assumed to be a point source with a spherical photon flux. By simulation

and measurements, Jackson et al. demonstrated that by separating the

pixels by 330 µm the optical coupling reduces almost to dark count level,

without any additional optical isolation. Later, Rech et al. [45, 46] shown

that even with optical isolation (in that case, a deep phosphorus diffusion

surrounding the detector) the optical crosstalk in SPAD arrays can not be

completely prevented. It happens because of indirect optical paths that

also take place. An example of the indirect optical path is the internal

reflection from the bottom silicon–air surface. A 3-D optical model of the

optical crosstalk caused by indirect optical paths was presented in [46].

The model confirmed the hypothesis of presence of the crosstalk compo-

nent caused by the internal reflection and estimated the wavelength range

which makes a significant contribution to this component: between 1100

and 1200 nm.

Köllner and Wolfrum [47] made a theoretical calculation of the minimum

number of photon counts which is essential to achieve the desired accuracy

in lifetime estimation:

N ≥ var1(τ)

desired variance(τ)
, (3.1)

where var1(τ) is the variance of τ in case when only one photon per channel

is detected. This expression has been derived for the case of multinomial

statistics of counts. However, the distribution of number of counts by
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channels is usually described by a Poisson distribution [48, 49]. Köllner

and Wolfrum state that the multinomial approach is applicable to the least-

square approach with Poisson statistics in most cases, when the relative

error in N , i.e. 1/
√

N , is small. The optimal experimental conditions,

such as the measurement time interval T and the number of channels with

equal width, were investigated for monoexponential decay in absence of

background noise. It was demonstrated that in the case of 2 channels the

optimum measurement interval T is 5τ ; consequently, the channels width

is 2.5τ . In the case of T longer than 10τ , the increase of the number of

channels bigger than 8 does not provide any profits in terms of minimum

number of counts per channel.

Gerritsen and colleagues continued the previous work and investigated

the influence of more than two observation windows with constant and

different width, on lifetime resolution [50, 51, 10]. Simulation with a very

simple model (random counts were accumulated in gates according to the

delay probability function P (t) = τe−t/τ and delay between the excitation

pulse and the first gate of 0.5 ns, which simulates the detector response

time) provided the following results:

• the detection with four time-gates is more sensitive than with two;

• the detection with more than four time-gates demonstrates smaller

sensitivity difference in comparison with four-gate detection;

• the detection with non-equal gate widths has certain advantages, be-

cause narrow first gates are mainly sensitive to short lifetimes, wider

late gates — to longer ones, and thus a mixture of fluorophores with

different lifetimes can be distinguished;

• the statistics of the lifetime measurements is dominated by Poisson

noise.
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The simulation results were confirmed by real experiments.

Palo et al. [52] presented theoretical count-number distributions for flu-

orescence intensity distribution analysis (FIDA). FIDA is outside of the

scope of our project, but the approach used to create the model in [52]

is applicable for our task of fluorescence sample simulation. The model

proposed in [52] considers the diffusion of the studied molecules, singlet-

triplet transitions (which make the molecules “invisible” from the fluores-

cence point of view), and fluorescence emission. For the specific case of

no-diffusion, the model has been solved analytically, while for more gen-

eral cases the numerical solutions were used. The authors also estimated

the correction for afterpulsing and dead time of the detector.

A number of publications from Davis and colleagues [53–57] present a

Monte Carlo simulation of a single-molecule detection experiment. In that

simulation, an almost comprehensive model of biological sample has been

built. The model considers fluorophore excitation including polarization

and saturation effects, photodegradation due to intersystem crossing to

triplet state, triplet and singlet state relaxation (phosphorescence and flu-

orescence, respectively). The authors also performed a simulation of laser

intensity, light collection system and detection, including data processing.

The simulated results demonstrated a good qualitative agreement with the

experimental data while the clear quantitative comparison is absent.

The project described above is somewhat similar to our work, however,

there are a number of substantial differencies. First of all, the authors

focused on detection of the fluorescence itself, while we consider also the

characteristics of the detected fluorescence, such as lifetime. Then, they

model the physical processes with a fixed time step, while our model is

event-driven and considers exact timing of each photon in a subnanosecond

scale. It should also be noted that the studied experiments have differences

in the setup, which are reflected by the respective model. For example, the
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model of Davis et al. comprises an optical system, which in our experiments

was represented only by a filter. On the other hand, they employ only a

basic simplified detector model based on averaged empirical parameters

(such as constant dead time for a passively quenched SPAD, and single

PDP value independent of wavelength). Our model, in contrast, takes into

account the inner processes in SPAD and evaluates the behaviour of the

device from its characteristics. For example, we model afterpulsing as a

time-dependent probability distribution, while Davis et al. consider it to

be a constant time-independent value.

As it can be seen from the above, modelling of fluorescence processes and

SPAD detectors can yield new knowledge and explain some experimental

results. However, most of the projects focused on modelling of a limited

subset of the experimental setup. The only complete model is dedicated

to a different type of experiment and lacks the details of physical processes

in the detector. So far, there was no general model considering in detail

all the parts of a fluorescence lifetime measurement experiment.
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Chapter 4

The simulation model of fluorescence

measurement experiment

4.1 Simulation modelling

One of the essential features of science is the complexity of systems un-

der investigation. To be able to work with this complexity, researchers

construct a model of the investigated system including into consideration

only essential parts and properties of interest. The model used to describe

an object can be physical (simplified physical prototype) or mathematical

one (i.e., a system of formal concepts describing the real object with the

required level of detail). In turn, mathematical models divide into two

classes: analytical and simulation models.

The analytical modelling can be used when the mathematical model is

simple enough and can be expressed in analytical formulas. The advantages

of this type of modelling are high precision, consideration of entire classes

of the systems, discovery of the most general principles of the systems.

However, many systems are highly complex, so the creation of analytical

models is impossible or requires so many assumptions and simplifications

that the estimations obtained via modelling are unsatisfactory. In these

cases simulation modelling offers an alternative.
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A simulation modelling algorithm simulates system behaviour by taking

into account external influences and interaction of distinct system elements.

It should be noted, that both the external influences and interaction of

distinct elements can have either deterministic or stochastic nature. The

estimation of system parameters is performed by carrying out series of

statistical experiments with the simulation model, data accumulation and

their subsequent processing.

In comparison to the analytical modelling, the simulation one is less

universal. Simulation models are usually tailored to specific systems, and

unlike analytical models they cannot reveal general principles of entire

classes of systems. On the other hand, simulation modelling is capable of

modelling systems of virtually any complexity. In many cases simulation

modelling is the best or the only possible way to study the system of

interest — the cost of simulation modelling is usually significantly less

than that of a natural experiment, while the modelling results remain in a

good agreement with real experiments.

Table 4.1: The main advantages and disadvantages of simulation modelling.

Advantages Disadvantages

• Systems of virtually any complexity

can be modelled.

• It is sufficient to know only the be-

haviour of system elements to simu-

late interaction between them.

• Majority of the parameters have a

physical meaning.

• It cannot reveal general principles of

entire classes of systems.

• The stochastic nature of the simula-

tion modelling results in smaller pre-

cision.

• Simulation experiments can be time

consuming, depending on computa-

tional resources.

Table 4.1 summarises the most important properties of the simulation

modelling, its advantages and disadvantages.
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4.2. GENERAL OVERVIEW

OF THE MODEL

The simulation modelling is a powerful tool of modern research, its

applications can be found in various areas, such as biology [58], agricul-

ture [59], economics [60], chemistry [61], physics [62], computer network-

ing [63], etc.

The described features the simulation modelling have motivated us to

choose it as the main tool for this work.

4.2 General overview of the model

The model of a fluorescence measurement setup consists of a set of inde-

pendent modules. Each of them simulates the corresponding parts of the

experiment. A schematic diagram of the units, their inputs and outputs

are shown in Figure 4.1.

The idea of simulation is to create an array of photons at the begin-

ning and then to change the time and wavelength values of the individual

photons as they pass through the system. At some stages the amount of

photons is also changed (for example, it is decreased during fluorescence

simulation because of absorption without subsequent radiation). The array

of photons from the previous simulation unit is one of the inputs of the

next unit. This type of simulation workflow is called forward simulation.

Depending on many factors, the fraction of photons that reach the de-

tector varies from units to tens of percents of the initially generated set.

This means that the time spent on generation and processing of more than

half of photons has been wasted.

To minimize the simulation time, we have reversed the direction of sim-

ulation workflow. With the backward simulation, only the “survived” pho-

tons are generated at the beginning of the modelling and each simulation

unit changes only the time and wavelength characteristics of the photons

but not their quantity. This approach reduces the calculation time and
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Figure 4.1: Schematic diagram of the simulation model. Blue arrows represent experi-

mental parameters.

enables simulation of longer and more complex experiments.

Backward simulation is made possible by combining all the factors that

change the number of photons into a single coefficient. This loss coefficient

includes:

• filtering,

• absorption by a fluorescent sample without following radiation,

• geometrical losses,

• losses due to finite SPAD detection area.

The following sections provide a detailed description of each of the sim-

ulation units.

4.3 Preprocessing

The number of photons generated during a typical fluorescence measure-

ment experiment can easily exceed the memory capacity of any computer.
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Thus, it is often infeasible to simulate the whole experiment in one run.

The preprocessing unit solves this problem by splitting the whole exper-

iment duration into smaller periods, depending on the setup geometry,

light intensity, measurement technique and the available computational

resources. It also calculates the number of photons that must be generated

in the light source simulation unit.

The inputs of the preprocessing unit are:

• duration of the experiment,

• measurement technique,

• light source characteristics (repetition rate of the light source (syn-

chronizing pulses); intensity, mean wavelength, divergence and diam-

eter of the light beam; duration of the light pulses),

• parameters of the fluorescent sample and filter,

• geometry of the experimental setup (distance between light source and

fluorescence sample, fluorescence sample and detection surface; SPAD

active area; dimensions of fluorescence sample).

The preprocessing starts with the calculation of the number of photons

per one light pulse:

N0 =
I∆t

hc/λ
, (4.1)

where I is the pulse light intensity (W), ∆t is the duration of the light

pulse (s), h is the Planck constant (Js), c is the speed of light (m/s) and λ

is the mean wavelength of the light pulse (m).

The number of photons that will reach the detector is calculated as the

product of N0 and the loss coefficient. It should be noted that the loss

coefficients for excitation (initial) and fluorescent photons are calculated
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separately. The components Li of the loss coefficients are presented in

Table 4.2. The total loss coefficient is the product of its components.

Thus, the number of the excitation photons that reach the detector is

Nl = N0L2(1 − L3/QY )L4 (4.2)

and the number of fluorescent photons reached the detector is

Nf = N0L1L3L5. (4.3)

The total number of photons reaching the detector per single light pulse

(“survived” photons) is the sum of these components:

N = Nl + Nf . (4.4)

Taking into account the number of “survived” photons per one pulse,

the preprocessing unit calculates the number of pulses considered in one

pass of the simulation and the corresponding time interval as

Npl = bNopt

N
c, (4.5)

∆t =
Npl

f
, (4.6)

where Nopt is the optimal array length for MATLAB operation depending

on the available computational resources1, f is the light repetition rate

(frequency) of pulses. The number of passes depends on the duration of

the experiment T and the chosen measurement technique.

For TCSPC the number of passes is

Np = d T

∆t
e. (4.7)

In the case of time-gating, the number of passes is

Np = dOW

∆t
e × d1/f − OW

tsh
e, (4.8)

1Empirically found estimates of Nopt are 105 for 1 GB RAM and 107 for 4 GB RAM.
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where OW and tsh are the observation window and time shift for time-

gating. Finally, the number of photons that should be generated in the

light source simulation unit per single pass is calculated as

Ng = NplN. (4.9)

Table 4.2: The components of the loss coefficients2.

Definition Equation Description

Losses between light source

and fluorophore planes due

to beam divergence.

L1 = min(1, l1)

l1 =
(

Rf

dlf tg(α/2)+r

)2

Rf and Rd are the effective

radiuses (cm) of lighted area

of fluorescent sample and ac-

tive detection area, correspond-

ingly; dlf and dld are the dis-

tances (cm) between light source

and fluorescent sample, light

source and detection planes, cor-

respondingly; r is the radius

(cm) of the light beam; 6 α is the

beam divergence (◦).

Losses between light source

and detector planes due to

beam divergence.

L2 = min(1, l2)

l2 =
(

Rd

dldtg(α/2)+r

)2

Losses caused by non-

radiation absorption in

fluorescence sample (see

Section 4.5).

L3 = QY (1 − 10−εcl) ε is the molar extinction coef-

ficient (M−1cm−1), c is the flu-

orophore concentration (M), l

is the thickness (cm) of fluores-

cent sample, QY is the quantum

yield of fluorophore.

Filter losses. L4 = 1 − T T is the filter transmittance on

light source peak wavelength.

Losses between fluorescent

and detection planes be-

cause of spatially uniform

fluorescence emission and

finite detection area.

L5 = Sd/(4πd2
fd) Sd is the active detection area

(cm2), dfd is the distance (cm)

between fluorescent and detec-

tion planes.

2The calculations presented in this table are theoretical and have not been verified experimentally.
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The output of the preprocessing block is the number of photons Ng to

be generated in each pass of the simulation.

4.4 Light source simulation

The light source simulation unit generates an array of photons according

to the time and wavelength characteristics of the light source.

The input of the light source simulation unit consists of the time and

wavelength characteristics of the light source and the number of photons

to generate Ng, provided by the preprocessing unit (see Section 4.3). If

the spectrum and time curves are not available, they are approximated as

a 2-dimensional normal distribution. In this case, the full width at half of

maximum (FWHM) and the peak value for time curve and spectrum must

be provided as inputs. The approximation function has the following form:

f (t, λ) =
1

2πσtσλ
exp

(

−1

2

[

(t − µt)
2

σ2
t

+
(λ − µλ)

2

σ2
λ

])

(4.10)

where µt, µλ and σt, σλ are the mean values and the standard deviations of

time and frequency, respectively. The standard deviations are calculated

as [64]

σ =
FWHM

2.35482
. (4.11)

For curves shaped similarly to normal distribution the error of such ap-

proximation does not exceed 15%. This error value has been calculated

as

R =
n

∑

i=1

|Si − Ei|
Si + Ei

(4.12)

where Si and Ei are the simulated and empirical values on ith interval, n

is the number of intervals.

The array of photons is generated using the rejection method [65], which

allows modelling of any empirically or analytically defined curves. To op-
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timise the generation time, we limit the rejection method to work within

predefined bounds. For the analytical probability density function (PDF)

specified by the Gaussian (4.10), the generation interval is selected as

[µ − 3σ, µ + 3σ]. The error of such approximation is less than 1% [66,

p. 88]. For empirical functions, defined by their values in certain points,

the generation interval bounds are set at the level corresponding to 1% of

the peak value. The error in this case is around 1%1.

Some examples of the light source simulation are presented in Figure 4.2.

The blue micro-LED produced by the University of Strathclyde [67] and

Picoquant LDH-P-C-470 pulsed diode laser with 80-ps FWHM [68] were

used as light sources. The average LED and laser powers were 2.7 µW and

5.9 mW , respectively. The measured graphs were obtained with TCSPC

card. The simulated graphs were obtained from histograms of the simu-

lated photons, scaled to the peak of the corresponding measured graphs.

In the case when the modelling was performed on the base of empirical

curves, the simulation error was 0.4% and 0.8% for micro-LED and laser,

respectively. The approximation by the normal distribution resulted in

the error of 12% for micro-LED, while for laser the error was 53%. Obvi-

ously, such an approximation in the case of laser is unsatisfactory and the

simulation based on empirical curve is preferable. Alternatively, a more

complex approximation can be used — for example, a mixture of two or

more Gaussians.

4.5 Fluorescence simulation

The inputs of the fluorescence simulation unit are the concentration of

fluorophores (M), quantum yield, molar extinction coefficient (M−1cm−1),

1This estimate has been calculated on the base of the data for a blue micro-LED produced by the

University of Strathclyde [67] and Picoquant LDH-P-C-470 pulsed diode laser with 80-ps FWHM [68].
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Figure 4.2: Light source simulation. The red solid line is the empirical time characteristic,

the blue dots is the simulated time characteristic based on empirical curve and the cyan

asterisks are the simulated time characteristic with Gaussian distribution as the first

approximation.

emission spectrum and thickness of fluorescent sample. For the simulation

of the fluorescent sample, the following assumptions have been made:

• the light absorption obeys the Beer-Lambert law;

• fluorophores have uniform distribution;

• the optical density of the fluorescent sample is negligible;

• fluorescence decay is monoexponential;

• there are no other processes besides fluorescence.

These assumptions considerably decrease the computation times and at

the same time they are still in a good agreement with the real world.

The number of absorbed photons is calculated based on extinction co-

efficient ε, fluorophore thickness l and concentration c by Beer-Lambert

law [7, sec. 2.13]

Na = (1 − 10−εcl)Nc , (4.13)
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where Nc is the number of photons arrived to the fluorescent sample. The

number of emitted photons is determined by the quantum yield (QY) of

the fluorophore

Ne = NaQY, (4.14)

However, considering the fact that the simulation is of backward type, the

losses caused by the absorption without consequent emission have already

been taken into account at the preprocessing step. On the current step

we have an array P of Ng photons, where Nf/N of them are fluorescent

photons (see Section 4.3). All photons are identical from the fluorescence

point of view. Therefore, the fluorescent photons should be picked from

array P . In order to do that, the system generates an array r of random

values uniformly distributed in range [0, 1]. The length of this array is equal

to the number of generated photons, i.e. Ng. The fluorescent photons are

then chosen by the following criterion

∀ ri, i ∈ 0, Ng, Pi =

{

fluorescent photon, ri < Nf/N

passed photon, ri ≥ Nf/N
(4.15)

New time and wavelength values are then simulated for each fluorescent

photon. Time increments are generated by the inverse function method [69,

sec. 4.2]:

∆tj = −τ ln zj (4.16)

where τ is the fluorophore lifetime, z is a random variable uniformly dis-

tributed on [0,1], j is the index of the photon, varying from 1 to the total

number of fluorescent photons. The new time value is the sum of the

previous time value and the time increment

tj = tj + ∆tj.

New wavelengths are generated by a rejection method according to the

emission spectrum of the fluorophore.
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Figure 4.3: Fluorescence simulation. The time curve and the spectrum are shown for

exciting (red curve) and fluorescent light (blue curve).

The output of the fluorescence simulation unit is an array of both the

fluorescent photons with updated time and wavelength values, and the

passed photons with unchanged characteristics.

An example of fluorescence simulation is presented in Figure 4.3. Micro-

LED with FWHM=1.7 ns (see Figure 4.2(a)) was used as a light source.

Fluorescence lifetime was 16 ns. The ratio between fluorescent photons

and the total number of photons Nf/N was 0.8. This ratio can be seen in

the spectrum in Figure 4.3(b): the first peak of the fluorescent spectrum

corresponds to the passed photons and accounts for 20% of the exciting

spectrum.

4.6 SPAD-based detector simulation

The SPAD simulation unit models detector noise, including afterpulses and

the detection of incoming photons with corresponding time response. The

input of the SPAD simulation unit comprises:

• dependence of photon detection probability (PDP) from wavelength,
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• time response curve,

• dark count rate (DCR) value,

• afterpulsing time distribution,

• type of quenching circuit with its characteristics.

The block diagram of the SPAD simulation is shown in Figure 4.4.

Dark counts
generation

Simulation of
avalanche events
caused by fluo-
rescent photons

Time jitter
modelling

Afterpulsing
simulation

Input

Quenching/
recharging

circuit model

Output

Dark counts
generation

Simulation of
avalanche events
caused by fluo-
rescent photons

Time jitter
modelling

Afterpulsing
simulation

Input

Quenching/
recharging

circuit model

Output

Figure 4.4: The block diagram of SPAD simulation.

Dark count rate. The SPAD simulation starts with the generation of dark

counts. It is modelled as a Poisson flow with the rate parameter equal to

the DCR value of the detector. The occurrence times are defined by the

following recurrent equation:

t0 = tbeg, ∀ ti ≤ tend, ti = ti−1 − ln ri/λ, (4.17)

where λ is the rate parameter of Poisson flow, ri is a realization of a random

variate uniformly distributed on [0, 1], tbeg and tend are the start and the

end of the time interval (4.6) on this pass. It should be noted, that t0 is not

a random variable and is not a dark count event, it is used just to initiate

the noise modelling.

An example of the noise simulation with DCR=100 Hz is demonstrated

in Figure 4.5. Figure 4.5(a) shows the first 103 of 106 realisations of DCR

modelling. Figure 4.5(b) presents a comparison of simulated and theoret-

ical PDFs for all realisations. This simulation has been verified by the
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Pearson’s χ2 test [70] and the resulting p-value was 0.36, which proves the

high simulation accuracy.
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Figure 4.5: Dark count rate simulation. a) Simulated DCR for 103 realisations. b) A

comparison of simulated (blue dots) and theoretical (red solid line) PDF of noise for 106

realisations.

Photon detection probability. The next step of the SPAD simulation is

the modelling of avalanche triggering caused by incoming photons in ac-

cordance to the PDP. At the beginning of this step a random variate r,

uniformly distributed on [0, max (PDP )], is generated for each photon.

Then, r is compared to the PDP for the photon’s wavelength. The photon

is considered as detected if r < PDP (λp). For such a photon, the detection

time is calculated as the photon arrival time plus detector response time,

which is generated by rejection method in accordance to the time response

characteristic of the detector.

Afterpulsing. At the next step, the afterpulsing probability Paft is calcu-

lated on the base of DCR, dead time and afterpulsing characteristic of the

detector. In the case of passive quenching the dead time is zero, while in
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the case of active quenching the dead time is the sum of the physical dead

time and hold-off time (see Section 2.3). In graphical representation, the

afterpulsing probability is the area between DCR level and afterpulsing

curve, bounded by the dead time (see Figure 4.6).
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Figure 4.6: Afterpulsing probability calculation1.

The described approach is more flexible than a straightforward use of

the fixed value of afterpulsing probability (provided as input parameter).

For example, if one wants to analyse how hold-off time influences the noise

characteristic, one needs to change only the parameter of interest — the

afterpulsing probability will be recalculated automatically.

To simulate afterpulses, a random variate r, uniformly distributed on

[0, 1], is generated for each photon. The afterpulses occur for those photons

for which r < Paft. The times of afterpulses are generated by rejection

method, in accordance to the afterpulsing curve. The generated interval

spans from the dead time to the time where the afterpulsing curve converges

to the DCR level (around 3.5 µs for the curve in Figure 4.6).

An example of the afterpulsing simulation is presented in Figure 4.7.

Afterpulsing of SPAD CMOS sensor reported in [15] has been simulated

1This afterpulsing curve was measured for SPAD CMOS sensor reported in [15]. The real dead time

of this SPAD was 520 ns and there was 20 ns additional delay applied externally. So, the afterpulsing

events appeared after 540 ns.

47



4.6. SPAD DETECTOR SIMULATION

CHAPTER 4. THE SIMULATION MODEL OF

FLUORESCENCE MEASUREMENT

for 107 photons. The reported and simulated afterpulsing probabilities

were 4.5% and 5.2% respectively.

500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12
x 104

C
ou

nt
s 

(lo
g 

sc
al

e)

Time (ns)

 

 
Measured
Simulated

Figure 4.7: An example of afterpulsing simulation.

All the detected photons, dark counts and afterpulses are combined into

one array D and sorted by time in the ascending order. The last step of

the SPAD simulation performs pruning of these events in accordance to

the quenching/recharging circuit functionalilty.

Active quenching. In the case of active quenching/recharging, the SPAD

has a fixed time interval after detection; during this period the detection

of the next event is impossible. This time interval consists of the physical

detector dead time and the hold-off time (see Section 2.3). All the events

from the array D related to that time period are excluded from further

consideration. The remaining times are the output of the SPAD simulation

unit. The block diagram of active quenching is depicted in Figure 4.8.

Passive quenching. In the case of passive quenching/recharging, the SPAD

does not have a fixed dead time. Current and voltage pulses are now

produced for each triggering event, but with different amplitudes which

depend on the time elapsed from the previous event (see Figure 2.10(b)).
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Figure 4.8: Active quenching/recharging simulation.

However, a comparator at the output has a threshold level and the pulses

with smaller amplitudes are discarded.

To simulate such a behaviour, we first calculate the time distances ∆t

between two consecutive events in the array D. The amplitude of the

first current/voltage pulse caused by the first event from array D is as-

sumed to be the maximum value. The amplitudes of all the consequent

current/voltage pulses are calculated as

Ai = Amax exp(−RC/∆ti), (4.18)

where Amax is the maximum value of the pulse, ∆ti is the time interval

between ith and (i−1)th events, R is the resistance of the quenching resistor

and C is the total capacitance at the diode terminal (see Figure 2.10(a) ).

All events with amplitudes smaller than the comparator threshold (Ai <

Ath) are not considered in the further processing. The remaining event

times are the output of the SPAD simulation unit.

The simulated current pulses of the SPAD with passive quenching are

shown in Figure 4.9. The figure presents the cumulative picture of pulses

occurred at different times after the previous avalanche event. The ampli-

tude envelope corresponds to the voltage recovery graph (see Figure 2.10(b)).
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Figure 4.9: The simulated current pulses of the SPAD with passive quenching.

4.7 Measurement technique simulation

TCSPC. In the case of time-correlated single photon counting the first

photons (ideally, single photons) per signal period should be detected (see

Section 2.3). In real experiments the synchronization signal is provided by

the light source. In the model it is simulated in the following way.

At the input this module receives an array D which contains the absolute

times of detected events. Integer division of vector D by signal period

(time between two consecutive light pulses) gives sequence S of sets of

equal numbers where value is serial number of the signal period and set

length is the number of events detected in this signal period.

Si = b Di

1/f
c, (4.19)

where f is the light repetition rate (frequency). The indexes of the first

unique numbers in this sequence are the indexes of events which are the

output O of TCSPC in absolute time. To obtain the times in the signal

period interval the remainder of division of absolute time by signal period
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should be taken

T TCSPC
j = rem

(

Oj

1/f

)

. (4.20)

An example of the TCSPC simulation is presented in Figure 4.10.

D = D1, D2, D3, D4 . . . Dk−2, Dk−1, Dk, Dk+1 . . . Dm−2, Dm−1, Dm

S = 0, 1, 1, 2 . . . i − 1, i, i, i + 1 . . . Npl−1, Npl, Npl

O = D1, D2, D4 . . . Dk−1, Dk+1 . . . Dm−1

↓
O = D1, D2, D4, . . . , Dk−1, Dk+1, . . . , Dm−1

TTCSPC = rem
(

D1

1/f

)

, rem
(

D2

1/f

)

, rem
(

D4

1/f

)

, . . .

Figure 4.10: An example of TCSPC simulation.

In practice, the TCSPC module can count more that one photon per

light pulse. When the probability of detection of multiple photons per light

pulse is high, the dead time of the TCSPC module becomes a significant

parameter and should also be included into the simulation. However, if

the TCSPC dead time is smaller than the detector dead time, it can be

neglected.

Time-gating. For the simulation of time-gating measurement technique,

the inputs of this simulation unit are composed of a set of the time shifts

and initial observation windows (OW). The positions of the OWs for the

subsequent passes are calculated as

OW k
h =

{

OW 1
h + (k − 1)tsh, if tsh = const

OW 1
h + tksh, if tsh 6= const

(4.21)

where h is the number of OW, k is the number of the simulation pass (from

2 to Np (4.8)), OW 1
h is OWh at the beginning of the simulation, tsh is the

time shift at the kth simulation pass. Then, we calculate the number of

photons detected during each OW

T TG
h = |D ∈ OWh|, (4.22)
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where D is the array of all detected events at the simulated time interval

∆t (4.6).

4.8 Model implementation

The described model has been implemented in MATLAB R© 7. The model

input parameters are specified in two ways. Single parameters, like DCR

level and fluorophore QY, are provided through the graphical user inter-

face (GUI) shown in Figure 4.11. When the user clicks the “Run” button,

these parameters are automatically saved into a dedicated m-file, from

which they can be accessed when required. Complex parameters, such as

fluorescence emission spectrum and SPAD time jitter curve, are stored into

the same m-file by a special function. The simulation speed depends both

Figure 4.11: The interface of the main window of the simulation tool.

on the modelling parameters and the available computational resources.
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While the simulator can be easily adjusted for any memory size, we rec-

ommend running the simulator on a computer with at least 2 GB of RAM.

4.9 Summary

This chapter presented the simulation model for fluorescence measurement

experiment. First, we explained our motivation for the choice of simulation

modelling. Then we introduced the simulation model and described the

details of the functionality of each of its parts. Finally, we briefly described

the implementation of the model.
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Chapter 5

Experimental evaluation

5.1 TCSPC and time-gating under measurement of

fluorescence with short and long lifetimes

To validate the system’s capabilities to model different measurement tech-

niques, we simulated the fluorescence decay measurements described in [15].

CdSe/ZnS quantum dots in toluene [71] in a glass capillary were put in

the immediate proximity to the detector. A Picoquant LDH-P-C-470 [68]

pulsed diode laser with 80 ps FWHM and 1 MHz repetition frequency was

used as the excitation source. The practical and simulated laser pulses are

shown in Figure 5.1 (the simulated graph has been obtained from the his-

togram of simulated photons, scaled to the peak of the measured graph).

As one can see, the modelled laser shape does not have a long tail and thus

it is a little bit narrower under the same FWHM.

Neither lenses nor optical filters have been used. A single CMOS SPAD

pixel was employed to detect the fluorescence. The detector uses active

quenching and has the characteristics described in Table 5.1

A theoretical lifetime of 16 ns has been utilized to simulate fluorescence

decay. A 10-ns observation window and 60-ps time step were used for

time-gating. The experimental and simulated fluorescence decay curves
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Figure 5.1: Simulated and practical laser pulse.

Table 5.1: The main characteristics of the SPAD in the measurement setup.

Dark count rate 4 kHz

Afterpulsing probability ∼ 4.5%

PDP max 32% at 450 nm

Dead time 520 ns

FWHM of time response 160 ps

are shown in Figure 5.2. The difference of the intensity in the experimental

and simulated data during the first 10 ns can be explained by non-metering

of light dispersion in the fluorescent sample. All the unabsorbed photons

hit the detector, whereas in the real world a proportion of them are lost.

The lifetime for each curve has been estimated by means of fitting the

fluorescence decay with a mono-exponential curve. The experimental and

simulated lifetimes are 16.21 ns and 16.39 ns respectively.

Simulation of the fluorescence lifetime detection by time correlated sin-

gle photon counting technique is presented in Figure 5.3. The result has

been compared with the experimental data obtained with the same setup as

in the previous case, except that we used an external commercial TCSPC

instrument PicoHarp 300 [68].

As the parameters influencing the number of photons (such as beam

divergence, geometry of setup, etc.) were not considered within this simu-
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Figure 5.2: Fluorescence decay measurement performed with single pixel SPAD CMOS

sensor and time-gated technique and simulated by our system.
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Figure 5.3: Fluorescence decay measurement performed with single pixel of SPAD CMOS

sensor and TCSPC module and simulated by our system.
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lation, only the shape of the simulated curves was verified. The simulated

graphs were obtained from the histograms of simulated photons, scaled to

the peak of the fluorescence part of the measured graphs. The quality of

the simulation in both cases was checked by the chi-square test [70]. It

indicated a good agreement between simulated and measured data.

5.2 A two-chip micro-system structure of micro-LED

and SPAD detector

In this section we perform and evaluate the modelling of a two-chip “sand-

wich” structure (see Figure 5.4) which includes

• a blue micro-LED array with peak emission wavelength of 450 nm,

• a CMOS SPAD detector array where each pixel can extract time-gated

measurements or send data to external photon counting hardware [72].

For this experiment a single pixel in the SPAD array and the nearest LED

from the LED array were selected. The sample (CdSe/ZnS quantum dots in

toluene [71]) in a micro-cavity slide and an excitation filter (Semrock, LP02-

514RU-25 [73]) were placed into the 14 mm gap between the excitation and

detection planes. A time-correlated single photon counting module (Becker

and Hickl, SPC-130 [74]) was used to build the fluorescence decay curves.

A range of experiments with different light pulse width has been carried

out to evaluate the sensitivity of the simulator. The backward simulation

type has been used. The losses due to LED beam divergence, nonradiation

absorption, finite detection area and filtering have been calculated based

on Table 4.2. The full list of the setup characteristics is presented in

Appendix A.1. Figure 5.5 presents the simulated and the experimental

results for 3.1 ns, 3.15 ns and 3.3 ns pulse width with 3.77 µW , 6.47 µW
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Figure 5.4: A two-chip “sandwich” structure including a micro-LED array and a CMOS

SPAD detector array. The fluorescent sample was located in a micro-cavity slide. An

excitation filter was used to separate the LED light from the fluorescent light.

and 9.08 µW average optical power, respectively. The simulated curves are

in good agreement with the experimental ones.
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Figure 5.5: Experimental and simulated fluorescence decays with different light pulse

width.

Another set of experiments has been performed to estimate the quan-

titative simulation ability of the model. We investigated different setups,

with and without excitation filter and fluorescent sample. Selected results

are presented in Figure 5.6. In those experiments, the dark count rate had

been artificially increased to simulate the ambient light. The experimental

59



5.3. PILE-UP EFFECT CHAPTER 5. EXPERIMENTAL EVALUATION

20 30 40 50 60 70 80
100

101

102

Time (ns)

P
ow

er
 (u

ni
ts

)

 

 
Experimental
Simulated

(a)

20 30 40 50 60 70 80
100

101

102

Time (ns)
P

ow
er

 (u
ni

ts
)

 

 

Experimental
Simulated

(b)

Figure 5.6: a) Experimental and simulated curves measured without fluorescence sample;

b) experimental and simulated fluorescence decay.

and simulated data are in good agreement, except the peak area. This

mismatch can be explained by inaccuracy of input parameters. Indeed, we

did not have the experimental LED time curve at FWHM=2 ns. The time

curve shape for with FWHM=2.2 ns has been squeezed to proper width.

The distortion of the curve shape has probably resulted in the disagreement

described above.

5.3 Investigation of pile-up effect under high light

intensity conditions

In this experiment, we applied the simulation model to explain the distor-

tions in experimental fluorescence decay measured under conditions that

cause pile-up effect.

CdSe/ZnS quantum dots in toluene evidot R© 620 [71] in a micro cavity

were put in the immediate proximity to a commercial SPAD from Mi-

cro Photon Devices PDM series [75]. The fluorescence decay was rebuild

by an external TCSPC module PicoHarp 300 [68]. A Picoquant LDH-P-
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C-470 [68] pulsed diode laser with 80 ps FWHM and 1 MHz repetition

frequency was used as excitation source. Due to the fact that no optical

filter was used and the laser was directed straight into the detector, the

SPAD worked in a saturated mode. The experimental curves are presented

in Figure 5.7.
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Figure 5.7: The experimental curves measured under pile-up effect.

To simplify the analysis, the curve without fluorescence emission was

considered at the beginning.

The gap after the laser peak can be explained by the presence of dead

time of TCSPC module, which worked in a multi-photon operation mode.

The data sheet value of PicoHarp 300 is <95 ns, the one extracted from

measurements is 85.5 ns.

To explain such artefacts as the increasing number of counts near the end

of TCSPC dead time and the decay with long time constant after this time,

we performed a range of simulations of this system with different levels of

ambient light. Selected results are presented in Figure 5.8. These results

correspond to the observed ones, part of which is presented in Figure 5.7.

The first artefact (counts within TCSPC dead time) can be explained

by the following. Ideally, the laser photon detected at 35 ns triggers the

avalanche and the system cannot detect other photons for the next 85.5 ns
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Figure 5.8: Simulation of laser light with different level of ambient noise.

(Noise level 1 < Noise level 2 < Noise level 3 < Noise level 4)

(i.e., the dead time period). However, there is a chance that the SPAD

detects a noise photon before the laser pulse. As the noise level increases, so

do the chances of such detection. A noise photon detected at, for example,

20 ns will create a dead time period until 105.5 ns, so the system will be

able to detect new photons before the end of the dead-time period caused

by a laser peak (120.5 ns). This explains the photon counts within the

dead-time gap of the system.

The second artefact is the shape of the curve after the TCSPC dead

time and its slightly higher level that that before the laser peak. This

artefact is caused by afterpulsing.

The next step was to explain the weak peaks over the whole detection

period. As soon as the simulation did not show any similar peaks, we

supposed that they are caused by imperfect adjustment of the experimental

setup. After several attempts, it was found that these peaks are caused by

noise pickups in the synchronization cable. The Figure 5.9 shows our best

attempt to minimise this influence.

Finally, we included the fluorescence into the modelling, in order to

simulate the curve of interest completely. The results are presented in

Figure 5.10.
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This section has demonstrated the ability of the proposed simulation

model to help in explanation of some unexpected results of real measure-

ments.
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Figure 5.9: The best attempt to minimise the noise pickups in synchronization cable.
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Figure 5.10: Simulated and measured laser light and fluorescence decay curves under high

ambient light level.
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5.4 Investigation of time-filtering and noise effect in

a microarray system

5.4.1 The system overview and research questions

The system considered in this experiment consists of a SPAD-based de-

tector array and micro-cavities module. The schematic diagram of the

system is presented in Figure 5.11. The SPAD array has been manufac-

tured by a high voltage 0.35 µm CMOS technology (a similar detector has

been reported in [13]). The array contains 10×10 pixels, and the active

area of each pixel equals to 18.1×18.1 µm. The micro-cavity module is

aligned with the SPAD array such that the centre of cavity is situated di-

rectly above the centre of the single pixel. The cavities have a diameter of

50 µm. The distance between the fluorescent and the detecting surfaces is

100 µm.

CMOS SPAD detector

Micro -cavities array

Figure 5.11: The schematic view of the system. CMOS SPAD detector and micro-cavities

array with attached fluorophores are displayed. The figure is adapted from [76].

The SPAD array has an average DCR of 900 Hz for 80% of pixels and

up to 150 kHz for the rest of the array (see Figure 5.12). The time-gating

technique has been used to detect the fluorescence. Two consecutive gates

with the width adjustable in the range of 0.8 ns – 10 ns were implemented.

The SPAD uses active quenching with the recharging time in the range
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Figure 5.12: Dark count rates of single pixels, sorted in ascending order.

of nanoseconds. This time depends on total capacitance Ct which is the

sum of the input capacitance of comparator Cc, the SPAD stray capacitance

Cs and the capacitance of the Mn transistor Cn (see Figure 5.13). At the

same time, Cn depends on the Mn transistor width w. Therefore, the total

capacitance also has a dependence on w and is represented as Ct(w). The

recharging time has been simulated in PSpice for three different transistor

widths w and Cc + Cs equal to 100 fF . The results are presented in

Table 5.2. It should be noted that for this range of w, the influence of Cn

on total capacitance is negligible in comparison to Cc + Cs.

C
c

C
n

C
s

Mn

C
c

C
n

C
s

Mn

Figure 5.13: A simplified SPAD diagram.

The light source was simulated as a PicoQuant pulsed diode laser LDH-

D-C-470 [68], and the simulated fluorophore was the Alexa Fluor R© 488 [77].

The full list of the setup characteristics is presented in Appendix A.2.
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Table 5.2: The PSpice simulation of the recharging time.

w time

0.75 µm 1.76 ns

1.5 µm 0.8 ns

3 µm 0.4 ns

In this experiment we investigated the following questions:

1. How perfect is the time-filter in comparison to the conventional optical

filter?

2. What is the influence of the “noisy” pixels on the lifetime estimation?

3. How does the OW width affect the lifetime estimation?

5.4.2 Simulation of time-filtering

The fluorescence was detected by time-gating with two consecutive gates.

The rising and falling edges of the gates are not exactly vertical, because

the rising/falling time is finite. The experimentally measured observation

windows and the approximation used in the simulation are presented in

Figure 5.14. The experimental data were taken for the last two 6 and 10 ns

OWs of the detector presented in [13]. The estimated rising and falling time

is 0.8 ns. This value was used for the simulation of photon counting at the

rising edge. More specifically, the probability to count a photon increases

linearly from 0 to 1 on the time interval [startOW ; startOW + 0.8 ns].

The falling edge was simulated similarly.

The PicoQuant laser pulse with FWHM=80 ps was simulated as a Gaus-

sian with the mean value of 150 ps and σ value of 36 ps (4.11) . Such an

approximation is valid for low power levels of the diode, when the laser

does not have broadening caused by shoulder and/or additional peaks [68].

The laser light fades over 0.3 ns. So, to do the time-filtering the SPAD
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Figure 5.14: The measured and approximated observation windows.

should be switched off until this time. The simulation of the fluorescence

detection with 6 and 10 ns OWs and 0.3 ns of time-filtering is presented

in Figure 5.15. It is possible to observe the fluorescence decay even in the

case of time-filtering. The delay of 0.5 ns between laser falling edge and

OW rising edge corresponds to the SPAD recharging process. The lifetime

extracted using equation (2.6) was 3.96 ns.

Figure 5.16 illustrates the simulation of fluorescence decay with the

same width of time gates, but a smaller SPAD switched off time (0.25 ns).

Presence of the excitation light in the first time gate is obvious. In this

case, the lifetime estimation was distorted to a smaller extent (2.8 ns) in

comparison to the previous case.

5.4.3 Analysis of influence of the “noisy” pixels and OW width

on the lifetime estimation

Separate pixels of the SPAD array have different DCR (see Figure 5.12).

A range of experiments have been performed to study the influence of the

noisy pixels othe n lifetime estimation across the whole chip. We simulated

the fluorescence detection by 100 single SPADs with different DCR value

in accordance with the curve depicted in Figure 5.12. Two equal time gates
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Figure 5.15: Time filtering simulation with 0.3 ns SPAD switched off time.
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Figure 5.16: Time filtering simulation with 0.25 ns SPAD switched off time.

were used, so the lifetime extraction for each single SPAD was calculated

by (2.6). Then the cumulative lifetime was calculated as follows:

τi =
T1 − T2

ln
(

∑i
k=1 V k

2 /
∑i

k=1 V k
1

) , (5.1)

where T1 −T2 is the time distance between two time gates,
∑i

k=1 V k
2 is the

integrated intensity (i.e. number of counts) on the second time gate of the

ith SPAD and all i−1 previously simulated SPADs which have lower DCR.

The results of the simulation for 10 ns and 6 ns gate width are presented

in Figure 5.17 and 5.18, respectively. It can be seen that for low-noise
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SPADs the cumulative lifetime is a mean value of the lifetime per single

pixel. In other words, the averaging over several SPADs with approxi-

mately equal DCR values decreases the statistical straggling of the lifetime

estimation. On the other hand, the SPADs with a high DCR level should

better be excluded from consideration. The exact number of SPADs, which

should be involved into the lifetime estimation to achieve the best possi-

ble precision, can be found by repeating this simulation many times and

performing a statistical analysis of the results.
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Figure 5.17: Lifetime estimation for 100 separate pixels which have different DCR value.

The widths of the time gates were 10 ns.

Some interesting results were obtained in the case of 6 ns time gates.

Such a gate width is not perfect for the measurement of 4.1 ns lifetime [10].

The averaging over several SPADs with approximately equal DCR values

in this case improves not only the precision but also the accuracy of the

lifetime estimation.
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(a) Estimation of the lifetime per single pixel and

cumulative lifetime
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(b) Cumulative lifetime estimation and DCR value

Figure 5.18: Lifetime estimation for 100 separate pixels which have different DCR value.

The widths of the time gates were 6 ns.

5.4.4 Discussion

The simulation has demonstrated the good performance of the time-filtering

in SPAD detector. We found that by switching off the SPAD for a half

of nanosecond it is possible to completely remove the laser light from de-

tection. At the same time, it does not influence the lifetime extraction,

because fluorescence emission takes at least one order of magnitude longer

time than the SPAD switching-off time.

The time-filtering has several advantages in comparison to the conven-

tional optical filter. First of all, if the time-filtering is used, the excitation

wavelength can be selected at the peak of absorption spectrum even for

the fluorophores with small Stokes shift. In the case of a very weak flu-

orescence signal, the optical filter (which has high but not 100% cutoff

and transmission efficiency) will not be able to satisfactorily reduce the

excitation signal without significant attenuation of the fluorescence signal.

To find a trade-off between time- and optical-filtering, additional re-
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search is required. In the described above case, the quantitative simulation

was impossible due to the absence of knowledge about physicochemical pro-

cesses inside the system of a single layer of complex molecules labeled by

fluorophores. In such a system, numerous effects can change the intensity

and the lifetime of the fluorescence.

The simulation of SPAD array with different noise level across the pix-

els has demonstrated that the averaging over several single SPADs with

small DCR values improves precision of the lifetime estimation, whereas

the SPADs with a high DCR level should be excluded from the considera-

tion. Additional statistical analysis is necessary to find the exact number

of single SPADs which should be involved into the lifetime estimation.

Finally, the simulation of lifetime extraction with different OW widths

has shown that, in the case of non-optimal gate width, averaging over sev-

eral single SPADs with small DCR values improves not only the precision

but also the accuracy of the lifetime estimation. This can be useful when

limited OW widths are used for long lifetime fluorescence decay.
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Chapter 6

Conclusions

6.1 Summary

To find the optimal performance of single photon avalanche diodes in a

specific application area, it is crucial to consider in a systematic manner

both the detector characteristics and the experimental conditions. The

area of research interest of this project was in the application of SPAD-

based detectors in time-resolved fluorescence measurements. In this thesis,

we proposed a simulation model of a typical experimental setup for fluo-

rescence decay measurement. The model considers all the essential parts

of this type of experiments, such as: the excitation light source, the fluo-

rescent sample, the detector – as well as the measurement technique.

The experimental validation of the model demonstrated a very good

qualitative matching to the real experimental results. The quantitative

simulation, however, rather pretty accurate, is more prone to errors due

to the following reasons. Firstly, the simulation modelling is very sensitive

to the input parameters which should be as close as possible to the real

world values. Even minor inaccuracies in the values of some parameters

can lead to considerable large quantitative errors. The second source of the

simulation error stems from the assumptions accepted for the simulation.

In some of the real world experiments these assumptions might not hold,
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thus leading to simulation errors. In spite of this, the proposed model

has been successfully applied to explain the distortions in experimental

fluorescence decay measured under high intensity of ambient light, when

the pile-up effect appears. Moreover, the prediction ability of the model

has enabled the simulation-based investigation of the time-filtering and

influence of noisy pixel in SPAD array on accuracy of lifetime estimation.

6.2 Future work

This project can be extended in several ways. First of all, the development

of more advanced models of the experiment components will improve the

accuracy of the simulation. For example, for a miniaturized system the

consideration of the fluorescent sample as a point light source is not appli-

cable. Future work may consider the inclusion of an appropriate correction

coefficient or even take a different approach of fluorescence emission sim-

ulation. Secondly, the consideration of more complex biological samples

will increase the application area. For instance, the simulation of energy

transfer inside a fluorescent solution would enable the modelling of FRET

systems. Also, the implementation of an optimization algorithm will pro-

vide an opportunity to fit SPAD and experimental setup parameters to

achieve the optimal system performance. Finally, the system performance

can be improved by conversion of the MATLAB model to some compiled

programming language.

6.3 Conclusion

The project has demonstrated the utility of investigation of fluorescence

measurements with SPAD-based detectors at the system level. Taking

into account the conditions of the experimental setup, the measurement
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technique and the knowledge about all SPAD characteristics allows the re-

searchers not only to reproduce the experimental data but also to predict

results of real or planned experiments and thus optimize the implementa-

tion efforts.

The proposed methodology enables the preproduction-stage investiga-

tion of the importance of particular characteristics of the detectors for a

particular application area. This makes it possible to design a SPAD with

the optimal performance for the specific application.
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Appendices

A.1 Characteristics of two-chip micro-system

Table A.1: The light source characteristics.

Characte-

ristic

Real value Simulated

value

Notes

Time charac-

teristic

FWHM=3.1/3.15/

3.3 ns

FWHM=3.1/3.15/

3.3 ns

Tabulated curves from an ex-

periment

Spectrum 450 (±30)nm 450 (±30)nm Tabulated curve from an exper-

iment

Power per

pulse

3.77/6.47/9.08 µW 3.77/6.47/9.08 µW

Beam shape Circle with diam-

eter 20 µm

Circle with diam-

eter 20 µm

Data from [78]

Divergence 75◦ 75◦ Data from [78]
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Table A.2: The SPAD characteristics.

Characte-

ristic

Real value Simulated

value

Notes

Dead time 30 - 40 ns 30 - 40 ns Passive quenching simulation

SPAD active

area

�6 µm �6 µm

DCR 30 Hz 30 Hz

PDP 35% max at

460 nm

35% max at

460 nm

Tabulated curve from experi-

ment

Afterpulsing

probability

— 0.249%

Table A.3: The fluorophore characteristics.

Characte-

ristic

Real value Simulated

value

Notes

Concentration 81.33 M 81.33 M

Thickness 0.5 mm 0.5 mm

Quantum

yield

0.61 0.61

Extinction

coefficient

81000 81000

Lifetime 20 ns 20 ns

Spectra Emission peak

526 nm

Emission peak

526 nm

Table A.4: Geometry of the setup.

Characteristic Real value Simulated

value

Notes

LED - fluo-

rophore distance

≈ 5 mm 6 mm

Fluorophore -

SPAD distance

≈ 9 mm 9 mm

Filter probability ≈ 98% 98%
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A.2 Characteristics of microarray system

Table A.5: The light source characteristics.

Characte-

ristic

Real value Simulated

value

Notes

Time charac-

teristic

FWHM=80 ps FWHM=80 ps Gaussian with mean=0.15 ns

and 0.0361 ns 1

Spectrum 470 (±10)nm Peak 470

FWHM=20 nm

Gaussian with mean=470 ns

and 8.4932 ns

Power per

pulse

0.3 mW 0.3 mW

Beam shape Circle with diam-

eter 3.5 mm

Circle with diam-

eter 3.5 mm

In case of using a multi mode

optical fibre [68]

Table A.6: The fluorophore characteristics.

Characte-

ristic

Real value Simulated

value

Notes

Concentration 1011

molecules/cm2

1011

molecules/cm2

Single layer

Optical

cross-section

1.23*10−20 m−2 1.23*10−20 m−2

Quantum

yield

0.92 0.92

Lifetime 4.1 ns 4.1 ns

Spectra Excitation peak

499 nm, emission

peak 519 nm

Excitation peak

499 nm, emission

peak 519 nm

Tabulated curve from the site

of producer of Alexa Fluor R©

488 [77]

1This approximation of laser shape valid for PicoQuant laser with low power level [68].
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Table A.7: The SPAD characteristics.

Characte-

ristic

Real value Simulated

value

Notes

Dead time 150ns–10 µs 150ns

SPAD active

area

18.1×18.1 µm 18.1×18.1 µm

DCR 900 Hz–100 kHz 900 Hz–100 kHz

see Figure 5.12

For simulation of single pixel

900 Hz value was used

Recharge

time

0.4–1.76 ns 0.4, 0.8, 1.76 ns

Comparator

threshold

1.5 V 1.5 V

PDP 33% max at

450 nm

33% max at

450 nm

Tabulated curve from [15] for

Ve = 4V

Afterpulsing

probability

8.2% for

DCR=900 Hz

and dead time

150 ns

8.2% Tabulated curve from [15]

Time re-

sponse

FWHM=160 ps FWHM=160 ps Tabulated curve from [15]

Time-gating Two consecutive

OWs from 0.8–

10 ns

3&10 ns,

6&6 ns, 6&10 ns,

10&10 ns

The beginning of the first

OW was different depending on

time-filtering
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