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Abstract

While classifications are heavily used to categorize web content, the evo-

lution of the web foresees a more formal structure – ontology - which can

serve this purpose. Ontologies are core artifacts of the Semantic Web which

enable machines to use inference rules to conduct automated reasoning on

data. Lightweight ontologies bridge the gap between classifications and on-

tologies. A lightweight ontology (LO) is an ontology representing a back-

bone taxonomy where the concept of the child node is more specific than

the concept of the parent node. Formal lightweight ontologies can be gener-

ated from their informal ones. The key applications of formal lightweight

ontologies are document classification, semantic search, and data integra-

tion. However, these applications suffer from the following problems: the

disambiguation accuracy of the state of the art NLP tools used in gener-

ating formal lightweight ontologies from their informal ones; the lack of

background knowledge needed for the formal lightweight ontologies; and the

limitation of ontology reuse. In this dissertation, we propose a novel so-

lution to these problems in formal lightweight ontologies; namely, faceted

lightweight ontology (FLO). FLO is a lightweight ontology in which terms,

present in each node label, and their concepts, are available in the back-

ground knowledge (BK), which is organized as a set of facets. A facet

can be defined as a distinctive property of the groups of concepts that can

help in differentiating one group from another. Background knowledge can

be defined as a subset of a knowledge base, such as WordNet, and often

represents a specific domain.
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Chapter 1

Introduction

1.1 The Context

While classifications are heavily used to categorize web content, the evo-

lution of the web foresees a more formal structure which can serve this

purpose, namely ontology. Ontology is defined in Computer Science as a

specification of a conceptualization [28]. Ontologies are core artifacts of the

Semantic Web, a proposed extension of the current Web, in which infor-

mation is given formal semantics so that computers can use inference rules

to conduct automated reasoning on pieces of this information [7]. The key

factor which makes this reasoning task possible is that ontologies can be

represented in the formal language languages (e.g., RDF and OWL).

Lightweight ontologies, proposed in [25], bridge the gap between informal

classifications and formal ontologies. A lightweight ontology can be defined

as an ontology representing a backbone taxonomy where only an is-a

subsumption relation holds between a child node and a parent node. As

a result, the concept of the parent node is more general than the concept

of the child node. Depending upon their usage, lightweight ontologies,

can be classified into two kinds: a descriptive lightweight ontology and a

classification lightweight ontology.

Descriptive lightweight ontologies are used to specify the semantics of

1



1.1. THE CONTEXT CHAPTER 1. INTRODUCTION

terms, and the nature and structure of the domain the terms belong to [25].

Thesauri and controlled vocabularies are examples of this kind. They usu-

ally have a noun word or a simple noun phrase in each of their node labels,

representing (usually) an atomic concept. On the other hand, classification

lightweight ontologies are used to describe, categorize, and access collec-

tions of documents. Web directories and user classifications are examples

of this kind. They usually have a compound noun phrase in each of their

labels, representing (usually) a complex concept.

Both the classification and descriptive lightweight ontologies can further

be classified into: an informal lightweight ontology and a formal lightweight

ontology [25]. A formal descriptive lightweight ontology can be generated

from an informal one by converting its organizational structure into a

rooted tree, and by converting its natural language node labels into con-

cepts which are represented in a formal language, which belongs to the

family of Description Logic languages [3]. Similarly, a formal classification

lightweight ontology can be generated from an informal one. However, this

requires an extra step in which each node is converted into a concept of

node. A concept of node is the intersection of the concepts of all node

labels in the progression from the given node to the root node.

The key applications of formal lightweight ontologies are document clas-

sification, semantic search (semantically relevant term or document re-

trieval), and data integration [25]. We define these applications in the con-

text of lightweight ontologies in the following way. Document classification

can be defined as a means of classifying documents to a term/category in

a taxonomy, controlled vocabulary, business catalogue, user classification,

web directory, or faceted classification. Semantic search can be defined as

a means of retrieving the relevant categories, documents, or both, from

the lightweight ontologies they are classified into. Data integration can

be defined as a means of identifying, and then utilizing, semantic rela-

2



CHAPTER 1. INTRODUCTION 1.2. THE PROBLEM

tions (i.e., more general, more specific, equivalent, or disjoint) between

terms/categories of the lightweight ontologies, for their integration, inter-

operation, or merging. All the applications described above depend upon

the reasoning on formal lightweight ontologies. In this case, the outcome of

the reasoning tasks is conditioned by the accuracy of the axioms encoded

through assertion as well as inference, where asserted axioms are retrieved

from a knowledge base, e.g., WordNet [38].

1.2 The Problem

Formal lightweight ontologies suffer from the following problems, however.

Disambiguation accuracy of natural language processing: As de-

scribed in Section 1.1, formal lightweight ontologies are (usually) generated

from informal ones. The generation procedure involves the processing of

natural language labels for the identification of their concepts. This iden-

tification often requires the disambiguation of the label terms (words).

However, the disambiguation accuracy of the state of the art NLP tools is

limited to a certain extent. This accuracy is influenced by the lack of cov-

erage of the lexical knowledge base that (e.g., WordNet) these NLP tools

have.

Insufficient background knowledge for the ontologies: As described

in Section 1.1, the applications of formal lightweight ontologies depend

upon the reasoning on the axioms extracted from a knowledge base. Due

to the insufficiency of the background knowledge needed for the lightweight

ontologies, all the necessary axioms can not be extracted. This is the main

reason for the relatively low recall of these applications [22].

Difficulties in building and reusing ontologies: The adoption and use

of formal lightweight ontologies is limited as a result of the difficulties and

costs involved in building them manually. They are often domain specific

3



1.3. THE SOLUTION CHAPTER 1. INTRODUCTION

and cover a particular area of knowledge. An ontology built on a specific

domain to fulfil a particular purpose can hardly be reused to fulfil another

purpose on a different domain.

Furthermore, because informal lightweight ontologies can be available

on the Web, the open-ended and rapidly-changing nature of the Web can

influence their character. This requires that they be able to cope with the

following factors:

Scalability: A formal lightweight ontology can be generated from an in-

formal one, and can consist of millions of nodes.

Dynamics: A new node might be created, an existing node might be

renamed, and/or an existing node might even be removed.

1.3 The Solution

In this thesis, we propose a novel solution to the problem of formal lightweig-

ht ontologies, which we call faceted lightweight ontologies. To the best of

our knowledge, the term was coined by Giunchiglia et al. in [14]. A faceted

lightweight ontology can be defined as a lightweight ontology in which both

the terms in each node label and their concepts are available in the back-

ground knowledge, which is organized as a set of facets. A facet can be

defined as a distinctive property of the groups of concepts that can help

in differentiating one group from another. Background knowledge can be

defined as a subset of the (generic) knowledge base, such as WordNet, and

usually represents a specific domain.

Background knowledge is organized into two distinct sections: a languag-

e-independent part and a language-dependent part. In the language inde-

pendent-part, knowledge is organized as a set of domains, each domain is

grouped into a set of facets, and each facet is constituted by a hierarchy of

a set of homogeneous concepts. Instances of a concept are called entities,

4



CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

which are grouped into a set of entity types. A concept can belong to a set

(possibly empty) of domains. An entity type can correspond to a concept

and a set of entities can be connected to a concept as instances. In the

language dependent part, knowledge is organized as a list of words in a

given language and grouped into synsets. There are two kinds of synsets:

concept synsets and entity synsets. Each concept synset is connected to a

concept, but each concept may not have a synset representation in a hu-

man language (language gaps). Similarly, each entity synset is connected

to an entity, but an entity may not have a synset representation in a human

language (language gaps).

We develop GeoWordNet, a comparatively large knowledge base of arou-

nd 7.1 million synsets, with the full integration of WordNet, Italian Multi-

WordNet, and GeoNames, specialized in geo-spatial information. It is de-

signed to provide background knowledge to the faceted lightweight ontolo-

gies. While using GeoWordNet as background knowledge, we carried-out

a number of experiments to verify the feasibility of our solution. In all the

experiments we found reasonable performance increases in the lightweight

ontology applications. In addition, we specify C-XML for representing

faceted as well as informal lightweight ontologies. This solves the prob-

lem of dynamics. We also address the issue of scalability while developing

software for our experiments.

1.4 Structure of the Thesis

The thesis is structured as follows. In Chapter 2 we discuss the state-of-

the-art Semantic Web languages. In Section 2.1, we introduce Web and

Semantic Web languages. In Section 2.2 we describe the Semantic Web

and its features. In Section 2.3 we provide a hierarchy of the languages

which can be used to represent information on the Semantic Web. Sec-

5



1.4. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

tions 2.4, 2.5, and 2.6 outline the Semantic Web languages RDF, OWL,

and C-OWL, respectively. Having discussed these three ontology represen-

tation languages, we conclude the chapter in Section 2.7.

In Chapter 3 we discuss the different kinds of ontologies that we dealt

with in our thesis work. In Section 3.1 we introduce the classification

scheme, lightweight ontology, and ontology. In Section 3.2 we provide a

description of the classification schemes and ontologies, which is followed

by a comparison between them. Section 3.3 discusses lightweight ontol-

gies, their applications, and the problems involved in their applications.

Section 3.4 discusses background knowledge (BK) for the ontologies. In

Section 3.5 we present the faceted lightweight ontology as a solution to the

problems of the lightweight ontology applications, and in Section 3.6 we

conclude the chapter.

In Chapter 4 we describe our approach to converting lightweight on-

tologies into OWL ontologies. In Section 4.1 we describe the conversion of

lightweight ontology nodes, labels, and documents into axioms in OWL.

Section 4.2 reports the evaluation results of our approach. Section 4.3 ex-

emplifies the practical applications of the generated OWL ontologies. In

Section 4.4 we present related works. In Section 4.5 we add concluding

remarks about the lightweight ontology conversion into OWL ontologies.

Chapter 5 provides the specification of C-XML that can be used for

representing faceted lightweight ontologies. In Section 5.1 we introduce C-

XML. In Section 5.2 we present the hierarchical organization of the objects

that can be represented in C-XML, and we specify its abstract syntax.

Section 5.3 demonstrates a mapping between C-XML and XML, and in

Section 5.4 we conclude the chapter.

In Chapter 6 we describe our approach to building background knowl-

edge from WordNet for faceted lightweight ontologies. In Section 6.1 we

analyze the lexical, semantic, and both lexical and semantic relations be-

6
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tween synsets in WordNet. We also exemplify the relations and describe

the procedure to import the synsets and relations. Section 6.2 presents our

observations during this import. In Section 6.3 we report the results of our

evaluation of the background knowledge building approach from WordNet.

We conclude the chapter in Section 6.4.

Chapter 7 presents our construction of GeoWordNet, with the full in-

tegration of the background knowledge developed in Chapter 6, and the

knowledge available in GeoNames. In Section 7.1 we describe the criteria

for selecting knowledge sources. In Section 7.2 we identify and present

facets that can be built out of the GeoNames information. Section 7.3

presents classes that can be organized into the facets described in the pre-

vious section. Section 7.4 presents the main research issues we dealt with

in importing knowledge from GeoNames. In Section 7.5 we describe the

GeoNames knowledge import procedure. In Section 7.6 we report the sta-

tistical results of the import, and in Section 7.7 we present the open issues

we identified during this import. We conclude the chapter in Section 7.8.

In Chapter 8 we conclude the thesis and provide the direction for future

research work.

7





Chapter 2

State of the art

Web Languages

In this chapter we describe the Web and the Semantic Web, and the means

of representing information on each of them. We also discuss the reasons

for building the Semantic Web, and its features. We then outline the state-

of-the-art languages used to represent information on the Semantic Web.

The chapter is structured as follows. Section 2.1 provides a brief ac-

count of the Web, the Semantic Web, and Semantic Web languages. In

Section 2.2 we provide a more detailed description of the Semantic Web.

In Section 2.3 we outline a hierarchy of the languages that can be used to

represent information on the Semantic Web. Section 2.4 presents the data

model used in RDF and provides an example of how simple statements can

be represented in RDF. In Section 2.5 we describe OWL and its sublan-

guages, and provide an example of the same RDF statements represented

in OWL. In Section 2.6 we outline C-OWL (Context OWL). Section 2.7

concludes the chapter.

9



2.1. INTRODUCTION CHAPTER 2. STATE OF THE ART

2.1 Introduction

The Web is an enormous collection of documents whose number is growing

exponentially. Not only can the content of a document be changed, an

entire document can be removed from the Web. The effective management

of Web documents is essential to improving their use. However, this man-

agement task is made difficult by the sheer volume of information and the

ever-changing, rapidly growing, and inconsistent nature of the Web. While

machines can be used to solve many of today’s problems, they are largely

unhelpful in solving Web-related problems for a simple reason; the Web

was not initially built to be processed by machines.

The Semantic Web [6, 7] is proposed to be built on top of the current

Web by its inventor Tim Berners-Lee, and will enable information to be

machine-processable by transforming this information from document form

to data form. Thus, while the current Web can be considered to be a Web

of documents, the Semantic Web can be considered to be a Web of data.

Whereas unambiguous meanings cannot be provided for the information

on the current Web, unambiguous meanings will be able to be provided

for the information on the Semantic Web. For this reason, the Semantic

Web is also called the Web of meanings. Recently, researchers have begun

to represent Web information in Semantic Web-suitable forms. In order

to represent information on the Semantic Web, the knowledge representa-

tion languages RDF (Resource Description Framework) and OWL (Web

Ontology Language) are used.

2.2 The Semantic Web

The Semantic Web is the final part of its inventor, Tim Berners-Lee’s,

two-part dream for the Web. In this part he envisions machines having the

10



CHAPTER 2. STATE OF THE ART 2.2. THE SEMANTIC WEB

ability to understand, analyze, infer, and reason about all kinds of data,

and the links between data, as represented on the Semantic Web.

Machines can understand information published in machine understand-

able form. However, only a limited amount of information on the current

Web is published in this form. By contrast, all the information on the

Semantic Web is published in a form that enables machines to understand

and to perform automated analysis on a group of interrelated data. Such

automated analysis could involve, for example, the business transactions

of a company; a machine might formulate a concluding remark that can

assist the person who is dealing with this data, e.g., the managing director

of the company.

In this way, the analysis of the data moves to the level of logical analysis,

and can thereby provide optimally correct answers to the user’s queries in

relation to the information space. To further improve logical analysis,

information can be represented as simple logic formulas that enable the

analyzer to understand the disambiguated meaning of the data. Semantic

Web information is proposed to be published in RDF, which provides the

infrastructure for representing data as simple logic formulas in order to

keep track of meaning.

The descriptive power of RDF is kept to a minimum so as to ensure

that the Semantic Web remains a flexible, unconstrained medium of rep-

resenting knowledge. Besides, a more powerful form of RDF could cause

Semantic Web applications to behave in unexpected ways. Even with its

current descriptive power, RDF use can result in convoluted, unanswer-

able questions due to the large and complex amounts of data produced

from RDF applications.

To further limit the expressive power of RDF in order to make its behav-

ior predictable on the Semantic Web, schema languages (e.g., XML Schema

and RDF Schema), are proposed. Schema languages provide a predefined

11



2.3. THE HIERARCHY OF LANGUAGES CHAPTER 2. STATE OF THE ART

set of terms to describe the elements of Web pages.

Even though schema languages on the Semantic Web can help improve

interoperability, they cannot help build common understanding because

they are unable to provide the meaning of terms, and therefore terms

cannot be linked. Inference languages such as RDF can help link terms.

Moreover, inference languages provide the necessary infrastructure to ex-

press the fact that while two terms might have different lexicons, their

meanings are the same.

Inference layer on the Semantic Web supports the representation of

different definitions for the same thing by different websites, and enables

machines to identify these divergent definitions and link them. With the

translation support of inference layer, the Semantic Web allows the use

of globally-used standard terms in combination with locally-used terms.

Inference layer also supports the representation of inference rules which

enable machines to reason about the data represented on the Semantic

Web.

Among its other features, the Semantic Web has the capacity to evolve.

It can learn regardless of the natural language used to represent data, as

it can relate the use of one term with another term from different sources.

Because it enables machines to learn as well as to understand, analyze,

infer, and reason, Semantic Web agents can be built that are able to: (i)

maintain the daily schedule of an individual; (ii) suggest improvements to

his/her schedule; (iii) provide an individual with reminders about his/her

next appointment; and so on.

2.3 The Hierarchy of Languages

At present, there exists a series of knowledge representation languages for

the Semantic Web. These are: XML [9], XML Schema [13], RDF [5] , RDF

12
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Schema [10], OWL [37], and C-OWL [8].

A. Documents: XML XML is an acronym for Extensible Markup Lan-

guage. It is designed to support various applications, mostly executed on

the Internet, by providing a means of encoding information in the form

of documents, which are not only understandable by the machines, but

also readable by humans. Information encoding is accomplished using cus-

tomized tags. Customized tag support is used to exchange a wide variety

of information on the Web and elsewhere. The statements “GeoNames has

coverage of all countries” and “It was modified on April 25, 2009” can be

represented in XML using the tags ‘GeoNames’, ‘coverage’, and ‘modified’,

and a preceding statement to represent that the following information is

in XML, along with the XML version used to represent this information.

The preceding statement is called a prolog and the remaining statements

are called elements. Each document must contain a root element contain-

ing all the other elements called non-root elements. In the following XML

encoding the first line is the prolog, the GeoNames tag is the root element,

and coverage and modified tags are the non-root elements.

<?xml version=“1.0” ?>

<GeoNames>

<coverage>Countries</coverage>

<modified>April 25, 2009</modified>

</GeoNames>

The purpose of XML Schema is to define a set of rules to which an XML

document conforms. An XML Schema is similar to a class in an object-

oriented programming language, and an XML document is similar to an

instance of that class. XML Schema is used for exchanging information

between interested parties who have agreed to a predefined set of rules.

However, the absence of the meaning of the vocabulary terms used in XML
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Schema makes it difficult for machines to accomplish intercommunication

when new XML vocabulary terms are introduced. On one hand machines

cannot differentiate between polysemous terms, and on the other hand they

cannot combine synonymous terms.

B. Objects and Relations: RDF(S) RDF is an acronym for Resource De-

scription Framework, and RDFS is an acronym for RDF Schema. We use

RDF(S) to represent both RDF and RDFS. The goal of RDF(S) is to pro-

vide meaning to the data represented in RDF, in order to overcome the

drawback (absence of meaning) of XML. RDF is used to: (i) describe in-

formation about Web resources and the systems that use these resources;

(ii) make information machine-processable; (iii) provide internetworking

among applications; and (iv) provide automated processing of Web in-

formation by intelligent agents. RDF is designed to provide flexibility in

representing information. Its specification is given in [5, 36, 34, 30, 10, 27].

RDF Schema is an extension of RDF. It provides a vocabulary for RDF

to represent classes of the resources, subclasses of the classes, properties

of the classes, and relations between properties. The capability of rep-

resenting classes and subclasses allows users to publish ontologies on the

Web. However, these ontologies have limited use as RDFS cannot represent

information containing disjointness and specific cardinality values.

C. Ontologies: OWL

Lightweight Ontologies: Propositional OWL Lightweight ontologies [25]

can be defined as concepts, and relations between them form subsumption

hierarchy. In lightweight ontology, instances assigned to a parent node con-

cept are a superset of the instances assigned to a child node concept. In

comparison to full-fledged ontology, all possible relations in a lightweight

14
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ontology are a subset of all possible relations in a full-fledged ontology.

Full Ontologies: All OWLs OWL is an acronym for Web Ontology Lan-

guage. It begins to approach cardinality and disjoint class issues by pro-

viding richer syntax than RDF Schema. OWL provides the syntax to spec-

ify that two or more classes are disjoint, and to specify cardinality (e.g.,

“exactly one”) constraints. Moreover, OWL provides greater machine in-

terpretability of Web content than RDF and RDF Schema. However, there

are no built-in primitives for part-whole relations in OWL [43]. Further-

more, ontologies represented in OWL cannot deal with context dependent

data [8]. OWL specification is given in [37, 46, 4, 40, 11, 31].

D. Semantically Heterogeneous Ontologies: C-OWL The Context OWL (C-

OWL) [8] is an extension of OWL. It provides even richer syntax and

semantics than OWL. It represents OWL ontologies and the mappings

between these ontologies, where each ontology represents a localized view

of the domain. An ontology representing a localized view of a domain is

called a contextual ontology. C-OWL permits restriction of the visibility

of the ontologies to the outside. By the same token, it allows limited and

controlled access by providing explicit mappings.

2.4 RDF(S)

RDF is a language for representing data in the Semantic Web. RDF is

designed to provide: (i) a simple data model so that users can make state-

ments about Web resources; and (ii) the capability to perform inference on

the statements represented by users.

The data model in RDF is a graph data model. The graph used in

RDF is a directed graph. A graph consists of nodes and edges. Statements
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about resources can be represented using graph nodes and edges. Edges

in RDF graphs are labeled. An edge with two connecting nodes form a

triple. Between two nodes, one node represents the subject, the other

node represents the object, and the edge represents the predicate of the

statements. As the graph is a directed graph, the edge is a directed edge

and the direction of the edge is from subject to object. The predicate is

also called the property of the subject, or a relationship between subject

and object.

RDF uses URI references to identify subjects, objects, and predicates.

The statement “GeoNames has coverage of all countries” can be repre-

sented in RDF, where ‘GeoNames’ is a subject, ‘countries’ is an object

and ‘coverage’ is a predicate. The URIs of the subject ‘GeoNames’, ob-

ject ‘countries’, and predicate ‘coverage’ are “http://www.geonames.org”,

“http://www.geonames.org/countries”, and “http://purl.org/dc/terms/c-

overage”, respectively.

http://www.geonames.org/

http://www.geonames.org/countries/

http://purl.org/dc/terms/coverage

Figure 2.1: Graph data model of a statement represents subject, object, and predicate as

URIs.

Objects in RDF statements can be literals. In the statement “GeoN-
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ames was modified on April 25, 2009”, ‘GeoNames’ is a subject, ‘mod-

ified’ is an object, and ‘April 25, 2009’ is a predicate which is a lit-

eral. The URIs of the subject ‘GeoNames’ and predicate ‘modified’, are

“http://www.geonames.org” and “http://purl.org/dc/terms/modified”, re-

spectively. The object ‘April 25, 2009’ can be represented as is, without a

URI.

http://purl.org/dc/terms/modified

April 25, 2009

http://www.geonames.org/

Figure 2.2: Graph data model of a statement represents subject and predicate as URIs

and object as a literal.

Statements about GeoNames can be described in RDF using the con-

structs rdf:Description, rdf:resource, rdf:about, and rdfs:label, as provided

below:

<?xml version=“1.0”?>

<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”

xmlns:dc=“http://purl.org/dc/terms#”>

<rdf:Description rdf:about=“http://www.geonames.org”>

<rdfs:label>GeoNames</rdfs:label>

<dc:coverage rdf:resource=“http://www.geonames.org/countries”/>
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<dc:modified>April 25, 2009</dc:modified>

</rdf:Description>

</rdf:RDF>

2.5 OWL

OWL is a Semantic Web language for representing Web documents as full-

fledged ontologies. To represent the various descriptions of the document

content, OWL provides a richer set of vocabulary (with forty language

constructs) than its predecessors, and consequently generates much richer

ontologies. In addition, some OWL ontologies can be mapped to specific

logic languages, which enable them to use the reasoning support tools used

for that language.

Ontologies generated in OWL DL, a sublanguage of OWL, can be mapp-

ed to description logic. OWL DL is designed to use the representation,

reasoning power, and tools support of description logic. The modeling

constructs of the OWL Lite sublanguage of OWL, are a proper subset of

OWL DL. For this reason, OWL Lite can also be mapped to a subset of

description logic to which OWL DL can also be mapped. Like OWL DL,

OWL Lite is able to use the reasoning tools of description logic. OWL

Full is another sub-language of OWL, along with OWL Lite and OWL

DL. Like RDF, data representation in all three sublanguages of OWL is in

triple form: subject, object, and predicate. More detailed descriptions of

all three sub-languages of OWL, OWL Lite, OWL DL, and OWL Full, are

described below.

OWL Lite

Data representation in OWL Lite is able to use a subset of OWL and

RDF(S) vocabulary. It can use thirty-five OWL constructs out of forty,
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and eleven RDF(S) constructs out of thirty-three (not including the sub-

properties of the property rdfs:member). A list of all thirty-three RDF(S)

constructs is provided in Appendix A, and a list of all forty OWL con-

structs, as well as a list of eleven RDF(S) constructs that can be used in

OWL, are provided in Appendix B. RDF(S) construct rdfs:Class can-

not be used to define a class in OWL Lite. Instead, OWL construct

owl:Class is used for this purpose. Five OWL constructs – complementOf,

disjointWith, hasValue, oneOf, and unionOf, cannot be used in it.

Some of the OWL Constructs that are able to be used in OWL Lite have

a limited use. All three cardinality constructs, cardinality, maxCardinal-

ity, and minCardinality, can only take the non negative integer quantity,

0 or 1, in their value fields. Constructs equivalentClass and intersecti-

onOf also have restricted uses. They cannot be used in a triple if the sub-

ject or object represents an anonymous class.

The restrictions imposed on OWL Lite make it easy for users who want

to publish simple hierarchical structures in OWL, and to do so at reduced

cost and time. It offers low computational complexity, but guaranteed

computations.

OWL DL

OWL DL representation can use all eleven RDF(S) constructs that OWL

Lite can use. Like OWL Lite, it uses only the owl:Class construct to

define a class. It can also use all forty OWL constructs. However, some of

these forty constructs have restricted use in OWL DL. Classes in it cannot

be used as individuals, and vice vera. Each individual must be an extension

of a class. Even if an individual cannot be classified under any user-defined

class, it must be classified under the class of all classes in OWL, that is,

the owl:Thing class. Individuals cannot be used as properties, and vice

versa. Likewise, properties cannot be used as classes, and vice versa.
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Properties in OWL DL are differentiated as data type properties and

object properties. Object properties connect class instances and data type

properties connect instances to data literals.

However, the restrictions applied in OWL DL are there to maintain

a balance between expressivity and computational completeness. Even

though its computational complexity is higher than OWL Lite, it offers

more expressive power than OWL Lite. However, OWL DL’s expressive-

ness is limited to a certain level so that the computations remain complete

and decidable. While remaining as a complete and decidable sublanguage,

it permits the use of the intersectionOf construct to put any number of

classes in it. OWL DL also allows the use of any non negative integer in

the cardinality restrictions value fields.

OWL Full

OWL Full can use all forty OWL constructs and all eleven RDF(S) con-

structs without the restrictions imposed on OWL Lite and OWL DL.

Moreover, the construct rdfs:Class can be used to define a class while

owl:Class is another choice to define the same thing. These supports make

it more expressive than OWL DL. Properties can be assigned to classes, a

class can be represented as an individual or a property, and vice versa.

To gain more expressive power, OWL Full sacrifices computational com-

pleteness. The computational complexity of this sublanguage is higher than

the other two sublanguages. In OWL Full, computations can not be guar-

anteed to conclude. However, applications that need more expressivity

than OWL DL offers, and do not require a guaranteed conclusion, can use

OWL Full.

Statements about GeoNames can be represented in OWL using the con-

structs owl:Ontology, owl:Thing, rdfs:labels, and rdf:resource as provided

below:
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<?xml version=“1.0”?>

<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”

xmlns:owl=”http://www.w3.org/2002/07/owl#”

xmlns:dc=“http://purl.org/dc/terms#”>

<owl:Ontology rdf:about=“”/>

<owl:Thing rdf:about=“http://www.geonames.org”>

<rdfs:label>GeoNames</rdfs:label>

<dc:coverage rdf:resource=“http://www.geonames.org/countries”/>

<dc:modified>April 25, 2009</dc:modified>

</owl:Thing>

</rdf:RDF>

2.6 C-OWL

C-OWL representation can support the use of some mapping constructs be-

yond OWL and RDF(S) constructs. The mapping constructs are used to

represent mapping relations between the concepts, individuals, and prop-

erties of two different ontologies. The mapping relations are more specific,

more general, equivalent, disjoint, and compatible. C-OWL statements

built with the mapping relations are called bridge rules.

Excluding bridge rules, ontologies published in C-OWL can be in one of

the sublanguages of OWL. However, two ontologies connected via bridge

rules must be in the same sublanguage. An ontology published in an OWL

sublanguage, which is connected to a group of one or more ontologies pub-

lished in that sublanguage via a set of bridge rules, form an ontology called

contextual ontology. OWL sublanguages cannot support the representa-

tion of a contextual ontology containing a non-empty set of bridge rules.
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However, C-OWL can represent contextual ontology. Thus C-OWL is more

expressive than any sublanguage of OWL. Like OWL, data representation

in C-OWL is in triple form.

Statements about GeoNames can be represented in C-OWL using the

expressive power of OWL, and their C-OWL representation remains the

same, as shown in the OWL example in the previous section. Below is

a mapping example taken from the C-OWL paper [8]. In this contextual

ontology, two ontologies Wine and Vino, describing the same thing, wine,

are mapped. For the detailed description we refer to the C-OWL paper.
<?xml version=“1.0”?>

<rdf:RDF

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”

xmlns:cowl=“http://www.example.org/wine-to-vino.map#”>

<cowl:mapping>

<rdfs:comment>Example of a mapping of wine into vino</rdfs:comment>

<cowl:sourceOntology rdf:resource=“http://www.example.org/wine.owl”/>

<cowl:targetOntology rdf:resource=“http://www.example.org/vino.owl”/>

<cowl:bridgeRule cowl:br-type=“equiv”>

<cowl:sourceConcept rdf:resource=“http://www.example.org/wine.owl#wine”/>

<cowl:targetConcept rdf:resource=“http://www.example.org/vino.owl#vino”/>

</cowl:bridgeRule>

<cowl:bridgeRule cowl:br-type=“onto”>

<cowl:sourceConcept rdf:resource=“http://www.example.org/wine.owl#RedWine”/>

<cowl:targetConcept rdf:resource=“http://www.example.org/vino.owl#VinoRosso”/>

</cowl:bridgeRule>

<cowl:bridgeRule cowl:br-type=“into”>

<cowl:sourceConcept rdf:resource=“http://www.example.org/wine.owl#Teroldego”/>

<cowl:targetConcept rdf:resource=“http://www.example.org/vino.owl#VinoRosso”/>

</cowl:bridgeRule>

<cowl:bridgeRule cowl:br-type=“compat”>

<cowl:sourceConcept rdf:resource=“http://www.example.org/wine.owl#WhiteWine”/>

<cowl:targetConcept rdf:resource=“http://www.example.org/vino.owl#Passito”/>

</cowl:bridgeRule>

<cowl:bridgeRule cowl:br-type=“incompat”>

<cowl:sourceConcept rdf:resource=“http://www.example.org/wine.owl#WhiteWine”/>
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<cowl:targetConcept rdf:resource=“http://www.example.org/vino.owl#VinoNero”/>

</cowl:bridgeRule>

</cowl:mapping>

</rdf:RDF>

2.7 Conclusion

In this chapter we have presented a description of the Semantic Web. The

description highlights the design goal, capability, features, and languages

of the Semantic Web. A hierarchy of the Semantic Web languages has also

been provided. In this hierarchy, it has been demonstrated that, starting

from XML, successive languages have emerged to overcome the limita-

tions of their predecessors. We have also provided a brief description of

the Web knowledge representation languages RDF, OWL (and the sublan-

guges OWL Lite, OWL DL, OWL Full), and C-OWL, that can be used

to represent information on the Semantic Web. However, none of these

languages enable us to encode faceted lightweight ontologies (which were

introduced in Section 1.3), and which are outlined in further detail in the

next Chapter. For the purpose of representing faceted lightweight ontolo-

gies, we designed a new language, C-XML, which is described in Chapter

5.
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Chapter 3

Faceted LO

Having provided a brief description of the web knowledge representation

languages in the previous chapter, in this chapter we describe some for-

malisms; the classification schemes and ontologies used for representing

knowledge. We then discuss lightweight ontologies, their applications,

and the problems these applications face. Finally, we propose faceted

lightweight ontologies as the solution to these problems.

The chapter is organized as follows. In Section 3.1 we briefly describe

the classification scheme and ontology. Section 3.2 provides a compari-

son between the classification schemes and ontologies. In Section 3.3, we

describe lightweight ontologies. Section 3.4 provides the structure of the

background knowledge and Section 3.5 details the faceted lightweight on-

tology.

3.1 Introduction

A classification scheme, or a classification for short, is a rooted tree whose

nodes are assigned natural language labels and are populated with a (pos-

sibly empty) set of documents. Since the invention of classification by

Aristotle in the 4th century BC, classifications continue to be used per-

vasively to represent various kinds of human knowledge. For example,
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classifications have been used in libraries (DDC1, LCC2, and Colon classi-

fication3), in Personal Knowledge Management (favorites, personal e-mails,

and folder hierarchies), and, lately, on the Web (Amazon4, Google5, and

Yahoo6).

As already discussed in Section 1.1, while classifications are extensively

used to organize web contents, the Web’s evolution to a more formal struc-

ture, ontology, can serve this purpose. As core artifacts of the Semantic

Web, ontologies provide the formal semantics for information, and thereby

enable computers to use inference rules to conduct automated reasoning.

The key factor which makes this possible is the capacity of ontologies to

be expressed in a formal language suited to automated reasoning.

As we have seen in Section 1.1, lightweight ontologies, proposed in [25],

can bridge the gap between informal classifications and formal ontologies.

The faceted lightweight ontology, an extension of the lightweight ontology,

can be used to overcome the limitations of an ontology; that ontologies built

for one purpose can rarely be reused for another purpose. Moreover, the

faceted lightweight ontology addresses the problem of lack of background

knowledge of ontologies. In this chapter, we provide a formalization of the

faceted lightweight ontology that can help the user to automate its use.

3.2 Classifications vs Ontologies

In this section we discuss commonalities and differences between classifi-

cations and ontologies. In order to ground our discussion on well-defined

terms, we give the definitions of these two kinds of artifacts below.

1See http://www.tnrdlib.bc.ca/dewey.html.
2See http://www.loc.gov/catdir/cpso/lcc.html.
3See http://www.iskoi.org/doc/colon.htm.
4See http://www.amazon.com.
5See http://www.google.com.
6See http://www.yahoo.com.
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Figure 3.1: An example of a classification with link semantics made explicit.

A classification is a 5-tuple C = ⟨N,E,L,D, cl⟩ where N is a finite set

of nodes, E is a set of edges on N , such that ⟨N,E⟩ is a rooted tree; L is

a finite set of labels expressed in natural language, such that for any node

ni ∈ N , there is one and only one label li ∈ L; D is a set of documents

and cl is a function which maps every di ∈ D to a non-empty set of nodes

{ni} ⊆ N . In Figure 3.1 we show an example of a classification. Although

classifications have no explicit formal semantics for edges, in this example

we have labeled each edge with the name of a hypothetical relation that

may hold between the linked nodes.

An ontology is an explicit specification of a conceptualization [28]. They

are often thought of as directed graphs whose nodes represent concepts and

whose edges represent formal relations between concepts. The backbone

structure of the ontology graph is a taxonomy in which all the relations

are sub-class-of, whereas the remaining structure of the graph supplies

auxiliary information about the modeled domain and may include relations

like part-of, located-in, is-parent-of, and others [29]. Classes can be

associated with instances through the instance-of relation. In Figure 3.2

we provide an example of a small ontology.

Even if both ontologies and classifications can often be represented in
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Figure 3.2: An example of an OWL ontology.

the form of a graph, ontologies and classifications remain quite different in

their uses, purpose, language, applications, and in other aspects which we

summarize as follows:

• Users: A typical user of classifications is a human (e.g., a classifier

in a library classification), whereas ontologies are primarily used by

machines and, as such, are the key enablers of the Semantic Web.

Moreover, designing a classification is part of the everyday practice

of many computer users, whereas designing a full-fledged ontology

(expressed, for example, in OWL-DL) is a difficult and error-prone

task even for ontology experts [44].

• Purpose: Classifications are primarily used for the organization of

(large) document collections into categories and subcategories so that

these documents can be easily accessed by humans through browsing

the classification tree in a top-down fashion. Ontologies are primarily

used for modeling a particular domain so that the resulting model

represents a shared view of a group of individuals [42].

• Language: As already mentioned, classifications use natural lan-

guage to describe nodes’ categories. Natural language is well under-
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stood by humans but is hard to be “understood” and reasoned about

by machines due to its ambiguous nature. By contrast, ontologies are

codified in a formal language which is unambiguously interpreted by

machines. In fact, because ontologies are expressed in a formal lan-

guage, they are often used for automated reasoning about the domain

they model. Natural language is used in ontologies to a limited extent

(e.g., to describe concept names) and, in general, has no functional

value in reasoning operations on ontologies.

• Nodes: In an ontology, nodes normally represent atomic concepts

(e.g., car, wine) whose names are shown next to the corresponding

nodes when ontologies are visualized. In a classification, a label can

represent a rather complex concept (e.g., “Open Source and Linux in

Education”) or an individual (e.g., “Napoleon Bonaparte”).

• Edges: In an ontology graph, edges have well-defined semantics and

they usually encode sub-class-of, part-of and other relations that

hold between the two concepts connected by an edge. In a classifica-

tion, an edge implicitly represents either: (i) a specification relation

which can be thought of as an is-a relation (e.g., an edge from “An-

imals” to “Humans”) or as a part-of relation (e.g., an edge from

“Europe” to “Italy”); or, (ii) a facet relation which encodes the fact

that the label of the child node represents an aspect of meaning of

the parent node (e.g., an edge from “Animals” to “Images”) [18]. It

is bad practice to connect two nodes whose labels denote disjoint con-

cepts (e.g., “non-living things” and “living organisms”), as in this case

the child node and all its descendants cannot be populated with any

document in a meaningful way.

• Instances: In an ontology, node instances are representatives of the

node class and of all its ancestor classes in the sub-class-of hier-
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Table 3.1: Comparison between classification schemes and ontologies.

Category Classification Schemes Ontologies

Users Humans Machines

Purpose Organization of (large) doc-

ument collections

Modeling of a domain

Language Natural language, e.g. En-

glish

Formal language, e.g. OWL

Nodes Usually represent complex

concepts or individuals

Usually represent atomic

concepts

Edges Do not have well defined se-

mantics

Have well defined semantics

Instances Are not necessarily in-

stances of the class in which

they are populated

Are instances of the class in

which they are populated

Examples DDC, LCC, Colon classifi-

cation

Gene ontologya, OpenCyc

ontologyb, MeSH ontology

ahttp://www.geneontology.org/
bhttp://www.opencyc.org/

archy. They are in the instance-of relation with the class(es) they

belong to. In a classification, node instances are not necessarily rep-

resentatives of the class denoted by the node label, and can be doc-

uments which are about objects described by the set of labels of the

nodes on the progression from the given node to the root. For exam-

ple, a node labeled “birds” may be populated with pictures of birds if

the label of the parent node is “pictures”.

As shown above, classifications and ontologies are quite different and

both have their pros and cons with respect to each other. We summarize

their distinguishable features in Table 3.1 and, in the next section, we

describe lightweight ontologies which bridge the gap between classifications

and ontologies.
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3.3 Lightweight Ontologies (LO)

A lightweight ontology [25] is an ontology representing a backbone taxon-

omy where only an is-a subsumption relation holds between a child node

and a parent node. As a result, the concept of the parent node is more

general than the concept of the child node. It can be formally defined as

a triple LO = ⟨ LN, LE, LC ⟩, where: LN is a finite (possibly empty) set

of nodes; LE is a set of edges, each of which represents a relation between

nodes to form a rooted tree ⟨ LN, LE ⟩; and LC is a finite set of concepts,

encoded in a formal language FL, corresponding to nodes such that for

each node lni ∈ LN there is one and only one concept lci ∈ LC, and lci ⊑
lcj, if lni is the child node of lnj.

Depending upon the usage, lightweight ontology can be classified into

two kinds: a descriptive lightweight ontology and a classification lightweight

ontology [25]. Descriptive lightweight ontologies are mainly used to define

the meaning of words in a specific domain. Thesauri is an example of

this kind. Classification lightweight ontologies are used to categorize doc-

uments containing data items, to make them accessible to users. Web

directories are an example of this kind. Each above mentioned kind can

be further classified into two kinds: an informal lightweight ontology and

a formal lightweight ontology. Here we will attempt to make their no-

tion clear through examples. Taxonomies, controlled vocabularies, busi-

ness catalogues, faceted classifications, user classifications, Web directo-

ries, thesauri, (ordinary) glossaries, XML DTDs, and Database Schemas

are examples of the informal lightweight ontology. Frames, data models,

and general logics are examples of the formal lightweight ontology.

An informal lightweight ontology can be converted to a formal one,

whereas the conversion of a classification lightweight ontology requires one

more step than is required by a descriptive lightweight ontology [25]. A
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descriptive lightweight ontology requires the following steps: if its terms are

not organized as a single rooted tree, it is converted into such a tree, and the

natural language label of each term is converted into a concept in FL. Note

that FL is the subset of the description logic (DL) language, excluding roles,

called the propositional DL language. Beyond these steps, a classification

lightweight ontology requires the computation of node concepts, where each

node concept is equal to the intersection of the concepts associated with

the term labels on the path from the root node to the node itself.

The key applications of formal lightweight ontologies are document clas-

sification, semantic search (relevant term or document retrieval), and data

integration [25]. We define them in the context of lightweight ontologies

as follows. Document classification can be defined as a means of classify-

ing documents into a term/category in a taxonomy, controlled vocabulary,

business catalogue, user classification, web directory, or faceted classifica-

tion. Semantic search can be defined as a means of retrieving relevant

categories, documents, or both, from the lightweight ontologies they are

classified into. Data integration can be defined as a means of identify-

ing and then utilizing semantic relations (i.e., more general, more specific,

equivalent, or disjoint) between terms/categories of the lightweight ontolo-

gies for their integration, inter-operation, or merging.

3.4 Background Knowledge (BK)

All the applications described in the previous section depend upon the

reasoning on formal lightweight ontologies. The outcome of the reasoning

tasks is heavily influenced by the axioms encoded through assertion as well

as inference. Asserted axioms are retrieved from a knowledge base initially

built with the concepts and axioms imported from WordNet [38], which

covers various domains of knowledge. The user of a lightweight ontology
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Figure 3.3: Organization of background knowledge.

might be interested in the domain(s) his/her ontology belongs to. A subset

of a knowledge base representing the domain(s) specific knowledge a user

is interested in for his/her own ontology is called background knowledge

(BK). BK can be modified by users.

As has already been discussed in Section 1.3, and as can be seen in

Figure 3.3, BK is organized into two distinct parts: a language-independent

part and a language-dependent part. In the language-independent part,

knowledge is organized as a set of domains, each domain is grouped into

a set of facets, and each facet is constituted by a hierarchy of a set of
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homogeneous concepts [14]. Instances of concepts are called entities and are

grouped into a set of entity types. Each concept can belong to a (possibly

empty) set of domains. An entity type can correspond to a concept and

a set of entities can be connected to a concept (i.e., its instances). In

the language-dependent part, knowledge is organized as a list of words in

a given language grouped into synsets. There are two kinds of synsets:

concept synsets and entity synsets. Each concept synset is connected to a

concept, but each concept may not have a synset representation in a human

language (language gaps). Similarly, each entity synset is connected to an

entity, but an entity may not have a synset representation in a human

language (language gaps).

In the Ontology part of the figure described above location, country, and

city represent concepts. All the concepts in the ontology part are shown as

circles and all the concepts in the Domain part are shown as dashed circles.

Links between the objects within a part are shown as solid straight arrows

and links across the parts are shown as dashed curved arrows. In the Entity

part, Italy and Trento represent entities, where Italy is an instance of the

concept country, Trento is an instance of the concept city, and the relation

part-of connects the entities Italy and Trento.

3.5 Faceted Lightweight Ontologies

A faceted lightweight ontology [14] is a lightweight ontology in which terms,

present in each node label, and their concepts, are available in the BK

which is organized as a set of facets. It can be formally defined as a quin-

tuple FLO = ⟨ LN, LE, LT, LCFL, BKF ⟩, where LN is a finite (possibly

empty) set of nodes, LE is a set of edges representing relations between

nodes to form a rooted tree ⟨ LN, LE ⟩, LT is a set of terms, LCFL is a

finite set of concepts encoded in a formal language FL, such that for each
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term lti ∈ LT there is one and only one concept lci ∈ LCFL and BKF is

background knowledge organized as a set of facets F such that LT ∈ BKF

and LCFL ∈ BKF .

{fish -- the flesh of fish used as food}

{trout -- flesh of any of several primarily

freshwater game and food fishes}

{lake trout -- flesh of large trout of 

northern lakes}

{fish -- any of various mostly coldblooded 

aquatic vertebrates usually having scales 

and breathing through gills}

{trout -- any of various game and food

fishes of cool fresh waters mostly 

smaller than typical salmons}

{lake trout -- large fork-tailed trout of 

lakes of Canada and the northern United

States}

fish

trout

lake trout

fish

trout

lake trout

Ontology Ontology

Concept Synsets Concept Synsets

is-a

is-a

is-a

is-a

(a) (b)

Figure 3.4: An example of a faceted lightweight ontology in (a) food domain; and (b)

animal domain.

It can be seen from the definition given above that a faceted lightweight

ontology comprises background knowledge and a lightweight ontology. Back-

ground knowledge plays a major role in faceted lightweight ontologies.

Given that there is a term fish in a label of a node in the hierarchy of

a lightweight ontology. This term represents aquatic vertebrate when back-

ground knowledge, attached to the lightweight ontology, is in the animal

domain. The same term represents the flesh of fish used as food when the

background knowledge is in the food domain. Therefore, by replacing the
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existing background knowledge with a new one selected from a different

domain, we enable the same lightweight ontology to be reused for another

purpose. Figure 3.4 exemplifies how a faceted lightweight ontology can be

used for a variety of purposes. For the sake of simplicity, we have provided

only the semantics of the lightweight ontology terms in different domains,

instead of the faceted background knowledge hierarchies.

3.6 Conclusion

In this chapter we have provided a brief description of the classification

schemes and ontologies, and have presented a comparison between them.

We have described lightweight ontologies, their applications, and the prob-

lems involved in their applications. We have proposed faceted lightweight

ontologies as a solution to overcome these limitations.
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Chapter 4

Lightweight and

OWL Ontologies

In the previous chapter we provided the definitions of classifications, lightw-

eight ontologies(LO), and ontologies. In this chapter we describe how clas-

sifications can be converted into ontologies. We evaluate the conversion ap-

proach by providing some experimental results. In the evaluation, among

other things, we demonstrate which OWL sublanguage can be used to

represent classifications.

In Section 4.1 we describe how to convert classification schemes into

OWL ontologies and how the generated OWL ontolgies can be enriched

with additional axioms. In Section 4.2, we report the experimental re-

sults. Section 4.3 outlines how this work helps to optimize classifications.

In Section 4.4 we discuss related work, and we conclude the chapter in

Section 4.5.

4.1 LO to OWL Ontology

In this section we demonstrate how a classification, as defined in the pre-

vious chapter, can be converted into an OWL ontology. In particular, we

show how classification elements, namely labels, nodes, edges, documents,
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and document-node links, are encoded into OWL structures. Note that

encoding classification labels requires conversion from a natural language

to a formal language, whereas encoding classification nodes and edges re-

quires only structural manipulation. In Section 4.1.1 we demonstrate how

to solve the former problem, and in Section 4.1.2 we demonstrate how to

solve the latter one. In Section 4.1.3 we detail how to encode classifica-

tion documents and document-node links as class instances. Section 4.1.4

demonstrates how the resulting OWL ontology can be enriched with a set

of axioms so that it can be better suited for automated reasoning. Finally,

in Section 4.1.5, we discuss which subset of the OWL language is required

in order to encode classifications into ontologies.

4.1.1 Label to Concept

In the conversion of natural language labels into a formal language we fol-

low the approach presented in [19], which describes how these labels can

be converted into a propositional concept language. The underlying idea

of this approach is that the senses of words appearing in a label are con-

verted into atomic concepts, whereas punctuation and syntactic relations

between words in the label are converted into logical connectives (such as

conjunction ⊓ and disjunction ⊔) and parentheses. As discussed in [25],

the extension of these concepts is the set of documents about the objects

or individuals referred to by the (lexically defined) concepts. As shown

in the same article, this interpretation has some advantages: it provides

the possibility of representing individuals as concepts, and not as instances

(e.g., the extension of concept George Bush is the set of documents about

the president George Bush); and it provides the possibility of treating

classification edges as the intersection of concepts. In our analysis of nat-

ural language labels, we exploit the natural language processing (NLP)

pipeline presented in [51]. As opposed to standard approaches to NLP,
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this pipeline is adapted to be applied on web directory labels. In what

follows, we present the main steps of the pipeline and we demonstrate how

to complete some of them with the conversion to OWL.

1. Sense retrieval. In this step we retrieve the senses of each word in the

label from the WordNet lexical database [38]. Apart from this, we identify

words which are not found in WordNet.

2. Sense disambiguation. In this step we leave only one sense per am-

biguous word following the word sense disambiguation algorithm presented

in [51]. The algorithm exploits the structure of the classification, Word-

Net relations such as hypernymy, and the most frequent sense heuristic to

disambiguate the meaning.

3. Building atomic concepts. In this step we convert the disambiguated

senses as well as the words which are not found in WordNet into atomic

concepts and encode them as OWL classes. Following the approach de-

scribed in [48], we define the URI scheme to uniquely identify OWL classes

generated from WordNet senses as follows:

Synset- + lexical form of the word- + POS- + synset number

where synset number is the number of the synset1 to which the sense be-

longs in WordNet, and lexical form of the word is the lemma of the first

word in the given synset. This enables us to represent synonymous words

as one OWL class and not as multiple classes with equivalence relations

defined between them.

For example, the URI for the atomic concept java which is generated

from the sense coffee of the noun java is: Synset-Coffee-Noun-41492. An

OWL class for this atomic concept is defined as follows:

<owl:Class rdf:ID=“Synset-Coffee-Noun-41492”/>

We form URIs for the words which are not found in WordNet as their
1In WordNet, a synset is a set of one or more synonymous words which is assigned a unique numeric

identifier, a gloss, and other metadata [38].
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literal representation in the label. For example, word xyz is encoded as an

OWL class with URI “xyz”. This allows us to encode unknown words with

the same spelling as one OWL class. Note that the encoding of words into

concepts is done in such a way as to build a minimal set of concepts. The

main reason for this choice is efficiency.

4. Building complex concepts. In this step we build complex con-

cepts from atomic concepts following the approach discussed in [19]. For

instance, a label composed of a sequence of adjectives followed by a noun

group is converted into the logical conjunction (⊓) of the concepts cor-

responding to the adjectives and to the nouns. In this way, prepositions

like “of” and “in” are converted into the logical conjunction, coordinating

conjunctions “and” and “or” are converted into the logical disjunction (⊔),
and so on.

We convert complex concepts generated from the labels into classes in

OWL. We define the following URI schema to uniquely identify these OWL

classes:

Label- + node label- + node number

where node label is the label of the node without spaces, and where each

word starts with a capitalized letter. For example, the URI for the label

“Society and Law Culture” of node 2 of the classification given in Figure 3.1

is: Label-SocietyAndLawCulture-2. The OWL class for this label is the

following:

<owl:Class rdf:ID=“Label-SocietyAndLawCulture-2”>

<owl:unionOf rdf:parseType=“Collection”>

<owl:Class rdf:ID=“Synset-Society-Noun-318”/>

<owl:intersectionOf rdf:parseType=“Collection”>

<owl:Class rdf:ID=“Synset-Law-Noun-51793”/>

<owl:Class rdf:ID=“Synset-Culture-Noun-38542”/>

</owl:intersectionOf>
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</owl:unionOf>

</owl:Class>

4.1.2 Concept at Label to Concept at Node

As discussed in Section 3.2, edges in a classification represent either a

specification or a facet relation, which can be generalized to the following

observation: the meaning of a child node consists of what the meaning of

its label and the meaning of the parent node have in common. We formalize

this observation in the notion of concept of node [20, 24, 21, 23], which is

defined below:

Ci =

{
lFi if ni is the root of C

lFi ⊓ Cj if ni is not the root of C, where nj is the parent of ni

(4.1)

where Ci is the concept of node ni and lFi is the concept of label of node

ni. Concepts at nodes are converted into classes in OWL. The URI schema

used to uniquely identify OWL classes corresponding to nodes is defined

below:

Node- + node label- + node number

For example, the URI for the root node labeled “Top” with id 1 is: Node-To-

p-1. An OWL class for this root node is built as shown below:

<owl:Class rdf:ID=“Node-Top-1”>

<equivalentClass rdf:resource=“#Label-Top-1”/>

</owl:Class>

The URI for node 16 labeled “Programming Language” is: Node-Programm-

ingLanguage-16 and its corresponding OWL class is built as shown below:

<owl:Class rdf:ID=“Node-ProgrammingLanguage-16”>

<owl:intersectionOf rdf:parseType=“Collection”>
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<owl:Class rdf:ID=“Label-ProgrammingLanguage-16”/>

<owl:Class rdf:ID=“Node-Computer-15”/>

</owl:intersectionOf>

</owl:Class>

Note that classification edges are implicitly encoded in the definitions

of OWL classes representing concepts at nodes. Since these classes are

defined as the intersection of the concept at parent node and the concept

at label of the child node, then the structure of the classification can be

reconstructed by analyzing node class definitions.

4.1.3 Document to Instance

We convert a document into an instance of the OWL Thing class. We

assume that each document has a URL and we use it to uniquely identify

the corresponding instance in OWL. Moreover, if a document has a title

and a description (as web directory documents normally have), then we

encode them in rdfs:label and rdfs:comment properties accordingly. For

example, a document with URL http://java-source.net/, with title

“Java Open Source Software”, and with description “A directory of open

source software focused on Java” is encoded in OWL as shown below:

<owl:Thing rdf:about=“#http://java-source.net/”>

<rdfs:label>Java Open Source Software</rdfs:label>

<rdfs:comment>A directory of open source software focused on Java

</rdfs:comment>

</owl:Thing>

We convert document-node links of a document by defining the rdf:type

relation from the instance representing the document, to the class(es) rep-

resenting the node(s) in which the document is classified. For instance, if

the above mentioned document is classified in nodes 2 and 4 of the classi-
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fication shown in Figure 3.1, then these document-node links are encoded

as shown below:

<owl:Thing rdf:about=“#http://www.laweasy.com”>

<rdf:type rdf:resource=“#Node-SocietyAndLawCulture-2”/>

<rdf:type rdf:resource=“#Node-Law-4”/>

</owl:Thing>

4.1.4 Semantic Enrichment

Since OWL classes, which correspond to word senses, are mapped to synsets

in WordNet, we can exploit the relations between synsets and relations be-

tween words within synsets in order to enrich the resulting OWL ontologies

with additional relations between classes. The enrichment is based on the

following two rules:

• Rule 1: In WordNet synsets are organized into hierarchies based, for

example, on the hypernym (i.e., is-a or is-kind-of) relation [38]. For in-

stance, the synset denoting “Java” (as “a simple platform-independent

object-oriented programming language”) has a hypernym synset de-

noting “programming language” (as “a language designed for pro-

gramming computers”). If two OWL classes (cl-1 and cl-2) cor-

respond to two senses (sen-1 and sen-2) belonging to two synsets

(syn-1 and syn-2), among which there is a hypernym relation de-

fined in WordNet (e.g., syn-2 is a hypernym for syn-1), then we

define an rdfs:subClassOf relation between these two classes (i.e.,

cl-1 rdfs:subClassOf cl-2) as shown below:

<owl:Class rdf:about=“#Synset-Java-Noun-41493”>

<rdfs:subClassOf rdf:resource=“#Synset-ProgrammingLanguage-N-

oun-45-219”/>
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</owl:Class>

• Rule 2: Antonym relations in WordNet are defined among words

within synsets (and not among synsets). We translate these relations

into owl:disjo

intWith relations among classes corresponding to senses of the two

antonym words. For instance, the antonym of the word “day” in

the synset {day, daytime, daylight} is the word “night” in the synset

{night, nighttime, dark}. The former synset is the third sense of the

noun “day” and the latter synset is the first sense of the noun “night”.

Classes, associated with these two senses, are declared to be disjoint

as shown below:

<owl:Class rdf:about=“#Synset-Day-Noun-12826”>

<owl:disjointWith rdf:resource=“#Synset-Night-Noun-38819”/>

</owl:Class>

The enrichment of classification OWL ontologies according to the two

rules described above enables us to make these ontologies more suitable for

reasoning as the underline axiom base grows.

4.1.5 OWL Sublanguage

OWL ontologies, generated from classifications, fall into the OWL Lite or

OWL DL subset of OWL. There are two factors which require OWL DL:

• the logical disjunction that may appear after the conversion of nat-

ural language labels and which is converted into the owl:unionOf

construct;

• disjoint axioms that may appear at the semantic enrichment step and

which are converted into the owl:disjointWith construct.
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Table 4.1: Statistics of the dataset.
Dataset Nodes Average

Branching

Factor

Average

Subtree

Depth

Tokens

Per

Label

Words

with

Senses in

WordNet

Noun

Senses

Adjective

Senses

Countriesa 245 6.26 3 1.07 261 256 5

Europeb 75 4.22 3 1.12 86 86 0

Asiac 76 4.24 3 1.18 89 88 1

Africad 80 4.31 3 1.15 94 93 1

ahttp://dmoz.org/Regional/Countries/.
bhttp://dmoz.org/Regional/Europe/.
chttp://dmoz.org/Regional/Asia/.
dhttp://dmoz.org/Regional/Africa/.

Both above mentioned constructs are forbidden in OWL Lite. Note that

the conversion to OWL does not require the use of constructs of OWL Full

which leaves us within a decidable subset of OWL.

4.2 Evaluation

To evaluate our approach, we selected four subtrees with the maximum

depth of 3 from the DMoz web directory. In Table 4.1 we report statistical

data of the datasets. There are 476 nodes in the selected subtrees, which

have 548 tokens in total, out of which 527 tokens are found in WordNet (i.e.,

WordNet coverage is 96.17%). Out of the set of words found in WordNet,

223 (i.e., 42.31%) are ambiguous with the average polysemy of 3.36. In our

experiments we used WordNet version 2.0.

4.2.1 Correctness

We evaluated the most critical step of the NLP pipeline, i.e., the word sense

disambiguation (see Section 4.1.1) algorithm, whose performance results

are reported in Table 4.2. The accuracy of this step largely affects the
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Table 4.2: Accuracy of the word sense disambiguation algorithm.

Dataset Ambiguous Tokens Disambiguation Accuracy(%)

Countries 92 76.54

Europe 38 77.01

Asia 47 80.89

Africa 46 79.13

Table 4.3: Statistics of the generated OWL ontologies.

Ontology Nodes Sense

Classes

Label

Classes

Node

Classes

Class

Ax-

ioms

Indi-

vidual

Axioms

intersection-

Of Cons-

tructs

unionOf

Cons-

tructs

Countries 245 261 245 245 873 0 265 4

Europe 75 86 75 75 155 183 76 10

Asia 76 89 76 76 203 125 80 9

Africa 80 94 80 80 212 253 84 9

correctness of the results of reasoning on these OWL ontologies, as shown

in Section 4.3.5.

4.2.2 OWL Sublanguage

In Table 4.3 we report statistical data for the generated OWL ontologies.

In Table 4.4 we provide details on the kind and number of axioms before

and after semantic enrichment.

Table 4.4: Axioms before and after semantic enrichment.
Ontology Equivalent

Class

Axioms

SubClass

Axioms

Disjoint

Class

Axioms

Individual

Axioms

Before After Before After Before After Before After

Countries 490 490 0 383 0 0 0 0

Europe 152 152 0 3 0 0 183 183

Asia 152 152 0 51 0 0 125 125

Africa 160 160 0 52 0 0 253 253
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It is to be noted that most of the constructs in the generated ontologies

are valid in OWL Lite. There are only a few owl:unionOf constructs that

require the use of OWL DL for the representation of these ontologies.

4.3 Optimizing Classifications

In this section we provide some practical examples of reasoning on classi-

fication OWL ontologies. For instance, we demonstrate how they can be

checked for consistency, how their structure can be rationalized, and how

nodes with similar contents to a given node can be found.

4.3.1 Consistency

We used Protégé OWL Plugin [35] and its reasoning capabilities to detect

logical inconsistencies within the classification OWL ontologies. We used

the reasoning capabilities of both Pellet 1.5 and Fact++ OWL reasoners

launched with Protégé. None of the reasoners reported that the classifica-

tion OWL ontologies were inconsistent.

4.3.2 Rational Forms

Classifications may not be perfect. For this reason we may need to re-

construct a classification based on the “most specific subsumer” relation.

Nodes get parents which most specifically describe them (nodes), and are

more general. The new structure is called a rational form of a classifi-

cation. The idea behind the rationalization of classifications is to build

a classification which better corresponds to a taxonomic structure. The

classification given in Figure 4.1(b) is a rational form of the classification

given in Figure 4.1(a). Note that classification semantics does not change

in the transition from classification to rational form of classification, as the
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Figure 4.1: (a) Classification; (b) Rational form of the classification given in (a).

Table 4.5: Found relations within and across the four ontologies.

Ontology Countries Europe Asia Africa

⊑ ≡ ⊑ ≡ ⊑ ≡ ⊑ ≡
Countries 383 490 386 642 392 642 387 650

Europe 386 642 3 152 51 304 52 312

Asia 392 642 51 304 51 152 100 312

Africa 387 650 52 312 100 312 52 160

set of concepts at nodes remains the same.

4.3.3 Minimizing Effort

In Table 4.5 we report the kind and number of found relations within and

across the four ontologies. For example, the reasoner found an equivalent

relation between node class /Regional/Countries/Italy and node class /Re-

gional/Europe/Italy. This is an example of how reasoning on classification

OWL ontologies can help web directory editors find interrelated parts of

the web directory and thereby improve its organizational structure without

manual inspection. Note that no disjointness relations were found because

we did not have disjoint axioms in the produced OWL ontologies.
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4.3.4 Computing See-Also Links

Apart from the four ontologies, we experimented with another classifica-

tion OWL ontology and we observed that the individuals asserted to the

OWL class which corresponds to the classification node /Games and Ac-

tivities/Kids and Teens/Football are inferred as the individuals of the

OWL class which corresponds to the classification node /Sports Athletics

Funs/Youth and High School/Soccer, and vice versa. This kind of reason-

ing can be used for finding similar documents populated in different nodes,

which will help in building see-also links.

4.3.5 Errors

Apart from the correct relations, we also found some incorrect ones. For ex-

ample, the reasoner found an erroneous more specific relation between node

class /Regional/Europe/Georgia and node class /Regional/Countries/Un-

ited States. As discussed earlier, this problem is caused by the lack of

accuracy of the word sense disambiguation algorithm. Evaluating the cor-

rectness and completeness characteristics of the computed set of relations

between ontology classes is outside the scope of this thesis. Interested

readers are referred to [20, 16] for a complete account.

4.4 Related Work

The current work is representative of the recent trend in the Semantic

Web community towards the use of lightweight semantics (as opposed to

expressive logic languages) and lightweight ontologies [25] (as opposed to

full-fledged ontologies), the generation of which can potentially be sup-

ported by ordinary users which constitute the long tail of the Semantic

Web. The trend has been formed through a number of scientific publica-
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tions (e.g., see [49, 19, 47, 33]) and is currently supported by a number of

R&D projects (e.g., MATURE2, OpenKnowledge3) and systems (e.g., On-

toWiki4). The current work contributes to this trend by proposing an ap-

proach in which classifications, which are often called (informal) lightweight

ontologies [25] and whose most representative instantiations on the web are

web directories, can be automatically converted into formal OWL ontolo-

gies ready to be embedded in Semantic Web applications.

There are a few contemporary lines of work which are close in spirit

to our approach. For instance, in [49], the authors propose a method

to convert thesauri to OWL ontologies in which they provide a detailed

account of how elements of a thesaurus are converted into OWL struc-

tures. This approach is based on a manual analysis of thesauri, whereas

our approach allows for a fully automatic conversion. Another approach,

discussed in [47], comes from the Digital Library community and presents

a conceptual structure and transition procedure to support the shift from

a traditional knowledge organization system (KOS) and, particularly, a

thesaurus, towards a full-fledged and semantically rich KOS. While this

approach provides an in-depth analysis of the shortcomings of the tradi-

tional KOSs and of the benefits of semantic KOSs, as well as a set of rules

for converting thesaurus elements into ontology constructs, it lacks a spec-

ification of how a KOS can be converted into an ontology language such

as OWL. This ultimate conversion step that has been discussed in detail

in this chapter.

The approach described in [32] allows us to convert a hierarchical clas-

sification into an OWL ontology by deriving OWL classes from classifica-

tion labels and by arranging these classes into a hierarchy (based on the

rdfs:subClassOf relation) following the classification structure. The ap-

2MATURE, Integrated Project (IP), FP7-216356, see http://mature-ip.eu.
3OpenKnowledge, STREP, FP6-27253, see http://www.openk.org/
4OntoWiki, see http://ontowiki.net/Projects/OntoWiki.

50



CHAPTER 4. LIGHTWEIGHT AND
OWL ONTOLOGIES 4.5. CONCLUSIONS

proach is based on some application-dependent assumptions such as one

label represents one atomic concept, and that relations between labels can

be defined as sub-class-of relations in some particular context (e.g., con-

cept “ice” is more specific than concept “non-alcoholic beverages” when

considered in the context of procurement). These assumptions do not hold

in a general case and are not made in our approach. Apart from this,

our approach differs from [49, 47, 32] by being generic. It is therefore suit-

able for the automatic conversion in OWL of any knowledge representation

structure whose core can be represented in the form of a classification, as

defined in this chapter.

4.5 Conclusions

In this chapter we have presented a fully automated approach to con-

verting generic classification schemes into OWL ontologies. The proposed

approach allows us to leverage classifications, which are the interfaces to

knowledge for humans, and ontologies, which are the interfaces to knowl-

edge for machines on the Semantic Web. Furthermore, as shown above,

our approach provides an immediate advantage by enabling the user to

build better classifications more suited for reasoning. Potentially, the ap-

proach allows for the cost-free, seamless integration of a vast amount of

classification structures on the web and in personal repositories into the

Semantic Web infrastructure, thereby reducing the problem of the lack of

semantically rich data. The initial experimental results, reported in this

chapter, demonstrate that reasoning on classification OWL ontologies can

be used for building practical Semantic Web applications.
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Chapter 5

C-XML

In the previous chapter we described how to convert classifications into on-

tologies. In this chapter we provide the specification of a language named

C-XML (Contextualized Markup Language), which can be used for repre-

senting faceted lightweight ontologies. We provide the abstract syntax of

C-XML and then demonstrate a mapping to XML.

The chapter is organized as follows. In section 5.2.1 we introduce C-

XML. In section 5.2 we outline the abstract syntax of C-XML. Section 5.2.1

describes a mapping between C-XML and XML. The full abstract syntax

of C-XML is reported in appendix B, and the concept syntax of C-XML

is provided in appendix C. One complete example of a Server representing

two CVs, a User, two Classifications, some Mdocs classified in the Classi-

fications, some Attributes and AttributeDefs, and some ETypes, is given

in appendix D.

5.1 Introduction

C-XML is an acronym for Conte-Xtualized Markup Language. It is an

XML-based language can be used to represent a set of CVs (controlled

vocabulary), a set of Users and their classifications, a set of ETypes (entity

types), and a set of AttributeDefs (attribute definitions). It specifies a basic
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format that enables Classifications, along with the CVs related to them, the

Mdocs (meta documents) classified into them, and the Attributes related

to the real world documents classified into them, to be exchanged between

classification management systems. Although there are many languages

(e.g., XML, XML-schema, KIF, CycL, OWL, Ontolingua, DAML-OIL,

RDF, and RDF-schema) in the arena of ontology representation languages,

none of them entirely suit our goal of presenting CVs, Users, contextual

Classifications, Mdocs, Attributes, AttributeDefs, and ETypes. It is for

this reason that we realized the need for a new language, and subsequently

designed our own language, C-XML, for representing these items. C-XML

is also suitable for representing faceted lightweight ontologies. This chapter

provides a complete specification of C-XML, by defining its abstract syntax

and by demonstrating a mapping from its abstract syntax to the XML

syntax.

5.2 Abstract Syntax

5.2.1 Introduction

C-XML is intended to represent the content of CV (controlled vocabulary),

Classification, Mdoc (meta document), AttributeDef (attribute definition),

and EType (entity type). The Server, and every element included in the

Server in the hierarchy of Figure 5.1, are called “object” in C-XML. A

CV object consists of Word, Synset, Concept, CChildOf (concept child-

of), and CCLink (concept-concept link) objects. As language comes before

theory (i.e., classification), and we read from left to right, the CV object

is placed on the left. A Classification object consists of Node, NChildOf

(node child-of), NNLink (node-node link), and Mdoc objects. An EType

object consists of EALink (entity-attribute link) and Service objects.

A C-XML document can be complete or partial. It is complete when
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Server

CV

Word Synset Concept

Sense

CCLinkCChildOf

CV

[User]

Role

AC

UserDB

Classification

ClassDB

Node NNLinkNChildOf Mdoc

Attribute

DataDocument

DocDB

AttributeDef EType

ETypeDB

ServiceServiceEALink

Mdoc
1

Attribute
1 1..N

DataDocument
1

Parent
1

Child
1 1..N

has-set-of
0..1

Parent
1 0..N

Child

Figure 5.1: C-XML objects hierarchy.

all the objects related to the Server and all their attributes are present in

the C-XML file. There are two ways in which a C-XML document can be

partial:

• Intentional partiality: some attributes of an object are omitted from

the C-XML document.

• Extensional partiality: some objects are omitted from the C-XML

document.

In order to be a valid document, a complete or partial C-XML file must

comply with the following rules:
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• Single entry: any object (identified by its URL) has only a single

appearance in the file.

• Presence: Server object must appear in a file.

Note that there are two kinds of links in the hierarchy of Figure 5.1.

Links represented as solid lines are objects and they have a URL. Links

represented as dashed lines are not objects and they do not have a URL.

In the legend, has-set-of object represents a link between an object which

is connected to the arrowed end of the solid line, called child object, and

another object which is connected to the non-arrowed end of the same solid

line, called parent object. URLs for the objects connected by solid lines

are formed by using the rules defined in this chapter. The URL formation

rules are as follows:

• Rule 1: The Server object URL is absolute.

• Rule 2: A has-set-of object URL is formed by taking the corresponding

parent object URL, appending the path separator (“/”), and the child

object class identifier.

• Rule 3: A child object URL is formed by taking the corresponding

child set object URL, appending the path separator (“/”), and the

child object URL identifier (e.g., id, label).

As the links represented by dashed lines do not have URLs, objects

connected to the arrowed end of the dashed lines do not follow the URL

formation rules given above. However, the URL for the DataDocument

(data document) object is an absolute URL, which represents a real world

document. By following the URL formation rules given above we have

instantiated the URL attribute of the objects for the leftmost branch of

the tree rooted at Server. Instantiations are as follows:
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<server url=“http://kdtest.science.unitn.it:8180/SWebB”>

<vocabs url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs”>

<cv url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

geography”>

<words url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

geography/words”>

<word url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

geography/words/cartography”>

<senses url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

geography/words/cartography/senses”>

<sense url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

geography/words/cartography/senses/noun-85992”/>

</senses>

</word>

</words>

</cv>

</vocabs>

</server>

anyDataType: Represents any one data type described above.

Note that user-defined types are prefixed with “any”, but that anyURI is

not a defined type. User-defined data types are specified by means of BNF.

Terminals are bold, non-terminals are normal typeface, the first letter of

data types is lowercase, and rest is mixed case. For iteration we use {}
with * operator (zero or more), + operator (one or more), or ? operator

(zero or one). The format of anyDataType is provided below:

anyDataType ::= int | nonNegativeInteger | string | dataTime |
boolean | anyURI | token

anyConcept: Represents the concept of some attributes

The format of anyConcept is provided below:
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anyConcept ::= AtomicConcept | ComplexConcept

AtomicConcept ::= Token“[”Synset?“]”

Token ::= token

Synset ::= ‘c’ OffSet {‘,’‘c’ OffSet}*
OffSet ::= nonNegativeInteger

where character constant ‘c’ means Concept and Offset represents a Sense

number in the CV. Note that there is no space before and after the comma,

“[”, and “]” in BNF definitions come above.

ComplexConcept ::= {“(”}? AtomicConcept {(“&” | “|”) AtomicConcept

{“)”}?}+
The abstract syntax is specified by means of BNF. Terminals are bold, non-

terminals are not bold. Terminals are either datatypes or string literals

and non-terminals are either objects or attributes. Objects are in italic

typeface, the first letter is capitalized, and the rest is mixed case. The first

letter of attributes is lowercase and the rest is mixed case. Moreover, both

the objects and attributes are written as tokens.

5.2.2 Server

From the C-XML point of view, the Server is the root object. It contains

a url, zero or one Vocabs, zero or one Users or Classifications, zero or one

AttributeDefs, and zero or one ETypes.

Server ::= url [URL]

{Vocabs}?
{Users | Classifications}?
{AttributeDefs}?
{ETypes}?

url ::= anyURI
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5.2.3 Vocabs

In C-XML a Vocabs contains a url and a group of one or more CVs.

Vocabs ::= url [URL]

{CV}+

5.2.4 CV

In C-XML a CV contains a url, zero or one Words, zero or one Synsets,

zero or one Concepts, a set of CChildOfs, and a set of CCLinks.

CV ::= url [URL]

{Words}?
{Synsets}?
{Concepts}?
{CChildOf}*
{CCLink}*

Words

In C-XML a Words contains a url and a group of one or more Words.

Words ::= url [URL]

{Word}+

Word

In C-XML a Word contains a url, a lemma, a set of derived forms, an

optional provenance, a timestamp, and zero or one Senses.

Word ::= url [URL]

lemma [Basic form]

{derived form}* [Derived form]

[provenance] [Source]

timestamp [Last time when a Word was
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changed]

{Senses}?
lemma ::= string

derived form ::= string

provenance ::= string

timestamp ::= dateTime

Senses

In C-XML a Senses contains a url and a group of one or more Senses.

Senses ::= url [URL]

{Sense}+

Sense

In C-XML a Sense contains a syn url, an optional cased lemma, and an

optional rank.

Sense ::= syn url [URL of the Synset]

[cased lemma] [Cased version of the

corresponding word]

[rank] [Frequency of use]

syn url ::= anyURI

cased lemma ::= string

rank ::= int

Synsets

In C-XML a Synsets contains a url and a group of one or more Synsets.

Synsets ::= url [URL]

{Synset}+
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Synset

In C-XML a Synset contains a url, a pos, an optional gloss, an optional

provenance, an optional c url, and a timestamp.

Synset ::= url [URL]

pos [Part-of-speech]

[gloss] [Explanation]

[provenance] [Source]

[c url] [Concept URL which

corresponds to a Synset]

timestamp [Last time a Synset

was changed]

pos ::= string

gloss ::= string

c url ::= anyURI

Concepts

In C-XML a Concepts contains a url and a group of one or more Concepts.

Concepts ::= url [URL]

{Concept}+

Concept

In C-XML a Concept contains a url, a label, an optional definition, an

optional provenance, a syn url, and a timestamp.

Concept ::= url [URL]

label [Descriptive identifier]

[definition] [Definition]

[provenance] [Source]

syn url [Synset URL]
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timestamp [Last time a

Concept was changed]

label ::= string

definition ::= string

CChildOf

In C-XML a CChildOf contains a source c url and a target c url.

CChildOf ::= source c url [Source Concept URL]

target c url [Target Concept URL]

CCLink

In C-XML a CCLink contains a url, a source c url, a target c url, an cCRe-

lation, an optional gloss, and an optional provenance.

CCLink ::= url [URL]

source c url [Source Concept URL]

target c url [Target Concept URL]

cCRelation [Concept-Concept Relation which

represents a relation between two

concepts in a CV]

[gloss] [Explanation]

[provenance] [Source]

ccrelation ::= “=”

|“!”
A description of the cCRelation attribute values is given below:

• = : the target concept is semantically equivalent to the source concept.

• ! : the target concept is semantically disjoint with the source concept.
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5.2.5 Users

In C-XML a Users contains a url and a group of one or more Users.

Users ::= url [URL]

{User}+

5.2.6 User

In C-XML a User contains a url, a name, and zero or one Classifications.

User ::= url [URL]

name [Descriptive identifer]

{Classifications}?
name ::= string

5.2.7 Classifications

In C-XML a Classifications contains a url and a group of one or more

Classifications.

Classifications::= url [URL]

{Classification}+

5.2.8 Classification

In C-XML a Classification contains a url, a name, an optional description,

an optional gloss, a timestamp, an optional root n url, zero or one Nodes,

a set of NchildOfs, zero or one NNLinks, and zero or one Mdocs.

Classification ::= url [URL]

name [Descriptive identifer]

[description] [Description]

[gloss] [Explanation]

timestamp [Last time a Classification

was changed]
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[root n url] [Root Node URL]

Nodes

NchildOfs

NNLinks

Mdocs

description ::= string

timestamp ::= dateTime

root n url ::= anyURI

Nodes

In C-XML a Nodes contains a url and a group of one or more Nodes.

Nodes ::= url [URL]

{Node}+

Node

In C-XML a Node contains a url, a label, an optional cocept at label, an op-

tional concept at node, two optional boolean attributes - is clabel aligned

and is cnode aligned, an optional cn timestamp, an optional gloss, a times-

tamp, and an optional default mdoc url.

Node ::= url [URL]

label [Descriptive identifier]

[concept at label] [Concept at label as defined in [3]]

[concept at node] [Concept at node as defined in [3]]

[is clabel aligned] [Is concept at label aligned]

[is cnode aligned] [Is concept at node aligned]

[cn timestamp] [Last time concept

at node was aligned]

[gloss] [Explanation]
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timestamp [Last time a

Node was changed]

[default mdoc url] [URL of an Mdoc which

is default to a Node]

concept at label ::= anyConcept

concept at node ::= anyConcept

is clabel aligned ::= boolean

is cnode aligned ::= boolean

cn timestamp ::= dateTime

default mdoc url ::= anyURI

is clabel aligned ::= boolean

is cnode aligned ::= boolean

cn timestamp ::= dateTime

default mdoc url ::= anyURI

NChildOf

In C-XML an NChildOf contains a source n url and a target n url.

NChildOf ::= source n url [Source Node URL]

target n url [Target Node URL]

source n url ::= anyURI

target n url ::= anyURI

NNLinks

In C-XML an NNLinks contains a url and a group of one or more NNLinks.

NNLinks ::= url [URL]

NNLink+
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NNLink

In C-XML an NNLink contains a url, a source n url, a target n url, an op-

tional kind, an optional nNRelation, a target cn timesta-mp, an optional

gloss, and a timestamp.

NNLink ::= url [URL]

source n url [Source Node URL]

target n url [Target Node URL]

[kind] [Type]

[nNRelation] [Node-Node Relation]

target cn timestamp [Last time concept

at node of a target

Node was aligned]

[gloss] [Explanation]

timestamp [Last time an

NNLink was changed]

kind ::= “AdoptedChild”

|“Clink”

|“SeeAlso”

nNRelation ::= “>”

|“<”

|“=”

|“!”
|“Idk”
|“?”

target cn timestamp ::= dateTime

A detailed description of the attributes “kind” and “nNRelation” is

given below:
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• Syntactic: Means that the NNLink encodes some kind of relation

that holds from the source node to the target node, and that this kind

of relation cannot be given any formal semantics. All links which

are of the syntactic kind have “?” in their nNRleation. For example

“SeeAlso” is a syntactic link, while link kind is “SeeAlso”, nNRelation

is “?”.

• Semantic: Means that the NNLink represents a semantic relation

between the related source and the target nodes. In the context of

C-XML, links of this kind are the following:

– AdoptedChild: Represents a link where the target node concept

is more specific than the source node concept. The source node

concept is like the concept of a parent, even though it is not a

parent.

– Clink: Clinks stand for Context Links as defined in [4].

While link kind is “Clink”, nNRelation is one of the following:

– >: the target node concept is more general than the source node

concept.

– <: the target node concept is more specific than the source node

concept.

– =: the target node concept is semantically equivalent to the

source node concept.

– !: the target node concept is semantically disjoint with the source

node concept.

– Idk: the relation between the source node concept and the target

node concept is unknown.
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Mdocs

In C-XML an Mdocs contains a url and a group of one or more Mdocs.

Mdocs ::= url [URL]

Mdoc+

Mdoc

In C-XML an Mdoc contains a url, an optional gloss, a timestamp, and a

DataDocument.

Mdoc ::= url [URL]

[gloss] [Explanation]

timestamp [Last time an Mdoc was

changed]

DataDocument

There are many different kinds of documents such as scientific publications,

multimedia, e-mail, web pages, (structured) texts, and so on. Different

kinds of documents are often described using different sets of metadata.

For example, a scientific publication requires an author and a conference,

an audio file requires a genre and a singer, and an e-mail file requires a

sender and a receiver. The current version of C-XML supports any number

of attributes.

In C-XML a DataDocument contains a url and a group of one or more

Attributes.

DataDocument ::= url [URL]

Attribute+
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Attribute

In C-XML an Attribute contains an a url and a set of values.

Attribute ::= a url [Attribute definition URL]

{value}* [Value]

a url ::= anyURI

value ::= anyDataType

5.2.9 AttributeDefs

In C-XML an AttributeDefs contains a url and a group of one or more

AttributeDefs.

AttributeDefs ::= url [URL]

AttributeDef+

5.2.10 AttributeDef

An AttributeDef contains an a url, a name, a datatype, and an optional

description.

AttributeDef ::= url [URL]

name [Descriptive identifier]

datatype [Datatype of an Attribute]

[description] [Description]

datatype ::= anyDataType

5.2.11 Etypes

In C-XML an Etypes contains a url and a group of one or more Etypes.

Etypes ::= url [URL]

Etype+
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5.2.12 Etype

In C-XML an Etype contains a url, a name, a set of EALinks, and a set of

Services.

Etype ::= url [URL]

name [Descriptive identifier]

EALink*

Service*

EALink

In C-XML an EALink contains an a url and a boolean attribute is sma.

EALink ::= a url [Attribute definition URL]

is sma [Is Strictly Mandatory Attribute]

is sma ::= boolean

Service

In C-XML a Service contains a url.

Service ::= url [URL]

Note that later on this url will represent the URL of a web service attached

to the etype. This url is empty for the time being.

5.3 Mapping to XML

This section demonstrates a mapping from the C-XML abstract syntax

given in section 5.2, to the XML syntax. Some general rules of mapping

are provided below:

A) C-XML objects are mapped to XML elements.

B) properties of C-XML objects are mapped to attributes of XML.

The mapping table shows mappings between C-XML abstract syntax and
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XML where: objects are prefixed with “O:”; elements are prefixed with

“E:”; properties are prefixed with “P:”; and attributes are prefixed with

“A:”. The left column of the table represents either object or property

of object, the center column represents its XML equivalent, and the right

column represents its XML tag representation.

Table 5.1: Mapping to XML.

C-XML XML syntax enclosed in XML

abstract syn-

tax

tags

O:Server E:server <server>...</server>

O:Vocabs E:vocabs <vocabs>...</vocabs>

O:Vocabs E:vocabs <vocabs>...</vocabs>

O:CV E:cv <cv>...</cv>

O:Words E:words <words>...</words>

O:Word E:word <word>...</word>

O:Synsets E:synsets <synsets>...</synsets>

O:Synset E:synset <synset>...</synset>

O:Concepts E:concepts <concepts>...</concepts>

O:CChildOf E:cchildof <cchildof>...</cchildof>

O:CCLink E:cclink <cclink>...</cclink>

O:Senses E:senses <senses>...</senses>

O:Sense E:sense <sense>...</sense>

O:Users E:users <users>...</users>

O:User E:user <user>...</user>

O:Classifications E:classifications <classifications>...</classifications>

O:Classification E:classification <classification>...</classification>

O:Nodes E:nodes <nodes>...</nodes>
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O:Node E:node <node>...</node>

O:NChildOf E:nchildof <nchildof>...</nchildof>

O:NNLinks E:nnlinks <nnlinks>...</nnlinks>

O:NNLink E:nnlink <nnlink>...</nnlink>

O:Mdocs E:mdocs <mdocs>...</mdocs>

O:Mdoc E:mdoc <mdoc>...</mdoc>

O:AttributeDefs E:attributedefs <attributedefs>...</attributedefs>

O:AttributeDef E:attributedef <attributedef>...</attributedef>

O:Attribute E:attribute <attribute>...</attribute>

O:ETypes E:etypes <etypes>...</etypes>

O:EType E:etype <etype>...</etype>

O:EALink E:ealink <ealink>...</ealink>

O:Service E:service <service>...</service>

O:{CChildOf}* E:cchildofs <cchildofs>...</cchildofs>

O:{CCLink}* E:cclinks <cclinks>...</cclinks>

O:{NChildOf}* E:nchildofs <nchildofs>...</nchildofs>

O:{Attribute}+ E:attributes <attributes>...</attributes>

O:{Service}* E:services <services>...</services>

O:{EALink}* E:ealinks <ealinks>...</ealinks>
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P:url A:url <server url=‘anyURI’>,

<vocabs url=‘anyURI’>,

<cv url=‘anyURI’>, <words

url=‘anyURI’>, <word

url=‘anyURI’>, <senses

url=‘anyURI’>, <synsets

url=‘anyURI’>, <synset

url=‘anyURI’>, <concepts

url=‘anyURI’>, <concept

url=‘anyURI’>, <cclink

url=‘anyURI’>, <users

url=‘anyURI’>, <user

url=‘anyURI’>, <classifications

url=‘anyURI’>, <classification

url=‘anyURI’>, <nodes

url=‘anyURI’>, <node

url=‘anyURI’>, <nnlinks

url=‘anyURI’>, <nnlink

url=‘anyURI’>, <mdocs

url=‘anyURI’>, <mdoc

url=‘anyURI’>, <attributedefs

url=‘anyURI’>, <attributedef

url=‘anyURI’>, <etypes

url=‘anyURI’> and <etype

url=‘anyURI’>

P:lemma A:lemma <word lemma=‘string’>

P:derived form A:derived form <word derived form=‘string’>
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P:provenance A:provenance <word provenance=‘string’>,

<synset provenance=‘string’>,

<concept provenance=‘string’> and

<cclink provenance=‘string’>

P:timestamp A:timestamp <word timestamp=‘dateTime’>,

<synset timestamp=‘dateTime’>,

<concept timestamp=‘dateTime’>,

<classification

timestamp=‘dateTime’>, <node

timestamp=‘dateTime’>, <nnlink

timestamp=‘dateTime’> and <mdoc

timestamp=‘dateTime’>

P:syn url A:syn url <sense syn url=‘string’> and

<concept syn url=‘string’>

P:cased lemma A:cased lemma <sense cased lemma=‘string’>

P:rank A:rank <sense rank=‘int’>

P:pos A:pos <synset pos=‘string’>

P:gloss A:gloss <synset gloss=‘string’>,

<cclink gloss=‘string’>,

<classification gloss=‘string’>,

<node gloss=‘string’>, <nnlink

gloss=‘string’> and <mdoc

gloss=‘string’>

P:c url A:c url <synset c url=‘string’>

P:label A:label <concept label=‘string’> and <node

label=‘string’>

P:definition A:definition <concept definition=‘string’>
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P:source c url A:source c url <cchildof source c url=‘anyURI’>

and <cclink source c url=‘anyURI’>

P:target c url A:target c url <cchildof target c url=‘anyURI’>

and <cclink target c url=‘anyURI’>

P:cCRelation A:ccrelation <cclink ccrelation=‘string’>

P:name A:name <user name=‘string’>,

<classification name=‘string’>,

<attributedef name=‘string’> and

<etype name=‘string’>

P:description A:description <classification description=‘string’>

and <attributedef

description=‘string’>

P:root n url A:root n url <classification

root n url=‘anyURI’>

P:concept at la-

bel

A:concept at l-

abel

<node con-

cept at label=‘anyConcept’>

P:concept at n-

ode

A:concept at -

node

<node con-

cept at node=‘anyConcept’>

P:is clabel alig-

ned

A:is clabel ali-

gned

<node is clabel aligned=‘boolean’>

P:is cnode align-

ed

A:is cnode alig-

ned

<node is cnode aligned=‘boolean’>

P:cn timestamp A:cn timestamp <node cn timestamp=‘dateTime’>

P:default mdoc-

url

A:default mdo-

c url

<node default mdoc url=‘anyURI’>

P:source n url A:source n url <nchildof source n url=‘anyURI’>

and <nnlink source n url=‘any-

URI’>
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P:target n url A:target n url <nchildof target n url=‘anyURI’>

and <nnlink target n url=‘any-

URI’>

P:kind A:kind <nnlink kind=‘string’>

P:nNRelation A:nnrelation <nnlink nnrelation=‘string’>

P:target cn tim-

estamp

A:target cn ti-

mestamp

<nnlink target cn timestamp=‘da-

teTime’>

P:a url A:a url <attribute a url=‘anyURI’> and

<ealink a url=‘anyURI’>

P:value A:value <attribute value=‘string’>

P:datatype A:datatype <attributedef

datatype=‘anyDataType’>

P:is sma A:is sma <ealink is sma=‘boolean’>
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Each XML document has an optional prolog which has meta-information

about the document followed by the root element (no correspondence with

abstract syntax).

<?xml version= “1.0” encoding = “UTF-8” ?>

<server>

</server>

Note that the C-XML object Server is encoded as the root element “server”

in XML.

5.3.1 Server

Given the Server url=“http://kdtest.science.unitn.it:8180/SWebB”, the ab-

stract syntax of the Server given in subsection 5.2.2 can be mapped either

as

<server url=“http://kdtest.science.unitn.it:8180/SWebB”>

<vocabs>

</vocabs>

<users>

</users>

<attributedefs>

</attributedefs>

<etypes>

</etypes>

</server>

or as

<server url=“http://kdtest.science.unitn.it:8180/SWebB”>

<vocabs>

</vocabs>

<classifications>

</classifications>
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<attributedefs>

</attributedefs>

<etypes>

</etypes>

</server>

Where:

• vocabs: contains a group of one or more CVs.

• users: contains a group of one or more Users.

• classifications: contains a group of one or more Classifications.

• attributedefs: contains a group of one or more AttributeDefs.

• etypes: contains a group of one or more ETypes.

5.3.2 Vocabs

Given the Vocabs url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs”,

the abstract syntax of Vocabs given in subsection 5.2.3 can be mapped to

the XML as shown below:

<vocabs url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs”>

<cv>

</cv>

...

<cv>

</cv>

</vocabs>

Where:

Each cv corresponds to a single classification;
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5.3.3 CV

Given the abstract syntax of the object CV, described in subsection 5.2.4,

which has the property url=“http://kdtest.science.unitn.it:8180/SWebB/-

vocabs/unitn”, a mapping to XML is provided below:

<cv url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/unitn”>

<words>

</words>

<synsets>

</synsets>

<concepts>

</concepts>

<cchildofs>

</cchildofs>

<cclinks>

</cclinks>

</cv>

Where:

• words: contains a group of one or more Words.

• concepts: contains a group of one or more Concepts.

• synsets: contains a group of one or more Synsets.

• cchildofs: contains a set of CChildOfs.

• cclinks: contains a set of CCLinks.

Words

Given the abstract syntax of the object Words, described in subsection 5.2.4,

which has the property url= “http://kdtest.science.unitn.it:8180/SWebB/-

vocabs/unitn/words”, a mapping to XML is provided below:
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<words url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/unitn/

words”>

<word>

</word>

...

<word>

</word>

</words>

Word

Given the abstract syntax of the object Word, described in subsection 5.2.4,

which has properties

url =“http://kdtest.science.unitn.it:8180/ SWebB/vocabs/

unitn/words/schools”,

lemma =“school”,

derived form =“”,

provenance =“Feroz” and

timestamp =“2008-07-10 2:18:02.89”,

a mapping to XML is provided below:

<word

url =“http://kdtest.science.unitn.it:8180/ SWebB/vocabs/

unitn/words/schools”

lemma =“school”

derived form =“”

provenance =“Feroz”

timestamp =“2008-07-10 2:18:02.89”>

<senses>

</senses>

</word>
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Where:

• senses: contains a group of one or more Senses of a Word.

Senses

Given the abstract syntax of the object Senses, described in subsection 5.2.4,

which has the property url= “http://kdtest.science.unitn.it:8180/SWebB/-

vocabs/unitn/words/schools/senses”, a mapping to XML is provided be-

low:

<senses

url =“http://kdtest.science.unitn.it:8180/ SWebB/vocabs/

unitn/words/schools/senses”

<sense>

</sense>

...

<sense>

</sense>

</senses>

Sense

Given the abstract syntax of the object Sense, described in subsection 5.2.4,

which has properties

syn url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

synsets/34183”,

cased lemma =“” and

rank =“1”,

a mapping to XML is provided below:

<sense

syn url =“http://kdtest.science.unitn.it:8180/ SWebB/vocabs/

81



5.3. MAPPING TO XML CHAPTER 5. C-XML

synsets/34183”

cased lemma =“”

rank =“1”/>

Synsets

Given the abstract syntax of the object Synsets, described in subsec-

tion 5.2.4, which has the property url=“http://kdtest.science.unitn.it:8180-

/SWebB/vocabs/unitn/synsets”, a mapping to XML is provided below:

<synsets

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/synsets”

<synset>

</synset>

...

<synset>

</synset>

</synsets>

Synset

Given the abstract syntax of the object Synset, described in subsection 5.2.4,

which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/unitn

synsets/34183”,

pos =“Noun”,

gloss =“”,

provenance =“WordNet”,

c url =“” and

timestamp =“2008-07-10 2:18:03.89”,

a mapping to XML is provided below:
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<synset

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/unitn

synsets/34183”

pos =“Noun”

gloss =“”

provenance =“WordNet”

c url =“”

timestamp =“2008-07-10 2:18:03.89”/>

Concepts

Given the abstract syntax of the object Concepts, described in subsec-

tion 5.2.4, which has the property url=“http://kdtest.science.unitn.it:8180-

/SWebB/vocabs/unitn/concepts”, a mapping to XML is provided below:

<concepts url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts”>

<concept>

</concept>

...

<concept>

</concept>

</concepts>

Concept

Given the abstract syntax of the object Concept, described in subsec-

tion 5.2.4, which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/1”,

label = “school”,

definition =“”,
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provenance =“WordNet”,

syn url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/synsets/34183” and

timestamp =“2008-07-10 2:18:03.89”,

a mapping to XML is provided below:

<concept

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/1”

label = “school”

definition =“”

provenance =“WordNet”

syn url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/synsets/34183”

timestamp =“2008-07-10 2:18:03.89”/>

CChildOf

Given the abstract syntax of the object CChildOf, described in subsec-

tion 5.2.4, which has properties

source c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/1”, and

target c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/4”,

a mapping to XML is provided below:

<cchildof

source c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/1”

target c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/4”/>
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CCLink

Given the abstract syntax of the object CCLink, described in subsec-

tion 5.2.4, which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/cclinks/1”,

source c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/1”,

target c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/4”,

cCRelation =“=”,

gloss =“”, and

provenance =“WordNet”,

a mapping to XML is provided below:

<cclink

url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/cclinks/1”,

source c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/1”,

target c url =“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

unitn/concepts/4”,

cCRelation =“=”,

gloss =“”, and

provenance =“WordNet”/>

5.3.4 Users

Given the abstract syntax of the object Users, described in subsection 5.2.5,

which has the property url = “http://kdtest.science.unitn.it:8180/SWebB-

/users”, a mapping to XML is provided below:
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<users url =“http://kdtest.science.unitn.it:8180/SWebB/users”>

<user>

</user>

...

<user>

</user>

</users>

5.3.5 User

Given the abstract syntax of the object User, described in subsection 5.2.6,

which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1”, and

name =“Fausto Giunchiglia”,

a mapping to XML is provided below:

<user url =“http://kdtest.science.unitn.it:8180/SWebB/users/1”

name =“Fausto Giunchiglia”>

<classification>

</classification>

...

<classificaiton>

</classificaiton>

</user>

5.3.6 Classifications

Given the abstract syntax of the object Classifications, described in subsec-

tion 5.2.7, which has the property url=“http://kdtest.science.unitn.it:8180-

/SWebB/users/1/classifications”, a mapping to XML is provided below:

<classifications url=“http://kdtest.science.unitn.it:8180/SWebB/users/1-
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/classifications”>

<classification>

</classification>

...

<classification>

</classification>

</classifications>

5.3.7 Classification

Given the abstract syntax of the object Classification, described in subsec-

tion 5.2.8, which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1”,

name =“unitn”,

description =“”,

gloss =“”,

timestamp =“2008-07-10 2:18:03.89” and

root n url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/nodes/1”,

a mapping to XML is provided below:

<classification

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1”

name =“unitn”

description =“”

gloss =“”

timestamp =“2008-07-10 2:18:03.89”

root n url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/nodes/1”>
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<nodes>

</nodes>

<nchildofs>

</nchildofs>

<nnlinks>

</nnlinks>

<mdocs>

</mdocs>

</classification>

Where:

• nodes: contains a group of one or more Nodes of a Classification.

• nchildofs: contains a set of NChildOfs of a Classification.

• nnlinks: contains a group of one or more NNLinks of a Classification.

• mdocs: contains a group of one or more Mdocs of a Classification.

5.3.8 Nodes

Given the abstract syntax of the object Nodes, described in subsection 5.2.8,

which has the property url=“http://kdtest.science.unitn.it:8180/SWebB/u-

sers/1/classifications/1/nodes”, a mapping to XML is provided below:

<nodes

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/nodes”>

<node>

</node>

...

<node>
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</node>

</nodes>

Node

Given the abstract syntax of the object Node, described in subsection 5.2.8,

which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1

/classifications/1/nodes/1”,

label =“Doctoral Schools”,

concept at label =“(Doctoral[c12993] & Schools[c34183])”,

concept at node =“Doctoral[c12993] & Schools[c34183]”,

is clabel aligned =“true”,

is cnode aligned =“true”,

cn timestamp =“2008-07-10 2:18:03.97”,

gloss =“”,

timestamp =“2008-07-10 2:18:03.90” and

default mdoc url=“”,

a mapping to XML is provided below:

<node

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1

/classifications/1/nodes/1”

label =“Doctoral Schools”

concept at label =“(Doctoral[c12993] & Schools[c34183])”

concept at node =“Doctoral[c12993] & Schools[c34183]”

is clabel aligned =“true”

is cnode aligned =“true”

cn timestamp =“2008-07-10 2:18:03.97”

gloss =“”

timestamp =“2008-07-10 2:18:03.90”
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default mdoc url=“”/>

NChildOf

Given the abstract syntax of the object NChildOf, described in subsec-

tion 5.2.8, which has properties

source n url =“http://kdtest.science.unitn.it:8180/SWebB/users/1

/classifications/1/nodes/1” and

target n url =“http://kdtest.science.unitn.it:8180/SWebB/users/1

/classifications/1/nodes/2”,

a mapping to XML is shown below:

<nchildof

source n url =“http://kdtest.science.unitn.it:8180/SWebB/users/1

/classifications/1/nodes/1”

target n url =“http://kdtest.science.unitn.it:8180/SWebB/users/1

/classifications/1/nodes/2”/>

NNLinks

Given the abstract syntax of the object NNLinks, described in subsec-

tion 5.2.8, which has the property url=“http://kdtest.science.unitn.it:8180-

/SWebB/users/1/classifications/1/nnlinks”, a mapping to XML is shown

below:

<nnlinks url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/nnlinks”>

<nnlink>

</nnlink>

...

<nnlink>

</nnlink>
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</nnlinks>

NNLink

Given the abstract syntax of the object NNLink, described in subsec-

tion 5.2.8, which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/

users/1/classifications/1/nnlinks/1”,

source n url =“http://kdtest.science.unitn.it:8180/SWebB/

users/1/classifications/1/nodes/4”,

target n url =“http://kdtest.science.unitn.it:8180/SWebB/

users/1/classifications/2/nodes/5”,

kind =“CLink”,

nnrelation =“>”,

target cn timestamp=“2008-07-10 2:18:03.93”,

gloss =“” and

timestamp =“2008-07-10 2:18:03.91”,

a mapping to XML is shown below:

<nnlink

url =“http://kdtest.science.unitn.it:8180/SWebB/

users/1/classifications/1/nnlinks/1”

source n url =“http://kdtest.science.unitn.it:8180/SWebB/

users/1/classifications/1/nodes/4”

target n url =“http://kdtest.science.unitn.it:8180/SWebB/

users/1/classifications/2/nodes/5”

kind =“CLink”

nnrelation =“>”

target cn timestamp=“2008-07-10 2:18:03.93”

gloss =“”

timestamp =“2008-07-10 2:18:03.91”/>
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Mdocs

Given the abstract syntax of the object Mdocs, described in subsection 5.2.8,

which has the property url=“http://kdtest.science.unitn.it:8180/SWebB/u-

sers/1/classifications/1/mdocs”, a mapping to XML is shown below:

<mdocs url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/mdocs”>

<mdoc>

</mdoc>

...

<mdoc>

</mdoc>

</mdocs>

Mdoc

Given the abstract syntax of the object Mdoc, described in subsection 5.2.8,

which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/mdocs/1”,

gloss =“” and

timestamp =“2008-07-10 2:18:03.95”,

a mapping to XML is shown below:

<mdoc

url =“http://kdtest.science.unitn.it:8180/SWebB/users/1/

classifications/1/mdocs/1”

gloss =“”

timestamp =“2008-07-10 2:18:03.95”>

<datadocument>

</datadocument>

92



CHAPTER 5. C-XML 5.3. MAPPING TO XML

</mdoc>

DataDocument

Given the abstract syntax of the object DataDocument, described in sub-

section 5.2.8, which has the property url=“http://www.disi.unitn.it”, a

mapping to XML is shown below:

<datadocument url =“http://www.disi.unitn.it”>

<attributes>

</attributes>

</datadocument>

Where:

• attributes: contains a group of one or more Attributes.

Attribute

Given the abstract syntax of the object Attribute, described in subsec-

tion 5.2.8, which has the property a url=“http://kdtest.science.unitn.it:81-

80/SWebB/attributedefs/author”, a mapping to XML is shown below:

<attribute

a url=“http://kdtest.science.unitn.it:8180/SWebB/attributedefs/author”

value=“Fausto Giunchiglia; Ilya Zaihreau; Feroz Farazi”/>

Note that value attribute contains multiple values separated by semicolon

(;).

5.3.9 AttributeDefs

Given the abstract syntax of the object AttributeDefs, described in subsec-

tion 5.2.9, which has the property url=“http://kdtest.science.unitn.it:8180-

/SWebB/attributedefs”, a mapping to XML is shown below:

<attributedefs
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url =“http://kdtest.science.unitn.it:8180/SWebB/attributedefs”>

<attributedef/>

...

<attributedef/>

</attributedefs>

5.3.10 AttributeDef

Given the abstract syntax of the object AttributeDef, described in subsec-

tion 5.2.10, which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/

attributedefs/author”,

name =“Author”,

datatype =“STRING” and

description =“”,

a mapping to XML is shown below:

<attributedef

url =“http://kdtest.science.unitn.it:8180/SWebB/

attributedefs/author”

name =“Author”

datatype =“STRING”

description =“”/>

5.3.11 ETypes

Given the abstract syntax of the object ETypes, described in subsec-

tion 5.2.11, which has the property url=“http://kdtest.science.unitn.it:81-

80/SWebB/etypes”, a mapping to XML is shown below:

<etypes

url=“http://kdtest.science.unitn.it:8180/SWebB/etypes”>
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<etype/>

...

<etype/>

</etypes>

5.3.12 EType

Given the abstract syntax of the object EType, described in subsection 5.2.12,

which has properties

url =“http://kdtest.science.unitn.it:8180/SWebB/etypes/PDF”, and

name =“PDF”,

a mapping to XML is shown below:

<etype

url =“http://kdtest.science.unitn.it:8180/SWebB/etypes/PDF”

name =“PDF”>

<ealinks>

</ealinks>

<services>

</services>

</etype>

EALink

Given the abstract syntax of the object EALink, described in subsec-

tion 5.2.12, which has the properties a url =“http://kdtest.science.unitn.it-

:8180/SWebB/attributedefs/author”, and is sma =“true”, a mapping to

XML is shown below:

<ealink

a url =“http://kdtest.science.unitn.it:8180/SWebB/

attributedefs/author”>

is sma =“true”/>
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Service

Given the abstract syntax of the object Service, described in subsection 5.2.12,

which has the property url=“later on this url will represent the URL of a

web service attached to the etype”, a mapping to XML is shown below:

<service

url =“later on this url will represent the URL of a web service

attached to the etype”/>

5.4 Conclusion

In this chapter we have provided the hierarchy of all the objects that can

be represented in C-XML and have presented the abstract syntax of C-

XML. We have also described the constituents of a C-XML document and

have outlined the rules that must be followed to produce a valid C-XML

document. Finally, we have demonstrated a mapping between C-XML and

XML.
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Chapter 6

WordNet as BK

In this chapter we describe how to import knowledge from WordNet to the

Background Knowledge (BK) of the faceted lightweight ontologies. We

report every kind of relation available between synsets in WordNet, and

we show how to accommodate the synsets and relations in the BK.

The chapter structure is as follows. In Section 6.1, after analyzing the

relations between synsets in WordNet, we present their import procedure.

In Section 6.2 we provide a few observations about import. Section 6.3

reports evaluation results, and we conclude the chapter in Section 6.4.

6.1 Importing WordNet 2.1

In this section we describe and exemplify all the lexical and semantic re-

lations that exist in WordNet 2.1. We also provide rules to set preci-

sion/recall of a given relation, and provide a description of the import

procedure.

6.1.1 WordNet Relations

A relation in WordNet can be represented as a triple < source category,

relation, target category>, e.g., n @ n, where n represents a noun, and
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@ represents a hypernym relation. We use a for adjective and adjective

satellite, v for verb, and r for adverb. There are 26 relations in WordNet

2.1 that fall into two basic kinds: lexical relation and semantic relation.

Among these 26 relations, 4 are only lexical, 15 are only semantic, and the

rest are both lexical and semantic. For the sake of simplicity and read-

ability, we provide a representative word per synset rather than the whole

synset. We provide one example per relation, and each example is followed

by every possible combination of source and target categories.

All these relations are provided below:

• 4 relations are only lexical:

– Antonym (!): e.g., never is an Antonym of always. (i) n ! n (ii) a

! a (iii) r ! r (iv) v ! v.

– Derivationally related form (+): e.g., personhood derived from

person. (i) n + n (ii) n + a (iii) n + v (iv) a + v (v) a + n (vi)

r +a (vii) a + r (viii) v + a (ix) v + n.

– Participle of verb (<): applied is a Participle of verb of apply. (i)

a < v.

– Pertainym or Derived from adjective (\): smartly is a Pertainym

of smart. (i) a \a (ii) a \n (iii) r \a.

• 15 relations are only semantic:

– Attribute (=): measure is an Attribute of standard. (i) n = a (ii)

a = n.

– Similar to (&): ample is Similar to abundant. (i) a & a.

– Hypernym (@): sleep is a Hypernym of nap. (i) n @ n (ii) v @ v.

– Instance hypernym (@i): battle is an Instance hypernym of Bat-

tle of Britain. (i) n @i n.

98



CHAPTER 6. WORDNET AS BK 6.1. IMPORTING WORDNET 2.1

– Hyponym (∼): no man’s land is a Hyponym of land. (i) n ∼ n

(ii) v ∼ v.

– Instance hyponym (∼i): Berlin airlift is an Instance hyponym of

airlift. (i) n ∼i n.

– Member holonym (#m): orthography is a Member holonym of

punctuation. (i) n #m n.

– Member meronym (%m): eta is a Member meronym ofGreek alphabet.

(i) n %m n.

– Part holonym (#p): lion is a Part holonym of mane. (i) n #p n.

– Part meronym (%p): wishbone is a Part meronym of bird. (i) n

%p n.

– Substance holonym (#s): blood is a Substance holonym of blood plasma.

(i) n #s n.

– Substance meronym (%s): oxygen is a Substance meronym of

ozone. (i) n %s n.

– Cause (>): stay up is a Cause of keep up. (i) v > v.

– Entailment (*): snore is an entailment of sleep. (i) v * v.

– Verb group ($): preen and dress are connected by a Verb group

relation. (i) v $ v.

• 7 relations are both lexical and semantic:

– Also see (∧): abundant and ample. (i) a ∧ a (ii) v ∧ v.

– Domain of synset - TOPIC (;c): cooking to egg, botany to herba-

ceous. (i) n ;c n (ii) a ;c n (iii) r ;c n (iv) v ;c n.

– Member of this domain - TOPIC (-c): take a hit to drug. (i) n -c

n (ii) n -c a (iii) n -c r (iv) n -c v.
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– Domain of synset - REGION (;r): UK to rugby. (i) n ;r n (ii) a

;r n (iii) r ;r n (iv) v ;r n.

– Member of this domain - REGION (-r): ghost town to west. (i) n

-r n (ii) n -r a (iii) n -r a (iv) n -r v.

– Domain of synset - USAGE (;u): comparative to fewer. . (i) n ;u

n (ii) a ;u n (iii) r ;u n (iv) v ;u n.

– Member of this domain - USAGE (-u): polycillin to trade name.

(i) n -u n (ii) n -u a (iii) n -u r (iv) n -u v.

6.1.2 Rules for Precision/Recall

We measure how much a source concept is contained in a target concept

in a relation, and vice versa. We put the measures as precision/recall

in the hierarchical and associative relational tables. The values of preci-

sion/recall, typically in the range [0,1], can be expressed as a pair (N1,

N2), where: N1 and N2 are real numbers; N1 represents how much of the

source concept is contained in the target concept; and N2 represents how

much of the target concept is contained in the source concept.

In the current import, the value of N1 and N2 can be either 1 or 0 or

-1, where:

(i) 1 means source/target concept is fully contained in the target/source

concept,

(ii) 0 means source/target concept is not contained in the target/source

concept and

(iii) -1 means source/target concept has a (non empty) intersection with

the target/source concept but we do not know how much of the sou-

rce/target concept is contained in the target/source concept.

Given three concepts A, B, and REL, where A is the source concept, B is

the target concept, and REL is the concept of the relation which connects
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A and B, the established rules for measuring the values of precision/recall

for both the source and target are provided below:

1. If the REL is EQUIVALENCE, then the values are (1, 1)

2. If the REL is MORE GENERAL, then the values are (-1, 1)

3. If the REL is ANTONYM, then the values are (0, 0)

4. If the REL is (NON EMPTY) INTERSECTION, then the values are

(-1, -1)

6.1.3 Import Procedure

There is one sense index file, four synset files, and four exception files in

WordNet. From now on we will refer to all the synset files as a single synset

file and to all the exception files as a single exception file. Each line of the

synset file represents a unique synset, and each line of the exception file

represents an exceptional form of a word.

1. Parse the sense index file to retrieve the sense rank of each sense

and create an index of the sense ranks in the memory where index

key schema is sense lemma#synset offset. Go to the first line of the

synset file.

2. Parse the current line of the synset file to retrieve gloss, synset offset,

pos, and all the synonymous word senses of each synset.

3. Out of the information gathered in the previous step, create a synset

and convert this synset into a concept. In addition, create a record

for this concept into the relational table concept.
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4. Create a record of the synset, which corresponds to the concept cre-

ated above, in the relational table synset. Assign the pos value re-

trieved in step 2 as the pos value of the synset in the same table. In ad-

dition, create an index of the synset and the corresponding concept in

the memory, where the index key schema is synset pos#synset offset.

5. Create a record in the synset description relational table with the gloss

retrieved in step 2.

6. Take the lemma of each synonymous word sense retrieved in step 2

and create a record of the lower cased lemma in the relational table

word. Also create a record for every cased lemma in the relational

table sense. Assign the sense number retrieved in step 1 as the sense

rank in the same table. Check the exception file, if the word has an

exceptional form. If the exceptional form of the word is available,

create a record in the relational table word form with this exceptional

form.

7. If all the lines of the synset file are parsed, go to step 8. Otherwise,

go to the next line and repeat steps 2 to 7.

8. Convert all 26 relations into concepts and create records for them in

both the relational table concept and in the memory. Go to the first

line of the synset file.

9. Parse the current line of the synset file to retrieve the synset (source

synset) and all the relations with the other synsets (target synsets).

10. Retrieve the concept of the source synset, the concept of each tar-

get synset, and the concept of the relation that exists between these

two synsets. If the relation is a hierarchical relation (consider hy-

pernym, hyponym, holonym, and meronym relations as hierarchical
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relations), create a record of the relation in the relational table hi-

erarchical relation. Otherwise, create a record in the relational table

associative relation.

11. If all the lines of the synset file are parsed, the import is over. Other-

wise, go to the next line and repeat step 9 to 11.

The following decisions act as a complement to steps 8 and 10 given

above.

1. Both Lexical and Semantic Relations: Except ‘Also see’, all the rela-

tions in both the lexical and semantic relation category are the Domain

of synset relations and their inverses. In the Domain of synset rela-

tions, a domain concept usually represents the domain of the other

concept in the relation; e.g., the concept egg falls into cooking do-

main. However, except for the ‘Also see’ relation, we do not import

relations that are both lexical and semantic (Domain relations).

2. Lexical Relations: Unlike semantic relations, lexical relations are de-

fined between a word of one synset and a word of another synset; e.g.,

two synsets, {natural object} and {artifact, artefact}, have anotonym
relations between natural object sense and artifact sense. The cur-

rent data structure of the BK provides infrastructure for importing

relations between synsets. However, it does not provide support for

importing relations between words. We approximate them as relation-

ships between the corresponding concepts.

3. Inverse Relations: In WordNet, some relations have their inverse form;

e.g., hyponym is an inverse form of hypernym. The WordNet database

retains both the relation and the inverse form of this relation. How-

ever, instead of importing both hypernym and hyponym, we import

relations in only one direction; e.g., we keep hyponym. We suggest
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maintaining an additional relation either in the business logic or in the

backend as a separate table from data structure for each inverse rela-

tion; e.g., we maintain the relation <hyponym, inverse, hypernym>,

where hyponym is a source concept, inverse is a relational concept,

and hypernym is the target concept. We generate the inverse relation

of a relation by replacing the source with the target and by replacing

the relation with the inverse form. However, in some cases the relation

and the inverse form are the same; e.g., antonym, similar, and related

to. In this case, we import both directions.

4. Hierarchical Relations: For each hierarchical relational table entry, we

put the more specific concept of a relation as a source concept, and

the other one as a target concept.

5. Transitivity of relations: There are some relations in WordNet, which

are transitive; e.g., hypernym, holonym, etc. The transitivity of some

of the relations (e.g., hyponym), can be exemplified as heifer (young

cow) is a hyponym of cow and cow is a hyponym of animal; by com-

puting transitivity we find that heifer is a hyponym of animal. We

import transitive relations in a hierarchical relation table and the rest

in an associative relational table. We only consider hyponym, instance

hyponym, part meronym, and their inverses, as transitive relations.

6. There are two kinds of relational table, hierarchical relational table

and associative relational table, in the concept part of the BK. We

classify the relations and put them into the corresponding relational

table of the BK as demonstrated below.
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Table 6.1: Relations in WordNet and BK.

Relation Concept Inverse Hierar-

chical

Associ-

ative

Precisio-

n/Recall

Antonym Antonym, Antonym, no yes 0,0

opposite

word,

opposite

word

opposite opposite

Derivationally Related, Related, no yes -1,-1

related form Related to Related to

Participle Verb Participle, no yes -1,-1

of verb participal

Pertainym or Original Derived no yes -1,-1

Derived from

adjective

Attribute Property, Property, no yes -1,-1

attribute attribute

dimension dimension

Similar to similar similar no yes 1,1

Hyponym Hyponym, Hypernym yes no 1,-1

subordinate, superordinate,

subordinate superordinate

word word

Instance Example, Class, yes no 1,-1

Hyponym illustration, category,

instance, family

representative

Member Member Group, no yes -1,-1

Meronym grouping
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Part Part, Holonym, yes no 1,-1

Meronym portion, whole name

component

part,

component,

constituent

Substance Substance Compound no yes -1,-1

Meronym component

part,

whole name

Cause Cause Consequence, no yes -1,-1

effect, out-

come,

result, event,

issue, upshot

Entailment Deduction, Entail, no yes -1,-1

entailment, implicate

implication

Verb group Group, Group no yes -1,-1

aggroup aggroup no yes 1,1

Also see Consider,

take,

Consider,

take,

no yes -1,-1

deal, look at deal, look at

Note 1: in the table given above, we correlate each relation to a concept.

Some relations directly map to WordNet synset, e.g., ‘Antonym’. For rela-

tions that do not directly map to the WordNet synset, e.g., ‘Derivationally

related form’, we engineer to generate their corresponding concept from

the concepts available in the BK. In some cases, we add new concepts to
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the BK for encoding the concept of the relation. In some cases we extend

the synset for concepts; e.g., we will add “is-a” word to a Hyponym synset

and mark it as the preferred term.

Note 2: We import the hyponym and not the hypernym. This way, the

use of the relationships, in particular the part/substance/member meronyms,

is more intuitive. We provide some examples of how to read the relations

in Table 6.2:

Table 6.2: The source and the target in the relations.

Source Target Relation

Dog Canine Is-a hyponym of

In English: Dog is a hyponym of Canine.

Napoleonic Wars War Is-a(n) instance of

In English: Napoleonic Wars is an instance of War.

Rome Italy Is-a part meronym

of

In English: Rome is a part meronym of Italy.

Stay-up Keep-up Is-a cause of

Note 3: Except for similar and antonym relations, all the associative

relations have (-1, -1) as their precision/recall value pairs.

Note 4: We place the whole sysnet in the concept column with the main

word in bold. For all holonym kinds, there are numerous very similar

senses in WordNet. For this reason we provide their full synset along with

a description, as in the following:

(i) Part: part, portion, component part, component, constituent (some-

thing determined in relation to something that includes it)

(ii) Substance: substance (the real physical matter of which a person or

thing consists)

(iii) Member: member (anything that belongs to a set or class)
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In addition, we provide the full synset and description of compound and

similar synsets, for the reason that each of them has more than one synset

with exactly the same elements.

(i) Similar: similar – ((of words) expressing closely-related meanings)

(ii) Compound: compound – (consisting of two or more substances, in-

gredients, elements, or parts; “soap is a compound substance”; “housetop

is a compound word”; “a blackberry is a compound fruit”)

6.2 Open Issues

Relations between categories: The micro grammar provided in sec-

tion 6.1.2 can be used to both constrain and infer the source and target

categories of the relations during import. For example, there are some

relations in WordNet which only connect verbs; e.g., Cause, Entailment,

and Verb group. In contrast, there are some relations which connect only

nouns; e.g., holonym, and meronym. We can provide constraint to the

import system such that relations will only be imported if the source and

target category match with the given micro grammar. We also can infer

the source and target categories if we know the relation between them. In

some cases we impose constraints on, and infer, the categories, from the

kind of relation that exists between the concepts. This grammar can be

used in tasks such as importing thesauri into BK so as to infer the category

of the terms used.

6.3 Final Evaluation

We developed an import system following the procedure given in sec-

tion 6.1.3. We then imported WordNet 2.1 to the BK. The statistics of the

imported objects are provided in Table 6.3.
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Table 6.3: The statistics of the imported objects.

Name of the Object Number of instances im-

ported

Concept 117,597

Hierarchical Relation 105,647

Associative Relation 112,174

Synset 117,597

Word 147,252

Sense 207,019

Word form 4,728

According to the statistics of WordNet 2.1, there are 117,597 synsets

and 207,019 word-sense pairs. The same results were found after import,

as can be seen from the table. For this reason, we can conclude that our

designed system is complete.

6.4 Conclusion

In this chapter we have reported the various kinds of synsets and relations

available in WordNet. We then described a procedure to import these

synsets and relations to the BK, and presented our observations. Finally,

we have reported the results of our evaluation of the import work.
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Chapter 7

GeoWordNet as BK

In this chapter we describe the import procedure of the knowledge available

in GeoNames that is used for the enrichment of BK, which we built in the

previous chapter. At this step, of import the BK containing WordNet is

fully integrated with GeoNames. As a result, a new enriched level of BK

is produced which we call GeoWordNet, and which consists of millions of

entity synsets and hundreds of thousands of concept synsets.

The chapter is organized as follows. In Section 7.1 we describe the cri-

teria for selecting the knowledge source. In Section 7.2 we briefly describe

the facet. Section 7.3 provides the list of the GeoNames classes selected to

build the faceted hierarchy. Section 7.4 presents the main research issues.

In Section 7.5 we describe the GeoNames import procedure, and we report

the statistics of the import in Section 7.6. Section 7.7 presents some open

issues we faced during import and Section 7.8 concludes the chapter.

7.1 Selection Criteria

A fundamental step in each process of knowledge integration is to eval-

uate candidate ontologies by identifying possible missing knowledge (i.e.,

in terms of concepts and relations), and by identifying which knowledge

is to be removed, reallocated, or changed [41]. It is also fundamental to
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identify knowledge which is functional to the goal it is meant to serve [39],

which in our case is to classify, search, and match classification nodes and

documents.

The motivation of this work is to enrich BK with geo-spatial informa-

tion, as they can improve the performance of the applications, which are

connected to real life [2]. Adding geo-spatial information to lexical knowl-

edge bases is exemplified in the works [1], [50], which added GEMET1 to

WordNet, and GNS and GNIS2 to WordNet, respectively. However, in our

case GeoNames has been selected as the best source of geo-spatial infor-

mation. It has nine top level classes, and each of the classes has a number

of subclasses. Classes, their descriptions, and statistics of the subclasses

are provided in the Table 7.1. GeoNames contains approximately 7 mil-

Table 7.1: Classes and Feature Classes in GeoNames.
Feature Class Description Number of subclasses

A administrative divisions of a country. It

also represents states, regions, political

entities and zones.

16

H water bodies, e.g., ocean, sea, river,

lake, stream, etc.

137

L parks, areas, etc. 49

P populated places, e.g., capitals, cities,

towns, small towns, villages, etc.

11

R roads and railroads 23

S spots, buildings and farms 242

T mountains, hills, rocks, valleys, deserts,

etc.

97

U undersea areas 71

V forests, heaths, vineyards, groves, etc. 17

Total Number of Subclasses 663

1See http://www.eionet.europa.eu/gemet/about
2See http://earth-info.nga.mil/gns/html/index.html and http://geonames.usgs.gov respectively
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lion entities distributed in the 663 distinct sub-classes, as shown in the

table above. There is therefore an implicit instance-of relation between

a class and its corresponding instances. Classes from GeoNames will be

naturally integrated as concepts in (the ontological part of) the BK, while

their instances will be integrated as entities, together with their corre-

sponding relevant attributes (i.e., latitude and longitude). At this stage,

the Location e-type must be defined. In addition, a significant portion of

the locations in GeoNames are connected via part-of relations; e.g., Italy

is part-of Europe. To record this information, the corresponding entities

have to be connected by the topological relation [12] “part-of”. Here we

have two options; either we create a specific attribute or we extend the

data structures to explicitly codify such a relation. We choose the former

option. A fundamental decision that needs to be made is which locations

we want to import. Our choice is to import into BK all the classes, as

concepts, and the locations, as entities, which are explicitly used for the

construction of a facet (as described in the section below).

7.2 Facets

As already described in Section 3.4 a facet is a group of hierarchically

related concepts. According to the given principles of division from the

facet theory, siblings in a facet hierarchy must share the same character-

istic(s) [14]. A typical example is the Administrative Division facet. For

instance, in Figure 7.1, the hierarchy can be characterized as Continent

− > Country − > Province − > District. It seems clear to us that geo-

graphical locations which belong to feature class A and P can be used for

the construction of the Administrative Division facet, which is known as a

facet for Space (following the traditional Library and Information Science

terminology). Similar facets will be built from the other feature classes.
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EuropeAsia

World

Africa

Italy FranceGermany

Trentino

Trento

Characteristics: Continent -> Country -> Province -> District

Figure 7.1: A simplified example of Administrative Division facet.

Notice however, that facets can be heterogeneous objects, in the sense that

they can contain both concepts and entities. This is particularly true in

the Geographical domain. Therefore, each facet is potentially distributed

between the ontological and the entity part of the BK, as described in Fig-

ure 7.2. Once they are imported, the issue of how to visualize and maintain

these facets has to be addressed. This issue is beyond the scope of this

thesis, however.

7.3 Classes Selected

In the following we provide the list of the classes selected for the construc-

tion of the facets, according to the criteria given in the previous sections.

7.3.1 The Administrative Division facet

The Administrative Division facet is constituted by the non-empty classes

from feature classes A and P. They are reported in Table 7.2.

In GeoNames, continents are listed in the “readme.txt” file. In addi-

tion, notice that in GeoNames there is no explicit class associated with
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Table 7.2: Classes Selected for the Administrative Division facet.
CONT (continent), PCLI (country), PPLC (capital of a political entity),

ADM1 (first-order administrative division), ADM2 (second-order administra-

tive division), ADM3 (third-order administrative division), ADM4 (fourth-

order administrative division), ADMD (administrative division), PPLG (seat

of government of a political entity), PPLA (seat of a first-order administra-

tive division), PPLS (populated places), PPL (populated place), PPLL (pop-

ulated locality), PPLR (religious populated place), PPLX (section of popu-

lated place), PPLW (destroyed populated place), PPLQ (abandoned populated

place), STLMT (Israeli settlement)

city, as there are three separate files for cities (divided according to their

population; i.e., “cities1000.txt”, “cities5000.txt”, and “cities15000.txt”).

We consider city as an additional class and identify instances of this class

from these files. In order to build the facet, we decided to redefine such

classes as the following:

CONTINENT ⊑ CONT (continent)

COUNTRY ⊑ PCLI (country)

ADMINISTRATIVE DIVISION ⊑ ADM1 (first-order administrative

division) ⊔ ADM2 (second-order administrative division) ⊔ ADM3 (third-

order administrative division) ⊔ ADM4 (fourth-order administrative divi-

sion) ⊔ ADMD (administrative division)

CITY ⊑{all the locations explicitly listed the three city files}
CAPITAL ⊑ PPLC (capital of a political entity)

POPULATED PLACE ⊑ PPLG (seat of government of a political en-

tity) ⊔ PPLA (seat of a first-order administrative division) ⊔ PPLS (pop-

ulated places) ⊔ PPL (populated place) ⊔ PPLL (populated locality) ⊔
PPLR (religious populated place) ⊔ PPLX (section of populated place) ⊔
PPLW (destroyed populated place) ⊔ PPLQ (abandoned populated place)

⊔ STLMT (Israeli settlement) PPLC (capital of a political entity) ⊔ CITY

LOCATION ⊑ CONTINENT ⊔ COUNTRY ⊔ ADMINISTRATIVE DI-
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continent
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instance-of

instance-of
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administrative division

populated place

part-of

part-of

Figure 7.2: The Administrative Division facet.

VISION ⊔ CAPITAL ⊔ CITY ⊔ POPULATED PLACE

In this way, the characteristics used to construct the Administrative

Division facet are always uniform, as depicted in Figure 7.2 (on the right).

The characteristics used to construct the Administrative Division facet

constitute the backbone structure of the conceptual side of the facet (on

the right). Analogously, the corresponding instances will constitute the

entity side of the facet (on the left). Some final notes:

(a) GeoNames classes are designed to be disjointed;

(b) POPULATED PLACE includes all the classes from feature class P,

plus the CITY class;

(c) LOCATION is constituted by all the classes from feature classes A and

P, plus the CITY class;

(d) CAPITAL is more specific than CITY, which is more specific than AD-

MINISTRATIVE DIVISION;

(e) POPULATED PLACE is part of an ADMINISTRATIVE DIVISION,
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which is part of a COUNTRY, which is part of a CONTINENT;

(f) All the concepts in bold in Table 7.2 and the corresponding semantic

relations between them, have to be encoded in the ontological part of the

BK;

(g) World is the entity root of the facet, while LOCATION is the concept

root of the facet.

7.4 Research Issues

In this section, we list the main research issues addressed in: building

facet hierarchies; codifying classes and locations; regarding homonymy; the

relations imported; storing linguistic information in multiple languages; the

identification of preferred terms; regarding glosses in multiple languages;

sense ranking; and regarding provenance information.

7.4.1 Issue in building facet hierarchies

Description: We select information from GeoNames for the specific purpose

of building facet hierarchies.

(a) What are the facets that can be built using GeoNames? (b) What are

the relevant locations to import? (c) Which characteristics have to be used

to construct them?

Solution: At the moment we only use locations from the feature classes

A and P. As described in the previous section, locations are used for the

construction of the Administrative Division facet.

Drawbacks and open problems: Even if more facets can be built, we

currently build only the Administrative Division facet. We need to analyze

the other feature classes to build additional facets. For instance, a possible

candidate is the Water Body facet which can be built using locations from

the feature class H.
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Notice that even if all the GeoNames classes are assumed to be dis-

jointed, there are clear cases in which this is somewhat artificial. For

instance, Rome as Capital and Rome as Populated Place are considered

distinct locations in GeoNames, and therefore they are assigned different

IDs.

7.4.2 Issue in codifying classes and locations

Description: Which are the relevant GeoNames classes and locations to

import? How to codify them in the BK?

Solution: As in the research issue above, we import everything that

proves to be functional to facets. Therefore, we import a class, as a concept,

or a location, as an entity, in the BK when it is directly (it corresponds

to a node) or indirectly involved (a class whose instances correspond to a

node) in a facet.

First of all, most of the names for both classes and instances have multi-

ple senses in the BK (originally imported from WordNet) and are therefore

subject to disambiguation. Since we identified only a few relevant classes

(as in the issue above), and they are all already present in the BK, we de-

cided to manually disambiguate them by selecting the right sense for each

class name.

For the Administrative Division facet they are the following (the word,

in bold, followed by the WordNet gloss):

• continent: one of the large landmasses of the earth

• country: the territory occupied by a nation

• administrative division: a district defined for administrative pur-

poses

• city: a large and densely-populated urban area
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• capital: the capital city of a nation

• populated place: A populated place is a kind of place. It is also

populated. The sense of populated is furnished with inhabitants and

the sense of place is a point located with respect to surface features of

some region

• location: a point or extent in space

On the other hand, this is unnecessary for instances because currently

there are no spatial entities in the entity part of BK. The small portion of

them already in the BK will be removed, since they are wrongly codified

as concepts. So, we create an entity in the BK for each location to import,

without caring about the overlap with already existing entities in the BK.

Drawbacks and open problems: We need to analyze how the concepts are

related in WordNet and reorganize them according to the set of semantic

relations we need. We need to remove the entities (not only the spatial

ones) imported from WordNet, from the conceptual part of the BK.

7.4.3 Homonymy Issue

Description: There are plenty of places with the same name. For exam-

ple, Miramare is a Populated Place in Provincia di Forli (Administrative

Division in Italy) and also a Populated Place in Provincia di Trieste (Ad-

ministrative Division in Italy). How do we differentiate them?

Solution: It is quite safe to assume that two countries as well as two

Administrative Divisions at the same level (e.g., regions or provinces) in

the same country cannot have the same name. Therefore, homonymous

locations can be differentiated by their parents. In the example above, the

former Miramare has parent Provincia di Forli and the latter has parent

Provincia di Trieste.
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Drawbacks and open problems: Even though we have not encountered

any such cases until now, it is conceivable that two homonymous locations

might have the same parent and therefore cannot be differentiated.

7.4.4 Issue in the relations imported

Description: Which kind of relations do we import?

Solution: We import the part-of (part-meronym) relations between en-

tities and instance-of (instance-hyponym) relations between entities and

corresponding concepts. For example, Italy is part-of Europe and Italy is

an instance-of Country. Such information is codified in the GeoNames file

“allcountries.txt”.

However, in GeoNames, physical locations such as lakes, rivers, and

mountains are associated with countries. We can say that they are implic-

itly related by a part-of relation. However, there are several problems with

this choice:

• In many cases they belong to more than one country (i.e., very long

rivers). However, what GeoNames does is to associate different IDs

with physical locations which cross national borders, sometimes with

different names for the same physical entity (i.e., they refer to the

name used in that country).

• Having multiple parents is not allowed in the theory of facets.

• They are only associated with countries and not with more/less spe-

cific concepts. Therefore, questions such as which cities a given river

crosses cannot be answered.

As a consequence, these kinds of relations (useful for reasoning) need to

be identified in a different way. The final choice is to explicitly encode the

part-of only for the Administrative Division facet.
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Drawbacks and open problems: We suggest using a geographical database

for the identification of the parthood of the other locations, such as moun-

tains and lakes, and hide the computation in a matching service between

entities.

7.4.5 Issue in storing linguistic information in multiple languages

Description: GeoNames is a multilingual resource in which each location

can have different names in different languages. How then to encode mul-

tilingual information in the BK?

Solution: In the current GeoNames import we only consider English

and Italian. Each location has an English name, but only a small portion

of them also have an Italian name. As previously stated, for each location

we create an entity in the BK, regardless of the language.

Current data structures do not support the creation of synsets for en-

tities. Rather, they support the creation of specific language-dependent

“string values”. For each entity, we create corresponding English string

values for the Name attribute in (the linguistic part of) the BK, which also

includes possible alternative English names provided by GeoNames. When

one or more alternative Italian names are available, we also create one or

more Italian string values for that location.

Drawbacks and open problems: Only two languages (English and Ital-

ian) are covered in the current import. Unfortunately the coverage is rel-

atively poor for Italian and other non-imported languages.

7.4.6 Preferred terms identification issue

Description: The first term which appears in the list of string values for

the Name attribute of an entity can be considered the preferred term for

that entity. Except for the English ASCII name (a column in the “allcoun-
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tries.txt” file), all the names of the locations in GeoNames are listed as

alternative names. A location can have multiple alternative names. In the

list of alternative names, preferred terms are marked only for some of the

locations.

How do we select a preferred term for the rest of the locations?

Solution: A. For the English names that:

• have the preferred term marked, we select this term as the preferred

term and we place it in the first position of the English string values of

the Name attribute generated for this location. We place the English

ASCII name in the second position.

• do not have the preferred term marked, we select the English ASCII

name as the preferred term and we place this term in the first position

of the English string values of the Name attribute generated for this

location.

In both cases, we place the rest of the terms from the list of the English

alternative names in the consecutive positions on a First Come First Serve

(FCFS) basis.

B. For the Italian names that:

• have the preferred term marked, we select this term as the preferred

term and we place it in the first position of the Italian string values

of the Name attribute generated for this location.

• do not have the preferred term marked, we select the first term, as

the preferred term, from the list of the Italian alternative names on

FCFS basis.

In both cases, we place the rest of the terms from the list of the Italian

alternative names in the consecutive positions on an FCFS basis;
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Drawbacks and open problems: When not explicitly marked, we cannot

be sure that what we have selected is effectively the preferred name for

the location. For instance, according to such rules, the preferred name for

Italy (the country) will be Italian Republic.

7.4.7 Issue regarding glosses in multiple languages

Description: A gloss is typically used to provide a description about a term

or a set of terms (i.e. a synset) to enable them to be better understood

by user and therefore for a correct disambiguation. How are the glosses

generated for the locations imported from GeoNames?

Solution: We use the information encoded in the part-of hierarchy to

automatically generate glosses. Notice, however, that for gloss generation

we use the complete set of classes, as in Table 7.2.

Moreover, notice that for the purpose of generating the gloss we consider

the classes ADMD (administrative division), ADM1 (first-order admin-

istrative division), ADM2 (second-order administrative division), ADM3

(third-order administrative division), and ADM4 (fourth-order adminis-

trative division) as administrative division.

(a) Gloss generation schema for English can be defined as shown below:

Child concept + “ is ” + article + class concept + “ in ” | “ of ” + [the]

+ parent concept

Note that [the] means optional use of “the” and | (pipe) means either in

or of is used in the gloss.

Moreover, the above schema is expanded by appending “(administrative

division in ” + country + “)” if the parent concept represents an admin-

istrative division. We refer to the schema without expansion as the base

schema, and the one with expansion as the expanded schema. All possible

examples are provided in Appendix F.
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(b) Gloss generation schema for Italian can be defined as shown below:

Child concept + “ è ” + article + class concept + “ in ” | “ nel ” + parent

concept

Note that “è”, “in”, and “nel” are the Italian translations of “is”, “in”,

and “in the”, respectively.

Moreover, the schema above is expanded by appending “(divisione am-

ministrativa in ” + country + “)” if the parent concept represents an

administrative division. Here, “divisione amministrativa in” is an Ital-

ian translation of “administrative division in”. All possible examples are

provided in Appendix A.

Drawbacks and open problems: Sometimes the generated glosses are

not very meaningful. For example, Trento is an administrative division

in Trento (administrative division in Italy). In this example, both the

source concept and target concept name is Trento, and in both cases Trento

is an administrative division, although at different levels (province and

municipality in this case). It is our belief that by leaving the level number

we do not improve the gloss.

7.4.8 Issue in sense ranking

Description: Words in GeoNames can have multiple senses. Should the

entities be ranked like we do for concepts?

Solution: Entity ranks can be computed by taking into account the class

of the word (the name of the location). In particular, we can apply the

following rule: the higher the class location is, in the facet hierarchy, the

higher the rank. We follow the order of the classes given for the character-

istics (see the research issue: Building the facet hierarchies). We consider

the Continent class as the highest class, Country as the second highest

class, and so on. Here, the intuition is that instances of the classes at

higher levels are better known than the instances of the classes at lower
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levels of the hierarchy.

For instance, it is quite common to have a city with the same name as

its administrative division. In this case, we assign the higher rank to the

administrative division (e.g., we have Rome as a province in Italy, which

includes the city Rome, which is also the capital of Italy).

Drawbacks and open problems: In the facet hierarchy the instance at

a lower level being better known than the instance at a higher level can

occur. For example, the state Georgia in USA is better known than the

country Georgia in Eastern Europe.

7.4.9 Provenance information issue

Description: Provenance information is useful to keep track of the origi-

nal locations in GeoNames, and can be used to update, synchronize, and

verify the knowledge in the BK. How can the provenance information be

maintained in the BK, however?

Solution: We propose the creation of a special attribute for the spatial

entities whose value is their GeoNames ID. Using this ID, it is possible (and

not too costly) to synchronize the information in the BK with the infor-

mation in GeoNames by running a daemon which monitors daily changes.

Provenance information may be lost if GeoNames decides to change the

policy of the IDs in the future.

7.5 Import Procedure

7.5.1 The intermediate schema

Before importing relevant classes and corresponding locations, we created

a set of relational tables, which constitute what we call the intermediate

schema, to store the whole content of GeoNames. They are the following:
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Class (id, name, gloss),

Location (geoNamesId, name, class, latitude, longitude),

AlternativeNameENG (geoNamesId, name),

AlternateNameITA (GeoNamesid, name), and

Part-of (SourceId, TargetId).

The Class table stores the GeoNames classes. Location stores all the GeoN-

ames locations and their relevant attributes. In particular, we store the

English name in the Location table, the alternative English names in the

AlternativeNameENG table, and the alternative Italian names in Alter-

nateNameITA table. In the Part-of table, SourceId and TargetId are the

source and the target location GeoNames IDs, respectively.

After creating the intermediate schema, we then focus on the proce-

dure to load data into it. The GeoNames file “allcountries.txt” contains

geo-spatial information about all the countries of the world. Each line

contains a single GeoNames location. The file “alternatenames.txt” con-

tains alternative names of the locations in different languages. Each line

contains an alternative name. Classes and related information are in the

file “featureCodes.txt”. Continents are listed in the “readme.txt” file that

also contains a complete description of the format of the files distributed

by GeoNames. We follow the steps below:

1. Parse the alternatenames.txt file to retrieve the alternate names, GeoN-

ames ID, and language code for each GeoNames name, and create an

index of the alternate names in memory where the index key is the

GeoNames ID. We consider only the English and Italian names. Go

to the first line of the “allcountries.txt” file.
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2. Parse the current line of the “allcountries.txt” file to retrieve the

GeoNames ID, name, latitude, and longitude of the location. Re-

trieve its corresponding class and build the gloss as described in the

previous section.

3. Out of the information retrieved in the previous step, create an en-

try in the table Class (if the retrieved class name is not yet available

in that table) and create an entry in the table Location. Depending

upon the availability, create an entry in AlternativeNameENG (alter-

native names in English) and AlternateNameITA (alternative names

in Italian). Finally, create an entry in the table Part-of, where source

is the currently processed location ID, and target is the location ID

of the parent (one level higher in the hierarchy).

4. If all the lines of the “allcountries.txt” file are parsed, the import is

over, otherwise go to the next line and repeat steps 2 to 4.

Tables created at this stage can be used to import new concepts and entities

in BK.

7.5.2 Importing from the intermediate schema to BK

Data from the intermediate schema is used for the construction of the

facets by means of their basic constituents; i.e., the concepts, the entities,

and the relations between them. The concepts and conceptual relations

between them are codified by hand, while the entities and relations are

imported from the intermediate schema to BK following the macro steps

outlined below.

For the Administrative Division facet:

1. Build the entity part of the facet hierarchy by selecting the instances

of the classes which forms the part-of hierarchy in the intermediate
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schema. Classes and instances are available in the relational tables

Class and Location, respectively.

2. Create an entity in the BK for each location in the hierarchy.

3. Create a corresponding English and Italian (when alternative names

in Italian are available) string value for the Name attribute.

4. Check the AlternativeNameENG table to see if the entity has an al-

ternative name in English. Append a value to the Name attribute

for English for each alternative name. Similarly, check Alternative-

NameITA and add a value to the Name attribute for Italian for each

alternative name.

5. Create an instance-of entry between the entity and the correspond-

ing class concept as described in the previous section (the class that

represents the characteristic).

6. Create a part-of entry if the entity is part of another entity in the

table Part-of;

7. Generate a gloss for each entity generated in the previous steps.

For the locations which do not belong to the Administrative Division

facet:

1. Create an entity in the BK for each location.

2. Create a corresponding English and Italian (when alternative names

in Italian are available) string value for the Name attribute.

3. Check the table AlternativeNameENG to see if the entity has an al-

ternative name in English. Append a value to the Name attribute
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for English for each alternative name. Similarly, check Alternative-

NameITA and add a value to the Name attribute for Italian for each

alternative name.

4. Create an instance-of entry between the entity and the correspond-

ing class concept as described in the previous section (the class that

represents the characteristic).

5. In the gloss put the name of the concept (e.g., city, populated place,

etc.) the entity belongs to.

7.6 Statistics

In the following table we report statistical data about the imported classes,

locations, part-of relations, and alternative names in the intermediate schema.

Table 7.3: Number of imported objects in the intermediate schema.

Category Number of Imported Entities

Class 664a

Locations 6,907,417

Part-of 6,890,382

Alternative English Names 87,539

Alternative Italian Names 11,996

aThe 663 GeoNames classes, plus a special NULL class which is not included in the set.

We then import the data from the intermediate schema to the BK as

described in Section 7.5.2. The statistics relating to the Administrative

Division facet are reported in Table 7.4, and the statistics relating to the

whole GeoNames import are reported in Table 7.5.
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Table 7.4: Objects imported in the Administrative Division faceted hierarchy of the Ge-

oWordNet.
Category Number of imported entities

Instances 2,265,284

Relation between instances 2,265,283

English Synsets 2,265,298

Italian Synsets 6,433

English Words 2,264,380

Italian Words 5,642

English Senses 2,265,298

Italian Senses 6,433

Facets 1a

Domainsb 1

aThe Administrative Division facet
bSpace

7.7 Open Issues

1. Removing existing entities from the conceptual part of the BK. In this

import we have several entities (which correspond to uppercased com-

mon names) in BK, which we need to remove.

2. Building the whole set of spatial facets. In the current import we

build only the Administrative Division facet. However, more facets

can be built; e.g., the Water Body facet (including Rivers, Lakes) or

the Raised Areas of Land facet (including Hills, Mountains, etc.)

3. Encoding of names in the “allcountries.txt” GeoNames file. The names

are not encoded uniformly. Sometimes an ASCII version is available,

sometimes the UTF-8 encoding is available, and sometimes both are

available. However, in most of the cases we only have the ASCII

version. This is a problem in non-Windows environments.

4. The right amount of instances and concepts to be managed. We im-
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Table 7.5: Objects imported from the GeoNames to the GeoWordNet.

Category Number of imported entities

Instances 6,907,417

Relation between instances 6,890,382

English Synsets 6,907,774

Italian Synsets 10,433

English Words 6,901,538

Italian Words 9,718

English Senses 6,907,774

Italian Senses 10,433

Facets 1

Hierarchical Relations in Facets 2,265,283

Domains 1

port the GeoNames locations as instances of concepts and the classes

as concepts. We build the part-of hierarchy and constitute the Admin-

istrative Division facet. For the relevant classes we reuse the concepts

already present in the BK. Notice that all the locations are imported

in the entity part of the BK (this requires the creation of the corre-

sponding concept in the ontological part for their classes). However,

this is a huge amount of knowledge. How do we select the right amount

of partial knowledge from BK? A possible solution could be to select

geo-entities, instances, and concepts according to a principle of local-

ity, namely according to the region of the user (for instance, in the

context of the Live Memories3 project we could only select those which

are relevant for Trentino).

3See http://www.livememories.org/
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7.8 Conclusion

In this chapter we have demonstrated the building procedure of GeoWord-

Net. We have also described the criteria for selecting knowledge sources.

According to the criteria, we have selected GeoNames as the source of

knowledge for our purpose. We have provided a GeoNames import proce-

dure and have described the facets used for organizing imported knowledge.

In addition, we have outlined the main research issues we encountered in

this import. Finally, we have reported the statistics of the import.
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Conclusion

In this thesis we have discussed formal lightweight ontologies, their ap-

plications, and their problems. We have outlined two central problems:

the inaccuracy of natural language processing in the generation of formal

lightweight ontologies from informal ones; and the fact that extraction of

axioms in building such ontologies is influenced and limited, respectively,

by the poor coverage of background knowledge. We have also introduced

the difficulties associated with the reuse of ontology. In addition, we have

discussed scalability and dynamics in the management of ontologies. We

have proposed faceted lightweight ontologies as a solution to the problems

relating to formal lightweight ontologies. We have developed GeoWordNet,

specialized on geo-spatial information, to use as Background Knowledge in

the faceted lightweight ontologies.

We have provided a formalization of the notion of the faceted lightweight

ontology, in order to identify a suitable language for its representation. In

the formalization, we have demonstrated that each faceted lightweight on-

tology has two parts: a formal lightweight ontology and background knowl-

edge. We have discussed formal Web languages to identify their capabilities

to represent faceted lightweight ontologies. We have introduced a specifi-

cation of C-XML which can be used for representing faceted lightweight
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ontologies. A formal lightweight ontology is often generated from an in-

formal one. C-XML can also be used to represent informal lightweight

ontologies, such as classification schemes. Encoding informal lightweight

ontologies in C-XML provides the solution to the problem of dynamics.

We have generated some faceted lightweight ontologies in which the

source informal ontologies were encoded in C-XML. We have provided Ge-

oWordNet as background knowledge to the generated ontologies. In our

experiments, we have found satisfactory performance improvements in the

formal lightweight ontology applications.

Our future work includes a detailed study to identify available knowl-

edge sources in all possible domains. This is to be undertaken in order

to build a richer knowledge base which can provide better coverage than

is currently possible, so that users can generate a faceted lightweight on-

tology in every possible domain. It also includes the development of the

necessary algorithms and tools for importing identified new sources.
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Appendix A

RDF(S) Constructs

This appendix provides a list of all thirty-three RDF(S)constructs exclud-

ing the sub-properties of rdfs:member.

RDF(S) constructs are rdf:about, rdf:Alt, rdf:Bag, rdf:Description, rdf:first,

rdf:ID, rdf:List, rdf:nil, rdf:Object, rdf:predicate, rdf:Property, rdf:resource,

rdf:rest, rdf:Seq, rdf:Statement, rdf:subject, rdf:type, rdf:value, rdf:XMLLi-

teral, rdfs:Class, rdfs:comment, rdfs:Container, rdfs:ContainerMembership-

Property, rdfs:Datatype, rdfs:domain, rdfs:isDefinedBy, rdfs:label, rdfs:Lit-

eral, rdfs:member, rdfs:range, rdfs:seeAlso, rdfs:subClassOf, and rdfs:subP-

ropertyOf.

We describe a few of the RDF(S) constructs given above as follows: to

represent a concept rdfs:Class can be used; to represent a concept is more

specific than another concept rdfs:subClassOf can be used; to represent

that a resource can be an instance of a concept rdf:resource can be used;

to represent a human readable label to a concept or resource or property

rdfs:label can be used; and to represent a description of a concept or re-

source or property rdfs:comment can be used.
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OWL Constructs

This appendix provides the lists of all the forty OWL constructs and eleven

RDF(S) constructs that can be used in an OWL representation.

OWL constructs are owl:AllDifferent, owl:allValuesFrom, owl:AnnotationPro-

perty, owl:backwardCompatibleWith, owl:cardinality, owl:Class, owl:comple-

mentOf, owl:DataRange, owl:DatatypeProperty, owl:DeprecatedClass, owl:D-

eprecatedProperty, owl:differentFrom, owl:disjointWith, owl:distinctMember-

s, owl:equivalentClass, owl:equivalentProperty, owl:FunctionalProperty, owl:-

hasValue, owl:imports, owl:incompatibleWith, owl:intersectionOf, owl:Invers-

eFunctionalProperty, owl:inverseOf, owl:maxCardinality, owl:minCardinality,

owl:Nothing, owl:ObjectProperty, owl:oneOf, owl:onProperty, owl:Ontology,

owl:OntologyProperty, owl:priorVersion, owl:Restriction, owl:sameAs, owl:so-

meValuesFrom, owl:SymmetricProperty, owl:Thing, owl:TransitiveProperty,

owl:unionOf, and owl:versionInfo.

We describe a few of the OWL constructs given above as follows: to

represent a concept owl:Class can be used; to represent that a concept is

equivalent to another concept owl:equivalentClass can be used; to represent

an instance of a concept owl:Thing can be used; and to represent that two

instances refer the same thing owl:sameAs can be used.
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RDF(S) constructs are rdf:about, rdf:ID, rdf:resource, rdf:type, rdfs:comm-

ent, rdfs:domain, rdfs:label, rdfs:Literal, rdfs:range, rdfs:subClassOf, and

rdfs:subPropertyOf.
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Complete C-XML abstract syntax

Server ::= url

{Vocabs}?
{Users
| Classifications}?
{AttributeDefs}?
{ETypes}?

url ::= anyURI

Vocabs ::= url

{CV}+
CV ::= url

{Words}?
{Synsets}?
{Concepts}?
{CChildOf}*
{CCLink}*

Words ::= url

{Word}+
Word ::= url

lemma

{derived form}*
[provenance]

timestamp

Senses

lemma ::= string

derived form ::= string

provenance ::= string

timestamp ::= dateTime

Senses ::= url

{Sense}+
Sense ::= syn url

[cased lemma]

[rank]

syn url ::= anyURI

cased lemma::= string

rank ::= int

Synsets ::= url

{Synset}+
Synset ::= url
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pos

[gloss]

[provenance]

[c url]

timestamp

pos ::= string

gloss ::= string

c url ::= anyURI

Concept+

Concept ::= url

label

[definition]

[provenance]

syn url

timestamp

label ::= string

definition ::= string

CChildOf ::= source c url

target c url

CCLink ::= url

source c url

target c url

cCRelation

[gloss]

[provenance]

cCRelation ::= “=”

|“!”
Users ::= url

{User}+

User ::= url

name

Classifications

name ::= string

Classificaitons::= url

{Classification}+
Classification ::= url

name

[description]

[gloss]

timestamp

[root n url]

Nodes

{NChildOf}*
NNLinks

Mdocs

description::= string

root n url ::= anyURI

Nodes ::= url

{Node}+
Node ::= url

label

[concept at label]

[concept at node]

[is clabel aligned]

[is cnode aligned]

[cn timestamp]

[gloss]

timestamp
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[default mdoc url]

concept at label::=anyConcept

concept at node::=anyConcept

is clabel aligned::=boolean

is cnode aligned::=boolean

cn timestamp ::= dateTime

default mdoc url::= anyURI

NChildOf ::= source n url

target n url

source n url ::= anyURI

target n url ::= anyURI

NNLinks ::= url

{NNLink}+
NNLink ::= url

source n url

target n url

[kind]

[nNRelation]

target cn timestamp

[gloss]

timestamp

kind ::= “AdoptedChild”

|“CLink”
|“SeeAlso”

nNRelation::=“>”

|“<”

|“=”

|“!”
|“Idk”
|“?”

target cn timestamp::=dateTime

Mdocs ::= url

{Mdoc}+
Mdoc ::= url

[gloss]

timestamp

DataDocument

DataDocument ::= url

{Attribute}+
Attribute ::= a url

{value}*
a url ::= anyURI

value ::= anyDataType

AttributeDefs ::= url

{AttributeDef}+
AttributeDef ::= url

name

datatype

[description]

datatype ::= anyDataType

Etypes ::= url

{Etype}+
Etype ::= url

name

{EALink}*
{Service}*

EALink ::= a url

is sma

is sma ::= boolean

Service ::= url
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Appendix D

C-XML concept syntax

The detailed syntax of C-XML data type “anyConcept” is given below:

We use the standard syntax to represent propositional formulas and we

represent the logical conjunction and disjunction as ampersand (&) and

vertical bar (|), respectively. The round parenthesis (“(” and “)”) are used

in the usual way.

Data type anyConcept is defined as provided below:

anyConcept ::= AtomicConcept | ComplexConcept

AtomicConcept ::= Token“[”{Synset}?“]”
Token ::= token

Synset ::= ‘c’ OffSet{‘,’‘c’ OffSet}*
OffSet ::= nonNegativeInteger

where character constant ‘c’ means Concept and Offset represents a Sense

number in the CV.

Note that there is no space before and after comma, “[”, and “]” in BNF

definitions come above.

ComplexConcept ::= {“(”}? AtomicConcept {(“&” | “|”)
AtomicConcept {“)”}?}+

If a token is a multiword, then its words are separated with the under-

score symbol ( ) (e.g., computer science).
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Some examples of atomic concepts are shown below:

professionals[c61908]

computer science[c87341]

Complex concepts must be in CNF. An example of a complex concept

is shown below:

(computer science[c87341] | professionals[c61908]) & white[c891]

NOTE 1: at the moment we use token [...] and not lemma [...] in

order to provide a uniform representation of tokens which exist and which

do not exist in CV (in the latter case there is no lemma). However, the

latter approach has the advantage that atomic concept equivalence can be

computed through string equality.

NOTE 2: the suggested format is completely interchangeable with the

current version of C-XML. In other words, using a concept only, one can

reconstruct its set of atomic concepts. Apart from this, language can be

used to retrieve lemma and gloss data for each atomic concept (given that

the data exists in CV).

Two atomic concepts are considered to be semantically the same if:

(a) their lemmas are equal strings (case-sensitive) and their sets of Synsets

are equal;

(b) if there are no Synsets associated with them and their tokens are equal

strings (case-sensitive).
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C-XML Example

SeeAlso

MoreGeneral

ChildOf ChildOf

ChildOfChildOfChildOfChildOf

ChildOfChildOf

Doctoral
Schools

School of

International

Studies

ICT International

Doctorate School

ICT Computer 
Science

ICT
Electronics

Doctoral

Programs

Information

Technology

Engineering

Chemical

Engineering
Electronics

and Electrical
Engineering

Server

Fausto

(1) (1)

(2) (3)

(4) (5)

(2) (3)

(4)
(5)

Figure E.1: An example of a classification rooted at Server.

Figure E.1 represents an example of a classification, rooted at Server,

containing a user Fausto, who is the owner of the two Classifications. The
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Classification on the left is about “University of Trento Doctoral School”

and the one on the right is about “Polytechnic University of Milano Doc-

toral Programs”. In the figure, all rectangles accompanied by numbers in

round brackets represent nodes of classifications, and accompanying num-

bers to the left of the rectangles represent the numeric identifiers of the

nodes.

Listing E.1: the C-XML representation of a Server which has a User

owned two Classifications each with a set of Mdocs and a set of Attributes,

and each corresponds to a CV

—————————————————————————————————

(001)<?xml version=“1.0” encoding=“UTF-8” ?>

(002) <server url=“http://kdtest.science.unitn.it:8180/SWebB”>

(003) <vocabs url=“http://kdtest.science.unitn.it:8180/SWebB/

(004) vocabs”>

(005) <cv url=“http://kdtest.science.unitn.it:8180/SWebB/

(006) vocabs/unitn”>

(007) <words url=“http://kdtest.science.unitn.it:8180/SWebB/

(008) vocabs/unitn/words”>

(009) <word url=“http://kdtest.science.unitn.it:8180/SWebB/

(010) vocabs/unitn/words/schools” lemma=“school”

(011) derived form=“” provenance=“WordNet”

(012) timestamp=“2008-07-10 2:18:02.89”>

(013) <senses url=”http://kdtest.science.unitn.it:8180/SWebB/

(014) vocabs/unitn/words/schools/senses”>

(015) <sense syn url=“http://kdtest.science.unitn.it:8180/

(016) SWebB/vocabs/unitn/words/schools/synsets/34183”

(017) cased lemma=“” rank=“1”/>

(018) </senses>

(019) </word>
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(020) </words>

(021) <synsets url=“http://kdtest.science.unitn.it:8180/SWebB/

(022) vocabs/unitn/synsets”>

(023) <synset url=“http://kdtest.science.unitn.it:8180/SWebB/

(024) vocabs/unitn/synsets/34183” pos=“Noun”

(025) gloss=“” provenance=“WordNet” c url=“”

(026) timestamp=“2008-07-10 2:18:03.89”/>

(027) </synsets>

(028) <concepts url=“http://kdtest.science.unitn.it:8180/SWebB/

(029) vocabs/unitn/concepts”>

(030) <concept url=“http://kdtest.science.unitn.it:8180/SWebB/

(031) vocabs/unitn/concepts/1” label=“school” definition=“”

(032) provenance=“WordNet” syn url=“http://kdtest.science.

(033) unitn.it:8180/SWebB/vocabs/unitn/synsets/34183”

(034) timestamp=“2008-07-10 2:18:03.89”/>

(035) </concepts>

(036) <cchildofs>

(037) <cchildof source c url=“http://kdtest.science.unitn.it:8180/

(038) SWebB/vocabs/unitn/concepts/1”

(039) target c url=“http://kdtest.science.unitn.it:8180/SWebB/

(040) vocabs/unitn/concepts/4”/>

(041) </cchildofs>

(042) <cclinks>

(043) <cclink url=“http://kdtest.science.unitn.it:8180/SWebB/vocabs/

(044) unitn/cclinks/1” source c url=“http://kdtest.science.unitn.

(045) it:8180/SWebB/vocabs/unitn/concepts/1”

(046) target c url=“http://kdtest.science.unitn.it:8180/SWebB/

(047) vocabs/polimi/concepts/5” ccrelation=“=” gloss=“”

(048) provenance=“WordNet”/>
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(049) </cclinks>

(050) </cv>

(051) <cv url=“http://kdtest.science.unitn.it:8180/SWebB/

(052) vocabs/polimi”>

(053) <words url=“http://kdtest.science.unitn.it:8180/SWebB/

(054) vocabs/polimi/words”>

(055) <word url=“http://kdtest.science.unitn.it:8180/ SWebB/

(056) vocabs/polimi/words/programs” lemma=“program”

(057) derived form=“” provenance=“WordNet”

(058) timestamp=“2008-07-10 2:18:02.89”>

(059) <senses url=“http://kdtest.science.unitn.it:8180/SWebB/

(060) vocabs/polimi/words/programs/senses”>

(061) <sense syn url=”http://kdtest.science.unitn.it:8180/SWebB/

(062) vocabs/polimi/words/programs/synsets/39259”

(063) cased lemma=“” rank=“1”/>

(064) </senses>

(065) </word>

(066) </words>

(067) <synsets url=“http://kdtest.science.unitn.it:8180/SWebB/

(068) vocabs/polimi/synsets”>

(069) <synset url=“http://kdtest.science.unitn.it:8180/SWebB/

(070) vocabs/polimi/synsets/39259” pos=“Noun”

(071) gloss=“” provenance=“WordNet” c url=“”

(072) timestamp=“2008-07-10 2:18:03.89”/>

(073) </synsets>

(074) <concepts url=“http://kdtest.science.unitn.it:8180/SWebB/

(075) vocabs/polimi/concepts”>

(076) <concept url=”http://kdtest.science.unitn.it:8180/SWebB/

(077) vocabs/polimi/concepts/1” label=“program”
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(078) definition=“” provenance=“WordNet”

(079) syn url=“http://kdtest.science.unitn.it:

(080) 8180/SWebB/vocabs/polimi/synsets/39259”

(081) timestamp=“2008-07-10 2:18:03.89”/>

(082) </concepts> <cchildofs> </cchildofs>

(083) <cclinks>

(084) <cclink url=“http://kdtest.science.unitn.it:8180/SWebB/

(085) vocabs/polimi/cclinks/4” source c url=“http://kdtest.

(086) science.unitn.it:8180/SWebB/vocabs/unitn/concepts/1”

(087) target c url=“http://kdtest.science.unitn.it:8180/SWebB/

(088) vocabs/unitn/concepts/1” ccrelation=“=” gloss=“”

(089) provenance=“WordNet”/>

(090) </cclinks>

(091) </cv>

(092) </vocabs>

(093) <users url=“http://kdtest.science.unitn.it:8180/SWebB/users”>

(094) <user url=“http://kdtest.science.unitn.it:8180/SWebB/users/1”

(095) name=“Fausto”>

(096) <classifications url=“http://kdtest.science.unitn.it:8180/

(097) SWebB/users/1/classifications”>

(098) <classification url=“http://kdtest.science.unitn.it:8180/

(099) SWebB/users/1/classifications/1”

(100) name=“Unitn Doctoral Schools” description=“”

(101) gloss=“” timestamp=“2008-07-10 2:18:03.89”

(102) root n url=“http://kdtest.science.unitn.it:8180/SWebB/

(103) users/1/classifications/1/nodes/1”>

(104) <nodes url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(105) classifications/1/nodes”>

(106) <node url=“http://kdtest.science.unitn.it:8180/SWebB/users/1
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(107) /classifications/1/nodes/1” label=“Doctoral Schools”

(108) concept at label=“(Doctoral[c12993] & Schools[c34183])”

(109) concept at node=“Doctoral[c12993] & Schools[c34183]”

(110) is clabel aligned=“true” is cnode aligned=“true”

(111) cn timestamp=“2008-07-10 2:18:03.97”

(112) timestamp=“2008-07-10 2:18:03.90”

(113) default mdoc url=“”/>

(114) <node url=“http://kdtest.science.unitn.it:8180/SWebB/

(115) users/1/classifications/1/nodes/3”

(116) label=“ICT International Doctorate School”

(117) concept at label=“”

(118) concept at node=“”

(119) is clabel aligned=“false” is cnode aligned=“false”

(120) cn timestamp=“2008-07-10 2:18:03.90”

(121) timestamp=“2008-07-10 2:18:03.90”

(122) default mdoc url=“”/>

(123) <node url=”http://kdtest.science.unitn.it:8180/SWebB/

(124) users/1/classifications/1/nodes/4”

(125) label=“ICT Electronics”

(126) concept at label=“”

(127) concept at node=“”

(128) is clabel aligned=“false” is cnode aligned=“false”

(129) cn timestamp=”2008-07-10 2:18:03.90”

(130) timestamp=“2008-07-10 2:18:03.90”

(131) default mdoc url=“”/>

(132) <node url=“http://kdtest.science.unitn.it:8180/SWebB/

(133) users/1/classifications/1/nodes/5”

(134) label=“ICT Computer Science”

(135) concept at label=“”
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(136) concept at node=“”

(137) is clabel aligned=“false” is cnode aligned=“false”

(138) cn timestamp=“2008-07-10 2:18:03.90”

(139) timestamp=“2008-07-10 2:18:03.90”

(140) default mdoc url=“”/>

(141) </nodes>

(142) <nchildofs>

(143) <nchildof source n url=“http://kdtest.science.unitn.it:

(144) 8180/SWebB/users/1/classifications/1/nodes/1”

(145) target n url=”http://kdtest.science.unitn.it:8180/

(146) SWebB/users/1/classifications/1/nodes/3”/>

(147) <nchildof source n url=“http://kdtest.science.unitn.it:

(148) 8180/SWebB/users/1/classifications/1/nodes/3”

(149) target n url=“http://kdtest.science.unitn.it:8180/SWebB/

(150) users/1/classifications/1/nodes/4”/>

(151) <nchildof source n url=“http://kdtest.science.unitn.it:8180/

(152) SWebB/users/1/classifications/1/nodes/3”

(153) target n url=“http://kdtest.science.unitn.it:8180/SWebB/

(154) users/1/classifications/1/nodes/5”/>

(155) </nchildofs>

(156) <nnlinks url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(157) classifications/1/nnlinks”>

(158) <nnlink url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(159) classifications/1/nnlinks/1” source n url=“http://kdtest.

(160) science.unitn.it:8180/SWebB/users/1/classifications/1/nodes/5”

(161) target n url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(162) classifications/2/nodes/2” kind=“see also” nnrelation=“?”

(163) target cn timestamp=“2008-07-10 2:18:03.90” gloss=“”

(164) timestamp=“2008-07-10 2:18:03.90”/>
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(165) <nnlink url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(166) classifications/1/nnlinks/2” source n url=“http://kdtest.

(167) science.unitn.it:8180/SWebB/users/1/classifications/1/nodes/4”

(168) target n url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(169) classifications/2/nodes/5” kind=“clink” nnrelation=“>”

(170) target cn timestamp=“2008-07-10 2:18:03.90” gloss=“”

(171) timestamp=“2008-07-10 2:18:03.90”/>

(172) <nnlink url=“/nl-432” source n url=“/n-4”

(173) target n url=“http://192.168.193.142:8180/SWebB/

(174) class130/n-5” kind=“clink” nnrelation=“>”

(175) target cn timestamp=“2007-11-14 19:03:15.562”

(176) gloss=“” timestamp=“2007-11-14 19:07:12.609”/>

(177) </nnlinks>

(178) <mdocs url=“http://kdtest.science.unitn.it:8180/SWebB/

(179) users/1/classifications/1/mdocs”>

(180) <mdoc url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(181) classifications/1/mdocs/1” gloss=“”

(182) timestamp=“2008-07-10 2:18:03.95”>

(183) <datadocument url=“http://eprints.biblio.unitn.it/

(184) archive/00001439/01/027.pdf”>

(185) <attributes>

(186) <attribute a url=“http://kdtest.science.unitn.it:8180/SWebB/

(187) attributedefs/author” value=“Fausto Giunchiglia;

(188) Ilya Zaihreau; Feroz Farazi”/>

(189) <attribute a url=“http://kdtest.science.unitn.it:8180/SWebB/

(190) attributedefs/title” value=“Converting

(191) Classifications into OWL Ontologies”/>

(192) </attributes>

(193) </datadocument>
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(194) </mdoc>

(195) </mdocs>

(196) </classification>

(197) <classification url=“http://kdtest.science.unitn.it:8180/SWebB/

(198) users/1/classifications/2” name=“Polytechnic University of

(199) Milano Doctoral Programs” description=“” gloss=“”

(200) timestamp=“2008-07-10 2:18:03.89”

(201) root n url=”http://kdtest.science.unitn.it:8180/SWebB/users/1/

(202) classifications/2/nodes/1”>

(203) <nodes url=“http://kdtest.science.unitn.it:8180/SWebB/users/1/

(204) classifications/2/nodes”>

(205) <node url=“http://kdtest.science.unitn.it:8180/SWebB/users/1

(206) /classifications/2/nodes/1” label=“Doctoral Programs”

(207) concept at label=“(Doctoral[c12993] & Programs[c39259])”

(208) concept at node=“Doctoral[c12993] & Programs[c39259]”

(209) is clabel aligned=“true” is cnode aligned=“true”

(210) cn timestamp=“2008-07-10 2:18:03.97”

(211) gloss=“” timestamp=”2008-07-10 2:18:03.90”

(212) default mdoc url=“”/>

(213) <node url=“http://kdtest.science.unitn.it:8180/SWebB/users/1

(214) /classifications/2/nodes/2”

(215) label=“Information Technology”

(216) concept at label=“”

(217) concept at node=“”

(218) is clabel aligned=“false” is cnode aligned=“false”

(219) cn timestamp=“2008-07-10 2:18:03.90”

(220) gloss=“” timestamp=“2008-07-10 2:18:03.90”

(221) default mdoc url=“”/>

(222) <node url=“http://kdtest.science.unitn.it:8180/SWebB/users/1
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(223) /classifications/2/nodes/3”

(224) label=“Engineering”

(225) concept at label=“”

(226) concept at node=“”

(226) is clabel aligned=“false” is cnode aligned=“false”

(227) cn timestamp=“2008-07-10 2:18:03.90”

(228) gloss=“” timestamp=”2008-07-10 2:18:03.90”

(229) default mdoc url=“”/>

(230) <node url=“http://kdtest.science.unitn.it:8180/SWebB/users/1

(231) /classifications/2/nodes/5”

(232) label=”Electronics and Electrical Engineering”

(233) concept at label=“”

(234) concept at node=“”

(235) is clabel aligned=“false” is cnode aligned=“false”

(236) cn timestamp=“2008-07-10 2:18:03.90”

(237) gloss=“” timestamp=“2008-07-10 2:18:03.90”

(238) default mdoc url=“”/>

(239) </nodes>

(240) <nchildofs>

(241) <nchildof source n url=“http://kdtest.science.unitn.it:

(242) 8180/SWebB/users/1/classifications/2/nodes/1”

(243) target n url=“http://kdtest.science.unitn.it:

(244) 8180/SWebB/users/1/classifications/2/nodes/2”/>

(245) <nchildof source n url=“http://kdtest.science.unitn.it:

(246) 8180/SWebB/users/1/classifications/2/nodes/1”

(247) target n url=“http://kdtest.science.unitn.it:

(248) 8180/SWebB/users/1/classifications/1/nodes/3”/>

(249) <nchildof source n url=“http://kdtest.science.unitn.it:

(250) 8180/SWebB/users/1/classifications/2/nodes/3”
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(251) target n url=“http://kdtest.science.unitn.it:

(252) 8180/SWebB/users/1/classifications/2/nodes/5”/>

(253) </nchildofs>

(254) </classification>

(255) </classifications>

(256) </user>

(257) </users>

(258) <attributedefs url=“http://kdtest.science.unitn.it:8180/

(259) SWebB/attributedefs”>

(260) <attributedef a url=“http://kdtest.science.unitn.it:

(261) 8180/SWebB/attributedefs/author” name=“Author”

(262) datatype=“STRING” description=“”/>

(263) <attributedef a url=“http://kdtest.science.unitn.it:

(264) 8180/SWebB/attributedefs/title” name=“Title”

(265) datatype=“STRING” description=“”/>

(266) </attributedefs>

(267) <etypes url=“http://kdtest.science.unitn.it:8180/SWebB/etypes”>

(268) <etype url=“http://kdtest.science.unitn.it:8180/SWebB/etypes/PDF”

(269) name=“PDF”>

(270) <ealinks>

(271) <ealink a url=“http://kdtest.science.unitn.it:8180/

(272) SWebB/attributedefs/author” is sma=“true”/>

(273) <ealink a url=“http://kdtest.science.unitn.it:8180/

(274) SWebB/attributedefs/title” is sma=“false”/>

(275) </ealinks>

(276) <services>

(277) <service url=“later on this url will represent the URL

(278) of a web service attached to this etype”/>

(279) </services>
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(280) </etype>

(281) </etypes>

(282)</server>

—————————————————————————————————

The C-XML representation of Figure E.1 is shown in Listing E.1. Num-

bers in the left margin included in round brackets show line numbers. This

listing demonstrates the following particularities of C-XML:

• Intentional partiality: the gloss attributes of Node object are omit-

ted in line number 106-140.

• Extensional partiality: the node “School of International Studies”

is omitted from the leftmost Classification of Figure E.1.

• Link representation: the syntactic link “SeeAlso” from Figure E.1 is

encoded in line 162. Some examples of “NChildOf” link representation

are shown in line numbers 143-154 and 241-252, and an example of

the semantic link “>” is shown in line 169.

• Valid document: all the objects have a single appearance in the

document. Server object has appeared in the document.

• Attribute representation: A few examples of Attribute represen-

tation are shown in line numbers 186-191.

162



Appendix F

Multilingual Glosses

English gloss examples are provided below with all possible class concepts.

1. Pergine Valsugana is a city in Trento (administrative division in Italy).

Note that city is the class concept of Pergine Valsugana.

2. Trento is an administrative division in Trentino-Alto Adige (adminis-

trative division in Italy).

Note that administrative division is the class concept of Trento.

3. Italy is a country in Europe.

Note that country is the class concept of Italy and Europe is its parent

in the part-of hierarchy.

4. Rome is the capital of Italy.

Note that capital is the class concept of Rome.

5. Europe is a continent in the world.

Note that continent is the class concept of Europe and “the” is used

before world.

6. Sonjuk-kol is a populated place in Kyonggi-do (administrative division

in South Korea).

Note that place is the class concept of Sonjuk-kol.
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7. Presidencia Municipal is a seat of government of a political entity in

Estado de Jalisco (administrative division in Mexico).

Note that seat of government of a political entity is the class concept

of Presidencia Municipal.

8. Cerveno is a location in Cerveno (administrative division in Italy).

Notice that we put location in the position of class concept, when

a place name cannot be instantiated under any of the classes in Ta-

ble 7.2. In addition, notice that this is a clear example of a location

which has the same name of the upper level administrative division.

Italian gloss examples are provided below with all possible class con-

cepts:

1. Trento è una città in Trento (divisione amministrativa in Italia).

Note that una, città, and Italia are the Italian translations of a, city,

and Italy, respectively. Here, city is the class concept of Trento.

2. Europa è un continente nel mondo.

Note that Europa, un, continente, and mondo are the Italian transla-

tions of Europe, a, continent, and world respectively. Here, continent

is the class concept of Europa.

3. Italia è una nazione in Europa.

Note that nazione is an Italian translation of country. Here, country

is the class concept of Italia.

4. Roma è la capitale in Italia.

Note that Roma, la, and capitale are Italian translations of Rome, the,

and capital, respectively. Here, capital is the class concept of Roma.

5. Cerveno è una località in Trento (divisione amministrativa in Italia).

Note that località is an Italian translation of location.
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6. Pescopennataro è una località popolata in Pescopennataro (divisione

amministrativa in Italia).

Note that località popolata is an Italian translation of populated place.

Here, populated place is the class concept of Pescopennataro.

For GeoNames classes which are used in the current import but not

provided in the list of gloss examples listed above, we provide the English

name and the chosen Italian translation along with the article for each of

them.

Table F.1: GeoNames classes in English and Italian.

Class Name in English Class Name in Italian

An abandoned populated place Una località abbandonata

A seat of a first-order administra-

tive division

Una sede di divisione amministra-

tiva

A seat of government of a political

entity

Una sede di governo o entit polit-

ica

A populated locality Una località popolata

A religious populated place Una località religiosa

The populated places Una località popolata

A destroyed populated place Un luogo distrutto

An Israeli settlement Uno stanziamento Israeliano

A section of populated place Una località popolata
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