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Abstract

In the framework of the synthesis of time-modulated array antennas for com-
munication purposes, the thesis focuses on the analysis and the development of
innovative approaches aimed at reducing the power losses related with the un-
desired harmonic radiations. The accurate analysis of the problem in hand has
been used to identify the foundamental parameters involved in the waste of power
when the elements of the array are modulated using RF switches. The sideband
radiations have been firstly “indirectly” handled throughout the reduction of the
sitdeband levels of the patterns of the harmonics by means of the minimization of
a suitable cost function using a stochastic optimizer, the Particle Swarm Opti-
mizer. Successively, by exploiting a closed form relationship describing the total
power wasted in sideband radiations a new synthesis method has been developed
allowing a significant reduction of the computation effort and a more effective
dealing with the synthesis problem. Moreover, a careful study of the potentiali-
ties and the applications of such methods in others antenna synthesis problem has
been carried out referring in particular to the reduction of the sideband radiations
in monopulse array antennas in which the difference pattern is obtained by means
of sub-arrayed feed network. In the numerical validation, a set of representative
examples concerned with the reduction of the sideband levels and the power of
the harmonic radiations are reported in order to assess the effectiveness and the
flexibility of the proposed approach. Comparison with previously published results
are reported and discussed, as well.
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Structure of the Thesis

The thesis is structured in chapters according to the organization detailed in
the following.

The first chapter deals with an introduction of the thesis, focusing on the
subject of this work as well as a presentation of the state-of-art techniques dealing
with the same antenna synthesis problem.

In Chapter 2 further investigations in the framework of the synthesis of time-
modulated linear arrays are presented, underling the main parameters involved
in the sideband radiations, and proposing an innovative strategy, based on a
global optimizer, aimed at reducing the sideband radiations optimizing the pulse
shifting.

The problem of minimizing the sideband radiations is reformulated in Chapter
3. A closed relationship that computes the wasted power due to the undesired
harmonics is fully exploited to deal with the problem in hand. Starting from
such an expression the problem is recast as the minimization of a suitable cost
function by means of the Particle Swarm Optimizer.

The extension of the approach from linear to planar time-modulated arrays is
described and assessed in Chapter 4. The theory of the time-modulation is for-
mulated to describe the behavior of the planar arrays and an explicit expression
for the wasted power radiated by the undesired harmonics is derived. Succes-
sively, such a relationship is profitably used to design a new procedure based on
a Particle Swarm Optimizer for the synthesis of the pulse sequences devoted to
control the time-modulated array.

In Chapter 5 the time-modulation has been exploited to synthetize sub-
arrayed monopulse antenna radiating sum and difference beams. The static
excitations of the array have been set to obtain an optimal sum pattern whereas
the “best compromise” on-time durations generating the difference pattern have
been computed by means of the Contiguous Partition Method. Moreover, the
“switch-on” instants are successively optimized by means of the Particle Swarm

XV
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Optimizer reducing the wasted power due to the sideband radiations.

Conclusions and future develpments are presented in Chapter 6. Finally, an
appendix gives more details regarding the development of a closed-form expres-
sion computing the power wasted by the sideband radiations in time-modulated
planar arrays.
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Chapter 1

Introduction and State-of-the-Art

In the introduction, the motivation of the thesis is pointed out starting from an
overview of the techniques present in the state-of-art regarding the analysis and
the synthesis of the time-modulated array antennas.



The use of time as an additional degree of freedom in array synthesis has been
investigated in the pioneering work by Shanks and Bickmore [1|. The essence
of this philosophy is the use of the time domain as an additional variable to
control the antenna radiation characteristics. Moreover, they firstly explore the
potentialities of such a strategy in the multipattern operations, simultaneous
scanning and sidelobe suppression. Further investigations of the use of the time-
modulation had been provided in [2] where Shanks proposed a new technique
to obtain electronically scanned beams for radar applications modulating the
element of an array of antennas by means of rectangular pulse excitations. In
such an approach, the author proposed a scheme to feed every element through a
simple on-off switch made by a ferrite rotation device. Furthermore, Kummer et
al. in [3] discussed the possibility of using RF' switches for modulating in time
the element excitations in order to obtain antenna patterns with average low and
ultra-low side lobes.

Successivelly, even if the aforementioned strategies showed the interesting fea-
ture of reconfiguring the array pattern by simply adjusting the on-off switching
sequence only few works have dealt with time-modulation (e.g., [4]). As pointed
out in [3] and [5], the main difficulty to the diffusion of such a technique lie in its
technical implementation. More in detail, the control feed network implementa-
tion requires RF' switches realibility and robustness, able to work at very high
frequency (GHz), with very small switch time and time of rise and fall (nsec).
Additionally, in order to properly modify the antenna pattern the modulating
signals have to be extremely accurate and then their control system is extremely
complex. Recently, important researches in the nano-technologies have led to the
development of new kind of solid-state switches |6] that fully satisfy the operat-
ing constrains and since those devices are part of the RF receivers for wireless
comunication they are now large-scale products [7]. On the other hand, the in-
creasing of the computational speed of the digital controllers, the miniturization
of the devices, the decreasing of the costs of the digital equipment show that the
technological gap to realize the time-modulated arrays have been overcame.

As a result, the synthesis of time-modulated (T'M) arrays has received a
renewed interest in recent years. The scientific community has focused its atten-
tion mainly on three frameworks: the extension the range of the applications of
the time-modulation principles to other antenna synthesis problems, the review
and formalization of the mathematical background of the time-modulated arrays
and the development of innovative approaches to reduce the undesidered har-
monic radiations (called sideband radiations SRs) that arise when the element
excitations are modulated by means of sequence of time pulses.

More in detail, in order to properly address such issues and improving the
efficiency of the approach with respect to the results in [3|, suitable evolutionary
optimization algorithms have been recently considered [8]-[13|. In [8] and [9], the
sideband level (SBL) has been significantly reduced through the optimization
of the “static-mode” coefficients as well as of the durations of the time pulses by
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means of a Differential Evolution (DFE) algorithm. A similar D E-based technique
has been successively adopted in the synthesis of moving phase center antenna
arrays for radar applications [10][11] to suppress the sideband radiations and to
increase the passband of the receiver. Moreover, a Simulated Annealing (SA)
technique has been used in [12] to minimize the sidelobe level (SLL) at the carrier
frequency as well as the SBL of a time-modulated array with uniformly-excited
elements. A different time schema has been successfully exploited in [13|, where
the modulation period has been quantized into shorter time steps and the on-off
sequence optimized by means of a Genetic Algorithm (GA).

Concerning the applicability issues, a careful analysis has been carried out in
[5] and [14], where suitable conditions for information transmission, and not only
radar detection, have been formalized, as well. Additionally, some recent pro-
totypes of time-modulated arrays exploiting different feeding schemes have been
presented: in |15| a prototype of two-element time-modulated array is proposed
to provide electronic null scanning whereas in |16] a four-element time-switched
array system is used to find the direction of arrival of a signal feeding the elements
with asymmetric switching waveforms. In [17] an analysis of phase-switched
screens (PSS) based on time-switched array theory is introduced.

Although significant contributions in dealing with time modulation have been
proposed, further investigations are needed in order to fully exploit the poten-
tialities of the time-modulated arrays. In detail, this thesis is aimed at exploring
the properties of time-modulated arrays by showing and discussing the results
obtained when time is used as additional degrees of freedom in the synthesis pro-
cess. More specifically, starting from the mathematical proof that the sideband
radiations is a function of the “switch-on intervals” (i.e., the durations of the rect-
angular time pulses of the time modulation sequence), likewise the pattern shape
at the fundamental frequency and the “switch-on instants” (i.e., the time instants
when the RF switches commute from open to short circuit), the optimization
of those parameters is profitably performed for pattern synthesis purposes. The
reduction of the wasted power radiated by the undesired harmonics is performed
throughout the minimization of a suitable cost function that measures the dis-
tance between the obtained and the desired side band level, SBL (the highest
level of each h-th harmonic pattern with respect to the peak value radiated at
the carrier frequency).

However, such an approach presents some disadvantages. First, it enforces an
“indirect” S Rs reduction and moreover, it needs the computation of the SBL at
each harmonic frequency. Consequently, the minimization procedure is very high
time-consuming and it is necessary to neglect some higher harmonics reducing
the effectiveness of the approach to prevent the SRs. In order to overcome such
drawbacks, an innovative approach based on a Particle Swarm Optimizer (PSO)
[18] profitably exploits a closed-form relationship derived in [5| that quantifies the
total wasted power in sideband radiations in linear time-modulated arrays. More-
over, following the guidelines in [5| a new closed-form expression that measures



the total wasted power in planar time-modulated arrays has been derived. As a
matter of fact, such a result allows to deal with the synthesis of time-modulated
planar arrays because it avoids the evaluation of the set of higher harmonic pat-
terns that is extremely time-consuming when the number of elements of the array
increases.

Finally, in the framework of exploiting time as additional degree of freedom
in other antenna synthesis problem, this thesis proposed a new strategy aimed at
using the time-modulation for the synthesis of difference pattern in sub-arrayed
array monopulse antenna for search-and-track radar applications [19] . In such
a device, it is necessary to radiate two different beams (namely sum and a dif-
ference pattern) on the same antenna aperture. As a matter of fact, the optimal
solution of implementing two independent feed network is almost impracticable
due to required cost, the architecture complexity and arising electromagnetic
interferences. The most common way to solve such a problem consists in gen-
erating an optimal sum pattern and a sub-optimal difference pattern, the latter
synthesized by applying the subarray technique [20]. Accordingly, the synthesis
is aimed at optimizing prespecified subarray layouts by synthetizing subarray
and radiating element weights. In order to apply the time-modulation in this
problem, starting from a set of static excitations generating an optimal sum
at the carrier frequency, a compromise difference beam is synthesized through
a sub-arraying pattern matching procedure [21] aimed at optimizing the pulse
durations at the input ports of the sub-arrays. Successively, the SRs at the
harmonic frequency are minimized by performing a Particle Swarm Optimizer
(PSO) to set the switch-on instants of the time sequence.









Chapter 2

Synthesis of Time-Modulated
Linear Arrays

The approach presented in this chapter regards a strategy aimed at reducing
the sideband radiations in time-modulated linear arrays through the shift of the
pulses that compose the sequence modulating the array excitations. As a first
step, a careful analysis of the features involved in higher harmonics generation is
done. Following the guidelines emerged from such an analysis an indirect mini-
mization of the sideband radiation is performed throughout the minimization of
a suitable cost function that measures the distance between the obtained and the
desired sideband level of the patterns radiated by the undesired harmonics. Since
the non-convexity of the problem in hand, a global stochastic optimizer, namely
Particle Swarm Optimizer, has been adopted to optimize the switch-on instants
of the pulse sequences. Moreover, further investigations on the instantaneous
behavior of the antenna during the time-modulation has been carried out.



2.1. INTRODUCTION

2.1 Introduction

The synthesis of time-modulated arrays considers that the antenna elements are
equipped with a set of radio-frequency (RF') switches used to enforce a time-
modulation to the static array excitations |1|. This technique has been firstly
taken into account to radiate average low and ultra-low sidelobe patterns |3|
and successively for wireless communication purposes |4]|. Recently, some studies
have renewed the interest of such an approach applying the time-modulation to
different antenna synthesis problems [8], [5], [17]. Moreover, since the pattern
of a time-modulated array can be easily controlled properly modifying the pulse
sequences, the time-modulation seems to be also a promising tool to operate in
complex interference scenarios |22|.

Despite the aforementioned positive features, the modulation of element ex-
citations generates undesired harmonic radiations (the so-called sideband radia-
tions) (SRs) which unavoidably affect the performances of the time-modulated
arrays thus limiting their pratical applicability. In order to minimize the power
losses due by the SRs, effective approaches based on evolutionary algorithm
have been proposed |5][8][9]|12]|13]. However, further investigations are needed
to show and to discuss the results obtained when time is used as additional de-
gree of freedom in the antenna synthesis process. In detail, the behavior of the
radiating system during the modulation and all the parameters involved in the
sideband radiations generation have to be taken into account in order to develop
effective strategies able to deal with the time-modulated arrays.

Accordingly with those purposes, this chapter is organized as follows. In
Section 2.2 the theory of the time-modulated linear array is breafly summarized
and some details about the dependance of the radiated patterns from the static
excitations, the normalized pulse duration and the switch-on instants are given.
Successively, the problem is mathematically formulated defining a suitable cost
function aimed at quantifying the closeness of each solution to the desired one.
In Section 2.3 the results of selected experiments are reported, showing the be-
havior of the antenna during the time modulation (Section 2.3.1). Moreover,
the effectiveness of the proposed approach in dealing with the synthesis of time-
modulated array is pointed out considering as parameters to optimize only the
switch-on instants (Section 2.3.2) and both the switch-on instants and the nor-
malized pulse duration (Section 2.3.3). Finally, in Section 2.4 some conclusions
are pointed out.

2.2 Mathematical Formulation

Let us consider a time-modulated linear array ("M LA) composed by N iden-
tical elements equally-spaced of d along the z axis. The spatial distribution of
the array elements is supposed to be symmetrical about the on-off sequences
U, (t),n=0,...,N—1, which modulate the array element excitations, that are
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Figure 2.1: Sketch of the time-modulated linear array antenna.

obtained by means of on-off RF switches [Figure 2.1]|.
The arising far-field radiation pattern can be expressed as follows [3]:

N—1
F (6, t) = ¢ (0) Y anl, (1) e’ (2.1)

n=0
where in (2.1), eo (f) and wy = 27 fy denote the element factor and the central
angular frequency, respectively. Moreover, k = 27“ is the background wave-
number, A = {a,, n=0,..., N —1} is the set of static and complex array

excitations, and 6 indicates the angular position with respect to the array axis.
The function U, (t) [Figure 2.2] is assumed to have a period equal to 7, and it
is mathematically described as:

Lt <t<t,
Un (t) = { 0, otherwise (2.2)
where 0 <t/ <t <T,.
Moreover, the (‘ondltlon T, > Ty, = + is supposed to hold true |5]. Since U, ()

fo
is a periodic function, it can be expressed in its Fourier representation as:

400 '
= > e (2.3)

h=—o0

being up, the h — th Fourier coefficient, given by:

9
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U0 U 04
TnTp InTp
I : <—>:

t,=0 ' T t 0 th th T t

(a) (b)

Figure 2.2: Time pulse when (a) 0 < 2 < (1 —7,) and (b) (1 —7,) < = <1

Upy = = U, (t) eIt (2.4)
pJo
being w, = 27 f, = 2& the fundamental angular frequency.

& Wp P,

By considering isotropic radiators, [i.e., ey (#) = 1] and without any loss of
generality of the arising conclusions, the radiated far-field pattern turns out to
be:

+oco [N-1 +o0
F (9’ t) _ Z [Z Cm”ejkndcos&] 6j(hwp+wo)t _ Z B, (9’ t) (25)

h=—oc0 Ln=0 h=—oc0

where in equation (2.5) ap, = auup,;n = 0,...,N — 1. With reference to
(2.5), the beam pattern at the carrier frequency f; depends on the 0 — th order
coefficients |3], [8], [12]:

aon = Qplign, n=20,..., N —1 (2.6)

where g, is the 0 — th order Fourier coefficient [Equation 2.4 - h = 0] equal to:

I
Uop, = —/ U, (t)dt =, (2.7)
Ty Jo
being 7,, = (t/’{T_—t;‘) the normalized n —th time pulse duration. It is worth noticing
[Equation (2.6?] that, when the values of the complex static excitations, o, n =
1,..., N —1 are fixed, the pattern generated at the fundamental frequency (h =

0) is only function of the pulse duration 7,,, n = 1,..., N — 1. Accordingly, it
is possible to synthetize a desired pattern, ﬁo (0, t), different from the “static
mode” (i. e., the mode generated by the static excitation set A), by simply
enforcing a suitable on-off time sequence to the static array excitations such that
apTyn = Gop, n = 0,..., N — 1, (under the condition that arg(a,) = arg (ap,)

10



CHAPTER 2. SYNTHESIS OF TIME-MODULATED LINEAR ARRAYS

since 7,, n =1,..., N —1 are real-valued quantities), ag, being the n —th target
excitation.

Unfortunately, the radiation patterns at the harmonic frequencies have significant
components in the boresight direction [12]. In order to overcome such a drawback
let us observe that the sideband radiation coefficients (h # 0):

—jhwpt! —jhw t
an e J P'n — @ pP'n
Qhn < ,n=0,..., N—1, (2.8)

N Tp Jhwy

can be also expressed, after simple mathematical manipulations, as follows:

. th
—jmh <7'7L +2 TZ)

ayTysine (Thr,) e if 0< % <(1—m)

/ —jmh 1—‘,—i
Uy = 4 #{sin[wh(l—tﬁﬂej ( TP)+

/
129

/ —gjmh| 72 +71,—1
sin [ﬂ'h (;—” + Ty — 1)] e’ (T”
P

)} if (1—7) < <1

\

(2.9)
Such an expression points out that the coefficients related to the undesired har-
monic radiation depend on the pulse durations 7,, n = 0,..., N — 1, analo-

gously to the fundamental frequency counterparts [Equation (2.6)], but also on
the switch-on time instants, ¢/, n = 0,..., N — 1. Thanks to this property,
it is possible to spread the power associated to the SR as uniformly as possi-
ble over the whole visible angular space above the antenna (i.e., lowering the
levels of the undesired harmonics along the boresight direction) by keeping the
Tn,n = 0,..., N — 1 values and optimizing the pulse shifts ¢/, n = 1,..., N
[Figure 2.2].

Accordingly, a suitable strategy based on a Particle Swarm Optimizer (PSO)
[18]|23] is used to minimize the following cost function W that quantifies the
mismatch between the user-defined sideband level, SBL™f. and the sideband
levels, SBL"W = SBL (wy + hw,), h = 1, ..., 00, of the synthesized pattern:

U ()l = i{H[SBL’“@f—SBW ()] )Aéh;L<’>2} (2.10)

where in Equation (2.10) A(Sth (t') = SBLTE;Bii?(h)(t/), t'={t/;n=0,..,N —1},
T={r;n=0,.,N—1}, and H(-) stands for the Heaviside step function. On
the other hand, when the constraint of exactly matching the desired pattern at
fo, Fo(0,1), is relaxed [e.g., the synthesized pattern F'(6,t) is required at f
to fit the desired one in terms of SLL and main lobe beamwidth BW]|, it is
still possible to profitably exploit the “pulse shifting” paradigm by tuning the

pulse durations, 7,,, n = 0,..., N — 1, as well, to reduce the power losses of the

11
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SR together with the corresponding SBL. Towards this end, the optimization
is reformulated by defining the following matching function composed by three
terms:

(', T) = vser {H[Asce (T)]|Aser (T)\zi +
+Ypw {H [Apw (T)] |Apw (T)|"} +

+¢SBLZ{ [AghBL (t',T )] )A(Sh;L (t’,T)r}

SLL ¢ —SLL(T BWrel —BW (T
where ASLL (T) = Tf() and ABW (T) = WJC()' Moreover, wSLL;

Yew, Yspr are real-valued weighting coefficients.

(2.11)

2.3 Numerical Validation

In order to assess the effectiveness of the proposed method, an exhaustive set of
numerical experiments has been performed and some representative results will
be shown in the following. More in detail, the discussion is firstly devoted to
point out the behavior of the radiated pattern at the different instants within
the modulating period 7)., whetever the pulse-shifting is present or not. In such
a case, it is still possible to consider the classical pattern features (e.g., the
maximum level of the secondary lobes, SLL, the main lobe beamwidth, BW,
and the peak directivity, D, [24]) for an heuristic analysis of the antenna
performances. Successively, the efficiency of the proposed pulse-shift strategy
in minimizing the SBL is illustrated. Toward this end and for comparative
purposes, some illustrative test cases have been chosen among those already
considered in the published literature. Moreover, the examples under analysis
are concerned with both the SBL minimization and the SR power reduction.

2.3.1 Time-Modulated Radiated Pattern Behavior

In order to analyze the behavior of the radiated pattern at different instants
of T, let us consider an antenna array of N = 16 equally spaced of d = \/2.
The time-modulation is used to synthesize an average pattern equal to a Dolph-
Chebyshev pattern with SLL = —30[dB] at the central frequency (h = 0).
According to the result reported in |25|, the time pulses have been chosen to
start coherently (i.e., t/, =0, n=0,..., N — 1), and they have been set to the
values 7, = 7P n =1,..., N — 1, computed as in [26] and reported in Table
2.1, where for symmetry, only half-array is considered. The power losses due to
the SRs |5] of such an arrangement amount to 24.2% of the total input power.
As regards to the antenna behavior in correspondence with fractions of the
modulating period T}, the directivity patterns radiated at TL,, ={0.1, 0.4, 0.7, 1.0}
are shown in Figure 2.3, where the switch insertion loss present in actual feed

12
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N =16 N =30

c t, SA t,
i I wt |
8 | 1.000 | 0.256 0.065 | 0.599
9 | 0.953 | 0.740 0.076 | 0.461

n
1
3

10 | 0.864 | 0.661 | 4 | 0.072 | 0.583
5
6

11 | 0.744 | 0.426 0.065 | 0.815
12 | 0.603 | 0.594 0.880 | 0.514
13 | 0.458 | 0.300 || 23 | 0.965 | 0.823
14 | 0.319 | 0.629 | 27 | 0.171 | 0.580
151 0.295 | 0.978 || 28 | 0.473 | 0.000
— — - 29 1 0.976 | 0.812

Table 2.1: Pattern Behavior - Values of the switch-on times and switch-on in-
stants optimized by means of the PS strategy.

15

-5 F

-10

Directivity [dB]

-15

-20

0 15 30 45 60 75 90 105 120 135 150 165 180
0 [deg]

-25

Figure 2.3: Pattern Behavior (N = 16, d = 0.5\) - Plots of the directivity
patterns obtained at the carrier frequency when sampling the current distribution
on the array aperture at Ti,, ={0.1, 0.4, 0.7, 1.0} for the DC' solution.
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15 T T T T T T T T

t/Tp=O.4 .........
t/Tp=0.7 ...........
t/Tp= Q) J—

10

Directivity [dB]
()]

PN IR RN I
0 15 30 45 60 75 90 105 120 135 150 165 180

0 [deg]

Figure 2.4: Pattern Behavior (N = 16, d = 0.5)\) - Plots of the directivity
patterns obtained at the carrier frequency when sampling the current distribution
on the array aperture at Tip = {0.1, 0.4, 0.7, 1.0} for the solution obtained by
means of PS technique.

networks is neglected. As expected, the instantaneous patterns differ from the
Dolph-Chebyshev one and the antenna performances depend on the number of
active elements at the sampling instant. With reference to Figure 2.3, it can be
noticed that starting from Tip =
efficiency of the array gets lower and lower since the elements are successively
switched off. Such a monotonically decreasing behavior can be avoided by opti-
mizing the switch-on instants, ¢/, n = 0, ..., N—1, and keeping the pulse durations
fixed to those of the Chebyshev distribution (7, = 7P¢ n = 0,...., N — 1). As
far as the Particle Swarm (PS) procedure is concerned, a swarm of 10 particles
have been used, and the control parameters have been set to w = 0.4 (intertial
weight) and C; = Cy = 2 (cognitive and social acceleration coefficients). The
PS-optimized values of ¢/, n = 0,..., N — 1, are given in Table 2.1. Thanks to
this operation, the number of switched-on elements at each instant of 7T}, is kept
almost constant as well as the radiated patterns |Figure 2.4|. Such an event is
further confirmed by the behavior of the pattern indexes in Figures 2.5 (a) — (b)
and related to D,,q., SLL, and BW throughout the modulation period, respec-
tively. For completeness, the statistics (minimum, maximum, mean values and

variance) of the data in Figure 2.5 are reported in Table 2.2.

0, when all the array elements are turned on, the

Although the maximum available directivity (i.e., D0 = 12.04dB) is never
achieved when using the pulse-shifting approach, it is worth noticing that the

14
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100

" [Tennant, 2008] =m
PS =

‘Bw - [‘Tennaﬁl, 200‘8] —
PS

W -
SLL - [Tennant, 2008] -
SLL- PS

Peak Directivity [dB]

Sidelobe Level, SLL  [dB]

00 01 02 03 04 05 06 07 08 09 10 -17

L L L L L L L L L
Normalized Time, /T, 0 01 02 03 04 05 06 07 08 09 1

Normalized Time, l/Tp [sec]

(a) (b)

Figure 2.5: Pattern Behavior (N = 16 - d = A\/2) - Values of (a) D4, and of
(b) SLL and BW for the DC solution and the solution obtained by means of
the PS technique when sampling the current distribution on the array aperture
at each tenth of the modulation period 7.

Feature || Dy [dB] BW [deg] SLL [dB]

Method | DC | PS | DC [ PS | DC | PS
min{-} || 301 | 903 | 635 675 —oo | -12.16
maz {-} [ 12.04 | 10.79 | 59.90 | 9.60 | —11.30 | —6.66
av{-} | 947 | 1017 | 1557 [ 807 | — | —9.80
var {-} | 7.53 | 059 | 229.31 0386 | — 3.63

Table 2.2: Pattern Behavior (N = 16, d = 0.5\) - Statistics of the pattern
indexes for the solutions without (DC') and with (PS) optimized switch-on in-
stants.

mean value is greater than that of the original case (av {Dpmae}’” = 10.17dB
VS, av {Dmm}DC = 9.47dB) and, more important, the directivity value is much
more stable (var {Dmax}PS = 0.59dB vs. var {Dmm}Dc = 7.53dB). Differently,
the DC' solution starts at t = 0.0 from a maximum value of the directivity,

D ae <TL,, = 0.0) = 12.04dB, while only the two central elements are “on” at

t = T, when the minimum value of directivity is obtained, D,,q, <TL = 1.0) =
P

3.01dB. Similar conclusions arise from the analysis of the behavior of both the
SLL and the BW [Figure 2.5(b) - Table 2.2]. It is worth pointing out that the
mean value and variance of the SLL of the DC' solution cannot be computed
when Tip = 1.0 (i.e., SLL = —0o0) because of the absence of secondary lobes.
For completeness and in order to have some insights on the effects of mutual
coupling (M C') interferences on the antenna aperture, the pattern obtained with

15
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Figure 2.6: Pattern Behavior (N = 16, d = 0.5)) - Directivity patterns obtained
for a dipole array with and without mutual coupling at Tip =0.1.

the PS configuration at Tip = 0.1 for an array of \/2 dipoles of radius 0.002\ is
reported in Figure 2.6 . The MC has been evaluated by considering two different
impedance conditions (i.e., the perfect matching and the open circuit conditions)
for the elements which are off. The mutual coupling does not seem to greatly
effect the radiated pattern.

In the second experiment, the same synthesis problem dealt with in [12] by
means of an approach based on Simulated Annealing (SA) has been considered.
A uniform linear array of N = 30 elements spaced of d = 0.7\ is considered where
only 9 elements of the whole architecture are time-modulated. Analogously to
the previous example, the durations of the time pulses have been set to those
in [12] (i.e., 7, = 794, n = 0,..., N — 1) and given in Table 2.1. In this case,
the percentage of power losses due to SRs is 3.9%. Once again, notwithstanding
the reduced number of time-controlled elements, the plots in Figure 2.7 and the
statistics in Table 2.3, assess that the optimization of the switch-on instants
(Table 2.1) can be profitably exploited to keep the characteristics of the radiated
pattern more stable during the modulation period 7,.
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Feature || Dyyap [dB] BW [deg] SLL [dB]

Method | DC | PS || DC| PS DC | PS
min{-} [| 1342 | 13.62 || 3.38 | 3.56 | —18.42 | —18.42
maz {-} | 14.77 | 1431 | 3.98 | 3.98 || —13.23 | —14.87
av{-} [ 1391|1394 382 ] 379 [ —17.25[ —17.09
var {} [ 011 [ 003 [[0.03] <1073 280 | 144

Table 2.3: Pattern Behavior (N = 30, d = 0.7\) - Statistics of the pattern
indexes for the solutions without (DC') and with (PS) optimized switch-on in-
stants.

43

[Fondevila, 2004] =m
PS =

Bw - [Fondevila, 2004] ——
w - PS

13+ SLL - [Fondevila, 2004] -

SLL- PS 1 a1

Peak Directivity [dB]
Sidelobe Level, SLL  [dB]

1 35

00 01 02 03 04 05 06 07 08 09 10 -19
Normalized Time, t/ Tp

33

. . . . . . . . .
0O 01 02 03 04 05 06 07 08 09 1
Normalized Time, l/Tp [sec]

(a) (b)

Figure 2.7: Pattern Behavior (N = 30, d = 0.7)) - Values of (a) D,,q, and of
(b) SLL and BW for the DC solution and the solution obtained by means of
the PS technique when sampling the current distribution on the array aperture
at each tenth of the modulation period 7,.
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2.3.2 SBL Reduction with Fixed Power Losses

In order to show the effectiveness of the proposed approach to reduce the sideband
radiations, let us consider the same test cases presented in the previous section
[12][25]. In detail, let us consider an array of N = 16 3-spaced elements with the
synthesis at the carrier frequency of a Chebyshev pattern with SLL = —30 [dB]
|[Figure 2.8 (a)| in which the set of the “static mode” excitations is uniform
AD = {a,=1;n=0,...,N —1}. Moreover, Figure 2.9 (a) gives a pictorial
representation of the switching sequence synthetized in [25] by acting on T. As
expected [Equation (2.6)] the durations of the time pulses are equal to the values
of the samples of the normalized Chebyshev distribution [26] (i.e., T = Tp¢).
However, even though the reference pattern at f; is exactly matched, the har-
monic content along the boresight direction is non-negligible [Figure 2.8(b)|. In
order to cope with this drawback, the pulse-shifting technique has been then
used as previously described. Accordingly, the set t’ (being T = T p¢) has been
optimized by choosing SBL™/ = —25dB and minimizing the cost function in
(2.10) with h = 1" since the power losses associated to higher harmonics decrease
faster [5]. Towards this purpose, a PSO with I = 10 particles and a standard
setting [27| of the control parameters (i.e., w = 0.4 and C; = Cy = 2; w, CY,
and Cy being the inertial weight and the cognitive/social acceleration terms,
respectively) has been used.

The PSO-optimized pulse sequence is shown in Figure 2.9 (b). Moreover, the
radiated patterns are displayed in Figure 2.10 and compared with those from |25|
up to the second harmonic mode. As it can be observed, the SBL at h = 1 is
equal to SBLS)SO = —19.50dB and its value results more than 7dB below that
in [25] (i.e., SBLY), = —12.40dB).

Moreover, although the harmonic frequency h = 2 is not directly involved in
the optimization process, it turns out that SBL&%O = —21.70dB vs. SBLg)C =
—18.30dB. For completeness, the comparison in terms of maximum SBL of
the harmonic patterns is extended to higher orders (Figure 2.11). It is worth
noticing that over 30 harmonics, 29 PSO-synthesized patterns have SBLs lower
than those generated by the pulse configuration Tpe in |[Figure 2.8 (a)]. As a
matter of fact, only the case h = 16 presents a SBL worse of almost 1 dB. Such
a result further confirms the intrinsic “robustness” of the pulse shifting method-
ology. However, it should be remarked that the energy wasted in the SRs, which
amounts to the 25.2% of the total input power 5|, does not decrease through
only pulse shifting. Moreover, since there is a trade-off (for a given antenna
layout) between the possibility to arbitrary shape the pattern (i.e., desired SLL
and beamwidth) at the carrier frequency and the presence of SR, the SBL could
be higher than the SLL as shown in this case.

As far as the computational issues are concerned, the behavior of the optimal

Tt should be pointed out that more terms (i.e., h > 1) might be considered in (2.10) to
directly control the SBLs of other undesired harmonic terms.
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I Statilc Modlc ---------
Target

Normalized Power Pattern [dB]

Normalized Power [dB]

Figure 2.8: Pulse Duration Optimization [25] (N = 16, d = 0.5\) - (a) Static
and reference power patterns; (b) Power pattern generated at fy (h = 0) and in
correspondence of the harmonic terms h = 1, 2.
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Figure 2.9: Pulse Shift Optimization (N = 16, d = 0.5)) - Element on-off time
sequence: (a) original [25] and (b) optimized with the PSO-based approach.
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Figure 2.10: Pulse Shift Optimization (N = 16, d = 0.5\) - Original [25] and
PSO-optimized power patterns at h = 0,1, 2.
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[Tennant, 2008] —+—
PSO -3¢

SBL [dB]

Harmonic Mode, h

Figure 2.11: Pulse Shift Optimization (N = 16, d = 0.5\) - Behavior of the
SBL™ when h € [0, 30]. Original |25] and PSO optimized values.

value of U (i.e., U = min,, {mini [\If (t’ik)\T:TDc} }, ir, being the index of the

i-th particle of the swarm at the k-th iteration of the minimization process) and
the corresponding SBL values are reported in Figure 2.12. As regards to the
C'PU-time, it amounts to 74.16 [sec| to complete the whole number of K = 1000
PSO iterations on a 3GHz PC with 1GB of RAM, 6.6 x 1073 [sec| being the
time needed for a cost function evaluation.

The second experiment of this section refers to a scenario previously addressed in
[12]|, where an array of N = 30 elements spaced by d = 0.7 has been considered.
In [12], by exploiting a SA-based strategy, the set T has been optimized (i.e.,
T = Tgs4) by minimizing a suitable cost function [Equation (5) - [12]] devoted
to set the following constraints on the generated beam pattern: SLL < —20dB
and SBL™ < —30dB, |h| = 1,2. Likewise the previous example, in order to
prove that keeping the same time-duration set Tga (i.e., the same pattern at
h = 0), it is possible to further lower the SBL by properly programming the
switch-on instants of the RF switches, the proposed PSO-based algorithm has
been applied. The amount of power losses of the original configuration is equal
to the 3.89%.

The original [12] and the PSO-optimized time sequence are reported in Figure
2.13 (a) and Figure 2.13 (b), respectively.

Moreover, Figure 2.14 shows the plots of the radiation patterns synthesized
with the SA [12] and by means of the PSO algorithm at |h| = 1 and at the
fundamental frequency (h = 0). As it can be observed, the level of the side-
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Figure 2.12: Pulse Shift Optimization (N = 16, d = 0.5\) - Behaviors of the
optimal value of the cost function, U°?*, and of SBL™ versus the iteration index

k.

band radiation in correspondence with the first harmonic mode turns out to be
SBLY) = —30.05dB while SBLY),, = —32.90 dB with an improvement of about
3dB despite the reduced number of time modulated elements (% < %, M =9
being the number of time-modulated elements). Furthermore, it is noteworthy
that, thanks to the optimization of t’, it also results SBLS%O < SBL(S}?‘, h>1
|[Figure 2.15].

For completeness, the behavior of W and the arising SBL™ value versus the
iteration index k are shown in Figure 2.16.

2.3.3 Joint SBL Minimization and SR Power Reduction

In order to assess the effectiveness of the pulse shifting technique also in dealing
with the SR power reduction, let us consider the same benchmark of the first
example in Sect. 2.3.1, but now optimizing the pulse durations, as well. Towards
this aim, the cost function (2.11) is adopted and the reference thresholds are set to
SLL™f = —30dB and BW" = 3.95° to obtain a pattern with the same features
of that afforded by the Chebyshev coefficients, by keeping SBL"™/ = —25dB.
Figure 2.17 shows the pulse sequence synthesized by the PSO-based method
when a swarm of I = 20 particles has been run for K = 1000 iterations.

As regards to the computational costs, the computational burden grows since
the number of unknowns double with respect to the case in Sect. 2.3.2 and the
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Figure 2.13: Pulse Shift Optimization (N = 30, d = 0.7)) - Element on-off time
sequence: (a) original [12] and (b) optimized with the PSO-based approach.
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Figure 2.14: Pulse Shift Optimization (N = 30, d = 0.7\) - Power patterns at f
(h =0) and when h = 1: original |[12| and PSO-optimized plots.
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Figure 2.15: Pulse Shift Optimization (N = 30, d = 0.7)\) - Behavior of the
SBL™ when h € [0, 30]. Original [12] and PSO optimized values.
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Figure 2.16: Pulse Shift Optimization (N = 30, d = 0.7)\) - Behaviors of the
optimal value of the cost function, U, and of SBL® versus the iteration index

k.

solution space of the admissible solutions significantly enlarges.

For comparison purposes, the normalized powers related to fy and to the sideband
radiations are analyzed and Figure 2.18 shows the results obtained when acting
on T |25] and also on t'. As expected, there is a reduction of the losses due to
the SR and an increasing of the radiation at f; when applying the pulse shifting.
It is worthwhile to point out that such an enhancement of the performance
is yielded without increasing the architectural complexity of the system with
uniform excitations. For completeness, the patterns synthesized at the carrier
frequency and when h = 1, 2 are shown in Fig. 2.19 and compared with those
from the time-modulation scheme in Figure 2.9 (a). Moreover, the C'PU-time
necessary to compute the cost function value (2.11) of each particle is about
twice that when only t’ was optimized (2.3.2). Consequently, the total C'PU-
time required to sample the solution space with a swarm of I = 20 particles
amounts to 262.01 [sec], 1.3 x 1072 [sec| being the time-cost of a single evaluation
of U (t',T).

Finally, Figure 2.20 gives some indications on the behaviors of the three terms of
the cost function as well as of UP! throughout the iterative optimization process.
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Normalized Element On-Time
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Element Number, n

Figure 2.17: Joint Optimization of Pulse Shifts and Durations (N = 16, d =
0.5\) - PSO-optimized element on-time sequence.
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[Tennant, 2008] PSO [Tennant, 2008] PSO

Fundamental Frequency Sideband Radiations

Figure 2.18: Joint Optimization of Pulse Shifts and Durations (N = 16, d =
0.5\) - Normalized powers associated to fo (h = 0) and to the sideband radiations
(h # 0) for pulse duration optimization [25] and PSO-based shift-duration pulse
optimization.
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Figure 2.19: Joint Optimization of Pulse Shifts and Durations (N = 16, d =
0.5A) - Normalized powers associated to fo (h = 0) and to the sideband radiations

(h # 0) for pulse duration optimization [25] and PSO-based shift-duration pulse
optimization.
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0.5)) - Behaviors of the cost function terms during the iterative PSO-based
minimization
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2.4 Discussions

In this chapter an innovative approach for the synthesis of time-modulated lin-
ear arrays has been proposed. The method considers the on instants of the time
pulses as a suitable and further degree of freedom in the synthesis process. Start-
ing from the basic principles of the pulse shifting strategy, mathematically formu-
lated according to the theory of time-modulated arrays, the synthesis problem has
been recast as the optimization of a proper cost function modelling the mismatch
between the actual pattern features and the desired ones. Both SBLs reduction
and SRs minimization issues have been addressed and the minimization of the
corresponding cost function has been carried out by means of a PSO-based al-
gorithm. A set of representative results has been reported and discussed in order
to assess the potentialities of the proposed approach. The pulse-shift methodol-
ogy has demonstrated to work effectively when compared to other techniques in
dealing with examples usually considered in the state-of-the-art literature.
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Chapter 3

Direct Minimization of Sideband

Radiations in Linear
Time-Modulated Arrays

The approach presented in this chapter regards an enhanced strategy aimed at
reducing the sideband radiations in time-modulated linear arrays. More in detail,
a closed-form relationship that computes the power radiated by the undesired
harmonics is profitably exploited in an optimization strategy based on the Parti-
cle Swarm Optimizer. Such an approach optimizes the switch-on instants of the
pulse-sequence and allows a considerable saving of the computational burden.
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3.1 Introduction

As pointed out in chapter 2, even if the time-modulated arrays can be profitably
exploited to radiate low and ultra-low sidelobe patterns and their patterns can
be easily controlled modifying the time sequences the generation of the undesired
harmonics leads to an important waste of power (the sideband radiations SRs).
Such a fact is the main drawback that has limited the use of such kind of antennas
array in practical applications.

Recently, in order to reduce sideband radiations, different stochastic iterative
algorithms have been proposed [8]|9][12]|13|. They are based on the minimization
of the sideband levels (SBLs) at the higher order harmonics. However, such a
guidelines presents some disadvantages. First, it enforces an “indirect” SRs re-
duction (i.e., through SBLs minimization). Moreover, it needs the computation
of the SBL at each harmonic frequency. As a matter of fact, neglecting some
higher harmonics and considering just low orders could prevent a suitable SRs
reduction.

In order to overcome these drawbacks, an innovative approach is proposed. It
is based on a Particle Swarm Optimizer (PSO) aimed at synthesizing a desidered
pattern with prescribed sidelobe level (SLL) at the carrier frequency also directly
minimizing the power losses due to SRs. Toward this end, the closed-form rela-
tionship, derived in [5] to quantify the total power wasted in sideband radiations,
is profitably exploited because its analytic form, its simplicity, and to avoid the
evaluation of the (infinite) set of higher harmonic patterns.

Accordingly, the outline of this chapter is the following. In Section 3.2 the
problem is mathematically formulated, summarizing the key-issues concerned
with the time-modulation for the array synthesis. Successively, the PSO-based
strategy to reduce the power losses due to S Rs is presented. Moreover, in Section
3.3 a set of numerical results are reported and compared with other state-of-art
solutions to point out the effectiveness of the approach. Finally, some conclusions
are drawn (Section 3.4).

3.2 Mathematical Formulation

Let us consider a time-modulated linear array of N isotropic elements equally-
spaced of d along the z axis. The elements are modulated by means of on-off RF'
switches controlled by on-off periodic pulses of period T, U, (t); n =0,...,N—1
(2.2). Following the procedure described in Section 2.2, the array factor appears
to be the summation of an infinite number of harmonic contributions:

h=—occ Ln=0 h=—00

+oo [N-1 +oo
F (O,t) _ Z [Z ahnejlmdcosel 6j(hwp+wo)t _ Z B, (Q,t) (31)

where in Equation (3.1), k = 27” is the background wave-number, wy = 27 fy de-
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LINEAR TIME-MODULATED ARRAYS

notes the central angular frequency, # indicates the angular position with respect

to the array axis. Moreover, the coefficients az,; n =1,..., N are computed as:
1 T —jhwpt
App, = Oty — Up, (t) e 7"t dt (3.2)
T, Jo

being A = {a,; n=0,...,N — 1} the set of the static excitations of the array,
?p—’; is the angular frequency of the modulating pulses. From Equation (3.1)
follows that the central frequency beam (h = 0) is given by:

CUp:

N-1
FO (1) = elwot Z agn e s, (3.3)

n=0

while the sideband radiations turn out to be:

Fsr (0,1) Z F® (3.4)

being FM (0, 1) Zah eindeost | pjlhwptwo)t — Ag far as the power losses due

to the sideband radlatlons they can be analytically quantified according to the
following closed form [5]:

PRAT) = 3 {laulr(1-7)} +
Z_ {R{amas}sine [k (zm — 20)] (T — TmTn) } (3.5)
m,n =20
m # 0

where in (3.5) {-} and the apex * indicate the mean real part and complex
conjugation, respectively. Moreover, z,, = m X d and z,, = n x d are the positions
of the m-th and n-th array element along the z-axis, 7 = {r,; n=0,..., N — 1}

is the set of normalized switch-on times whose n-th element is defined as 7,, = %,
while
Tn U To < Ty
= . . 3.6
Trmn, { T, otherwise (3.6)

Therefore, it turns out that the SR power losses can be minimized by properly
setting the values of the static excitations, A, as well as the durations of the time
pulses, 7. However, since we are interested in synthesizing antennas with a low
number of control parameters, uniform and isophoric excitations (i.e., a,, = 1,
n =0,..,N — 1) are assumed. Only the durations of the switch-on times are
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then optimized by means of an iterative (k being the iteration index) PSO-based
strategy aimed at minimizing the following cost function:

\If(z) :’UJSLL\IISLL (z) +pr5R. (37)

|sLLre! —sLL,|”
|sLLres|®

constraint on the array pattern at wg and quantifies the distance between the
current , SLLj, and the desired sidelobe level, SLL™/, while the latter is related
to the power losses. Moreover, wgy, and wp are real weight coefficients and H (-)
is the Heaviside step function.

As regards to the PSO-based minimization, the algorithm starts from randomly
chosen guess values and updates at each iteration the set of S trial solutions,
z,(:), s =1,...,5, as well as the corresponding PSO velocities, y,(j), s=1,..,9,
as follows [18|:

The first term in (3.7), WS = H [SLL™ — SLLy) , models a

y](j) = ey](j_)l + Chrq (]_9](:) - I](:_)1> + Cory <gk - I](:_)1> (38)
= o) _— 59

where e (inertial weight), Cy (cognitive acceleration), and Cy (social acceler-
ation) are the PSO control parameters. Moreover, r; and ry are two ran-

dom variables having uniform distribution in the range [0 : 1]. Furthermore,

2_9](:) = arg {mz’nqzl,myk [\If <L(]S))]} and Izpt = arg {mi’l’Ls:l,”"S [\If (]_9](:)>]} are

the so-called personal best solution and global best solution, respectively. The
process is iterated until a convergence criterion based either on a maximum
number of iterations K or the following stationary condition:

Kuyindow
waww—ZWﬁMW

q=1

< 3.10
/] (Izpt) — é- ( )

holds true. In (3.10), Kyindow and £ are a fixed number of iterations and a
user-defined numerical threshold, respectively.

3.3 Numerical Validation

In order to give some indications on the effectiveness of the proposed approach
in minimizing the power losses associated to the SRs, while synthesizing a fixed
SLL pattern at the carrier frequency. Towards this purpose, some representative
examples are reported and discussed also in a comparative fashion. Comments
on the relationship between SRs minimization, performance (i.e., SLL) and
complexity of the synthesized array are given, as well.
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Figure 3.1: SRs Minimization (N = 30, d = 0.7)) - Switch-on time sequence
synthesized with the PSO-based approach.

Let us consider a linear array of N = 30 elements equally-spaced by d = 0.7\.
The same experiment has been previously dealt with in [12] with the aim of
minimizing the sideband levels (SBLs) at h = 1, 2, while keeping a desired
SLL at w = wy. In [12]|, the optimization has been carried out by means of a
Simulated Annealing (SA) approach by setting SLL™ = —20dB and SBL"™/ =
—30dB, respectively. The synthesized solution [12] fulfills both requirements
(ie., SLLga = —20dB, SBLY) = —30.2dB, and SBLY) = —35.1dB) by
time-modulating only 9 elements over 30 and the power wasted in the sidelobe
radiations amounts to Ps¥ = 3.89 % of the total input power. The directivity
and the feed-network efficiency computed through the relationships in [28] are
equal to DgA = 15.14dB and néA = (.82, respectively.

As far as the PSO-based method is concerned, a swarm of S = 10 particles (i.e.,
trial solutions) has been chosen and the control parameters have been set to
w=0.4,Cy = Cy =2.0,and K = 1000. Moreover, a uniform weighting has been
assumed in (3.7) (i.e., wsr, = wp = 1.0). The numerical simulations have been
run on a 3GHz PC with 1GB of RAM and the convergence has been reached
after K.,q = 761 iterations with a total and average (per iteration) C'PU time
equal 113.39 [sec] and 0.149 [sec], respectively. The time sequence synthesized
at k = K,,q is shown in Figure 3.1 while the patterns afforded at the carrier
frequency |Eq. (3.3)] and the first two harmonic patterns [Eq. (3.4) - h = 1,2]
are shown in Figure 3.2. As it can be noticed (Figure 3.2), only 4 elements
are time modulated (vs. 9 in |12]|) and the same performances of the SA-based
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Figure 3.2: SRs Minimization (N = 30, d = 0.7\) - Normalized power patterns
at the carrier frequency (h = 0) and related to the sideband radiations (h = 1, 2)
in correspondence with the pulse sequence in Figure 3.1.

approach have been obtained neglecting the elements 1, 26, 27, and 29, which
are always turned off.

As regards to the fulfillment of the synthesis constraints, Figure 3.3 shows the
behavior of U = W (777) and the values of the two terms in (3.7). As expected,
the PSO solution widely fulfils the user constraint on the SLL at the convergence
li.e., UL (K,,4) < 107°], when the stationary condition on the value of the cost
function is reached. Concerning the SRs, although the sideband level of the first
harmonic term of the PSO solution is higher than that synthesized with the SA
approach (i.e., SBLgéO = —28.9dB vs. SBLgA = —30.2dB - Figure 3.4), the
amount of power losses in the SRs turns out to be lower since P2%, = 3.57 %.
Such a result points out that a suitable strategy based on the direct minimization
of the SRs, instead of the optimization of the SBLs [13][8]|9][12], seems to be
more effective in reducing power losses. On the other hand, it should be noticed
that the proposed techniques also guarantees satisfactory SBLs since, besides the
first harmonic (h = 1), SBLg%O < SBLk(ghf)l for h > 2. As a matter of fact, the
reduction of the SBL ranges from a minimum of ASBL = 0.7dB to a maximum
equal to ASBL = 11.5dB, with an average value of around ASPE = 6.2dB.
Conversely, the directivity as well as the feed-network efficiency slightly reduce

to Dhgp = 14.94dB and n}hg, = 0.79.

Finally, Figure 3.5 shows an analysis on the available compromises between an-
tenna performance (i.e., directivity and SLL) and associated power losses, P,
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Iteration Index, k

Figure 3.3: SRs Minimization (N = 30, d = 0.7)) - Behavior of the cost function
and its terms during the iterative PSO-based minimization.
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Figure 3.4: SRs Minimization (N = 30, d = 0.7\) - Behavior of the sideband
levels SBL(™ when h € [0, 30]. Reference [12] and values computed with the

PSO-optimized pulse sequence in Figure 3.1.
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Power Losses, PSR [%]
Directivity, DT [dB]
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Figure 3.5: Performance Analysis (N = 30, d = 0.7)\) - Behavior of the power
losses P°% and directivity DT versus the SLL for Dolph-Chebyshev patterns
[26].

when considering Dolph-Chebyshev distributions [26]. As expected, it is worth
noting that there is an inverse relationship between the amount of power losses
and the maximum directivity for time-modulated linear arrays.

3.4 Discussions

In this chapter an innovative approach for the synthesis of time-modulated arrays
has been proposed. In order to reduce the power losses, a PSO-based strategy
has been adopted to minimize a closed-form relationship, that takes into account
the whole sideband radiations in direct way and consequently it allows to avoid
the computationally-expensive evaluation of the infinite set of harmonic patterns.
Thanks to these key-features, the proposed technique represents an improvement
with respect to other state-of-art techniques in terms of simplicity and efficiency
into reduce the sideband radiations.
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Chapter 4

Synthesis of Time-Modulated
Planar Arrays

This chapter deals with the minimization of the power losses due to undesired
sideband radiations in time-modulated planar arrays. A closed-form expression
for computing the total power wasted in the sideband radiations is derived and
properly exploited to design a new procedure based on a Particle Swarm Opti-
mizer for the synthesis of the pulse sequences that control the time-modulated
array. A set of representative results is shown and analyzed in order to assess
the effectiveness of the proposed strategy.
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4.1 Introduction

The use of a pulse sequence to modulated the antenna array excitations by
means of RF' switches has been proved to be a suitable synthesis technique in
several applications as the sum and difference antennas [30] and phase switched
screens [17] up to airborne pulse doppler radars [29]. As a matter of fact, the
improved flexibility of the antenna design allows to generate several patterns
with different shapes a [30] and sidelobe levels [3| without the need to change
the static excitations represents a non-negligable advantage of time-modulation
strategy.

However, the main disadvantage of T'M arrays is related to the sideband radi-
ations (SRs) due to the undesired harmonics that arise when the array elements
are modulated by a sequence of pulses. To avoid such a drawback, different opt-
mization algorithms have been developed in order to reduce the sideband levels
(SBLs) (i.e., the peak levels of the harmonic radiations). Approaches based
on the Differential Evolution (DFE) [8], the Simulated Annealing (SA) [12], the
Genetic Algorithm (G A) [13] have been profitably applied. Moreover, a different
strategy exploiting time sequences with arbitrary switch-on instants has been
also presented in |25].

Even if the aformentioned approaches are able to deal efficiently with the SRs
in linear array, those strategies do not seem to be suitable to be extended to the
synthesis of time-modulated planar arrays (TTMPA). As a matter of fact, the
evaluation of patterns radiated by the undesired harmonics is extremely time-
consuming and it cannot be limited at the first harmonic (as it usually done in
T'M linear arrays) since the losses related with higher frequency harmonics are
more relevant because the larger number of elements that usually constitute the
planar array.

On the other hand, a simple closed-form relationship that describes the total
power wasted by the SRs for linear 7'M arrays has been developed |5]. Such an
expression enables an easy and complete computation of the power losses avoiding
the evaluation of the (infinite) set of higher harmonic patterns. Consequently, the
proposed approach follows such a philosophy firstly extending the mathematical
formulation in |5] to planar arrays and successively developing an explicit form
expression that evaluates the power losses.

Accordingly, the outline of the chapter is as follows. In Sect. 4.2 the radiation
of time-modulated planar arrays ("M PA) is mathematically described and a
closed-form relationship for the SRs is determined and minimized by means of
a PSO. Successively, in Sect.4.3 a selected results from an exhaustive set of
numerical simulations is reported and discussed. Finally, some conclusions are
drawn in Sect. 4.4.
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4.2 Mathematical Formulation

Let us consider a planar array with M x N elements displaced on a regu-
lar grid along the z — y plane. The static set of element excitations A =
{amn; m=0,...M —1,n=0,...,N — 1} is modulated by means of periodic rect-
angular pulse functions generated by RF switches inserted into the antenna feed

network to obtain dynamic excitations. The array factor is then given by:
M—1N-1

AF (0,¢,1) = eJwot Z Z CinGmn (£) 85I 0(zm cos p+yp sin ¢) (4.1)
m=0 n=0

where z,,, = m x d, and y,, = n x d, denote the location of the mn-th array
element, 3 = “2 is the free-space wave number, wy and ¢ being the carrier angular
frequency and the speed of light in vacuum, respectively. Moreover, the time
behavior of the RF' switches is mathematically modeled through the function
Gmn (1) = Gmn (t+11,), ¢ and T, being an integer value and the modulation

period, respectively. Then g¢,,,(t) is considered to be:
1 af o<t <t
grnn (1) _{ 0 otherwise C (4.2)

As for the linear case, such a periodic function can be expressed in terms of its
Fourier coefficients

G (#) = D G, m =0, .M —1,n=0,..,N—1 (4.3)
h=—o0
where w, = %—’; and G,,,;, is a real quantity computed to:
1 [Te/2 ‘
Gk = —/ G (D)0 L (4.4)
Ty J 1,

Substituting ( 4.3) in (4.1) the array factor results a summation of infinite har-
monics [5]:

AF (0,6,1) = i AF, (0, ,1) (4.5)

h=—oc0

where the h-th harmonic term is given by:

M—-1N-1
AFh(‘97 (b, t) — ejwot Z Z amnGmnhejk sin 6(zm cos ¢p+yn sinqﬁ)ejhwpt. (46)

m=0 n=0

Then, the pattern at working frequency (h = 0) is given by:
M-1N-1

AF()(@, ¢) — 6jwot Z Z O{mnTmnej,Bsin@(gvm cos ¢p+yn sin @) (47)

m=0 n=0
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being 7,,, = % = Gumno. Moreover, let us rewrite (4.5) as:

)= |pn(8,0) ot (4.8)

h=—o0

where the term p;, is computed as:

M—-1N-—

,_.

a TL mnhejﬁ m €08 ¢+yn Sin¢)’ (4.9)

m=0 n=0

3

Now, let us compute the total power radiated by a TMPA as:

Tp/2 2 o
Pror = — Re {AF(0, ¢, 2'ed9d}d 4.
vor=1 [ [ [ retaro.onpsomae] e o

Tp/2

since the following expression holds true [5]:

_/W Re {AF(0,6,1))2 dt = Z 1 (0 (4.11)

Tp/2 h=—00

the power losses associated to the sideband radiations are given by:

Psgr = = // |11 (6, &) sin 0dOdg. (4.12)

—00,h#0

Since |pn(60, 0)|* = 1n(0, ) [1n(0, ¢)]" and taking into account the following re-
lationship from [5]:

Z GmnhGrsh = AT;:n — TmnTrs (413)

h=—00,h#0

where A7'S = 7., if 7, < 7,5 and A7TS = 7,5 otherwise, Equation (4.12) can
be rewritten as follows:

M—-1N—-1M—-1N-1

Psr = 27TZ Z Z Z [Re {amnoy} -
m=0 n=0 r=0 s=0 (414)
Sin(ﬁ\/(wm—wr)2+(yn—y8)2)

ﬁ\/(mm—xr)Q—i—(yn—ys)Q

(ATmn,rs - TmnTrs)

after simple manipulations detailed in Appendix A. Moreover, for a square
(N x N) planar arrays, Equation (4.14) simplifies to:
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[y

Psp = 2m E [|Oémn‘27'mn(1_7'mn)]+
m,n=0
N-1

o [Re {amnar,} (4.15)
m,n=0, (T78)7é(m7n)

sin(ﬁ\/(wm—wr)2+(yn—y8)2)
ﬁ\/(mm—mr)Q"‘(yn—?JS)2

(ATmn,T’s - TmnTrs)

4.2.1 PSO-based Power Losses Minimization

The analytic form of Psg |[Eq. (4.14)-(4.15)] enables a computationally-efficient
optimization of the power losses in TMPAs. Towards this end, the problem
unknowns are the static excitation coefficients, A = {ammn; m=0,..., M — 1,
n=0,..,N — 1}, and the set of switch-on times, T = {Tyn; m =0,...., M — 1,
n=0,..,N —1}. Let us assume a fixed set of static excitations, A = A. There-
fore, the use of time-pulses would allow an initial pattern (generated by the static
excitation distribution) to be reconfigured by the insertion of the on-off switches
between the generator and the array elements, avoiding a new feeding network
design that would be necessary if time-modulation were not applied. The mini-
mization of the losses is then recast as the solution of an equivalent optimization

problem mathematically formulated in terms of the following cost function

|SLL-SLL(r,,)|’

U{r,} = ws H|SLL— SLL(1}) G (4.16)

PSR(Ik)
Pror(ty)

+’UJ5R

and aimed at defining the optimal set 7,, at the convergence of an iterative
process, k being the iteration index. Moreover, H(-) is the Heaviside step func-
tion, while wgr and wggr are real and positive weights. The first term in (4.16),
W1, penalizes the mismatch between the sidelobe level generated at h = 0 by
Ty, SLL (1), and the desired one, SLL, whether SLL (1)) > SLL. It acts like
a constraint of the minimization of the power losses forced by the other term,
Since the unknown set 7, is real-valued, the minimization of (4.16) is carried
out by means of a Particle Swarm Optimizer (PSO) [18| whose implementation
is detailed in [27|. The iterative process stops when a maximum number of
iterations K is reached or at the stationariness of the value of U = ¥ {1Zpt},

P = arg {mins:17.,,75 [\If <1,(f))] }, S being the number of particles/agents of

the swarm.
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4.3 Numerical Validation

A set of representative results is here reported to show the potentialities of the
proposed method for the synthesis of TMPA with reduced SRs. The first ex-
ample deals with a planar array having circular contour, while the second one
is concerned with the synthesis of a rectangular arrangement. As regards the
PSO, the control parameters have been set to the values derived in [27], namely
w = 0.4 (inertial weight), C; = 2.0 (cognitive acceleration coefficient), Cy = 2.0
(social acceleration coefficient).

In the first example, the array elements are placed on a regular grid of dimension
N x M = 20 x 20 with inter-elements spacing equal to d, = d, = 0.5\ and the
antenna contour has radius r = b\, A = ¢TI being the free space wavelength.
Thus, the number of radiating array elements amounts to L = 316, while the
other 84 elements laying outside the circular contour are deleted from the grid
(i.e., amy, = 0). Starting from a set of static excitation A obtained through the
sampling of the Taylor distribution (SLL = —30dB, n = 6 |31]|) and affording
a pattern with SLL = —29.25dB [32| and because of the quadrantal symmetry
of the array architecture, a quarter of the total number of elements, U = 79,
has been optimized for the synthesis of a broadside pencil beam pattern. The
cost function (4.16) has been then minimized with a swarm of S = 30 particles.

The value SLL has been set to —40dB and the weight coefficients have been
heuristically tuned to wgr;, = 2 and wgg = 1. Moreover, K = 2000 iterations
have been considered and, at the initialization, the switch-on times have been
randomly-generated with uniform probability within 7.\ € 0, 1], Y(m,n).

The normalized power pattern generated at the central frequency is shown in
Figure 4.1. The level of the secondary lobes is reduced of almost 8 dB (SL Ly =
—37.8dB) compared to that afforded with the static excitations and the power
wasted in SRs amounts to Pgr = 13.2% of the total input power. The PSO-
optimized pulse sequence 7, is reported in Figure 4.2 (a) together with the
distribution of the static excitations [Figure 4.2 (b)].

For completeness, the behavior of the cost function \Ifzpt along the iterative opti-
mization process is shown in Figure 4.3 while the patterns at the first (|h| = 1)
and the second (|h| = 2) harmonics are shown in Figure 4.4(a) and Figure 4.4
(b), respectively.
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Figure 4.1: Circular Aperture (N = M = 20, L = 316, Taylor |31] SLL =
—30dB, n = 6) - Normalized power pattern at the carrier frequency (h = 0).
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Figure 4.2: Circular Aperture (N = M = 20, L = 316, Taylor |31] SLL =
—30dB, n = 6) - Distribution of (a) the optimized switch-on times and (b) the
static element excitations.
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Figure 4.3: Circular Aperture (N = M = 20, L = 316, Taylor |31] SLL =
—30dB, n = 6) - Behavior of the cost function terms during the iterative PSO-
based optimization.
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Figure 4.4: Circular Aperture (N = M = 20, L = 316, Taylor [31] SLL =
—30dB, n = 6) - Normalized power patterns at (a) the first (h = 1) and () the
second (h = 2) harmonics.
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The second test deals with a square array with N x M = 10 x 10 elements
located on the same grid of the previous example. In this case, the static element
excitations are uniformly-distributed: a,,, = 1,V (m,n). The array factor at h =
0 can be expressed either through (4.7) or, assuming the separable distribution
condition for the dynamic excitations, as the product of the array factors of two
linear arrays of M and N elements along the x and y axes, respectively

M—-1 N-1
AF()(H, ¢) _ Z ameejﬁxmsinecosqﬁ Z anTnejﬁynsinGSimb. (417)
m=0 n=0

Moreover, the following relationships hold true

Qim0 Tmo _ QonTon
A Tm = y OnTp =

&00700 &00700
m=0,..M—-1landn=20,...,.N —1.
The number of unknowns in the non-separable case [Eq. (4.14)] is equal to U = 25
(i.e., a quarter of the total number of elements L = 100), while the separable
case |[Eq. (4.15)] considers only U = 10 variables. As regards the optimization, a
swarm of S = 15 particles has been used with a maximum number of iterations
equal to K = 1000. Moreover, the constraint on the sideband level has been set
to SLL = —20dB.
At the end of the PSO-based optimization, the patterns in Figure 4.5 (a) and
Figure 4.5 (b) have been synthesized for the non-separable case (NSD) and
the separable one (SD), respectively. The level of the sidelobes is equal to
SLLysp = —19.6dB and SLLsp = —19.4dB, respectively. Moreover, the
secondary lobes behave differently (Figure 4.5). As expected, higher levels verify
along the orthogonal axis of the array (i.e., the z and y axes) in correspondence
with the separable distribution [Figure 4.5 (b)]. On the contrary, the energy
wasted outside the main lobe is more uniformly-distributed within the visible
range in Figure 4.5 (a).
The optimized time-sequences are shown in Figure 4.6. More in detail, Figure
4.6 (a) shows that 6 among 25 elements are switched-off, while the switch-on
times of the separable distribution [Figure 4.6(b)] satisfy (4.15).
Thanks to the larger number of degrees of freedom (Uysp = 25 vs. Usp = 6),
the power losses in the SRs result lower than 3% (i.e., Psg = 2.8%), while they
rise to Psp = 11.1% for the pattern synthesized with the optimized separable
distribution. The non-negligible reduction of Pgg has also a positive effect on the
S BLs of the harmonic radiations. Figure 4.7 shows the patterns generated by the
pulse sequence in Figures 4.6(a)-4.6(b) at the first (|| = 1) [Figures 4.7(a)-(b)]
and the second (|h| = 2) |Figures 4.7(c)-(d)| harmonic terms. The SBLs of the
patterns generated optimizing Uysp = 25 elements |Figures 4.7(a)-(c)| are much
lower than those obtained when Ugp = 10 |Figures 4.7(b)-(d)|. More specifically,
SBLY,, = —31.8dB vs. SLLY) = —20.2dB and SBL\, = —33.1dB vs.

SLL(S% = —22.9dB. For completeness, the values of the SBLs until h = 20 are
reported in Figure 4.8.

(4.18)
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Figure 4.5: Rectangular Aperture (N = M = 10, L = 100, a, = 1) - Normalized
power patterns at the carrier frequency (h = 0) for (a) the non-separable case
and (b) the separable one.
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Figure 4.6: Rectangular Aperture (N = M = 10, L = 100, a,,, = 1) - Distri-
bution of the optimized switch-on times for (a) the non-separable and (b) the
separable cases.
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Figure 4.7: Rectangular Aperture (N = M = 10, L = 100, ap,, = 1) - Normalized
power patterns at (a)(b) the first (|h| = 1) and (¢)(d) the second (|h| = 2) terms
in correspondence with (a)(c) the NSD case and (b)(d) the SD one.
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Figure 4.8: Rectangular Aperture (N = M = 10, L = 100, o, = 1) - Behavior
of the sideband levels, SBL™, h € [0, 20], of the solutions synthesized in the
NSD and the SD cases.

As far as the iterative minimization is concerned, the convergence has been
yielded in the separable case only after 226 iterations, while the maximum num-
ber of iterations (K = 1000) have been necessary otherwise to get the final
solution because of the wider solution space to be sampled during the optimiza-
tion.

4.4 Discussions

In this chapter, the reduction of the power losses due to SRs has been carried
out by means of an effective PSO-based strategy thanks to the definition of a
closed-form relationship that allows a complete computation of the power losses
of the undesired harmonics. The obtained results have shown the effectiveness
of the proposed method as a realible alternative to other state-of-art techniques
aimed at optimizing the SBLs at first harmonic term. The approach has been
analyzed both for separable and non-separable coefficient distributions in order
to point out that the sideband radiations can be effectively reduced exploiting a
larger number of degree of freedom, but at the cost of an increased computational
burden.
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Chapter 5

Synthesis of Compromise
Sum-Difference Arrays through
Time-Modulation

In this chapter the time-modulation is exploited for the synthesis of monopulse
subarrayed antennas. The solution of the sum-difference compromise problem
is achieved by setting the set of static excitations to an optimal sum set and
synthetizing the “best compromise” difference pattern through a Contiguous
Partition Method (C'PM) based approach. The array elements are aggregated
into sub-arrays controlled by means of RF' switches with optimized “on” time-
durations. The switch-on instants of the pulse sequence are then computed by
means of a Particle Swarm Optimizer to reduce the waste of power caused by
the sideband radiations. A selected set of numerical results is reported in order
to assess the potentialities of the time-modulation to deal with the problem in
hand.
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5.1. INTRODUCTION

5.1 Introduction

Search-and-track radars based on monopulse principles require antenna systems
generating sum and difference patterns. In the scientific literature, several ap-
proaches refer to the frequency domain and consider fixed antenna geometries as
well as the exploitation of the degrees of freedom available in both the frequency
domain and the spatial domain. Analytical procedures aimed at computing in an
“optimal” way the excitation weights of the array elements belong to the former
class. Patterns with either equi-ripple [26][33] or tapered [34][35] sidelobes have
been efficiently obtained. Other strategies for the optimal synthesis of power
patterns with arbitrary sidelobe bounds have been proposed [36][37|[38], as well.
In those approaches optimal patterns in the Dolph-Chebyshev sense have been
determined. They realize an optimal trade-off between the sidelobe level (SLL)
and the main lobe beamwidth (BW) or between the BW and the deepness of
the slope along the boresight direction for a fixed SLL when dealing with sum
patterns or difference patterns, respectively. Although the synthesis of optimal
beams allows one to increase the resolution capability (i.e., a narrow BW and a
deep boresight slope) and to enhance the reliability of the search and track system
(i.e, a low SLL), it also requires the use of two independent feed networks.

In order to limit such a complexity constraint, additional degrees of freedom
have been introduced by considering a partial sharing of the antenna circuitry
between the two beams. In this framework, sub-arraying has been used [39] to
approximate, in the least square sense, both sum and difference patterns starting
from reference excitations. Towards this end, Taylor [40| and Bayliss |41] con-
tinuous distributions have been considered in [42] to optimize difference patterns
by means of a Simulated Annealing (SA) algorithm. Moreover, following the
guidelines originally presented by McNamara in [20], a growing attention has
been also devoted to synthesize optimal compromise sum and difference patterns
using sub-arrayed arrays. In such a case, the optimal sum pattern is usually gen-
erated through an independent beam-forming network, whereas the sub-optimal
difference one is obtained spatially aggregating the elements into sub-arrays and
assigning a suitable weight to each of them. Towards this purpose, analytical pro-
cedures |20][21], stochastic optimization algorithms [43|[44][45]|[46], and hybrid
methods [47||48| have been successfully applied.

Dealing with compromise solutions, this paper presents a new strategy aimed at
exploiting time as an additional degree of freedom for the synthesis of difference
patterns in sub-arrayed array antennas. Thanks to the use of RF switches, the
approach enforces time-modulation to the static element excitations. Originally,
time-modulation has been used for the synthesis of low and ultra-low sidelobe
arrays for radar applications [3] and communication purposes [4]. More recently,
some studies have been carried out to extend the application of time-modulation
to other antenna synthesis problems. For instance, difference patterns have been
synthesized by time-modulating a small number of elements of a two-section array
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generating a sum pattern [30]. However, even though pioneering works concerned
with time-modulation date back to the end of 1950s [1], the potentialities of time-
modulated arrays have been only partially investigated. This has been mainly
due to the presence of undesired sideband radiations (SRs) which unavoidably
affect the performance of time-modulated arrays. In order to minimize the SR
power losses, different approaches based on evolutionary optimization algorithms
have been proposed [8][9][12[|13]. Otherwise, it has been demonstrated in |25]
that the control of the sideband levels at the harmonic frequencies can be yielded
by using suitable switching strategies providing effective pulse sequences.

In this paper, a time-modulation strategy is proposed as a suitable alternative to
standard compromise methods, which neglect the time variable in the design pro-
cess, to synthesize compromise arrays. Starting from a set of static excitations
generating an optimal sum pattern at the carrier frequency, a compromise dif-
ference beam is synthesized through a sub-arraying pattern matching procedure
[21] aimed at optimizing the pulse durations at the input ports of the sub-arrays.
Successively, the SRs at the harmonic frequencies are minimized by performing
a Particle Swarm Optimization (PSO) to set the switch-on instants of the time
sequences.

Accordingly, the outline of the chapter is the following. The compromise problem
is mathematically described in Sect. 5.2 where the pattern matching procedure as
well as the strategy for the sideband level (SBL) minimization are also outlined.
A selected set of numerical experiments are reported and discussed in Sect. 5.3
to point out advantages and limitations of the proposed technique. Finally, some
conclusions are pointed out (Sect. 5.4).

5.2 Mathematical Formulation

Let us consider a two-section linear array [49] of N = 2 x M elements equally-
spaced (d being the inter-element distance) along the z-axis. According to the
guidelines of the sub-arraying technique |20, the static real excitation coefficients
A ={a, =a_,; m=1,.., M} affording the sum pattern AFy::

M
AFy (0; A) =2 Z Qi COS {(m - 1) kdsin@] (5.1)
m=1 2
are computed using optimal techniques (e.g., [26||34]|36]). Moreover, 6 is the
angular direction with respect to the array axis and k = “2 is the wavenumber,
wp and ¢ being the angular carrier frequency and the speed of light, respectively.
To generate the compromise difference patterns, the array elements are grouped
into R = 2 X @ sub-arrays (i.e., @ for each half of the array). At each sub-
array port, an RF' switch is used to modulate the excitations of the elements
assigned to the sub-array (Fig. 5.1). Mathematically, the process of enforcing a
time-modulation to the sub-array signals can be described by defining a set of ()

rectangular functions
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Figure 5.1: Monopulse sub-arrayed antenna - Sketch of the antenna feed network.

1 otom <t <toff
Uy (1) = { 0 ! Otherwiqse =10 (5:2)
to" and tgff being the sub-array switch-on instant and the switch-off instant
of the g¢-th sub-array, respectively. The values of 7" and tgff, qg=1,..0Q,
are additional degrees of freedom to be determined for approximating the de-
sired /reference difference pattern.
Since these rectangular pulses are periodic in time (with period 7},)), each function
U,(t), ¢ = 1,...,Q, is then expanded into its Fourier series and the condition
T, > 1T, = i—’; is assumed to hold true. It is then simple to show [3] that
the arising expression of the array factor is composed by an infinite number of
frequency components centered at wy and separated by hw, = h%—’;, h being the
harmonic index. Let us choose to synthesize the difference pattern at the carrier
frequency (h = 0). Accordingly, it results that

M Q
1
AFQ @, c, T) =2 an Y 76, sme——) kdsme} 5.3
A ( ) mE_l qE_l Ocma 5 (5.3)

where T = {7,; ¢=1,...,Q} is the set of O-th order Fourier coefficients (also
called normalized switch-on times) given by

_ s 1 T —jhwpt
o= Unglpo 2 & UL (e PdtJ
tgff_tgn

= Ta q = 17"'7@7

where 0., , stands for the Kronecker delta function and C = {¢,, € [0, Q] ; m = 1,

h=0 (5.4)
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..., M} is the integer vector describing the sub-array configuration. As an exam-
ple, ¢, = 0 means that the excitation of the m-th element is not time-modulated.
In order to synthesize a compromise difference pattern close to a reference/optimal
one, the definition of the two sets of unknowns C and T in (5.3) is then required.
Towards this end, a suitable state-of-the-art sub-arraying procedure is used fol-
lowing the guidelines of the pattern matching procedure presented in [21]|. More
in detail, the following cost function

1 U ’
vO (€, T) = =3
m=1

(5.5)

3 Q
(S
m q=1

is minimized by means of the Contiguous Partition Method (CPM) |21|, where
B ={8,=—-0-m m=1,.., M} is the set of reference/optimal excitation co-
efficients [33|[35||37| that generate the reference difference pattern to match.
As a matter of fact, a suitable customization of the C'PM can be effectively
used here starting from the key observation that the optimal and independent
(when N RF switches are available) values of the switch-on times affording the
desired pattern at wy can be exactly computed by means of the techniques in
[26]]33][34][35]|36]|37||38]. Hence, the optimal excitation matching problem dealt
with in [21]| can be reformulated here as an optimal pulse matching problem. Ac-
cordingly, once the number of sub-arrays @ is given, the minimization of (5.5)
allows to determine the number of elements within each group and the sub-array
architecture where the cost function (5.5) is representative of a least square prob-
lem measuring the mismatch between the optimal weights %’;, m=1,..., M, and
the corresponding (unknown) sub-array switch-on times 1,, ¢ =1, ..., Q. For the
sake of clarity in the notation, let us indicate with 7¢7M ¢ =1,...,Q, and ¢{M,
m =1, ..., M, the values of the unknowns computed by minimizing (5.5) through
the CPM.

It is worth noting that whether, on one hand, the “best compromise” difference
pattern at wy can be easily obtained by applying the C'PM procedure, on the
other hand, S Rs are still present because of the commutation between the on and
off state of RF switches that controls the time-modulation process. In order to
reduce the interferences due to SRs, the optimization of T in uniform arrays |12]
or the joint optimization of both T and A |8| has been performed in the literature.
However, it should be pointed out [Eq. (5.3)| that a modification of the pulse
durations 707M ¢ = 1,...,Q, causes the radiation of a different compromise
difference pattern and no more the “best compromise” solution obtained through
the CPM. Moreover, the static excitation vector A is a-priori fixed to generate
the optimal sum pattern. Thus, neither T nor A can be now changed to address
the SR minimization problem.

Towards this purpose, let us observe that the h-th Fourier coefficient (h # 0) is

equal to

o—ihwpte’! . o—jhwytg"

27hm

1 [T ,
p
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and the corresponding harmonic pattern turns out to be:

S

AFXL) (0; C,Uy) = er(h“’PerO)tZam-

m=1
Q
~Zuhq50mq sin [(m — %) kdsin@] , b =1,...,00
q=1

(5.7)
where U, = {upg; ¢=1,...,Q} =F (TCPM, TO") depends on the switch-on time
TOPM — {TQCPM; qg=1,.., Q} and the switch-on instants T" = {t;"; qg=1,..., Q},
since 19// = 7CPMT, + 49" [Eq. (5.4)]. Therefore, the set T" can be profitably
optimized to reduce the sideband level (SBL) of the harmonic radiations without
modifying the pattern at the carrier frequency (i.e., A and T"M). A strategy
based on a Particle Swarm Optimizer (PSO) |18]]23] is then applied to minimize
the following cost function

H

h () ?
U (T | peporn = Z N [SBLT’ef — SBLM™ (T"”)] ‘ASBL (T°)
h=1
(5.8)
where A(Sth (T") = SBLTEngSgQ;h)(Ton) and N(-) is the Heaviside function devoted

to quantify the distance between the actual harmonic sideband levels, SBL" =
SBL (wo + hwy)', h =1, ..., H and the user-defined threshold SBL"/.

5.3 Numerical Validation

In order to discuss the potentialities and current limitations of the proposed
approach, the results from two representative experiments are analyzed. More
specifically, the same array geometry is considered in both cases, but different
static (sum) excitations as well as different numbers of sub-arrays have been used.
Since this is the first (to the best of the authors’ knowledge) application of the
time-modulation to the synthesis of monopulse sub-arrayed antenna where the
sum and the difference patterns are simultaneously generated, no comparisons
with other methods are possible. However, since the independent generation of
difference patterns by modulating a limited number of static excitations that af-
ford a Villeneuve sum pattern has been described in [30], similar scenarios have
been considered as reference geometries. Accordingly, let us refer to a N = 30
element array with inter-element spacing d = 0.7X [30|. In the first experiment
(Experiment 1), the set of static sum excitations A has been chosen to synthe-
size a Villeneuve sum pattern with SLL = —20dB, = = 3 and v = 0 [35]. To
generate the compromise difference pattern, R = 8 sub-arrays have been used

1SBLM 2 maxy {AFXI) (9)}

54



CHAPTER 5. SYNTHESIS OF COMPROMISE SUM-DIFFERENCE
ARRAYS THROUGH TIME-MODULATION

C={cnym=1,...,M}
41 112340000043221
21 112220000000000

M=15,Q
M =15, Q

Table 5.1: Sub-array configurations for the compromise difference patterns when
@ =4and Q = 2.

as in [30] (Tab. 4 - Case B). The CPM has been run by setting the refer-
ence difference excitations to those of a Modified Zolotarev pattern [35] with
SLL = —30dB and m = 5. The “best compromise” solution, obtained after 16
iterations in 1.7 x 107° [sec] (on a 3GHz PC with 1 GB of RAM), is shown in
Fig. 5.2(a) together with the reference difference pattern. The corresponding el-
ement switch-on times, T®"™ and the sub-array configuration C¢"™ computed
through the minimization of (5.8) are shown in Figure 5.2 (b) and reported in
Table 5.1, respectively. For completeness, the plot of the reference excitations is
displayed in Figure 5.2 (b) (dotted line). From Figure 5.2 (b), it can be seen that
there is a good matching between the main lobes of the reference and compromise
difference patterns. As a matter of fact, the —3dB beamwidth (BW) is equal
to BWre/ = 2.57°[deg] and BWPM = 2.58° [deg], respectively. Therefore, the
resolution capability of the monopulse tracking systems (i.e., the deepness of the
main lobe along the boresight direction [50]) is kept almost unaltered. Secondly,
1

although the envelope of the secondary lobes is no more decaying as —— as for

the reference pattern, the SLL of the compromise pattern is close to the optimal
one (SLLYPM = —26.9dB vs. SLL™ = —30.0dB) with still a satisfactory
ability to suppress interferences and clutters [19].

As far as the CPM solution is concerned, Npjp = 20 elements over N = 30
are time-modulated, while the others are kept time-constant and set to the
corresponding static sum excitations (Table 5.1). Concerning SRs, Figure 5.3
shows the patterns radiated at |h| = 1,2. As it can be observed, the high-
est lobes principally lie in the angular region close to that of the main differ-
ence lobes and the values of the SBLs turn out to be SBL&)DM = —14.9dB
and SBLgJ)DM = —22.4dB, respectively. In order to minimize the SBL, the
PSO strategy has been successively applied by setting H = 1, as in |30] ?, and
SBL™f = —20dB. Moreover, the following PSO setup has been chosen accord-
ing to the guidelines in [51]: S = 10 particles, w = 0.4 (inertial weight), and
Cy = Cy = 2 (cognitive/ social acceleration coefficient).

At the convergence, after 500 iterations and 63.5 [sec|, the optimized values of
the switch-on instants 2", ¢ = 1,...,@Q, are those given in Table 5.2 (Q = 4).
Moreover, the plot of the pulse sequence is shown in Figure 5.4(a), while the
corresponding patterns are displayed in Figure 5.4 (b). It is worth noticing that,

20nly the first harmonic mode has been optimized since the power loss reduces when the
order of the harmonic mode increases.
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Figure 5.2: Ezperiment 1 (QQ = 4) - Plots of (a) the reference (Modified Zolotarev
[35], SLL = —30dB, n = 5) and C'PM-synthesized power patterns at the carrier
frequency wy (h = 0) and (b) the corresponding switch-on times.
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Normalized Power Pattern [dB]
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Figure 5.3: FEzperiment 1 (Q = 4) - Normalized power patterns generated at wy
(h=0) and |h| = 1,2 by means of the CPM.

o [sec]
q 1 [ 2 [ 3] 14
Q=41000)04910.11]0.19
Q=208 018| — —

Table 5.2: PSO-optimized switch-on instants for the compromise difference pat-
terns when ) =4 and Q) = 2.
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Figure 5.4: Experiment 1 (QQ = 4) - PSO-optimization: (a) switch-on times and
(b) power patterns at |h| = 1, 2.
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Figure 5.5: Experiment 1 () = 4) - (a) Normalized difference power patterns at
wo (h = 0) synthesized through the SA [30] and the CPM — PSO. (b) Polar
plots of the corresponding sideband radiations at |h| = 1, 2.

without additional hardware, but simply adjusting the on-off sequence of the RF
switches, the SBLS;DM value is lowered of more than 4 dB (i.e., SBL(C};DM_PSO =

~19.2dBvs. SBLY),,, = —14.9dB). It is worth noting that neglecting the small
"on-time interval” at the beginning of the period 7, for elements 5, 11, 20 and
26 |Figure 5.4(a)| the features of both the main pattern at central frequency and
the harmonic patterns slightly modify (e.g., the SLL and the SBL® increase of
0.3dB and 0.5dB, respectively). This fact would avoid these small intervals to
be the bottleneck of the time-modulation system, allowing the RF' switches to
have less restrictions about their switch-on-to-switch-off speed.

For completeness, although the comparison is not completely fair since different
synthesis problem are at hand, the solutions obtained with the C PM — PSO and
those shown in |30 are then analyzed by comparing the corresponding patterns
at both the carrier frequency |Figure 5.5 (a)| and when |h| = 1, 2 |Figure 5.5(b)].
The power losses due to SRs, quantified through the close form relationship in
[5], amounts to Psg = 21.3% of the total radiated power in correspondence with
the CPM — PSO. Otherwise ([30] - Tab. 4, Case B), the wasted power is only
Pg# = 3% and the SBL is much smaller |Figure 5.5(b)| since only N2z, = 8
elements are time-modulated (instead of N&JM = 20). On the other hand, the
efficiency of the PSO—C P M approach in minimizing the SLL of the compromise
difference patterns (h = 0) is non-negligible |Figure 5.5(b)| (SLL*4 = —14.9dB
vs. SLLYPM = —26.9dB).

In the second experiment (Ezperiment 2), the number of control elements is
reduced by considering R = 4 RF switches (|30] - Tab. 4, Case C). The sum
pattern is a Villeneuve pattern with SLL = —20dB, n = 3, and v = 1 [35|.
Moreover, the reference difference set B has been selected to generate a Modified
Zolotarev difference pattern |35] with SLL = —20dB and 7o = 4.
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Figure 5.6: Ezperiment 2 (QQ = 2) - Plots of (a) the reference (Modified Zolotarev
[35], SLL = —20dB, n = 5) and C'PM-synthesized power patterns at the carrier
frequency wy (h = 0).

Figure 5.6 shows the approximated pattern synthesized at the convergence of the
C'PM-based matching procedure by applying the pulse sequence T¢M in Figure
5.7. The corresponding sub-array configuration is given in Table 5.1, as well. As
for the first experiment, the secondary lobes do not decrease when 6 grows [Figure
5.6], but the SLL value of the compromise pattern turns out to be lower than that
of the Zolotarev one (SLLPM = —23.3dB vs. SLL™ = —21.0dB). Moreover,
the same beamwidth has been achieved (BW™/ = 2.36° [deg] and BW M =
2.37° [deg]). Concerning the computational burden, 5 CPM iterations and ~
1079 [sec| are enough to find the final solution.

Successively, the SBLM has been minimized by optimizing T°" with a PSO

swarm of S = 5 particles. For comparison purposes, Figure 5.8 shows the
patterns at |h| = 0, 1, 2 synthesized with the CPM and after the PSO op-
timization. Despite the reduced number of sub-arrays (@) = 2), the value

of SBLS;DM = —17.3dB has been reduced to SBLSJ)DM_PSO = —19.3dB in
7.25 [sec| after 100 iterations by defining the values of the final switch-on in-
stants reported in Table 5.2.

For completeness, the CPM — PSO patterns and those in |30 with four switches
are shown in Figure 5.9(a) (h = 0) and Figure 5.9(b) (|h| =1, 2). As regards to
the number of time-modulated elements, it results that N$IM = 10 and N3, =
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Figure 5.7: FEzperiment 2 (QQ = 2) - Switch-on times generating the pattern
reported in Figure 5.6.
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Figure 5.8: Ezperiment 2 () = 2) - Normalized power patterns at wy (h = 0) and
|h| = 1,2 synthesized by means of the CPM and the CPM — PSO approach.
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5.4. DISCUSSIONS
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Figure 5.9: Ezperiment 2 (Q = 2) - (a) Normalized difference power patterns at
wo (h = 0) synthesized through the SA [30] and the CPM — PSO. (b) Polar
plots of the corresponding sideband radiations at |h| = 1, 2.

4. Consequently, PSFM = 16.9% and P55 = 2.1%, while SLLYPM = —23.3dB
and SLL5* = —15.2dB.

5.4 Discussions

In this chapter the potentialities of the time-modulation when dealing with the
synthesis of monopulse sub-arrayed antennas have been investigated. Starting
from a set of static excitations generating an optimal sum pattern, the signals at
the sub-arrayed feed network have been time-modulated to generate a compro-
mise difference pattern. Both the sub-array configuration and the duration of
the time-pulse at each sub-array have been optimized solving a pattern matching
problem by means of the CPM. Successively, a strategy based on the Particle
Swarm Optimizer has been performed to minimize the SBL of the sideband
radiations.

The obtained numerical results seem to indicate that the proposed approach
is a interesting alternative for the synthesis of compromise sum and difference
patterns. As a matter of fact, the main advantages of the proposed approach re-
gard the reduced complexity of the antenna system and the possibility to change
the shape of the beam pattern properly modifying the pulse sequence at the
sub-array port.
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Chapter 6

Conclusions and Future
Developments

In this last chapter, some conclusions are drawn and further advances are envis-
aged in order to address the possible developments of the proposed technique.
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In this thesis the synthesis of time-modulated antenna arrays has been inves-
tigated. In detail, the attention has been focused (i) on the review and the
formulation of the equations describing the antenna array behavior when the
time is exploited as additional degree of freedom into the synthesis problem, (i7)
on the reduction of the power wasted due to the undesired harmonics and (#ii) on
the application of the time-modulation in the synthesis of compromise difference
beams in monopulse arrays.

Thanks to an accurate analysis of the problem, the parameters involved in
the sideband radiations are properly identified and such a knowledge is fully
exploited to develop suitable strategies based on the global optimizer PSO aimed
to minimize the power wasted by the undesired harmonics.

A set of representative examples concerned with the reduction of the side-
band radiations S Rs and the computation of the pulse sequences modulating the
static excitations of the array have been reported in order to assess the effective-
ness and flexibility of the proposed strategy. Comparison with other state-of-art
techniques have been shown and discussed, as well.

Concerning the methodological novelties of this work, the main contributions
consider the following issues:

e a full investigation of the behavior of time-modulated linear arrays during
the pulse modulation;

e a proper identification of the parameters involved in the generation of the
sideband radiations;

e the development of an innovative strategy based on the PSO that allows
the minimization of the SBLs in time-modulated linear arrays, optimizing
the switch-on instants;

e the improvement of the algorithm minimizing the SRs, by means of the
full expoitation of a closed-form relationship computing the total power
wasted by the undesired harmonics and of the stochastic optimizer PSO,;

e the derivation of an explicit expression that computes the wasted power in
time-modulated planar arrays and the development of an effective approach
aimed to reduce the SRs;

e the extension of the use of time to modulated the array excitations to syn-
thetize a “best-compromise” difference pattern in sub-arrayed monopulse
antennas.

As far as the future developments are concerned, there are many scenarios in
which the potentialities of time-modulation in the antenna synthesis problems
have been partially addressed.

As a matter of fact, the time-modulation seems to be a promising tool to
generate multiple beams on the same antenna aperture. In such a framework, the
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CHAPTER 6. CONCLUSIONS AND FUTURE DEVELOPMENTS

usually undesired sideband radiations arising from the periodic time-modulation
of the static excitations of the array colud be profitably exploited to design an
antenna system providing simultaneous multiple patterns

Moreover, since the modification of the shape of the radiated pattern in a
time-modulated array can be performed easily, those devices can be properly
used in noisy environments. In detail, the pulse sequence controlling the static
element excitations can be reconfigured to maximize the signal-to-interference-
plus-noise ratio at the receiver.

Moreover, the reduction of the power losses in linear time-modulated monopulse
antenna can be enhanced using the explicit form describing the power radiated
by the undesired harmonics. Finally, the planar geometry in time-modulated
monopulse antenna should be taken into account.
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Appendix A

Power of Sideband Radiation

This appendix is aimed at showing more details about the derivation of the
explicit form that computes the power losses related to the sideband radiations,
reported in Equation 4.14. For sake of ('larity let us report here equation 4.12 :

2w
Pon=y [ [ X Im(e.0)fsinoasas, (A1)
0 h=—00,hz0
equation (4.9):
M—-1N-1
o G eI cos oty sind) (A.2)
m=0 n=0
and equation (4.13) [5]:
Z GmnhGrsh - AT;fn — TmnTrs (AS)
h=—00,h#0

Substituing (A.2) and (A.3) in (A.1), after simple algebra Pspg turns out to be:

M—-IN—-1M—-1N-1

% Z Z Z ZR(J {amnars} (AT, — TonTrs) (A.4)

m=0n=0 r=0 s=0
f027r f()ﬂ ejﬁ sin @[(zm —xr) cos ¢+ (yn—ys ) sin @] sin 9d9d¢

Then, let us consider the following integral I:

2T ™
J = / / eI Bsinb[(zm—wr) cos g+(yn—ys) sing] o1y 0dhde (A.5)
For sake of brevity, let us rewrite (A.5) as:
I= / Iy sin 6d6 (A.6)
0

where:
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Ig _ / ej(acos¢+bsin¢)d¢ (A?)
being a = (sinf (z,, — x,) and b = Fsinf (y, — ys). By considering the Euler’s

relationships:
. (ej¢+efj¢) (ejz»_efm)
acosp+bsing = a 5 +b 5 (A.8)

Va? + Psin [ + arctan (§)]

and substituing (A.8) in (A.7) Iy turns out to be:

IG _ / ej\/msin[¢+arctan(%)]d¢ (A9)

s

whose the closed-form solution in terms of Bessel functions is [52]:

Iy = 21, (m) (A.10)

therefore, Equation (A.5) reduces to:

I= 27?/ Jo (\/a2 + bz) sin 6d6 (A.11)
0

or in its explicit form [53]:

sin (ﬁ\/(xm —2,)" + (Yo — ys)2)
O (@ — 2 + (g — 0.)°
( )

then, substituing (A.12) in (A.4), the closed-form relationship describing the
total power radiated by the sideband radiations is:

I =Ar (A.12)

M—-1N—-1M-1M-1
Psp = 27‘(‘2 Z Z Z [Re {amnal,}-
m=0 n=0 r=0 s=0 (A]_?))
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