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If we had deliberately built, or were consciously shaping, the structure of human action, we

would merely have to ask individuals why they had interacted with any particular structure.

Whereas, in fact, specialized students, even after generations of effort, find it exceedingly

difficult to explain such matters, and cannot agree on what are the causes or what will be the

effects of particular events. The curious task of economics is to demonstrate to men how little

they really know about what they imagine they can design.

(Hayek, 1988, pp.76-77)
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Abstract

Repeated games of cooperation share the same equilibrium selection problem as coordination

games. In both settings, providing information might help players coordinating on efficient

equilibria. Which equilibrium is most likely to be selected strictly depends on the type and the

amount of information provided. It is then natural to ask under which conditions providing

more information increases efficiency.

The present thesis makes a step in answering this question. It analyzes how the presence of

information regarding either the opponent, or the options that are available for choice, might

change players’ behavior. It focuses on two settings where increasing information might be

detrimental for players: a repeated Prisoner’s dilemma, and a coordination game.

The first chapter develops a theoretical model in which players have limited information about

the opponents’ previous moves. When applied to the Trust Game, we show that by increasing

the amount of information disclosed to the first player, more exploitative equilibria appear, in

which that player obtains a smaller payoff. These equilibria disappear in settings in which the

information the first player obtains about the second player’s past behavior is limited. This is

a case in which providing a player more information may reduce his payoff in equilibrium.

In the second chapter, we test this latter result with a laboratory experiment, and we show that

subjects do understand that different behavior might be optimal in different settings. Subjects

tend to use a fully cooperative strategy more often when only minimal information is available.

Moreover, subjects trying to exploit the opponent succeeded in gaining more than the mutual

cooperation payoff only when the information provided to the opponent is sufficiently rich, that

is when our model predicts that exploitative outcomes are equilibria.

The last chapter considers the effects of introducing information about the options available for

choice in a coordination game. It reports the results from a simulated crowdfunding experiment.

We show that the presence of non payoff-relevant information is able to make a project focal.

However, when returns from coordination are uncertain, the presence of information is instead

detrimental for coordination.
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Introduction

In an information-rich world, the wealth of information means a dearth of something else: a

scarcity of whatever it is that information consumes. What information consumes is rather

obvious: it consumes the attention of its recipients. Hence a wealth of information creates a

poverty of attention and a need to allocate that attention efficiently among the overabundance

of information sources that might consume it.

(Simon, 1971, pp.40)

The presence of information can dramatically change the outcome of a strategic interaction.

In settings characterized by multiple equilibria, introducing information might help solving

the equilibrium selection problem. In other settings, characterized by inefficient outcomes,

introducing information might allow players to reach more efficient outcomes, but, at the same

time, it might create an equilibrium selection problem.

Which equilibrium will be selected crucially depends on the type and the amount of information

provided. In order for information to be beneficial, it is necessary that different individuals are

able to interpret it in the same way. This process might be difficult in situations characterized

by abundance of information, which can be harder to interpret (Simon, 1971). Indeed, there

are cases in which the presence of little information can be beneficial, while the presence of too

much information can be detrimental.

This thesis tries to explore both possibilities. The main question it tries to answer is to what

extent introducing information is beneficial for players, in the sense of allowing players to reach

outcomes that are more favorable to them.

1



The first part of the thesis considers settings characterized by inefficient equilibria, where

information is on players’ past behavior. Specifically, it deals with the Prisoner’s Dilemma (PD)

and the Trust Game (TG), where the only equilibrium is mutual defection if no information

about past behavior is available. Introducing information allow players to reach more efficient

equilibria, but it also creates an equilibrium selection problem.

The second part of the thesis considers settings characterized by multiple equilibria, where

there can be public information exogenously given to the players. Specifically, it deals with a

multiplayer coordination game, where different pieces of information are given over the differ-

ent available options. Introducing information might help players in solving the equilibrium

selection problem, but only if it is able to make one option focal for the majority of them.

The main finding of this thesis is that, perhaps counterintuitively, increasing the amount of

information available doesn’t imply a higher rate of cooperation or coordination. In both cases,

there are conditions under which players could be better off by knowing less, meaning that they

are able to reach a higher payoff when the disclosed information is limited.

Chapter One deals with repeated interactions between players with limited memory.

The first part of the chapter focuses on the PD, with the aim of describing equilibria when

players are restricted to strategies that only condition on the previous outcome (so called

memory-one strategies). Specifically, it considers whether equilibria are possible where one

player is able to gain more than the mutual cooperation payoff, that is an equilibrium that

is not Pareto-dominated by mutual cooperation (we call it an extortionate equilibrium). This

question is interesting because, if the answer is negative, then the best that players can do is

mutual cooperation. Indeed, this part of the thesis shows that, when players are restricted to

strategies that can only condition on what happened in the previous period, the only efficient

equilibrium is mutual cooperation. Moreover, in any equilibrium, players’ payoffs are bounded

from above by the mutual cooperation payoff. Thus, no extortionate equilibria exist if players

are restricted to memory one strategies. Comparing this result with the case where players can

use strategies that condition on more than one period, the implication is that, by restricting

player’s memory (thus reducing the information available) it is possible to insure players against

the risk of falling into equilibria where the opponent extorts a higher payoff.

The second part of the chapter applies the previous findings to a TG played between a long-run

second player against a sequence of short-run first players. In those situations we say that the

2



second player is able to build a reputation, which is represented by the information available

to the first players regarding his behavior in previous interactions. The amount of information

given to first players will then determine the type of reputation that the second player can build.

This part of the thesis shows that, when the information is only relative the last period, the

best reputation the second player can build is fully cooperative. When instead the information

is relative to more than one period, extortionate equilibria exist, and the best reputation would

imply a less-then fully cooperative strategy for the long-run player.

This result is interesting because it shows that, in situations where information is about a

player’s previous behavior, having little information could be beneficial. If the model presented

in Chapter One is correct, people should be more willing to fully cooperate when only minimal

information is available, compared to settings in which richer information is considered.

This prediction is tested with a laboratory experiment in Chapter Two. The experiment involves

a repeated TG, and is designed to test whether different amount of information available to the

first player would trigger different strategies choices by the second player. Overall, the results

from the experiment are in line with the model’s predictions. On the one hand, subjects in

the experiment do try to form a fully cooperative reputation more often when less information

is available. On the other hand, subjects who tried to build a less-than-fully cooperative

reputation succeeded in gaining more than the mutual cooperation payoff only when more

information was available. Those results suggest that subjects in the experiment are able to

recognize the different settings implied by the different amount of information. They are ready

to cooperate more when mutual cooperation is the only efficient equilibrium, but they are also

ready to extort more when also extortionate outcomes can be sustained in equilibrium.

The results from Chapter Two may imply that the low level of cooperation observed in the

experimental literature on repeated games can be due to subjects trying to coordinate on

different equilibria. When the amount of available information on previous behavior is large,

many new equilibria appear, and a repeated PD might resemble a coordination game.

In coordination games, introducing public information exogenously given may help players to

solve the equilibrium selection problem. The large literature on salience demonstrates that it is

easy to foresee players’ decisions by means of focal points. While this is true in simple settings

in which it is relatively easy to understand which option is focal, it is still an open question

whether the presence of richer information would still be able to achieve the same result.

3



To explore this possibility, Chapter Three considers a coordination experiment designed to

simulate a crowdfunding platform, where different levels of information are disclosed to the

players. In crowdfunding, potential investors have access only to the information that the

designers of the projects decide to disclose, and it is necessary that enough people invest on

the same project in order to finance it. Information about previous behavior is then extremely

valuable, and there might be an incentive to wait and see what the others will do, in order to

invest in a project only when it has a higher chance to be fully funded. If everybody waits for the

others, nobody will ever chose anything, not solving the coordination problem. The presence

of exogenous information in this case may help players to focus on the same project. Indeed,

the results from the experiment suggest that information did play a role in driving subjects’

decisions. Non payoff-relevant information is effective in making a project focal, and subjects

who use the information available are more likely to choose the winning project. However,

when returns from the projects are uncertain, the beneficial effect of information disappears, as

subjects could reach a lower level of coordination compared to the case where no information

was provided. Those results imply that, in the presence of uncertainty, subjects might be better

off by not having additional information.

This thesis tries to explore the relation between the availability of information and equilibrium

selection. It considers two specific cases, cooperative and coordination games, where more

information could be thought to increase efficiency. However, the present results show that

there are conditions under which the opposite is true. In those cases, increasing the amount

of information disclosed to players has a deleterious effect, in the sense that those players

might have been better off by knowing less. This is relevant when considering the design of

mechanisms able to foster cooperation or coordination, as it suggests that explicit incentives

may be needed, and extreme care should be put when deciding which information to disclose.

4



Chapter 1

You don’t fool me: Memory one

strategies in repeated games

1.1 Introduction

The theory of repeated games has been widely used to explain the emergence of cooperation in

games like the Prisoner’s Dilemma (PD), in which all Nash equilibria (NE) are Pareto inefficient

(see Nowak (2006) for a comprehensive review of this literature). When a game is repeated

over time, a large number of new equilibria appear. A long known results in game theory,

the so called Folk Theorem, states that when a game is repeated, and players are sufficiently

patient, all outcomes that Pareto dominate inefficient NE of the stage game can be sustained

as subgame perfect NE1 (SPNE). This result is reassuring, as it implies that, with a sufficiently

long time horizon, players may sustain efficient mutual cooperation also in games, like the PD,

in which all one shot equilibria are inefficient. However, the Folk Theorem also implies that,

beside cooperative equilibria, there are many others that are less appealing. In some of them,

cooperation is never observed. For example, no matter how patient players may be, mutual

defection is always an equilibrium. In others, one player cooperates more than the other.

For example, there may be equilibria in which one player alternates between cooperation and

defection, while the other player cooperates continuously. In these equilibria we say that one

of the players ”extorts” a larger payoff from the other.

1The Folk theorem is in fact more general than this. See Mailath and Samuelson (2006) for a textbook
presentation of the results in this literature.
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Given the wealth of equilibria created by repetition, it is not surprising that a large literature

formed on the equilibrium selection problem. For a long time, attention has been focused

on the strategies that are able to sustain mutual cooperation (Imhof et al., 2007). The main

concern was the type of punishment which is more effective in maintaining cooperation, and the

relative stability of different (cooperative and non-cooperative) equilibria. Scholars investigated

whether cooperation is easier to sustain by popular strategies like Tit-for-Tat, Pavlov, or Grim,

and whether it is easier to move from cooperative to non-cooperative equilibria or vice versa.

More recently, in a seminal paper, Press and Dyson (2012) focused on the second class of

equilibria, those in which one player cooperates less often than the other, and hence enjoys a

larger payoff. They consider a repeated PD where players are constrained to use memory-one

strategies, i.e. strategies that only condition on the last outcome of the game, and they singled

out a class of strategies, which they dub extortionate. A player using an extortionate strategy

is able to ensure that his payoff is never below the one of his opponent. In fact, by playing

against an extortionate strategy, a player cannot do better than always cooperate, allowing

the opponent to reap a larger part of the benefits of cooperation, and to enjoy a payoff that

is larger than the mutual cooperation payoff. The relevance of extortionate strategies for the

emergence of cooperation in repeated games is at the moment hotly debated (see, for example,

Hilbe, Nowak, and Traulsen (2013) and Stewart and Plotkin (2012)).

We contribute to this literature in two ways. First, we characterize the full set of equilib-

rium strategies and payoffs when players are restricted to memory-one strategies, investigating

whether extortionate strategies may be part of any NE. This is important in order to clarify the

role that this type of strategies may have in the emergence of cooperation. If no extortionate

strategy is part of a NE, then no such strategy can pass more stringent tests like evolutionarily

stability. Our main result shows that, as long as players are constrained to use memory-one

strategies, in any NE no player can get more than the mutual cooperation payoff. In other

words, extortion in repeated games is only possible when at least one player conditions his

current choice on more than just the last outcome of the game. The intuition behind this result

is straightforward. To get more than the mutual cooperation payoff, a player should randomize

between cooperation and defection. However, when the opponent only conditions to the last

outcome of the game, no deviation from a mixed strategy can be observed and hence punished,

and strategies that cannot punish deviations cannot be NE of the repeated game, unless they

are a NE of the stage game.
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As we shall see in a while (see below Section 1.2), it is a common observation that extortionate

strategies are unlikely to succeed in symmetric contexts like, for example, a PD played by

individuals belonging to a single population. In a symmetric context, if each player tries to get

more than his opponent, the only possible outcome can be mutual defection. Extortion may

have a better chance to play a role in asymmetric situations in which players have different

strategic opportunities, or, in evolutionary contexts, when the game is played by two different

populations. Our second contribution points in this direction. We study extortion in the Trust

Game (TG), which is an asymmetric version of the PD in which one player chooses first whether

to cooperate or not and, if he chooses to cooperate, his opponent decides whether to reciprocate

or not. We extend the analysis of memory-one strategies to the TG and conclude that, just

like in a PD, in no NE one player can get more than her mutual cooperation payoff.

Motivated by this result, we further extend the analysis to the case in which one player (the

trustor in the TG) can condition his choice on the frequency with which the opponent cooperated

in the previous interactions. We do a first step in this direction by studying equilibria in the

repeated TG with observable mixtures. That is, the first player observes the probability with

which the second player has chosen to cooperate in the past. We prove that with observable

mixtures, there is a continuum of extortionate equilibria in which the second player gets more

than what he could get by mutual cooperation. Finally, we explore the analogies of our results

with the classical literature opened by Fudenberg and Levine (1989), in which a single long-run

player interacts with a population of short-run players.

This chapter is organized as follows. Section 1.2 revises the existing literature. Section 1.3

presents the main methods used to study memory-one strategies. Section 1.4 characterizes

equilibrium strategies and payoffs in the Prisoner’s Dilemma. Section 1.5 does the same for the

Trust Game. Section 1.6 considers the case of a long-run player facing a population of short-run

players, and Section 1.7 concludes.

1.2 Literature Review

Definitions and notation Before moving to the review of the literature, we need some

definitions. Consider a standard repeated PD where, in each round, players have to choose

whether to Cooperate (C) or Defect (D). The stage game payoffs are shown in Table 1.1: R is

the mutual cooperation payoff, P is the mutual defection payoff, T is the temptation payoff,
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and S is the sucker payoff, with T ą R ą P ą S and 2R ą S ` T . A PD has equal gains from

switching if T ´ R “ P ´ S. In each round, there is a probability δ ď 1 of going to the next

round. Notice that δ is sometimes interpreted as the discount factor of future players’ payoffs.

C D

C R,R S, T

D T, S P, P

Table 1.1: Stage game payoffs in the PD

The history of the game up to period t is the sequence of action profiles chosen by the two

players until period t´1, and a strategy for the repeated game has to specify an action for each

possible history. A strategy is memory-one if it prescribes the same behavior after any history

that has the same outcome in the previous period. In other words, a memory-one strategy only

conditions on what happened in the previous period. A general memory-one strategy p is thus

fully characterized by 5 probabilities:

p “ pp0, pCC , pCD, pDC , pDDq

where p0 is the probability to cooperate in the first round (i.e. when no history is available), and

pw is the probability to cooperate after each of the four possible outcomes w, that is after each

of the four possible action profiles that can be chosen in each period. A memory-one strategy

is reactive if it only conditions on what the opponent did in the previous round. Formally

pCC “ pDC “ pC and pDD “ pCD “ pD. Finally, a reactive strategy is unconditional if it

specifies the same probability to cooperate after any possible history: pC “ pD “ p0.

1.2.1 The repeated Prisoner’s Dilemma: mutual cooperation

One of the first systematic attempts to find the “best” strategy for the repeated PD was the

famous tournament organized by Axelrod in the late 70s (see Axelrod (1980a) and Axelrod

(1980b)). He considered a standard repeated PD, and asked participants to submit strategies,

in the form of computer programs, to play it2. A strategy defined a move for the first round, and

a move for each subsequent round, and could condition on all the previous history of the game.

From the results of the tournaments, Axelrod and Hamilton (1981) identified 3 properties that

2In the first tournament, there were 14 different strategies submitted by game theory experts, while in
the second there were 62 strategies submitted by experts from various disciplines and non-experts computers
hobbyists.
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best performing strategies had in common: they were never the first to defect (niceness), they

were ready to respond if the opponent defected (provocability), but they were also ready to go

back and cooperate after the punishment (forgiveness).

Even if some of the submitted strategies were rather complicated, the winning strategy of

both tournaments was the rather simple Tit for Tat (TfT). TfT starts with cooperation and

then plays the same action played by the opponent in the previous round. TfT is thus nice,

provocable and forgiving. Indeed, TfT is able both to get the mutual cooperation payoff when

matched with another nice strategy, and to avoid being exploited by more defecting strategies.

Moreover, TfT is a symmetric NE, and, as Axelrod (1984) showed, it is collectively stable,

that is, no strategy have a selective advantage over it (in a more familiar terminology, TfT is

neutrally stable). Nonetheless, TfT has some flaws. First, it is a SPNE only in games with

equal gain from switching, and only for certain values of the discount factor (Kalai et al., 1988).

Second, in the presence of noise, it might enter into cycles of pC,Dq and pD,Cq, implying that

it gets the same payoff of a strategy that plays randomly (Selten and Hammerstein, 1984).

Moreover, already Axelrod (1980b) noticed that the relative success of TfT in the tournament

was largely determined by the particular composition of the competing population.

When considering the full strategy set, although TfT is “collectively” stable as in Axelrod’s

definition, it is not evolutionarily stable. Strategies like All Cooperation (AllC), (as well as any

other nice strategy, that is a strategy that starts by cooperating and keeps cooperating with

probability one after mutual cooperation), are able to neutrally invade a population of TfT

players. Selten and Hammerstein (1984) proved that in the repeated PD there are no (pure)

strategies that are evolutionarily stable. As such, TfT is only one of the many neutrally stable

strategies of the iterated PD (Bendor and Swistak, 1995).

More recently, Garcia and Van Veelen (2016) proposed an analysis of the repeated PD using a

stability criterion which is intermediate between neutral stability and evolutionarily stability.

Van Veelen (2012) calls a strategy s Resistant Against Indirect Invasion (RAII) if there is no

chain of neutral mutants through which s can be invaded by another strategy that does have a

selective advantage. TfT fails the RAII criterion, as it can be neutrally invaded by AllC, which

in turn can be invaded by AllD. Garcia and Van Veelen (2016) prove that no strategy passes

the RAII test in a large class of games, including the PD.

A different approach to select among equilibria is to relax some of the assumptions of the Folk

Theorem, thus restricting players’ strategy sets. The Folk theorem assumes that players have
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perfect recall and can condition their choices over the entire history of the game. Notice that

this implicitly assumes that players have an implausible amount of memory to keep track of all

possible contingencies of the game. This assumption is particularly questionable in evolutionary

settings in which the emphasis is on bounded rationality and learning. A natural question is

then whether the Folk theorem continues to hold when restrictions are put on player’s memory

(Compte and Postlewaite, 2015; Piccione, 2002).

A first step in this direction is to assume that memory is bounded to the immediate previous

round, i.e. that strategies are memory-one. Building on the results of Axelrod’s tournament,

Nowak and Sigmund (1988) and Nowak and Sigmund (1989) extensively study how the prob-

abilities that define stochastic reactive strategies change under the replicator dynamics. They

prove that, in the presence of noise, the dynamics leads either towards AllD, or towards a state

where cooperation is sustained by a strategy that is more forgiving than TfT.

Nowak (1990), found conditions for reactive strategies to be NE in a repeated PD with no

discounting. He noticed that, with reactive strategies and no discounting, “in each round the

cooperation of the first and the second player is independent” (p.95). This greatly simplifies

the analysis, and allows to prove that also in this setting there are no evolutionarily stable

strategies, although there are several, cooperative and non-cooperative Nash equilibria. Nowak

and Sigmund (1990) extended this analysis to the case of discounting. Discounting complicates

the matter and leads the authors to characterize Nash equilibria only for a restricted set of

strategies and for the subclass of PD with equal gains from switching.

Nowak and Sigmund (1995), further extended the analysis to general memory-one strategies,

considering also an alternating version of the iterated PD. Using simulations, they show that

payoffs are usually close to either the mutual cooperation or the mutual defection payoff. More-

over, if the mutual cooperation payoff is sufficiently large, the most frequent strategy is Pavlov.

More recently, also thanks to the advance of computing and simulations programs, several

papers tried to further analyze the behavior of memory-one strategies in the iterated PD,

with great emphasis on strategies’ performance in one or two populations, and little regards

to whether strategies could be part of a Nash equilibrium. The main focus is still on the

performance of TfT, compared with other well known strategies such as AllC, AllD, Pavlov.

For example, Zagorsky et al. (2013) considered all possible strategies described by one and two

state automata (that is, pure memory-one strategies), in the alternating PD with equal gains
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from switching. In their setting, players can make mistakes, but they cannot observe their

own errors. Thus, it is not surprising that TfT performed poorly: AllD and Grim are the only

possible strict Nash equilibria (depending on the error rates and the value of the benefit of

cooperation). Nonetheless, convergence to one of those equilibria was always rare. When the

payoff from mutual cooperation is sufficiently large, the most likely outcome is a convergence

to a mixed equilibrium where the prevalent strategy is Forgiver, that is a strategy that punish

defections but attempts to re-establish cooperation even after multiple defections.

Baek et al. (2016) extended the analysis by considering mixed strategies in games with equal

gains from switching. They call the gain from switching the cost of cooperation. They show

that, for high cost of cooperation, cooperation rates are generally low, but relatively higher

for reactive pure strategies. For low cost of cooperation, cooperation rates with memory-one

strategies are always higher than with reactive strategies. In this case, mixed strategies increase

the rate of cooperation, but only for reactive strategies. Interestingly, for intermediate values of

cooperation costs, the dynamic leads to the (somehow strange) strategy which only cooperates

after begin exploited, that is the exact opposite of a forgiving strategy.

Thus, even if we have some insights on how memory-one strategies behave, the search for the

“best” strategy is still ongoing.

1.2.2 The repeated Prisoner’s Dilemma: Extortion

Zero-determinant strategies: definitions

While the strategies considered in the previous sections are well-known, Press and Dyson (2012)

focused on a new class of memory-one strategies for the repeated PD, which they called Zero De-

terminant (ZD). They noticed that, when playing against each other, two memory-one strategies

induce a Markov chain whose invariant distribution can be explicitly calculated. By manipu-

lating the transition matrix, they discover that there are particular strategies that are able to

enforce a linear relation between players’ payoffs. A player using such a strategy (i.e. a ZD

strategy) is able to fix the slope and the intercept of the line on which his own and the oppo-

nent’s payoff will lie in the payoff space, as if he was using an unconditional strategy. Contrary

to unconditional strategies, that in the PD all have a negative slope, ZD strategies can have a

positive (or null) slope, meaning that the best reply to a ZD strategy can also maximize the

payoff of the ZD player.
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Figure 1.1 shows some examples of ZD strategies. The kite-shaped area represents the set

of feasible payoff profiles for the repeated PD. The second player (on the x-axes) can choose

the probabilities of his memory-one strategy so that, regardless of the strategy played by his

opponent, their payoff profiles will lie on a straight line. The linear set of payoff profiles

associated to a ZD strategy played by the second player is represented by the set of black dots.

Each dot in Figure 1.1 represents the payoff profile associated to a fixed ZD strategy of the

second player, and one randomly generated memory-one strategy of the first player.

DD

DC

CC

CD

π2

π1

(a) Equalizer

DD

DC

CC

CD

π2

π1

(b) Extortionate

DD

DC

CC

CD

π2

π1

(c) Generous

Figure 1.1: Examples of Zero Determinant Strategies for the second player

Among all ZD strategies, Press and Dyson (2012) focused on those which they called extor-

tionate (ExS, see Figure 1.1b). By using an ExS, a player can be sure that his payoff is never

below the one of the opponent. Moreover, against an ExS opponent, a player cannot do better

than always cooperate. The resulting payoff profile is then a point on the Pareto frontier in

which the player who uses the ExS reaps a larger share of the benefits of cooperation, and is

able to get a payoff that is larger than the mutual cooperation payoff.

Another important class of ZD strategies, that will play a crucial role in our theoretical results,

is made by all strategies that are able to fix the opponent’s payoff at a certain level, thus

forcing the payoff profiles to lie on an horizontal (or vertical, depending on the player) line.

The existence of this kind of strategies was already noticed by Boerlijst et al. (1997), who called

them Equalizer (EqS, see Figure 1.1a). In this case, no matter which strategy the first player

chooses, his payoff will only depend upon the EqS strategy chosen by the second player.

EqS are less responsive than ExS to the moves of the opponent. Typically, EqS have low prob-

ability to change actions: starting with cooperation (defection), they have an high probability

to keep cooperating (defecting). ExS instead will always defect after mutual defection, but
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will cooperate with a positive probability (smaller than one) in any other case. ExS are more

responsive to the behavior of the opponent, and will cooperate often enough so as to make AllC

a best reply, but will defect often enough to ensure for themselves a payoff that can be higher

than the mutual cooperation payoff. Moreover, when facing another ExS or AllD, an ExS gets

the mutual defection payoff. As such, ExS are “unbeatable” (Hilbe, Röhl, et al., 2014) that is,

in direct competition, no strategy exists that gains against an ExS more than the ExS itself.

Stewart and Plotkin (2012) introduced a further type of ZD strategy, which they call generous

(GeS, see Figure 1.1c). A player using a generous strategy can ensure his payoff to never be

above the one of the opponent. Typically, generous strategies cooperate with probability one

after mutual cooperation, and, like ExS, they reward cooperation by cooperating more often

after a cooperation than after a defection. When facing each other, GeS are able to get the

mutual cooperation payoff, but they are susceptible to be exploited by AllD.

Finally, notice that, in discussing their results, Press and Dyson (2012) suggest that a player

facing a memory-one opponent cannot benefit from having a longer memory, as for any of his

longer memory strategies there is a memory-one strategy able to get the same payoff3.

The evolution of extortion: the symmetric case

ExS are never Nash equilibria with themselves, as the best reply to any of them is unconditional

cooperation. It is not surprising that they usually perform poorly in evolutionary settings.

Already Press and Dyson (2012) admitted that ExS could succeed only against a player who

is able to “learn” to play the best reply to any strategy played by her opponent. Otherwise, in

standard symmetric settings, more generous strategies perform better than ExS. This intuitively

plausible result was first confirmed by Stewart and Plotkin (2012). They re-run Axelrod’s

tournament by adding one ExS and one GeS. Within their setting, ExS performed worse than

any other strategy, except AllD, while GeS performed better than all the other strategies,

including TfT.

The success of GeS and the defeat of ExS was later confirmed by Hilbe, Nowak, and Traulsen

(2013). They derive the adaptive dynamics for all ZD strategies, and study whether a finite

3This conclusion was somehow challenged by Li and Kendall (2014), who show that ”longer memory strate-
gies outperform shorter memory strategies statistically in the sense of evolutionary stability” (p.819) and by
C. Lee et al. (2015), who constructed a longer memory strategy that is able to invade all possible memory-one
strategies.
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population would move towards a cooperative or a non-cooperative state, when varying the

population size. Even if the population never converges to a state dominated by ExS, they

discovered an unexpected role that this type of strategy can play. For large populations (N ą

10), the presence of ExS helps the population to escape from the AllD state. The reason for

this is that ExS can neutrally invade AllD, thus allowing for the emergence of more cooperative

strategies. For example, in a population of GeS, AllC can neutrally invade, opening the door

to defectors, and ExS are needed to escape from the resulting state of mutual defection4.

The important role of ExS as facilitators of the transition from defection to cooperation is robust

to several modifications of the general setting. For example, it holds in an the alternating PD

(McAvoy and Hauert, 2017), in PD with continuous action spaces (McAvoy and Hauert, 2016),

in PD with structured populations (Szolnoki and Perc, 2014a; Szolnoki and Perc, 2014b), in

multiplayer games (Hilbe, Wu, et al., 2015) and in the presence of noise (Hao et al., 2015).

Finally, ExS strategies perform better if they are able to recognize themselves and to cooperate

with each other. For example, Adami and Hintze (2013) show that ExS can be evolutionarily

stable if players can use a “tag based strategy”, that is if they can send a reliable signal of the

type of strategy they are using (Garcia, Van Veelen, and Traulsen (2014) explore a similar idea).

A similar result would hold if ExS can infer the type of strategy used by their opponent by

observing its past play. Notice however that this would require more than one period memory.

The evolution of extortion: asymmetric contexts

From what we said in the previous section, it should be clear that to give extortionate strategies

the best chance to succeed one should consider asymmetric contexts in which players have

different strategic possibilities, different constraints on memory, or evolve at different rates.

The literature has broadly confirmed this intuition. Hilbe, Nowak, and Sigmund (2013), for

example, considered a repeated PD in a two populations setting in which the two populations

evolve at different rates. In those conditions, in the long-run the slowest population will evolve

towards ExS, forcing the fastest adapting population to fully cooperate, and enjoying a higher

payoff. Hence, in asymmetric contexts, it pays to be the slower to adapt, an instance of the

4As a side note, the authors noticed that their results were similar to the ones obtained for reactive strategies
by Nowak and Sigmund (1995). This is not a surprise, as they both consider games with equal gains from
switching, where every ZD strategy is reactive (Hilbe, Nowak, and Sigmund, 2013). In both cases, there is a
region they call cooperation rewarding zone, where every strategy with a higher probability to reward cooperation
can invade. In the area outside this region the dynamics leads to AllD.
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so-called Red King effect (see Bergstrom and Lachmann, 2003).

J. Chen and Zinger (2014) discuss a model in which a memory-one strategy is matched with

an adaptive agent who learns to play a best response to any strategy played by the opponent.

They show that for every ExS or GeS, every possible adaptation path will give the maximum

possible payoff to both players. If matched against an ExS, the adaptive player will obtain a

smaller payoff, which confirms the original intuition of Press and Dyson (2012).

ExS might succeed also in settings where individuals in a population have different learning

abilities (Chatterjee et al., 2012), or when they have asymmetric incentives, either because

they have different stage game payoffs, or because they have different future incentives due to

a different time discount factors. Our main concern is with the latter case, when players have

asymmetric incentives. We will show that having different stage game payoffs is not sufficient

for extortion to emerge in the realm of memory-one strategy. In line with previous results,

we shall prove that the less patient player needs to have a longer memory, which is needed to

detect the use by the other player of a mixed strategy. If this is the case, the less patient player

can punish the opponent if he tries to extort too much. Otherwise, if mixed strategy are not

observable, as it is the case with memory-one strategies, no extortion is possible in equilibrium.

1.2.3 Repeated games with memory-one strategies: the equilibria

Aumann (1981) suggested that putting restrictions on players’ memory would reduce the set of

payoff profiles that can be sustained in equilibrium (see also Barlo et al., 2009). In this vein, a

literature emerged that studies the existence of equilibria when memory is restricted to the last

period. The most general theoretical result was originally proven by Ely and Valimaki (2002) as

a preliminary step for the study of games with imperfect monitoring. They construct equilibria

that are called “belief-free” (Ely, Hörner, et al., 2005). In these equilibria, each player is

indifferent between his actions at each round, no matter which action the opponent is currently

playing. In a PD, for example, at each round both players are indifferent between cooperation

and defection, and they would remain indifferent even if they learned which action the other

player is currently choosing. Their main result is that there is no belief-free equilibrium in which

one player obtains more than the mutual cooperation payoff. We will generalize this result and

show that in any NE and SPNE in memory one strategies (not necessarily belief-free), players’

payoffs are never above the mutual cooperation payoff, R.

15



In a related study, Dutta and Siconolfi (2010) deal with general games, not necessarily PD.

They prove that totally mixed belief-free equilibria in memory-one strategies exist in all games

in which payoffs satisfy a condition they dub reverse dominance. These are games in which

each player strictly prefers that the opponent plays one of his two actions, no matter which

action he intends to use. The PD satisfies reverse dominance, as, no matter what a player

intends to do, he prefers the other to cooperate. Dutta and Siconolfi (2010) prove that only

payoff profiles that are between players’ second and third best payoff can be sustained in a

totally mixed belief-free equilibrium. For the Prisoner’s Dilemma this is the same result proven

by Ely and Valimaki (2002).

These theoretical results are clearly relevant for the literature on extortion in memory-one

strategies, as they prove that in belief-free equilibria no player can get more than the mutual

cooperation payoff. Yet, so far very few attempts have been made to connect the two. An

exception is Baklanov (2018), who extensively studies equilibria in reactive strategies in games

without discounting. He shows that, when players are restricted to use reactive strategies,

and there is no discounting, a mild form of extortion can take place in equilibrium. That is,

equilibria are possible in which one player obtains more than the mutual cooperation payoff.

Extortion is mild, as the payoff that accrues to the extortionate strategy5 is bounded away from

the Pareto frontier. Indeed, in this setting an ExS player can only obtain slightly more than

what he could obtain from mutual cooperation (see Appendix 1.D).

Barlo et al. (2009) proves a results which is crucial for the second part of our analysis. They

prove that, in the context of repeated games with observable mixtures, the folk theorem is

reestablished with memory-one strategies. In other words, when players can observe the prob-

ability with which each pure action is played at each round, any payoff profile that Pareto

dominates the mutual defection payoff can be sustained in equilibrium6. This is clearly due to

the fact that when mixtures are observable, deviations from the mixed strategy can be pun-

ished, just like deviation from pure strategies are. We shall investigate the consequences of this

result in our analysis of the Trust Game, to which the following section is devoted.

5Notice that strategies considered by Baklanov (2018) are ExS, in the sense that a player’s payoff is never
below the one of the opponent, but they are not linear. See Appendix 1.D.

6Their result is in fact much more general than this, as it applies to any game, like Cournot and Bertrand
duopoly, in which players have a strategy set which is compact.
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1.2.4 Reputation and the Trust Game

In Section 1.2.2 we noticed that ExS are more likely to succeed in asymmetric settings in which

players have different strategy sets or different time horizons. We explore this possibility in

Section 1.5, by studying ExS in the asymmetric version of the PD in which one player chooses

first, the so called Trust Game (TG). In the TG, the first player chooses whether to to Trust (T)

or Not Trust (NT) the second player. If he chooses T, then the second player decides whether

to Reward (R) or Not Reward (NR) the first player’s Trust. The normal form of the game as

well as the stage game payoffs are shown in Table 1.2, with T ą R ą P ą S and 2R ą T `P .

R NR

T R,R, S,T

NT P,P P,P

Table 1.2: Stage game payoffs in the TG

We shall consider a repeated version of the TG where the first player is able to observe the

choice made by the second player even when he plays NT7. This version of the Trust Game

is a special case of the quality choice game studied by Kreps and Wilson (1982) and Mailath

and Samuelson (2006), in which the first player is a buyer who has to choose whether to buy

(T) or not (NT) a product, while the second player chooses to deliver a high (R) or low (NR)

quality product. In a simplified analysis of the repeated version of this game, it is convenient

to assume that the buyer can observe the quality of the good, even if he decides not to buy it.

Figure 1.2 represents the set of feasible payoffs for the repeated TG. The shaded area is the set

of payoff profiles that can be supported in a NE when players are sufficiently patient. Although

there is a superficial similarity between the TG and the PD, the existing literature points to

a very important difference between the two games, when their repeated version is considered.

This difference will prove to be very important in our discussion of extortion in the TG.

To illustrate how the TG differs from the PD, we shall discuss the standard reputation model

due to Kreps and Wilson (1982) in which a single long-run second player interacts with a large

number of short-run first players. For ease of exposition, we shall refer to the short-run player

as the ”customer” and to the long-run player as the ”store”. The type of situation we have

in mind is the one in which a large number of customers are served by the same retail store:

each customer only plays once against the store, but can observe the way in which previous

7Notice that this is not necessarily true if the genuine sequential version of the TG is considered.
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customers were treated. It follows that while the store cares about its reputation with future

customers, each customer is only interested in his current payoff. Customers will thus play a

myopic best reply to whatever strategy they believe the store will choose in the current round.

Notice that if the game being played is a PD, no new equilibrium would emerge in this setting,

as the short-run player would play D, no matter what he expects the long-run player to choose.

In turn, the long-run player cannot do better than play D as well. In the TG the situation

is different, because the customer’s best reply depends upon the strategy he believes the store

will use. Playing T is a best reply against R, while NT is a best reply to NR. If follows that

for a cooperative equilibrium to exist, it suffices that the store persuades the customers that R

will be played with a sufficiently large probability to make T a best reply.

b2

b1

DC = DD

= CC

CD

π2

π1

Figure 1.2: Feasible payoffs in the TG.

It is instructive to think about this setting in terms of the type of reputation the long-run player

would like to have. By playing constantly R, the long-run player can induce short-run players

to always play T, and would thus get the mutual cooperation payoff, R. Apparently, he can

do better than this, by forming a reputation for playing R with a sufficiently large probability

to induce the short-run players to play T. Simple algebra suffices to show that this probability

should be slightly larger than qS “ P´S
R´S

. We call qS the long-run player’s Stackelberg mixed

strategy (black dots in Figure 1.2), and the corresponding payoff his Stackelberg equilibrium

payoff. This is the payoff the store could get in a game in which it were able to commit to

play a (possibly mixed) strategy. If all short-run players choose T, the resulting payoff profile

corresponds to the point b2 in Figure 1.2.

To get his Stackelberg equilibrium payoff, the long-run player should then be able to form a

reputation for always playing qS. However, in no NE the long-run player can obtain more than
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the mutually cooperative payoff R. This follows from the observation that, if mixed actions

are not observable, the long-run player will always have an incentive to play NR in the cur-

rent round, implying that mixing cannot be optimal. Figure 1.2 shows the long-run player’s

Stackelberg strategy (black dots), against fully cooperative short-run players (red dots). In this

context, on the x-axes there is the long-run player’s average payoff, and on the y-axes there is

the average payoff of all the short-run players. The long-run player will then choose a point

on the red segment that maximizes his payoff. If enough short-run players choose T (as is the

case in Figure 1.2), the long-run player will have a strong incentive to choose NR. This result

can be easily extended to any other strategy profile in which the long-run player is required

to mix at some rounds (Mailath and Samuelson, 2006, Sec. 2.7.2). The result is somehow

counterintuitive, and it is not surprising that different modifications of the same basic setting

can deliver very different results.

In two influential papers, Fudenberg and Levine (1989) and Fudenberg and Levine (1992) stud-

ied the interaction between short and long-run players in the context of incomplete information

games and proved that the long-run player can obtain his Stackelberg payoff even when its

corresponding strategy is mixed. A fundamental assumption in this class of models is that the

long-run player can be of several ”types”, which are private information8.

Among them, there is the ”Stackelberg type”, that is a player who plays invariably his (possibly

mixed) Stackelberg strategy. Their main result is that a sufficiently patient long-run player can

obtain his (possibly mixed) Stackelberg payoff. The intuition is that the ”normal type” (i.e.

the type who maximizes his expected payoff along the repeated game) mimics the behavior of

the ”type” who is committed to the Stackelberg strategy. Short-run players’ beliefs about types

will eventually put a probability sufficiently large on the long-run player being a ”Stackelberg

type”, and so they will play a best response to the strategy he plays. If the ”normal type”

is sufficiently patient, he will prefer to build a reputation for being a Stackelberg type and he

would get the corresponding payoff in the long-run.

8These are known as ”commitment types”. In their original contribution, Fudenberg and Levine (1989)
followed a different path, as they assumed that short-run uncertainty concerned the long-run player’s preferences.
These are known as ”payoffs types”. A payoff type, is a player for whom playing the Stackelberg strategy through
the repeated game is a strictly dominant strategy. This creates special problems when the Stackelberg strategy
is mixed, as one needs to prove that a mixed strategy is strictly dominant for players whose preferences obey
the axioms of decision under uncertainty. The introduction of ”commitment types” drastically simplify matters,
although this comes at the cost of assuming that there may be ”crazy” types who mechanically play always the
same strategy. See Mailath and Samuelson (2006) p. 464 for a discussion of this matter.
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1.3 Methods

1.3.1 General setting

In this section we present the main methods used to deal with repeated games when players

are restricted to use memory-one strategies. We consider a repeated game with a continuation

probability of 0 ă δ ď 1. The game is played between two individuals, called “first player”

and “second player”. In every period, player i’s (pure) action set is Ai “ tC,Du, and ∆pAiq

is his mixed action set, with ai P Ai denoting a pure action, and αi P ∆pAiq denoting a

(possibly) mixed one. We denote by ∆pW q “
ś

i∆pAiq the set of possible actions profiles,

with elements α “ pα1, α2q, where α1 is the (mixed) action chosen by first player, and α2 is the

(mixed) action chosen by the second player. In every period, the set of possible outcomes is

W “ tCC,CD,DC,DDu Ă ∆pW q, with a typical element w “ pa1a2q, where a1 is the realized

action of the first player, and a2 is the realized action of the second player.

The outcome of period t is then wt “ pa1ta2tq, and the history available in period t is the

sequence of outcomes from 0 to t´ 1, ht “ tw0....wt´1u. We denote with Ht the set of possible

histories at round t and with H the set of all possible histories. A strategy si P Si for player i,

is then a map from the set of possible histories to the set of (mixed) actions: si : H Ñ ∆pAiq,

where Si is the set of strategies. The set of strategy profiles is then S “ S1

Ś

S2, and a typical

element s specifies a strategy for each player: s “ ps1, s2q.

We denote by siphtq player i’s continuation strategy after ht, and by αipsiphtqq the (possibly

mixed) action that strategy si prescribes to play after ht. We give the following definitions:

Definition 1. A strategy si is:

(i) pure if @ht αipsiphtqq P t0, 1u.

(ii) mixed if Dht s.t. 0 ă αipsiphtqq ă 1.

(iii) totally mixed if @ht 0 ă αipsiphtqq ă 1.

The stage game payoffs are shown in Table 1.3. We are interested in two specific games: the

Prisoner’s Dilemma (PD), and the Trust Game (TG). The payoff from mutual cooperation, i.e.

if both players choose action C, is R, while the payoff from mutual defection, i.e. if they both

choose action D, is P ă R, for both players. If the first player cooperates and the second player

defects, the first player gets S1 ă P , and the second player gets T2 ą R. If the first player
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defects and the second cooperates, then, in the PD, the first player gets T1 ą R, and the second

player gets S2 ă P . In the TG instead, if the first player defects, the payoff of both players is

T1 “ S2 “ P . To sum up, in the PD payoffs satisfy Ti ą R ą P ą Si, while in the TG payoffs

satisfy T2 ą R ą P “ S2 “ T1 ą S1. Moreover, we assume that 2R ą Ti ` Si, so that, in both

games, mutual cooperation is preferred by both players to a fair chance of getting Ti or Si.

C D

C R,R S1, T2

D T1, S2 P, P

Table 1.3: Stage game payoffs

For each possible outcome w P tCC,CD,DC,DDu, πipwq is the corresponding payoff for

player i, which belongs to the stage game payoff vector πi, with π1 “ tR, S1, T1, P u and

π2 “ tR, T2, S2, P u. We denote with πipwtq the stage game payoff for player i when the

outcome in period t is w, and by πpwtq “ pπ1pwtq, π2pwtqq the corresponding payoff profile. We

will sometimes drop the subscript t when it is clear from the context. For example, π1pCCq “ R

is the payoff for player one corresponding to the outcome CC, and πpCCq “ pR,Rq is the

associated payoff profile. Following Mailath and Samuelson (2006), we denote the set of stage

game payoffs generated by pure action profiles as

Fp “ tu P R
2 : Dw P W s.t. πpwq “ uu

The set of feasible payoff profiles is then F “ copFpq, that is the convex hull of Fp, and

Fb “ bopF q is the boundary of F .

Let s “ ps1, s2q be a strategy profile and let wtpsq be the outcome at time t in the history

generated by s. We denote with Πipsq “ Πips1, s2q “ p1´ δq
ř8

t“0 δ
tπipwtpsqq, the total average

payoff of player i when the strategy profile is s. Since payoffs are averaged by p1 ´ δq, we can

ensure that the payoff profile Πpsq P F for all s.

In the set F , a payoff profile u is inefficient if there exists u1 ‰ u s.t. u1i ą ui for all i. In this

case we say that u1 strictly Pareto dominates u. We denote by F̂ Ă Fb the set of efficient payoff

profiles, that is the set of payoff profiles that are not dominated by any other profile. Finally,

a player (pure) minmax payoff, ui, is defined as the maximum payoff player i can get when he

is playing a best reply, and his opponent is playing in order to minimize his payoff. Formally:

ui “ min
a´i

max
ai

πipaia´iq

In the present setting, the minmax payoff is always P for both players.
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A payoff profile u is individually rational if ui ě ui for all i, i.e. if it gives to both players at

least their minmax payoff. We denote the set of feasible and rational payoffs as Fr “ tu P F :

ui ě ui @iu. Figure 1.3 shows the set of feasible payoff, F , for a PD (left) and a TG (right).

The light gray area is the set of feasible and rational payoffs, Fr, i.e. the set of feasible payoffs

such that no player receives less than his minmax payoff. The red line is the set of efficient and

rational payoffs, that is the intersection between Fr and F̂ , the Pareto frontier.

b2

b1

DD

DC

CC

CD

π2

π1

(a) PD

b2

b1

DC = DD

= CC

CD

π2

π1

(b) TG

Figure 1.3: The set of feasible and rational payoffs for a PD (left) and a TG (right). Payoff
values are R “ 4, P “ 1, S1 “ 0, T2 “ 6, with S2 “ 0, T1 “ 6 for the PD, and S2 “ T1 “ P “ 1
for the TG. The Stackelberg payoff profile for the second player is then b2 “ p1, 5.5q.

In figure 1.3, b2 (b1) is the profile that gives to the second (first) player his maximum efficient

and rational payoff, and it corresponds to the payoff profile:

b2 “ pP,
RpP ´ S1q ` T2pR ´ P q

R ´ S1

q

In economics, this payoff is called the Stackelberg payoff, as it is the payoff a leader can get in a

Stackelberg competition, i.e. the maximum payoff a player can get when he can choose before

his opponent, knowing the opponent will choose a best reply.

With the previous notation, we can give the following definitions:

Definition 2. (i) A strategy ŝi is a (strict) best reply to s´i if: Πipŝi, s´iqpąq ě Πipsi, s´iq @si.

(ii) A profile ŝ is a (strict) Nash Equilibrium (NE) if: Πipŝqpąq ě Πipsi, ŝ´iq @si ‰ ŝi, @i.

(iii) A profile ŝ is a Subgame perfect NE (SPNE) if, for all ht, ŝphtq is a NE.

We denote by E Ă F the set of payoff profiles that can be sustained in a NE, and by Ep Ď E

the set of payoff profiles that can be sustained in an equilibrium that is also subgame perfect.

In the following sections we shall characterize the sets E and Ep for the PD and the TG.
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1.3.2 Memory-one strategies

In this section we consider the case in which players can only recall the outcome of the previous

period, so they can only use memory-one strategies. We start with the following definitions:

Definition 3. Let h and h1 be two histories and let wt´1 “ pa1,t´1, a2,t´1q and w1t´1 “

pa11,t´1, a
1
2,t´1q be their outcomes at time t´ 1. A strategy si is:

(i) memory-one if wt´1 “ w1t´1 implies siphtq “ siph
1
tq;

(ii) reactive if a1´i,t´1 “ a´i,t´1 implies siphtq “ siph
1
tq;

(iii) unconditional if siphtq “ siph
1
tq @ h

1
t.

As an alternative definition, we can say that a strategy is memory-one if the set of histories on

which it can condition is restricted to the set Hm “ tCC,CD,DC,DDu. Similarly, a strategy

is reactive if the set of available histories is Hr “ tC,Du, and is unconditional if Hu “ H.

We denote a memory-one strategy for the first player as s1 “ p “ pp0 , pCC
, p

CD
, p

DC
, p

DD
q9,

and for the second player as s2 “ q “ pq0 , qCC
, q

CD
, q

DC
, q

DD
q. For example, pCD (qCD) is

the probability that the first (second) player cooperates given that in the previous period the

first player chose C and the second player chose D. With this notation, reactive strategies are

memory-one strategies with p
CC
“ p

DC
“ p

C
and p

CD
“ p

DD
“ p

D
, and unconditional strategies

are memory-one strategies with p
CC
“ p

CD
“ p

DC
“ p

DD
“ p0. A reactive strategy for the first

player is then s1 “ pp0 , pC , pDq, where pC (pD) is the probability to cooperate if the opponent

cooperated (defected) in the previous round, and p0 is the probability to cooperate at the

beginning of the game. Similarly, s2 “ pq0 , qC , qDq is a reactive strategy for the second player.

Every pair of strategies ps1, s2q (not necessarily memory-one) will induce a probability distri-

bution v over the possible outcomes of the game over time. Following Hilbe, Traulsen, et al.

(2015), we call the probability that in period t the outcome is w as vwptq (which depends

on the strategy profile s), so the probability distribution over outcomes in period t is vptq “

pvCCptq, vCDptq, vDCptq, vDDptqq. The limit probability of outcome w, vw, is the probability that

in period t the outcome is w, for t Ñ 8, if the limit exists. Thus, v “ pvCC , vCD, vDC , vDDq is

the limit probability induced by the strategy profile s. With this notation, the limit probability

that players cooperate in period t, for tÑ 8, is:

9Recall that p0 is the probability to cooperate in the first round, i.e. when no history is available, and the
remaining components, pw , are the probabilities to cooperate if the outcome of the previous period was w.
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p “ v
CC
` v

CD
for the first player

q “ v
CC
` v

DC
for the second player.

To see this, just notice that the limit probability that the first (second) player cooperates is the

sum of the limit probabilities of the outcomes CC and CD (CC and DC), i.e. the outcomes

in which the first (second) player cooperates.

More importantly, if one player, say the first, is using a memory-one strategy, the following

holds for any opponent’s strategy:

Lemma 0 (Lemma 1 in Hilbe, Traulsen, et al. (2015)).

v
CC
` v

CD
“ p1´ δqp0 ` δpvCC

p
CC
` v

CD
p
CD
` v

DC
p
DC
` v

DD
p
DD
q

Thus, if one player is using a memory-one strategy, his limit probability to cooperate is the

weighted average (with weights p1 ´ δq and δ) of the probability to cooperate in the first

round and the probability with which he will cooperate in the subsequent rounds. The latter

probability is the weighted average of the probabilities to cooperate after each possible outcome,

with weights equal to the limit probability of each outcome. Notice that this is independent

from the strategy the other player is using.

With vector notation, Lemma 0 becomes :

p1´ δqp01` p̃v “ 0

where p̃ “ tδpCC ´ 1, δpCD ´ 1, δpDC , δpDDu.

Markov chains

When matched together, the behavior of two memory-one strategies can be described by a

Markov chain with the following transition matrix, M :

M “

¨

˚

˚

˚

˚

˚

˚

˝

p
CC
q
CC

p
CC
p1´ q

CC
q p1´ p

CC
qq

CC
p1´ p

CC
qp1´ q

CC
q

p
CD
q
CD

p
CD
p1´ q

CD
q p1´ p

CD
qq

CD
p1´ p

CD
qp1´ q

CD
q

p
DC
q
DC

p
DC
p1´ q

DC
q p1´ p

DC
qq

DC
p1´ p

DC
qp1´ q

DC
q

p
DD
q
DD

p
DD
p1´ q

DD
q p1´ p

DD
qq

DD
p1´ p

DD
qp1´ q

DD
q

˛

‹

‹

‹

‹

‹

‹

‚
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The stationary distribution of the chain, v˚ “ pv˚
CC
, v˚

CD
, v˚

DC
, v˚

DD
q, is found by solving:

v˚ “ p1´ δqv0 ` δv
˚.M

where v0 “ pp0q0 , p0p1´ q0q, p1´ p0qq0 , p1´ p0qp1´ q0qq is the initial condition of the chain.

If players use totally mixed strategies, the chain is irreducible, and the stationary distribution

is unique. Otherwise, there are cases in which M is not ergodic, and the stationary distribution

will then depend upon the initial conditions even when δ “ 1. We illustrate this point with

two examples concerning well known strategies.

Example 1. In the terminology introduced above, TfT is a reactive strategy, since a TfT

player conditions his current choice only on the choice the opponent made in the previous

round. Consider a generalized version of TfT, in which each player cooperates in the initial

round with a probability ranging from zero to one. Two such strategies would be represented

by s1 “ pp0, 1, 0q, and s2 “ pq0, 1, 0q. The transition matrix and the stationary distribution (for

δ Ñ 1) are:

M “

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

v˚ “

¨

˚

˚

˚

˚

˚

˚

˝

p0q0
1
2
pp0 ` q0 ´ 2p0q0q

1
2
pp0 ` q0 ´ 2p0q0q

p1´ p0qp1´ q0q

˛

‹

‹

‹

‹

‹

‹

‚

Starting from mutual cooperation (i.e.p0 “ q0 “ 1), players would end up in a repetition of CC;

starting from mutual defection they would end up in a repetition of DD; while starting from

one of the other two states will create a cycle in which outcomes CD and DC alternates. 4

Example 2. Consider now the case where players use strategies of the form: p “ pp0, 1,
1
5
, 1
5
, 4
5
q,

and q “ pq0,
1
5
, 3
5
, 2
5
, 0q, The transition matrix and the stationary distribution (for δ Ñ 1), are:

M “

¨

˚

˚

˚

˚

˚

˚

˝

1
5

4
5

0 0

2
25

3
25

8
25

12
25

3
25

2
25

12
25

8
25

0 4
5

0 1
5

˛

‹

‹

‹

‹

‹

‹

‚

v˚ “

¨

˚

˚

˚

˚

˚

˚

˝

5
69

26
69

16
69

22
69

˛

‹

‹

‹

‹

‹

‹

‚

The stationary distribution in this case is unique and does not depend on the initial conditions.

The total average payoff for the first player in this case is: Π1 “
5
69
R ` 26

69
S1 `

16
69
T1 `

22
69
P ,

which is independent from the initial conditions. 4
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Memory-one strategies in the payoff space

Let v˚ “ pv˚
CC
, v˚

CD
, v˚

DC
, v˚

DD
q be the stationary distribution, which depends on players’ strate-

gies s1, s2, and let π1 “ tR, S1, T1, P u be the payoff vector for the first player. The total average

payoff obtained by the first player is then Π1ps1, s2q “ πππ1v
˚ “ u1. A similar definition holds

for the second player. Now fix a strategy for one player, say the second. We can define the set

of payoffs profiles that are feasible under strategy s2 as:

F ps2q “ tu P F : Ds1 P S1 s.t. pΠ1ps1, s2q, Π2ps1, s2qq “ uu

In other words, this is the set of payoffs profiles that the first player can reach when the second

player is choosing s2. Given F ps2q, a best reply for the first player is a strategy that gives him

the maximum payoff inside F ps2q.

It is easy to visualize the set F ps2q using Monte Carlo simulations. Given a strategy s2, choose

randomly 5 probabilities that define a memory-one strategy for the first player and calculate

the resulting payoff profile. Repeat this a sufficiently large number of times and obtain an

estimate of the set F ps2q (see Figure 1.4).

Example 3. Figure 1.4 shows the set F ps2q, when δ “ 1, for three of the most common

memory-one strategies: TfT ( s2 “ q “ p1, 1, 1, 0, 0q), Grim (s2 “ q “ p1, 1, 0, 0, 0q), and

Pavlov (or Win-Stay-Lose-Shift, WSLS, with s2 “ q “ p1, 1, 0, 0, 1q). To obtain the graphs, we

fixed a strategy for the second player, and we let it play with 1000 randomly generated strategies

(black dots), and 100 randomly generated pure strategies (red dots) of the first player.

DD

DC

CC

CD

π2

π1

(a) TfT

DD

DC

CC

CD

π2

π1

(b) Grim

DD

DC

CC

CD

π2

π1

(c) WSLS

Figure 1.4: The set F ps2q for common pure memory-one strategies

Thus, each point in the graphs corresponds to the payoff profile relative to the fixed strategy

of the second player, and one random strategy of the first player. Notice that, by choosing
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TfT, the second player forces the payoff profile to stay on the segment connecting the CC point

with the DD point. When the second player chooses Grim, the payoffs are all contained in

the segment joining DD and CD. An exception is the point CC which can be obtained when

Grim plays against itself. The set of payoffs generated by WSLS is more complex. 4

1.3.3 Zero Determinant Strategies

In the following we restrict our attention to the PD, so T2 “ T1 “ T ą R and S2 “ S1 “ S ă P .

By manipulating the transition matrix M , Press and Dyson (2012) show the existence of a

particular type of strategies in the repeated PD with no discounting, which they called Zero

Determinant (ZD) strategies. ZD strategies are special memory-one strategies that allow players

to unilaterally enforce a linear relation between payoffs. Thus, if s2 is a ZD strategy, the set

F ps2q is linear. In Figure 1.1 we showed three examples of the set F ps2q for different types of

ZD strategies.

ZD strategies with δ ă 1 are described in Hilbe, Traulsen, et al. (2015)10. They noticed that the

stationary vector can also be computed as the Abelian mean distribution v “ p1´δq
ř8

t“0 δ
tvptq,

where vptq is the distribution of probabilities over outcomes in period t. Thus, recalling that

πi is the stage game payoff vector for player i, we can write the expected payoff in period t as

πiptq “ πivptq, and the discounted average payoff as:

Πi “ p1´ δq
8
ÿ

t“0

δtπiptq “ p1´ δqπi

8
ÿ

t“0

δtvptq “ πiπiπiv

Then, recalling that p̃ “ tδpCC ´ 1, δpCD ´ 1, δpDC , δpDDu, we can give the following definition

of a ZD strategy (for the first player):

Definition 4. A memory-one strategy is ZD if there exist constants a, b, c such that:

p1´ δqp01` p̃ “ aπ1 ` bπ2 ` c1

Such a ZD strategy enforces the linear payoff relation: aΠ1` bΠ2` c “ 0 (to see this, multiply

both sides by v and notice that Πi “ πiv, v.1 “ 1, and, from Lemma 0, p1´ δqp01` p̃v “ 0).

To give a better interpretation of the parameters characterizing a ZD strategy, let φ “ ´b, Φ “

´a{b, and k “ ´c{pa` bq. A ZD strategy then solves:

p1´ δqp01` p̃ “ φrΦpπ1 ´ k1q ´ pπ2 ´ k1qs (1.1)

10For the original derivation of Press and Dyson (2012) when δ “ 1 see Appendix 1.A.
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With this notation, k is the value at which the ZD strategy intersects the diagonal in the payoff

space, and is also the payoff that a ZD strategy gets against itself. Φ is the “extortion factor”,

that determines how much the ZD-player’s payoff is above (or below) the one of the opponent

( 1
Φ

is the slope of the ZD), and φ is a normalizing constant to ensure that probabilities are

between 0 and 1. As a consequence, a ZD strategy can be represented by a pair pΦ, kq, and

enforces the linear relation Πi “
1
Φ
Π´i ´ k

1´Φ
Φ

.

Equation 1.1 can be written as:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p1´ δqp0 ` δpCC “ 1´ φpR ´ kqp1´ Φq

p1´ δqp0 ` δpCD “ 1´ φpT ´ k ´ ΦpS ´ kq

p1´ δqp0 ` δpDC “ ´φpS ´ k ´ ΦpT ´ kqq

p1´ δqp0 ` δpDD “ ´φpP ´ kqp1´ Φq

(1.2)

By forcing the probabilities to be between 0 and 1, we can find the combinations of pk, Φq

that can be sustained by a ZD strategy. Specifically, strategies with positive slope exist for

all k such that P ď k ď R, while strategies with a negative slope exist only for k such that

maxtP, S´TΦ
1´Φ

u ď k ď mintR, T´SΦ
1´Φ

u. If Φ “ ´1, and δ “ 1, only the strategy with k “ T`S
2

exists. Moreover, if δ ă 1, the parameter Φ must satisfy ´1 ă Φ ă 1.

Example 4. To better understand the restrictions needed on the pairs pk, Φq, consider Figure

1.5. On the left, we plotted 4 examples of ZD strategies for the second player, with k “ T`S
2

.

On the right, we plotted 3 examples of ZD strategies for which b2 P F ps2q.

DD

DC

CC

CD

b2

π2

π1

(a) Range for k “ 2

DD

DC

CC

CD

b2

π2

π1

(b) ZDs able to reach b2

Figure 1.5: Range for ZD strategies

In Figure 1.5a, black dots correspond to a ZD strategy with a positive slope (i.e. Φ ą 0), red

dots correspond to a strategy with a negative slope (i.e. Φ ă 0), while blue and gray dots
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correspond to a strategy with Φ “ 1 and Φ “ ´1, respectively. Thus, for k “ T`S
2

(and only for

k “ T`S
2

), ZD strategies can have any slope between 1 and -1. Figure 1.5b, shows the range of

ZD strategies that are able to reach the Stackelberg payoff profile of the second player. Those

are all the ZD strategies whose set F ps2q lies between the black and the red ones. 4

From the expressions of ZD strategies, we can notice that, when δ “ 1 (and only when δ “ 1),

TfT is a ZD strategy with φ “ 1
T´S

and Φ “ 1 (see also Figure 1.4a). Grim instead is never a

ZD strategy: even if, when δ “ 1, it lies on the AllD line for almost all the possible strategies

of the first player, when facing a strategy with p0 “ pCC “ 1 (i.e. any strategy that is nice,

as intended by Axelrod (1984)), Grim gets the mutual cooperation payoff, making the relation

between players’ payoff non linear (see Figure 1.4b).

For a ZD to be reactive (so that pCC “ pDC “ pC and pCD “ pDD “ pD) it must hold

1 “ φpRp1´Φq´S`ΦT q “ φp´P p1´Φq´T `ΦSq, which implies pR`P ´S´T qp1´Φq “ 0.

This means that, if the game has equal gains from switching (so R ` P “ T ` S), every ZD

strategy is reactive. Otherwise, the only reactive ZD strategy is TfT (if δ “ 1).

We shall now consider how ZD perform against themselves and against other strategies. We

start with the interaction between two ZD strategies. Let s1 “ ZDpΦ, kq and s2 “ ZDpΦ, k1q

be two ZD strategies with k1 ą k. The resulting payoff is:

Π1ps1, s2q “
Φk ` k1

1` Φ
ą
Φk1 ` k

1` Φ
q “ Π2ps1, s2q

Thus, the strategy with the lowest k has the highest payoff. It follows that, if in a population

players can only use ZD strategies, the population will evolve towards the lowest value of k, i.e.

k “ P , which implies that only mutual defection would be observed.

We now consider the interaction of a ZD strategy against strategies AllC and AllD. The payoff

profile of a ZD strategy against an opponent who always cooperates is11:

ΠpZD,AllCq “ p
RpT ´ Sq ´ p1´ ΦqkpT ´Rq

pR ´ Sq ` ΦpT ´Rq
,
ΦRpT ´ Sq ´ p1´ ΦqkpS ´Rq

pR ´ Sq ` ΦpT ´Rq
q (1.3)

The payoff profile of a ZD strategy against an opponent who always defects is instead:

ΠpZD,AllDq “ p
P pT ´ Sq ´ p1´ ΦqkpP ´ Sq

pT ´ P q ` ΦpP ´ Sq
,
ΦP pT ´ Sq ´ p1´ ΦqkpP ´ T q

pT ´ P q ` ΦpP ´ Sq
q (1.4)

Notice that, if Φ “ 0, it holds Π1pAllC, ZDq “ Π1pAllD, ZDq “ k. This means that, if the

second player uses a ZD strategy with Φ “ 0, the first player will get the same payoff from

11Notice that the payoff profile do not depend on δ. Indeed one can show that this is true for a ZD strategy
interacting with any unconditional strategy
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choosing any of his strategies. Applying simple algebra to Equations 1.3 and 1.4, it is easy

to show that that, if Φ ą 0, it holds Π1pAllC, ZDq ą k ą Π1pAllD, ZDq, meaning that the

payoff from playing AllC against a ZD strategy is higher than the payoff from playing AllD.

The opposite is true if Φ ă 0, since it holds Π1pAllD, ZDq ą k ą Π1pAllC, ZDq.

We can then make the following:

Remark 1. AllC is a best reply to every ZD strategy with Φ ě 0, and AllD is a best reply to

every ZD strategy with Φ ď 0.

The literature has singled out some notable ZD strategies. We shall describe them briefly here,

as some of them will turn out to be useful in the theoretical result of the next section.

Extortionate

Most of the interest in ZD strategies stems from the fact that Press and Dyson (2012) noticed

a peculiar type of strategy, which they called extortionate. Extortionate strategies (ExS) can

enforce a positive linear relation between player’s payoff, and, more importantly, a player using

an ExS can ensure that his payoff is never below the one of the opponent (hence the term

extortionate).

ExS intersect the diagonal of the payoff space at the mutual defection payoff profile, implying

k “ P , and have a non negative slope, implying 0 ď Φ ď 1. By plugging those values into

Equations 1.2, we can find the following expressions for a ExS:
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p1´ δqp0 ` δpCC “ 1´ φpR ´ P qp1´ Φq

p1´ δqp0 ` δpCD “ 1´ φpT ´ P ´ ΦpS ´ P q

p1´ δqp0 ` δpDC “ ´φpS ´ P ´ ΦpT ´ P qq

p1´ δqp0 ` δpDD “ 0

(1.5)

Notice that equations in 1.5 imply p0 “ pDD “ 0, i.e. in the terminology of Hilbe, Traulsen,

et al. (2015), ExS are cautious, meaning that they are never the first to cooperate. It follows

that two ExS will get the mutual defection payoff when matched with each other, or when

matched with any other cautious strategy (see Figure 1.6b ).

Moreover, as Press and Dyson (2012) noticed, the best reply to ExS is AllC. The resulting
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payoff profile of an ExS against an AllC is:

ΠpExS,AllCq “ p
RpT ´ Sq ´ p1´ ΦqP pT ´Rq

pR ´ Sq ` ΦpT ´Rq
,
ΦRpT ´ Sq ´ p1´ ΦqP pS ´Rq

pR ´ Sq ` ΦpT ´Rq
q

Notice that Π1pExS,AllDq ą R as long as Φ ă 1, so that, against AllC, ExS is able to gain

more than the mutual cooperation payoff.

In Figure 1.6b, we plot the sets F ps1q and F ps2q, when s1 and s2 are both ExS. Since ExS have

k “ P , the payoff profile corresponding to any two EXS strategies is pP, P q. Notice that the

black equalizer strategy in Figure 1.6a can be considered as an ExS, since the second player’s

payoff is never below the one of the opponent. Moreover, recall that this strategy allows the

second player to reach his Stackelberg payoff (see Figure 1.5b). Nonetheless, point b2 cannot

be a Nash equilibrium: if the first player fully complies by choosing AllC, the incentive for the

second player to defect and get a higher payoff is too strong, and he will choose AllD.

DD

DC

b2

b1

CC

CD

π2

π1

(a) Equalizers

DD

DC

b2

b1

CC

CD

π2

π1

(b) Extortionate

DD

DC

CC

b2

b1

CD

π2

π1

(c) Generous

Figure 1.6: Examples of ZD strategies.

Equalizer

Press and Dyson (2012) show that, in the repeated PD with δ “ 1, if the first player uses a

strategy of the form:
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pCC

pCD “
p1`pDDqR´pCCP´p1´pCC`pDDqT

R´P

pDC “
pDDR`p1´pCCqP´p1´pCC`pDDqS

R´P

pDD

(1.6)
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the resulting payoff for the second player is

Π2 “
p1´ pCCqP ` pDDR

1´ pCC ` pDD

which does not depend on the second player’s strategy. This implies that he will be indifferent

among all his strategies, as they all give him the same payoff, hence the name Equalizer. Notice

that the first player can fix the opponent’s payoff at any level between P and R, by choosing

proper values of pCC and pDD (ensuring that 0 ď pDC , pCD ď 1). For example, by setting

pDD “ 0, the first player can enforce Π2 “ P , while by setting pCC “ 1, he can enforce Π2 “ R.

For δ ď 1, Equalizer strategies (EqS) can be found by setting Φ “ 0 in Equation 1.1 and solving

p̃` p1´ δqp01 “ φpk1´ π2q

Those strategies enforce the linear relation Π2 “ k, and they are of the form12:
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p1´ δqp0 ` δpCC “ 1´ φpR ´ kq

p1´ δqp0 ` δpCD “ 1´ φpT ´ kq

p1´ δqp0 ` δpDC “ ´φpS ´ kq

p1´ δqp0 ` δpDD “ ´φpP ´ kq

(1.7)

Thus, if δ ě maxtT´R
T´P

, P´S
R´S

u13, a player using an EqS can fix the opponent’s payoff anywhere

between the mutual defection and the mutual cooperation payoff, by setting P ď k ď R, and

by choosing proper values of φ to ensure that probabilities are between 0 and 1. In Figure 1.6a

we plotted the set F ps2q for three different equalizer strategies for the second player.

Generous

Stewart and Plotkin (2012) introduced another type of ZD strategies, which they called gener-

ous. Generous strategies (GeS) are able to enforce a positive linear relation between players’

payoff, and a player using a generous strategy ensures that his payoff is never above the one of

the opponent (hence the term Generous).

GeS intersect the diagonal of the payoff space at the mutual cooperation payoff profile, implying

k “ R, and have a non negative slope, implying 0 ď Φ ď 1. By plugging those values into

Equations 1.2, we have the following expressions for a GeS:

12For δ “ 1, those are the same strategies as in Equations 1.6, with k “ P p1´pCCq`RpDD

1´pCC`pDD
, and φ “ 1´pCC`pDD

R´P .
13Ichinose and Masuda (2018)
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p1´ δqp0 ` δpCC “ 1

p1´ δqp0 ` δpCD “ 1´ φpT ´R ´ ΦpS ´Rq

p1´ δqp0 ` δpDC “ ´φpS ´R ´ ΦpT ´Rqq

p1´ δqp0 ` δpDD “ ´φpP ´Rqp1´ Φq

(1.8)

Notice that Equations in 1.8 imply p0 “ pCC “ 1, meaning that generous strategies are nice

strategies and as such, they are able to get the mutual cooperation payoff when facing each

other, or when facing any other nice strategy, as shown in Figure 1.6c.

To conclude, the following Table shows payoff profiles for the most common memory-one strate-

gies, together with some ZD strategies, for R “ 4, T “ 6, S “ 0, P “ 1, and δ “ 9{10.

AllC AllD TfT cTfT WSLS sExS mExS GeS EqS EqSR

AllC 4, 4 0, 6 4, 4 18
5
, 21

5
4, 4 16

7
, 34

7
13
4
, 35

8
4, 4 3, 9

2
4, 4

AllD 6, 0 1, 1 3
2
, 9
10

1, 1 69
19
, 9
19

1, 1 1, 1 32
17
, 14
17

3, 3
5

4, 2
5

TfT 4, 4 9
10
, 3
2

4, 4 54
19
, 60
19

4, 4 469
370
, 667
370

665
359
, 818
359

4, 4 3, 429
134

4, 4

cTfT 21
5
, 18

5
1, 1 60

19
, 54
19

1, 1 681
271
, 621
271

1, 1 1, 1 1148
359

, 1004
359

3, 177
67

4, 148
43

WSLS 4, 4 9
19
, 69
19

4, 4 621
271
, 681
271

4, 4 77
47
, 137

47
23
11
, 29
11

4, 4 3, 131
37

4, 4

sExS 34
7
, 16

7
1, 1 667

370
, 469
370

1, 1 137
47
, 77
47

1, 1 1, 1 16
7
, 10

7
3, 5

3
4, 2

mExS 35
8
, 13

4
1, 1 818

359
, 665
359

1, 1 29
11
, 23
11

1, 1 1, 1 14
5
, 11

5
3, 7

3
4, 3

GeS 4, 4 14
17
, 32
17

4, 4 1004
359

, 1148
359

4, 4 10
7
, 16

7
11
5
, 14

5
4, 4 3, 10

3
4, 4

EqS 9
2
, 3 3

5
, 3 429

134
, 3 177

67
, 3 131

37
, 3 5

3
, 3 7

3
, 3 10

3
, 3 3, 3 4, 3

EqSr 4, 4 2
5
, 4 4, 4 148

43
, 4 4, 4 2, 4 3, 4 4, 4 3, 4 4, 4

Table 1.4: Normal form - Example

In red are the NE, while in blue are the best replies of the second player (i.e. the column

player). cTfT is cautious TfT, which starts by defecting and then plays TfT. sExS is an ExS

with Φ “ 1{3 while mExS is an Exs with Φ “ 2{3. GeS has k “ R and Φ “ 2{3. EqSR is an

EqS with k “ R, while EqS has k “ 3. Notice that all Nash equilibria are weak, and none of

them involve an ExS.
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1.4 Equilibria in the PD

In this section, we will give a full description of NE in the repeated PD with memory-one

strategies. Our proof is divided into two parts. First, we consider payoff profiles on the

Pareto frontier of the set of feasible payoffs. Our first result is that, if just one player uses a

memory-one strategy, then in any efficient NE her payoff cannot be pushed below the mutual

cooperation payoff R. This is true independently from the strategy played by the other player.

As a corollary we obtain that if both players are constrained to use memory-one strategies, then

only the mutual cooperation payoff profile pR,Rq can be sustained as an efficient NE. Second,

we show that, even if one restricts the attention to payoff combinations that are not Pareto

efficient, when players are constrained to use memory-one strategies, equilibrium payoffs are

never above the mutual cooperation payoff. This result is illustrated by Figure 1.7. We shall

show that only payoff profiles within the gray square can be sustained as NE when players are

restricted to use memory-one strategies.

b2

b1

DD

DC

CC

CD

π2

π1

Figure 1.7: The set of equilibrium payoffs. Only payoffs in the dark gray square can be sustained
as NE with memory-one strategies.

1.4.1 Equilibria on the Pareto frontier

Let us start by considering payoff profiles that are on the Pareto frontier. We first observe

that the best reply against a player who cooperates with probability one after a round in which

he cooperated and the other defected (that is a first player with pCD “ 1), is to defect with

probability one. The intuition is obvious. Against a player who always cooperates after being

cheated, it is optimal to always cheat.
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Nonetheless, setting pCD “ 1 can be part of a non subgame perfect NE, if the first player never

cooperates on the equilibrium path, i.e. if he also sets p0 “ pDC “ pDD “ 014:

Observation 1. If pCD “ 1 (qDC “ 1), in any NE it must be p0 “ pDD “ pDC “ 0 (q0 “

qDD “ qCD “ 0).

Remark 2. In any SPNE a player will never cooperate w.p. 1 after being cheated, i.e. pCD ă 1..

Recall that E Ă Fr is the set of payoff profiles that can be sustained in a NE, Ep Ď E is the

subset restricted to SPNE, and F̂ is the set of efficient payoff profiles (notice that F̂ contains bi,

the payoff profile that gives to player i his Stackelberg payoff). Let F̂i be the subset of efficient

payoff profiles that guarantee to player i a payoff that is at least as large as the opponent’s.

These are the efficient payoff combinations in which we say that there is extortion. Formally,

for every Π P F̂i, Πi ě Π´i. The following proposition shows that, if the opponent of player i

is using a memory-one strategy, the only payoff profile inside F̂i that can be sustained in a NE

is the mutual cooperation profile, independently of which strategy player i is using.

Proposition 1. For any strategy of player i, if the opponent is using a memory-one strategy,

F̂i X E “ pR,Rq.

Proof. Assume that the first player is using a memory-one strategy. Let u˚ be a NE payoff

profile, and let u˚ P F̂2. Since u˚ can be sustained as a NE, it must belong to the set of rational

payoffs, so it must be vCD ă 1 and vDC ă 1. Moreover, since u˚ P F̂2, in this equilibrium only the

states CC and CD are visited, so it must be vDC “ vDD “ 0. From Lemma 015 , vDC “ vDD “ 0

implies vCC`vCD “ p1´δqp0`δppCCvCC`pCDvCDq “ p1´δqp0`δppCCvCC`pCDp1´vCCq “ 1,

which holds if p0 “ pCC “ pCD “ 1, or p0 “ pCC “ vCC “ 1, or p0 “ pCD “ vCD “ 1.

Because of Observation 1, p0 “ pCD “ 1 can never be an equilibrium. Then, it must be

p0 “ pCC “ vCC “ 1, so that pR,Rq is the only possible equilibrium outcome inside F̂2.

From Proposition 1, it directly follows that, if both players are restricted to memory-one strate-

gies, the only efficient equilibrium outcome is mutual cooperation:

Corollary 1. If both players are using memory-one strategies, F̂ X E “ pR,Rq

14Notice that this is the same strategy that Baek et al. (2016) found as more prevalent in a population with
”intermediate” costs of cooperation, see Section 1.2.

15Recall Lemma 0 states: v
CC
` v

CD
“ p1´ δqp0 ` δpvCC

p
CC
` v

CD
p

CD
` v

DC
p

DC
` v

DD
p

DD
q.
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Notice that Corollary 1 implies that Fb X E “ tpP, P q, pR,Rqu, i.e. the only equilibria on the

boundary of the payoff space are the mutual cooperation and the mutual defection payoffs. It

also implies that in any equilibrium in memory-one strategies, the only efficient equilibrium is

mutual cooperation, so that players can never get their Stackelberg payoff.

1.4.2 Equilibria below the Pareto frontier

Now we move to payoff profiles that are strictly within the set of feasible payoffs. We need

a further piece of notation. Let BPD be the set of payoffs profiles such that both players get

between the mutual cooperation and the mutual defection payoff (see Figure 1.7):

BPD
“ tu P F : P ď ui ď R i “ 1, 2u.

Our main proposition shows that, if both players are restricted to memory-one strategies, and

δ ě maxtT´R
T´P

, P´S
R´S

u, the set of Nash equilibria is equal to the set of subgame perfect equilibria,

and it is entirely described by BPD:

Proposition 2. If both players are constrained to memory-one strategies, then E “ Ep “ BPD.

Corollary 2. If both players are constrained to pure memory-one strategies, and δ ě maxpT´R
R´P

, P´S
T´P

q,

then Ep “ tpR,Rq, pP, P qu Ă E “ BPD
P Ă BPD, where:

BPD
P “ tpR,Rq, pP, P q, pδP ` p1´ δqR, δP ` p1´ δqRq, p

S ` δT

1` δ
,
T ` δS

1` δ
q, p

T ` δS

1` δ
,
S ` δT

1` δ
qu

To prove this proposition, we divide the set of equilibrium payoff profiles into four different

sets, depending on the number of states that are visited with positive probability by the corre-

sponding equilibrium strategies, and we will show that the union of those sets is BPD.

Let Lj Ă E be the set of payoff profiles that can be sustained in an equilibrium where exactly

j states are visited, with j P t1, 2, 3, 4u and Y4
j“1Lj “ E . We shall characterize the set of NE

for each of those sets, which will be a proof of Proposition 2.

Consider first the set L1, that is the set of payoffs profiles that can be sustained in an equilibrium

where only one state is visited. Such a state cannot be DC or CD, as the corresponding payoff

profile gives to one of the two players less than the mutual defection payoff P . The only visited

state can be either CC or DD, which implies that equilibrium strategies must be either nice

(p0 “ pCC “ q0 “ qCC “ 1) or cautious (p0 “ pDD “ q0 “ qDD “ 0). Clearly, mutual defection
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is always an equilibrium, while mutual cooperation can be an equilibrium only if δ is sufficiently

large. This implies the following:

Lemma 1. If δ ě T´R
T´P

:

L1 “ tπ : pπ1 “ π2 “ P q _ pπ1 “ π2 “ Rqu Ă BPD.

Notice that L1 is also the set of equilibrium payoffs on the boundary of the payoff space:

Remark 3. Fb X E “ L1.

The next Lemma deals with the set the of payoff profiles that can be sustained in an equilibrium

in which two states are visited. If δ is sufficiently large, we show that in L2 only two paths are

possible: either the players alternate between CD and DC forever, or they start with mutual

defection, and from the second period onward they cooperate. Thus, we can state the following:

Lemma 2. If δ ě maxpT´R
R´P

, P´S
T´P

q:

L2 “ tπ : pπi “
S ` δT

1` δ
^ π´i “

T ` δS

1` δ
q _ pπ1 “ π2 “ p1´ δqP ` δRqu Ă BPD

Proof. See Appendix 1.C.

To avoid unnecessary technical complications, we will disregard the second type of equilibrium,

in which players start by defecting and then cooperate forever. It has little theoretical interest,

as the corresponding payoff profile approaches the mutual cooperation profile for δ Ñ 1.

The following Lemma considers the set L3, where 3 states are visited on the equilibrium path.

Interestingly, in this set there are payoff profiles arising from 2 types of equilibria: in the first

type, the state CC is never visited, and (at least) one of the two players’ payoff is fixed at P ,

the mutual defection payoff; in the second type, the state DD is never visited, and (at least) one

of the two players’ payoff is fixed at R, the mutual cooperation payoff. Both types of equilibria

have payoff profiles that are always inside the set BPD:

Lemma 3. If δ ě maxpP´S
T´P

, T´R
R´S

q:

L3 “ tπ : pπi “ P ^ P ď π´i ď
S ` δT

1` δ
, q _ pπi “ R ^

S ` δT

1` δ
ď π´i ď Rqu Ă BPD

Proof. See Appendix 1.C.
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Our final lemma deals with the set L4 of equilibria in which all states are visited. Notice that,

because all states are visited with positive probability, equilibrium strategies must be optimal

in every subgame of the game. This implies that every NE in L4 is also subgame perfect.

The lemma is based on a result by Ely and Valimaki (2002), which plays an important role in

the analysis of repeated games with imperfect monitoring. To introduce this result, we need

the notion of a belief-free equilibrium. Intuitively, in a belief-free equilibrium, player i chooses

probabilities s.t. his opponent would not be induced to change the action he chooses even if he

knows the action that player i is going to choose. Suppose, for example, that in a PD the first

player is indifferent between playing C or D in the current round. Such indifference would not

change if he were to know the actual action (C or D) chosen by the second player16.

Let X1 be the total average payoff for the first player if the second player chooses C in the

current round, and let Y1 be the total average payoff if the second player chooses D. In a

belief-free equilibrium, the first player is indifferent between C and D, so the total average

payoff when playing C or D should be the same. Recall that Π1pwq is the total average payoff

for the first player if the current period outcome is w17. In a belief-free equilibrium it must be

Π1pCCq “ Π1pDCq “ X1 and Π1pCDq “ Π1pDDq “ Y1.

Then, finding a belief-free equilibrium strategy for the second player involves fixing values of X1

and Y1 and solving for the four probabilities18. In Appendix 1.B we show that, in a belief-free

equilibrium, a strategy for the second player is characterized by probabilities qw such that, for

every w P tCC,CD,DC,DDu, it holds:

qw “
Π1pwq ´ pp1´ δqπ1pwq ` δY1q

δpX1 ´ Y1q
(1.9)

with Π1pwq “ X1 if w P tCC,DCu, and Π1pwq “ Y1 if w P tDC,DDu.

In order for those probabilities to be between 0 and 1, we need: R ě X1 ą Y1 ě P and

δ ą maxt Y1´S
X1´S

, T´X1

T´Y1
u. The next remark directly follows:

16Notice the distinction with the indifference condition that is required if in a repeated game players play
a mixed equilibrium of the stage game. In this case the first player would be indifferent only if the second
player is using a mixed strategy also in the current round. In a belief free equilibrium instead, he would remain
indifferent for any action (pure or mixed) that the second player would choose in the current round.

17Where w “ a1a2 and a1 (a2) is the action taken in the previous period by the first (second) player
18Notice that there are payoff profiles that can be reached by both a belief-free equilibrium, and an equilibrium

that is not belief-free. In appendix 1.B, we give an example of a belief-free equilibrium that is able to reach the
mutual cooperation payoff. Clearly, this payoff can be reached also by, for example, a pair of Grim strategies,
which would form a SPNE that is not belief-free.
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Remark 4. [Result from Section 1 in Ely and Valimaki (2002)] The payoff profile u˚ can be a

subgame perfect, belief-free equilibrium if and only if u˚ P BPD.

By showing that equilibria in the set L4 must be belief-free19, we are able to state that the

only payoff profiles that can be sustained in SPNE where all states are visited, are in the set

BPD ´ tpRRq, pPP qu. This is the content of the next Lemma:

Lemma 4. If δ ě maxtT´R
T´P

, P´S
R´S

u:

L4 “ BPD
´ tpRRq, pPP qu

Proof. See Appendix 1.C

Together with Lemma 1-3, this implies that BPD is the set of Nash equilibrium payoff profiles:

Observation 2. E “ Y4
j“1Lj “ BPD

Thus, in any equilibrium in memory one strategies players’ payoffs are bounded from above by

the mutual cooperation payoff, which is the only (strictly) efficient payoff profile.

1.4.3 Equilibrium strategies

We now use the results of the previous section to illustrate some key aspects of ZD strategies.

Our first result characterizes the type of ZD strategies that can form a NE. We prove that they

can only be equalizer, generous or defector. Our second result is more general. We show that,

if attention is restricted to SPNE where both players’ payoffs are different than the mutual

cooperation or the mutual defection payoffs, (that is, SPNE that are strictly inside the set

BPD) then, among all memory-one strategies, only equalizer can be part of an equilibrium.

Finally, we characterize equilibria in reactive strategies, i.e. strategies than only condition on

the opponent’s last choice, showing that only mutual cooperation or mutual defection can be

sustained as a NE.

19Dutta and Siconolfi (2010) focuses on totally mixed equilibria, and their result implies that, in the PD, a
totally mixed subgame perfect equilibrium must be belief-free. We will extend their proof to prove our lemma.
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Nash Equilibria in ZD strategies From the previous section, recall that a ZD strategy

can be described by two parameters, k and Φ, where k is the payoff a ZD strategy gets against

itself, and Φ is the slope of the strategy, i.e. how much a player’s payoff is below (or above)

the one of the opponent. We noticed that every ZD strategy with a non negative slope that

gets the mutual cooperation payoff against itself (i.e. with k “ R and Φ ě 0) is a best reply to

itself, and hence is a Nash equilibrium, as well as every strategy with a non positive slope that

gets the mutual defection payoff (i.e. with k “ P and Φ ď 0), and every pair of strategies with

a null slope (Φ “ 0) (see Remark 1). We can then state the following:

Proposition 3. Let s˚ “ pZDpk1, Φ1q, ZDpk2, Φ2qq be a profile in ZD strategies. Then s˚ is a

NE if and only if, for i P t1, 2u:

• Φi “ 0 (Equalizer)

• Φi ď 0 and ki “ R (Generous)

• Φi ě 0 and ki “ P (Defector)

Proposition 3 implies that the full set BPD of equilibrium payoffs can be sustained by Equalizer

strategies. Figure 1.8 shows an example of each kind of equilibrium in ZD strategies.

DD

DC

CC

CD

π2

π1

(a) Equalizer

DD

DC

CC

CD

π2

π1

(b) Generous

DD

DC

CC

CD

π2

π1

(c) Defector

Figure 1.8: Nash equilibria in ZD strategies

Clearly, there are many other equilibria beside those in ZD strategies. We encountered one of

them in the previous section, in the proof of Lemma 2. In that equilibrium, players alternate

forever between CD and DC. We call the strategies that produce this pattern alternators.

Moreover, in the proof of Lemma 3, we found another type of strategy profile (as specified by

1.22 and 1.21 in Appendix 1.C), in which a player is indifferent among his strategies only after
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one or two states. We call strategies that produce this pattern almost equalizer. As it turns

out, there are no other equilibria in memory-one strategies. This is the content of the following:

Proposition 4. Let s˚ “ pp,qq be a profile in memory-one strategies. Then s˚ is a NE if and

only if both strategies are either:

• nice: p0 “ pCC “ q0 “ qCC “ 1

• cautious: p0 “ pDD “ q0 “ qDD “ 0

• alternators: p0 “ pCD “ qDC “ 0, q0 “ pDC “ qCD “ 1

• equalizer: (See Equations 1.6)

• almost equalizer: (See Equations 1.22 and 1.21)

Proof. See Appendix 1.C.

Subgame perfect equilibria in ZD strategies To be subgame perfect, a strategy profile

should be an equilibrium after any possible history. Generous and Defective strategies can be

NE because they only visit one state, either CC or DD, but they prescribe to mix after a

deviation. If a deviation occurs, players do not have any incentive to punish, as they rather

prefer to go back to the equilibrium path. On the contrary, Equalizer strategies, being able to

fix the opponent’s payoff, independently from his strategy, are by definition also SPNE. Thus,

we can directly state the counterpart of Proposition 3 for SPNE in ZD strategies:

Proposition 5. Let p be a ZD strategy. Then p is part of a SPNE if and only if is an Equalizer

strategy.

Proof. See Appendix 1.C

Our next proposition generalizes this result to the full set of memory-one strategies, as a

counterpart of Proposition 4. It shows that, if we exclude the special case of the one almost

equalizer strategy profile in the set L3, then only Equalizer strategies can form a SPNE different

than mutual cooperation or mutual defection:
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Proposition 6. Let s˚ “ pp, qq be a profile in memory-one strategies, in which the outcome is

different than mutual cooperation or mutual defection. Then s˚ is a SPNE if and only if p and

q are Equalizer strategies.

Proof. See Appendix 1.C

Reactive strategies We now discuss the relation between the results in Section 1.4 and

reactive strategies. We will show that, for generic PD, if players are restricted to reactive

strategies, the only payoffs profiles that can be sustained in a Nash equilibrium are the mutual

cooperation and the mutual defection payoffs i.e. E “ tpR,Rq, pP, P qu.

Recall that a reactive strategy is described by three probabilities: pp0, pC , pDq, where p0 is

the probability to cooperate in the first period, and pj is the probability to cooperate if the

opponent’s previous move was j, with j P tC,Du. First observe that, similarly to Observation

1, the best reply against a player who cooperates after a defection is to defect with probability

one, thus in equilibrium we must have pD ă 1. This implies that the results in Proposition 1

and its corollary still hold for reactive strategies20, i.e. if u˚ is a NE, and if it belongs to the

the boundary of the payoff space, then it must be either u˚ “ pR,Rq, or u˚ “ pP, P q.

The next proposition shows that, with reactive strategies, in all equilibria only one state is

visited, i.e. the set of equilibrium payoffs is reduced to those in the set L1. This is a consequence

of the limited possibility of punishment that reactive strategies allow to players, on which were

based the other NE in the general case.

Proposition 7. If players are constrained to reactive strategies, δ ă 1 and P ´ S ‰ T ´ R,

then the only payoff profiles that can be sustained in a Nash equilibrium are pR,Rq and pP, P q.

If P ´ S “ T ´R, the set of equilibrium payoff profiles is BPD.

Proof. See Appendix 1.C

In Appendix 1.D we report the case considered by Baklanov (2018) in which δ “ 1. We show

that, even if in this case it might be possible to reach equilibrium payoffs higher than mutual

cooperation, the maximum payoff a player can get falls far below his Stackelberg payoff.

20Lemma 0 with reactive strategies is v
CC
` v

CD
“ p1´ δqp0 ` δppC

pv
CC
` v

CD
q ` p

D
pv

DC
` v

DD
qq.
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1.5 The Trust Game

1.5.1 The repeated Trust Game

In this section, we consider an asymmetric version of the PD, the Trust Game (TG). In a TG,

the first player chooses whether to cooperate or not, and the second player makes his decision

after having observed the first player’s choice. To be consistent with the rest of the literature, we

sometime call Trust (T) and Not Trust (NT) the cooperative and non-cooperative actions of the

first player and Reward (R) and Not Reward (NR) the actions of the second player. Similarly,

the first player will sometime be called Trustor and the second player Trustee. Notice that in

a standard TG the second player has nothing to decide if the first player chooses NT. In this

sense the TG differs from a standard sequential PD. Table 1.5 shows the normal form of the

TG. When dealing with the repeated version of the TG, we make the simplifying assumption

that the first player can observe the choice of the second player, even when he plays NT. This

may be unrealistic in some cases, but not in others. Kreps and Wilson (1982) and Mailath

and Samuelson (2006) discuss the ”quality choice” game, in which a customer needs to trust a

firm, that can produce a good of high or low quality. There are cases in which a customer may

observe the quality chosen by the firm, even when he decides not to buy the good.

R NR

T R,R, S,T

NT P,P P,P

Table 1.5: Stage game payoffs in the TG

The stage game has a single pure NE (NT,NR). There are also many Nash equilibria where

the first player chooses NT , and the second player plays R with a probability smaller than his

Stackelberg probability qs “ P´S
R´S

. Notice that this is the probability with which the second

player should play R in order to make the first player indifferent between Trust and Not Trust.

Hence, there is a compact set of NE in which both players get their minmax payoff, P .

For the first player the (pure and mixed) Stackelberg payoff is R. For the second player, the

pure Stackelberg payoff is R, while the mixed Stackelberg payoff is πs “ Rqs ` T p1´ qsq ą R.

Figure 1.9 represents the set of feasible payoffs for the TG. When the game is repeated between

two long-run players, with perfect monitoring over past actions, the Folk Theorem applies and

any feasible profile can be an equilibrium outcome provided that it yields both players a payoff
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larger than their minmax payoff P . In the picture, the shaded area represents the set of payoff

profiles that can be sustained as subgame perfect NE for sufficiently patient players.

b2

b1

DC = DD

= CC

CD

0.25

0.5

0.75

0.9

0.5

0.75

0.9

π2

π1

Figure 1.9: The set of feasible payoffs in the TG.

In this section we will characterize all NE for the repeated TG, when players are constrained

to use memory-one strategies. The analysis will be similar to the one presented in the previous

section with respect to the PD. We will show that, as in the PD, no player can get in equilibrium

more than what he can get by mutual cooperation. In particular, there are no NE that sustain

the Stackelberg payoff combination pP, πsq. The set of payoff profiles that can be sustained by

NE is in fact much smaller than in the PD. We shall show that pR,Rq is the only payoff profile

that can be achieved in an equilibrium in which both players get more than P .

In the next section we will consider an asymmetric contest in which a long-run second player

interacts with a sequence of short-run first players, who can observe some of his past choices.

We consider two specifications of this basic setting. In the first, each short-run player can

observe the entire history of past choices made by the second player against other short-run

players. In the second, the short-run player only observes how the long-run player choose in

the previous round. We will show that, when the information about the choices made by the

long-run player is sufficiently rich, the long-run player can get his mixed Stackelberg payoff.

However, when the short-run player can only observe the last period outcome of the game,

the second player can at most secure himself R. This follows from the fact that when only

his last choice is observed, the long-run player can only build two types of reputations, either

never Reward or always Reward. To build a reputation in which Reward is played with a

positive probability, but smaller than one, short-run players should be able to observe more

than one outcome. Perhaps counterintuitively, we prove that providing short-run players more

information about the long-run players’ past choices may reduce their payoff in equilibrium.
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1.5.2 Zero Determinant and Unconditional strategies

From the previous section, recall that a ZD strategy can be described by two parameters, k and

Φ, where k is the value at which the ZD strategy intersects the diagonal of the payoff space,

and Φ is the slope of the strategy, which determines by how much a player’s payoff is below (or

above) the one of the opponent. A ZD strategy for the first player solves:

p1´ δqp01` p̃ “ φrΦpπ1 ´ k1q ´ pπ2 ´ k1qs

where p̃ “ tδpCC ´ 1, δpCD ´ 1, δpDC , δpDDu. Expanding the previous equation, we have:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p1´ δqp0 ` δpCC “ 1´ φpR ´ kqp1´ Φq

p1´ δqp0 ` δpCD “ 1´ φpT ´ k ´ ΦpS ´ kq

p1´ δqp0 ` δpDC “ ´φpP ´ kqp1´ Φq

p1´ δqp0 ` δpDD “ ´φpP ´ kqp1´ Φq

Those probabilities are between 0 and 1 only if P ď k ď R. Figure 1.10a shows some ZD

strategies for the first player. In every outcome of the TG, the first player never obtains a

larger payoff than the second player. It follows that the only ZD strategies that guarantee to

the first player a payoff at least as large as the one of the opponent, are those in which he

always defects, i.e. strategies characterized by p0 “ pDD “ pDC “ 0. Like in the PD, the first

player can use equalizer and generous strategies. In the first case, he can set the second player

payoff anywhere between P and R, as shown in Figure 1.10a. Notice that, when Φ “ 1, all

ZD strategies for the first player are payoff equivalent to AllD, which implies that he can only

get close to the left boundary of the payoff set, but he cannot pick a strategy that would allow

equal payoffs above the mutual defection payoff.

DC = DD

k

CC

CD

π2

π1

(a) First player

DC = DD

CC

CD

π2

π1

(b) Second player

b2

b1

DC = DD

= CC

CD

π2

π1

(c) Equalizer strategies

Figure 1.10: ZD strategies for the TG.
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A ZD strategy for the second player solves:

q̃` p1´ δqq01 “ φrΦpπ2 ´ k1q ´ pπ1π1π1 ´ k1qs

where q̃ “ tδqCC ´ 1, δqDC ´ 1, δqCD, δqDDu. Expanding the previous equation, we have:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p1´ δqq0 ` δqCC “ 1´ φpR ´ kqp1´ Φq

p1´ δqq0 ` δqCD “ ´φpS ´ k ´ ΦpT ´ kqq

p1´ δqq0 ` δqDC “ 1´ φpP ´ kqp1´ Φq

p1´ δqq0 ` δqDD “ ´φpP ´ kqp1´ Φq

(1.10)

Figure 1.10b shows an example of several ZD strategies for the second player. Notice that in

every outcome of the TG the second player’s payoff is never below the one of the opponent.

It follows that the only ZD strategies that allow the second player to obtain a payoff that is

never above the one of the opponent are those in which he always cooperates, i.e. strategies

characterized by q0 “ qCC “ qDC “ 1 (which implies Φ “ 1).

Our first result is that, when δ ă 1, the second player has no ZD strategies:

Proposition 8. When δ ă 1, the set of ZD strategies for the second player is empty. When

δ “ 1, all ZD strategies for the second player have either k “ P or Φ “ 1.

Proof. Notice that, since p1 ´ δqq0 ` δqDC “ 1 ´ φpP ´ kqp1 ´ Φq, and p1 ´ δqq0 ` δqDD “

´φpP ´ kqp1 ´ Φq, we have qDC “
1
δ
` qDD. Then, qDC ď 1 implies δ “ 1, qDD “ 0, and

qDC “ 1. Finally, to have qDD “ 0, it must be either k “ P or Φ “ 1.

Proposition 8 implies that the family of ZD strategies of the second player is represented by

segments of different slopes emanating from pP, P q. By choosing Φ, the second player sets the

extortion factor, i.e. by how much his payoff will be above the one of the opponent.

Figure 1.10c shows an example of an equalizer strategy for the first player (in red) and for the

second player (in black). In fact, this is the only EqS that the second player can use, and it is

payoff equivalent to the Stackelberg unconditional strategy qS. Indeed, each ZD strategy of the

second player enforces the same relation between player’s payoffs as an unconditional strategy,

meaning that every unconditional strategy with q ě qS is payoff equivalent to an ExS strategy.

Remark 5. Every ZD strategy of the second player is payoff equivalent to an unconditional

strategy with

q “
P p1´ Φq ´ S ` ΦT

Rp1´ Φq ´ S ` ΦT

46



1.5.3 Equilibrium payoffs

In this section we will characterize the set of NE for the TG. We follow the same road as in

the PD. We first show that within the Pareto frontier, only the mutual cooperation payoff

profile can be sustained as an equilibrium, if the first player is constrained to use a memory-one

strategy. Second, we show that only a small subset of the set of feasible payoffs strictly below

the Pareto frontier can be sustained as a SPNE, even when players are infinitely patient. In

particular, in no equilibrium the second player can obtain his Stackelberg equilibrium payoff.

Before moving on, notice that in the TG the cooperative action is a best reply for the first

player, if the second player cooperates also. Thus, all the conditions on δ for the existence of

fully cooperative equilibria are only needed for the second player. This is important because

the efficient equilibria that we shall find in this section would remain equilibria also in a context

in which the first player would be myopic, that is if he just played a best response to the current

choice of the second player.

Equilibria on the Pareto frontier Observe that, as in the PD, if the first player cooperates

after being cheated (i.e. if he sets pCD “ 1), the second player will always defect. This can

be part of a (not subgame perfect) NE only if the first player never cooperates, i.e. if he sets

p0 “ pDC “ pDD “ 0. Contrary to the PD, however, the same reasoning does not apply to the

second player. If he sets qDC “ 1, i.e. if he cooperates after being cheated, the first player has

an incentive to cooperate, rather than to defect.

Observation 3. In any equilibrium, if pCD “ 1, it must be p0 “ pDC “ pDD “ 0.

Recall that E is the set of NE, Ep is the set of SPNE, and that F̂ is the set of Pareto efficient

payoff profiles. What follows is the counterpart of Proposition 1 for the TG.

Proposition 9. If the first player is constrained to use a memory-one strategy, F̂XE “ pR,Rq.

Proof. To obtain a payoff profile u˚ P F̂ the equilibrium strategies must be such that vDD “

vDC “ 0 (otherwise the payoff profile would not be on the Pareto frontier). This implies

vCC ` vCD “ 1, which, by Lemma 021, holds if either p0 “ pCC “ vCC “ 1, or p0 “ pCD “

vCD “ 1, or p0 “ pCC “ pCD “ 1. From Observation 3, if p0 “ pCD “ 1, u˚ cannot be a Nash

equilibrium. If instead vCC “ 1, then u˚ “ pR,Rq.

21Recall Lemma 0 states: v
CC
` v

CD
“ p1´ δqp0 ` δpvCC

p
CC
` v

CD
p

CD
` v

DC
p

DC
` v

DD
p

DD
q.
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Equilibria below the Pareto frontier We now characterize NE that are strictly below the

Pareto frontier. Let BTG be the set of payoff profiles such that the payoff of the first player is

P , and the payoff of the second player is at most R:

BTG
“ tu P F : u1 “ P and P ď u2 ď Ru.

The next proposition shows that in the TG the only payoff profiles that can be sustained in an

equilibrium in memory-one strategies are either pR,Rq or elements of BTG (See Figure 1.11)22.

Proposition 10. If players are constrained to memory-one strategies, E “ Ep “ pBTGYpR,Rqq

b2

b1

DC = DD

= CC

CD

π2

π1

Figure 1.11: NE payoff profiles in the TG with memory-one strategies

As with the PD, we will proceed by describing the sets Lj, that is the set of payoff profiles that

can be sustained in equilibria in which exactly j states are visited.

Consider first the set L1. Notice that, as for the PD, the repetition of the outcome CD cannot

be an equilibrium. Moreover, neither can the repetition of the outcome DC be an equilibrium:

even if both players’ payoffs are equal to their minmax payoffs, the path would imply qDC “ 1

and pDC “ 0, but if the second player is willing to cooperate, the first player has an incentive to

set pDC “ 1 and choose C. Thus, the only visited outcome can be either CC or DD. Mutual

defection is always an equilibrium, while mutual cooperation is an equilibrium only if δ is large

enough:

Lemma 5. If δ ě T´R
T´P

L1 “ tπ : pπ1 “ π2 “ P q _ pπ1 “ π2 “ Rqu

22We omit here the payoff profile u1 “ u2 “ p1 ´ δqP ` δR, i.e. the payoff resulting from the equilibrium
where both players defect in the first period, and cooperate forever from the second period onward. Notice that,
as in the PD, this profile tend to R,R when δ Ñ 1, and to P, P when δ Ñ 0
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Consider now the set L2, where on the equilibrium path players visit 2 states. Recall that in

the PD there are only 2 equilibria: either players alternate between CD and DC, or they start

by mutual defection, and from the second period they cooperate forever. In the TG, only the

latter is an equilibrium. To see this, consider that alternating between CD and DC would yield

to the first player a payoff below his minmax payoff P . The next Lemma shows that there are

no other equilibria beside the one in which only CC is visited in the long-run.

Lemma 6. If δ ě T´R
R´P

L2 “ tπ : pπ1 “ π2 “ p1´ δqP ` δRqu

Proof. See Appendix 1.C.

As with the PD, we omit this equilibrium from the following analysis, as the corresponding

payoff profile approaches pR,Rq when δ Ñ 1.

The next Lemma considers the set L3, where only one state is never visited on the equilibrium

path. Recall that, in the PD, in this set there are two types of equilibrium paths: one where

the state CC is never visited, and one where the state DD is never visited. In the TG, neither

of those paths can be an equilibrium. It is easy to see why the state CC must be visited. In

any path in which only the other states are visited, the first player’s payoff is bound to be

below P , and hence it cannot be a NE. In the Appendix 1.C we will show that there are neither

equilibria in which only the state DD is never visited. In fact, the next Lemma shows that the

set L3 is empty:

Lemma 7.

L3 “ H

Proof. See Appendix 1.C.

Our final Lemma considers the set L4, that is the set of equilibria that visit every state. Recall

that, since every state is visited on the equilibrium path, equilibria in this set must be subgame

perfect. Moreover, in the PD, the proof of Lemma 4 implies that every equilibrium in L4 must

be belief-free, and that a strategy for the second player in a belief equilibrium is characterized

by probabilities qw such that, for every w P tCC,CD,DC,DDu, it holds:

qw “
Π1pwq ´ pp1´ δqπ1pwq ` δY q

δpX ´ Y q
(1.11)
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with Π1pwq “ X if w P tCC,DCu, and Π1pwq “ Y if w P tDC,DDu, where X and Y are

the total average payoffs for the first player if the second player today cooperates or defects,

respectively, i.e. X “ Π1pCCq “ Π1pDCq and Y “ Π1pCDq “ Π1pDDq. We will show that,

in the TG, equilibrium profiles in L4 are characterized by strategies as in 1.11 for the first

player, and by strategies that are either as in 1.11, or equal to the unconditional Stackelberg

strategy, for the second player. This implies that any equilibrium in L4 gives to the first player

his minmax payoff P , and gives to the second player at most the mutual cooperation payoff R:

Lemma 8. If δ ě maxtT´R
T´P

, P´S
R´S

u,

L4 “ tπ P F : π1 “ P and P ă π2 ď Ru

Proof. See Appendix 1.C

Thus, Lemma 8 shows that in the set L4 there are all payoffs profiles in BTG except for the

mutual defection payoff. Together with Lemma 5-7, this implies that the set of Nash equilibrium

payoff profiles is BTG Y pR,Rq.

Observation 4. Y4
j“1Lj “ E “ pBTG Y pR,Rqq

1.5.4 Equilibrium strategies

As we did for the PD, we now use the previous findings to describe equilibrium strategies in

the TG. We first characterize the set of NE in ZD strategies when δ “ 1. As with the PD, a NE

profile can only be in Generous, Defective or Equalizer strategies, while a SPNE can only be

in Equalizer strategies. Contrary to the PD, when we restrict attention to SPNE, only payoffs

profiles inside BTG can be sustained in an equilibrium in ZD strategies. The intuition is that

it is not possible for the second player to use a nice strategy, and at the same time to make

the first player indifferent. The second result is that, when δ ă 1, if we restrict attention to

equilibria different than mutual cooperation or mutual defection, then, among all memory one

strategies, the only SPNE strategy for the second player is his Stackelberg strategy. Finally,

we show that, as in the PD, when we restrict attention to reactive strategies, only mutual

cooperation and mutual defection can be sustained as a NE (not necessarily subgame perfect).
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Nash Equilibria in ZD strategies As we saw in Section 1.5.2, Proposition 8, when δ ă 1

the set of ZD strategies for the second player is in fact empty. Thus, equilibria in ZD strategies

only exist when δ “ 1. Just like in the PD, AllC is a best reply to any ZD strategy with

Φ ě 0, and AllD is a best reply to any ZD strategy with Φ ď 0 (we omit the trivial proof of

this fact). Thus, as in the PD, the TG admits three types of NE strategy profiles: Equalizer,

Generous and Defectors strategies. Figure 1.12 represents each of these types of equilibria (red

dots represent s1, black dots s2). The main difference with the PD is that in any equilibrium

of the TG, the first player’s payoff can be either R (as in Figure 1.12a ) or P (as in Figures

1.12b and 1.12c). The discussion above is summarized by the following:

Remark 6. Fix δ “ 1 and let s˚ “ pZDpk1, Φ1q, ZDpk2, Φ2qq be a profile in ZD strategies.

Then

s˚ is a NE if and only if:

• Φ1 “ Φ2 “ 0 and k2 “ P (Equalizer)

• Φ2 “ 1, Φ1 ě 0 and k1 “ k2 “ R (Generous)

• Φ2 ď 0, k2 “ P and Φ1 “ 1 or k1 “ P (Defector)

From the previous remark, and as we can see in Figure. 1.12, all equilibria in equalizer strategies

have Π1 “ P , and P ě Π2 ě R. Moreover, the mutual cooperation payoff profile pR,Rq can be

sustained only if equilibrium strategies are Generous, and if δ ě maxt1´φpR´P q, φpT ´Rqu,

with φ ă 1{pT ´Rq.

b2

b1

DC = DD

= CC

CD

π2

π1

(a) Generous

b2

b1

DC = DD

= CC

CD

π2

π1

(b) Defector

b2

b1

DC = DD

= CC

CD

π2

π1

(c) Equalizer

Figure 1.12: ZD equilibria in the TG

We can state the equivalent of Proposition 3, regarding SPNE in ZD strategies. As with the

PD, only equalizer strategies can be part of a SPNE equilibrium. This has the interesting

implication that mutual cooperation cannot be sustained by a SPNE with ZD strategies.

51



Proposition 11. Fix δ “ 1 and let s˚ “ pZDpk1, Φ1q, ZDpk2, Φ2qq be a profile in ZD strategies.

Then s˚ is a SPNE if and only if those are Equalizer strategies: Φ1 “ Φ2 “ 0 and k2 “ P

The proof of this proposition is similar to the analogous Proposition 3 and it is omitted.

Nash Equilibria in memory-one strategies Clearly, there are other equilibria beside those

in ZD strategies. For example, the same payoff profiles implied in Remark 6 can be attained in

equilibria where the second player uses an unconditional strategy, by setting q “ 1 (generous),

q “ 0 (defector), or q “ qS (Equalizers). Moving to the full set of memory one strategies, from

the proof of Proposition 10 we learned that any NE in memory-one strategies either visits only

one state, or it visits all the states. Moreover, we know that, if an equilibrium only visits one

state, equilibrium strategies must be either nice or cautious. If instead the equilibrium visits

all the states, then the first player must use an Equalizer strategy, while the second player must

use an unconditional strategy, or a ZD-Equalizer (if δ “ 1). We can then state the following:

Remark 7. Let s˚ “ pp,qq be a profile in memory-one strategies. Then s˚ is a NE if and only

if strategies are either:

• both nice: p0 “ pCC “ q0 “ qCC “ 1

• both cautious: p0 “ pDD “ q0 “ qDD “ 0

• both equalizer (if δ “ 1)

• p equalizer and q “ qS unconditional

The fourth type of equilibrium deserves a special attention. In this equilibrium, the first player

chooses a strategy p in which the conditional probabilities of playing Trust after each outcome

are such that at every round the second player is indifferent between playing Reward and Not

Reward. The second player mixes between Reward and Not Reward at every round with his

Stackelberg probability qS in order to make the first player indifferent between Trust and Not

Trust at every round. This equilibrium is thus of the type:

q˚ “ qS p˚ “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

p1´ δqp0 ` δpCC “ 1´ φpR ´ kq

p1´ δqp0 ` δpCD “ 1´ φpT ´ kq

p1´ δqp0 ` δpDC “ ´φpP ´ kq

p1´ δqp0 ` δpDD “ ´φpP ´ kq

(1.12)
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Our next proposition shows that, when δ ă 1, only the strategy profile s “ pp˚,q˚q can form

a SPNE different than mutual defection or mutual cooperation.

Proposition 12. Fix δ ă 1 and let s be a SPNE profile different from mutual cooperation or

mutual defection. Then s is a SPNE if and only s “ pp˚,q˚q.

Proposition 12 implies that the first player’s payoff in any mixed equilibrium is fixed at P , and

that the maximum payoff the second player can get in a mixed equilibrium is bounded from

above by the mutual cooperation payoff. Figure 1.13 shows the mixed equilibrium in which the

second player is able to get the mutual cooperation payoff (recall that black dots represent the

second player’s strategy, and red dots represent the first player strategy).

b2

b1

DC = DD

= CC

CD

π2

π1

Figure 1.13: Mixed SPNE: Maximum payoff for the second player - TG

Finally, we consider the case of reactive strategies, i.e. strategies that only condition on what

the opponent did the previous round. Notice that the proof of Proposition 7 for the PD holds

also for the case of a TG. This implies that, when players are restricted to reactive strategies,

only mutual defection and mutual cooperation can be NE, and only mutual defection is also

SPNE:

Remark 8. If players are restricted to reactive strategies and δ ă 1, E “ tpR,Rq, pP, P qu and

EP “ pP, P q

Summarizing the results, when players are restricted to memory-one strategies, not all payoffs

combinations can be part of an equilibrium. Proposition 10 shows that in any equilibria different

than mutual cooperation or mutual defection, the first player’s payoff is P, and second player’s

best payoff is R, the same payoff he would have get by playing a pure strategy. Thus, like in

the PD, there is no gain in mixing and mutual cooperation is the only Pareto efficient payoff.
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1.6 Short-run vs Long-run: does it pay to extort?

As we noticed in Section 1.5.3, in the repeated TG efficient equilibria exist provided that the

second player is sufficiently patient. These would remain equilibria, even if the first player were

to be completely myopic. As we shall see in the next chapter, this is important because it

allows us to provide an empirical test for the predictions of this model. It suffices to observe

the interaction between a single long-run second player who plays with a sequence of short-run

first players who can observe his past choices.

In this section we consider a model in which a single long-run (LR) second player interacts

with a sequence of short-run (SR) first players, in the spirit of Fudenberg and Levine (1989)

(see Mailath and Samuelson (2006) for a textbook presentation of these models). The type of

situations we have in mind is a single shop which serves sequentially a large group of consumers

who can observe the way in which previous consumers have been treated. The Trust Game is

thus played by a short-lived agent (the consumer) in the role of the trustor, against a long-lived

agent (the shop) in the role of the trustee. In what follows we shall always refer to the first

player as the short-run player and to the second player as the long-run player. Notice that in

this setting the long-run player cares about the way his current choices influence future short-

run players’ behavior. Short-run players do not have such a concern, as they only play once.

New equilibria emerge in this setting, because a sufficiently patient long-run player will prefer

to play cooperatively today to induce short-run players to play cooperatively in the following

rounds. Notice that this is a point in which the Trust Game differs from the PD. In a PD,

letting one short-run player to observe the past behavior of the long-run player does not affect

equilibria, as the short-run player will defect no matter what he learns about the long-run

player’s past choices. So the only equilibrium would be a repetition of mutual defection, just

like in the one-shot game.

1.6.1 Short-run and long-run players with memory-one

Let us start with the model in which each SR player only observes the previous period’s outcome

of the game. A strategy for the SR player is a mapping from the four possible outcomes of the

game to the the set of mixed strategies. The SR player is thus forced to play a memory-one

strategy as defined in 1.3.2. Notice that in this case no possibility arises for the LR player to

form a reputation for playing a mixed strategy, as the SR player can only condition on pure
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actions. We can thus apply the results obtained in Section 1.5.3. In particular, if the SR player

can observe the choices made in the previous round both by the long and the (previous) short

run player, then by proposition 10 in any SPNE the maximum payoff the LR player can obtain

in equilibrium is R. If the SR player can only observe the choice made by the LR player, but

not the one made by the (previous) SR player, then she is forced to use a reactive strategy. In

this case, Remark 8 applies, and in any NE only outcomes CC and DD are observed.

Finally, in the presence of commitment types, we can directly apply the results in Fudenberg

and Levine (1989), implying that the only equilibrium outcome in memory one strategies (and

in reactive strategies), is the mutual cooperation profile. To see this, notice that when the SR

player is restricted to memory one strategies, the LR player can commit only to two types, both

pure: he can commit to be either an AllC type, or an AllD type. Then, results in Fudenberg

and Levine (1989) implies that the LR player will commit to the strategy that gives him the

maximum payoff, which, in this context, implies full cooperation.

1.6.2 Observable mixtures

We shall now consider a repeated game with short-run, long-run players with observable mix-

tures. In particular, we shall assume that at each round the long-run player chooses a probability

qt P r0, 1s, which determines the probability with which he will play Reward at t. qt will be

observed by the short-run player at t ` 1. Notice that we assume that the short-run player

observes qt´1, but not the action chosen by the long-run player. This model is thus analogous

to the one discussed by Barlo et al. (2009), in which memory-one strategies are considered in

a context in which mixed actions are observed.

We restrict the strategy set Q of the long-run player by assuming that the probability qt with

which he plays Reward may depend on t, but not on the previous history of the game. A

strategy of this type is thus a sequence Q “ tqtu
8
t“1.

The short-run player’s strategy may condition on t, and, if t ą 1, on the mixed strategy qt´1

chosen by the long-run player in t´1. A strategy of this type is thus a sequence F “ tftprqu
8
t“1,

where r “ H if t “ 1, and r “ qt´1 if t ą 1. f1pHq P r0, 1s is the probability of playing C at

the first round, when no previous history is available. For t ą 1, ft is a map, ft : r0, 1s Ñ r0, 1s,

and ftprq is the probability of choosing C at round t given the mixed strategy qt´1 “ r P r0, 1s

chosen by the long-run player in t´ 1. F is the set of strategies for the short-run player.
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A strategy profile for this game is a pair pF,Qq where Q P Q is the strategy chosen by the

long-run player and F P F is the strategy of the short-run player. Given a strategy profile

pF,Qq, players’ payoff at time t ą 1 are:

π1tpF,Qq “ p1´ ftpqt´1qqP ` ftpqt´1qpRqt ` Sp1´ qtqq (1.13)

π2tpF,Qq “ p1´ ftpqt´1qqP ` ftpqt´1qpRqt ` T p1´ qtqq (1.14)

As is customary in this literature, we shall assume that the short-run player breaks an eventual

indifference by choosing the strategy that the long-run player prefers him to choose. In the TG,

when the first player is indifferent between C and D, he will play C. With this assumption, the

short-run player best response function is

BR1prq “

$

’

&

’

%

1, if r ě qS

0, if r ă qS
(1.15)

where qS “ P´S
R´S

is the Stackelberg mixed strategy for the long-run player.

A strategy profile pF,Qq is a Nash equilibrium for this game if ftpqt´1q P BR1pqtq @t, that is

if the short-run player plays a (myopic) best response to the strategy chosen by the long-run

player, at round t. At the same time, Q maximizes the inter-temporal payoff of the long-run

player. That is, Q solves:

max
QPQ

8
ÿ

t“1

δt´1π2tpF,Qq

We shall consider stationary NE, that is equilibria in which the long-run player chooses the

same mixed action at each round t (qt “ q̂ P r0, 1s @t) and the short run-player chooses the

same map (ft “ f̂ @t ą 1). Then, q̂ and f̂pq̂q are the probabilities with which the cooperative

action is chosen at each round. Notice that, because of the way in which we defined the best

response correspondence, in equilibrium no short-run player will use a mixed strategy.

Given a stationary strategy f̂ , we shall denote with qpf̂q the smallest value of q such that

f̂pqq “ 1. That is, qpf̂q is the smallest probability of cooperative behavior by the second player

that induces the first player to play cooperatively. If f̂pqq “ 0 for every q, then qpf̂q “ H.

Our main result is that stationary equilibria are grouped into two sets. In the first set there are

all equilibria in which the long-run player cooperates with a probability q̂ ă qS and the short-

run player sets f̂pqq “ 0 for all q. These are all the non-cooperative equilibria corresponding to

the payoff profile pP, P q. The second set of NE only exists if the long-run player is sufficiently
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patient. It contains all strategy profiles such that q̂ ě qS and qpf̂q “ q̂. These are the

equilibria in which short-run players are willing to cooperate provided that the long-run player

cooperates with a probability at least as large as qpf̂q, and the long-run player chooses exactly

this probability. The payoff profiles associated to these equilibria are represented by the thick

gray line in the figure below.
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b1

DC = DD

= CC

CD

π2

π1

Figure 1.14: Set of payoff profiles that can be sustained in stationary equilibria with observable
mixtures, that is the union of the dark gray line on the right boundary of the payoff space, and
the red point DD

This is the content of the following

Proposition 13. Let pf̂ , q̂q be a stationary equilibrium. Then either q̂ ă qS and qpf̂q “ H, or

q̂ ě qS and qpf̂q “ q̂.

Proof. See Appendix 1.C

A direct consequence of Proposition 13 is that the only equilibrium surviving the elimination of

weakly dominated strategies has q̂ “ qS and qpf̂q “ qS, i.e. is the one that gives to the second

player his Stackelberg payoff.

Proposition 13 should be contrasted with Proposition 10 and Remark 8 in Section 1.5.3. We

noticed that, since the best reply of the first player when the second player cooperates is to

cooperate also, the mutual cooperation equilibrium is the only efficient equilibrium also when

the first player is myopic, i.e. when he only care sabout the current period ’s payoff. Thus,

when the short-run player can only condition on the realized action of the long-run player in

the previous round, no extortion can take place in equilibrium. When instead he can condition

on the mixture that the long-run player used in the previous round, new equilibria emerge in

which the long-run player can extort a larger payoff.
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1.7 Discussion and Conclusions

In this chapter we developed a theoretical model for the repeated PD when players have limited

memory. Motivated by the rise in interest for the so called Zero-Determinant strategies, which

allow players to reach extortionate outcomes, we characterized the full set of equilibrium strate-

gies and payoffs. Specifically, our first result is that mutual cooperation is the only outcome

on the Pareto frontier in an equilibrium in memory one strategies. Our second result is that

in any equilibrium in memory one strategies, players’ payoffs are bounded from above by the

mutual cooperation payoffs. This implies that, with memory one strategies, allowing players to

use mixed actions does not change the maximum payoff they can get in equilibrium. Finally,

we described equilibrium strategies profiles, showing that, except for two peculiar cases, they

must be or nice, or cautious, or equalizer. Our final result is that the only equilibrium outcomes

that can be sustained in reactive strategies, are mutual cooperation and mutual defection.

In the second part of the chapter, we showed that similar results hold also when considering

the repeated TG. Specifically, mutual cooperation is the only strictly efficient equilibrium, and

extortionate outcomes can never be sustained in equilibrium.

In the last part of the chapter, we applied the model to an asymmetric setting where one long-

run second player interacts with a sequence of short-run first players. We call the information

available to the short-run player about the long-run player’s previous behavior the reputation

of the long-run player. We show that giving more information to the short-run player is equiv-

alent to expanding the set of possible reputations, and consequently of equilibria, so that also

extortionate outcomes become equilibria. Specifically, when only the previous period is dis-

closed to the short-run player, there is no extortion in equilibrium, and the best reputation the

second player can build is the fully cooperative one. If instead the first player has access to

richer information, the best reputation the second player can build is the extortionate one. This

finding confirms that mutual cooperation is only one out of the many possible outcomes arising

from the repetition of the game. Whether it will also be selected will depend on the type of

incentives that players have. In situations like the TG, where the incentive for the long-run

second player is to reward the trust often enough, but not always, the long-run player will need

a further incentive to be fully cooperative, i.e. reputation is not enough.
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Appendix

1.A Zero Determinant strategies with no discounting

(Press and Dyson, 2012)

In this section we report the derivation of ZD strategies, as shown in Press and Dyson (2012).

Recall that, when players are using memory-one strategies, we can describe the development

of the game over time with a Markow chain with the following transition matrix:

M “

¨

˚

˚

˚

˚

˚

˚

˝

p
CC
q
CC

p
CC
p1´ q

CC
q p1´ p

CC
qq

CC
p1´ p

CC
qp1´ q

CC
q

p
CD
q
CD

p
CD
p1´ q

CD
q p1´ p

CD
qq

CD
p1´ p

CD
qp1´ q

CD
q

p
DC
q
DC

p
DC
p1´ q

DC
q p1´ p

DC
qq

DC
p1´ p

DC
qp1´ q

DC
q

p
DD
q
DD

p
DD
p1´ q

DD
q p1´ p

DD
qq

DD
p1´ p

DD
qp1´ q

DD
q

˛

‹

‹

‹

‹

‹

‹

‚

We can then find the stationary vector by solving

vM “ v (1.16)

Now let M 1 “M ´ I, where I is the identity matrix. Applying Cramer’s rule to M 1, we have:

AdjpM 1
qM 1

“ detpM 1
qI “ 0, (1.17)

where AdjpM 1q is the matrix of minors of M 1.

Since, from 1.16, we have vM 1 “ 0, it follows that every row of AdjpM 1q is proportional to v.

This result does not change if we manipulate M 1 by adding the first column to the second and

third column, and substituting the last column with a general vector f “ pf1, f2, f3, f4q.

We then obtain the following matrix:
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M̂pfq “

¨

˚

˚

˚

˚

˚

˚

˝

´1` p
CC
q
CC

´1` p
CC

´1` q
CC

f1

p
CD
q
CD

´1` p
CD

p1´ q
CD

f2

p
DC
q
DC

p
DC

´1` q
DC

f3

p
DD
q
DD

p
DD

p1´ q
DD

f4

˛

‹

‹

‹

‹

‹

‹

‚

And, by 1.16 and 1.17, we know that v is proportional to each row of AdjpM̂pfqq.

Notice that two of the columns of M̂pfq depend only on one player strategy: the second column

of M̂pfq is p̃ “ tpCC ´ 1, pCD ´ 1, pDC , pDDu and the third is q̃ “ tqCC ´ 1, qCD, qDC ´ 1, qDDu.

Thus, by setting p̃ “ f , the first player is able to make detpM̂pfqq “ 0.

Now, the dot product of any vector f with the stationary vector v is :

vf “ v1f1 ` v2f2 ` v3f3 ` v4f4 9 d1f1 ` d2f2 ` d3f3 ` d4f4,

where d “ pd1, d2, d3, d4q is the last row of AdjpM̂pfqq, i.e. di are the determinants of the 3x3

matrices formed by the first three columns of M̂pfq, leaving out one row at the time.

Then, we can express the dot product of any vector f with the stationary vector v as:

v.f “
detpM̂pfqq

detpM̂p1qq
,

where the denominator is the proportionality constant to ensure v.1 “ 1.

Recalling that πi is the stage game payoff vector for player i, the total average payoff is

Πi “ vπ “
detpM̂pπiqq

detpM̂p1qq
.

It follows that:

aΠ1 ` bΠ2 ` c “ a
detpM̂pπ1qq

detpM̂p1qq
` b

detpM̂pπ2qq

detpM̂p1qq
` c “

detpM̂paπ1 ` bπ2 ` c1qq

detpM̂p1qq

.

We finally arrived to the important point: if the first player sets

p̃ “ aπ1 ` bπ2 ` c1, (1.18)

we have detpM̂paπ1 ` bπ2 ` c1qq “ 0, which implies aΠ1 ` bΠ2 ` c “ 0, i.e. the first player is

able to unilaterally enforce a linear relation between payoffs.

Solutions to 1.18 are called ZD strategies.

For example, by setting a “ 0 in 1.18 (i.e. by using an equalizer strategy), the first player is

able to enforce bΠ2 ` c “ 0, i.e. to set the opponent’s payoff at ´ c
b
.
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1.B Belief-free equilibria (Ely and Valimaki, 2002)

Let BPD be the set of payoffs profiles such that both players payoff are between the mutual

cooperation and the mutual defection payoff (see Figure 1.7):

BPD
“ tu P F : P ď ui ď R for all iu

Ely and Valimaki (2002) show that any payoff profile inside BPD can be the outcome of a

subgame perfect equilibrium in memory-one strategies:

Remark 4. [Result from Section 1 in Ely and Valimaki (2002)] The payoff profile u˚ can be a

subgame perfect, belief-free equilibrium if and only if u˚ P BPD.

To construct the equilibrium, Ely and Valimaki (2002) proceed as follows: player i chooses

probabilities s.t., if player i today chooses C, his opponent is indifferent between C and D and

obtains a continuation value of X, and if player i today chooses D, his opponent is indifferent

between C and D and obtains continuation value of Y .

Ely, Hörner, et al. (2005) call this type of equilibrium belief-free since the optimal action in

one period do not depend on players’ beliefs over which action the opponent will choose in that

period, so that players are indifferent no matter which action the opponent is currently playing.

Notice that this is a condition for indifference that is different from the usual one of the shot

mixed equilibrium: in a belief-free equilibrium, continuation probabilities are s.t. a player is

indifferent no matter which action the opponent is currently playing, while the repetition of

the one-shot equilibrium does not guarantee that a player is indifferent also today, as he would

be indifferent today only if the opponent is playing the mixed equilibrium also today.

Let ρipwq be the continuation payoff for player i if today outcome is w and, with a little abuse

of notation, let πipwq be the stage game payoff for player i corresponding to outcome w. The

total average payoff (Πipwq), if today’s outcome is w, is the weighted average of today’s payoff

(πipwq) and the continuation payoff relative to w (ρipwq), with weights p1´ δq and δ:

Πipwq “ p1´ δqπipwq ` δρipwq

Recalling that pw is the probability that the first player cooperates tomorrow if today’s outcome

is w (similarly is qw for the second player), then pwqw is the probability that tomorrow’s outcome

is CC if today’s outcome is w, i.e. the probability that both players cooperate tomorrow if

today outcome is w, and similarly for the other possible outcomes.
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Then, we can write the continuation payoff ρipwq as the average of the total payoffs for each of

tomorrow’s possible outcomes:

ρipwq “ pwqwΠipCCq ` pwp1´ qwqΠipCDq ` p1´ pwqqwΠipDCq ` p1´ pwqp1´ qwqΠipDDq

In a belief-free equilibrium, if the first player cooperates, the second player total payoff should

be fixed, no matter which action he chooses. Thus, the total average payoff of the second

player after outcomes CC and CD, i.e. after outcomes in which the first player cooperates,

should be the same: Π2pCCq “ Π2pCDq “ X. Similarly, the second player’s payoff after

outcomes DC and DD, i.e. after outcomes in which the first player defects, should be the

same: Π2pDCq “ Π2pDDq “ Y . In this case, the continuation payoff of the second player

reduces to ρ2pwq “ pwX`p1´pwqY , which does not depend on second player’s strategy, hence

the name belief-free.

The total average payoff of the second player if today outcome is w is then:

Π2pwq “ p1´ δqπ2pwq ` δρ2pwq “ p1´ δqπ2pwq ` δppwX ` p1´ pwqY q.

This must hold for every w P tCC,CD,DC,DDu. We have then 4 equations, that we can solve

for each pw and get:

pw “
Π2pwq ´ pp1´ δqπ2pwq ` δY

δpX ´ Y q
(1.19)

where Π2pwq “ X if w P tCC,CDu, and Π2pwq “ Y if w P tDC,DDu.

In order for those probabilities to be between 0 and 1, we need: R ě X ą Y ě P and

δ ą maxt Y´S
X´S

, T´X
T´Y

u. Moreover, Equations 1.19 imply: 0 ă pCC ď 1, 0 ă pCD, pDC ă 1, and

0 ď pDD ă 1.

If the first player is using a strategy as specified by Equations 1.19, the second player payoff is

p0pX ´ Y q ´ Y . At any period of the game, including the first one, if the first player’s realized

action is C (D), the second player’s total average payoff is X pY q, implying that the first player

can set the second player’s payoff anywhere between P and R.

To be subgame perfect, a pair of memory-one strategies must be a Nash equilibrium after

each possible outcome w P tCC,CD,DC,DDu. This is to say that an equilibrium is subgame

perfect if it is still a Nash equilibrium when the game starts at w, and players should play pw

and qw, i.e. a game with p0 “ pw and q0 “ qw.

If the first player is using a strategy as in Equations 1.19, after any outcome w the total average

payoff of the second player is pwpX ´ Y q ´ Y , which does not depend on the second player’s
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strategy. If also the second player is using this type of strategy, neither the first player’s payoff

depends on the first player’s strategy, meaning that those strategies form a subgame perfect

Nash equilibrium. This implies that all (and only) payoff profiles in BPD can be the outcome

of this type of equilibrium. Notice that the values of X and Y are not required to be the same

for the two players.

Example 5. It is possible for a player to get the mutual cooperation payoff if the opponent is

using strategies as in Equations 1.19, with X “ R. Consider the case where the both players

are using strategies as in Equation 1.19. Then, if the first player sets X “ R and starts with

C, strategies with any Y ă R can form a s.p.e. For example, by setting Y “ P , equilibrium

probabilities are:
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

pCC “
X´δY´p1´δqR

δpX´Y q
“ 1

pCD “
X´δY´p1´δqT

δpX´Y q
“

δpT´P q´pT´Rq
δpR´P q

pDC “
Y´δY´p1´δqS

δpX´Y q
“

p1´δqpP´Sq
δpR´P q

pDD “
Y´δY´p1´δqP

δpX´Y q
“ 0

(1.20)

Figure 1.B.1, on the left, shows an example of equilibrium where both players start with C and

then use those kind of strategies. On the right, there is instead an example of an asymmetric

equilibrium, where the first player payoff’s is fixed at 2, and second player ’s payoff is fixed at

3. Notice that also this equilibrium can be sustained by several strategies. For example, since

we set R “ 4 and P “ 1, the first player can fix the second player payoff at 3 by setting p0 “ 1,

X “ 3 and any Y ă 3, or by setting p0 “ 0, Y “ 3, and any X ą 3. Similarly for the second

player (who sets the first player payoff at 2).

DD

DC

CC

CD

π2

π1

DD

DC

CC

CD

π2

π1

Figure 1.B.1: Belief free equilibria - Examples. Numerical values are T “ 6, S “ 0 and δ “ 9{10.

The gray square in the figure represent the set BPD, i.e. the set of payoff that can be sustained

in a belief-free equilibrium in memory-one strategies.
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1.C Proofs

Lemma 2. If δ ě maxpT´R
R´P

, P´S
T´P

q:

L2 “ tπ : pπi “
S ` δT

1` δ
^ π´i “

T ` δS

1` δ
q _ pπ1 “ π2 “ p1´ δqP ` δRqu Ă BPD

Proof. Notice that, from Remark 3, strategies in this set have to be pure, as it cannot be that a

player is choosing either AllC or AllD and the other player is mixing. Thus, in L2 two cases are

possible: either the equilibrium strategies alternate forever between two states, or the initial

state is different from the state in the second period, which is then repeated forever. We shall

consider them in turn.

Let us start with strategies that alternate forever between two states. Because of Remark

3, in equilibrium two strategies can only alternate between CC ´ DD and CD ´ DC. To

alternate between CC and DD requires that players always cooperate after mutual defection,

and always defect after mutual cooperation. This implies qDD “ pDD “ 1 and qCC “ pCC “ 0.

Two strategies with these characteristics cannot form an equilibrium. To see this, consider

the toughest punishment that players can enforce in this case, that is to set pCD “ qDC “ 0.

When the first player sets pDD “ 1, the second player has an incentive to choose AllD, which

would lead to a path in which players alternate between outcomes DD and CD, and clearly

this cannot be an equilibrium.

Alternating between states CD and DC can be an equilibrium, with corresponding payoff

profile pS`δT
1`δ

, T`δS
1`δ

q (when the first player starts by cooperating) or pT`δS
1`δ

, S`δT
1`δ

q (when the

second player starts by cooperating). This is an equilibrium if players do not have an incentive

to defect when they are supposed to cooperate. Considering again the maximum punishment,

that is to set pDD “ qDD “ 0, we need δ ě P´S
T´P

.

Consider now the case in which the initial state is different from the state in the second period,

which is then repeated forever. From Observation 1, we know that neither of those states can

be CD or DC. A situation where the initial state is mutual defection, and from the second

period onward there is mutual cooperation can happen, for example, with a pair of WSLS

strategies that start by defecting: the induced path is DD,CC,CC..., which is an equilibrium

if 2R ą P ` T and δ ě T´R
R´P

, and which visits only the states CC and DD. The opposite

situation can never be an equilibrium, as players would defect from the very first round.

Thus, we have L2 “ tp
S`δT
1`δ

, T`δS
1`δ

q, pT`δS
1`δ

, S`δT
1`δ

q, pp1´ δqP ` δR, p1´ δqP ` δRqu Ă B.
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Lemma 3. If δ ě maxpP´S
T´P

, T´R
R´S

q:

L3 “ tπ : pπi “ P ^ P ď π´i ď
S ` δT

1` δ
, q _ pπi “ R ^

S ` δT

1` δ
ď π´i ď Rqu Ă BPD

Proof. As with L2, in L3 there are several types of equilibrium paths: piq the first period

outcome is different from the second, and the second is different from the third, which then

repeats forever; piiq the first outcome is different from the second, and from the second on it

alternates between two other outcomes; finally piiiq all 3 outcomes have positive probability in

the long-run. Notice that, while strategies of the first two types has to be pure, strategies of

the third type can be mixed.

From Observation 1 we know that there cannot be equilibria in strategies of type piq: since the

long-run outcome can be neither CD or DC, one of those outcomes have to be visited in the

first or the second period (if both outcomes are visited, we would end up in L2). If the outcome

CD is followed by DD, the player who is supposed to cooperate would defect immediately.

If instead the outcome CD is followed by CC, it would imply pCD “ 1, which cannot be an

equilibrium.

Considering the type of strategies profiles leading to piiq, Observation 1 and Lemma 2 imply

that the first period outcome can be either CC or DD, followed by an alternation between CD

and DC. Neither of those can be an equilibrium: if the outcome in the first period is CC, the

player that is supposed to cooperate in the second round has an incentive to defect from the

beginning, as this would not change the induced path, but would give him a payoff of T instead

of R at the very beginning. Similarly, if the outcome in the first period is DD, the player who

is supposed to cooperate in the second period has an incentive to cooperate from the beginning,

as this would give him a payoff of S`δT
1`δ

, which, for δ ě P´S
T´P

, is greater than p1´δ2qP`δpS`δT q
1`δ

.

Now we move to the third case, where players might use mixed strategies, and in the long-run

only one state is never visited. Let w1 be the that state.

Recall that the transition matrix is :

M “

¨

˚

˚

˚

˚

˚

˚

˝

p
CC
q
CC

p
CC
p1´ q

CC
q p1´ p

CC
qq

CC
p1´ p

CC
qp1´ q

CC
q

p
CD
q
CD

p
CD
p1´ q

CD
q p1´ p

CD
qq

CD
p1´ p

CD
qp1´ q

CD
q

p
DC
q
DC

p
DC
p1´ q

DC
q p1´ p

DC
qq

DC
p1´ p

DC
qp1´ q

DC
q

p
DD
q
DD

p
DD
p1´ q

DD
q p1´ p

DD
qq

DD
p1´ p

DD
qp1´ q

DD
q

˛

‹

‹

‹

‹

‹

‹

‚

Let αpw1, w2q be a generic element of M , that is the probability to go from state w1 to state

w2.
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The proof is based on the following conditions, which must hold if in equilibrium the state w1

is never visited:

1.
ř

wi‰w1
αpwi, w

1q “ 0: the probability to go to state w1 from any other state must be 0.

2. αw,w ă 1 for any w ‰ w1: the long-run path cannot be a repetition of only one state.

3. if αw1,w2 “ 1 Ñ αw2,w1 ă 1 for any w1, w2 ‰ w1: the long-run path cannot be a repetition

of only two states.

4. w0 ‰ w1: the equilibrium path cannot start in w1

5. pCD, qDC ă 1: a player should never cooperate after being exploited (see Observation 1)

6. ppDD “ 0 Ñ pDC ą 0q ^ ppDC “ 0 Ñ pDD ą 0q: in equilibrium no player can use the

strategy AllD.

7. pw1 “ qw1 “ 0 (assumption on punishment, not a necessary condition): if players deviate

from the equilibrium path, and the state w1 is visited, they will use the maximum pun-

ishment possible, that is, to defect after w1. Notice that this condition does not change

the equilibrium payoff profiles, since the state w1 is never visited.

Consider for example the case in which the mutual cooperation outcome is never visited, so

w1 “ CC. From Condition 1, it must be that p
CD
qCD “ pDCqDC “ pDDqDD “ 0. Moreover,

from Condition 6, qDD “ 0 implies qCD ą 0, (otherwise the second player would be always

defecting), which in turn implies pCD “ 0. Thus, it must be either qDD “ pCD “ 0, or

pDD “ qDC “ 0 (if pDD “ qDD “ 0 Condition 2 is not satisfied). Moreover, qCD “ 0 implies

pDD “ 0 and pDC “ 0 implies qDD “ 0.

We can proceed in a similar way for all other states and, by finding the necessary conditions on

strategies to avoid one particular state, we can check whether those can form an equilibrium.

Thus, the conditions that allow a path to visit every state in the long-run except for CC are:

1. qDD “ pCD “ pDC “ 0

2. qDD “ pCD “ qDC “ 0

3. pDD “ qDC “ pCD “ 0

4. pDD “ qDC “ qCD “ 0
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Consider first case 1 (the case 4 is specular). The transition matrix in this case is :

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1

0 0 qCD 1´ qCD

0 0 qDC 1´ qDC

0 pDD 0 1´ pDD

˛

‹

‹

‹

‹

‹

‹

‚

In this case, the second player has an incentive to set qDC “ 0, that is to avoid the outcome

CD and always defect, and this cannot be an equilibrium.

Consider now the case 3 (the case 2 is specular). The transition matrix is:

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 1

0 0 qCD 1´ qCD

0 pDC 0 1´ pDC

0 0 qDD 1´ qDD

˛

‹

‹

‹

‹

‹

‹

‚

Notice that, if pDC “ 1, the second player best reply would be qCD “ 1, violating Condition 3.

If pDC “ 0, condition 6 would be violated, as the first player is choosing AllD. Then, it must be

0 ă pDC ă 1, i.e. the first player must mix after DC. This means that the payoff of choosing

D has to be the same as the payoff of choosing C, given that the opponent is choosing D (since

qDC “ 0). Recalling that Πipwq is the total average payoff of player i if today’s outcome is w,

it must be:

Π1pCDq “ Π1pDDq

This holds if:

qDD “
pP ´ Sq ´ δqCDpT ´ P q

δpT ´ Sq
, qCD ă

P ´ S

δpT ´ P q
, δ ě

P ´ S

T ´ P

Thus, we have: 0 ă qDD ă qCD ă 1, meaning that the second player should mix after both

outcomes DD and CD. In turn, the second player is indifferent if the payoff of choosing D is the

same as the payoff of choosing C, given that the opponent is choosing D (since pCD “ pDD “ 0):

Π2pDCq “ Π2pDDq

which holds if pDC “
P´S

δpT´P q
and δ ě P´S

T´P
.

Thus, we have a first type of equilibrium (we call it D3-eq) that visits 3 states in the long-run,

formed by strategies of the type:

p “ pp0, 0, 0, pDC , 0q q “ pq0, 0, qCD, 0, qDDq. (1.21)

67



Notice that, in all those equilibria, the second player’s payoff is P , and the first player payoff is

between P and S`δT
1`δ

, meaning that the first player payoff is bounded from above by the payoff

he would get in the equilibrium where states CD and DC alternate.

Consider now the case where the state DD is never visited. Condition 1 implies that it must

be: p1´ pCCqp1´ qCCq “ p1´ p
CD
qp1´ qCDq “ p1´ pDCqp1´ qDCq “ 0. Moreover, Condition

5, implies pCD, qDC ă 1 and pDC “ qCD “ 1. Thus, we can have only two cases:

1. pCC “ pDC “ qCD “ 1

2. qCC “ pDC “ qCD “ 1

Consider case 1 (case 2 is specular). The transition matrix in this case is:

M “

¨

˚

˚

˚

˚

˚

˚

˝

qCC 1´ qCC 0 0

pCD 0 1´ pCD 0

qDC 1´ qDC 0 0

0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

As before, Condition 2 implies 0 ă pCD ă 1, so the first player should get the same payoff

when choosing C and when choosing D, given that the opponent chooses C (since qCD “ 1):

Π1pCCq “ Π1pDCq. Solving for qCC and qDC , we get:

qCC “
´δqDCpR ´ Sq ` δpR ´ Sq `R ´ T

δpS ´ T q
, 0 ď qDC ă 1´

T ´R

δpR ´ Sq
δ ą

T ´R

R ´ S

Thus, it must be 0 ă qCC ă 1, meaning that the second player is mixing after outcome CC,

implying Π2pCCq “ Π2pCDq. Solving for pCD we finally have:

pDC “ 1´
T ´R

δpR ´ Sq
, δ ą

T ´R

R ´ S

This is the second (and last) type of equilibrium (we call it C3-eq) in the set L3, with equilibrium

strategies:

p “ pp0, 1, pCD, 1, 0q q “ pq0, qCC , 1, qDC , 0q (1.22)

In all those equilibria, the second player’s payoff is fixed at R, while the first player’s payoff

is between S`δT
1`δ

, and R, meaning that the first player’s payoff is bounded from below by the

payoff he would get in the equilibrium where states CD and DC alternate.

Finally, consider the case where the state CD is never visited (the case where the state DC is

never visited is specular). Condition 1 implies: pCCp1´qCCq “ pDCp1´qDCq “ p
DD
p1´qDDq “

0.
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Because of Condition 2, we have qDC ă 1, implying pDC “ 0, pDD ą 0, and qDD “ 1. Thus, we

have again two cases:

1. pDC “ pCC “ 0, qDD “ 1

2. pDC “ 0, qCC “ qDD “ 1

In the first case the transition matrix is:

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 qCC 1´ qCC

0 0 0 1

0 0 qDC 1´ qDC

pDD 0 1´ pDD 0

˛

‹

‹

‹

‹

‹

‹

‚

Notice that the second player in this case has an incentive to set qCC “ qDC “ 0, meaning that

the first player will set pDD “ 0, and this cannot be an equilibrium, as the first player would

be always defecting.

In the second case the transition matrix is:

M “

¨

˚

˚

˚

˚

˚

˚

˝

pCC 0 1´ pCC 0

0 0 0 1

0 0 qDC 1´ qDC

pDD 0 1´ pDD 0

˛

‹

‹

‹

‹

‹

‹

‚

Also in this case the second player has an incentive to set qDC “ 0, meaning that he is using

the strategy q “ pp0, 1, 0, 0, 1q, that is, WSLS. If 2R ą T ` P , the first player best reply is to

set pCC “ 1, and this cannot be an equilibrium in L3.

Thus, we have shown that in the set L3 there are only two types of equilibria: D3-eq and C3-eq,

whose payoffs are inside the set B.

Notice that only the D3-eq are also s.p.e: indeed, if the path reach the state DD, it is optimal

for a player to defect, given that the opponent will defect also. This is not the case with type

C3-eq: after the outcome CC, a player might have an incentive to deviate and suffer a lower

payoff for one period, but ensuring that the path does not get stuck in mutual defection.If

δ ą P´S
R´S

, the second player always have an incentive to cooperate instead of punishing the first

player, implying that C3-eq are not s.p.e.

Lemma 4. If δ ě maxtT´R
T´P

, P´S
R´S

u:

L4 “ BPD
´ tpRRq, pPP qu
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Proof. First notice that the first part of the proof of lemma 3 implies that also in the set L4

there are no equilibria in pure strategies. Moreover, we know that equilibria in L4, since they

visit every state, must be s.p.e., and that belief-free equilibria a la Ely are all in the set B.

Thus, if we show that an equilibrium in L4 are belief-free, automatically we prove also that

the set of equilibrium payoffs is a subset of B. Recall that, in a belief-free equilibrium, it

must hold ΠpCCq “ ΠpDCq and ΠpCDq “ ΠpDDq (we dropped the subscripts from Πi for

convenience), so that a player is indifferent between his two actions C and D, no matter which

action the opponent is currently choosing . Moreover, since in the set L4 equilibria cannot be

pure, in equilibrium at least one player is mixing after at least one state.

Let w1 be the state after which the first player is mixing.

Since the first player is mixing after w1, he must be indifferent between playing C or D.

The payoff from playing C after outcome w1 is: qw1ΠpCCq ` p1´ qw1qΠpCDq, while the payoff

from playing D is: qw1ΠpDCq ` p1´ qw1qΠpDDq.

Those payoffs are equal if: qw1pΠpCCq ´ΠpCDq `ΠpDDq ´ΠpDCqq “ ΠpDDq ´ΠpCDq.

Notice that solving this expression for qw1 would give a probability outside the interval r0, 1s,

since the PD does not have a one shot mixed equilibrium.

So, the payoffs are equal if either ΠpDDq “ ΠpCDq and ΠpCCq “ ΠpDCq, or if ΠpDDq “

ΠpCDq and qw1 “ 0, or if ΠpCCq “ ΠpDCq and qw1 “ 1.

Dutta and Siconolfi (2010) stops here, by noticing that in a totally mixed equilibrium only the

first condition is relevant, which is exactly the condition for a belief-free equilibrium. When we

allow the equilibrium to not be totally mixed, the last two conditions are the relevant ones.

Assume first that ΠpCCq “ ΠpDCq and qw1 “ 1. Then, for any w, the first player will choose

C after w whenever qwpΠpDDq ´ΠpCDqq ą ΠpDDq ´ΠpCDq.

Let ΠpDDq ą ΠpCDq. This implies that the first player will choose C whenever qw ą 1, that

is, never, unless qw “ 1, in which case he is indifferent. Thus, after any w, either qw ă 1 and

pw “ 0, or qw “ 1. Since this must hold for any w, this implies that the probability to go to

the outcome CD is zero, which contradicts our assumption that every state is visited.

This same reasoning can be applied to all other cases, and the conclusion is that, if in equilibrium

at least one player is mixing, then either the equilibrium is belief-free, or not every state is

visited, meaning that the resulting equilibrium payoff would not be in the set L4.
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Let ΠpDDq ă ΠpCDq. This implies that the first player will choose C whenever qw ă 1. Thus,

after any w, either qw ă 1 and pw “ 1, or qw “ 1. Since this must hold for any w, this implies

that the probability to go to the outcome DD is zero, which contradicts our assumption that

every state is visited.

Now assume that ΠpDDq “ ΠpCDq and qw1 “ 0. Then, for any w, the first player will choose

C after w whenever qwpΠpCCq ´ΠpDCqq ą 0.

Let ΠpCCq ą ΠpDCq. This implies that the first player will choose C whenever qw ą 0. Thus,

after any w, either qw ą 0 and pw “ 1, or qw “ 0. Since this must hold for any w, this implies

that the probability to go to the outcome DC is zero, which contradicts our assumption that

every state is visited.

Let ΠpCCq ă ΠpDCq. This implies that the first player will choose C whenever qw ă 0, i.e.

never, unless qw “ 0. Thus, after any w, either qw ą 0 and pw “ 0, or qw “ 0. Since this

must hold for any w, this implies that the probability to go to the outcome CC is zero, which

contradicts our assumption that every state is visited.

Thus, we have that, if ΠpCCq “ ΠpDCq, it must be ΠpCCq “ ΠpDCq, and if ΠpCCq “

ΠpDCq, it must be ΠpCCq “ ΠpDCq.

This, in turn, implies that, if in a subgame perfect equilibrium at least one player is mixing,

and all states are visited with positive probability, the equilibrium must be belief-free.

Proposition 4. Let s˚ “ pp,qq be a profile in memory-one strategies. Then s˚ is a NE if and

only if both strategies are either:

• nice: p0 “ pCC “ q0 “ qCC “ 1

• cautious: p0 “ pDD “ q0 “ qDD “ 0

• alternators: p0 “ pCD “ qDC “ 0, q0 “ pDC “ qCD “ 1

• equalizer: (See Equations 1.6)

• almost equalizer: (See Equations 1.22 and 1.21)

Proof. Recall that in the set L1 there can only be pairs of strategies that are either nice or

cautious (notice that Generous and Defective equilibria belong to this set, while Equalizer

strategies can belong to any set except for L3). In the set L2 there are only strategies that
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alternate between outcomes CD and DC. In the set L3 we found only two equilibria, in almost

equalizer strategies. In those equilibria, one player is indifferent after one outcome, and the

opponent is indifferent after the other two outcomes. Finally, in the set L4, there can only be

Equalizer strategies: as we saw in the proof of Lemma 4, strategies in this set should form a

belief-free equilibrium. A belief-free equilibrium is possible only if a player is indifferent among

all his strategies, no matter which action the opponent is currently using. This implies that the

relation between players’ payoffs must be linear. Ichinose and Masuda (2018) show that, among

all memory-one strategies, only ZD and unconditional strategies can enforce a linear relation

between players payoff. This implies that, in the PD, only Equalizer strategies are able to fix

the opponent payoff, and thus only Equalizer strategies can form equilibria in the set L4.

Proposition 5. Let p be a ZD strategy. Then p is part of a SPNE if and only if is an Equalizer

strategy.

Proof. (if) Recall that, in a belief-free equilibrium, Xi is the total average payoff for player i

if the opponent chooses C in the current round, and Yi is the total average payoff in the case

the opponent choses D in the current round. One can notice, recalling that equalizer strategies

are of the form as in Equations 1.7, that strategies in a belief-free equilibrium are ZD-equalizer

strategies with k “ p0pX1 ´ Y1q ` Y1, and φ “ 1´δ
X1´Y1

.

Alternatively, we can say that any pair of equalizer strategies forms a belief free equilibrium

where the second player’s total payoff in each period is X “ k ` p1´p0qp1´δq
φ

if the first player

chooses C, and Y “ k ´ p1´δqp0
φ

if the first player chooses D. This implies that every pair of

Equalizer strategies form a subgame perfect Nash equilibrium.

(only if) This is not the case with either generous or defector strategies. To see why, consider

first an equilibrium in generous strategies, so s1 “ ZDpΦ1, Rq and s2 “ ZDpΦ2, Rq. The total

average payoff for the first player after any outcome w ‰ CC, given that from tomorrow both

players will follow their equilibrium strategies, is:

Π1pwq “ R ´
p1´ δqpΦ1φ1p1´ qwq ` φ2p1´ pwqq

φ1φ2p1´ Φ1Φ2q

In this case, for any value of qw, φi, Φi, the payoff of setting pw “ 1 is always higher than the

payoff of setting pw ă 1, meaning that in any period the first player is willing to play C even

when he is supposed to mix, and thus, this cannot be a subgame perfect equilibrium (a similar

argument applies to defector strategies).
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Proposition 6. Let s˚ “ pp, qq be a profile in memory-one strategies, in which the outcome is

different than mutual cooperation or mutual defection. Then s˚ is a SPNE if and only if p and

q are Equalizer strategies.

Proof. Recall that in the set L1 there are pairs of strategies that are either nice or cautious, and

that the only payoffs inside this set are the mutual defection and the mutual cooperation payoff

profiles. Even if Generous and Defective strategies are not SPNE, there are Equalizer strategies

that are in the set L1, i.e. those with k “ P or k “ R. Certain Equalizer strategies belong to

the set L2, where players alternate between outcomes CD and DC, and they punish deviations

with probabilities in order to make the opponent indifferent between deviating, or sticking to

the equilibrium. Moreover, this is the only SPNE in the set L2. In the set L3 there are only

the two types of equilibria with strategies as specified in 1.22 and 1.21. Only the first type of

equilibrium, which never visit the state CC, is also a SPNE. Finally, the proof of Proposition 5

implies that every strategy in a belief-free equilibrium is an Equalizer strategy. Since equilibria

in the set L4 must be belief-free, it follows that, among all memory-one strategies, only Equalizer

can form SPNE in the set L4.

Proposition 7. If players are constrained to reactive strategies, δ ă 1 and P ´ S ‰ T ´ R,

then the only payoff profiles that can be sustained in a Nash equilibrium are pR,Rq and pP, P q.

If P ´ S “ T ´R, the set of equilibrium payoff profiles is BPD.

Proof. First notice that, with reactive strategies, the set L2 is empty: one equilibrium path

(DD, and then CC forever) implies pD “ 1, which cannot be an equilibrium. The other

equilibrium path (which alternates between CD and DC), implies p0 “ pC “ qC “ 1 and

q0 “ pD “ qD “ 0, i.e. those are TfT strategies starting from different actions. As long as

2R ą T ` S, this cannot be an equilibrium, as players have an incentive to deviate to the

mutual cooperation equilibrium. Now consider the set L4. The proof of Proposition 4 shows

that strategies in this set can only be Equalizer, but we saw from equations 1.1 that, unless

the game has equal gains from switching, that is unless P ´ S “ T ´ R, reactive strategies

are never Equalizer, which implies that the set L4 is empty. Thus, if P ´ S ‰ T ´ R, the

set of Nash equilibria payoffs in the PD with reactive strategies is E “ tpR,Rq, pP, P qu, and

the only subgame perfect equilibrium is AllD. If instead P ´ S “ T ´ R, every ZD strategy is

reactive, (Hilbe, Nowak, and Traulsen, 2013) implying that the results with general memory-one

strategies hold also in this case.
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Lemma 6. If δ ě T´R
R´P

L2 “ tπ : pπ1 “ π2 “ p1´ δqP ` δRqu

Proof. In L2 two cases are possible: either two states are visited in the long-run, or the initial

state is different from the state in the second period, which is then repeated forever. We shall

consider them in turn.

Let us start with strategies that visit two states in the long-run. Proposition 10 implies that

those states cannot be CC and CD, as this would imply pCD “ 1, and the second player would

have an incentive to choose D after CC.

If the states are DD and DC, then the first player is always defecting, the resulting payoff

profile is pP, P q. Nonetheless, this cannot be an equilibrium, since, if qDD “ 1, the first player

has an incentive to choose C after DD.

If the states are CC and DC, the second player is always cooperating, i.e. qCC “ qDC “ 1.

This cannot be an equilibrium, has the first player should play D after mutual defection, while

he has an incentive to play C.

Finally, if the two states are CD and DC, or CC and DD, it must be that players are using

pure strategies. None of those cases can be an equilibrium: in the first case, the first player

payoff would be lower than P. In the second case, the second player has an incentive to choose

D also after DD (see proof of Lemma 2).

Consider now the case in which the initial state is different from the state in the second period,

which is then repeated forever. From Observation 3 and Lemma 5, we know that neither of

those states can be CD or DC. As with the PD, there is an equilibrium where the initial

state is mutual defection, and from the second period onward there is mutual cooperation, if

2R ą P `T and δ ě T´R
R´P

, and which visits only the states CC and DD. The opposite situation

instead can never be an equilibrium, since the second player would defect from the very first

round.

Thus, we have L2 “ tπi “ π´i “ p1´ δqP ` δRu.

Lemma 7.

L3 “ H

Proof. As with L2, in L3 there are several types of equilibrium paths: piq the first period

outcome is different from the second, and the second is different from the third, which then
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repeats forever; piiq the first outcome is different from the second, and from the second on two

outcomes are visited in the long-run; finally piiiq all 3 outcomes have positive probability in

the long-run.

From lemma 6, we know that there cannot be equilibria of type (i) and (ii): in the first case,

the long-run outcome can only be CC. Then, CD and/or DC have to be visited in the first or

the second period.

If CD is visited in the second period, it must be pCD “ 1, which cannot be an equilibrium. If

DC is visited in the second period, the first player would have an incentive to choose C (instead

of D) in the second period, to anticipate the stream of mutual cooperation payoffs.

So, it must be that the state DD is visited in the second period. But then, in the first period

outcomes can only be CD or DC. But then, the first player would defect immediately if the

outcome is CD, and he would cooperate immediately if the outcome is DC.

Considering the type of strategies profiles leading to piiq, lemma 2 implies that there are no

equilibria where in the long-run two states are visited, thus there are no equilibria of this type.

Finally, the third type of equilibrium is the one where one state is never visited in the long-run.

Specularly with the proof of 3, let w1 be the that state.

As with the proof of Lemma 3, we consider the possible cases one by one. Since the transition

matrix is the same as in the PD, conditions 1-6 in the proof of Lemma 3 hold also in the TG.

Condition 5 is instead modified to take into account the observation 1: if in an equilibrium 3

states are visited in the long-run, it must be: pCD, qCD ă 1.

We start by noticing that, if w1 “ CC, the first player payoff would be below P , and this cannot

be an equilibrium.

Consider now the case w1 “ DD, so the state DD is never visited. Then, one of the following

conditions must hold:

1. pDC “ pCD “ qCC “ 1

2. qDC “ qCD “ pCC “ 1

3. pDC “ qCD “ qCC “ 1

4. pDC “ qCD “ pCC “ 1
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If qCC “ 1, the best reply of the first player is to set pCC “ 1, so that only the outcome CC is

visited in the long-run.

If qCD “ 1, the best reply of the first player is to set pCD “ 1, which can never be an equilibrium.

Consider now the case w1 “ CD, i.e. the case where the state CD is never visited. Then, one

of the following conditions must hold:

1. qDC “ 1, pCC “ 0, pDD “ 0

2. qDC “ 1, pCC “ 0, qDD “ 1

3. pDC “ 0, pCC “ 0, qDD “ 1

4. pDC “ 0, qCC “ 1, qDD “ 1

Case 1: if qDC “ 1, the first player will set pDC “ 1, and the second player has an incentive to

set qCC “ qDD “ 1, meaning that pCC “ 0 cannot be a best reply for the first player.

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 qCC 1´ qCC

0 0 0 1

pDC 0 1´ pDC 0

0 0 qDD 1´ qDD

˛

‹

‹

‹

‹

‹

‹

‚

Case 2: if qDC “ qDD “ 1, the best reply for the first player is to set pDC “ pDD “ 1, but then

the second player would have an incentive to defect after outcomes DC and DD. Thus, this

cannot be an equilibrium.

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 qCC 1´ qCC

0 0 0 1

pDC 0 1´ pDC 0

pDD 0 1´ pDD 0

˛

‹

‹

‹

‹

‹

‹

‚

Case 3: if qDD “ 1, the first player has an incentive to set pDD “ 1, and if pDC “ pCC “ 0,

the second player has an incentive to defect after outcomes CC and DC, so he will set qCC “

qDC “ 0. But this means that players alterate between outcomes CC and DD, which cannot

be an equilibrium.

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 0 qCC 1´ qCC

0 0 0 1

0 0 qDC 1´ qDC

pDD 0 1´ pDD 0

˛

‹

‹

‹

‹

‹

‹

‚
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Case 4: if qCC “ qDD “ 1, the first player would set pCC “ 1, and this cannot be an equilibrium

in L3.

M “

¨

˚

˚

˚

˚

˚

˚

˝

pCC 0 1´ pCC 0

0 0 0 1

0 0 qDC 1´ qDC

pDD 0 1´ pDD 0

˛

‹

‹

‹

‹

‹

‹

‚

Consider finally the case w1 “ DC, i.e. the case where the state DC is never visited. Then,

one of the following conditions must hold:

1. pCD “ 1, qCC “ 0, qDD “ 0

2. pCD “ 1, qCC “ 0, pDD “ 1

3. qCD “ 0, qCC “ 0, pDD “ 1

4. qCD “ 0, pCC “ 1, pDD “ 1

Cases 1 and 2 cannot be equilibria, since pCD “ 1.

Consider now Case 3. The first player has an incentive to set pCD “ pDC “ 0, that is to avoid

the outcome CD. The second player then has an incentive to set qDD “ 0, that is to defect

after outcome DD. But if qCD “ qDD “ 0, the second player is always defecting, and this

cannot be an equilibrium inside L3.

M “

¨

˚

˚

˚

˚

˚

˚

˝

0 pCC 0 1´ pCC

0 pCD 0 1´ pCD

0 0 0 1

qDD 1´ qDD 0 0

˛

‹

‹

‹

‹

‹

‹

‚

Finally, consider the case 4. Also in this case the first player has an incentive to set pCD “ 0.

But then, if δ ě T´R
R´P

, the second player has an incentive to set qCC “ qDD “ 1, so neither this

can be an equilibrium inside L3.

M “

¨

˚

˚

˚

˚

˚

˚

˝

qCC 1´ qCC 0 0

0 pCD 0 1´ pCD

0 0 0 1

qDD 1´ qDD 0 0

˛

‹

‹

‹

‹

‹

‹

‚

It follows that the set L3 is empty.
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Lemma 8. If δ ě maxtT´R
T´P

, P´S
R´S

u,

L4 “ tπ P F : π1 “ P and P ă π2 ď Ru

Proof. First notice that the first part of the proof of Lemma 7 implies that also in the set L4

there are no equilibria in pure strategies. Thus, in equilibrium at least one player is mixing

after at least one state. Let w1 be the state after which the first player is mixing.

Since the first player is mixing after w1, he must be indifferent between playing C or D.

We can write the payoff from playing C after outcome w1 as: qw1Π1pCCq ` p1 ´ qw1qΠ1pCDq,

and the payoff from playing D as: qw1Π1pDCq ` p1´ qw1qΠ1pDDq. Those payoffs are equal if:

qw1pΠ1pCCq ´Π1pCDq `Π1pDDq ´Π1pDCqq “ Π1pDDq ´Π1pCDq

If Π1pCCq ´Π1pCDq `Π1pDDq ´Π1pDCq ‰ 0, we can solve for qw1 and get:

qw1 “
Π1pDDq ´Π1pCDq

Π1pCCq ´Π1pCDq `Π1pDDq ´Π1pDCq

Notice that qw1 does not depend on w1, meaning that the second player is using an unconditional

strategy, and we know that this strategy can only be his Stackelberg strategy, qS. If q “ qS,

the second player is mixing after every state, so he must be indifferent after every state. We

can then apply the same reasoning as in the proof of Lemma 4, and prove that it must hold

Π2pDDq “ Π2pDCq and Π2pCCq “ Π2pCDq, i.e. the first player must use a belief-free strategy.

If Π1pCCq ´ Π1pCDq ` Π1pDDq ´ Π1pDCq “ 0, then it must hold Π1pDDq “ Π1pCDq and

Π1pCCq “ Π1pDCq, meaning that the second player must use a belief-free strategy.

However, any belief-free strategy is an equalizer strategy (see the proof of Proposition 5), so

that, if an equalizer strategy do not exists, neither a belief-free strategy exists. It directly

follows that, if δ ă 1, there are no belief-free strategies that the second player can use, so

all equilibria in L4 involve the unconditional Stackelberg strategy of the second player, and a

belief-free memory-one strategy for the first player. If δ “ 1, the second player can also use an

Equalizer strategy that fixes the opponent’s payoff at P .

This implies that in any equilibrium, the first player payoff is fixed at P , while the second

player payoff can be anywhere between P (excluded) and R(included):

L4 “ tπ P F : π1 “ P and P ă π2 ď Ru Ă B
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Proposition 13. Let pf̂ , q̂q be a stationary equilibrium. Then either q̂ ă qS and qpf̂q “ H, or

q̂ ě qS and qpf̂q “ q̂.

Proof. Since in equilibrium each short-run player is playing a best reply, either f̂pq̂q “ 0 or

f̂pq̂q “ 1. We shall first consider the case in which there is at least a probability of playing

Reward that induces the first player to play Trust, that is qpf̂q P r0, 1s. First notice that in

equilibrium it must be the case that q̂ “ qpf̂q. This is an immediate consequence of the fact

that the long-run player chooses a best response to the choices made by the short-run player.

On the other hand, since f̂pq̂q P BR1pq̂q, f̂pq̂q “ 1 implies that q̂ ě qS. It remains to consider

the case in which qpf̂q “ H. Since the short-run player will never cooperate, no matter what

the strategy chosen by the long-run player may be, playing any strategy q̂ P r0, 1s yields the

same payoff to the long-run player. If ppfq “ H to be an equilibrium it must be the case that

q̂ ă qS. This completes the proof.

1.D Reactive strategies with no discounting (Baklanov,

2018)

In this section we report the case of δ “ 1, as considered in Baklanov (2018). When δ “ 1,

Lemma 0 implies that the limit probabilities to cooperate in round t for tÑ 8 are:
$

’

&

’

%

p “ v
CC
` v

CD
“ p

C
pv

CC
` v

DC
q ` p

D
pv

CD
` v

DD
q “ pD ` ppC ´ pDqq

q “ v
CC
` v

DC
“ q

C
pv

CC
` v

CD
q ` q

D
pv

DC
` v

DD
q “ qD ` pqC ´ qDqp

(1.23)

So that:

p “
pD ` qDppC ´ pDq

1´ ppC ´ pDqpqC ´ qDq
and q “

qD ` pDpqC ´ qDq

1´ ppC ´ pDqpqC ´ qDq
(1.24)

Nowak and Sigmund (1988) show that when δ “ 1 the limit probabilities that players cooperate,

p and q, are independent. Considering the outcome CC, this means that the limit probability

that both players cooperate is the product of the limit probabilities that each player cooperate,

i.e. vCC “ pq, and similarly for the other outcomes.

Players payoffs are then:

Π1 “ pqR ` pp1´ qqSi ` p1´ pqqT ` p1´ pqp1´ qqP.

Π2 “ pqR ` pp1´ qqT ` p1´ pqqS ` p1´ pqp1´ qqP.
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Notice that we can use Equations 1.23 and write the payoff of the first player as a function only

of p, qC and qD (and similarly for the second player). This function can then be maximized

w.r.t. p, to find the first player’s best reply to any qC and qD. Baklanov (2018) noticed that in

this case the set of totally mixed Nash equilibria is characterized by:

Remark 9. (Totally mixed Nash equilibria in reactive strategies when δ “ 1, Theorem 2 in

Baklanov (2018))
$

’

’

’

’

’

&

’

’

’

’

’

%

DΠ1

p
“ 0, DΠ2

q
“ 0, D2Π1

p
ď 0, D2Π2

q
ď 0

p “ pD`qDppC´pDq
1´ppC´pDqpqC´qDq

, q “ qD`pDpqC´qDq
1´ppC´pDqpqC´qDq

0 ă p ă 1, 0 ă q ă 1

(1.25)

In those equilibria, players are using mixed strategies, which are not belief-free, as they are

indifferent among only a subset of their strategy space, unless T ´ R “ P ´ S, in which case

all equilibrium strategies are equalizer strategies23.

If T´R ą P´S, it is possible that a player gets more than the mutual cooperation payoff. The

maximum payoff that the first player can get corresponds to the equilibrium with the minimum

(maximum) probability that the first (second) player cooperates:

ppb1, qb1q “

ˆ

P ´ S

P `R ´ 2S
,

T ´ P

2T ´R ´ P

˙

Over all strategies that allow players to reach ppb1, qb1q, i.e. that satisfy Equations 1.24, the

pair of strategies that are also best reply to each other, and thus form a Nash equilibrium, are:

ppC , pDq “

ˆ

pP ´ Sqp2T ´ P ´Rq

pT ´ P qpP `R ´ 2Sq
, 0

˙

and pqC , qDq “

ˆ

1,
pR ´ P qpT ´ Sq

pR ´ Sqp2T ´R ´ P q

˙

In this equilibrium, the first player’s payoff, which is also the maximum payoff he can get in an

equilibrium, can be higher than R, but it is strictly lower than his Stackelberg payoff. Indeed,

to reach the Stackelberg payoff we need qD “ 1, but 1´ qD “
pT´RqpP`R´2Sq
pR´Sqp2T´R´P q

ą 0

23Notice that, if pC “ pD “ p is a Nash equilibrium of the one-shot game, all equilibrium conditions are
trivially satisfied.
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Chapter 2

Be nice, but not always: Extortion in

the Lab

with Luciano Andreozzi and Marco Faillo (University of Trento)

In this chapter we report the results from an experiment designed to assess the impact that

disclosing information about players’ previous behavior might have on equilibrium selection in

a repeated Trust Game. From a theoretical point of view, the model developed in Chapter One

implies that we should observe more fully cooperative behavior in a setting in which minimal

information (i.e. about only the previous choice of the opponent) is available, compared to

a setting in which richer information (i.e. the entire history of play) is disclosed. In the

latter case, also extortionate profiles (i.e. profiles in which one player can get more than

the mutual cooperation payoff) can be sustained in equilibrium, so we expect less-than-fully

cooperative strategies to be more profitable. Our experimental results are broadly in line with

these predictions. In a setting of minimal information, no player is able to gain more than the

mutual cooperation payoff. In a setting with richer information, there is a significant number of

second players who were nice, but not always, and managed to ”exploit” the first players’ trust.

Overall, our data show that increasing the amount of information was effective in allowing first

players to discriminate between mild abusers (who play Reward frequently enough to make

Trust the optimal strategy) and hard abusers (who mostly play Not Reward). However, first

players seem unwilling to tolerate a high level of abuse of trust, even when it would be in their

interest to do so.
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2.1 Introduction

The Trust Game has been widely studied in economics since it is suitable for representing

several situations in which market failures are likely to appear. A consumer buying a product

before knowing its quality, a bank giving a loan before knowing whether it will be paid back,

or an employer hiring a worker before knowing worker’s dedication to the job (Kreps, 1996).

1

P,P

Not Trust

2

S,T

Not Reward

R,R

Reward

Trust

Figure 2.1: The Trust Game

Those settings share the same basic structure:

at the beginning of the game, the first player

has to decide whether or not to trust the sec-

ond player. If the first player chooses Not

Trust, the game ends and both players get

their outside option, P . If the first player

chooses Trust, the second player has to de-

cide whether to reward her trust or not. If he

chooses Reward, both players get R ą P ; if

he chooses Not Reward, the second player gets T ą R, and the first player gets S ă P .

This creates a problem of incentives. Compared to the outside option, both players are better

off when trust is rewarded; however, the second player has an incentive to choose Not Reward.

Anticipating this, the first player chooses Not Trust, leading to the inefficient outcome (Not

Trust,Not Reward). Some incentives has to be given to the second player if the efficient (Trust,

Reward) outcome is to be reached. One possibility would be to change the payoffs associated

to the different actions. For example, a fine may be introduced in case of not rewarding, or

a prize in case of rewarding. One may wonder whether the outcome (Trust, Reward) can be

obtained while maintaining the basic structure of the game. This is important because in many

situations the possibility to directly punish or award the counterpart is limited. In everyday life,

trust is commonly given and rewarded even when explicit incentives are virtually non existent.

Several models have been proposed to explain cooperation in the Trust Game. When the game

is repeated, reputation concerns may give to the second player the right incentives to play

Reward (Kreps and Wilson, 1982; Mailath and Samuelson, 2001). Notice that repetition per

se will not solve the problem. It is a well know result that when a game with a single NE is

repeated for a finite number of rounds, no new NE is formed which is different from a repetition

of the stage game NE. This is a straightforward implication of backward induction.
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When the end of the game is unknown, players cannot use backward induction, and the Folk

Theorem applies: every pair of payoffs that Pareto-dominates the outside option can be obtained

(or approximated) in equilibrium, if the probability of going to the next period is sufficiently

large. The question of whether the mutual cooperation outcome can be sustained in equilibrium

becomes then a problem of equilibrium selection.

Indeed, most of the literature has focused on strategies that are able to generate a stream of

Trust and Reward. This type of equilibrium is sustained by the belief that the first player

will stop playing Trust after having observed a single deviation from Reward. For example,

reputation models in Fudenberg and Levine (1989) or in Ely and Välimäki (2003), assume that

there can be different types of second players, which are committed to play a certain strategy.

If the first player’s belief that the second player is a rewarding-type is high enough (i.e. larger

than 0), the efficient outcome (Trust, Reward) can be sustained in equilibrium.

The experimental literature has followed a similar path. Several laboratory experiments have

found a general tendency of subjects to play Trust and Reward more often when the game is

repeated, compared to one-shot settings (Bornhorst et al., 2004; Kanagaretnam et al., 2010), or

when information about past behavior is available, compared to when it is not (Charness et al.,

2011). However, in all of these experiments the frequencies of the outcome (Trust,Reward) falls

far below the 100% predicted by the fully cooperative equilibrium. This phenomenon is usually

attributed to noise and hence little attempts have been made to check to what extent it could

have a theoretical explanation. The idea that experimental subjects coordinate on different

equilibria of the repeated game has attracted no attention so far. Our experiment fills this gap.

Specifically, we want to test whether the possibility of building several types of reputation

can lead subjects to (try to) coordinate on different equilibria. With this aim, we design an

experiment where subjects play a repeated TG with an unknown ending. Players keep their

role throughout the game, and they are randomly rematched in every period. We force the

second player to build a reputation, in the sense that, before choosing, each first player receives

some information about the opponent’s past behavior.

We have two treatments: in the first treatment (called Last-treatment), only the action taken by

the second player in the previous period is disclosed to the first player. In the second treatment

(called Full-treatment), the first player is informed about the frequency with which the opponent

chose each action in the previous rounds. The two settings allow for different equilibria. A

strategy that prescribes to choose Not Reward once in a while can be an equilibrium only when
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the information given to the first player is rich enough. Otherwise, if the first player only knows

the previous action, the second player would be better off by always choosing Reward.

In this sense, this paper relates to the literature on Extortionate strategies (ExS). Those are

strategies that, by conditioning only on the last outcome of the game, are able to induce full

cooperation and at the same time to get a higher payoff than the opponent. As such, ExS can

never be an equilibrium if the opponent only recalls the last outcome of the game. They might

instead have a chance if the opponent has longer memory.

Thus, we have two clear predictions over subjects’ behavior: fully-cooperative second players

are more frequent in the Last-treatment, and second players who are ”nice, but not always”

enjoys a higher payoff in the Full-treatment.

Overall, our results confirm these predictions. When looking at the second player’s average

frequency of reward throughout the game, we find more subjects choosing a fully-cooperative

strategy in the Last treatment. Moreover, not only those who were ”nice but not always” were

able to enjoy a higher payoff in the Full-treatment, but they were also able to gain more than

the fully-cooperative subjects.

Those results suggest that the repetition of the game is not enough to ensure that the fully

cooperative equilibrium will be selected, even if the game has an unknown ending. Indeed,

when the information is sufficiently rich, there are (many) other equilibria which can guarantee

to the second player a higher payoff. We show that subjects are indeed able to recognize the

different settings implied by the different information disclosed, and are ready to ”extort” the

first player, if given the opportunity to do so. Nonetheless, the first players in our experiment

were less willing to give in to Extortion than the theory predicts.

2.2 Trust in the Lab

Several studies used laboratory experiments to examine behavior in the repeated Trust Games.

Some of them focused on the effects that disclosing information may have on the frequency

of trust and reward observed. Even if providing information is less effective than introducing

an incentive system (Bigoni et al., 2014), or allowing for partner matching (Bolton, Ockenfels,

et al., 2011), there is an overwhelming evidence that disclosing information is successful in

promoting cooperation, compared to the no-information case.
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For example, Bracht and Feltovich (2009) show that, in finitely repeated games, giving informa-

tion about the opponent’s last action was successful in promoting Trust and Reward, compared

to the case of no-information. Similar results were also found when information was provided

about the opponent’s last five moves (Minozzi, 2015) or about the full history of past choices

(Bohnet et al., 2005). Moreover, providing information increased the rate of cooperation in the

repeated image scoring game (Bolton, Katok, et al., 2005), and in a Trust Game where the first

player can choose the amount of information he wants to have (Charness et al., 2011).

Few studies tried to compare the effects on cooperative behavior of varying the amount of

information disclosed to the first player about the second player’s previous behavior. The main

finding seems to be that, when increasing the amount of information, trust is usually higher.

For example, Keser (2003) considered a finitely repeated Trust Game in which first players

could provide feedbacks concerning the trustworthiness of the second players. They found that

giving information about the distribution of previous ratings, increases the average frequencies

of both Trust and Reward, compared to the case where only the most recent rating is available.

The study which is closer to the one we present below is Duffy et al. (2013). The authors consider

a repeated Trust Game with unknown ending, comparing, among other conditions, the case

where only the last action taken by the second player is disclosed to the opponent (minimal

information), to the one where also the past frequencies and the detailed information about the

last 10 periods’ choices are available. On the one hand, compared to the no-information case,

disclosing minimal information increased the level of Reward (given that the first player chose

Trust), but not the average level of Trust. This seems to suggest that disclosing information to

the first player triggers a response from the second player, and is thus effective in promoting

cooperative behavior. On the other hand, compared to the detailed-information case, disclosing

minimal information decreases both levels of trust and reward. Thus, they observed more

cooperative behavior when more information was disclosed to the first player.

Compared to their findings, we found higher levels of Trust and Reward in the case of minimal

information, but lower levels of both variables in the case of more information1. However, our

treatment with more information is different from the one considered by Duffy et al. (2013).

In their setting, the first player knows the detailed history of the previous rounds. This may

crucially change our equilibrium predictions, which are based on the assumption that the first

player knows the scrambled sequence of the second player’s past actions.

1Notice that we considered a simultaneous TG, while they used a sequential TG.
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It is instructive to compare the theoretical explanation Duffy et al. (2013) propose of their

experimental results to the one we shall present below. The main aim of Duffy et al. (2013)

is to test Kandori (1992)’s model of ”contagious equilibrium”. This type of equilibrium arises

in settings in which a game is repeatedly and anonymously played by a group of players, and

no information is provided on the other player’s past behavior. Using the Prisoner’s Dilemma

as an example, Kandori (1992) proved that even in this case there are cooperative equilibria,

provided that players are sufficiently patient. To sustain such equilibria, players are divided

into two types: c-types, who are players who have never defected or experienced a defection in

previous rounds, and d-types, who are all the others. All c-types are supposed to play C while

all d-types play D. Whenever a c-type meets a d-type, he becomes a d-type himself (notice

that d-types never revert to be c-types). To see why these strategies can form an equilibrium,

suppose that initially all players are c-types so that cooperation is observed at every round.

Switching to D triggers a contagious decline of cooperation, as every individual who meets a

defector will switch to defection and increase the speed at which defection spreads. If players

are sufficiently patient, they will prefer not to trigger the decline of cooperation. In a recent

paper, Xie and Y.-J. Lee (2012) extended this result to the Trust Game.

The contagious equilibrium is obviously very fragile, as a single defection suffices to bring

about an irreversible collapse of cooperation. Focusing on the repeated Trust Game, Duffy

et al. (2013) study a variant of this model, in which players are allowed to see the past history

of the individual they are matched with. In this setting, strategies as in Kandori (1992) are

not an equilibrium anymore. The intuition is straightforward: when meeting a c-type, the first

player will always play Trust, even if he is a d-type. Duffy et al. (2013) show that in this case

there is an equilibrium where second players play a strategy as in Kandori (1992), while first

players use a variant that prescribes to choose Trust only when meeting a c-type, regardless

of one own’s type. Notice that this equilibrium is easier to sustain, the more information on

previous behavior is available. Nonetheless, it has a weak element in that first players are

assumed to play Trust only if the opponent has constantly played Reward in the past.

We instead allow first players to trust a second player even if he played Not Reward in the

past, provided that the frequency of Reward is sufficiently large. The second player may then

have an incentive to form a reputation for playing a mixed strategy. The empirically verifiable

consequence of this model is that reputations in mixed strategies are not possible when only

the second player’s last choice is observed. This is the main point of our experimental design.
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2.3 Should you be nice? Equilibria in the Trust Game

In our experiment we consider the simultaneous version of the Trust Game, as in Table 2.1.

R NR

T R,R S, T

NT P, P P, P

Table 2.1: Stage game payoffs in the TG

The game has one pure Nash equilibrium, mutual defection, and a compact set of equilibria

where the first player chooses Not Trust and the second player chooses Reward with a probabil-

ity smaller than qS “ P´S
R´S

, that is the probability that would make the first player indifferent

between Trust and Not Trust (this is also called the second player’s Stackelberg strategy, as is

it the probability he would like to commit to play, if having the chance to do so).

Because of the Folk-Theorem, when players are sufficiently patient there is a large set of efficient,

more cooperative equilibria in which they may get different payoffs. Figure 2.1 represents the

set of feasible payoff profiles, in which the payoff of the first player is on the y-axis and the

payoff of the second player is on the x-axis. When players are sufficiently patient, all points

that Pareto dominate the NT payoff profile can be sustained by a profile of strategies that

forms a SPNE. One of those is the Stackelberg payoff profile b2. This is the profile in which the

second player’s payoff is maximized, under the assumption that the first player gets at least her

outside option payoff P . We call the corresponding payoff for the second player his Stackelberg

equilibrium payoff πS, as it is the payoff he would get if he could commit himself to choose a

(mixed) strategy before the first player makes his choice. Notice that πS “ RqS ` T p1´ qSq.

In Figure 2.1 we plotted some examples of unconditional strategies for the first and for the

second player. Unconditional strategies for the first player are the dotted parallel lines, while

unconditional strategies for the second player are dashed lines originating from the point NT .

Consider an equilibrium for which the resulting payoff profile is in the blue area. This means

that, on the equilibrium path, the frequency with which the second player chooses Reward is

lower than the frequency with which the first player chooses Trust. Moreover, the second player

is able to enjoy a payoff that is larger than the mutual cooperation payoff.

When in equilibrium the realized payoff combination lies in this area, we say that the second

player extorts the first player, and we call these equilibria extortionate.
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Notice that any efficient equilibrium different from mutual cooperation lies in the blue area, as

it requires that, on the equilibrium path, the second player mixes between Reward and Non

Reward, while the first player always trusts. Thus, according to our definition, any efficient

equilibrium is extortionate, except for the mutual cooperation payoff. We can then distinguish

between mild-extortion and hard-extortion, according to whether the resulting payoff profile

is closer to the mutual cooperation or the Stackelberg payoff profile. Indeed, any profile in

between can be sustained in equilibrium, provided that the frequency with which the second

player plays Reward is sufficiently large as to make playing Trust a best reply.

b2

b1

NT

= T R

T NR

0.25

0.5

0.75

0.9

0.5

0.75

0.9

π2

π1

Figure 2.1: The set of feasible payoff profiles in the repeated Trust Game.

In a seminal paper, Press and Dyson (2012) suggested that in a repeated Prisoner’s Dilemma

a player could extort a larger payoff than the opponent by using simple memory-one strategies

they call ”extortionate strategies”. These strategies are memory-one in the sense that the

probability with which they cooperate at each round (which is always smaller than one) only

depends on the outcome of the previous round. Extortionate strategies are obtained by setting

the probability of cooperation after each outcome in such a way that the opponent cannot

do better than cooperate at every round. This implies that any strategy playing against an

extortionate strategy will be forced to accept a smaller payoff than the opponent.

An implication of Press and Dyson (2012) result seems to be that what we call extortionate

equilibria can be obtained by players using simple memory-one strategies. This intuition is

incorrect: as long as players are constrained to use memory-one strategies, no extortionate

equilibrium exists in this sense (see Chapter One). This conclusion is quite surprising in the light

of the current literature. Not only memory-one strategies cannot sustain extortionate equilibria,

but, when one player uses a memory-one strategy, the maximum payoff that his opponent can
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get is the mutual cooperation payoff. This implies that there are no extortionate equilibria

against a player who uses a memory-one strategy, no matter how complex his opponent’s

strategy is.

When considering the Trust Game, the set of payoffs that can be sustained in equilibrium is

even smaller. If the first player is constrained to use a memory-one strategy, not only the second

player payoff is bounded from above by R, (implying that there are no extortionate equilibria,

like in the Prisoner’s Dilemma), but in any equilibrium different from mutual cooperation, the

first player’s payoff is fixed at P (see Chapter One).

Although some of the proofs are fairly involved, the intuition behind these results is straight-

forward. In any extortionate equilibrium, the second player is required to use a mixed strategy,

and to mix on the equilibrium path. When the first player only conditions on the previous

outcome of the game, no deviation from a mixed strategy can be observed and hence punished.

Thus, in any equilibrium in which players are mixing on the equilibrium path, the indifference

condition implies that the the payoff of the second player is bounded from above by R, and the

payoff of the first player is fixed at P , so that no extortionate outcome can be an equilibrium.

Notice that this result doesn’t prove that no extortion can ever take place in equilibrium. The

results only imply that for an extortionate equilibrium to exist, one player (the one who suffers

the extortion) must be able to condition her choice on at least the frequency with which the

other player plays cooperatively in the previous rounds. Indeed, if the player is able to condition

not only on the opponent’s realized action in the previous period, but also on the mixture that

he used, extortionate outcomes could be sustained in equilibrium. In this context, Barlo et

al. (2009) prove a version of the Folk-theorem. They show that if players can condition on

the mixed action chosen by the opponent in the previous round, then all payoff combinations

that Pareto dominate the non-cooperative equilibrium can be sustained as subgame perfect

equilibrium. For the Trust Game, this result directly implies that extortionate equilibria exist

in memory-one strategies with observable mixtures (see Chapter One).

There is an interesting observable implication of the results we just summarized. In experi-

mental settings in which the first player can only condition on the choice made by the second

player in the previous round, no extortion should be observed. When richer information about

the second player’s past choices is available, then at least some extortion should take place.

Notice that this is somehow counterintuitive, as one might be lead to think that, in a context

of minimal information, we should observe more extortion, as it is easier for the second player
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to clean his history, by playing Reward only once. However, if first players punish accordingly,

the second player would be better off by playing Reward at every round.

Specifically, we expect subjects in our experiment to be able to distinguish between these

two situations, so that they might choose more often a mixed (Extortionate) strategy when

it is convenient to do so. To the best of our knowledge, we are the first to test Extortion

in the laboratory. Previous attempts have been made, but they involved subjects playing

against a computer who was programmed to play an Extortionate strategy. Interestingly, when

participants are aware they are facing a computer, they learn to play a best reply to the

Extortionate strategy, and they fully comply (Wang et al., 2016). However, when they are not

aware that they are facing a computer, they don’t give in to Extortion, resulting in a poor

performance for the Extortion strategy, and a lower payoff for the first players (Hilbe, Röhl,

et al., 2014). In this respect, our results are coherent: also the first players in our experiment

were less willing to give in to Extortion than the theory predicts.

2.4 Extortion in the Lab

2.4.1 Experimental Design

There are obvious difficulties in devising an experimental setting in which our model can be

tested. The main difficulty is common to all experiments on repeated games, and is due to the

fact that the repeated game strategies are not observable (see Dal Bo and Frechette, 2018).

Even when observing mutual cooperation, it it is difficult to ascertain whether a player uses

TfT or WSLS or any other nice strategy, i.e. a strategy that is never the first to defect. A

further difficulty, which is more specific to the setting we have in mind, stems from the fact

that it seems impossible to determine the type of information on which subjects will condition

their decisions. A way must be found to force subjects to play memory-one strategies in one

setting, and more sophisticated strategies in others.

Our experimental design is meant to get round these difficulties. We use a variation of the

experiment proposed by Duffy et al. (2013), in which the amount of information given to first

players about second players’ past behavior varies.

Upon arrival, subjects in the experiment are randomly assigned to a role, either of “Partecipante

Uno” (first player) or “Partecipante Due” (second player). Subjects keep their role throughout
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the experiment. At the beginning of each period subjects are rematched with a new opponent

and play a simultaneous Trust Game, with payoffs as in Table 2.1.

R NR

T 4, 4 0, 6

NT 1, 1 1, 1

Table 2.1: Payoffs in the experiment

Notice that in the simultaneous version of the TG, second players are asked to take their

decision even if the opponent chooses NT. This choice was motivated by several considerations.

First, with simultaneous moves we are able to have observations also in periods when the first

player chooses not to trust. Second, in the simultaneous version of the game the second player

chooses in a “cold state”, i.e. without knowing whether his opponent is trustful or not2. Finally,

and most importantly, in a sequential game a likely outcome would be that many first players

would have chosen not to trust at the beginning of the session and this would have prevented

many second players from forming a good reputation. Most observations would then have been

on the inefficient equilibrium (Not Trust,Not Reward).

In every period after the first one, we disclose to the first player information about the current

opponent’s past behavior. We have two treatments, denoted as Last and Full. In the Last-

treatment the first player is informed about the last action (either Reward or Not Reward)

taken in the previous period by the second player with whom he is currently matched. In

the Full-treatment, the frequency with which Reward was played by the second player in all

previous rounds is computed and shown to the current first player.

The motivation behind this experimental design is that in the Last-treatment we (try to) force

the first player to condition his choice on just the last move of the second player, as it would

be the case if he were constrained to use a memory-one strategy. In the Full-treatment, we

(try to) force the first player to use a strategy that conditions on the overall frequency of past

cooperative behavior of the second player, which can be considered as a (rough) approximation

of the case of observable mixtures.

The experimental design is devised to minimize confusion. In the Full treatment we only reveal

the frequency with which Reward was chosen by the second player in the past, but not his last

choice, to avoid that the first player conditions on the frequency and on the last outcome.

2Indeed, this is the explanation given by Guth et al. (1997) to the finding that second players tend to reward
slightly more with sequential, rather than simultaneous, moves.
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2.4.2 Predictions

From a theoretical point of view, the Last-treatment is meant to be a proxy for a model in which

a game is played repeatedly, but players can only recall the last action taken by the opponent.

The Full-treatment approximates a setting in which the frequency of Reward is recalled, as it

would be the case in a repeated game with observable mixtures. The results we summarized

in the previous section imply that these settings have very different implications for the payoff

profiles that can be sustained in equilibrium.

Consider again Figure 2.1, which represents the set of feasible payoff profiles for the repeated

Trust Game. In our experiment, an observation is a point in that triangle, whose coordinates

are the average payoff earned by one of the second players (on the x-axis) and the average

payoff earned by the all the first players that have been matched with her.

To simplify the present analysis, we restrict attention to stationary equilibria in which the

second player uses an unconditional strategy, that is a strategy that prescribes the same action

at every period. Imagine for example a second player who, in either treatment, plays at every

round Reward and Not Reward with the same probability. When matched against this player,

all payoff combinations are forced to lie on the dashed line that connects the NT point to the

point labeled 0.5 in Figure 2.1. To see this, notice that the resulting profile is going to be a

linear combination of the profile NT, (i.e. the profile when all first players decide to play Not

Trust), and the profile labeled 0.5 (i.e. the profile when they all decide to play Trust).

We shall denote as f -Reward the unconditional strategy that plays Reward with probability f

at every round. Notice that, by setting different values of f , the second player can force the

payoff profile to lie on a different line passing through NT, whose slope is determined by f .

Recall that qS is the probability that makes the first player indifferent between choosing Trust

and Not Trust, which determines the second player’s Stackelberg payoff. Then, in the termi-

nology of the previous section, every f -Reward strategy with 1 ą f ą qS, is an extortionate

strategy. Indeed, any such strategy is able to induce full Trust by the first players, and it is

thus able to reach extortionate payoff profiles. Clearly, extortion is milder the higher the value

for f . In the payoff space, this implies that the larger the probability f of playing Reward,

the steeper the line on which the payoff profiles will lie. In Figure 2.1, we plot four such lines,

corresponding to f equal to 0.9, 0.75, 0.5, and 0.25. Notice that the latter one is the Stackelberg

strategy, qS, and it connects the profile NT with the Stackelberg profile b2.

92



While it is true for both treatments that by choosing a value of f the second player can force

the payoff to lie on a straight line passing through NT , from our theoretical analysis we know

that only in the Full-treatment f ă 1 can be sustained as an efficient Nash equilibrium.

The theoretical results summarized in the previous section imply that, when players can only

condition on the previous move, it doesn’t pay to mix. Moreover, as Press and Dyson (2012)

noticed, if a player has limited memory, his opponent cannot gain from using a longer memory

strategy. This implies that, in our Last-treatment, also the second player will use a memory

one strategy, and we can apply the results from Chapter One, shown in Figure 2.1a. Thus, in

the Last-treatment, the only (strictly) efficient equilibrium has f “ 1, with payoff profile (4,4).

When mixed strategies are observable, it is easy to prove that the only equilibria are those on

the Pareto frontier. To see this, notice that when the first player can observe f , his best reply

is to choose Trust whenever f ě qS, and Not Trust otherwise. This implies that every f ě qS

can form a NE able to induce full trust, so that the corresponding payoff profile will lie on the

Pareto frontier. Among those, there is also the profile b2, i.e. the profile in which the second

player gets his Stackelberg payoff, corresponding to the strategy f “ qS. Notice that this is

the only equilibrium that survives the elimination of (weakly) dominated strategies. Thus, in

the Full-treatment, there is a compact set of NE in which f ranges from 1 to the Stackelberg

probability qS “ 1
4
. The payoffs profiles associated to these NE are on the part of the Pareto

frontier in which the first player’s payoff is at least equal to 1, as shown in Figure 2.1b.

b2

b1

DC = DD

= CC

CD

π2

π1

(a) Memory-one strategies

b2

b1

DC = DD

= CC

CD

π2

π1

(b) Observable mixtures

Figure 2.1: NE payoff profiles in the repeated TG (red dots and dark gray line).

We can summarize the discussion above by saying that both in the Last and in the Full-

treatments there are NE in which the first player never trusts and efficient equilibria in which

he always trusts. As a consequence, we do not expect the overall level of trust to depend
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on the treatment. Nonetheless, we expect to find more second players willing to choose a

fully cooperative strategy in the Last-treatment, and more second players willing to choose an

extortionate strategy in the Full-treatment. Finally, we expect extortionate strategies to be

more profitable in the setting in which they are able to form an efficient equilibrium, i.e. in the

Full-treatment. This provides us with two hypotheses to test:

Prediction 1 The strategy that prescribes to always play Reward is more frequent in the

Last-treatment, while Extortionate strategies are more frequent in the Full-treatment.

Prediction 2 The second player, by using an Extortionate strategy, is able to gain more than

the mutual cooperation payoff only in the Full-treatment.

When looking at Figure 2.1, those predictions imply that payoff profiles observed in the Last-

treatment are all in the green area, while in the Full-treatment we expect at least some second

players to force an extortionate equilibrium in the blue area.

2.5 The experiment

2.5.1 Setting

The experiment was run between November 2015 and May 2016, at CEEL (University of

Trento, Italy). A total of 112 subjects participated to the experiment, all students from the

University of Trento. The experiment was conducted using the software Z-tree (Fischbacher,

2007). Participants were randomly divided into two groups, first and second players, and they

kept their tole throughout the experiment. The instructions were given in a neutral way, with

actions labeled as “Left”, ”Right”, ”Top” and ”Bottom”.

The experiment consisted of two parts. In the first part, we ran the standard repeated Trust

Game. To avoid too short sessions, subjects were randomly matched for at least 20 periods.

After that, a coin was tossed at the end of every period to determine the end of the game. In

the second part, we asked subjects to choose a strategy to play the repeated game. Second

players had to specify a probability (from 0 to 1) of choosing Reward at every round, i.e. they

had to pick a (possibly mixed) unconditional strategy. First players had to specify an action

(i.e. either Trust or Not Trust), conditional on the possible information they would receive
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about the previous behavior of the current opponent. For example, in the Last-treatment, first

players had to choose whether or not to trust a second player who chose either Reward or Not

Reward in the previous match. The strategies chosen by all subjects were then used as inputs

for a computer simulation which we ran at the end of the experiment. Each subject’s final

payoff was the sum of the payoff he earned in the first part plus the payoff the strategy he

choose earned in the computer simulation. The results of the second part of the experiment

will be presented in a forthcoming paper.

In the first part of the experiment, the way information was presented was meant to be as

intuitive as possible. In the Full-treatment, on the computer screen the first players could see

a histogram indicating the frequency with which each action was chosen in the past by their

current opponent (see Appendix 2.B). On the right-hand side of the screen they could see a

bar-graph indicating their own average payoff up to the current period. Second players could

see a bar-graph representing their own payoff up to that period and on the left-hand side a

histogram indicating the frequency with which they had chosen each action in the past. In the

Last-treatment, the setting was the same, with the only exception that the first players could

only see the action chosen by the current second player in the previous round, instead of the

histogram with the frequencies of the past choices.

In both treatments, the screen was not showing the number of periods elapsed, and it is very

implausible that subjects counted periods by themselves. There is no reason to believe that

the fact that the random termination of the game only begun at the twentieth round played

any role in their decisions. Also, our data do not reveal any endgame effect.

We ran 3 sessions per treatment, one session with 16 subjects, two with 18 subjects and all

the others with 20 subjects (so that a total of 29 second players where involved in the Full-

treatment, and 27 in the Last-treatment). Thus, each player was interacting with at least 8

opponents. Our group size is quite large compared to similar experiments (see for example

Duffy et al., 2013). We decided to run sessions with a large number of participants to minimize

the chance of two players interacting again with each other3.

Each subject was involved in only one treatment, and plays only one repeated game. The

shorter game lasted 20 periods, and the longer 26 periods. Monetary payoffs were equal to the

sum of payoffs received during the game, at the exchange rate of 1 token= 0.30 Euro. The

average payoff was 10 euro, including a show-up fee of 3 euro.

3Subjects knew they could meet again the same opponent, but only after at least 8 rounds.
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2.5.2 Results

The main result of our experiment is summarized by Figure 2.1. Each point corresponds to

the combination of the average payoff of a second player, and the average payoff of all the

first players that have been matched with him (we call this the induced payoff). Blue points

correspond to the Full-treatment, while red points correspond to the Last-treatment.
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Hard Exploiters
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Figure 2.1: Results - Average payoffs in the 20th period.

According to Prediction 1 second players should choose more often a fully-cooperative strategy

in the Last-treatment, and more often an extortionate strategy in the Full-treatment. According

to Prediction 2, only in the Full-treatment second players are able to gain more than the mutual

cooperation payoff. These predictions imply that the majority of red points should be on the

left of the red vertical line, while the majority of blue points should be on the right.

The experimental results are broadly in line with the theoretical predictions. Particularly

striking is the fact that the second players were able to reach a payoff larger than 4 only in

the Full-treatment. This proves that at least some of the subjects involved where able to

understand the logic of extortionate equilibria and play accordingly. At the same time, the

ability to extort a larger payoff looks rater limited, as no second player succeeded in getting

close to her Stackelberg equilibrium payoff. In fact, our data reveal that playing Reward with

a frequency between 0.25 and 0.5 was not enough to induce an high level of trust, although the

theory predicts the existence of such equilibria.
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Notice that there is a clear analogy with the extensive evidence on the Ultimatum game. Some

subjects may have interpreted frequencies of Rewards below 0.5 as ”unfair”, and decided to

play Not Trust as a form of punishment. The extent to which some form of social preferences

may explain this phenomenon is an open question that deserves further investigation.

In the Last-treatment, dots are mostly found around two areas. There is an area of cooperative

equilibria, in which the most common outcome is (T,R), and an area of almost-extortionate

equilibria, where second players try to extort the opponent (in the middle of the triangle).

Notice that those points are around a (non-efficient) mixed equilibrium in memory one strategies

(i.e. the red point in the middle of the payoff space in Figure 2.1a). Even if those players were

able to gain more than players choosing Reward with similar frequencies in the Full-treatment,

they were not able to get more than the mutual cooperation payoff, as our theory predicts.

We will see in the following sections that second players can be divided into 3 groups: those who

always cooperate (always rewarding), those who cooperate, but not always (mild exploiters)

and those who defect, but not always (hard exploiters, see Figure 2.1).

Our data reveal that Always rewarding types are more common in the Last-treatment, while

Mild exploiter types are more common in the Full-treatment. Moreover, trust was the highest

for mild exploiters in the Full-treatment, who were the only ones able to get more than the

mutual cooperation payoff. Both our predictions are thus confirmed.

Those results imply that the effect of information on players’ behavior is twofold: on the one

hand, increasing information allow second players to successfully extort first players, as they

are able to gain more than the mutual cooperation payoff. On the other hand, providing

information helps first players to discriminate between mild and hard abusers, choosing to

trust only the firsts. Interestingly, we find that first players tend to trust a second player who

chose Not Reward in the previous period often enough to allow him to get a payoff higher than

mutual defection, but not enough to allow him to get more than the mutual cooperation.

Overall, we can say that changing the amount of information disclosed to the first player was

effective in triggering second players to adopt different strategies, as they tend to be more mild

exploiters in the Full-treatment, that is when extortionate strategies are more profitable.

In the following, we will give a deeper description of our data. After an overview, we will

describe second players’ observable strategies, and we will analyze more in detail the role of

information.
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An overview of the data

We shall now give a brief description of the main features of the data we collected. Our analysis

considers the first 20 periods of each session. We may refer to the 20th period as the last, or

the end, but keep in mind that it was the last period only in 2 sessions, and that the average

length of play was of 22 periods.

Table 2.1 shows the average frequencies of actions Trust (T) and Reward (R), together with

average frequencies of the different outcomes: Trust and Reward (T,R), Trust and Not Reward

(T,NR), Not Trust and Reward (NT,R), and Not Trust and Not Reward (NT,NR). Values are

just the sum of the different choices (or outcomes) divided by the total number of observations.

T R T,R T,NR NT,R NT,NR

Full 0.74 0.70 0.55 0.19 0.15 0.11

Last 0.74 0.68 0.55 0.18 0.14 0.13

Table 2.1: Average frequencies - Frequencies are computed considering periods 2-20. Sample size
(subjects for each role) is N “ 27 for the Last-treatment and N “ 29 for the Full-treatment

The averages are almost exactly the same across treatments, a finding in sharp contrast with

Duffy et al. (2013), who found a significant difference in the average frequencies of both Trust

and Reward. Specifically, they found a lower level of Trust (46%) and a similar level of Reward

(71%) in their min-treatment (corresponding to our Last-treatment), and a higher frequency of

both Trust (81%) and Reward (94%) in their info-treatment (but recall that, contrary to our

Full-treatment, they also gave to first players the detailed history of the previous 10 rounds

of the game; moreover, Duffy et al. (2013) consider smaller groups and shorter interactions).

The results from the Last-treatment might suggest that, contrary to previous findings, when

moving from sequential to simultaneous games the average trust may increase in settings in

which only minimal information is available.

Finding 1. There is no treatment effect as long as the average frequencies of Trust and Reward

are concerned.

We now move to choices across periods. The average frequencies of Reward do not change over

time, ranging between 0.6 and 0.8 in both treatments, while the average frequency of Trust do

change over time, increasing in the Last-treatment (from 0.68 to 0.74) and decreasing in the

Full-treatment (from 0.8 to 0.71).
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Table 2.2 shows the average frequencies of outcomes (T,R) and (T,NR) in the early (2-7) and

late (15-20) periods of the game. Even if at the beginning of the game the outcome (T,R)

is more frequent in the Full-treatment, the opposite is true at the end of the game. At the

same time, the frequency of the outcome (T,NR) is higher in the Full-treatment both at the

beginning and the end of the game, although not significantly.

Outcome T,R T,NR

Periods 2-7 15-20 2-7 15-20

Full 0.57 0.5 0.22 0.21

Last 0.48 0.55 0.20 0.18

Table 2.2: Average frequencies for early and late periods. Only the differences for the outcome (T,R)
are significant (Fisher test, significant difference between the treatments at the beginning of the game
(p-valueď 0.05), and across each treatment comparing the begin with the end (p-values ď 0.01) ).

Finding 2. The average frequency of the outcome (T,R) is increasing over time in the Last-

treatment, and decreasing in the Full-treatment. The frequency of the outcome (T,NR) is always

higher in the Full-treatment, even if not significantly.

Next, we consider the frequency with which each subject played Reward in the firsts 20 periods.

Recall that we expect this frequency to be equal to 1 in the Last-treatment, and smaller than one

in the Full-treatment. Figure 2.A.1 in the Appendix shows that this is not the case. Moreover,

even if the median choice is almost the same between treatments, the distribution of choices is

more dispersed in the Last-treatment.

A different picture emerges when one looks at the way specific players behaved. We shall now

compute the same variables, restricting the attention to those subjects who played Reward at

the first period. These subjects are particularly interesting, because they are those who are

most likely to be interested in building a good reputation. Fig. 2.A.2 in the Appendix shows

the average frequencies of Reward considering only those subjects. Not only the median in

the Last-treatment is higher than the median in the Full-treatment, but also the distribution

in the Last-treatment is less dispersed than when all subjects were considered. Thus, there

is scope to say that those subjects who signal in the first period their willingness to build a

good reputation are more likely to exploit the first player (i.e. they have, on average, a lower

frequency of Reward) in the Full-treatment, that is when extortionate equilibria are possible.

Table 2.3 shows the average frequencies of actions and outcomes, as in Table 2.1, considering

again only the subjects who choose Reward in the first period. These data are interesting as
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they reveal whether a second player who alternates between Reward and Not Reward is able

to induce first players to play Trust. This seems in fact to be the case as the outcome (T,NR)

is significantly more frequent in the Full-treatment than in the Last.

T R** T,R** T,NR*** NT,R NT,NR

Full 0.78 0.72 0.58 0.20 0.13 0.09

Last 0.78 0.79 0.66 0.12 0.13 0.09

Table 2.3: Average frequencies considering only subjects starting with R - Sample size (subjects for
each role) is N “ 19 for the Last-treatment and N “ 24 for the Full-treatment. Significance: * 0.1;
** 0.05; *** 0.01.

This time we find a (significant) difference in the frequency of Reward, as well as of the outcomes

(T,R) and (T,NR), while the average frequencies of Trust and of the other outcomes are still

equal across treatments. Thus, those second players who choose to Reward in the first period

choose Reward less often in the Full than in the Last-treatment. Apparently, they were also

able to induce the first players to play Trust, which is compatible with the outcome (T,NR)

being significantly more likely in the Full than in the Last-treatment. This is in accordance

with our Prediction 2 and is summarized by the following:

Finding 3. When considering only those players who choose Reward in the first period, the

average Reward is (significantly) higher in the Last-treatment, while the average Trust is the

same between treatments, in accordance with Prediction 1.

Finally, Table 2.4 shows 3 different ratios, which will be useful in this first step of the analysis.

The first is the ratio of the number of outcomes (T,R) over the total outcomes in which the

second players played Reward: r1 “
#pT,Rq
#R

. This ratio should be equal to 1 in both treatments,

if the second player succeeds in building a good reputation.

The second is the ratio of the number of outcomes (T,NR) over the total outcomes in which Not

Reward was played: r2 “
#pT,NRq
#NR

. This ratio represents the relative frequency with which a Not

Reward is Trusted. If our predictions are correct, it should be equal to 1 in the Full-treatment

and to 0 in the Last-treatment.

Ratios r1 and r2 can be interpreted as the (ex-post) probabilities of being trusted when playing

Reward and when playing Not Reward.

The last is the ratio of the number of outcomes (NT,R) over the total outcomes in which Not

Trust is played: r3 “
#pNT,Rq
#NT

. This ratio tells how often the first player could have been better
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off by trusting the second player. Our theoretical results imply that the first player should

choose Not Trust only in the non-cooperative equilibria, meaning that r3 should be equal to

zero in both treatments.

All Reward First

r1 r2 r3 r1 r˚˚2 r3

Full 0.72p29q 0.69p25q 0.56p27q 0.76p24q 0.77p20q 0.62p22q

Last 0.77p27q 0.61p20q 0.53p24q 0.82p19q 0.57p12q 0.62p18q

Table 2.4: Ratios r1 ´ r3. The first three columns consider all second players, while the last three
columns consider only those starting with R. Sample size is in parentheses. Significance: ** 0.05

All the ratios are different than predicted. The first and fourth columns of Table 2.4 tell us that

second players were not able to induce trust, and that first players would have been better off

by trusting, on average, more. Indeed, the third and sixth columns of Table 2.4 confirm that

first players were too suspicious, and that more than 50% of times that they choose Not Trust,

they would have been better off by trusting the second player. Nonetheless, the second and

the fifth column show that in the Full-treatment it was easier to maintain a good reputation

while exploiting the first player. In fact, it the Full-treatment it was more likely for the second

player to be trusted when playing NR. The difference between treatments increases and become

significant when considering only those subjects starting with Reward.

Finding 4. Values of ratios r1 ´ r3 are different than predicted. Nonetheless, the probability

of being trusted when choosing Not Reward (r2) is higher in the Full-treatment, which is in

accordance with Prediction 2.

Strategies

So far we classified second players according only to the action they played in the first round.

We shall now look at another dimension: the frequency f with which each subject played

Reward across the 20 periods, which we shall refer to as the subject’s f -Reward strategy, or

f -strategy. Recall that our theoretical model predicts that, if f ‰ 0, then f is concentrated at

100% in the Last-treatment, and is between 25% and 100% in the Full-treatment.

Figure 2.2 shows the distribution of strategies in the two treatments. On the x-axis we plot

the f -strategies, and on the y-axes we report the number of subjects who played that strategy.
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As we can see, the mode in the Last-treatment is 100%, while in the Full-treatment the distri-

bution is bimodal, with the two modes at 100% and 75%. Moreover, even if there is a great

heterogeneity among subjects, nobody chose an f -strategy with f ă 0.25 in the Full-treatment.

Thus, it seems that increasing information lead players to choose less often extremely low or

extremely high f -strategies, in favor of intermediate ones.
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Figure 2.2: Frequency of players’ reward at the 20th period. Skewness: full = -.033 last= -.555;
kurtosis full =1.9* last = 1.8**. Epps-Singleton Two Sample test: not equal, p-valueă 0.01

To analyze the profitability of the different strategies in different treatments, it is useful to

compute the average trust induced by each strategy, i.e. how many times a second player

playing a particular f -strategy was trusted during the game, and averaging over subjects with

same strategies. In Figure 2.3 (left) the vertical axes represents the frequency with which second

players using different f -strategies (reported on the x-axis) were trusted by the first players.

Coherently with our prediction, we observe that second players who use a f -strategy with a

sufficiently large f are trusted more in the Full than in the Last-treatment. However, the rate

at which trust sharply declines is at around 0.6, while the theoretical model puts it at 0.25.
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Figure 2.3: Average trust and average payoff for each f -strategy

In Figure 2.3 (right) we plot the payoff obtained by second subjects in the two treatments,

depending on the f -strategy they choose. Coherently with our model, the highest payoff accrues

to those players in the Full-treatment which used an f -strategy with a sufficiently large f .

Paradoxically enough, in the Last-treatment the payoff earned by the second players does not

depend upon the f -strategy they choose, as if first players were using an Equalizer strategy,

i.e. a strategy that is able to fix the opponent’s payoff at a certain level, independently from

the strategy chosen. We can summarize those observations in the following:

Finding 5. The frequency of subjects choosing an f -strategy with extremely high (f ą 0.8) or

extremely low (f ă 0.3) values of f is higher in the Last-treatment, in line with our Prediction

1. Trust is higher in the Full-treatment for f -strategies with f ě 0.6, and second players’

payoffs are higher than 4 only in the Full-treatment, in line with our Prediction 2.

Choices over time

In this section we try to classify all subjects on the basis of the pattern of their choices across

periods. Figures 2.A.3- 2.A.8 in Appendix 2.A show each subject’s pattern of choices over the

first 20 periods. We classify as Always R subjects who choose Reward 20 times over 20 periods

(see Figure 2.A.3); Almost R are subjects who play a mixed strategy in the first part of the
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game, but then choose Always R in the second part of the game (10 times over periods 11-20,

see Figure 2.A.4). Mild exploiters choose always Reward only in the first part of the game,

and they try to exploit in the second part (see Figure 2.A.5). Exploiters and Hard Exploiters

mix during all the game with a final frequency of at least 25%. The difference is that a player

classified as Exploiter never goes below 25% (see Figure 2.A.6, ”mixing”, for Exploiters, and

Figure 2.A.7, ”mixing too much”, for Hard exploiters). Finally, Almost NR play Reward with

a final frequency smaller than 25% (see Figure 2.A.8, notice that nobody chose this strategy in

the Full-treatment). Table 2.5 shows average frequencies, as well as average payoff and trust

induced by each strategy in both treatments.

Frequency Trust induced Payoff

Full Last Full Last Full Last

Always R 0.14 (4) 0.26 (7) 0.94 0.86** 3.81 3.59*

Almost R 0.07 (2) 0.15 (4) 0.97 0.84** 4.07 3.61***

Mild exploiters 0.10 (3) 0.07 (2) 0.96 0.90 4.17 3.80**

Exploiters 0.48 (14) 0.22 (6) 0.72 0.64** 3.67 3.46*

Hard Exploiters 0.21 (6) 0.18 (5) 0.43 0.64*** 2.73 3.68***

Almost NR 0.00 (0) 0.11 (3) – 0.57 – 3.50

Table 2.5: Frequency of strategies, trust and payoffs - Averages of trust and payoffs are computed
considering periods 1-20. Significance of differences between treatments: * 0.1; ** 0.05; *** 0.01.

Finding 6. Compared to the Full-treatment, in the Last-treatment more subjects can be clas-

sified as Always R or Almost R, and fewer as Mild Exploiters or Exploiters, in line with our

Prediction 1. Trust and payoffs are higher in the Full-treatment for Mild Exploiters and Ex-

ploiters, in line with our Prediction 2. Contrary to our Prediction 2, Exploiters are not able to

gain more than the mutual cooperation payoff.

This Finding suggests that there is scope for extortion, although it is smaller than the theory

predicts. Exploiters receive too little trust for their strategy to be profitable. Indeed, payoffs

in both treatments are not consistent with first players choosing best responses to information:

first players would be better off by trusting more after observing a sufficiently large frequency

of Reward (or a Reward in the last treatment), and by trusting less after observing a low

frequency of Reward (or a Not Reward in the Last-treatment). Interestingly enough, the result

of the Last-treatment seems to show that subjects mix between Reward and Not Reward even

when such a mix is not profitable, as almost 30% of the subjects can be classified as Exploiters

or Mild exploiters even in settings in which this strategy is not part of any NE.
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The role of information

In this section we try to find an answer to two questions: do first players correctly respond to

information? And: is information reliable? To this aim, we analyze behavior over time as a

function of the information available.

Consider Figure 2.4 right. On the x-axis we put the average frequency with which Reward has

been played (and was shown to the first player), and on the y-axis the frequency with which

Trust and Reward was played when this piece of information was available. For example, the

graph shows that in periods where the first player observed a frequency of Reward of 80 per

cent, average Trust was above .8 and average Reward was slightly above .6. If all the second

players were using an unconditional mixed strategy, the information would be reliable and

all the blue points would be aligned on the diagonal. If all first players were playing a best

response to the information they received, average Trust would be equal to 0 for a probability

of Reward smaller than 0.25, and to 1 otherwise. The graph shows that the second players

where using roughly an unconditional mixed strategy. The first players, however, trusted too

little when receiving positive information about the second player’s past choices. In particular,

the probability of playing Trust sharply declines for a frequency of Reward below 60 per cent.
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Figure 2.4: Average Trust and Reward for each level of information.
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In Figure 2.4 (left) we plot the same graph, with data coming from the Last-treatment. Just

like in the previous graph, the x-axis reports the frequency with which Reward was played by

second players, but keep in mind that in the Last-treatment this information was not shown

to first players. Our model predicts that in this case there should only be observations for a

frequencies of Reward equal to zero or one. The reason is that there is no equilibrium in which

the second player mixes. The graph clearly shows that this is not the case. In fact, the second

player seems to play different unconditional mixed strategies. At the same time, the theoretical

model predicts that (if first players play their equilibrium strategies) all red points should be

aligned on the main diagonal. To see this, consider that in equilibrium first players should play

Trust when observing a Reward, and Not Trust when observing a Not Reward. It follows that,

as long as first players stick to their equilibrium strategy, the frequency of Trust should match

the frequency of Reward. This turns out to be true only for high frequencies of Reward, as in

this case the red points lie almost perfectly on the main diagonal. However, when considering

lower frequencies of Reward, average Trust never goes below 40%. Indeed, first players were

too willing to Trust: they trusted with strictly positive probability even when they interacted

(without knowing) with individuals who had never played Reward in the past.

In other words, deviations from the equilibrium predictions go in the direction of too much

trustfulness rather than too little, tempting the second players to choose exploitative strategies

also in the Last-treatment.

Finding 7. Second players where using approximately unconditional mixed strategies in both

treatments, although they are part of an equilibrium only in the Full-treatment. Compared to the

predictions of the theoretical model, the first players were Trusting too little in the Full-treatment

and too much in the Last-Treatment.

2.6 Conclusions

An interesting feature of our data is that there are subjects who alternate between Reward

and Not Reward in both treatments. This may be interpreted as an attempt made by second

players to exploit first players, which fails when only the last action is observed, so that no

reputations in mixed strategies are possible. If there is confusion on the part of the subjects,

it seems that it induces them to try too hard (rather than too little), to obtain more than

what mutual cooperation could guarantee them. Not surprisingly, the second player was able
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to reach a payoff larger than the mutual cooperation payoff only in the Full-treatment, and

only provided that the frequency of Not Reward exceeded 50 per cent.

Several theoretical models have been developed where individuals know, directly or indirectly,

the opponent’s past behavior, and, in those cases, cooperation is usually attained by using

a strategy that is able to punish defectors and thus sustain a fully cooperative equilibrium.

Usually, but not always: the Folk-theorem for repeated games proves that there are many more

equilibria besides the fully cooperative ones, including those in which one player obtains a

payoff larger than the mutual cooperation payoff. In Section 2.3 we showed how such equilibria

could be created in simple settings in which players are constrained to use simple memory-

one strategies, provided that mixtures are observable. It is easy to dismiss these asymmetric

equilibria as mere mathematical curiosities. It may be difficult to imagine real settings in

which individuals try to form a reputation for playing a mixed strategy. This is probably the

reason why in the large literature on information in the Trust Game, deviations from the fully

cooperative equilibria are never explained in terms of other equilibria of the repeated game.

We tested this conclusion with an experimental design and found it wanting. Subjects indeed

tend to alternate between Reward and Not Reward more often when they know that the fre-

quencies with which they chose Reward is going to be disclosed to the next opponent, compared

to the case in which only their last choice is observed. However, we found a substantial frac-

tion of subjects who were willing to randomize between Reward and Not Reward even in the

Last-treatment. If anything, we found that subjects try too much to extort a larger payoff from

their partners.

At the same time, our data show that in the attempt to exploit the other player’s trust, some

subjects played Reward with a too small frequency and ended up with a very low payoff, for

themselves and for the opponents with whom they interacted. This result contains what we

think is an interesting message for those who investigate the solutions to social dilemmas based

on repeated interactions and reputations. Any such solution contains an element of conflict in

it, because parties are likely to have conflicting interests on the several NE that emerge when

a social dilemma is played repeatedly. Failures in securing an efficient equilibrium are usually

attributed to player’s impatience, or lack of information like in game with imperfect monitoring.

Our results shows that sometimes efficient equilibria fail to be reached because some players

try to secure for themselves a larger share of the benefits of cooperation. This is an important

topic that surely deserves further investigation.
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Appendix

2.A More Figures
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Figure 2.A.1: Box plot of the final frequency of Reward for each subject

0
.2

.4
.6

.8
1

re
w

ar
d

Last Full

Average reward per subject- start with R

Figure 2.A.2: Box plot of the final frequency of Reward for each subject starting with R
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Figure 2.A.4: Almost reward: f “ 1 in the second half of the game.
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Figure 2.A.5: Mild exploiters: f “ 1 in the first part of the game, and f ă 1 in the second part
of the game
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Figure 2.A.6: Exploiters: 0.25 ď minpfq ă 1

110



0
.5

1
0

.5
1

0
.5

1

0 5 10 15 20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Last, 49 Last, 71 Last, 104 Last, 108

Last, 109 Full, 12 Full, 31 Full, 34

Full, 35 Full, 83 Full, 90

re
w

ar
d

period
Graphs by treatment and subject

Mixing too much

Figure 2.A.7: Hard exploiters: minpfq ă 0.25.
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Figure 2.A.8: Almost not reward: f ă 0.25

111



2.B Instructions

Introduction

Good Afternoon and thank you for participating in this experiment. It won’t be difficult,

there won’t be any tricky questions, but you have to follow the instructions carefully. Your

answers will be anonymous, and it will not be possible to know the identity of who gave the

single answer. During the experiment you are not allowed to talk with other participants, and

if something is not clear in the instructions, just raise your hand and ask the experimenter

for further explanations. If something is not clear, again just raise your hand and ask for

explanations to the experimenter.

Participants and roles At the beginning of the experiment half of participants will take

the role of “Partecipante UNO” (participant one), and half the role of “Partecipante DUE”

(participant two). Each participant will keep his role until the end of the experiment. During

the experiment, each Partecipante UNO will be matched with a Partecipante DUE, and both

of them will have to make some choices that will allow them to gain some tokens.

Structure of the experiment The experiment consists in two parts, A and B. You will

receive more detailed instructions at the beginning of each part. The number of tokens that

you will get at the end of the experiment will be determined by the choices that you and the

participants with whom you are matched will do. In the two parts of the experiment, you will

face the same problem, but you have to make different choices. Specifically:

-in the first part you can make a new choice every time you meet a new participant;

-in the second part you can choose only once, and the same choice will be automatically

implemented every time you will meet a new participant

Payments You will receive 3 euro for participating in the experiment. Moreover, during the

part A of the experiment you will have the chance to receive some tokens, that will be later

conerted in Euro, at the ratio: 1 token=0, 10 euro. During the part B of the experiment, you

will have the chance to receive 10 euro, according to the procedure that we will explain later.
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Instructions for the part A of the experiment

Participants and choices The part A of the experiment consists in an indefinite number

of rounds. At the beginning of each round, each Partecipante UNO will be matched with

a Partecipante DUE. Both participants have to make some choices that will determine the

number of tokens they will receive in each round. Specifically:

-the Partecipante UNO has to choose between Dentro (IN) and Fuori (OUT);

-the Partecipante DUE has to choose between Alto (HIGH) and Basso (LOW).

To understand the relation between choices and tokens, during the experiment we will give you

a more intuitive representation of payments: a table in which your own payment will always

be the first value of each box (in red).

The table on the left will be shown to Partecipante UNO, while the one on the right will be

shown to Partecipante DUE. In each box there are the number of tokens for Partecipante UNO

(first value, in red, in the left table), and the number of tokens for Partecipante DUE (second

value, in black, in the left table). Thus:

If UNO chooses Dentro and DUE chooses Alto, both participants get 4 tokens;

If UNO chooses Fuori and DUE chooses Alto, both participants get 1 token;

If UNO chooses Dentro and DUE chooses Basso, UNO gets 0 tokens, and DUE gets 6 tokens;

If UNO chooses Fuori and DUE chooses Basso, both participants get 1 token.

To make your choice you only have to press the button showing your preferred option.

Matching When all participants have made their choices, you will know how many tokens

you earned for that round. Then, a new round will start and each Partecipante DUE will be

matched with a new Partecipante UNO. Is it possible to meet the same participant again, but

you have to wait at least for 10 rounds. Thus, if your role is DUE, and in the present round

you meet a particular UNO, you are sure not to meet the same Participante UNO again for at

least 10 rounds (the same reasoning applies if your role is UNO).
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During the experiment it is not possible to identify a single participant, but every reference

will be done to the roles e.g. “you are matched with a new Partecipante UNO (or DUE)”.

How long is the experiment? The experiment consists in an indefinite number of rounds.

You will participate to 20 rounds for sure, after which the experiment will continue with a

probability of 50%. The end of the experiment will be thus determined by the result of a

random extraction at the end of each round after the 19th. One of the experimenter will put

in a box two pieces of papers, with numbers 1 and 2. At the end of each round one number is

chosen at random. If the number is 2, the experiment is over. Otherwise, the number is put

back in the box and the experiment goes on.

Information At the beginning of each round the Partecipante UNO will receive some infor-

mation on the past choices of his current opponent. Specifically, the Partecipante UNO will be

informed over the percentages with which the Partecipante DUE chose the options Alto and

Basso in previous rounds (of course this information will be available only from the second

round). For example, the percentages 50%, 50%, imply that the current Partecipante DUE

chose Alto and Basso the same number of times in the past. The percentages 33%, 66% imply

instead that the current Partecipante DUE chose, on average, Alto twice every three times, and

Basso once every three times. To better understand this information, on the monitor of Parte-

cipante UNO will appear a bar graph, indicating the percentages with which the Partecipante

DUE chose Alto and Basso in the past:

In this example, the bar graph shows the percentages (66.7%, 33.3%), thus the Partecipante

DUE chose, on average, Alto twice over three times, and Basso once over three times.

The Partecipante DUE doesn’t get any information about the past behavior of the Partecipante

UNO with whom he is matched. On his monitor will appear a synthesis of his own previous
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choices, represented by the percentages with which he chose Alto and Basso in the previous

rounds. Finally, every participant can see a bar showing the average number of tokens earned

from the beginning of the experiment until the current round.

Figure 2.B.2: Example of Participante Uno’s choice window

Figure 2.B.3: Example of Participante Due’s choice window
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Payments The total payment is equal to the sum of tokens earned in each round. At the

end of the experiment, the total of tokens will be converted in Euros and you will get the

corresponding amount of money.

Control Questions

Now we ask you to answer to some control questions.

When all participants will have correctly answered to all questions, the experiment will begin.

1. In one round Partecipante UNO chooses Dentro and Partecipante DUE chooses Alto:

• How many tokens does Partecipante UNO get in this round?

• How many tokens does Partecipante DUE get in this round?

2. In one round Partecipante UNO chooses Fuori and Partecipante DUE chooses Alto:

• How many tokens does Partecipante UNO get in this round?

• How many tokens does Partecipante DUE get in this round?

3. In every round you will be matched with the same participant. True or False ?

4. At the beginning of every round, Partecipante DUE is informed over Partecipante UNO’s

previous choices. True or False ?

5. At the beginning of every round, Partecipante UNO is informed over Partecipante DUE’s

previous choices. True or False ?

6. You are at the first round, which is the probability the experiment will go on?

• 100% • 30% • 50% • 70% • 0%

7. You are at the 28th round, which is the probability the experiment will go on?

• 100% • 30% • 50% • 70% • 0%
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Chapter 3

You go first: Coordination in a

simulated Crowdfunding Experiment

with Luigi Mittone (University of Trento),

Azzurra Morreale and Mikael Collan (Lappeenranta University of Technology)

In this chapter we present the results from a simulated crowdfunding experiment, designed to assess

the impact of cheap (i.e. no payoff-relevant) information on coordination. We consider a dynamic

coordination game with multiple options. We run the experiment in Italy (with a relatively homoge-

neous sample), and in Finland (with a more heterogeneous sample). We first show that, with learning,

there is a clear tendency for subjects to adopt the weakly dominant strategy “You go first: I’ll wait

and see what the majority does”. Our main result is that only in the presence of cheap information,

the same project is chosen across sessions, independently from the degree of homogeneity of the sam-

ple. This suggests an important role for cheap information in making a project salient. Our second

result is that the presence of cheap information makes coordination easier in the very first rounds, by

increasing contributions on the same project at the beginning of the game. However, in the presence

of uncertainty, disclosing cheap information is detrimental for coordination, decreasing contributions

both at the beginning and at the end of the game. Applied to the case of crowdfunding, the present

results suggest that, when multiple projects are available, it is important for designers to disclose

information that is not directly payoff-relevant, but that is able to make a project focal.
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3.1 Introduction

Crowdfunding (CF) is the practice of gathering resources by collecting small amounts of money

from a large number of people, that is by asking funding to “the crowd”. Historical crowdfund-

ing campaigns include the funding of the pedestal for the Statue of Liberty, organized by Joseph

Pulitzer1, and the “march of dimes” campaign, lead by Franklin D. Roosevelt to fund the fight

against polio. Both are successful examples of crowdfunding efforts to mobilize massive crowds

in the financing of large common-good projects in the time before the Internet. Since the days

of these two examples, crowdfunding has gained momentum, and during the last ten years,

fueled by the opportunities brought about by the Internet (including web-based crowdfunding

platforms such as Kickstarter.com), the number of crowdfunded investments and the volumes

of funding have dramatically increased and are in the billion dollar category 2.

The rapid growth and increasing importance of crowdfunding makes it an interesting object of

study from many points of view that include finance, information systems, and decision-making

among others. In particular, existing empirical studies have investigated the determinants of

successful fundraising (Mollick, 2014; Colombo et al., 2015), with some of them focusing on

backers’ contributions patterns to projects over time (Agrawal et al., 2014; Cholakova and

Clarysse, 2015). While the extant literature has enhanced our understanding of the underlying

dynamics behind the behavior of the backers of successful projects3 (Roma et al., 2017), there

are still open questions regarding what motivates individuals in funding projects.

For instance, one highlighted aspect of the investment behavior is herding, i.e. the tendency of

people to behave as “the majority does”. People appear to be more likely to fund projects that

have already received many contributions from others. However, whether the herding behavior

is “rational” (i.e. when the accumulated capital is interpreted as a signal of project’s quality)

or “irrational” (i.e. when backers blindly follow the behavior of the crowd) is still an open

issue in literature (Moritz et al., 2015). Moreover, it is not clear whether backers’ behavior

is primarily driven by projects’ characteristics, and to which extent it can be considered an

instance of herding behavior (Brüntje and Gajda, 2015). Indeed, being able to attract funding

1He managed to collect around 150000 dollars from more 120000 than people.
2Since its launch in 2009, Kickstarter.com alone managed to collect 3.5 billions of dollars from more than

14 million backers (i.e. the contributors of the crowdfunding campaigns), funding more than 140 thousands
projects.

3Fundings are usually high during the beginning and towards the end of the campaign, while they slow
down during the middle of the campaign (Kuppuswamy and Bayus, 2018)
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in the very beginning of the campaign is crucial for a project to succeed, as those projects that

receive the higher contributions in the early stage of the campaign are also more luckily to

reach the threshold, with some of them reaching the threshold in a couple of days, suggesting

an important role for herding behavior (Agrawal et al., 2014).

On the one hand, this might lead to think that early investing is a winning strategy, since it

can serve as a signal to induce other individuals to choose the same project, thus starting the

herding effect. On the other hand, if the backer is budget constrained, he might prefer to wait,

not to have his resources blocked in a unsuccessful project, and to later choose a project with

a higher chance of being funded. This free riding behavior might cause a coordination failure

among backers: if, as it seems to be, early funders generate a valuable (but noisy) signal for

later ones over a project’s chance to succeed, all investors might have an incentive to wait and

see what others do (Agrawal et al., 2014).

Thus, in crowdfunding there are two different sources of risk: a project is subject to the risk

of not being funded (arising from the coordination problem), and to the risk of being a failure

(arising from the asymmetry of information that characterizes crowdfunding campaigns). It is

then important to study the motives behind backers’ behavior in the presence of both market

uncertainty and strategic uncertainty. Nonetheless, the evidence on what drives backers’ deci-

sions is still scarce, as it not possible to know from the web platform’s data which information

was available by the time of the investment’s decision.

We design an experiment to try to overcome this difficulty. Our setting allow us to analyze

whether successful projects are funded by backers who are mostly subject to herding effect,

and to what extent those projects have some salient characteristics that might prompt backers’

coordination. In the experiment,subjects play a dynamic coordination game: they can choose

to invest, over several rounds, in one of a number of projects that have to reach a minimum

funding threshold before a given deadline. The decision to depart from simultaneous moves

games, and to give subjects the possibility to choose in a dynamic contest, allowed us to better

simulate a real crowdfunding process, and to control whether some form of herding behavior

was taking place. Moreover, it allowed us to study which factors, if any, might affect the speed

of coordination, i.e. the time at which a project reaches the threshold.

Specifically, in our baseline subjects make their choices in front of identical project, i.e. projects

that have the same return in case of success, and no further information was given.
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In the first treatment we add non payoff-relevant information to the description of the projects.

We disclose information about the designer of the project, the institutional sponsor, and the

rating of the different projects. On the one hand, the presence of information might induce

some belief coordination over the project to be funded, speeding up the coordination process.

On the other hand, information might increase the noise and hinder the coordination process,

if subjects interpret different pieces of information as salient.

In the second treatment, we add payoff-relevant information in the form of uncertainty4 over

the crowdfunding campaigns future prospects, which in turn may affect backer’s propensity to

finance projects. Indeed, Ahlers et al. (2015) show that the higher the level of uncertainty about

the start-up’s future prospects, the lower is the success in equity crowdfunding. Therefore, risk

preferences might have an impact on subjects’ contributions. To analyze this possibility, we

modify the baseline by introducing uncertainty over project returns: each project is character-

ized by a certain level of risk, but all projects have the same expected value.

In the final treatment we consider the most complete setting, by including both cheap infor-

mation and payoff uncertainty. This treatment allow us to test the combined impact of both

market uncertainty and project’s information on subject’s behavior.

For each treatment, we run three market sessions with different groups of projects, to investigate

whether some form of learning takes place. Moreover, we collect data from two countries: Italy

(University of Trento) and Finland (Lappeenranta University of Technology). As we explain in

Section 3.4, the extent to which providing information helps or hinders the coordination process

may depend on the degree of homogeneity of the sample. Thus, we run the experiment in two

different settings: in Italy we recruit Italian students, while in Finland we recruit Exchange

students, i.e. students from all around the world. This allowed us to compare the impact of

information in two samples that may well be characterized by different levels of homogeneity.

Overall, subjects succeed in funding a project in all treatments5. However, learning causes the

number of first movers to decrease, as subjects tend to wait and see what the majority is doing,

supporting that there is a difference in behavior between seasoned and new investors.

Introducing information, either non payoff-relevant, or in the form of uncertainty over projects’

returns, have effects on project selection and on participants’ coordination.

4For the ease of exposition, in the following we will refer to no-payoff-relevant information as cheap infor-
mation (or simply as information) and to payoff-relevant information as uncertainty.

5This is not surprising, given the parameters we used in the experiment, see Appendix 3.A.
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Specifically, introducing cheap information increases the coordination at the very beginning of

the game (i.e. the number of subjects choosing the same project in the first round), even if

it does not affect the overall coordination (i.e. the number of subjects choosing the winning

project), relatively to the baseline. More importantly, when provided with such information,

subjects choose the same projects across market sessions. Taken together, these considerations

suggest the importance of cheap information at the very beginning of the game, determining

which project is going to win. Afterwards, behavior appears more driven by herding effect.

Introducing uncertainty over the project’s returns seems to increase the coordination at the

very beginning of the game, but it reduces the overall coordination, relatively to the baseline.

Indeed, in the presence of uncertainty, risk preferences play a role as subjects have a stronger

incentive to signal a specific risky project. This is to say that a risk taker player can try

to push the other players to bet on the riskiest project, vice versa a risk averse player can

implement a similar strategy but supporting the less risky project. In addition, in the presence

of uncertainty, a higher number of participants preferred not to invest.

Finally, we show that the combined effect of cheap information and uncertainty is even more

detrimental for coordination, as both coordination in the first round and the overall coordination

are lower, relatively to the baseline.

Thus, we not only provide further evidence that, with learning, subjects tend to move towards

weakly and risk dominant strategies, but we also provide new evidence over which factors might

affect the timing of subjects’ decisions.

As such, the results presented are very relevant for crowdfunding investors, companies seeking

funding via crowdfunding platforms, companies that provide and manage crowdfunding services,

and important to the disciplines of finance and decision making generally. The reported findings

are new and, to the best of our knowledge, this is the first time similar results are reported in

the context of crowdfunding.

3.2 Literature Review

Previous studies on crowdfunding mainly used data from web platforms to analyze backers’

behavior, and there seems to be a general agreement that the behavior of experienced and

unexperienced backers differ. Experienced backers tend to focus on project’s characteristics
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in order to decide which project to fund, even if it is still not clear whether they are able to

choose successful projects, or if a project became successful because they choose it (Baum and

Silverman, 2004; Mollick, 2014; Kim and Viswanathan, 2018).

Indeed, one highlighted aspect of the investment behavior is herding, i.e. the tendency of people

to behave as “the majority does”: people appear to be more likely to fund projects that have

already received contributions from others (Agrawal et al., 2011; Burtch, 2011). Evidence of

herding behavior using field data was found, among others, by Herzenstein et al. (2011), Zhang

and Liu (2012), Burtch et al. (2013), and Ward and Ramachandran (2010).

A rationale for herding was given by Mäschle (2012), who noted that backers might use a free-

rider strategy and wait to invest only on those projects that already have enough funding, in

order to avoid time-costing searching and evaluation activities. He noticed that this behavior

can reduce individual costs of information production, but raises the risk of irrational exuber-

ance. Moritz et al. (2015) interviewed several backers in equity crowdfunding and found that

not only herding behavior was present, but also that investors were aware of it. The study

also confirmed the importance of the very start of the campaign. During this phase a project

may collect funds mainly from family and friends, and having little funding after a week may

be a signal that not even the closer acquittance of the designer trust him with the project,

discouraging further investors (Belleflamme et al., 2010).

Even if there are several types of crowdfunding (CF)6, they all share the same basic character-

istics, which resemble a coordination game: a project must reach a funding threshold before a

deadline, otherwise the eventual backers are refunded. Thus, several papers have analyzed the

factors that might influence contributions and coordination in laboratory experiments. For in-

stance, Lin et al. (2013) investigate how information about pledgers’ friends – which indirectly

is a signal of credit quality - affects contributions. In a field experiment, Burtch et al. (2015)

highlight that contribution behavior is influenced by the lack of anonymity for the contributors.

Finally, Hashim et al. (2017) analyze the effect of information about previous contributions on

coordination. Our paper relates to this stream of research by examining how providing infor-

mation about the projects/funder, and the presence of stochastic outcomes (implied by the

6Donation CF (e.e. makeawish.it), which involves most commonly charities and humanitarian projects;
Reward based CF (e.g. kickstarter.com), where backers of a project receive a non-monetary reward, which
usually depends on the amount backed; Lending CF (e.g. prosper.com), where people lend money to other
people or business in need, with the promise of having back the amount plus the interest rate; Security CF
(e.g wefunder.com) where people are directly involved in the company, buying its debt or equity (Purcell, 2014;
Steinberg et al., 2012)
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uncertainty over the campaign future prospects), affect coordination.

Moreover, since Bagnoli and Lipman (1989)’s work, a vast body of experimental literature has

examined the effects that introducing a threshold has on contributions in coordination and

public good games (Corazzini et al., 2015). The majority of these works has mainly focused

on the effects of introducing alternative refund levels (the amount returned to subjects in

case the threshold is not reached) on total contributions (see e.g. Isaac et al., 1989; Cadsby

and Maynes, 1999; Coats et al., 2009; Cartwright and Stepanova, 2015; Cason and Zubrickas,

2017). However, while the afore-mentioned works consider a setting where a single project can

be funded, we consider multiple projects and focus on the effects that introducing information

has on contributions and coordination. Although this issue is relevant in the real world, scant

attention has been devoted to analyzing subjects’ behavior in the setting of multiple mutually

exclusive projects.

One notable exception is represented by the work of Corazzini et al. (2015), which considers the

effect of increasing the number of projects on the level of coordination. Perhaps not surprisingly,

the authors found that coordination becomes more difficult when subjects face multiple options,

even if this effect is mitigated when one of the options is Pareto dominant. In a similar vein,

Wash and Solomon (2014) implement an experiment where subjects can simultaneously decide

whether to fund one or more projects, each with a different funding threshold.

We significantly depart from those works in that we incorporate the important time dimension:

in our setting subjects have more than one period to decide, knowing the choices made by the

other subjects in the previous periods. Previous attempts to introduce time in coordination

games were made, for example, by Gächter et al. (2010) and Coats et al. (2009). They allowed

subjects to choose sequentially (with random positions) whether to fund a project. This in-

creased the success rate in large groups, even if it had an opposite effect when the game was

played in couples. Sequential decisions are easier to analyze, but in the context of crowdfunding

it is important for subjects to decide not only if, but also when to invest in a project.

Closer to our setting is Solomon et al. (2015), where subjects had a window of 60 seconds to

choose whether to fund a project, knowing others’ decisions in real time.

The main differences with our setting is that Solomon et al. (2015) considered a public good

game, where subjects have different endowments for different projects, thus relaxing the co-

ordination problem. This means that projects in their setting are not in competition to each
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other for contributions, i.e. all the projects can be funded. Moreover, in their setting the same

project has different returns for different subjects, which does not allow to analyze whether

timing decisions are dependent on subjects’ risk preferences or projects’ characteristics.

In our experiment, only one project can be funded (as in Corazzini et al., 2015), and subjects

have more than one round to choose (as in Solomon et al., 2015). Contrary to those studies,

projects in our setting have the same (expected) return, and we provide subjects with projects’

information that can be either payoff-relevant (uncertainty over the campaign future prospects)

or non payoff-relevant (e.g. information regarding the designer). The presence of such infor-

mation can make a project more salient compared to the other projects. In other words, it

becomes a focal point as in Schelling (1960), thus promoting coordination (Mehta et al., 1994;

Crawford et al., 2008; Isoni et al., 2014; Parravano and Poulsen, 2015).

Finally, we analyze how such information influences convergence to a risk dominant strategy

(Harsanyi, Selten, et al., 1988), which, in our setting, corresponds to a “you go first, I’ll wait

and see what the majority does” strategy. There is a huge experimental literature showing

convergence not only to payoff dominant outcomes but also to risk dominant ones (e.g. Van

Huyck et al., 1990; R. W. Cooper et al., 1990; Heinemann et al., 2004; Cachon and Camerer,

1996; Bornstein et al., 2002; Blume and Ortmann, 2007). However, differently from our exper-

iment, the majority of these works analyzes setting characterized by Pareto ranked equilibria.

We contribute to this literature by examining how providing information and/or introducing

uncertainty affects convergence on risk dominant strategy in a dynamic setting characterized

by multiple symmetric and asymmetric equilibria.

3.3 Experimental Design

The experimental design is based on the well known coordination game (R. W. Cooper et al.,

1990; Fehr and Gachter, 2000; Morris and Shin, 2002; Heinemann et al., 2004) with a threshold

(Heinemann et al., 2009). Subjects have to choose one project among those available, and if

enough subjects choose the same option, the project is funded and can generate profit for the

subjects who chose it.

The novelty in the design, which allows us to better simulate the herding effect in a crowdfunding

market, is the time dimension: subjects in the experiment have more than one period to decide,
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knowing what their opponents did in the previous periods. They can invest in a project only

once, and once they do, they can not change their decision in subsequent periods. The choice

to depart from standard simultaneous games is driven by the need to make explicit the trade

off between waiting for the project selected by the majority, and choosing in the early rounds

to make the favorite project more likely to be selected.

We gave to each subject one share to invest, and the parameters were such that only one project

could reach the threshold, thus giving an effective incentive to the subjects to coordinate.

The experiment has a baseline and three different treatments (see Table 3.1), in a 2x2 design. In

the baseline, no information is given about projects, which are referred to by names of different

colors, and all having the same, sure, return, in case the threshold for the project is reached.

In the first treatment (Cheap-Info-treatment, or Info-treatment), we keep sure the return,

and we add information about the projects. In the second treatment (Uncertain-treatment),

we give no information, but the return of the projects is uncertain: projects have the same

expected value, but different levels of risk and return. Finally, in the last treatment (Combined-

treatment) we introduce both cheap information and uncertainty over outcomes.

Uncertainty

No Yes

Information
No Baseline Uncertain

Yes Cheap Info Combined

Table 3.1: Baseline and Treatments

In order to define the risk and the characteristics of each project, we run a “designing” experi-

ment, where we asked participants to choose the characteristics of the projects that we later use

in the coordination experiment. Then, we run main experiment, involving subjects different

from the ones participating to the “designing” experiment, where participants were randomly

assigned to one of the four afore-mentioned treatments. In both cases, payoffs are expressed

in EMU, Experimental Monetary Unit, which were converted 50:1 into Euro at the end of the

experiment (i.e. 1 EMU “ e0.02 ).
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Design of the projects

Each subject in the “designing” experiment7 had to design a project by selecting one option

for each of the following characteristics:

• Investor’s profit: this is the share of profits the designer is willing to give to the investor

in the case of success. The designer could choose a value in the range 10% - 60%.

• Risk: in the treatments with uncertainty, if the project reaches the threshold, its ability

to generate profits depends on the success of a lottery, which is the combination of a

probability of success and a profit in the case of success. If the lottery is successful, the

project generates a profit for both the designer and the backers of that project. Otherwise,

both the designer and the backers get zero. The designer had to choose a lottery among

several available, all having the same expected value (1000 EMU). He could choose a

value for the risk of the lottery, i.e. the probability of success, in the range 10%´ 90%8.

• Sponsor: in two of our treatments, we introduce cheap information which might help

subjects to coordinate. The first piece of information is the sponsor of the project:

the designer had to choose one sponsor among several proposed institutions9. Indeed,

there is evidence in the literature of the important role played by “superior principals

endorsements” in driving backers to support certain projects (Moritz et al., 2015).

At the end of this phase, we run a beauty contest with all the projects. Each designer had to

vote up to 3 projects that, in his opinion, would receive the most votes among the designer as the

projects that ware more likely to reach the threshold. Thus, we were able to rank the projects

from the most to the least successful. Such ranking was the second piece of information given

to the subjects in the treatments with information. The final pieces of information were about

the designer. We disclosed information about the gender, the education (i.e. the designer’s

degree program) and the experience (i.e. in how many experiments the designer previously

participated). Indeed, there is evidence in the literature that also designer characteristics are

important for backers to decide whether to invest in a project (Vismara, 2016).

7The designing experiment was run in July,2017, at the University of Trento (CEEL)
8Notice that to a risk of 10% corresponds the highest profit of 10000 EMU, while to a risk of 90% corresponds

the lowest profit of to 1111 EMU.
9The proposed institutions were: Bank, District, Insurance Company, Church and University.
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Table 3.B.1 in Appendix 3.B gives some examples of chosen projects. Subjects in this phase

were aware of the aim of the experiment, and the designer of successful projects were later

called to receive the corresponding payments.

Main Experiment

In all treatments of the main experiment, we had groups of 24 subjects, and we repeated

the game three times (we called them three different markets or market sessions), to analyze

whether, and how, subjects’ behavior changes with learning. For each market session, we

randomly selected one set of projects (already designed in the designing experiment) among

those having the same expected value (i.e. the same share of the profits) for the investor. We

kept the same set of projects for each market session across treatments (see Table 3.B.1).

Baseline

In the baseline, we didn’t give any additional information beside the name (i.e. a color) and the

value of each project. At the beginning of each of the three market sessions, we gave one share

(valued 150 EMU) to each subject. Subjects then had ten rounds to decide if, and on which

project, to invest. The threshold was set at half the number of subjects plus one, and it was the

same among all market sessions and all treatments. If a project reaches the threshold, every

subject who chose that project would receive the corresponding value. Otherwise, eventual

backers would receive 50 EMU as a partial refund. The decision of introducing a partial refund

was motivated by the necessity of combining the common use in crowdfunding campaigns of

refunding the investment if a project does not reach the threshold, which would imply a total

refunding, with the fact that, once invested, the money is not in the direct disposal of the

investor until the campaign is over. The partial refunding would thus mimic the cost of losing

the availability of money for that period of time. This method was suggested by Corazzini

et al. (2015) as “ideal to capture the refunding delay in crowdfunding” (p.19).

In every period after the first one, subjects were informed over the number of participants

that, in all previous rounds, chose each project10, and they were allowed to choose a project

even if it reached the threshold. Moreover, in every round subjects had to indicate how many

10This information was provided with a bar graph, indicating the level of funding for each project. The bar
was red until the threshold was reached. At that point, the bar turned green and stop moving.
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participants they believe would chose each project in the current round. This information was

useful to understand whether subjects’ behavior was consistent with their (stated) beliefs.

Treatments

In the first (Info) treatment, we modify the baseline experiment by providing information about

the projects and the designers. We disclose information about the sponsor and the rating of the

different projects, and over the education, sex and experience of the designer of each project.

Those pieces of information were summarized on a table (see Appendix 3.C), and subjects could

check only one characteristic at the time. By clicking on the name of one characteristic, the

values corresponding to each project was shown in the table, and those values remain visible

until the subject would click on a different characteristic. This allowed us to control which piece

of information the subjects choose to check, and how long they stayed on each characteristic,

giving us a partial clue on the relative importance of the different characteristics.

In the second (Uncertain) treatment we modify the baseline by introducing uncertainty over

projects’ returns. As already mentioned, in each market the expected value of the projects

is the same, but each project is characterized by a different probability of generating profits,

in the case the threshold was reached. That is, we add market uncertainty to the strategic

uncertainty characterizing the coordination game. Each project was linked to lottery, chosen

by the designer in the designing phase, and for each project subjects could see the relative

probability of generating profits, and the value of its profits. If a project reached the threshold,

then we run the corresponding lottery. Only if the lottery was successful the subjects who chose

that project could gain the relative payoff. Otherwise, they would get a payoff of zero.

Finally, in the last (Combined) treatment, we modify the baseline by merging the Info-treatment

and the Uncertain-treatment. That is, we disclose to participants information about the

projects and the designers, and at the same time the projects payoffs’ are uncertain.

This experimental design allows us to study the role of cheap information in settings charac-

terized by either certain or uncertain payoffs, as well as the role of uncertainty in settings with

and without cheap information.
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Experimental procedure

For each treatment, we run two experimental sessions, one in Italy (CEEL - University of

Trento) and one in Finland (LUT - Lappeenranta University of Technology).

The experiments were run from December 2017 until March 2018. A total of 192 subjects

participated, 48 per treatment (24 in Italy and 24 in Finland), and participants were not allowed

to participate more than once. The experiment was conducted using the o-tree software (D. L.

Chen et al., 2016, see Appendix 3.C for the instructions).

After arriving to the laboratory, participants were randomly assigned to a computer. Instruc-

tions were given in Italian in the sessions in Italy, and in English in the sessions in Finland.

Participants had to answer a series of control questions before being allowed to start the ex-

periment. The software informed participants when a new market session was starting, and

we didn’t give any feedback between one market session and the next one11. In all treatments,

after the final market, we elicited subjects risk preferences through the Bomb Risk Elicitation

Task (BRET, Crosetto and Filippin, 2013)12.

After the BRET, one market session was randomly extracted by the computer, and the total

payment of each subject was computed as the profit in the chosen market session, plus the

(eventual) prize for the belief elicitation, plus the profit in the BRET, plus the participation fee.

Indeed, we incentivize the belief elicitation in the following way: at the end of the experiment,

we randomly selected one period of the game, and we computed the set of beliefs that were

the most accurate i.e. closest to the actual number of subjects who invested in that period. A

prize of 150 EMU was given to the participant whose beliefs were the most accurate.

The average payment was equal to e11.50, with a maximum of e25 and a minimum of e3 (in-

cluding the participation fee of e3), for an experiment that took approximately 50-60 minutes.

At the end of the experiment, we asked subjects to answer a series of debriefing questions, and

to fill out a short demographic questionnaire.

11Clearly this was meaningful only in the uncertain and in the Combined-treatments, since subjects didn’t
know whether the project they chose was successful (i.e. if it won the lottery) or not.

12In the BRET, every subject was shown 100 boxes; every subject knows that 99 boxes contain 2 EMU each,
while the remaining one contains a bomb. Participants were asked to collect as many boxes as they wanted,
knowing that if the box containing the bomb was collected, it exploded, causing earnings equal to 0 for this
part of the experiment.
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3.4 Predictions and Hypotheses

3.4.1 Theoretical Framework

Our model is an extension of Heinemann et al. (2009). They considered a group of n players

choosing between a safe option (S), giving a payoff of y ą 0, and a “risky” option (A), giving

a payoff of r ą y if at least k ď n players choose the same option, and 0 otherwise.

In our case, the original setting is complicated by two aspects: there are several “risky” options

available, and players have more than one period to make their decisions.

Consider first the case where players can choose simultaneously among one safe option S, and

one out of a set of J risky options, all giving the same return r if at least k players choose the

same option. Let xj be the total number of players choosing the risky option j. The payoff

from choosing a risky option j is then:
$

’

&

’

%

r if xj ě k

0 if xj ă k

and the expected payoff from choosing option j is πpjq “ rqj, where qj is the probability that

option j reaches the threshold, that is the probability that at least k´1 over n´1 payers make

the same choice. The (expected) payoff from choosing the safe option is πpSq “ y.

With one safe option and J risky projects, the game has J ` 1 pure Nash equilibria, where all

players choose the same option (either safe or risky).

With only one risky option (call it option A), Heinemann et al. (2009) show that, if players are

risk neutral, there is one mixed equilibrium in which everybody choose the risky option with

the same probability (pA) equal to p˚. In this case, the number of players choosing the same

option follows a binomial distribution, and the probability that option A reaches the threshold,

from the prospective of a player who is going to choose it, is:

qA “ 1´Binpk ´ 2, n´ 1, pAq

where Bin is the cumulative binomial distribution. To be an equilibrium, players should be

indifferent between the safe option S and the risky option A, that is:

πpSq “ πpAq
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which implies that p˚ must solve:

y “ rqA Ñ y “ rp1´Binpk ´ 2, n´ 1, p˚qq

Consider now the case in which there are J ą 1 risky options. There are then J mixed

equilibria where players mix between one risky option (with probability p˚) and the safe one

(with probability 1´ p˚). With multiple projects, there are also other two types of equilibria:

in the first one, the safe option is never chosen, so that players mix among Ĵ Ď J projects with

a probability equal to 1{Ĵ ; in the second type, also the safe option might be chosen, so that

each risky option is played with a probability equal to p˚, and the safe option with a probability

equal to 1 ´ Ĵp˚. For those two types of equilibria to exist, the return from the risky project

should be high enough (see Appendix 3.A).

Consider now the case of two periods. In the first period, players can choose one of the risky

options, or they can wait. In the second period, if a player already chose one risky option, his

action set his empty. Otherwise, he can choose one of the risky options, or the safe one. A

strategy in this case specifies an action to take in period 1, and an action to take in period 2,

given the number of players who choose each option in period 1. Clearly, if already in period 1

one option reached the threshold, it is optimal for all players who waited in the first period, to

choose that option in the second period. If the threshold is not reached in the first period, the

coordination problem moves to the second period, and the simultaneous coordination game is

played by all players who have chosen to wait in the first period.

The information available in period t is summarized by a vector xt´1, whose general component

xt´1j is the total number of players choosing option j up to period t ´ 1. The final number of

players choosing each option is then given by the vector xT.

With two periods, we denote by Πpx1q the equilibrium payoff when the threshold is not reached

in the first period, and the information available in the second period is x1. That is, Πpx1q

is the equilibrium payoff resulting from the simultaneous coordination game played among

n ´
ř

j x
1
j players, where each option have a threshold kj “ k ´ x1j . Notice that, if there is an

option j s.t. x1j ě k ´ 1, then it is (strictly) dominant to choose option j in the second period.

This implies that the payoff from waiting in the first period is:
$

’

&

’

%

r if Dj : x1j ě k ´ 1

Πpx1q otherwise
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The expected payoff to choose one risky option in the first period is instead:
$

’

&

’

%

r if x2j ě k

0 if x2j ă k

Since Πpx1q ě 0 @x1, waiting in the first period is a weakly dominant action, as it gives to

players the opportunity to observe the choices of the opponents. Clearly, if everybody waits, the

final result is just to postpone the full coordination problem in the second period. Moreover,

waiting and then choosing the safe option if the threshold is not met in the first period is the

risk dominant strategy, which is also the strategy that subjects in experiments learn to play

when the game is repeated (Van Huyck et al., 1990).

In this setting there are 2 types of (pure and symmetric) equilibria: full coordination on one of

the (risky) options in the first period and full coordination on one of the (risky or safe) options

in the second period. There are also Jpn ´ 1q asymmetric equilibria, where x1j players choose

the risky option j in the first period (with n ą x1j ą 0), and the remaining n´x1j players choose

the same option in the next period. Finally, there is a mixed equilibrium in which everybody

wait in the first period and then play one of the simultaneous mixed equilibria.

Consider now the more general case of T periods and J risky options. The number of (pure

and symmetric) equilibria is JT `1. They are all weak, as any strategy profile that reaches full

coordination on one option by the end of the game is an equilibrium giving the same payoff.

Moreover, every strategy profile that also prescribes to choose one option whenever already

k ´ 1 players choose it, can form a subgame perfect equilibrium. Still, the weakly dominant

strategy is to wait until k´1 players already choose one option, and the risk dominant strategy

is to choose the safe option if the threshold was not previously reached.

In our setting, we have J “ 3 projects and T “ 10 periods. It follows from the previous rea-

soning that there are 31 pure and symmetric equilibria (and many asymmetric ones), as every

strategy profile that implies full coordination will form an equilibrium. For instance, one equi-

librium is that players fund one the projects in any round over the 10 available rounds. Another

equilibrium corresponds to the case where no contributions are provided to any of the projects.

Even if this equilibrium is risk dominant, it is dominated by any equilibrium in which the

threshold is reached. In fact, contributing to one of the available projects can give a potentially

higher payoff than not contributing. However, in the presence of strategic uncertainty (uncer-

tainty regarding whether the other players will choose to contribute) and market uncertainty
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(uncertainty over the future prospects of a project), choosing of not contributing represents the

safest alternative. Also, in the presence of strategic uncertainty making “late” contributions,

i.e. in the last rounds of the game, could be safer than making “early” contributions, i.e. in the

first rounds of the game. When deciding between making early or late contributions people face

a trade-off. On the one hand, players would wait to see whether other people contribute to any

of the projects enough to reach the threshold. On the other hand, it might also be important

to contribute immediately, because an “early” contribution may be used as a signal to others,

i.e. to encourage them to contribute. Thus, if players are using a weakly dominant action, we

should observe coordination in the last rounds of the game. Otherwise, our theory implies no

particular pattern, neither in the choice of the option, nor in the timing of coordination. This

implies that we should observe no differences between the baseline and the treatment with non

payoff-relevant information. Moreover, if players are risk neutral, we should neither observe

differences between the baseline and the treatment with uncertain payoffs.

The previous reasoning allows us to make the following theoretical predictions:

THP1 (Coordination): In all pure equilibria there is full coordination.

THP2 (Weak dominance): Late coordination if players use weakly dominant strategies.

THP3 (Information): Introducing cheap information does not change players’ behavior.

THP4 (Uncertainty): If players are risk neutral, introducing uncertainty does not change

players’ behavior.

3.4.2 Herding and Behavioral Predictions

According to our theoretical predictions, introducing information should not affect coordination

across treatments. Following a huge behavioral literature that speculates human decision-

making to be less than fully rational, we expect that providing payoff-relevant or non payoff-

relevant information might affect subjects’ choices, specially in the presence of herding behavior.

Recall from our theoretical framework that xt´1 is the information available in period t, i.e.

is the vector collecting the number of players choosing each option up to period t ´ 1. The

expected payoff for a player who waited until period t, and chooses option j in period t, is rqj,

where qj is the probability that option j reaches the threshold, i.e. the probability that at least

k ´ 1 players choose the same project, given that already xt´1j players chose that project, and
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n´
ř

j x
t´1
j players waited. Consider the case of one risky project. We have:

qtj “ 1´Binpk ´ 2´ xt´1j , n´ xt´1j ´ 1, ptjq

Given 0 ă ptj ă 1, this probability is increasing in xt´1j , with qtj “ 1 if xt´1j ě k´1. If players are

subject to herding behavior, they might overestimate the probability that one project reaches

the threshold, given that it was already chosen by some players. We model herding behavior

as a non-rational updating of the probability qtj: a player subject to herding behavior (call him

H-player) will always choose the project that has the highest number of collected shares, as

long as those are higher than x̂, for some 1 ă x̂ ă k ´ 1:

qtj1 “

$

’

&

’

%

1 if xt´1j1 “ maxtxt´1j u and xt´1j1 ě x̂

0 otherwise

As soon as at least x̂ players choose the project j, an H-player will also choose that project.

The highest the herding effect, the lowest the value of x̂. Moreover, an H-player will never

choose first, so that if all players are H-players, coordination can only happen on the safe

option. Recall that, in a population of NH-players (i.e. players that are not subject to herding

behavior) the weakly dominant strategy is to wait. In the presence of H players, this might not

be true anymore: players that do not follow the herd might have an incentive to early invest

and “start the herd”. Moreover, if there is uncertainty over projects’ payoff, and if NH-players

are not risk neutral, they might have also the incentive to signal their favorite project to orient

the herd in their favorite direction. Then, the coordination game is moved in the very first

rounds, and is played by those that we call first movers, i.e. NH players.

In this setting, providing information has a non trivial effect. On the one hand, it might help

those who do not follow the herd to better coordinate in the very first rounds: information

can help first movers, if it is able to make one option more salient, thus facilitating early

coordination. On the other hand, information might increase the noise, and, consequently,

hinter the coordination process, as backers can be influenced by their own preference towards

specific characteristics of projects that serve as a signal of quality of the projects themselves.

More precisely, whether such information is able to facilitate coordination depends on its ability

to make an option salient for the highest number of players, which might be more likely to

happen in a homogeneous population. Thus, we might expect information to help coordination

more in homogeneous settings, rather than in heterogeneous ones.

Introducing payoff-relevant information, in the form of uncertainty, might also affect behavior.
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Recall that the risk in this setting is both strategic and payoff-related. A risk seeking player

may have a strong incentive to signal his favorite (riskier) option, while a risk averse player

may have an incentive to signal his favorite (less risky) option, even if the latter tendency is

milder, as choosing at the beginning of the game has a higher strategic risk. Thus, if players

have different risk preferences, the presence of uncertainty might hinder coordination. If instead

they have the same (not risk neutral) preferences, uncertainty might help them in coordinating.

Finally, introducing both payoff-relevant information (i.e. uncertainty) and non payoff-relevant

information might hinder the coordination process, as it might be even more difficult for both

first movers and followers to interpret an option as salient. In fact, in this case players face

a trade-off that might hinder the coordination process , since a project being salient for some

informational attributes may not be the favorite from the point of view of its riskiness.

The previous reasoning allows us to make the following behavioral predictions:

BHP1 (Information): Introducing cheap information might help the coordination process in

homogeneous settings, i.e. in settings where different players are able to focus on the same

piece of information. If information is effective in making one option salient, then the option

with the same characteristics should be chosen across sessions.

BHP2(Uncertainty): Introducing uncertainty might hinder the coordination process if there

is a lot of variance in players’ risk preferences, as players might be tempted to signal different

projects from the very beginning of the game. If introducing uncertainty is effective in making

one option salient, the same risky option should be chosen across sessions.

BHP3(Combination): The combined effect of uncertainty and information might hinder co-

ordination, especially in a more heterogeneous settings.

3.5 Results

In this research, we are mainly interested in analyzing the impact of cheap information (i.e. non

payoff-relevant information about the project and the designer), as well as uncertainty, on the

fundraising success. We first compute several success indicators and look at whether and how

they differ across treatments. Specifically, given that in “the context of crowdfunding platforms,

funding success is a multifaceted concept” (Ahlers et al., 2015, p.961), in addition to the

traditional success indicators (whether a project reaches the threshold and how many subjects
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invest on that project), we also consider the speed of coordination as an important success

measure. We then analyze the effects of treatment manipulation on participants’ behavior at

the very beginning of the game (first round of the first session) and over the game.

Samples

Two of our behavioral predictions strictly depend on the composition of the players’ sample,

since the ability of the available information to make an option salient depends on whether

subjects in the sample are able to see the same piece of information as focal. This process should

be easier if the sample is homogeneous in terms of subjects’ background and risk preferences.

Therefore, we need to try to assess whether the participants in our samples were more or less

homogeneous in terms of the two aforementioned dimensions. All subjects in the experiment

were university students. Recall that, in Italy, we recruit mostly Italian students, while in

Finland we recruit Exchange students, i.e. students from all around the world. In Table 3.1

we report the main demographic variables, separately for the Italian and the Finnish sample,

together with our measure for risk aversion, i.e. the number of boxes collected during the

BRET, with a higher number indicating a lower risk aversion. Table 3.1 also reports the

standard errors of the aforementioned variables for the two samples, which can be interpreted

as a rough measure of homogeneity.

Age Experience Faculty Payoff Boxes

ITA 22 (2.53) 10 (9.08) 2 (1.78) 450 (408) 43 (17.63)

FIN 27 (4.47) 2 (2.62) 3 (2.95) 396 (354) 41 (20.48)

Table 3.1: Sample demographics (standard errors in parentheses)

The ANOVA analysis, when applied to our measure of risk aversion, allow us to reject the null

hypothesis that the Italian and the Finnish samples are equal (p-valueă 0.1). The same holds

for all the other variables (p-valueă 0.01). Moreover, the Finnish sample has always a higher

standard error than the Italian one, except for the variable Experience. The variable Experience

measures the number of experiments a subject participated in the past. The majority of

students in the Finnish sample participated only in a few experiments, and thus it is not

surprising that it exhibits a lower standard deviation. For all the other variables (age, faculty,

and risk aversion), the Finnish sample has a higher standard deviation than the Italian one.
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We might then speculate that subjects in Italy were more homogeneous in terms of background

and risk preferences, compared to subjects in Finland. Thus, in the Italian sample, we expect

a higher coordination rate in the treatments with either cheap information or uncertainty.

3.5.1 Winning Projects

Our first theoretical prediction implies that we should have no reason to believe that the same

option is chosen across treatments. Our first and second behavioral predictions instead imply

that projects with the same piece of information or the same risk level should be chosen across

sessions, if introducing information or uncertainty is effective in making one project focal. Thus,

we start by analyzing the total number of shares that each project managed to collect in each

session of every treatment, summarized in Table 3.2. Table 3.B.1 in Appendix 3.B gives an

overview of projects’ characteristics and risk levels.

Baseline Information Uncertainty Combined

Projects ITA FIN ITA FIN ITA FIN ITA FIN

Yellow1 2 1 23 15 22 18 23 6 First
mkt
session

Red1 1 3 1 2 1 0 1 14

Blue1 21 20 0 4 1 5 0 2

Yellow2 23 2 1 2 19 2 5 22 Second
mkt
session

Red2 0 20 23 19 2 0 18 1

Blue2 0 2 0 0 2 21 0 1

Yellow3 0 0 0 0 0 3 0 0

Third
mkt
session

Red3 0 1 1 0 17 0 1 17

Blue3 0 0 0 1 1 0 0 0

Green3 0 21 23 17 0 1 14 2

Purple3 22 2 0 1 0 0 1 2

Orange3 1 0 0 0 2 18 2 1

Table 3.2: Number of subjects who choose each project by the end of each session.

In all market sessions subjects succeeded in funding a project (recall that the limit to fund a

project was 13). As we can see in Table 3.2, the lowest number of participants who choose

the winning project was 14, in the Combined-treatment. Indeed, on average, a lower number

of participants chooses the winning project in the Combined-treatment, compared to all the

other treatments. Notice that the Combined-treatment is the one where, according to our
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behavioral prediction BHP3, coordination should be more difficult. Moreover, the highest

number of subjects who choose the winning project was 23, in all the Italian sessions of the

Info-treatment (and in one market session of the baseline). Notice that the Info-treatment is the

one where, according to our behavioral prediction BHP1, coordination should be easier. The

same conclusions do not apply to the Finnish sample, because a lower number of participants

choose the winning project in the Info-treatment, compared to the baseline. This result might

be explained by the lower level of homogeneity of the Finnish sample.

However, and more interestingly, the only treatment where the same projects were chosen across

samples in all market sessions is the Info-treatment, implying that information succeeded in

making one project with specific characteristics salient. Despite information either about the

project (e.g. institutional funder) or about the designer (e.g. his experience) is non payoff-

relevant, our results show that it helped in focusing on the funding of a specific project, relatively

to the case where the same information is not provided (Baseline). Moreover, subjects in Italy

chose the same projects also in the Combined-treatment.

Finding 8. In the Info-treatment, the two national samples chose the same projects in all

sessions. The Italian sample chose the same projects also when uncertainty was added.

3.5.2 Coordination

Our goal is to assess the impact of introducing cheap information and uncertainty on subjects’

coordination. We first look at the difference of contributions across treatments. Table 3.3

reports the percentage of participants that invested in the successful project in each treatment.

For each treatment, we have 48 independent observations and 144 decisions (subjects made

decisions over 3 market sessions).

Uncertainty

No Yes

Information

No
88,19% 79,86%

(Baseline) (Uncertain)

Yes
83, 33% 75%

(Info) (Combined)

Table 3.3: Coordination measure: Percentage of subjects who chose the successful project
across treatments (N=144 for each treatment)

138



The percentage of subjects choosing the successful project in the baseline treatment is signifi-

cantly higher than it is in the Uncertainty-treatment condition and in the Combined treatment

condition (two-sided Fisher’s exact p equal to 0.076 and 0.006 respectively). However, this is

not the case when comparing the same percentage to the Information treatment condition (two-

sided Fisher’s exact p “ 0.312). It is worth remembering that two of our theoretical predictions

state that introducing either cheap information (THP3) or uncertainty (THP4) (conditioned

to a wide prevalence of risk neutral players in the sample) should not affect coordination.

Finding 9. On average, compared to the baseline, introducing uncertainty or a combination of

cheap information and uncertainty reduces coordination. The introduction of cheap information

alone does not affect coordination.

It follows that we can reject THP4, while THP3 seemed to be confirmed. On the other hand, it

is interesting to notice that the combination of cheap information and uncertainty produces the

worst impact on coordination. It seemed that, within the experimental scenario here adopted,

the more pieces of information are provided the poorer is coordination. To investigate this

result in more detail, we also ran logit regressions (Table 3.4). We use as a dependent variable

the probability of choosing the successful project option in each choice. The independent

variables are the four decision scenarios: Baseline, Information, Uncertainty, Combined, the

gender (variable “Women”) and whether a participant played the game in Italy or in Finland

(variable “Italy”). The Baseline scenario, Men, and Finland are our omitted groups.

Model 1 Model 2

Information -0.402 (0.342) -0.458 (0.346)

Uncertainty ´0.633 (0.331) ´0.651 (0.334)

Combined ´0.912˚˚˚ (0.322) ´0.961˚˚˚ (0.327)

Women -0.35 (0.223)

Italy 0.662˚˚˚ (0.226)

Constant 2.01˚˚˚ (0.258) 1.91˚˚˚ (0.297)

Observations 576 573

Table 3.4: Determinants of choosing the successful project (Pooled Italian and Finnish samples,
logit model. Standard errors in parentheses. Dependent variable takes value 1 if the subject
chooses to invest in the successful project and zero otherwise. ˚p ă 0.1,˚˚ p ď 0.05,˚˚˚ p ď 0.01)
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Looking to Table 3.4 (Model 1) one can immediately notice that the results from the Fisher

test statistics are confirmed: the coefficients of treatments Uncertainty and Combined are

statistically significant and negatively correlated with our dependent variable. This means that

in these treatments the participants coordinated themselves in a less efficient way than they

did in the baseline treatment. On the other hand, the coefficient of the treatment Information

is not significant, that is a confirmation of the almost insignificant effect generated by cheap

information on the overall rate of coordination. For what it regards gender (variable “Women”)

and the country (variable “Italy”, Model 2) we can say that there are no gender effects, while

there is a strong Nationality effect. Given the impact of the national samples on the coordination

measure, we decided to run the non-parametric tests (i.e. Fisher tests) and the regressions

separating the Italian and the Finnish groups. Table 3.5 shows the percentages of subjects

choosing the successful project in the Italian sample.

Uncertainty

No Yes

Information

No
91,67% 80,56%

(Baseline) (Uncertain)

Yes
95, 83% 76, 38%

(Info) (Combined)

Table 3.5: Coordination measure: Percentage of subjects who chose the successful project
across treatments (Italy, N=72 for each treatment)

Looking at the results we have a confirmation of what we already obtained from the pooled

data-base. More precisely, the percentage of Italian subjects choosing the successful project in

the baseline treatment is significantly higher than it is in the Uncertainty treatment condition

and in the Combined treatment condition (two-sided Fisher’s exact p equal to 0.09 and 0.021

respectively), while this is not the case when comparing the same percentage to the Informa-

tion treatment condition (two-sided Fisher’s exact p “ 0.494). It is also worth noticing that

contrary to the result reported from the pooled sample, this time the highest coordination

has been reached in the treatment with cheap information and not in the baseline treatment,

even if this difference is not significant. Looking to the results from the logit regression (Table

3.6, Italy) we have, like we already had in the pooled sample, a confirmation of the Fisher

statistics. Indeed, only the coefficient of the Uncertain-treatment and Combined-treatment are

significantly different from zero, and negative, meaning that they are negatively correlated with
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the probability of choosing the successful project.

Model 1 (Italy) Model 1 (Finland)

Information 0.737 (0.727) ´0.826˚˚ (0.418)

Uncertainty ´0.976˚ (0.520) -0.378 (0.437)

Combined ´1.224˚˚ (0.508) ´0.687˚ (0.422)

Constant 2.398˚˚˚ (0.426) 1.713˚˚˚ (0.328)

Observations 288 288

Table 3.6: Determinants of choosing the successful project (by country, logit model. Standard
errors in parentheses. Dependent variable takes value 1 if the subject chooses to invest in the
successful project and zero otherwise. ˚p ă 0.1,˚˚ p ď 0.05,˚˚˚ p ď 0.01)

Considering now the Finnish sample (see Table 3.7), the percentage of subjects choosing the

successful project in the baseline treatment is significantly higher than it is in the Informa-

tion treatment condition (two-sided Fisher’s exact p “ 0.07; Pearson test“ 0.045), while is

borderline significantly higher in the Combined treatment condition (two-sided Fisher’s exact

p “ 0.15, one side “ 0.075, Pearson test=0.101). However, this is not the case when com-

paring the same percentage to the Uncertainty treatment condition (two-sided Fisher’s exact

p “ 0.516).

Uncertainty

No Yes

Information

No
84,72% 79,17%

(Baseline) (Uncertain)

Yes
70, 83% 73, 61%

(Info) (Combined)

Table 3.7: Percentage of subjects who chose the successful project across treatments (Finland,
N=72 for each treatment)

Running the logit regression (see again Table 3.6, Finland), we have a confirmation of these

results, with only the Information treatment significantly (negatively) correlated with the de-

pended variable and a weak (negative) correlation with the Combined treatment.

Recalling our first Behavioral prediction, we expect that cheap information fostered coordina-

tion in more homogeneous groups (BHP1) because it should trigger the participants to identify
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a common focal piece of information (and therefore the same project). Looking comparatively

to the results just shown we should discharge BHP1 because in the more homogeneous sample,

which is the Italian one, adding cheap information does not improve coordination in a signifi-

cant way. This result is a bit delicate because the data suggest that some kind of “roof effect”

is taking place in our sample; in fact, in the Baseline treatment the percentage of participants

coordinating on the successful project was very high (91, 67%) and therefore to obtain an even

small increase in this value (in the Information treatment this value raises at 95, 83%) could

be seen as a sort of confirmation of BHP1. On the other hand, the results from the Finnish

sample, the less homogeneous one, open an intriguing issue because it seemed that adding

cheap information not only does not foster coordination in inhomogeneous groups, like is pre-

dicted by BHP1, but it is even detrimental. In this sense one cannot definitely exclude that

cheap information has not any impact on coordination, what reasonably matter is the degree

of homogeneity of the players that determines their efficiency in using the information signals

as focal points. This is to say it in other words that introducing cheap information seemed not

enough to trigger coordination on the basis of the identification of a common focal point in ho-

mogeneous groups but, at the same time, it weakens the participants’ efficiency in interpreting

the information signals in inhomogeneous groups. Furthermore, it is worth underlining that

the participants were aware of their degree of cultural proximity because they knew to be part

of a group of persons coming from the same social-cultural environment (the Italian sample) or

from different socio-cultural milieus (the Finnish sample, which was made by students coming

from different countries). This awareness could have had some effect on the participants’ trust

in their own capability to correctly interpret the cheap signals as focal points. Our second

behavioral prediction states that the introduction of uncertainty should reduce coordination

(BHP2) in presence of high heterogeneity in risk attitudes. This prediction seemed confirmed

by the results from the pooled sample but it is falsified looking to the results from the Finnish

sample which is the most inhomogeneous one also for what it regards the risk attitudes. Fi-

nally, our third behavioral prediction says that combining information and uncertainty should

hinder coordination in particular when the sample is inhomogeneous (BHP3). Looking to both

the Italian and the Finnish samples this final prediction seemed confirmed, at least broadly,

even if, and contrary to the hypothesis, is more established in the Italian (more homogeneous

sample) than in the Finnish (less homogeneous) sample. These considerations are summarized

as it follows:
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Finding 10. In the Italian sample, introducing respectively uncertainty or a combination of

uncertainty and cheap information was detrimental in fostering coordination. In the Finnish

sample, the introduction of cheap information damages coordination while uncertainty does not

affect coordination in a significant way.

Trying to wrap up the results just discussed one can conclude that all the factors that we

introduced in the experimental design (cheap information, uncertainty, group heterogeneity)

do play a role in influencing coordination, we will see in the concluding remarks how these

results can take to some normative considerations.

3.5.3 Choices over time

Now we examine the effects of cheap information, the role of experience, as well as the impact

produced by uncertainty, on the speed of coordination. This new performance indicator (the

speed of coordination) uses the number of rounds that a project needs to reach the funding

threshold. For each market session, Figure 3.1 shows the average percentage of shares cumulated

in each period, as well as the average number of rounds needed for the winning project to reach

the threshold, considering the whole sample and pooling over treatments. It is possible to

observe that, on average, subjects need more rounds to reach the threshold in the third market

session. In fact, while in the first market session, the project is funded in five rounds; seven

and eight rounds are needed in the second and in the third session respectively. This is a

confirmation of previous findings that subjects may learn to play the weakly dominant action,

and wait more as they become more experienced.

1 2 3 4 5 6 7 8 9 10
Period

0.2

0.4

0.6

0.8

1.0

Collected shares

MS1

MS2

MS3

Figure 3.1: Funding over time: average proportion of shares collected up to each period, by
market session (MS)
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We now look at the impact of cheap information and uncertainty on the speed of coordination.

Focusing on the first market session, Figure 3.2 shows, for each treatment, the average percent-

age of shares cumulated in each round, as well as the average number of rounds needed for the

winning project to reach the threshold.

1 2 3 4 5 6 7 8 9 10
Period

0.2

0.4

0.6

0.8

1.0

Collected shares

Base

Info

Uncert

Comb

Figure 3.2: Funding in the first MS: average proportion of shares collected up to each period
in the first market session, by treatment.

It is possible to observe that introducing only cheap information increases the speed of coordi-

nation. On average, the winning project reaches the threshold within a lower number of rounds,

relatively to the baseline. Notice that the Info-treatment is the one where, according to our

behavioral prediction BHP1, coordination would be easier. Conversely, introducing market un-

certainty decreases the speed of coordination, as, on average, more rounds are needed in order

to reach the threshold. Finally, coordination was the slowest in the Combined-treatment. In

fact, four and eight rounds are needed, on average, for a winning project to reach the threshold

in the baseline and in the Combined-treatment, respectively.

It is important to highlight that the same considerations arise when looking at the two national

samples separately (see Figure 3.3). Introducing only cheap information increases the speed of

coordination, even if it reduces the average level of coordination, i.e. the total number of sub-

jects choosing the winning project, in the Finnish sample. Moreover, introducing uncertainty

decreases the speed of coordination (to the extreme in the case of the Combined-treatment in

the Finnish sample, where the threshold was reached only in the last period). As a side note,

one can notice that, regardless of the treatment, more shares were collected in Italy.
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Figure 3.3: Funding in the first MS: average proportion of shares collected up to each period
in the first market session, by treatment. Figure 3.3a considers only the Italian sample, Figure
3.3b considers only the Finnish sample.

We summarize these considerations in the following:

Finding 11. In the first market session, the speed of coordination is higher in the presence of

information, and it is lower with uncertain payoffs, compared to the baseline.

The combined effect slows down the coordination process, especially in the Finnish sample.

Finally, Figure 3.4 shows, for each treatment, the average percentage of shares cumulated in

each round, as well as the average number of rounds needed for the winning project to reach

the threshold, considering all the three market sessions. On average, coordination was slower

in all treatments, compared to the baseline. Notice that, in the baseline, the only information

available to the players is the number of shares collected. It follows that, for a project, it is

enough to collect one share more than the others, to become focal. Conversely, in the presence

of either cheap information or uncertainty, the participants must, in some way, balance the

salience implied by the number of previously collected shares, with the salience induced by the

available information (either cheap or payoff-relevant). Thus, a project could be less likely to

be considered “focal”, even if it has a higher number of collected shares. Furthermore, in such

a case, risk and preference attitudes about the information signal (either cheap or pay relevant)

might play a role. This consideration is especially true when the introduction of uncertainty is

combined with information about the project and about the designer, as it strongly decreases

the speed of coordination.
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Figure 3.4: Funding over time: average proportion of shares collected up to each period, con-
sidering all market sessions, by treatment.

First movers

Given the importance of first movers in our coordination game, we now explore more in details

their behavior. According to our theoretical model, if participants choose weakly dominant

or risk dominant options, we should find no share allocations in the very first period of the

game. Table 3.8a shows the (total) number of first movers, i.e. subjects choosing in the very

first round for each market session. Our prediction is not confirmed. Nonetheless, there is

a clear pattern across sessions in every treatment, as the number of first movers decreases

significantly. Indeed, all the differences between the number of first movers at the first round

across market sessions are statistically significant accordingly with a Pearson test (see Table

3.8a). It is reasonable to interpret this pattern as the result of some kind of learning process

that triggered the participants towards the weakly dominant and the risk dominant strategies.

MS1 MS2 MS3

Baseline 13 5˚˚ 4˚˚

Info 17 3˚˚˚ 5˚˚˚

Uncertain 13 6˚ 6˚

Combined 13 4˚˚ 1˚˚˚

(a)

MS1 MS3 TOT

Baseline 0.27 0.09˚˚ 0.15

Info 0.38 0.12˚˚˚ 0.19

Uncertain 0.28 0.14˚ 0.19

Combined 0.28 0.03˚˚ 0.14

(b)

Table 3.8: First movers- Table (a) shows the total number of subjects choosing in the first period
in each Market session, by Treatment. Table (b) shows % of subjects choosing in the first period
when considering only those who chose a project. Stars indicate statistical significance when
compared with the first market session (Pearson test, ˚p ă 0.1,˚˚ p ď 0.05,˚˚˚ p ď 0.01).

These results are also confirmed when looking at the proportion of early bidders among all
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subjects who choose a project, shown in Table 3.8b. Indeed, when considering only subjects

who made a decision, the result is even stronger: more subjects chose in the first period in the

Info treatment compared to the baseline. Conversely, in the first market session there is no

difference when comparing the number of subjects who chose in the first period in the other

treatments with those who chose in the baseline.

Finding 12. With learning, there is a shift towards more weakly dominant and risk dominant

strategies, i.e. more subjects choose to wait at the beginning of the game. This holds for

both samples and in every treatment. Introducing cheap information increases the number of

subjects choosing in the first period, while introducing “too much” information (i.e. both cheap

information and uncertainty) decreases the number of subjects choosing in the first period.

Looking now at the number of participants who invested across rounds on the successful project

one can notice (see Table 3.9 ) a general pattern similar to the one already commented with

regard to the number of first round investors. More precisely one can notice that in the second

and third market sessions there is a strong convergence of the choices towards a coordination

which takes place from the third to the fifth round. This is to say that the market sessions do

matter in determining the winning strategy of the players: the more experienced they are, the

more they wait before deciding to invest.

Rounds considered:

(1) (1-2) (3-5) (6-8) (9-10) (10) All

MS1

Baseline 8 16 21 3 1 0 41

Information 11 22 15 0 1 0 38

Uncertainty 8 14 17 8 3 3 42

Combined 6 10 10 8 9 6 37

MS2

Baseline 4 6 26 8 3 1 43

Information 3 6 17 17 2 1 42

Uncertainty 5 6 13 15 6 2 40

Combined 3 3 11 18 8 4 40

MS3

Baseline 2 4 17 17 5 1 43

Information 3 4 10 17 9 3 40

Uncertainty 4 9 13 1 12 9 35

Combined 0 2 3 15 13 10 33

Table 3.9: Contributions over time - Winning projects

To check for the statistical significance of the comment just suggested with regard to the data
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shown in Table 3.9, we have run a Logit regression (Table 3.10).

Model 3

Information -0.2467 (0.372)

Uncertainty ´0.492p0.365q

Combined ´1.406˚˚˚ (0.367)

Market session ´0.534˚˚˚ (0.153)

Period 0.541˚˚˚ (0.61)

Constant 1.26˚˚˚ (0.413)

Observations 576

Table 3.10: Determinants of choosing the successful project (Pooled Italian and Finnish sam-
ples, logit model. Standard errors in parentheses. Dependent variable takes value 1 if the sub-
ject chooses to invest in the successful project and 0 otherwise. ˚p ă 0.1,˚˚ p ď 0.05,˚˚˚ p ď 0.01)

The results of the regression show that the variable market session is significant and negatively

correlated with the choice to invest in the winning project. Indeed, average contributions to

the winning project were lower in the last market sessions. Moreover, the variable “period” is

significant and positively correlated with the choice to invest in the winning project. Thus, the

“wait and see” strategy was not only present, but also profitable.

Considering again first movers’ behavior, one could speculate that if information is effective in

making one project salient (either payoff-relevant information or cheap information), it should

be easier for subjects to coordinate on the winning project from the very first round. Therefore,

we should find a higher number of early choices (both in general and on the winning project) in

the info-treatment and in the uncertain-treatment, compared to the baseline. In the combined-

treatment, instead, we should find a lower number of subjects choosing in the first period (both

in general and on the winning project), since it is more difficult both to interpret a project as

salient, and to signal a favorite one. Accordingly, by looking at Table 3.9, the average number

of subjects choosing the winning project in the first period is higher in the Info-treatment (in

the first market session) and in the Uncertain-treatment (in the others market sessions).
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3.5.4 The role of cheap information

The result that, with cheap information, the same project was chosen 3 out of 4 times in

all market sessions, do suggest that information played a role on subjects choices. To better

clarify this point, we now examine the clicking behavior of subjects. Recall that in the info-

treatment and in the combined-treatment, subject could click on the piece of information they

wanted to see, and we collected data on both the number of clicks and the time they spent on

each characteristic. Clearly, we cannot control for attention level, or check whether a subject

was indeed looking at the value, but we can say for sure that, if a subject didn’t click, then

information didn’t have any role on his choice.

Overall, we observed the same behavior in both treatments. In the first market session, subjects

who clicked on the information did choose the same project, and they were able from the first

round to create a signal for subsequent players. Considering all market session, the positive

effect of information (i.e. the increase in the likelihood to choose the winning project after

having clicked on projects’ characteristics) is still present in all cases except for the combined-

treatment in Finland (see Figure 3.5).

ITA Info ITA Comb FIN Info FIN Comb

click and win

no click and win

click and lose

no click and lose

Figure 3.5: Clicks and choices: click and win (lose) means that a subject clicked at least once on
at least one of the characteristics in the first period, and he chose the winning (a losing) project
in the first period; no click and win (lose) means that a subject didn’t click on any characteristics
in the first period, and he chose the winning (a losing) project in the first period.

In Figure 3.5, we grouped first movers, i.e. the firsts participants who choose a project, accord-

ing to whether they clicked on any characteristics in the period they chose, and to whether they

chose a winning or losing project. On average, the proportion of first movers who clicked on

some characteristics is higher in Italy than in Finland. We might speculate this is the reason

why more shares were collected in Italy. Moreover, the proportion of participants who clicked

and then choose a losing project is close to zero in all cases except for the Combined-treatment

in Finland (Purple area in Figure 3.5,respectively). Finally, the proportion of subjects choosing

149



the winning project is higher among those who clicked, than among those who didn’t clicked

(Yellow and Orange in Figure 3.5, respectively).

Pooling the two national samples, and considering both treatments, we notice that, on average,

88% of subjects who clicked on the characteristics choose the winning project, while only

the 12% of subjects who didn’t click chose the winning project. Thus, we might speculate

that subjects who clicked on some information were indeed more likely to choose the winning

project, suggesting an important role for information in helping the coordination process.

Notice that, alternatively, one could interpret the clicking behavior as a proxy of the degree of

attention that subjects were putting in the task. In this case, a lower number of clicks would

imply less attention, and subjects who put more attention (i.e. clicked more) also managed to

have better results, i.e. they were able to reach a higher level of coordination.

It is natural to ask whether the projects that were consistently chosen among the different

treatments shared some characteristics that might attract participants’ attention. From Table

3.B.1 in the Appendix 3.B we can see that the winning projects in the market sessions with

information did share some basic characteristics: they were sponsored by the Bank, and they

were designed by an Experienced Male studying Economics.

Given the abundance of information available to subjects, it is difficult to say if those char-

acteristics were indeed the main driver of subjects’ behavior. We can get further insights by

considering the type of characteristics that was more clicked, and by analyzing participants’

answers to the debriefing questionnaire.

Regarding the first point, we found that the most clicked characteristics were the sponsor and

the rating of the project, while the least clicked was the gender of the designer. Thus, we

might speculate that the sponsor could be one of the important drivers of subjects’ behavior,

as it was both one of the most clicked characteristics, and winning projects all share the same

sponsor (i.e. the Bank). Moreover, even if the designer of the winning project was always a

male, very few subjects did click on this characteristics. It is thus unluckily that the gender

had any influence on subjects’ decisions.

Moving to the second point, Table 3.11 shows the proportion of subjects who considered each

characteristic as important, according to their answers to the questionnaire, for each treatment.

We can see that in the info-treatment the variable ”Information” was considered important by

almost half of subjects, while in combined-treatment the important variable for most of the
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subjects was the level of risk of the project. Notice that Table 3.11 considers all subjects, not

just those choosing as first movers. The evidence from Table 3.11 points to the direction that

subjects did indeed considered the information provided as a tool to decide.

Baseline Information Uncertainty Combined

ITA FIN ITA FIN ITA FIN ITA FIN

Collected shares 0.92 0.78 0.50 0.33 0.54 0.30 0.21 0.18

Color 0.04 0.09 0.04 0.04

Info 0.46 0.38 0.17 0.30

Risk 0.08 0.42 0.58 0.58 0.48

Other 0.04 0.13 0.04 0.17 0.04 0.08 0.04 0.04

Table 3.11: Debreifing question: Decisions. % answers to the question: Which variable was
most important to take your decision?

Finally, in Table 3.12 we split those subjects who considered the information as important,

according to which characteristic, among those available, was more important for their decision.

Overall, we can say that Education of the designer was not the driver of subjects decisions, as

only the 10% of subjects listed it as important. Notice that rows do not add to 1, as subjects

could list more than one characteristic.

Rating Sponsor Education Experience

Info (20) 0.3 0.45 0.1 0.5

Combined (11) 0.45 0.36 0.09 0.55

Table 3.12: Debreifing question: Information. % of subjects who listed each characteristics as
important to make the decision

Thus, recalling that the projects that were chosen more often in the Info-treatment and in the

Combined-treatment were all sponsored by the Bank, and they were designed by an Experience

Male studying Economics, we can speculate and say that the main driver of subjects’ decision

were the Sponsor and the Experience of the Designer. Indeed, we can disregard the Gender

of the Designer, since it was almost never clicked, and his Education, from what we noticed

in Table 3.12. Indeed, the Sponsor of the project was the most clicked characteristics, and,

together with the Experience of the Designer, was among the most relevant variables to decide,

as stated by subjects.

151



3.5.5 Strategies and choices

We now check whether choices were rational according to two very board criteria. First notice

that, in all treatments, if a project already reached the threshold, choosing a different project

can be regarded as irrational, since keeping the share would give a strictly higher payoff. When

considering all the investing choices that could have been made by the subjects, we have a total

of 24 (participants) x 3 (market sessions) x 4 (treatments) x 2 ( nations), for a total of 576

choices. Over all, only 5 choices, i.e. less than 1%, can be classified as irrational according to

this criterion. Second, notice that, in both treatments with certain payoff, if a project already

reached the threshold, keeping the share and not investing can be regarded as irrational, since

it is strictly dominated by investing in the “winning” project. Over all, 16 choices (3 in the

baseline and 13 in the Info-treatment) can be classified as irrational according to this second

criteria, which is around the 5% of choices in those treatments.

In one of the debriefing questions, we asked participants whether they would have preferred to

use a different strategy. The first row of Table 3.13 shows the number of subjects who answered

affirmatively. The remaining rows show the proportion of subjects who stated that they would

have preferred to choose one of the following strategies: to decide later (Wait), to keep the

share and not invest (Keep) or to decide sooner (Signal).

Baseline Information Uncertainty Combined

ITA FIN ITA FIN ITA FIN ITA FIN

Change? 4 7 0 9 12 10 7 8

Wait 100% 72% - 22% 17% 10% 43% 62.5%

Keep 0 0 - 0 25% 50% 0 0

Signal 0 14% - 33% 33% 30% 43% 12.5%

Other 0 14% - 45% 25% 10% 14% 25%

Table 3.13: Preference for different strategies

It seems that subjects understood in which situation it was more convenient to wait rather

than to early bid in order to signal a project. As Table 3.13 shows, the majority of subjects in

the baseline and in the combined-treatment reported that they would have preferred to wait.

On the contrary, the majority of subjects in the uncertain-treatment reported that they would

have preferred to invest before or to keep the share.
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3.6 General discussion and Conclusions

This research belongs under the umbrella of behavioral economics and focuses on creating a

better understanding of how individuals, and crowds, make investment decisions under un-

certainty, within the context of crowdfunding, and what drives their decision-making. More

precisely, we investigate the effect that information about the project and the other funders

(the existence of an institutional funder) and market uncertainty have on the on the success

of projects in raising funds. Furthermore, we study the speed at which a project reaches the

funding threshold and the role of information in the coordination of investor behavior. The

research set-up used is experimental and included four treatments, which were all done twice,

once in Italy and once in Finland, to reach proper validation of the results. Consider first our

theoretical predictions. Recall that the first one implies full coordination in all pure equilibria,

and the second one implies that, if subjects choose weakly dominant strategies, they should

wait until enough subjects choose a project before taking a decision.

Regarding the first prediction, we can reject that subjects behave according to a pure Nash

equilibrium in all cases except for the Italian sample in the Info-treatment. Regarding the

second prediction, our results show a clear tendency of subjects to chose the weakly dominant

strategy, that is to wait. Indeed, this is the most chosen strategy, and the portion of subjects

adopting this strategy is increasing over time, in line with previous experimental results.

Our last theoretical predictions imply that we have no reason to expect that one particular

project is chosen across the different market sessions, but our results do suggest that both

information and uncertainty played a role in determining subjects’ behavior.

Moving to the behavioral predictions, recall that the first and second ones imply that, in ho-

mogeneous samples, introducing information, either in the form of not payoff-relevant project’s

characteristics, or in the form of uncertainty over project’s returns, might help coordination.

We found that, when only cheap information is present, coordination is faster and the same

project is chosen across sessions. Moreover, in the more homogeneous sample (i.e. the Italian

one), coordination was higher, in the sense that more subjects choose the same project.

When only uncertainty is present, coordination is slower and lower, compared to the baseline.

This result might confirm the intuition that crowd’s risk preferences are relevant for the success

of a crowdfunding campaign.
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Our last prediction implies that the presence of both information and uncertainty might hinder

coordination, as it increases the noise, making more difficult to interpret one option as salient.

Indeed, in the Combined-treatment coordination is slower and lower, in the sense that fewer

subjects choose the same option. Moreover, in this treatment there is the highest number of

subjects choosing the waiting strategy, and the highest number of subjects choosing the risk

dominant strategy, that is to keep the share.

Overall, our results provide strong evidence for the presence of the herding effect, and, perhaps

more importantly, subjects were aware of it. Indeed, first movers did try to signal to the crowd

their favorite project, even in the case where the information provided was no payoff-relevant,

and there was no reason to prefer one project over the other. We found evidence that the

project which managed to collect the highest number of shares in the very first round was the

one reaching the threshold in all but one session. Interestingly, introducing cheap information,

was more effective in coordinating first movers actions, compared to both the baseline and the

treatment with uncertain payoffs. This might suggest that, when designing a crowdfunding

campaign, more emphasis should be given to the characteristics of the projects in terms of its

quality, rather then on its capability to generate a monetary return. Overall, our results suggest

that the crowd is mainly driven by others behavior. Since we found evidence that the behavior

of the first movers is crucial to determine which project would succeed, understanding their

motives can be highly important to design a successful crowfunding campaign. In a research in

progress, Bretschneider et al. (2014) suggest several possible factors that may influence backers:

intrinsic motivation ( “fun to make investments”, curiosity, altruism, reciprocity), projects

characteristics (personal preferences for the object of the project, return), salience (“direct and

indirect identification”, recognition), and others’ behavior. In our setting, giving non payoff-

relevant information might refer to project salience, while introducing uncertainty refers to

project’s returns. Our results suggest that first movers are indeed driven by both project’s

characteristics and salience. Nonetheless, when comparing the first movers coordination rates

between the treatments with information and with uncertainty, we found that coordination is

in a sense easier with homogeneous samples and cheap information. Thus, we might speculate

that, to increase the chances of begin chosen by first movers, designers should push on project’s

salience, rather than to focus on projects returns or its relative risk.
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Appendix

3.A Notes on Coordination

Two players Consider the case of 2 players, who have two periods to choose between a safe

option (N), giving a payoff of 0, and two “risky” options A and B. In t1 the action set is

Aipt1q “ tA,B,W u, where W is the option to wait for the next period. In t2, if aipt “ 1q “ W ,

the action set is Aipt2q “ tA,B,Nu, otherwise the action set is empty. The payoff of player i

from choosing a risky option aiptq “ j P tA,Bu in period t is:

πipaiptq “ jq “

$

’

&

’

%

Rijt ą 0 if a1 “ a2

´c ă 0 if a1 ‰ a2q

(3.1)

As we saw in Section 3.4, to wait in t1 is weakly dominant, and to wait and choose the safe

option if the opponent didn’t choose in t1 is risk dominant.

If the returns from the risky options are the same, that is Rijt “ R @i, j, t, there are 3 sets

of (pure) Nash equilibria: one set where both players choose today, one set where they both

choose tomorrow, and one set where one player chooses today and the other chooses tomorrow.

We can try to select among those equilibria by introducing some form of asymmetry. Consider

first the case where the returns from the risky options are different for the two players: for one

player we have RA ą RB, and for the other player RB ą RA. We can then state the following:

Remark 10. The set of equilibria where both players choose tomorrow is not subgame perfect.

Previously, we assumed that players’ cost to make the decision is the same in t1 and t2. Clearly,

with equal returns from projects, if choosing today has a higher cost than choosing tomorrow,

than in all subgame perfect equilibria players chooses in t2, while if choosing today is cheaper

than choosing tomorrow, in all subgame perfect equilibria players chooses in t1. Nonetheless,

if players have different costs to make decisions, and different returns from the risky options,
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the only subgame perfect equilibrium gives to the player who has the smaller cost of investing

in t1 is preferred option:

Remark 11. The only subgame perfect equilibrium gives to the player that has the smaller cost

of investing in t1 his preferred option.

N players Consider the case where N players has to choose between a safe option and a risky

one, giving a positive return only if k ď N players chose it. Players have T periods to decide.

In each period, they can choose between waiting or investing. Once they chose investing, they

don’t make any other choice. In this simple setting, we can state the following:

Remark 12. If T ě k, choosing the safe option is not a s.p.e..

We now consider the simultaneous case where N “ 10 players can either coordinate on one of

J “ 2 risky options, A and B, or choose the safe option, S. The safe option has a return of

y ą 0, while each risky option has a return of r ą y if at least k “ 6 players choose it, and 0

otherwise. As we saw in Section 3.4, the game has J ` 1 “ 3 pure NE, where everybody choose

the same option. The game has also J “ 2 mixed equilibria where players mix between the

safe option and one of the risky options. Whether the game has also other mixed equilibria

crucially depends on the returns of the risky options.

Consider first an equilibrium where the safe option has probability zero. Since players are mixing

between the risky options, and since the risky options all have the same return, in equilibrium

players will choose each option with the same probability, pj. Thus, if in an equilibrium players

mix among Ĵ options, they will choose each option with probability pĵ “ 1{Ĵ . In our example,

if players mix between the two risky options A and B, they will set pA “ pB “ 1{2. Then,

the expected payoff of choosing option j is r{2, meaning that this is an equilibrium if and only

if r ě 2y. Notice that, if in equilibrium more than 2 risky options have positive probability,

the resulting distribution of choices will follow a multinomial distribution. If qjp1{Ĵq is the

probability that project j reaches the threshold, given that each player chooses option j with

probability 1{Ĵ , player i will mix if and only if:

rqjp1{Ĵq ě y

. Thus, there can be a mixed equilibrium where players mix among Ĵ risky options only if

r ě y

qjp1{Ĵq
.
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3.B Projects

Projects
Uncertain Ret. Cert. Ret. Project’s charact. Designer’s characteristics Market

SessionProfit Success Profit Sponsor Rating Experience Education Sex

Yellow1 572 0.7 400 Bank 4 15 Economics M

MS1Red1 1000 0.4 400 Insurance 4 8 Sociology F

Blue1 1000 0.4 400 University 2 5 Law F

Yellow2 1000 0.5 500 University 9 6 Law F

MS2Red2 1250 0.4 500 Bank 2 20 Economics M

Blue2 834 0.6 500 Insurance 5 2 Engineering M

Yellow3 1000 0.5 500 University 9 6 Law F

MS3

Red3 1000 0.5 500 Curia 6 8 Law F

Blue3 834 0.6 500 University 3 3 Engineering M

Green3 1250 0.4 500 Bank 2 20 Economics M

Purple3 834 0.6 500 Insurance 5 2 Engineering M

Orange3 715 0.7 500 District 9 5 Economics M

Table 3.B.1: Randomly selected projects of each session (in the third market session we used
the same projects as in the second plus 3 randomly selected projects). Projects that were
chosen in the Info-treatments are highlighted.

3.C Instructions

Welcome! We thank you for accepting to participate in this experiment, which will allow

you to earn some money. You have already earned 2.5 Euro to arrive on time. During the

experiment you will not be able to communicate with the other participants. If something in

the instructions is not clear to you, please raise your hand and ask for information directly

from the people conducting the experiment. The payment you will receive at the end of the

experiment will be determined by the choices you make and by the choices that will be made

by other participants, according to the methods that will be explained below. During the
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experiment, the amounts are expressed in EMU (Experimental Monetary Units), where 50

EMU = 1 Euro, or 1 EMU = 0.02 Euro. This experiment is divided into two parts. The

instructions for the first part of the experiment are given below. You will be given instructions

on the second part later. During the experiment your choices will remain anonymous.

First part - Instructions

The aim of this experiment is to simulate a project market. In a previous experiment, we

asked other participants, called designers, to design a set of projects. Each designer had the

opportunity to choose the characteristics of a project, in order to make it attractive to the

largest possible number of lenders. You and the other participants of today can finance one of

these projects, which will be indicated by different colors (blue, pink, white, ect). In order to

be financed, a project must reach a minimum funding threshold, which is the same for all the

projects. If a project exceeds the minimum funding threshold, it might generate profits for all

the lenders who have invested in that project. The profits of a financed project will depend on

the result of a lottery, according to the procedures that will be described later. Each participant

will receive one share at the beginning of the experiment, valued at 150 EMU, and can choose

to hold it, or use it to invest in only one project. The experiment consists of 10 rounds. In

each round after the first, you can see the level of funding that each project has gotten until

that round, and if you have not already invested your share, you can decide whether to invest

it in a project or to wait, but you cannot get back a share you have already invested. Since

the minimum funding threshold for a project is 13 shares, at least 13 lenders will be needed

to reach the threshold for the realization of the project, and only one project can be financed.

If a project fails to reach the minimum funding threshold, any lenders of that project will be

partially reimbursed of the invested portion, according to the procedures that will be described

later.

The projects

The Projects are characterized by the following elements:

• Value of the project

• Probability of success
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• Type of institution that sponsors the project

• Reputation of the project

• The designers are instead characterized by the following characteristics:

• Education

• Experience

These characteristics will be summarized in a table like the following:

Figure 3.C.1: Example of a project

To view each characteristic, you will have to click on the corresponding name, and the respec-

tive values for each project will appear. You will be able to view one characteristic at a time,

but you can click on each name as often as you wish. Moreover, by passing the mouse over the

name of each characteristic, a window will be opened with a brief explanation of the variable.

Below you will find the explanation of each characteristic of the projects:

Value of the project As already mentioned, if a project reaches the funding treshold, your

profit will depend on the result of a lottery. A lottery is made of a given probability of success

and a corresponding profit. The first characteristic that you will find in the table is the value

of the project, that indicates the profit generated by the project in the case of success, that is,

if the project reaches the minimum funding threshold and the lottery is successful.

Probability of success The second characteristic is the risk of the project, that is the proba-

bility with which the funded project is able to generate profits. This variable is related to the

value of the project, since the higher is the value of the project, the lower is the probability to

obtain the corresponding profit. For example, to a probability of 10% corresponds a profit of

10000 EMU, while to a probability of 90% corresponds a profit of 1111 EMU.

Type of institution that sponsors the project The third characteristic of the project is

the institutional sponsor. The designers of the projects have in fact chosen the sponsor from a

list of various proposed institutions that they have thought is the sponsor that will make the

159



project most attractive for lenders.

Reputation of the project The fourth characteristic of the project indicates the reputation

of the project among the designers. After having defined the various projects, the designers

were asked to vote for the projects based on their perception of which project will be the most

likely to reach the funding threshold. The third characteristic indicates how many votes each

project received during this evaluation.

Below we provide the explanation of each characteristic of the designer:

Designer education This characteristic indicates the education of the designer of the project,

that is, in which degree programme is the designer enrolled in.

Designer experience This characteristic indicates the experience of the designer accumulated

by having participated in experiments in the past. The experience is indicated by the number

of experiments in which the designer took part until now.

Designer Gender

Your choice

In each round, you can decide whether to invest your share in a project or to wait, by selecting

the appropriate option: Once your share has been invested, it is not be possible to get it back

or to change project in the following rounds. In each round you will also have the following

pieces of information:

Collected shares

It indicates the total shares that the project collected until that round. Both the total number

of shares collected and the percentage of funding will be indicated. Furthermore, bar charts

are used to make the comparison between the funding levels of the different projects more

intuitively understandable. The bar graph will be red if the corresponding project has not yet

reached the minimum funding threshold, and, once the threshold is reached, it will turn green.

It is possible to participate in the financing of a project, even when this has already reached

the minimum funding threshold. When making your choice, before clicking on a characteristic,

you will visualize the following window:
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Figure 3.C.2: Choice Window: Baseline

Figure 3.C.3: Choice Window: Info-treatment
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Figure 3.C.4: Choice Window: Uncertain-treatment

Figure 3.C.5: Choice Window: Combined-treatment
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In each round you will also be informed of how many participants have not yet chosen to

invest. In the last column of the table, called forecasts, you will have to indicate how many

participants, among those who have not yet chosen to invest, are choosing each project during

the current round. .

Experimental Procedure:

As anticipated, the experiment consists of 10 rounds. In each round you can indicate whether

to invest your share in a project, or to wait. You can invest in a project even if this has already

reached the funding threshold. You can decide not to invest in any project and to keep your

share. In each round following the first, you will have information on the level of financing

of the projects. Remember that only one project can be financed, because the sum of shares

available to the lenders, is such that only one project at most can be financed. It is important

to note that once you have invested your share in a project, it will no longer be possible to

change your decision, i.e. you will not be able to remove your share and transfer it to another

project, nor will you be able to get back your share. Remember that, in each round of the

experiment, you will also need to indicate the number of subjects you believe will invest in each

project during that round.

Profits calculation

After the last round, profits will be calculated. If a project has reached the minimum funding

threshold, it can generate profits, according to the result of the corresponding lottery. In

particular:

• If you have invested in a project, that reaches the funding threshold, and won the lottery,

you will receive the value of the project. For example, if the project value is 450 EMU,

you will receive 450 EMU.

• If you have invested in a project, that reaches the funding threshold, and didn’t win the

lottery, you will lose your share and your profit will be 0 EMU.

• If you have invested in a project, and the project does not reach the funding threshold,

you will receive 50 EMU, as a partial refund of the amount invested.

• If you have not invested in any project, you will keep your initial share, i.e. 150 EMU.
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Sessions

During the experiment you will participate in three sessions, i.e. three markets of projects. In

every session, the above-explained procedure is repeated. This means that each session will last

10 rounds, and in each session you will receive a share that you can use to finance a project

from those available in the session. Within each session, projects will have the same value and

the same funding threshold. The value of projects can change between one session and another.

Payments

Each participant will receive 2.5 Euro for participating in the experiment. For this part of the

experiment, the gain will be calculated as follows: at the end of the last session, one of the

three sessions (markets) will be randomly drawn, and your earnings will be equal to your profit

in the selected session. within the selected session, one round will be randomly drawn and the

number of participants who have invested in each project during that round will be calculated.

The participant who indicated the number of subjects that is closest to the true number, will

receive 100 EMU. If there are any equal-merit, the winner will be randomly picked among them.

Control questions

1. There are 10 rounds to finance a project within each session. True or false?

2. In the randomly selected session the White project was financed, worth 450 EMU, and it

didn’t win the lottery. You have invested in the White project. Your profit is of 0 EMU.

True or false?

3. Suppose that you invest your share on a project in the third round. At the seventh round

you decide to remove your share from that project, and invest it on another project. Is

it possible?

4. Your profit is given by the sum of the profits obtained in each session. True or false?

5. In the randomly selected session the White project was financed, worth 450 EMU, and it

won the lottery. You have invested in the White project. What is your profit?

6. In the randomly selected session the White project was financed, worth 450 EMU. You

have invested in the Black project. What is your profit?
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7. In the randomly selected session the White project was financed, worth 450 EMU. You

have decided to keep your share and to not invest it. What is your profit?

8. At each round you will have to indicate how many players have already invested in each

project. True or false?

Second part - Instructions

On your screen you will see 100 boxes. In one of them, there is a bomb; each of the other

99 boxes contains 2 EMU. You do not know where the bomb is, but you know that it might

be in any of the 100 boxes with the same probability. Your task is to select all the boxes you

want. You will earn 2 EMU for each box that you collect without the bomb. To select a box,

you can simply click on it. Selection does not imply that it will immediately open; instead,

you will discover the actual contents (EMU or the bomb) of your boxes only at the end of the

experiment. If you select the box containing the bomb, then everything you have collected is

destroyed and you will earn 0 EMU for this second phase of the experiment. After collecting

all the boxes you like, select the STOP button. This ends the second phase of the experiment.

The earnings (in EMU) you acquire in this second phase of the experiment will be added to

the earnings (in EMU) you obtained during the first phase of the experiment.
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Conclusions

In this thesis we tried to explore the relation between information and equilibrium selection. In

Chapter One we developed a theoretical model which predicts a higher level of cooperation when

less information is available. We then applied the model to an asymmetric situation where one

long-run player interacts with a sequence of short-run players. We call the information available

to the short-run player about the long-run player previous behavior as the reputation of the

long-run player. We show that giving more information to the short-run player is equivalent to

expand the set of possible reputations, and consequently of equilibria, so that also extortionate

outcomes become equilibria.

In Chapter Two we tested the model developed in Chapter One with a laboratory experiment.

We show that subjects in the experiment are indeed able to recognize the different settings

triggered by different amount of information. They tend to use more a fully cooperative strategy

when little information is available, and to use more an extortionate strategy when the theory

prescribes that is optimal to do so, i.e. when more information is available. At the same time,

the data reveal that first players tend to resist to extortion. They are not willing to tolerate

low levels of cooperation by the second player, even when this would be profitable as long as

monetary payoffs are concerned.

There is a clear analogy between our result and the large literature on ultimatum bargaining

(see D. Cooper and Kagel, 2016 for a review). It is one of the best established results in

the experimental literature that in the ultimatum game offers are made that are above the

minimum predicted by the subgame perfect equilibrium, and that ”unfair” offers are usually

rejected. A wealth of ”social preferences” models have been proposed to accommodate this

pattern of behavior. The repeated TG resembles ultimatum bargaining because, by choosing

the frequency of rewards the second player chooses the ”fairness” of the final distribution of

(expected) payoffs. The first player can either accept it (by playing Trust) or reject (by playing
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Not Trust). This implies that part of the observed behavior can be explained, at least partially,

by subjects’ preferences involving social motives like altruism or inequality aversion. How much

of the behavior in experimental setting involving repeated games can be explained by models

of social preferences is a relatively unexplored question, that surely deserves more scrutiny.

Chapter Three reports the results from an experiment designed to test whether non payoff-

relevant information is able to help subjects solve a coordination problem. Our main finding is

that information is able to make an option focal, even if it does not increase coordination. In the

presence of uncertain payoffs, introducing information is instead detrimental for coordination.

Those results, when applied to the context of crowdfunding, suggest that project’s designers

should push more on the inner characteristics of the project, and less on its ability to generate

profits. Those results might be corroborated by repeating the experiment with different types

of information, to get further insights into the relevance of the disclosed information.
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