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LIST OF ABBREVIATIONS

ASD: Autism Spectrum Disorder

En2: Engrailed 2

ONL: Outer nuclear layer

INL: Inner nuclear layer

GCL: Ganglion cells layer

OPL: Outer plexiform layer

IPL: Inner plexiform layer

S opsin: Short wavelength sensitive opsin

M opsin:Middle wavelength sensitive opsin

PKCα: Protein kinase C, alpha

PSD95:Post-synaptic density protein 95

Pcp2: Purkinje cell protein 2

CB: Calbindin

HC: Horizontal cells

AC: Amacrine cells

GC: Ganglion cells

Brn-3a: Brain-specific homeobox/POU domain protein 3a

Rho: Rhodopsin

GAPDH: Glyceraldehyde 3-phosphate dehydrogenase

PV: Parvalbumin
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P10: Postnatal 10 days

P30: Postnatal 30 days
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ABSTRACT

Mice lacking the homeobox-containing transcription factor En2 (En2-/- mice)

are considered as a reliable animal model for investigating the

neurodevelopmental basis of autism spectrum disorders, as they display some

ASD-related anatomical deficits, including cerebellar hypoplasia (Joyner A L, et

al., 1991), reduced Purkinje neurons numbers (Kuemerle B, et al., 1997),

altered anatomy of the amygdala (Kuemerle B, et al., 2007), and a significant

loss of forebrain GABAergic interneurons (Sgadò P et al., 2013). En2-/- mice

also display autistic-like behavioral defects, including decreased sociability

(Brielmaier J, et al., 2012), enhanced seizure susceptibility (Tripathi P P, et al.,

2009) and impaired spatial learning and memory (Provenzano G, et al., 2014)

(Cheh M A, et al., 2006). A recently published study from our laboratory

revealed that En2-/- mice displayed an altered disposition of GABAergic circuits

in the visual cortex, that might contribute to alter binocularity and plasticity of

the visual system, while leaving other visual functional properties (acuity,

response latency, receptive field size) unaffected (Allegra M, et al., 2014).

Moreover, preliminary experiments performed in our laboratory suggested that,

at cellular level, the retina of En2-/- mice showed alterations in the number of

specific cell subtypes compared with the retina of WT littermates. More

importantly, an increasing number of studies published in the past years

indicated that difficulties in sensory processing might somehow contribute to
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the pathogenesis of autism (Robertson C E, Simon B C, 2017). Therefore, we

decided to investigate the possible retinal defects in the En2-/- mice. We

showed for the first time that the En2 gene is expressed in all nuclear layers of

the adult mouse retina. We also found that En2-/- adult mice showed a

significantly decreased number of Calbindin (Calbindin+) positive horizontal

cells, and a significantly increased number of Calbindin+ amacrine/ganglion

cells. The number of Brn-3a (Brn-3a+) positive ganglion cells displayed no

difference with respect to wild-type littermates. In addition, En2-/- adult mice

showed a significantly reduced expression of the rod photoreceptor marker

rhodopsin at both mRNA and protein levels, and a significant reduction of the

S-cone photoreceptor S opsin, the bipolar cells marker pcp2, and the

GABAergic interneurons marker parvalbumin. Electroretinogram (ERG)

analysis revealed that the amplitude of b-wave in En2-/- mice scotoptic ERG

was significantly reduced as compared with controls. Together, all these data

indicate that En2-/- mice exhibit retinal defects at molecular, cellular and

functional level, whose significance needs to be further investigated.
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1. INTRODUCTION

1.1 Autism Spectrum Disorders

Autism spectrum disorders (ASD) encompasses a cluster of highly

heterogeneous neurodevelopmental disorders defined by a triad of core

behavioral abnormalities: the inability to engage in reciprocal social

interactions, deficits in language and communication, and restricted interests

accompanied by repetitive behaviors (Banerjee S, et al 2014) (Abrahams B S,

Geschwind D H, 2008) (Betancur C, et al., 2009) (Levitt P, Campbell D B.,

2009) (Peça J, et al., 2011b) (Zoghbi H Y, Bear M F, 2012). According to the

new edition of the Diagnostic and Statistical Manual of Mental Disorders

(DSM-V; 2013), a guide created by the American Psychiatric Association used

to diagnose mental disorders, ASD encompasses narrowly defined autism,

social disintegration disorder, Asperger’s disorder, and pervasive

developmental disorder not otherwise specified (PDD-NOS).

Autism spectrum disorder has an impact on early brain development. Obvious

signs and symptoms appear within the first 3 years of life and persist into

adulthood (Banerjee S, et al., 2014). Recent studies demonstrate that the

prevalence of ASD has been steadily rising, accompanied by widespread

speculations concerning the factors that might be responsible. During the

years 1970 to 1980, the prevalence of autism was estimated at around 0.05%
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(Wing L, et al., 1976) (Ritvo E R, et al., 1989), while recently published

epidemiological studies reveal an estimated prevalence of more than 1% of the

world’s population were affected by ASD (Elsabbagh M, et al., 2012) (Baio J,

et al., 2014), and the incidence of ASD among 8-year-old children across 11

sites in United States is now estimated at 11.3 per 1000 (1 in 88) (Baio J, et al.,

2014). Moreover, ASD exhibits a gender bias, as it affects more males than

females; particularly in the individuals with a normal intelligence (more than 5

males/1 female affected) (Bourgeron T, 2015) (Miles J H, et al., 2005).

ASD was first described by Kanner, who assumed autism was a kind of inborn

disturbance, though he also questioned if environmental factors could

contribute to it (Kanner L, 1943). This hypothesis has been supported by many

studies indicating how environmental factors also likely contribute to some

autistic cases, though they still need to be further investigated (Newschaffer C

J, et al., 2007). A prominent example is the prenatal exposure to agents such

as valproic acid. A study on the effect of prenatal exposure to valproate

revealed that, when the mother was exposed to valproate during pregnancy,

children had a higher risk of ASD and childhood autism compared with children

born from women who did not use valproate or stopped the intake of valproate

during the pregnancy. This suggests that maternal use of valproate during

pregnancy could contribute to a significantly increased risk of autism spectrum

disorder and childhood autism in the offspring (Christensen J. et al., 2013).

Environmental factors are not the only determinants that contribute to the
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pathology of ASD, and likely exert their effect via complex genetic interactions.

For instance, patients who have phenylketonuria are more likely to develop

ASD and other manifestations of the disease if they are on a diet consuming

more phenylalanine (Manzi B, et al., 2008). This kind of interactions can also

be observed in other metabolic types of ASD caused by mutations in BCKDK

(Branched Chain Ketoacid Dehydrogenase Kinase). Specifically, BCKDK

mutations were identified in core families with autism, epilepsy and intellectual

disability (ID) (Novarino G., 2012). BCKDK encoded protein contributes to

inactivating the E1-alpha subunit of branched chain ketoacid dehydrogenase

(BCKDH). Bckdk knockout mice showed abnormal brain aminoacid profiles

and autistic behavioral deficits, and these defects could be treated with high

consumption of branched-chain amino acids (Novarino G., 2012).

Numerous findings published in the past decades confirmed the effects of

genetic factors that could be the key component of ASD. Studies on twins and

some case reports revealed an average monozygous twin concordance of

64% and an average dizygous twin concordance of 9%, compared to a

population prevalence estimated to be 0.05% at the time of the study (Smalley

S L, et al., 1980), strongly suggesting the high heritability of autism. Meanwhile,

there is increasing evidence from Mendelian diseases linked with ASD

indicating that mutations in single genes can greatly increase the risk for ASD.

These include mutations in genes such as FMR1 (Fragile X syndrome),

TSC1/TSC2 (Tuberous sclerosis complex), CACNA1C (Timothy syndrome),
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and many other single genes, which are supposed to account for 10-20% of

total ASD cases (Berg J M, et al., 2012) (Abrahams B S, et al., 2008). While

the increasing evidence shows that both genetic and environmental factors

can contribute to ASD, the relative importance of genetic versus environmental

factors in the etiology of ASD is still a matter under debate.

1.1.1 Genetics of autism

Autism spectrum disorders are a type of common and heritable

neuropsychiatric disorders. Genetically, autism can be generally classified into

two forms: syndromic and nonsyndromic (Miles J H, 2011) (Schaaf C P, 2011)

(Singh S K, Eroglu C, 2013). Syndromic ASD is a type of ASD with known

genetic cause and unique clinical symptoms, which represent only a few total

ASD cases, while non-syndromic ASD tipycally has unknown genetic causes,

and accounts for the major percentage of total ASD cases (Sztainberg Y,

Zoghbi H Y, 2016). Autism for which genetic causes are known can be further

classified in: cytogenetically visible chromosomal abnormalities (~5%), copy

number variants (CNVs) (i.e., variations in the number of copies of one

segment of DNA, including deletions and duplications) (10-20%), and

single-gene disorders (~5%) (Miles J H, 2011) (Rosti R O, et al., 2014) (Robert

C, et al.,2017). Visible cytogenetic abnormalities were found with the help of

high-resolution karyotype analysis in approximately 5% of children with ASD,

and another 3–5% of ASD cases were identified with the assistance of
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fluorescence in situ hybridization (FISH) techniques (Miles JH, 2011).

Cytogenetic abnormalities were found on almost every chromosome, though

only a few which occur with a high frequency can be located to a specific

autism gene (Reddy K S, 2005) (Vorstman J A, 2006) (Lintas C, Persico A M,

2009). Copy number variations (CNVs) exist in the genome where sections

of the genome are repeated and the number of repeats in the genome are

different in different species (McCarroll SA, et al., 2007). The number of

genetic ASD cases which involve CNVs has increased with the assistance of

array Comparative Genomic Hybridization (aCGH) (Robert C, et al., 2017), a

technique used to evaluate the DNA copy number alterations associated with

chromosome abnormalities in high-resolution (Bejjani B A, Shaffer L G, 2006).

Some ASD cases are caused by single genes mutations, such as NF1

(Neurofibromatosis), UBE3A (Angelman syndrome), SHANK3, and PTEN

(Berkel S, et al., 2010) (Durand C M, et al., 2007) (Geschwind D H, Levitt P,

2007) (Hatton D D, et al., 2006) (Veenstra-Vanderweele J, et al., 2004).

Meanwhile, genome-wide association studies (GWAS) indicated that DLX,

Reelin, and Engrailed genes are also linked to autism (Gadad B S, et al.,

2013).

Angelman syndrome (AS) shares some common behavioral phenotypes with

autism. There are differences in severity of autistic features across subtypes of

AS, with some behavioral features being unique to AS and some representing

all forms of developmental disability (Bonati M T, et al., 2007). AS is a
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neurodevelopmental disorder caused by mutations in the ubiquitin-protein

ligase E3A gene (UBE3A) that can be ascribed to a variety of genetic

abnormalities of the imprinted 15q11-q13 chromosomal region (Horsthemke B,

Buiting K, 2006). This syndrome is caused by different types of genetic

alterations: deletion on the maternal chromosome 15 (70%), paternal

chromosome 15 uniparental disomy (UPD; 2%), point mutations of the UBE3A

gene (10%) and epimutations. No identifiable molecular abnormality is found in

the remaining AS patients (10-13%) (Bonati M T, et al., 2007). UBE3A

mutations caused by the loss of the E6-associated protein carboxyl terminus

domain were considered to be linked to ASD (Bonati M T, et al., 2007).

In addition, Fragile X Syndrome (FXS) is another common single gene

mutation disorder which is associated with ASD. FXS is caused by the

expansion of the CGG trinucleotide repeats in the 5' untranslated region of the

FMR1 gene (Miles J H, 2011). The FMR1 gene encodes for fragile X mental

retardation protein (FMRP) (De Rubeis S, et al., 2012), a type of RNA-binding

protein responsible for post-transcriptional regulation. Estimated 50% of FXS

could also be diagnosed as autism based on symptoms and phenotype,

although different studies may be variable (Abbeduto L, et al., 2014).

1.1.2 Neuropathological findings in autism

ASD symptoms are due to neuropathological changes in different brain
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regions, even if there is yet no consensus regarding all brain regions affected

by the disease. Autistic patients post-mortem analysis revealed an abnormal

brain growth, and the areas which are considered to be involved in the

development of social, communication and motor abilities displayed white

matter abnormalities (Baribeau D A, Anagnostou E A, 2013) (Mostofsky S H, et

al., 2009). Specifically, autistic brains demonstrated an overgrowth in the

region of the frontal lobe, cerebellum, and limbic structures, and a volume loss

in the area of corpus callosum and cingulum (Baribeau D A, Anagnostou E A,

2013). Meanwhile, both cerebellar gray and white matters regions also

displayed a decreased volume (Baribeau D A, Anagnostou E A, 2013).

Autism involves many different pathological abnormalities, including alterations

in the development of neurons in the forebrain limbic system, a decrease in the

cerebellar Purkinje cell population and age-related changes in neuronal size

and number in some cerebellar nuclei and in the inferior olive (Kemper T L,

Bauman M, 1998) (Romero-Munguía M Á, 2011). Loss of Purkinje neurons is

considered to be related to GABA neurotransmission dysfunction. Abnormal

GABA release in Purkinje cells and Purkinje cells alterations could be further

related to the increased expression level of GAD67 mRNA in cerebellar

interneurons of ASD patients (Yip J, et al., 2008). The above-mentioned

abnormalities could have a severe impact on many developmental processes,

including neuronal migration, axodendritic outgrowth, synaptogenesis, and

pruning (DiCicco-Bloom E, 2006). These results suggest that delayed neuronal
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maturation could contribute to the pathogenesis of autism (Minshew N J,

Williams D L, 2007). An increased volume of the amygdala was frequently

observed in anatomical studies of autistic children brains. The deficits in

amygdala could be associated with the social communication deficits and

increased anxiety of autistic patients (Haznedar M M, et al., 2000).

Neuropathological studies in the limbic system of autism mouse models

unveiled several abnormalities in the hippocampus, amygdala, and other

limbic structures: decreased neuronal size, increased neuronal packing

density, and decreased complexity of dendritic arbors (Schmahmann J D, et al.,

2009) (Gadad B S, et al., 2013). Together, convergent evidence from different

studies suggests that anatomical defects in the amygdala and cortical region

could be contributing to the deficits in dendritic spine reorganization and

consolidation (Gadad B S, et al., 2013). Furthermore, abnormal spine

generation or deficits in spine reorganization, elimination, and pruning are

anatomical traits which are associated with the pathology of autism (Hutsler J J,

Zhang H, 2010).

1.2 Animal Models of Autism Spectrum Disorders

1.2.1 Mutant Mouse Models

In order to better understand molecular mechanisms and anatomical/functional

defects in ASD, laboratory rodents are widely used for autism research. The

use of these models is based on the following advantages: well-characterized
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behaviors; many well-established behavioral methods and techniques to study

nervous system; accessible to chemical agents or genetic interventions tests;

susceptible to social behavior alterations due to their nature of social animals

(Cryan J F, Holmes A, 2005). The generation of mouse models for ASD by

targeted deletion of ASD-associated genes has become an increasingly

important and essential tool to investigate the neurodevelopmental basis of

ASD, as well as the molecular, cellular, anatomical, electrophysiological and

behavioral consequences of gene dysfunctions in ASD (Provenzano G, et al.,

2012). ASD-associated genes present in SFARI (Simons Foundation Autism

Research Initiative) database can be roughly classified into three groups:

syndromic ASD genes, strong candidate genes and genes with suggestive or

minimal evidence of ASD association (Provenzano G, et al., 2012). Mutant

mice generated by specifically deleting syndromic ASD genes, such as

CNTNAP2, FMR1, NF1, PTEN, SHANK3, TSC1/2, and UBE3A, display

autistic symptoms in the context of other neurological disorders with symptoms

caused by the specifically targeted gene (Provenzano G, et al., 2012). For

example, Fmr1 KO mice demonstrated complex behavioral phenotypes,

including some ASD-like symptoms, such as attention dysfunction (Moon J, et

al., 2006) and seizures (Yabut O, et al., 2007).

Strong ASD candidate genes, including CNTN4 and NRXN1, are a group of

genes which are validated in many different independent studies showing their

strong link to ASD (Provenzano G, et al., 2012). Contactin4 (CNTN4), a
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contactin family axonal cell adhesion molecule, plays an essential role in the

formation of axonal connections in different brain regions (cerebellum,

thalamus, amygdala, and cerebral cortex) during development (Fernandez T,

et al., 2004). Cntn4−/−mice displayed aberrant projections of olfactory sensory

neurons to multiple glomeruli, suggesting that Cntn4−/− mice have olfactory

processing deficits, which is also considered as ASD-related symptom

(Bennetto L, et al., 2007) (Brewer W J, et al.,1996).

Genes with suggestive or minimal evidence of ASD association genes are a

class of candidate genes, which are validated in few independently replicated

studies, including EN2, FOXP2, GABRB3, NGLNs, OXT/OXTR and RELN

(Provenzano G, et al., 2012). Mice lacking these genes could model some

phenotypes of ASD. For instance, the RELN gene encodes the extracellular

matrix glycoprotein Reelin, which plays a role in neuronal migration and

lamination of the cerebral cortex during embryogenesis. Mice lacking Reelin

(reeler mice) show some ASD-related defects: decreased number of

GAD67-positive cortical neurons (Liu W S, et al., 2001), decreased GABA

turnover (Carboni G, et al., 2004) and improper layer positioning of GABAergic

interneurons in the mature cerebral cortex (Yabut O, et al., 2007). Other

studies also reported some ASD-like behaviors in these mice (Macrì S, et al.,

2010).

1.2.2 Other Animal Models
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In addition to mouse models, monkeys, songbirds, and zebrafish are also used

in modeling autistic symptoms and molecular mechanisms (Hrabovska S V,

Salyha Y T, 2016) (Meshalkina D A, 2017). Rhesus monkeys were used as a

model to evaluate the effects of the neonatal amygdala or hippocampus

damage on the emergence of stereotypies, that was supposed to be related to

the neurobiological basis of repetitive stereotypes in neurodevelopmental

disorders, such as autism (Bauman M D. et al., 2008). Songbirds were used as

an animal model to dissect the genetic bases of ASD (Panaitof S C, 2012).

Recently, zebrafish is becoming a rapidly emerging animal model for

understanding the pathogenesis of complex psychiatric disorders, including

autism and discovering new therapeutic approaches (McCammon J M, Sive H,

2015) (Levitas-Djerbi T, Appelbaum L, 2017) (Meshalkina D A, 2017).

Compared with other animal models for autism, zebrafish have many

advantages for investigating the pathogenesis of ASD, including low-cost,

rapid transient genetic assays, available for live imaging experiments,

accessibility of whole brain with the use of optogenetic tools for deciphering

neural circuits and their function, and amenability to chemical screens to define

potential therapies (McCammon J M, Sive H, 2015) (Kalueff A V, et al., 2013).

To be specific, zebrafish can be used to model ASD-like social phenotypes

(such as social preference and repetitive behaviors) and be also used as

genetic models relevant to ASD (Levitas-Djerbi T, Appelbaum L, 2017). For

example, a recent study showed zebrafish larvae displayed autism-like
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behavioral deficits, such as increased cycle swimming and edge preference,

following maternal exposure to the mixture of the water soluble fraction of

crude oil and lead (Pb) (Wang Y, et al., 2016).

1.3 Engrailed 2 Knock-out Mice

1.3.1 Engrailed 2 gene

Engrailed 2 is a homeodomain-containing transcription factor. The gene

Engrailed was initially identified in Drosophila, required for the establishment of

anterior-posterior compartments in each segment of the body (Morata G,

Lawrence P A, 1975). From then on, Engrailed homologues were also

discovered in different types of organisms (Gibert J M, 2002). Vertebrate

homologs were identified in chick (Gardner C A, et al., 1988), mice (Joyner A L,

et al., 1985), frogs (Hemmati-Brivanlou A, et al., 1991), fish (Fjose A, et al.,

1988), and human (Poole S J, et al., 1989). Generally, there are 2-3 Engrailed

genes in vertebrates, which in most species play a role in conferring specific

identity to defined areas and neurons (Wizenmann A, et al., 2015).

In mouse, there are two Engrailed genes: En1 and En2, that share more than

90% of homology at the protein level in the homeodomain region (Joyner A L,

Martin G R, 1987). Engrailed proteins contain highly conserved

homeodomains that confer their transcriptional regulation function (Logan C, et

al., 1992) (Morgan R, 2006). The homeodomain is a sequence of about 60
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amino acids that is conserved in all types of homeodomain proteins, and it is

composed of three alpha-helices, of which the third binds double-stranded

DNA (Morgan R, 2006). In addition to the homeodomain, Engrailed genes also

have other four regions of similarity (EHs), EH1-EH3 and EH5 (Fig 1.3.1.1).

EH1 and EH5 play a role in mediating transcriptional repression by recruiting

the co-repressor groucho (Tolkunova E N, et al., 1998), while EH2 and EH3

bind PBX, a second homeodomain-containing transcription factor that modifies

the DNA binding affinity and specificity of the En gene (Peltenburg L T, Murre C,

1997) (Van Dijk M A, Murre C, 1994). Apart from EHs, Engrailed proteins also

have other properties: the ability to be secreted (Joliot A, et al.,1998), the

ability to be internalized (Cosgaya J M, et al.,1998), and the ability to bind

directly to the eukaryotic translation initiation factor 4E (eIF4E) by a sequence

localized at the N-terminal (Nédélec S, et al., 2004).

Fig 1.3.1.1 Functional domains of Engrailed proteins (Morgan R, 2006).

Genome-wide association study in humans revealed that two intronic single
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nucleotide polymorphisms (SNP) in EN2 gene, rs1861972 and rs1861973,

showed a strong link with ASD (Jiyeon C, et al., 2011) (Benayed R, et al., 2005)

(Gharani N, et al., 2004) (Benayed R. et al., 2009). Interestingly, later studies

revealed that one SNPs (rs1861973, A-C haplotype) in EN2 gene is functional,

suggesting EN2 as a possible ASD susceptibility gene and the A-C haplotype

as a possible risk allele (Benayed R, et al., 2009). Meanwhile, epigenetic

changes in the En2 promoter were observed in the cerebellum of some autistic

individuals (James S J, et al., 2014). All these results suggest a link between

the En2 gene and autism.

Engrailed genes are also involved in the development of the vertebrate visual

system. Early expression of Engrailed in the dorsal mesencephalon

contributes to the development and organization of a visual structure, the optic

tectum/superior colliculus (Wizenmann A, et al., 2015). Moreover, Engrailed

also plays a role in regulating the expression of Ephrin, an axon guidance

signaling molecule found in the tectum/superior colliculus (Brunet I. et al.,

2005). In fact, Engrailed was reported to function as an axon guidance cue in

synergy with the Ephrin system, and this is proposed to contribute to

enhancing retinal topographic precision (Wizenmann A. et al., 2009).

1.3.2 Engrailed 2 knock-out (En2-/-) mice

In mouse, the En2 gene plays an important role in the regionalization,
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patterning and neural differentiation of the midbrain and hindbrain regions

during embryonic development (Cheng Y, et al., 2010) (Gherbassi D, Simon H

H, 2010) (Herrup K, et al., 2005) (Joyner A L, 1996) (Orvis G D, et al., 2012)

(Sgaier S K, et al., 2007). In addition, En genes also are involved in neural

survival during developmental stages (Alvarez-Fischer D, et al., 2011). En2 is

widely expressed in the developing mouse mesencephalon (midbrain) and

rhombomere 1 (including the cerebellum primordium), starting at the neural

plate stage (embryonic day 8.5) and continuing throughout embryonic and

postnatal development (Joyner A L, 1996) (Davis C A, Joyner A L, 1988)

(Wilson S L, et al., 2011). More recent studies also showed that En2 mRNA is

also expressed in the hippocampus and cerebral cortex of adult mice (Tripathi

P P, et al., 2009) (Sgadò P, et al., 2013).

Mice lacking the homeobox-containing transcription factor En2 (En2-/-) can be

considered as a reliable animal model for investigating the

neurodevelopmental basis of ASD. En2-/- mice display some ASD-related

anatomical deficits. They are viable and fertile and display a mild phenotype

which includes a decreased size in cerebellar volume and abnormal foliation in

the cerebellum (Joyner A L, et al., 1991). A later study demonstrated that En2-/-

mice displayed a decrease in cerebellar size, mild abnormalities in patterning

foliation of cerebellum accompanied by the reduction of the Purkinje, granule,

deep nuclear, and inferior olive neurons (Kuemerle B, et al., 1997). En2-/-mice

also displayed an obvious anterior shift in the position of the amygdala in the
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cerebral cortex (Kuemerle B. et al., 2007). Our lab has shown that En2-/- mice

showed a significant reduction in the number of parvalbumin (PV),

somatostatin (SOM) and neuropeptide Y (NPY) expressing GABAergic

interneurons detected in the hippocampus and cerebral cortex of adult mice,

suggesting that En2 plays in an important role in the development and/or

maintenance of selected populations of GABAergic interneurons of the mouse

hippocampus and somatosensory cortex (Sgadò P, et al., 2013). This is in

agreement with previous findings in other mouse models for ASD, which also

displayed abnormalities in GABAergic neuron circuitry (Sgadò P, et al., 2011)

(Provenzano G, et al., 2012). To be specific, ASD mice including Fmrp,

Neuroligin 3 mutant mice, and also valproic acid-treated mice were shown to

have a noticeable reduction of PV-expressing interneurons in the

somatosensory cortex, which was also detected in En2-/- mice (Gogolla N, et

al., 2009).

In addition to anatomical deficits, En2-/- mice also display some ASD-like

behaviors. Behavioral studies on adult mice found that they displayed

neurobehavioral deficits in social as well as learning and memory tasks (Cheh

M A, 2006) (Brielmaier J, et al., 2012). In particular, they displayed very

significant deficits in reciprocal social interactions both in juvenile and adults

(Brielmaier J, et al., 2012). Besides, En2-/- mice also displayed an increased

susceptibility to seizures (Tripathi P P, et al., 2009), which was frequently

clinically witnessed in autistic patients (Gilby K L, O'Brien T J, 2013). It is
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noteworthy that En2-/- adult mice displayed robust spatial learning and memory

defects, detected by the Morris Water Maze test (MWM) (Cheh M A, 2006)

(Brielmaier J, et al., 2012) (Provenzano G, et al., 2014a). Further investigation

revealed that these defects were linked to the hippocampal dysregulation of

neurofibromin-dependent pathways (Provenzano G, et al., 2014a). Specifically,

the impaired spatial learning detected in the MWM was associated with

reduced neurofibromin expression and increased ERK phosphorylation (pERK)

levels in the hilus of En2-/- adult mice (Provenzano G, et al., 2014a). Meanwhile,

the reduced phosphorylation of synapsin I in the hippocampus was also

detected in En2-/-mice, before and after MWM (Provenzano G, et al., 2015b).

Moreover, En2-/- adult mice also displayed growth hormone (GH) dysfunctions

throughout the neuroendocrine axis and the hippocampus. GH is responsible

for the synthesis of Insulin-like growth factor 1 (IGF-1), which was found to be

associated with ASD (Provenzano G, et al., 2014b). En2-/- adult mice exhibited

a dysregulation of FMRP-mGluR5 signaling pathway, accompanied by a

reduced GABRB3 expression, and this dysregulation may be associated to the

“autistic-like” features (Provenzano G, et al., 2015a) .

1.4 Mammalian Visual System

The visual system is the part of the central nervous system by which the

animals are able to process and perceive visual details received from the
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surroundings. The visual system can detect and interpret visible light

information received from the eye to reconstruct a representation of the

surrounding environment. It is responsible for a series of complex tasks, which

include the process of light reception and the formation of monocular

representations; the process of binocular perception buildup from a pair of two

dimensional projections; the process of visual objects identification and

categorization; the process of assessing distances to and between objects;

and the process of guiding body movements responding to the objects seen.

In mammals, the visual system includes the eyes, the optic nerve, the lateral

geniculate nucleus (LGN) of the thalamus and the visual cortex. Many

mammals, including humans, rely on vision as their primary sense to evaluate

their surroundings and guide their behavior. Visual perception starts when light

through the cornea and the lens from the surroundings is focused onto the

retina, which converts it into neuronal signals. These signals are then mainly

sent through the optic nerve to the primary visual cortex via the LGN for further

processing.

1.4.1 Retinal development in mammals

The correct development and assembly of seven principal different cell types

into the functional architecture of the neural retina is the first step for visual

perception of our surroundings. Vertebrate retina starts to develop from optic
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vesicles, which derive from the anterior neural plate and proceed to develop

into the optic cup. Cell differentiation in the vertebrate retina initiates in the

inner layer of the central optic cup and progresses concentrically in a wave-like

manner until getting to the peripheral edges of the retina (Prada C, et al., 1991).

Retinogenesis in the vertebrate retina proceeds in a relatively fixed

chronological sequence in which the different types of retinal neurons are

generated (Fig. 1.4.1) (Young R W, et al, 1985). All retinal types derive from a

common population of multipotent retinal progenitor cells (RPCs) residing in

the inner layer of the optic cup. During retinogenesis, ganglion cells and

horizontal cells differentiate first, followed by cone photoreceptors in

overlapping phases, amacrine cells, rod photoreceptors, bipolar cells and,

finally, Müller glial cells. Differentiated six main classes of retinal neurons can

be further divided into several subclasses. These six types of retinal neurons

finally become incorporated into the local neural circuitry which is responsible

for the initial step in the visual processing of visual information (Marquardt T,

Gruss P, 2002).
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Fig. 1.4.1 Retinal neurogenesis in the vertebrate retina proceeds in a fixed

histogenetic sequence. (Marquardt T, Gruss P., 2002).

The process of guiding RPCs towards different cell fates is associated with

several extrinsic factors. The first factor is Sonic Hedgehog (Shh) secreted by

initially differentiated retinal ganglion cells. Secreted Shh is required to

promote the progression of the proximo-distal wave of ganglion cell

differentiation and to induce its own expression. During this process, Shh

factors have an impact on negatively regulating the ganglion cell genesis

following the proximo-distal differentiation wave (Neumann C J, et al., 2000)

(Zhang X M, et al., 2001). In addition to Shh, other secreted factors including

transforming growth factor-α (TGF-α), epidermal growth factor (EGF) and

leukemia inhibitory factor can also have an effect on specifically stimulating the

production of some types of retinal cell types, while negatively suppressing the
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production of others types of retinal neurons (Lillien L, 1998). Another factor,

ciliary neurotrophic factor (CNTF), can directly redirect immature postmitotic

rod photoreceptors towards the Müller glia fate well after cell cycle exit

(Ezzeddine Z D, et al, 1997). Apart from the regulation by extrinsic signals in

retinal cell differentiation, cell-autonomous factors in RPCs also play a role in

mediating changes in the intrinsic responsiveness of RPCs to particular

extracellular signals (Cepko C L, et al., 1996) (Livesey F J, et al., 2001).

1.4.2 Retinal structure

The vertebrate retina is an approximately 150-400 µm thick neural tissue lining

at the back of the eye, which is a part of the central nervous system (CNS),

deriving embryologically from the neural tube. Therefore, retinal neurons share

a lot of common properties with other CNS tissues, while they still possess

some specialized properties and proteins which are associated with the

retina’s specific function in converting light information into nerve signals and

further analyzing the image or non-image information.

The retina has a well-organized laminar structure which is conserved in all

vertebrate species (Dowling J E,1987) (Rodieck R W, Rodieck R W, 1998).

Generally, the vertebrate retina contains > 60 types of retinal neurons, which

can be classified into five major classes: photoreceptors (3-4 types), horizontal

cells (2 types), bipolar cells (10-12 types), amacrine cells (29-30 types), and
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ganglion cells (10-15 types) (Masland R H, 2001) (Wässle H, 2004). There are

two major types of photoreceptors cells: rods and cones (Ebrey T, Koutalos Y,

2001). In vertebrate retina, there are three subtypes of cone photoreceptors

which are sensitive to different spectrum: short-wavelength (S or blue-sensitive)

cones, middle-wavelength (M or green-sensitive) cones, and long-wavelength

(L or red-sensitive) cones (Thoreson W B, 2008). There are 9-11 types of cone

bipolar cell, which can be categorized into two major physiological subtypes:

cone ON bipolar cells that depolarize to light and cone OFF bipolar cells that

hyperpolarize to light, and a single type of rod bipolar cell (Masland R, 2001)

(Wässle H, 2004). In vertebrates, there are two types of horizontal cells, one of

them possessing an axon with a finely-branched terminal. However, rats and

mice have only one type of horizontal cells, though most mammals have two

types of horizontal cells (Thoreson W B, 2008). Amacrine cells in vertebrate

retina can be grouped into 29 different subtypes based on anatomical and

neurochemical criteria (Masland R, 2001) (Wässle H, 2004). Some specific

amacrine cells have well-characterized functions, such as AII amacrine cells,

which are responsible for transferring rod signals from rod bipolar cells to

ganglion cells (Bloomfield S A, Dacheux R F, 2001), and starburst amacrine

cells, which are supposed to be important in directional selectivity (Taylor W R,

Vaney D I, 2003). There are 10-15 types of ganglion cells in in various species.

In primate retina, there are two most common types: M (magnocellular) cells

and P (parvocellular) cells (Thoreson W B, 2008).
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In mouse retina, there are two types of photoreceptors: rods and cones, and

the percentage of cones (only short and medium wavelength sensitive cones)

was estimated to be approximately 2.8% of the total photoreceptor population

(Ortín-Martínez A, et al., 2014), indicating the mouse is rod-dominated. This

corresponds to the life style of the mouse, which is a nocturnal animal. Mouse

retina only has one type of horizontal cell (Peichl L, et al.,1994), which are

B-type axon-bearing horizontal cells (Suzuki H, Pinto L H,1986), accounting for

around 3% of the total cells in the inner nuclear layer (INL) (Jeon et al.,1998).

Bipolar cells in mouse retina have at least ten types of cone bipolar cells and

one rod bipolar cell type (Famiglietti Jr E V, 1981) (Cohen E, Sterling P,

1990a,b) (Euler T, Wässle H, 1995), comprising 40% of the cell bodies in the

INL (Jeon et al.,1998). Amacrine cells in mouse retina were classified into two

main types: glycinergic amacrine cells and Gamma-aminobutyric acidergic

(GABAergic) amacrine cells, and these two main types account for

approximately half of the amacrine cell population. Glycinergic amacrine cells

mainly are a type of small-field amacrine cells (Pourcho R G, Goebel D J,1985)

(Menger N, et al.,1998), while GABAergic amacrine cells are a type of

wide-field amacrine cells. In addition to glycinergic and GABAergic amacrine

cells, there are also dopaminergic and cholinergic amacrine cells in the mouse

retina (Wulle I, Schnitzer J, 1989) (Jeon et al.,1998), composing of about 41%

of total cells in that layer (Jeon et al.,1998). Apart from the amacrine cells in the

INL, there are around 4% of cells in ganglion cells layer are displaced
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amacrine cell (Jeon et al.,1998). The ganglion cells in the mouse retina are

located in the ganglion cells layer (GCL), accounting for the majority of cell in

this layer (Jeon et al.,1998). Like other species, three nuclear layers in mouse

are divided by two plexiform layer: OPL and IPL.

1.5 Sensory Processing in Autism

Sensory processing has been given an increasing attention in both autistic

diagnosis and research in recent years (Robertson C E, Simon B C, 2017).

Sensory symptoms were first figured out in the original report for ASD when

ASD was first described (Asperger H, 1944) (Kanner L, 1943). From then on,

sensory processing in ASD was further investigated by different research

groups (Wing L,1969) (Hermelin B, O'connor N,1970). Sensory symptoms

were also described in some literature written by some autistic patients

(Grandin T, 1992) (Grandin T, Johnson C, 2009) (Grandin T, 1986) (Jackson L,

2002) (Williams D, 2009). Meanwhile, some questionnaires conducted by

evaluating parents or caregivers demonstrated particular sensory symptoms in

ASD, possibly more frequent than in other neurodevelopmental disorders

(Watling R L, et al., 2001) (Rogers S J, 2003). Sensory processing problems in

ASD are mainly reflected in hypersensitivity, avoidance of sensory stimuli,

diminished responses to sensory stimulation, and/or sensory seeking behavior.

In turn, these symptoms could finally affect the multiple sensory systems
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including the visual, auditory, gustatory, olfactory and tactile systems

(Ben-Sasson A, 2008) (Cascio C J, et al., 2015) (Foss-Feig J H, et al., 2012)

(Klintwall L, et al., 2011) (Lane A E, et al., 2014) (Liss M, et al., 2006) (Marco E

J, et al., 2012) (O’Connor K, 2012). Studies in autistic children showed they

have an enhanced visually evoked potential (VEP) response to high spatial

frequencies, while non-autistic children characterize the facial emotions by

using generally low spatial frequency information (Vlamings P H J M, et al.,

2010). This observed difference in autistic children is in accordance with

previous studies which revealed autistic perception is more detail-oriented,

suggesting primary visual processing could also contribute to social and

communication deficits in autism (Dakin S, Frith U, 2005) (Happé F, Frith U,

2006) (Mottron L, et al.,2006) (Behrmann M, et al., 2006). Meanwhile, sensory

processing abnormalities were also observed in autism mouse models.

Studies in Cntnap2−/− autistic mice exhibited an abnormal response to sensory

stimuli and lack the preference for novel odors which were detected by

olfaction-based behavioral test (Gordon A, et al., 2016).
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2. AIM OF THE THESIS

Mice lacking the homeobox-containing transcription factor Engrailed 2 (En2-/-

have been proposed as a good animal model for autism spectrum disorders,

since they display a series of anatomical and behavioral deficits relevant to

autism spectrum disorders, including reduced Purkinje neurons, altered

anatomy of the amygdala and a significant loss of forebrain GABAergic

interneurons, as well as decreased sociability, enhanced seizure susceptibility

and impaired spatial learning and memory (Joyner A L, et al., 1996) (Gharani N,

et al., 2004) (Benayed R, et al., 2005) (Kuemerle B, et al., 2007) (Sgadò P, et

al., 2013) (Tripathi P P, et al., 2009) (Provenzano G, et al., 2014).

A recent study published by our laboratory revealed that En2-/- mice displayed

an altered disposition of GABAergic circuits in the visual cortex, that might

contribute to alter binocularity and plasticity of the visual system, while leaving

other visual functional properties (acuity, response latency, receptive field size)

unaffected (Allegra M, et al., 2014). Besides, preliminary experiments

performed in our laboratory suggested that, at cellular level, the retina of En2-/-

mice showed alterations in the number of specific cell subtypes compared with

the retina of WT littermates. More importantly, an increasing number of studies

published in the past years indicated that the defects in sensory processing

might somehow contribute to the pathogensis of autism (Robertson C E,

Simon B C, 2017). Moreover, no available study focused on the investigation
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of En2-/- mice retina till now. Therefore, we decided to investigate the possible

retinal defects in the En2-/- mice. We initially examined the expression profile of

En2 gene in the mouse retina. We then characterized the retinal defects of

each type of retinal neurons in the En2-/- mouse retina. Finally, we evaluated, in

collaboration with Prof. Claudia Gargini (University of Pisa), the

electrophysiological function of the En2-/- mouse retina by electroretinogram

(ERG).

In this study, we showed for the first time that En2 gene is expressed in all

nuclear layers of adult mouse retina. We also found that En2-/- adult mice

showed a significantly decreased number of Calbindin (Calbindin+) positive

horizontal cells, but a significantly increased number of Calbindin+

amacrine/ganglion cells. The number of Brn-3a (Brn-3a+) positive ganglion

cells displayed no difference in both genotypes. Meanwhile, En2-/- adult mice

showed a significantly reduced expression of the rod photoreceptor marker

rhodopsin at both mRNA and protein levels, and a significant reduction of

S-cone photoreceptor S opsin, bipolar cells marker pcp2, GABAergic

interneurons marker parvalbumin in mRNA levels. Electroretinogram analysis

revealed that the amplitude of the b-wave of the scotoptic ERG in En2-/- mice

showed a significant reduction as compared with controls. Taken together,

these data indicated that En2-/- mice exhibited retinal defects at molecular and

cellular level, and also in the function level.
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3. MATERIALS AND METHODS

3.1 Animals

Animals were housed in a 12h light/dark cycle with food and water available ad

libitum. Mice were anesthetized with chloral hydrate and then sacrificed by

cervical dislocation, and all efforts were made to minimize the suffering of

animals during the experiments. All experimental procedures were performed

in accordance with the European Communities Council Directive 2010/63/EU

and were approved by the Italian Ministry of Health and Ethics Committee of

the University of Trento. The original En2 mutants (mixed 129Sv × C57BL/6

genetic background; Joyner et al., 1991) were crossed at least five times into a

C57BL/6 background. Heterozygous matings (En2+/− × En2+/−) were used to

generate the En2+/+ and En2−/− littermates used in this study. The genotypes

were determined according to the protocols described on the Jackson

Laboratory website (www.jax.org; mouse strain En2tm1Alj). Male and female

En2+/+ and En2−/− age-matched adult (3~5 months), P30 and P10 littermates

obtained from heterozygous matings were used in this study.
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Table 1 Primers for En2 mouse line genotyping experiments

3.2 Laser Capture Microdissection (LCM)

Fresh eyes from adult En2+/+ mice were rapidly enucleated, embedded in OCT

(Tissue-Tek®, cat #4583), frozen on dry ice, and stored at -80°C. Frozen

tissues were cut into 12 μm thick sections and collected on RNase-free

polyethylene naphthalate membrane slides (Leica). The sections were then

thawed and immediately fixed in 75% ethanol for 30s, followed by a wash in

RNase-free water for 30s, counterstained with hematoxylin and eosin for 45s,

followed by two washes in RNase-free water for 30s. Finally, the sections were

dehydrated in graded ethanol solutions (75% for 30s, 95% for 30s, and 100%

for 30s). After being air-dried for 30min, three retinal layers (ganglion cell layer,

inner nuclear layer, and outer nuclear layer) were microdissected on a laser

capture microdissection (LCM) system (LMD6500; Leica). Total RNA was

extracted from the captured layers by using the PicoPure RNA Isolation Kit

(Life Technologies Corp.). On-column digestion with RNase-Free DNase Set

(Qiagen) was performed to ensure the removal of possible genomic DNA

Primers Sequence 5' --> 3'

Common GCCCACAGACCAAATAGGAG

Wild-type Forward TGCAAAGGGGACTGTTTAGG

Mutant Forward ACCGCTTCCTCGTGCTTTAC
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contamination. Samples were reversed transcribed and subjected to RT-PCR

analysis.

3.3 In Situ Hybridization (ISH)

Adult eyes from En2+/+ and En2−/− mice were rapidly removed, washed in

1xPBS, an incision was made on the cornea with a scalpel, then the eyes were

immersion-fixed in 4% PFA for 30min. Subsequently, cornea, lens and sclera

were removed from the eyecups in 1xPBS and the retinae were fixed again in

4% PFA for 30min. After fixation, the retinae were washed in 1xPBS, infiltrated

with 20% sucrose in 1xPBS overnight at 4°C, then embedded in OCT. 12 μm

sections were recovered on commercial Superfrost Plus ™ glass slides

(Thermo Fisher Scientific, Lot# 030117), dried for 20min, fixed with 4% PFA for

20min, and rinsed three times for 15 min with 1xPBS at room temperature (RT).

Sections were rinsed with 0.1 M Triethanolamine (pH 7.5) for 5 min, then

treated with a solution of 0.1M Triethanolamine containing 0.25% (v/v) acetic

anhydride for 10min at RT, finally washed twice for 10 min with 1xPBS.

Hybridization was carried out overnight at 65°C in a humid chamber with

digoxigenin-labelled riboprobes (1μg/ml) in hybridization mix (50% formamide,

1 x Denhardt’s solution, 10% dextran sulfate, 0.20 M NaCl, 8.9 mM Tris-HCl

(pH 7.5), 1.1 mM Tris base, 50 mM EDTA (pH 8.0), 5 mM NaH2PO4, 5 mM

Na2HPO4 and 1 mg/ml yeast tRNA). For the En2 gene (Genbank ID:

NM_010134), En2 specific DNA fragments of approximately 440bp were
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generated by RT-PCR from cDNA reverse transcribed from the total RNA

extracted from cerebellar cortex, and antisense riboprobes were generated

from the flanking T3 RNA polymerase promoter. The name and sequence of

the primers used for in situ hybridization are listed in Table 2.

After hybridization, the slides were washed three times in 50% formamide 1x

SSC for 45 min at 65°C, then washed twice in 1x MABT (100 mM Maleic Acid,

150 mM NaCl, 0.1% Tween 20, pH7.5) for 1h at RT. Subsequently, the sections

were blocked in Blocking Buffer (1x MABT, 20% heat-inactivated goat serum

and 2% Roche blocking reagent) for 3h at RT. An anti-digoxigenin-AP

conjugated antibody (1:2000; Roche Diagnostics, Lot# 13680323) in Blocking

Buffer was incubated overnight at 4°C in a humid chamber. The sections were

washed twice in 1x MABT for 1h each time at RT, incubated two times with the

alkaline phosphatase staining solution (100 mM NaCl, 50mM MgCl2, 5 mM

Tween 20, 2 mM Tetramisol, 100 mM Tris-HCl, pH9.5) for 20min, then with the

alkaline phosphatase staining solution containing NBT/BCIP substrate (1:50,

Roche Diagnostics, Lot# 130504421). The reaction was stopped by washes in

1xPBS, graded ethanol, and xylene. The sections were cover-slipped with

DPX (SIGMA, Lot# BCBG9434V) and photographed using an AxioCam MRm

camera connected to a Zeiss Axio Imager M2 microscope (Carl Zeiss optical

company).
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3.4 RNA Extraction and Quantitative RT-PCR (RT-qPCR)

Fresh eyes from adult mice were rapidly enucleated after sacrifice, and retinae

were immediately stored in the indicated eppendorf tubes in dry ice. Total

RNAs from 3 En2+/+ and 3 En2−/− adult mice eyes were extracted by

Nucleospin RNA XS kit (Macherey-Nagel). cDNAS were synthesized from 1µg

total RNA by SuperScript VILO cDNA Synthesis Kit (Invitrogen, cat

#11754050). Quantitative RT-PCR (RT-qPCR) was performed in a C1000

Thermal Cycler (Bio-Rad) with real-time detection of fluorescence, using the

KAPA SYBR FAST Master Mix reagent (KAPA Biosystems). Mouse beta-actin

(β-actin) was used as an internal standard for quantification analysis. The

name and sequence of all primers used in RT-qPCR are reported in Table 2.

Ratios of comparative concentrations of each mRNA with respect to β-actin

mRNA were then calculated and plotted as the average of three independent

reactions with technical replicates obtained from each RNA sample.

Expression analysis was performed using the CFX Manager (BioRad) software.

For each marker, RT-qPCR was independently repeated three times using the

set of cDNAs samples for statistical analysis.

Table 2 Primers used for RT-qPCR and in situ hybridization experiments.

Gene name Forward (5’-3’) Reverse (5’-3’)

Pcp2 AGGCTTCTTCAACCTGCAGA CGTTTCTGCATTCCATCCTT

M-opsin CTCTGCTACCTCCAAGTGTGG AAGGTATAGGGTCCCCAGCAGA
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3.5.1 Immunohistochemistry on Retinal Sections

For immunolabeling of retinal sections, eyecups were rinsed in 1×PBS, then

infiltrated with 20% sucrose overnight, embedded in OCT (Tissue-Tek®, cat

#4583), then serially sectioned (12μm thick) using a cryostat (Leica CM1850

UV Cryostat).Sections were blocked in blocking solution (0.5% Triton X-100,

1% BSA and 10% fetal bovine serum (FBS) in 1×PBS) at room temperature for

1 hour followed by overnight incubation at 4°C of primary antibodies in 0.5%

Triton X-100, 1% BSA, and 3% FBS in 1×PBS. Primary antibodies used in this

study are listed in Table 3. Sections were then washed 3×15min in 1×PBS and

incubated 2 hours at room temperature with secondary antibodies, conjugated

to either Alexa 488 or Alexa 594. The incubation was then followed by 3×15min

washes in 1×PBS and slides mounted using Aqua-Poly/Mount Coverslipping

Medium (Polysciences, Inc.).

3.5.2 Whole Mount Immunohistochemistry

S-opsin TGTACATGGTCAACAATCGGA ACACCATCTCCAGAATGCAAG

Rhodopsin GCCTGAGGTCAACAACGAAT GATAACCATGCGGGTGACTT

Parvalbumin TGCTCATCCAAGTTGCAGG GCCACTTTTGTCTTTGTCCAG

Beta-actin AATCGTGCGTGACATCAAAG AAGGAAGGCTGGAAAAGAGC

En2 ISH GCGTAATACGACTCACTATAGGGAAAG

GGGACTCTTTAGGGTTTC

CGCATTAACCCTCACTAAAGGGAGAAG

ATGATTCCAACTCGCTCT
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For whole mount immunolabeling, eyecups were isolated as described in

parapgraph (3.3). Subsequently, 4 cuts were performed, reaching 2/3 of the

radius, to obtain a 'cross' or 'petal' shape that could remain flat.

Whole-mounted retinas were incubated in blocking solution (0.3% Triton X-100

and 5% BSA in 1×PBS) overnight at 4°C followed by 3 days of incubation in

0.1% Triton X-100 and 1% BSA in 1×PBS at 4°C in a stable agitator, with the

primary antibody. Primary antibodies used in this study are listed in Table 3

The tissue was then washed 3×15min in 1×PBS and incubated 2 days at 4°C

with secondary antibodies, conjugated to either Alexa 488 or Alexa 594.

Retinas were then washed 3×15min in 1×PBS and mounted onto glass slides

using Aqua-Poly/Mount Mounting Medium (Polysciences, Inc.). For each

antibody, whole mount retina IHC was independently performed three or four

times using retinas from three different En2+/+ and En2-/- mice.

Table 3 Antibodies used for immunohistochemistry experiments.

Antibodies Dilution Cat.

Mouse monoclonal anti-Brn-3a 1:500 MAB1585; Millipore

Rabbit polyclonal anti-Calbinidin D-28k 1:5000 CB38; Swant

Mouse monoclonal anti-Opsin 1:500 O4886; Sigma

Mouse monoclonal anti-PSD 95 1:1000 MABN78; Millipore

Mouse polyclonal Cone Arrestin 1:5000 AB15282; Chemicon

Mouse monoclonal anti-Protein Kinase C 1:100 P5704; Sigma

Donkey anti-mouse Alexa 488 1:1000 Invitrogen

Goat anti-rabbit Alexa 488 1:1000 Invitrogen
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3.6 Image acquisition and cell counting

Image stacks were acquired using an Axio Observer Z1 microscope (Zeiss)

equipped with an Axiocam 503 mono camera. For quantitative analysis of

calbindin-positive horizontal cells and amacrine/ganglion cells, and for

Brn-3a-positive ganglion cells, full mosaic images of whole mount retinal

tissues were acquired by the tile function of the microscope using an EC

Plan-Neofluar 20x or 40x objective. Z-plane, exposure time and microscope

settings were optimized for each marker. All parameters were then maintained

for the acqisition of the full mosaic retina in both genotypes. To count cells, 8

tile images in the central part of each 'petal' of the full retina mosaic were

extracted, so that in total 32 tile images/retina have been used to count cells.

Cell counting was performed by Columbus software (PerkinElmer) or Image J

software (NIH) in a consistent way. Parameters (common threshold, area, split

factor, individual threshold, contrast, cell roundness) for defining and selecting

the objective cells were optimized for each marker in the Columbus software.

All the images from both genotypes for each specific marker were analyzed

under the same set of parameters in the Columbus software. Cell counting for

calbindin-positive amacrine/ganglion cells was performed manually by using

Image J. Cell densities were then plotted as the total counting number of each

Goat anti-rabbit Alexa 594 1:1000 Invitrogen



43

specific marker positive cells over total counting area (mm2). For PKC-positive

bipolar cells synaptic terminals, the corrected average total cell fluorescence

was quantified by Image J software. First, the fluorescent images were

converted into an 8-byte image, then the scale bar of the image was defined.

The specific region which included all the PKC-positive synaptic terminals of

each image was selected by using the rectangular toolbar in image J.

Integrated density was automatically quantified by the software. Then the

background reading was quantified by selecting the region with background

signal. The size of the selected regions for interest signal and background

quantification was consistent in all images in both genotypes. The corrected

average total cell fluorescence for each image was calculated as follows: the

corrected average total cell fluorescence = Integrated Density - (Area of

selected cell x Mean fluorescence of background readings). For the outer

nuclear layer thickness quantification, we calculate the thickness of cone

arrestin positive cone photoreceptors in the whole mount retina by using the z

stack function of the fluorescence microscope.

3.7 Protein extraction and Western Blot

Total proteins were extracted from 3 En2+/+ and 3 En2−/− adult mice eyes using

a standard protocol under reducing conditions. Samples were homogenized

and processed in 1 mL RIPA buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl;

1% NP-40; 2 mM EDTA; 2mM PMSF; 5 ug/mL leupeptin; 5 ug/mL pepstatin).
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Total protein extracts were separated on NuPAGE™ 4-12% Bis-Tris Protein

Gels (Invitrogen, Cat# NP0322BOX), then transferred to 0.2mm Nitrocellulose

membranes. The membranes were washed in TBS-T (0.1 M Tris, 0.15 M NaCl,

0.1% Tween 20, pH 7.4) for 10 min and blocked in 5% nonfat dry milk in TBS-T

for 1 hour. Then the membranes were incubated overnight at +4 °C with the

following antibodies listed in Table 4. After TBS-T wash, the membranes were

incubated with the secondary anti-mouse/rabbit HRP antibody for 1h at RT.

Immunoblots were revealed by ECL chemiluminescence system (GE

Healthcare). The protein expression level was detected using

chemiluminescence software (BioRad) and densitometric quantification was

performed using Image J (NIH). GAPDH was used as an internal standard for

protein quantification analysis.

Table 4 Antibodies used for western blot experiments

Antibodies Dilution Cat.

Mouse monoclonal anti-rhodopsin 1:5000 O4886; Sigma

Rabbit polyclonal anti-cone arrestin 1:2000 AB15282; Chemicon

Mouse monoclonal anti-GAPDH 1:5000 sc-32233; Santa Cruz

Biotechnology

Donkey anti-rabbit HRP 1:5000 711-035-152; Jackson

ImmunoLabs

Donkey anti-Mouse HRP 1:5000 715-035-150; Jackson

ImmunoLabs
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3.8 Statistical Analysis

All experiments were independently repeated 3/4 times in constant conditions.

Statistical analysis was performed by GraphPad Prism 6 software (GraphPad

Software). Student's t-test was used (En2+/+ vs. En2−/−), with statistical

significance level set at p<0.05.



46

4. RESULTS

4.1 En2 expression in adult wild-type mice retina

Previous studies demonstrated that, in the adult mouse brain, Engrailed 2 (En2)

mRNA is predominantly expressed in the cerebellum and ventral midbrain

(Joyner A L, 1996) (Gherbassi D, Simon H H, 2006) and at lower levels also in

the hippocampus, somatosensory cortex and visual cortex (Tripathi P P, et al.,

2009) (Sgadò P, et al., 2013) (Allegra M, et al., 2014). The retina is a part of the

central nervous system, since it derives from the diencephalon, which is

subdivided from the forebrain during embryonic development. Therefore, En2

could also be expressed in the retina. For this reason, we decided to

investigate En2 mRNA expression profile in the mouse retina. In order to

describe En2 expression in retinal tissue, we performed RT-PCR experiments

on total RNAs extracted from wild-type adult whole retinas and from the three

retinal nuclear layers microdissected by laser capture. Our experiments

showed that En2 mRNA was expressed across the adult retina, in all three

isolated nuclear layers (Fig. 4.1A; 4.1B). As expected, En2 expression was

abolished in En2 KO mice (Fig. 4.1B). These data were also supported by in

situ hybridization experiments that showed a strong En2 positive staining in

INL and GCL, and a weaker stain in the ONL, of En2WT retina and absence of

signal in En2 KO retina (Fig. 4.1C).
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Fig. 4. 1 En2 mRNA was expressed in the ONL, INL, and GCL of En2+/+ adult mouse

retina, but not in En2-/- adult mouse retina. A), RT- PCR generated amplicons of En2

mRNA in the ganglion cell layer (GCL, lane 2), in the outer nuclear layer (ONL, lane 3),

and in the inner nuclear layer (INL, lane 4) collected by laser capture microdissection

(LCM). Lane 1 represents the 100 bp Molecular Weight Marker. B), RT-PCR for En2

mRNA in En2+/+ (lane 2), and in En2-/- adult mice retina (lane 3). C), Representative

pictures from En2 in situ hybridization on retinal sections showing En2 positive neurons

distributed in all nuclear layers (GCL, INL and ONL) of En2+/+ adult retinas, but not in

those of En2-/- adult retinas.
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4.2 Reduction of rhodopsin expression in En2-/- adult retina

Since we confirmed En2 expression in the three nuclear layers of the adult

mouse retina, we decided to investigate the impact of the knockout of En2 on

retinal anatomy and function and on the different subtypes of retinal neurons.

Rod photoreceptors are one of the two photoreceptor types, together with

cones, and their cell bodies and nuclei are located in the ONL (Jeon C-J, 1988)

(Haverkamp S, 2000). To understand how rod photoreceptors behave in the

En2-/- mice, we decided to perform immunohistochemistry (IHC) experiments

on retinal sections by using a marker specifically labeling rod photoreceptors,

rhodopsin. Rhodopsin is a light-sensitive G protein-coupled receptor located

on the rod outer segment disk membrane, involved in the phototransduction

process (Litman, B. J, Mitchell, D. C,1996). Rhodopsin antibodies specifically

label the outer segment of rod photoreceptors (ROS) in mouse retina (Fig.

4.2A). In the En2-/- mice retina, Rhodopsin exhibited a less organized and

compacted staining in ONL containing the photoreceptors bodies, but also of

the ROS, compared with WT controls (Fig. 4.2A). In order to further

understand rhodopsin disorganization in En2-/- mice, we performed

quantitative RT-PCR (RT- qPCR) experiments on En2+/+ and En2-/- retina. This

analysis showed a significant reduction of rhodopsin mRNA content in the eye

of En2-/- mice compared with age-matched En2+/+ mice (Fig. 4.2B) (p<0.01,

student t-test; n=3 replicates experiments of total 3 mice per genotype). To

further elucidate whether rhodopsin reduction in mRNA level is also consistent



49

at the protein level, rhodopsin protein expression in En2-/- adult retina was

examined by western blot. Rhodopsin western blot unveiled three rhodopsin

isoforms in the mouse retina: monomer; dimer and oligomer isoforms (Fig.

4.2C), respectively. In En2-/- adult mice, rhodopsin dimer exhibited an obvious

reduction compared to En2+/+ controls (Fig. 4.2C), while the monomer and

oligomer isoforms showed no visible difference (Fig. 4.2C). Image J

quantification showed that rhodopsin dimer isoform in En2-/- adult mouse retina

decreased significantly (Fig. 4.2D) (p<0.05, student t-test; n=3 En2+/+ and 3

En2-/- mice), while monomer (Fig. 4.2E) and oligomer isoform (Fig. 4.2F)

expression demonstrated no significant difference between the two genotypes.
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Fig. 4. 2 Rod photoreceptors in En2-/- adult mice. A), Rhodopsin immunohistochemistry

in En2+/+ and En2-/- adult retinal sections. B), Relative mRNA expression level of rod

photoreceptors specific marker rhodopsin, as obtained by RT-qPCR performed on whole

retinas of En2+/+ and En2-/- adult mice. Values were expressed as each marker/β actin

comparative quantitation ratios. C), Representative of rhodopsin immunoblottings from

adult mouse retina of both genotypes. Three samples per genotype are shown. GAPDH

was used as internal standard. D), Quantification and statistical analysis of rhodopsin

dimer (n=3 mice per genotype); E), Quantification and statistical analysis of rhodopsin

monomer (n=3 mice per genotype); F), Quantification and statistical analysis of rhodopsin

oligomer (n=3 mice per genotype); values in D), E) F) were normalized to GAPDH (Mean

± S.E.M of 3 replicates from 3 mice per genotype; *p<0.05, Student's t-test, En2+/+ vs.

En2-/-).

4.3 Decreased expression of S-opsin mRNA in En2-/- adult

retina

We then investigated the cone photoreceptors component in En2+/+ and En2-/-

retina. We performed immunohistochemistry on adult retinal sections with an

antibody against cone arrestin (Chen M, et al., 2013), a general marker for

cone photoreceptors. Cone arrestin antibodies label the outer segment, the

inner segment and the synaptic endings of the cone photoreceptors in the

mouse retina (Fig. 4.3A). In En2-/- adult mice, cone arrestin positive outer

segment displayed a subtle disorganization, as compared with En2+/+ adult

controls (Fig. 4.3A), indicating that the loss of En2 gene in the adult mouse

retina may somehow directly or indirectly affect the morphology of cone
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photoreceptors. To understand whether the number or organization of

photoreceptors cell bodies located in the outer nuclear layer in En2-/- mice

retina was altered, we decided to measure the ONL thickness by performing

whole mount retina IHC using cone arrestin as a reference staining marker.

Thickness quantification of the outer nuclear layer revealed that there was no

difference between En2+/+ and En2-/- mice (Fig. 4.3E), indicating a normal

layering of the outer nuclear layer in En2-/-mice.

Mouse cone photoreceptors have two different subtypes: short-wavelength

sensitive cones (S-cone) and medium-wavelength sensitive cone (M-cone). In

order to characterize the different subtypes of cone photoreceptors in En2-/-

adult mouse retina more in detail, we performed RT-qPCR analysis with two

specific markers: S-and M-opsin. The analysis showed that S-opsin

expression in En2-/- adult mice displayed a significant decrease as compared

to En2+/+ controls, while M-opsin expression did not vary significantly between

the two genotypes (Fig. 4.3B) (p<0.05, student t-test; n=3 replicates

experiments of total 3 mice per genotype). However, western blots showed

that protein expression levels are not consistent with mRNA expression:

neither S-opsin nor M-opsin expression showed any statistically significant

difference between the two genotypes (Fig. 4.3C; 4.3D).
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Fig. 4.3 Cone photoreceptors in En2-/- adult mice. A), Representative pictures showing

cone arrestin-positive photoreceptors in the retina of En2+/+ and En2-/- adult mice. B),

Relative mRNA expression level of cone photoreceptors markers S-opsin and M-opsin, as

obtained by RT-qPCR performed on the whole retinas of En2+/+ and En2-/- adult mice.

Values were expressed as each marker/β actin comparative quantitation ratios (Mean ±

S.E.M of 3 replicates experiments from total 3 mice per genotype; **p<0.01, Student's

t-test, En2+/+ vs. En2-/-). C), Left, representative of S-opsin immunoblottings from adult
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mouse retina of both genotypes. Three samples per genotype were shown. GAPDH was

used as internal standard. Right, quantification and statistical analysis of S-opsin

immunoblotting experiments (n=3 mice per genotype); S-opsin levels were normalized to

GAPDH. D), Left, representative M-opsin immunoblottings from adult mice retina of both

genotypes. D), Quantification and statistical analysis of the outer nuclear layer in En2+/+

and En2-/-mice. Three samples per genotype were shown. GAPDH was used as internal

standard. Right, quantification and statistical analysis of M-opsin immunoblottings

experiments (n=3 mice per genotype); M-opsin levels were normalized to GAPDH. E),

Quantification and statistical analysis of cone arrestin positive ONL. Scale bar: 50 μm.

4.4 Reduced pcp2 expression in bipolar cells in En2-/- adult

mice

During phototransduction, photoreceptor cells transmit the converted light

signals to bipolar cells, located in the inner nuclear layer (INL). To characterize

bipolar cells in En2-/- mouse retina, we performed RT-qPCR using the bipolar

cells specific marker pcp2. Pcp2 is a member of the GoLoco

domain-containing family functioning as a cell-type specific modulator for G

protein-mediated cell signaling, which is present exclusively in cerebellar

Purkinje cells and retinal bipolar cells in the mouse (Xu Y, et al., 2008). The

results revealed pcp2 mRNA expression was significantly reduced, as

compared with age-matched En2+/+ controls (p<0.01, student t-test; n=3

replicates experiments of total 3 mice per genotype) (Fig. 4.4 A), indicating that

bipolar cells may be disrupted following deletion of the En2 gene. In order to

further investigate whether this molecular deficit could also affect the
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morphology of bipolar cells in En2-/- mouse retina, we performed IHC on retinal

sections with the bipolar cells marker PKCα. PKCα is a type of

serine/threonine kinase belonging to a class of classical PKCs, which is

implicated in many biological processes, such as proliferation and

inflammation (Nakashima S, 2002). PKCα specifically labels rod bipolar cells in

the mouse retina (Haverkamp S,et al., 2003). Our PKCα IHC in mouse retinal

sections revealed that PKCα specifically labels bipolar cells bodies and

synaptic terminals (Fig. 4.4B). In the En2-/- adult mouse retina, PKCα positive

cells seemed reduced in number and/or in staining intensity as compared to wt

controls (Fig. 4.4B). In particular, the synaptic terminals in the En2-/- adult

mouse retina seemed less dense (Fig. 4.4B). As it was not possible to count

positive cells, in order to quantify the possible difference between genotypes,

we measured flurescence density of PKCα positive synaptic terminals. This

analysis showed no significant difference in pixel intensity in the synaptic

terminals of En2+/+ and En2-/- bipolar cells (Fig. 4.4C). In order to understand

whether the synaptic connections between photoreceptors and bipolar cells

were disrupted in En2-/- adult mice, we chose to perform IHC on retina sections

using PSD-95, which labels the synaptic terminals of photoreceptors, at bipolar

cell ribbon synapses (dyads) (Koulen P, et al, 1998). PSD-95 is a

membrane-associated guanylate kinase (MAGUK) that functions as a

scaffolding protein in the excitatory postsynaptic density (PSD) and is a potent

regulator of synaptic strength (Chen X, et al., 2011). PSD95 labels the outline
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of numerous rod spherules and of five cone pedicles (Haverkamp S, et al.,

2003) (Koulen P, et al, 1998). PSD-95 IHC in retinal sections demonstrated

that the PSD immunoreactive synaptic terminals showed no difference in both

En2+/+ andEn2-/- (Fig. 4.4D).
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Fig. 4.4 Bipolar cells in En2-/- adult mice. A) Relative mRNA expression level of pcp2,

marker for bipolar cells, as obtained by RT-qPCR performed on the retina of adult En2+/+

and En2-/- mice. Values were expressed as pcp2/β actin comparative quantitation ratios

(Mean ± S.E.M of 3 replicates experiments from total 3 mice per genotype; ***p<0.001,

Student's t-test, En2+/+ vs. En2-/-). B), PKCα immunohistochemistry in En2-/- adult retinal

sections. C), statistical analysis of cell fluorescence of PKCα positive bipolar cells synaptic

terminals in the retinal sections. D), PSD 95 immunohistochemistry in En2-/- adult retinal

sections. Scale bar: 50 μm.

4.5 Decreased Calbindin+ horizontal cells density in En2-/- adult

retina

Horizontal cells (HCs) are a type of retinal interneurons that modulate signal

transmission between the photoreceptors and bipolar cells (Poché R A, et al.,

2007). To better understand if the horizontal cells in the En2-/- adult mouse

were altered, we performed whole mount retina IHC with a reliable marker for

horizontal cells, calbindin. Calbindin is a calcium-binding protein belonging to

the family of EF-hand proteins (Wässle H, et al., 1998), which is considered as

a marker for horizontal cells, as well as some types of amacrine cells and

ganglion cells (Poché R A, et al., 2007). Calbindin whole mount retina IHC

showed that calbindin positive (calbindin+) horizontal cells density in En2-/-

adult mouse retina is reduced, as compared to the staining in the En2+/+ adult

mouse retina (Fig. 4.5E). The total number of retinal cells did not change

between En2+/+ and En2-/- mice. We thus counted calbindin positive horizontal

cells in retinae of mice from both genotypes. Quantification and statistical
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analysis of calbindin+ horizontal neurons in the inner nuclear layer of retinal

whole-mount preparations revealed that the density of calbindin+ horizontal

cells in En2-/- adult mice retina was lower than that in En2+/+ adult mice retina

and this difference was statistically significant (Fig. 4.5F) (p<0.05, student

t-test, n=4 mice per genotype). To understand when the observed deficits

originated, we performed whole mount IHC for calbindin on postnatal day 10

(P10) and postnatal day 30 (P30) retinas. We chose P10, as it is a time point

when retinogenesis in the mouse is complete (Yoshida S, et al., 2004), and

P30, as the peak of the critical period, an early temporary window of enhanced

plasticity (Chen G, et al., 2015). Calbindin whole mount retina IHC on P10

mouse retinae revealed that the density of calbindin+ horizontal cells did not

differ significantly between genotypes (Fig. 4.5 A, B) (p>0.05, student t-test,

n=3 mice per genotype). Also at P30, there was no significant difference in the

density of calbindin+ horizontal cells between genotypes (Fig. 4.5C; 4.5D)

(p>0.05, student t-test, n=3 mice per genotype).
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Fig. 4.5 Calbindin+ horizontal cells in whole mount retina IHC in En2+/+ and En2-/-

adult mice. A), Representative pictures showing Calbindin positive (Calbindin+) horizontal

cells in the retina of P10 mice from both genotypes. B), Quantitative and statistical

analysis of Calbindin+ horizontal cells density at P10 mice. C), Representative pictures

showing calbindin+ horizontal cells in the retina of P30 mice from both genotypes. D),

Quantitative and statistical analysis of Calbindin+ horizontal cells density at P30 mice. E),

Representative pictures showing calbindin+ horizontal cells in the retina of adult mice from

both genotypes. F), Quantitative and statistical analysis of calbindin+ horizontal cells

density in adult mice from both genotypes. Values in B), D), F) were expressed as the

mean number of positive cells per mm2 (Mean ± S.E.M of 3 or 4 replicates experiments

from 3 or 4 mice per genotype; *p<0.05, Student's t-test, En2+/+ vs. En2-/-). Scale bar: 50

μm.

4.6 Retinal amacrine cells characterization in En2-/- mice
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In the mouse retina, calbindin immunofluorescence staining recognized not

only the horizontal cells in the outer part of the inner nuclear layer (INL), but

also labeled some amacrine cells subtypes in the inner part of the inner

nuclear layer, and some types of ganglion cells and displaced amacrine cells in

the ganglion cells layer (GCL) (Sonntag S, et al., 2012). We selectively

acquired all the layers containing calbindin+ amacrine and ganglion cells in the

mouse retina and quantified the density of calbindin-labeled amacrine and

ganglion cells in En2-/- mice retina. Calbindin whole mount retina IHC showed

calbindin+ amacrine/ganglion cells in En2-/- adult mice were more densely

distributed than in the WT controls (Fig. 4.6.1E), and the total number of retinal

cells did not change between En2+/+ and En2-/- mice. Quantification and

statistical analysis confirmed that in adult mice, the cell density of calbindin+

amacrine/ganglion cells in En2-/- mice retina showed a significant increase

compared with aged-matched En2+/+ controls (Fig. 4.6.1F) (p<0.05, student

t-test, n=4 En2+/+ and 4 En2-/-). At P10, we did not find any difference in the

distribution of calbindin positive amacrine/ganglion cells between En2+/+ and

En2-/- retina (Fig. 4.6.1 A). Cell counting and statistical analysis further

confirmed there was no significant difference in the cell density of calbindin+

amacrine/ganglion cells observed between En2+/+ and En2-/- mice (Fig. 4.6.1B)

(p>0.05, student t-test, n=3 mice per genotype). Similarly, in P30 mice,

calbindin-positive ganglion/amacrine cells were distributed in almost the same

way in both genotypes (Fig. 4.6.1C). Cell counting and statistical analysis
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validated the absence of any significant difference in the number and

distribution of calbindin positive amacrine/ganglion cells between En2+/+ and

En2-/- mice (Fig. 4.6.1 D) (p>0.05, student t-test, n=3 mice per genotype).

Fig. 4.6.1 Calbindin immunopositive amacrine/ganglion cells in P10, P30 and adult

mice. A), Representative pictures showing calbindin positive amacrine/ganglion cells in

the retina of P10 mice from both genotypes. B), Quantitative and statistical analysis of

calbindin positive amacrine/ganglion cells density in P10 mice. C), Representative

pictures showing calbindin positive amacrine/ganglion cells in the retina of P30 mice from

both genotypes. D), Quantitative and statistical analysis of calbindin positive

amacrine/ganglion cells density in P30 mice. E), Representative pictures showing

calbindin positive amacrine/ganglion cells in the retina of adult mice from both genotypes.

F), Quantitative and statistical analysis of calbindin positive amacrine/ganglion cells
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density in adult mice. Values in B), D), F) were expressed as the mean number of positive

cells per mm2 (Mean ± S.E.M of 3 or 4 replicates experiments from 3 or 4 mice per

genotype; *p<0.05, Student's t-test, En2+/+ vs. En2-/-). Scale bar: 50 μm.

As defects in GABAergic interneurons have been reported for different brain

areas of En2-/- mice (Sgadò P, et al., 2013) (Allegra M, et al., 2014), we

questioned whether the increase in calbindin+ amacrine/ganglion cells in En2-/-

adult mouse could originate from defects found specifically in the GABAergic

subtypes of amacrine cells. We thus decided to examine GABAergic amacrine

cells, by performing RT-qPCR with the GABAergic-specific marker

Parvalbumin (PV). PV RT-qPCR results showed a significant increase in PV

expression in En2-/- mice retina, as compared with age-matched En2+/+ control

mice (Fig. 4.6.2) (p<0.01, student t-test, n=3 replicates experiments of 3 mice

per genotype), suggesting that GABAergic amacrine cells in the adult mouse

retina may also be affected by the En2 gene deletion.
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Fig. 4.6.2 Parvalbumin mRNA expression in En2+/+ and En2-/- adult mice. Relative

mRNA expression level of parvalbumin, marker for GABAergic amacrine cells, as

obtained by RT-qPCR performed on the retina of En2+/+ and En2-/- adult mice. Values were

expressed as PV/β actin comparative quantitation ratios (Mean ± S.E.M of 3 replicates

experiments from 3 mice per genotype; **p<0.01, Student's t-test, En2+/+ vs. En2-/-).

4.7 Density of Brn-3a+ retinal ganglion cells in En2-/-mice

Since calbindin+ amacrine/ganglion cells in En2-/- mice showed a significant

increase in density, we wondered if retinal ganglion cells (RGCs) could

contribute to this defect. We decided to investigate the RGCs by exploiting the

RGCs specific marker Brn-3a, by performing whole mount retina IHC. Brn-3a

IHC in adult mouse retina demonstrated there was no evident difference in cell

density of Brn-3a+ ganglion cells between En2+/+ and En2-/- adult mice (Fig.

4.7E), and the total number of retinal cells did not change between En2+/+ and
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En2-/- mice. Quantification and statistical analysis of the Brn-3a+ RGCs cell

counts in adult mice confirmed that there was no significant difference in the

density of Brn-3a+ RGCs (Fig. 4.7F) (p>0.05, student t-test, n=3 replicates

experiments of 3 mice per genotype). We also performed Brn-3a whole mount

retina IHC in P10 and P30 En2-/- mice, showing no difference also at these

stages (Fig. 4.7A, B, C, D). All above results indicate that the density of

Brn-3a+ ganglion cells in En2-/- mice retina is not affected.

Fig. 4.7 Brn3a immunopositive ganglion cells in P10, P30, and adult En2-/-mice. A),

Representative pictures showing Brn-3a positive ganglion cells in the retina of P10 mice

from both genotypes. B), Quantitative and statistical analysis of Brn-3a positive ganglion

cells density in P10 mice. C), Representative pictures showing Brn-3a positive ganglion
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cells in the retina of P30 mice from both genotypes. D), Quantitative and statistical

analysis of Brn-3a positive ganglion cells density in P30 mice. E), Representative pictures

showing Brn3a+ ganglion cells in the retina of adult mice from both genotypes. F),

Quantitative and statistical analysis of Brn3a+ ganglion cells density in adult mice from

both genotypes. Values in B), D), F) were expressed as the mean number of positive cells

per mm2 (Mean ± S.E.M of 3 replicates experiments from 3 mice per genotype; *p<0.05,

Student's t-test, En2+/+ vs. En2-/-). Scale bar: 50 μm.

4.8 Reduced b-wave in ERGs of En2-/- mice under scotopic

conditions

The following experiments were carried out by the laboratory of Prof.

M.Claudia Gargini (Pharmacology Dep.t, University of Pisa). Although I have

not personally carried out the experiments, I participated to the set-up of the

experimental design and contributed to data analysis and interpretation. The

experiments are shown here so that their significance can be discussed in the

following chapter of this thesis.
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Fig. 4.8.1 Impairment of scotopic retinal function in En2-/- mice. A), Representative

scotopic flash electroretinogram (ERG) responses from control and En2-/- mice. B) and C),

Scotopic a-wave and b-wave amplitude as a function of flash intensity from wt and EN2

Ko mice. The traces show that in En2-/- mice there is an impairment of ERG function, as

the a-wave amplitude is reduced and also the b-wave amplitude is significantly decreased.

D), Scotopic b-wave peak time (ms) as a function of flash intensity, the kinetics of the ERG

response is the same between WT and En2-/- mice. Values expressed as average ± SEM.

Statistical analysis (t-test) * P < 0.05, ** P < 0.01, *** P < 0.001.



67

Fig. 4.8.2 Preservation of photopic retinal function in En2-/- mice. A), Representative

photopic flash electroretinogram (ERG) responses from control and En2-/- mice. B),

Photopic b-wave amplitude as a function of flash intensity from WT and En2-/- mice. The

traces show that cones function is preserved in En2-/- mice and the ERG amplitude is the

same between WT and En2-/- mice. C), Photopic b-wave peak time (ms) as a function of

flash intensity, the kinetics of ERG response obtained from the cone-pathway is the same

between WT and En2-/- mice. Values expressed as average ± SEM.
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Fig. 4.8.3 Inner retina is not altered in En2-/- mice. Average amplitude and implicit time

of scotopic (A, C) and photopic (B, D) oscillatory potentials (OP1-OP4) extracted from

ERG response to the bright test flash (377cd*s/m2). Both amplitude and kinetic functions

show no difference between WT and En2-/- mice. Values expressed as average ± SEM.
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5. DISCUSSION

5.1 En2 expression in adult mouse retina

En2 mRNA is extensively expressed in both the anterior and posterior region

of the mouse brain, including the cerebellum, hippocampus and cerebral

cortex (Joyner A L, 1996) (Tripathi P P, et al., 2009) (Sgadò P, et al., 2013)

(Allegra M, et al., 2014) (Brielmaier J., 2012). Considering En2 is widely

expressed in the brain and the retina is considered as an extension part of the

brain, En2 is possibly expressed in the retina. In this study, we show for the

first time that En2 gene is expressed in the adult wild type mouse retina as we

hypothesized (Fig. 4.1B). To be more specific, En2 is expressed in the three

retinal nuclear layers (Fig. 4.1A, 4.1C), as shown independently by RT-PCR

and in situ hybridization in the retinal tissue, suggesting En2 plays a role in

retinal neurons. Moreover, our results further validated that En2 gene is

expressed in the adult wild type mouse retina, not expressed in the adult En2-/-

mouse, indicating that the En2-/- mice we investigated in this study are real

knock-out mice.

5.2 Altered expression of retinal neurons specific markers in

the retina of En2-/- mice

As En2 is expressed across all cells layers of the adult mouse retina, we
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wondered whether inactivation of En2 gene could lead to retinal defects. In our

study, the reduced mRNA expression of rod photoreceptors specific marker

rhodopsin was detected in the En2-/- adult mice retina, as compared to

age-matched controls (Fig. 4.2B), suggesting that deleting the En2 gene could

directly or indirectly disrupt the expression of rhodopsin. Meanwhile, this

disruption was also observed at the protein level of rhodopsin in the En2-/- adult

mice. To be precise, lacking En2 specifically affected the expression of

rhodopsin dimer in the En2-/- mice retina (Fig. 4.2C, 4.2D). This reduction of

rhodopsin might be caused by the loss of En2 transcriptional regulation, as a

similar effect was also observed for other homeoprotein transcription factors.

In mice lacking homeobox-containing transcription factor Crx, a

photoreceptor-specific transcription factor that plays a role in the differentiation

of photoreceptor cells, photoreceptor outer segment morphogenesis was

disrupted, and these cells fail to produce the phototransduction apparatus

(Furukawa T, et al., 1997). This is due to that crx could bind and transactivate

the sequence TAATCC/A, which is found upstream of several

photoreceptor-specific genes, including the opsin genes from many species,

indicating crx is essential for the maintenance of mammalian photoreceptors

cells (Freund C L, et al., 1997). Similar to Crx, En2 homeodomain shows a

high-affinity to the sequence TAATTC/A binding site (Ades S E, Sauer R T,

1994), and the morphological defects of the outer segment of the rod

photoreceptors could also be observed in En2-/- mice after loss of En2 gene.
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Specifically, En2-/- mice exhibited a less organized and compacted structure of

ONL containing the photoreceptors bodies, but also of the ROS, compared

with the WT controls (Fig. 4.2A), suggesting that En2 gene is also likely to be

involved in the maintenance of the rod photoreceptors, especially the outer

segment. In our study, it is noteworthy that at the protein level, the reduction of

the rhodopsin dimer was detected in En2-/- adult mice. A recently published

study revealed that the rodopsin dimerization is essential for the correct visual

pigment rhodopsin folding, maturation, and targeting (Zhang T, et al., 2016),

suggesting the dedicated physiological function of rhodopsin could be

disrupted in En2-/- adult mice due to the failure of dimerization of rhodopsin.

Actually, the rod photoreceptors defect is also supported by the

electroretinogram (ERG) data in En2-/- mice. Scotopic ERG revealed that the

amplitude of b-wave in the En2-/-mice showed a significant reduction (4.8.1B,C)

and a-wave in the En2-/- mice is also reduced (Fig 4.8.1B), as compared with

the wild type control mice, indicating the functional defects in

phototransduction in En2-/- mice retina.

Apart from the rod photoreceptor defects, our results also revealed that S cone

photoreceptor marker S opsin mRNA displayed a significant reduction in the

En2-/- mice, while M cone photoreceptors marker M opsin mRNA expression

showed no difference in both genotypes (Fig. 4.3B), suggesting that loss of

En2 gene selectively affect the S cone photoreceptors. At protein level,

however, the expression level of both S opsin and M opsin showed no
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significant difference in En2+/+ and En2-/- mice (Fig. 4.3C, 4.3D). The

expression difference in S opsin mRNA and protein level suggests a

compensatory mechanism at the translation level of S opsin expression which

may have an important implication in the biology of Engrailed 2.

In addition to the photoreceptors, the bipolar cells in En2-/- adult mice are also

affected. Our results showed that the bipolar cells specific marker pcp2 mRNA

demonstrated a significant reduction as compared with WT age-matched

controls (Fig. 4.4 A), suggesting inactivation of En2 gene in adult mouse retina

could have an impact on the pcp2 expressing bipolar cells. In mouse retina,

pcp2 specifically labeled the rod bipolar cells and some types of ON cone

bipolar cells (Xu Y, 2008). To further confirm which subtypes of pcp2

expressing bipolar cells are disrupted in En2-/- adult mice, PKCα

immunohistochemistry in En2-/- retinal sections was performed. PKCa is a

widely used marker for rod bipolar cells in mouse retina (Haverkamp S,

Wässle H, 2000). PKCα IHC showed that the number PKCα positive bipolar

cells in En2-/-mice displayed a visible loss with respect to En2+/+mice, though

this difference is not statistically significant (Fig. 4.4B, 4.4C). This is probably

because the rod bipolar cells are not the only type of bipolar cells contributing

to the defects of bipolar cells in En2-/- adult mice, and some types of ON cone

bipolar cells in En2-/- adult mice are also likely to be disrupted. Therefore, to

elucidate the defects of pcp2 expressing bipolar cells, further investigation

needs to specifically focus on the ON cone bipolar cells.
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5.3 Altered cells density of the horizontal and amacrine cells

in En2-/- mice retina

Horizontal cells are one of the important players in the mouse retina, that

modulate the lateral signal transmission neurotransmission between the

photoreceptors and bipolar cells (Poché R A, et al., 2007). Particularly, the

negative feedback from horizontal cells to cones and direct feed-forward input

from horizontal cells to bipolar cells are responsible for many vital processes in

the early visual processing in the outer retinae, such as generating

center-surround receptive fields that enhance spatial discrimination (Thoreson

W B, Mangel S C, 2012). Our investigation revealed that the cell density of

calbindin positive horizontal cells in En2-/- adult mice showed a significant

reduction, as compared with the wild type controls (Fig. 4.5E, 4.5F), while

there was no significant difference observed in the cell density of calbindin

positive horizontal cells in En2-/- and En2+/+ mice at P10 (Fig. 4.5A, 4.5B ) and

P30 (Fig. 4.5C, Fig. 4.5D) stage, suggesting loss of En2 might be responsible

for the maintenance of the horizontal cells in En2-/- mice. A recently published

study demonstrated that the horizontal cells in mouse retina play multiple

functional roles in retinal circuits (Chaya T, et al., 2017). Specifically, loss of the

horizontal cells in the adult mice have multiple effects for the mouse retina,

including impairing the antagonistic center-surround receptive field formation

of RGCs, reducing both the ON and OFF response diversities of RGCs,



74

impairing the adjustment of the sensitivity to ambient light at the retinal output

level, and altering spatial frequency tuning at an individual level (Chaya T, et

al., 2017), implying that loss of horizontal cells in En2-/- adult mice may

eventually affect the spatial vision of the mouse retina. Thus, further studies

should be more focused on how the horizontal cells defects could eventually

affect vision.

Apart from the defect of the horizontal cells in En2-/- adult mice, we also

unveiled that the cell density of calbindin positive amacrine/ganglion cells in

En2-/- adult mice showed a significant increase (Fig. 4.6.1F), as compared with

the wild type controls. Meanwhile, we also found that the cells density of Brn

3a positive ganglion cells in En2-/- adult mice show no significant alteration, as

compared with WT controls (Fig. 4.7E, 4.7F). This means that the observed

calbindin positive amacrine/ganglion cells density defects in En2-/- adult mice

are more likely to originate from the amacrine cells in En2-/- adult mice retina.

Furthermore, our result also unveiled GABAergic amacrine cells specific

marker parvalbumin mRNA expression showed a significant increase,

compared with wild type controls (Fig. 4.6.2), implying the loss of En2 could

have a direct or indirect impact on the GABAergic amacrine cells in the mouse

retina. Actually, GABAergic interneurons defects have been reported in various

regions of the brain when En2 gene was deleted. Calbindin-expressing

Purkinje neurons of the En2-/- mice cerebellum showed a decreased cells

number (Kuemerle B, et al., 1997) (Orvis G D, et al., 2012) and delayed
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maturation (Sudarov A, Joyner A L, 2007). Interestingly, in En2-/- mice, the

GABAergic interneurons defects are not only limited to the posterior region of

the brain, but are also present in more anterior regions of the brain. Targeted

inactivation of the En2 gene in the mouse leads to the decreased PV mRNA

and a partial loss of PV interneurons in the hippocampus and in the superficial

layers of the somatosensory cortex (Sgadò P, et al., 2013). This was also

accompanied by a decreased mRNA expression of specific GABAergic

markers in the hippocampus and somatosensory cortex (Sgadò P, et al., 2013),

as well as in the visual cortex (Allegra M, et al., 2014). Conversely, in our study,

higher mRNA level of GABAergic amacrine cells marker Parvalbumin was

detected in the En2-/- adult mice retina, suggesting the elevated inhibitory

circuit present in the En2-/- mice retina. This defect in GABAergic amacrine

cells in En2-/- mice retina might be explained by the loss of En2 transcriptional

regulation of the expression of the GABAergic gene.

5.4 Impaired scotopic ERG in En2-/- adult mice

Scoptopic ERG revealed that the a-wave amplitude is reduced and also the

b-wave amplitude is significantly decreased in En2-/- adult mice, as compared

with its wild type controls (Fig. 4.8.1B, C), indicating En2-/- adult mice displayed

an impaired electrophysiological function. What is the consequence of the

electrophysiological defects observed in En2-/- mice to the vision still need to

be further investigated.
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5.5 Retinal defects, visual processing, and autism

Many recent evidences show altered sensory processing in ASD patients and

mouse models, whether this can be considered an effect or a cause of other

autism-causing neuroanatomical and physiological defects still needs to be

understood (Robertson CE, Baron-Cohen S, 2017). In autism mouse models,

sensory processing abnormalities have been detected. A previously published

study revealed that Cntnap2−/− autistic mice exhibited an abnormal response to

sensory stimuli and lack preference for novel odors detected by

olfaction-based behavioral tests (Gordon A, et al., 2016).Meanwhile, a study in

the Fmr1 KO mice, a mouse model of mental deficency (MD) with autistic

features for Fragile X Syndrome, revealed that the retinal function was altered.

To be more specific, the Fmr1 KO mice displayed a decrease in rhodopsin

content and the rod outer segment destabilization, which led to a lower retinal

function in the Fmr1 KO mice (Rossignol R, et al., 2014). This is highly in

agreement with what we observed in the En2 KO mice. In our study, we

revealed that En2-/- adult mice displayed a reduced expression of rhodopsin in

mRNA (Fig. 4.2B) and protein level (Fig. 4.2C, D). Meanwhile, En2-/- mice also

exhibited the morphological defects in the rod outer segment (Fig. 4.2A). ERG

analysis further confirmed the impaired electrophysiological function in the

En2-/- mice. In the future, we will focus on investigating whether the observed

retinal defects could contribute to altered visual perception. If we connect the
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retinal defects in En2-/- mice to altered visual perception, we could then start

investigating whether they present a functional relationship to the other autistic

characteristics shown by En2-/- mice and in other autistic mouse model, such

as Frm1 KO mice. This study will help us to understand how visual

impairments present in autistic patients can contribute to autistic

characteristics and finally will benefit the clinical diagnosis for autism spectrum

disorders.
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6. CONCLUSION AND FUTURE PERSPECTIVES

In this study, we showed En2 is expressed across all the nuclear layers and

En2-/- mice displayed some marked retinal defects: altered expression of some

retinal neurons markers, including reduced expression of rod photoreceptors

marker rhodopsin, decreased expression of S cone photoreceptor marker s

opsin, reduced expression of bipolar cells marker pcp2, and increased

expression of GABAergic amacrine cells marker Parvalbumin. In addition,

horizontal cells displayed a significant reduction of cells density in En2-/- mice,

while amacrine cells showed a significant increase in the cell density. Together,

these results indicate En2-/- mice exhibited the retinal defects at the molecular

and the cellular level, as well as in the physiological function level. In the future,

studies should be aimed at linking the observed retinal defects in En2-/- to the

visual defects of the mouse. Specifically, we will try to evaluate the visual

sensory functions which are likely to be affected in the En2-/- mice, such as the

spatial vision, and direction and orientation selectivity recordings in visual

cortex. To this purpose, we will elaborate some electrophysiological/behavior

tests specific for the vision sensory functions evaluation.
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