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Part I

B A C K G R O U N D





1
I N T R O D U C T I O N

1.1 motivations

Cyber Physical System (CPS) are composed by networked ICT devices
that support the operation of physical entities. In this work CPS is a
general term that includes Industrial Control Systems (ICS), building
automation systems, and the Internet of Things (IoT) used for control
and automation. Such systems are employed in a large number of
critical infrastructures, even life-critical ones. Despite their criticality,
CPS often lack appropriate cyber security measures.

Until a couple of decades ago, industrial control systems used to
employ serial-based proprietary communication protocols designed
with no security requirements. However, plants and installations were
completely isolated. The progressive use of ICT technology exposed
ICS to vulnerabilities and threats typical of the ICT world. Moreover,
the plants and installations became more and more interconnected for
remote maintenance / control / planning, in order to ease operations
and to decrease management costs. Unfortunately, the cyber security
counterpart did not improved accordingly.

CPS present many specific differences from standard ICT systems
that make general ICT security solutions seldom effective in this con-
text [102]. For instance, change management is particularly difficult
or even impossible, and the lifetime of devices is much longer than
typical ICT systems, often measured in decades. As such, existing
CPS are usually characterised by legacy components.
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4 introduction

The first attempts to increase the security level of ICS were tar-
geted at developing secure versions of control network protocols and
devices. However, although effective solutions have been designed
and implemented, replacing legacy components in ICS is hardly a
viable option. For this reason, in recent years cyber security experts,
both in the academia and in the industry, have progressively shifted
their efforts from the robustness approach to the resilience one. In
other words, instead of trying to replace legacy components of exist-
ing installations with more secure ones, the goal is to improve the cap-
ability to detect possible security issues and to react as promptly and
accurately as possible. The increasing availability of security monit-
oring tools and the establishment of international computer response
practices (e.g. CERT / CSIRT) supported this approach. As a con-
sequence, situational awareness and monitoring have recently become
a key for improving the cyber security resilience of ICS.

Besides ICS, recent years show an increasing trend in the IoT sector.
Billions of devices are expected to be connected in the next future and
cyber security experts have began to point out possible threats and
the expected wide attack surface. It is difficult to make predictions
about the actual risks related to the IoT, but specific cyber security
monitoring approaches are likely to be an essential tool for situational
awareness and effective incident response in this sector.

Although CPS specific differences make protection solutions less
effective, some of these peculiarities can also lead to better tailored
monitoring solutions. Indeed, CPS are typically designed for a spe-
cific purpose in a predetermined environment. As a consequence, the
behaviour of their physical process is predictable to a good extent and
often well documented. Hence, it is possible to leverage such know-
ledge of the CPS to specify known critical conditions. It is also pos-
sible to combine cyber and process aspects for a greater expressive-
ness and effectiveness. However, to our best knowledge, specification-
based security monitoring approaches appear less mature than other
approaches like anomaly-based techniques. This work presents a con-
tribution in this regard.

The main assumption of the whole work is that an operator is able
to grow some knowledge about the system to be monitored and to
identify some conditions that he/she considers critical. In this set-
ting, the term critical means any illicit, unwanted, anomalous, or sus-
picious behaviour that the operator is willing to detect. This know-
ledge may arise from documentation, from experience, from surveys
and interviews, from clustering techniques, from machine learning-
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based analysis approaches, or any other source. This work makes no
assumption on the kind and the source of this information. The as-
sumption is that experts of the CPS are able to:

1. identify the aspects of interest of the CPS to observe;

2. express critical conditions on top of these aspects.

It is necessary to observe the current state of the CPS to detect if it
has reached a critical state. In most occasions, when the CPS reaches
a critical state, it is already too late. It is beneficial to have a way
to predict, to some extent, if the system is evolving toward critical
conditions. This work contributes in this regards.

Moreover, in real cases the assumption that the aspects of interest
are always observable is too strict. A monitoring framework should
be able to deal with unobservable variables to be applicable to a wider
range of real cases. This work addresses both predictiveness and un-
observables.

This work aims at developing a novel and effective approach for
continuous monitoring suitable for Security Operation Centres (SOC)
and Computer Security Incident Response Teams (CSIRT) of enter-
prises that largely employ CPS.

The first contribution is a thorough literature review. The review
started from the technical aspects of the cyber components of CPS, the
legacy and present technologies, their security issues, and possible
solutions. This includes both academic literature, which explores the
state of the art of CPS cyber security, and international standards and
guidelines, aimed at fostering appropriate risk management method-
ologies for critical infrastructures.

My personal ten years working experience in CPS cyber security
has strengthened my understanding of the sector. This allowed me
to carry out my industrial PhD activities within a privileged envir-
onment. The active participation in European projects, in the con-
text of FP7/Horizon 2020, targeting the security of the energy sector
and Smart Grids, allowed me to have continuous discussions with
European stakeholders like Enel (Italy), Alliander (The Netherlands),
Efacec (Portugal), EDP (Portugal), EVN (Austria), ENISA, the EU
Joint Research Centre, RSE (Italy), ENCS (The Netherlands), Security-
Matters (The Netherlands), Deloitte (Italy), Ansaldo Energia (Italy),
and others. My current Manufacturing and Automotive Cyber Secur-
ity position at Magneti Marelli gives me the opportunity to see how
human plant operators are an inherent component in the loop and a
valuable asset to leverage essential knowledge.
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The literature review and the working experience prove that solu-
tions for improving the resilience of CPS are necessary. In this respect,
incident response teams are considered a fundamental component of
risk management and continuous monitoring and attack detection are
necessary to support such methodologies. The literature shows that
leveraging the peculiarities of CPS leads to more effective techniques.
Most of the works focus on a particular combination of observations
and analysis of features, both from the cyber and the physical worlds,
often presenting unsupervised or semi-supervised techniques based
on statistics or machine learning. Specification-based approaches ap-
pear less mature.

The aim of this work is to develop a security monitoring framework
for CPS which is based on specifications by human domain experts.
The framework allows to define the features of the CPS to be observed
and the critical condition to be detected. Unlike intrusion detection
systems, which are limited to sending an alert when a suspicious
activity is detected, our framework presents a quantitative notion of
criticality of the monitored system with respect to a critical condition.
It allows to continuously evaluate such criticality and to track how
it changes in time, providing a way to predict whether the system is
evolving to a critical or licit states.

The framework is able to handle unobservable features, i.e. vari-
ables that are necessary to express a critical condition but whose
value is not available, temporarily or permanently. Broken sensors
or human intentions are examples of unobservable variables. This
capability appears completely novel in the literature.

1.2 preliminaries and conventions

linear algebra and convex polyhedra . This section presents
notations and concepts derived from [1]. We denote by Rn the n-
dimensional vector space on the field of real numbers R, endowed
with the standard topology. The set of all non-negative reals is de-
noted by R+. For each i ∈ {1, . . . , n}, vi denotes the i-th component of
the (column) vector v = (v1, . . . , vn)T ∈ Rn. We denote by 0 the vector
of Rn, called the origin, having all components equal to zero. A vector
v ∈ Rn can be also interpreted as a matrix in Rn×1 and manipulated
accordingly using the usual definitions for addition, multiplication
(by a scalar and by another matrix), and transposition denoted by vT.
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The dot product (or scalar product or inner product) of v, w ∈ Rn is
v · w = vTw = ∑i viwi.

Definition 1.1. For any S1, S2 ⊆ Rn, the Minkowski’s sum of S1 and
S2 is defined as S1 + S2 = {v1 + v2 | v1 ∈ S1, v2 ∈ S2}.

Definition 1.2. For each vector a ∈ Rn and scalar b ∈ R, where
a 6= 0, and for each relation symbol ./∈ {=,≤,<,≥,>}, the linear
constraint aTx ./ b on vectors x ∈ Rn defines:

• an affine hyperplane if it is an equality constraint, i.e ./ ∈ {=};

• a closed affine half-space if it is a non-strict inequality con-
straint, i.e. ./ ∈ {≤,≥};

• an open affine half-space if it is a strict inequality constraint, i.e.
./ ∈ {<,>}.

Definition 1.3. The set P ⊆ Rn is a convex polyhedron if and only if
either P can be expressed as the intersection of a finite number of
(open or closed) affine half-spaces of Rn or n = 0 and P = ∅. The set
of all convex polyhedra on the vector space Rn is denoted Pn.

Definition 1.4. The set P ∈ Pn is a closed convex polyhedron if and
only if either P can be expressed as the intersection of a finite number
of closed affine half-spaces of Rn or n = 0 and P = ∅. In this work
we use only closed polyhedron.

Convex polyhedra can be specified by using two representations:
the linear constraints representation and the generators one.

Definition 1.5 (Constraints representation). By definition, each poly-
hedron P ∈ Pn is the set of solutions to a constraint system, i.e. a
finite number of constraints. By using matrix notation, we have

P = {x ∈ Rn | A1x = b1, A2x ≤ b2, A3x < b3} (1.1)

where, for i ∈ {1, 2, 3}, Ai ∈ Rmi ×Rn and bi ∈ Rmi , and m1, m2, m3 ∈
N are the number of equalities, the number of non-strict inequalities,
and the number of strict inequalities, respectively. As this work only
employees closed polyhedra, the third element A3x < b3 of strict
inequalities is not used, i.e. mi = 0.

Definition 1.6 (Combinations and Hulls). Let S = {x1, . . . , xk} ⊆ Rn

be a finite set of vectors. For any set of k scalars λ1, . . . , λk ∈ R, the
vector v = ∑k

j=1 λjxj is said to be a linear combination of the vectors
in S. Such a combination is said to be
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• a positive (or conic) combination if ∀j ∈ 1, . . . , k. λj ∈ R+;

• an affine combination if ∑k
j=1 λj = 1;

• a convex combination if it is both positive and affine.

We denote by linearhull(S), conichull(S), affinehull(S), convexhull(S)
the set of all the linear, positive, affine, convex combinations of the
vectors in S.

Definition 1.7. Let P ∈ Pn be a convex polyhedron. Then

• a vector p ∈ P is called a point of P;

• a vector r ∈ Rn, where r 6= 0, is called a ray of P if P 6= ∅ and
p + λr ∈ P for all points p ∈ P and all λ ∈ R+;

• a vector l ∈ Rn is called a line of P if both l and −l are rays of
P.

A point of a polyhedron P ∈ Pn is a vertex if and only if it cannot
be expressed as a convex combination of any other pair of distinct
points in P. A ray r of a polyhedron P is an extreme ray if and only
if it cannot be expressed as a positive combination of any other pair
r1 and r2 of rays of P, where r 6= λr1, r 6= λr2 and r1 6= λr2 for all
λ ∈ R+ (i.e., rays differing by a positive scalar factor are considered
to be the same ray). Notice that this definition is stricter than linear
independence.

Definition 1.8 (Generators representation). Each closed polyhedron
P ∈ Pn can be represented by finite sets of lines L, rays R, and points
P. The 3-tuple G = (L, R, P) is said to be a generator system for P, in
the sense that

P = linear.hull(L) + conic.hull(R) + convex.hull(P) (1.2)

where the symbol + denotes the Minkowski’s sum in Definition 1.1.

Any closed polyhedron P can be described by using a constraint
system C, a generator system G, or both by means of the double
description pair (C, G). Given one kind of representation, there are
algorithms for computing a representation of the other kind and for
minimising both representations by removing redundant constraint-
s/generators.

The Parma Polyhedra Library (PPL) [1] provides double descrip-
tion. In this work we use the he following PPL functions1:

1 The real function names differ. We show a simplification for clarity purpose.
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• ppl.from_constraints(C): given a set of (closed) linear constraints
C, it returns the corresponding polyhedron.

• ppl.from_generators(P, L, R): given a set of points P, a set of
lines L, and a set of rays R, it returns the corresponding poly-
hedron.

• P.get_constraints(): given a PPL polyhedron P, it returns the set
of linear constraints C.

• P.get_generators(): given a PPL polyhedron P, it returns the set
of minimised generators (V, L, R) where V is the set of vertices,
R the set of rays, and L the set of lines.

• P.contains(Q): given two (closed) polyhedra P and Q, it returns
true if Q ⊆ P.

• P.intersects(Q): given two (closed) polyhedra P and Q, it returns
true if P ∩Q 6= ∅.

metric spaces

Definition 1.9. Given a set X, a function d : X × X → R is called
premetric if both d(x, y) ≥ 0 and d(x, x) = 0 for all x, y ∈ X. Given a
set X, a premetric function d : X × X → R is called a metric if for all
x, y, z ∈ X:

1. d(x, y) = 0 iff x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y).

The pair (X, d) is called metric space.

We use the following well known result.

Proposition 1.1. Let (X, d) be a metric space. The function D : 2X × 2X →
R defined as

D(A, B) = inf
a∈A, b∈B

d(a, b) (1.3)

is a premetric.

By abusing notation, D(a, B) is used to denote D({a}, B) when
clear from the context.
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Definition 1.10 (Manhattan distance). Let d : Rn ×Rn → R+ defined
as

d(x, y) =
n

∑
i=1
|xi − yi| (1.4)

Equivalently, d(x, y) = |x − y| where | · | denotes the standard l1-
norm on Rn. The function d is a metric on Rn and is also referred as
Manhattan distance, taxicab metric, or L1 distance.



2
C Y B E R P H Y S I C A L S Y S T E M S

2.1 overview

This chapter describes the main features of CPS. Section 2.2 presents
Industrial Control System (ICS), their components, and the main cy-
ber security issues. Section 2.3 presents a short introduction to the
Internet of Things (IoT) and a brief overview of their cyber security
problems.

2.2 industrial control systems

This section introduces ICS, summarising their main components and
functionalities. ICS are very heterogeneous systems, and each indus-
trial installation is unique. While a complete description and charac-
terisation of industrial system is out of the scope of the present work,
it is important to define the main common components.

A general description of ICS together with a possible ICS reference
architecture is presented. The reference architecture precisely defines
which are the ICS components of interest to our aim. Despite being
high level, this architecture presents all the major ICT components of
most ICS.

After introducing ICS and the reference architecture, an analysis
of information security issues of ICS is presented. Our monitoring
framework is focused on the cyber security of the networked com-
ponents.

11



12 cyber physical systems

Figure 2.1: Simple Schema of Control Loop.

According to the US National Institute of Standards and Techno-
logy (NIST) [102], ICS is a general term to indicate several kinds of
systems for controlling industrial processes, including Supervisory
Control And Data Acquisition (SCADA) systems and Distributed
Control System (DCS), or any system that includes Programmable
Logic Controller (PLC) to control physical entities. ICS are used in
different industrial sectors, ranging on water, gas, and oil transporta-
tion, chemical industries, goods manufacturing, logistics, power gen-
eration, healthcare, etc.

As a consequence it is not surprising that ICS are different from
each other, and each industrial installation is unique. Nevertheless,
typical ICS shares the same core concepts and features. The main
concept behind a control system is the control loop, depicted in Fig-
ure 2.1.

The aim of an ICS is to control a physical process. In the physical
layer a set of field devices enables the actual control of the physical
process. Field devices are either actuators or sensors.
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Actuators are devices that have a direct impact on the process (e.g.
pumps, motors, cooling fans). An actuator is usually characterised by
a set of parameters that alter the way it interacts with the physical
process. For instance, a cooling fan is characterised by its rotational
speed (rpm). The set of values characterising the actuators is often
called setpoints. The primary way to control the physical process is
altering the relevant setpoints (e.g. increasing or decreasing the rpm
of the cooling fan). The actuator will alter the process in response of
changes to setpoints.

On the other hand, a sensor is a device that measures parameters
of interest of the physical process (e.g. a thermometer). Sensors are
fundamental to correctly supervise and operate the process. In gen-
eral, the correct actual setpoints to send to actuators are the results of
control logic whose inputs are measurements from sensors.

In other words, field devices enable full control of the process by
reading values from sensors and altering the setpoints of the actu-
ators. An industrial process can be very complex and composed by
hundreds or thousands of field devices. For this reason, it is crucial
to automate the data gathering from field device and to implement a
the control logic to adjust the setpoints accordingly both to physical
changes and to the intervention of human operators. The controller
box in Figure 2.1 represents an ICT system aimed at this. It is worth
noticing that the controller box in the Figure may be implemented by
a complex system that employs different components often geograph-
ically distributed.

The Human Machine Interface (HMI) box in Figure 2.1 represents
the ICT component that shows the human operator the current set
points and the sensor values of the controlled process. Moreover, the
HMI enables an operator to change the setpoint.

While the control loop is the abstract main concept behind any ICS,
the real complexity is hidden in the controller, which is a complex
system of ICT components. A portion of these components interacts
with the field device to “tie the loop”. The NIST Special Publication
800-82 [102] enumerates typical components of the ICT layer of an
industrial control system. The following definitions are quoted from
that document.

control server . The control server hosts the DCS or PLC super-
visory control software that communicates with lower-level con-
trol devices. The control server accesses subordinate control
modules over an ICS network.
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scada server or master terminal unit. The SCADA Server
is the device that acts as the master in a SCADA system. Remote
Terminal Units and PLC devices (as described below) located at
remote field sites usually act as slaves.

remote terminal unit. The Remote Terminal Unit (RTU), also
called a remote telemetry unit, is a special purpose data acquis-
ition and control unit designed to support SCADA remote sta-
tions. RTUs are field devices often equipped with wireless radio
interfaces to support remote situations where wire-based com-
munications are unavailable. Sometimes PLCs are implemented
as field devices to serve as RTUs; in this case, the PLC is often
referred to as an RTU.

programmable logic controller . The PLC is a small indus-
trial computer originally designed to perform the logic func-
tions executed by electrical hardware (relays, switches, and mech-
anical timer/counters). PLCs have evolved into controllers with
the capability of controlling complex processes, and they are
used substantially in most SCADA systems and DCS. Other
controllers used at the field level are process controllers and
RTUs; they provide the same control as PLCs but are designed
for specific control applications. In SCADA environments, PLCs
are often used as field devices because they ar more economical,
versatile, flexible, and configurable than special-purpose RTUs.

intelligent electronic devices (ied). An IED is a “smart” sensor
or actuator containing the intelligence required to acquire data,
communicate to other devices, and perform local processing
and control. An Intelligent Electronic Device (IED) could com-
bine an analog input sensor, analog output, low-level control
capabilities, a communication system, and program memory in
one device. The use of IEDs in SCADA and DCS systems allows
for automatic control at the local level.

human-machine interface . The HMI is software and hardware
that allows human operators to monitor the state of a process
under control, to modify control settings to change the con-
trol objective, and to manually override automatic control op-
erations in the event of an emergency. The HMI also displays
process status information, historical information, reports, and
other information to operators, administrators, managers, busi-
ness partners, and other authorized users. The location, plat-
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form, and interface may vary. For example, an HMI could be a
dedicated platform in the control centre, a laptop on a wireless
LAN, or a browser on any system connected to the Internet.

data historian. The data historian is a centralized database for
logging all process information within an ICS. Information stored
in this database can be accessed to support various analyses,
like troubleshooting statistical process control, and enterprise
level planning.

input/output (io) server . The IO server is a control compon-
ent responsible for collecting, buffering and providing access to
process information from control sub-components such as PLCs,
RTUs and IEDs. An IO server can reside on the control server
or on a separate computer platform. IO servers are also used
for interfacing third-party control components, such as an HMI
and a control server.

Previous definitions cover most of the families of the main ICT
components of ICS. However, they reflect an heterogeneous world
characterised sometimes by redundant and overlapping components
and terminology. In order to capture the common aspect of interest of
ICS with respect to cyber security, it is important to define a reference
set of components and a reference architecture that models the vast
majority of industrial control systems.

Figure 2.2 depicts the main components typical of an industrial
control system, and shows their architecture and connections. This
work focuses on cyber threats of networked CPS, spanning on the
cyber and the process aspects and their relation.

The ICT system of industrial companies is usually very big, and
serves many duties and purposes. The whole IT infrastructure can be
divided in several sub-networks. One or more firewalls (represented
by a single firewall in Figure 2.2) keeps the networks segregated by a
proper set of rules. Network segregation rules are usually part of the
security procedures resulting from the Information Security Manage-
ment and from the IT departments of the company, and reflect norms
and best practices in the field.

The Corporate Network (CN) serves all the common IT services re-
quired by any organisation. This network encompasses all the office
workstations, printers, laptops, and some corporate servers. Usually
workstations in the corporate network are not supposed to directly
interact with the control system. However, it is likely to find operat-
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Figure 2.2: ICS Architecture Reference Schema.

ors’ using their office workstation as a terminal to operate the process.
In the real world this is usually achieved through Virtual Private Net-
works (VPN) to some HMI. This is a common practice even if this is
often discouraged by several international security guidelines.

Critical services are usually hosted on servers inside Demilitarised
Zones (DMZ). A DMZ is a common configuration for enforcing peri-
metral security on logical sub-networks containing critical services
like web servers, mail servers, proxies.

The core ICT part of an industrial control network sits in the Pro-
cess Control Network. PCN contains all the ICT components that im-
plement the ICT layer of the loop. The Control Server (CS) is the most
important component. It is able to send commands to the PLCs for
gathering information about the process (i.e. reading sensor values)
and to alter the process (i.e. to change the set points of the actuators).

The HMI can be a specific hardware device connected to the CS,
showing set points and sensor values, and allowing to alter set points.
Sometimes an HMI is just a function of the Control Application run-
ning on a control server (if it has input and output devise like a key-
board and a display).

PLCs are hardware devices interfacing the ICT layer with the phys-
ical process layer. From one side, a PLC is connected to the PCN,
usually via Ethernet cables of with any kind of wireless communica-
tion. The PCN side enables the PLC to exchange network messages
with the control server. On the other side, a PLC is connected to one
or more field devices (sensor or actuator) through electric wires. This
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enables the PLC to actually read sensors’ measurements and to oper-
ate the actuators. PLC can be programmed using simple logics (called
ladder logic) in order to automate certain operations. However, this
project is targeted to information security aspects, and PLC logics are
not considered.

The network boxes (Corporate, DMZ, and PCN) represent any sub-
network configuration, using switches, routers, virtual LANs, and so
on. Network connections can be wired or wireless.

2.2.1 Cyber Security Aspects

As mentioned before, originally ICS used to be isolated systems based
on ad-hoc hardware products communicating through proprietary
protocols on cable connections, typically serial cables or similar. Thus,
ICS where inherently secure from external cyber attacks. For the same
reason, information security was not considered as a core aspect of
the design, development, and deployment of ICS.

Information security solutions typical of IT systems apply to the
industrial sector only to some extent. Indeed, even if many principle
are perfectly suitable for ICS, their application may be totally differ-
ent. This Section presents an analysis of information security issues
of industrial control systems, and some differences with regular IT
systems.

High level security needs in term of Confidentiality, Integrity, and
Availability (CIA), which are often enumerated in this order of import-
ance for IT systems, assume a different meaning in industrial systems.
Indeed, Availability is probably the most important, closely followed
by Integrity. Confidentiality, on the other hand, is usually less import-
ant. In some ICS documents and documentations it is easy to find the
acronym AIC instead of CIA.

It is crucial to examine some peculiar aspects of ICS in order to
understand to what extent the AIC point of view influence the whole
information security picture. Safety, in term of human lives, play a
big role in industrial systems. Availability is a crucial requirement
for guaranteeing that controlled processes behaves correctly and that
human operators are safe. Moreover, in the industrial sector interrupt-
ing a service, even for few hours, may have a huge financial impact
on the organisation (e.g. in the case of electric power outages). Hence,
availability is top priority for a 24/7 system for controlling a possibly
dangerous physical process.
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As a consequence of this different point of view from standard ICT
systems, in terms of information security, most risk assessment meth-
odologies must be calibrated for the industrial sector. Indeed, while
the same Information System Management principles still apply [15],
the actual implementation of those principle may be completely dif-
ferent. Risk assessment must take into account that ICT components
of ICS must interact with a physical environment, and the method-
ology for assessing the assets’ security levels may require a higher
level of confidence of the risk assessed. For instance, while for typical
ICT certain risks can be accepted or transferred, for industrial system
often this is not the case, because threats are impacting directly on
human lives or can disrupt the whole industrial process. Similarly,
business continuity and disaster recovery are crucial in the industrial
sector, even more than in typical IT system.

Performance aspects have a big role in information security for
industrial systems. ICS are often based on simple logic algorithms
implemented on thousands of devices which have a small compu-
tational power, are geographically distributed, and communicate on
heterogeneous network (also mobile networks). Nevertheless, the need
for high availability imposes strict real-time requirements. In such a
setting, every security measure can easily have an overheard bigger
than the effectiveness of the measure. In other words, securing in-
dustrial control system can be very difficult because any additional
measure can alter the whole system to a point that real-time require-
ments are not satisfied.

Change management is a good example of this. In typical ICT
settings patch management is a crucial aspect of any security man-
agement system. An out of date system is probably the most likely
entry point of an attack, because it presents known and easy to expoit
vulnerabilities. In a sentence, ICT components have to be always up-
dated. This is not true for industrial control systems. First, specialised
hardware manufactures provide strict security level agreements and
are subject of precise terms of liability. For this reason they try to keep
their hardware under control, not allowing customers (industrial or-
ganisations) to arbitrarily deploy any security software. An industrial
company usually can only update their systems only with patches
that are approved by vendors, slowing down the whole update pro-
cess. Moreover, only redundant systems can be easily shut down, up-
dated, and replaced, and sometimes software updates are difficult
and require costly down-times. In other words, the industrial sector
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is inherently characterised by very high percentage of unpatched and
obsolete software.

While availability is usually considered the most important aspect
of ICS, integrity is crucial as well. Clearly, corrupted data do not make
the system work correctly. From this point of view, data integrity of
communication is one of the core aspects for any industrial control
system, as each components keep communicating data that support
the correctness of the whole process. However, most of the current
widely used network protocols are a mere port of the old ones on top
of TCP/IP, without concerns about information security. Moreover,
the lifetime of ICS components is longer than common IT compon-
ents, as some systems keep working for 15-20 years or more. Thus,
many ICS currently use obsolete protocols without security mechan-
isms, instead of correct and secure protocols with a proper and mod-
ern design from scratch. As a consequence, many ICS are inherently
insecure and many vulnerability exists in current installations.

The National Institute of Standards and Technology (NIST) presents
a detailed documents about information security of ICS [102]. Among
other relevant considerations, it contains an analysis of technical dif-
ferences between regular IT systems and ICS. The following list is
taken from that document.

IT systems ICS

Performance Requirements

Non-real-time
Response must be consistent
High throughput is demanded
High delay and jitter may be ac-
ceptable

Real-time
Response is time-critical
Modest throughput is accept-
able
High delay and/or jitter is not
acceptable

Availability Requirements
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Responses such as rebooting are
acceptable
Availability deficiencies can of-
ten be tolerated, depending on
the system’s operational require-
ments

Responses such as rebooting
may not be acceptable because
of process availability require-
ments
Availability requirements may
necessitate redundant systems
Outages must be planned and
scheduled days/weeks in ad-
vance
High availability requires ex-
haustive pre- deployment test-
ing

Risk Management Requirements

Data confidentiality and integ-
rity is paramount
Fault tolerance is less important
– momentary downtime is not a
major risk
Major risk impact is delay of
business operations

Human safety is paramount, fol-
lowed by protection of the pro-
cess
Fault tolerance is essential, even
momentary downtime may not
be acceptable
Major risk impacts are regu-
latory non- compliance, envir-
onmental impacts, loss of life,
equipment, or production

Architecture Security Focus

Primary focus is protecting the
IT assets, and the information
stored on or transmitted among
these assets.
Central server may require
more protection

Primary goal is to protect edge
clients (e.g., field devices such
as process controllers)
Protection of central server is
also important

Unintended Consequences

Security solutions are designed
around typical IT systems

Security tools must be tested
(e.g., off-line on a comparable
ICS) to ensure that they do not
compromise normal ICS opera-
tion

Time-Critical Interaction
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Less critical emergency interac-
tion
Tightly restricted access control
can be implemented to the de-
gree necessary for security

Response to human and other
emergency interaction is critical
Access to ICS should be strictly
controlled, but should not
hamper or interfere with
human-machine interaction

System Operation

Systems are designed for use
with typical operating systems
Upgrades are straightforward
with the availability of auto-
mated deployment tools

Differing and possibly propri-
etary operating systems, of-
ten without security capabilities
built in software changes must
be carefully made, usually by
software vendors, because of the
specialized control algorithms
and perhaps modified hardware
and software involved

Resource Constraints

Systems are specified with
enough resources to support
the addition of third-party
applications such as security
solutions

Systems are designed to sup-
port the intended industrial pro-
cess and may not have enough
memory and computing re-
sources to support the addition
of security capabilities

Communications

Standard communications pro-
tocols
Primarily wired networks with
some localized wireless capabil-
ities
Typical IT networking practices

Many proprietary and standard
communication protocols
Several types of communica-
tions media used including ded-
icated wire and wireless (radio
and satellite)
Networks are complex and
sometimes require the expertise
of control engineers

Change Management
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Software changes are applied in
a timely fashion in the presence
of good security policy and pro-
cedures. The procedures are of-
ten automated.

Software changes must be thor-
oughly tested and deployed in-
crementally throughout a sys-
tem to ensure that the integ-
rity of the control system is
maintained. ICS outages often
must be planned and sched-
uled days/weeks in advance.
ICS may use OSs that are no
longer supported

Managed Support

Allow for diversified support
styles

Service support is usually via a
single vendor

Component Lifetime

Lifetime on the order of 3-5
years

Lifetime on the order of 15-20

years

Access to Components

Components are usually local
and easy to access

Components can be isolated,
remote, and require extensive
physical effort to gain access to
them

2.3 internet of things

This section presents a brief description of the Internet of Things fo-
cused on the technological and security aspects relevant to this work.

The expression Internet of Things (IoT) indicates a class of cyber
physical systems that is drawing attention from both the industrial
and academic worlds. The interest derives from the employment cap-
abilities in industrial and production sectors, smart home, surveil-
lance, Industry 4.0, and so on. The number of interesting and profit-
able business cases is large and several companies has already started
investing in this area. Cisco estimated the number of connected ob-
jects by to be about 50 billions of objects by 2020 [43].

The high-level architecture of IoT can be divided in three layers [79]:
sensors, network, and application.

The sensor (or perception) layer, composed by the sensors and actu-
ators that interact with the physical environment, is aimed at collect-
ing and processing measurements to be transmitted to the network
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Figure 2.3: IoT network layer model

layer and at operating the actuators. It is similar to the field layer of
industrial control systems, but the devices are different. While ICS
usually employees PLCs and RTU wired to the actual sensors and
actuators, the variety of the so called smart-devices blurs such differ-
ences.

The network is used to transmit the information between the sensor
and the application layer. It determines the data routes to IoT hubs,
devices, and applications. This is probably the most important layer
in the IoT architecture because enables the flexibility and composi-
tionality typical of the IoT. The network layer is very different from
the process control network of ICS. Figure 2.3 show how example
combination of the network layer with respect to the standard TCP/IP
model. The main difference lies in the application-level protocol and
the way information is routed. ICS typically use fixed topology and
fixed communication protocols for the whole lifetime of the install-
ations, data routing relies on the standard layer-3 routing (i.e. PLC
are addressed using their IPs), and communication protocols usually
do not provide security measures. IoT architectures are often based
on publish/subscribe schemas through message brokers, as typical
of protocols such as MQTT [2], XMPP [96], AMQP [64], but also use
standard HTTPS or two-ways WebSockets. In this way, IoT architec-
tures are flexible and communication protocols provides authentic-
ation/authorisation and encryption by design, typically using TLS
tunnel of HTTP-based API.



24 cyber physical systems

The application layer, not to be confused with the application-level
of the network model in Figure 2.3, receives the data from network
layer to provide the intended services. In this layer information are
stored, analysed, visualised, and processed for any kind of applic-
ation from smart automation, sport tracking, industrial application
(e.g. Industry 4.0), and so on.

2.3.1 Security of IoT

Despite the technology heritage of the Internet of Things is not as
legacy and critical as the one of standard ICS, still security threats
arise from the huge number of expected connected devices.

Researchers has started tackling security challenges related to IoT
such as key management issues [114], confidentiality, integrity, pri-
vacy, policy enforcements [110,113] among many other challenges.
The main works in the literature tried to adapt the security solutions
proposed for wireless sensor networks (WSNs) and Internet in the
context of IoT. However, we must point out that IoT’s challenges take
a new dimension which is far from being easy to overcome with tra-
ditional solutions. In addition, we must emphasize that most secur-
ity approaches rely to centralized architectures, making their applic-
ations in IoT much more complicated regarding the large number of
objects. So, distributed approaches are required to deal with security
issues in IoT. In this paper, we survey the different solutions accord-
ing to two perspectives, namely the security approaches based on tra-
ditional cryptographic approaches and the other approaches based
on new emerging technologies such as SDN and Blockchain.

IoT systems present different cyber security risks and vulnerabil-
ities at different layers. From our perspective of security monitoring,
typical security challenges for IoT can help determining the features
of interest for specifying critical condition. For this reason, a short
summary is hereafter presented [71].

As the sensor layer is mainly aimed at collecting data, the major-
ity of security attacks focus on forging collected data and destroying
perception devices:

• Physical sabotage: the attacker controls the device in IoT by
physically replacing it or modifying it [114]. The adversary can
also obtain important information from the device, e.g. creden-
tials or secrets, useful for man in the middle attacks, reply at-
tacks, unauthorised data access, etc.
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• Injection of malicious code: besides physical attacks, the attacker
can run unauthorised code on the leveraging device vulnerabil-
ities, e.g. via unsecure firmware update.

• False data injection: the adversary can replace real data an meas-
urements with forged values, resulting in false information trans-
mitted to IoT applications [109].

• Side channel attacks: the attacker can leverage physical charac-
teristics, like changes in power consumption or electromagnetic
signals emitted by circuits, to obtain valuable secret informa-
tions.

• Eavesdropping and interference: since many IoT uses wireless
technologies, like wifi and ZigBee, an attacker can physically
interfere to compromise the network or can use authorisation
vulnerabilities to eavesdrop data

• Sleep prevention: many IoT devices regularly switch into sleep
mode to save battery. If the attacker prevents this behaviour, the
device can became unavailable due to battery drain.

From our perspective, IoT share the same risk of attacks with indus-
trial control system. On the cyber layer, however, IoT presents much
more flexible and modern architectures that allows authorised entit-
ies to easily retrieve a large amount of information. From this point of
view, they look like very suitable for our framework, as our feasibility
test shows. Indeed, authorised users can collect command messages
flowing in the IoT architectures without compromising other security
requirements such as confidentiality, authentication, and authorisa-
tion.





3
S I T U AT I O N A L AWA R E N E S S

3.1 overview

This chapter presents the so-called Situational Awareness, an high
level expression which indicates a set security standards, risk man-
agement frameworks, guidelines, software tools, and academic pub-
lications related to the continuous monitoring of the security posture
of a system at runtime.

Section 3.2 briefly gives an overview of this subject from a risk man-
agement point of view. One of our contribution is a through literature
review, which is summarised in Section 3.3.

3.2 continuous monitoring

This section explains some key points about continuous monitoring
as an effective security solution, from the NIST white paper [98].

The NIST Risk Management Framework (RMF) emphasises the im-
portance of near real-time risk management and continuous inform-
ation systems authorisation through strong and effective continuous
monitoring processes. It also encourages the use of automation to
give top-level management the critical information needed to make
cost-effective, risk-based decisions that support their primary mis-
sions as well as their business processes.

Continuous monitoring applies to many of the RMF’s six sequen-
tial steps for integrating information security and risk management

27
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processes to the NIST risk management hierarchy. Continuous monit-
oring directly or indirectly supports all six controls:

• Categorising information systems

• Selecting security controls

• Implementing security controls

• Assessing security controls

• Authorising information systems

• Monitoring security controls

Monitoring directly assists in the first step of this process — cat-
egorising information systems — from which organisations can de-
rive the secondary benefit of selecting and implementing the proper
security controls. Monitoring tools start their processes with initial
discovery, usually through passive listening, to determine, among
other things, what devices and applications are on the network and
the type of traffic, data, and user access with which they’re associated.
This information helps organisations provide a baseline assessment to
determine where they’ll need to monitor.

Continuous monitoring enables information security professionals
and others to see a continuous stream of near real-time snapshots
of the state of risk to their security, data, the network, end points,
and even cloud devices and applications. Assessing security controls
as well as ongoing monitoring of security controls are both directly
assisted by continuous monitoring through vulnerability monitoring
processes, which many organisations already have in place.

Many systems, datasets, end points and applications are already be-
ing monitoring by system and security administrators with a variety
of tools that can be leveraged in the continuous monitoring ecosystem.
The most important tools can measure the vulnerability and compli-
ance state of network devices and the security tools themselves, as
well as integrate with other security toolsets. This gives organisations
near real-time visibility into their compliance state and also aids in
incident detection and response by providing additional information
to the event management system, often a Security Information Event
Management (SIEM) system or log management system.

In this way, continuous monitoring, when implemented through
a log manager or SIEM for log and event collection and correlation,
helps organisations separate real events from nonimpact events, as
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well as locate and contain events. Using continuous monitoring for
event detection and for vulnerability detection is also becoming part
of external discussions about what continuous monitoring includes.
For example, the Consensus Audit Guidelines’ Top 20 Security Controls
for Effective Cyber Defense cites continuous monitoring of audit logs, con-
tinuous assessment, inventory and monitoring for secure configuration as
top controls. The guidelines, developed by government defense and
law enforcement agencies in conjunction with the SANS Institute,
also list real-time monitoring of account activity, sensitive data move-
ment, malware and threats as equally important components of the
continuous monitoring process. This level of integration between vul-
nerability and event monitoring is critical, given that government en-
tities such as defense agencies are top targets for attackers and hact-
ivists, according to multiple reports.

Because the network is constantly being evaluated, continuous mon-
itoring also greatly improves the level of situational awareness for IT
managers. Situational awareness is a term coined by Mica Endsley,
who describes the term as having a perception of elements in the
environment, understanding the meaning of the elements in the en-
vironment, and applying the understanding to being able to project
future states. In other words, situational awareness is the awareness
of current elements in the monitored environment that are relevant
because they may potentially impact that environment today or in the
future.

Situational awareness through full network visibility is a key means
for mitigating risk. In testimony about real risk reduction to come
about through continuous monitoring, the State Department reports
a 90 percent improvement in its risk posture after implementing a
continuous monitoring program.

Finally, if implemented early in the System Development Lifecycle
(SDLC), continuous monitoring can reduce the costs involved with
system and application maintenance. Cost improvements are also in-
evitable when monitoring is both continuous and as automated as
possible, including the required reporting documents that support
audits.

3.3 related work

One of the main source of vulnerability for CPS is the lack of se-
curity mechanisms in communication protocols, like authentication,
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authorisation, and confidentiality [42, 61]. Literature presents several
secured version of control protocol, e.g. [46, 50, 80]. However, these
security approaches rely on the possibility to redesign and replace
at least some parts of the system, while for many industrial control
systems downtimes and change management are not practical or af-
fordable due to the high costs and risks related to any possible change.
For this reason, redesign is often not an option and legacy compon-
ents are often present. Passive and unobtrusive security measures are
crucial for such CPS.

Intrusion Detection Systems (IDS) have been widely used in ICT
security with good results. Signature-based IDS, like Snort [23, 94],
are able to express and detect illicit IP packets. Since cyber attacks
are combinations of different licit-like actions and communications,
signature-based IDS usually fall short in detecting complex attacks.

The Anomaly-based intrusion detection approach has proved effect-
ive for CPS cyber security [12, 24, 57, 81, 108, 115]. [49] classifies
anomaly-based IDS in two main categories:

1. unattended techniques, leveraging statistical models or machine
learning to create a baseline representing licit behaviours that
are compared with the run-time observations

2. specification-based techniques, for which a human CPS expert pre-
cisely defines what is licit or anomalous in a specification lan-
guage, and the detection tool compares the state of the mon-
itored system against such specifications.

The absence of human effort is a good advantage of the unattended
techniques, but they suffer from high false positive rates which re-
quires human effort to discard false alarms. Our work focuses on the
specification-based approach, with the advantage that false positive
rates are extremely low or even zero when enough knowledge of the
system is available. The main drawback is the effort required to define
the known critical conditions. However, CPS typically shows predict-
able and repeatable behaviours over time. Moreover, the design phase
of a critical infrastructure is detailed and documented, providing
valuable knowledge to be modelled. Nonetheless, some approaches
to automatically derive specifications from the monitored system have
proved effective, e.g. [22, 54]. For this reason, specification-based tech-
niques seem to be a good approach for developing security monitors
for CPS.

Security monitoring has gained relevance in the Security Operation
Centres (SOC) of big organizations and in the DevOps sector. Wide
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spread frameworks includes Splunk [16, 37], Elasticsearch-Logstash-
Kibana (ELK) [51, 53, 95, 105], Grafana [52], and LogRythm [76]. Such
tools continuously collect log events and time series data (e.g. cpu
load, memory consumption, etc.). Security operators can customise
visualisation dashboards of such information to spot anomalous vs.
normal behaviours in a graphical way. Moreover, they can also define
custom alarms specifying queries on the collected data and events,
for instance to detect known indicator of compromise (IoC). The pos-
sibility to define alarms is somehow similar to our notion of critical
condition described in this work. Unlike our proposed framework,
such tools allow queries only on observable data and do not offer a
notion of proximity / proximity range from criticality.

signature-based intrusion detection. Signature-based IDS
extracts static features from single network packets and verifies whether
they belong to a specified set of allowed signatures. They are largely
employed in standard ICT networks, since they are easy to use and
very effective against the (restricted) class of attacks they address.
Snort [94] and Suricata [103] are well known signature-based IDS.

Several works applied this kind of IDS to CPS and in particular
to ICS. Cheung et al. [25] propose a model-based intrusion detection
technique, which extracts models of the expected/acceptable system
behaviours from protocol specifications and detects the ones not con-
forming with these models. The models are implemented as Snort
rules. It leverages the common characteristic of CPS of showing (al-
most) static topologies, regular traffic patterns, and a limited number
of applications and protocols running on the. The technique is based
on the TCP/IP field bus protocol (e.g. Modbus/TCP) and derives a
protocol specification model for the legal values of packet fields and
the their legal relationships. It also constructs normal communication
patterns based on the security requirements, the communication dir-
ections, and the protocol ports. However, the technique yields a high
false alarm rate since it may consider new normal behaviours as an-
omalous.

In 2008 Digital Bond started Quickdraw, a Department of Home-
land Security (DHS) funded research project to “create a passive se-
curity event log generator application for legacy field devices that
lack security logging capabilities” [13]. The project extends the Snort
IDS with additional preprocessors, plugins, and rules specific to ICS.
The ruleset is still available for both Snort and Suricata in [14] and [13].
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Morris et al. [86] propose an intrusion detection technique for Mod-
bus based on Snort [23]. They describe four classes of intrusion vul-
nerabilities (denial of service, command injection, response injection,
and system reconnaissance) and define Snort rules for detecting them.
The detection accuracy relies on the coverage of the Snort rules, i.e.
on their combination of quality and quantity. This approach is fur-
ther improved in [85], which presents fifty signature rules derived
from a vulnerability analysis of the MODBUS protocol, and in [47],
which describes a set of 28 cyber attacks against industrial control
systems which use the MODBUS. Both works substantially improves
the detection accuracy.

In our opinion, these are perfect examples of the power and the lim-
itation of signature-based approaches: they can be perfectly employed
in CPS whenever the security analysis enables an expert to find spe-
cific vulnerabilities or illicit network behaviours, provided that such
information is expressible in the signature-based IDS language; on
the other hand, more complex behaviour that cannot be expressed as
IDS rules are left undetected and the accuracy completely depends
on the number and the precision of the rules. In our perspective, net-
work signature extraction, similarly to deep packet inspection, can
be a valuable source of observations for our framework, especially
thanks to an increasing number of ICS rulesets available in literat-
ure, but cannot be considered a satisfactory monitoring technique by
its own. This opinion is also supported by a trend in the continuous
monitoring best practices for standard ICT that enables established
tools [16, 95] to analyses data from parsed network traffic.

The University of Berkeley developed Bro [92], a real-time intrusion
detection system which passively monitors a network link over which
the intruder’s traffic transits. Bro is a programmable high-speed mon-
itoring with real-time notifications and separation between mechan-
ism and policy. It captures network packets and extracts higher level
events according to their contents through an extensible protocol parser.
Then, it analyses such events based on policy scripts to detect intru-
sions. Bro provides more flexibility than previous IDS (e.g. Snort and
Suricata) that can be valuable in CPS-specific scenarios. Lin et al. [69]
extend Bro with a packet parser supporting the DNP3 industrial pro-
tocol, analyse the legal values of the different fields in a packet, and
develop security policies that match the protocol.

ad-hoc specification-based approaches . Hong et al [59]
analyse smart grid substations and detect anomalies or malicious
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behaviours in multicast messages based on the IEC 61850 standard
(e.g. Generic Object Oriented Substation Event (GOOSE) and Sample
Value technology (SV)), which was issued by the IEC in 2004. The
approach detects anomalies and intrusions that violate predefined se-
curity rules using a specification-based algorithm. The rule and the
logic are very simple and very specific to the vulnerabilities described
in the paper, which belong to the Packet Tampering, Replay Attacks
and Denial of Service categories. Experimental results of their C/C++
prototype show the feasibility to the extent of the identified attacks
a low fault negative rate. This is a good example how specification-
based approach can achieve good results

Yang et al. [110, 111] present an intrusion detection system tailored
to the IEC 60870-5-104 (also known as IEC 104) network protocol
which uses deep packet inspection and combines signature-based and
model-based techniques for better accuracy. First, it detects attacks
that exhibit well known signatures of the IEC 104. Then, the packets
are compared with specified protocol-based and traffic-pattern-based
models to detect the anomalous ones. The combined tecnique is im-
plemented as C/C++ modules of the Internet Traffic and Content
Analysis (ITACA) tool [62] in the former paper and on top of Snort on
the latter. Experimental results prove that such combined approaches
can improve the detection accuracy and efficiency of IDS for CPS.

Moreover, the analysis of the protocol can be combined with the
analysis of the traffic. Based on communication patterns stipulated
in ICS protocol specifications and specific business logics, the detec-
tion rules can be extracted and then handed over to the traffic ana-
lysis module to improve the accuracy of intrusion detection. Hadeli
et al. [54] propose an intrusion detection technique for power systems.
It translate configuration files of the control system to configuration
files of security tools. More precisely, the approach uses the Substa-
tion Configuration Description file defined in the IEC 61850 standard
and the Setup Package File of the ABB System 800xA as a formal
model of the licit network traffic patterns. Then, it translate such mod-
els to actual Snort rules and Firewall configuration using the protocol
specifications.

Yusheng et al. [112] proposed an algorithm called SD-IDS (Ste-
reo Depth IDS) performing deep packet inspection for Modbus TCP
traffic in real time. It is another approach that combines signature-
based with model-based techniques. The algorithm consists of two
modules: rule extraction and deep inspection. The former analyses
the characteristics of the industrial network traffic and extracts se-
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mantic relationships among fields in the Modbus TCP protocol. The
latter detect anomalies or intrusions based on the extracted relation-
ships and the real-time traffic data.

traffic mining-based approaches . Protocol analysis-based
approaches generally suffer from a scarce ability to detect unknown
attacks, together with performance issues due to deep packet inspec-
tion and analysis. Anomaly-based traffic analysis is a possible im-
provement. The predictability of CPS enables traffic mining to derive
useful knowledge for intrusion detection. Traffic mining–based IDS
mainly collect traffic data from different networks and subnetworks
within a CPS and then apply data mining, machine learning, or stat-
istical data analysis to identify anomalous behaviours.

The approach presented in [101] extracts protocol fields like source
and destination IP addresses and ports, the traffic duration, and the
average time between consecutive packets from the captured traffic.
Then, the traffic data mining is applied to discriminate abnormal be-
haviours of the system. The approach detects intrusions such as Re-
play, Denial of Service, Man-in-the-Middle, and Packet Tampering.

The technique in [60] is based on the probabilistic Principal Com-
ponent Analysis (PCA) applied to network traffic in industrial net-
works. The first result is that random burst traffic is a source of false
alarms. Then, the IDS builds a probabilistic model for the traffic mat-
rix and evaluates the impact of random bursts on that model. The
technique discriminates abnormal traffic of ICS measuring the change
of the rank. Their experimental results prove this method able to mit-
igate the interference of random burst traffic to intrusion detection.

Previous example shows probabilistic and statistical approaches ap-
plied to traffic analysis in CPS. Machine learning is another set of
techniques that proved effective in the same area. Its ability to ana-
lyse large amounts of data can be leveraged to detect unknown intru-
sions on control systems. Neural Networks are able to capture non-
linear relationships between traffic features and their security states.
Traffic data-based training is used to build a model of normal beha-
viours. Real-time data is then classified using such models to detect
abnormal traffic. The work presented in [106] extracts network traffic
features like packet size, ICMP protocol ID, sequence numbers, and
IP protocol fields to build input vectors for neural network training.
The resulting classification detects attacks like DoS and eavesdrop-
ping. These results are improved in [73] using a technique employing
a moving time window where packet streams are considered as time
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series. As a result, a better set of traffic patters and features is extrac-
ted for the collected data. Moreover, the combination of Error-Back
Propagation and Levenberg-Marquardt neural network learning al-
gorithms further improves detection accuracy.

Many machine learning-based anomaly detection for cyber phys-
ical system appear in literature, proving the effectiveness of such ap-
proaches on one hand, but also the need for improvements on the
other, for instance to mitigate the requirement of high volumes of
unlabelled or labelled training data and to lower the high false pos-
itives rates. Most of the related works propose a vast spectrum of
fine-tunings and combinations of machine learning technique to im-
prove the accuracy of the detection like fuzzy logic classifiers [72,
74, 75], Support Vector Machine (SVM) [77, 78], Ant Colony Cluster-
ing Model (ACCM) [104], ad-hoc clustering-based approaches that
leverage a deep understanding of the CPS [66, 67], information en-
tropy–based method for traffic feature extraction plus discrete cosine
transform (DCT) and singular value decomposition (SVD) to create
digests of normal/abnormal behaviours [40].

Caselli et al. [20, 21] present an intrusion detection targeted at sys-
tems that use the IEC-104 network protocol leveraging deep packet in-
spection. It observes a selection of packet fields and builds a Discrete
Time Markov Chain (DTMC) of the traffic patterns, where the states
represent the information of the observed control message, while a
transition from state s1 to s2 represent that s2 is the next message that
follows chronologically the message that s1 represents. Probabilities
attached to transitions are estimated using the frequency of the trans-
ition within the observed data. Sequence attacks are simply sequences
of control messages. After building the Markov chain, the technique
compares the observed behaviour with the model detecting state vi-
olations (i.e. unexpected control messages), transition violations (i.e.
the observation of a message that should not follow the previous
one), and transition anomalies (i.e. sequence of messages that do not
adhere with the expected probability). The approach is further im-
proved in [45] that build much smaller models retaining comparable
accuracy.

The main results of intrusion detection based on traffic analysis
is that the accuracy of the vast spectrum of possible techniques for
CPS may depend on: (i) the actual protocol packet fields extracted
and collected for the observed network traffic: this requires a good
understanding of the CPS (ii) the actual traffic patterns and feature
of the control messages: to this aim both CPS-agnostic features (i.e.
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connection topology and message directions, bandwidth, and time
between messages) and CPS-specific ones (i.e. the expected sequence
of messages for a correct control of the system) must be considered
for higher accuracy (iii) the right combination and fine-tuning of the
statistical or machine learning techniques used.

In all these cases, anomalies are observations that diverge from
the typical ones. Since anomalous does not necessarily means illicit,
all such techniques suffer from high false positive rates. While the
main advantage of these methods lies on the small human effort for
training the model and detecting anomalies, in practical cases these
techniques still need human effort due to both the large number of
false positive alerts and the fine-tuning required for better accuracy.

control process analysis . Previous works focus on intrusion
detection techniques for protocol and/or traffic analyses that use the
specificities of the cyber components of CPS. Another category of
works leverages the full semantics information of both the cyber and
the physical layer of the monitored CPS.

The approach in [68] focuses on attacks that ultimately impact the
physical process with undesired effects. The work presents a process-
aware technique that detects whether a sensor signal is corrupted,
ensuring sensor data veracity in a CPS. The approach uses a set of
different real-time algorithms for spoofing sensor signals and the
physical laws behind the process. This appears complementary to
our framework, which instead assumes the integrity of the observed
valued. Thus, [68] could be be integrated in our approach: the alerts
from the different algorithms could be treated as observations in our
framework and used as variables to express better security critical
conditions.

Colbert et al. [27] present two control process–oriented detection
methods for intrusion detection in control systems. Unlike traditional
anomaly-based IDS, the techniques require process engineers and
plant operators that deeply knows insights of the process. The first
method uses Critical Process Variables and thresholds of their licit
values defined by plant operators, who has the best knowledge of
the critical assets of the system. Sensors measure real-time values
of the variables and send an alerts when such values do not sat-
isfy the defined thresholds. The possible constraints have the form
Process Variable from PLC ./ value, where ./ can be greater than, less
than, equals, not equals, and change (by a delta value). The second
method uses cyber metrics that are identified again with the help of
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plant operators. It is worth noticing that this approach is a simpler
proper subset of less recent papers [17, 29, 89] of which present thesis
is an improvement in all respects. As a consequence, [27] further val-
idates the feasibility of our approach within critical infrastructures.
In particular, it proves how the knowledge of the CPS can be greatly
beneficial to monitoring and detection of cyber attacks, which is the
main assumption of our work.

Nai et al. [18, 88, 90] developed a specification-based Intrusion De-
tection and Prevention System methodology specific for SCADA sys-
tems that is not based on specific attack models and can detect 0-
day attacks. The methodology allows combining the knowledge of
the physical process with the cyber behaviour to monitor, and is fur-
ther extended in [30] with a greater expressiveness and more effective
computation methods.

Kiss et al. [66] present a method to detect cyber attacks targeting
measurements sent to PLCs. It uses the Gaussian mixture model to
cluster sensor measurement values and a cluster assessment tech-
nique known as silhouette. The authors prove the feasibility of the
approach and show results that outperform the k-means clustering
algorithm within a simulation testbed of a chemical process and three
different cyber attacks.

Gao et al. [48] develop a set of command injection, data injection,
and denial of service attacks exploiting the lack of authentication of
most SCADA network protocols. Then, they capture network traffic
both of normal operations and during such attacks. Collected data are
used to train a neural network for intrusion detection, also using the
knowledge of the physical process to detect false response injection
attacks. The experimental results prove that including features from
the physical layer yields higher accuracy rates.

The approach presented in [87] focuses on attackers that forge
measurement signals in the control loop to influence control decisions.
The authors present a detection system targeted to power grid that
uses a semantic analysis framework based on the physical model of
the system, proving how the knowledge of the process add crucial
information to detect cyber attacks.

Since some attacks interfere or change control commands, a class
of detection techniques focuses on the analysis of control commands.
Carcano et al. [19] define a specification language for critical states
and propose an approach that compare information collected through
deep packet inspection of the Modbus protocol with the specifica-
tions. Features from the control commands occur in critical state spe-
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cifications. The logic language is very simple and only enables ex-
pressing thresholds on the value of the extracted features and vari-
able, extremely similar to the aforementioned and more recent [27].
The approach assumes that it is always possible to extract and ob-
serve the variables occurring in the specifications.

Lin et al. [70] present a detection system aimed at power grids and
DNP3 control protocol. They define a technique that combine know-
ledge of the cyber and of the physical layers, to respectively check the
integrity of the control commands and to compare extracted features
and measurements with a semantic model of the system. The proto-
type is based on Bro and the semantic is based on threshold verific-
ations. This approach shows how capturing a combination of cyber
and process features is crucial to identify express critical specifica-
tions. However, the expressibility of the language is strongly limited
to constant threshold verification.

model-based approaches and formal methods . Model-
based approaches aim at constructing a model of the system that
captures the main characteristics of its behaviour. Once a model is
developed, it is possible to specify formal properties and to use model
checking to prove that the modelled systems verifies such properties.

For this class of problems a large literature exists aimed to syn-
thesise system models [56], to ensure that verification results about
models apply to the CPS implementations [82], to find and verify in-
variant properties of parameters of interest [26], with large variety of
formal methods and verification techniques.

The main disadvantage of model-based verification is the effort re-
quired to develop a formal method which is correct and accurate.
Fortunately, part of the formalisms and results from model checking
can be adapted to online monitoring (e.g. [6]), which can be defined
as the verification that the known prefix of the traces (or signals) that
the system exhibits has not violate the specified properties.

Most online monitoring techniques are based on temporal logics [6,
10, 36, 39, 44, 58], which are an established way to specify temporal
properties based on the set of atomic propositions that are satisfied
by the states of the system.

Several variants of temporal logic exists. In particular, at least two
appears as the most common in works for runtime verification of
the cyber physical system: the Metric Temporal Logic (MTL) [3, 41,
44] and the Signal Temporal Logic (STL) [36]. Each of these can have
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variants, e.g. in terms of future vs. past modal operators, or in terms
of subclasses with different verification complexity.

Several works employ Satisfiability Modulo Theories (SMT) applied
to CPS. [100] estimates the state of a time-invariant physical discrete-
time developing a SMT-based Luenberger observer for system whose
sensors are manipulated by an attacker. Some works reduce temporal
logics to SMT problems. [35] develop an SMT-based monitoring pro-
totype for LTL using the Z3 solver [33]. [113] reduces LTL properties
to SMT and checks it against models of embedded systems. [10] re-
duces the satisfiability of constraints LTL over clocks to a decidable
SMT problem, obtaining a complete Bounded Satisfiability Checking
procedure implemented by using standard SMT solvers.

summary. The extended literature review shows that there are
two main kinds of online security monitoring approaches applied
to CPS. The first is the intrusion detection approach, which focuses
on extracting and analysing valuable features from the CPS and that
only alerts if and when a possible attack or anomaly is detected. Such
works employ several feature extraction methods, ranging on stand-
ard ICT metrics, deep packet inspection of specific control protocols,
physical control parameters, wireless sensor networks, and power
consumption or similar low level measurements for detecting side at-
tacks. They also present different analysis techniques, ranging on stat-
istics, machine learning, and physical models to compare observed
values with the expected ones.

From our perspective, intrusion and attack detection approaches
are either unattended, i.e. the initialisation phase does not require hu-
man effort, and specification-based, i.e. security and/or process engin-
eers are required to provide their expertise to specify illicit or un-
wanted conditions. The former category appears much more mature,
and from working experience there are vendors on the market that
provide effective appliances and services based on unsupervised or
semi-supervised machine learning techniques specific to CPS. The
latter category has the advantage of much lower or nearly null false
positive rates but appears much less mature.

The other kind of approach is runtime verification, which focuses
on formal properties specifications and on possible algorithms that
verify at runtime if the system has not violated (yet) the specifica-
tions. Formal methods are widely used in this area and present very
interesting results. Most works abstract from the actual features of
the monitored system, while the specification language and the mon-
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itoring algorithms usually capture specific needs of illicit behaviours
of CPS, like the signal or the metric temporal logics.

From my working experience, there exists a practical perspective to
continuous monitoring derived from DevOps, based on the deploy-
ment of SIEMs, timeseries databases, and visualisation consoles. In
this way, the console constantly shows a quantitative picture of how
good or bad the system is behaving, unlike intrusion detection and
runtime verification that stay quiet until an alleged attack or violation
is detected. Moreover, operators can refine dashboards and perform
drill-down queries on the history of the observations timeseries data-
base as a support of common practices employed in Security Opera-
tion Centres (SOC) and Computer Security Incident Response Teams
(CSIRT).

The aim of this work is to combine a real-time quantitative notion
of criticality with specification-based detection of violations. We de-
velop a proximity-based notion of quantitative criticality of a state
with respect to a critical specification, and this appears as a novelty
of our proposed framework.

Moreover, most works in the literature assume that the features
of interest are always observable or equivalently that the verification
of atomic proposition is alway possible. Some notable exceptions ex-
ist, but focus on different ways to evaluate the missing values with
probability distribution, model-based simulations, control theoretic
arguments, and other methods. Our approach is aimed at handling
unobservable variables and reasoning on missing values without try-
ing to evaluate, guess, or predict them, for a greater applicability to
real cases. The possibility to handle and reason about unobservables,
and to provide further knowledge refinement from human operators
to the reasoning engine, appears as a novelty of our framework.
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4
M O T I VAT I N G E X A M P L E S

4.1 overview

This chapter presents two realistic motivating examples to intuitively
explain our monitoring approach. We also developed a working sim-
ulation testbed of each example to test and validate the feasibility of
the prototype of our framework.

The example are supposed to clarify the meaning of the variables of
interest to be observed, the specification of critical condition on top of
variables, example of unobservable variables necessary for a critical
condition, and critical specifications based on observation times.

Section 4.2 describes an automation system for building heating
control. Section 4.3 presents an industrial chemical process with more
insights about unobservable control application internal states and
simple observation time specifications.

4.2 building heating system

This section presents an example of CPS which is overly simplified
but still capable of explaining the kind of anomalies our framework
is able to detect, its capability of handling unobservable aspects, and
its notion of predictiveness. The following chapters also refer to this
example to ease the explanation.

43
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Figure 4.1: Two rooms building automation example.

Figure 4.1 shows a simplified building automation system con-
trolling the temperature of two rooms. The CPS is made of the fol-
lowing components (i = 1, 2):

1. a thermometer in each room that measures the temperature Ti

2. an external thermometer for the outdoor temperature O

3. a radiator Ri in each room that can be switched on/off

4. a main water heater H that can be switched on/off.

Each room i has a setpoint Si representing the desired target tem-
perature of that room. Sensors (the thermometers) and actuators (the
radiators and the heater) are wired to Programmable Logic Control-
lers (PLC). Each PLC is connected to the same TCP/IP-based Process
Control Network (PCN). The Main Controller (MC), connected to the
PCN, is able to send read and write commands to the PLCs. In this
example we assume the Modbus is used [61, 84], a very widely used
control protocol with no security mechanisms for authentication/au-
thorisation.

In this example the main controller provides a Human Machine In-
terface (HMI) that allows an operator to visualise the current process
parameters and to manually operate the system. An operator uses the
HMI component of MC to: check temperatures and the on/off status
of the radiators and of the heater; set the desired temperature of the
rooms (setpoints); turn on/off the radiators and the heater. Besides
manual human operations, our example CPS is automatically oper-
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every 500 ms → read Ti, Si, Ri, H, O

Ti < Si and O < Si → write Ri = true and H = true

Ti > Si → write Ri = false

T1 > S1 and T2 > S2 → write H = false

Table 4.1: Example of automatic operation rules.

ated through a set of rules implemented in the main controller MC
and listed in Table 4.1.

In this example the main controller is the only device that is sup-
posed to send read and write Modbus commands to the PLCs. Sup-
pose that an attacker (e.g. a malware) compromises the main control-
ler and sends malicious Modbus commands to the PLCs from it. Such
illicit commands would have exactly the same network signature and
the same payload as the licit ones. Thus, neither signature-based IDS
(e.g. Snort [23, 94], Suricata [103]) nor basic Modbus deep packet in-
spection tools (e.g. Wireshark [32, 91, 97], Bro [93]) can detect such
anomalies. Indeed, the only way to detect them is to understand that
such Modbus commands do not conform with the expected beha-
viour of the system.

Assume that the attacker sends read commands to the PLCs to
gather and exfiltrate process information. Read commands and their
responses are identical to the licit ones, however a network activity
showing an unexpected read frequency can be considered illicit, ex-
pressed by the following critical condition

|F− fexpected| > ε (φ1)

where F is the number of read commands per seconds observed from
network capture, fexpected = 3

0.5 corresponds to 3 PLCs and 500 ms
from Table 4.1, and ε is a tolerance constant.

Similarly, suppose the attacker sends a Modbus write command
H = false to turn off the water heater to prevent room 1 or room
2 from reaching the desired temperature. Although this command is
identical to the licit ones, it might be possible to detect such illicit
activity when the presence of the write command does not conform
with the expected behaviour from Table 4.1, expressed by the critical
condition

¬H ∧
(
(T1 < S1 ∧O < S1) ∨ (T2 < S2 ∧O < S2)

)
(φ2)

Intuitively, critical condition Eq. (φ2) holds if a turn off command is
sent when the heater should be on according to Table 4.1.
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Notice that the critical condition Eq. (φ1) purely addresses the cyber
layer of the CPS, while Eq. (φ2) mixes cyber and process aspects al-
lowing for a greater expressiveness and effectiveness of the approach.

In this example a sensor might stop working, e.g. the outdoor ther-
mometer, and the corresponding value might become unobservable.
The novelty of our framework is the capability of handling both ob-
servable and non-observable variables, improving its range of applicab-
ility. Moreover, condition Eq. (φ2) might not be critical if a human
operator intentionally operates the CPS manually, e.g. for mainten-
ance. A more accurate critical condition can be defined as

¬M ∧ ¬H ∧
(
(T1 < S1 ∧O < S1) ∨ (T2 < S2 ∧O < S2)

)
(φ3)

where the boolean value M represents the manual and intentional
operation of the human operator. The assumption that a monitoring
tool is aware of human intentions is unreasonable in practical cases.
Thus, M must be treated as unobservable, yet is necessary for a better
accuracy.

If the example CPS is in a state where the critical condition Eq. (φ1)
is not satisfied, a notion of proximity from Eq. (φ1) can be defined, rep-
resenting how far the measured read command frequency is from its
expected value. Monitoring how the proximity value changes in time
enables to monitor if the CPS is approaching the critical condition
Eq. (φ1).

4.3 a simple chemical process

This section presents an example of a simplified chemical process and
its control system and logic. Figure 4.2 shows the components of the
chemical process.

Process overview. A pharmaceutical company produces a chemical
product P from three reagents A, B, and C. All chemical reagents
and products are liquids. The process begins filling a reactor with
reagents A, B, and C with concentrations of respectively 70%, 20%,
and 10% using precise pumps. Assume these proportions are part of a
patented secret process. More than one reactor can be used in parallel:
this example considers two reactors L and R. When the reactor L
(or R) is filled, the chemical reaction takes 30 minutes, after which
the content of the reactor is moved to the final product silo S using
output pumps pLS (or pRS). Input pumps pA pB pC fill the tanks
containing reagents A B C when the level of the tank is lower than a
threshold. Pumps pAL, pBL, pCL and pAR, pBR, pCR, which are used
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Figure 4.2: Simple chemical process use case.

to mix reagents in the correct proportions, are required to be precise:
a numerical setpoint specifies the pump flow (in this example from
0 to 10 litres per second). Pumps pA, pB, pC and output pumps pLS,
pRS do not need to be precise, the pump flow is fixed to 20 litres per
second, and they can only be turned on and off.

Cyber components. The control of the process is based on the level
sensors: each tank, reactor, and silo have a sensor that measures the
level of the content. The employed actuators are: mixing pumps pAL,
pBL, pCL, pAR, pBR, pCR, which can be operated setting a variable
setpoint and can be switched on/off ; other pumps pA, pB, pC, pLS, pRS
which can only be turned on/off.

Sensors and actuators are wired to Programmable Logic Control-
lers (PLC), connected to the same TCP/IP-based Process Control Net-
work (PCN):

• PLC A, PLC B, and PLC C read level sensors of resp. tanks A,
B, C and control the on/off status of input pumps A, B, C.

• PLC L reads the level of reactor L and controls the setpoint of
pumps pAL, pBL, and pCL and the on/off status of pLS. Analog-
ously for PLC R.
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A SCADA server, connected to the PCN, controls the chemical pro-
cess sending read and write network command to the PLCs through
an industrial control protocol like Modbus [84]:

• it constantly reads control parameters from the PLCs using act-
ive polling at a constant frequency, specified in its configuration;

• it automatically operates the process implementing a control
logic, sending write commands to the PLCs when certain pre-
defined conditions occur;

• it provides a Human Machine Interface (HMI) component, which
shows the current values of the process and enables operators
to manually send control commands to the PLCs.

The SCADA server is the only system that is allowed to send read
and write commands to PLC, as a result of automatic or manual op-
erations.

Specifying criticalities from the knowledge of the process. An attacker
may compromise the SCADA to gather and exfiltrate secret process
data off the PCN or to damage the process. While any network mes-
sage not originated from the SCADA can be easily detected as il-
licit, read and write commands sent from a compromised SCADA
are identical to the licit ones from the network signature perspective.
Thus, signature-based IDS fail short to detect such attacks. Modbus-
like control protocols, vastly used in existing industrial control sys-
tems, present no authentication/authorization mechanisms. Hence,
the attacker can initiate Modbus TCP connections from the comprom-
ised SCADA server to any PLC to illicitly operate the process.

Suppose the attacker sends read commands and collects the re-
sponse values to exfiltrate secret data, like the reaction proportions
and timings. This attack can be detected comparing the total num-
ber of read messages with the one expected from the SCADA server
configuration. Let RFp be the number of read commands from the
SCADA server to PLC p in the time unit, with p ∈ {A, B, C, L, R}. This
value can be easily observed using network traffic analysis and deep
packet inspection tools like Wireshark [107]. Let rf p be the constant
number of read commands per second to the PLC P in the SCADA
server configuration, called polling frequency. The critical condition
corresponding to the read attack is then

RFA 6= rf A ∨ RFB 6= rf B ∨ RFC 6= rf C ∨ RFL 6= rf L ∨ RFR 6= rf R (4.1)
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Table 4.2: Example of automatic operation rules.

every 500 ms → read all sensors

if LevelX < hX → set pX = off for X ∈ {A, B, C}
if LevelX > lX → set pX = on for X ∈ {A, B, C}

Figure 4.3: Automatic reactor control statechart (Y ∈ {L, R}).

In this work RFp are called variables of interest of the monitored
CPS. Each variable is bound to an observation method, in this case to
network packet inspection that counts read commands.

Suppose the attacker sends write commands with random setpoints
to the mixing pumps to alter the proportions and to corrupt the chem-
ical reaction. Let PSp be the variables representing the last observed
setpoint sent to the PLC controlling the pump p. Again, it is easy
to observe PSp with deep packet inspection of Modbus commands
on the PCN. It is possible to detect such attack comparing those val-
ues with the expected proportions, expressed by the following critical
condition:

(2 · PSpAL 6= 7 · PSpBL ∧ PSpBL 6= 2 · PSpCL) ∨
(2 · PSpAR 6= 7 · PSpBR ∧ PSpBR 6= 2 · PSpCR)

(4.2)

Unobservable variables. The aim of industrial control systems is to
automatically operate sensors and actuators to implement a specific
process. In our example, automatic control rules are implemented by
the SCADA server. Figure 4.3 shows the state-based rules for sensors
and actuators that control the reaction, while Table 4.2 shows the rules
to control the other components.

Suppose the attacker sends on/off command to the pLS pump that
does not comply with the control logic. The following critical condi-
tion detects such attack:

(SL = 0∨ SL = 1) ∧ pLS = on) ∨ (SL = 2∧ pLS = off) (4.3)

where variable pLS is the observed on/off payload of the write com-
mand and variable SL is the state of the control logic of reactor L.
Notice that SL is necessary to express critical condition Eq. (4.3), but
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it is inherently unobservable because it is the hidden state of a control
program implemented in the SCADA server. While SL is always un-
observable, any variable may become temporarily unobservable, e.g.
when it is bound to a malfunctioning sensor. This example shows
that the assumption that all the variables are always observable is not
feasible with real cases, and that critical conditions of interest may
need to refer to unobservable variables. Next sections show how our
framework is capable of dealing with them.

Observation time in critical specifications. Some attacks can be detec-
ted observing how the CPS behaves in time. According to Figure 4.3,
when a turn-off command and later a turn-on command are sent to
pump pLS (i.e. a transition from state 1 to 2 occurs), then the two
write commands must be observed with at least 30 minutes time dif-
ference, but not much more than that. Assuming 1 minute tolerance
in the execution of the control logic, the following critical condition
detects attacks that turn off pLS too early or too late:

¬(pLSon.t < pLSoff.t→ 30m < pLSoff.t− pLSon.t < 31m) (4.4)

where pLSon and pLSoff are boolean variables bound to the observa-
tion of respectively on and off write commands to pump pLS.

Refinements. Detecting if the current state of the CPS is critical w.r.t.
a critical specification may be impossible in presence of unobservable
variables. A human operator can provide the monitor with a refine-
ment, i.e. a logical expression of further knowledge. For instance, a
process operator who supervises the production knows whether a
reaction started, i.e. if SL = 1. For this reason, the operator can al-
ternatively provide our monitor with the refinement SL = 1 or the
refinement SL = 0∨ SL = 2.

Similarly, unobservable variables can express human intentions,
which can be valuable knowledge to a monitoring framework. As-
sume an operator sends licit commands for maintenance purpose
not compliant with the control logic of the CPS. Critical conditions
Eq. (4.2) Eq. (4.3) Eq. (4.4) do not discriminate such licit commands
from the attacker’s ones. Each condition φ can be replaced with ¬M→
φ, where M is an unobservable boolean variable representing that
the CPS is intentionally manually operated. This way, an operator
provides the refinement M = true when the maintenance activity be-
gins and M = false when it ends, and his operations are not detected
as illicit.

When it is not possible to discriminate the criticality of the current
state of the CPS due to unobservable variables, our monitor is capable
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of computing an assisted check, i.e. a logical expression that a human
operator can evaluate in order to provide a minimal valuable refine-
ment. Next sections show how the monitor computes this expression
using its logical reasoning core.

Predictiveness. Besides discriminating whether the current state of
the CPS is critical, our monitor also predicts if the system is getting
closer to a critical condition. To this aim, the monitor computes a
notion of distance of the current CPS state from a critical condition.
When the current state is non-critical, monitoring how the distance
from the critical condition changes in time tells if the system is reach-
ing that criticality. On the other hand, when the state is critical, it is
possible to monitor the distance from the border of the criticality, i.e.
how far the CPS is from returning to a non-critical state.

In our example, if the current CPS state satisfies the critical con-
dition Eq. (4.1), the criticality measure represents how much the ob-
served polling differs from the expected one. On the other hand, if
the current state is not critical w.r.t. Eq. (4.4), i.e. the observation time
between on and off commands is between 30 and 31 minutes, the the
state is not critical, the criticality is a negative value, and its abso-
lute value represents how the observed values are close to the critical
boundaries 30 or 31.
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5.1 overview

This chapter describes the core of the proposed monitoring frame-
work for CPS, presenting formal definitions, possible computational
methods, and their correctness proofs.

As described in Section 3.3, a number of works in the literature
shows that it is possible to leverage the predictability of CPS and the
domain knowledge of human experts to gather valuable information
to develop specific security monitoring and detection solutions. We
follow this line and assume that process and security engineers can
derive a set of critical conditions that the CPS should not reach.

The framework aims at security monitoring feasible Security Oper-
ation Centres (SOC) and Computer Security Incident Response Teams
(CSIRT), enabling operators to:

1. define the aspects of the CPS to be observed, called variables,
and the related observation methods;

2. specify the critical conditions of interest in terms of observed
values;

3. specify a notion of proximity among system states, used to
define and compute a quantitative criticality of the CPS from
observations;

53
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Figure 5.1: Structure of the monitoring framework.

4. continuously monitor the changes in time of the criticality as
a measure of how closely and quickly the system is evolving
towards a critical condition or is returning to a licit state.

Most literature on attack detection for CPS assumes the features of
interest are always observables. This chapter presents our proposed
framework under the same assumption. However, this might be un-
feasible in real cases. In Chapter 6 we relax this assumption and
modify the framework to handle unobservables.

Figure 5.1 depicts the main structure of the framework. Given the
CPS variables and critical conditions specifications, the monitor runs
in parallel with the CPS, continuously observes its current state, and
evaluates its criticality with respect to the critical conditions. The
main components are the observer and the reasoner.

The observer is aimed at extracting the features of interest of the
CPS. Each feature is associated to a variable. The framework is ag-
nostic about the kind of parameters to measure, however the follow-
ing sources of information appear particularly relevant according to
the literature and the experience from the industry, as described in
Section 3.3:

1. Network traffic: passive capturing collects a large set of ICT met-
rics that characterise the cyber layer of the control devices. Deep
packet inspection provides insights about control parameters of
the physical process. Since critical plants seldom tolerate act-
ive network scanning and agent-based information gathering,
the network traffic captured from process control networks ap-
pears the main feature extraction source: it provides both stand-
ard ICT security metric, like the connection topology and band-
width, and CPS-specific parameters, like values from sensors
and commands to actuators.
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2. Application logs and performance metrics from SCADA servers
and HMI, as a standard practice in security operation centres.
Beside standard ICT system logs, historian applications log the
value of process parameters for compliance and troubleshoot-
ing purpose which can be used as an alternative observation
technique to deep packet inspection.

3. IoT message queues. The network layer of IoT architecture of-
ten employs message queues over VPN or TLS tunnels. This
prevents from passive network capturing. Fortunately, an au-
thorised entity can connect to the message broker, subscribe to
relevant queues, and obtain full visibility retaining confidential-
ity and authentication requirements.

Our threat model assumes the integrity of the observed values. This
is a common assumption in a number of detection approaches based
on features extraction and analysis found in the literature. Some ob-
servations are difficult to compromise, e.g. the bandwidth consump-
tion measured through the SPAN port of network switches. The num-
ber and variety of observed values can mitigate this risk, especially
with redundant observations. For instance, queries to historian ap-
plications can be compared with data from deep packet inspection
of the control network to detect data integrity attacks. Industry 4.0
approaches also suggest deploying additional IoT devices to detect
physical sensor tampering. Both examples can be adopted in our
framwork associating different variables to different sources of the
same data. Model-based approaches [83] can detect integity attacks
comparing the observed values with the expected ones. These can be
complementary to our framework: the output of a model can be re-
garded as an additional variable to compare with observed raw data.

The reasoner component iteratively receives the current CPS state s
from the observer and evaluates its criticality with respect to a critical
condition specification φ. Each critical specification consists of:

1. a critical formula, i.e. a boolean combination of linear constraints
on the variables representing an illicit or unwanted condition of
the CPS

2. a notion of distance on the set of states, used to compute the
criticality of the current state from observations

3. an optional set of criticality thresholds which represent different
levels of alerting. Thresholds are necessary for the criticality es-
timation described in Section 5.5.
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The reasoner discriminates whether the observed state is critical. In
case of fully observable variables, this is simply achieved checking if
the values satisfy the critical formula. Then, it evaluates the criticality
measure, which represents:

1. The distance to licit states when the state is critical. In this case
the criticality is a positive value. If this values decreases in time,
the system is evolving to licit states.

2. The proximity to critical states when the status is non-critical. In
this case the criticality is a negative value. If this value increases
in time, the system is getting closer to the critical condition.

In this way, monitoring how the criticality changes in time permits
to predict how the system is evolving with respect to the specified
critical conditions.

Section 5.2 describes how to specify the variables of interests and
focuses on observations relevant to cyber physical system. Section 5.3
presents the critical condition specifications, defint a quantitative no-
tion of criticality of the observed state of the system, and describes
possible techniques to evaluate such criticality.

5.2 specification of system variables

The specifications of variables allow the observer to extract the fea-
tures of interest. The specification of a variable consists in:

1. The name, used as an identifier in the specification of critical
conditions.

2. An optional range constraint: it constraints the acceptable values
for the variable in the form of upper and lower bounds.

3. The observation method: an executable procedure to gather the
current value of the variable. Example are the execution of deep
packet inspection, log analysis, or the subscription to IoT mes-
sage queues. Since the framework is aimed at nearly real-time
monitoring, the observation method needs to be nearly real-
time as well.

Let V denote the set of variables, i.e. the parameters, aspects, events,
measurements of the CPS that are required to express a known critical
condition. A variable can be boolean, integer, or real, and range(v)
denote the range constraint of v defined by the lower and upper
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boundaries in the variable specification. In the following, boolean
variables range on the set {0, 1}, with both the boolean and the nu-
meric meaning, in order to be able to use boolean and numeric vari-
ables in the same arithmetic expressions. For instance, the expression
b1 + b2 + b3 ≤ 2 denotes that at most two boolean variables among
b1, b2, b3 are true. As a consequence, all variables in V also range on
R.

Definition 5.1. Let V ⊆ V be a subset of variables. A partial assignment
(or simply an assignment) is a function a : V → R that maps variables
to values such that a(v) ∈ range(v) for each v ∈ V. The notation
dom(a) denotes the domain V.

Definition 5.2. A state of the monitored CPS is an assignment s such
that dom(s) = V , i.e. a total assignment of variables. The set of all
possible system states is denoted by S . Given a partial assignment a,
we define

S(a) = {s ∈ S | ∀v ∈ dom(a) : s(v) = a(v)}

as the set of states consistent with the assignment a.

5.3 specification of critical conditions

Definition 5.3. A critical codition is a logical formula defined by the
grammar:

φ ::= a1v1 + · · ·+ anvn ./ b | ¬φ | φ ∧ φ | φ ∨ φ

where vi ∈ V , ai, b ∈ R, ./ ∈ {<,≤,>,≥,=, 6=}. The set of variables
occurring in a formula φ is denoted by var(φ) defined as

var(a1v1 + · · ·+ anvn ./ b) = {v1, . . . , vn}
var(¬φ) = var(φ)

var(φ ∧ φ) = var(φ) ∪ var(φ)

var(φ ∨ φ) = var(φ) ∪ var(φ)

(5.1)

In other words, a critical formula is a boolean combination of linear
inequalities of variables observed from the state the monitored CPS.
We use a standard semantic interpretation, defined as follows.
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Definition 5.4. Given a partial assignment c and a formula φ such
that var(φ) ⊆ dom(c), the assignment c satisfies (or is a model of ) the
formula φ, denoted by c |= φ, when inductively:

c |= ∑
i

aivi ./ b iff ∑
i

aic(vi) ./ b

c |= ¬φ iff c 6|= φ

c |= φ1 ∧ φ2 iff c |= φ1 and c |= φ2

c |= φ1 ∨ φ2 iff c |= φ1 or c |= φ2

(5.2)

The set of states satisfying a formula φ is denoted by S(φ).

Proposition 5.1. Let s be a state assignment and φ a critical condition
formula. Determining if the state is critical, i.e. whether s |= φ, can be
implemented from Definition 5.4.

Proof. The condition var(φ) ⊆ dom(s) holds because dom(s) = V
by the definition of state. This implies that s |= φ is well defined
according to Definition 5.4. The condition var(s) ⊆ dom(s) allows to
verify the atomic expression ∑i ais(vi) ./ b. The other syntax cases can
be evaluated by recursion since the |= relation is defined inductively
on the syntax of φ, which implies termination.

This implies that in case of full observability the implementation
of the detection of critical conditions derives straightforwardly from
Definition 5.4. Next section presents the proximity-based notion of
criticality and possible computational methods.

Example 5.1. The boiler example described in Section 4.2 uses the following
variables:

• T1, T2, S1, S2, O: real variables for internal temperatures, desired tem-
peratures (setpoints), and outdoor temperature.

Range constraints are defined from the domain, e.g. [−10, 50] ◦C for
ambient temperatures.

The observation method is deep packet inspection of the Modbus pro-
tocol, selecting read response packets using packet headers and extract-
ing sensor values from the packet payloads.

• H: boolean variable corresponding to the on/off status of the heater.
The range constraint is clearly {0, 1} and the observation method is
the same as the temperature variables.

Notice that the critical conditions that refers to the unobservable variable M
are not suitable for the framework presented in this chapter.
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5.4 predictive detection of critical conditions

The quantitative notion of the criticality of the current state of the
system with respect to a critical condition specification is hereafter
defined. It is based on a notion of proximity which uses standard
definitions of metric spaces summarised in Section 1.2.

Proposition 5.2. Let n = #V be the number of the state variables. Any
metric d on Rn induces a metric on the set of states S and a premetric on
the parts of the states 2S .

Proof. CPS variables defined in Section 5.2 range on real numbers.
Let v be any enumeration of the variables, i.e. a bijective function
v : {1, . . . , n} → V . Let

R = {x ∈ Rn | ∀i. xi ∈ range(v(i))}

be the subset of Rn consistent with the range of the variables. Notice
that (R, d) is a metric space. We prove R and S are isomorphic by
defining a bijection. The injective function r : S → R defined as r(s) =(
s(v(1)), . . . , s(v(n))

)
is bijective: for each x ∈ R there exists a unique

CPS state s defined as s(v(i)) = xi for i = 1 . . . n. Since (R, d) is a
metric space, (S , d̂) is also a metric space where d̂(s, t) = d(r(s), r(t)).
The metric d̂ induces a premetric D̂ on 2S as in Proposition 1.1. With
a little abuse of notation, in the following we will use d and D to
denote also d̂ and D̂.

Given a metric d on Rn, where n = #V , we use the induced premet-
ric D to define the quantitative notion of criticality of a state s with
respect to a critical condition φ as follows.

Definition 5.5. Let D be a premetric on S . The criticality of a CPS
state s from the critical condition φ is defined as

C(s, φ) :=

 D(s,¬φ) if s |= φ

−D(s, φ) if s 6|= φ

(5.3)

The criticality value is positive when the state s is critical and indic-
ates how far the state is from the licit states. Otherwise, it is negative
and indicates how close the state is to critical states.

Definition 5.5 is parametric with respect to the chosen metric d
on the set of states S associated to φ. Table 5.1 contains possible ex-
amples of metrics and their combinations. The chosen metric is part
of the critical condition specification. The actual choice depends on
the application, as the following example shows.
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mV(s, t) = ∑
v∈V
|s(v)− t(v)| Manhattan distance

(i.e. L1 metric on Rn)

wmV(s, t) = ∑
v∈V

wv|s(v)− t(v)| Weighted Manhattan distance

(wv ≥ 0)

nmV(s, t) =
1

#V ∑
v∈V

|s(v)− t(v)|
vmax − vmin

Normalised Manhattan distance

(defined if vmin, vmin ∈ R)

hV(s, t) = #{v ∈ V | s(v) 6= t(v)} Hamming distance

whV(s, t) = ∑
v∈V

s(v) 6=t(v)

wv
Weighted Hamming distance

(wv ≥ 0)

nhV(s, t) =
1

#V
hV(s, t) Normalised Hamming distance

comb
dV, dU

(s, t) = dV(s|V , t|V) + dU(s|U , t|U) Combination of metrics dV and dU

where s, t ∈ S , V, U ⊆ V , vmin = min(range(v)), vmin = max(range(v)),
and the notation s|X denotes the standard projection of the vector s on X.

Table 5.1: Example of metrics on S .

Example 5.2. Equation (4.1) in the chemical process example of Section 4.3
is defined as

φ = RFA 6= rf A ∨ RFB 6= rf B ∨ RFC 6= rf C ∨ RFL 6= rf L ∨ RFR 6= rf R

and is satisfied by observations not compliant with the expected number of
read messages per time unit captured from the network traffic.

The Manhattan metric mV defined in Table 5.1, with V = var(φ), induces
a premetric Dm on the states S that captures the actual differences of the
observed values from the expected ones. In particular, given a state s defined
as s(RFA) = rf A + 10, s(RFB) = rf B − 15, and s(RFX) = rf X for X ∈
{C, L, R}, the criticality Cm(s, φ) = 25.

The Hamming metric hV instead induces a premetric Dh that captures the
number of variables not compliant with the specification. Indeed, given the
same state s, the criticality Ch(s, φ) = 2.

Different metrics can also be combined on different variables. The operator
combdV, dU in Table 5.1 shows a possible combination of dV and dU .

Figure 5.2 shows the flow of the reasoner. At each iteration, it re-
ceives the state s from the observer, it checks if s |= φ using Defini-
tion 5.4 and Proposition 5.1, then it compute either D(s,¬φ) or−D(s, φ).
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Figure 5.2: Evaluation of the criticality of current state.

The following sections present different techniques to evaluate D(s, φ)

for any given φ. The threshold-based approach, presented in Sec-
tion 5.5, does not need to actually compute the quantity D(s, φ), but
only verifies if D(s, φ) < li for a given set of thresholds li. Section 5.6
presents some techniques to compute the distance, based on linear
programming and on SMT. The first approach is computationally
easier but inherently approximated, while the second approach needs
to solve an optimisation problem.

5.5 best-threshold approximation of criticality

This section presents the method we developed to evaluate an ap-
proximation D(s, φ) without computing it. It requires that any crit-
ical specification includes a set of real thresholds {l1, . . . , lh}, where
l1 < l2 < . . . < lh. The set represents different levels of alerting
defined by an operator. To ease the presentation, we define l0 = −∞
and lh+1 = +∞.

The approach searches for the best threshold approximation, i.e.
the i ∈ {0, . . . , h} such that

li ≤ D(s, φ) < li+1 (5.4)
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The technique is inspired by the geometrical and topological prop-
erties of S(φ). We prove some required linear algebra results about
convex polyhedra, present the algorithm for finding the threshold
approximation based on polyhedra manipulation, and prove the cor-
rectness of the algorithm. The algorithm uses some of the computa-
tional geometry operations provided by Parma Polyhedra Library, de-
scribed in Section 1.2. While the definition of D(s, φ) is generally para-
metric in the chosen metric, the threshold-based approach presented
in this section is restricted to the Manhattan distance and its induced
premetric.

Proposition 5.3. Given a critical formula φ, the set S(φ) is the union of a
finite number of convex polyhedra.

Proof. For any formula φ, it is a well know result that there exists an
equivalent φ′ which is in Disjunctive Normal Form (DNF), i.e.

φ′ =
∨

i

∧
j

Hij (5.5)

where Hij are atomic formulae. The DNF formula is obtained by re-
peatedly applying De Morgan laws and double negations simplific-
ation. From the grammar in Definition 5.3, i.e. Hij = ∑k akvk ≤ b,
ak, b ∈ R, and vk ∈ V . Thus, S(Hij) are affine half-spaces (or lin-
ear inequalities) as defined in Section 1.2. This implies that Pi =

S(∧j Hij) =
⋂

j S(Hij) are convex polyhedra and S(∨i
∧

j Hij) =
⋃

i Pi.

Proposition 5.4. Let x ∈ Rn be a real vector and l ∈ R+ a non negative
real value. Let ui = x + le(i) and vi = x − le(i), where vectors e(i) are the
standard base1 of the vectorial space Rn.

For any y ∈ Rn

|x− y| ≤ l iff y ∈ convexhull({ui} ∪ {vi}) (5.6)

where convexhull is defined as in Section 1.2 and | · | is the l1-norm on Rn.

Proof. We prove the result algebraically, while Figure 5.3 depicts the
geometrical R2 case.

1 e(i) is the vector of Rn defined as (e(i))i = 1 and (e(i))j = 0 for all i 6= j.
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Figure 5.3: Metric ball B[x, l] as a convex hull of x± le(i).

(⇒) Let y be any vector such that |x− y| ≤ l. We show that y is a
convex combination of ui and vi, i.e. that there exist real parameters
αi and βi such that

αi, βi ≥ 0 (5.7)
n

∑
i=1

αi +
n

∑
i=1

βi = 1 (5.8)

y =
n

∑
i=1

αi(x + le(i)) +
n

∑
i=1

βi(x− le(i)) (5.9)

Let z = y− x. By hypothesis |z| = ∑i |zi| ≤ l.
Define αi and βi as

αi =
1
2

(
|zi|
|z| +

zi

l

)
βi =

1
2

(
|zi|
|z| −

zi

l

)
(5.10)

Equation (5.7) holds: if zi ≥ 0 clearly αi ≥ 0 and

βi =
|zi|
|z| −

zi

l
=
|zi|
|z| −

|zi|
l
≥ |zi|

l
− |zi|

l
= 0

as |z| ≤ l. The case zi ≤ 0 is symmetrical.
Equation (5.8) holds by construction since

n

∑
i=1

αi +
n

∑
i=1

βi =
n

∑
i=1

1
2

(
|zi|
|z| +

zi

l

)
+

n

∑
i=1

1
2

(
|zi|
|z| −

zi

l

)
=

n

∑
i=1

1
2

(
|zi|
|z| +

zi

l

)
+

n

∑
i=1

1
2

(
|zi|
|z| −

zi

l

)
=

n

∑
i=1

|zi|
|z| = 1
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The following calculation proves Eq. (5.9)

n

∑
i=1

αi(x + le(i)) +
n

∑
i=1

βi(x− le(i))

=
n

∑
i=1

αix +
n

∑
i=1

βix +
n

∑
i=1

αile(i) −
n

∑
i=1

βile(i)

= x +
n

∑
i=1

1
2

(
|zi|
|z| +

zi

l

)
le(i) −

n

∑
i=1

1
2

(
|zi|
|z| −

zi

l

)
le(i)

= x +
1
2

n

∑
i=1

|zi|
|z| +

1
2

n

∑
i=1

zie(i) −
1
2

n

∑
i=1

|zi|
|z| +

1
2

n

∑
i=1

zie(i)

= x +
n

∑
i=1

zie(i) = x + z = y

(⇐) Let y be a vector that belongs to convexhull({ui} ∪ {vi}), Thus,
there exists αi, βi ≥ 0 such that ∑i αi + ∑i βi = 1 and

y =
n

∑
i=1

αi(x + le(i)) +
n

∑
i=1

βi(x− le(i))

Then

|y− x| =
∣∣∣∣∣ n

∑
i=1

αi(x + le(i)) +
n

∑
i=1

βi(x− le(i))− x

∣∣∣∣∣
=

∣∣∣∣∣ n

∑
i=1

αix +
n

∑
i=1

βix +
n

∑
i=1

αile(i) −
n

∑
i=1

βile(i) − x

∣∣∣∣∣
=

∣∣∣∣∣l n

∑
i=1

(αi − βi)e(i)
∣∣∣∣∣ = l

n

∑
i=1
|αi − βi| ≤ l

n

∑
i=1
|αi|+ |βi| = l

since ∑i wie(i) = w for all vectors w ∈ Rn by definition of e(i).

Proposition 5.5. Given a state s, a critical formula φ, and a real value l,

D(s, φ) ≤ l iff convexhull({s± le(i)}) ∩ S(φ) 6= ∅ (5.11)

where D is the premetric induced by the Manhattan metric d.

Proof. D(s, φ) ≤ l iff there exists a state t ∈ S(φ) such that d(s, t) ≤
l by definition of D. By Proposition 5.4, this is equivalent to t ∈
convexhull({s± le(i)}) which is equivalent to the thesis.

We developed Algorithm 5.1 guided by the previous geometrical
properties of polyhedra using the PPL library [1]. The Init function
takes a critical formula φ in DNF form and build the set of polyhedra
Pm, such that S(φ) = ⋃

m Pm. It uses the PPL method from_constraints,
described in Section 1.2, which takes the linear inequalities occurring
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Algorithm 5.1 PPL-based Distance Threshold.
Require: (same as Algorithm 5.1)

State s as a vector of Rn

DNF formula φ =
∨

m ψm

conjunctive clauses ψm =
∧

j Hj

atomic linear constraint Hj = ∑vi∈V ajivi ≤ bj

metric used: Manhattan
function Init(φ)

for ψm ∈ φ do
Pm ← ppl.from_constraints(ψm) . polyhedra Pm are global

function TresholdDistance(s, l)
S← {s± le(j) | j = 1 . . . n} . where n = #V
sball← ppl.from_generators(S, ∅, ∅)
for each Pm do

if sball.intersection(Pm).isempty() then
return True

return False
function Search(s, {{l1, . . . , lh})

for i = i . . . h do
if ThresholdDistance(s, li) then

return li
return +∞

where e(j) are the unit vectors of the standard basis of Rn. The pseudo-code
is based on the Parma Polyhedra Library described in Section 1.2.

in ψm and generates the corresponding representation of the polyhed-
ron. Notice that the DNF formula exists for every φ but the conversion
in DNF has an exponential time complexity with respect to the num-
ber of atomic formula in the worst cases. This is a well known result.
However, the conversion is done only once at initialisation time and
has no impact on the performances of the monitor at runtime after
the initialisation.

Once the polyhedra representation {Pm} is created from φ, at runtime
the function ThresholdDistance determines if D(s, Pm) ≤ l for some
Pm. This is achieved constructing the convex hull S of vectors {s ±
le(i)} using the PPL method from_generators described in Section 1.2,
where the sets of rays R and lines L passed as input arguments are
empty. The function ThresholdDistance(s, l) returns true if the con-
vex hull S intersects some Pm. This is correct according to Eq. (5.11).
The search for the best threshold approximation is achieved through
a linear search of the smallest threshold li such that D(s, Pm) ≤ li
for some Pm. The correctness of the algorithm comes directly from
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Proposition 5.4, from Eq. (5.11), and from the correctness of the PPL
library.

5.6 computation of criticality

This section shows possible methods to compute D(s, φ) defined in
previous sections and used to compute the criticality C(s, φ) of the
current observed state s of the CPS with respect to a given critical
condition φ.

Linear Programming-based Approach

The method described in this section uses linear programming and is
restricted to use the weighted Manhattan metric of Table 5.1 and its
induced premetric simply denoted by D.

This approach requires a DNF critical formula as input. Also in
this case, a general formula is converted to an equivalent DNF only
during the initialisation phase, and the possible high computational
cost of the operation has no impact at runtime.

We assume the same notation for the DNF formula φ =
∨

m ψm,
ψm =

∧
j Hj, and Hj = ∑i aivi ≤ b, where i = 1 . . . n and n = #V is the

number of variables.

Proposition 5.6. Given a state s and a DNF formula φ =
∨

m ψm, then

D(s, φ) = min
m

D(s, ψm) (5.12)

Proof.

D(s, φ) = D(s,S(
∨
m

ψm)) = D(s,
⋃
m
S(ψm))

= min
m

D(s,S(ψm)) = min
m

D(s, ψm)

Thus, to compute D(s, φ) it is sufficient to develop a method for
computing D(s, ψm), where ψm is a conjunction of linear constraints,
and to iterate on m to find the minimum value D(s, ψm).

Using the weighted Manhattan distance on a subset of variables
V ⊆ V ,we have

D(s, ψm) = min
t∈S(ψm)

∑
vi∈V

wi|s(vi)− t(vi)|

Hence, computing D(s, ψm) is an optimisation problem on linear con-
straints. It is known that this kind of optimisation objective can be
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converted to a linear expression eliminating the absolute value and
adding additional variables. Precisely, for any real number x, its ab-
solute value |x| is the minimum real u such that −u ≤ x ≤ u (this
implies u ≥ 0).

The equivalent linear optimisation problem is defined using two
vectors t ∈ Rn and u ∈ Rn where n = #V is the number of variables:

goal: minimise
h

∑
i=1

wiui

constraints:


∑i ajiti ≤ bj for all i s.t. Hj in ψm

si − ti ≤ ui for all i s.t. vi ∈ V

−ui ≤ si − ti for all i s.t. vi ∈ V

where si is a constant of the problem for any given state s, aji and
bj are constants expressed in the formula ψm, while ti and ui are the
variables of the problem.

The goal min ∑h
i=1 wiui = D(s, ψm) can be computed with any lin-

ear programming solver. Proposition 5.6 implies the correctness of
the approach.

Satisfiability Modulo Theory-based Approach

This sections describes different SMT-based methods to compute the
distance D(s, φ).

smt with universal quantification. This section proposes
a method to compute the distance D(s, φ) directly from the logical
description of the computation problem. Let s be the current CPS
state, i.e. the total assignment of the observed values to the variables
as defined in Definition 5.1, and φ a state formula. The proximity
D(s, φ) is defined as the minimal real value d(s, t) such that t |= φ for
some state t. The minimality of the distance can be expressed as the
problem of determining whether there exists a state t such that

t |= φ ∧ ∀x ∈ S . x |= φ→ d(s, t) ≤ d(s, x) (5.13)

A universal quantification over the set of states occurs in Eq. (5.13).
Thus, any solver that include the Linear Integer and Rational Arith-
metic (LIRA) with universal quantification accepts Eq. (5.13) as in-
put and returns the state t that satisfies the assertion. Given such t,
it is possible to compute D(s, φ) = d(s, t). Algorithm 5.2 shows the
pseudo-code of this method, where metric is the arithmetic expression
that denotes the chosen metric on S .
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Algorithm 5.2 Quantifier SMT computation of the distance.
function Distance(s, φ)

T← a set of fresh symbols for variables
solver← new SMT-Solver
solver.assert φ[V 7→ T]
solver.assert ∀X. φ[V 7→ X]→ metric(s, T) ≤ metric(s, X)
model← solver.check-sat()
if model not found then

return Error: φ is unsatisfiable
else

return model.getvalue(metric(s, T))

A set T of fresh variable symbols is used to represent the state t
to be found. The algorithm creates a new instance of the SMT solver,
and asserts the logical formula φ[V 7→ T], that is the formula φ where
each variable is replaced with the corresponding symbol in T. Notice
that this assertion is satisfiable if and only if φ is satisfiable. Then, it
adds the assertion ∀X. φ[V 7→ X]→ metric(s, T) ≤ metric(s, X).

Notice that the expression metric(s, T) ≤ metric(s, X) is always sat-
isfiable because it is true when T and X are assigned to the same
values. Thus, φ[V 7→ X] → metric(s, T) ≤ metric(s, X) is always satis-
fiable as a consequence.

As a consequence, the two assertions are satisfiable if and only if φ

is satisfiable. In this case, the solver finds a model, i.e. an assignment
t of values to each symbol in T, and returns the value of d(s, t) as a
result in the last line of the algorithm. Notice that an unsatisfiable crit-
ical condition φ can be considered a mistake of the human operator
that defined the formula.

Quantifier-free Iterative SMT

This sections describes an SMT-based method to compute D(s, φ)

which uses the quantifier-free linear integer and rational arithmetic
(QF_LIRA). While quantifier-free arithmetic is less expressive, SMT
solvers for such fragment are much more efficient in terms of com-
putational complexity and performance. For this reason, avoiding
the use of quantifiers is usually a good practice. However, this also
needs to overcome the lower expressibility of the logic with tailored
algorithms.
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Algorithm 5.3 shows the pseudo-code based on an iterative search
on the distance to minimise. Intuitively, in order to compute

D(s, φ) = inf
t|=φ

d(s, t)

at each iteration the algorithm search for any critical state t, i.e. a
state t which is a model of φ. If found, it computes the value d(s, t)
of the current approximation of the distance, and add an assertion
d < d(s, t)− ε for a given error tolerance ε. If the solver finds a model
in the next iteration, then the new critical state t is necessarily closer
to s. The algorithm ends when no model is found, and the last model
found represent the critical state that minimise the distance from s.
Termination is guaranteed by the presence of a small positive value ε

in the assertion d < d(s, t)− ε. It is worth noticing that the presence
of ε introduce an approximation error. Indeed, it may be the case that
the last found approximation of the distance is higher than the actual
distance. However, it can be proved that inequality

|D(s, φ)− d| < ε (5.14)

always holds, where d is the final result of the algorithm. Thus, the
value ε represents the maximum accepted error in the final result.

The algorithm uses a set of fresh variables T to represent the state t.
The term metric(s, T) represents the arithmetic expression of the dis-
tance between the state s, which is a given vector of values and a con-
stant of the problem, and the state t represented by T. SMT solvers
provide arithmetic operator, boolean operators, and the conditional
operator that are sufficient to express all the metrics in Table 5.1. If
the solver fails at the first check for satisfiability, than the critical for-
mula φ is not satisfiable, i.e. the security operator made a mistake in
the definition of φ because the detection of an unsatisfiable critical
condition is meaningless.
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Algorithm 5.3 SMT iterative computation of the distance.
function Distance(s, φ)

T← a set of fresh symbols for variables
d← new real symbol
solver← new SMT-Solver
solver.assert φ[V 7→ T]
solver.assert d = metric(s, T)
model← solver.check-sat()
if model not found then

return Error: φ is unsatisfiable
else

while model found do
distance← model.getvalue(d)
solver.assert d < distance - ε

model← solver.check-sat()

return model.getvalue(d)



6
T H E C O R E F R A M E W O R K W I T H U N O B S E RVA B L E S
A N D O B S E RVAT I O N T I M E S

6.1 overview

A number of works in the literature about attack detection and mon-
itoring for CPS assume that the aspects of interest of the monitored
system are observable and develop techniques to extract and analyse
these features, as described in Section 3.3. However, the assumption
that it is always possible to retrieve the value of all the variables might
be too strong in real cases. This chapter relaxes this assumption and
presents the core framework we developed to handle the variables
that are unobservable but still required to specify known critical con-
ditions. This capability appears as a novelty from the literature re-
view.

Section 3.3 shows that features from the temporal behaviour of the
CPS brings added value when it comes to attack or anomaly detec-
tions. The literature shows a large number of works for runtime veri-
fication of temporal specifications [4, 5, 7–9, 11, 55]. Our framework is
capable of express simple temporal critical conditions, based on the
observation times of the variables. The application of verification of
temporal properties to our framework is far from being complete.

The main differences from the core framework described in the
previous chapter follow.
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• The specification of variables remains the same, but we now
allow the observation method to be omitted or to fail. This cap-
tures permanently or temporarily unobservable variables.

• As a consequence, the observer passes a partial assignment of
variables to the reasoner instead of a system state.

• Critical formulae enable indicating the time an observation oc-
curred, the current time, and linear constraints on those times.

• The semantics of critical formulae is modified accordingly.

• In Chapter 5, it is always possible to determine whether s |=
φ and the implementation is straightforward from the defini-
tion. With unobservables, this is impossible in the general case
due to the missing values. We developed a different core of
the reasoner that leverages SMT solvers to overcome these situ-
ations. The techniques based on polyhedra manipulations and
linear programming do not apply to partial observations.

• The reasoner now accepts optional additional information about
the system from human operators, sssas a refinement of partial
observations. The information is specified in the same logical
language of critical formulae. This interaction with operators
is inspired to practices employed in security operation centres,
where experts constantly interacts with tools and SIEM solu-
tions.

• When the reasoner cannot discriminate if the current state is in a
critical condition, it computes a logical conditions about system
variables that implies the state is not critical. The condition is
handed to human operators and called assisted check. In a sense,
the reasoner suggests the operator to check some conditions
about unobservables to better evaluate the criticality measure
of the current state of the system. To limit the human effort, tt is
important that this logical condition is kept as small as possible
to avoid unnecessary conditions that the reasoner can solve with
available information. Although we cannot state that our tech-
nique computes the minimal assisted check in a formal sense,
we use simplification tactics and logical interpolants, which are
meant to discard part of the unnecessary atoms in the assisted
check.

• The proximity-based notion of criticality is identical, but it is
not possible to compute it in the general case of unobservable
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variables. The reasoner now computes a range of criticality val-
ues which represent the best and worst cases.

6.2 critical condition specification

Unobservable variables complicate the framework but allow for a
greater expressiveness and practical feasibility. There are three main
cases in which a variable is considered unobservable:

1. a variable bound to the value of a malfunctioning sensor that
cannot provide its value;

2. a variable bound to a parameter of the CPS which is required
to express the critical condition but that can never be observed
by design, e.g. the temperature of a gas in a point where no
thermometer has been installed;

3. any aspect of the monitored system that is inherently unobserv-
able, e.g. the intention of a human operator that acts without
specifying his actions in advance.

The specification of variables presents little differences with respect
to Section 5.3. Each variable is associated to a name, a type, a range
constraints, and an observation method as before, but the observation
method is optional to reflect variables that are permanently unobserv-
able. Moreover, the observation method is allowed to fail, to capture
the case of variables that are temporarily unobservables. Precisely,
a variable is considered unobservable either when the observation
method is not provided or when it fails at run-time during obser-
vations. Another important difference is that each observed value is
associated to a timestamp which represent the time at which the ob-
servation occurred.

Figure 6.1 depicts the main architecture of the framework modified
for handling unobservable variables. Iteratively, the reasoner receives
the observation o, a critical condition φ, and checks o against φ. If
the critical condition only contains observable variables, the reasoner
is always able to tell whether the CPS has reached the criticality or
not. In presence of unobservable variables, it might be impossible to
discriminate whether the CPS is in a critical state only from observa-
tions.

The reasoner is also able to take as input some further information
about the CPS state in form of a logical assertion, hereafter called
refinement and denoted by ρ. Refinements are typically provided by
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Figure 6.1: Structure of the real-time monitoring framework.

human operators to give the monitor additional information about
unobservable variables.

When the reasoner is unable to determine whether the current state
satisfies a critical condition, it computes a logical condition γ of unob-
servable variables that is sufficient to determine that the system state
is not critical. The condition γ is hereafter called assisted check, because
it is computed by the framework to help security operators figure out
the missing unobservable information. In other words, the assisted
check can guide operators to provide better knowledge refinements.

We use the same notion of variables V with the optional or possibly
failing observation method. An observable variable is associated to
timestamp values. In the following T denotes the real domain of time
for notation purpose, i.e. T = R.

Definition 6.1. An observation is a partial mapping from variables to
timestamped values. Formally, let V ⊆ V be a subset of variables. An
observation is a pair of functions o : V → R and ot : V → T such that
o(v) ∈ range(v) for each variable v ∈ V. The notation dom(o) denotes
its domain V.

When clear from the context we use o to indicate the pair (o, ot). A
state is a total observation where each value has a timestamp.

Definition 6.2. A state s of the monitored CPS is a total observation
function that maps all variables to timestamped values, i.e. an obser-
vation such that dom(s) = V . Given an observation o, we define

S(o) = {s ∈ S | ∀v ∈ dom(o) : s(v) = o(v) ∧ st(v) = ot(v)}
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as the set of states that coincide with s.

The reasoner regularly receives the most recent observation o from
the observer. If v 6∈ dom(o) variable v is unobservable, otherwise the
value o(v) was observed at time ot(v). This allows reasoning about
the actual time the value was observed, crucial to express time rela-
tionships about observations of different variables.

Definition 6.3. A critical condition formula is defined by the grammar:

X ::= v | v.t | now (6.1)

φ ::= a1X1 + · · ·+ anXn ./ b | ¬φ | φ ∧ φ | φ ∨ φ (6.2)

where v ∈ V , now 6∈ V is a distinct symbol from variables, ai, b ∈
R, ./ ∈ {=, 6=,<,≤,>,≥}. Given a variable v, v.t represents the
timestamp of its value. The set of variables occurring in a formula
φ is denoted by var(φ).

A critical condition formula is a boolean combination of linear in-
equalities of values and timestamps of observation of variables. It
expresses a property of the most recent observation of the CPS state,
where both observable and unobservable variables may occur in a
formula. We use the standard interpretation of formulae over assign-
ments.

The critical condition Eq. (4.4) of the chemical process example de-
scribed in Section 4.3 uses the syntax of Definition 6.3:

¬(pLSon.t < pLSoff.t→ 30m < pLSoff.t− pLSon.t < 31)

where pLSon, pLSoff ∈ V are variables representing the observation of
on and off commands to pump LS.

Definition 6.4. Given an observation o, a point in time τ, and a for-
mula φ such that var(φ) ⊆ dom(o), the observation o satisfies at time
τ the formula φ, denoted by o, τ |= φ, when recursively:

JvKo,τ = o(v) Jv.tKo,τ = ot(v) JnowKo,τ = τ

o, τ |= ∑
i

aiXi ./ b iff ∑
i

aiJXiKo,τ ./ b

o, τ |= ¬φ iff o, τ 2 φ

o, τ |= φ1 ∧ φ2 iff o, τ |= φ1 and o, τ |= φ2

o, τ |= φ1 ∨ φ2 iff o, τ |= φ1 or o, τ |= φ2

The set of states satisfying a formula φ is denoted by S(φ).
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Figure 6.2: Reasoner flow chart given criticality φ.

Our framework uses state formulae to define the known critical
conditions of the monitored CPS. The reasoner iteratively receives
from the observer the most recent observation o, and tries to evaluate
if o, τ |= φ for each critical condition φ where τ is the current time.
In this way, the reasoning time can be different from the observation
time, and the observation time for each variable can be different.

Notice that in the general case it is not possible to check if o, τ |=
φ due to unobservable variables. Formally, o, τ |= φ can be simply
checked using the semantics in Definition 6.4, defined by induction
on the syntax of the formula, if and only if var(φ) ⊆ dom(o), i.e.
an observed value is provided for each variables that occurs in φ.
Otherwise, it may not be possible to check if φ is true in the current
state. The following section describes how the reasoner handles these
situations.

6.3 detection of critical conditions

Figure 6.2 depicts the behaviour of the reasoner. At each iteration
it receives two inputs: an observation o from the observer and an
optional information refinement ρ from the operator.
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The core of the reasoner is an SMT engine. The reasoner computes
a logical formula that is the equivalent of the observation as follows:

σo :=
∧

v∈dom(o)

v = o(v) ∧ v.t = ot(v) (6.3)

where v and v.t are distinct symbols for the value and timestamp
of variable v. Notice that unobservable variables, i.e. variables not
defined in o, do not appear in σo. In the following we use σ to denote
σo since the observation o is fixed for each iteration of the reasoner.

The refinement is a logical assertion that enables an operator to
provide the reasoner with any further information about unobserv-
able variables. It there is no such information then ρ := true.

The logical expression κ := σ∧ ρ represents all the information that
the reasoner knows about the current CPS state s. To discriminate if
the CPS is currently in a critical state the reasoner checks whether the
formulae κ ∧ φ and κ ∧ ¬φ are satisfiable using an SMT solver. Three
cases are possible:

1. The system is in a critical state, regardless unobservable values,
or equivalently S(κ) ∩ S(φ){ = ∅. This is equivalent to check-
ing whether the formula

κ ∧ ¬φ is unsatisfiable. (6.4)

2. The system is not in a critical state regardless unobservable val-
ues, or equivalently S(κ) ∩ S(φ) = ∅. Similarly, this is equival-
ent to checking whether formula

κ ∧ φ is unsatisfiable. (6.5)

3. If both formulae in (6.4) and (6.5) are satisfiable, then S(κ) ∩
S(φ) 6= ∅ and S(κ) \ S(φ) 6= ∅. In other words, it is not pos-
sible to establish from κ whether the actual CPS state is critical,
because this depends on some unobservable values not in κ.

In the first and second cases the reasoner can compute an estima-
tion of the criticality of the current state respectively, as explained in
Section 6.4.

In the third case κ does not contain enough information to discrim-
inate whether the CPS is in critical state. A way to obtain a more
precise result is to provide a more informative refinement than the
one contained in κ.

In practical cases it can be hard for a human operator to under-
stand which piece of information is missing. To this aim, the reasoner
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is able to calculate a condition γ that is sufficient to guarantee the
non-criticality of the current CPS. Our framework can provide a hu-
man operator with γ as a guide for better refinements. Indeed, the
operator can try verifying if γ holds, or at least if some of its sub-
formulae. This way the operator may acquire some information, make
educated assumptions on unobservable variables, and provide it back
to the reasoner in the form of a more informative refinement. For this
reason, the reasoner acts as an assistant to the human operator, and
the formula γ is called assisted check. In practical cases, the operator
must be able to handle the complexity of the assisted check formula,
thus it is crucial that the size of γ is as small as possible.

A possible way to compute γ is hereafter described. Notice that the
formula κ ∧ ¬φ is trivially an assisted check, but useless for finding
better refinements. Moreover it contains all pairs of the form v = x
and v.t = y for all observable variables v for some value x and y.
It is useless for a human to check variables whose values has been
retrieved by the observer.

We use the well known notion of Craig interpolant, provided by
most SMT solvers, to compute the assisted check γ. Given two mu-
tually unsatisfiable formulae α and β, a Craig interpolant (denoted by
interpolant(α, β)) is a formula η such that var(η) ⊆ var(α) ∩ var(β)

and formulae α → η and η → ¬β are valid. In other words, the for-
mula η is an explanation for the mutual unsatisfiability that uses only
the variables that are common in α and β.

Definition 6.5 (Assisted check computation). Let o be a partial ob-
servation, σ be defined as Eq. (6.3), ρ a refinement, and φ a critical
formula such that both σ ∧ ρ∧¬φ and σ ∧ ρ∧ φ are satisfiable. Let ρo

and φo be the formula obtained replacing each occurrence of v and
v.t with o(v) and ot(v) resp. for all v ∈ dom(o). The assisted check is
defined as

γ := interpolant(ρo ∧ ¬φo, φo) (6.6)

We now show that γ is an assisted check, i.e. implies the non critic-
ality of the current state, and does not contain observable variables.

Proposition 6.1. The formula γ defined in Eq. (6.6) is an assisted check
that does not contain observable variables.

Proof. Since γ = interpolant(ρo ∧ ¬φo, φo), by definition of Craig in-
terpolant

γ→ ¬φo (6.7)

var(γ) ⊆ var(ρo ∧ ¬φo) ∩ var(φo) (6.8)
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Eq. (6.7) implies that o, τ |= ¬φo, which also implies that o, τ |= ¬φ

by Definition 6.4.
The set of observable variables dom(o) ∩ var(φo) = ∅ by construc-

tion of φo. Thus, Eq. (6.8) implies that dom(o) ∩ var γ = ∅.

Example 6.1. Assume that the example CPS of Section 4.2 reaches a state
where the room temperatures are 15 ◦C and 23 ◦C, the desired temperatures
are 21 ◦C and 17 ◦C, the main controller sends a Modbus write message to
the PLC controlling the water heater to turn it off, and the outdoor thermo-
meter is temporarily broken (i.e. O is unobservable). The observer collects
such information from the network traffic and provides the reasoner with

σ := ¬H ∧ T1 = 15∧ S1 = 21∧ T2 = 23∧ S2 = 17 (6.9)

Assume no further refinement is provided, i.e. κ = σ, and consider the
critical formula φ3 defined in the example Section 4.2 as

φ3 = ¬M ∧ ¬H ∧
(
(T1 < S1 ∧O < S1) ∨ (T2 ∧O < S2)

)
In this example, our framework can verify that both formulae κ ∧ φ3 and
κ ∧ ¬φ3 are satisfiable. Indeed, the current knowledge κ does not contain
enough information discriminate if the system state is critical, because this
depends on the actual value of the unobservable variables M and O. In this
case, the assisted check defined as Eq. (6.6) results

γ := M ∨O ≥ 21

The result is correct: to discriminate the criticality of the current state it
is enough to check if the operator intentionally sent the command or if the
outdoor temperature is greater than S1, which is 21. Notice that γ only
contains the unobservable variables.

6.4 prediction of critical conditions

In this section we use the same notion of proximity D(s, φ) described
in the previous chapter.

When the current CPS state is critical, i.e. κ ∧ ¬φ is unsatisfiable,
proximity D(κ, φ) = 0. When the CPS is in a critical state, i.e. when
κ ∧ φ is unsatisfiable, computing the proximity from the critical con-
dition D(κ, φ) is an optimisation problem on linear constraints, since
critical formulae κ and φ represent boolean combination of linear in-
equalities. Our framework uses SMT-based optimisation techniques,
such as the one provided by the Z3 prover [34].
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Due to unobservable variables, κ does not represent one system
state but a set of possible states. It is possible to evaluate the prox-
imity from φ or the criticality w.r.t. φ in the best and worst pos-
sible cases. The criticality range of κ with respect to φ is the pair
C(κ, φ) = (Cmin, Cmax) defined as

Cmin(κ, φ) :=

−Dmax(κ ∧ ¬φ, φ) if κ ∧ ¬φ is satisfiable

Dmin(κ ∧ φ,¬φ) otherwise
(6.10)

Cmax(κ, φ) :=

 Dmax(κ ∧ φ,¬φ) if κ ∧ φ is satisfiable

−Dmin(κ ∧ ¬φ, φ) otherwise
(6.11)

The meaning of previous definition is explained in 6.1, which sum-
marises the possible combinations of values of C(κ, φ), as a result of
the logic in 6.2 and definitions in (6.10) and (6.11). Cmax and Cmin can
be positive, negative. A positive value indicates a state is critical w.r.t.
φ, and the value represents how far the state is from licit state (i.e.
states that does not satisfy φ). A negative value indicates the state
is non-critical w.r.t. φ, and its absolute value represents how far it is
from φ.

Algorithm 6.1 shows the pseudoalgorithm to compute the critical-
ity C(κ, φ) of the current CPS state. Logical expressions κs and κt rep-
resent the expression κ where each variable is replaced with a symbol
in fresh sets s and t respectively. Similarly for φs and φt. Moreover, δ

is a fresh symbol that is bound in the SMT solver to the expression
that represent the metric on Rn of choice. This enables to handle ex-
pressions κ ∧ φ and κ ∧ ¬φ easily without variable clashes.

Cmin Cmax Meaning

negative negative κ ∧ ¬φ sat and κ ∧ φ unsat. State is non critical regard-
less unobservables. −Cmin and −Cmax are the best and
worst proximity values to φ

negative positive κ ∧ ¬φ sat and κ ∧ φ sat. State could be critical or not
depending on unobservables. Assisted check returned
for further refinement. −Cmin is the proximity to φ in
the best case and Cmax is the criticality (i.e. proximity
to ¬φ) in the worst case.

positive positive κ ∧ ¬φ unsat and κ ∧ φ sat. State is critical regardless
unobservables, Cmin and −Cmax are the worst and best
criticality values (i.e. proximity to ¬φ)

Table 6.1: Meaning of the results of the Reasoner.
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Algorithm 6.1 Computation of proximity range.
Require:

κs, φs, κt, φt: instances of κ and φ with two distinct sets of fresh symbols
δ: fresh real symbol bound to distance expression on symbol sets s and t
ε: error tolerance
function RankingRange(κ, φ)

solver← new SMT-Optimizing-Solver
solver.minimize-goal(δ).assert(¬φs ∧ φt).assert(κs)
model← solver.check-sat()
if model not found then . κs ∧ ¬φs unsat: state is critical

solver.remove(κs).assert(κt)
model← solver.check-sat()
(Cmin, Cmax)← (model.getvalue(δ), Dmax(solver))

else . κs ∧ ¬φs sat
solver.remove(κs).assert(κt)
model← solver.check-sat()
if model not found then . κt ∧ φt unsat: state is not critical

(Cmin, Cmax)← (-Dmax(solver), -model.getvalue(δ))
else . both κ ∧ ¬φ and κ ∧ φ sat

Cmin← -Dmax(solver)
solver.remove(κt).assert(κs)
Cmax← Dmax(solver)

return (Cmin, Cmax)

function Dmax(solver) . iterative search for max distance
model← solver.get-model()
repeat

dmax← model.getvalue(δ) . current approximation
solver.assert δ > dmax + ε

model← solver.check-sat()
until model is not found
return dmax





7
I M P L E M E N TAT I O N N A N D E X P E R I M E N TA L
R E S U LT S

7.1 overview

This chapter shows the experimental results to validate the proposed
monitoring approach. The experimental validation is twofold: a real-
time simulation of a simple use case, run in parallel to our prototype,
and a set of benchmarks to evaluate the computational times. The
former is aimed at verifying that the framework is a feasible monitor
solution for realistic systems, the latter at understanding the limit of
the approach as a function of the kind and the complexity of critical
conditions.

7.2 implementing the monitoring framework

The observer component, which collects the values of the variables of
interest, is implemented using off-the-shelf tools. The traffic network
is analysed using Tshark, the command line tool of Wireshark [97,
107]. Network traffic is scanned to find Modbus commands and to ex-
tract relevant information through deep packet inspection. This way,
it is possible to capture write commands sent to actuators to change
their setpoints and read commands sent to sensors, with the related
response containing the measurement value. This way network traffic
is transformed into log format with the timestamps of observations
and collected in a timeseries database.
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Network traffic inspection and system logs provide passive obser-
vation of the variables of interest in ICS, since industrial protocol
usually do not provide security mechanisms. The Internet of Things
devices, instead, typically use telemetry protocols like MQTT [2] that
provide authentication and authorisation mechanisms together with
TLS tunnels. For this reason, passive network analysis is not viable in
well designed real systems. Fortunatly, a data gateway can be used to
this aim for authorised users.

All the collected events and measurements are stored in a timeser-
ies database. Our prototype uses InfluxDB [63], a well established
open source database which is capable of storing timestamped series
of numeric values and strings.

At run-time, while the database is populated with the values of
the variables of interest, the reasoner gets these values issuing one
query for each variable. This way the observer and the reasoner are
decoupled. The reasoner builds its knowledge from the observer and
possible refinements from human operators. In our prototype both
are stored in InfluxDB.

In order for the framework to be applicable to a large number
of scenarios, the approach needs to be agnostic with respect to the
sources of observed data and to the technique to collect them. In par-
ticular, a passive monitoring framework needs to be decoupled from
the CPS by definition. Since the frequency of data collection and the
computational performance of the reasoner might be different, de-
coupling analyses from observations is important for framework to
be feasibility in real cases.

The reasoner component is made by Python code on top of two
main libraries. The PuLP library is an open source linear program-
ming modeller written in python. It can generate LP problems from
a unified description and pass them to external and well established
LP solvers. This way, it is not necessary to learn and use the API spe-
cific of each solvers. Our prototype uses the GLPK and the GUROBI
backends. The former is open source, the latter is commercial but
offers a free license for academic purposes. The comparison of the
linear programming solver goes beyond the scope of this work. For
this reason, our performance benchmarks take only the result of the
best one as a reference.

The Microsoft Z3 Prover [33] is an open source Satisfiability Mod-
ulo Theories (SMT) solver. While other solvers are available, Z3 seems
offer the best combination of state-of-the-art performance, usability of
API, and documentation. Moreover, together with OptiMathSAT [99],
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it is the only SMT solver providing optimisation goals. The Z3 solver
provides API to easily define boolean, integer, and real variable sym-
bols and logic expression on top of such symbols. Our prototype uses
the linear integer and rational arithmetics, with and without quantifi-
ers, and with and without optimisation goals.

7.2.1 Building Heating Example Testbed

This section briefly shows how one of our testbed is implemented
and the first experimental results that prove the feasibility of the ap-
proach.

We set up a Docker-based [38] simulation of the CPS example de-
scribed in Section 4.2, and specifically the Process Control Network
and the Modbus traffic between the main controller and the PLCs,
with the following main containers:

• plcsim: our python application simulating the PLCs and the
physical process. The Modbus interface is implemented using
the pymodbus Python library [31]. Physics is simulated using the
Newton’s Law of Cooling, often used in literature (e.g. [28]).

• nodered: the HMI, the human manual operations, and the auto-
matic operation logic of Table 4.1, and the attackers command
are implemented using Node-RED [65], a flow-based program-
ming tool that supports the Modbus protocol. This way licit and
illicit Modbus commands are identical w.r.t their packet signa-
ture.

• monitor: our Python prototype of the proposed monitoring frame-
work, which detects critical conditions and computes the prox-
imity and proximity range from them using the SMT open source
Z3 prover [34].

• influxdb [63] and grafana [52]: a time series database and a data
visualisation software that provide the graphical user interface.
Figure 7.1 shows a screenshot.

In this way the environment is able to simulate the main compon-
ents depicted in Figure 4.1 and the Process Control Network that
exhibits a real Modbus network traffic that is possible to capture and
analyse. For instance, the observer component collects the value of
variable T1 by monitoring the Modbus with destination IP of PLC1,
port 502, and inspects such traffic to extract from the payload the
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value of input register (the Modbus term indicating a read-only in-
teger register) corresponding to T1.

The observer uses open source tools to monitor the network and
system logs, according to variable specification. In particular, the Mod-
bus network traffic is analysed through tshark, the command line tool
of Wireshark [32], to extract the values of interest through its basic
deep packet inspection functionalities.

The reasoner component is a Python application that implements
Figure 6.2. It iteratively gathers the observed values from the observer
and, for each critical condition in the criticality specification, it uses
the open source SMT Z3 solver [34] with the Python API to evaluates
the criticality of the CPS state, to compute the minimal assisted check
defined in (6.6), and to compute the criticality range from the critical
condition as defined in Algorithm 6.1.

Figure 7.1 shows our first implementation of the graphical user in-
terface to provide security operators with the real-time results of our
framework, given a certain critical condition φ. The first block, in tab-
ular form, shows different moments of the recent history. The first
column shows the time of the computation of the reasoner. The third
column contain the value “critical”, “non critical”, or “unknown” rep-
resenting the three cases described in the flow chart in Figure 6.2. The
forth column is empty in case of “critical” and “non critical”, and con-
tains the minimal assisted check γ. The fifth column contains the user
refinement ρ, if provided.

The rest of the graphical dashboard shows the criticality range. The
two gauges represent the real-time values of Cmin and Cmax. The chart
shows the timeseries values of Cmin and Cmax. In this case, it is easy to
see that the values are positive but constantly decreasing, thus the sys-
tem is critical but getting closer to licit states. In the leftmost part of
the chart Cmin and Cmax are both close to 1, hence unobservable vari-
ables have a low impact on the criticality. The central part of the chart
shows that Cmin and Cmax greatly differ: the unobservable variables
have a bigger role on the actual criticality measure of the CPS. This
is the case when a refinement from the human operator can really
improve the results of the reasoner. The rightmost part of the chart
shows that the system is less critical, because both Cmin and Cmax are
close to 0.

The whole prototype works on an Intel Core i7 laptop with 8 GB or
RAM, and it is capable of discriminating the criticality and compute
proximity ranges at real-time with an update frequency of about 500

milliseconds, which seems enough for a security monitoring solution.
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While better performance tests and a characterisation of the attacks
and critical conditions are subject of further investigation, first results
seem to validate the overall feasibility of the approach.

7.2.2 Chemical Process Example Testbed

We developed a prototype to implement the monitoring components
and algorithms explained in Chapters 5 and 6 to prove the feasibility
of the approach.

In order for the framework to be applicable to a large number
of scenarios, the approach needs to be agnostic with respect to the
sources of observed data and to the techniques to collect them. The
overall architecture is depicted in Figure 7.2, which shows different
observation sources, possible aggregates function on observed val-
ues, a timeseries database (TSDB) to decouple the observer from
the reasoner, and the main components of the reasoner that reflect
Chapter 6.

The prototype is based on Docker [38] containers with a microservice
architecture made of freely available open source tools and ad-hoc
software developed by the author:

• Chemical Process Simulation: a Node-RED [65] docker con-
tainer used to simulate1:

1. The physical simulation of pumps and liquid flows, de-
veloped in the Typescript language.

2. The HMI implementing the manual control of the process,
developed using Typescript functions and the Node-RED
visual language. 7.3 shows a screenshot.

3. The automatic control, emulating the SCADA server, de-
veloped in Typescript and Node-RED.

4. The attacker’s read and write commands to PLCs to emu-
late the scenarios in Section 4.3.

• The Observer: Modbus-like network messages from the chem-
ical process simulations are stored in timeseries database with

1 We developed a first version based on a Redis to simulate the physical behaviour us-
ing Lua scripts and a Python simulation of PLCs based on the Pymodbus [31] library
to send real Modbus messages on the network. The Observer used TShark/Wire-
shark [107] for traffic capturing and the same timeseries databases to store parsed
messages. The real deep packet inspection for CPS, already established in literat-
ure [88, 90], was too cumbersome for our goal since the Observer that can make use
of parsed messages from the simulator without loss of generality and applicability.
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all the required fields. Each variable occurring in critical specific-
ations is associated with a query that returns one timestamped
value or fails in case of unobservable variables. The timeseries
DB of choice is InfluxDB [63] with its native query language
and DataFrame files queries using the Pandas library.

• The Reasoner: the prototype of the core of the proposed frame-
work, developed in Python using Microsoft Z3, an open source
SMT prover [34]. It implements the concepts described in Chapter 6

and provides the first performance and feasibility measurements.
Results are store in timeseries databases for easy access.

• Monitoring Interface: Grafana [52] and Chronograf (part of the
InfluxData suite [63]) containers that provide mature data visu-
alisation and query interface to time series databases.

7.3 performance benchmark

This section shows the results of the first performance benchmark of
our prototype of the framework. We show only the results for the
unobservable core, which is the more complete in terms of features.

Each test generates random critical conditions based on a different
number of variables up to 200. Then it generates a random CPS state.
We run different set of tests with different percentages of observable
values: 100%, 50%, 20%. The maximum computation time is about 4

seconds, which proves the feasibility of our framework in real cases.
It is worth noticing that, while the 50% and 20% cases exhibit similar
computational times, the 100% one is clearly easier to compute. This
was expected, since unobservable variables require optimisation com-
putations on wider space. Notice that the overall computational time
is super-linear w.r.t. the number of variables.

We now describe a more complex benchmark, which constructs the
following two formulae

φ1 =
n∧

i=1

−1 ≤ vi ≤ 1 (7.1)

φ2 =
n∨

i=1

−vi ≤ −1∨ 1 <= vi (7.2)

SMT solvers uses heuristics and linear programming techniques to
achieve better results, but unlike LP solvers do not require the con-
straint to be conjunction of linear atoms. For this reason, we explicitly
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expressed φ1 and φ2 in conjunctive and disjunctive form to test the
possible impact of their form on the performance. At each iteration, a
random state s is generated such that either s ∈ S(φ1) or s ∈ S(φ2).

Our prototype is based on the following operations, using an object
oriented notation:

• new framwork(n variables): return a new framework with n vari-
ables

• f.init(φ, metric): initialise the SMT solver with the critical formula
φ and its associated metric.

• f.compute(observation): compute the criticality range given a cur-
rent (partial) observation.

The benchmark iteratively executes:

f← new framework(n variables)
measure time: f.init(φ, metric)
for h times do

observation← randomly generate partial observation
measure time: result← f.criticalityrange(observation)

where the Manhattan metric is used and the observation is generated
in two ways:

• Outside, i.e. a random value > 2 is generated for each variables

• Inside, i.e. a random value ∈ [−0.5, 0.5] is generated for each
variables.

The results are shown in three Figures. Figure 7.5 considers the case
where the state is fully observable, i.e. each variable has a generated
value. The left side represents the state generated as Outside, the right
as Inside. The vertical bars represent the standard deviations, since for
each combination of variable of inside/outside five experiments are
performed. The first raw represent experiments using φ1, the second
using φ2, and the third plots the difference between the two (where
the error bar are the sum of errors.)

Notice that there is a big performance difference between the Out-
side and the Inside, and also a relevant difference between φ1 and φ2.

In comparison, Figure 7.6 and Figure 7.7 show the same results for
different percentage of observables. Again, the difference is relevant.
The plots also show that the initialisation time is a relevant overhead
only for experiment that show a good computational time.
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This test are far from complete, but show that the framework is us-
able for a little number of variable (about 15) regardless the complex-
ity of the critical condition and the number of unobservable variables.
On the other hand, it shows that performances highly vary depend-
ing on the complexity of φ, its form, and the number of unobservable.
A full test to characterise the combinations of these aspects seems
necessary for expressing conditions with a high number of variables.
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Figure 7.1: Screenshot of the graphical interface of the monitoring proto-
type.
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Figure 7.2: Overall Prototype Architecture.
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Figure 7.3: Screenshot of the emulated HMI.

Observable vars 100%
Observable vars   50%
Observable vars   20%

Figure 7.4: Computation time of C(κ, φ) from random benchmark.
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8
C O N C L U S I O N S

This work aims at developing a novel and effective approach for con-
tinuous monitoring suitable for Security Operation Centres (SOC)
and Computer Security Incident Response Teams (CSIRT) of enter-
prises that largely employ Cyber Physical System.

The first contribution is a thorough literature review. The review
started from the technical aspects of the cyber components of CPS, the
legacy and present technologies, their security issues, and possible
solutions. This includes both academic literature, which explores the
state of the art of CPS cyber security, and international standards and
guidelines, aimed at fostering appropriate risk management method-
ologies for critical infrastructures.

My personal ten years working experience in cyber security of in-
dustrial control system has strengthened my understanding of the
sector. This allowed me to carry out my industrial PhD activities
within a privileged environment. The active participation in European
projects, in the contest of FP7/Horizon 2020, targeting the security of
the energy sector and Smart Grids, allowed me to have continuously
discussions with European stakeholders.

The literature review and the working experience prove that solu-
tions for improving the resilience of CPS are necessary. In this respect,
incident response teams are considered a fundamental component of
risk management and continuous monitoring and attack detection are
necessary tools to support such methodologies. The literature shows
that leveraging the peculiarities of CPS lead to more effectiveness

97
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techniques. Most works focus on a particular combination of obser-
vations and analysis of features, both from the cyber and the phys-
ical worlds, often presenting unsupervised or semi-supervised tech-
niques based on statistics or machine learning. Specification-based
approaches instead appear less mature.

This work presents a specification-based predictive cyber security
monitoring framework for cyber physical systems. It enables specify-
ing known critical conditions, through an easy but expressive formal
language, which can be detected at run-time. It defines a notion of
proximity of the CPS current state from the specified critical states:
checking how the proximity changes in time enables security operat-
ors to predict whether the system is evolving towards critical states
and how close it is from them. The proximity, captured by the math-
ematical notions of metric and premetric on Rn, is used to define a
quantitative notion of criticality of the current state.

The novelty of present work is to handle both observable and un-
observable aspects of the CPS. This enables a security operator to
express a model of criticality that is more complete and suitable for
real cases. The monitor is able to continuously gather the value of all
the observable variables from the analysis of the network traffic ana-
lysis and system logs, and to build a representation of this knowledge
that correctly approximates the actual state of the system.

Unobservable variables complicate the criticality detection. When
the monitor cannot discriminate if the CPS is in a critical state, a hu-
man operator can provide additional knowledge about unobservable
variables as a refinement. However, this can be hard in real cases due
to the complexity of the CPS and the large number of variables. To
this aim, the framework is capable of computing a check in the form
of a logical formula that is sufficient to discriminate the criticality of
the CPS state. The formula, called assisted check, is provided to the
operators as a guide for possible information refinements. The com-
putation of the assisted check employs a method to keep the formula
as small as possible, to avoid useless human effort.

Unobservable variables also complicate the computation of the crit-
icality. However, the framework is able to compute a min/max range
of the criticality which represents the best and worst case scenarios.

The recent results of Satisfiability Modulo Theories (SMT) found in
literature provide the basis of the reasoning core of our framework.
A contribution of this work is the development of a method to reason
about and to compute the criticality of the CPS using SMT solvers.
The contribution is twofold: the problem and possible computational
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method are formally defined, and a working prototype is presented.
In case of fully observable CPS, SMT engines provide a state-of-the-
art method to compute the criticality of the current state of the CPS.
In presence of unobservable values, the SMT-based core provides a
novel way to assist human operators for information refinements and
to compute the range of the criticality of the CPS.

During the literature review and the definition and implementation
of the core framework, the need for capturing temporal behaviours
arose. A number of relevant works takes advantage from observing
temporal patterns of the traffic captured from the process control net-
work, as explained in Section 3.3. A contribution of this work is a liter-
ature review of online monitoring of temporal properties. It is worth
noticing that the exploration of temporal specification just began and
is far from being complete. Formal methods literature is a valuable
reference and shows different approaches.

Model-based approaches assume that an expert defines a model of
the system and a temporal property, and model checking techniques
determine whether the model satisfies the property. In real CPS cases,
defining a model is time consuming and often infeasible, especially
for complex systems. While these techniques often allow for partial or
abstract models, validating the model against the real system can be
difficult. Since our monitoring solution is targeted to practices typical
of security operation centres, our framework does not follow a model-
based approach and only requires an operator to specify observation
methods and critical conditions, i.e. only the piece of information and
behaviours of interest.

Fortunately, the same formal methods can be often applied to trace
semantics and to runtime monitoring. Indeed, while model checking
checks every possible run of the system, monitoring checks that the
exhibited behaviour complies with the specified property. Runtime
verification of temporal logics provides a concise way to reason about
temporal behaviours of the monitored systems. Several verification
methods exist in literature. Recent works propose ad-hoc procedures
for runtime monitoring of temporal logic properties. In particular re-
cent works [3–5, 7, 9] select relevant fragments of the Metric Tem-
poral Logic with past, future, or both operators, and provide efficient
algorithms and prototypes for runtime verification. Since the SMT im-
plementations used in this work provide programmatic API, the in-
tegration of such algorithm within our approach is allegedly possible,
especially the algorithms presented in [9]. This can be the subject of
future work.
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Our framework is currently capable of expressing the time of the
last observation of a variable and constraints on such times. Thus,
the expressiveness of our timed critical specifications appear still mar-
ginal with respect to well established temporal logics. However, from
the literature review, no temporal logic runtime verification method
seems to be capable of continuously evaluating a notion of criticality
that allows to predict if the system is evolving towards critical or licit
states.

Our working prototype provides the basis for the first feasibility
and performance tests. To evaluate the feasibility, two CPS examples
are defined and simulated in this work, and the monitor is run in
parallel. The computational performance of our framework highly
depends on the size of the critical condition specifications in terms
of number of variables, their forms, and the number of unobserv-
able variables. This was expected, since the literature shows that the
computational times of SMT solvers depends on a combination of
algorithmic efficiency and heuristic tactics. Thus, the actual perform-
ances vary on different classes of formulae and problem and deeper
performance benchmarks would be necessary to characterise differ-
ent classes of formulae and to better identify strengths and limits of
our approach. It is worth noticing that the optimisation modulo the-
ory is a fast growing research area. As expected, the computational
time is super-linear with respect to the complexity of the formulae.
However, the first performance tests are promising and validate the
proposed approach.
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