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Abstract

This thesis deals with the problem of synthesiplagar, maximally sparse, steerable and non—
superdirective array antennas by means of convémgation algorithms and testing their per-
formances on an existing array to assess its &d fperformances in terms of requirements ful-
filment. The reason behind the choice of such taprelated to those applications wherein the
power supply/consumption, the weight and the hardisaftware complexity of the whole radi-
ating system have a strong impact on the overadt.don the other hand, the reduction of the
number of elements has of course drawbacks as(sdl in directivity, which means a smaller
radar coverage in radar applications, loss in roess, etc.), however the developed algo-
rithms can be utilized for finding acceptable traafés that arise, inevitably, when placing ad-
vantages and disadvantages of sparsification orb#iance: it is only a matter of appropriately
translating requirements in a convex way. The ssgithscheme will be described in detall in its
generality at the beginning, showing how the pr@gosynthesis techniques outperform several
results existing in literature and setting the Ibar new benchmarks. In particular, an important,
innovative constraint has been considered in thh®sis problem that prevents selection of el-
ements at distances below half-wavelength: the super-directivity. Moreover, an interesting
result will be derived and discussed: the trendhefreduction of the number of elements Versus
the (maximum) antenna size is decreasing as ther lmicreases. Afterwards the discussion will
be focused on an existing antenna for radar apglices, showing how the proposed algorithms
intrinsically return a single layout that works pdly for transmitting and receiving (two-way
synthesis). The results for the specific case ech@sminly the set of weights and relative posi-
tions) are first numerically validated by a full-wasoftware (Ansys HFSS) and then experimen-
tally assessed in anechoic chamber through measimtsm
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Sparse array synthesis, convex optimization, nuwrakaind on field evaluation
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Chapter 1

Introduction

The design of sparse Active Electronically ScanAetdys (AESAS) radiating a desired Far Field (FF)
pattern, satisfying a prescribed power mask witfeaselements as possible has several potentidit app
cations like satellites, radars, etc., as welhéaréests on a theory basis. The synthesis of utigaaced
arrays is in general a complex problem that cabeoproperly addressed with analytical methods, thus
mainly leaving the task to numerical techniques.

Deterministic approaches have been proposed i, fiere simple formula are derived for synthegzin
given FF patterns by using uniform amplitude sparsays. In [1], [2] and [3] in particular, a largam-
ber of sensors is often required to fulfill the idasconstraints. Furthermore, the number of serniscas
input of the solution methods and it is not derioede the FF performances to achieve have been.give
A novel deterministic, non-iterative synthesis aigon based on the matrix pencil method has been pr
posed in [40-[41]. It efficiently reduces the numioé elements in a linear antenna array with védrgrs
computation time. Such approaches allow to deterrtir'e minimum number of sensors to fit, with a
fixed accuracy, provided that a proper referendtepais given in amplitude and phase as input.

On the other hand, existing global optimization moels like Genetic Algorithm (GA) [5-17], Simulated
Annealing (SA) [17-23], Differential Evolution (DHR4-31] and Particle Swarm Optimization (PSO)
[32-39] can be used for the synthesis of non-unifinear and planar arrays, although such algosthm
especially the GA, require a computational load tzen be likely prohibitive for arrays with largem-

ber of elements and constraints, and besides theptdassure global solutions.

In general, of the different approaches preselitaérature on this topic, that can be grouped atiogrto
specific criteria, one in particular is of interést the present work: the distinction betweengratffitting
problems and mask-constrained ones [42]. In tis¢ d&se, which, to the student’s best knowledgthes
most taken under consideration in literature, Wwisth noting that the field distribution satisfgithe giv-

en design constraints is not unique and differéioices for the reference field pattern lead toedéht
results, in terms of number of sensors. Therefoeeetis no guarantee that the number of antennte of
resulting sparse array is the minimum one. Suchlero represents one of the main drawbacks for many
existing approaches based on Compressed Sensihfy#2and Bayesian CS (BCS) [42] [45], wherein
the reference field to fit in order to obtain thexamally sparse array is a priori assumed knowargr
way fixed a priori. Resorting to pattern-fittingm@paches in the radar field for example is quitest@in-

ing to the best of the student’s knowledge, sinaramatically decreases the available degreescef f
dom. In fact, most of the requirements are derifrech Probability of Detection (PD), Probability of
False Alarms (PFA) and range coverage demandshwimiderms of synthesis goals, only define upper
and lower bounds to be met, not a precise fieltepat Hence, as the main application selectedig th
work is AESAs for surveillance purposes (radarajl aince the whole PHD has been carried on in col-
laboration with thdJniversity of Trentovhile working as d.eonardo — Finmeccaniceamployee, an em-
phasis will be given to the second case, mask-constrained synthesis [46] [50] [77] by usompvex
optimization techniques [55], [56], [58].

One of the frameworks the sparse array synthesivesset in is CS [42-43]. Roughly speaking indeed,
the measurements one would use in the recoverysphese signal are substituted by FF specifications
while the array layout is actually the “sparse alfjto be recovered. In particular, the aim is gaiig to

fit ‘at best’ a reference complex pattern, andghablem’s actual unknowns are both the elementiaexc
tions and locations. A very dense grid is usualigsen for the array so that the elements whoseaexci
tion is different from zero also determine the attacations to be used. However, one of the meamve
backs of existing solutions available in literaty#&], [50] is that superdirectivity (according the
definition given by Hansen [SH<An array is superdirective if its directivity is tigr than the one ob-
tained from the isophoric case (uniform excitationith constant amplitude and linear phase has not
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been prevented: arrays with distances below halielemgth are obtained after optimization. Neverthe-
less, some attempts at clustering elements atndissabelow half-wavelength have been made in litera
ture [52-54] by setting constraints on the physgiaé of the antenna. Anyway, such methods arenesse
tially applied in post-processing, so that no afpigonstraint on the inter-element distance igdiin the
synthesis routine. This is one of the main reasamg in this entire work particular attention hasbe
paid to the non-superdirectivity and thus to thehods that allow to achieve it a priori in the $yetis
process. Furthermore, imposing a minimum inter-el@ndistance equal to half-wavelength in the array
resulting from the synthesis makes the problem ofuad coupling [74] [75] among the radiating ele-
ments negligible. As it will be described in detailthe following chapters, preventing superdindtfia
priori in an exact way (as we did), as well as adgrsng the sparsification process in terms of shirig

on and off some elements, requires the introducifdsinary variables (more in general of thegpseudo-
norm), whose management falls into the context isielll Integer Programming (MIP) [57] [59] [61]. So-
lution of the synthesis minimization problem inglpicture is efficiently achieved by employing tech
niques like Fast Branch&Bound (FB&B), which arddegd for MIP problems. The B&B algorithm [57],
[66] is a general method for finding the optimalusion to problems of combinatorial complexity (NP-
hard) that enumerates candidate solutions by mefasrooted-tree space search. According to its im-
plementation and to the upper and lower boundshefdost function, it can prune huge amounts of
branches, thus massively shortening the globatisalgearch. Besides, it can be efficiently impleied
with a parallel approach for optimizing the simnkaus use of cores and machines [69].

These techniques were firstly adopted by NarendchFukunaga [62], allowing several improvements
(in computational cost saving) later on [63], [§68]. From a technical point of view, we have decido
utilize B&B (historically employed in mixed integ@roblems, [64] [65]) since the cost function we ar
dealing with is intrinsically upper and lower boedd(as it will be seen in the later chapters), Whic
prunesab initio several branches of the span tree. In some cédea gptimization schemes like the GA
are exploited in MIP problems and can aid the B&Bdal optimization [70], in others the SA is useq [7
[72]; in general, exact solution strategies andrisda methods can be used to solve this clasgalf-p
lems. The B&B is one of the most common ones awdsgan exact solution, whereas algorithms like GA
and SA represent non-exact approaches in the denepose heuristic methods. Moreover, by using al-
gorithms like GA, SA and DE we experienced muclgtmsimulation time even for much smaller-scaled
problems (linear arrays for instance, [47]) tha dines carried on and discussed in the present work
the current goals, they become computationally iprobe. Anyway, whether exact or non-exact ap-
proaches perform better for a given problem depemndsow they are implemented. Since the B&B ex-
plores potentially the huge tree given by the coraturial problem, it is all a matter of how many
branches of the search tree are pruned and howlguic

Another way to solve, approximately, the combinatqrroblem that directly derives from the purpo$e
switching on and off the elements of the array vaitbonstraint on their minimum distance is to umee t
reweightedt;-norm [73]. In fact, from the CS theory we knowstpossible to reconstruct sparse signals
exactly from what appear to be highly incompletis & linear measurements by constraifigchinimi-
zation in the sense that substantially fewer memsents are needed for exact recovery. In view ef th
aforementioned way of considering the array layouerms of “sparse signal” to recover, in [73] tie
gorithm consists of solving a sequence of weiglitemhinimization problems where the weights used for
the next iteration are computed from the valuénefdurrent solution.

Since either B&B and the reweightégnorm have been selected for the optimization sehdiscussed
in this thesis, the trade-off between them willdigcussed in detail subsequently, as well as arigecre
terium for choosing the former or the latter foe tjpal at hand.

Starting from the basic scheme of [78] and [47}his thesis work a new synthesis method for achgev
maximally sparseplanar, steerable, non-superdirective arrays ipgeed, and the problem of deriving
the trend of the reduction in the number of rad@tlementd/ersuseither steering intervals and array
size is also addressed [48]. In the proposed syistlseheme, given a desired power mask and thg arra
geometry, it is first derived the minimum array pag containing a non-superdirective source whase r
diation pattern fulfills the design constraintséxploiting the results in [79].
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Then the maximally sparse, non-superdirective aable to radiate the steerable power patternfgiaiis
the prescribed power mask is synthesized. Sevtrature benchmarks have been chosen [46] [80r81]
order to prove the effectiveness of the develoggdrithms (even for shared-layout multi-patternusol
tions [81]), and new benchmarks have been set [48].

In the process of sparsifying the AESA antenna ehass final application of the developed algorithms
the element factor and all its pre-existing requieats have been taken into account, showing an con-
vincing coherence with the results of the full-wasaftware Ansys HFSS and the anechoic chamber
measurements, thus eventually and definitely pigpttie potential for future AESA projects.

Thesisoutline

The thesis is structured as follows: chapter Duhices the mathematical background necessaryder di
cussing the proposed synthesis schemes descriliddjner 3. In the latter the mathematical problkem
formulated and the developed solutions presenthdpter 4 deals with the application of such sohsjo

in particular to either benchmarks that exist ieriture and new ones, showing how they performalfi

ly, chapter 5 shows the results of the applicatibrihe developed algorithms to an existing antenna,
showing how its sparse version performs in FF ¢ime cases also with respect to the full, standael.o
Conclusions end the work.
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Chapter 2

M athematical background

In this chapter the basics for the discussion énrtbxt chapters are introduced and described.riicpa
lar, the conditions for the a priori existence gb@wer pattern lying within a given mask by prowigli
shape and size of the pattern source are furnishiegh the planar array tapering is presented and tw
cases discussed: Chebyshev and Taylor set of vgeight

Finally, all the definitions that gravitate arouthg convex optimization scheme and that are negetwa
the description of the developed algorithms areigem.

2.1 Introduction

The introduction in this chapter of the fundamerlations that lay the basis of the (planar) asyaoy
thesis is preliminary to the next chapters andh&rnhethods adopted throughout the PHD study. Specif
cally, the equations that describe the array fembar the element factor are reported [82] in otdeshow
how and where the set of weights, that are fundéahemthe synthesis process, come into play. Next,
sorting to the works of Bucci, Isernia and Fioreat[83], a simple and effective necessary conditmn
test if a source of given size and structure cdrate or not a power pattern lying in a given missgro-
vided. It is also briefly described in which casles criterion is also sufficient. Then a syntheliscus-
sion on planar array tapering is presented by niefgto the general formulation according to Shatku
[89] with two special cases: Dolph-Chebyshev [88§l &aylor [90]. In particular, the former has been
taken into account because it is the type of aapgring that has been chosen for the general fation

of the developed algorithms for sparse synthesisnttially, the basic definitions of convex optintiaa,
convex and affine sets, cones and convex hullgiaen [55] and will be recalled when discussing the
structure of the developed algorithms and one effidures of merit for assessing the synthesizealyar
performances (the convex hull).

2.2 Planar, regular arrays

Let us make a brief mention of the classical thadrplanar arrays [82], since they represent tme fu
damental brick for building the entire mathematfoamulation.

5
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P(X.Y,2)

Figure 1. Generalized array configuration

The sketch in Figure 1 portrays a generalizedilligion of array elements, here shown as smalbtadi
ing surfaces. Each element radiates a vector diredtpattern that has both angle and radial degrecel
near the element. However, for distances veryrtanfthe element, the radiation has[gh@(- jkR)]/ R
dependence of a spherical wave multiplied by aoreftinction of anglef, (9, ¢) called the element pat-

tern. Although this vector function depends onkimel of element used, the FF of affyelement can be
written as

kR

E(rd.0)=f @.0e " (1.1)

for

2 2 2
R =[x +(y=y)*+( = 3] 1.2)
where k :2771 Is the free-space wave number at frequendfythe pattern is measured at a distance very

far from the array (FF), then the above exponemtad be approximated by reference to a distéce
measured from an arbitrary center of the coordisgttem. SincerR = R-f [I, = R, for kR, - o,

where
=XU+YV+2Zw (1.3),

then
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KR kR
e R —g R JK0 (1.4).

The required distand® for which one can safely use the FF approximatiepends on the degree of
fine structure desired in the pattern. Using tlstagtice

2
R:ZDT (1.5),

in which D is the largest array dimension, is adequate fastrpattern measurements. With reference
to Figure 2, for an arbitrary planar, rectanguled gomposed o x M sources, one can generally
write the pattern by superposition:

()
E(r,9,0)=2

N M

DI RERY Sl (1.6)

n=1 m=1

wherew,, are the array weights (voltages or currents) enganeral case (complex weights), and we
setr,. =%x, +yy,, and z. =0 for convenience.

>

(Xn, Ym)

Figure 2. Geometry of the considered planar rectiangrid.

In general, the vector element patterns are diffefi@ each element in the array, even in an aofdike
elements; the difference is usually due to therauiion between elements near the array edge. Hawev
it will be assumed throughout this thesis work thlapatterns in a given array are the same. I ¢hie,
(1.6) becomes

)

1303w, el T (L.7).

R n=1 m=1

E(r,?,¢)=

It is customary to remove the facti@xp(- jkR)]/ Rbecause the pattern is usually described or medisure

on a sphere of constant radius and this factaussq normalizing constant. Thus, one can thinkhef
pattern as being the product of a vector elemettemef (9, ) and a scalar function, called the Array

Factor (AF):
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E(7.0)=f(0.9)[AF (J.9) (1.8),

where

N M A
AFS,9)=> > w,, JKF Thnn (1.9),

n=1 m=1

and

F [fqp = ndyu+ mdy\

(1.10),
k=ky= %;I

meaning, in the second relation of (1.10), thatane=considering a single frequency. Let us modibjta
the first relation of (1.10) by adding a couple, . v,) that represents the steering direction along which

the array points:

AF(8,p) = ZN: ZM: W, ejkO[ndx(u_Uo)Jr md (v ¥)] (2.11).

2.3 Feasibility criteria

Before going into details of the convex optimizatischemes developed during the PHD an important
role is played by the necessary (and possibly @afft) conditions for the a priori existence of aver
pattern lying within a given mask by providing shagnd size of the pattern source. The problem is
shown to be equivalent to establish if a systedinefar inequalities admits a solution [83]; in peutar,

the criterion is both necessary and sufficienthia tase of linear and uniform arrays, whereas onlg
sufficient in the case of planar arrays with 2Didaable masks. In all practical instances, electgmetic
fields can be considered as belonging to a finiteedsional space. This happens not only when the
source has by itself a finite number of degreeseafdom, such as for instance, in the case of i@y an-
tenna, but also when arbitrary radiating systene considered. In the general case the nuoflas-
grees of freedom of the field is defined as theiminm number of independent parameters required for
its representation within a given accuracy. It suont that fields radiated from sources of bounsleergy
enclosed in a sphere of radiasan be effectively (i.e., in an efficient and metlundant way) approxi-
mated with bandlimited functions of bandwidth stigHarger thankya [84]. Accordingly, each FF com-
ponent can be represented in a sampling series [85]

Mn

E(79|¢) D E(O!¢) DM (l9)+ i [DM (79 _ﬁn) z E(ﬁnlwn,m) DMn ((0_ ¢n m)

y " ot (1.12),
-D, (9+3,) > E@, %Dy (0+7-9, )]
m=-M,
where
J, = 27m s Do = 271 , M =k,a, M, = kasing,
2M +1 " M +1
and
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2M +1x)
(1.13)

sin[
Dy (x) =

(2M +1) sin()z(J

is the Dirichlet sampling function. As a consequensguared amplitude distributions can be repre-
sented by bandlimited functions [83], so that we waite:

2M,

[E@.9) = P@.¢)TPO0@)D, )+ [Dy (F-9,) D PE, @)Dy (¢ Pun)
n=1 m=-2M, (114),

2M,

_DZM (79+19n) Z P(ﬂn'(an,m)DZMn((o-'-ﬂ_(onm)]

m=-2M,
where

9 = 2mn _ 2mm (1.15)

"Tam v S aM, + 1

andr(3,,¢, ,) denotes the corresponding sample|E)¢z9n,(0,m)|2. For planar equispaced arrays we
have:

P(UV) = ot [ G 00k § W+ 5, Sin(alk d 4+ [ g cos(p k d v

+8,0Sin(pk, d, W)+ D (G, cos(pk d, v ak ¢ W (1.16),

p=1g=-M+1
qz0

Sy, Sin(pk, d, U+ gk d, V=

LN

N-1 M-1

Bo D (k du=uy) Dy (Ko, V=)

p=1-N g=1-M
where

2
UP: P, VQZZM_lq’ PPCI:P(UP’\éI)'

The above results can be summarized introducingeheric finite dimensional representation:

P(3,p) = ZT: D,¥,(5.9) (1.17)

p=1

which, by appropriate choice ®fand Wp(ﬂ,@, is representative of (1.16). It must be noted {Bat not

all functions expressible as in (1.17) correspandduared amplitude distributions. This is becausse
larger than the number of (real) degrees of freedbthe field. Accordingly, the set of all squarahpli-

tude distributions is a (non linear) variety emtbed in the space spanned by 'tHg(ﬁ,@ functions.

However, (1.17) provides the smallest linear spam#aining the set of all squared amplitude distrib
tions [83]. Exploitation of (1.17) makes it easystwow which conditions must be fulfilled so thapat-
tern lying in a given mask can exist. In fact,(ad7), by construction, is able to represent afigible
patterns radiated from a given classes of souecesecessary condition for the existence of al fiel-

filling given constraints is that the following $gm of linear inequalities in the variabl% is satisfied:

9
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iopwp(&,(p)s UB(,¢)
Pt (1.18).

i D,¥,(3,9)2 LB(S,9)

By taking into account the bandlimitednessR(?, ) inequalities (1.18) can be substituted by a suffi-
ciently fine discretization, so that

T
D,W,(&,¢)<UB,9)

p=1

T

Dpwp(ﬂl'wj)ZLB(zz'q)
p=1
(1.19)
fori=1,...,L,,j=1... L,

is a system of ordinary linear inequalities in VlaeiabIer. The solvability of a system of linear inequali-

ties is a well known problem, and it is equivalentssess the existence of a "feasible point" flaresar
programming problem [86].

The question amounts to establish, once atisol satisfying (1.19) has been obtained, if cae ef-
fectively get a field corresponding to thablution. Because, as it has been hinted befor2C,
wherein C is the number of complex degrees of freedom effild [87], the set of (mathematically)
feasible patterns is generally only a subset oSfface determined by (1.17), so that fulfillmehton-
ditions in (1.19) is usually just necessary but swgfficient for the existence of a pattern satigfythe
constraints. Anyway, there exist two cases, whetee criterion is sufficientj.e., the case of uniform
linear arrays, and the case of planar arrays whesk is factorizable as the product of two maske, o
along each principal cut [83]. For planar arraygreif (1.16) satisfies (1.19), since in generalahnot
be factorized it does not represent a physicaklgifde squared amplitude distribution, so thatekist-
ence criterion of only necessary. However, in tfieeamentioned case of factorizable masks, one san u
for each principal cut the procedure for the linease [83], therefore making (1.19) sufficient. &dhat
in this case the criterion is sufficient but noecessary, because it looks for factorizable etimits,
which are just a subset of all the possible onethé general case, wherein sufficiency is goaran-
teed, the criterion can be used to discard thosblg@ms which are certainly unfeasible. In the ifdas
cases, the pattern furnished by the criterion éllquite certainly not synthesizable. However |@igq
tion of representation (1.16) allows to state g@ver synthesis problem in a linear spacesmasll as
possible, thus drastically squeezing the set tiepas one should look for with respect to the miacher
set of all generic functions compatible with thestpaints.

2.4 Planar array tapering

One of the major advantages of array antennasaisttie array excitations can be closely controtted
produce extremely low SideLobe Level (SLL) patteonsery accurate approximations of chosen radia-
tion patterns. With reference to radar applicati@irsce in Transmission {Jlthe TransReceiver Modules
(TRMs) are usually set to maximum power, we inidally associate the tapering of antenne, the
synthesis of its weights, to Receiving(Ronfigurations.

A general synthesis procedure is due to Schelk{®@vand makes use of the polynomial form of the ar
ray factor in the complex variablesandz,:

= gholu-w)d,
2, s (1.20),
z,=

10
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so that (1.11) becomes:

AFS.0)= AF(2.2)=3"3 w2 2 (1.21).

n=1 m=1

2.4.1 An example of array synthesis: Dolph-Chebyshev tapering

The procedure commonly referred to as Dolph-Chedysignthesis [88] equates the array polynomials to
a Chebyshev polynomial and produces the narrowestBVidth (BW) subject to a given (constant) side-
lobe level, or the lowest SLL for a given BW. Herités usually referred to as an optimal array. &y
suming factorizable weights (one set for the romd @ne for the columns) (1.21) becomes:

N M
AF(z,.2)=2 w2, w 2= AR 20 AR & (1.22).
n=1 m=1
In the hypothesis thag-s d, <A we obtain [82]:

cos( Nco§lzu) for|z|< 1

AF,(z,)=
() {cosi( Ncostu) for|z|= 1

1.23),
cos( Mcoélzv) for|z|< 1 (1.23)
AF(z)=

cosi( Mcoshlzv) for|z|= 1

where
{ﬂdx sinﬁj
Z,=3C08§ — —
A
z = cosk( 1/ N cosft rl)

o ﬂdysinﬂ (1.24),
4,=5% 1

z, =cosl‘( 1/Mcosht rz)

andr,r, >1such tha0log,r, and 20log.or,, which represent the desired SLLs in dB, are p@situm-

bers. For instance, Figure 3, Figure 4, Figuren8l, Bigure 6 show, respectively, the normalized 2/
er pattern, the normalized tapering, the normaltzedizontal and vertical cuts along thendv axis of a
15x15 square array (of siz&)Awith distances of half-wavelength and30dB, 2=40dB.
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Normalized Pattern

-1 -0.5 0 0.5

u
Figure 3. Chebyshev normalized 2D power pattern.

12
Company General Use



Normalized Chebyshev tapering [dB]

Figure 4. Normalized Chebyshev tapering.
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Figure 5. Horizontal cut of a planar Chebyshev tiaygedn the figure equiripple SLLs at -40dB are cleaisible
13

Company General Use



Vertical cut

—
o
T
I

)
o
T
I

OV VYV

dB
3

o
o
T
|

'
~]
o
T
1

o)
o
T
|

_90 1 1 1
-1 -0.5 0 0.5 1

v
Figure 6. Vertical cut of a planar Chebyshev tagerin the figure equiripple SLLs at -30dB are clgaikible

In Figure 5 and Figure 6 the SLLs at, respectivelpdB and -30dB can be easily seen to be at tine sa
level (equiripple).

2.4.2 An example of array synthesis: Taylor tapering

In [90] Taylor analyzed the deficiencies of theeBishev pattern and formulated a pattern functiam t
has good efficiency for large arrays. He examiriedlimit of a continuous line source and drew concl
sions about allowed illuminations and pattern SLIosparticular, he compared the pattern of the 1D
Chebyshev illumination with that of a constantifimationsinc¢z), wherez=Nd,/1, which has the high-
est efficiency in the large-array limit. As pointedt by Taylor, the loss in efficiency of the Chshgv
pattern results from the requirement that sidelodights are constant. For large arrays, this imphat
increasingly more of the energy is in the sidelobgion. In the limit of a very large array, maimiaig

the Chebyshev sidelobe structure requires an lupabd aperture illumination. He showed that the fa
sidelobes of a given line source are a functioly ofilthe line source edge illumination. In partenlfor

a line source of lengtha, and if the edge illumination has the behavior

(a-|X)" (1.25)

for x measured from the center of the source, then0ythe SLL has the behavior indicated in Table 1.
The values fow< 0 are not given because the illuminations are uiaaale [82]. The above data show
that selecting an aperture illumination witkO leads to sidelobes with angular dependenceeotyihe
sinc@xz), like those of the uniform illumination. This path distribution maintains its efficiency as the
array is made larger. Choice of larger values afakes the sidelobes decay faster, as indicatédlie

1, but have generally lower efficiency.
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Asymptotic F(z)
sincfrz)
cosfz)/(xz)
sin@z)/(xz)’
cosz)/(xz)'

Table 1. Array SLLVersusedge illumination parameter

WIN|FP|O|R

Taylor also showed that the location of the zerothe pattern are determined by the edge illumamati

a
Then" pair of pattern zeros (far large, thus away from the main lobe) occurs aitioas Z, :i( n"‘Ej

for n . » . Clearly, this is also consistent with the unifoilfamination case fow=0. However, when
compared to the actual location of #ipair of zeros for the Chebyshev pattern, it isfibthat these oc-

cur asymptotically a¢(n——) Such zero locations correspondote-1, an unrealizable illumination for

2

the continuous aperture case.

Taylor expanded upon these mathematical insightitgest a pattern function with zeros far from the
main beam at locations that correspond to the tmifilumination, while the zeros closer to the main
beam are chosen similar to those of the Chebysagerp. Since Taylor chose to simulate and theniimod
fy not the Chebyshev array pattern, but that obatiouous source with features similar to the tathe
used the following ideal line source as substitute:

co{ 1/z—AZ} forZ> K
cosl{ JAZ } forZ< K

where, againz=Nd/A and the sidelobe ratio is the valuggfatz=0, orr=cosh(zA), so that A is defined
as

F(z (1.26)

A=Lcostitr (1.27).
T

As shown by Van der Mass [91t]is pattern corresponds to the limiting case ef@hebyshev array as
the number of elements is indefinitely increasexd, ldas zeros at the locations

z, :i\/l:Az +( N—%j } N=123,.. % (1.28).

The pattern has the Chebyshev characteristics allithqual sidelobes, but is physically unrealizaiole
the reason described earlier, since the far nal® tasymptotic locations correspondingitel. Howev-
er, although the idealized pattern is unrealizabég/lor recognized that by selecting a new functigth
near zeros very close to those of the ideal paite@8) but with zeros corresponding to those &f th
sinc@zz) function at integer values af he could satisfy the requirement on both nearfangidelobes.

Taylor chose to keep all nulls at the integer lmrafor M 2N, and to move those f(M <N near the lo-

cations (1.28) that would produce the nearly carissedelobes near the main beam. To match these two
sets of zeros, Taylor introduced a dilation faetdhat is slightly greater than unity to stretch tteal
space factor horizontally by moving the ideal zlr@ationsz,, such that eventually one of the zeros be-
comes equal to the corresponding integer

The synthesized pattern normalized to unity is
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_\_sinmz*1-2%*/ 7
F(z, An)= p— :1_22”21"2 (1.29)

for z=Nd/A. The numberg, are the zero locations of the synthesized pattadhare given by

2
ia\/ [AZ +(n—}j } forl< n<m
= 2 (1.30)

+n forns n<ow

where

]
o= (1.31).

{1

Note thatn =natz =n. The aperture distribution to produce Taylor pases expanded as a finite Fou-
rier series of terms with zero at the aperture sdg2]:

g(¥ = F(O,An)+ 22 F(mA,‘n)CO{ ZLn;T Xj (1.32)

m=1 X

for —-Nd, /2< x< Nd, /2. The coefficients are evaluated to be

o [(A-1)1] il oy
F(m,A,n)—(ﬁ_l+m)!(ﬁ_1_ m)!!:l{l —} (1.33).

It is important that the distribution be samplegaints one-half spacing from the end of the Tagisr
tribution function, so the aperture illuminationsigmpled at the poin{g,/1)i for +i :%gg (N—;l)

for arrays with an even number of elements, and 0,1,2,.. ,(\N — 1)/ Zfor arrays with an odd number
of elements. The choice of the paramdtes not arbitrary, since increasing it retains mofahe side-
lobes at the design SLL and thus makes the Tagtieqm closer to the Chebyshev one. Increasitigus
leads to narrower main beam patterns and highetuapeefficiency, but eventually to aperture illurat
tions that are not monotonic and have increasenhifiation near the aperture edges.

By assuming, again, factorizable sets of weights({.22)) we have evaluated the Taylor distribution

a 29x29 square array (Awith distances of half-wavelength wiih =3and n =5, ,=30dB, 2=40dB,
respectively for the vertical and horizontal cuts.

Figure 7, Figure 8, Figure 9 and Figure 10 showspeetively, the normalized 2D power pattern, the no
malized tapering and the normalized horizontal etical cuts along the andv axis.
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Normalized Pattern

-0.5 0 0.5

u
Figure 7. Taylor normalized 2D power pattern.

Normalized Taylor tapering [dB]

Figure 8. Normalized Taylor tapering.
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Figure 9. Horizontal cut of a planar Taylor tapgriin the figure it can be seen that the firstdekibes are Chebyshev-like (
N=5), whereas from the sixth one a sinc-type decajniseg

Vertical cut
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Figure 10. Vertical cut of a planar Taylor taperitg the figure it can be seen that the first kiles are Chebyshev-like (

N =3), whereas from the fourth one a sinc-type decayrise
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In Figure 9 and Figure 10 the SLLs at, respectivél9dB and -30dB can be easily seen to be ataime s
level (equiripple) for the first 5 and 3 lobes restively, whereas from the sixth and fourth onéna-s
type decay begins.

2.5 Convex Optimization

In this paragraph we are giving some definitionghi@ convex optimization framework that will be-uti
lized in the next chapters. In fact we will be tatk apart from convex optimization, about affirendi-
tions, convex hulls, etc, so that the followingions have become necessary.

Given a setXZ(X_L,..-, &)DRnof variables, a function,:R" . R, a set of functionsf, :rR" . R and
constantsy,,... ,b, fori=1,...,m a convex optimization problem is one of the form:

Minimizq (x) ]
subject tq s (1.34),
f.(x)<h, fori=1....m

wherefy(x) is the cost function arfix) are the constraints (functions), which are allheoqi.e.
f.(ax+py)saf, +Bf(y) (1.35)

forall x,y,0r"anda,0R with >0, f>20,a+ =1 b,...,b, are the bounds for the constraints.
In the following we will consider the contractedtaion “min” in place of ‘minimizé.

2.5.1 Lines and segments
Supposex, # x,are two points irR". Points of the form
y =9x, + (1-9)x, (1.36),

where J[0JRand 0< <1, form the line passing through andx,. Values of the parametér between 0
and 1 correspond to the (closed) line segment legtweandx,.
Expressing in the form

y =%, + 3 (X, - x,) (1.37)

gives another interpretation [55]is the sum of the base point(corresponding ta? =0) and the direc-
tion x3-X, (which points fronx, to x;) scaled by the parametér

Figure 11. The line passing throughandx, is described parametrically By, + (1- #)x,, where dvaries overr. The line

segment betweex, andx,, which corresponds t#between 0 and 1, is shown darker.
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Thus & gives the fraction of the way frora to x; wherey lies. As increases from 0 to 1 the point
moves fromx, to x;; for Z>1, the pointy lies on the line beyonx, (Figure 11).

2.5.2 Affine sets

A setc 0O R"is affine if the_line through any two distinct ptarin C lies inC, i.e. if for any x,,x, 0C

and J0R, we have’, +(1—79)X2 [IC. Actually C contains the linear combination of any two points

C, provided the coefficients in the linear combinatsum to one. The idea can be generalized to more
than two points: a point of the formx, +... + 8,x,, where g, +...+8, =1, is an affine combination of

the k pointsx,,...,x,. It can be shown [55] that an affine set contawery affine combination of its
points.

2.5.3 Convex sets

A set c O R"is convex if the_line segment between any two mointC lies in C, i.e. if for any

%, x,0C and anys such that0< d <1, we havedX, +(1~9)%,00C. In practice a set is convex if eve-

ry point in the set can be seen by every othertpaliong an unobstructed straight path between them,
where “unobstructed” means lying in the set. Clgalery affine set is also convex since it corddhe
entire line between any two distinct points iraitd therefore also the line segment between thegoi

A convex combination of the points,...,x, is a point of the formy x, +... + 9. x, where g, +... +9, =1

andg, > ofor i=1,...,k It can be shown [55] that a set is convex if anty if it contains every convex
combination of its point.

2.5.4 The convex hull

The convex hull of a set 0 R", denoted tonv(C) is the set of all convex combinations of poimtgd:

k
conv( ©) :{191X1+... + 9% X, 0C8 20,i=1,.. k> & = ]} (1.38).

i=1

As the name suggests, such set is always conve goadticular it is the smallest convex set that-c
tainsC.

Figure 12. The convex hulls of two setsIRf . Left The convex hull of a set of fifteen points (shoagndots) is the pentagon
that encompasses theRight The convex hull of a non convex set.
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Figure 12 shows an example of convex hulls of arerrfleft) and non convex (right) set.

2.5.5 Cones

A setc O R"is called a cone if for every[1C and & = Owe havedx[1C. A setC is a convex cone if it
is convex and a cone, which means that for any»and, OC and 9,9, >0, we haveg x, + 9,x,0C .

Points of this type can be described geometricadlyorming the two-dimensional pie slice with afex
and edges passing througghandx, (see Figure 13).
A conic combination (or a nonnegative linear corakion) of the points,,... ,x, is a point of the form

Ix, +...+I9x whereg +.. . +9 =1 andg > ofori=1,...,k It can be shown [55] that a set is a convex
cone if and only if it contains all conic combirmats of its elements.

X1

L2

Figure 13. The pie slice shows all points of therfad x, + 4,X,, where,,5, 2 0. The apex of the slice (which corresponds to
9, =4,=0)is at 0; its edges (which correspondfe0or J, = 0) pass through the pointg andx, .

2.5.6 Nor ms and quasi-norms

A function f :XOR" —|X|OR with dom(fER" is called a norm if

» fis nonnegativef(x)>0 for all x(OR".

» fis definite:f(x)=0 only if x=0.

« fis homogeneoud(tx)=|t|f(x), for all xOR"andt R .

» fsatisfies the triangle inequalityf:(x +y) < f (x) +f(y) for allx,y o r" .

An £, norm on the vectox is defined by:

Up
X, :(|X1|p +..#]x] p) (1.39)

for p>1.

For O9<1 the (1.39) is only a quasi-norm, meaning fhraeets the same properties of the norms except
the triangular inequality, which is substitutedthg relation:

Pyl <K (g +v1) (1.40)
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for some constantXL.

2.5.7 Norm ballsand norm cones

From the general properties of norms it can be shitvat a norm ball of radiusand centex., given by
{x[x=x,|<r} , is convex [55]. The norm cone associated withriwen|[[lis the set

D, ={(xt)[[¥ <t} OR™ (1.41).

As the name suggests it is a convex cone. An irapbitase of norm cone is the second-order dame,
the norm cone for the Euclidean norm:

D, ={(x.t)OR™ x|, <t} (1.42).

T2 -1 —1

Figure 14. Boundary of second-order conein R

a1

Figure 14 depicts the second-order conEﬁn{(xi, X, t) |/ xf + X < } .

The set of all vectors with norm less than or eqoi@ne,

B={xOR"|[x|<3 (1.43),

is called the unit ball of the noﬂ“ﬂl The unit ball satisfies the following properties:

« Bis symmetric about the origin, i.%[1Bif and only if =X[1B.
* Bis convex.
» Bis closed, bounded, and has honempty interior. [55]
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Chapter 3

The developed algorithms

In this chapter we describe in detail the develoglgdrithms based on convex optimization. In patéc
the innovative content, their structure, the gotlis,problems that come out in their realizatitwe, $olu-
tions proposed for the latter and their strengtits\seaknesses will be addressed.

3.1 Introduction

The synthesis schemes presented in the followiagpbmask-constrained type [42] as the idea that we
had since the beginning was to apply them for R&I®NESA projects, in which the requirements the FF
has to meet are given in terms of masks, regardletse beam characteristics. In fact, the mostirtgnt
features for a radar like range coverage, PD, REinuth and elevation BWs, monopulse performances,
peak directivity, etc., are all obtained with (ndirectly derived from) lower and upper boundseast of
exact numbers. Moreover, a reference field pattenmatch in amplitude and phase would dramatically
reduce the number of degrees of freedom the aftgpsitcan pick from. Two approaches will be adopted
for the synthesis process: one that falls in thefr@®ework and that is based on reweighitedorm se-
guential refinements [73], the other one on MIRthAugh several works exist in literature on thisckof
synthesis [46-48] [50], very few of them address siinthesis of sparse arrays in terms of mininozati
of the £, pseudo-norm of the number of elements that canstthe initial grid [78] [92]. None of them,
to the best of the PHD student’s knowledge, takés account the non-superdirectivity by imposing a
constraint on the minimum inter-element distanckictv is, indeed, actually one of the most innowativ
contributes of this work.

The algorithms scheme is simple: we start fromrétial array, that we can call the “full array” wé®in-
ter-element spacing is half-wavelength and whospealand size(s) can be any and are fixed a ptiars
the BWs are fixed as well). Then we derive the mimmSLL in a Chebyshev sense,. we synthesize a
set of weights that achieves the lowest maximum $iLla bidimensional region that spans from the
points on the main lobe that intercept the higlgtdt (i.e. the main lobe BW at the highest SLL) to the
visible boundary. This way we get a main lobe BWnaiximum SLL and a SLL which both act as re-
quirements for the sparse synthesis. In order try caut the latter we sample the full array withwea
length submultiples (for instandé10, orA/100), thus obtaining an initial, dense grid ofneémts, and
then minimize the number of elements subject tersemble of requirements, among which a require-
ment on the minimum inter-element distance. Thebemof elements of this grid are the degrees @-fre
dom the solver has got for the optimization process

Clearly, the just described scheme works for ampetypf geometry and the aforementioned “optimum
SLL" is only a choice, but in no way it is suppogede the only one.

3.2 The Optimum SLL

The sparse arrays achieved by optimization by meaosr developed algorithms, that will be desadibe
later in this chapter, will be compared to a refieezarray in terms of reduction of the number ef el
ments. Actually, such reference array is the onihlwthe algorithms sparsify on. We can name ithas t
“full array”. Its geometry, lattice and size ar&dd a priori and nonetheless can be any. We start &
rectangular geometry and lattice with half-wavetbéngter-element distances. The BW is fixed a fyior
and the optimum SLL is derived accordingly. By g (1.11) the problem is the following:
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min (SLL)

wORNM
s.t.

| AF(SLL_region)< SLL (2.1),
SLLOR
w,,200n=1...,.N, m=1,.. .M

where we denoted by the vector containing all the weightg,,, and SLL_region is the bidimensional
region of the spectrum external to the intersedbietween the main lobe (multiplied by the scatgrand
the line at the highest SLL. Given this optimum Sthe size of the aperture that achieves it byrtage

is also the smallest non-superdirective sources thay returning a necessary condition for non-
superdirectivity [48]. Hence the full array is th@énimally sparse solution that meets the SLL reguir
ment. For instance, in Figure 15 and Figure 16af8t square array with rectangular lattice, the isophor
ic and tapered horizontal cuts and the illuminato® shown respectively for a BW at maximum SLL en-
larged bym:=1.5.

Hori 1 cuts
0 7 T T T T T T T

——Tapered case
= [sophoric case

4l AV

]
=]
——

40 -

diB

60 — -

-70

-80

00 | | I 1 | 1 1
-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1

u

Figure 15. Horizontal cuts of & 3quare array with rectangular lattice in the taggblu line) and isophoric (red) cases. The
optimum SLL is -22.9784dB [48].
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Normalized Weights Tor 34 oplimum SLL [dB]

-1

=30

35

-40)
ilA]
Figure 16. Tapering of é\3quare array with optimum SLL equal to -22.97844H.

3.3 Problem statement: the minimization of the £, pseudo-norm

Once the bounds have been assigned to the destwer ppattern, the aim is to find the non-
superdirective excitation and location distribuiarf the radiating elements such that the radifiid
satisfies the prescribed power mask with the mimimmumber of antennas for a desired solid angle of
steering. The synthesis problem is formulated asafrconstrained optimization type, in which thestco
function is chosen to return the solution that biteithe minimum cardinalityi,e. the £, pseudo-norm.
Such a constraint limits the number of non-zeraiestof the array weights, is non convex, and tteds
quires, in principle, to solve an NP-hard problet@][ However, by introducing a vecta, of binary var-
iables belonging to B={0,1¥" (where the produdiixM represents the (dense) grid obtained by sampling
the full-array at submultiples @) accounting for the presence or absence of thehridiating element,
we can easily assure the non super-directivity tmmdin a convex way, perform a two-way synthesis
(either in Tx and Rx) and make the cost functiosimple sum of terms, although the very latter, & w
are about to see, represents the main difficulfia¢e. Formally we can express the synthesis pnoble
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. NM
min( v

st
LB (uV) <[ AR (U V|, 0 < UB(UY
LB, (uV)<| AR (U], 00, < UB(UY
k=1...,N; (2.2),
h=1,..,Ng,
lw|<w,

TR

Max(w)—102° Minw)< O
Aw, <1

WhereV\g is the I" entry ofwy, k:l---,er identifies the K constraint in Tx,NTx is the number of con-

straints in Tx,Q, is the K" region in Tx in theu,v) spectrum (it can be monodimensional or bidimension
al, depending on the requirement)B,(u,v) is the K upper bound in Tx.B(u,v)is the K lower bound

in Tx, N=1....,N; identifies the K constraint in Rx,N is the number of constraints in Ra, is the H'

region in Rx in thg(u,v) spectrum (it can be monodimensional or bidimeraiodepending on the re-
quirement),UBy(u,v) is the ' upper bound in RX.B.(u,v) is the ' lower bound in RxA is the non-
superdirectivity matrix (which we are going to diss in detail soon) of siz&li)x(NM), w is the set of
all weights in (1.11)1 is a column vector diiM ones and TR, that is a positive quantity, is tlaimum
dynamics allowed by the TRMs. To each of the refetiin (2.2) is being given an exhaustive discussio
Note that some constraints in (2.2) may not begmeim each type of synthesis, as well as sombaerht
may be modified for a specific goal (like pencipéyarrays for example). For instance the constraint
the maximum allowed dynamics for the pattern(s) is not required for the comparisonthwliterature
benchmarks, but it is required for the sparsifimatdf the chosen antenna (see 5.2). Finally, naethe
introduction of the binary vectar, makes the cost function in problem (2.2) conved gunus exploitable
for any type of convex solver, but does not chathgefact that it remains NP-hard, therefore su¢toin
duction has the only purpose of letting problen2)2e practicable for software implementation. dotf
we could write the cost function as it is usualiyiid in literature, so without resorting to the teeav,
and thus involving directlthe vectom:

min w], (2.3).

The reason why problem (2.2) is particularly sugalor software implementation lies in how rewrgin
systems for convex optimization [10&prk. Basically, what happens when problem (2.2)niglemented
is that a check is carried out for possible conyexiolations, then once granted this step the epiate
solver is invoked. If any convexity violation istdeted, the solver is not drawn in at all, andgimeula-
tion returns an error. Specifically, the cost fumatin (2.2) is the sum of the entries of the veegtg thus

it represents no convexity violation if for a morhere do not consider they are integer variabledy On
afterwards the rewriting system recognizes the mization involved in (2.2) recalls a non-convex and
NP-hard problem, but at this step the correct salveequested, and the B&B algorithms come inaypl
From this point on it is up to the solver to hantile (hon convex) mixed integer problem. Henceyidro
ed that there are no convexity violations and @e@rsolver is available, the final result is thHe simula-
tion starts smoothly as well as the solving process
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3.3.1 Thesteerability

The maximum desired steering inandv determines an ellipse in tifa,v) spectrum whose major and
minor axis extend beyond the visible circle, sa @ray unwanted lobe is automatically suppressed. Fo
example, in Figure 17 @ &quare array steerable in azimuth and elevatia &t is shown. In particular,
the dotted circle represents the farthest bounttawhich the upper bound constraints have beemdxte
ed.

Figure 17. T spectrum (the colourbar is set in such way tht tire main lobe is visible). The desired steeim§7° either in
azimuth and elevation, so that the ellipse beydwdvisible circle is in this case a circle as vedllay 1+sin(57%1.83 (dotted
white circle).

3.3.2 Uppe and lower bounds

The constraint

‘AFRx (uv)

NM%SU&(ug (2.4)

h=1...,N,

in (2.2) is a special case of Second Order Con&Cj0nstraint whenever the right hand side is &esys
of linear equations. The general definition of S@straint is given by [55]:

|Ax+b], <c"x+d (2.5)
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where AOR®", bOR¥, cOR"and dJR. In particular, the (2.4) corresponds to the (Benc=0 for
i=1,...,n; in such case it can be rewritten as

|Ax +D|; < d? (2.6),

which is a convex quadratic constraint, efficiersbivable with the interior points method [55].

As regards the left hand inequality of the fourhation after “s.t.” in (2.2), which is typicall\elated to
non-pencil pattern types, we observe that in geiiteigaa non-convex constraint [81]. An assumptibat
can be made to overcome this problem is to adagtigate-symmetrical distributions for the pattdratt
requires to meet the lower bound constraints, abttiese become linear inequalities. Hence intis
pothesis the non-convexity of the lower bound careliminated. Another valid assumption is to impose
the distribution to be real and even. Same coraiibers apply for Tx (third relation after “s.t.” (@.2)).

3.3.3 Two-ways synthesis

The problem (2.2) intrinsically outputs the samgola for Tx and Rx, with two sets &M weights: in

the former case such set is a binary string, wiseiredhe latter one the weights are real. We cadl th
“two-way synthesis”. In fact in transmission motie power supplied by the single TRM to the rad@tin
element is as high as possible whilst in receivimagle different values of attenuation are set ireotd
obtain the desired receiving pattern. Often in campany the power mask requirements are given over-
all, meaning that the SLLs must be below a spetifieeshold for the upper bounds and above for the
lower ones, jointly in Tx and Rx. Generally the Suhper bounds required in Tx are higher than theson
in Rx (since fewer degrees of freedom are availabthis case), thus forcing to synthesize two saga
and independent arrays. With our formulation insieadffices to add the following constraints to2R

(
5e (UB, (U V), UB,(u Y) < Sl @2.7),

where the upper and lower bounds either in Tx arcaiR the independent variables of two functions
fLB(LBK(U,\a, LB( u \)) and fUB(UBK(U,\&,UEi( u \)) which must be greater and smaller than both an
overall lower and upper SLL respectively. Cleathgse functions are required to be convex.

The relationjw|< w, in (2.2) ensures the layout for Tx and Rx pattésrehared. Actually such constraint

may be just one of a set of equivalent constrdisaccount for different Rx patterns which athshthe
same layout, as is done in [50] for instance.

3.3.4 Thenon super-directivity matrix

A sparse array is superdirective if its directivigyhigher than that of its full version. Excessareay su-
perdirectivity inflicts major problems in low radii@n resistance (hence low efficiency), sensitixeita-

tion and position tolerances and narrow bandwilitbreover mutual coupling among elements becomes
hardly controllable. A condition that ensures napexdirectivity is that the distance between eamnlpte

of elements of the starting grid must be greatantbr equal half-wavelength. The non-superdiregtivi
matrix, that in (2.2) is called&”, is defined by means of its general entry [48]:
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o 21O =1.NM :HR—PJ-HZS% )
) :0),

0 otherwise

where E’:(X, Y) and P, =(><i Y ) For each point of the initial grid (see FigureA2genters a circle of

radiusi/4 whose inside is filled with ones, the outsidéwaeros. Figure 18 and Figure 19 show two rows
of A (chosen randomly) for a.3quare array with a samplingdB0: the red points are points at distance
smaller than half-wavelength with respect to threleis center. Clearly, such rows have lenytf, thus
they have been reshaped as\aM matrix in order to show the binary images in FegliB and Figure 19.

Non super-directivity matrix single column

0.6

0.5

13
1.5 2 -0.5 0 0.5 | 1.5
x(A)

Figure 18. Single column of matr&. The red points represent all the points at degtaamaller than half-wavelength with
respect to the circle’s center, whereas the bl@s oepresent all the points at distance greatardhaqual half-wavelength.

0

The non-superdirectivity is achieved by constrajng@ach entry of the vector resulting from the pridu
Aw,, to be smaller than or equal to unity. Formallyye denote withK, the set of the grid indexes identi-
fying the elements that fall in theth circle, the gth entry of the above scalar product is:

Al Dw, =1y = > wy(i), ab{1,2,.. NM} (2.9).

i0K

The vector resulting from the produttv, exhibits points of the grid with an integer amydié that is in-
dicative of superdirectivity whenever is greatearti.

For instance, Figure 20 shows a forced superdiedistribution denoted by, for a square grid of edge
3A. Four circles related to four specific rowsAfare highlighted. The first one encompasses noecti
elements ;=0 in this region); the second and third circlegresent a boundary case since the two ele-
ments they are centered at are exadfydistant (,=r,=1). The last one is centered at a point of thd gri
that contains two active elements at distance sm#iani/2, so that,>1, this making the whole layout
superdirectivei.e., not belonging to the set of possible solutionpriablem (2.2) (this is why it has been
made superdirective on purpose).
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The definition and the use of this matrix is onetef most innovative contributions of this thesisrky
since, to the best of the student’s knowledgeast tever been applied before our publications [£8],

Non super-directivity matrix single column

0.6

SN

0.5

(1]

x(A)

Figure 19. Single column of matr&. The red points represent all the points at degtaamaller than half-wavelength with
respect to the circle’s center, whereas the bl@s oepresent all the points at distance greatardhaqual half-wavelength

15 i | | | —l— T
[ |
H 3
17 R - J
| [ | |
L] |
05t 4 :
| |
) [ |
=< i J
= 0 [ | - |
n |
|
1
05r [ | 1
1] | [ |
[ [ |
: |
[ | n
|
15_1 1 1 . 1 . 1 . 1 .
-1.5 -1 -0.5 0 0.5 ] 15
x[A]

Figure 20. Example of four circles, related to fepecific columns of\, on a general array layout identified iy, .
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3.3.5 Theshared layout

The conditionMSWb(which has already been utilized in [50] for instanin (2.2) assures the layout in

Tx and Rx is the same. In our case we only distsigbetween Tx and Rx, but more in general thig typ
of relation can be exploited for multiple pattethat are required to share the same layout (satamel
(12) in [50] for more details).

3.3.6 Thecost function

In (2.2) the cost function, that is equivalent tmimize thel, pseudo-norm of vectar since minimiza-
tion of this functional will result in the minimumumber of nonzero weights, favors sparse arraydsand
therefore particularly suited for the desired spaess. Although the cost function is linear witbpect to
the variablew, (it is just the minimization of its sum) it is nas such in functional terms because it is
discontinuous and has zero gradient except atifventinuities [92]. However, we can consider teka+r
tionship between maximally sparse optimization t#relgeneralized}, optimization for 09<1 and show
the conditions under which a solution to the corapanally simplerl, optimization problem leads to a
solution of the cost function in (2.2). Let us cioies the generalized optimization problem

) NM p
min g(w) =2 |w| (2.10)
w i=1

for O<p<1. To show how this problem is related to the dosttion in (2.2) let us consider the unit ball
surfaces irR? for the quasi-norm

w o e
o, :{zw } (2.11)

for values ofp in the range €p<co as illustrated in Figure 21.

31

Company General Use



Unit balls in R

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

X
Figure 21. Unit balls in ®Rfor thel, quasi-norm for various values pf Note that ap->0, the unit ball collapses onto the (x,y)
axes (the cage=0, highlighted in red, is the binary casedr y’).

For p>1 we have the conventional norm defined by (1.8®)ch is a convex functional and obeys the tri-
angle inequality. An example of convex geometrgiépicted in Figure 22: the unit ball RT for p=3.

For 0p<11, is only a quasi-norm [93] since the triangle inalijy does not hold. OveR™ |, is nei-
P
ther convex nor concave, containing many stronglloginima and presenting a difficult optimization

problem. Large values @fresult in smooth solutions, but p$0 they tend to become more “spiked”, or
sparse [92].
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Unit balls in R?

0.4

-0.6 .

-0.8+

Figure 22. Example of convex geometry: unit balRirfor thel, norm forp=3.

An example of concave geometry is given in FiguBe ®here the aforementioned “spiked” solution is
clear: the unit ball in &for p=.5. Forp=0 the unit ball in Figure 21 lies on the (x,y) ax&/e observe, in
general, that

lim
p-0

|X|p={1, forxz 0 212

0, forx=0

which suggests that we may identify minimum ordgtirization as a special case of generalizeap-
timization:

o -

1 | P
im[ gw]e =lim) D Jw| | =[w, =[w, (2.13)
i=l

The utility of this observation is that fpr0 g(w) eliminates some of the handicaps"ML): it is indeed

continuous everywhere and differentiable excephataxes. Theorem 4 in [92] provides justificatfon
minimum order optimization based on minimizig@v) by proving that for a bounded basic feasible solu-
tion set there exists a finifg>0 such that for all Og<p,;, any solution to (2.10) is a solution to the cost
function of (2.2) [92].
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Unit balls in R*

0.8
0.6
04

0.2

T M A T %

Figure 23. Example of concave geometry: unit aii for thel, quasi-norm fop=0.5.

The optimization problem (2.10) therefore definedass of problems, indexed pywhose global solu-
tions are increasingly sparsemdecreases, unti<p;, at which point an optimally sparse solution ig-gi
en. Asp varies over the range A<l only a finite number of unique globally optimwsulutions are en-
countered [94]. A valuev,, will remain as such over a range falues, and ap decreases, we step
from one solution to another in a discrete fash®?t]. Theorem 4 in [92] proves that (global minimum
solutions to (2.10), fop<p;, form a subset of (global minimum) solutions te tost function of (2.2), so
that anyl, optimum is acceptable until <p,. Problem (2.10) is closely related to the problginton-
cave minimization over linear constraints. Onelaf techniques proposed for solving this type ofimin
mization is the Branch-and-Bound (B&B) procedurg][®vhich we are giving a dedicated section.

3.4 Problem Solution: reweighted £;-norm and B& B algorithms

Hereinafter we are proposing two different appreactor solving the MIP binary problem (2.2): the-fo
mer is a method substantially based on the solwfa2.2) by means of a fast B&B algorithm [62[67],
which solves a set of convex problems in parallbk latter is a method based on the sequentialeconv
minimization of the weighted;-norm based, in turn, on the minimization of a a@nmeasure of th&,—
norm [73] by using an interior point algorithm [55]

We have experienced much shorter simulation tinyessing an optimization technique based on the re-
weighted(;-norm with respect to the use of global methodsp & case of a small number of variables.
Therefore, although global stochastic optimizatiegethods like, for instance, SA and GA, could beduse
as well, the computational load is prohibitive the goals we set, and besides the cost functioppsr
and lower bounded (neither the array can have ratn@ments than its full version nor it can have less
than one element, respectively), which turns oubeayuite helpful for the B&B. Moreover, differentl
from global stochastic methods, the latter retiansexact solution (deterministic approach), andrig
case its efficiency depends on how it is impleménte

34
Company General Use



3.5B&B algorithms

Hereinafter it is described how the general B&Boaidnm works in its classical formulation together
with its main aspects and some examples as wel. §éction does not mean to cover this type of-algo
rithm exhaustively as is currently done in mathecsatomputer science research. At present, mucle mor
advanced versions [63] of the basic B&B algoritherdin discussed are normally employed for solving
MIP problems.

B&B is a general-purpose approach capable of sglgure IP, mixed IP, and binary IP problems. We as-
sume in the following that the given problem is aximization one, since modification of the algamith
for the minimization problem is straightforward [5Theoretically, any pure IP problem with finite
bounds on integer variables can be solved by eratingrall possible combinations of integer valued a
determining a combination (solution) that satisfidisconstraints and yields the maximal objectiadue
(hence the name of complete enumeration). Unfotélyathe number of all possible combinations is
prohibitively large to be evaluated even for a dipedblem. As a better alternative, implicit enuatésn
applies an intelligent enumeration scheme thatamer all possible solutions by explicitly evalunafi
only a small number of them while ignoring (mmplicitty enumerating) a large number of infari
solutions. One such strategy is caltbdide and conquerBasically, this strategy divides the given prob-
lem into a series of easier to solve subproblemas dine systematically generated and solved (or con-
quered). The solutions of these generated subpnsidee then put together to solve the original lerob
B&B can be viewed as a divide and conquer appréadolving the IP problem, in which a branching
process is for dividing and a bounding one for ammng. As the algorithm proceeds, a series of aiine
Programming (LP) subproblems are systematicallyegged and solved. Then the upper and lower
bounds are progressively tightened on the objectatae of the original IP problem. A typical way to
represent such process is via the B&B tree, whéch specialized enumeration tree for keeping tcdck
how LP subproblems are generated and solved. Tdtenade that represents the LP relaxation of the
original IP problem is solved. If the LP optimumlgmn satisfies the integer requirement then the |
problem is solved. Otherwise, the LP objective gahecomes the initial upper bound on the IP optimal
objective value and the root node is partitiondd iwo successor nodes (subproblems) by two branche
These branches have the following properties:

a) they cut off current non-integer LP optimum pointdather fractional region;
b) the two successor nodes are mutually exclusivetagid union contains the same integer feasible
region as that of their predecessa.(no integer points are eliminated).

The solution of an LP relaxation on a node providéxmation about

a) whether a further branching from this node is ndgde whether the node can be pruned), and
b) a better lower bound (for maximization problem)tbe objective of the original IP problem.

There are three cases indicating that a node canuped:

1. the subproblem has no feasible LP solution;

2. the subproblem has an integer optimum solution, and

3. the upper bound of the subproblem optimum is lkaa br equal to the lower bound of the origi-
nal problem.

These three cases are, respectively, referredpouasd by infeasibilitypruned by optimalitandpruned

by bound If a node is pruned by optimality its optimumgadn can be used to increase the lower bound
on the objective value of the original IP problem.

Whenever an integer solution to a subproblem isiobd, it is acandidate optimunto the original IP
problem. In the solution process of B&B the beseger solution found so far is continuously updated
Such solution is calleshcumbent

The B&B algorithm is usually depicted as an enutienatree, in which the nodes denote the subprob-
lems and the branches correspond to constraints) (that separate the subproblems from their parent
subproblems. The number above each node is thealpsiolution to the LP subproblem generated on
that node (which is also the upper bound on thaihdir). The number below the node indicates the best
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lower bound on the original IP problem found sa taxamples of B&B trees are depicted in Figure 27,
Figure 28 and Figure 29

When an LP solution contains several fractionaliales, the decision of which integer variable to
branch on next is needed. The following rules ammonly used for choosing a branching variable:

e Variable with fractional value closest to 0.5
e Variable with highest impact on the objective fuoit

* Variable with the least index.

A decision is also needed as to which unpruned nodplore first. The most commonly used search
strategies include

1. Depth-first (last-in first-out; solve the most ratdg generated subproblem first)
2. Best-bound-first (best upper bound; branch on ttieeanode with greatest objective value)

The goal of the depth-first strategy is to quic&lytain a primal feasible integer solution whosesotiye
function is a lower bound on the given IP problem aan be used to prune nodes by bound (rule . Th
best-bound-first strategy chooses the active natle tve best upper bound (for maximization problem)
The goal is to minimize the total number of nodealeated in the B&B tree. Performances of these
branching rules depend on the problem structur@raatice, a compromise between the two is adopted.
That is, apply the depth-first strategy to first gae feasible integer solution, followed by a miet of
either strategies.

Now we can describe the general B&B algorithm usimgfollowing notation.

S=the given IP problem
S p=the LP relaxation of S
y.p= the solution to the LP relaxation of the giverpi®blem

zZ=1y,y, ..,y,-,...,yK) = the objective function of thi€ variables(yl,yz,---,yj oY)

z = lowest (best) upper bound ahof the given IP problem
Z = highest (best) lower bound ah of the given IP problem

These are global bounds that are periodically wgatlas the branching proceeds down the various paths
in the tree, but are not shown on the latter. Nextes further notation.

S'= subproblenk of problem S
sk, = the LP relaxation of subproblein

Z* = the optimum objective value &

Z* = lowest (best) upper bound of subproblehfsBown above node
2% = highest (best) lower bound of subproblehfshown below nodk)

y ¥, = the optimum solution of the LP subproblesn,

Y = non-integer value of integer varialyjgcurrent numerical value f)
LaJ = the largest integeta (or rounding down a)

(a—| = the smallest integeta (or rounding up a)

Now we can formally describe the B&B procedure.

Step 0 (Initialization) Solve the LP relaxatior§() of the given IP problem (S). If it is unfeasilde is
the IP problem, thus terminate. If the LP optimuofuson satisfies the integer requirement the IP
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problem is solved, thus terminate. Otherwise, afite the best upper bound)(by the optimal objec-
tive value of probleng » and the best lower bound I&=—c . Places/, on the active list of nodes

(subproblems). Initially, there is no incumbentugiain.

Step 1 (Choosing a noddj the active list is empty, terminate. The induant solution y* is optimal.
Otherwise choose a node (subproblethih sk, as LP relaxation, by one of the aforementioned

rules {.e. depth-first, best-bound-first, etc.).

Step 2 (Updating Upper Boundjolve and set* equal to the LP optimum objective value. Keep the o
timum LP solutiony ¥, .

Step 3 (Prune by infeasibilitylf s’, has no feasible solution, prune the current nodeganto step 1.
Otherwise go to step 4.

Step 4 (Prune by Boundj z¢ < zprune the current node and go to step 1. Othergade step 5.

Step 5 (Updating Lower Bound and Pruning by optityal

a) If the LP optimumy¥, is integer a feasible solution S is found, and alsancumbent solu-
tion to the given problem. Set< = y*, and compare* with Z. If z*> zset z« = z, otherwise
z does not change. The current node is pruned becamdetter solution can be branched

down from it. Go to step 1.
b) If the LP optimumy¥_ is non-integer, go to step 6.

Step 6 (Branching)From the current nod§ choose a variablg with fractional value to generate two
subproblemssf and sk defined by

s = S‘n{ y. ysL‘yJ}

(2.14),
sk = S‘n{ y. yz(‘ﬂ}

Place both these two nodes in the active list antbgtep 1.

3.5.1 An exampleof I P problem

Solve the following pure IP problem by using the B&lgorithm:

Maximize z=5 y-2 y

s.t.

—y,+2y,<5

3y, +2y,<19 (2.15)
Y, +3y,29

Y1, Y20

Y ¥ UN

We first solve the LP relaxation S As shown in Figure 24, the shaded area repretleatsP feasible
region, and the solid lattice points the IP feasitglgion.
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Figure 24. LP and IP feasible regions

We obtain the noninteger optimui+39/7,y,=8/7, and z=25.57. Then the objective value 25&dblnes

an upper bound to the IP problem. At this pointseé the lower bound teo. Since bothy; andy, are
fractional we need to branch on them in an attampibtain an integer optimum. We arbitrarily selgct
as the variable to be branched. Two subproblemgererated by adding the constraintsbyand y>6 to

the LP relaxation. From Figure 25 we can see thatttiangle area S’ is cut off bygb. Clearly the
branch with the added constraint§ is infeasible, thus it is pruned by infeasibililjhe other branch
with the added constrain{sb is optimized at (yy»)=(5,4/3), with objective value 22.33. So the ngw u
per bound is updated to 22.33. Again, the varigblie fractional, so this time we branch on ¥he two
constraints ¥»2 and y<1 are then added. This time the area S” is cut affshown in Figure 26. The
branch with y<1 is infeasible and hence is pruned by infeasjhillthe one with ¥>2 is optimized at
(Y1,¥2)=(5,2), with objective value 21. Since this iseadible solution to the IP problem the value 21 be-
comes a new lower bound to the problem, replaeimgand (5,2) is a candidate solution. Checking the
tree, all branches are evaluated, sgy)~=(5,2) is the optimal solution to the IP probleand the optimal
objective value is 21. The enumeration tree fog edample is in Figure 27. We observe that if atlib-
ginning we branched op=8/7 we would get to the final result earlier, thiluis adoption of a decision cri-
terion on which node to explore first is advisable.
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25.57

(v1, ¥2) =(5.57, 1.14)

Pruned by (1, y2) = (5, 4/3)
infeasibility

r.y2=06.2)
Pruned by

Candidate infeasibility

21
Figure 27. B&B tree for problem (2.15).

3.5.2 An exampleof I P problem with applied criteria

Solve the following mixed integer problem using B&Bproach and applying the rule of best-bound-first
at each step. Furthermore, at each node selecattable with the least index to branch on first.

Maximize z—- y+2 y+ y+2
st

Vit Y, — ¥ +3xs7
3y;t Y, %<5

3y, +%22

Y Y2 Y320

x =0

Y Yor Y5 UN

(2.16).

After solving the LP relaxation we obtain an LPioptm y;=6/11 (which is, in this case, the integer vari-
able with least index),»#59/11, ¥=0, %=4/11 and z=120/1110.91. We use this solution as the root
node of the B&B tree in Figure 28, in which the rohenof each node indicates the sequence of subprob-
lems evaluated. Note that at node 1 the constyaittt was indicated on the left branch, but since from
(2.16) the relation $#0 must hold, yhas to be fixed at 0. At node 7, the constrajpRywas intended to
be added, but if we trace back along node 7, wetlsgdhe constraint,¥2 was already added at node 2.
Combining these two constraints, we haye2y Same applies to the constraint gf% at node 8. The
problem is finally optimized at node 12, where (Q,%5/3) is the optimal solution, with objective wal
9.67. Figure 29 depicts the B&B tree for the sameblem where the depth-first rule is applied, ahd a
each node the variable (violating an integer caisty with the largest absolute value cost coeffitiis
chosen to branch on first. Depth-first is sometiroakbed Last-In First-Out (LIFO) because it solthe
most recently generated subproblem first. It telodsursue paths to the depths of the tree, thekiaadk

to where that path started, and finally plunge dawa another depth search. Therefore another riame
depth-first is “backtracking”. Best-bound-first $metimes called “jumptracking” because it leads to
searches that jump back and forth across the tree.
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10.91

(6/11,59/11,0,4/11)

(1,21/4,0, 1/4)

22 Prund by
infeasibility Pruned by

infeasibility

0,2, 1,2)

0,372,2,52 .
Candidate ( ) 967

(1,5,0,1/3)
Candidate (1,13/4, 1, 5/4)

9.67 —o0 Pruned by LB

Pruned by

¥ infeasibility
(0,1, 2, 8/3) @ Pruned by
Pruned by LB infeasibility

Figure 28. B&B tree for problem (2.16) using bestadirst
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Pruned by

=0 . o
infeasibility

(0,5/2,3/2,2)

¥, 23
0.2, 74.914) (1,5,0, 1/3) (1, 13/4, 1, 5/4)
y,€1 Pruned by ' Pruned by LB
” infeasibility ggy Candidate

0,2,1,2) (0, 372, 2, 5/2)

Candidate

(0, 1,9/4, 11/4)

Pruned by

y323 infeasibility
©, 1,2, 813) @
9.33 Candidate Pruned by
infeasibility

Figure 29. B&B tree for problem (2.16) using deptistfi

We end this section by stating that the B&B aldoris can use multiple cores (of multiple machines)
during the optimization process; in principle, ifeohad as many cores as the potentially requirddsof
the B&B tree then a core could be assigned to sabproblem, leading in this case to a full pariiéel
tion. In practice clearly, an ensemble of subpnuisiés assigned to each core.
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3.6 Reweighted £;-norm

A common alternative to relation (2.3) is to comsithet;-norm of vectomw, which is indeed known to
produce sparse solutions for a wide range of agitios [95[96]. In the ambit of compressive sengorg
instance one wishes to recover a sparse stgmak"from a small number of measurementsox,,

where @ is am x n matrix whosem columns (withm <« n) represent the measurements on the signal. It
has been shown thdt minimization allows recovery of sparse signals froemarkably few measure-

ments [97[98]: supposin@ is chosen randomly from a suitable distributiomrtiwith very high proba-
bility, all sparse signalg, for which ||x,[|, <m/a with a=0[log(m/ n)] can be perfectly recovered by

using thet; minimization. However, a key difference betwegmnd ¢; norms lies in the dependence on
magnitude: larger coefficients are penalized mazavily in the; normthan smaller ones, unlike the
more democratic penalization of thgnorm. Therefore, to further enhance the sparsityhefsolution an
algorithm that consists in solving a sequence dfjiated £, minimization problems, where the weights
used for the next iteration are computed from thieer of the current solution, has been propos¢d3h
The idea of this algorithm is to bring tligcriterion as close as possible to th®ne, penalizing more
democratically the nonzero coefficienthe algorithm proposed by E.J. Candes, M. B. Walid S.
Boyd has been developed with the goal of recorstgisparse signals from highly incomplete sets of
measurements. Although not developed specificaliyttie synthesis of sparse arrays, the procedure de
scribed in [73] can be efficiently exploited forraacope. In fact the measurements one would ugigein
recovery of a sparse signal are substituted by gé€iications, while the array layout is actualhet
“sparse signal” to be recovered. Consider the weahty minimization problem

min > wx|

n
XRT o

st (2.17),
y =®x

wherew;, ..., W, are positive weights an®is anm x nmatrix with, typically,m<n. It is convenient to
denote the objective functional Byx| , whereW is a diagonal matrix witlw, ..., w, on its diagonal
and zero elsewhere. One possible use for the veeghild be to counteract the influence of the signa

magnitude on thé; penalty function. Suppose for example that thegitsi are inversely proportional to
the true signal magnitudee. that

T %y 20
vv,:\xo,i\ ’ (2.18).

0o %; =0

If the true signak, is k-sparse, i.dx,| <k, then (2.17) is guaranteed to find the correctitfmn with

this choice of weights provided that-k and that the columns oP are in general positions. The large
(actually infinite) entries of inv force the solutiorx to concentrate on the indices wherds small (ac-
tually finite), and by construction these corregpgnecisely to the indices whexgis nonzero. Without
knowing the signak, itself it is impossible to construct the preciseights (2.18), but this suggests more
generally that large weights could be used to dismge nonzero entries in the recovered signal,ewhil
small ones could be used to encourage nonzer@sn8pecifically, the algorithm is as follows:

1. Setthe iteration couhtto zero andy(® =1, i=1,...,n.
2. Solve the weighted; minimization problem
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N — Awo
X —argmlrﬂw x”l
st (2.19).
y =®X
3. Update the weights: for eachl,...,n

1
e

w' = (2.20).

4. Terminate on convergence or wheattains a specified maximum number of iteratibng Oth-
erwise, incremenrtand go to step 2.

The parametet>0 in (2.20) is used to provide stability and tswme, in particular, that a zero-valued
component i’ does not strictly prohibit a nonzero estimatehatriext step. The parameteshould be
set slightly smaller than the expected nonzero fagdgs ofx,. The use of an iterative algorithm to con-
struct the weightsy; tends to allow for successively better estimatibthe nonzero coefficient locations.
Even though the early iterations may find inacaisignal estimates, the largest signal coefficiangs
most likely to be identified as nonzero. Once siladations are identified, their influence is down-
weighted in order to allow more sensitivity for indiéying the remaining small but nonzero signalfiee
cients.

The reason why the reweightégdminimization can improve the recovery of sparsenalg lies in the
connection it has with the following problem:

min g (v)
st (2.212),
vOo

whereo is a convex set. In (2.2D)is concave [73], hence one can improve on a guesshe solution
by minimizing a linearization of aroundv. This simple observation yields a Majorization-Maization
(MM) algorithm whose each iteration is the soluttona convex optimization problem [73] which turns
out to be equivalent to problem (2.19). A particdase of (2.21) is the log-sum penalty function:

min >-log([x | +)
i=1

st (2.22),
y =®X

which has the potential to be much more sparsiggaraging than thé, norm. Let us consider indeed
three potential penalty functions for scalar magptest:

fo(t) =L f, () :|t|’ Floge )1 IOQ(ZHQJ’

where in the latter the constant of proportionaktget such thd, . (1) =1= f,(1)= f, (1), see Figure 30.

The first €o-like) penalty functiorfy has infinite slope at=0, while its convex {;-like) relaxationf; has
unit slope at the origin. The concave penalty fiomct,, .(t), however, has slope at the origin that grows
roughly asl/e whene—0. Following this argument it would appear thathould be set arbitrarily small
in order to most closely make the log-sum penasemble the, norm. Unfortunately, as—0 it be-
comes more likely that the iterative reweightedalgorithm will get stuck in an undesirable locahim
mum [73]. A choice ot slightly smaller than the expected nonzero mageuwfx provides the stability

44
Company General Use



necessary to correct for inaccurate coefficiertredes while still improving upon the unweightédal-
gorithm for sparse recovery.

1.5 k ; £ (t)
2 1t O fiog e(!)
g fo(®)
2 0.5+

0 -1 0 1

t
Figure 30.Ly-like functions. At the origin, the canonic& sparsity counfy(t) is better approximated by the log-sum penalty
functionfiyg (t) than by the traditional convex relaxationf;(t).

3.7 Thedynamics

For the Tx synthesis not only we seek for an assgpas possible solution, but also for an ispohanie,
this implying that it must attain 0dB of dynamidkg ratio of the maximum to the minimum nonzero en-
try is 1). The reweighted;-norm could be inappropriate for such scope, sy set of weights ob-
tained through this algorithm will exhibit a dynamidifferent from 0dB. Even if the dynamics is quit
narrow if one forces the nonzero entries of theioletd vector to be all equal the requirements caoold
longer be met. In general, when using the rewetgbtenorm in the attempt to approximate an isophoric
solution, we typically experienced worse performemthan with the MIP approach, but anyway to the
best of the student’s knowledge there is no kndvaoretical aspect that prevents a priori to achave
equivalent solution. In general, the reweightethorm enhances sparsity in terms of “zero” entoiethe
vector of interest, but not (necessarily) the hoemamity of magnitude in its “non zero entries”, whis
instead absolutely mandatory for Tx arrays. Allsta@spects set up the reason why we used either MIP
and the reweighted;-norm for synthesizing the arrays for the benchnamkparisons, but not for the
synthesis of the sparse version of the chosen aatesee 5.2. Hence in the following we are recgstin
problem (2.2) by means of the reweighfgahorm with a focus on the Rx synthesis only (thestrints

on upper and lower bounds for the Tx case aredndisent). At thg" iteration the problem to solve is:

min
wORNM

st AR (u.,y)=b
LB, (u.v)<[ AR, (u Y
h=1...,N

O<sw.<1

Z(y)WCH
1

(u,v)OPy, s Ua‘( Y y

R, (2.23),

w|<w,
Aw <1

wherew, is an NM vector of continuous variables (WhoseriestareNc(n)D[O,]], with n=1,2,...,NM)

that represents the continuous version of veatpin (2.2), Z© =l yand z®is a diagonal matrix
whosen™ element on its diagonal is computed as:

1
2 g n{1,2,.. ,NM (2.24),
G
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b is the expected cardinality of the array, whickvatst is equal to the one of the full-array, abdious-

ly cannot be smaller than 1. In (2.24) the parameis chosen as described earlier. The reason why in
(2.23) eithemwv, andw are present although the problem is targeted tpd&terns, lies in the fact that

is necessary for the non-superdirectivity constraimich in this case is not guaranteed. Besidesbt
parameter must be varied several times until theirmam sparse solution is reached. These are agtuall
the drawbacks of this approach.

Chapter 4

Application of the developed algorithms

In this chapter we are going to apply the algorghdescribed in the previous ones either to several
benchmarks of literature and in order to set neesoAs regards the literature benchmarks comparison
we have shown our algorithms perform better, menthiat they succeed in achieving greater reductions
in the number of elements in some cases with ewmearl SLLs. As regards the new benchmarks we have
derived how the reduction of the number of eleméettaves with respect to the intervals of steefibng
different array sizes, and we have seen it is @aang (confirming the intuition for which the ledsgrees

of freedom the algorithms can use the less theysparsify). The latter is another innovative cdnri
tion, since, to the best of our knowledge, it wasar shown and confirmed before our publicatiordj [4
[99].

4.1 Introduction

In order to evaluate the capabilities and the iedesf performances of the herein proposed apprsache
several benchmark problems are considered. Incpdatji a comparison with benchmark problems de-
scribed in [46] and [50], concerning the synthediglifferent types of power patterns are shown.- Fur
thermore, a parametric study aimed at showing tmeparison (in terms of magnitudes of sparsity) be-
tween square apertures of size 3\, and &, for different intervals of steering and for ditéat power
masks, is discussed. In all the examples showrepresents the number of elements of the syn#nsiz
array. The quantities selected for the literatwadhmark comparisons are the Q factor, verifieaatc
ing to [51] [100] and defined as the ratio betwdas stored to dissipated energy. It representdaste
ness index in terms of bandwidth, efficiency, eadiiin sensitivity and position tolerances [51] [LO®
second index of performances is the ratio betwkemlirectivity of the synthesized array and the pee
taining to the isophoric case, confirming, obvigu$br each case, that the former is non-supertiteas
expected. Another index of performances is thetapeefficiency, defined, for hemispherically isurc
radiating elements, as

D

-2 3.1),
4A | N? 3.1)

A

whereD andA are, respectively, the directivity and the areldeed by the convex hull of the synthe-
sized array. Since in the following the directivigfers to the whole sphere of radiation, the gtiaat
the denominator of (3.1) is scaled by a factor .6f Ginally, we define the Elements Number Redurctio
Ratio (ENRR) as- N_ / F , which represents the measure of the achievablectien of the active radiat-
ing elements with respect to the ones composindutharray. In such relatiofr is the number of ele-
ments of the full array.
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4.2 Comparison with literature Benchmarks

Let us now consider the problem of synthesizingarse planar array of elements located on a square
grid of side % in order to radiate a pattern having a broadsiderbeam such that sif(,) = 0.239 at -6
dB. For such a problem, with the hybrid approaatppsed in [17], a SLL below -16.5 dB is achieved
with a planar sparse array composed of 41 elemémtl6] the same number of elements has been
achieved, with a main BW of 0.24 at -6 dB and vét8BLL of -17.3dB. By applying the proposed algo-
rithms, the same BW and a maximum SLL of -17.5d&f(is optimum in a Chebyshev sense) has been
obtained with a non-superdirective array layouhstituted by only =35 elements. The optimized array
layout is shown in Figure 31.

The Q factor and the directivity of the synthediaparse array are, 3.79dB and 18.9dB respectively,
whereas in the isophoric case they are 3.72dB &hddB respectively (this confirms it is non-
superdirective).
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Figure 31. Resulting array layout relative to thetbgsis of focused beam power pattern. Active tadjaelements N35. Dis-
cretization gridd,=d,=0.12. The dashed curve represents the convex hull.

The area bounded by the convex hull is 22%1Which causes a loss in aperture efficiency 09dB-
21.237dB=-2.337dB. In Figure 32 and in Figure 333D and 2D normalized synthesized power pattern,
in the (1,v) domain, are shown respectively. Tgreutting planes fop=0°, 30°, 45°, and 90° are reported
in Figure 34. The element positions and the assmtimormalized excitations, whose dynamics is
8.01dB, are reported in Table 2 .
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Figure 32. 3D normalized power pattern radiatedthy array in Figure 31 with M35 active radiating elements. BW=
sin(@p,)=0.240 at -6dB. SLL=-17.5dB.
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Figure 33. Normalized magnitude in [dB] of the fd&sg pattern radiated by the array in Figure 3heTvisible region is
delimited by the withe circle. ;&35 active radiating elements.
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Figure 34.¢-cutting planes of the normalized power patterniated by the array in Figure 31 wit,=35 active radiating
elements.

No. | (X[A].y[A]) (XIALY[IAD) | w(x.y)
1 | (-2.5,-0.3) (0.1, 2.5)[ 7.79E-0L
2 | (25,03) (0.1,0.0) | 8.94E-0
3 | (25,18) (0.2,-1.7)| 5.53E-01L
4 | (2.2,1.0) (0.3,1.7) | 457E-00
5 | (-2.0,-0.9) (0.6, -2.5)| 5.12E-0L
6 | (-1.8,00) (0.7,-0.9)| 8.38E-0L
7 [ 17,17 (0.7,0.8) | 9.88E-0L
8 | (16,17 (0.8,2.5) | 6.43E-0
9 | (1.2, -2.5) (1.1,-1.7)| 7.81E-0fL
10 | (-1.2,-0.9) (1.1,1.6) | 8.98E-0L
11| (-1.2,0.8) (1.6,-0.8)| 5.87E-0L
12| (-1.0, 2.5) (1.7,-2.4)| 3.98E-0L
13| (-0.8,-1.7) (2.0,0.0) | 8.23E-00
14| (-0.8,0.0) (2.0,1.6) | 6.88E-0fL
15| (-0.7,1.7) (2.1,-1.6)| 3.98E-01L
16 | (-0.3,-2.5) (2.5,-0.8)| 5.97E-0fL
17 | (-0.2,-0.8) (2.5,0.8) | 7.50E-0fL
18 | (-0.1,0.9)

Table 2. Coordinates and normalized weights foiatinay in Figure 31.

Therefore, the just discussed benchmark compatssnbeen obtained with a slightly lower SLL and
with a reduction of 14.6% in the number of requiaetive radiating elements.

The second benchmark problem concerns the syntbieaifiat-top circular symmetric pattern datedibac
to [80], where it has been obtained with a squarayacomposed of 121 half-wavelength spaced ele-
ments, whose edge i4.5The synthesized array radiates a real and ee&hdbtained by using a Kaiser
window. In [46] the same power pattern has beeimesed by assuming, in the flat-top region, as refer
ence field to fit the one radiated by the arraytsgsized in [80], whereas the SLL is below the gribsd
level. The resulting sparse array, onlaesige square support, is composed of 100 radialexments
whose minimum interspacing is approximately 0.36iven, by hypothesis, a real and even radiated
field, any lower and upper bound constraint onrttegnitude of the array factor |AF| is affine andsth
convex. Such a condition allows to formulate thelpem in the more general way, exploiting a greater
number of degrees of freedom to achieve the maknsalarse solution. In particular, it is sufficiciot
constrain the array factor to satisfy only the priéed upper and lower bounds both in the flatdopl
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the sidelobe region. By applying the proposed ssgithscheme, the prescribed flat-top power pattasn
been synthesized by means of only Ne=57 radiatiagnents whose minimum interspacing and maxi-
mum antenna size are, respectively, greater tHanahd 4.24. The optimized array layout is shown in
Figure 35. In Figure 36 and Figure 37 the 3D ard2b normalized power pattern, in theyf domain,

are shown respectively, whereas theutting planes fop=0°, 30°, 45°, and 90° are reported in Figure
38.

~~~~~~

0.5

¥IAl
=1
T
|

-0.5

x| A
Figure 35. Resulting array layout relative to thathgsis of the flat-top power pattern. Actual rédig elements Ne=57.
Discretization grid: dx=dy=0.01 The dashed curve represents the convex hull.
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Figure 36. 3D normalized flat-top power patterniagetl by the array in Figure 35 with#67 elements. SLL=-24.53dB.
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Figure 37. Normalized power in [dB] of the resuitiftat-top pattern in the (u,v) domain. The visibégion is delimited by the
withe circle, Ne=57 active radiating elements.

0
A-10f
o
g =20+
5
=)
L
P
'S 40t
-3 - - $=30°
2 ‘i | [--¢=5 |
-60 L ' -
-1 -0.5 0 0.5 1
sin(#)

Figure 38.¢-cutting planes of the normalized flat-top powettga synthesized in [80] (dotted lines) and the sgnthesized
with the proposed synthesis scheme (solid linesyx3Y active radiating elements.

Given the symmetry, with respect to the main axesthe bisecting lines of both weights and relagive
sitions of the synthesized array layout, only ldmednt positions with the associated weights, witlyse
namics is 26.58dB, need to be provided, see Table 3

No. [ (xALY) | w(xy) [[No.| xALyA) | wixy)

1 [(0.00,0.00) 1.00E0O|| 7| (1.41,0.71) -4.69E-0R
2 | (0.71, 0.00f 5.95E-01 8 | (2.12, 0.71)[ -1.25E-01
3 | (2.12, 0.00)f -1.69E-04f 9 | (1.77, 1.06)] -1.01E-01
4 | (0.35, 0.35] 5.61E-01|| 10 | (1.41, 1.41)] -7.50E-01
5 | (1.06, 0.35] 2.33E-01[ 11 | (1.77, 1.77)] -6.44E-0;
6 | (0.71, 0.71) 3.92E-01]

Table 3. Coordinates and normalized weights ofldttetép in Figure 35.

Definitely, while keeping the same requirementsttos power mask, the proposed synthesis algorithms
allow to reduce both the array support’s edge @$.2nd the number of actual radiating elements {43%
Just for completeness sake we are providing theegadf Q and the aperture efficiency of the syritieels
flat-top pattern, although this is not very commiam this type of patterns. In particular, we have
Q=1.97dB, and\; o, =9.920B- 10log, (47 *16.00363 - 13.1dB.
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Either the pencil beam and the flat-top patterngeHzeen published on IEEE Transactions on Antennas
and Propagation [48]/[R1].

The following benchmark comparison has been pubtishn Progress In Electromagnetics Research
Symposium (PIERS) [99]/[R2].

For the following benchmarks we made the hypothebisonjugate-symmetrical excitations for coher-
ence sake towards the benchmarks chosen for caopasince all the synthesis made in [81] first an
then in [50], strongly found on this choice. Clgdtis is not the only assumption, others existolhdo

not decrease the number of degrees of freedonos ps this does. However, our scope for theseifipec
types of patterns was to inspect whether our alyms could return better performances (in terms of
sparsity) than the ones achieved in [50] with asyrequal conditions as possible.

Let us consider a rectangular-grid array with d-thalvelength spacing of 14 x 14 elements for thetjo
synthesis of two shaped patterns, a circular adémond-like one, which in [50] have been obtained
with 150 radiating elements with SLLs of -25.85dBda24.3dB respectively. For the first pattern the

mainlobe region is specified as a circular-shapes] with equatior{(u,v): P+ s0.22} , Whereas the

sidelobe one is given b{;(u,v): P+ VP 20.42} . For the second pattern, which was originally bgstzed
in [81] with a 14 x 14 array with half-wavelengtbaging, the mainlobe region is diamond-shape ke,
is  defined b{(u, V):|u=0.2+|v-0.2< 0.2} ,  Wwhereas the sidelobe one is given by

{(u,v): |u—0.2*+|v— O.$2 0.4} . Furthermore, a circular-shaped null region isunegl too, and is given

by {(u,v): (u+0.5f + (v+ 0.5§ <0.1%} , with a null of -50dB. In both cases the requiriggple is<1dB.

All the sidelobe regions are within the visiblectér. We would like to remark, in the present disons,

that the aforementioned SLL for the diamond-shapesitern makes the joint synthesis unfeasible unless
the (u,v) spectrum is sampled with 81 x 81 poiatsis apparently done in [50]. With the (u,v) spatt
sampled with 128 x 128 points, as we did in ountlsgsis, the minimum possible SLL is slightly highe

in particular it is -23.67dB. With such samplingda8SLL for the diamond-shape pattern, all the con-
straints are met even when plotting the radiatiatbgon on more points. With our proposed algorithves
obtained the joint synthesis with only 119 radigtelements, with ENRR=39.29% which is higher than
ENRR=23.47% achieved in [50]. Figure 39 and Figd®eshow the layouts obtained in [50] and in this
thesis work, respectively. Figure 41, Figure 42 &iglre 43 show the circular 3D/2D patterns and the
main axes cuts respectively, whereas Figure 44yr€ig5 and Figure 46 show the diamond-shaped
3D/2D patterns and the main axes cuts respectivelparticular, in Figure 46 the cuts are appayentl
centered afi=asin(0.2) For the circular pattern the Q factor is appradety 5dB, whereas the directivi-
ty of the synthesized array is of 14.19dB. Themfoe haveA circ_paterm14.19dB-1000,o(47*42.25)=-
13.05dB. For the diamond-shaped one we have Q=B.5@hd Acs giamond paterrd.56dB-
10l0g;¢(4n*42.25)=-17.69dB.
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Figure 39. Array of 150 elements obtained in [50]
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Figure 40. Array of 119 elements obtained by medrsir proposed algorithms
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Figure 43. 2D circular pattern cuts. The vertiaal=(0) and horizontal (v = 0) cuts are reportedhia figure together with the
boundary required by the benchmark. Datatips haea linserted to show precisely the SLL.
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Diamond Normalized Pattern
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Figure 45. 2D diamond-shape pattern. The whitdeceiod dashed square, together with the red daséedsguare represent the
null region, the mainlobe and sidelobe regions bauies respectively.
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Figure 46. 2D diamond-shape cuts. The vertical Q) and horizontal (v = 0) cuts are reported infihere together with the
boundary required by the benchmark. Datatips haea linserted to show precisely the SLL.
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4.3 New benchmarks

In this section we are assessing the performarfcie @roposed algorithms for a series of casesitha
volve the variations of the antenna size and stga@nge in the visible circle after fixing its geetry,

BW and optimum SLL (the latter as described inisecB.2). The BWs are referred to the highest SLL
level and reported in degrees as double-sided, eslsethe maximum steering directions are determined
according to the main lobe extension in order toidwthe rise of grating lobes. The full array isreo
posed of elements whose distance is half-waveleragtth acts as reference for the computation of the
ENRR. In Table 4 the input parameters are grouped.

Size| BW [deg] | SLL [dB] | F
3L | 39.8643 | -22.9784] 49
5L | 25.3326 | -24.3877] 121
7. | 18.5734 | -25.0483] 226
Table 4. Input parameters: array edge, BWs and SLLs

The results of the performed numerical analysissgrghesized in Figure 47, whose steering rangesar
in [0°,57.06°]. The trend shown in Figure 47 se¢mnsonfirm that the more degrees of freedom the-alg
rithms can sparsify on, which corresponds to laegef larger antenna sizes, the higher is the restuct
the elements, therefore representing a major adgarfor electrically large arrays.

Coherently with the examples discussed in the presvsection, the Q factor of the synthesized alisays
always higher than the one pertaining to the samag n the isophoric case, thus exhibiting a seraih-
bustness in terms of weight dynamics. Moreoverdihectivity of all the synthesized, sparse arrigyis
any case smaller than the one of their isophonimt#part (as expected).
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Figure 47. ENRR Vs steering angles for BWs and SLLEatfle 4.

In Figure 47 when the ENRR converges to zero m#atghe full array solution is achieved, whichr-co
responds to the highest steering ranges, which@réhe 3\, 5\ and A arrays, 41.5°, 51° and 57.06° re-
spectively. Please note that the last differentnfero values of ENRR refer to steering angles dhat
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very close to the above maximum ones; in thedse for instance the maximum steering angleivel&d
the last non-zero value of the ENRR is 57°, hehedwo values are barely distinguishable. Cleailyce
only the latter case can reach 57° of steeringpitesents the most complete case, and thus hashee
sen for a more detailed description. Figure 48 shthwe array layout which is characterized QEN63
and a relative ENRR of 27.56%, whereas Figure 48vshtthe 3D normalized power pattern lying in the

region ® :{(u,v): ¥ + V' <[1+sin(57 ]2} when us=v,=0. The gcutting planes forg=0°, 30°, 45° and

90° are reported in Figure 50. Since the upper 8oniTable 4 has been imposed in the bi-dimensional
region @, the relative synthesized array is able to radiapencil pattern up to 57° along any direction,
see Figure 17. Figure 51 shows the normalized 2Bep@attern when the main beam is steered along
(uo,vo)=[sin(57°),0]. As it can be seen, this steering direct®osuch that no grating lobes enter the visible
region and, in particular, that it is the maximunea@llowed by the array under discussion.

The weight dynamics is 7.21dB, the Q factor anddinectivity of the sparse synthesized array age, r
spectively, 1.36dB and 23.1dB, whereas the ondseinsophoric case 1.36dB and 23.4dB (thus confirm-
ing, as expected, the synthesized array is nonrdinpetive). The area bounded by the convex hull is
43.51% which causes an aperture efficiency loss of 28:24.377dB=-1.277dB.
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Figure 48. Resulting steerable array relative tosyrghesis of pencil beam power pattern. Activaatatg elements N-163,
edge size X, steering range 57°. The dash-dotted curve repigés convex hull
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Figure 49. 3D power pattern radiated by thesteerable array (Figure 48) pointing at broadsitie=163 active radiating ele-
ments. BW=18.57°, SLI}25dB
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Figure 50.¢-cutting planes forg=0°, 30°, 45° and 90° of the normalized power pattef Figure 49. On the abscissa it is
rO[-1-sin(57),1+ sin(57 )
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Figure 51. 2D power pattern of tha Steerable array depicted in Figure 48 pointingavy)=[sin(57°),0] and with the input
parameters in Table 4. The visible region is deérhby the white circle, whereas the dashed onifts the regione
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Chapter 5

Experimental assessment of the algorithms application: Far Field
measur ements in anechoic chamber

5.1 Introduction

In this chapter we are dealing with the experimlevaidation of the algorithms described in thevpoels
ones by means of measurements in anechoic charhtiex ohosen antenna, that for secrecy reasons we
are naming a¥X-antenna The sparse synthesis has been carried out bghéngt off the elements of the
standard, full antenna, thus it falls within theesjal case of thinning. Clearly indeed it would hatve
been possible to perform measurements of a sparsmn of theX-Antennawith the positions of the el-
ements that could fall out of the existing onespiéture of the latter is given in Figure 52, (sagat
[101]). First we are showing how the array simulabg a full-wave simulator as Ansys HFSS meets the
requirements and compares to the predicted perfuresaobtained in Matlab, then we are comparing the
simulation results to the measurements. Eithesyimehesis and the HFSS simulations have been darrie
out by taking into account the element factor @& #ray. The latter has been simulated individuially
HFESS (with master/slave conditions) and all theeseary electric field components have been exported
to Matlab for the synthesis process, which obviplisis been achieved jointly in Tx and Rx.

e N

=

o 4 .')' i

F

1 i l'.'
Figure 52. A photograph of théantenna
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5.2 The X-antenna: featuresand requirements

The X-antennaoperates in C-band, is an active full phased amily TxX/Rx solid state modules, and is
able to steer up to +45° in Azimuth and +60° inval®on. Among the different beams it can form we
chose the pencil-type sum one for this thesis wbdt. secrecy reasons all the requirements thaivioll
are parametrized, as well as other quantities like:

» the frequency at which the synthesis has been madeh isf;
* the number of elements of the fifantennawhich we name aSy..

5.2.1 The Tx requirements

All the following requirements are referred to theximum pattern value.

« Beamwidth @-3dB for horizontal and vertical cut&BT

e Beamwidth @-3dB for +45° Azimuth (v=0 cut): LFAT

* Beamwidth @-3dB for £60° Elevation (u=0 cut): LFET

* SLL within £LTF for horizontal and vertical cutsLLBT

e SLL beyond * LTF for horizontal and vertical cuits &t least 90% of the whole observation in-
terval):<LLFBT

* rms SLL beyond =L TF for horizontal and vertical &utLLRBT

e SLL within £LT for £45° Azimuth (v=0 cut)<LLAT

* SLL beyond LT for +45° Azimuth (v=0 cut) (in atdst 90% of the whole observation interval):
<LLFAT

e rms SLL beyond £LT for £45° Azimuth (v=0 cu§LLRAT

e SLL within LT for £60° Elevation (u=0 cutxLLET

e SLL beyond LT for £60° Elevation (u=0 cut) (inlatist 90% of the whole observation interval):
<LLFET

e rms SLL beyond £LT for £60° Elevation (u=0 cu:LRET

5.2.2 The Rx requirements

All the following requirements are referred to theximum pattern value.

« Beamwidth @-3dB for horizontal and vertical cutEB-

e Beamwidth @-3dB for £45° Azimuth (v=0 cut): LFA

* Beamwidth @-3dB for £60° Elevation (u=0 cut): LFE

* SLL within £LTF for horizontal and vertical cutsLLB

e SLL beyond £LTF for horizontal and vertical cuts £t least 90% of the whole observation in-
terval):<LLFB

* rms SLL beyond £LTF for horizontal and vertical €u#LLRB

e SLL within £LT for £45° Azimuth (v=0 cut)<LLA

* SLL beyond LT for +45° Azimuth (v=0 cut) (in atdst 90% of the whole observation interval):
<LLFA

e rms SLL beyond LT for £45° Azimuth (v=0 cugLLRA

e SLL within LT for £60° Elevation (u=0 cutxLLE

e SLL beyond LT for £60° Elevation (u=0 cut) (inlatist 90% of the whole observation interval):
<LLFE

e rms SLL beyond LT for £60° Elevation (u=0 cu:LRE

e Tapering dynamicsTR
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5.3 Comparison between simulated results: the Tx Synthesis

In Figure 53 the full array in Tx is depicted (omyo colors), whereas in Figure 54 the sparse sginkd
array is shown. It shall be considered indeed shrate in anechoic chamber the measurements could no
be carried out by physically removing the radiathgments that were not supposed to be presemtigtha
the “switched-off” ones with 0 weight), the HFS&siations have been carried out by setting 0 pamwer
place of the absent elements, so that these apdysjmassive (only physically present). The ENRR is
55.74%, and most of the requirements listed inl5have been met. In particular:

the beamwidth @-3dB for the horizontal cut is LFBTB014° in HFSS, thus it is slightly wider
than the expected value. Anyway, the requiremenbignet.

The beamwidth @-3dB for the vertical cut is LFBD4b61° in HFSS.

The beamwidth @-3dB for +45° Azimuth (v=0 cut) IBAT+0.2228° in HFSS, thus the re-
quirement is not met.

The beamwidth @-3dB for +60° Elevation (u=0 cut)EET+0.1775° in HFSS, thus the re-
quirement is not met.

The rms SLL beyond +LTF for the horizontal cut isSRBT-8.38dB

The rms SLL beyond +LTF for the vertical cut is LBR-3.89dB

The rms SLL beyond LT for 45° Azimuth (v=0 cut)LiERAT-2.59dB

The rms SLL beyond LT for -45° Azimuth (v=0 cu$)liLRAT-2.58dB

The rms SLL beyond LT for 60° Elevation (u=0 cigt. LRET-2.01dB

The rms SLL beyond LT for -60° Elevation (u=0 cistl. LRET-2dB

All the other requirements listed in 5.2.1 are shamwfigures from Figure 55 to Figure 60. In Fig&i®
and Figure 60 the mask has not been plotted foespceasons.
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Figure 53. The fulX-AntennaTx layout
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dB

Normalized horizontal cut Tx, comparison between Matlab and HFSS

dB

T T
—Horizontal cut Tx Matlab
——Horizontal cut Tx HFSS
— Mask
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sin(f)
Figure 55. Horizontal cut for sparse XxAntennaat broadside
Normalized vertical cut Tx, comparison between Matlab and HFSS
b ‘ f — Vertical cut Tx Matlab
—Vertical cut Tx HFSS
—Mask
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Figure 56. Vertical cut for sparse RxAntennaat broadside.
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LLFAT
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Normalized 45° azimuthal cut Tx (v=0), comparison between Matlab and HFSS
T

¢ — Azimuthal cut Tx Matlab
— Azimuthal cut Tx HFSS
—Mask
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Figure 57. 45° azimuthal (v=0) cut for sparseXFAntenna

Normalized -45° azimuthal cut Tx (v=0), comparison between Matlab and HFSS
T

LLAT

LLFAT

— Azimuthal cut Tx Matlab
— Azimuthal cut Tx HFSS
—Mask

-90 LT -45 LT 90

sin(f)
Figure 58. -45° azimuthal (v=0) cut for sparseXPAntenna
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— Elevation cut Tx Matlab
—Elevation cut Tx HFSS

Normalized 60° elevation cut Tx (v=0), comparison between Matlab and HFSS
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Figure 59. 60° elevation (u=0) cut for sparseXFAntenna
f Normalized -60° elevation cut Tx (v=0), comparison between Matlab and HFSS
——Elevation cut Tx Matlab
—Elevation cut Tx HFSS
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Figure 60. -60° elevation (u=0) cut for sparseXFAntenna
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5.4 Comparison between simulated results: the Rx Synthesis

In particular:

* the beamwidth @-3dB for the horizontal cut is LFBT1964° in HFSS.

* The beamwidth @-3dB for the vertical cut is LFB462 in HFSS.

* The beamwidth @-3dB for +45° Azimuth (v=0 cut) iBAT-0.2196° in HFSS.
* The beamwidth @-3dB for +60° Elevation (u=0 cuth FET+0.3668° in HFSS.
* The rms SLL beyond +LTF for the horizontal cut isRB-17.57dB

* The rms SLL beyond +LTF for the vertical cut is LBR2.96dB

* The rms SLL beyond LT for 45° Azimuth (v=0 cut)iERA-13.34dB

* The rms SLL beyond LT for -45° Azimuth (v=0 cu$)liLRA-13.32dB

* The rms SLL beyond LT for 60° Elevation (u=0 cist]. LRE-13.5dB

* The rms SLL beyond LT for -60° Elevation (u=0 cist] LRE-13.49dB

* The tapering dynamics is TR-8.07dB.

Figure 61 shows the tapering of X-Antenna, whefigages from Figure 62 to Figure 67 show the ctits a
broadside, horizontal and vertical, the cuts at’zatBmuth and +60° elevation. The last two figufEs0°

elevation ) do not show the mask for secrecy reason

Sparse X-Antenna (Rx)
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Figure 61. The spars&AntennaRx layout
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dB

dB

Normalized vertical cut Rx, comparison between Matlab and HFSS
T T

— Vertical cut Rx Matlab
—Vertical cut Rx HFSS
—Mask

LLB |-

LLFB ﬁ

1 1 1
-90 -LTF 0 LTF 90
sin(f)

Figure 62. Vertical cut for sparse RxAntennaat broadside

Normalized horizontal cut Rx, comparison between Matlab and HFSS
T T

— Horizontal cut Rx Matlab
——Horizontal cut Rx HFSS
— Mask

LLB -

LLFB n

—
—

I 1 1
-90 -LTF 0 LTF 90
sin(f)

Figure 63. Horizontal cut for sparse Rx X-Antenharmadside.

70
Company General Use



Normalized 45° azimuthal cut Rx (v=0), comparison between Matlab and HFSS
T

g —— Azimuthal cut Rx Matlab f
— Azimuthal cut Rx HFSS
——Mask
LLA - -]
LLFA n ﬂ n H ﬂ ﬂ ﬂ q
) ﬂ
q f\
1 1 1
-90 AT 45 LT 90
sin(f)
Figure 64. 45° azimuthal (v=0) cut for sparseXRAntenna
6 Normalized -45° azimuthal cut Rx (v=0), comparison between Matlab and HFSS
I — Azimuthal cut Rx Matlab
— Azimuthal cut Rx HFSS
—Mask
LLA - -

d

—
—

-90 LT -45 LT 90
sin(0)

Figure 65. -45° azimuthal (v=0) cut for sparse RANMenna.
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Normalized 60° elevation cut Rx (v=0), comparison between Matlab and HFSS

0
——Elevation cut Rx Matlab
——Elevation cut Rx HFSS

LEE [~ |

-90 60 90
sin(f))

Figure 66. 60° elevation (u=0) cut for sparseXRAntenna

Normalized -60° elevation cut Rx (v=0), comparison between Matlab and HFSS

v — Elevation cut Rx Matlab
—Elevation cut Rx HFSS
LLET - gl

LLFET - ”

dB
R

-90 -60 90
sin(f)

Figure 67. -60° elevation (u=0) cut for sparseXR&ntenna
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5.5 Comparison between ssimulated and measur ed results

In this section a comparison between measurediemdaged FF is shown at broadside and for one case
of steering in order to validate the simulatioruits In particular, the plots shown refer to tparse case

in Tx, which is given a more in-depth descriptionb.6. For the HFSS curves the simulations have bee
done by using the actual phases used for makingrtena corrections aimed at approximating, ahrmuc
as possible, a set of phases of reference for atdrdirections of steering (like the ones involwedhe
present discussion). In fact, apart from the thimakphases (which in the case of broadside caif her
each active element for instance) the real oneth&X-antennaare typically different from O, even in the
broadside case. The overall comparison shows a gaitd coherence between the two types of results.

Normalized vertical cut Tx, comparison between measured FF and HFSS

———Measured
HFSS

-90

0

90

Figure 68Vertical cut for sparse TX-Antennaat broadside: comparison between measured andesgd(HFSS) results
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Normalized horizontal cut Tx, comparison between measured FF and HFSS

—Measured
HEFSS

m—

_)'

= - —
—

J Wﬂ | bﬂlﬂ |' | \ ﬂ" \ﬂf \/\[\{\

|
90 0 90
Figure 69 Horizontal cut for sparse TX-Antennaat broadside: comparison between measured andesgdHFSS) results

Normalized 45° azimuthal cut Tx (v=0), comparison between Measured FF and HFSS
i)

'\
i
i W |
NN (1
N\ \ \ff\ H f!' fl l ‘ p\
|

Figure 7045° azimuthal (v=0) cut for sparse XxAntennacomparison between measured and simulated (HESSIts
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5.6 Experimental results: the measured FF in Tx of the sparse X-Antenna

In this section the final results in terms of FFfpamances are shown as regards the Tx side. “¥eha
been put on the curves for the points that falkioiet the mask, and details are provided in theviotig
for what concerns their percentage with respethéowhole observation intervab( 5.2.1). As regards
the steering directions it has been possible toygart the measurements only for 45° azimuth (ver@)
60° of elevation (u=0), but nonetheless the antdrateavior in the cases of -45° azimuth (v=0) ar@f -6
of elevation (u=0) is typically the same, so thasiquite likely that if the requirements are nrethe
former cases they are met in the latter ones als ldfigure 74 the mask is not shown for secresaxr

sons.

In particular, we have:

the beamwidth @-3dB for the horizontal cut is LFB.D3°.

The beamwidth @-3dB for the vertical cut is LFBD®.

The beamwidth @-3dB for 45° Azimuth (v=0 cut) isAT+0.05°, thus it is slightly wider than
the expected value. Anyway, the requirement ismett

The beamwidth @-3dB for 60° Elevation (u=0 cut) EET-0.1°.

The rms SLL beyond +LTF for the horizontal cut isSRBT-6.6601dB.

The rms SLL beyond +LTF for the vertical cut is LRRR-4.7762dB.

The rms SLL beyond LT for 45° Azimuth (v=0 cut)iERAT-5.5268dB.

The rms SLL beyond LT for 60° Elevation (u=0 cist. LRET-1.3085dB.

The percentage of points outside the mask for ¢nttcal cut (Figure 71) is 2.48%.

The percentage of points outside the mask for @ieetevation (u=0 cut) (Figure 74) is 0.74%.

g Measured normalized vertical cut Tx
T T N
{\ ~—— Measured vertical cut Tx

Mask

LLBT |- =

LLFBT \

dB
=
——

| 1 1

-90 -LTF 0 LTF 90
sin(#)

Figure 71. Vertical cut for sparse KxAntennaat broadside
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dB

Measured normalized horizontal cut Tx
T

0
——Measured horizontal cut Tx
Mask
LLBT [ =
LLFBT
| 1 1
-90 -LTF 0 LTF 90
sin(#)
Figure 72. Horizontal cut for sparse XxAntenna at broadside
Measured Normalized 45° azimuthal cut Tx (v=0)
——Mecasured azimuthal cut Tx f !
—— Mask
LLAT
LLFAT n
Il [l i |
-90 0 4T 45 LT 90
sin(f)

Figure 73. 45° azimuthal (v=0) cut for sparseXFAntenna
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Measured normalized 60° elevation cut Tx (v=0)
T

——Measured elevation cut Tx
Mask

LLET

LLFET ﬂ

dB

-90 0 60
sin(f)
Figure 74. 60° elevation (u=0) cut for sparseXFAntenna

5.7 Experimental results: the measured FF in Rx of the spar se X-Antenna

In this section the final results in terms of FEfpamances are shown as regards the Rx side. “W&ha
been put on the curves for the points that falsioiet mask, and details are provided in the foll@wfior
what concerns their percentage with respect tomi@e observation intervabX 5.2.2). As regards the
steering directions it has been possible to cautytlte measurements only for 45° azimuth (v=0) @i
of elevation (u=0), but nonetheless the antennawehin the cases of -45° azimuth (v=0) and -60° o
elevation (u=0) is typically the same, so thasitjuite likely that if the requirements are methe former
cases they are met in the latter ones as well.

In particular, we have:

* the beamwidth @-3dB for the horizontal cut is LFB.D3°.

*« The beamwidth @-3dB for the vertical cut is LFBD&b°.

e The beamwidth @-3dB for 45° Azimuth (v=0 cut) isAT~0.2361.

e The beamwidth @-3dB for 60° Elevation (u=0 cut).iET-0.544°.

e« The rms SLL beyond £LTF for the horizontal cut isSRBT-5.6142dB.

e The rms SLL beyond £LTF for the vertical cut is LBR-6.0223dB.

e The rms SLL beyond £LT for 45° Azimuth (v=0 cut)ibRAT-6.4935dB.

« The rms SLL beyond £LT for 60° Elevation (u=0 cistL. LRET-2.567dB.

* The percentage of points outside the mask for éntcal cut (Figure 75) is 9.899%.

* The percentage of points outside the mask for tmizd¢ntal cut (Figure 76) is 2.8534%.

* The percentage of points outside the mask for #ieagimuthal (v=0 cut) (Figure 77) is
1.8741%.

« The percentage of points outside the mask for @3eEevation (u=0 cut) (Figure 78) is 17.22%,
thus the requirement is not met.

* The 60° Elevation (u=0 cut) has points that aregrethan LLE (see red ellipse in Figure 78),
thus the requirement is not met. However, if westder this cut for the full, standard case, we
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see there is no significant difference betweenlwecurves, see Figure 79. In particular, in such
figure we highlighted the points outside the maskdse percentage is 18.87%) on the full-
antenna curve with green “*”. Moreover, the maibdds even wider than the one pertaining to
the sparse case, therefore not meeting the reqeirsnmn this case could be due to the full-
antenna conditions in Rx during the measuremeatiser than to a synthesis issue.

Measured normalized vertical cut Rx

0
I I ——Measured Vertical cut Rx
—Mask
LLB | E
| ]

m
-

LLFB

1 1 1
-90 -LTF 1] LTF 90
sin(f)

Figure 75. Vertical cut for sparse RxAntennaat broadside
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Measured normalized horizontal cut Rx
T

0 T
——Measured Horizontal cut Rx
—Mask
LLB -
m
=
LLFB al
-90 -LTF 0 LTF 90
sin(f)
Figure 76. Horizontal cut for sparse RxAntennaat broadside
8 Measured Normalized 45° azimuthal cut Rx (v=0)

—— Measured Azimuthal cut
Mask

LLAF T w .

m LLFA

d

-90 0 LT 45 LT 90
sin(#)
Figure 77. 45° azimuthal (v=0) cut for sparseXRAntenna
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Measured Normalized 60° ¢levation cut Rx (v=0)
T

dB

0
——Measured Elevation cut Rx
LLE |- )
LLFE -
-90 0 60
sin(#)
Figure 78. 60° elevation (u=0) cut for sparseXRAntenna
0 Measured Normalized 60° elevation cut Rx (v=0)
—— Measured sparse Elevation cut Rx
—— Measured full-antenna Elevation cut Rx
{
LLE - i
LLFE - S ITAMELR (A i '11

-90 0 60
sin(&)
Figure 79. 60° elevation (u=0) cut for sparse arldRx X-Antenna
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Chapter 6

Conclusions and futureresearch

In the present thesis work the analysis, designagptication of algorithms for the synthesis of naad-

ly sparse, planar, non-superdirective, multi-pattend steerable arrays has been investigated veifiea
cial focus on the Tx (isophoric) case. Startingrfra dense sampled, planar aperture, such algordhms
low to determine a single layout for Tx and sevdRal sets of weights via convex optimizations by
minimizing the number of elements. In particultie hecessity of synthesizing an isophoric arraygragn
the other goals, lays the foundations of MIP, siiheequires the introduction of binary variableghich
account for presence or absence of elements ftr gaiat of the grid) in the problem formulation. &'h
objective function becomes therefore non-conveguireng to solve, in principle, an NP-hard problem
exponential cardinality. At the same time howewet, only it allows to determine the Tx array frohet
synthesis process, but it also allows to applyresstaint on the minimum inter-element distance #xac
which in turn assures the sparse array to be nperdirective. The joint Tx/Rx synthesis, togethethw
the latter constraint are two among the most intiewacontributes of this thesis. Two approachesshav
been presented and described to face the non-cionmeéthe objective function: the reweightégnorm
and algorithms of B&B type. From a software implenation point of view the use of MIP is quite ap-
pealing because with commercial solvers like Guestdl Mosek the user has the possibility of writimg
mathematical problem exactly as in (2.2), everhd bbjective function is ultimately non-convex. Or,
equivalently, it becomes convex in terms of binaayiables (in fact it is just their sum), and yeistis
transparent to the user: the solver automaticallls into play the B&B algorithms. Advantages anstd
advantages clearly affect these two approachesetheightedl;-norm favors simulation time at the det-
riment of non-superdirectivity constraint, which tinis case is applied just approximately. Moreover,
when a Tx synthesis is strictly required, as farsfying theX-antennait generally returns worse per-
formances than the case of MIP. This is due tddahethat the reweighteti-norm enhances the gap be-
tween “zero” and “non zero” entries in the vectbrirderest (and according to this view it is vergliv
suited for approximating the cost function of pel (2.2)), privileging sparsity and pushing as elts
zero as possible the formers, but does not intatlyi address the heterogeneity of amplitude withim
latters. After deriving the MIP solution for tBeAntenna several attempts were made by using the re-
weightedt;-norm with the goal of obtaining a solution thaulkbget as close to it as possible, but we did
not succeed: it returned a greater number of (moa}zlements. Apart from this, since we already &a
MIP solution available we knew in advance how tbtke parametds in (2.23), but this is apparently not
the ordinary case: normally one has to performagiémization (2.23) for numerous valuestpfwhich
can easily lead to a longer overall simulation tiimen in the case of MIP.

On the contrary, the MIP approach privileges ex@gtn sparsity, global minimum and (intrinsicallyy T
solutions at the detriment of time required to ange. Hence, the time budget one has availablehend
necessity of obtaining a Tx synthesis act as thie metors for choosing between the two solutiores pr
sented. However, it must be underlined that thégdesnd realization process of a new AESA may take
years, and in this long interval the synthesis @ssaequests a negligible time, even if it hadke tone
month for instance. Furthermore, it is a proceastypically must be carried out only once.

As regards the efficacy of the solutions proposegrbblem (2.2), it has been shown:

* in the application of the proposed optimizationesoks to benchmarks present in literature,
* in the creation of new benchmarks, and especially
* in the application to an existing antenna (§aantennd composed of thousands of elements,

whose FF performances exhibit a very good coheredittethe ones predicted by the simulations carried
out in HFSS, thus validating both the simulationdeloand the sparsification process itself and prgvi
the antenna meets the requirements with an ENRI%.@4%. The measurements of the sparse version of
the X-Antennaand the relative FF performances represent anathfr contribute in terms of innovation

in the present work.

Starting from the latest results obtained from iEasurements in anechoic chamber the next steps con
sist in addressing the peak directivity loss problén fact, in sparsifying th¥-Antennawe allowed the
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solver to minimize the number of elements withooy aonstraint on this quantity, but in order foe th
developed optimization schemes to be more attedtyv future designs, ENRR and (peak) directivity
must be put on the balance: by dropping the foromer can push the latter higher. The loss in peak di
rectivity that can be tolerated depends on higbheellrequirements, which are eventually relateth&
radar’'s range coverage, PD and PFA. Furthermorspghese synthesis has been done only for the center
frequency. It is supposed to be carried out fdeast f,, and f..x as well. On another side the business
aspect shall be considered accordingly as weltesibesides ENRR, peak directivity and other figuwk
performances, it is mandatory to figure out how money saving can be earned in the realizatiaan of
sparse antenna. Anyway, such aspect may be takemdéoount a priori in the synthesis process by ap-

propriately finding, more in general, the relatimetween (monetary) costs and (some) indexes obperf
mances.
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