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Abstract 
 
 
 
 
This thesis deals with the problem of synthesizing planar, maximally sparse, steerable and non–
superdirective array antennas by means of convex optimization algorithms and testing their per-
formances on an existing array to assess its far field performances in terms of requirements ful-
filment. The reason behind the choice of such topic is related to those applications wherein the 
power supply/consumption, the weight and the hardware/software complexity of the whole radi-
ating system have a strong impact on the overall cost. On the other hand, the reduction of the 
number of elements has of course drawbacks as well (loss in directivity, which means a smaller 
radar coverage in radar applications, loss in robustness, etc.), however the developed algo-
rithms can be utilized for finding acceptable trade-offs that arise, inevitably, when placing ad-
vantages and disadvantages of sparsification on the balance: it is only a matter of appropriately 
translating requirements in a convex way. The synthesis scheme will be described in detail in its 
generality at the beginning, showing how the proposed synthesis techniques outperform several 
results existing in literature and setting the bar for new benchmarks. In particular, an important, 
innovative constraint has been considered in the synthesis problem that prevents selection of el-
ements at distances below half-wavelength: the non super-directivity. Moreover, an interesting 
result will be derived and discussed: the trend of the reduction of the number of elements Versus 
the (maximum) antenna size is decreasing as the latter increases. Afterwards the discussion will 
be focused on an existing antenna for radar applications, showing how the proposed algorithms 
intrinsically return a single layout that works jointly for transmitting and receiving (two-way 
synthesis). The results for the specific case chosen (mainly the set of weights and relative posi-
tions) are first numerically validated by a full-wave software (Ansys HFSS) and then experimen-
tally assessed in anechoic chamber through measurements.  
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Chapter 1 
 

Introduction 
 
The design of sparse Active Electronically Scanned Arrays (AESAs) radiating a desired Far Field (FF) 
pattern, satisfying a prescribed power mask with as few elements as possible has several potential appli-
cations like satellites, radars, etc., as well as interests on a theory basis. The synthesis of unequally spaced 
arrays is in general a complex problem that cannot be properly addressed with analytical methods, thus 
mainly leaving the task to numerical techniques.  
Deterministic approaches have been proposed in [1-4], where simple formula are derived for synthesizing 
given FF patterns by using uniform amplitude sparse arrays. In [1], [2] and [3] in particular, a large num-
ber of sensors is often required to fulfill the design constraints. Furthermore, the number of sensors is an 
input of the solution methods and it is not derived once the FF performances to achieve have been given. 
A novel deterministic, non-iterative synthesis algorithm based on the matrix pencil method has been pro-
posed in [40-[41]. It efficiently reduces the number of elements in a linear antenna array with very short 
computation time. Such approaches allow to determine the minimum number of sensors to fit, with a 
fixed accuracy, provided that a proper reference pattern is given in amplitude and phase as input. 

On the other hand, existing global optimization methods like Genetic Algorithm (GA) [5-17], Simulated 
Annealing (SA) [17-23], Differential Evolution (DE) [24-31] and Particle Swarm Optimization (PSO) 
[32-39] can be used for the synthesis of non-uniform linear and planar arrays, although such algorithms, 
especially the GA, require a computational load that can be likely prohibitive for arrays with large num-
ber of elements and constraints, and besides they do not assure global solutions.  
In general, of the different approaches present in literature on this topic, that can be grouped according to 
specific criteria, one in particular is of interest for the present work: the distinction between pattern-fitting 
problems and mask-constrained ones [42]. In the first case, which, to the student’s best knowledge, is the 
most taken under consideration in literature, it is worth noting that the field distribution satisfying the giv-
en design constraints is not unique and different choices for the reference field pattern lead to different 
results, in terms of number of sensors. Therefore there is no guarantee that the number of antennas of the 
resulting sparse array is the minimum one. Such problem represents one of the main drawbacks for many 
existing approaches based on Compressed Sensing [42] [76] and Bayesian CS (BCS) [42] [45], wherein 
the reference field to fit in order to obtain the maximally sparse array is a priori assumed known or any-
way fixed a priori. Resorting to pattern-fitting approaches in the radar field for example is quite constrain-
ing to the best of the student’s knowledge, since it dramatically decreases the available degrees of free-
dom. In fact, most of the requirements are derived from Probability of  Detection (PD), Probability of 
False Alarms (PFA) and range coverage demands, which, in terms of synthesis goals, only define upper 
and lower bounds to be met, not a precise field pattern. Hence, as the main application selected in this 
work is AESAs for surveillance purposes (radars), and since the whole PHD has been carried on in col-
laboration with the University of Trento while working as a Leonardo – Finmeccanica employee, an em-
phasis will be given to the second case, i.e. mask-constrained synthesis [46] [50] [77] by using convex 
optimization techniques [55], [56], [58].  

One of the frameworks the sparse array synthesis can be set in is CS [42-43]. Roughly speaking indeed, 
the measurements one would use in the recovery of a sparse signal are substituted by FF specifications, 
while the array layout is actually the “sparse signal” to be recovered. In particular, the aim is generally to 
fit ‘at best’ a reference complex pattern, and the problem’s actual unknowns are both the elements excita-
tions and locations. A very dense grid is usually chosen for the array so that the elements whose excita-
tion is different from zero also determine the actual locations to be used. However, one of the main draw-
backs of existing solutions available in literature [46], [50] is that superdirectivity (according to the 
definition given by Hansen [51] <<An array is superdirective if its directivity is higher than the one ob-
tained from the isophoric case (uniform excitations with constant amplitude and linear phase)>>) has not 
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been prevented: arrays with distances below half-wavelength are obtained after optimization. Neverthe-
less, some attempts at clustering elements at distances below half-wavelength have been made in litera-
ture [52-54] by setting constraints on the physical size of the antenna. Anyway, such methods are essen-
tially applied in post-processing, so that no a priori constraint on the inter-element distance is fixed in the 
synthesis routine. This is one of the main reasons why in this entire work particular attention has been 
paid to the non-superdirectivity and thus to the methods that allow to achieve it a priori in the synthesis 
process. Furthermore, imposing a minimum inter-element distance equal to half-wavelength in the array 
resulting from the synthesis makes the problem of mutual coupling [74] [75] among the radiating ele-
ments negligible. As it will be described in detail in the following chapters, preventing superdirectivity a 
priori in an exact way (as we did), as well as considering the sparsification process in terms of switching 
on and off some elements, requires the introduction of binary variables (more in general of the ℓ0-pseudo-
norm), whose management falls into the context of Mixed Integer Programming (MIP) [57] [59] [61]. So-
lution of the synthesis minimization problem in this picture is efficiently achieved by employing tech-
niques like Fast Branch&Bound (FB&B), which are tailored for MIP problems. The B&B algorithm [57], 
[66] is a general method for finding the optimal solution to problems of combinatorial complexity (NP-
hard) that enumerates candidate solutions by means of a rooted-tree space search. According to its im-
plementation and to the upper and lower bounds of the cost function, it can prune huge amounts of 
branches, thus massively shortening the global solution search. Besides, it can be efficiently implemented 
with a parallel approach for optimizing the simultaneous use of cores and machines [69].   

These techniques were firstly adopted by Narendra and Fukunaga [62], allowing several improvements 
(in computational cost saving) later on [63], [67] [68]. From a technical point of view, we have decided to 
utilize B&B (historically employed in mixed integer problems, [64] [65]) since the cost function we are 
dealing with is intrinsically upper and lower bounded (as it will be seen in the later chapters), which 
prunes ab initio several branches of the span tree. In some cases global optimization schemes like the GA 
are exploited in MIP problems and can aid the B&B based optimization [70], in others the SA is used [71] 
[72]; in general, exact solution strategies and heuristic methods can be used to solve this class of prob-
lems. The B&B is one of the most common ones and gives an exact solution, whereas algorithms like GA 
and SA represent non-exact approaches in the general purpose heuristic methods. Moreover, by using al-
gorithms like GA, SA and DE we experienced much longer simulation time even for much smaller-scaled 
problems (linear arrays for instance, [47]) than the ones carried on and discussed in the present work. For 
the current goals, they become computationally prohibitive. Anyway, whether exact or non-exact ap-
proaches perform better for a given problem depends on how they are implemented. Since the B&B ex-
plores potentially the huge tree given by the combinatorial problem, it is all a matter of how many 
branches of the search tree are pruned and how quickly.  

Another way to solve, approximately, the combinatorial problem that directly derives from the purpose of 
switching on and off the elements of the array with a constraint on their minimum distance is to use the 
reweighted ℓ1-norm [73]. In fact, from the CS theory we know it is possible to reconstruct sparse signals 
exactly from what appear to be highly incomplete sets of linear measurements by constrained ℓ1 minimi-
zation in the sense that substantially fewer measurements are needed for exact recovery. In view of the 
aforementioned way of considering the array layout in terms of “sparse signal” to recover, in [73] the al-
gorithm consists of solving a sequence of weighted ℓ1-minimization problems where the weights used for 
the next iteration are computed from the value of the current solution.  

Since either B&B and the reweighted ℓ1-norm have been selected for the optimization scheme discussed 
in this thesis, the trade-off between them will be discussed in detail subsequently, as well as a generic cri-
terium for choosing the former or the latter for the goal at hand.  

Starting from the basic scheme of [78] and [47], in this thesis work a new synthesis method for achieving 
maximally sparse, planar, steerable, non-superdirective arrays is proposed, and the problem of deriving 
the trend of the reduction in the number of radiating elements Versus either steering intervals and array 
size is also addressed [48]. In the proposed synthesis scheme, given a desired power mask and the array 
geometry, it is first derived the minimum array support containing a non-superdirective source whose ra-
diation pattern fulfills the design constraints by exploiting the results in [79].  
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Then the maximally sparse, non-superdirective array, able to radiate the steerable power pattern satisfying 
the prescribed power mask is synthesized. Several literature benchmarks have been chosen [46] [80-81] in 
order to prove the effectiveness of the developed algorithms (even for shared-layout multi-pattern solu-
tions [81]), and new benchmarks have been set [48].   

In the process of sparsifying the AESA antenna chosen as final application of the developed algorithms, 
the element factor and all its pre-existing requirements have been taken into account, showing an con-
vincing coherence with the results of the full-wave software Ansys HFSS and the anechoic chamber 
measurements, thus eventually and definitely proving the potential for future AESA projects. 

   

Thesis outline 
The thesis is structured as follows: chapter 2 introduces the mathematical background necessary for dis-
cussing the proposed synthesis schemes described in chapter 3. In the latter the mathematical problem is 
formulated and the developed solutions presented. Chapter 4 deals with the application of such solutions, 
in particular to either benchmarks that exist in literature and new ones, showing how they perform. Final-
ly, chapter 5 shows the results of the application of the developed algorithms to an existing antenna, 
showing how its sparse version performs in FF (in some cases also with respect to the full, standard one). 
Conclusions end the work. 

 
 
 
  



 

4

Company General Use 

 
 



 

 5

Company General Use 

Chapter 2 
 

Mathematical background 
 
In this chapter the basics for the discussion in the next chapters are introduced and described. In particu-
lar, the conditions for the a priori existence of a power pattern lying within a given mask by providing 
shape and size of the pattern source are furnished. Then the planar array tapering is presented and two 
cases discussed: Chebyshev and Taylor set of weights.  
Finally, all the definitions that gravitate around the convex optimization scheme and that are necessary for 
the description of the developed algorithms are provided.   
 

2.1 Introduction 
 
The introduction in this chapter of the fundamental equations that lay the basis of the (planar) array syn-
thesis is preliminary to the next chapters and to the methods adopted throughout the PHD study. Specifi-
cally, the equations that describe the array factor and the element factor are reported [82] in order to show 
how and where the set of weights, that are fundamental to the synthesis process, come into play. Next, re-
sorting to the works of Bucci, Isernia and Fiorentino [83], a simple and effective necessary condition to 
test if a source of given size and structure can radiate or not a power pattern lying in a given mask is pro-
vided. It is also briefly described in which cases the criterion is also sufficient. Then a synthetic discus-
sion on planar array tapering is presented by referring to the general formulation according to Shelkunov 
[89] with two special cases: Dolph-Chebyshev [88] and Taylor [90]. In particular, the former has been 
taken into account because it is the type of array tapering that has been chosen for the general formulation 
of the developed algorithms for sparse synthesis. Eventually, the basic definitions of convex optimization, 
convex and affine sets, cones and convex hulls are given [55] and will be recalled when discussing the 
structure of the developed algorithms and one of the figures of merit for assessing the synthesized array 
performances (the convex hull).  

 

2.2 Planar, regular arrays 
 

Let us make a brief mention of the classical theory of planar arrays [82], since they represent the fun-
damental brick for building the entire mathematical formulation.  
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Figure 1. Generalized array configuration 

 
The sketch in Figure 1 portrays a generalized distribution of array elements, here shown as small radiat-

ing surfaces. Each element radiates a vector directional pattern that has both angle and radial dependence 
near the element. However, for distances very far from the element, the radiation has the[exp( )] /jkR R−  

dependence of a spherical wave multiplied by a vector function of angle ( , )i ϑ φf called the element pat-

tern. Although this vector function depends on the kind of element used, the FF of any ith element can be 
written as 

  

 ( , , ) ( , )i i

i

i

jkR
Rr eϑ φ ϑ φ

−
=E f   (1.1) 

  
for 
  

 ( ) ( ) ( )2 2 2

i i i iR x x y y z z =  − + − + −
    (1.2), 

where 
2

k
π
λ

= is the free-space wave number at frequency f. If the pattern is measured at a distance very 

far from the array (FF), then the above exponential can be approximated by reference to a distance R 
measured from an arbitrary center of the coordinate system. Since ˆ

i iR R R≈ − ⋅ ≈r r , for 
ikR → ∞ , 

where   
   

 

( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

, , sin cos ,sin sin ,cos

i i i ix y z

u v w

u v w ϑ φ ϑ φ ϑ

= + +
= + +

=

r x y z

r x y z   (1.3), 

 
then 
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ˆ

i

i i

jkR jkR
R R jke e e

− − ⋅= r r
  (1.4). 

 
The required distance R for which one can safely use the FF approximation depends on the degree of 
fine structure desired in the pattern. Using the distance  
   

 
2

2
D

R
λ

=   (1.5), 

 
in which D is the largest array dimension, is adequate for most pattern measurements. With reference 
to Figure 2, for an arbitrary planar, rectangular grid composed of N x M sources, one can generally 
write the pattern by superposition: 

  

 
( )

1 1

ˆ( , , ) ( , )
N M

nm nm
n m

nm

jkR
jke

r w e
R

ϑ φ ϑ φ
= =

−
⋅= ∑∑ r rE f   (1.6) 

  
where wnm are the array weights (voltages or currents) in the general case (complex weights), and we 
set ˆ ˆnm n mx y= +r x y  and 0iz = for convenience.   

 
 

 
Figure 2. Geometry of the considered planar rectangular grid. 

 
In general, the vector element patterns are different for each element in the array, even in an array of like 
elements; the difference is usually due to the interaction between elements near the array edge. However, 
it will be assumed throughout this thesis work that all patterns in a given array are the same. In this case, 
(1.6) becomes 
 

 
( )

1 1

ˆ( , , ) ( , )
N M

nm
n m

mn

jkR
jke

r w e
R

ϑ φ ϑ φ
= =

−
⋅= ∑∑ r rE f   (1.7). 

 
It is customary to remove the factor [exp( )] /jkR R− because the pattern is usually described or measured 
on a sphere of constant radius and this factor is just a normalizing constant. Thus, one can think of the 
pattern as being the product of a vector element pattern ( , )ϑ φf and a scalar function, called the Array 
Factor (AF):  
 

y 

x 

z 

ϑ 

ϕ 

dy 

dx 

(xn, ym)  
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 ( , ) ( , ) ( , )AFϑ φ ϑ φ ϑ φ= ⋅E f   (1.8), 

 
where 
 

 
1 1

ˆ( , )
N M

nm
n m

mnjkAF w eϑ φ
= =

⋅=∑∑ r r   (1.9), 

and 
 

 
0

0

2

ˆ mn x ynd u md v

k k π
λ

= +

= =

⋅r r
  (1.10), 

 
meaning, in the second relation of (1.10), that we are considering a single frequency. Let us modify a bit 
the first relation of (1.10) by adding a couple ( )0 0,u v that represents the steering direction along which 

the array points: 
 

 ( ) ( )0

1 1

0 0( , )
N M

nm
n m

x ynd u u md v vjk
AF w eϑ φ

 
  

= =

− + −
= ∑∑   (1.11). 

 

2.3 Feasibility criteria  
 
Before going into details of the convex optimization schemes developed during the PHD an important 
role is played by the necessary (and possibly sufficient) conditions for the a priori existence of a power 
pattern lying within a given mask by providing shape and size of the pattern source. The problem is 
shown to be equivalent to establish if a system of linear inequalities admits a solution [83]; in particular, 
the criterion is both necessary and sufficient in the case of linear and uniform arrays, whereas it is only 
sufficient in the case of planar arrays with 2D factorable masks. In all practical instances, electromagnetic 
fields can be considered as belonging to a finite dimensional space. This happens not only when the 
source has by itself a finite number of degrees of freedom, such as for instance, in the case of an array an-
tenna, but also  when  arbitrary  radiating  systems are  considered.  In the general case the number of de-
grees of freedom of the field is defined as the minimum number of independent parameters required for 
its representation within a given accuracy. It turns out that fields radiated from sources of bounded energy 
enclosed in a sphere of radius a can be effectively (i.e., in an efficient and not redundant way) approxi-
mated with bandlimited functions of bandwidth slightly larger than k0a [84]. Accordingly, each FF com-
ponent can be represented in a sampling series [85]: 
 

 
( ) ( )

( ) ( )

, ,
1

, ,

( , ) (0, ) D ( ) [ ( , )

( , ) ]

n

n

n

n

n

n

MM

M M n n n m M n m
n m M

M

M n n n m M n m
m M

E E D E D

D E D

ϑ φ φ ϑ ϑ ϑ ϑ φ φ φ

ϑ ϑ ϑ φ φ π φ

= =−

=−

≅ + − −

− + + −

∑ ∑

∑

  (1.12), 

 
where 

 

, 0 0

2 2
, , , sin

2 1 2 1n n m n n

n m
M k a M k a

M M

π πϑ φ ϑ=   =   ≥   ≥
+ +

 

 
and 
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( )

2 1
sin

2
( )

2 1 sin
2

M

M
x

D x
x

M

+ 
 
 =

 +  
 

  (1.13) 

 
is the Dirichlet sampling function. As a consequence, squared amplitude distributions can be repre-
sented by bandlimited functions [83], so that we can write: 

 

 
( ) ( )

( ) ( )

22
2

2 , 2 ,
1 2

2

2 , 2 ,
2

( , ) ( , ) (0, ) D ( ) [ P( , )

P( , ) ]

n

n

n

n

n

n

MM

M M n n n m M n m
n m M

M

M n n n m M n m
m M

E P P D D

D D

ϑ φ ϑ φ φ ϑ ϑ ϑ ϑ φ φ φ

ϑ ϑ ϑ φ φ π φ

= = −

=−

= ≅ + − −

− + + −

∑ ∑

∑

  (1.14), 

 
where 

 

 
,

2 2
,

4 1 4 1n n m
n

n m

M M

π πϑ φ=   =
+ +

  (1.15) 

 

and
,( , )n n mP ϑ φ  denotes the corresponding sample of 

2

,( , )n n mE ϑ φ . For planar equispaced arrays we 

have: 
 

 

1 1

00 0 0 0 0 0 0
1 1

1 1

0 0 0 0
1 1

0

1 1

0 0 2 1 0 2 1
1 1

( , ) c cos( ) sin( ) [ cos(p u)

sin(p u)] [ cos(p u )

sin(p u )] ( u u )

M N

q y q y p x
q p

N M

p x pq x y
p q M

q

N M

pq x y pq N x p M
p N q M

P u v c qk d v s qk d v c k d

s k d c k d qk d v

s k d qk d v P D k d D

− −

= =

− −

= =− +
≠

− −

− −
= − = −

 = + + + + 

+ + + +

+ + = −

∑ ∑

∑ ∑

∑ ∑ 0( v )y qk d v−

  (1.16), 

where 
 

2 2
p, , ( , )

2 1 2 1p q pq p qu v q P P u v
N M

π π=   =   =
− −

. 

 
The above results can be summarized introducing the generic finite dimensional representation: 
 

 
1

( , ) ( , )
T

p p
p

P Dϑ φ ϑ φ
=

= Ψ∑   (1.17) 

 

which, by appropriate choice of T and ( , )p ϑ φΨ , is representative of (1.16). It must be noted [83] that not 

all functions expressible as in (1.17) correspond to squared amplitude distributions. This is because T is 
larger than the number of (real) degrees of freedom of the field. Accordingly, the set of all squared ampli-

tude distributions is a (non linear) variety  embedded  in  the  space  spanned  by  the ( , )p ϑ φΨ  functions.  

However, (1.17) provides the smallest linear space containing the set of all squared amplitude distribu-
tions [83]. Exploitation of (1.17) makes it easy to show which conditions must be fulfilled so that a pat-
tern lying in a given mask can exist. In  fact, as (1.17), by construction, is able to represent all possible 
patterns radiated from a given classes of sources, a  necessary condition for  the existence of a field ful-

filling given constraints is that the following system of linear inequalities in the variables pD  is  satisfied: 
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 1

1

( , ) UB( , )

( , ) B( , )

T

p p
p

T

p p
p

D

D L

ϑ φ ϑ φ

ϑ φ ϑ φ

=

=

 Ψ ≤


 Ψ ≥


∑

∑
  (1.18). 

 
By taking into account the bandlimitedness of ( , )P ϑ φ  inequalities (1.18) can be substituted by a suffi-
ciently fine discretization, so that 
 

 

1

1

1 2

( , ) UB( , )

( , ) B( , )

1, , , 1, ,

T

p p i j i j
p

T

p p i j i j
p

D

D L

for i L j L

ϑ φ ϑ φ

ϑ φ ϑ φ

=

=

 Ψ ≤


 Ψ ≥


 =     =   

∑

∑

… …

  (1.19) 

 

is a system of ordinary linear inequalities in the variable pD . The solvability of a system of linear inequali-

ties is a well known problem, and it is equivalent to assess the existence of a "feasible point" for a linear 
programming problem [86].  
The  question  amounts  to establish,  once  a  solution  satisfying (1.19) has been obtained, if one can  ef-
fectively  get  a  field  corresponding  to  that  solution. Because, as it has been hinted before, T≥2C, 
wherein  C  is the number of complex degrees of freedom of the field [87], the set of (mathematically) 
feasible patterns is generally only a subset of the space determined  by  (1.17), so  that fulfillment of con-
ditions in (1.19) is usually just necessary but not sufficient  for the existence of a pattern satisfying the 
constraints.  Anyway,  there exist two cases, wherein the criterion is sufficient,  i.e.,  the case of uniform 
linear arrays, and the case of planar arrays whose mask is factorizable as the product of two masks, one 
along each principal cut [83]. For planar arrays, even if (1.16) satisfies (1.19), since in general it cannot 
be factorized it does not represent a physically feasible squared amplitude distribution, so that the exist-
ence criterion of only necessary. However, in the aforementioned case of factorizable masks, one can use 
for each principal cut the procedure for the linear case [83], therefore making (1.19) sufficient. Note  that  
in this case  the criterion is sufficient but not  necessary, because it looks for factorizable excitations, 
which are just a subset of all the possible ones. In the  general  case, wherein  sufficiency  is  not  guaran-
teed, the criterion can be used to discard those problems which are certainly unfeasible.  In the feasible 
cases, the pattern furnished by the criterion will be quite certainly not synthesizable.  However, exploita-
tion of representation (1.16) allows to state the  power  synthesis  problem  in a linear  space  as  small  as  
possible,  thus drastically squeezing the set of patterns one should look for with respect to the much larger 
set of all generic functions compatible with the constraints. 

 

2.4 Planar array tapering 
 

One of the major advantages of array antennas is that the array excitations can be closely controlled to 
produce extremely low SideLobe Level (SLL) patterns or very accurate approximations of chosen radia-
tion patterns. With reference to radar applications, since in Transmission (Tx) the TransReceiver Modules 
(TRMs) are usually set to maximum power, we intrinsically associate the tapering of antenna, i.e., the 
synthesis of its weights, to Receiving (Rx) configurations.  
A general synthesis procedure is due to Schelkunov [89] and makes use of the polynomial form of the ar-
ray factor in the complex variables zu and zv: 

 

 
0 0

0 0

( )

( )

x

y

jk u u d
u

jk v v d
v

z e

z e

−

−

=

=
  (1.20), 
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so that (1.11) becomes: 
 

 
1 1

( , ) ( , )
N M

n m
u v nm u v

n m

AF AF z z w z zϑ φ
= =

= =∑∑   (1.21). 

 

2.4.1 An example of array synthesis: Dolph-Chebyshev tapering 
 
The procedure commonly referred to as Dolph-Chebyshev synthesis [88] equates the array polynomials to 
a Chebyshev polynomial and produces the narrowest BeamWidth (BW) subject to a given (constant) side-
lobe level, or the lowest SLL for a given BW. Hence it is usually referred to as an optimal array. By as-
suming factorizable weights (one set for the rows and one for the columns) (1.21) becomes: 
 

 
1 1

( , ) ( ) ( )
N M

n m
u v n u m v x u y v

n m

AF z z w z w z AF z AF z
= =

= = ⋅∑ ∑   (1.22). 

 

In the hypothesis that 
2 xd
λ λ≤ ≤ we obtain [82]: 

 

 

( )
( )

( )
( )

1

1

1

1

cos Ncos 1
( )

cosh Ncosh 1

cos Mcos 1
( )

cosh Mcosh 1

u u

x u

u u

v v

y v

v v

z for z
AF z

z for z

z for z
AF z

z for z

−

−

−

−

     ≤ = 
    ≥    

    ≤ = 
   ≥ 

  (1.23), 

 
where  

 
( )

( )

1

1
1 1

2

1
2 2

sin
cos

cosh 1/ N cosh

sin
cos

cosh 1/ M cosh

x
u

y
v

d
z z

z r

d
z z

z r

π ϑ
λ

π ϑ
λ

−

−

 =  
 

=  

 
=  

 

=  

  (1.24), 

 
and 1 2, 1r r > such that 20log10r1 and  20log10r2, which represent the desired SLLs in dB, are positive num-
bers. For instance, Figure 3, Figure 4, Figure 5, and Figure 6 show, respectively, the normalized 2D pow-
er pattern, the normalized tapering, the normalized horizontal and vertical cuts along the u and v axis of a 
15x15 square array (of size 7λ) with distances of half-wavelength and r1=30dB, r2=40dB.  
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Figure 3. Chebyshev normalized 2D power pattern. 
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Figure 4. Normalized Chebyshev tapering. 

 
 

 
Figure 5. Horizontal cut of a planar Chebyshev tapering. In the figure equiripple SLLs at -40dB are clearly visible 
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Figure 6. Vertical cut of a planar Chebyshev tapering. In the figure equiripple SLLs at -30dB are clearly visible 

 
In Figure 5 and Figure 6 the SLLs at, respectively, -40dB and -30dB can be easily seen to be at the same 
level (equiripple). 
 

2.4.2 An example of array synthesis: Taylor tapering 
 
In [90] Taylor  analyzed the deficiencies of the Chebyshev pattern and formulated a pattern function that 
has good efficiency for large arrays. He examined the limit of a continuous line source and drew conclu-
sions about allowed illuminations and pattern SLLs. In particular, he compared the pattern of the 1D 
Chebyshev illumination with that of a constant illumination sinc(πz), where z=Ndx/λ, which has the high-
est efficiency in the large-array limit. As pointed out by Taylor, the loss in efficiency of the Chebyshev 
pattern results from the requirement that sidelobe heights are constant. For large arrays, this implies that 
increasingly more of the energy is in the sidelobe region. In the limit of a very large array, maintaining 
the Chebyshev sidelobe structure requires an unrealizable aperture illumination. He showed that the far 
sidelobes of a given line source are a function only of the line source edge illumination. In particular, for 
a line source of length 2a, and if the edge illumination has the behavior 
 

 ( )a x
α

−   (1.25) 

 
for x measured from the center of the source, then for α≥0, the SLL has the behavior indicated in Table 1.  
The values for α< 0 are not given because the illuminations are unrealizable [82]. The above data show 
that selecting an aperture illumination with α=0 leads to sidelobes with angular dependence of the type 
sinc(πz), like those of the uniform illumination. This pattern distribution maintains its efficiency as the 
array is made larger. Choice of larger values of α makes the sidelobes decay faster, as indicated in Table 
1, but have generally lower efficiency.  
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α Asymptotic F(z) 
0 sinc(πz) 
1 cos(πz)/(πz)2 
2 sin(πz)/(πz)3 
3 cos(πz)/(πz)4 

Table 1. Array SLL Versus edge illumination parameter α 

 
Taylor also showed that the location of the zeros of the pattern are determined by the edge illumination. 

The nth pair of pattern zeros (for n large, thus away from the main lobe) occurs at locations 
2nz n
α =± + 

 
for n → ∞ . Clearly, this is also consistent with the uniform illumination case for α=0. However, when 
compared to the actual location of the nth pair of zeros for the Chebyshev pattern, it is found that these oc-

cur asymptotically at 
1

2
n
 ± − 
 

. Such zero locations correspond to α=-1, an unrealizable illumination for 

the continuous aperture case.  
Taylor expanded upon these mathematical insights to suggest a pattern function with zeros far from the 
main beam at locations that correspond to the uniform illumination, while the zeros closer to the main 
beam are chosen similar to those of the Chebyshev pattern. Since Taylor chose to simulate and then modi-
fy not the Chebyshev array pattern, but that of a continuous source with features similar to the latter, he 
used the following ideal line source as substitute: 
 

 
( )

( )

2 2 2 2

0
2 2 2 2

cos
( , )

cosh

z A for z A
F z A

A z for z A

π

π

  −       >
   = 

  −       <
  

  (1.26) 

 
where, again, z=Ndx/λ and the sidelobe ratio is the value of F0 at z=0, or r=cosh(πA), so that A is defined 
as  
 

 11
coshA r

π
−=   (1.27). 

 
As shown by Van der Mass [91] this pattern corresponds to the limiting case of the Chebyshev array as 
the number of elements is indefinitely increased, and has zeros at the locations  
 

 

2
2 1

, N 1,2,3, ,
2Nz A N

  = ±  + −      = ∞  
   

…   (1.28). 

 
The pattern has the Chebyshev characteristics with all equal sidelobes, but is physically unrealizable for 
the reason described earlier, since the far nulls have asymptotic locations corresponding to α=-1. Howev-
er, although the idealized pattern is unrealizable, Taylor recognized that by selecting a new function with 
near zeros very close to those of the ideal pattern (1.28) but with zeros corresponding to those of the 
sinc(πz) function at integer values of z, he could satisfy the requirement on both near and far sidelobes. 

Taylor chose to keep all nulls at the integer location for u n≥ , and to move those for u n<  near the lo-

cations (1.28) that would produce the nearly constant sidelobes near the main beam. To match these two 
sets of zeros, Taylor introduced a dilation factor σ that is slightly greater than unity to stretch the ideal 
space factor horizontally by moving the ideal zero locations zn, such that eventually one of the zeros be-
comes equal to the corresponding integer n. 
The synthesized pattern normalized to unity is 
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 ( )
2 21

2 2
1

1 /sin z
, ,

z 1 /

n
n

n

z z
F z A n

z n

π
π

−

=

−
=

−∏   (1.29) 

 
for z=Ndx/λ. The numbers zn are the zero locations of the synthesized pattern and are given by 
 

 

2
2 1

1
2n

A n for n n
z

n for n n

σ
   ±  + −       ≤ ≤   =          

±                                    ≤ ≤ ∞

  (1.30) 

 
where 
 

 
2

2 1
2

n

A n

σ =
   + −  

   

  (1.31). 

 
Note that n n= at

nz n= . The aperture distribution to produce Taylor patterns is expanded as a finite Fou-
rier series of terms with zero at the aperture edges [82]: 
 

 
1

1

2
( ) (0, , ) 2 ( ,A, )cos

n

m x

m x
g x F A n F m n

Nd

π−

=

 
= +  

 
∑   (1.32) 

 
for / 2 / 2x xNd x Nd− ≤ ≤ . The coefficients are evaluated to be 
 

 
( )

( ) ( )

2
21

2
1

1 !
( , A, ) 1

1 ! 1 !

n

n n

n m
F m n

n m n m z

−

=

 −    = − − + − −  
∏   (1.33). 

 
It is important that the distribution be sampled at points one-half spacing from the end of the Taylor dis-

tribution function, so the aperture illumination is sampled at the points (dx/λ)i for 
1 3 5 ( 1)

, , , ,
2 2 2 2

N
i

−± = ⋯

for arrays with an even number of elements, and 0,1,2, , ( 1) / 2i N± = −… for arrays with an odd number 

of elements. The choice of the parameter n is not arbitrary, since increasing it retains more of the side-
lobes at the design SLL and thus makes the Taylor pattern closer to the Chebyshev one. Increasing n thus 
leads to narrower main beam patterns and higher aperture efficiency, but eventually to aperture illumina-
tions that are not monotonic and have increased illumination near the aperture edges. 
By assuming, again, factorizable sets of weights (� (1.22)) we have evaluated the Taylor distribution for 
a 29x29 square array (14λ) with distances of half-wavelength with 3n = and 5n = , r1=30dB, r2=40dB, 
respectively for the vertical and horizontal cuts. 
Figure 7, Figure 8, Figure 9 and Figure 10 show, respectively, the normalized 2D power pattern, the nor-
malized tapering and the normalized horizontal and vertical cuts along the u and v axis.  
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Figure 7. Taylor normalized 2D power pattern. 

 

 
Figure 8. Normalized Taylor tapering. 
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Figure 9. Horizontal cut of a planar Taylor tapering. In the figure it can be seen that the first 5 sidelobes are Chebyshev-like ( 

5n= ), whereas from the sixth one a sinc-type decay begins 

 

 
Figure 10. Vertical cut of a planar Taylor tapering. In the figure it can be seen that the first 3 sidelobes are Chebyshev-like ( 

3n = ), whereas from the fourth one a sinc-type decay begins 
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In Figure 9 and Figure 10 the SLLs at, respectively, -40dB and -30dB can be easily seen to be at the same 
level (equiripple) for the first 5 and 3 lobes respectively, whereas from the sixth and fourth one a sinc-
type decay begins. 
 

2.5 Convex Optimization 
 
In this paragraph we are giving some definitions in the convex optimization framework that will be uti-
lized in the next chapters. In fact we will be talking, apart from convex optimization, about affine condi-
tions, convex hulls, etc, so that the following notions have become necessary.  

Given a set ( )1, , n
nx x=    ∈ x R… of variables, a function

0 : nf →R ℝ , a set of functions : n
if →R ℝ and 

constants , ,i mb b…  for i=1,…,m, a convex optimization problem is one of the form: 
 

 

( )

( )

0

( . .)

, 1, ,i i

Minimize f

subject to s t

f b for i m

  

  
≤    =

x

x …

  (1.34), 

 
where f0(x) is the cost function and fi(x) are the constraints (functions), which are all convex, i.e. 
 
 ( ) ( )i i if f fα βα β ≤ ++x y y   (1.35) 

 
for all , , n∈x y R and ,α β ∈ ℝ  with 0, 0, 1α β α β≥   ≥   + = . , ,i mb b… are the bounds for the constraints. 
In the following we will consider the contracted notation “min” in place of “minimize”. 
 

2.5.1 Lines and segments 
 
Suppose 1 2≠x x are two points in Rn. Points of the form  
 
 ( )1 21ϑ ϑ= + −y x x   (1.36), 

 
where ϑ∈ℝand 0 1ϑ≤ ≤ , form the line passing through x1 and x2. Values of the parameter ϑ between 0 
and 1 correspond to the (closed) line segment between x1 and x2.  
Expressing y in the form 
 
 ( )2 1 2ϑ= + −y x x x   (1.37) 

 
gives another interpretation [55]: y is the sum of the base point x2 (corresponding to 0ϑ = ) and the direc-
tion x1-x2 (which points from x2 to x1) scaled by the parameter ϑ.   
 

 
 

Figure 11. The line passing through x1 and x2 is described parametrically by ( )1 21ϑ ϑ+ −x x , where ϑvaries over ℝ . The line 

segment between x1 and x2, which corresponds toϑbetween 0 and 1, is shown darker. 
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Thus ϑ gives the fraction of the way from x2 to x1 where y lies. As ϑ increases from 0 to 1 the point y 
moves from x2 to x1; for 1ϑ> , the point y lies on the line beyond x1 (Figure 11). 
 

2.5.2 Affine sets 
 
A set nC ⊆ R is affine if the line through any two distinct points in C lies in C, i.e. if for any 1 2, C∈  x x

and ϑ∈ℝ , we have ( )1 21 Cϑ ϑ+ − ∈x x . Actually C contains the linear combination of any two points in 

C, provided the coefficients in the linear combination sum to one. The idea can be generalized to more 
than two points: a point of the form 1 1 k kϑ ϑ+ +x x… , where 1 1kϑ ϑ+ + =… , is an affine combination of 
the k points 1, , kx x… . It can be shown [55] that an affine set contains every affine combination of its 
points.   
 

2.5.3 Convex sets 
 
A set nC ⊆ R is convex if the line segment between any two points in C lies in C, i.e. if for any 

1 2, C∈  x x and any ϑ such that 0 1ϑ≤ ≤ , we have ( )1 21 Cϑ ϑ+ − ∈x x . In practice a set is convex if eve-

ry point in the set can be seen by every other point along an unobstructed straight path between them, 
where “unobstructed” means lying in the set. Clearly, every affine set is also convex since it contains the 
entire line between any two distinct points in it, and therefore also the line segment between the points. 
A convex combination of the points 1, , kx x… is a point of the form 1 1 k kϑ ϑ+ +x x… where 1 1kϑ ϑ+ + =…  
and 0iϑ ≥ for i=1,…,k. It can be shown [55] that a set is convex if and only if it contains every convex 
combination of its point.  
 

2.5.4 The convex hull 

    
The convex hull of a set nC ⊆ R , denoted “conv(C)” is the set of all convex combinations of points in C:  
 

 
1 1

1

( ) | , 0, 1, , , 1
k

k k i i i
i

conv C C i kϑ ϑ ϑ ϑ
=

 = + + ∈  ≥  =  = 
 

∑x x x… …   (1.38). 

 
As the name suggests, such set is always convex and in particular it is the smallest convex set that con-
tains C. 
 

 
 

Figure 12. The convex hulls of two sets in 
2
ℝ . Left. The convex hull of a set of fifteen points (shown as dots) is the pentagon 

that encompasses them. Right. The convex hull of a non convex set. 
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Figure 12 shows an example of convex hulls of a convex (left) and non convex (right) set. 
 

2.5.5 Cones 
 
A set nC ⊆ R is called a cone if for every C∈x and 0ϑ ≥ we have Cϑ ∈x . A set C is a convex cone if it 
is convex and a cone, which means that for any and 1 2, C∈  x x and 1 2, 0ϑ ϑ ≥ , we have 1 1 2 2 Cϑ ϑ+ ∈x x . 
Points of this type can be described geometrically as forming the two-dimensional pie slice with apex 0 
and edges passing through x1 and x2 (see Figure 13). 
A conic combination (or a nonnegative linear combination) of the points 1 , , kx x… is a point of the form 

1 1 k kϑ ϑ+ +x x… where 1 1kϑ ϑ+ + =…  and 0iϑ ≥ for i=1,…,k. It can be shown [55] that a set is a convex 
cone if and only if it contains all conic combinations of its elements.  
 

 
 

Figure 13. The pie slice shows all points of the form 1 1 2 2ϑ ϑ+x x , where 1 2, 0ϑ ϑ ≥ . The apex of the slice (which corresponds to 

1 2 0ϑ ϑ= = ) is at 0; its edges (which correspond to 1 0ϑ = or 2 0ϑ = ) pass through the points x1 and x2 . 

 

2.5.6 Norms and quasi-norms  
 

A function : nf ∈ → ∈x R x ℝ with dom(f)=Rn is called a norm if 

 
• f is nonnegative: f(x)≥0 for all n∈x R . 
• f is definite: f(x)=0 only if x=0.  
• f is homogeneous: f(tx)=|t|f(x), for all n∈x R and t ∈ℝ . 
• f satisfies the triangle inequality: ( ) ( ) f( )f f+ ≤ +x y x y for all , n∈x y R .      

 
An ℓp norm on the vector x is defined by: 
 

 ( )1/

1

pp p

np
x x= + +x …   (1.39) 

 
for p≥1.  
 
For 0<p<1 the (1.39) is only a quasi-norm, meaning that f meets the same properties of the norms except 
the triangular inequality, which is substituted by the relation: 
 

 ( )+ ≤Κ +x y x y   (1.40) 
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for some constant K≥1. 
 

2.5.7 Norm balls and norm cones 
 
From the general properties of norms it can be shown that a norm ball of radius r and center xc, given by 

{ }| c r − ≤x x x , is convex [55]. The norm cone associated with the norm ⋅  is the set  

 

 ( ){ } 1, | nD t t +
⋅ =  ≤ ⊆x x R   (1.41). 

 
As the name suggests it is a convex cone. An important case of norm cone is the second-order cone, i.e. 
the norm cone for the Euclidean norm: 
 

 ( ){ }1
2 2

, |nD t t+= ∈  ≤x R x   (1.42). 

 

 
Figure 14. Boundary of second-order cone in R3 

 

Figure 14 depicts the second-order cone in R3: ( ){ }2 2
1 2 1 2, , |x x t x x t  + ≤ .  

The set of all vectors with norm less than or equal to one,  
 

 { }| 1nB = ∈   ≤x R x   (1.43), 

 

is called the unit ball of the norm⋅ . The unit ball satisfies the following properties: 

 
• B is symmetric about the origin, i.e. B∈x if and only if B− ∈x . 
• B is convex. 
• B is closed, bounded, and has nonempty interior [55].   
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Chapter 3 
 

The developed algorithms 
 
In this chapter we describe in detail the developed algorithms based on convex optimization. In particular, 
the innovative content, their structure, the goals, the problems that come out in their realization, the solu-
tions proposed for the latter and their strengths and weaknesses will be addressed.  

 

3.1 Introduction 
 
The synthesis schemes presented in the following are of mask-constrained type [42] as the idea that we 
had since the beginning was to apply them for future AESA projects, in which the requirements the FF 
has to meet are given in terms of masks, regardless of the beam characteristics. In fact, the most important 
features for a radar like range coverage, PD, PFA, azimuth and elevation BWs, monopulse performances, 
peak directivity, etc., are all obtained with (or indirectly derived from) lower and upper bounds instead of 
exact numbers. Moreover, a reference field pattern to match in amplitude and phase would dramatically 
reduce the number of degrees of freedom the algorithms can pick from. Two approaches will be adopted 
for the synthesis process: one that falls in the CS framework and that is based on reweighted ℓ1-norm se-
quential refinements [73], the other one on MIP. Although several works exist in literature on this kind of 
synthesis [46-48] [50], very few of them address the synthesis of sparse arrays in terms of minimization 
of the ℓ0 pseudo-norm of the number of elements that constitute the initial grid [78] [92]. None of them, 
to the best of the PHD student’s knowledge, takes into account the non-superdirectivity by imposing a 
constraint on the minimum inter-element distance, which is, indeed, actually one of the most innovative 
contributes of this work. 
The algorithms scheme is simple: we start from an initial array, that we can call the “full array” whose in-
ter-element spacing is half-wavelength and whose shape and size(s) can be any and are fixed a priori (thus 
the BWs are fixed as well). Then we derive the minimum SLL in a Chebyshev sense, i.e. we synthesize a 
set of weights that achieves the lowest maximum SLL in a bidimensional region that spans from the 
points on the main lobe that intercept the highest SLL (i.e. the main lobe BW at the highest SLL) to the 
visible boundary. This way we get a main lobe BW at maximum SLL and a SLL which both act as re-
quirements for the sparse synthesis. In order to carry out the latter we sample the full array with wave-
length submultiples (for instance λ/10, or λ/100), thus obtaining an initial, dense grid of elements, and 
then minimize the number of elements subject to an ensemble of requirements, among which a require-
ment on the minimum inter-element distance. The number of elements of this grid are the degrees of free-
dom the solver has got for the optimization process. 
Clearly, the just described scheme works for any type of geometry and the aforementioned “optimum 
SLL” is only a choice, but in no way it is supposed to be the only one.  
 

3.2 The Optimum SLL 
 
The sparse arrays achieved by optimization by means of our developed algorithms, that will be described 
later in this chapter, will be compared to a reference array in terms of reduction of the number of ele-
ments. Actually, such reference array is the one which the algorithms sparsify on. We can name it as the 
“full array”. Its geometry, lattice and size are fixed a priori and nonetheless can be any. We start from a 
rectangular geometry and lattice with half-wavelength inter-element distances. The BW is fixed a priori, 
and the optimum SLL is derived accordingly. By recalling (1.11) the problem is the following: 
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min ( )

. .

(SLL_region)

0 1, , , 1, ,

NM

nm

SLL

s t

AF SLL

SLL

w n N m M

∈

≤
∈
≥   ∀ =   =

w ℝ

ℝ

… …

   (2.1), 

 
where we denoted by w the vector containing all the weights wnm, and SLL_region is the bidimensional 
region of the spectrum external to the intersection between the main lobe (multiplied by the scalar mc) and 
the line at the highest SLL. Given this optimum SLL, the size of the aperture that achieves it by tapering 
is also the smallest non-superdirective source, this way returning a necessary condition for non-
superdirectivity [48]. Hence the full array is the minimally sparse solution that meets the SLL require-
ment. For instance, in Figure 15 and Figure 16, for a 3λ square array with rectangular lattice, the isophor-
ic and tapered horizontal cuts and the illumination are shown respectively for a BW at maximum SLL en-
larged by mc=1.5.  
 

 
Figure 15. Horizontal cuts of a 3λ square array with rectangular lattice in the tapered (blu line) and isophoric (red) cases. The 
optimum SLL is -22.9784dB [48]. 
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Figure 16. Tapering of a 3λ square array with optimum SLL equal to -22.9784dB [48]. 

 

3.3 Problem statement: the minimization of the ℓ0 pseudo-norm 
 
Once the bounds have been assigned to the desired power pattern, the aim is to find the non-
superdirective excitation and location distributions of the radiating elements such that the radiated field 
satisfies the prescribed power mask with the minimum number of antennas for a desired solid angle of 
steering. The synthesis problem is formulated as one of constrained optimization type, in which the cost 
function is chosen to return the solution that exhibits the minimum cardinality, i.e. the ℓ0 pseudo-norm. 
Such a constraint limits the number of non-zero entries of the array weights, is non convex, and thus re-
quires, in principle, to solve an NP-hard problem [48]. However, by introducing a vector wb of binary var-
iables belonging to B={0,1}NM (where the product NxM represents the (dense) grid obtained by sampling 
the full-array at submultiples of λ) accounting for the presence or absence of the actual radiating element, 
we can easily assure the non super-directivity condition in a convex way, perform a two-way synthesis 
(either in Tx and Rx) and make the cost function a simple sum of terms, although the very latter, as we 
are about to see, represents the main difficulty to face. Formally we can express the synthesis problem as: 
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  (2.2), 

 

where 
ib

w is the ith entry of wb, 1, ,
xTk N= … identifies the kth constraint in Tx, 

xTN is the number of con-

straints in Tx, 
kΩ is the kth region in Tx in the (u,v) spectrum (it can be monodimensional or bidimension-

al, depending on the requirement), UBk(u,v) is the kth upper bound in Tx, LBk(u,v) is the kth lower bound 

in Tx, 1, ,
xRh N= … identifies the hth constraint in Rx, 

xRN is the number of constraints in Rx, 
hΦ is the hth 

region in Rx in the (u,v) spectrum (it can be monodimensional or bidimensional, depending on the re-
quirement), UBh(u,v) is the hth upper bound in Rx, LBh(u,v) is the hth lower bound in Rx, A is the non-
superdirectivity matrix (which we are going to discuss in detail soon) of size (NM)x(NM), w is the set of 
all weights in (1.11), 1 is a column vector of NM ones and TR, that is a positive quantity, is the maximum 
dynamics allowed by the TRMs. To each of the relations in (2.2) is being given an exhaustive discussion. 
Note that some constraints in (2.2) may not be present in each type of synthesis, as well as some of them 
may be modified for a specific goal (like pencil-type arrays for example). For instance the constraint on 
the maximum allowed dynamics for the Rx pattern(s) is not required for the comparisons to the literature 
benchmarks, but it is required for the sparsification of the chosen antenna (see 5.2). Finally, note that the 
introduction of the binary vector wb makes the cost function in problem (2.2) convex and thus exploitable 
for any type of convex solver, but does not change the fact that it remains NP-hard, therefore such intro-
duction has the only purpose of letting problem (2.2) be practicable for software implementation. In fact 
we could write the cost function as it is usually found in literature, so without resorting to the vector wb 

and thus involving directly the vector w:  
 

 
0

min
w

w   (2.3). 

 
The reason why problem (2.2) is particularly suitable for software implementation lies in how rewriting 
systems for convex optimization [102] work. Basically, what happens when problem (2.2) is implemented 
is that a check is carried out for possible convexity violations, then once granted this step the appropriate 
solver is invoked. If any convexity violation is detected, the solver is not drawn in at all, and the simula-
tion returns an error. Specifically, the cost function in (2.2) is the sum of the entries of the vector wb, thus 
it represents no convexity violation if for a moment we do not consider they are integer variables. Only 
afterwards the rewriting system recognizes the minimization involved in (2.2) recalls a non-convex and 
NP-hard problem, but at this step the correct solver is requested, and the B&B algorithms come into play. 
From this point on it is up to the solver to handle the (non convex) mixed integer problem. Hence, provid-
ed that there are no convexity violations and a proper solver is available, the final result is that the simula-
tion starts smoothly as well as the solving process. 
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3.3.1 The steerability 
 
The maximum desired steering in u and v determines an ellipse in the (u,v) spectrum whose major and 
minor axis extend beyond the visible circle, so that any unwanted lobe is automatically suppressed. For 
example, in Figure 17 a 7λ square array steerable in azimuth and elevation at ±57° is shown. In particular, 
the dotted circle represents the farthest boundary to which the upper bound constraints have been extend-
ed. 
 

 
Figure 17. 7λ spectrum (the colourbar is set in such way that only the main lobe is visible). The desired steering is 57° either in 
azimuth and elevation, so that the ellipse beyond the visible circle is in this case a circle as well of ray 1+sin(57°)≈1.83 (dotted 
white circle). 

 

3.3.2 Upper and lower bounds 
 
The constraint  
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( )
( )

,
, ,

1, ,

x
h

x

R hu v

R

AF u v UB u v

h N

∈Φ
≤

= …

  (2.4) 

 
in (2.2) is a special case of Second Order Cone (SOC) constraint whenever the right hand side is a system 
of linear equations. The general definition of SOC constraint is given by [55]: 
 

 2

T d+ ≤ +Ax b c x   (2.5) 
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where kxn∈A R , k∈b R , n∈c R and d∈ℝ . In particular, the (2.4) corresponds to the (2.5) when ci=0 for 
i=1,…,n; in such case it can be rewritten as  
 
      

 
2 2

2
d+ ≤Ax b   (2.6), 

 
which is a convex quadratic constraint, efficiently solvable with the interior points method [55]. 
As regards the left hand inequality of the fourth relation after “s.t.” in (2.2), which is typically related to 
non-pencil pattern types, we observe that in general it is a non-convex constraint [81]. An assumption that 
can be made to overcome this problem is to adopt conjugate-symmetrical distributions for the pattern that 
requires to meet the lower bound constraints, so that these become linear inequalities. Hence in this hy-
pothesis the non-convexity of the lower bound can be eliminated. Another valid assumption is to impose 
the distribution to be real and even. Same considerations apply for Tx (third relation after “s.t.” in (2.2)).  
 

3.3.3 Two-ways synthesis 
 
The problem (2.2) intrinsically outputs the same layout for Tx and Rx, with two sets of NM weights: in 
the former case such set is a binary string, whereas in the latter one the weights are real. We call this 
“two-way synthesis”. In fact in transmission mode the power supplied by the single TRM to the radiating 
element is as high as possible whilst in receiving mode different values of attenuation are set in order to 
obtain the desired receiving pattern. Often in our company the power mask requirements are given over-
all, meaning that the SLLs must be below a specified threshold for the upper bounds and above for the 
lower ones, jointly in Tx and Rx. Generally the SLL upper bounds required in Tx are higher than the ones 
in Rx (since fewer degrees of freedom are available in this case), thus forcing to synthesize two separate 
and independent arrays. With our formulation instead it suffices to add the following constraints to (2.2)  
 

 

( ) ( )( )
( ) ( )( )

, , ,

, , ,

1, ,

1, ,
x

x

LB k h LB

UB k h UB

T

R

f LB u v LB u v SLL

f UB u v UB u v SLL

k N

h N

≥

≤

=

=

…

…

  (2.7), 

 
where the upper and lower bounds either in Tx and Rx are the independent variables of two functions 

( ) ( )( ), , ,LB k hf LB u v LB u v  and ( ) ( )( ), , ,UB k hf UB u v UB u v  which must be greater and smaller than both an 

overall lower and upper SLL respectively. Clearly, these functions are required to be convex.  
The relation 

b≤w w  in (2.2) ensures the layout for Tx and Rx patterns is shared. Actually such constraint 

may be just one of a set of equivalent constraints that account for different Rx patterns which all share the 
same layout, as is done in [50] for instance.  
 

3.3.4 The non super-directivity matrix 
 
A sparse array is superdirective if its directivity is higher than that of its full version. Excessive array su-
perdirectivity inflicts major problems in low radiation resistance (hence low efficiency), sensitive excita-
tion and position tolerances and narrow bandwidth. Moreover mutual coupling among elements becomes 
hardly controllable. A condition that ensures non-superdirectivity is that the distance between each couple 
of elements of the starting grid must be greater than or equal half-wavelength. The non-superdirectivity 
matrix, that in (2.2) is called “A”, is defined by means of its general entry [48]: 
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 2
1 , 1, :

4
0

i j
ij

i j NM P P
a

otherwise

λ   ∀ = − ≤= 
   

…
  (2.8), 

 

where ( ),i i iP x y=  and ( ),j j jP x y= . For each point of the initial grid (see Figure 2) A centers a circle of 

radius λ/4 whose inside is filled with ones, the outside with zeros. Figure 18 and Figure 19 show two rows 
of A (chosen randomly) for a 3λ square array with a sampling of λ/30: the red points are points at distance 
smaller than half-wavelength with respect to the circle’s center. Clearly, such rows have length NM, thus 
they have been reshaped as an NxM matrix in order to show the binary images in Figure 18 and Figure 19.  
 

 
Figure 18. Single column of matrix A. The red points represent all the points at distance smaller than half-wavelength with 

respect to the circle’s center, whereas the blue ones represent all the points at distance greater than or equal half-wavelength. 

 
The non-superdirectivity is achieved by constraining each entry of the vector resulting from the product 
Awb, to be smaller than or equal to unity. Formally, if we denote with Kq the set of the grid indexes identi-
fying the elements that fall in the q-th circle, the q-th entry of the above scalar product is: 
 
 { }( ), q 1, 2, ,

q

b q bq
i K

r i NM
∈

∗ = =     ∈    ∑A w w …   (2.9). 

 
The vector resulting from the product Awb exhibits points of the grid with an integer amplitude that is in-
dicative of superdirectivity whenever is greater than 1. 
For instance, Figure 20 shows a forced superdirective distribution denoted by 

bwɶ for a square grid of edge 
3λ. Four circles related to four specific rows of A are highlighted. The first one encompasses no active 
elements (r1=0 in this region); the second and third circles represent a boundary case since the two ele-
ments they are centered at are exactly λ/2 distant (r2=r3=1). The last one is centered at a point of the grid 
that contains two active elements at distance smaller than λ/2, so that r4>1, this making the whole layout 
superdirective, i.e., not belonging to the set of possible solutions to problem (2.2) (this is why it has been 
made superdirective on purpose). 
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The definition and the use of this matrix is one of the most innovative contributions of this thesis work, 
since, to the best of the student’s knowledge, it has never been applied before our publications [48], [99]. 
 

 

Figure 19. Single column of matrix A. The red points represent all the points at distance smaller than half-wavelength with 
respect to the circle’s center, whereas the blue ones represent all the points at distance greater than or equal half-wavelength 

 

 
Figure 20. Example of four circles, related to four specific columns of A, on a general array layout identified by bwɶ . 
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3.3.5 The shared layout 
 

The condition b≤w w (which has already been utilized in [50] for instance) in (2.2) assures the layout in 

Tx and Rx is the same. In our case we only distinguish between Tx and Rx, but more in general this type 
of relation can be exploited for multiple patterns that are required to share the same layout (see relation 
(12) in [50] for more details). 
 

3.3.6 The cost function 
 
In (2.2) the cost function, that is equivalent to minimize the ℓ0 pseudo-norm of vector w since minimiza-
tion of this functional will result in the minimum number of nonzero weights, favors sparse arrays and is 
therefore particularly suited for the desired sparseness. Although the cost function is linear with respect to  
the variable wb (it is just the minimization of its sum) it is not as such in functional terms because it is 
discontinuous and has zero gradient except at the discontinuities [92]. However, we can consider the rela-
tionship between maximally sparse optimization and the generalized lp optimization for 0<p<1 and show 
the conditions under which a solution to the computationally simpler lp optimization problem leads to a 
solution of the cost function in (2.2). Let us consider the generalized optimization problem 
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  (2.10) 

 
for 0<p<1. To show how this problem is related to the cost function in (2.2) let us consider the unit ball 
surfaces in R2 for the quasi-norm  
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for values of p in the range 0≤p≤∞ as illustrated in Figure 21.  
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Figure 21. Unit balls in R2 for the lp quasi-norm for various values of p. Note that as p�0, the unit ball collapses onto the (x,y) 
axes (the case p=0, highlighted in red, is the binary case “x or y”). 

 
For p≥1 we have the conventional norm defined by (1.39), which is a convex functional and obeys the tri-
angle inequality. An example of convex geometry is depicted in Figure 22: the unit ball in R3 for p=3. 

For 0<p<1 lp is only a quasi-norm [93] since the triangle inequality does not hold. Over RNM 
pl

w is nei-

ther convex nor concave, containing many strong local minima and presenting a difficult optimization 
problem. Large values of p result in smooth solutions, but as p�0 they tend to become more “spiked”, or 
sparse [92].  
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Figure 22. Example of convex geometry: unit ball in R3 for the lp norm for p=3. 

 
An example of concave geometry is given in Figure 23, where the aforementioned “spiked” solution is 
clear: the unit ball in R3 for p=.5. For p=0 the unit ball in Figure 21 lies on the (x,y) axes. We observe, in 
general, that  
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which suggests that we may identify minimum order optimization as a special case of generalized lp op-
timization: 
 

 [ ]
0

1

1

00 0
1

lim ( ) lim
p pNM

p
i lp p

i

g w
→ → =

 
= = = 

  
∑w w w   (2.13). 

 

The utility of this observation is that for p>0 g(w) eliminates some of the handicaps of 0w : it is indeed 

continuous everywhere and differentiable except at the axes. Theorem 4 in [92] provides justification for 
minimum order optimization based on minimizing g(w) by proving that for a bounded basic feasible solu-
tion set there exists a finite p1>0 such that for all 0<p<p1, any solution to (2.10) is a solution to the cost 
function of (2.2) [92].  
   
 



 

34

Company General Use 

 
Figure 23. Example of concave geometry: unit ball in R3 for the lp quasi-norm for p=0.5. 

 
The optimization problem (2.10) therefore defines a class of problems, indexed by p, whose global solu-
tions are increasingly sparse as p decreases, until p<p1, at which point an optimally sparse solution is giv-
en. As p varies over the range 0<p<1 only a finite number of unique globally optimum solutions are en-
countered [94]. A value wopt will remain as such over a range of p values, and as p decreases, we step 
from one solution to another in a discrete fashion [94]. Theorem 4 in [92] proves that (global minimum) 
solutions to (2.10), for p<p1, form a subset of (global minimum) solutions to the cost function of (2.2), so 
that any lp optimum is acceptable until 0<p<p1. Problem (2.10) is closely related to the problem of con-
cave minimization over linear constraints. One of the techniques proposed for solving this type of mini-
mization is the Branch-and-Bound (B&B) procedure [92], which we are giving a dedicated section.   
 

3.4 Problem Solution: reweighted ℓ1-norm and B&B algorithms 
 
Hereinafter we are proposing two different approaches for solving the MIP binary problem (2.2): the for-
mer is a method substantially based on the solution of (2.2) by means of a fast B&B algorithm [62[67], 
which solves a set of convex problems in parallel. The latter is a method based on the sequential convex 
minimization of the weighted ℓ1-norm based, in turn, on the minimization of a convex measure of the ℓ0–
norm [73] by using an interior point algorithm [55]. 
We have experienced much shorter simulation times by using an optimization technique based on the re-
weighted ℓ1-norm with respect to the use of global methods, also in case of a small number of variables. 
Therefore, although global stochastic optimization methods like, for instance, SA and GA, could be used 
as well, the computational load is prohibitive for the goals we set, and besides the cost function is upper 
and lower bounded (neither the array can have more elements than its full version nor it can have less 
than one element, respectively), which turns out to be quite helpful for the B&B. Moreover, differently 
from global stochastic methods, the latter returns an exact solution (deterministic approach), and in any 
case its efficiency depends on how it is implemented. 
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3.5 B&B algorithms  
 
Hereinafter it is described how the general B&B algorithm works in its classical formulation together 
with its main aspects and some examples as well. This section does not mean to cover this type of algo-
rithm exhaustively as is currently done in mathematics/computer science research. At present, much more 
advanced versions [63] of the basic B&B algorithm herein discussed are normally employed for solving 
MIP problems. 
B&B is a general-purpose approach capable of solving pure IP, mixed IP, and binary IP problems. We as-
sume in the following that the given problem is a maximization one, since modification of the algorithm 
for the minimization problem is straightforward [57]. Theoretically, any pure IP problem with finite 
bounds on integer variables can be solved by enumerating all possible combinations of integer values and 
determining a combination (solution) that satisfies all constraints and yields the maximal objective value 
(hence the name of complete enumeration). Unfortunately, the number of all possible combinations is 
prohibitively large to be evaluated even for a small problem. As a better alternative, implicit enumeration 
applies an intelligent enumeration scheme that can cover all possible solutions by explicitly evaluating 
only  a small number of  them  while  ignoring  (or implicitly  enumerating)  a large number of inferior 
solutions. One such strategy is called divide and conquer. Basically, this strategy divides the given prob-
lem into a series of easier to solve subproblems that are systematically generated and solved (or con-
quered). The solutions of these generated subproblems are then put together to solve the original problem. 
B&B can be viewed as a divide and conquer approach to solving the IP problem, in which a branching 
process is for dividing and a bounding one for conquering. As the algorithm proceeds, a series of Linear 
Programming (LP) subproblems are systematically generated and solved. Then the upper and lower 
bounds are progressively tightened on the objective value of the original IP problem. A typical way to 
represent such process is via the B&B tree, which is a specialized enumeration tree for keeping track of 
how LP subproblems are generated and solved. The root node that represents the LP relaxation of the 
original IP problem is solved. If the LP optimum solution satisfies the integer requirement then the IP 
problem is solved. Otherwise, the LP objective value becomes the initial upper bound on the IP optimal 
objective value and the root node is partitioned into two successor nodes (subproblems) by two branches. 
These branches have the following properties: 
 

a) they cut off current non-integer LP optimum point and other fractional region; 
b) the two successor nodes are mutually exclusive and their union contains the same integer feasible 

region as that of their predecessor (i.e., no integer points are eliminated). 
 
The solution of an LP relaxation on a node provides information about 
 

a) whether a further branching from this node is needed (or whether the node can be pruned), and 
b) a better lower bound (for maximization problem) on the objective of the original IP problem.  

 
There are three cases indicating that a node can be pruned: 
 

1. the subproblem has no feasible LP solution; 
2. the subproblem has an integer optimum solution, and 
3. the upper bound of the subproblem optimum is less than or equal to the lower bound of the origi-

nal problem.  
 

These three cases are, respectively, referred to as pruned by infeasibility, pruned by optimality and pruned 
by bound. If a node is pruned by optimality its optimum solution can be used to increase the lower bound 
on the objective value of the original IP problem.  
Whenever an integer solution to a subproblem is obtained, it is a candidate optimum to the original IP 
problem. In the solution process of B&B the best integer solution found so far is continuously updated. 
Such solution is called incumbent.  
The B&B algorithm is usually depicted as an enumeration tree, in which the nodes denote the subprob-
lems and the branches correspond to constraints (cuts) that separate the subproblems from their parent 
subproblems. The number above each node is the optimal solution to the LP subproblem generated on 
that node (which is also the upper bound on that branch). The number below the node indicates the best 
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lower bound on the original IP problem found so far. Examples of B&B trees are depicted in Figure 27, 
Figure 28 and Figure 29 
When an LP solution contains several fractional variables, the decision of which integer variable to 
branch on next is needed. The following rules are commonly used for choosing a branching variable: 
 

• Variable with fractional value closest to 0.5 

• Variable with highest impact on the objective function 

• Variable with the least index. 

 
A decision is also needed as to which unpruned node to explore first. The most commonly used search 
strategies include 
 

1. Depth-first (last-in first-out; solve the most recently generated subproblem first) 
2. Best-bound-first (best upper bound; branch on the active node with greatest objective value) 

 
The goal of the depth-first strategy is to quickly obtain a primal feasible integer solution whose objective 
function is a lower bound on the given IP problem and can be used to prune nodes by bound (rule 3). The 
best-bound-first strategy chooses the active node with the best upper bound (for maximization problem). 
The goal is to minimize the total number of nodes evaluated in the B&B tree. Performances of these 
branching rules depend on the problem structure. In practice, a compromise between the two is adopted. 
That is, apply the depth-first strategy to first get one feasible integer solution, followed by a mixture of 
either strategies.  
 
Now we can describe the general B&B algorithm using the following notation. 
 
S= the given IP problem 
SLP= the LP relaxation of S 
yLP= the solution to the LP relaxation of the given IP problem 

1 2* (y ,y , ,y , ,y )j Kz f= … …  = the objective function of the K variables 1 2(y ,y , ,y , ,y )j K… …  

z  = lowest (best) upper bound on z* of the given IP problem  
z = highest (best) lower bound on z* of the given IP problem 
 
These are global bounds that are periodically updated as the branching proceeds down the various paths 
in the tree, but are not shown on the latter. Next comes further notation. 
 
Sk= subproblem k of problem S 

k
L PS = the LP relaxation of subproblem k 

 zk  = the optimum objective value of Sk 
kz = lowest (best) upper bound of subproblem Sk (shown above node k) 
kz = highest (best)  lower bound of subproblem Sk (shown below node k) 
k
L Py = the optimum solution of the LP subproblem k

L PS   

jy = non-integer value of integer variable yj (current numerical value of yj) 

a   = the largest integer ≤a (or rounding down a)   

a   = the smallest integer ≥a (or rounding up a) 

 
Now we can formally describe the B&B procedure. 
 
Step 0 (Initialization). Solve the LP relaxation (SLP) of the given IP problem (S). If it is unfeasible so is 

the IP problem, thus terminate. If the LP optimum solution satisfies the integer requirement the IP 
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problem is solved, thus terminate. Otherwise, initialize the best upper bound (z ) by the optimal objec-
tive value of problem SLP and the best lower bound by z = −∞ . Place k

L PS on the active list of nodes 
(subproblems). Initially, there is no incumbent solution.   

 
Step 1 (Choosing a node). If the active list is empty, terminate. The incumbent solution y* is optimal. 

Otherwise choose a node (subproblem) Sk with k
L PS as LP relaxation, by one of the aforementioned 

rules (i.e. depth-first, best-bound-first, etc.). 
 
Step 2 (Updating Upper Bound). Solve and set kz equal to the LP optimum objective value. Keep the op-

timum LP solution k
L Py . 

 
Step 3 (Prune by infeasibility). If k

L PS has no feasible solution, prune the current node and go to step 1. 
Otherwise go to step 4.      

 
Step 4 (Prune by Bound). If kz z≤ prune the current node and go to step 1. Otherwise go to step 5.  
 
Step 5 (Updating Lower Bound and Pruning by optimality).  
 

a) If the LP optimum k
L Py is integer a feasible solution S is found, and also an incumbent solu-

tion to the given problem. Set k k
L Pz y= and compare kz with z. If kz z≥ set kz z= , otherwise 

z does not change. The current node is pruned because no better solution can be branched 
down from it. Go to step 1.        

b) If the LP optimum k
L Py is non-integer, go to step 6.  

 
Step 6 (Branching). From the current node Sk choose a variable yj with fractional value to generate two 

subproblems 
1
KS and 

2
KS defined by  
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  (2.14). 

 
Place both these two nodes in the active list and go to step 1. 
 

3.5.1 An example of IP problem 
 
Solve the following pure IP problem by using the B&B algorithm:  
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  (2.15) 

 
We first solve the LP relaxation SLP. As shown in Figure 24, the shaded area represents the LP feasible 
region, and the solid lattice points the IP feasible region.  
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Figure 24. LP and IP feasible regions 

 
We obtain the noninteger optimum y1=39/7, y2=8/7, and z=25.57. Then the objective value 25.57 becomes 
an upper bound to the IP problem. At this point we set the lower bound to -∞. Since both y1 and y2 are 
fractional we need to branch on them in an attempt to obtain an integer optimum. We arbitrarily select y1 
as the variable to be branched. Two subproblems are generated by adding the constraints y1≤5 and y1≥6 to 
the LP relaxation. From Figure 25 we can see that the triangle area S’ is cut off by y1≤5. Clearly the 
branch with the added constraint y1≥6 is infeasible, thus it is pruned by infeasibility. The other branch 
with the added constraint y1≤5 is optimized at (y1,y2)=(5,4/3), with objective value 22.33. So the new up-
per bound is updated to 22.33. Again, the variable y2 is fractional, so this time we branch on y2. The two 
constraints y2≥2 and y2≤1 are then added. This time the area S’’ is cut off, as shown in Figure 26. The 
branch with y2≤1 is infeasible and hence is pruned by infeasibility. The one with y2≥2 is optimized at 
(y1,y2)=(5,2), with objective value 21. Since this is a feasible solution to the IP problem the value 21 be-
comes a new lower bound to the problem, replacing -∞, and (5,2) is a candidate solution. Checking the 
tree, all branches are evaluated, so (y1,y2)=(5,2) is the optimal solution to the IP problem, and the optimal 
objective value is 21. The enumeration tree for this example is in Figure 27. We observe that if at the be-
ginning we branched on y2=8/7 we would get to the final result earlier, thus the adoption of a decision cri-
terion on which node to explore first is advisable. 
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Figure 25. LP and IP feasible regions after the first branching. 

 

 
Figure 26. LP and IP solution regions after the second branching. 
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Figure 27. B&B tree for problem (2.15). 

 

3.5.2 An example of IP problem with applied criteria 
 
Solve the following mixed integer problem using B&B approach and applying the rule of best-bound-first 
at each step. Furthermore, at each node select the variable with the least index to branch on first.  
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  (2.16). 

 
After solving the LP relaxation we obtain an LP optimum y1=6/11 (which is, in this case, the integer vari-
able with least index), y2=59/11, y3=0, x1=4/11 and z=120/11≅10.91. We use this solution as the root 
node of the B&B tree in Figure 28, in which the number of each node indicates the sequence of subprob-
lems evaluated. Note that at node 1 the constraint y1≤0 was indicated on the left branch, but since from 
(2.16) the relation y1≥0 must hold, y1 has to be fixed at 0. At node 7, the constraint y2≥2 was intended to 
be added, but if we trace back along node 7, we see that the constraint y2≤2 was already added at node 2. 
Combining these two constraints, we have y2=2. Same applies to the constraint of y3=2 at node 8. The 
problem is finally optimized at node 12, where (1,5,0,1/3) is the optimal solution, with objective value 
9.67. Figure 29 depicts the B&B tree for the same problem where the depth-first rule is applied, and at 
each node the variable (violating an integer constraint) with the largest absolute value cost coefficient is 
chosen to branch on first. Depth-first is sometimes called Last-In First-Out (LIFO) because it solves the 
most recently generated subproblem first. It tends to pursue paths to the depths of the tree, then backtrack 
to where that path started, and finally plunge down into another depth search. Therefore another name for 
depth-first is “backtracking”. Best-bound-first is sometimes called “jumptracking” because it leads to 
searches that jump back and forth across the tree.  
 
 



 

 41 

Company General Use 

 
Figure 28. B&B tree for problem (2.16) using best-bound-first 
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Figure 29. B&B tree for problem (2.16) using depth-first 

 
We end this section by stating that the B&B algorithms can use multiple cores (of multiple machines) 
during the optimization process; in principle, if one had as many cores as the potentially required nodes of 
the B&B tree then a core could be assigned to each subproblem, leading in this case to a full paralleliza-
tion. In practice clearly, an ensemble of subproblems is assigned to each core. 
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3.6 Reweighted ℓ1-norm 
 
A common alternative to relation (2.3) is to consider the ℓ1-norm of vector w, which is indeed known to 
produce sparse solutions for a wide range of applications [95[96]. In the ambit of compressive sensing for 
instance one wishes to recover a sparse signal

0
n∈x ℝ from a small number of measurements 0=y Φx , 

where Φ is a m x n matrix whose m columns (with m n≪ ) represent the measurements on the signal. It 
has been shown that ℓ1 minimization allows recovery of sparse signals from remarkably few measure-
ments [97[98]: supposing Φ is chosen randomly from a suitable distribution, then with very high proba-
bility, all sparse signals x0 for which 0 0

/m α≤x with [ ]log( / )O m nα = can be perfectly recovered by 

using the ℓ1 minimization. However, a key difference between ℓ0 and ℓ1 norms lies in the dependence on 
magnitude: larger coefficients are penalized more heavily in the ℓ1 norm than smaller ones, unlike the 
more democratic penalization of the ℓ0 norm. Therefore, to further enhance the sparsity of the solution an 
algorithm that consists in solving a sequence of weighted ℓ1 minimization problems, where the weights 
used for the next iteration are computed from the value of the current solution, has been proposed in [73]. 
The idea of this algorithm is to bring the ℓ1 criterion as close as possible to the ℓ0 one, penalizing more 
democratically the nonzero coefficients. The algorithm proposed by E.J. Candes, M. B. Wakin and S. 
Boyd has been developed with the goal of reconstructing sparse signals from highly incomplete sets of 
measurements. Although not developed specifically for the synthesis of sparse arrays, the procedure de-
scribed in [73] can be efficiently exploited for our scope. In fact the measurements one would use in the 
recovery of a sparse signal are substituted by FF specifications, while the array layout is actually the 
“sparse signal” to be recovered. Consider the weighted ℓ1 minimization problem 
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  (2.17), 

 
where w1, …, wn are positive weights and Φ is an m x n matrix with, typically, m<n. It is convenient to 
denote the objective functional by

1
Wx , where W is a diagonal matrix with w1, …, wn on its diagonal 

and zero elsewhere. One possible use for the weights could be to counteract the influence of the signal 
magnitude on the ℓ1 penalty function. Suppose for example that the weights are inversely proportional to 
the true signal magnitude, i.e. that  
 

 
0,

0,

0,

1
0

0

i

ii

i

x
xw

x

      ≠= 
∞          =     

  (2.18). 

 
If the true signal x0 is k-sparse, i.e. 0 0

k≤x , then (2.17) is guaranteed to find the correct solution with 

this choice of weights provided that m≥k and that the columns of Φare in general positions. The large 
(actually infinite) entries of in wi force the solution x to concentrate on the indices where wi is small (ac-
tually finite), and by construction these correspond precisely to the indices where x0 is nonzero. Without 
knowing the signal x0 itself it is impossible to construct the precise weights (2.18), but this suggests more 
generally that large weights could be used to discourage nonzero entries in the recovered signal, while 
small ones could be used to encourage nonzero entries. Specifically, the algorithm is as follows: 
 

1. Set the iteration count l to zero and ( 0 ) 1, niw i=   = 1 , ,… . 
2. Solve the weighted ℓ1 minimization problem  
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3. Update the weights: for each i=1,…,n, 
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  (2.20). 

 
4. Terminate on convergence or when l attains a specified maximum number of iterations lmax. Oth-

erwise, increment l and go to step 2. 
 
The parameter ε>0 in (2.20) is used to provide stability and to ensure, in particular, that a zero-valued 
component in x(l) does not strictly prohibit a nonzero estimate at the next step. The parameter ε should be 
set slightly smaller than the expected nonzero magnitudes of x0. The use of an iterative algorithm to con-
struct the weights wi tends to allow for successively better estimation of the nonzero coefficient locations. 
Even though the early iterations may find inaccurate signal estimates, the largest signal coefficients are 
most likely to be identified as nonzero. Once such locations are identified, their influence is down-
weighted in order to allow more sensitivity for identifying the remaining small but nonzero signal coeffi-
cients.  
The reason why the reweighted ℓ1 minimization can improve the recovery of sparse signals lies in the 
connection it has with the following problem: 
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  (2.21), 

 
whereΘ is a convex set. In (2.21) g is concave [73], hence one can improve on a guess v at the solution 
by minimizing a linearization of g around v. This simple observation yields a Majorization-Minimization 
(MM) algorithm whose each iteration is the solution to a convex optimization problem [73] which turns 
out to be equivalent to problem (2.19). A particular case of (2.21) is the log-sum penalty function: 
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  (2.22), 

 
which has the potential to be much more sparsity-encouraging than the ℓ1 norm. Let us consider indeed 
three potential penalty functions for scalar magnitudes t: 
 

{ }0 1 log,0( ) 1 , f ( ) , ( ) log 1t

t
f t t t f tε ε≠

 
=      =      ∝ + 

 
, 

 
where in the latter the constant of proportionality is set such thatlog, 0 1(1) 1 (1) (1)f f fε = = = , see Figure 30. 

The first (ℓ0-like) penalty function f0 has infinite slope at t=0, while its convex (ℓ1-like) relaxation f1 has 
unit slope at the origin. The concave penalty function flog,ε(t), however, has slope at the origin that grows 
roughly as 1/ε when ε→0. Following this argument it would appear that ε should be set arbitrarily small 
in order to most closely make the log-sum penalty resemble the ℓ0 norm. Unfortunately, as ε→0 it be-
comes more likely that the iterative reweighted ℓ1 algorithm will get stuck in an undesirable local mini-
mum [73]. A choice of ε slightly smaller than the expected nonzero magnitudes of x provides the stability 
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necessary to correct for inaccurate coefficient estimates while still improving upon the unweighted ℓ1 al-
gorithm for sparse recovery. 
 

 
Figure 30. ℓ0-like functions. At the origin, the canonical ℓ0 sparsity count f0(t) is better approximated by the log-sum penalty 
function flog,ε(t) than by the traditional convex ℓ1 relaxation f1(t). 

 

3.7 The dynamics 
 
For the Tx synthesis not only we seek for an as sparse as possible solution, but also for an ispohoric one, 
this implying that it must attain 0dB of dynamics (the ratio of the maximum to the minimum nonzero en-
try is 1). The reweighted ℓ1-norm could be inappropriate for such scope, since every set of weights ob-
tained through this algorithm will exhibit a dynamics different from 0dB. Even if the dynamics is quite 
narrow if one forces the nonzero entries of the obtained vector to be all equal the requirements could no 
longer be met. In general, when using the reweighted ℓ1-norm in the attempt to approximate an isophoric 
solution, we typically experienced worse performances than with the MIP approach, but anyway to the 
best of the student’s knowledge there is no known theoretical aspect that prevents a priori to achieve an 
equivalent solution. In general, the reweighted ℓ1-norm enhances sparsity in terms of “zero” entries of the 
vector of interest, but not (necessarily) the homogeneity of magnitude in its “non zero entries”, which is 
instead absolutely mandatory for Tx arrays. All these aspects set up the reason why we used either MIP 
and the reweighted ℓ1-norm for synthesizing the arrays for the benchmark comparisons, but not for the 
synthesis of the sparse version of the chosen antenna, see 5.2. Hence in the following we are recasting 
problem (2.2) by means of the reweighted ℓ1-norm with a focus on the Rx synthesis only (the constraints 
on upper and lower bounds for the Tx case are in fact absent). At the yth iteration the problem to solve is: 
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where wc is an NM vector of continuous variables (whose entries are [ ]( ) 0,1cw n ∈ , with n=1,2,…,NM) 

that represents the continuous version of vector wb in (2.2), (0)
NM=Z I and (y)Z is a diagonal matrix 

whose nth element on its diagonal is computed as:  
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b is the expected cardinality of the array, which at worst is equal to the one of the full-array, and obvious-
ly cannot be smaller than 1. In (2.24) the parameter ε is chosen as described earlier. The reason why in 
(2.23) either wc and w are present although the problem is targeted to Rx patterns, lies in the fact that wc 
is necessary for the non-superdirectivity constraint, which in this case is not guaranteed. Besides, the b 
parameter must be varied several times until the maximum sparse solution is reached. These are actually 
the drawbacks of this approach.  
 

Chapter 4 
 

Application of the developed algorithms 
 
In this chapter we are going to apply the algorithms described in the previous ones either to several 
benchmarks of literature and in order to set new ones. As regards the literature benchmarks comparisons 
we have shown our algorithms perform better, meaning that they succeed in achieving greater reductions 
in the number of elements in some cases with even lower SLLs. As regards the new benchmarks we have 
derived how the reduction of the number of elements behaves with respect to the intervals of steering for 
different array sizes, and we have seen it is decreasing (confirming the intuition for which the less degrees 
of freedom the algorithms can use the less they can sparsify). The latter is another innovative contribu-
tion, since, to the best of our knowledge, it was never shown and confirmed before our publications [48] 
[99].  
 

4.1 Introduction 
 

In order to evaluate the capabilities and the indexes of performances of the herein proposed approaches, 
several benchmark problems are considered. In particular, a comparison with benchmark problems de-
scribed in [46] and [50], concerning the synthesis of different types of power patterns are shown. Fur-
thermore, a parametric study aimed at showing the comparison (in terms of magnitudes of sparsity) be-
tween square apertures of size 3λ, 5λ, and 7λ, for different intervals of steering and for different power 
masks, is discussed. In all the examples shown Ne represents the number of elements of the synthesized 
array. The quantities selected for the literature benchmark comparisons are the Q factor, verified accord-
ing to [51] [100] and defined as the ratio between the stored to dissipated energy. It represents a robust-
ness index in terms of bandwidth, efficiency, excitation sensitivity and position tolerances [51] [100]. A 
second index of performances is the ratio between the directivity of the synthesized array and the one per-
taining to the isophoric case, confirming, obviously, for each case, that the former is non-superdirective as 
expected. Another index of performances is the aperture efficiency, defined, for hemispherically isotropic 
radiating elements, as   
 

 
24 /

e

D
A

Aπ λ
=   (3.1), 

 
where D and A are, respectively, the directivity and the area delimited by the convex hull of the synthe-
sized array. Since in the following the directivity refers to the whole sphere of radiation, the quantity at 
the denominator of (3.1) is scaled by a factor of 0.5. Finally, we define the Elements Number Reduction 
Ratio (ENRR) as1 /eN F− , which represents the measure of the achievable reduction of the active radiat-
ing elements with respect to the ones composing the full array. In such relation F is the number of ele-
ments of the full array. 
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4.2 Comparison with literature Benchmarks 
 

Let us now consider the problem of synthesizing a sparse planar array of elements located on a square 
grid of side 5λ in order to radiate a pattern having a broadside main beam such that sin(ϑbw) = 0.239 at -6 
dB. For such a problem, with the hybrid approach proposed in [17], a SLL below -16.5 dB is achieved 
with a planar sparse array composed of 41 elements. In [46] the same number of elements has been 
achieved, with a main BW of 0.24 at -6 dB and with a SLL of -17.3dB. By applying the proposed algo-
rithms, the same BW and a maximum SLL of -17.5dB (that is optimum in a Chebyshev sense) has been 
obtained with a non-superdirective array layout, constituted by only Ne=35 elements. The optimized array 
layout is shown in Figure 31. 

 The Q factor and the directivity of the synthesized sparse array are, 3.79dB and 18.9dB respectively, 
whereas in the isophoric case they are 3.72dB and 19.1dB respectively (this confirms it is non-
superdirective).  

 
Figure 31. Resulting array layout relative to the synthesis of focused beam power pattern. Active radiating elements Ne=35. Dis-
cretization grid: dx=dy=0.1λ. The dashed curve represents the convex hull. 

 
The area bounded by the convex hull is 21.11λ

2, which causes a loss in aperture efficiency of 18.9dB-
21.237dB=-2.337dB. In Figure 32 and in Figure 33 the 3D and 2D normalized synthesized power pattern, 
in the (u,v) domain, are shown respectively. The ϕ-cutting planes for ϕ=0°, 30°, 45°, and 90° are reported 
in Figure 34. The element positions and the associated normalized excitations, whose dynamics is 
8.01dB, are reported in Table 2 . 
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Figure 32. 3D normalized power pattern radiated by the array in Figure 31 with Ne=35 active radiating elements. BW= 
sin(θbw)=0.240 at -6dB. SLL=-17.5dB. 

 

 
Figure 33. Normalized magnitude in [dB] of the resulting pattern radiated by the array in Figure 31. The visible region is 
delimited by the withe circle. Ne=35 active radiating elements. 
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Figure 34. ϕ-cutting planes of the normalized power pattern radiated by the array in Figure 31 with Ne=35 active radiating 
elements.  

 
No. (x[λ],y[λ]) w(x,y) No. (x[λ],y[λ]) w(x,y) 
1 (-2.5, -0.3) 4.84E-01 19 (-0.1, 2.5) 7.79E-01 
2 (-2.5, 0.3) 5.69E-01 20 (0.1, 0.0) 8.94E-01 
3 (-2.5, 1.8) 3.98E-01 21 (0.2, -1.7) 5.53E-01 
4 (-2.2, 1.0) 3.98E-01 22 (0.3, 1.7) 4.57E-01 
5 (-2.0, -0.9) 6.28E-01 23 (0.6, -2.5) 5.12E-01 
6 (-1.8, 0.0) 7.40E-01 24 (0.7, -0.9) 8.38E-01 
7 (-1.7, -1.7) 6.64E-01 25 (0.7, 0.8) 9.88E-01 
8 (-1.6, 1.7) 7.55E-01 26 (0.8, 2.5) 6.43E-01 
9 (-1.2, -2.5) 6.26E-01 27 (1.1, -1.7) 7.81E-01 
10 (-1.2, -0.9) 4.51E-01 28 (1.1, 1.6) 8.98E-01 
11 (-1.2, 0.8) 5.59E-01 29 (1.6, -0.8) 5.87E-01 
12 (-1.0, 2.5) 4.92E-01 30 (1.7, -2.4) 3.98E-01 
13 (-0.8, -1.7) 3.98E-01 31 (2.0, 0.0) 8.23E-01 
14 (-0.8, 0.0) 1.00E00 32 (2.0, 1.6) 6.88E-01 
15 (-0.7, 1.7) 5.47E-01 33 (2.1, -1.6) 3.98E-01 
16 (-0.3, -2.5) 6.43E-01 34 (2.5, -0.8) 5.97E-01 
17 (-0.2, -0.8) 6.76E-01 35 (2.5, 0.8) 7.50E-01 
18 (-0.1, 0.9) 5.90E-01 

   
Table 2. Coordinates and normalized weights for the array in Figure 31. 

 
Therefore, the just discussed benchmark comparison has been obtained with a slightly lower SLL and 
with a reduction of 14.6% in the number of required active radiating elements. 
The second benchmark problem concerns the synthesis of a flat-top circular symmetric pattern dated back 
to [80], where it has been obtained with a square array, composed of 121 half-wavelength spaced ele-
ments, whose edge is 5λ. The synthesized array radiates a real and even field obtained by using a Kaiser 
window. In [46] the same power pattern has been achieved by assuming, in the flat-top region, as refer-
ence field to fit the one radiated by the array synthesized in [80], whereas the SLL is below the prescribed 
level. The resulting sparse array, on a 5λ edge square support, is composed of 100 radiating elements 
whose minimum interspacing is approximately 0.35λ. Given, by hypothesis, a real and even radiated 
field, any lower and upper bound constraint on the magnitude of the array factor |AF| is affine and thus 
convex. Such a condition allows to formulate the problem in the more general way, exploiting a greater 
number of degrees of freedom to achieve the maximally sparse solution. In particular, it is sufficient to 
constrain the array factor to satisfy only the prescribed upper and lower bounds both in the flat-top and 
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the sidelobe region. By applying the proposed synthesis scheme, the prescribed flat-top power pattern has 
been synthesized by means of only Ne=57 radiating elements whose minimum interspacing and maxi-
mum antenna size are, respectively, greater than 0.5λ and 4.24λ. The optimized array layout is shown in 
Figure 35. In Figure 36 and Figure 37 the 3D and the 2D normalized power pattern, in the (u,v) domain, 
are shown respectively, whereas the ϕ-cutting planes for ϕ=0°, 30°, 45°, and 90° are reported in Figure 
38.  
 

 
Figure 35. Resulting array layout relative to the synthesis of the flat-top power pattern. Actual radiating elements Ne=57. 
Discretization grid: dx=dy=0.01λ. The dashed curve represents the convex hull. 

 

 
Figure 36. 3D normalized flat-top power pattern radiated by the array in Figure 35 with Ne=57 elements. SLL=-24.53dB. 
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Figure 37. Normalized power in [dB] of the resulting flat-top pattern in the (u,v) domain. The visible region is delimited by the 
withe circle, Ne=57 active radiating elements. 
 

 
Figure 38. ϕ-cutting planes of the normalized flat-top power pattern synthesized in [80] (dotted lines) and the one synthesized 
with the proposed synthesis scheme (solid lines). Ne=57 active radiating elements. 
 
Given the symmetry, with respect to the main axes and the bisecting lines of both weights and relative po-
sitions of the synthesized array layout, only 11 element positions with the associated weights, whose dy-
namics is 26.58dB, need to be provided, see Table 3. 
 

No. (x[λ],y[λ]) w(x,y) No. (x[λ],y[λ]) w(x,y) 
1 (0.00, 0.00) 1.00E00 7 (1.41, 0.71) -4.69E-02 
2 (0.71, 0.00) 5.95E-01 8 (2.12, 0.71) -1.25E-01 
3 (2.12, 0.00) -1.69E-01 9 (1.77, 1.06) -1.01E-01 
4 (0.35, 0.35) 5.61E-01 10 (1.41, 1.41) -7.50E-02 
5 (1.06, 0.35) 2.33E-01 11 (1.77, 1.77) -6.44E-02 
6 (0.71, 0.71) 3.92E-01 

Table 3. Coordinates and normalized weights of the flat-top in Figure 35. 

 
Definitely, while keeping the same requirements on the power mask, the proposed synthesis algorithms 
allow to reduce both the array support’s edge (15.2%) and the number of actual radiating elements (43%). 
Just for completeness sake we are providing the values of Q and the aperture efficiency of the synthesized 
flat-top pattern, although this is not very common for this type of patterns. In particular, we have 
Q=1.97dB, and _ 109.92 10log (4 *16.0036) 13.11eff flat topA dB dBπ− = − = − .     
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Either the pencil beam and the flat-top patterns have been published on IEEE Transactions on Antennas 
and Propagation [48]/[R1]. 
The following benchmark comparison has been published on Progress In Electromagnetics Research 
Symposium (PIERS) [99]/[R2].  
For the following benchmarks we made the hypothesis of conjugate-symmetrical excitations for coher-
ence sake towards the benchmarks chosen for comparison, since all the synthesis made in [81] first, and 
then in [50], strongly found on this choice. Clearly this is not the only assumption, others exist which do 
not decrease the number of degrees of freedom a priori as this does. However, our scope for these specific 
types of patterns was to inspect whether our algorithms could return better performances (in terms of 
sparsity) than the ones achieved in [50] with as many equal conditions as possible. 
Let us consider a rectangular-grid array with a half-wavelength spacing of 14 x 14 elements for the joint 
synthesis of two shaped patterns, a circular and a diamond-like one, which in [50] have been obtained 
with 150 radiating elements with SLLs of -25.85dB and -24.3dB respectively. For the first pattern the 

mainlobe region is specified as a circular-shaped one, with equation { }2 2 2( , ) :u v u v  + ≤ 0.2 , whereas the 

sidelobe one is given by { }2 2 2( , ) :u v u v  + ≥ 0.4 . For the second pattern, which was originally synthesized 

in [81] with a 14 x 14 array with half-wavelength spacing, the mainlobe region is diamond-shape like, and 

is defined by{ }( , ) : 0.2 0.2u v u v  − + − ≤ 0.2 , whereas the sidelobe one is given by

{ }( , ) : 0.2 0.2u v u v  − + − ≥ 0.4 . Furthermore, a circular-shaped null region is required too, and is given 

by { }2 2 2( , ) : 0.5) ( 0.5)u v u v  ( + + + ≤ 0.1 , with a null of -50dB. In both cases the required ripple is ≤1dB. 

All the sidelobe regions are within the visible circle. We would like to remark, in the present discussion, 
that the aforementioned SLL for the diamond-shaped pattern makes the joint synthesis unfeasible unless 
the (u,v) spectrum is sampled with 81 x 81 points, as is apparently done in [50]. With the (u,v) spectrum 
sampled with  128 x 128 points, as we did in our synthesis, the minimum possible SLL is slightly higher, 
in particular it is -23.67dB. With such sampling and SLL for the diamond-shape pattern, all the con-
straints are met even when plotting the radiation pattern on more points. With our proposed algorithms we 
obtained the joint synthesis with only 119 radiating elements, with ENRR=39.29% which is higher than 
ENRR=23.47% achieved in [50]. Figure 39 and Figure 40 show the layouts obtained in [50] and in this 
thesis work, respectively. Figure 41, Figure 42 and Figure 43 show the circular 3D/2D patterns and the 
main axes cuts respectively, whereas Figure 44, Figure 45 and Figure 46 show the diamond-shaped 
3D/2D patterns and the main axes cuts respectively. In particular, in Figure 46 the cuts are apparently 
centered at θ=asin(0.2). For the circular pattern the Q factor is approximately 5dB, whereas the directivi-
ty of the synthesized array is of 14.19dB. Therefore we have Aeff_circ_pattern=14.19dB-10log10(4π*42.25)=-
13.05dB. For the diamond-shaped one we have Q=4.57dB and Aeff_diamond_pattern=9.56dB-
10log10(4π*42.25)=-17.69dB. 
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Figure 39. Array of 150 elements obtained in [50] 

 

 
Figure 40. Array of 119 elements obtained by means of our proposed algorithms 
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Figure 41. Circular shape 3D pattern 

 

 
Figure 42. 2D circular pattern. The two white circles represent the mainlobe and SL boundaries respectively 



 

 55 

Company General Use 

 
Figure 43. 2D circular pattern cuts. The vertical (u = 0) and horizontal (v = 0) cuts are reported in the figure together with the 
boundary required by the benchmark. Datatips have been inserted to show precisely the SLL. 

 

 
Figure 44. Diamond-shape 3D pattern 
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Figure 45. 2D diamond-shape pattern. The white circle and dashed square, together with the red dash-dotted square represent the 
null region, the mainlobe and sidelobe regions boundaries respectively. 

 

 
Figure 46. 2D diamond-shape cuts. The vertical (u = 0) and horizontal (v = 0) cuts are reported in the figure together with the 
boundary required by the benchmark. Datatips have been inserted to show precisely the SLL. 
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4.3 New benchmarks 
 
In this section we are assessing the performances of the proposed algorithms for a series of cases that in-
volve the variations of the antenna size and steering range in the visible circle after fixing its geometry, 
BW and optimum SLL (the latter as described in section 3.2). The BWs are referred to the highest SLL 
level and reported in degrees as double-sided, whereas the maximum steering directions are determined 
according to the main lobe extension in order to avoid the rise of grating lobes. The full array is com-
posed of elements whose distance is half-wavelength, and acts as reference for the computation of the 
ENRR. In Table 4 the input parameters are grouped.  
 

 Size BW [deg] SLL [dB] F  
3λ 39.8643 -22.9784 49 
5λ 25.3326 -24.3877 121 
7λ 18.5734 -25.0483 225 

Table 4. Input parameters: array edge, BWs and SLLs 
 

The results of the performed numerical analysis are synthesized in Figure 47, whose steering range varies 
in [0°,57.06°]. The trend shown in Figure 47 seems to confirm that the more degrees of freedom the algo-
rithms can sparsify on, which corresponds to larger and larger antenna sizes, the higher is the reduction of 
the elements, therefore representing a major advantage for electrically large arrays.  
Coherently with the examples discussed in the previous section, the Q factor of the synthesized arrays is 
always higher than the one pertaining to the same array in the isophoric case, thus exhibiting a smaller ro-
bustness in terms of weight dynamics. Moreover, the directivity of all the synthesized, sparse arrays is in 
any case smaller than the one of their isophoric counterpart (as expected).  
 

 
Figure 47. ENRR Vs steering angles for BWs and SLLs of Table 4. 

 
In  Figure 47 when the ENRR converges to zero means that the full array solution is achieved, which cor-
responds to the highest steering ranges, which are, for the 3λ, 5λ and 7λ arrays, 41.5°, 51° and 57.06° re-
spectively. Please note that the last different from zero values of ENRR refer to steering angles that are 
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very close to the above maximum ones; in the 7λ case for instance the maximum steering angle relative to 
the last non-zero value of the ENRR is 57°, hence the two values are barely distinguishable. Clearly, since 
only the latter case can reach 57° of steering, it represents the most complete case, and thus has been cho-
sen for a more detailed description. Figure 48 shows the array layout which is characterized of Ne=163 
and a relative ENRR of 27.56%, whereas Figure 49 shows the 3D normalized power pattern lying in the 

region [ ]{ }22 2( , ) : 1 sin(57 )u v u vΦ =   + ≤ + ° when u0=v0=0. The φ-cutting planes for φ=0°, 30°, 45° and 

90° are reported in Figure 50. Since the upper bound in Table 4 has been imposed in the bi-dimensional 
region Φ , the relative synthesized array is able to radiate a pencil pattern up to 57° along any direction, 
see Figure 17. Figure 51 shows the normalized 2D power pattern when the main beam is steered along 
(u0,v0)=[sin(57°),0]. As it can be seen, this steering direction is such that no grating lobes enter the visible 
region and, in particular, that it is the maximum one allowed by the array under discussion.  
The weight dynamics is 7.21dB, the Q factor and the directivity of the sparse synthesized array are, re-
spectively, 1.36dB and 23.1dB, whereas the ones in the isophoric case 1.36dB and 23.4dB (thus confirm-
ing, as expected, the synthesized array is non-superdirective). The area bounded by the convex hull is 
43.5λ2, which causes an aperture efficiency loss of 23.1dB-24.377dB=-1.277dB. 
 

 
Figure 48. Resulting steerable array relative to the synthesis of pencil beam power pattern. Active radiating elements Ne=163, 
edge size 7λ, steering range 57°. The dash-dotted curve represents its convex hull 
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Figure 49. 3D power pattern radiated by the 7λ steerable array (Figure 48) pointing at broadside. Ne=163 active radiating ele-
ments. BW=18.57°, SLL≅-25dB 

 

 
Figure 50. φ-cutting planes for φ=0°, 30°, 45° and 90° of the normalized power pattern of Figure 49. On the abscissa it is 

[ ]1 sin(57 ),1 sin(57 )r ∈ − − ° + °   
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Figure 51. 2D power pattern of the 7λ steerable array depicted in Figure 48 pointing at  (u0,v0)=[sin(57°),0] and with the input 
parameters in Table 4. The visible region is delimited by the white circle, whereas the dashed one identifies the region Φ   
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Chapter 5 
 

Experimental assessment of the algorithms application: Far Field 
measurements in anechoic chamber   
 

5.1 Introduction 

 
In this chapter we are dealing with the experimental validation of the algorithms described in the previous 
ones by means of measurements in anechoic chamber of the chosen antenna, that for secrecy reasons we 
are naming as X-antenna. The sparse synthesis has been carried out by switching off the elements of the 
standard, full antenna, thus it falls within the special case of thinning. Clearly indeed it would not have 
been possible to perform measurements of a sparse version of the X-Antenna with the positions of the el-
ements that could fall out of the existing ones. A picture of the latter is given in Figure 52, (sources at 
[101]). First we are showing how the array simulated by a full-wave simulator as Ansys HFSS meets the 
requirements and compares to the predicted performances obtained in Matlab, then we are comparing the 
simulation results to the measurements. Either the synthesis and the HFSS simulations have been carried 
out by taking into account the element factor of the array. The latter has been simulated individually in 
HFSS (with master/slave conditions) and all the necessary electric field components have been exported 
to Matlab for the synthesis process, which obviously has been achieved jointly in Tx and Rx.  
 

 
 

 
Figure 52. A photograph of the X-antenna. 
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5.2 The X-antenna: features and requirements 
 
The X-antenna operates in C-band, is an active full phased array with Tx/Rx solid state modules, and is 
able to steer up to ±45° in Azimuth and ±60° in elevation. Among the different beams it can form we 
chose the pencil-type sum one for this thesis work. For secrecy reasons all the requirements that follow 
are parametrized, as well as other quantities like: 
 

• the frequency at which the synthesis has been made, which is fc; 
• the number of elements of the full X-antenna, which we name as NX-full. 

 

5.2.1 The Tx requirements 
 
All the following requirements are referred to the maximum pattern value. 
 

• Beamwidth @-3dB for horizontal and vertical cuts: LFBT 
• Beamwidth @-3dB for ±45° Azimuth (v=0 cut): LFAT 
• Beamwidth @-3dB for ±60° Elevation (u=0 cut): LFET 
• SLL within ±LTF for horizontal and vertical cuts: ≤LLBT 
• SLL beyond ± LTF for horizontal and vertical cuts (in at least 90% of the whole observation in-

terval): ≤LLFBT 
• rms SLL beyond ±LTF for horizontal and vertical cuts: ≤LLRBT 
• SLL within ±LT for ±45° Azimuth (v=0 cut): ≤LLAT 
• SLL beyond ±LT for ±45° Azimuth (v=0 cut) (in at least 90% of the whole observation interval): 

≤LLFAT 
• rms SLL beyond ±LT for ±45° Azimuth (v=0 cut): ≤LLRAT 
• SLL within ±LT for ±60° Elevation (u=0 cut): ≤LLET 
• SLL beyond ±LT for ±60° Elevation (u=0 cut) (in at least 90% of the whole observation interval): 

≤LLFET 
• rms SLL beyond ±LT for ±60° Elevation (u=0 cut): ≤LLRET 

 

5.2.2 The Rx requirements 
 
All the following requirements are referred to the maximum pattern value. 
 

• Beamwidth @-3dB for horizontal and vertical cuts: LFB 
• Beamwidth @-3dB for ±45° Azimuth (v=0 cut): LFA 
• Beamwidth @-3dB for ±60° Elevation (u=0 cut): LFE 
• SLL within ±LTF for horizontal and vertical cuts: ≤LLB 
• SLL beyond ±LTF for horizontal and vertical cuts (in at least 90% of the whole observation in-

terval): ≤LLFB 
• rms SLL beyond ±LTF for horizontal and vertical cuts: ≤LLRB 
• SLL within ±LT for ±45° Azimuth (v=0 cut): ≤LLA 
• SLL beyond ±LT for ±45° Azimuth (v=0 cut) (in at least 90% of the whole observation interval): 

≤LLFA 
• rms SLL beyond ±LT for ±45° Azimuth (v=0 cut): ≤LLRA 
• SLL within ±LT for ±60° Elevation (u=0 cut): ≤LLE 
• SLL beyond ±LT for ±60° Elevation (u=0 cut) (in at least 90% of the whole observation interval): 

≤LLFE 
• rms SLL beyond ±LT for ±60° Elevation (u=0 cut): ≤LLRE 
• Tapering dynamics ≤TR 
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5.3 Comparison between simulated results: the Tx Synthesis 
 
In Figure 53 the full array in Tx is depicted (only two colors), whereas in Figure 54 the sparse synthesized 
array is shown. It shall be considered indeed that since in anechoic chamber the measurements could not 
be carried out by physically removing the radiating elements that were not supposed to be present (that is, 
the “switched-off” ones with 0 weight), the HFSS simulations have been carried out by setting 0 power in 
place of the absent elements, so that these are simply passive (only physically present). The ENRR is 
55.74%, and most of the requirements listed in 5.2.1 have been met. In particular: 
 

• the beamwidth @-3dB for the horizontal cut is LFBT+0.0014° in HFSS, thus it is slightly wider 
than the expected value. Anyway, the requirement is not met.  

• The beamwidth @-3dB for the vertical cut is LFBT-0.0451° in HFSS. 
• The beamwidth @-3dB for ±45° Azimuth (v=0 cut) is LFAT+0.2228° in HFSS, thus the re-

quirement is not met. 
• The beamwidth @-3dB for ±60° Elevation (u=0 cut) is LFET+0.1775° in HFSS, thus the re-

quirement is not met. 
• The rms SLL beyond ±LTF for the horizontal cut is LLRBT-8.38dB 
• The rms SLL beyond ±LTF for the vertical cut is LLRBT-3.89dB 
• The rms SLL beyond ±LT for 45° Azimuth (v=0 cut) is LLRAT-2.59dB 
• The rms SLL beyond ±LT for -45° Azimuth (v=0 cut) is LLRAT-2.58dB 
• The rms SLL beyond ±LT for 60° Elevation (u=0 cut) is LLRET-2.01dB 
• The rms SLL beyond ±LT for -60° Elevation (u=0 cut) is LLRET-2dB 

 
All the other requirements listed in 5.2.1 are shown in figures from Figure 55 to Figure 60. In Figure 59 
and Figure 60 the mask has not been plotted for secrecy reasons.  
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Figure 53. The full X-Antenna Tx layout 
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Figure 54. The sparse X-Antenna Tx layout 
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Figure 55. Horizontal cut for sparse Tx X-Antenna at broadside 

 

 
Figure 56. Vertical cut for sparse Tx X-Antenna at broadside. 
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Figure 57. 45° azimuthal (v=0) cut for sparse Tx X-Antenna. 

 

 
Figure 58. -45° azimuthal (v=0) cut for sparse Tx X-Antenna. 
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Figure 59. 60° elevation (u=0) cut for sparse Tx X-Antenna. 

 

 
 

Figure 60. -60° elevation (u=0) cut for sparse Tx X-Antenna. 
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5.4 Comparison between simulated results: the Rx Synthesis 
 
In particular: 
 

• the beamwidth @-3dB for the horizontal cut is LFBT-0.1964° in HFSS. 
• The beamwidth @-3dB for the vertical cut is LFB-0.246° in HFSS. 
• The beamwidth @-3dB for ±45° Azimuth (v=0 cut) is LFAT-0.2196° in HFSS. 
• The beamwidth @-3dB for ±60° Elevation (u=0 cut) is LFET+0.3668° in HFSS. 
• The rms SLL beyond ±LTF for the horizontal cut is LLRB-17.57dB 
• The rms SLL beyond ±LTF for the vertical cut is LLRB-12.96dB 
• The rms SLL beyond ±LT for 45° Azimuth (v=0 cut) is LLRA-13.34dB 
• The rms SLL beyond ±LT for -45° Azimuth (v=0 cut) is LLRA-13.32dB 
• The rms SLL beyond ±LT for 60° Elevation (u=0 cut) is LLRE-13.5dB 
• The rms SLL beyond ±LT for -60° Elevation (u=0 cut) is LLRE-13.49dB 
• The tapering dynamics is TR-8.07dB. 

 
Figure 61 shows the tapering of X-Antenna, whereas figures from Figure 62 to Figure 67 show the cuts at 
broadside, horizontal and vertical, the cuts at ±45° azimuth and ±60° elevation. The last two figures (±60° 
elevation ) do not show the mask for secrecy reasons. 
 

 
Figure 61. The sparse X-Antenna Rx layout 
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Figure 62. Vertical cut for sparse Rx X-Antenna at broadside 

 
Figure 63. Horizontal cut for sparse Rx X-Antenna at broadside. 
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Figure 64. 45° azimuthal (v=0) cut for sparse Rx X-Antenna. 

 

 

Figure 65. -45° azimuthal (v=0) cut for sparse Rx X-Antenna. 
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Figure 66. 60° elevation (u=0) cut for sparse Rx X-Antenna. 

 

 

Figure 67. -60° elevation (u=0) cut for sparse Rx X-Antenna 
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5.5 Comparison between simulated and measured results 
 
In this section a comparison between measured and simulated FF is shown at broadside and for one case 
of steering in order to validate the simulation results. In particular, the plots shown refer to the sparse case 
in Tx, which is given a more in-depth description in 5.6. For the HFSS curves the simulations have been 
done by using the actual phases used for making the antenna corrections aimed at approximating, as much 
as possible, a set of phases of reference for standard directions of steering (like the ones involved in the 
present discussion). In fact, apart from the theoretical phases (which in the case of broadside can be 0° for 
each active element for instance) the real ones for the X-antenna are typically different from 0, even in the 
broadside case. The overall comparison shows a quite good coherence between the two types of results. 
 

 
Figure 68. Vertical cut for sparse Tx X-Antenna at broadside: comparison between measured and simulated (HFSS) results 
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Figure 69. Horizontal cut for sparse Tx X-Antenna at broadside: comparison between measured and simulated (HFSS) results 

 

 
Figure 70. 45° azimuthal (v=0) cut for sparse Tx X-Antenna: comparison between measured and simulated (HFSS) results 
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5.6 Experimental results:  the measured FF in Tx of the sparse X-Antenna  
 
In this section the final results in terms of FF performances are shown as regards the Tx side. “*” have 
been put on the curves for the points that fall outside the mask, and details are provided in the following 
for what concerns their percentage with respect to the whole observation interval (� 5.2.1). As regards 
the steering directions it has been possible to carry out the measurements only for 45° azimuth (v=0) and 
60° of elevation (u=0), but nonetheless the antenna behavior in the cases of -45° azimuth (v=0) and -60° 
of elevation (u=0) is typically the same, so that it is quite likely that if the requirements are met in the 
former cases they are met in the latter ones as well. In Figure 74 the mask is not shown for secrecy rea-
sons. 
In particular, we have: 
 

• the beamwidth @-3dB for the horizontal cut is LFBT-0.03°. 
• The beamwidth @-3dB for the vertical cut is LFBT-0.03°. 
• The beamwidth @-3dB for 45° Azimuth (v=0 cut) is LFAT+0.05°, thus it is slightly wider than 

the expected value. Anyway, the requirement is not met. 
• The beamwidth @-3dB for 60° Elevation (u=0 cut) is LFET-0.1°. 
• The rms SLL beyond ±LTF for the horizontal cut is LLRBT-6.6601dB. 
• The rms SLL beyond ±LTF for the vertical cut is LLRBT-4.7762dB. 
• The rms SLL beyond ±LT for 45° Azimuth (v=0 cut) is LLRAT-5.5268dB. 
• The rms SLL beyond ±LT for 60° Elevation (u=0 cut) is LLRET-1.3085dB. 
• The percentage of points outside the mask for the vertical cut (Figure 71) is 2.48%. 
• The percentage of points outside the mask for the 60° Elevation (u=0 cut) (Figure 74) is 0.74%. 

 

 
Figure 71. Vertical cut for sparse Tx X-Antenna at broadside 
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Figure 72. Horizontal cut for sparse Tx X-Antenna at broadside 

 
 

 
Figure 73. 45° azimuthal (v=0) cut for sparse Tx X-Antenna 
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Figure 74. 60° elevation (u=0) cut for sparse Tx X-Antenna 

 

5.7 Experimental results: the measured FF in Rx of the sparse X-Antenna  
 
In this section the final results in terms of FF performances are shown as regards the Rx side. “*” have 
been put on the curves for the points that fall outside mask, and details are provided in the following for 
what concerns their percentage with respect to the whole observation interval (� 5.2.2). As regards the 
steering directions it has been possible to carry out the measurements only for 45° azimuth (v=0) and 60° 
of elevation (u=0), but nonetheless the antenna behavior in the cases of -45° azimuth (v=0) and -60° of 
elevation (u=0) is typically the same, so that it is quite likely that if the requirements are met in the former 
cases they are met in the latter ones as well.  
In particular, we have: 
 

• the beamwidth @-3dB for the horizontal cut is LFBT-0.03°. 
• The beamwidth @-3dB for the vertical cut is LFBT-0.035°. 
• The beamwidth @-3dB for 45° Azimuth (v=0 cut) is LFAT-0.2361. 
• The beamwidth @-3dB for 60° Elevation (u=0 cut) is LFET-0.544°. 
• The rms SLL beyond ±LTF for the horizontal cut is LLRBT-5.6142dB. 
• The rms SLL beyond ±LTF for the vertical cut is LLRBT-6.0223dB. 
• The rms SLL beyond ±LT for 45° Azimuth (v=0 cut) is LLRAT-6.4935dB. 
• The rms SLL beyond ±LT for 60° Elevation (u=0 cut) is LLRET-2.567dB. 
• The percentage of points outside the mask for the vertical cut (Figure 75) is 9.899%. 
• The percentage of points outside the mask for the horizontal cut (Figure 76) is 2.8534%. 
• The percentage of points outside the mask for the 45° azimuthal (v=0 cut) (Figure 77) is 

1.8741%. 
• The percentage of points outside the mask for the 60° Elevation (u=0 cut) (Figure 78) is 17.22%, 

thus the requirement is not met. 
• The 60° Elevation (u=0 cut) has points that are greater than LLE (see red ellipse in Figure 78), 

thus the requirement is not met. However, if we consider this cut for the full, standard case, we 
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see there is no significant difference between the two curves, see Figure 79. In particular, in such 
figure we highlighted the points outside the mask (whose percentage is 18.87%) on the full-
antenna curve with green “*”. Moreover, the main lobe is even wider than the one pertaining to 
the sparse case, therefore not meeting the requirements in this case could be due to the full-
antenna conditions in Rx during the measurements, rather than to a synthesis issue. 

 

 
Figure 75. Vertical cut for sparse Rx X-Antenna at broadside 
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Figure 76. Horizontal cut for sparse Rx X-Antenna at broadside 

 

 
Figure 77. 45° azimuthal (v=0) cut for sparse Rx X-Antenna 
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Figure 78. 60° elevation (u=0) cut for sparse Rx X-Antenna 

 

 
Figure 79. 60° elevation (u=0) cut for sparse and full Rx X-Antenna 
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Chapter 6 

Conclusions and future research  
 
In the present thesis work the analysis, design and application of algorithms for the synthesis of maximal-
ly sparse, planar, non-superdirective, multi-pattern and steerable arrays has been investigated with a spe-
cial focus on the Tx (isophoric) case. Starting from a dense sampled, planar aperture, such algorithms al-
low to determine a single layout for Tx and several Rx sets of weights via convex optimizations by 
minimizing the number of elements. In particular, the necessity of synthesizing an isophoric array, among 
the other goals, lays the foundations of MIP, since it requires the introduction of binary variables (which 
account for presence or absence of elements for each point of the grid) in the problem formulation. The 
objective function becomes therefore non-convex, requiring to solve, in principle, an NP-hard problem of 
exponential cardinality. At the same time however, not only it allows to determine the Tx array from the 
synthesis process, but it also allows to apply a constraint on the minimum inter-element distance exactly, 
which in turn assures the sparse array to be non-superdirective. The joint Tx/Rx synthesis, together with 
the latter constraint are two among the most innovative contributes of this thesis. Two approaches have 
been presented and described to face the non-convexity of the objective function: the reweighted ℓ1-norm 
and algorithms of B&B type. From a software implementation point of view the use of MIP is quite ap-
pealing because with commercial solvers like Gurobi and Mosek the user has the possibility of writing the 
mathematical problem exactly as in (2.2), even if the objective function is ultimately non-convex. Or, 
equivalently, it becomes convex in terms of binary variables (in fact it is just their sum), and yet this is 
transparent to the user: the solver automatically calls into play the B&B algorithms. Advantages and dis-
advantages clearly affect these two approaches: the reweighted ℓ1-norm favors simulation time at the det-
riment of non-superdirectivity constraint, which in this case is applied just approximately. Moreover, 
when a Tx synthesis is strictly required, as for sparsifying the X-antenna, it generally returns worse per-
formances than the case of MIP. This is due to the fact that the reweighted ℓ1-norm enhances the gap be-
tween “zero” and “non zero” entries in the vector of interest (and according to this view it is very well 
suited for approximating the cost function of problem (2.2)), privileging sparsity and pushing as close to 
zero as possible the formers, but does not intrinsically address the heterogeneity of amplitude within the 
latters. After deriving the MIP solution for the X-Antenna, several attempts were made by using the re-
weighted ℓ1-norm with the goal of obtaining a solution that could get as close to it as possible, but we did 
not succeed: it returned a greater number of (non-zero) elements. Apart from this, since we already had a 
MIP solution available we knew in advance how to set the parameter b in (2.23), but this is apparently not 
the ordinary case: normally one has to perform the optimization (2.23) for numerous values of b, which 
can easily lead to a longer overall simulation time than in the case of MIP.    

On the contrary, the MIP approach privileges exactness, sparsity, global minimum and (intrinsically) Tx 
solutions at the detriment of time required to converge. Hence, the time budget one has available and the 
necessity of obtaining a Tx synthesis act as the main actors for choosing between the two solutions pre-
sented. However, it must be underlined that the design and realization process of a new AESA may take 
years, and in this long interval the synthesis process requests a negligible time, even if it had to take one 
month for instance. Furthermore, it is a process that typically must be carried out only once. 
 
As regards the efficacy of the solutions proposed to problem (2.2), it has been shown: 
 

• in the application of the proposed optimization schemes to benchmarks present in literature,  
• in the creation of new benchmarks, and especially 
• in the application to an existing antenna (the X-antenna) composed of thousands of elements,  

 
whose FF performances exhibit a very good coherence with the ones predicted by the simulations carried 
out in HFSS, thus validating both the simulation model and the sparsification process itself and proving 
the antenna meets the requirements with an ENRR of 55.74%. The measurements of the sparse version of 
the X-Antenna and the relative FF performances represent another major contribute in terms of innovation 
in the present work.  
Starting from the latest results obtained from the measurements in anechoic chamber the next steps con-
sist in addressing the peak directivity loss problem. In fact, in sparsifying the X-Antenna we allowed the 
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solver to minimize the number of elements without any constraint on this quantity, but in order for the 
developed optimization schemes to be more attractive for future designs, ENRR and (peak) directivity 
must be put on the balance: by dropping the former one can push the latter higher. The loss in peak di-
rectivity that can be tolerated depends on higher level requirements, which are eventually related to the 
radar’s range coverage, PD and PFA. Furthermore the sparse synthesis has been done only for the center 
frequency. It is supposed to be carried out for at least fmin and fmax as well. On another side the business 
aspect shall be considered accordingly as well, since, besides ENRR, peak directivity and other figures of 
performances, it is mandatory to figure out how much money saving can be earned in the realization of a 
sparse antenna. Anyway, such aspect may be taken into account a priori in the synthesis process by ap-
propriately finding, more in general, the relation between (monetary) costs and (some) indexes of perfor-
mances.    
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