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Abstract

Sandro Pezzelle

Defining the meaning of vague quantifiers (‘few’, ‘most’, ‘all’) has been, and still is,

the Holy Grail of a mare magnum of studies in philosophy, logic, and linguistics. The

way by which they are learned by children has been largely investigated in the realm

of language acquisition, and the mechanisms underlying their comprehension and pro-

cessing have received attention from experimental pragmatics, cognitive psychology,

and neuroscience. Very often their meaning has been tied to that of numbers, amounts,

and proportions, and many attempts have been made to place them on ordered scales.

In this thesis, I study quantifiers from a novel, cognitively-inspired computational per-

spective. By carrying out several behavioral studies with human speakers, I seek to

answer several questions concerning their meaning and use: Is the choice of quanti-

fiers modulated by the linguistic context? Do quantifiers lie on a mental, semantically-

ordered scale? Which are the features of such a scale? By exploiting recent advances

in computational linguistics and computer vision, I test the performance of state-of-art

neural networks in performing the same tasks and propose novel architectures to model

speakers’ use of quantifiers in grounded contexts. In particular, I ask the following

questions: Can the meaning of quantifiers be learned from visual scenes? How does

this mechanism compare with that subtending comparatives, numbers, and proportions?

The contribution of this work is two-fold: On the cognitive level, it sheds new light

on various issues concerning the meaning and use of such expressions, and provides

experimental evidence supporting the validity of the foundational theories. On the com-

putational level, it proposes a novel, theoretically-informed approach to the modeling

of vague and context-dependent expressions from both linguistic and visual data. By

carefully analyzing the performance and errors of the models, I show the effectiveness

of neural networks in performing challenging, high-level tasks. At the same time, I

highlight commonalities and differences with human behavior.
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Chapter 1

Introduction

A writer should have the precision

of a poet and the imagination

of a scientist.

VLADIMIR NABOKOV

There are many ways to communicate quantities. A football commentator, after yet an-

other goal by the visiting team, might notice that ‘Most of the supporters of the home

team are leaving the stadium’. Alternatively, he might state that ‘The home fans who

are leaving the stadium are seven thousands’ or that, ‘In the home fans area, there are

more empty seats than occupied ones’. Similarly, he might say that ‘Three quarters (or

seventy-five percent) of the home fans are leaving before the game ends’. Though refer-

ring to the same event, these sentences convey different quantitative information. The

first, containing the quantifier most, is rather ‘vague’: The supporters who are leaving

the stadium are likely more than half of the total and probably not all. The second, in

contrast, is very ‘precise’:1 We know the absolute number of people who are leaving,

though we cannot infer whether they constitute the majority of the home fans or, rather,

just a small fraction. The third, by means of a comparative, gives us a precise (though

1A note on the terminology. In this thesis, the term vague and the concept of ‘vagueness’ are used
to refer to quantifiers whose interpretation can be borderline and not generally-agreed (Van Deemter,
2012). Consistently, I do not consider quantifiers like ‘at most 5’ or ‘fewer than 8’ as vague since these
expressions establish a clear-cut division between two sets of numbers, such that 7 is undoubtedly less
than 8 (Van Deemter, 2012). Similar reasons hold for numbers, comparatives, and proportions, that I
therefore consider as precise. As a general note, it is worth mentioning that vague expressions such as
‘few’ or ‘many’ are not ambiguous as words like ‘bank’ or ‘pitcher’. While the latter have several, well-
defined and different meanings, the former have a non-specific but single meaning (Tuggy, 1993). I refer
the reader to Van Deemter (2012) for a detailed discussion on vagueness and its relation with ambiguity.

1



2 Chapter 1. Introduction.

rather coarse) answer to the previous question. The fourth, by specifying a fraction

(proportion), provides us with the exact percentage of disappointed supporters.

Being merely quantitative, the meaning of number words, comparatives, fractions and

proportions is straightforward. Being vague and context-dependent, the meaning of

quantifiers is not. The former are clearly ordered on quantitative scales: ‘one’, ‘two’,

‘three’; ‘less’, ‘same’, ‘more’; 10%, 50%, 90%. The latter are often claimed to be, but

both the existence and the nature of such a scale is highly debated (Holyoak and Glass,

1978; Routh, 1994; Moxey and Sanford, 2000). Indeed, the notion of a ‘quantifier scale’

has been largely investigated by psychological and psycholinguistic work aimed at link-

ing the meaning of these expressions to scales of numbers, amounts, proportions (see

Section 2.3). Though generally shared among scholars, the intuition that quantifiers are

ordered terms (e.g. that ‘very few’ refers to something less than ‘few’) has been repeat-

edly shown to be more fragile than expected. For example, Moxey and Sanford (1993b)

demonstrated that any quantitative difference between the quantifiers ‘few’, ‘very few’,

‘only a few’, ‘not many’, and ‘a few’ disappears when participants are prevented from

comparing one expression against the others. To account for these results, Moxey and

Sanford (1993b) proposed that the difference between these expressions, rather than

quantitative, might be in the perspective they take to this information. Intuitively, this is

not the case for numbers or proportions, where an ordering between elements on solely

quantitative bases can always be found. Finally, the use of quantifiers has been shown

to also depend on the context (Degen and Tanenhaus, 2015), expectations (Degen and

Goodman, 2014), and individual differences among speakers (Yildirim et al., 2016).

One computational way to study the meaning of these expressions is using Distribu-

tional Semantics Models (DSMs) (Landauer and Dumais, 1997; Turney and Pantel,

2010; Baroni et al., 2014). Based on the hypothesis that similar words occur in similar

contexts (Harris, 1954; Firth, 1957), DSMs use large corpora of texts to build meaning

representations that encode statistics on word associations and co-occurrences. In stan-

dard count DSMs, the meaning of a word is initially represented as a N-dimensional

vector encoding the raw frequency of the target word in each of the N contexts. The

vector is further reduced/transformed by means of various techniques such as Singular

Value Decomposition (SVD) to obtain a higher order semantic representation. A more

recent approach exploits neural networks to predict word vectors (embeddings) on the

basis of the surrounding words (Mikolov et al., 2013; Pennington et al., 2014). In both

approaches, the resulting vectors are typically used to compute the degree of semantic

similarity/relatedness between pairs of words. In particular, this measure is operational-
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Figure 1.1: Heatmap reporting pairwise similarity between vectors of number words.

ized in terms of the cosine of the angle between the vectors: The closer the vectors, the

higher their semantic similarity.

If quantifiers are semantically-ordered expressions, we should expect a measure of se-

mantic similarity to be able to capture such a scale. For example, ‘none’ should be closer

to ‘few’ compared to ‘many’, as well as, among numbers, ‘two’ should be closer to

‘three’ than to ‘six’. The rationale is that, among ordered elements, items that are close

to each other on the scale are expected to be more semantically similar compared to

elements that are far. Here, I report the results of a proof-of-concept analysis performed

on 9 number words (from 0 to 8) and 9 quantifiers (the same explored in Chapter 4 and

Chapter 6). Word embeddings were obtained by training a state-of-the-art word2vec

model (Mikolov et al., 2013) on the same corpus 2 and with the the best configuration

of parameters used in Baroni et al. (2014). Then, pairwise similarities were computed.

As can be seen in Figure 1.1, the expected pattern is generally confirmed among num-

bers. Except for ‘zero’, which turns out to be very dissimilar from all other elements,

increasing values from left to right (and from top to bottom) are observed for almost

all cases. For example, the similarity between ‘eight’ and the other numbers starts very

low (0.15 with ‘zero’) and slowly increases as soon as the numbers get higher: 0.5 with

‘one’, 0.7 with ‘two’, 0.79 with ‘three’, and so on. In contrast, the patterns of similarity

among quantifiers (Figure 1.2) are much less straightforward: ‘all’ is closer to ‘none’

2The corpus was previously pre-processed to ensure that multi-word quantifiers (e.g. ‘the smaller
part’) are treated as a single word (i.e. ‘the smaller part’).



4 Chapter 1. Introduction.

Figure 1.2: Heatmap reporting pairwise similarity between vectors of quantifier words.

(0.43) compared to ‘most’ (0.39), and ‘few’ is closer to ‘many’ (0.62) than to ‘almost

none’ (0.19). Though just exploratory, such analysis confirms that numbers and quan-

tifiers have a very different semantics. The former, perhaps except ‘zero’, display an

almost exclusively quantitative meaning and are thus well ordered on a numerical scale.

The latter, whose meaning is something more complex (and different) than numbers,

amounts, proportions (Nouwen, 2010) display a much intricate pattern of similarities,

possibly dependent on lexical-semantic besides quantitative factors.3

Coming back to our football commentator, it might be that his sentence ‘Most of the

supporters of the home team are leaving the stadium’ was not at all intended to tell us

something about the number of people disappointed by the match. Perhaps his inten-

tion was just to express the sadness of the moment, and although the supporters leaving

were just, e.g., one-fifth of the total, viewers at home were able to understand the rea-

sons of his exaggeration. However, a more pragmatically plausible option is that the

professional speaker wanted to reliably describe what was happening in the stadium,

and after rapidly seeing that significantly more than half of the home-fans seats were

empty, he said that to the microphone. If this was the case, the choice of using the

quantifier ‘most’ was aimed at communicating a somehow ‘objective’ quantity that was

3For example, there seems to be an effect of antonymy, in a way that antonyms are generally similar
to each other (see, e.g., ‘none’-‘all’, ‘almost none’-‘almost all’, etc.).
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grounded in perception and, particularly, in vision. This possibility would be in line

with the evidence that quantifiers’ use, in visual contexts, is sensitive to quantitative

information (Coventry et al., 2010; Degen and Tanenhaus, 2015) and, more in general,

that quantity expressions are used and evaluated by speakers against real-life scenar-

ios (Heim et al., 2012).

In this thesis, I investigate vague, non-numerical quantifiers (‘none’, ‘few’, ‘almost all’,

‘many’, ‘all’, etc.) from a novel, cognitively-inspired computational perspective. By

carrying out several behavioral studies with human speakers, I seek to answer several

questions concerning their meaning and use: Is the choice of quantifiers modulated

by the linguistic context? Do quantifiers lie on a mental, semantically-ordered scale?

Which are the features of such a scale? By exploiting recent advances in computational

linguistics and computer vision, I test the performance of state-of-art neural networks in

performing the same tasks and propose novel architectures to model the speakers’ use

of quantifiers in grounded contexts. In particular, I ask the following questions: Can

the meaning of quantifiers be learned from visual scenes? How does this mechanism

compare with that subtending comparatives, numbers, and proportions? The contribu-

tion of this work, thus, is two-fold: On the cognitive level, it sheds new light on various

issues concerning the meaning and use of such expressions and provides experimen-

tal evidence supporting the validity of the foundational theories. On the computational

level, it proposes a novel, theoretically-informed approach to the modeling of vague

and context-dependent expressions from both linguistic and visual data. By carefully

analyzing the performance and errors of the models, I show their effectiveness in per-

forming challenging, high-level tasks while highlighting commonalities and differences

with human behavior.

In Chapter 3, I study the role of linguistic context in modulating the choice of 9 fre-

quently used English quantifiers. Tested in the challenging task of predicting a missing

quantifier from either short or longer texts, humans and the models are shown to use dif-

ferent strategies, the former relying more on the information conveyed by the broader

context, the latter being more effective in exploiting lexical-semantic cues. Moreover,

both humans and the models make ‘plausible’ errors, that is, they are almost always able

to grasp the ‘magnitude’ of the missing quantifier. This supports the idea that quantifiers,

in language, are loosely ordered on some sort of quantitative scale. The characteristics

of such a scale are explored in Chapter 4. By means of two behavioral experiments with

human participants and a ‘balanced’ set of 9 Italian quantifiers, I show that quantifier

words are mentally organized on an ordered, non-linear compressed scale which is sim-
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ilar to that of perceptual quantities. Moreover, quantifiers turn out to be best predicted

by proportional information when used to refer to objects in visual scenes. Both find-

ings are in line with the idea that representations of quantifiers are mainly constructed by

mapping them to the representations of quantities that we derive from perception. Along

these lines, Chapter 5 explores the computational mechanisms underlying the learning

of numbers and quantifiers from vision. I show that while numbers in the subitizing

range require a model including a precise identification of the instances to be counted,

quantifiers ‘no’, ‘few’, ‘most’, and ‘all’ are better learned by a model capitalizing on

a fuzzy measure of similarity. Building on all this converging evidence, in Chapter 6 I

use the same visual stimuli and the same 9 quantifier words explored in Chapter 4 and

propose that comparatives (‘more’), quantifiers (‘most’), and proportions (‘80%’) can

be jointly learned from visual scenes by means of a multi-task computational model.

The motivation is that these expressions are governed by the same cognitive mecha-

nism, which is different from that underlying numbers. By using I prove that sharing a

core mechanism is beneficial for all these tasks, while numbers are shown to require a

radically different operation.

In the next chapter, I briefly introduce the theoretical framework which motivates the

questions explored in this work. While each of the following chapters is accompanied

by a detailed and somehow more specific motivation, the aim of Chapter 2 is to pro-

vide a general overview of the problems connected with the semantics, the use, and

the modeling of quantifiers. Some notions on the technical background subtending the

computational models presented in the following chapters are also provided.



Chapter 2

Theoretical Framework

2.1 Formal Semantics: Relations between Sets

Studies on the semantics of quantifiers are dominated by Generalized Quantifier Theory

(hence, GQT) based on the mathematical principles described by Mostowski (1957);

Lindström (1966) and systematically applied to linguistics by Barwise and Cooper

(1981); Keenan and Stavi (1986); van Benthem (1986).1 The overall aim of GQT is

to devise a general semantics for expressions of quantity by applying mathematical (or

generalized) quantifiers to linguistics. Quantifier meanings are defined set-theoretically

by means of categorical evaluation functions yielding either truth or falsity of a sentence

in which a quantifier is present. As such, quantifiers are conceived as non-referential:

They do not denote objects, but instead relations between sets of objects.

The core idea is that a quantifier like ‘some’ or ‘every’ expresses a relation between

two sets. The GQT formalization includes a typology of quantifiers. In particular,

noun/determiner phrases (i.e. ‘some donkeys’) correspond to the type (1) quantifier.

This type is called (1) because it expresses an unary relation, that is a set. Determiner-

like quantifiers like ‘some’ or ‘every’ represent the type (1, 1), where (1, 1) stands for a

binary relation, that is a relation between two sets. To illustrate:

1. some(A, B) is true iff ‖A‖ ∩ ‖B‖ 6= ∅

2. many(A, B) is true iff ‖A‖ ∩ ‖B‖ > n, where n is some large number

1See Peters et al. (2006) for an exhaustive overview.

7
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That is, the sentence ‘some donkeys fly’ is true if and only if the intersection of the

donkeys and the flying things is not empty. That implies that the sentence always holds

truth except in the case when no donkeys fly. In other words, it is true either when only

one donkey out of all donkeys in the world can fly or when all of them do. In the case of

‘many donkeys fly’, the sentence is true if the cardinality of the flying donkeys is larger

than some contextual norm n.

In formal semantics, there exists an extensive literature on quantifiers whose meanings

depend on such a contextual norm, like ‘few’ and ‘many’ (Partee, 1989; Solt, 2009). Par-

tee (1989), for example, proposes that ‘few’ and ‘many’ are ambiguous because of the

nature of n, which can stand for either a cardinal or a proportion. The idea is further

extended and formalized by Solt (2009) in terms of ‘scale’ structures. In a nutshell,

the cardinal reading would arise when the involved scale does not display a clear up-

per bound (hence, the scale is numerical). In contrast, the presence of an upper bound

would license the proportional reading (hence, the scale is made of proportions). Cru-

cially, such formalization is not aimed at mapping the set-theoretic definition to any

well-defined scale of numbers or proportions. However, it highlights two core features

of quantifiers: They are vague and context-dependent (see section 2.3).

Another interesting distinction within GQT has been proposed between first order (FO)

and higher order (HO) quantifiers (van Benthem, 1986). The former class includes

quantifiers that are definable in first-order logic and can be computed by simple devices

without cycles (e.g. finite automata, that is, simple idealized machines used to either

accept or reject an input). In contrast, the latter class includes quantifiers which are

not definable in first-order logic and require computability models using some internal

memory (see Szymanik and Zajenkowski (2010)). That is, the meaning of the latter

would require some more complex operations to be recognized and verified in a context

compared to the former. By definition, FO include Aristotelean quantifiers such as ‘no’,

‘some’, ‘all’ as well as cardinal/numerical quantifiers like ‘at least three’, ‘at most two’.

The reason is that Aristotelean can be translated into numerical ones. For example,

‘some’ can be rephrased as ‘at least one’, ‘no’ as ‘at most zero’, and so on. In contrast,

HO include both proportional quantifiers such as ‘more than half’, ‘most’ and parity

quantifiers such as ‘an even/odd number of’, whose comprehension would require to

keep some information in the memory. According to Clark (2011), GQT formalization

would thus imply a direct connection between quantifiers and numbers interpretation

(see section 2.4).
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To sum up, GQT defines the semantics of quantifiers in terms of set relations. As

such, the meaning of these expressions is logically unambiguous. Though extremely

powerful, the formalization provided by GQT has been repeatedly shown to be poorly

connected with the pragmatic use of quantifiers (Nouwen, 2010). For example, the in-

terpretation of ‘some’ as ‘at least one and possibly all’ has appeared to be too broad and

coarse-grained compared to speakers’ use in real contexts. In the next section, I briefly

review the pragmatic approach on quantifiers, which is aimed at studying the use and

interpretation of quantifiers in real-communication contexts.

2.2 Pragmatics: Scalar Implicatures

The pragmatic approach focuses on the informative strength of utterances (i.e., units of

speech) containing a quantifier. Typically, the focus is on a particular type of implica-

ture, called ‘scalar implicature’ (Grice, 1975), which consists in the attribution of an

implicit meaning that is neither expressed nor strictly implied by the utterance contain-

ing the quantifier. For example, in the utterance ‘Some of the home supporters left the

stadium’, the use of ‘some’ would implicate that ‘Not all of the home supporters left

the stadium’. Crucially, this view is in contrast with GQT (see section 2.1), accord-

ing to which ‘some’ would be logically consistent with ‘all’, in a way that using the

former term would not exclude that ‘all’ of the supporters are leaving the stadium. In

conversational settings, however, speakers are ordinarily required to be as informative

as possible (but not more informative than required). Therefore, the choice of using a

given quantifier would be determined by its position on the implicational scale, which

ranges from informatively weaker to stronger elements. Horn (1972), for example, pro-

posed the following scale, ordered from weaker to stronger elements: ‘one’, ‘some/a

few’, ‘several’, ‘many’, ‘half’, ‘most/a majority’, ‘all/every’.

Scalar implicatures have been largely investigated in experimental pragmatics, where

the focus is on how they are computed by listeners in real-time language comprehen-

sion. Across the various accounts proposed, scalar implicatures have been considered

as either a default (Levinson, 2000), a literal-first (Huang and Snedeker, 2009), or a

context-driven (Breheny et al., 2006) process. According to the default view, generating

the implicature would be immediate and effortless. According to the literal-first view,

they would require computing the literal meaning first. According to the context-driven

view, both the robustness and the speed with which a scalar implicature is computed
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would depend on multiple cues that are available in the context. Evidence for the latter

possibility was brought by Degen and Tanenhaus (2011), who employed a ‘gumball’

paradigm (i.e., visual scenes depicting a variable number of gumballs) to investigate the

role of various cues in affecting the scalar implicature of ‘some’. Their results showed

that the syntactic form of the quantifier phrase, the availability of alternatives, and the

size of the referred set affect various aspects of the processing of the scalar implica-

ture. The same experimental paradigm was employed by Degen and Tanenhaus (2015)

to explore the ‘naturalness’ of quantifiers and number terms when used to refer to sets

containing a variable number of gumballs (ranging from 0 to 13). ‘Some’ turned out to

be more natural in some settings (e.g., when referring to small sets) compared to others

(e.g., when referring to the set containing all 13 gumballs), thus bringing new evidence

in favor of the context-driven view of scalar implicatures. Further work strengthened

this claim by showing that both prior knowledge (Degen and Goodman, 2014) and the

availability of lexical alternatives (Degen and Tanenhaus, 2016) have an early role in

the pragmatic utterance interpretation.

By supporting the hypothesis that scalar implicatures vary on the basis of various con-

textual factors, this line of work brings important evidence in favor of the vague and

context-dependent status of quantifiers (see section 2.3). At the same time, the prag-

matic approach postulates the existence of a quantifier scale whose elements are clearly

ordered on the basis of their informative strength. While pragmatics is crucial to explore

the use and interpretation of quantifiers, it does not directly focus on the general seman-

tics of these expressions. Instead of answering the question ‘What does some mean?’, it

rather focuses on questions like ‘What does the use of some implicate in an utterance?’

or ‘Under which circumstances and to what extent the use of some implicates, e.g., not

all?’. In the next section, I review some linguistic and psychological work aimed at

studying the meaning of quantifiers from a quantitative perspective, namely by linking

their semantics to scales of exact numbers or proportions. Crucially, contextual factors

are often not taken into account in these accounts, based on the assumption that the

meaning of quantifiers is well-defined and stable across situations.

2.3 Quantifiers, Quantities, and Contextual Effects

One of the very first attempts to link the meaning of quantifiers to exact quantities is

represented by Graves and Hodge (1943), who normatively assigned a percentage to a
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large number of quantifying expressions such as ‘none’ (0%), ‘a part’ (20%), ‘not much’

(10%), ‘the greater part’ (70%), and so on. Although the aim of the work was to help

writers to properly use these expressions in English, this proposal is interesting for at

least two reasons. First, it overtly assumes that the meaning of quantifiers is defined by

proportions – not, e.g., by absolute numbers. Second, the percentage assigned to each

quantifier is thought to be fixed and not affected by any contextual effect.

To empirically test these assumptions, Hammerton (1976) designed an experimental

setup where participants were asked to assign percentages ranging from 0 to 100 to

quantifiers embedded in sentences. The same set of quantifiers by Graves and Hodge

(1943) was used. Overall, the results of this study replicated the previously-defined

percentages, thus supporting both the validity of the proposed scale and the hypothesis

of prototypical focal ranges associated with each quantifier.

While intriguing, such a well-defined picture has been repeatedly shown to become

much less clear when taking into account a number of factors. For instance, Moxey

and Sanford (1993a) demonstrated that when preventing participants from comparing

one quantifier versus another (i.e., when removing lexical alternatives; see section 2.2)

in the task of assigning a precise number to a given quantifier word, any difference

between quantifiers ‘a few’, ‘only a few’, ‘not many’, ‘few’, and ‘very few’ disappeared.

Moreover, they showed that the number assigned to a given quantifier heavily depends

on the context, with e.g. ‘lots of stars in the sky’ being matched with a rather different

number compared to e.g. ‘lots of typos in this thesis’. Similarly, Newstead and Collis

(1987) found that low-magnitude quantifiers such as ‘few’ and ‘several’ refer to greater

percentages when describing small sets compared to larger sets. That is, the assigned

percentage is affected by the cardinality of the set and thus not stable across conditions.

Since quantifiers are often used for communication purposes that are different or wider

in scope compared to that of conveying quantity information, many scholars maintained

that they cannot be simply considered as words that stand for numbers, amounts, propor-

tions (Paterson et al., 2009; Nouwen, 2010). The supporting evidence is provided by the

fact that in sentences like ‘There are many people in this queue’ the meaning of ‘many’

could depend on speaker’s expectations (e.g., he/she thought there was a shorter queue)

and psychological attitude (e.g. he/she does not like waiting in a queue) besides purely

quantitative aspects. Moreover, quantifier meanings have been shown to depend on both

listeners’ adaptation to the statistics of the linguistic environment (Yildirim et al., 2013)

and talker variability (Yildirim et al., 2016).
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While a certain correspondence between quantifier meanings and scales of exact num-

bers or proportions is observed, such correspondence has been repeatedly proved to be

affected by a wide range of contextual factors. Indeed, these factors have appeared to

be something more than simple pragmatic add-ons to numerical information, being re-

sponsible of affecting the semantics of quantifiers besides their interpretation. Though

it is generally accepted that quantities alone cannot account for the whole meaning of

such expressions, however, it has been proposed that the quantitative aspects of quanti-

fier semantics are better linked to an approximate – rather than exact – representation of

quantities. In the next section, I discuss work aimed at exploring this connection from a

cognitive and neuroscience perspective.

2.4 Quantifiers and the Brain

A crucial issue in the psychological, developmental, and neuroscience literature on

quantifiers is determining which kind of numerical information, if any, underlies their

comprehension and meaning. Despite their commonalities with cardinals (e.g. ‘one’,

‘two’, ‘eleven’) with respect to a number of syntactic, semantic and pragmatic proper-

ties (Hurewitz et al., 2006), quantifiers have been shown to differ from cardinals in sev-

eral respects. First, even though they are both learned in a fairly stable order of acquisi-

tion across languages (Wynn, 1992; Katsos et al., 2016), they are handled differently by

the language acquisition system. That is, children who lack exact cardinality concepts

are able to understand and appropriately use quantifiers in grounded contexts (Halberda

et al., 2008; Barner et al., 2009). This indicates that knowledge about (large) precise

numbers is neither necessary nor sufficient for learning the meaning of quantifiers. Sec-

ond, adult speakers are able to reliably answer questions involving quantifiers even in

contexts that preclude counting (Pietroski et al., 2009). This evidence suggests that the

semantics of quantifiers relies on a mechanism of numerosity estimation based on the

Approximate Number Sense (ANS), that is a pre-verbal system for the representation

of numerical magnitude (Feigenson et al., 2004; Piazza, 2010). The key feature of ANS

is that it is not precise, and it becomes less precise with increasing magnitudes. More-

over, the power to discriminate among sets varies according to the numerical ratio in

observance of Weber’s law (Piazza and Eger, 2016).

Some interesting insight on the interplay between numerical information and quanti-

fiers meaning has emerged from fMRI studies. The issue has been firstly investigated
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by McMillan et al. (2005), who conjectured that precise number sense is required in or-

der to understand quantifiers. To test their hypothesis, they carried out a neuroimaging

study where participants were presented with a sentence containing a quantifier (e.g.

‘some apples are green’) followed by a visual scenes containing both target (i.e. ‘green

apples’) and distractor objects (i.e. ‘non-green apples’). Participants were asked to

judge the truth of the sentence with respect to the visual stimulus. Their results showed

that all quantifiers recruited right inferior parietal cortex (IPC), that is the area typi-

cally associated with numerosity processing (see for a review Kadosh et al. (2008)).

These findings led the authors to claim that precise numerical information is required

for understanding all types of quantifiers (see also Clark and Grossman (2007)). Similar

conclusions were drawn by Heim et al. (2012), who performed a complex parametric

study to investigate the neural networks involved in the comprehension and verification

of proportional quantifiers. Overall, their results revealed that numerical processing is

required to understand (proportional) quantifiers in grounded contexts.

A different pattern of results was found by Troiani et al. (2009), who focused on the

distinction between Aristotelean (e.g. ‘some’, ‘all’ ) and numerical quantifiers (e.g. ‘at

least three’, ‘an odd number of’). The aim of the study was to show that the latter are

associated with numerical information, whereas the former are not. Consistent with

their hypotheses, only numerical quantifiers were found to be supported by a parietal-

dorsolateral prefrontal network (in IPC) depending on quantity-based or numerical pro-

cessing. Logical quantifiers, in contrast, turned out to be associated with rostral medial

prefrontal cortex involved in elementary logic operations, and supported by a selective

visual-spatial attention mechanism in posterior cingulate cortex. The authors claimed

that such a dissociation is in line with the two separate learning processes reported in

children acquisition of numbers and quantifiers (Hurewitz et al., 2006; Papafragou and

Schwarz, 2006; Halberda et al., 2008). Consistent results were obtained by Morgan

et al. (2011), who investigated the neural representation of logical/Aristotelean (e.g.

‘some’, ‘all’), cardinal (e.g. ‘at least three’), and majority (e.g. ‘at least half’) quan-

tifiers in patients with corticobasal syndrome (CBS), posterior cortical atrophy (PCA),

and behavioral variant frontotemporal dementia (bvFTD).

Similarly to Troiani et al. (2009), a dissociation was found between (a) cardinal (i.e. re-

quiring quantity processing) and (b) logical-majority quantifiers (i.e. requiring executive

functioning). Using a semantic distance judgment task, Wei et al. (2014) investigated

brain activation for six types of materials, including Arabic digits (e.g. ‘1’, ‘2’), num-

ber words (e.g. ‘one’, ‘two’), dot arrays (e.g. ‘•’, ‘• •’), and quantifiers (i.e. ‘none’,



14 Chapter 2. Theoretical Framework.

‘few’, ‘several’, ‘some’, ‘many’, ‘abundance’, ‘myriad’). Their results showed a clear

dissociation between the quantity processing of quantifiers and that of numbers and nu-

merosities. In particular, the latter stimuli elicit more activation in the right intraparietal

sulcus (IPS) than quantifiers do. Also, the processing of quantifiers turned out to be

more associated with brain regions for general semantic processing, namely left middle

temporal gyrus and inferior frontal gyrus. This findings led the authors to claim that,

consistently with the results by Troiani et al. (2009), ‘pure’ quantifiers are not processed

in IPS, but rather in the brain’s language areas.

To wrap up, McMillan et al. (2005) reported a similar activation in IPC for all quanti-

fiers (e.g. ‘at least three’ and ‘some’) in grounded contexts. Similarly, Heim et al. (2012)

demonstrated a role of IPS during both estimation and comparison, which are required

steps for assessing the validity of a proportional quantifier. In contrast, Wei et al. (2014)

reported no activation in IPS for any quantifiers in a semantic judgment task. Finer-

grained dissociations were found by Troiani et al. (2009) and Morgan et al. (2011),

who showed that only numerical quantifiers elicit brain areas associated with quantity

processing in grounded tasks. Overall, these results might suggest that numerical in-

formation comes into play for some classes of quantifiers (i.e. numerical, proportional,

parity), but not for others (i.e. Aristotelean). Moreover, it seems to be involved when

a ‘quantitative’ interpretation of quantifiers is explicitly required, namely in grounded

contexts. In the next section, I discuss some behavioral work aimed at exploring the role

of quantitative information in visually-grounded quantifiers.

2.5 Quantifiers Grounded in Vision

To explore the quantitative features of quantifiers meaning, a few behavioral studies

investigated their use in grounded contexts. A first study by Newstead and Coventry

(2000) employed visual stimuli depicting a bowl and a number of black dots to test

the role of object size in affecting the use of five quantifiers (‘few’, ‘a few’, ‘several’,

‘many’, ‘lots of’). By manipulating the number of the dots and the size of both the

dots and the bowl, they found that low-magnitude quantifiers (e.g. ‘few’) were more

appropriate when the dots were small and the bowl was big, with an opposite trend for

high-magnitude quantifiers (e.g. ‘many’).

Coventry et al. (2005) used visual scenes containing both striped and white fish to in-

vestigate the role of a number of perceptual factors in affecting quantifiers appropriate-
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ness. They varied (a) number of target (range 3-18) and distractor objects (range 0-18),

(b) spacing between objects, (c) spatial disposition of the objects in the scene (either

grouped or mixed). All these factors turned out to affect quantifiers interpretation, but

only when the number of targets exceeded the ‘subitizing’ range (i.e., the range of car-

dinalities, typically up to 3-4, which can be automatically and precisely enumerated;

see Revkin et al. (2008)). That is, the meaning of low-magnitude quantifiers turned out

to be ‘stable’ and somehow not affected by other factors than target cardinality.

The same set of quantifiers used by Coventry et al. (2005) was also explored by Coven-

try et al. (2010), who investigated (a) how judgments about quantifiers are affected by

the presence of distractor objects and (b) whether the kind and function of objects af-

fect the judgments. They employed visual stimuli where targets and distractors were

either semantically similar (men-women) or different (men-crocodiles). Moreover, they

manipulated the function of both target and distractor objects (playing golf-not playing

golf ). In all cases, a reliable effect of the number of distractors was observed. Moreover,

in contrast with Coventry et al. (2005), the number of distractors was found to play a

role also in the subitizing range.

Finally, an unpublished paper (van Tiel et al., in preparation) used visual stimuli to

investigate whether the focal ranges (i.e. prototypical numbers/proportions) associated

with quantifiers match the traditional semantic formalization (e.g., that ‘half’ is equal

to exactly 50%). To test their hypotheses, the authors experimented with visual scenes

where the proportion of red and black dots varied. Participants were asked to produce

a quantifier to describe the scene. The results showed that the proportion of target dots

associated with each quantifier did not clearly match the expected interpretation.

Overall, these studies indicate that the meaning of quantifiers in grounded contexts is

mostly described by quantitative features such as either the cardinality of the sets or

the proportion of target objects in the scene. On the one hand, this suggest that quan-

tifiers are mentally represented on an ordered, quantitative scale whose representation

and components, however, none of these studies explicitly investigated. On the other,

these findings support the hypothesis that at least some components of the meaning of

quantifiers are directly connected with approximate numerical information, partly in

line with the evidence reported in section 2.4. In the next sections, I discuss computa-

tional approaches to the modeling of quantifiers in language (section 2.6) and previous

work aimed at extracting quantity information from visual inputs (section 2.7).
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Figure 2.1: Schematic representation of an unrolled Recurrent Neural Network (RNN).
Among RNNs, Long-Short Term Memory networks (LSTMs) (Hochreiter and Schmid-
huber, 1997) have become particularly popular in the Natural Language Processing
(NLP) community. What makes this kind of RNNs special is their ability to learn long-
term dependencies. That is, these networks can ‘remember’ information for long periods
of time, which in natural language means that they can be used to handle long sequences
of text. In a nutshell, LSTMs are structured as a chain of modules of neural network,
usually called ‘cells’. Each cell processes the state coming from the preceding cell,
and forwards information to the following one. While processing the information, the
cell ‘decides’ what information is important to keep (and what to forget) to perform the
task. Starting from continuous representations or embeddings of words (which can be
learned ‘from scratch’ or pre-computed using, e.g., the methods proposed by Mikolov
et al. (2013); Pennington et al. (2014)), LSTMs can be trained to make predictions for
virtually any NLP task, e.g. Sentiment Analysis, Question Answering, etc. Image cred-
its: Colah’s blog on Understanding LSTM Networks.

2.6 Modeling Quantifiers: Computational Linguistics

The problem of algorithmically describing logical quantifiers was first addressed by van

Benthem (1986) using automata (see section 2.1). Following these first efforts, a lot of

work has been done in computational formal semantics to model quantifiers in language

(see e.g. Szabolcsi (2010); Keenan and Paperno (2012); Szymanik (2016) for a in-depth

overview). For example, Szymanik and Zajenkowski (2010) compared the time needed

for understanding different types of quantifiers and showed a psychologically-relevant

distinction between quantifiers recognized by different types of automata.

Recently, distributional semantics (see Chapter 1) has turned to the problem, with Ba-

roni et al. (2012) demonstrating that some entailment relations hold between quantifier

vectors obtained from large corpora, and Herbelot and Vecchi (2015) mapping a dis-

tributional vector space to a formal space from which the quantification of a concept-

property pair can be predicted. By focusing on the distributional representation of ‘ev-

ery’, Capetola (2013), showed the limitations of such an approach in modeling the dy-

namic representation of quantification. One way to overcome these limitations has been

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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proposed by Lewis and Steedman (2013), who showed the benefits of combining dis-

tributional semantics with formal logical semantics for the representation of function

words such as quantifiers. Overall, this work highlighted the limitations of the distri-

butional approach in capturing the semantics of quantifiers (see also the results of our

exploratory study in Chapter 1).

In recent years, quantifiers have received renewed attention along with the explosion of

neural networks for language modeling (see Figure 2.1 for a schematic representation of

a Recurrent Neural Network (RNN) and a brief description of one of the most popular

architectures, namely Long-Short Term Memory (Hochreiter and Schmidhuber, 1997)).

These models have been applied, for example, to solve the tasks of Natural Language

Inference (Nangia et al., 2017; Ghaeini et al., 2018) and Question Answering (Andreas

et al., 2016), where quantifiers were among the cases used to evaluate the models in

those specific tasks. However, no previous work exploited these architectures to specif-

ically explore quantifiers and their semantic representation.

2.7 Modeling Quantities: Computer Vision

The first attempt to model quantification mechanisms from visual inputs dates back

to Dehaene and Changeux (1993). Using a forerunner neural network, this study showed

that approximate numerosity could be extracted from a visual input without serial count-

ing, bringing computational evidence to the psycholinguistic observation that infants

develop numerosity abilities before being able to count. More recently, Rajapakse et al.

(2005) used a similar network to reproduce the human use of quantifiers in grounded

contexts. The model was trained on human annotations of images consisting of white

and stripy fish (from Coventry et al. (2005)). Given an image, the model had to predict

which number of fish was stripy, using the given quantifiers. The authors showed that

both spacing and the number of objects played a role in the prediction. Crucially, both

these studies were carried out before the revolutionary advent of Convolutional Neural

Networks (CNNs)2, which gave rise to a new era in the field of Computer Vision (see

Figure 2.2 for a schematic representation of VGG-16 (Simonyan and Zisserman, 2014),

one of the most popular and successful CNNs for image feature extraction).

Exploiting CNNs, a number of works in Computer Vision have proposed specific ar-

2See LeCun et al. (2015) for a general but detailed overview on CNNs.
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Figure 2.2: Schematic representation of VGG-16 (Simonyan and Zisserman, 2014), one
of the most popular Convolutional Neural Networks (CNNs) for image feature extrac-
tion. CNNs are designed to process data that is structured in multiple arrays. This is the
case of color images, which are composed of three 2D arrays containing pixel intensi-
ties in the three RGB channels. Generally speaking, the architecture of a CNN includes
various types of layers: Convolutional layers followed by non-linear transformations
(e.g. ReLu), pooling layers, and fully-connected layers. Convolutional layers are used
to extract local features from the input image while preserving the spatial relationships
between pixels. The role of pooling layers, instead, is to merge semantically similar fea-
tures into one. Finally, fully-connected (FC) layers are Multi-Layer Perceptrons (MLPs)
whose units are connected to every unit in the subsequent layer. FCs encode high-level
features of the input image, such as information on the object class (e.g. ‘dog’). Indeed,
the final FC is typically used to perform object classification by means of a softmax ac-
tivation function. Note that VGG-16 includes 13 convolutional layers, 5 pooling layers,
and 3 FC layers followed by softmax. Image credits: abtosoftware.com

chitectures for counting digits (Seguı́ et al., 2015), people in the crowd (Zhang et al.,

2015a), or penguins (Arteta et al., 2016). With a more cognitive flavor, Chattopadhyay

et al. (2017) proposed a ‘divide-and-conquer’ strategy to split the image into subparts

and count the objects in each subpart by mimicking the subitizing mechanism (see sec-

tion 2.5). Inspired by the same cognitive ability is Zhang et al. (2015b), who trained

a CNN to detect and count the salient objects in the image. Except Suhr et al. (2017),

who built a dataset for visual reasoning to be evaluated against various types of quantity

expressions including existential quantifiers, however, these works exclusively focused

on exact numbers.

https://www.abtosoftware.com/blog/kitchen-furniture-appliances-recognition-in-photos
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Focused on the modeling of approximate quantities is Stoianov and Zorzi (2012), who

experimented with hierarchical generative models and showed their effectiveness in

learning ANS as a statistical property of synthetic images. Tested on the task of set

comparison (‘more/less’), their proposed networks were shown to obtain a remarkable

93% accuracy. As for quantifiers, to our knowledge no previous studies focused on

the learning of such expressions from visual scenes. Besides the studies reported in

this dissertation, two other works from our group3 tackled these issues. In particu-

lar, Sorodoc et al. (2016) proposed a model to assign the correct quantifier to synthetic

scenes of colored dots, whereas Sorodoc et al. (2018) operationalized the same task

in a Visual Question Answering (VQA) fashion, using real images and object-property

queries (e.g. ‘How many dogs are black?’). Overall, the results of these studies showed

that vague quantification can be learned by neural networks, though the performance is

much lower when using real images and complex queries. Moreover, in both studies,

quantifiers were simplistically operationalized in terms of ranges of proportions (as in

Chapter 5). In this thesis, I seek to overcome this issue by collecting (Chapter 4) and

modeling human data (Chapter 6).

3For an overview, see quantit-clic.github.io

https://quantit-clic.github.io
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Chapter 3

Quantifiers and Linguistic Contexts

In this chapter, I study the role of linguistic context in modulating the choice of quanti-

fiers. Tested in the task of predicting a missing quantifier from a local context (single-

sentence) and a global context (multi-sentence) condition, humans and state-of-the-art

computational models are shown to use different strategies: The former are boosted by

the information conveyed by the broader context, the latter are more effective in exploit-

ing local lexical-semantic cues. Overall, both humans and the models make ‘plausible’

errors, that is, they are almost always able to grasp the ‘magnitude’ of the missing quan-

tifier. This supports the idea that quantifiers are loosely ordered on a quantitative scale.

3.1 Introduction

Cloze deletion test (Oller, 1973) is a typical exercise which is used to evaluate a lan-

guage learner. In this task, a word is removed and learners must exploit their language

abilities to understand the context and the vocabulary in order to identify the correct

word. Since the comprehension of the missing word is boosted by the surrounding lin-

guistic context, the larger the linguistic context, the easier the test becomes. Indeed, it

has been recently shown that higher-ability test takers rely more on global information,

with lower-ability test takers focusing more on the local context, namely information

contained in the words immediately surrounding the gap (McCray and Brunfaut, 2018).

In this chapter, I exploit a cloze-test setting and explore the role of linguistic context in

predicting quantifiers (see Figure 3.1). Both human and model performance is evalu-

ated in a local (single-sentence) and a global context (multi-sentence) condition to study

21
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Figure 3.1: Given a target sentence st, or st with the preceding and following sentence,
the task is to predict the target quantifier replaced by <qnt>.

the role of context and assess the cognitive plausibility of the models. As discussed in

Chapter 2, quantifiers are of central importance in linguistic semantics and its inter-

face with cognitive science (Barwise and Cooper, 1981; Peters and Westerståhl, 2006;

Szymanik, 2016). Moreover, the choice of quantifier is known to depend both on local

context (e.g., positive and negative quantifiers license different patterns of anaphoric

reference) and global context (the degree of positivity/negativity is modulated by dis-

course specificity) (Paterson et al., 2009). Finally, and more generally, the ability of

predicting function words in the cloze test has been shown to represent a benchmark test

for human linguistic competence (Smith, 1971; Hill et al., 2016a).

Our conjecture is that human performance will be boosted by more context and that

this effect will be stronger for proportional quantifiers (e.g. ‘few’, ‘many’, ‘most’)

than for logical quantifiers (e.g. ‘none’, ‘some’, ‘all’) because the former are more

dependent on discourse context (Moxey and Sanford, 1993a; Solt, 2016). In contrast,

we expect models to be very effective in exploiting the local context (Hill et al., 2016a)

but to suffer with a broader context, due to their reported inability to handle longer

sequences (Paperno et al., 2016). Both hypotheses are confirmed. The best models

are very effective in the local context condition, where they significantly outperform

humans. Moreover, model performance declines with more context, whereas human

performance is boosted by the higher accuracy with proportional quantifiers like ‘many’

and ‘most’. Finally, best-performing models and humans are found to make similar

errors. In particular, they tend to confound quantifiers that denote a similar ‘magnitude’,

namely they confound e.g. ‘most with ‘many’, but not e.g. ‘few’ with ‘almost all’ (Bass

et al., 1974; Newstead and Collis, 1987).
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The contribution of this chapter is twofold. First, a new task and results for training

models to learn semantically-rich function words are presented.1 Second, the role of

linguistic context in both humans and the models is carefully analyzed, with implica-

tions for cognitive plausibility and future modeling work.

3.2 Related Work

Studies on the interplay between linguistic context and function words date back at least

to Smith (1971). In this study, it was claimed that (a) function words are easier to pre-

dict in a cloze test than content words and (b) larger context is beneficial for content

words but detrimental for function words. The main reason for (a) is that predicting

function words implies choosing among a limited number of options, whereas content

words have much many alternatives. Strictly related, the main reason for (b) is that

function words would depend more on clues that are immediately close to the deleted

word rather than on the ‘meaning’ of the broader context (Rankin and Thomas, 1980).

Though generally considered as belonging to the class of function words, quantifiers

display a somehow hybrid status. Indeed, they are semantically-rich expressions whose

meaning has been usually tied to some sort of quantitative information (Graves and

Hodge, 1943; Bass et al., 1974; Hammerton, 1976; Newstead and Collis, 1987). As

such, their choice has been shown to depend both on local and global context (Paterson

et al., 2009). For example, the presence of a local Polarity Item (PI) like ‘any’ (‘none

of them has any constraints’) restrict the choice only to those quantifiers that can li-

cense it (Krifka, 1995). Moreover, quantifiers like ‘few’ or ‘many’ are dependent on a

contextual norm (Partee, 2008; Solt, 2009), whose cardinality can be inferred from the

meaning of the (broader) surrounding context.

Computational models have been extensively tested on the cloze test. However, most

previous work (see, among others, Hermann et al. (2015); Onishi et al. (2016)) has

focused on content words and named entities, whereas there has been little interest in

modeling function words. A notable exception is represented by Hill et al. (2016a),

who evaluated a number of models in the task of predicting prepositions besides verbs,

nouns and named entitities. Crucial for our purposes, they showed that Long-Short Term

Memory (LSTM) models outperform humans in predicting prepositions (‘on’, ‘at’, etc.).

Moreover, adding context decreases their performance. Based on this evidence, the

1Data and code can be found at github.com/sandropezzelle/fill-in-the-quant

https://sandropezzelle.github.io/
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authors claimed that LSTM predictions are almost exclusively based on local contexts.

Similar conclusions can be drawn from recent work challenging computational models

with larger and more sophisticated language contexts (Paperno et al., 2016; Chu et al.,

2016). In these studies, state-of-the-art models were shown to fail in predicting words

that require understanding the broader context.

Focusing on quantifiers, a class of semantically-rich function words, we follow a sim-

ilar approach and test how the models’ and humans’ performance compare in the two

settings. To our knowledge, we are the first investigating the effect of linguistic context

in predicting these expressions.

3.3 Datasets

To test our hypotheses, we need linguistic contexts containing quantifiers. To ensure

similarity in the syntactic environment of the quantifiers, we focus on partitive uses:

where the quantifier is followed by the preposition ‘of’. To avoid any effect of inten-

sifiers like ‘very’ and ‘so’ and adverbs like ‘only’ and ‘incredibly’, we study only sen-

tences in which the quantifier occurs at the beginning (see Figure 3.1). We experiment

with a set of 9 quantifiers: ‘a few’, ‘all’, ‘almost all’, ‘few’, ‘many’, ‘more than half’,

‘most’, ‘none’, ‘some’. This set strikes the best trade-off between number of quantifiers

and their frequency in our source corpus, a large collection of written English including

around 3B tokens.2

We build two datasets. One dataset – 1-Sent – contains datapoints that only include

the sentence with the quantifier (the target sentence, st). The second – 3-Sent – con-

tains datapoints that are 3-sentence long: the target sentence (st) together with both the

preceding (sp) and following one (sf). To directly analyze the effect of the linguistic

context in the task, the target sentences are exactly the same in both settings. Indeed,

1-Sent is obtained by simply extracting all target sentences <st> from 3-Sent (<sp,

st, sf>).

The 3-Sent dataset is built as follows: (1) We split our source corpus into sentences

and select those starting with a ‘quantifier of’ construction. Around 391K sentences

of this type are found. (2) We tokenize the sentences and replace the quantifier at the

beginning of the sentence (the target quantifier) with the string <qnt>, to treat all

2A concatenation of BNC, ukWaC, and a 2009-dump of Wikipedia Baroni et al. (2014).
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type text quantifier
PIs <qnt> these stories have ever been substantiated. none of
contrast Q <qnt> the population died out, but a select few with the right kind of genetic instability. . . most of
list <qnt> their major research areas are social inequality, group dynamics, social change. . . some of
quantity <qnt> those polled (56%) said that they would be willing to pay for special events. . . more t. half of
support Q <qnt> you have found this to be the case - click here for some of customer comments. many of
lexicalized <qnt> the time, the interest rate is set on the lender’s terms. . . most of
syntax <qnt> these events was serious. none of
meaning <qnt> the original station buildings survive as they were used as a source of materials. . . none of

Table 3.1: Cues that might help human participants to predict the correct quantifier
(1-Sent).

target quantifiers as a single token. (3) We filter out sentences longer than 50 tokens

(less than 6% of the total), yielding around 369K sentences. (4) We select all cases for

which both the preceding and the following sentence are at most 50-tokens long. We

also ensure that the target quantifier does not occur again in the target sentence. (5) We

ensure that each datapoint <sp, st, sf> is unique. The distribution of target quantifiers

across the resulting 309K datapoints ranges from 1152 cases (‘more than half’) to 93801

cases (‘some’). To keep the dataset balanced, we randomly select 1150 points for each

quantifier, resulting in a dataset of 10350 datapoints. This was split into train (80%),

validation (10%), and test (10%) sets while keeping the balancing. Then, 1-Sent is

obtained by extracting the target sentences <st> from <sp, st, sf>.

3.4 Human Evaluation

3.4.1 Method

We ran two crowdsourced experiments, one per condition. In both, native English

speakers were asked to pick the correct quantifier to replace <qnt> after having care-

fully read and understood the surrounding linguistic context. When more than one

quantifier sounds correct, participants were instructed to choose the one they think best

for the context. To make the results of the two surveys directly comparable, the same

randomly-sampled 506 datapoints from the validation sets are used. To avoid biasing

responses, the 9 quantifiers were presented in alphabetical order. The surveys were car-

ried out via CrowdFlower.3 Each participant was allowed to judge up to 25 points. To

assess the judgments, 50 unambiguous cases per setting were manually selected by the

native-English author and used as a benchmark. Overall, we collected judgments from

3https://www.figure-eight.com/

https://www.figure-eight.com/
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Figure 3.2: Left: Distribution of annotated cues across correcly-guessed cases in
1-Sent (112 cases). Right: Distribution of cues across correctly-guessed cases in
3-Sent, but not in 1-Sent (74 cases).

205 annotators in 1-Sent (avg. 7.4 judgments/annotator) and from 116 in 3-Sent

(avg. 13.1). Accuracy is then computed by counting cases where at least 2 out of 3

annotators agree on the correct answer (i.e., inter-annotator agreement ≥ 0.67).

3.4.2 Linguistic Analysis

Overall, the task turns out to be easier in 3-Sent (131/506 correctly-guessed cases;

0.258 accuracy) compared to 1-Sent (112/506; 0.221 acc.). Broader linguistic context

is thus generally beneficial to the task. To gain a better understanding of the results, we

analyze the correctly-predicted cases and look for linguistic cues that might be helpful

for carrying out the task. Table 3.1 reports examples from 1-Sent for each cue.

By carefully looking into the sentences used for the experiment, we identify 8 main

types of cues and manually annotate the cases accordingly. Annotation is performed by

one of the authors by reading the target sentences several times and checking for the

presence of any of the following cues: (1) PIs: Polarity Items like ‘ever’, ‘never’, ‘any’

that are licensed by specific quantifiers (e.g., the sentence ‘*most of the students have

ever been here’ is ungrammatical; see Krifka (1995)); (2) Contrast Q: a contasting-

magnitude quantifier embedded in an adversative clause (e.g. ‘few of the Xs . . . but

most (of the) Ys’); (3) Support Q: a supporting-magnitude quantifier embedded in

a coordinate or subordinate clause (e.g. ‘some of Xs . . . and possibly many (of the)
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text quantifier
a number of examples of technophobic ideas can be found in multiple forms of art, ranging from literary
works such as ”Frankenstein” to classic films like ”Metropolis”. <qnt> these works portray the darker side
of technology as seen by the technophobic. As technologies become increasingly complex and difficult
to understand, people are more likely to harbor anxieties relating to their use of modern technologies.

many of

you have highlighted the fact that there is very limited business experience within the teaching profession.
<qnt> us have experienced industry over an extensive period. Apprenticeships in Germany and in other
places are linked very tightly with the business community.

few of

the weather goes smoothly over the points of union betwixt the twin summers. <qnt> the storms are
very loud or variable. The average temperature during the day, in December, was about sixty-five degrees
in the shade, but on one day a little damp snow fell.

few of

by 1995 there were 120 of them, receiving tuition in: fiddle bagpipes drums tin whistle keyboard guitar voice
drama at enrolment, each young person is offered the choice of tuition on up to three different instruments.
<qnt> them choose an instrument they already play for their first choice and the tutors look to see a
significant improvement in their proficiency at the end of the week. Tutors, however, also actively
encourage the children to try something new.

most of

Table 3.2: Examples of cases that are correctly guessed in 3-Sent (but not in
1-Sent). Linguistic context that appears to be particularly helpful to retrieve the cor-
rect quantifier is in bold.

Ys’); (4) Quantity: explicit quantitative information (numbers, percentages, fractions,

etc.) immediately following the quantifier (e.g. ‘few of the Xs (around 10%)’); (5)

Lexicalized: lexicalized patterns like ‘most of the time’; (6) List: the text immediately

following the quantifier is a list introduced by verbs like ‘are’ or ‘include’ comprising at

least 3 elements; (7) Syntax: morpho-syntactic cues, e.g. agreement (e.g. ‘none of Xs

. . . was happy’); (8) Meaning: the quantifier can only be guessed by understanding and

reasoning about the context. It is worth mentioning that (8) is assigned by the annotator

only if none of the cues from (1) to (7) are found.

Figure 3.2 (left) depicts the distribution of annotated cues in correctly-guessed cases of

1-Sent. Around 44% of these cases include cues besides meaning, suggesting that

almost half of the cases can be possibly guessed by means of lexical factors such as

PIs, quantity information, etc. As seen in Figure 3.2 (right), the role played by the

meaning becomes much higher in 3-Sent. Of the 74 cases that are correctly guessed

in 3-Sent, but not in 1-Sent, more than 3 out of 4 do not display cues other than

meaning. In the absence of lexical cues at the sentence level, the surrounding context

thus plays a crucial role, as reported in Table 3.2. By looking at these examples, it is

clear that the presence of the preceding and following sentence makes the task more

feasible compared to the presence of the target sentence only. This role is particularly

accentuated in quantifiers like ‘many’, ‘almost all’, and ‘most’, where correctly-guessed

cases annotated as relying on semantic information only represent 100%, 100%, and

85% cases, respectively.
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3.5 Models

We test several models, that we briefly describe below. All models except FastText

are implemented in Keras and use ReLu as activation function; they are trained for 50

epochs with categorical crossentropy, initialized with frozen 300-d word2vec embed-

dings (Mikolov et al., 2013) pretrained on GoogleNews.4 A thorough ablation study

is carried out for each model to find the best configuration of parameters.5 The best

configuration is chosen based on the lowest validation loss.

BoW-conc A bag-of-words (BoW) architecture which encodes a text as the concate-

nation of the embeddings for each token. This representation is reduced by a hidden

layer before softmax.

BoW-sum Same as above, but the text is encoded as the sum of the embeddings.

FastText Simple network for text classification that has been shown to obtain perfor-

mance comparable to deep learning models (Joulin et al., 2016). FastText represents

text as a hidden variable obtained by means of a BoW representation.

CNN Simple Convolutional Neural Network (CNN) for text classification.6 It has

two convolutional layers (Conv1D) each followed by MaxPooling. A dense layer

precedes softmax.

LSTM Standard Long-Short Term Memory network (LSTM) (Hochreiter and Schmid-

huber, 1997). Variable-length sequences are padded with zeros to be as long as the max-

imum sequence in the dataset. To avoid taking into account cells padded with zero, the

‘mask zero’ option is used.

4Available here: http://bit.ly/1VxNC9t
5We experiment with all possible combinations obtained by varying (a) optimizer: adagrad, adam,

nadam; (b) hidden layers: 64 or 128 units; (c) dropout: 0.25, 0.5, 0.75.
6Adapted from: http://bit.ly/2sFgOE1

https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
http://bit.ly/2sFgOE1
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1-Sent 3-Sent
val test val test

chance 0.111 0.111 0.111 0.111
BoW-conc 0.270 0.238 0.224 0.207
BoW-sum 0.308 0.290 0.267 0.245
fastText 0.305 0.271 0.297 0.245
CNN 0.310 0.304 0.298 0.257
LSTM 0.315 0.310 0.277 0.253
bi-LSTM 0.341 0.337 0.279 0.265
Att-LSTM 0.319 0.324 0.287 0.291
AttCon-LSTM 0.343 0.319 0.274 0.288
Humans 0.221* —— 0.258* ——

Table 3.3: Accuracy of models and humans. Values in bold are the highest in the
column. *Note that due to an imperfect balancing of data, chance level for humans
(computed as majority class) is 0.124.

bi-LSTM The Bidirectional LSTM (Schuster and Paliwal, 1997) combines informa-

tion from past and future states by duplicating the first recurrent layer and then combin-

ing the two hidden states. As above, padding and mask zero are used.

Att-LSTM LSTM augmented with an attention mechanism (Raffel and Ellis, 2016).

A feed-forward neural network computes an importance weight for each hidden state of

the LSTM; the weighted sum of the hidden states according to those weights is then fed

into the final classifier.

AttCon-LSTM LSTM augmented with an attention mechanism using a learned con-

text vector (Yang et al., 2016). LSTM states are weighted by cosine similarity to the

context vector.

3.6 Results

Table 3.3 reports the accuracy of all models and humans in both conditions. We have

three main results. (1) Broader context helps humans to perform the task, but hurts

model performance. This can be seen by comparing the 4-point increase of human

accuracy from 1-Sent (0.22) to 3-Sent (0.26) with the generally worse perfor-

mance of all models (e.g. AttCon-LSTM, from 0.34 to 0.27 in val). (2) All mod-

els are significantly better than humans in performing the task at the sentence level
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Figure 3.3: Human vs AttCon-LSTM accuracy (val) across quantifiers, loosely or-
dered by magnitude.

(1-Sent), whereas their performance is only slightly better than humans’ in 3-Sent.

AttCon-LSTM, which is the best model in the former setting, achieves a significantly

higher accuracy than humans’ (0.34 vs 0.22). By contrast, in 3-Sent, the performance

of the best model is closer to that of humans (0.29 of Att-LSTM vs 0.26). It can be

seen that LSTMs are overall the best-performing architectures, with CNN showing some

potential in the handling of longer sequences (3-Sent). (3) As depicted in Figure 3.3,

quantifiers that are easy/hard for humans are not necessarily easy/hard for the models.

Compare ‘few’, ‘a few’, ‘more than half’, ‘some’, and ‘most’: while the first three are

generally hard for humans but predictable by the models, the last two show the opposite

pattern. Moreover, quantifiers that are guessed by humans to a larger extent in 3-Sent

compared to 1-Sent, thus profiting from the broader linguistic context, do not experi-

ence the same boost with models. Human accuracy improves notably for ‘few’, ‘a few’,

‘many’, and ‘most’, while model performance on the same quantifiers does not.

To check whether humans and the models make similar errors, we look into the distribu-

tion of responses in 3-Sent (val), which is the most comparable setting with respect

to accuracy. Table 3.4 reports responses by humans (top) and AttCon-LSTM (bot-

tom). Human errors generally involve quantifiers that display a similar magnitude as

the correct one. To illustrate, ‘some’ is chosen in place of ‘a few’, and ‘most’ in place
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none 19 1 2 0 2 0 0 0 12
few 5 9 2 6 5 0 3 0 2
a few 0 0 7 17 9 0 4 0 4
some 0 0 3 14 5 0 4 0 3
many 0 1 0 3 18 0 3 0 7
more than half 0 0 0 2 2 11 10 4 2
most 0 0 0 1 7 0 23 4 8
almost all 0 1 0 3 2 1 7 2 6
all 0 0 2 1 5 0 4 3 28
none 39 15 13 10 0 20 5 3 10
few 3 48 18 7 9 20 5 1 4
a few 7 13 31 18 5 15 12 8 6
some 5 18 16 17 16 19 9 5 10
many 2 18 18 15 20 17 10 6 9
more than half 2 7 2 3 10 82 2 1 6
most 8 14 14 12 12 26 15 5 9
almost all 5 9 15 10 8 37 15 6 10
all 7 12 10 15 21 13 7 4 26

Table 3.4: Responses by humans (top) and AttCon-LSTM (bottom) in 3-Sent (val).
Values in bold are the highest in the row.

of either ‘almost all’ or ‘more than half’. A similar pattern is observed in the model’s

predictions, though we note a bias toward ‘more than half’. Zooming into human re-

sponses, an interesting, bucking case is represented by the frequent choice of ‘all’ in

place of ‘none’ (but never vice versa). On the one hand, this pattern seems to suggest an

interchangeability of the quantifiers at the extremes of the quantifier scale, possibly due

to their less context-dependent status in the absence of clear morpho-syntactic cues. On

the other hand, the direction of the effect indicates that, when in doubt, the ‘positive’

interpretation is always preferred by speakers.

One last question concerns the types of linguistic cues exploited by the model (see sec-

tion 3.4.2). We consider those cases which are correctly guessed by both humans and

AttCon-LSTM in each setting and analyze the distribution of annotated cues. Though

limited to a subset of datapoints, such analysis should be indicative of the overall be-

havior of the model: if the model genuinely understands the meaning of the text and

mostly capitalizes on semantic information, we should consequently observe a higher

number of cases that are annotated as containing only semantic information. In con-

trast, if the model learns associations between a quantifier and specific lexical items

or morpho-syntactic patterns, we should observe a higher number of correct responses

within datapoints displaying these cues.

Figure 3.4 (left) depicts the distribution of cues among the 44 cases that are correctly

predicted by both speakers and the model in 1-Sent. As can be observed, half of the
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Figure 3.4: Left: Distribution of cues exploited by AttCon-LSTM across cases
correctly-guessed by speakers in 1-Sent (44 cases). Right: Distribution of cues across
cases correctly-guessed by speakers in 3-Sent (39 cases).

cases contain lexical or morpho-syntactic cues. That is, they might be guessed by effec-

tively learning associations in the linguistic data. Zooming into these cases, it is worth

mentioning that 83% and 80% cases of correctly-guessed ‘none’ and ‘few’, respectively,

are annotated as containing cues other than meaning. A similar distribution can be ob-

served in the rightmost panel reporting the 39 cases guessed by both humans and the

model in 3-Sent, where the non-semantic cues represent 41% cases. Though higher

than in 1-Sent, the number of cases that cannot guessed by exploiting cues other than

meaning is still relatively low, especially when compared to the distribution oberved

in speakers’ responses (rightmost panel of Figure 3.2). Such analysis suggests that the

model capitalizes more on lexical, morpho-syntactic information rather than exploiting

the meaning of the context, either local or global. Since this observation is in contrast

with that reported for human performance, that is observed to be significantly boosted

by the meaning conveyed by the broader context, we conjecture this to be the main dif-

ference between speakers and humans. In the absence of lexical or morpho-syntactic

cues, speakers use semantic information conveyed by the global context, whereas mod-

els employ this strategy to a much lesser extent.
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3.7 Discussion

3.7.1 Context Dependence

In this chapter, I explored the role of linguistic context in predicting quantifiers. I

showed that, for humans, the task becomes easier when a broader context is given. For

the best-performing LSTMs, broader context hurts performance. This pattern mirrors

evidence that predictions by these models are mainly based on local contexts, in line

with Hill et al. (2016a). Corroborating our hypotheses, proportional quantifiers (‘few’,

‘many’, ‘most’) were found to be predicted by humans to a significantly higher accuracy

when the broader context was provided, whereas logical quantifiers (‘all’, ‘none’) did

not experience a similar boost. This finding supports the claim that proportional quan-

tifiers are more context-dependent than are logical ones (Moxey and Sanford, 1993a;

Solt, 2016).

It is worth mentioning that, overall, the accuracy in the task was found to be extremely

low, both for humans and the models. This result could be due to several reasons,

such as the difficulty of the dataset and/or the inherent overlapping use of the quantifiers

employed in the study. To better investigate the former issue, the same experiment could

be replicated by using linguistic contexts coming from different sources. To explore the

latter, one possibility could be to experiment with a smaller and perhaps less overlapping

set of quantifiers. Intuitively, the availability of less alternatives might make the task

easier.

3.7.2 Mental Scale

Interestingly, humans revealed to be almost always able to grasp the ‘magnitude’ of the

missing quantifier, even when picking up the ‘wrong’ one. This finding, on the one

hand, is consistent with the well-reported overlapping meaning and use of these expres-

sions (Moxey and Sanford, 1993a). On the other hand, it provides indirect evidence to

the existence of a mental, ordered scale of quantifiers, an issue that has been largely de-

bated in literature (Holyoak and Glass, 1978; Routh, 1994; Moxey and Sanford, 2000).

It is worth mentioning, however, that such a scale appears rather coarse, with speak-

ers often confounding quantifiers with similar magnitudes (e.g ‘a few’ with ‘some’ and

‘almost all’ with ‘all’). Moreover, differently from Moxey and Sanford (1993a), in our
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task the whole list of alternatives was always provided to people.

In the next chapter, I explore the nature and the characteristics of the mental scale of

quantifiers by means of two behavioral experiments.



Chapter 4

Probing the Quantifier Scale:
Two Behavioral Studies

In this chapter, I study the mental representation of non-numerical quantifiers by com-

paring their use in abstract and in grounded perceptual contexts. Using an approach

similar to that used in the number domain, I test whether (and to what extent) such

representation is constrained by the way we perceive the world through our senses. In

two experiments, participants are asked to either judge the similarity of quantifier pairs

(presented as written words) or chose among a predetermined list of quantifiers the one

that best described a visual image depicting a variable number of target and non-target

items. The results are rather consistent across experiments, and indicate that quanti-

fiers are mentally organized on an ordered but non-linear compressed scale where the

quantifiers that imply small quantities appear more precisely differentiated across each

other compared to those implying large quantities. This fits nicely with the idea that we

construct our representations of such symbols mainly by mapping them to the represen-

tations of quantities that we derive from perception.

4.1 Introduction

One of the common goals of linguists and cognitive scientists is to uncover and formally

characterize how linguistic symbols are mentally represented. In this chapter, I tackle

this issue by focusing on quantifiers, a class of words that had long been considered

35
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as particularly intriguing especially by linguists due to their peculiar properties (see

Chapter 2).

First, from a formal semantic perspective they are conceived as non-referential (Mon-

tague, 1973; Barwise and Cooper, 1981; Westerståhl, 1985; van Benthem, 1986; Keenan

and Stavi, 1986; Szabolcsi, 2010): Differently from many other words, quantifiers do

not denote objects, but instead relations between sets of objects. Second, quantifiers

are widely affected by the linguistic context of use. This particularly holds for some

quantifiers, like ‘few’ and ‘many’, which have therefore been proposed to be non-

extensional (Keenan and Stavi, 1986; Westerståhl, 1985): The two sentences ‘Many

doctors attended the meeting this year’ and ‘Many lawyers attended the meeting this

year’ (even assuming that the doctors and lawyers attending the respective meetings are

equal in number) might have different truth values depending on the number of doctors

and lawyers who used to attend the meeting. Third, from a pragmatic perspective it has

been shown how the different degree of information or logical strength of the quantifiers

(that ‘some’ is less informative than ‘all’) affects the implicit information that people

infer from an utterance (Horn, 1984). For example, listening to the sentence ‘Some

students were satisfied with the marks’ a hearer would infer that ‘Not all the students

were satisifed’. Fourth, quantifiers cannot be simplistically considered as words that

stand for amounts, numbers, proportions (Moxey and Sanford, 1993b, 2000; Paterson

et al., 2009; Nouwen, 2010). Even when expressing approximately the same quantity

(e.g. ‘few’ and ‘a few’), quantifiers differ from each other with respect to the perspec-

tive they give to this quantity, by bringing the hearer to focus on either the target set (‘a

few’) or the non-target set (‘few’). For instance, ‘few of these cars break down’ is likely

to bring the hearer’s attention to the vast majority of cars that do not break down. ‘A few

of these cars break down’, instead, is more likely to bring the attention to the cars that do

break. This difference in the focus influences the hearer’s behavior in a positive/negative

way (Moxey and Sanford, 2000; Paterson et al., 2009). Consequently, quantifiers have

been described in terms of probability distributions over scales (Moxey and Sanford,

1993b; Yildirim et al., 2013; Schöller and Franke, 2017). Finally, the variability of

quantifiers across conditions, together with their rather elusive status with respect to

the traditional linguistic classifications, have brought some researchers to take the ex-

treme stance that devising a general semantics for these expressions might not even be

possible (Nouwen, 2010).

Although a long tradition of studies convincingly proved that numerical information,

such as the mechanisms of quantity estimation and comparison, is fundamental in the
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comprehension of quantifiers (Heim et al., 2012; Shikhare et al., 2015; Deschamps et al.,

2015),1 cognitive science has not been successful at characterizing how humans men-

tally represent quantifiers. Historically, even if there has been a shared intuitive as-

sumption that quantifiers might be internally represented on an ordered scale (which

some conceived as governed by absolute quantities, e.g. Newstead et al. (1987), and

other by proportions, e.g. Graves and Hodge (1943); Hammerton (1976)), there has

been little attempt at formally trying to capture the features of such scale in a quantita-

tive manner. One approach has been to investigate the conditions of the external world

that trigger the use of the different quantifiers: Subjects, presented with sets of a var-

ious number of target and non-target (visual) items, are asked either to pick, among a

predetermined list, the quantifier that best fits the scene or to rate the appropriateness

of a list of scene-quantifier associations. Studies of this sort are only very few, and

they are hard to compare as they each investigate different sets of quantifiers, as well

as slightly different aspects of the stimuli (some analyze the effect of the number of

targets, e.g. Newstead and Coventry (2000), some the number of both targets and non-

targets, e.g. Coventry et al. (2005, 2010), some the proportion of targets in the scene,

e.g. Oaksford et al. (2002), often taking into account perceptual factors like the size

of the items, their spatial arrangements or their category, e.g. Newstead and Coventry

(2000); Coventry et al. (2010)), though without investigating the potential interactions

across all the possible variables. Moreover, the experimental design of all these studies

lacks cases where the various effects can be disentangled, for example visual scenes

with a small number of targets corresponding to a high proportion (e.g., 3 targets out of

4 total objects).

Although with some inconsistencies, the results of these studies overall suggest that

quantifiers are evaluated by taking into account the number of both targets and non-

targets such that, given a fixed number of non-targets, scenarios with increasing tar-

gets are associated with quantifiers implying ‘larger’ quantities. A notable exception

is that, when the targets are very few, the number of non-targets seems not to play a

role (Coventry et al., 2005). This indirectly suggests that quantifiers might be repre-

sented on an internal scale based on proportions which behaves somewhat differently

for small sets. What these studies lack, however, is a quantitative characterization of the

laws subtending the relation between quantifiers and perceptual stimulation and thus a

1These works typically employ a verification task: Given a scene depicting a variable proportion of
target and non-target dots and a sentence embedding a quantified expression, participants are asked to
quickly verify the semantic truth value of the sentence. What these studies showed is that errors and
reaction times are typically affected by perceptual difficulty in observance to Weber’s law.
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thorough description of the internal scale.

Another complementary approach that psychologists have used to infer the structure of

mental representations is that of directly asking subjects to compare words pairwise and

to rate, on a given scale, their semantic similarity in a purely linguistic context (with

no direct relation to concrete objects/sets). This way, the potential confounds due to the

constraints imposed by perception are eliminated. In this approach, the analysis of the

global pattern of rated distances across words can then be used to reconstruct the in-

ternal geometry of the representational space of those words (using Multi-Dimensional

Scaling, e.g. Arnold (1971); Steyvers et al. (2004)). To our knowledge, this approach

has been applied to the domain of quantifiers only by Holyoak and Glass (1978), who

experimented with a set of five items. Studies of this sort would be crucial for comple-

menting the studies that explore quantifiers in grounded conditions. In particular, the

comparison across the grounded and abstract use of quantifiers is useful to approach the

question of to what extent the mental representations of quantifiers (and, more gener-

ally, of symbols) are, or are not, constrained by the way we perceptually elaborate the

objects or objects features to which the symbols are typically used to refer to.

While the abstract view of semantics predicts that symbols are mainly organized ac-

cording to purely linguistic variables (frequency of use, frequency of association in the

lexicon, antinomy, etc.), the grounded cognition view predicts that symbols are men-

tally represented in a way that at least partially reflects (or is isomorphic to) the way we

perceive the world through our senses. This should be reflected both in how subjects

use quantifiers to describe perceptual scenes, and in purely abstract contexts when they

evaluate quantifiers among each other. This approach has been taken for example in the

number domain, where several pieces of data indicate that the internal representation

of number symbols (words or Arabic digits, denoting cardinals) appears as governed

by the same representational constraints that govern the perception of numerosities in

concrete sets, namely on an internal scale which appears overall logarithmically com-

pressed (see Piazza and Eger (2016), for a recent review). This is the case both when

number symbols are compared among each other and when they are used to describe

perceptual scenes (e.g. Izard and Dehaene (2008)).

The aim of this chapter is to export this approach to study the mental space of quanti-

fiers, its main dimensions, and its internal geometry, and to contrast the predictions from

the abstract cognition and the grounded cognition comparing grounded-perceptual and

abstract tasks: Using a common list of quantifiers and two large groups of subjects, one
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experiment investigates quantifiers in grounded conditions, asking subjects to describe

visual scenes choosing the most appropriate quantifier (Experiment 1), and the other in-

vestigates quantifiers in a purely linguistic context, asking subjects to rate the similarity

among quantifier word pairs (Experiment 2).

4.2 Methods

Two experiments were administered to native-Italian participants and employed the

same set of 9 Italian quantifiers. The quantifiers used were nessuno (‘none’), quasi nes-

suno (‘almost none’), la minor parte (‘the smaller part’), pochi (‘few’), alcuni (‘some’),

molti (‘many’), la maggior parte (‘most’), quasi tutti (‘almost all’), tutti (‘all’). For sake

of clarity, English translations will be used from now on throughout the chapter. The

selection of the quantifiers was aimed at experimenting with a fairly comprehensive set,

including logical-Aristotelian (‘none’, ‘some’, ‘all’), proportional (‘the smaller part’,

‘most’), and a range of other common quantifiers (‘few’, ‘many’, ‘almost none’, ‘al-

most all’). Moreover, an equal number of low-magnitude (‘none’, ‘almost none’, ‘few’,

‘the smaller part’) and high-magnitude quantifiers (‘many’, ‘most’, ‘almost all’, ‘all’)

was ensured. Note that we did not consider ‘some’ as belonging a priori to one or the

other group.

4.2.1 Grounded Task: Quantifiers Used in Perception

Thirty native-Italian participants (21 females, 9 males) with normal or corrected-to-

normal vision carried out the task of evaluating 340 synthetic visual scenes containing

two categories of objects: Animals and artifacts. The total number of objects in the

scene ranged from 3 to 20 (see section 4.2.1 for a detailed description of the visual stim-

uli), and the number of items in each of the two categories varied from 0 to 20. The

experiment was implemented in Matlab using the Psychtoolbox-3 package. All partici-

pants performed the experiment in a quiet, dimly lit room at the CIMeC Psychophysic

lab (Rovereto, Italy) using the same desktop computer, same monitor (size 23.6’, reso-

lution 1920x1080 pixels), and same mouse, and sitting at a distance of approximately

50cm from the screen. Eighteen participants requested and obtained university credits

for their participation.
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Figure 4.1: Schematic representation of the experiment. After a fixation cross of 500ms,
a trial is presented for 1, 000ms. Then the participant is asked to click on the quantifier
that better describes the scene.

Before starting, two instruction pages describing the task were displayed. Participants

were asked to be as accurate and fast as possible. The task consisted of attending the

visual scene and to select the quantifier which better answered the question: ‘How many

of the objects are animals?’. Particular focus was put on the fact that the quantifier had

to be chosen always with respect to the set of animals (target set). This choice was

aimed at diminishing the chance of errors merely due to wrong associations between

the question and the target set. By fixing the set of animals as the target set, in fact,

participants should be more focused on the quantification task per se. Importantly, the

9 quantifiers were never presented in any kind of order during the instructions.

After reading the instructions and having clarified any possible doubt with the exper-

imenter, a training session was provided to get familiar with the task. The training

session comprised of 5 trials which were not included in the 340 test stimuli. The pro-

cedure was the same as the test session (see Figure 4.1 for a schematic representation of

the experiment): A white fixation cross was presented for 500ms in the center of a grey

background screen; afterwards, a visual scene was displayed for 1, 000ms followed by

the 9 quantifiers presented in a 3*3-cell grid centered in the middle of the screen. The



4.2. Methods 41

cells were well-spaced to prevent unwanted clicks, and highlighted by a darker shade of

grey. Importantly, quantifiers were presented at each trial in a randomized position to

avoid any familiarization effects. The task was to click on the chosen quantifier in the

shortest possible time. After the response, a fixation cross appeared for 500ms followed

by the next stimulus. After the first 5 training trials, a display was presented offering

the possibility to train for extra 5 trials, different from the previous ones and also not

included in the test set. Participants were asked to choose between training more or

moving to the test session.

Before starting the test session, an instruction page was presented to specify that the

experiment comprised of 10 blocks of 34 stimuli each. Subjects were reminded of the

task. After left-clicking the mouse, participants started the first block of the experiment.

At the end of each block, participants were allowed to take a self-paced pause. On

each trial we recorded the chosen quantifier, its position on the grid, and the time taken

to give the response. For each trial we also recorded a number of perceptual features

describing the visual scene, such as the cardinality of animals and artifacts, their size

(small, medium, large), and the ratio between animals and artifacts.

Responses by all participants were retained. 15 participants were in the age range 18-23,

11 in the range 24-29, 4 in the range 30-36. Seventeen requested and obtained university

credits for their participation.

Materials

The visual scenes used in the experiment consisted in multiple colored pictures of an-

imals (hence, targets) and artifacts (hence, non-targets) displayed on the top of a grey

background (see Figure 4.2). Scenes differed on the total number of items displayed,

that could vary from 3 to 20. Across scenes, the number of targets and non-targets var-

ied such that different targets:non-targets ratios were equally represented. Crucially,

each ratio corresponded to a fixed proportion of targets with respect to the total number

of objects (i.e., targets+non-targets) in the scene. For example, ratio 1:3 corresponded

to 25% of targets (see Figure 4.2). We used 17 ratios, each presented 20 times during

the experiment, out of which 8 were ‘positive’ (targets > 50%), 8 ‘negative’ (targets <

50%) and 1 ‘parity’ (targets = 50%). Because each ratio could be generated by differ-

ent combinations of cardinalities (e.g., ratio 1:4 could result from the combination of 1

target and 4 non-targets, as well as 2 targets and 8 non-targets, etc.), for each ratio we
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Figure 4.2: One visual scene used in the experiment, representing a targets:non-targets
ratio of 1:3 (i.e. 25% of total items are targets).

presented all possible combinations of cardinalities. For any possible combination, a

fixed number of visual scenes was built.

Visual scenes were generated with an inhouse Matlab script using the following pipeline:

Two pictures, one depicting a target (e.g. an instance of a hedgehog) and one depicting

a non-target (e.g. an istance of a basketball) were randomly chosen from a sample of

the database by Kiani et al. (2007) including 100 instances of targets and 145 instances

of non-targets. The sample was previously obtained by manually selecting pictures de-

picting whole items (not just parts) and whose color, orientation, and shape were not

deceptive (for example, we discarded pictures depicting butterfly-shaped pasta as their

target/non-target categorization could have been problematic). The target and the non-

target pictures were randomly inserted by the script onto a 5*5-cell virtual grid. In order

to inject some variability, each picture was randomly assigned to one orientation on the

vertical axis (right or left) and one size (large, medium, small size, corresponding to ap-

proximately 5.3◦, 3.4◦, and 2.3◦ of visual angle). None of the scenes contained objects

that were all the same size. As for the orientation, its effect is less measurable since

it depends on the visual properties of the object (see, e.g., the different effects on the

hedgehog and the basketball in Figure 4.2). However, this is not an issue since we are

not interested in formally investigating the role of object orientation in the task. In total,

340 visual scenes were included in the experiment, together with additional 10 trials for

training.
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4.2.2 Abstract Task: Semantic Similarity Judgements

Thirty-three native-Italian participants (10 males, 22 females, 1 n.d.) completed this

task. In an online survey powered by Google Forms, they were presented with pairs of

quantifiers (e.g., ‘almost none’ and ‘none’), and asked to rate their semantic similarity

using a 7-point Likert-like scale, where 1 meant ‘highly dissimilar’ and 7 ‘highly simi-

lar’. Before starting the task, participants were presented with an instruction page where

the terminology was briefly explained and the task exemplified. They were instructed

that, in cases of difficulties in assessing the degree of semantic similarity between two

quantifiers, they could adopt the strategy of mentally placing them into a default sen-

tence (e.g., ‘Few/Many students have had high marks”), and judging the semantic sim-

ilarity of the two resulting sentences. In order not to bias participants, only two trivial

examples were provided in the instructions, namely ‘all-none’=1, and ‘some-some’=7.

Moreover, given the constrained number of combinations, i.e. 9*9=81, no trial items

were included. Each participant was asked to judge all 81 possible combinations in a

randomized order of presentation. Each quantifier pair was rated twice by each partici-

pant, once in one order (i.e. ‘all-none’) and once in the opposite order (i.e. ‘none-all’).

To avoid any priming or repetition bias, we ensured that the two versions of the same

pair never occurred in a row. Even though no time limits were set, participants were

asked to provide their judgements as accurately as possible in the shortest possible time.

One participant’s responses were discarded due to the repeated choice of the judgement

1 (i.e. ‘highly dissimilar’) in 55 out of 81 cases (68%). Responses by thirty-two par-

ticipants (9 males, 22 females, 1 n.d.) were retained. 13 participants were in the age

range 18-23, 14 in the range 24-29, 3 in the range 30-36, 2 in the range 37-42. Fifteen

requested and obtained university credits for their participation.

4.3 Analysis and Results

4.3.1 Grounded Task: Quantifiers Used in Perception

All 30 participants successfully completed the experiment and provided each 340 re-

sponses. In total, 10, 200 datapoints were collected. To ensure the quality of the re-

sponses, we removed those datapoints for which the reaction times exceeded the aver-

age of 2.5 SD. We did not perform any other filtering of the data. In total, 257 responses
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quantifier (a) resp (b) % targ (c) n targ (d) n non-targ (e) n total
none 604 0.01 (0.09) 0.13 (1.01) 11.35 (5.04) 11.48 (4.93)
almost none 861 0.19 (0.13) 1.69 (1.95) 7.81 (4.67) 9.45 (5.12)
few 1241 0.26 (0.13) 2.92 (1.58) 9.63 (4.96) 12.55 (5.40)
the smaller part 1135 0.32 (0.13) 3.79 (2.01) 8.99 (4.56) 12.78 (5.26)
some 1396 0.44 (0.13) 4.97 (2.30) 6.82 (3.66) 11.79 (4.79)
many 770 0.64 (0.14) 8.75 (3.76) 4.89 (2.66) 13.65 (4.53)
most 2110 0.69 (0.13) 8.82 (4.21) 3.90 (2.30) 12.72 (5.03)
almost all 1222 0.80 (0.12) 9.38 (5.08) 2.24 (2.00) 11.62 (5.68)
all 604 0.99 (0.09) 11.31 (5.04) 0.15 (1.13) 11.47 (4.99)

Table 4.1: Descriptive statistics. Columns are sorted with respect to ascending propor-
tion of targets (b), which also corresponds to ascending cardinality of targets (c). Values
in brackets refer to SD.

were discarded, equal to 2.52% of total. All statistical analyses were performed in the

R environment on the resulting sample. For each quantifier, in Table 4.1 we report the

following descriptive statistics: (a) The total number of responses assigned, (b) the aver-

age proportion of targets out of total number of items, (c) the average number of targets,

(d) the average number of non-targets, (e) the average total number of items. Note that

quantifiers are sorted according to ascending (b), which also corresponds to ascending

(c).

As can be seen in the table, ‘most’ is the most used quantifier with 2, 110 responses.

Low-magnitude quantifiers (‘none’, ‘almost none’, ‘few’, ‘the smaller part’) are used

3, 841 times (38.6%), high-magnitude quantifiers (‘all’, ‘almost all’, ‘many’, ‘most’)

4, 706 times (47.3%). As far as both the proportion and the cardinality of targets are

concerned, the quantifiers turn out to be ordered on the following scale: ‘none’, ‘almost

none’, ‘few’, ‘the smaller part’, ‘some’, ‘many’, ‘most’, ‘almost all’, ‘all’. By looking

at the proportions defining each quantifier, an almost perfect mirroring can be observed

between ‘none-all’ (∼ 0%-100%), ‘almost none-almost all’ (∼ 20%-80%), ‘the smaller

part-most‘ (∼ 30%-70%). Such a pattern can be better observed in Figure 4.3, which

shows the frequency distribution of responses across proportions of targets. As can

be seen, the quantifiers involved in these pairs have similar ‘peaks’ and distributions,

though different frequencies.

In order to explore the role of cardinality of the target items in the scene, we separated

the trials where the target items fell within the range of extremely well enumerable

cardinalities (i.e. the so called ‘subitizing’ range, corresponding to scenes containing

up to 3 animals) from those containing more than 3 items. The distribution of responses
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Figure 4.3: Density plot reporting the frequency distribution of responses for the 9
quantifiers (y-axis) against the proportion of targets in the scene (x-axis).

can be observed in Figure 4.4, which reports quantifiers frequency for scenes within the

subitizing range (leftmost panel) and exceeding the subitizing range (rightmost panel).

It should be noted that while in the former the whole range of quantifiers is used (though

‘many’ has an extremely low frequency), in the latter both ‘none’ and ‘almost none’

disappear, with an increasing use of quantifiers like ‘most’ and ‘many’. It is worth

mentioning that the choice of setting the subitizing threshold to 3 was aimed at making

our results directly comparable to those reported by Coventry et al. (2005, 2010), who

experimented with such setting.

Figure 4.4: Density plots reporting frequency distribution of responses against propor-
tion of targets for scenes whose number of targets is within the subitizing range (left)
and exceeding it (right).
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quantifier AIC scores
(a) % targ (b) n targ (c) n non-targ (d) sub/non-sub (e) targ size (f) non-targ size

none 613.03 756.31 3474.44 3113.78 – 3913.39
almost none 4353.51 4230.42 5591.74 4292.00 4686.18 5633.89
few 5492.00 6015.22 6486.62 6428.88 6987.15 7018.23
the smaller part 5241.33 5938.05 6109.82 6605.17 6540.34 6451.78
some 5811.28 6864.85 7342.64 7792.71 7608.18 7461.32
many 4273.67 4520.02 4834.66 4600.70 4909.47 5062.78
most 6755.09 8402.49 8741.28 8748.20 9330.23 9604.31
almost all 5079.70 6355.7 5692.78 6545.65 6762.34 6075.14
all 482.37 3323.29 732.50 3672.75 3568.47 –

Table 4.2: AIC scores for each of the models. Bold values (lowest) correspond to best
models. Empty cells indicate cases for which the number of datapoints was too low to
perform statistical analyses.

To more formally investigate which factors contribute in determining quantifiers mean-

ing in grounded contexts, we performed statistical analyses on the collected data. Be-

cause our variables of interest are naturally highly correlated (crucially, proportion of

targets and cardinality of both targets and non-targets), it was not possible to disen-

tangle between the relative contribution of the two (or more) factors within the same

logistic regression model aimed at predicting the choice of a given quantifier against

all the others. We thus employed the ‘one model, one predictor’ strategy, according to

which a number of separate models including only one predictor of interest (along with

random factors) was performed for each quantifier. This way, the predictive power of

each variable could be tested separately, and we could further evaluate the quality of

each model relative to all other candidate models. Model selection was performed us-

ing Akaike Information Criterion (AIC), a measure based on information theory which

allowed us to select the best model for a given set of data (Akaike, 1973). In particular,

the lowest the AIC, the lowest the information loss compared with the ‘true’ model,

namely the process that generated the data. We considered both raw AIC scores and

AIC weights (Wagenmakers and Farrell, 2004).

Seven variables were used as predictors: (a) proportion of targets, (b) cardinality of

targets, (c) cardinality of non-targets, (d) subitizing/non-subitizing range (dichotomic

dummy variable), (e) average size of targets, (f) average size of non-targets2. In total,

52 models were tested. All models were mixed-effect logistic regressions (Baayen et al.,

2008) with one fixed predictor (see above) and 3 random factorial variables, namely (1)

participant, (2) experimental block, and (3) position of the quantifier in the response

2The average size of the targets was obtained by dividing their weigthed sum (each large target was
multiplied by 1, medium ones by 0.75, small ones by 0.5) by the number of targets in the scene. The
same criteria and procedure were used for non-targets. For intuitive reasons, scenes containing either 0
targets or 0 non-targets were excluded from this analysis.
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quantifier predictor Estimate z-value p-value
none proportion 424.78 19.36 .0001
almost none n targets 82.86 9.66 .0001
few proportion -215.02 -22.41 .0001
the smaller part proportion -235.73 -25.98 .0001
some proportion -279.16 -35.69 .0001
many proportion -210.73 -6.31 .0001
most proportion -288.99 -29.79 .0001
almost all proportion -147.51 -13.67 .0001
all proportion 462.95 18.66 .0001

Table 4.3: Estimate, z-value and p-value of the quadratic term for each of the best
models.

grid. By including these random variables in the models, we ensured that significant

effects were estimated for the whole set and not just for a sample of stimuli. That is,

we ensured that the effects were not due to the variability among participants, blocks of

stimuli, position of the quantifier word in the response grid. To better fit the data, all

the models except (d) treated the predictor as a second-order polynomial variable. Logit

models were performed using the function lmer() implemented in the package lme4.

To compare different models, raw AIC scores and AIC weights were used. Since, in all

cases, AIC weights for the lowest-AIC model approximated 1 (i.e. the total weight of

the models considered), Table 4.2 reports only AIC scores for all models. As can be

seen, for 8 quantifiers out of 9, the best model (i.e. the one with the lowest information

loss) turned out to be the one using proportion of targets (% targ). In one case, namely

‘almost none’, the best model was instead the one using cardinality of targets (n targ)

as the predictor. The models based on all other predictors (cardinality of non-targets,

subitizing/non-subitizing range, and either targets or non-targets average size) never

emerged as the best ones for any quantifier.

It is worth stressing that AIC scores do not say anything about the absolute quality of the

model, i.e. the testing of the null hypothesis. Once established the best models based on

the AIC score, we could inspect them using the traditional null-hypothesis testing. For

all best models, both the linear and the quadratic term of the polynomial variable turned

out to be highly significant (p<.0001), meaning that each quantifier can be reliably

predicted against the other quantifiers by means of the polynomial form of the given

predictor. In Table 4.3, we report Estimate, z-value and p-value of the quadratic term

(2nd order term) for each of the selected models.

Based on the well-reported effects due to subitizing, we analyzed separately the dat-
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quantifier predictor AIC score Estimate z-value p-value
none n targets 328.2 158.15 11.41 .0001
almost none n targets 2572.3 -136.47 -20.35 .0001
few n targets 3541.3 -69.75 -13.84 .0001
the smaller part proportion 2662.3 -110.61 -13.40 .0001
some proportion 2057.6 -88.07 -12.69 .0001
many proportion 256.9 -195.17 -4.38 .0001
most proportion 733.8 -57.04 -4.74 .0001
almost all proportion 629.2 8.97 13.81 .0001
all proportion 57.8 247.04 2.72 .0064

Table 4.4: AIC score, estimate, z-value and p-value of the quadratic term (linear term
for ‘almost all’) for each of the best models in the subitizing range.

apoints within the subitizing range, i.e. cardinality of targets up to 3 included. The

intuition behind that is that when the target items are very easily enumerable (in the

subitizing range), their absolute number might be a better predictor of the quantifier

used by subjects than the proportion. To test this hypothesis, the same kind of analysis

as above was performed on the split data (3, 771 datapoints). For all quantifiers except

‘almost all’, the best models turned out to be the polynomial ones, whereas for ‘almost

all’ the best model was the linear one. Table 4.4 reports AIC score, Estimate, z-value,

and p-value of the quadratic term (linear term for ‘almost all’) for the best models in the

subitizing range. As can be noticed, in the subitizing range the low-magnitude quan-

tifiers ‘none’, ‘almost none’, and ‘few’ are better modeled by the absolute number of

animals rather than by the proportion of targets. This suggests that the choice of these

quantifiers in this range relies more on evaluating the set of targets on its own than

comparing it against the set of non-targets.

Finally, we investigated whether the frequency of use of quantifiers in language is re-

flected in the distribution of responses observed in the experiment. The rationale is that,

when choosing a quantifier from the various options, participants might be biased to-

wards the most frequent words, irrespectively of the perceptual features of the visual

stimulus. We extracted raw frequency values for each of the 9 Italian quantifiers at the

lemma level from CORIS (Favretti et al., 2002) and we computed the Pearson’s correla-

tion (r) with the quantifier frequencies observed in the experiment. All the values were

previously log-transformed. The correlation turned out to be very weak and not signif-

icant in the full dataset (r(7) = −0.25, p=0.52), in the subitizing range subset (r(7) =

−0.41, p=0.27), and in the non-subitizing range subset (r(7) = −0.04, p=0.92). That is,

participants are not affected by the linguistic frequency of the quantifier when picking

it up from the list.



4.3. Analysis and Results 49

Figure 4.5: Heatmap reporting the average semantic similarity between quantifiers pairs.
The lighter the blue, the more similar the pair.

4.3.2 Abstract Task: Semantic Similarity Judgements

The pattern of estimated similarities across quantifiers indicated that quantifiers are rep-

resented on an ordered but highly non-linear scale. A visualization of that can be ob-

served in Figure 4.5, where a heatmap depicting the average semantic similarity between

quantifier pairs is reported. Three interesting features can be appreciated: First, the or-

dered aspect of the internal scale can be seen by observing a roughly graded decrease

in similarity as pairs move away from the diagonal. This indicates a rough ‘distance

effect’, indexing an internal ordered scale. This distance effect appears stronger for

low-magnitude quantifiers compared to high-magnitude ones. This can be appreciated

qualitatively by inspecting Figure 4.6, where the bell functions peaking around the low-

magnitude quantifiers (‘few’, ‘the smaller part’, ‘almost none’, ‘none’) appear sharper

compared to those characterizing the high-magnitude quantifiers (‘many’, ‘most’, ‘al-

most all’, ‘all’).

Second, it appears that this graded effect is mostly confined in quantifiers that refer to

similar magnitudes, and disappears for very distant quantifiers. Indeed, there seems to

be a clear-cut distinction between low-magnitude and high-magnitude quantifiers. In

this respect, ‘some’ turns out to be a ‘hinge’ between low- and high-magnitude quanti-
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Figure 4.6: Line plot reporting the average semantic similarity between quantifiers.

fiers. It should be observed that none of the items are judged to be as extremely simi-

lar/dissimilar to it, with the lowest average similarity being equal to 3.08 (‘all-some’),

and the highest being equal to 4.8 (‘few-some’). Though halfway between low- and

high-magnitude quantifiers, however, ‘some’ results to be closer to the former than

to the latter group. Finally, we observe a rather small but systematic linguistic ‘anti-

nomy effect’: For each quantifier (with the exception of ‘some’) the most dissimilar

item is represented not by the extreme on the other side of the scale, but by its linguistic

antonym: The lowest similarity ratings are those among ‘none-all’, ‘almost none-almost

all’, ‘the smaller part-most’, ‘few-many’ (this can be appreciated by the presence of an

orthogonal diagonal to the main one in the similarity matrix).

To pool together the pattern of judgements and reconstruct the shape of the internal rep-

resentation, we performed a metric Multi-Dimensional Scaling (MDS) analysis. Such

technique is commonly used to visualize the degree of similarity between objects by

placing them on a N-dimensional space where distances between them are preserved.

Figure 4.7 shows the results of the analysis when taking into account two dimensions.

By performing a goodness-of-fit analysis, it turned out that the first dimension only, de-

picted along the x-axis in the plot, accounts for 98.66% of the variance of the original

data (R2=0.9866, F(1, 34)=2496.81, p<.0001). As shown in Figure 4.7, such dimen-

sion clearly separates low-magnitude quantifiers from high-magnitude quantifiers, with

‘some’ somehow in between, though closer to the former block. By including the second

dimension, the variance accounted for by the model increases to 98.80% (R2=0.9880,
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Figure 4.7: Plot reporting the absolute distance of quantifiers as resulting from a two-
dimension metric MDS analysis.

F(1, 34)=2803.18, p<.0001), which is almost a perfect fit. Such dimension neatly repre-

sents magnitude: From low to high, along the y-axis. This analysis further confirms that

low-magnitude quantifiers are better separated among them, indicating that they corre-

spond to sharper representations. This allows their ordering on a scale to emerge very

clearly, with ‘none’ being followed by ‘almost none’ that, in turn, is followed by ‘few’

and ‘the smaller part’ (which are not well separated among each other), and eventually

by ‘some’. On the contrary, high-magnitude quantifiers, while still being ordered along

a scale, are extremely close to each other, indicating that their representations overlap

greatly.

4.4 Discussion

4.4.1 Visually-Grounded Representation

In this chapter, I explored the use of quantifiers in both their visually-grounded and

abstract representation. By asking participants to choose the quantifier that best repre-

sented the quantity of animals in a number of visual scenes, Experiment 1 was aimed at

investigating the factors which contribute in determining the visually-grounded repre-

sentation of such linguistic expressions. We showed that the proportion of targets is the

best predictor for 8 quantifiers out of 9, with ‘almost none’ being better described by the

cardinality of the target set. When zooming into the subitizing range, with cardinality
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of animals up to 3, the absolute number of targets turned out to be the best predictor for

‘none’ and ‘few’ besides ‘almost none’, thus suggesting that when the information about

precise number is available it becomes crucial for discriminating among low-magnitude

quantifiers.

These findings are generally in line with previous studies investigating the appropriate-

ness of quantifiers evaluated against visual scenes (Coventry et al., 2005, 2010). Using a

different experimental design (evaluating the appropriateness of a number of quantifier-

embedding sentences against a given visual scene), a different set of quantifiers (‘a few’,

‘few’, ‘several’, ‘many’, ‘lots of’), and without constraining the exposure time to the

scene, these works showed that the number of both targets and non-targets is predictive

of the quantifier appropriateness. With cardinality of targets equal to 3 (their subitiz-

ing case), however, the use of quantifiers was no longer affected by the cardinality of

the non-target objects. An exception was represented by ‘few’, which was affected by

both (Coventry et al., 2010). On the one hand, our finding that proportion is overall

the best predictor is not in contradiction with the effect of both number of targets and

number of non-targets. Rather, we believe ours to be just a better measure to assess the

contribution of both sets in determining quantifiers’ use. On the other hand, the results

we obtained in the subitizing range reinforce and better prove the increasingly impor-

tant role of precise number in discriminating between low-magnitude quantifiers. In our

study, interestingly, the only low-magnitude quantifier whose interpretation turned out

to be best predicted by the proportion of targets also in the subitizing range was ‘the

smaller part’, whose reading is intuitively more proportional compared to the others.

Finally, it is worth stressing that our 340 visual scenes were balanced with respect to

ratios, whereas the 36 used by Coventry et al. (2005, 2010) were balanced for target

cardinality. Moreover, in the present work each ratio was represented by all possible

combinations of cardinalities, whereas Coventry and colleagues experimented with ra-

tios that were mostly depicted by just one combination. Finally, our subitizing range

included four cardinalities, namely 0, 1, 2, and 3 – not just the number 3.

As far as the effect of object size is concerned, we found this factor not to be among

the most predictive ones. This finding is in partial contrast with the results reported

by Newstead and Coventry (2000), who showed a role of size in the task of evaluating

quantifiers over scenes depicting dots placed in a container. In that study, both the dots

and the container size were found to play a role: Low-magnitude quantifiers were found

to be more appropriate when the dots were small and when the container was big. In our

task, we solely investigated the size of the items, and found that this parameter was not
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among the best predictors of quantifiers’ use. This difference might be due to the differ-

ent experimental settings: First, our scenes contain both target and non-target objects –

not only targets. Second, we vary the size of the objects in a way that there are no scenes

depicting, e.g., only small or large objects. Third, we employ a larger set of quantifiers,

thus participants have more alternatives compared to the previous study. Moreover, con-

trary to us, Newstead and Coventry (2000) allowed subjects to explore the scenes for an

infinite time, such that they might have used a different visuo-spatial strategy (namely,

exact counting), and that might have influenced the enumeration process. Though we

showed that object size is not among the most predictive factors of quantifier use, in

our setting we could not rule out the possibility that participants relied on information

regarding the area occupied by objects. To address this issue, the total number of pixels

occupied in each scene by target and non-target objects should be controlled.

4.4.2 Abstract Representation

By asking participants to rate the degree of semantic similarity between quantifier pairs,

Experiment 2 was aimed at testing whether these expressions are mentally ordered and,

if so, which are the features of the resulting scale. We showed that, even without relying

on any quantitative or contextual information, quantifiers do lie on an ordered scale,

as resulting from a Multi-Dimensional Scaling Analysis (Kruskal and Wish, 1978). In

particular, low-magnitude quantifiers (‘none’, ‘almost none’, ‘few’, ‘the smaller part’)

turned out to be perceived as being fairly distant from each other, thus suggesting that

their abstract semantic representation is well defined and nicely ordered on a scale. In

contrast, high-magnitude quantifiers (‘many’, ‘most’, ‘almost all’, ‘all’) turned out to

greatly overlap, though always along an ordered scale. Overall, these results suggest

that the mental representation of quantifiers is ordered and highly non-linear, with small

quantifiers better represented compared to large ones. This is highly reminiscent to

the well-reported logarithmic scale inferred both from comparative judgements across

numerical symbols and from the use of numerical symbols in perceptual quantifica-

tion (Nieder and Miller, 2003; Dehaene, 2003; Dehaene et al., 2008).

It is worth stressing that, in doing this task, neither quantitative (numbers, proportions,

etc.) nor explicit contextual (semantic) information was provided. That is, quantifiers

were judged in isolation, solely on the basis of their bare semantic similarity, while

in Holyoak and Glass (1978) participants were asked to rate dissimilarities between pair

of sentences embedding different quantifiers. Another interesting finding was the ten-
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dency to assign the lowest rating (i.e. lowest semantic similarity) to the direct antonym.

For example, the most dissimilar word from ‘few’ was ‘many’, and not ‘none’. While

straightforward for the pair ‘none-all’, which also represent the two extreme endpoints

of the scale, this finding is in principle not trivial in all the other cases. This finding falls

off the prediction that quantifiers should solely lie on a quantitative scale (e.g. numeri-

cal or proportional) and suggests that, when asked to judge the semantic similarity of a

word pair, speakers also take into account lexico-semantic features, such as information

regarding the direct antonym (Miller and Fellbaum, 1991), as also reported by Hill et al.

(2016b).

4.4.3 Mental Order

Finally, it should be mentioned that previous work has investigated the scalar nature

of quantifiers from very different perspectives. With a set of 5 quantifiers and a task

which was similar to ours, for example, Holyoak and Glass (1978) claimed that quan-

tifiers can be described in terms of an unidimensional scale, essentially representing

analog quantities. The authors, however, did not overtly exclude that information re-

garding other non-quantitative related semantic features might still be included in the

memory representation of quantifiers. In contrast with the unidimensional nature of the

quantifier scale was Routh (1994), whose results on a freesort task with 20 quantifiers

suggested that several other components are in place beyond the quantity scale. Another

study (Montalto et al., 2010) also adopted a similar paradigm where a number of Ital-

ian quantifiers (yet different from the list of quantifiers investigated in our study) were

compared to each other on a magnitude scale: Given pairs of quantifiers subjects had to

indicate if and which of the two indicated the largest amount. Differently from our ex-

periment, however, subjects were given the possibility to indicate that the two quantifiers

did not differ in the implicated amount. Results suggested that subjects lump quantifiers

in two blocks, one comprising low and the other high-magnitude ones, with no hint of

a continuous scale. However, there is the serious possibility that these results do not

directly reflect the true mental scale but rather the degree of certainty, such that when

prompted with uncertain decisions subjects indicated an absence of differentiation.
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4.4.4 Impact of our Results on Foundational Theories

As for the theoretical implications of our work, our results provide evidence in support

of some well-established assumptions on quantifiers. First, our findings show that quan-

tifiers neither correspond to an exact number of entities nor to a fixed proportion (see

section 2.3). This can be taken as an evidence in favor of their non-referential status,

even in the new light shed by the integration of perception and quantifiers.

Second, our results do not shed new light on the proposal that ‘few’ and ‘many’ are

not-extensional since, in our experiments, contextual factors were deliberately avoided.

However, it is worth noticing that in Experiment 1 the meaning of ‘few’ is found to be

ambiguous: It mostly depends on the number of targets in the subitizing range, on the

proportion of targets in the whole data. This might be seen as an effect of a perceptual

‘contextual’ factor: ‘Few’ is more dependent on the perceptual context than are other

quantifiers. However, the same effect was not observed for ‘many’.

Third, our results are consistent with the literature on scalar implicatures (Grice, 1975)

in the pragmatic use of quantifiers. In particular, both the ordering of quantifiers (from

low- to high- magnitudes) and their narrow range of application observed in Experi-

ment 1 suggest that, to some extent, speakers interpret such expressions as having an

upper boundary which excludes the use of more informative options when these options

are not true or uncertain (Horn, 1984). That is, participants choose the most informa-

tive quantifier ‘all’ (and not e.g. ‘some’, which would be logically true) when they

are certain about its applicability (see also Degen and Tanenhaus (2015)). Similar im-

plications can be drawn from Experiment 2, where the characteristics of the abstract

representation might indicate that speakers have an internal representation of quantifier

informative strength. Based on our findings, one possibility is that scalar implicatures

are stronger for low-magnitude quantifiers (which turn out to be extremely well-defined

and distinct from each other) than for high-magnitude ones (which are perceived to be

very similar). We leave this issue for future research and refer the reader to Oaksford

et al. (2002) for interesting results on the use of quantifiers as referring to different

ranges of numerosities and their effect on informativeness.

Fourth, the results of Experiment 2 are in line with the position that the meaning of

quantifiers is not only about amounts, numbers, or proportions. Indeed, similarity judg-

ments provided by participants turned out to be dependent on lexico-semantic factors

(e.g. antonymy) besides magnitude. This evidence is also in line with previous findings
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showing an interplay between numerical and semantic information in the comprehen-

sion of quantifiers (see section 2.4).

Fifth, our results overall suggest that the meanings of quantifiers are at least partially

tied to the representation of quantities. Though this is probably not enough to devise a

general semantics for such expressions, we believe quantitative aspects to constitute the

basis of quantifier meanings.

4.4.5 Final remarks

In sum, our results indicate that, in grounded contexts, quantifiers primarily represent

proportions and not absolute cardinalities. They also show that quantifiers are mentally

represented on a quantity scale which is well ordered and highly non-linear, bearing

interesting similarities to the mental representation of both numerical quantities and

continuous magnitudes. While our results cannot endorse one possibility over the other,

they firmly support the view that quantifiers are mentally represented in a way that

partially reflects the way we perceive quantities through our senses.

In the next chapter, I build on the evidence that numbers and quantifiers have differ-

ent quantitative representations, and test whether two computational mechanisms are

required to learn them from visual scenes.



Chapter 5

Quantifiers vs Cardinals:
Two Computational Mechanisms

In this chapter, I focus on the computational operations underlying the use of cardinals

(one, two, three, and four) and quantifiers (no, few, most, and all) when referring to

objects that are grounded in visual scenes. Inspired by the evidence that, in humans, the

two processes imply fairly different cognitive (see Chapter 4) and neural mechanisms,

I propose that distinct models are required for learning the meaning of such expres-

sions from images containing multiple objects. I show that a model capitalizing on a

‘fuzzy’ measure of similarity is effective for learning quantifiers, whereas the learning

of cardinals is better accomplished when ‘exact’ information is provided.

5.1 Introduction

In everyday life, people can refer to quantities by using either cardinals (e.g. one, two,

three) or natural language quantifiers (e.g. few, most, all). Although they share a num-

ber of syntactic, semantic and pragmatic properties (Hurewitz et al., 2006), and they are

both learned in a fairly stable order of acquisition across languages (Wynn, 1992; Kat-

sos et al., 2016), these quantity expressions underlie fairly different cognitive and neu-

ral mechanisms. First, they are handled differently by the language acquisition system,

with children recognizing their disparate characteristics since early development, even

before becoming ‘full-counters’ (Hurewitz et al., 2006; Sarnecka and Gelman, 2004;

Barner et al., 2009). Second, while the neural processing of cardinals relies on the brain

57
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Figure 5.1: How many pets are dogs? Three/Most. Image credits: cvalleyvet.com

region devoted to the representation of quantities, quantifiers rather elicit regions for

general semantic processing (Wei et al., 2014). Intuitively, cardinals and quantifiers re-

fer to quantities in a different way, with the former representing a mapping between a

word and the exact cardinality of a set, the latter expressing a ‘fuzzy’ numerical concept

denoting set relations or proportions of sets (Barner et al., 2009). As a consequence,

speakers can reliably answer questions involving quantifiers even in contexts that pre-

clude counting (Pietroski et al., 2009), as well as children lacking exact cardinality con-

cepts can understand and appropriately use quantifiers in grounded contexts (Halberda

et al., 2008; Barner et al., 2009). That is, knowledge about (large) precise numbers is

neither necessary nor sufficient for learning the meaning of quantifiers.

Inspired by this evidence, the present study proposes two computational models for

learning the meaning of cardinals and quantifiers from visual scenes. Our hypothesis

is that learning cardinals requires taking into account the number of instances of the

target object in the scene (e.g. number of dogs in Figure 5.1). Learning quantifiers,

instead, would be better accomplished by a model capitalizing on a measure evaluat-

ing the ‘fuzzy’ amount of target objects in the scene (e.g. proportion of ‘dogness’ in

Figure 5.1). In particular, we focus on those cases where both quantification strate-

gies might be used, namely scenes containing target (dogs) and distractor objects (cats).

Our approach is thus different from salient objects detection, where the distinction tar-

gets/distractors is missing (Borji et al., 2015; Zhang et al., 2015b, 2016). With respect

to cardinals, our approach is similar to Seguı́ et al. (2015), who propose a model for

counting people in natural scenes, and to more recent work aimed at counting either

everyday objects in natural images (Chattopadhyay et al., 2017) or geometrical objects

with attributes in synthetic scenes (Johnson et al., 2017). With respect to quantifiers,

https://www.cvalleyvet.com/about
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our approach is similar to Sorodoc et al. (2016), who use quantifiers no, some, and all to

quantify over sets of colored dots. Differently from ours, however, all these works tackle

the issue as either a classification problem or a Visual Question Answering task, with

less focus on learning the meaning representation of each cardinal/quantifier. To our

knowledge, this is the first attempt to jointly investigate both mechanisms and to obtain

the meaning representaton of each cardinal/quantifier as resulting from a language-to-

vision mapping.

Based on their geometric intepretation, we propose to use cosine and dot product sim-

ilarity between the target object and the scene as our functions for modeling quantifiers

and cardinals, respectively. The former, ranging from -1 to 1, evaluates the similarity

between two vectors with respect to their orientation and irrespectively of their mag-

nitudes. That is, the more two vectors are overall similar, the closer they are. Ideally,

cosine similarity between an image depicting a dog and a scene containing either 3 or 10

dogs without distractors (hence, ‘all’) should be equal to 1. Therefore, it would indicate

that the the proportion of ‘dogness’ in the scene is highest. Dot product, on the other

hand, is defined as the product of the cosine between two vectors and their Euclidean

magnitudes. By taking into account the magnitudes, this measure ideally encodes in-

formation regarding the number of times a target object is repeated in the scene. In the

above-mentioned example, indeed, dot product would be 3 and 10, respectively. In this

simplified setting, thus, it would be equal to the number of ‘dogs’.

Furthermore, we propose that the ‘objective’ meaning of each cardinal/quantifier can

be learned by means of a cross-modal mapping (see Figure 5.4) between the linguistic

representation of the target object and its quantity (either exact or fuzzy) in a visual

scene. To test our hypotheses, we carry out a proof-of-concept on the synthetic datasets

we describe in section 5.2. First, we explore our visual data by means of the two pro-

posed similarity measures (section 5.3.1). Second, we learn the meaning representations

of cardinals and quantifiers and evaluate them in the task of retrieving unseen combi-

nations of targets/distractors (section 5.3.2). As hypothesized, the two quantification

mechanisms turn out to be better accounted for by models capitalizing on the expected

similarity measures.
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5.2 Data

In order to test our hypothesis, we need a dataset of visual scenes which crucially in-

clude multiple objects. Moreover, some objects in the scene should be repeated, so

that we might say, for instance, that out of 5 objects ‘three’/‘most’ are dogs. Although

a large number of image datasets are currently available (see Lin et al. (2014) among

many others), no one fully satisfies these requirements. Typically, images depict one

salient object and even when multiple salient objects are present, only a handful of

cases contain both targets and distractors (Zhang et al., 2015b, 2016).

To bypass these issues, in the present work we experiment with synthetic visual scenes

(hence, scenarios) that are made up by at most 9 images each representing one object.

The choice of using a ‘patchwork’ of object-depicting images is motivated by the need

of representing a reasonably large variability (e.g. ‘few’ refer to scenes containing 2

target objects out of 7 as well as 1/5, 4/9, etc.). This way, we avoid matching a quantifier

always with the same number of target objects (except no, that is always represented by

0 targets), and allow cardinals to be represented by scenes with different numbers of

distractors. At the same time, we get rid of any issues related to object localization.

We experiment with quantifiers (hence, Qs) no, few, most, and all, which we defined

a priori by ratios 0%, 1-49%, 51-99% and 100%, respectively. Consistently with our

goals, this arguably simplified setting does neither take into account pragmatic uses of

Qs (i.e. we treat them as lying on an ordered scale) nor reflect possible overlappings.

For these reasons, we avoid using quantifiers as some whose meaning overlaps with the

meaning of many others. As far as cardinals (hence, Cs) are concerned, we experiment

with scenarios in which the cardinality of the targets ranges from 1 to 4. Cs up to 4

are acquired by children incrementally at subsequent stages of their development, with

higher numbers being learned upon this knowledge with the ability of counting (Barner

et al., 2009). Also, Cs ranging from 1 to 3-4 are widely known to exhibit some peculiar

properties (i.e. their exact number can be immediately and effortlessly grasped) due to

which they are usually referred to as ‘subitizing’ range (Piazza et al., 2011; Railo et al.,

2016).
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5.2.1 Building the Scenarios

We use images from ImageNet (Deng et al., 2009). Starting from the full list of 203

concepts and corresponding images extracted by Cassani (2014), we discarded those

concepts whose corresponding word had low/null frequency in the large corpus used

in (Baroni et al., 2014). To get rid of issues related to concept identification, we used a

single representation for each of the 188 selected concepts. Technically, we computed

a centroid vector by averaging the 4096-dimension visual features of the corresponding

images, which were extracted from the fc7 of a CNN (Simonyan and Zisserman, 2014).

We used the VGG-19 model pretrained on the ImageNet ILSVRC data (Russakovsky

et al., 2015) implemented in the MatConvNet toolbox (Vedaldi and Lenc, 2015). Cen-

troid vectors were reduced to 100-d via PCA and further normalized to length 1 before

being used to build the scenarios. When building the scenarios, we put the constraint

that distractors have to be different from each other. Moreover, only distractors whose

visual cosine similarity with respect to the target is lower than the average are selected.

For each scenario, target and distractor vectors are summed together. As a result, each

scenario is represented by a 100-d vector.

We also experimented with scenarios where vectors are concatenated to obtain a 900-d

vector (empty ‘cells’ are filled with 0s vectors) and further reduced to 100-d via PCA.

Since the pattern of results in the only-vision evaluation (see section 5.3.1) turned out

to be similar to the results obtained in the ‘summed’ setting, we will only focus on the

‘summed’ setting.

5.2.2 Datasets

We built one dataset for Cs and one for Qs, each containing 4512 scenarios.1 We then

split each of the two in one 3008-datapoint Training Dataset (Train) for training and

validation and one 1504-datapoint Testing Dataset (Test) for testing. The two datasets

were split according to their ‘combinations’, that is the mixture of targets and distractors

in the scenario. As reported in Table 5.1, we kept 4 different combinations for each C/Q

in Train and 2 in Test. Note that the numerator refers to the number of targets, the

denominator to the total number of objects. The number of distractors is thus given

by the difference between the two values. To illustrate, in Train-q ‘few’ is represented

1A visual representation of our scenarios is provided in the rightmost side of Figure 5.4, while Fig-
ure 5.1 is only intended to provide a more intuitive overview of the task.



62 Chapter 5. Quantifiers vs Cardinals: Two Computational Mechanisms.

Train-q Train-c
no few most all one two three four
0/1 1/6 2/3 1/1 1/1 2/2 3/3 4/4
0/2 2/5 3/4 2/2 1/3 2/3 3/4 4/5
0/3 2/7 3/5 3/3 1/4 2/5 3/5 4/6
0/4 3/8 4/5 4/4 1/6 2/7 3/8 4/7

Test-q Test-c
no few most all one two three four
0/5 1/7 4/6 5/5 1/2 2/4 3/7 4/8
0/8 4/9 6/8 9/9 1/7 2/9 3/9 4/9

Table 5.1: Combinations in Train and Test.

by scenarios 1/6, 2/5, 2/7, and 3/8, whereas in Test-q ‘few’ is represented by scenarios

1/7 and 4/9. The initial 4512 scenarios have been obtained by building a total of 24

different scenarios (6 combinations * 4 C/Q classes) for each of the 188 objects. A

particular effort has been paid in making the datasets as balanced as possible. When

designing the combinations for ‘few’ and ‘most’, for example, we controlled for the

proportion of targets in the scene, in order to avoid making one of the two easier to learn.

Also, combinations were thought to avoid biasing cardinals toward fixed proportions of

targets/distractors.

5.3 Experiments

5.3.1 Only-Vision Evaluation

As a first step, we carry out a preliminary evaluation aimed at exploring our visual data.

If our intuition about the information encoded by the two similarity measures is correct

(see section 5.1), we should observe that cosine is more effective than dot product in

distinguishing between different Qs, while the latter should be better than cosine for Cs.

Moreover, Qs/Cs should lie on an ordered scale. To test our hypothesis, we compute

cosine distances (i.e. 1−cosine, to avoid negative values) and dot product similarity

for each target-scenario pair in both Train and Test (e.g. dog vs 2/5 dogs). Figure 5.2

reports the distribution of Qs with respect to cosine (left) and Cs with respect to dot

product (right) in Train. As can be seen from the boxplots, both Qs and Cs are ordered

on a scale. In particular, cosine distance is highest in no scenarios (where the target is

not present), lowest in all scenarios. For Cs, dot product is highest in four scenarios,
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Figure 5.2: Left: Qs against cosine distance. Right: Cs against dot product.

lowest in one scenarios.

Our intuition is further confirmed by the results of a radial-kernel SVM classifier fed

with either cosine or dot product similarities as predictors.2 Qs are better predicted by

cosine than dot product (78.6% vs 63.8%), whereas dot product is a better predictor of

Cs than cosine (68.7% vs 44.7%). As shown in Figure 5.3, the ordered scale is indeed

represented to a much lesser extent when Qs are plotted against dot product (left) and

Cs against cosine (right). A similar pattern of SVM results and similar plots emerged

when experimenting with Test.

5.3.2 Cross-Modal Mapping

Our core proposal is that the meaning of each C/Q can be learned by means of a cross-

modal mapping between the linguistic representation of the target object (e.g. dog, mug,

etc.) and a number of scenarios representing the target object in a given C/Q setting

(e.g. ‘two’/‘few’ dogs). In our approach, each word (e.g. dog) is represented by a 400-d

embedding built with the CBOW architecture of word2vec (Mikolov et al., 2013) and

the best-predictive parameters of Baroni et al. (2014) on a 2.8B tokens corpus. The

original 400-d vectors are further reduced to 100-d via PCA before being fed into the

model.

Figure 5.4 reports a single learning event of our proposed model. Each C/Q (e.g. two,

few) is learned as a separate function that maps each of the 188 words representing our

2We experimented with linear, polynomial, and radial kernels. We only report results obtained with
default radial kernel, that turned out to be the overall best model.
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Figure 5.3: Left: Qs against dot product. Right: Cs against cosine distance.

selected concepts to its corresponding 4 scenarios in Train (see section 5.2.2). To illus-

trate, the meaning of few is learned by mapping each word into the 4 visual scenes where

the amount of ‘targetness’ is less than 50% (see section 5.2), whereas two is learned by

mapping each word to the scenarios where the number of targets is 2, and so on. This

mapping, we conjecture, would mimic the multimodal mechanism by which children

acquire the meaning of both Cs and Qs (see Halberda et al. (2008)). Once learned, the

function representing each C/Q can be evaluated against scenarios containing an unseen

mixture of (known) target objects and distractors. If it has encoded the correct meaning

of the quantified expression, the function will retrieve the unseen scenarios containing

the correct quantity (either exact or fuzzy) of target objects.

Figure 5.4: One learning event of our proposed cross-modal mapping. Cosine is used
for quantifiers (few), dot product for cardinals (two).
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lin nn-cos nn-dot
mAP P2 mAP P2 mAP P2

no 0.78 0.65 0.87 0.77 0.54 0.37
few 0.59 0.39 0.68 0.51 0.59 0.43
most 0.61 0.36 0.60 0.29 0.62 0.45
all 0.75 0.66 1 1 0.33 0.12
one 0.44 0.30 0.38 0.21 0.61 0.45
two 0.35 0.15 0.38 0.21 0.57 0.43
three 0.38 0.16 0.36 0.13 0.56 0.40
four 0.65 0.47 0.75 0.60 0.76 0.61

Table 5.2: mAP and P2 for each model.

We experiment with three different models: linear (lin), cosine neural network (nn-cos),

dot-product neural network (nn-dot). The first model is a simple linear mapping. The

second is a single-layer neural network (activation function ReLU) that maximizes the

cosine similarity between input (linguistic) and output vector (visual). The third is a

similar neural network that approximates to 1 the dot product between input and output.

We evaluate the mapping functions by means of a retrieval task aimed at picking up

the correct scenarios from Test among the set of 8 scenarios built upon the same target

object. Recall that in Test there are 2 combinations * 4 C/Q classes for each concept.

5.4 Results

As reported in Table 5.2, nn-cos is overall the best model for Qs, whereas nn-dot is

the best model for Cs. In particular, mean average precision (mAP) is higher in nn-

cos for 3 out of 4 Qs, with only most reaching slightly better mAP in Q nn-dot due to

the high number of cases confounded with all by the Q nn-cos model (see Table 5.3).

Conversely, both mAP and precision at top-2 positions (P2) for Cs are always higher

in nn-dot compared to the other models. From a qualitative analysis of the results, it

emerges that both the best-predictive models make ‘plausible’ errors, i.e. they confound

Cs/Qs that are close to each other in the ordered scale. Table 5.3 reports the confusion

matrices for the best performing models. Besides retrieving more cases of all instead

of (correct) most, the Q nn-cos model often confounds few with no. Similarly, the C

nn-dot model often confounds three with four, one with two, two with three, and so

on. Overall, both models pick up very few or no responses that are on the opposite end

of the ‘scale’, thus suggesting that the meaning representation they learn encodes, to a
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no few most all one two three four
no 288 88 0 0 one 168 113 54 41
few 141 191 38 6 two 64 136 124 52
most 0 0 111 265 three 23 80 130 145
all 0 0 0 376 four 10 24 72 272

Table 5.3: Left: Q nn-cos, retrieved cases in top-2 positions. Right: same for C nn-dot.

certain extent, information about the ordered position of the quantified expressions.

5.5 Discussion

5.5.1 Two Mechanisms

In this chapter, I explored the computational mechanisms underlying the learning of

cardinals and quantifiers from vision. Based on the evidence that these expressions are

governed by different cognitive and neural mechanisms, I tested whether distinct oper-

ations are needed also on the computational level. In particular, I proposed that a model

capitalizing on a ‘precise’ objective function (dot product) is required for the learning of

cardinals, whereas quantifiers would be better modeled by a ‘fuzzy’ function (cosine).

By means of a language-to-vision mapping, I showed the validity of such assumption:

On the one hand, cardinals and quantifiers were shown to be better modeled by dot prod-

uct and cosine, respectively; on the other, best-performing neural networks turned out

to outperform linear models. This finding is in line with the evidence that, in grounded

contexts, cardinals are described by the precise numerosity of the set, with quantifiers

being rather represented by approximate proportional information (see Chapter 4).

5.5.2 One Expression, One Model

In this work, we focused on the objective functions needed to learn cardinals and quan-

tifiers and we employed a ‘one expression, one model’ approach. That is, we modeled

each cardinal (e.g. one) and quantifier (e.g. few) via a dedicated network rather than

using a unique model for all. This setting was partially inspired by neuroscience work

suggesting that, in human brain, each number would activate specific neurons, also

known as ‘number neurons’ (Nieder, 2016). Moreover, this approach allowed us to bet-

ter contrast the two versions of each model (three, if we include the linear one) and
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gain a better understanding of the role of the objective function. However, a valuable

and only partially competing approach would be to implement a single model for learn-

ing several cardinals or quantifiers at a time. Even further, one possibility would be to

test a unique architecture in the task of modeling jointly cardinals and quantifiers, or

quantifiers and other, more compatible quantity expressions (e.g. comparatives).

5.5.3 Limitations

Though we proved the validity of our intuition on the different learning mechanisms,

both the visual scenes (fully synthetic) and the definition of quantifiers (fixed ranges of

proportions) were arguably rather simplistic. In the next chapter, I overcome most of

these limitations by both using the more complex visual data introduced in Chapter 4

and by computationally modeling the probabilities associated with the human choice

of quantifiers in grounded contexts. Following the intuition described in section 5.5.2,

I propose a multi-task learning architecture for jointly modeling quantifiers (‘most’),

comparatives (‘more’), and proportions (‘80%’). As for the visual scenes, they differ

from those used in this chapter by several aspects: They depict a higher number of total

objects (up to 20) and the size, orientation and spatial arrangement of the objects are

randomly varied.
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Chapter 6

A Multi-Task Model for Learning
Quantity Expressions from Vision

In this chapter I study whether different quantification mechanisms (set comparison,

vague quantification, and proportional estimation) can be jointly learned from visual

scenes by a multi-task computational model. The motivation is that, in humans, these

processes underlie the same cognitive, non-symbolic ability, which allows an automatic

estimation and comparison of set magnitudes. I show that when information about

lower-complexity tasks is available, the higher-level proportional task becomes more

accurate than when performed in isolation. Moreover, the multi-task model is able

to generalize to unseen combinations of target/non-target objects. Consistently with

behavioral evidence showing the interference of absolute number in the proportional

task, the multi-task model no longer works when asked to provide the number of target

objects in the scene.

6.1 Introduction

Understanding and producing sentences like ‘There are more cars than parking lots’,

‘Most of the supporters wear blue t-shirts’, ‘Twenty percent of the trees have been

planted last year’, or ‘Seven students passed the exam’, is a fundamental competence

which allows speakers to communicate information about quantities. Crucially, the type

of information conveyed by these expressions, as well as their underlying cognitive

69
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mechanisms, are not equivalent, as suggested by evidence from linguistics, language

acquisition, and cognition.

First, comparatives (‘more’, ‘less’), quantifiers (‘some’, ‘most’, ‘all’), and proportions

(‘20%’, ‘two thirds’) express a comparison or relation between sets (e.g., between the

set of cars and the set of parking lots). Such relational information is rather coarse

when expressed by comparatives and vague quantifiers, more precise when denoted by

proportions. In contrast, numbers (‘one’, ‘six’, ‘twenty-two’) denote the exact, absolute

cardinality of the items belonging to one set (e.g., the set of students who passed the

exam).

Second, during language acquisition, these expressions are neither learned at the same

time nor governed by the same rules. Recent evidence showed that children can under-

stand comparatives at around 3.3 years (Odic et al., 2013; Bryant, 2017), with quantifiers

being learned a few months later, at around 3.4-3.6 years (Hurewitz et al., 2006; Minai,

2006; Halberda et al., 2008). Crucially, knowing the meaning of numbers, an ability

that starts not before the age of 3.5 years (Le Corre and Carey, 2007), is not required

to understand and use these expressions. As for proportions, they are acquired signifi-

cantly later, being fully mastered only at the age of 9 or 10 (Hartnett and Gelman, 1998;

Moss and Case, 1999; Sophian, 2000).

Third, converging evidence from cognition and neuroscience supports the hypothesis

that some important components of these expressions of quantity are grounded on a

preverbal, non-symbolic system representing magnitudes (Piazza, 2010). This system,

often referred to as Approximate Number System (ANS), is invariant to the sensory

modality and almost universal in the animal domain, and consists in the ability of holis-

tically extracting and comparing approximate numerosities (Piazza and Eger, 2016).

In humans, it is present since the youngest age, with 6-month-old infants being able

to automatically compare sets and combine them by means of proto-arithmetical op-

erations (Xu and Spelke, 2000; McCrink and Wynn, 2004). Since it obeys Weber’s

law, according to which highly differing sets (e.g. 2:8) are easier to discriminate than

highly similar sets (e.g. 7:8), ANS has been recently claimed to be a ratio-based mech-

anism (Sidney et al., 2017; Matthews et al., 2016). In support of this, behavioral find-

ings indicate that, in non-symbolic contexts (e.g. visual scenes), proportional values

are extracted holistically, i.e. without relying on the pre-computed cardinalities of the

sets (Fabbri et al., 2012; Yang et al., 2015). Indeed, people are fairly accurate in provid-

ing the proportion of targets in a scene, even in high-speed settings (Healey et al., 1996;
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Figure 6.1: Toy representation of the quantification tasks and corresponding outputs
explored in the chapter. Note that quantification always refers to animals (target set).

Treisman, 2006). Similarly, in briefly-presented scenes, the interpretation of quantifiers

is shown to be best described by proportional information (see Pezzelle et al. (2018) or

Chapter 4).

Altogether, this suggests that performing (1) set comparison, (2) vague quantification,

and (3) proportional estimation, which all rely on information regarding relations among

sets, underlies increasingly-complex steps of the same mechanism. Notably, such com-

plexity would range from ‘more/less’ judgements to proportional estimation, as sug-

gested by the increasing precision of ANS through years (Halberda and Feigenson,

2008), the reported boundary role of ‘half’ in early proportional reasoning (Spinillo

and Bryant, 1991), and the different age of acquisition of the corresponding linguistic

expressions. Finally, the ratio-based operation underlying these task would be different

from (and possibly conflicting with) that of estimating the absolute numerosity of one

set. Indeed, absolute numbers are found to interfere with the access to proportions (Fab-

bri et al., 2012).

Inspired by this converging evidence, the present work proposes a computational frame-

work to explore various quantification tasks in the visual domain (see Figure 6.1). In

particular, we investigate whether ratio-based quantification tasks can be modeled by a

single, multi-task learning neural network. Given a synthetic scene depicting animals

(in our setting, the ‘target’ objects) and artifacts (‘non-target’), our model is designed

to jointly perform all the tasks by means of an architecture that reflects their increasing

complexity.1 To perform proportional estimation (the most complex), the model builds

on the representations learned to perform vague quantification and, in turn, set com-

parison (the least complex). We show that the multi-task model achieves both higher

accuracy and higher generalization power compared to the one-task models. In con-

1Data and code can be found at github.com/sandropezzelle/multitask-quant

https://github.com/sandropezzelle/multitask-quant
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trast, we prove that introducing the absolute number task in the loop is not beneficial

and indeed hurts the performance.

Our main contribution lies in the novel application and evaluation of a multi-task learn-

ing architecture on the task of jointly modeling 3 different quantification operations. On

the one hand, our results confirm the interdependency of the mechanisms underlying the

tasks of set comparison, vague quantification, and proportional estimation. On the other,

we provide further evidence on the effectiveness of these computational architectures.

6.2 Related Work

6.2.1 Quantities in Language & Vision

In recent years, the task of extracting quantity information from visual scenes has been

tackled via Visual Question Answering (VQA). Given a real image and a natural lan-

guage question, a VQA computational model is asked to understand the image, the

linguistic query, and their interaction to provide the correct answer. So-called count

questions, i.e. ‘How many Xs have the property Y?’, are very frequent and have been

shown to be particularly challenging for any model (Antol et al., 2015; Malinowski

et al., 2015; Ren et al., 2015; Fukui et al., 2016). The difficulty of the task has been

further confirmed by the similarly poor performance achieved even on the ‘diagnostic’

datasets, which include synthetic visual scenes depicting geometric shapes (Johnson

et al., 2017; Suhr et al., 2017).

Using Convolutional Neural Networks (CNN), a number of works in Computer Vision

(CV) have proposed specific architectures for counting digits (Seguı́ et al., 2015), peo-

ple in the crowd (Zhang et al., 2015a), and penguins (Arteta et al., 2016). With a more

cognitive flavor, Chattopadhyay et al. (2017) employed a ‘divide-and-conquer’ strategy

to split the image into subparts and count the objects in each subpart by mimicking the

‘subitizing’ mechanism (i.e. numerosities up to 3-4 can be rapidly and accurately ap-

preciated). Inspired by the same cognitive ability is Zhang et al. (2015b), who trained

a CNN to detect and count the salient objects in the image. Except Suhr et al. (2017),

who evaluated models against various types of quantity expressions (including existen-

tial quantifiers), these works were just focused on the absolute number.

More akin to our work is Stoianov and Zorzi (2012), who showed that hierarchical gen-
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erative models learn ANS as a statistical property of (synthetic) images. Their networks

were tested on the task of set comparison (‘more/less’) and obtained 93% accuracy. A

few studies specifically focused on the learning of quantifiers. Sorodoc et al. (2016)

proposed a model to assign the correct quantifier to synthetic scenes of colored dots,

whereas Sorodoc et al. (2018) operationalized the same task in a VQA fashion, using

real images and object-property queries (e.g. ‘How many dogs are black?’). Overall,

the results of these studies showed that vague quantification can be learned by neural

networks, though the performance is much lower when using real images and complex

queries. Finally, Pezzelle et al. (2017) (Chapter 5) investigated the difference between

the learning of cardinals and quantifiers from visual scenes, showing that they require

two distinct computational operations. To our knowledge, this is the first attempt to

jointly investigate the whole range of quantification mechanisms. Moreover, we are the

first to exploit a multi-task learning paradigm for exploring the interactions between set

comparison, vague quantification, and proportions.

6.2.2 Multi-Task Learning

Multi-Task Learning (MTL) has been shown to be very effective for a wide range of

applications in machine learning (for an overview, see Ruder (2017)). The core idea is

that different and yet related tasks can be jointly learned by a multi-purpose model rather

than by separate and highly fine-tuned models. Since they share representations between

related (or ‘auxiliary’) tasks, multi-task models are more robust and generalize better

than single-task models. Successful applications of MTL have been proposed in CV to

improve object classification (Girshick, 2015), face detection and rotation (Zhang et al.,

2014; Yim et al., 2015), and to jointly perform a number of tasks as object detection,

semantic segmentation, etc. (Misra et al., 2016; Li and Hoiem, 2016). Though, recently,

a few studies applied MTL techniques to either count or estimate the number of objects

in a scene (Sun et al., 2017; Sindagi and Patel, 2017), to our knowledge none of them

were devoted to the learning of various quantification mechanisms.

In the field of natural language processing (NLP), MTL turned out to be beneficial for

machine translation (Luong et al., 2016) and for a range of tasks such as chunking,

tagging, semantic role labelling, etc. (Collobert et al., 2011; Søgaard and Goldberg,

2016; Bingel and Søgaard, 2017). In particular, Søgaard and Goldberg (2016) showed

the benefits of keeping low-level tasks at the lower layers of the network, a setting

which enables higher-level tasks to make a better use of the shared representations.
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Since this finding was also in line with previous evidence suggesting a natural order

among different tasks (Shen and Sarkar, 2005), further work proposed MTL models in

which several increasingly-complex tasks are hierarchically ordered (Hashimoto et al.,

2017). The intuition behind this architecture, referred to as ‘joint many-task model’

in the source paper (Hashimoto et al., 2017), as well as its technical implementation,

constitute the building blocks of the model proposed in the present study.

6.3 Tasks and Dataset

6.3.1 Tasks

Given a visual scene depicting a number of animals (targets) and artifacts (non-targets),

we explore the following tasks, represented in Figure 6.1:

(a) set comparison (hence, setComp), i.e. judging whether the targets are ‘more’,

‘same’, ‘less’ than non-targets;

(b) vague quantification (hence, vagueQ), i.e. predicting the probability to use each of

the 9 quantifiers (‘none’, ‘almost none’, ‘few’, ‘the smaller part’, ‘some’, ‘many’,

‘most’, ‘almost all’, ‘all’) to refer to the target set;

(c) proportional estimation (hence, propTarg), i.e. predicting the proportion of targets

choosing among 17 ratios, ranging from 0 to 100%.

Tasks (a) and (c) are operationalized as classification problems and evaluated through

accuracy. That is, only one answer out of 3 and 17, respectively, is considered as correct.

Given the vague status of quantifiers, whose meanings are ‘fuzzy’ and overlapping, task

(b) is evaluated by means of Pearson’s correlation (r) between the predicted and the

ground-truth probability vector (cf. section 6.3.2), for each datapoint.2 The overall

r is obtained by averaging these scores. It is worth mentioning that we could either

evaluate (b) in terms of a classification task or operationalize (a) and (c) in terms of

a correlation with human responses. The former evaluation is straightforward and can

be easily carried out by picking the quantifier with the highest probability. The latter,

2We also experimented with Mean Average Error and dot product and found the same patterns of
results (not reported).
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Figure 6.2: Two scenes included in our dataset. The letfmost one depicts a ratio 1:4 (3
animals, 12 artifacts, 15 total items), the rightmost one a ratio 2:3 (6, 9, 15).

in contrast, implies relying on behavioral data assessing the degree of overlap between

ground-truth classes and speakers’ choice. Though interesting, such evaluation is less

crucial given the discrete, non-overlapping nature of the classes in tasks (a) and (c).

The tasks are explored by means of a MTL network that jointly performs the three

quantification operations (see section 6.4.2). The intuition is that solving the lower-

level tasks would be beneficial for tackling the higher-level ones. In particular, provid-

ing a proportional estimation (‘80%’) after performing vagueQ (‘most’) and setComp

(‘more’) should lead to a higher accuracy in the highest-level task, which represents a

further step in complexity compared to the previous ones. Moreover, lower-level tasks

might be boosted in accuracy by the higher-level ones, since the latter include all the

operations that are needed to carry out the former. In addition to the MTL model, we

test a number of ‘one-task’ networks specifically designed to solve one task at a time

(see section 6.4.1).

6.3.2 Dataset

We built a large dataset of synthetic visual scenes depicting a variable number of ani-

mals and artifacts on the top of a neutral, grey background (see Figure 6.2). In doing

so, we employed the same methodology and materials used in Chapter 4, where the use

of quantifiers in grounded contexts was explored by asking participants to select the

most suitable quantifier for a given scene. Since the category of animals was always

treated as the ‘target’, and that of artifacts as the ‘non-target’, we will henceforth use

this terminology throughout the chapter. The scenes were automatically generated by

an in-house script using the following pipeline: (a) Two natural images, one depict-
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train val test total
no. datapoints 11.9K 1.7K 3.4K 17K
% datapoints 70% 10% 20% 100%

Table 6.1: Number and partitioning of the datapoints.

ing a target object (e.g. a butterfly) and one depicting a non-target (e.g. a mug) were

randomly picked up from a sample of the dataset by Kiani et al. (2007). The sample

was obtained in Chapter 4, where we manually selected pictures depicting whole items

(not just parts) and whose color, orientation and shape were not deceptive. In total, 100

unique instances of animals and 145 unique instances of artifacts were included; (b)

The proportion of targets in the scene (e.g. 20%) was chosen by selecting one among

17 pre-defined ratios between targets:non-targets (e.g. 1:4, ‘four non-targets to one tar-

get’). Out of 17 ratios, 8 were positive (targets > 50%), 8 negative (targets < 50%),

and 1 equal (targets = 50%); (c) The absolute number of targets/non-targets was chosen

to equally represent the various combinations available for a given ratio (e.g., for ratio

1:4: 1-4, 2-8, 3-12, 4-16), with the constraint of having a number of total objects in the

scene (targets+non-targets) ranging from 3 to 20. In total, 97 combinations were repre-

sented in the dataset, with an average of 5.7 combinations/ratio (min 2, max 18); (d) To

inject some variability, the instances of target/non-target objects were randomly resized

according to one of three possible sizes (i.e. medium, big, and small) and flipped on the

vertical axis before being randomly inserted onto a 5*5-cell virtual grid. As reported in

Table 6.1, 17K scenes balanced per ratio (1K scenes/ratio) were generated and further

split into train (70%), validation (10%), and test (20%).

Ground-truth classes for the tasks of setComp and propTarg were automatically assigned

to each scene while generating the data. For vagueQ, we took the probability distribu-

tions obtained on a dataset of 340 scenes (see Chapter 4) and we applied them to our

datapoints, which were built in the exact same way. These probability distributions had

been collected by asking participants to select, from a list of 9 quantifiers (reported

in section 6.3.1), the most suitable one to describe the target objects in a visual scene

presented for 1 second. In particular, they were computed against the proportion of

targets in the scene, which in that study was shown to be the overall best predictor for

quantifiers. To illustrate, given a scene containing 20% of targets (cf. leftmost panel

in Figure 6.2), the probability of choosing ‘few’ (ranging from 0 to 1) is 0.38, ‘almost

none’ 0.27, ‘the smaller part’ 0.25, etc. It is worth mentioning that, for scenes contain-

ing either 100% or 0% targets the probability of choosing ‘all’ and ‘none’, respectively,

is around 1. In all other cases, the distribution of probabilities is fuzzier and reflects the
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largely overlapping use of quantifiers, as in the example above. On average, the proba-

bility of the most-chosen quantifier across ratios is 0.53. Though this number cannot be

seen as a genuine inter-annotator agreement score, it suggests that, on average, there is

one quantifier which is preferred over the others.

6.4 Models

In this section, we describe the various models implemented to perform the tasks. For

each model, several settings and parameters were evaluated by means of a thorough

ablation analysis. Based on a number of factors like performance, speed, and stability

of the networks, we opted for using ReLU nonlinear activation at all hidden layers and

the simple and effective Stochastic Gradient Descent (SGD) as optimizer (lr = 0.01).

We run each model for 100 epochs and saved weights and parameters of the epoch with

the lowest validation loss. The best model was then used to obtain the predictions in the

test set. All models were implemented using Keras.3

6.4.1 One-Task Models

We implemented separate models to tackle one task at a time. For each task, in partic-

ular, both a network using ‘frozen’ (i.e. pretrained) visual features and one computing

the visual features in an ‘end-to-end’ fashion were tested.

One-Task-Frozen These models are simple, 2-layer (ReLU) Multi-Layer Perceptron

(MLP) networks that take as input a 2048-d frozen representation of the scene and output

a vector containing softmax probability values. The frozen representation of the scene

had been previously extracted using the state-of-art Inception v3 CNN (Szegedy et al.,

2016) pretrained on ImageNet (Deng et al., 2009). In particular, the network is fed with

the average of the features computed by the last Convolutional layer, which has size

25*2048.

One-Task-End2end These models are MLP networks that take as input the 203*203-

pixel image and compute the visual features by means of the embedded Inception v3

3https://keras.io/

https://keras.io/
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Figure 6.3: Architecture of the multi-task-prop model jointly performing (a) set
comparison, (b) vague quantification, and (c) proportional estimation. Given a 203*203-
pixel image as input, the model extracts a 25*2048 representation from the last Convolu-
tional layer of the Inception v3. Subsequently, the vectors are reduced twice via ReLU
hidden layers to 1024 and 512 dimensions. The 512-d vectors are concatenated and
reduced, then a softmax layer is applied to output a 3-d vector with probability distribu-
tions for task (a). The same structure (i.e., 2 hidden layers, concatenation, reduction, and
softmax) is repeated for tasks (b) and (c). All the tasks are trained with cross-entropy.
To evaluate tasks (a) and (c), in testing, we extract the highest-probability class and
compute accuracy, whereas task (b) is evaluated via Pearson’s correlation against the
9-d ground-truth probability vector.

module, which outputs 25*2048-d vectors (the grey and colored box in Figure 6.1).

Subsequently, the 25 feature vectors are reduced twice via ReLU hidden layers, then

concatenated, reduced (ReLU), and fed into a softmax layer to obtain the probability

values.

6.4.2 Multi-Task Model

The multi-task-propmodel performs 3 tasks at the same time with an architecture

that reproduces in its order the conjectured complexity (see Figure 6.3 and its caption

for technical details). The model has a core structure, represented by layers 1-5 in the
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model setComp vagueQ propTarg nTarg
accuracy Pearson r accuracy accuracy

chance/majority 0.470 0.320 0.058 0.132
one-task-frozen 0.783 0.622 0.210 0.312

one-task-end2end 0.902 0.964 0.659 0.966
multi-task-prop 0.995 0.982 0.918 –

multi-task-number 0.854 0.807 – 0.478

Table 6.2: Performance of the models in the tasks of set comparison (setComp), vague
quantification (vagueQ), proportional estimation (propTarg), and absolute number of
targets (nTarg). Values in bold are the highest.

figure, which is shared across tasks and trained with multiple outputs. In particular, (a)

layers 1, 2, and 3 are trained using information regarding the output of all 3 tasks. That

is, these layers are updated three times by as many backpropagation passes: One on the

top of setComp output, the second on the top of vagueQ output, the third on the top

of propTarg output; (b) layers 4 and 5 are affected by information regarding the output

of vagueQ and propTarg, and thus updated twice; (c) layers 6 and 7 are updated once,

on the top of the output of propTarg. Importantly, the three lower layers in Figure 6.3

(concatenation, ReLU, softmax) are not shared between the tasks, but specialized to

output each a specific prediction. As can be noted, the order of the tasks reflects their

complexity, since the last task in the pipeline has 2 more layers than the preceding one

and 4 more than the first one.

6.5 Results

Table 6.2 reports the performance of each model in the various tasks (note that the lowest

row and the rightmost column report results described in section 6.6.1). In setComp, all

the models are neatly above chance/majority level (0.47). The one-task-end2end

model achieves a remarkable 0.90 acc., which is more than 10% better compared to the

simple one-task-frozenmodel (0.78). The same pattern of results can be observed

for vagueQ, where the Pearson’s correlation (r) between the ground-truth and the pre-

dicted probability vector is around 0.96, that is more than 30% over the simpler model

(0.62). This gap increases even more in propTarg, where the accuracy of the frozen

model is more than 40 points below the one achieved by the one-task-end2end

model (0.21 against 0.66). These results firmly indicate that, on the one hand, the

frozen representation of the visual scene encodes little information about the propor-
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Figure 6.4: PropTarg. Heatmap reporting the errors made by the multi-task-prop
model. Note that labels refer to ratios, i.e. 14 stands for ratio 1:4 (20% targets).

tion of targets (likely due to the the different task for which they were pretrained, i.e.

object classification). On the other hand, computing the visual features in an end-to-end

fashion leads to a significant improvement, suggesting that the network learns to pay

attention to features that are helpful for specific tasks.

The most interesting results, however, are those achieved by the multi-task model, which

turns out to be the best in all the tasks. As reported in Table 6.2, sharing the weights be-

tween the various tasks is especially beneficial for propTarg, where the accuracy reaches

0.92, that is, more than 25 points over the end-to-end, one-task model. An almost perfect

performance of the model in this task can be observed in Figure 6.4, which reports the

confusion matrix with the errors made by the model. As can be seen, the few errors are

between ‘touching’ classes, e.g. between ratio 3:4 (43% of targets) and ratio 2:3 (40%).

Since these classes differ by a very small percentage, we gain indirect evidence that the

model is learning some kind of proportional information rather than trivial associations

between scenes and orthogonal classes.

To further explore this point, one way is to inspect the last layer of the proportional task

(i.e. the 32-d turquoise vector in Figure 6.3). If the vectors contain information regard-

ing the proportion of targets, we should expect scenes depicting the same proportion

to have a similar representation. Also, scenes with similar proportions (e.g. 40% and

43%) would be closer to each other than are scenes with different proportions (e.g. 25%

and 75%). Figure 6.5 depicts the results of a two-dimensional PCA analysis performed
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Figure 6.5: PCA visualization of the last layer (before softmax) of the proportional task
in the MTL model.

on the vectors of the last layer of the proportional task (the 32-d vectors).4 As can be

noted, scenes depicting the same proportion clearly cluster together, thus indicating that

using these representations in a retrieval task would lead to a very high precision. Cru-

cially, the clusters are perfectly ordered with respect to proportion. Starting from the

purple cluster on the left side (90%) and proceeding clockwise, we find 83% (green),

80% (turquoise), 75% (brown), and so on, until reaching 10% (light blue). Proportions

0% (blue) and 100% (yellow) are neatly separated from the other clusters, being at the

extremes of the ‘clock’.

An improvement in the results can be also observed for setComp and vaqueQ, where the

model achieves 0.99 acc. and 0.98 r, respectively. Figure 6.6 reports, for each quantifier,

the probability values predicted by the model against the ground-truth ones. As can be

seen, the red lines (model) approximate very closely the green ones (humans). In the

following section, we perform further experiments to provide a deeper evaluation of the

results.

4We used https://projector.tensorflow.org/

https://projector.tensorflow.org/
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Figure 6.6: VagueQ. Probability values predicted by the multi-task-prop model
against ground-truth probability distributions for each quantifier.

6.6 In-Depth Evaluation

6.6.1 Absolute Numbers in the Loop

As discussed in section 6.1, the cognitive operation underlying setComp, vagueQ, and

propTarg is different compared to that of estimating the absolute number of objects in-

cluded in one set. To investigate whether such dissociation emerges at the computational

level, we tested a modified version of our proposed multi-task model where propTarg

task has been replaced with nTarg, namely the task of predicting the absolute number

of targets. One-task models were also tested to evaluate the difficulty of the task when

performed in isolation. Since the number of targets in the scenes ranges from 0 to 20,

nTarg is evaluated as a 21-class classification task (majority class 0.13).

As reported in Table 6.2, the accuracy achieved by the one-task-end2end model

is extremely high, i.e. around 0.97. This suggests that, when learned in isolation, the

task is fairly easy, but only if the features are computed within the model. In fact, using

frozen features results in a quite low accuracy, namely 0.31. This pattern of results is

even more interesting if compared against the results of the multi-task-number

model. When included in the multi-task pipeline, in fact, nTarg has a huge, 50-point

accuracy drop (0.48). Moreover, both setComp and vagueQ turn out to be significantly
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hurt by the highest-level task, and experience a drop of around 14 and 17 points com-

pared to the one-task-end2end model, respectively. These findings seem to cor-

roborate the incompatibility of the operations needed for solving the tasks.

6.6.2 Reversing the Architecture

Previous work exploring MTL suggested that defining a hierarchy of increasingly com-

plex tasks is beneficial for jointly learning related tasks (see section 6.2.2). In the

present work, the order of the tasks was inspired by cognitive and linguistic abilities

(see section 6.1). Though cognitively implausible, it might still be the case that the

model is able to learn even when reversing the order of the tasks, i.e. from the conjec-

tured highest-level to the lowest-level one. To shed light on this issue, we tested the

multi-task-prop model after reversing its architecture. That is, propTarg is now

the first task, followed by vagueQ, and setComp.

In contrast with the pattern of results obtained by the original pipeline, no benefits are

observed for this version of MTL model compared to one-task networks. In particular,

both vagueQ (0.32 r) and propTarg (0.08 acc.) performance are around chance level,

with setComp reaching just 0.65 acc., i.e. 25 point lower than the one-task-end2end

model. The pipeline of increasing complexity motivated theoretically is thus confirmed

at the computational level.

6.6.3 Does MTL Generalize?

As discussed in section 6.2.2, MTL is usually claimed to allow a higher generalization

power. To investigate whether our proposed multi-task-prop model genuinely

learns to quantify from visual scenes, and not just associations between patterns and

classes, we tested it with unseen combinations of targets/non-targets. The motivation

is that, even in the most challenging propTarg task, the model might learn to match

a given combination, e.g. 3:12, to a given proportion, i.e. 20%. If this is the case, the

model would solve the task by learning “just” to assign a class to each of the 97 possible

combinations included in the dataset. If it learns a more abstract representation of the

proportion of targets depicted in the scene, in contrast, it should be able to generalize to

unseen combinations.
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model setComp vagueQ propTarg
accuracy Pearson r accuracy

chance/majority 0.470 0.320 0.058
one-task-frozen 0.763 0.548 0.068

one-task-end2end 0.793 0.922 0.059
multi-task-prop 0.943 0.960 0.539

Table 6.3: Unseen dataset. Performance of the models in each task. Values in bold are
the highest.

We built an additional dataset using the exact same pipeline described in section 6.3.2.

This time, however, we randomly selected one combination per ratio (17 combinations

in total) to be used only for validation and testing. The remaining 80 combinations

were used for training. A balanced number of datapoints for each combination were

generated in val/test, whereas datapoints in training set were balanced with respect to

ratios, by randomly selecting scenes among the remaining combinations. The unseen

dataset included around 14K datapoints (80% train, 10% val, 10% test).

Table 6.3 reports the results of the models on the unseen dataset. Starting from set-

Comp, we note a similar and fairly high accuracy achieved by the two one-task models

(0.76 and 0.79, respectively). In vagueQ, in contrast, the one-task-end2end model

neatly outperforms the simpler model (0.92 vs. 0.55 r). Finally, in propTarg both mod-

els are at chance level, with an accuracy that is lower than 0.07. Overall, this pattern of

results suggests that propTarg is an extremely hard task for the separate models, which

are not able to generalize to unseen combinations. The multi-task-prop model,

in contrast, shows a fairly high generalization power. In particular, it achieves 0.54 acc.

in propTarg, that is, almost 10 times chance level.

The overall good performance in predicting the correct proportion can be appreciated in

Figure 6.7, where the errors are represented by means of a heatmap. The error analysis

reveals that end-of-the-scale proportions (0% and 100%) are the easiest, followed by

proportions 75% (3:1), 67% (2:1), 50% (1:1), and 60% (3:2). More in general, negative

ratios (targets < 50%) are mispredicted to a much greater extent than are positive ones.

Moreover, the model shows a bias toward some proportions, that the model seems ‘to

see everywhere’. However, the fact that the errors are found among the adjacent ratios

(similar proportions) seems to be a convincing evidence that the model learns repre-

sentations encoding genuine proportional information. Finally, it is worth mentioning

that in setComp and vagueQ the model achieves very high results, 0.94 acc. and 0.96 r,

respectively.
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Figure 6.7: PropTarg. Heatmap with the errors made by the multi-task-prop
model in the unseen dataset.

6.7 Discussion

6.7.1 Ratio-Based Mechanisms

In this chapter, I investigated whether ratio-based quantification mechanisms, expressed

in language by comparatives, quantifiers, and proportions, can be computationally mod-

eled in vision exploiting Multi-Task Learning (MTL). I proved that sharing a common

core turns out to boost the performance in all the tasks, supporting evidence from lin-

guistics, language acquisition, and cognition. Moreover, I reported analyses indicating

both the increasing complexity of the tasks and the high generalization power of MTL.

6.7.2 Quantifiers vs Numbers

As far as numbers are concerned, our results clearly show that learning the precise

cardinality of one set requires a different, competing mechanism compared to the one

needed for quantifiers. This, one the one hand, is in line with behavioral evidence show-

ing the interference of precise number to the access to proportional information (Fabbri

et al., 2012). On the other hand, these findings are in line with those reported in Chap-

ter 5, where cardinals and quantifiers were found to require different computational

functions.
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Chapter 7

Conclusion

Quantifiers are mysterious creatures. On the one hand – the word itself leaves no doubt

– they are used to quantify, that is, to express the quantity of something. On the other

hand, these expressions are vague, that is, they have “a single but nonspecific mean-

ing” (Tuggy, 1993, p. 168). As discussed in Chapter 1, quantifiers can be used in similar

contexts as numbers or proportions, but the information they convey can be either purely

quantitative or something more/different than quantities (see Chapter 2). Their intrigu-

ing status has fascinated theorists since Aristotle (see Bonevac (2012)), and a myriad

of issues related to their use and comprehension, meaning and formalization have been

explored by many perspectives (Chapter 2).

In this thesis, I focused on vague, frequently-used quantifiers (‘none’, ‘few’, ‘almost

all’, ‘many’, ‘all’, etc.) from a novel, cognitively-inspired computational perspective.

On the the cognitive level, I carried out several behavioral studies with human speakers

(Chapter 3 and 4). On the computational level, I exploited recent advances in com-

putational linguistics and computer vision to either compare state-of-the-art networks

with human performance (Chapter 3) or model speakers’ use of quantifiers in grounded

contexts (Chapter 5 and 6).

In Chapter 3 I explored the role of linguistic context in modulating the choice of quan-

tifiers in discourse. I showed that a broader context helps speakers in predicting the

missing quantifier, whereas state-of-the-art neural language models are hurt by more

context. Though the task turned out to be challenging, both humans and the models

were able to grasp the magnitude of the missing quantifier. I considered this finding as

an evidence in favor of an ordering (i.e., a scale) among quantifiers. With precisely the

87
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aim of investigating the mental scale of quantifiers, in Chapter 4 I proposed two behav-

ioral studies: One exploring the abstract representation of quantifier words, the other

focusing on the use of quantifiers in grounded contexts. In both settings, the represen-

tation of quantifiers turned out to resemble that of numbers and continuous quantities,

thus supporting the intuition that some important components of the meaning of these

expressions are quantitative. When used to describe visual scenes, moreover, quantifiers

turned out to be better described by proportions rather than numbers. Along these lines,

in Chapter 5 I investigated the nature of the computational mechanisms underlying the

learning of quantifiers and numbers from their use in multimodal contexts (language and

vision). I showed that two different operations are required, in line with previous evi-

dence. Building on all the previous findings, in Chapter 6 I proposed that comparatives,

quantifiers and proportions might be governed by the same, relation-based mechanism.

I showed that a multi-task neural network jointly learning the meaning of these expres-

sions from visual scenes outperforms the models learning one task at a time. Also,

consistently with previously-obtained results, I showed that numbers require a radically

different operation.

These results lead to several additional questions. For example, can the computational

architectures proposed in Chapter 5 and 6 be successfully applied to datasets of real

scenes? Though we lack an empirical answer to this question, the encouraging results

obtained by Sorodoc et al. (2018) in a Visual Question Answering (VQA) tasks in-

volving quantifiers and real images seem to suggest that, in principle, moving to real

scenes should be perfectly possible. However, we might obtain lower results due to

an imperfect multi-object recognition, or because of the natural bias that is present in

real images. Another question concerns the applicability of our computational methods

to other modalities than vision. For example, is the pipeline of increasing complexity

found in Chapter 6 specific to vision (non-symbolic level), or is it shared across modal-

ities, in primis language? Since linguistic expressions of quantity are grounded on a

non-symbolic system, we might expect that a model trained on one modality can be

applied to another, at least to some extent. Even further, jointly learning representations

from both modalities might represent an even more natural, human-like way to learn

and refer to quantities. Finally, some issues remain open on the cognitive and linguistic

level. As suggested by the results of the abstract task in Chapter 4 (the one involv-

ing quantifier words), the mental representation of quantifiers would be tied to quantity

information. This holds, at least to some extent, when quantifiers are used in a linguis-

tic context (Chapter 3). However, some other components were repeatedly noticed to
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come into play in the linguistic use of quantifiers, such as the lexical-semantic effect of

antonymy. To illustrate, ‘few’ was judged to be the most dissimilar item from ‘many’,

though – if we put them on a scale – the most distant one should be ‘all’. This is-

sue, together with the impact of experimenting with a larger set of quantifiers including

lower-frequency expressions, deserves to be investigated in future work.

It is worth mentioning that several intuitions and methodologies presented in this thesis

can be applied to other domains than quantifiers. For example, an intuitively valuable

application could involve gradable adjectives (GAs) like ‘minuscule’, ‘small’, ‘big’,

‘very big’, ‘huge’, etc. These expressions share a number of commonalities with quan-

tifiers: They have a partially overlapping distribution, they can have antonyms (‘many’-

‘few’ and ‘tall’-‘short’), they can be gradable by degree adverbs (‘very many books’

and ‘very big book’) and by inflection for comparative and superlative degrees (‘few’,

‘fewer’, ‘fewest’ and ‘tall’, ‘taller’, ‘tallest’). Moreover, both quantifiers and GAs are

usually claimed to lie on ordered scales and have flexible, context-sensitive meanings.

Finally, they are both learned by children in grounded contexts, by having experience of

many instances uttered in real-life (Halberda et al., 2008; Barner and Snedeker, 2008).

To mention some possible directions, humans and models could be tested in the task

of guessing a missing GA from texts (Chapter 3), as well as a Multi-Task Learning

approach (Chapter 6) could be applied to the learning of GAs from vision.

Overall, this thesis contributes to the theoretical debate on quantifiers and proves the

validity of using a multi-perspective, multi-modal approach to the study of complex,

high-level linguistic expressions. Being semantically vague but frequently used in real-

life situations, quantifiers represent a particularly interesting case where language, per-

ception, and human cognition are irretrievably intertwined. However, quantifiers are

just one of the countless linguistic phenomena that might be investigated using a similar

approach. I hope my thesis can be of inspiration for future work in this direction.
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