
 

UNIVERSITY OF TRENTO – ITALY 

CIMeC – Center for Mind/Brain Sciences 
____________________________________________________________________________________________________ 

 

Doctoral School in Cognitive and Brain Sciences 
31st cycle 

 
 

Ph.D. Thesis 
 
 
 
 

Attentional Mechanisms in Natural Scenes 
 
 
 
 
 
 
 
 
 

 Supervisor:                                                                      Ph.D. Candidate: 
 Marius V. Peelen                                                              Elisa Battistoni 
 
 
 

Academic Year: 
2017/2018 



Attentional mechanisms in natural scenes

Ph.D. Thesis

Elisa Battistoni

31
st
 cycle Ph.D. candidate

Doctoral School in Cognitive and Brain Sciences

Cognitive Neuroscience track

Center for Mind/Brain Sciences (CIMeC)

University of Trento

Supervisor:

Prof. Marius V. Peelen



Table of contents

1. Chapter 1: General Introduction …………………………………………………………..………… 1

1. Naturalistic vision .…………………………………………………………………………………………...…………. 2

2. Visual search …...……………………………………………………………………...………………………………… 3

3. Attentional templates …………………………………………………………………………………………………… 4

4. Invariant object recognition and size-constancy .…………………………………………………………………….. 7

5. Conclusions ………………………………………………………………………………………..…………………….. 8

2. Chapter 2: Investigating the influence of distractor context expectations on attentional 

templates in natural scenes ………………………………………………………………………….….. 9

1. Introduction ………………………………………………………………………………………………………….….. 9

2. Materials and Methods ………………………………………………………………………...……………………... 13

3. Results …………………………………………………………………………………………...……………………... 20

4. Discussion ………………………………………………………………………………………..…………………..… 24

5. Supplementary Materials ……………………………………………………………………….…………………..… 27

3. Chapter 3: On the mechanisms of size constancy in natural vision: are attentional 

templates influenced by expected target distance? ……………………………………………...… 28

1. Introduction ………………………………………………………………………………………………………….… 28

2. Materials and Methods ………………………………………………………………………...……………………... 30

3. Results …………………………………………………………………………………………...……………………... 37

4. Discussion ………………………………………………………………………………………..…………………..… 39

4. Chapter 4: Spatial attention follows category-based attention during naturalistic visual 

search: evidence from MEG decoding …………………………………………………………..……. 42

1. Introduction ……………………………………………………………………………………………………….…… 42

2. Materials and Methods ………………………………………………………………………...……………………... 44

3. Results …………………………………………………………………………………………...……………………... 50

4. Discussion ………………………………………………………………………………………..…………………..… 55

5. Chapter 5: MEG decoding as a tool to study the temporal dynamics of size constancy and 

distance perception in natural scenes ……………………………………………………………...… 58

1. Introduction ………………………………………………………………………………………………………….… 58

2. Materials and Methods ………………………………………………………………………...……………………... 62

3. Results …………………………………………………………………………………………...……………………... 67

4. Discussion ………………………………………………………………………………………..…………………..… 77

5. Supplementary Materials ……………………………………………………………………….…………………..… 81



6. Chapter 6: General Discussion and Conclusions ………………………………………………… 83

1. The characteristics of preparatory attentional templates in real-world visual search ……………………..….… 83

2. The temporal dynamics of object processing in natural scenes ………………….………...…………………...… 85

3. Size constancy and object processing ……………………………………...………………………………………... 86

4. Closing remarks ……………………………………………………………………………..………………………… 87

References …………….………………………………………………………………………………...… 89



Chapter 1:

General Introduction1

The visual analysis  of the world around us is  an incredibly complex neural process that allows

humans to function appropriately within the environment. When one considers the intricacy of both

the  visual  input  and the  (currently  known) neural  mechanisms necessary  for  its  analysis,  it  is

difficult not to remain enchanted by the fact that, even though the signal that hits the retina has a

tremendous amount of simple visual features and that is ever-changing, ambiguous and incomplete,

we experience the world around us in a very easy, stable and straightforward manner2. So much

effort  has been put into the study of  vision,  and despite  the enormous scientific advances and

important findings, many questions still need answers.

During my years spent as Ph.D. student, I investigated some questions related to the topic of

top-down attentional mechanisms in natural scenes.  Top-down attentional mechanisms are at the

basis of all  the different processing stages that define our visual search behavior, as defined by

Eimer:  preparation,  guidance,  selection  and  identification  (Eimer,  2014).  This  definition  well

summarizes all the various topics that will be investigated in the following chapters: the preparation

phase in Chapter 2 and 3, the guidance and selection phase in Chapter 4, and the identification

phase in Chapter 5.

In the following pages, I will (briefly and broadly) introduce the reader to the issues related

to  the  experiments  in  the  following  chapters,  which  will  each  have  its  own,  more  detailed,

introduction.

1 This work contains parts of a journal article that has been published elsewhere: Battistoni, E., Stein, T., and Peelen, M.V. 

(2017). Preparatory attention in visual cortex. Ann. N. Y. Acad. Sci. 1396, 92–107.

2 Here, of course, I refer to healthy humans with normal or corrected-to-normal vision.
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Chapter 1: General Introduction

1. Naturalistic Vision

The neural analysis of the visual input is a computationally highly complex process, characterized

by a hierarchical sequence of stages that involve the analysis of progressively more complex visual

features,  and that  interact  with each other  via  forward,  lateral  and feedback connections.  The

intricacy of this analysis process becomes unimaginable when considering the real scenes that we

face everyday in life.  Our daily-life  visual  environments,  such as  city  streets  and living rooms,

contain  a  multitude  of  objects,  which  tend  to  continuously  change  depending  on  factors  like

distance,  position,  lighting  (illumination,  shading),  and  to  appear  incomplete  because  of  other

occluding objects. Furthermore, many objects share similar visual features, including targets and

non-target objects. 

Despite  this  overwhelming  amount  of  constantly-changing  visual  information,  we  are

remarkably efficient at processing natural scenes (Biederman, 1972; Biederman et al., 1974; Potter,

1976; Thorpe et al., 1996; Henderson and Hollingworth, 1999; VanRullen and Thorpe, 2001; Li et

al., 2002; Fei-Fei et al., 2007; Greene and Oliva, 2009a; Thorpe, 2009; Wolfe et al., 2011a; Peelen

and Kastner, 2014). The main reason for such efficiency can be linked to our evolution and daily-life

experience.  Specifically,  natural  stimuli  are  thought  to  have  an  advantage  of  processing  over

artificial ones (Li et al., 2002; VanRullen et al., 2005): they require less attention and cognitive

resources because the visual system has adapted, at evolutionary, developmental and behavioral

timescales,  to  real-world  scenes,  their  objects  and  their  statistical  regularities  (Simoncelli  and

Olshausen, 2001; Braun, 2003; Felsen and Dan, 2005; Hasson et al., 2010; De Cesarei et al., 2017;

Kaiser et al., 2018). One result of such adaptation can be observed in the finding that the human

brain can rapidly extract many types of information from a single glance of a scene: information

about the background and context (Oliva and Torralba, 2001; Torralba et al., 2006; Greene and

Oliva, 2009b; Castelhano and Heaven, 2010), about other objects in the scene (Mack and Eckstein,

2011; Pereira and Castelhano, 2014; Koehler and Eckstein, 2017), and depth information (Sherman

et al., 2011). All these scene properties help observers to predict and guide attention to the likely

location (Eckstein et al., 2006; Neider and Zelinsky, 2006; Greene and Oliva, 2009b; Malcolm and

Henderson, 2010; Castelhano and Heaven, 2011; Mack and Eckstein, 2011; Wolfe et al., 2011b;

Pereira and Castelhano, 2014; Koehler and Eckstein, 2017) and size (Eckstein et al., 2017) of target

objects, whose selection is the ultimate goal of visual search. 
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Chapter 1: General Introduction

2. Visual search

Visual search is one of the most commonly performed visual behaviors in humans, and it can be

thought of as the process leading to the selection and identification of objects that are relevant to

current  goals.  Searching arises as a consequence of the limited computational resources of  our

visual system: we need to search because we cannot simultaneously identify all the objects in the

visual field (Wolfe et al.,  2011b; Wolfe and Horowitz, 2017). Despite the fact that most of the

human cortex is dedicated to the direct or indirect analysis of the visual input, our visual system

does  not  have  the  capacity  to  process  all  the  visual  input  at  the  same  time  (Tsotsos,  1990).

Fortunately, our sensory systems are equipped with a mechanism, also known in the literature as

selective attention, that prioritizes incoming sensory input that is relevant for current behavioral

goals (top-down attention) or made relevant through its saliency (bottom-up attention), filtering

out what is irrelevant and distracting. In other words, selective attention is the mechanism through

which our brain overcomes the computational problem of the limited processing resources: it solves

the  competition  among  stimuli  by  favoring  one  stimulus  over  the  others,  which  then  are  lost

(Desimone and Duncan, 1995). 

Moving top-down attention onto objects in the visual field is what characterizes our visual

search behavior. Target selection is the result of a multi-stage process starting with a “parallel” (or

“spatially-global”) identification of likely target-related features across the visual field, followed by a

second stage in which attention is serially moved onto the locations of objects containing those

features until the target is found (Wolfe et al., 1989; Treisman and Sato, 1990; Hochstein & Ahissar,

2002; Ahissar et al., 2009). In other words, feature-based processes guide the allocation of spatial

attention onto likely target objects (Wolfe et al., 1989; Treisman and Sato, 1990; Wolfe, 1994; Cave,

1999; Eimer, 2014). 

The “global-to-local” pattern of attentional selection proposed in the context of the Feature

Integration Theory (FIT; Treisman & Gelade, 1980), Guided Search Model (Wolfe, 1994) and Biased

Competition Model (Desimone & Duncan, 1995), has also been formulated in the Reverse Hierarchy

Theory  by  Hochstein  and  Ahissar  in  the  context  of  conscious  vision  and  perceptual  learning

(Hochstein  &  Ahissar,  2002).  Specifically,  they  describe  that  fast  and  automatic  feedforward

(bottom-up) processes following stimulus onset lead to the “vision at a glance” percept in high-level

areas.  This  percept  consists  of  a  generalized  and  categorical  representation  of  a  scene,  which

identifies a “forest before trees”, and that it is comparable to the “spatially-global” activation of

features mentioned above. In a second stage called “vision with scrutiny”, feedback processes move

along the reverse hierarchy and focus resources on specific low-level neuronal populations, allowing

feature binding and conscious perception of specific items (e.g., trees). This stage would correspond

3



Chapter 1: General Introduction

to location-specific attentional movements on items during the visual search process.

Direct neuronal evidence for such “feature-to-location” (or “global-to-local” or “vision at a

glance – to – vision with scrutiny”) process has been provided for search tasks involving simple

visual  features  and  artificial  displays,  demonstrating  that  a  spatially-global  feature-based

modulation  precedes  a  spatially-specific  enhancement  of  target  objects  (Hopf  et  al.,  2004).

However, it remains to be proven whether such progression extends to more complex tasks in real-

world scenes. Chapter 4 will address this issue by employing multivariate pattern analysis (MVPA)

on magnetoencephalography (MEG) data.

3. Attentional templates

A large body of research has characterized the effects of attention on neural activity evoked by a

visual stimulus, as reviewed elsewhere (Reynolds and Chelazzi, 2004; Maunsell and Treue, 2006;

Reynolds  and Heeger,  2009;  Buschman and Kastner,  2015).  However,  attention also includes a

preparatory  phase,  before  stimulus  onset,  in  which  the  attended  dimension  is  internally

represented. More specifically, attentional mechanisms in visual search are not only engaged at the

moment  the  eyes  hit  a  scene:  they  often  start  before,  when  search  goals  are  established.  For

example, when crossing a road, we decide to look out for (i.e., attend to) cars before physically

looking in both directions to inspect the scene for the presence of cars. This intuitive concept of

preparatory attention (also referred to as attentional set,  attentional template, or search image) was

described by William James as “The image in the mind is the attention; the preperception […] is half

of  the  perception  of  the  looked-for  thing”  (James,  1890),  and  it  has  subsequently  played  an

important role in theories of attention (Duncan, 1989; Tinbergen, 1960; Bundesen, 1990; Wolfe et

al., 1989; Treisman, 2006). Specifically, when we determine a target object that we want to find, we

establish a preparatory attentional template, which can be thought of as an internal representation

describing the object of interest.

Such preparatory attention acts through the selective pre-activation of  the visual cortex,

before stimulus onset and thus in the absence of visual input (Desimone and Duncan, 1995; Luck et

al., 1997; Desimone, 1998; Kastner et al., 1999). Specifically, it is observed in those regions (or

neurons) that represent the task-relevant stimulus, ranging from low-level feature representations

in  the  early  visual  cortex  to  category  representations  in  the  high-level  visual  cortex,  therefore

operating across all levels of the visual hierarchy (Fig. 1; for a review on preparatory attention in

visual cortex, see Battistoni et al., 2017).

Preparatory attention-related activity in visual cortex has a clear purpose: it serves to bias

processing in favor of attended items (Fig. 1;  Desimone and Duncan, 1995; Desimone, 1998; Kaiser
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Chapter 1: General Introduction

et al., 2016), such that items that are attended gain a competitive advantage (proportional to the

degree  to  which  they  match  the  internal  attentional  template)  and  are  prioritized  for  spatial

attentional selection and further object processing (Wolfe et al., 1989; Wolfe, 1994; Desimone and

Duncan,  1995).  Notably,  this  preparatory  activity  is  causally  related  to  subsequent  attentional

selection and behavioral performance, as shown by transcranial magnetic stimulation (TMS) studies

(Romei et al., 2010; Reeder et al., 2015b). In the context of real-world visual search, preparing to

look for cars and people in scenes led to the pre-activation of category-specific neural patterns in

the Object-Selective Cortex (OSC, within the Lateral Occipital Cortex, or LOC; Peelen and Kastner,

2011; Fig. 1). This preparatory activity, which can be thought of as the establishment and temporary

maintenance  of  category-based  attentional  templates,  was  crucial  for,  and  causally  related  to,

subsequent behavioral performance (Peelen and Kastner, 2011; Reeder et al., 2015b). 

However, what are the object characteristics that these category-based preparatory activity

patterns code? To be most effective in guiding attention to targets, preparatory attention would

need  to  be  directed  to  those  representations  that  optimally  distinguish  the  target  from  the

distractors rather than simply activate the representation of the target (Duncan and Humphreys,

1989; Navalpakkam and Itti, 2007; Scolari and Serences, 2009; Becker et al., 2010, 2013). Thus,

one would predict that preparatory attention effects in the visual cortex for the same target differ as

a function of the expected distractor set (e.g., scene context). For example, different shape features

are diagnostic of the presence of people in a forest as compared with a desert. In relation to this

kind of adjustment, scene context also provides information about the likely visual appearance of

objects  at  different locations in the scene (e.g.,  as  a function of  depth): therefore,  in order  to

increase its effectiveness and optimize the attentional template, preparatory mechanisms could code

the expected target’s distance, for example by scaling the size of its pre-activated representation. 

Some  research  suggested  that  the  template-defining  features  were  high-level  category-

diagnostic object parts, such as the wheel of a car, and the legs, arms or torso of a person (Peelen

and Kastner, 2011; Reeder and Peelen, 2013)3. Notably, these studies used complex and cluttered

scenes, where many objects shared simple low-level features (e.g., orientation, color,..). Given that

targets  could  not  be  discriminated  from  distractors  from  simple  features,  it  is  possible  that

participants might have used a strategy based on high-level characteristics (i.e., templates based on

category-diagnostic object parts) because a lower-level strategy (i.e., templates based on low-level

features,  such as  orientation)  would  have  been  highly  ineffective  in  terms of  both  timing  and

accuracy. Importantly, such low-level strategy was not implausible: the results by Peelen and Kastner

(2011) showed that some participants did employ it, and furthermore, the behavioral performance

3 The notion of “category-diagnostic object parts” is associated to the idea of “feature detectors” (Evans and Treisman, 

2005) characterized by intermediate level representations useful for classification (Ullman et al., 2002).
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of  these  participants  was  poor  compared  to  those  adopting  a  high-level  strategy  (Peelen  and

Kastner, 2011). Therefore, it  remains to be established whether, in scenes where targets do not

share low-level features (orientation) with distractors, observers can engage search templates based

on low-level features. For example, if an observer had to search for a person in the desert or in a

field,  where  there  are  no  distractors  matching  the  vertical  orientation  of  a  person,  would  the

template  still  consist  of  category-diagnostic  parts,  or  low-level  features  (i.e.,  orientation)?  This

question will be addressed in Chapter 2. 

Related to the question of strategy adopted in real-world search tasks, is the question of

whether expecting a nearby target vs. a distant target leads to a modification of the size of the

category-based attentional template (which, hypothetically, could be characterized by a big-sized

representation for nearby targets and a small-sized representation for distant targets). Imagine that

you have to look for a friend who is on the beach far away, will your template represent a small

person, or this representation will be invariant to the expected distance? Chapter 3 will cover the

issue of the relative size of attentional templates in naturalistic visual search.

Figure 14. Schematic overview of the involvement of attentional templates in visual search, in temporal sequence (from

left to right) and based on different goals (different rows). Goals are prompted by words indicating the task-relevant

4 Figure 1 is adapted from Battistoni, E., Stein, T., and Peelen, M.V. (2017). Preparatory attention in visual cortex. Ann. N. 

Y. Acad. Sci. 1396, 92–107.
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Chapter 1: General Introduction

dimension (left column). Preparatory attentional templates are established and maintained until scene onset through the

activation of task-relevant representations in visual cortex (middle column). Visual processing is biased toward items that

match the attentional templates (right column).

4. Invariant object recognition and size-constancy

The visual search process ends when a target is selected and identified: after a global activation of

likely candidate objects,  spatially selective attention is  serially deployed to the location of each

candidate object in order to collect and bind their features into a representation for later recognition

(or  identification)  processes  (Wolfe  and  Cave,  1999;  Hochstein  &  Ahissar,  2002;  Wolfe,  2003;

Ahissar et al., 2009; Wolfe et al., 2011b). However, the visual perception of real-world objects and

scenes  is  never  static.  This  constant  flux  of  ever-changing  visual  information  implies  that  we

(almost) never see an object in the exact same position and with the exact same characteristics.

Nonetheless,  despite  of  the  different  signals  that  hit  the  retina,  we are  able  to  recognize  and

categorize objects in different conditions of lighting, occlusion and distance, quickly and effortlessly.

But how is this constant perception achieved?  This problem, known in the literature as  invariant

object recognition, has been one of the most important issues in vision science  (DiCarlo and Cox,

2007; DiCarlo et al., 2012; Gauthier and Tarr, 2016; Contini et al., 2017; Peelen and Downing,

2017). Despite all the research that has been done in the past 30 years, many questions still remain,

among which the central problem of invariance. Specifically, what are the neural mechanisms that

underlie  the  invariant  perception  of  objects  despite  changes  in  appearance  associated  with

variations of lighting, distance, view, and so on? 

A particular interesting theme within this field concerns the invariant perception of the size

of objects despite changes in distance. Specifically, even though the size of the image projected on

the retina by an object is inversely proportional to its distance, and therefore constantly changes as

we and the objects around us move, we perceive the object to be the same. In the literature, the

perceptual mechanism characterized by a rescaling of an object’s size as a function of distance is

known as size constancy (Sperandio and Chouinard, 2015), and it is fundamental in allowing us to

recognize an object despite the changes in retinal size that are associated with changes in distance.

In Chapter 5, I will investigate the temporal dynamics of size constancy in natural scenes

using an MEG decoding approach. Linking this to Chapter 4, which investigates the time course of

spatial attentional allocation onto target objects in natural scenes, it is plausible to hypothesize that

brain  activity  patterns  should  encode  information  on  the  size  of  the  target  before  allocating

attention  to  the  target  (since  target  selection  implies  at  least  a  coarse  form of  identification).

Therefore,  Chapter  5  will  address  the  question  of  the  temporal  evolution  of  size-constancy
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Chapter 1: General Introduction

mechanisms, and whether they appear before the time in which spatial attention is allocated onto

the target.

Notably, Chapter 3 is also linked to the topic of size-constancy: another way to think of the

question (i.e., whether the size of category-based preparatory templates changes as a function of

expected target’s distance) is whether attentional templates are characterized by size-invariance.

5. Conclusions

To summarize,  the  general  theme around which  the  thesis  is  centered  is  top-down attentional

mechanisms in natural scenes. I will address only briefly bottom-up attention in Chapter 4, but the

present  lack  of  in-depth  scrutiny does  not  intend  to  lessen  the  importance  in  everyday life  of

attentional capture by saliency-based mechanisms.

In Chapter 2 and 3 I will investigate the characteristics of attentional templates employed

during the preparatory phase of a naturalistic visual search task; Chapter 4 will address the time

course of spatial attention during a naturalistic visual search task using MEG decoding; Chapter 5

will explore the time course of size-constancy mechanisms in real-world scenes; finally, in Chapter 6

I will draw the conclusions, highlight points to improve and delineate some questions for future

research.

8



Chapter 2:

Investigating the influence of distractor context expectations on attentional

templates in natural scenes

1. Introduction

Daily-life environments are characterized by an uncountable amount of  visual information.  The

limited computational resources of our brain (Tsotsos, 1990) constrain the quantity of input that

can be processed at any given time, thus allowing us to not be overwhelmed and act appropriately

in the world. Attention is the key neural mechanism to these selective processes. It enables us to

efficiently prioritize  and select  only a  small  amount  of  information that  is  relevant  for  current

behavioral goals and ignore what is irrelevant and distracting. 

One method that has been largely employed to study attentional selection is the paradigm of

visual search (Treisman and Gelade, 1980; Wolfe et al., 1989; Treisman and Sato, 1990; Wolfe,

1994;  Cave,  1999;  Eimer,  2014).  In  this  framework,  the  concept  of  “attentional  template”  has

gained a pivotal role  (Duncan and Humphreys, 1989; Carlisle et al., 2011; Olivers et al., 2011;

Eimer, 2014; Battistoni et al., 2017).  When we determine something to look for, we establish an

“offline” top-down attentional template (also referred to as “search image”, “search template” or

“attentional set”), which can be conceived of as an internal representation of the sought-after object

(Duncan and Humphreys, 1989) and it is associated to increases of neuronal activity (in absence of

visual stimulation) in the areas coding for the attended attribute (for a review, see Battistoni et al.,

2017). When the visual stimulus appears, this pre-activated representation biases “online” visual

processing resources guiding attention to template-matching items, even involuntarily (Folk et al.,

1992,  1993;  Desimone and Duncan,  1995;  Folk and Remington,  1998;  Woodman et  al.,  2007;

Reeder and Peelen, 2013; Reeder et al., 2015a).

But what features define these internal templates? Towards what features is attention guided

to? At least two accounts have been proposed on this matter: a feature similarity account and a

relational account. Seemingly in contrast, they are not mutually exclusive and depending on the

task at hand, observers can change search strategy (Harris et al., 2013; Becker et al., 2014), and,

therefore, they can be reconciled. The  feature similarity account (or feature detector theory; Folk

and Remington,  1998)  proposes  that  attention is  based on and guided to  the  target’s  physical

feature values, increasing the response gain in neurons coding features similar to the sought-after
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Chapter 2: Context-based templates

target features (Treue and Martínez Trujillo, 1999; Martinez-Trujillo and Treue, 2004; Maunsell and

Treue, 2006; Anderson and Folk, 2010), which can be very specific (e.g., a particular shade of red;

Navalpakkam and Itti, 2006), or categorically broader (e.g., redness; Wolfe, 1994). Crucially, within

this  framework,  the  physical  features  defining  the  template  are  assumed to  be  represented  in

isolation from the characteristics of the surrounding context. Tuning attention to specific or broad

target feature values may be an efficient attentional selection strategy when the features of the

context in which the target will appear are unknown. But what if the features of the context are

known in advance to the start of the search task? In this case, it would be reasonable to think that a

more  efficient  selection  strategy  would  take  into  account  these  contextual  features,  and

consequently shape the attentional template accordingly, in a way that it will be most efficient for

target  detection.  This  strategy  is  at  the  core  of  the  second account  describing  the  contents  of

attentional templates, and is formalized by the theory of relational target template proposed first by

Becker  (Becker, 2010; Becker et al., 2010; Becker, 2013; Becker et al., 2013; Harris et al., 2013;

Becker, 2014; Becker et al., 2014; Bravo and Farid, 2016; Schönhammer et al., 2016; Geng et al.,

2017).  The  relational  account  postulates  that  attentional  guidance  and  stimulus  selection  are

determined by feature relationships. More specifically,  when the characteristics of the upcoming

search context are known, and the distractors are characterized by specific features, the template

will  be  based  on  the  relationship  between  the  features  of  the  target  and  the  features  of  the

distractors,  maximizing  their  difference.  For  example,  when  looking  for  an  orange  target  item

among yellow items, the template will consist of a representation coding for “redder”; whereas,

when searching for  an orange item among red distractors,  the template will  feature “yellower”

(Becker et al.,  2010). These results were recently extended to more complex stimuli and visual

search conditions (Bravo and Farid, 2016).

However, simplified displays such as those typically employed in visual search studies like

those  reviewed  above,  poorly  resemble  our  visual  experience  in  real  life.  The  scenes  that  we

encounter are usually cluttered with objects that share many low-level visual features, making it

difficult to distinguish targets from distractors based on basic characteristics like orientation, color,

or  simple  shapes.  Such  features  normally  vary  in  the  environment  as  a  function  of  lighting,

perspective, occlusion, and distance, further increasing the problem of defining and detecting an

object based on basic low-level features. Visual search in real life is most often performed at the

category-level of an object, where exemplars can be defined by a wide range of low-level features.

Despite this apparently insurmountable complexity,  studies have demonstrated that humans are

very skilled in detecting familiar object categories in natural scenes (Potter, 1976; Thorpe et al.,

              10
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1996; Li et al., 2002; Peelen and Kastner, 2014). The reasons for such efficiency are various. Visual

and  attention systems have  developed and  evolved  to  optimally  performs real-world  tasks  like

selecting objects in the environment (Barlow, 1961; Felsen and Dan, 2005; Wolfe et al., 2011b).

Real-world scenes provide a visual context that constrains not only the interpretation and low-level

features of objects, but also their possible location, by guiding attention to areas that are most likely

to contain the target  (Torralba et al., 2006; Wolfe et al., 2011b; Peelen and Kastner, 2014; Wolfe

and Horowitz, 2017). Consistent and familiar arrangements of objects lead to perceptual grouping

processes that facilitate target detection (Kaiser et  al.,  2014).  Lastly,  even though the low-level

features of the exemplars of a category can vary, at the same time exemplars share some category-

diagnostic features, upon which search templates are likely based (Reeder and Peelen, 2013).

Therefore,  despite the importance of studies employing basic stimuli,  which have allowed

fundamental  findings in the field of  visual  attention,  when considering all  the factors  that  are

unique to real-world scenes, it appears difficult to draw parallels between visual processes in basic

stimuli and visual processes in real scenes. 

In this study, we aimed to investigate whether context-based templates could be established in

naturalistic visual search tasks. More specifically, whether participants could adopt different search

strategies by adjusting the features of the category-based attentional template depending on the

expected distractor context. Previous studies on real-world search found that attentional templates

are implemented in a higher-level visual area known as object-selective cortex (OSC; Peelen and

Kastner,  2011),  that  they  likely  consist  of  category-diagnostic  object  parts,  and  tend  to  be

orientation-invariant (Reeder and Peelen, 2013). Interestingly, participants who based their search

strategy on a template consisting of low-level features, activating mostly low visual areas, tended to

perform poorly in the task (Peelen and Kastner, 2011; Reeder et al., 2015b). Therefore, from these

studies it  would appear that in real-world search observers  tend to adopt a template based on

specific high-level category-diagnostic features. However, the distractors’ context was not explicitly

manipulated, leaving open the possibility that observers can, in fact, adjust the template when given

the opportunity to form clear expectations about the characteristics of the distractors’ context. Since

the  scenes  contained  a  large  amount  and  variety  of  distractors,  observers  could  not  form

expectations  about  the  context,  and  because  the  target  could  not  be  found  with  a  low-level

template,  they  might  have  been  forced  to  adopt  a  high-level  category-based  template.  As  an

example, if an observer had to search for a person in the desert, a search strategy based on a high-

level template would be efficient, but would it not be much more efficient and economic (in terms

of cognitive resources expenditure) just looking for something vertical? Of course, such a low-level
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strategy would be detrimental if observers had to search for a person in a forest full of trees, which

would  match  the  low-level  template,  capture  attention,  and  slow  down  the  search  process.

Analogously, when searching for a car in a forest, a template representing “something horizontal”

might be efficient  as  well  as resources-saving.  Notwithstanding,  since such real-world tasks are

usually performed daily and humans are highly skilled at them, it is possible that observers do not

establish low-level templates because category-based templates are the default, automatic strategy

that has stem from experience, and switching to a low-level template would, actually, be more time

consuming and require a higher expense of cognitive resources.

In order to address whether, in a naturalistic visual search task, the characteristics of the

templates  could  be  shaped  by  expectations  on  the  upcoming  search  context,  we  run  two

experiments in which we manipulated the relation of target-distractors orientation (Experiment 1)

and the clutter of distractors (Experiment 2) in natural scenes. Importantly, a given target-distractor

relation was kept constant within a session in order to implicitly encourage participants to adopt a

specific template. In Experiment 1, one session was characterized by target and distractors with the

same  orientation  (“same-orientation”  session,  in  which  participants  looked  for  cars  among

horizontal distractors and for people among vertical distractors), and the other session had target

and distractors with different orientation (“different-orientation” session, in which they searched for

cars among vertical distractors and for people among horizontal distractors). In Experiment 2 we

also manipulated the clutter of distractors, by drastically decreasing the number of distractors in the

different-orientation session. We hypothesized that when the orientation of target and distractors

did not match (in the different-orientation session), the most efficient and economic (in terms of

cognitive resources) template would be based on low-level characteristics, such as the orientation of

the target (vertical for people, horizontal for cars). This strategy would be especially efficient in

Experiment 2, where the decreased number of distractors in the different-orientation session should

have further encouraged participants to instantiate a low-level  template.  When target-distractor

orientations did match (in the same-orientation session), we hypothesized that a low-level template

based on target’s orientation would be no longer efficient, because it would match the orientation of

the distractors. Thus, in this case, we expected participants to instantiate a higher-level template,

likely based on category-diagnostic object parts (Reeder and Peelen, 2013). To note, we did not

choose a full  two-by-two design because of practical  reasons (the number of trials  would have

become too large) and because we were specifically interested in comparing two conditions that we

thought would maximally differ in the type of template employed.

Importantly, in both experiments, on a subset of trials participants also performed a prime
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task,  where participants saw, instead of the scenes, car and person silhouettes (which could be

upright or rotated by 90°, and had to be ignored) and a dot appearing at the location of either

silhouette  (i.e.,  at  the  location  of  the  template-matching  silhouette  or  at  the  location  of  the

silhouette that did not match the attentional template). This task served to probe the characteristics

of the attentional template that was formed during the naturalistic visual search task.

We expected that the hypothesized pattern of search strategies (a low-level, orientation-based,

template in the different-orientation session, and a higher-level,  category-based, template in the

same-orientation session) would be reflected in a smaller (or absent, or reversed) validity1 effect in

the  rotated  silhouette  condition  in  the  different-orientation  session  (compared  to  the  same-

orientation  session).  Specifically,  we  thought  that  if  participants  adopted  a  low-level  template

(vertical for people, horizontal for cars) in the different-orientation session, then their attention

would be captured toward the rotated silhouette of the opposite category – which, because of its

rotation,  would  match  the  orientation-based  low-level  template.  In  other  words,  we  expected

attention  to  be  captured  by  the  orientation  of  the  silhouette,  rather  than  its  category,  in  the

different-orientation session.

2. Materials and methods

2.1. Participants

Forty undergraduate and graduate students  from the University of  Trento took part  in the two

experiments for monetary compensation or course credits.  Twenty participants were assigned to

Experiment 1 (4 males; aged 19-32 years, mean age M = 22.6, SD = 3.6 years). After a preliminary

inspection of their behavioral performance, one participant was removed from the analyses because

of the poor accuracy in the prime task (43%). Twenty different participants took part in Experiment

2 (2 males; aged 21-36 years, mean age M = 23.6, SD = 3.8 years). All participants had normal or

corrected-to-normal vision and provided written informed consent to take part in the experiments.

All participants received monetary compensation (€8/session). The experiments were conducted in

accordance  with  the  Declaration  of  Helsinki  and  approved  by  the  Ethical  Committee  of  the

University of Trento.

1 Valid trials were those in which the location of the dot corresponded to the location of the template-matching silhouette;

invalid trials were those in which the dot appeared at the location of the silhouette that did not match the template. In

Reeder & Peelen (2013), the “validity effect” was represented by shorter RTs in valid trials than in invalid trials.
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2.2. Stimuli

Stimuli were presented on a 19-inch Philips 109P4 monitor with a screen resolution of 1600 x 1200

pixels and a monitor frame rate (refresh frequency) of 85Hz. Stimulus presentation was controlled

with MATLAB 8.0 using the Psychtoolbox (Kleiner et al., 2007).

All stimuli were displayed on a grey background (RGB values: 148, 148, 148). The fixation point, a

black plus (“+”),  and letter cues (black 25-point uppercased Arial font),  were presented at the

center of the screen. The distance between the screen and eyes of participants was controlled by

using a chinrest positioned at 55 cm from the monitor.

Natural scenes were grey-scaled and reduced to 427 (horizontal) x 320 (vertical) pixels, subtending

10.1 x 7.5 degrees of visual angle. Silhouettes were 136 x 136 pixels black exemplars of cars and

people, subtending 3.2° of visual angle in height and width.

Masks had the same size of the scenes and were created by superimposing a naturalistic texture to

white noise generated at different spatial frequencies, resulting in grey-scaled textures.

The dot stimulus was a black circle with a diameter of 7.5 pixels (0.2° of visual angle).

Natural scenes, masks, silhouettes, and dots were placed at a distance of 40 pixels from fixation.

2.3. Scene stimuli (naturalistic visual search task)

A hundred and eight basic naturalistic scenes were selected from the web. These real-world pictures

depicted  outdoor  scenes  with  natural  surroundings  and  country  roads.  Each  basic  scene  was

manually  edited  using  the  image  processing  tool  GIMP  (https://www.gimp.org)  to  create  the

naturalistic scene stimuli. Starting from a basic scene, two types of scenes were created: one with

horizontally-oriented  distractors,  and  one  with  vertically-oriented  distractors.  Examples  of

horizontal  distractors  were  bushes,  benches,  picnic  tables,  vases,  guardrails,  fences,  rocks,

horizontally-oriented bird flocks, clouds, planes, boats, beach chairs. Examples of vertical distractors

were street lamps, traffic lights, road signs, trees, lighthouses, vertically-positioned surf boards. On

average, 7 distractors were added in a scene, and they were semantically consistent with the basic

scene.  From each of  these two scenes (one with horizontally-oriented distractors  and one with

vertically-oriented distractors), three further scenes were created: one with a person, one with a car,

and one with a person and a car. The exemplars of person and car were kept constant within a basic

scene, as well as their size. This was done to ensure the most control and validity over the stimuli

created, so as to avoid any possible confound in the stimuli. Hence, a total of 108 x 8 scenes were

created (864): for each basic scene, four scenes were created with horizontally-oriented distractors

(one empty, one with a car, one with a person, one with both a car and a person), and four scenes
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had vertically-oriented distractors (one empty, one with a car, one with a person, one with both a

car and a person). In order to meet the criteria of presenting a scene only once in the experiment, to

obtain the number of scenes required, the original 864 scenes were horizontally-mirrored to create

additional 864 novel scenes. The combination of session (same-orientation vs. different-orientation

of target and distractors) and scene type (mirrored vs. non-mirrored) was counterbalanced across

participants.

2.3.1. Experiment 1: “Distractors’ Orientation”

In the different-orientation session,  target and distractors  had different orientations:  car targets

were presented among vertically-oriented distractors,  and person targets were presented among

horizontally-oriented distractors. According to our hypothesis, such target-distractors configuration

should have driven participants to adopt a basic low-level template, that is a template representing

“something vertical” for people and a template representing “something horizontal” for cars. Our

intuition was that such search strategy would have been both efficient and less resource-consuming.

In the same-orientation session, target and distractors had the same orientation: car targets were

presented  among  horizontally-oriented  distractors,  and  person  targets  were  presented  among

vertically-oriented  distractors.  We  expected  that  in  this  target-distractors  setting,  a  low-level

template would have  been inefficient  and detrimental  to the performance  since  it  would have

captured attention  towards  the  distractors,  which  would  have  matched  the  low-level  template.

Thus, we hypothesized that, in the same-orientation session, participants would adopt a higher-level

template, likely based on category-diagnostic object parts.

2.3.2. Experiment 2: “Distractors’ Orientation and Clutter”

in Experiment 2 we manipulated two aspects of the distractor context: their features (horizontally-

vs. vertically- oriented), and their clutter (high vs. low clutter). Specifically, participants performed

a same-orientation high-clutter session, and a different-orientation low-clutter session. The aim of

this manipulation was to further prompt participants to adopt a low-level template in the different-

orientation low-clutter  session.  In the same-orientation high-clutter  session we used the  scenes

employed  in  Experiment  1  in  the  same-orientation  session,  which  had  been  created  since  the

beginning with many distractors (7 on average). This also provided the opportunity to replicate the

findings of Experiment 1. For the scenes of the different-orientation low-clutter session, new scenes

were  created by  drastically  reducing  the  number  of  distractors  in  the  scenes  employed  in  the

different-orientation session in Experiment 1 (leaving, on average, 3 distractors per scene).
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Figure 1. Examples of stimuli used in the naturalistic visual search tasks of the two experiments. In Experiment 1, the

orientation of distractors was manipulated. (a) In the different-orientation session, participants looked for people among

horizontally-oriented distractors (left scene) and looked for cars among vertically-oriented distractors (right scene). (b) In

the same-orientation session, they looked for people among vertically-oriented distractors (left scene) and looked for cars

among horizontally-oriented distractors (right scene). In Experiment 2 both distractors’ orientation and distractors’ clutter

were  manipulated.  (c)  In  the  different-orientation  low-clutter  session,  participants  searched  for  people  among  few

horizontally-oriented distractors (left scene) and searched for cars among few vertically-oriented distractors (right scene).

(d) In the same-orientation high clutter session, they searched for people among many vertically-oriented distractors (left

scene) and searched for cars among many horizontally-oriented distractors (right scene). 

2.4. Silhouette stimuli (prime task)

The  stimuli  used  in  the  prime  task  were  black  silhouettes  of  cars  and  people  (144  different

exemplars for each object category) on grey background (the same hue of the display in which the

stimuli appeared). Some of them came from a previous study (Reeder and Peelen, 2013), and some

were manually created with GIMP starting from isolated cars or people.
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Figure 2. Examples of stimuli used in the prime task. They comprised (a) a set of upright person silhouetted, (b) a set of

upright car silhouettes, (c) a set of 90°-rotated person silhouettes, and (d) a set of 90°-rotated car silhouettes.

2.5. Experimental procedure

Both experiments consisted of two sessions of 45 minutes each. Each participant took part in both

sessions on separate days (taking place within a week), and the order of the two sessions was

counterbalanced  across  participant  (i.e.,  the  same-orientation  session  was  the  first  one  for

participant 1 and the second one for participant 2; the different-orientation session was the second

one for participant 1 and the first one for participant 2; and so on). Each session consisted of 9

blocks of 64 trials each. In each block, the naturalistic visual search task made up three-fourths (i.e.,

48) of trials, to ensure that participants would actively prepare to detect the cued object category.

One-fourth of trials in a block (i.e., 16) had the prime task. In half of the trials with the prime task

(i.e., 8) the orientation of the silhouette was upright; in the other half (i.e., 8) the orientation of the

silhouettes was rotated clockwise by 90°. The order in which the visual search task and the prime

task appeared was randomized, therefore subjects could not predict what task they had to perform

on any subsequent trial. To ensure that participants could establish some form of template (and that

the prime task would not probe a non-existing representation), the first 3 trials in each block did
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not contain the prime task, but only the naturalistic visual search task. At the beginning of the first

session, each participant completed one practice block in order to familiarize with the tasks.

2.5.1. Naturalistic visual search task

In the visual search task, each trial started with a fixation point (500ms); which was replaced by a

letter cue (for English speakers, “C” for “car”, and “P” for “person”; for Italian speakers, “M” for

“macchina”, and “P” for “persona”; 500ms), followed by the fixation point (1000ms). Then, two

scenes were presented on either sides of fixation (67ms; the combination of the scenes in each trial

could be one of the following: (1) scene with car on the left, scene with person on the right; (2)

scene with person on the left, scene with car on the right; (3) scene with car and person on the left,

scene with no car and no person on the right; (4) scene with no car and no person on the left, scene

with car and person on the right)2. Notably, the two scenes had congruent distractor context (either

both vertical or both horizontal in Experiment 1; either both vertical with high clutter, vertical with

low clutter, horizontal with high clutter, or horizontal with low clutter in Experiment 2), and could

not be variations of the same basic scene. An empty screen appeared after the scenes, the duration

of which was manipulated with a staircase procedure: the duration of the empty screen in the first 5

trials in each block was fixed at 100ms; then, if the average accuracy in the visual search task (in

the current block, the average accuracy of the search trials up to that point) was higher than 75%,

the empty screen duration decreased by 20ms; whereas, if the accuracy was lower than 75%, the

duration of the empty screen was increased by 20ms. The minimum duration of the empty screen

could be 10ms, the maximum duration 300ms. This was done to ensure that the difficulty of the

search task was more or less balanced across the two sessions. After the empty screen, two masks

appeared at the location where the two scenes were presented (350ms); a fixation point followed

(1660ms), then the feedback (“+0” for incorrect responses; “+1” for correct responses; 500ms). In

these trials, the task of the participant was to indicate in which scene (left or right) the cued object

category was present (by pressing on the keyboard one of the two keys “z” or “m”, for left or right

target, respectively).

2.5.2. Prime task: trial sequence

The first events of the trials with the prime task matched the trials with the visual search task: they

started with a fixation point (500ms), followed by the letter cue (500ms) and the fixation point

2 The conditions (3) and (4) were added to ensure that the presence of an object category (e.g. a car) in one scene (e.g. 

the one to the left of the fixation point) did not imply the presence of the other object category (e.g., a person) in the 

other scene (i.e., the one to the right). This ensured that searching within a scene was exhaustive.
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(1000ms). Instead of the scenes, two silhouettes were presented on either sides of fixation: one

silhouette of a car on one side, and one silhouette of a person on the other side (67ms). A fixation

point was presented briefly (50ms), followed by the appearance of a dot on one side of fixation (at

the location of one of the two silhouettes, 100ms). A fixation point followed (1660ms), then the

feedback  (“+0”  for  incorrect  responses;  “+1”  for  correct  responses;  500ms).  In  this  task,

participants were instructed to ignore the silhouette and press a key to indicate whether the dot

appeared to the left or right of fixation (“z” for left, “m” for right”).

Figure 3. Schematic outline of the experimental procedure used in Experiment 1 and Experiment 2. Each block consisted

of 64 trials.  75% (¾ in each block)  of  trials  included a naturalistic  visual  search task,  where participants indicated

whether the cued target category was present in the scene to the left or right of fixation. 25% (¼ in each block)  of trials

consisted of a prime task, in which participants indicated whether the dot appeared to the left or right of the fixation

point. Half of the prime task trials had upright silhouettes (  in each block), the other half had 90°-rotated silhouettes (� �

in each block). The first sequence showing an example of prime task, with upright silhouettes, also illustrates an example

of valid trial: the dot appears at the location of the car silhouette (the category cued as search target at the beginning of

the trial is car). The second sequence of prime task, with rotates silhouettes, is also an example of invalid trial (the dot

appears at the location of the silhouette that does not match the cued target category).
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2.6. Analysis

First, we tested whether in the naturalistic visual search task there was a difference in behavioral

performance across the two sessions. Since in the same-orientation session (Experiment 1) and the

same-orientation high-clutter session (Experiment 2) the orientation of the distractors matched the

orientation of the targets, we hypothesized that finding the target in these circumstances would be

more  difficult  than  in  the  different-orientation  session  (Experiment  1)  and  in  the  different-

orientation low-clutter session (Experiment 2).

To  investigate  the  main  question  of  whether  expectations  about  the  distractors’  context

orientation could influence the characteristics of the attentional template, we analyzed RTs and

response  accuracy  in  the  prime  task  as  a  function  of  target-distractor  orientation  (different-

orientation session vs. same-orientation session for Experiment 1; different-orientation low-clutter

session vs. same-orientation high-clutter session for Experiment 2), silhouette orientation (upright

vs. rotated), and validity of dot position (valid vs. invalid trials). Valid trials were those in which the

dot appeared at the location of the template-matching silhouette; invalid trials were those in which

the dot appeared at the location of the silhouette that did not match the template (Fig. 3).

Non-given responses or too-slow responses (i.e., responses not given before the end of the fixation

screen lasting 1660ms) were considered incorrect responses. Incorrect responses were not included

in the analysis of RTs.

3. Results

3.1. Naturalistic Visual Search task results (Experiment 1 and 2)

To check whether  search difficulty in Experiment  1  and 2 was manipulated successfully  across

sessions, we analyzed the performance of participants in the naturalistic visual search task. Figure 4

illustrates RTs and response accuracy of the two sessions in each experiment.

In Experiment 1, the RTs of the different-orientation session were not significantly different

than the RTs of the same-orientation session (two-tailed t-test, t(18) = 1.4, p = 0.17, Cohen’s d =

0.07).  Response  accuracy  in  the  same-orientation  session  was  significantly  different  than  the

response accuracy in the different-orientation session (two-tailed t-test, t(18) = 3.4, p =< 0.003,

Cohen’s d = 0.11), with lower accuracy in the same-orientation session (mean = 71%, SD = 5%)

than in the different orientation session (mean = 74%, SD = 6%). 

In Experiment 2, in the same-orientation high-clutter session the RTs were not significantly

different than the RTs in the different-orientation low-clutter session (two-tailed t-test,  t(19) =
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2.02; p = 0.057, Cohen’s d = 0.17). Response accuracy in the same-orientation high-clutter session

was significantly different than the accuracy in the different-orientation low-clutter session (two-

tailed t-test, t(19) = 9.82; p < 0.001,  Cohen’s d  = 0.33), with higher accuracy in the different-

orientation low-clutter session (mean = 78%, SD = 4%) than in the same-orientation high-clutter

session (mean = 71%, SD = 5%).

Figure 4. Results of the naturalistic visual search task in Experiment 1 and Experiment 2. Panel (a) and (b) show RTs and

response accuracy in Experiment 1. Panel (c) and (d) illustrate RTs and response accuracy in Experiment 2. Bars represent

the mean across subjects; error bars represent within-subjects SEM.

3.2. Prime task results in Experiment 1 (“distractors’ orientation”)

In  order  to  investigate  whether  attentional  templates  were  influenced  by  expectations  on  the

orientation of distractors in scenes, we analyzed data in the prime task trials as a function of session

(target-distractor orientation), silhouette orientation, and validity (Fig. 5). We performed a repeated

measures  ANOVA with factors:  (1)  target-distractor  orientation (different-orientation session vs.
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same-orientation session), (2) silhouette orientation (upright vs. rotated), and (3) validity (valid vs.

invalid), on both RTs and response accuracy.

The three-way ANOVA on RTs revealed a significant main effect of validity (F(1,18) = 23.5; p

< 0.001, Cohen’s d = 0.1),  where RTs in valid trials (mean = 424ms, SD = 44ms) were shorter

than RTs in invalid trials (mean = 438ms, SD = 45ms). No effect of target-distractor orientation

(F(1,18) = 0.9), no effect of silhouette orientation (F(1,18) = 1.6), and no interactions were found.

The three-way ANOVA on response  accuracy  revealed  a  significant  main effect  of  target-

distractor orientation (F(1,18) = 14.7; p < 0.001, Cohen’s d = 0.08), with lower accuracy in the

different-orientation session (mean = 93%, SD = 5%) than in the same-orientation session (mean

accuracy = 95%, SD = 5%); a significant main effect of silhouette orientation (F(1,18) = 8.7; p <

0.01, Cohen’s d = 0.08), with higher accuracy in the rotated silhouette condition (mean = 95%, SD

= 5%) than in the upright silhouette condition (mean = 93%, SD = 6%); and a significant main

effect of validity (F(1,18) = 10.2; p < 0.01, Cohen’s d = 0.17), with higher accuracy in the valid

condition (mean = 96%, SD = 4%) than in the invalid condition (mean = 92%, SD = 8%). No

interactions were present.

Figure 5. Results of the prime task in Experiment 1. Panel (a) illustrates RTs; panel (b) shows response accuracy. Circles

represent means, error bars are illustrated as +1 and -1 within-subjects SEM with respect to the mean. In the legend,

“Sil.” is the abbreviation of “Silhouette”, “Orient.” is the abbreviation of “Orientation”.

3.3. Prime task results in Experiment 2 (“distractors’ orientation and clutter”)
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In  Experiment  2,  in  order  to  investigate  whether  attentional  templates  were  influenced  by

expectations on the orientation and clutter of distractors in scenes, we analyzed data in the prime

task trials as a function of session (target-distractor orientation), silhouette orientation, and validity

(Fig. 6). We performed a repeated measures ANOVA with factors: (1) target-distractor orientation

and clutter (different-orientation low-clutter session vs. same-orientation high-clutter session), (2)

silhouette orientation (upright vs. rotated), and (3) validity (valid vs. invalid), on both RTs and

response accuracy.

The three-way ANOVA on RTs revealed a significant main validity effect (F(1,19) = 14.12; p <

0.01, Cohen’s d = 0.09), with shorter RTs in the valid condition (mean = 398ms, SD = 67ms) than

in the invalid condition (mean = 424ms,  SD = 80ms);  and a significant interaction between

silhouette orientation and validity (F(1,19) = 5.95; p < 0.05, Cohen’s d = 0.12). Post-hoc t-tests

revealed that the validity effect (invalid-valid) was significant for both upright (two-tailed t-test,

t(19) = 3.69, p < 0.001, corrected for multiple comparisons) and rotated (two-tailed t-test, t(19) =

3.21, p < 0.01, corrected for multiple comparisons) silhouettes, but it was larger in the upright

silhouette condition than in the rotated silhouette condition (two-tailed t-test, t(19) = 2.44, p <

0.05). No main effect of target-distractor orientation and clutter (F(1,19) = 0.13), no main effect of

silhouette orientation (F(1,19) = 0.16),  and no other  interactions were found.  The ANOVA on

response accuracy showed a significant main effect of silhouette orientation (F(1,19) = 5.35; p <

0.05, Cohen’s d = 0.05), with higher accuracy in the rotated silhouette condition (mean = 93%, SD

= 5%) than in the upright silhouette condition (mean = 92%, SD = 6%); and a significant main

effect of validity (F(1,19) = 29.58; p < 0.0001, Cohen’s d = 0.33), where response accuracy was

higher in the valid condition (mean = 97%, SD = 3%) than in the invalid condition (mean = 88%,

SD = 8%). No main effect of target-distractor orientation and clutter (F(1,19) = 2.63), and no

interactions were found.
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Figure 6. Results of the prime task in Experiment 2. Panel (a) illustrates RTs; panel (b) shows response accuracy. Circles

represent means, error bars are illustrated as +1 and -1 within-subjects SEM with respect to the mean. In the legend,

“Sil.”  is  the abbreviation of  “Silhouette”,  “Orient.”  is  the abbreviation of “Orientation”,  “Clut.”  is  the abbreviation of

“Clutter”.

4. Discussion

In  this  study  we  tried  to  determine  whether  preparatory  attentional  templates  adopted  in

naturalistic visual search tasks could be adjusted based on expectations on the upcoming distractors’

orientation (Experiment 1) and distractors’ orientation and clutter (Experiment 2) in scenes. 

The results of the search task show that in both experiments participants tended to perform

better in the session in which the orientation of target and distractors did not match, as shown by

the response accuracy being higher in the different-orientation session (in Experiment 1, compared

to  the  same-orientation session)  and different-orientation low-clutter  session  (in  Experiment  2,

compared  to  the  same-orientation  high-clutter  session).  Small  effect  sizes  characterized  both

experiments, therefore we do not state that the different-orientation sessions were easier. It is likely

that  the  staircase  procedure,  introduced  to  roughly  homogenize  the  difficulty  across  sessions,

contributed to such small effect sizes. To note, however, the effect size in Experiment 2 was slightly

larger than in Experiment 1: this suggests the possibility that a lower amount of distractors in the

different-orientation low-clutter session facilitated target detection.

Concerning the prime task, in both experiments, we found a validity effect both in reaction
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times (shorter RTs in the valid condition than RTs in the invalid condition) and response accuracy

(higher in the valid condition), therefore replicating the results on the basic “attentional capture

effect”  found  by  Reeder  and  Peelen  (2013)  and  Reeder  et  al.  (2015a).  Interestingly,  in  both

experiments we find that participants were more accurate in detecting the location of the dot when

the silhouettes were rotated, compared to when they were upright. This might suggest that, overall,

in the rotated silhouette condition attention was not captured as much as in the upright silhouette

condition, allowing participants to make more accurate responses. In support of this interpretation,

in the RTs of Experiment 2 we find an interaction between silhouette orientation and validity, with a

larger validity effect in the upright condition than in the rotated condition. It is important to note

that since this  interaction was not  present in Experiment  1,  we cannot  conclude with absolute

certainty that rotated silhouettes captured attention to a less degree than upright silhouettes.

Taken together, these results suggest that observers tend to adopt a high-level category-based

template when searching for cars and people in scenes, even in situations where adopting low-level

templates might seem the most efficient and resources-saving strategy3. Therefore, the present study

indicates  that  in  naturalistic  visual  search,  a  template  based  on  features  similarity  (Folk  &

Remington,  1998)  is  preferred  to  a  relational  target  template  that  is  shaped  by  the  expected

distractor’s context (Becker, 2010).

Two possible explanations are available to interpret this pattern of results. First, it is possible

that,  by default,  observers always establish a category-based template,  because of the extensive

experience  gained  throughout  life.  Being  highly  skilled  at  this,  if  the  high-level  strategy  was

automatic,  then  switching  to  a  different  strategy  based  on  low-level  characteristics,  even  if

apparently effortless per se, might actually be more time consuming and demanding. On the other

hand, it is also possible that the design of our study was not capable of eliciting or detecting a

relational template strategy. For example, it is possible that our stimuli did not lead participants to

form a specific template. In order to check this issue, we run an analysis on natural scenes (see

Supplementary Materials) in which we tested the “verticality” and “horizontality” of each scene by

measuring their directional gradients. We found that scenes with vertical distractors and scenes with

horizontal distractors differed in terms of both their overall horizontality and verticality. However, it

is also important to note that given the complexity of natural scenes, the analysis of gradients might

be inappropriate, and a more complex analysis would be better suited. Alternatively, there might

have been other variables linked to the scenes that we not took into account and that could explain

3 However, there is evidence that more specific templates are better in guiding search than more broader templates (Wolfe

et al., 2004; Vickery et al., 2005), and that specific templates require less attentional resources.
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the results. For example, it is possible that by making the search context “extreme” (e.g. desert vs.

forest  when  searching  for  people),  participants  might  have  more  easily  adopted  a  low-level

template.  Furthermore,  there  is  the  possibility  that  simply  participants  did  not  have  enough

experience with our scenes and time to develop a relational template. Another potential flaw of the

design is that we looked for a modulation of an effect that is already very subtle: the difference in

RTs between valid and invalid trials is quite small, even if very consistent across subjects. Therefore,

it might be that by employing a different approach, a relational template in naturalistic search could

be detectable.

Studies  on  visual  search  have  postulated  that  a  mechanism  known  as  “visual  marking”

(Watson & Humphreys, 1997) is actively and flexibly adopted to ignore old (already inspected)

items, through top-down attentional inhibition mechanisms. In general, within this framework, one

could  consider  expected  items  to  gain  the  status  of  “old”  items,  and  therefore  to  be  actively

deprioritized. The current study cannot disentangle whether participants were able to form specific

expectations concerning the distractor’s context, and therefore it is not possible to state whether

visual marking contributed to the results. Further research would be needed to investigate whether

visual marking operates in such complex natural scenes, and whether such mechanism is influenced

by the orientation and clutter of distractors.

In conclusion, our results suggest that in naturalistic visual search, observers prefer to adopt a

strategy based on high-level, category-based template, even when the instantiation of a low-level

template would seem more advantageous. However,  our study is  not conclusive on this matter,

because other factors might have contributed to the absence of the hypothesized effect.
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5. Supplementary Materials

We  run  a  control  analysis  on  natural  scenes  in  order  to  check  whether  we  manipulated  the

orientation of the distractors successfully. Specifically, we looked at whether natural scenes with

vertical distractors had more verticality than natural scenes with horizontal distractors, and  vice

versa.

To this end, we calculated the directional gradients (Gx for x-direction, and Gy for y-direction) for

each scene with vertical  distractors  (but  no targets;  n = 108)  and each scene  with horizontal

distractors (but no targets; n = 108). Then, for each scene, a “verticality” measure was defined as

the ratio of the y-gradient to the x-gradient (Gy/Gx), and a “horizontality” measure as the ratio of

the x-gradient to the y-gradient (Gx/Gy).

Statistics were then computed to test whether scenes with vertical distractors had more verticality

than scenes with horizontal distractors, and whether scenes with horizontal distractors had more

horizontality than scenes with vertical distractors.

A one-tailed t-test revealed that scenes with vertical distractors had more verticality (t(107) = 4.99,

p < 0.0001); however,  scenes with horizontal  distractors  did not  have more horizontality  than

scenes with vertical distractors (t(107) = 0.65, p = 0.25).
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On the mechanisms of size constancy in natural vision: are attentional

templates influenced by expected target distance?

1. Introduction

In everyday life, as we and the objects around us move, the image that is projected on the retina

continuously changes. Despite this constant flux, we perceive stability in the world around us. One

of the fundamental  neural mechanism allowing this stability is perceptual size constancy (for a

review, see Sperandio and Chouinard, 2015). This process operates by rescaling the size of an object

as a function of its  distance, enabling us to experience familiar objects as having constant size

regardless of their distance and their retinal size. For example, when we watch a train departing

from a station, even though its retinal size decreases, we do not perceive it as getting smaller, just

more distant (for a more thorough discussion on the size-constancy mechanisms, see Chapter 5).

Interestingly, behavioral studies have shown that when we search for objects in scenes, we

take into account their likely relative retinal size (Eckstein et al., 2017; Wolfe, 2017). Specifically,

with a quick glance at a scene, the visual system can extract contextual information to infer the

likely size of the target in relation to other objects (their size and position) and other cues such as

depth, and guide attention to possible target objects that match the appropriate computed size. In

their  study,  Eckstein  et  al.  (2017) found that  participants  often missed targets  whose  size was

inconsistent with the rest of the scene, even when such targets were very large and salient. This

result indicates that, when searching for objects in scenes, the brain prioritizes those items that are

at a spatial scale that is consistent with the surrounding context. They claimed that this strategy

allowed to  decrease  false  positives  during search,  that  is,  to rapidly  discard those objects  that

visually resembled the target but were inappropriately sized. In line with this proposal, Sherman et

al. (2011) found that “depth guidance” in scenes could reduce the set of candidate targets based on

objects’  relative  size  (Sherman  et  al.,  2011).  In  sum,  during  real-world  visual  search  tasks,  it

appears that we do not rely our search on an absolute, invariant representation of perceived size,

but on a representation whose size is relative to the other objects in the scene.

These findings seem to be at odds with the evidence that the visual system preferentially

represents the perceived size of objects (for a brief review, see Chouinard and Ivanowich, 2014),

and more generally with size-constancy. How can be they reconciled? It is possible that the brain

flexibly  prioritizes  objects  according  to  their  retinal  size,  while  concurrently  representing  their
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perceived size. But when,  during the process of search, the size-invariant stored representation is

replaced by a  relative-size representation? Could it  be during the preparatory phase,  given the

appropriate  circumstances  (e.g.  expectations  about  target’s  distance)?  From  several  studies

investigating  the  characteristics  of  attentional  templates,  we  now know that  templates  can  be

flexibly adjusted based on target-nontarget feature relations and expectations about the upcoming

search context to optimize the selection process  (Becker, 2010; Becker et al., 2010; Becker, 2013;

Becker et al., 2013; Harris et al., 2013; Becker, 2014; Becker et al., 2014; Bravo and Farid, 2016;

Schönhammer  et  al.,  2016;  Geng  et  al.,  2017).  So,  is  it  possible  that  the  size  of  preparatory

attentional templates is shaped by expected target distance in scenes? Or are they characterized by

size invariance, reflecting higher-order object  representations in ventral ventral occipitotemporal

cortex? In other words, do attentional templates represent an object’s perceived size or retinal size?

The two outcomes are equally plausible, and mutually exclusive. On one hand, it is possible that the

size of templates is influenced by the expected target distance: if we expect distant targets the

template could have a smaller size relative to when we expect near targets,  in which case the

template could be larger. This outcome would be in accordance with the suggestion by Eckstein et

al. (2017), according to which a plausible brain mechanism for the context-target’s size strategy

could be reflected in baseline increases of those neurons that are tuned to the likely target sizes

(that is, in preparatory attentional mechanisms; for a review, see Battistoni et al., 2017). On the

other hand, it is possible that the size of templates remains unchanged by the expected target’s

distance. In support of this outcome, some studies have found that templates are characterized by

some invariance, specifically concerning object’s orientation (Reeder and Peelen, 2013), and size

(Bravo and Farid, 2009). Since invariance might extend to size information, it is possible that size

constancy is present already at the level of preparatory attentional templates, which would be in

line with the idea that preparatory templates reflect higher-order object representations.

In  this  study,  we  sought  to  determine  whether  the  size  of  attentional  templates  was

influenced by expected target distance-size1. Participants searched for cars and people in natural

scenes; crucially, these targets had either a big size and were positioned in the foreground (near), or

had a  small  size and were  positioned in the  background (distant).  Participants  performed two

different sessions: in one, only near-big targets were presented; in the other one, only distant-small

targets were shown. This manipulation was intended to lead them to form expectations about the

1 I will refer to “target distance-size” because an object’s distance and retinal size are inversely proportional, and thus

cannot be disentangled: as the distance between the eyes and the object increases,  its  retinal  size decreases.  Unless

specified, when I will use the word “size”, I will refer to “retinal size”.
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distance and size of  the targets.  The size of  attentional  templates was probed by having them

perform, on a subset of trials, a prime task in which small or big silhouettes of cars and people were

presented. Participants were instructed to ignore these silhouettes and to detect a dot that could be

presented at  the location of  either silhouette  (Fig.  3).  This paradigm,  similarly to the previous

chapter,  was  adapted  from  studies  showing  that  participants  were  faster  at  detecting  a  dot

presented at the position of the template-matching silhouette because their attention was captured

by it (Reeder and Peelen, 2013; Reeder et al., 2015a). Therefore, concerning the current study, if

the size of attentional templates was influenced by expected target’s distance-size, then participants

would be faster in detecting a dot that appeared at the location of the silhouette whose category

matched the target template and whose size was consistent to the expected target size. To note,

however, is that not finding such effect would not imply that the template is size invariant: the

current study was designed to investigate whether attentional templates coded target size, but not

whether they were size invariant. Therefore, if the expected results will not be observed, further

study will be needed to determine whether templates are characterized by size invariance.

2. Materials and methods

2.1. Participants

Thirty healthy undergraduate and graduate students from the University of Trento participated in

the experiment. All participants (25 women; aged 19-40 years, mean age M = 23.3 years, SD = 3.8

years) had normal or corrected-to-normal vision and provided written informed consent to take part

in  the  study.  Twenty-seven  participants  received  monetary  compensation  (€8/session);  three

participants  received  course  credits.  The  experiment  was  conducted  in  accordance  with  the

Declaration of Helsinki and approved by the Ethical Committee of the University of Trento.

2.2. Stimuli

Stimuli were presented on a 19-inch Philips 109P4 monitor with a screen resolution of 1024 x 768

pixels and a monitor frame rate (refresh frequency) of 100Hz. Stimulus presentation was controlled

with MATLAB 8.0 using the Psychtoolbox (Kleiner et al., 2007).

All stimuli were displayed on a grey background (RGB values: 148, 148, 148). The fixation point, a

black plus (“+”), and letter cues (black 25-point uppercased Arial  font),  were presented at  the

center of the screen. The distance between the screen and eyes of participants was controlled by

using a chinrest positioned at 55 cm from the monitor.

30



Chapter 3: expected target distance and template size

Natural  scenes  were  grey-scaled  and  reduced  to  427  (horizontal)  x  320  (vertical)  pixels  (the

original  resolution  was  640  x  480,  then  divided  by  1.5;  640/1.5  =  427,  480/1.5  =  320),

subtending 15.8 x 11.7 degrees of visual angle. 

Silhouettes were black exemplars of cars and people on grey background (see Section 2.4. for more

details). Masks had the same size of the scenes and were created by superimposing a naturalistic

texture to white noise generated at different spatial frequencies, resulting in grey-scaled textures.

The dot stimulus was a black circle with a diameter of 7.5 pixels (0.3° of visual angle).

Natural scenes, masks, silhouettes, and dots were placed at a distance of 40 pixels from fixation.

2.3. Scene stimuli (naturalistic visual search task)

Three hundred seventy-eight scenes were selected from stimuli used in previous experiments and

from  Google  Images.  One  hundred  sixty-two  scenes  had  targets  in  the  foreground/near,  and

therefore they had big sizes: 54 scenes with cars, 54 scenes with people, 54 scenes with cars and

people. One hundred sixty-two scenes had targets in the background/distant, and therefore they

had small sizes: 54 scenes with cars, 54 scenes with people, 54 scenes with cars and people. Fifty-

four scenes without cars or people were also selected. In order to increase the number of available

scenes, each of these 378 scenes was horizontally-mirrored to create additional 378 novel scenes,

and for each scene a copy was created, for a total of 1512 scenes. The scenes with near/big targets

(648) were used in the Near Targets session, the scenes with distant/small targets (648) were used

in the Distant Targets session, and the scenes without cars or people (216) were used in both the

Near Targets session and in the Distant Targets session. Therefore, in each session a total of 864

scenes was used.

To ensure the validity of this manipulation, we measured the size of the target in each scene

(quantified with the number of pixels on the vertical axis for person targets and on the horizontal

axis for car targets), so that we were certain that the biggest target in the Distant Targets session

was smaller than the smallest target in the Near Targets session. Figure 1 shows examples of scenes

used in this task.
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Figure 1. Examples of scene stimuli used in the naturalistic visual search task. (a) In the Near Targets session, targets in

scenes had a big size and were generally located in the foreground. (b) In the Distant Targets session, targets had a small

size and usually situated in the background.

2.4. Silhouette stimuli (prime task)

The stimuli used in the prime task were black silhouettes of cars and people on grey background.

For each object category (car, person) and size (small, big), 144 different exemplars were selected,

for a total of 576 silhouettes. Silhouettes were selected among those used in a previous study, and

some were created with GIMP (https://www.gimp.org) starting from isolated exemplars of cars and

people found in the Internet. These silhouettes were then manually edited with GIMP and MATLAB

in order to match the average size of cars and people in scenes. In order to fulfil this, the size of all

car and person targets in scenes was measured; specifically, pixels on the y-axis for persons and

pixels on the x-axis for cars. The average size of big person targets was 360 pixels on the y-axis

(mean: mean y-px in “person near big” scene, and mean of y-px of person in “car+person near big”

scene), the average size of small person targets was 78 y-pixels (mean: mean y-px in “person far

small” scene, and mean of y-px of person in “car+person far small” scene), of big car targets was

431 x-pixels (mean: mean x-px in “car near big” scene, and mean of x-px of car in “car+person near

big” scene), and of small car targets was 84 x-pixels (mean: mean x-px in “car far small” scene, and

mean of x-px of car in “car+person far small” scene). The size of the silhouettes was then adapted

to approximately match these sizes, which measurement was 362 y-pixels for big person silhouettes,

79 y-pixels for small person silhouettes, 438 x-pixels for big car silhouettes, and 101 x-pixels for

small  car  silhouettes.  to create the final  silhouette  stimuli,  these black silhouettes  were placed

within a rectangular grey background (RGB values: 148, 148, 148) with a resolution 640 x 480

pixels  (not  altering  the  size  of  the  silhouettes).  Silhouette  stimuli  were  then  reduced  to  320

(=640/2)  x  192  (=480/2.5)  pixels  to  approximately  match  the  size  of  the  scenes.  Figure  2

illustrates some examples of silhouette stimuli.
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Figure 2. Examples of silhouette stimuli used in the prime task. (a) Big person silhouette; (b) big car silhouette; (c) small

person silhouette; (d) small car silhouette.

2.5. Experimental procedure

The experiment consisted of two sessions of  45 minutes each,  a “Near Targets” and a “Distant

Targets” session. Each participant completed both sessions on separate days (the second session was

completed within a week from the first session). The order of the session was counterbalanced

across participants, so that even participants performed first the Distant Targets session and then

the Near Targets session, and odd participants completed the Near Targets session as first and the

Distant Targets session as second. Each session consisted of 9 blocks of 64 trials each. In each block,

the  naturalistic  visual  search  task  made  up  three-fourths  (i.e.,  48)  of  trials,  to  ensure  that

participants would actively prepare to detect the cued object category. One-fourth of trials in a block

(i.e., 16) had the prime task. In half of the trials with the prime task (i.e., 8) the silhouettes were

small; in the other half (i.e., 8) the silhouettes were big. The order in which the visual search task

and the prime task appeared was randomized, therefore subjects could not predict what task they

had to perform on any subsequent trial. To ensure that participants could establish some form of

template (and that the prime task would not probe a non-existing representation), the first 3 trials

in each block did not contain the prime task, but only the naturalistic visual search task. At the
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beginning of the first session, each participant completed one practice block in order to familiarize

with the tasks.

2.5.1. Naturalistic visual search task

In the visual search task, each trial started with a fixation point (500ms); which was replaced by a

letter cue (for English speakers, “C” for “car”, and “P” for “person”; for Italian speakers, “M” for

“macchina”, and “P” for “persona”; 500ms), followed by the fixation point (1000ms). Then, two

scenes were presented on either sides of fixation (67ms; the combination of the scenes in each trial

could be one of the following: (1) scene with car on the left, scene with person on the right; (2)

scene with person on the left, scene with car on the right; (3) scene with car and person on the left,

scene with no car and no person on the right; (4) scene with no car and no person on the left, scene

with car and person on the right). The two scenes could not be variations (i.e., mirrored-versions or

copies) of the same scene. An empty screen appeared after the scenes, the duration of which was

manipulated with a staircase procedure: the duration of the empty screen in the first 5 trials in each

block was fixed at 100ms; then, if the average accuracy in the visual search task (in the current

block, the average accuracy of the search trials up to that point) was higher than 75%, the empty

screen duration decreased by 20ms; whereas, if the accuracy was lower than 75%, the duration of

the empty screen was increased by 20ms. The minimum duration of the empty screen could be

10ms, the maximum duration 300ms. This was done to ensure that the difficulty of the search task

was more or less balanced across the two sessions. After the empty screen, two masks appeared at

the location where the two scenes were presented (350ms); a fixation point followed (1660ms),

then the feedback (“+0” for incorrect responses; “+1” for correct responses; 500ms). The task of

the participant was to indicate in which scene (left or right) the cued object category was present

(by pressing on the keyboard one of the two keys “z” or “m”, for left or right target, respectively).

2.5.2. Prime task: trial sequence

The first events of the trials with the prime task matched the trials with the visual search task: they

started with a fixation point (500ms), followed by the letter cue (500ms) and the fixation point

(1000ms). Instead of the scenes, two silhouettes were presented on either sides of fixation: one

silhouette of a car on one side, and one silhouette of a person on the other side (67ms). The two

silhouettes had congruent size (i.e., either both big or both small). A fixation point was presented

briefly (50ms), followed by the appearance of a dot on one side of fixation (at the location of one of

the two silhouettes,  100ms).  A  fixation point  followed (1660ms),  then the feedback  (“+0” for
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incorrect responses; “+1” for correct responses; 500ms). Participants were instructed to ignore the

silhouette and press a key to indicate whether the dot appeared to the left or right of fixation (“z”

for left, “m” for right”).

Figure 3. Schematic outline of the experimental procedure. Each block consisted of 64 trials. 75% (¾ in each block) of

trials included a naturalistic visual search task, where participants indicated whether the cued target category was present

in the scene to the left or right of fixation. 25% (¼ in each block)  of trials consisted of a prime task, in which participants

indicated whether the dot  appeared to  the left  or  right  of  the  fixation point.  Half  of  the prime task  trials  had big

silhouettes (  in each block), the other half had small silhouettes (  in each block).� �

2.6. Analysis

First, we analyzed RTs and response accuracy from the naturalistic visual search task to test whether

there was a difference in performance between the Near Targets session and the Distant Targets

session. We expected participants to perform better in the Near Targets session because targets were

bigger in size (compared to the Distant Targets session) and in the foreground (as opposed to the
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background in the Distant Targets session), and hence likely to be more easily detected. In the RTs

analysis, only trials with correct responses were included.

Next,  to  address  the  main  question  of  whether  expectations  about  the  distance-size  of

targets  influences  the  characteristics  (i.e.,  size)  of  attentional  templates,  we  analyzed  RTs  and

response accuracy from prime task trials. Data was analyzed as a function of (1) validity and (2)

consistency. The valid condition consisted of trials in which the dot appeared at the location of the

silhouette whose category matched the target template; the invalid condition consisted of trials in

which  the  dot  appeared at  the  opposite  location  (i.e.,  at  the  location  of  the  silhouette  whose

category  did  not  match  the  template).  The  consistent  condition  comprised  trials  in  which  big

silhouettes appeared in the near targets session and small silhouettes appeared in the distant targets

session (i.e., silhouettes and targets had congruent size); RTs and accuracy was averaged across the

conditions  near  target  -  big  silhouette  and  distant  target  -  small  silhouette.  The  inconsistent

condition was made up of trials in which big silhouettes appeared in the distant targets session and

small silhouettes appeared in the near targets session (i.e., silhouettes and targets had incongruent

size); RTs and accuracy was averaged across the conditions near target - small silhouette and distant

target - big silhouette. Figure 4 shows examples of the four conditions. Non-given responses or too-

slow responses (i.e., responses not given before the end of the fixation screen lasting 1660ms) were

considered as incorrect. Incorrect responses were not included in the analysis of RTs. 

In the current  study,  if  participants  adopt  a  template  whose  size  is  congruent  with  the

expected target distance-size, we expect an interaction between validity and consistency in both RTs

and response accuracy: we predict a smaller validity effect in the inconsistent size condition than in

the consistent size condition because attention would be captured to a less degree to silhouettes

whose size is inconsistent with the expected target size, allowing them to be more accurate and

therefore showing a smaller difference in accuracy between invalid and valid trials.
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Figure 4. Examples of the four conditions.

3. Results

3.1. Naturalistic Visual Search task

A two-tailed t-test on the RTs in the distant targets session (mean = 622 ms, SD = 105 ms) and RTs

in  the  near  targets  session  (mean  =  559  ms,  SD  =  96  ms)  revealed  that  participants  were

significantly slower in the distant targets session than in the near targets session (t(29) = 3.25, p <

0.01, Cohen’s d = 0.20). A two-tailed t-test on response accuracy in the distant targets session

(mean = 74.5%, SD = 6.5%) and in the near targets session (mean = 87.9%, SD = 4.2%) showed

that participants were significantly more accurate in the near targets session (t(29) = 13.38, p <

0.0001, Cohen’s d = 0.58). Figure 5 illustrates the results.
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Figure 5. Results of the naturalistic visual search task. (a) mean RTs and (b) mean response accuracy; error bars represent

within-subjects SEM.

3.2. Prime task

To test whether the size of attentional templates changed as a function of expected target distance-

size, we performed a two-way repeated-measures ANOVA on both RTs and response accuracy, with

factors (1) validity of dot position (valid vs. invalid) and (2) consistency of silhouette’s and target’s

size (consistent vs. inconsistent). The ANOVA on RTs revealed a significant main effect of validity

(F(1,29) = 73.12, p < 0.0001; Cohen’s d = 0.15), with shorter RTs in the valid condition (mean =

380ms, SD = 50ms) than in the invalid condition (mean = 410ms, SD = 50ms). There was no

main effect of consistency (F(1,29) = 0.94), and no interaction between consistency and validity

(F(1,29) = 1.09). The ANOVA on response accuracy revealed a significant main effect of validity

(F(1,29) = 38.91, p < 0001, Cohen’s d = 0.34), with higher accuracy in the valid condition (mean

= 98%, SD = 3%) than in the invalid condition (mean = 90%, SD = 8%).  It  also revealed a

significant main effect of consistency (F(1,29) = 9.50, p < 0.01, Cohen’s d = 0.05), with higher

accuracy in the inconsistent condition (mean = 95%, SD = 5%)  than in the consistent condition

(mean  = 93.7%,  SD = 5.7%).  A significant  interaction  between validity  and  consistency  was

present (F(1,29) = 9.88, p < 0.01, Cohen’s d = 0.07), where there was a bigger difference between

valid and invalid conditions in the consistent condition than in the inconsistent condition (two-

tailed t-test, t(29) = 3.14, p < 0.01). Figure 6 illustrates RTs and response accuracy of the four

conditions.
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Figure 6. Results of the prime task: (a) Reaction times (RTs), (b) response accuracy. Circles represent means, error bars

are illustrated as +-1 within-subjects SEM with respect to the mean.

4. Discussion

This study aimed to determine whether the size of attentional templates was influenced by expected

target’s distance-size in scenes. On the majority of trials, participants performed a naturalistic search

task  in  which  the  targets  (cars  or  people)  were  placed  either  in  the  foreground  or  in  the

background, and therefore had a big or small size, respectively. The distance-size of targets was

blocked within a session, allowing participants to form expectations on their size. On a subset of

trials, participants performed a prime task in which, instead of the scenes, silhouettes of cars and

people  were  presented,  followed  by  a  dot  that  could  match  the  position  of  either  silhouette.

Importantly,  silhouettes  could be  either  both big  or  both small.  Participants  were instructed to

ignore the silhouette and indicate the position of the dot. 

First of all,  this study replicates previous findings on the basic attentional capture effect

(Reeder and Peelen, 2013; Reeder et al., 2015a), as shown by the result of a significant validity

effect (Fig. 6a). Specifically, participants were faster in detecting a dot that was presented at the

location of the template-matching silhouette than when it was presented at  the location of the

silhouette that did not match the template. This effect can be directly linked to the finding that

attention is captured toward the items that correspond to the current content of working memory

(Downing, 2000). Concerning the present results, the difference in RTs is due to the fact that the

matching between the template and the silhouette provided an advantage in detecting a dot that

was presented immediately after at that location (i.e., in valid trials). In invalid trials, participants
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were  slower  because  they had to  disengage their  attention from the  location  of  the  template-

matching silhouette and move it to the opposite location, to be able to make a response. 

Despite the presence of  a significant validity effect  in RTs,  we did not find an effect  of

consistency nor an interaction between validity and consistency (Fig. 6a). This indicates that the

speed of dot detection did not change as a function of the congruency between silhouette size and

expected  target  size.  Therefore,  RT  results  do  not  support  the  hypothesis  that  the  size  of  the

attentional template is influenced by expected target size. The absence of the expected effects in RTs

might be due to the fact that the validity effect in RTs is already a small effect on its own, like in

previous results (Reeder and Peelen, 2013), and it is possible that further modulations would go

undetected. Alternatively, the design of this study might have not been adequate to reveal whether

the template was shaped by the expected target distance.

The results on response accuracy highlighted a main effect of validity, with better accuracy

in valid trials than invalid trials. Furthermore, participants were more accurate in inconsistent trials,

that is, when the size of the silhouette did not match the size of the expected target. This is in line

with expectations: attention was captured to a less degree to the silhouette whose size did not

match the expected target size, allowing participants to be more accurate than in consistent trials,

where the size of the silhouette matched the size of the expected target, leading to more attentional

capture  and  therefore  worse  performance.  Furthermore,  the  interaction  between  validity  and

consistency, highlighting a bigger difference in response accuracy between valid and invalid trials in

the  consistent  condition  than  in  the  inconsistent  condition,  supports  the  previous  result,  and

suggests that templates might be influenced by expected targets size. However, we should be careful

in drawing conclusions from these results, because effect sizes were rather small. If the present

findings  were  corroborated  by  future  studies,  then  they  would  suggest  that  the  preparatory

templates  are  not  size  invariant:  the  current  results  indicate  that  the  contents  of  attentional

templates appear to match the (expected) retinal size of objects, not their perceived size, providing

support to behavioral studies showing that, in naturalistic visual search, an object’s retinal size (i.e.

the physical size of the object relative to the other objects in the scene) is an important guiding

attribute (Sherman et al., 2011; Eckstein et al., 2017; Wolfe, 2017).

Interestingly, the present results raise a few questions on the neural basis of this relative-size

template. Many studies on size constancy and, more generally, on size, have consistently found that

the  visual  system  preferentially  represents  the  perceived  size  of  objects,  not  their  retinal  size

(Murray et al., 2006; Sterzer and Rees, 2006; Fang et al., 2008; Liu et al., 2009; Cate et al., 2011;

Konkle and Oliva,  2011;  Schwarzkopf et  al.,  2011;  Amit et  al.,  2012; Konkle and Oliva,  2012;
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Sperandio et al., 2012; Pooresmaeili et al., 2013; Chouinard and Ivanowich, 2014; Gabay et al.,

2016). All these studies were centered on stimulus-evoked neural activity, but evidence suggests

that content-specific preparatory attentional mechanisms involve the activation of the same regions

and patterns that are observed in stimulus-evoked responses (for a review, see Battistoni et al.,

2017). Therefore, the results of this study might challenge the notion that the brain represents only

the perceived size of objects in situations in which it is possible to form expectations on their likely

retinal size. Given the present finding and studies showing that retinal size matters (Sherman et al.,

2011; Eckstein et al., 2017; Wolfe, 2017), and considering the low temporal resolution of fMRI, it is

possible that those studies did not capture the full temporal course of size-constancy mechanisms.

More specifically, it is possible that the brain initially represents for a short time the retinal size of

objects in scenes, and later in time feedback connections from higher-level  regions “adjust” the

activity  in  lower  level  areas,  inhibiting  neural  activity  that  is  not  consistent  with  the  stored

knowledge regarding an object’s perceived size.  The temporal dynamics of size-constancy could

therefore be explained within a predictive coding framework (see Chapter 5 for an investigation of

the temporal dynamics of size-constancy).

In addition, the present results bring forward an important issue: if preparatory attentional

templates contain information about object’s retinal size, and not their perceived size, where in the

visual system are they represented? It is possible that higher-order areas “shrink” the representation

of cars and people in the object-selective cortex (OSC; in lateral-occipital areas), where they have

been previously found to be represented (Peelen and Kastner, 2011).

Crucially, it will be important to replicate the present findings, and establish, with a different

design (possibly including the condition in which objects in scenes have the same retinal size but

different perceived size of silhouettes), wether templates are affectively size invariant.

In  conclusion,  this  study  suggests  that  preparatory  attentional  templates  for  real-world

objects might code information related to their expected retinal size. This finding, like other studies,

highlights that in visual search an object’s retinal size matters, contrary to what might be expected

from imaging studies highlighting that the visual system preferentially represents objects’ perceived

size. In fact, this apparent controversy might be simply due to the fact that fMRI studies did not

allow to determine the full temporal resolution of size-constancy mechanisms.  It  is plausible to

think that  higher-order  visual  areas  represent  real-world size (Konkle & Oliva,  2012),  but  it  is

possible that lower-level areas might, for a short time, briefly code information related to an object’s

retinal size.
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Chapter 4: 

Spatial attention follows category-based attention during naturalistic visual

search: evidence from MEG decoding1

1. Introduction

Top-down attentional selection serves to deal effectively with the large amount of visual information

present in everyday environments. It does this by prioritizing processing of goal-relevant stimuli

(e.g., cars when crossing a road) and ignoring goal-irrelevant stimuli (e.g., trees when crossing a

road). To study this top-down selection mechanisms in the laboratory, many studies have used the

visual search paradigm, in which participants are instructed to find simple stimuli, such as oriented

bars or colored circles, amongst a variety of distractors (Wolfe and Horowitz, 2004). The use of

these artificial  displays allows for careful  control  over variables  such as the specific position of

targets  and  distractors  and  the  features  that  distinguish  the  target  from  the  distractors.  This

approach has been fruitfully used in M/EEG studies to reveal the temporal evolution of attentional

selection in a variety of visual search paradigms. One of the findings from these studies is that the

top-down selection of a peripheral target evokes a lateralized response over occipitotemporal and

parietal areas, peaking around 200-300 ms after stimulus onset (Luck and Hillyard, 1994; Eimer,

1996; Hopf et al., 2000; Hickey et al., 2009).

However, visual search in simplified displays differs in many ways from visual search in real

life. For example, naturalistic search is typically for a familiar object or object category (e.g., “cars”)

rather than a visual feature. These target objects appear in scenes that are usually cluttered with a

variety of distractors that share many low-level features with the target. Furthermore, the visual

properties  of  target  and  distractor  objects  in  real-world  scenes  vary  as  a  function  of  lighting,

perspective, occlusion, and distance. 

Despite  the  apparent  complexity  of  naturalistic  search,  search  in  natural  scenes  is

surprisingly efficient (Thorpe et al., 1996; Wolfe et al., 2011b). There are several reasons for this

efficiency. For example, real-world scenes provide a rich visual context that provides information

about  likely  target  features  (e.g.,  objects  that  are  far  away  appear  smaller)  and  likely  target

locations (e.g.,  cars  appear on roads).  Furthermore,  objects  in natural  scenes are positioned in

1 This work has been published elsewhere: Spatial attention follows category-based attention during naturalistic visual 

search: evidence from MEG decoding. Elisa Battistoni, Daniel Kaiser, Clayton Hickey, Marius V. Peelen. bioRxiv 390807; 

doi: https://doi.org/10.1101/390807
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regular configurations, allowing for the grouping of objects into meaningful chunks (Kaiser et al.,

2014).  The  many  differences  between  artificial  and  naturalistic  visual  search  highlights  the

importance of examining the temporal evolution of attentional selection in naturalistic conditions.

A recent magneto-encephalography (MEG) study from our group (Kaiser et al., 2016) took

this approach, investigating the time course of object category processing in natural scenes as a

function of task relevance. In this study, participants detected either cars or people in a large set of

natural scenes. Importantly, the same set of scenes was shown in both tasks, such that objects (cars,

people) appeared both as targets and as distractors. Data were analyzed using multivariate pattern

analysis (MVPA), decoding the processing of within-scene objects using a classifier trained on data

from a separate experiment in which isolated exemplars of cars and people were shown. 

Averaged across conditions, the category of the objects present in scenes could be decoded

from around 180ms after stimulus onset. Crucially, this early stage of decoding fully depended on

the behavioral relevance of the object: early decoding was only possible when the object was the

target of the search. These findings show that top-down attention quickly modulates the processing

of object category, at around the time that object categories are first being extracted from scenes.

However, unlike earlier M/EEG studies investigating attention in simplified displays, the study by

Kaiser et al. was not designed to provide information about the spatial component of attentional

selection. 

In the present study, we closely followed the approach of Kaiser et al. but with significant

changes that  allowed for  measurement  of  the  spatial  component  of  attentional  selection.  First,

targets (cars, people) were presented either in the left or right hemifield so as to elicit lateralized

processing.  Second,  our  procedure  included  an  independent  experiment  in  which  participants

performed a simple detection task in an artificial, non-naturalistic display, reporting the presence of

a  cross  in  the  left  or  right  hemifield  (Fig.  1).  We  used  data  from this  experiment  to  train  a

multivariate classifier to categorize the deployment of spatial attention to the left or right with high

temporal resolution. We subsequently used this classifier to detect the deployment of attention to

the left or right in data from the main experiment in which participants detected examples of real-

world objects in natural scenes. 

The  objects  in  the  scenes  varied  as  a  function  of  behavioral  relevance,  allowing  us  to

determine  when  the  location  of  targets  was  better  decoded  than  the  location  of  distractors.

Importantly, because participants were cued to search for either cars or people in each trial, the

same scene stimuli appeared in both target-present and target-absent trials, allowing us to examine

neural activity elicited by identical stimuli as a function of whether they currently served as target
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or nontarget. To exclude the contribution of low-level visual priming, the attended category was

symbolically cued, varied on a trial-by-trial basis rather than in blocks, and scenes did not repeat

across trials. The cross-decoding approach furthermore allowed us to exclude the contribution of

unintended confounds present in natural scenes and thus to relate the deployment of attention to

naturalistic stimuli with the deployment of attention to carefully controlled artificial stimuli.

Our findings show that spatial attention is deployed to the target (relative to the distractor)

from around 240ms after stimulus onset. Interestingly, information about target presence itself was

available  from 180ms after stimulus onset,  at  the same time as the category-based modulation

observed  by  (Kaiser  et  al.,  2016).  We  conclude  that  spatial  attention  follows  category-based

attention during naturalistic visual search.

2. Materials and methods

2.1. Participants

Data were acquired from 42 healthy participants with normal or corrected-to-normal vision (19

male, mean age M = 26.36 years, SD = 3.75 years). All participants gave informed consent and

received  monetary  compensation.  The  experiment  was  conducted  in  accordance  with  the

Declaration of Helsinki and approved by the Ethical Committee of the University of Trento. Because

of a technical problem, no behavioral data was collected for the first three participants.

2.2. General experimental procedure

While recording MEG data, participants performed two experiments: a naturalistic visual search

experiment in which they detected cars, people or trees in naturalistic scenes (Fig. 1a,c), and a

physical salience experiment where they detected the presence of a cross that was made physically

salient by converging line elements (Fig. 1b,d). The physical salience experiment was designed to

isolate  location-specific  brain  activity  patterns,  which  were  used  as  the  training  dataset  for

multivariate classifiers (see below). The full experimental session lasted 80 minutes. Stimuli were

back-projected  onto  a  translucent  screen  located  115cm  from  the  participants.  Stimulus

presentation was controlled using Matlab 8.0 and the Psychtoolbox (Kleiner et al., 2007). 
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Figure 1. Experimental paradigms. Schematics of paradigms used in (a) naturalistic visual search experiment and (b)

physical salience experiment. Example stimuli of (c) the naturalistic visual search experiment and (d) the physical salience

experiment.

2.3. Naturalistic visual search experiment

In the naturalistic visual search experiment participants reported the presence or absence of a cued

target  category  (cars,  people,  or  trees)  in  briefly  presented  photographs  of  natural  scenes  by

pressing one of two buttons. Participants performed 12 blocks of 48 trials each. The mapping of

button to target presence and absence was counterbalanced across participants. As illustrated in Fig.

1a, a letter cue (500ms) displayed at the beginning of every trial indicated the target category (for

English-speakers “C” indicated “car”, “P” “person” and “T” “tree”; for Italian-speakers, “M” indicated
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“macchina”, “P” “persona” and “A” “albero”). After a fixation interval (a “plus” symbol; 1500ms), a

natural scene was presented briefly (50ms), and followed by a perceptual mask (650ms). After an

additional  fixation  interval  (500ms),  participants  received  feedback  (displayed  for  500  ms)

consisting of 1 or 100 points for correct performance and 0 points for incorrect performance (points

were converted to money at  the end of  the experiment).  Trials  were separated by a randomly

jittered inter-trial interval (rectangular distribution; 1000ms to 2000ms). The average trial duration

was 5.2s. The reward feedback manipulation (1 or 100 points) was employed to test a question

regarding  the  effect  of  reward  association  on  the  processing  of  objects  when  these  appear  as

distractors.  The relevant trials  in this context were those where participants searched for trees;

these trials are not analyzed or further treated in the current paper. The trials of current interest

were those in which participants were cued to detect either cars or people in photographs of real-

world scenes that could include one or more exemplars of cars and people (Fig. 1c). Ninety-six

scenes contained either cars or people, located on the left or right of the scene. An additional 48

scenes contained both categories (cars and people), where in 24 scenes the two categories appeared

on the same side, and in the other 24 scenes they appeared on different sides. In total, the stimulus

set consisted of 288 scenes. During the experiment, each scene was presented once in its original

version and once flipped horizontally, leading to a total of 576 unique scenes. All pictures were

reduced to 480 (vertical) x 640 (horizontal) pixels, subtending 13.5° x 10° of visual angle. Masks of

the same size as the scenes (n = 576) were created by superimposing a naturalistic texture to white

noise  generated  at  different  spatial  frequencies,  resulting  in  colored  textures.  All  stimuli  were

presented centrally and displayed on a grey background.

2.4 Physical salience experiment

In the physical salience experiment, participants reported the presence or absence of a cross by

pressing one of two buttons. The location of the cross was made salient by converging line elements

(Fig. 1d) to mimic global contextual cues in natural scenes. Participants performed 2 blocks of 80

trials.  The  mapping  of  button  to  target  presence  and  absence  was  counterbalanced  across

participants.  Fig.  1b  shows  the  trial  structure.  After  a  fixation  interval  (a  pink  “plus”  symbol

presented  for  800ms),  the  line  array  was  presented  for  50ms,  followed by  a  perceptual  mask

(650ms). Trials were separated by a randomly jittered inter-trial interval ranging from 2200ms to

3000ms. The perceptual mask, its timing, and the timing of the stimulus, were identical to those in

the naturalistic visual search experiment. Stimuli consisted of 48 black lines on a grey background

(displayed on 6 imaginary rows and 8 imaginary columns, each subtending about 1.5° of visual
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angle), drawn within an area of 13.5° x 10° of visual angle (Fig. 1b). The lines made a position in

the display salient; in half of the trials a black cross (the target, of size 1.5° x 1.5°) was presented at

this location and in half it was absent. The position of the area within which the target could appear

was counterbalanced across 8 possible locations: within the second column (i.e. on the left) or the

seventh column (i.e. on the right), the target could appear in one of four positions (in the second,

third, fourth or fifth row). All stimuli were displayed on a grey background.

2.5 MEG data acquisition and preprocessing

Neuromagnetic activity was recorded using a whole-head MEG system with 102 magnetometers and

204  planar  gradiometers  (Elekta  Neuromag  306  MEG  system,  Helsinki,  Finland).  Data  were

acquired  continuously  (with  online  sampling  rate  of  1000  Hz)  and  band-pass  filtered  online

between 0.1 and 300 Hz. Offline preprocessing was performed using MATLAB 8.0 and the Fieldtrip

toolbox (Oostenveld et al., 2011). Data were epoched from -200 to 500 ms with respect to stimulus

onset. No offline filter was applied to the data2. Based on visual inspection, and blind to condition,

trials and channels containing artifacts (i.e., blinks, eye-movements, or unusually large peak-to-peak

amplitudes)  were  discarded  from  subsequent  analysis.  All  trials  (correct  and  incorrect)  were

included in the analysis. Next, data were baseline corrected with respect to the pre-stimulus period

(with baseline from -200ms to 0ms) and down-sampled to 100Hz to improve signal-to-noise ratio

(Grootswagers et al., 2017). Data from rejected channels were interpolated based on the average of

neighboring sensors of the same type.

2.6 MEG multivariate pattern analysis

All multivariate classification analyses were performed using MATLAB 8.0 and the CoSMoMVPA

toolbox (Oosterhof et al., 2016). Single-trial classification was performed separately for every 10ms

time bin of the evoked field data of all magnetometers; only data from magnetometers were used as

these sensors offered more reliable classification performance than gradiometers in a comparable

study (Kaiser et al., 2016). To increase the signal-to-noise ratio, 1000 synthetic trials were created

for  every  condition  in  both  the  training  and  testing  sets.  Each  synthetic  trial  was  created  by

randomly  selecting  5  trials  and  averaging  across  these  trials.  Trials  were  selected  without

replacement until the pool of trials was exhausted, such that each trial contributed to a roughly

2 In a previous version of the analysis we applied an offline high-pass filter. This revealed earlier attention effects than

without the filter (reported here), possibly reflecting filtering artifacts (Acunzo et al., 2012). These early attention effects

did not emerge in subsequent analyses (e.g., reverse cross-decoding, see footnote 3) and were thus deemed unreliable.
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equal number of synthetic trials. Classification accuracy was evaluated by computing the percentage

of  correct  predictions  of  the  classifier.  The  decoding  analysis  was  repeated  for  every  possible

combination of training and testing time, leading to a 50x50 points (i.e. 500 ms x 500 ms with

100Hz resolution) matrix of classification accuracies for every participant. Single-subject accuracy

matrices  were smoothed using a  3x3 time points  averaging box filter  (i.e.  30  x 30ms,  for  the

training and testing times, respectively); single-subject accuracy matrix diagonals were smoothed

with  a  3-point  (30  ms)  boxcar  filter.  To  determine  time  periods  of  significant  above-chance

classification, a threshold-free cluster enhancement procedure (Smith and Nichols, 2009) was used

with default parameters. The multiple-comparisons correction was based on a sign-permutation test

with null distributions created from 10,000 bootstrapping iterations and a significance threshold of

Z > 1.64 (i.e., p<0.05, one-tailed).

2.6.1. Within-experiment decoding analyses. A within-experiment decoding procedure was employed

to  test  whether  Linear  Discriminant  Analysis  (LDA)  classifiers  could  reliably  discriminate  MEG

activity patterns evoked by stimuli in the left vs. right hemifield. This procedure was performed

once  within  the  physical  salience  experiment  and  once  within  the  naturalistic  visual  search

experiment. To this end, each of the datasets was divided into two independent subsets of trials, one

of which was used as training set and the other as testing set.

2.6.2.  Cross-decoding  analyses.  In  the  cross-decoding  analysis,  LDA  classifiers  were  trained  to

discriminate between two conditions of interest in the physical salience experiment (MEG patterns

evoked  by  left  vs.  right  stimuli)  and  employed  to  discriminate  between  conditions  in  the

independent naturalistic visual search experiment (MEG patterns evoked by left vs. right objects in

natural scenes; Fig. 2a)3. This procedure was performed separately for each time point. Classifier

testing was performed as a function of the behavioral relevance of objects in scenes, with identical

scenes  appearing  in  both  target  and  distractor  conditions  across  participants  (Fig.  2b).  The

difference of the decoding time courses for target and distractor conditions was then tested against

zero. It  should be noted that the classifier trained on the physical salience experiment can use

3 The cross-decoding analysis was also performed in the reverse direction: training the classifier on the main experiment

(separately for target and distractor trials) and testing on the physical salience experiment. This yielded similar results as

the  analysis  reported  here:  The  target-distractor  difference  on  the  diagonal  emerged  after  200 ms,  with  significant

differences from 210ms to 250ms and from 280ms to 380ms. When averaging results of the two cross-decoding analyses,

the target-distractor difference was significant (p<0.05, corrected for multiple comparisons) from 220ms to 390ms and

from 430ms to 500ms.
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activity patterns driven by both physical asymmetries and spatial attention shifts. Crucially, however,

these can be disentangled in the naturalistic search experiment: in the main comparison, between

target  and  distractor  decoding,  the  same  scenes  are  included  as  targets  and  distractors,  thus

eliminating the contribution of any physical asymmetries.

2.6.3. Searchlight analyses. To explore the approximate anatomical location of target and distractor

processing, a sensor-space searchlight analysis was performed on consecutive 50ms time windows

ranging from 0ms to 500ms post-stimulus. The cross-decoding procedure was performed across the

scalp  using  sensor  neighborhoods  of  20  sensors  each  (Kaiser  et  al.,  2016).  Each  of  these

neighborhoods  was  created  by  defining  a  neighborhood  of  10  adjacent  sensors  in  the  left

hemisphere that was symmetrically mirrored with corresponding sensors in the right hemisphere,

resulting in bilaterally symmetric maps. The searchlight was performed for each 10ms time point,

and the results of the individual time points within each 50ms window were averaged to obtain a

single searchlight map for that window.

Figure 2. Analysis procedure. Using a cross-decoding approach (a), multivariate classifiers were trained on data from the

salience experiment and tested on data from the naturalistic visual search experiment. Classifier testing was performed

separately for target and distractor locations (b). Note that the same scenes could appear as target or as distractor, with

the only difference being the top-down set of the participant on that trial.
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3. Results

3.1. Behavioral results

Behavioral performance in the naturalistic search experiment showed that the task was sufficiently

challenging, with an average response accuracy of around 75% (target present trials: 81%, SD =

10%; target absent trials: 68%, SD = 17%). The average RT was around 500 ms (target present

trials: 444ms, SD = 73ms; target absent trials: 555ms, SD = 79ms).

In the physical salience experiment, response accuracy was around 58% (target present trials: 64%,

SD = 20%; target absent trials: 52%, SD = 17%). The average RT was around 620 ms (target

present trials: 585ms, SD = 190ms; target absent trials: 659ms, SD = 219ms).

3.2. Within-experiment decoding results

To determine that MEG activity patterns contained decodable information, and in this way ensure

the feasibility of the cross-decoding procedure,  in a first  analysis  we checked whether stimulus

location within each experiment was decodable from the data. Within each experiment, multivariate

classifiers were trained on a subset of trials to discriminate between left vs. right stimulus location,

then tested on a different, independent subset of the data. Significant above-chance decoding was

observed  within  each  experiment  (Fig.  3).  Specifically,  decoding  within  the  physical  salience

experiment was reliable from 100 ms to 500 ms, reaching its maximum accuracy at 330 ms (Fig.

3a). Decoding within the naturalistic visual search experiment was reliable as well, ranging from

90ms to 150ms and from 190ms to 280ms, peaking at 230ms (Fig. 3b). These results highlight that

MEG patterns contained information about the stimulus location.
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Figure 3. Within-experiment decoding results.  Panel (a) shows the time-by-time decoding matrix within the physical

salience experiment, panel (b) the resulting matrix within the naturalistic visual search experiment. The outlined areas

highlight where decoding accuracy is significantly above chance (p<0.05, corrected for multiple comparisons). Decoding

on the diagonal of the matrix in (a) is significantly above chance from 100ms to 500ms, reaching its maximum accuracy at

330ms post-stimulus. Decoding on the diagonal of the matrix in (b) is significantly above chance from 90ms to 150ms and

from 190ms to 280ms, peaking at 230ms.

3.3.1. Cross-decoding results.

Multivariate classifiers were trained on MEG data from the physical salience experiment and tested

on MEG data from the naturalistic search experiment (see Fig. 2). This cross-decoding, averaged

across attention conditions (i.e., decoding in target and distractor scenes), was highly reliable from

50ms after stimulus onset, with a first peak at 100ms and a second peak at 260ms (Fig. 4a,b). This

result provides evidence for a correspondence between the lateralized processing evoked by the

artificial stimuli in the physical salience experiment and the objects in the natural scene experiment.

It is worth noting that the decoding peaks of the overall time x time decoding matrix (Fig. 4a) fell

on the diagonal, indicating that the temporal evolution of the evoked patterns was similar across

the two experiments.

Having established that the location of objects in scenes can be reliably decoded from MEG activity

patterns, we next asked when attention modulates this signal. To this end, we separately decoded

the position of target objects and distractor objects in otherwise identical scenes. As illustrated in

Figure 4c (right panel), decoding of target location was stronger and more reliable than decoding of

distractor location. This is clearly illustrated in Figure 4d, which plots the diagonal of these matrices
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and shows that significant differences emerged from 240ms to 320ms, from 340ms to 360ms, and

from 480ms to 500ms. 

Figure 4. Results of the cross-decoding analysis: time-by-time matrices and time courses of target and distractor

conditions. (a) Overall cross-decoding of object location, averaging across target and distractor conditions. The outlined

area highlights  where decoding accuracy is  significantly above chance (p<0.05,  corrected for multiple comparisons).
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Panel (b) shows the diagonal of the overall cross-decoding matrix. This time course is significantly above chance from

50ms after  stimulus  onset  as  highlighted  by  black  asterisks  (p<0.05,  corrected for  multiple  comparisons).  Decoding

accuracy was maximum at 100ms and 260ms. Panel (c) shows the time-by-time cross-decoding matrices of the target

(left) and the distractor (center) conditions, and their difference (right). Panel (d) shows the time course of decoding

target object location (red line) and distractor object location (blue line), reflecting the diagonals of the matrices shown in

(c). Shaded coloured areas represent SEM. Target decoding on the diagonal was significantly above chance (p<0.05,

corrected for multiple comparisons) from 70ms to 500ms, peaking at 100ms and 250ms (maximum at 250ms). distractor

decoding on the diagonal was significant from 50ms to 150ms, from 220ms to 330ms, peaking at 100ms and 260ms

(maximum at 260ms). Target-distractor difference decoding on the diagonal was significant from 240ms to 320ms, from

340ms to 360ms, and from 480ms to 500ms. 

3.3.2. Searchlight results.

To explore the topography of these effects we performed a sensor-space searchlight analysis on

consecutive time windows of 50ms each, from 0ms to 500ms post-stimulus. This analysis revealed

the time course of the cross-decoding across the scalp, suggesting that the attention effect at 250 ms

was primarily driven by lateral posterior sensors before moving more anteriorly (Fig. 5c). 

Figure 5. Results of the searchlight analysis.  Topographical maps show the results of the cross-decoding searchlight

analysis on consecutive time windows of 50ms each from 0ms to 500ms after stimulus onset, separately for the target

condition (a), the distractor condition (b) and their difference (c).
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3.4. Target-distractor decoding

The cross-decoding analysis provided evidence that spatial attentional selection starts at around

240ms after scene onset,  which is  later than category-specific attentional  modulation in similar

tasks, found from 180ms after onset (Kaiser et al., 2016). The presence of category-based attention

at 180ms implies that the brain already differentiates target and distractor scenes at that time, thus

before the spatial attention effects observed here. To test whether in the current study target and

distractor scenes could similarly be differentiated at this time point, we ran an additional analysis

within the naturalistic search experiment. In this analysis, we directly decoded the presence of a

target (vs. a distractor) in scenes showing either cars or people. Because the only relevant aspect in

this analysis was whether the objects were targets or distractors (i.e., matched or mismatched the

category of the preceding cue) we averaged across category and location of the objects in the scene.

Interestingly, targets could be distinguished from distractors from 180ms after scene onset (Figure

6). The peak was found at 400 ms, shortly before responses were made (mean RT=440 ms in target

presence trials). These results indicate that target presence is detected before attention moves to its

location.

Figure 6. Results of the analysis decoding target vs distractor scenes. (a) Time-by-time matrix of decoding accuracy.

The  outlined  area  highlights  where decoding accuracy  is  significantly  above  chance (p<0.05,  corrected  for  multiple

comparisons). Panel (b) shows the diagonal of the decoding matrix. This time course is significantly above chance from

180ms after stimulus onset as highlighted by black asterisks (p<0.05, corrected for multiple comparisons). 
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4. Discussion

The current study investigated the time course of attentional orienting in cluttered natural scenes

using multivariate decoding of MEG data. We found that the location of objects in natural scenes

can be decoded with high accuracy from MEG activity patterns from 50ms after scene onset. The

effect of top-down attention on this decoding arose much later, starting at around 240 ms. Target

presence itself (irrespective of location) could be decoded from 180 ms after scene onset. While the

decoding  of  object  locations  at  50ms  clearly  reflects  a  stimulus-driven  effect  (i.e.,  presence  vs

absence of a foreground object), we can be confident that the effects at 180 ms and 240 ms reflect

influences of top-down attention: First, the same set of scenes was used for targets and distractors,

with  target  status  being  determined  solely  by  the  match  between  the  scene  category  and  the

preceding symbolic cue. Second, we excluded the contribution of bottom-up priming effects because

the target category varied unpredictably on a trial-by-trial basis. Taken together with the results of

(Kaiser et al., 2016), our results indicate that spatial attentional selection follows spatially-global

category-based attentional modulation.

The  present  results  are  consistent  with  previous  M/EEG  studies  investigating  visual  search  in

artificial arrays. These studies showed that the attentional selection of a target evokes lateralized

activity in posterior sensors between 200ms – 300ms after stimulus onset (“N2pc”, e.g., Luck and

Hillyard, 1994; Eimer, 1996). Our study indicates that spatial attentional selection in naturalistic

search  occurs  at  a  similar  latency  (Fig  4d)  and  with  a  similar  topography  (Fig  5c).  This

demonstrates  an  important  generalization  of  previous  findings  to  more  naturalistic  conditions,

despite the differences between artificial and naturalistic search (Wolfe et al., 2011b; Peelen and

Kastner, 2014) and between univariate and multivariate analysis methods4.

The current study complements a recent study that used similar methods to investigate the time

course of top-down category-specific attentional modulations in scenes (Kaiser et al., 2016). There,

decoding focused on object category processing, with classifiers trained to distinguish exemplars of

people and cars and tested on scenes containing exemplars of these categories. Results showed that

the category of objects present in scenes could be decoded from around 180ms after stimulus onset.

Importantly, this effect was specific to the behaviorally-relevant category from its first emergence,

with better decoding of target than distractor category already at 180ms. In other words, top-down

attention modulated category-level processing as soon as category information was available. 

4 Single sensors did not show reliable attention effects in the current study.
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Our present results show that spatially-specific attention effects – starting at 240ms – emerge after

this category-level modulation. This indicates that attention first modulates spatially-global category

representations, followed by the spatial selection of the target. This sequence matches that observed

in  previous  studies  investigating  search  for  simple  features  in  artificial  displays,  showing  that

feature-based attentional modulation precedes spatially-selective enhancement (Hopf et al., 2004;

Eimer, 2014). Our results thus support the idea that content-based guidance is not limited to low-

level features but can be implemented at higher levels of the visual system as well (Wyble et al.,

2013; Hickey et al., 2015; Battistoni et al., 2017; Wyble et al., 2018). 

The spatial modulation observed here provides a neural correlate of behavioral findings of

attentional  capture by objects  matching a top-down category-based attentional set  (Reeder and

Peelen, 2013; Reeder et al., 2015a). In these studies, participants searched for cars and people in

natural scenes. On a subset of trials, two irrelevant stimuli appeared instead of the scenes. One of

these stimuli  was quickly followed by a dot that participants  were instructed to detect.  Results

showed that participants were faster to detect the dot when it appeared at the location of a stimulus

that shared mid-level features with the target category (e.g., a wheel of a car, or an arm attached to

a torso), providing evidence for attentional capture. Importantly, the effect was also observed when

the mid-level  features appeared at locations that were never relevant to the search task.  These

findings demonstrate that category-based attention is  spatially  global  and that  it  guides spatial

attention to template-matching stimuli. In conjunction with (Kaiser et al., 2016), the current results

provide novel insight into the temporal evolution of both these effects.

Interestingly,  although  spatial  attention  is  captured  by  template-matching  objects,  the

detection  of  familiar  object  categories  in  natural  scenes  may  not  require  spatial  attentional

selection. For example, target-specific EEG responses in these tasks have been observed before 200

ms (Thorpe et al., 1996), more likely corresponding to the category-based modulation observed in

Kaiser et al. (2016) than the spatial selection observed here. Similarly, in the current study response

patterns evoked by target and distractor scenes differed from around 180 ms after stimulus onset,

indicating that target features are detected before spatial attention moves to the target location.

Behavioral studies have shown that participants may not be able to localize object categories in

natural  scenes  that  have  nonetheless  been  detected  (Evans  and  Treisman,  2005).  Others  have

argued that the detection of familiar object categories may not even require spatial attention at all

(Li et al., 2002; Stein and Peelen, 2017). These findings suggest that spatially-global category-based

attention may be sufficient for detecting target-diagnostic features. 
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In daily life, however, the detection of category-diagnostic features is often not sufficient for guiding

our behavior.  Many situations require us to bind features to identify objects at  finer levels.  For

example, we might need to distinguish our red car from our friend’s green car, or to find our friend

among other people. These tasks require spatial attention to bind features, as elegantly shown by

work in neurological patients with parietal damage (Cohen and Rafal, 1991; Friedman-Hill et al.,

1995). Thus, while not directly required in the current task, spatial selection may be an integral and

obligatory aspect of top-down attention, even when directed to high-level categories (Wyble et al.,

2013; Reeder et al., 2015a).

To conclude, the current study shows that spatial attentional selection of target objects in natural

scenes  occurs  at  around  240  ms  after  scene  onset.  This  spatial  modulation  follows  an  earlier

spatially-global categorical attention modulation that provides information about target presence

from around 180 ms. Our results are in line with theories of visual search proposing that spatial

attention is  guided by feature-based selection  (Treisman and Sato, 1990; Wolfe, 1994), and

importantly  generalize  this  idea  to  naturalistic  search  for  familiar  object  categories  in  natural

scenes.
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MEG decoding as a tool to study the temporal dynamics of size constancy

and distance perception in natural scenes

1. Introduction

A  correct  perception  of  the  distance  and  size  of  an  object  is  crucial  for  a  reliable

representation of the three-dimensional (3D) world surrounding us, and indispensable for

behaviors such as navigation, reaching and grasping. Distance perception is determined by

the  integration  of  contextual  information  derived  from  monocular  and  binocular  cues.

Monocular cues provide distance information when viewing a scene with only one eye, and

include, among others, occlusion, perspective, texture gradient and relative size. Binocular

cues give information about depth when using both eyes, and include binocular disparity

(also known as stereopsis or retinal disparity) and convergence. Size perception is regulated

by size constancy mechanisms, which act by rescaling the size of an object as a function of

perceived distance (Holway and Boring, 1941; Gruber, 1954; Andrews, 1964; Morgan, 1992;

for  a  review,  Sperandio  and  Chouinard,  2015).  These  rescaling  mechanisms allow us  to

perceive the world as stable despite the continuously changing flux of visual input that hits

the retina; therefore they can be regarded as one of the processes at the basis of invariant

object recognition (DiCarlo et al., 2012).

The processes of size and distance perception have long been thought as theoretically

inseparable, since changes in perceived size are influenced by changes in perceived distance

and  vice versa,  as  formally postulated by the size-distance invariance hypothesis  or SDIH

(Boring, 1940; Gilinsky, 1951; Epstein et al., 1961; Epstein, 1963; Kaufman et al., 2006; Qian

and Yazdanbakhsh, 2015; Kim et al., 2016). The SDIH maintains that an object’s perceived

size is determined by the product of its perceived distance and some function of its retinal

size; more formally:

S = D ta
α

where S is the object’s perceived size, D is the object’s perceived distance, and α is the object’s

angular size (i.e., retinal size or visual angle subtended by the object). The SDIH is directly

based on Emmert’s perceptual law of apparent size (originally postulated in the context of
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afterimages), which states that the perceived size of an object is proportional to its perceived

distance  (Emmert,  1881).  Together  with  Euclid’s  principle  of  optical  geometry,  which

postulates that the angular size of an object is inversely proportional to its distance, these

laws fully describe the phenomenon of size constancy. For example, when we watch a train

depart from a station, its retinal image size decreases as the distance increases (Euclid’s law);

however, even though the distance between the eyes and an object doubles and the retinal

object size halves, our perception of the real size of the object remains unchanged: we do not

perceive the train as smaller, just farther away (Emmert’s law).

The close relationship between distance and size is also at the basis of many optical

size illusions, such as the Ponzo illusion, the powerful real-world moon illusion, and several

others (Rock and Kaufman, 1962; Kaufman and Rock, 1962; Dees, 1966; Ross, 1967; Fisher,

1968; McCready, 1986; Kaufman and Kaufman, 2000; Ross, 2000; Redding, 2002; Kaufman

et al.,  2007; Qian and Petrov, 2012; Weidner et al.,  2014; Gregory, 2015; Sperandio and

Chouinard,  2015).  For  example,  in  the  Ponzo illusion  (Fig.  1a)  the  two horizontal  lines

project the same image on the retina (physically equal retinal size). However, we commonly

experience them as having different lengths: the upper line appears longer than the bottom

line.  Interestingly,  this  experience  is  not  canceled  or  diminished  after  the  observer  takes

physical measurements and is aware of the perceptual deception (Fig. 1b).

Figure 1.  Examples  of  Ponzo Illusion. (a) The classical Ponzo illusion. Panel  (b) highlights  that even taking

physical measurements of the length of the two horizontal lines does not diminish the illusion that the upper line

is longer than the bottom line. Panel (c) and (d) show variations of the Ponzo illusion.
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What  happens  in  this  and  other  visual  illusions  is  well  described  by  Bayesian  accounts

(Geisler and Kersten, 2002), which are directly linked to Helmholtz’s claim that perception

depends on the rules that the brain has learned about the world (Von Helmholtz, 1867).

More specifically,  the brain incorrectly interprets the converging lines as perspective cues,

triggering the application of size-rescaling rules acquired from experience. This leads to the

erroneous inference that the upper horizontal line is farther away than the bottom line, and

consequently, that the upper line is longer than the bottom line. The perceptual rule that is

applied  in  this  case  is  that  the  physical  properties  of  objects  remain  constant  regardless

changes  in  retinal  information  elicited  by  changes  in  viewing  distance,  perspective,  and

lighting  (rule  of  perceptual  constancy).  The  phenomenon of  the  incorrect  application  of

perceptual  rules  is  also explained by Gregory’s  theory  of  inappropriate  constancy scaling

(Gregory, 1963, 1968, 2015).

Several fMRI studies have looked for the neural basis of the Ponzo illusion (Murray et

al., 2006; Fang et al., 2008; He et al., 2015). Surprisingly, they found that the subjective

experience  of  size  was  associated  to  activity  changes  in  the  primary  visual  cortex  (V1).

Specifically, they measured brain activity while participants viewed two objects with same

retinal size, one located in the foreground and one in the background in images conveying a

perception of distance through perspective cues. They found that objects perceived as bigger

(i.e. those in the background) activated the most anterior part of V1, where big stimuli are

retinotopically  represented.  Objects  perceived  as  smaller  (i.e.  those  in  the  foreground)

activated the most posterior part of V1, where small stimuli are retinotopically represented.

Therefore,  these  unexpected  results  highlighted  that  activity  in  the  primary  visual  area

reflected  the  perceived  size  of  an  object,  and  not  its  retinal  size.  These  findings  were

supported by other studies demonstrating that V1 carries information about perceived size

(Murray et al., 2006; Sterzer and Rees, 2006; Fang et al., 2008; Liu et al., 2009; Schwarzkopf

et al.,  2011; Sperandio et al.,  2012; Pooresmaeili et al., 2013; Chouinard and Ivanowich,

2014). 

However, how is it possible that V1, which is the first cortical region that receives

signals from the retina (and therefore information related to the physical size of objects), is

modulated by perceived size? Electrophysiological measures in monkeys have revealed that

several  visual-occipital  areas  are  involved  in  size-constancy  mechanisms  (Dobbins  et  al.,

1998; Ni et al., 2014). In humans, neuroimaging and lesion studies have demonstrated the

60



Chapter 5: MEG decoding in size-constancy

contribution of several higher-order areas, among which parietal, dorsal and ventral regions,

in size and distance perception and in the processing of spatial and contextual information

(Gnadt and Mays, 1995; Berryhill  and Olson, 2009; Berryhill  et al.,  2009; Preston et al.,

2013;  Costa  et  al.,  2015).  It  is  possible  that  this  network  projects  feedback  connections

related to distance information to lower-level areas and therefore contribute to size-rescaling

processes. 

Concerning  size,  several  studies  showed  that  activity  in  ventral  occipitotemporal

cortex is modulated by perceived size, as determined by stored semantic information (Cate et

al., 2011; Amit et al., 2012; Gabay et al., 2016). Specifically, large real-world objects tend to

activate  medial  areas  in  the  ventral  occipitotemporal  cortex,  while  small  objects  tend to

activate  more  lateral  areas  (Konkle  and  Oliva,  2012;  Troiani  et  al.,  2014).  This  well-

corroborated  finding  has  led  to  the  claim  that  real-world  object  size  is  an  important

organizing principle of  high-level  visual object  representations,  including scene-responsive

and object-responsive regions (Julian et al., 2017).

In summary, many studies suggest that several ventral and parietal areas are involved

in the representation of the perceived object size. The finding that even V1 represents an

object’s perceived size (the conscious perception of an object’s size instead of the physical

input  from  the  retina)  can  be  well  explained  within  a  predictive  coding  framework.

Specifically,  higher-level  areas would project  feedback connections to area V1 “explaining

away” (i.e., inhibiting) neural activations of image feature that are not consistent with the

stored knowledge related to the object’s real world size.

However, the temporal dynamics with which rescaling processes take place are yet to

be  established.  For  example,  does  V1  initially  represent  the  retinal  size  of  objects,  and

afterwards their perceived size? When does the representation of perceived size emerge? And

more  generally,  what  are  the  temporal  dynamics  of  size  constancy?  To  address  these

questions,  we  employed  a  multivariate  pattern  analysis  (MVPA)  approach  on

magnetoencephalography  (MEG)  data  to  decode  with  high temporal  resolution  stimulus-

related information from brain activity patterns. Participants watched big vs. small objects

presented near vs. distant in natural scenes or in grey backgrounds, and were instructed to

complete an unrelated oddball task in which they had to press a button whenever objects had

a golden color. By decoding information related to the size of objects as a function of their

distance and background type, we were able to determine the likely time course of perceived
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size in natural scenes, and to highlight the validity of MEG as a tool to investigate the neural

dynamics underlying size constancy.

2. Materials and methods

2.1. Participa
ts

Seventeen healthy participants with normal or corrected-to-normal vision (10 male, mean

age M = 24.2, SD = 3.8) took part in the MEG experiment. All participants provided written

informed consent and received monetary compensation. The experiment was conducted in

accordance with the Declaration of Helsinki and approved by the Ethical Committee of the

University of Trento.

2.2. Experime
tal procedure

While recording MEG data,  participants  performed an oddball  task on objects  in natural

scenes (Fig. 2). The experiment consisted of 10 different blocks of 72 trials each. Five blocks

had stimuli with natural scene backgrounds, and 5 blocks had stimuli with grey backgrounds.

Blocks  with  stimuli  with  natural  scene  backgrounds  and  blocks  with  stimuli  with  grey

backgrounds were presented in an interleaved manner (odd-numbered blocks had natural

backgrounds,  even-numbered  blocks  had grey  backgrounds).  Each  stimulus  contained  an

object (see Stimuli), and participants were instructed to press a button when the object had a

golden color. Each trial started with a fixation point (a plus, “+”, presented centrally in the

screen), which lasted 800 ms, and was followed by a preview of the stimulus without the

object (whose duration was randomly jittered from a rectangular distribution ranging from

800 ms to 1400 ms). Then, the stimulus with the object was presented for 200ms, and it was

followed by an inter-trial-interval with a fixation point (2200 ms - 3000 ms, randomly jittered

from a rectangular distribution).  Average trial  duration was 4700 ms,  and average block

duration was 5.65 minutes.

The experimental session lasted 60 minutes. Stimuli were back-projected onto a translucent

screen  located  115cm from  the  participants.  Stimulus  presentation  was  controlled  using

MATLAB 8.0 and the Psychtoolbox (Kleiner et al., 2007).
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Figure 2.  Schematics of the experimental paradigm. Trial sequences in blocks in which (a) stimuli had natural

scene backgrounds and (b) stimuli had grey backgrounds. Examples of (c) stimuli used in natural background

blocks, and (d) stimuli used in grey background blocks.

63



Chapter 5: MEG decoding in size-constancy

Figure 3. Examples of stimuli and experimental conditions. The two panels show the conditions for stimuli with

natural backgrounds (left) and for stimuli with grey backgrounds (right). For each scene, four variations were

created: (a) one with a distant small object, (b) one with a near small object, (c) one with a near big object, and

(d) one with a distant big object. The size of small objects and big objects across the variations of a scene were

constant. To create the grey stimuli, each the scene of each natural stimulus was removed and substituted with an

empty grey background, so that object positions across natural and grey stimuli remained unvaried. Relevant for

the analysis, different stimulus combinations lead to different conditions: (1) the “different retinal size - same

perceived size” condition was realized with the stimuli  (a) and (c);  (2) the “different  retinal size -  different

perceived size” condition with the stimuli  (b) and (d);  (3) two “same retinal size - different perceived size”

conditions, one with the stimuli like (a) and (b), and one with the stimuli like (c) and (d). For the sake of clarity

and consistency across stimulus types (natural vs. grey), the condition labels of grey stimuli were the same as

those of natural stimuli. Of course, given the absence of contextual and perspective cues, we did not assume

participants’ percept to correspond to the conditions’ labels.

2.3. Stimuli

Stimuli  were  created  with  the  software  GIMP  (https://www.gimp.org).  Ninety  different

natural scenes with depth cues (that provided a perception of depth and distance; Fig. 3)

were selected from the Internet. Each scene was used to create four variations: one with a

near big object, one with a distant big object, one with a near small object and one with a

distant small object. Thus, the total number of stimuli consisting of a scene and an object

amounted  to  360.  Additional  360  stimuli  were  created  from  each  scene  and  object  by
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removing the natural background and replacing it with a grey background (RGB values: 102,

99,  99).  The  objects  were  ninety  different  exemplars  of  cubes  (30),  spheres  (30)  and

cylinders (30) created in GIMP. Each object had two variations: one with a “big” size, and one

with a “small” size; these size were determined manually by the experimenter in a way that

when placed in the distance, the small object appeared to have the same perceived size of the

near big object. Each object type was paired with a specific natural scene. The 10% of the

stimuli (72) were created with golden objects: half of them had a natural background and the

other half had a grey background; in one-third of them (24) the object was a cube, in one-

third it was a cylinder, and in one-third it was a sphere. Each scene and object was presented

only once throughout the experiment (the experiment had 720 trials, in each trial there was

one of 720 stimuli).  All  stimuli were reduced to 480 (vertical) x 640 (horizontal) pixels,

subtending 13.5°  x  10°  of  visual angle,  and were presented on a grey background (RGB

values: 148, 148, 148).

2.4. MEG data acquisitio
 a
d preprocessi
g

Neuromagnetic  activity  was  recorded  using  a  whole-head  MEG  system  with  102

magnetometers and 204 planar gradiometers (Elekta Neuromag 306 MEG system, Helsinki,

Finland). Data were acquired continuously (with online sampling rate of 1000 Hz) and band-

pass  filtered online between 0.1 and 300 Hz.  Offline preprocessing was performed using

MATLAB 8.0 and the Fieldtrip toolbox (Oostenveld et al., 2011). 

Data were epoched from -300 to 500 ms with respect to stimulus onset (the scene with the

object). No offline filter was applied to the data. No offline filter was applied to the data

because this appeared to be the most reliable procedure in the previous experiment (Chapter

4), where the application of filters induced filtering artifacts.

Based on visual inspection, and blind to condition, trials and channels containing artifacts

(i.e.,  blinks,  eye-movements,  or  unusually large peak-to-peak amplitudes)  were discarded

from subsequent analysis. All trials (correct and incorrect) were included in the analysis. Data

were baseline corrected with respect to the pre-stimulus period (with baseline from -200ms to

0ms)  and down-sampled to  100Hz to improve  signal-to-noise ratio  (Grootswagers  et  al.,

2017). Data from rejected channels were interpolated based on the average of neighboring

sensors of the same type.
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2.5. MEG multivariate patter
 a
alysis

All  multivariate  classification  analyses  were  performed  using  MATLAB  8.0  and  the

CoSMoMVPA  toolbox  (Oosterhof  et  al.,  2016).  Single-trial  classification  was  performed

separately for every 10ms time bin of the evoked field data of all magnetometers; only data

from  magnetometers  were  used  as  these  sensors  offered  more  reliable  classification

performance than gradiometers (Kaiser et al., 2016). To increase the signal-to-noise ratio,

1000 synthetic trials were created for every condition in both the training and testing sets.

Each synthetic trial was created by randomly selecting 5 trials and averaging across these

trials. Trials were selected without replacement until the pool of trials was exhausted, such

that  each  trial  contributed  to  a  roughly  equal  number  of  synthetic  trials.  Classification

accuracy was evaluated by computing the percentage of correct predictions of the classifier.

The decoding analysis was repeated for every possible combination of training and testing

time, leading to a 50 x 50 points (i.e. 500 ms x 500 ms with 100Hz resolution) matrix of

classification  accuracies  for  every  participant.  Single-subject  accuracy  matrices  were

smoothed using a 3 x 3 time points averaging box filter (i.e. 30 x 30ms, for the training and

testing times, respectively); single-subject accuracy matrix diagonals were smoothed with a 3-

point  (30  ms)  boxcar  filter.  To  determine  time  periods  of  significant  above-chance

classification, a threshold-free cluster enhancement procedure (Smith and Nichols, 2009) was

used with default  parameters.  The multiple-comparisons  correction was based on a  sign-

permutation test with null distributions created from 10,000 bootstrapping iterations and a

significance threshold of Z > 1.64 (i.e., p < 0.05, one-tailed; (Oosterhof et al., 2016)).

3. Results

3.1. Decodi
g of dista
ce i
 
atural a
d grey stimuli (withi
-experime
t)

As  postulated  by  the  size-distance  invariance  hypothesis,  the  perception  of  distance  is

fundamental in size-constancy mechanisms, and it is triggered by monocular and binocular

depth  cues (see Introduction).  Grey stimuli,  which do not  provide  such bottom-up cues,

should not elicit a representation of distance, but only of position (slightly lower vs. slightly

upper  in  the  visual  field):  that  is,  in  grey  stimuli  the  position  of  objects  should  not  be

associated to a specific distance (near vs. distant, respectively), given the absence of depth

cues.  On the contrary,  natural  stimuli  should elicit  a representation of  both position and
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distance. Therefore, we would expect higher decoding accuracy of object distance in natural

stimuli than in grey stimuli1. 

Importantly,  the  decodability  of  object  distance  in  natural  scenes  is  essential  for  the

emergence of any size-constancy process, and therefore crucial for the feasibility and validity

of subsequent analyses. The absence of such effect would indicate that our stimuli failed to

trigger a perception of distance, hence ruling out any possibility of size-constancy. 

In this first preliminary analysis, we investigated whether distance (near vs. distant objects),

was decodable in natural stimuli, and crucially, whether this classification was more accurate

in natural stimuli than in grey stimuli (for examples of the stimuli used, see Fig. 3).

First,  decoding was performed within natural  stimuli:  Linear Discriminant Analysis  (LDA)

classifiers were trained and tested on MEG activity patterns evoked by natural stimuli with

near objects vs. natural stimuli with distant objects (regardless of shape). Then, decoding was

conducted within grey stimuli, where classifiers were trained and tested on data elicited by

grey stimuli with near objects vs. grey stimuli with distant objects (regardless of shape). Each

dataset was divided into 10 independent chunks; classifiers were iteratively trained on 9

chunks and tested on 1 chunk, and the results were averaged. Decoding in both the within-

natural and within-grey analysis was performed twice: once with stimuli with small objects

and once with stimuli with big objects; the results were then averaged in order to eliminate

the possible confounding factor of size. Next, to test whether decoding of distance in natural

stimuli was more accurate than in grey stimuli, the results of the within-grey analysis were

subtracted  from the  results  of  the  within-natural  analysis.  Here,  the  difference  between

natural  and grey was the  most  important  comparison:  because  natural  stimuli  contained

information  on  both  object  position  and  distance,  and  grey  stimuli  contained  only

information on object  position,  the difference isolated a representation of  object  distance

from  a  representation  of  object  position.  Importantly,  we  can  always  only  talk  about

representation of distance, not perception of distance, since we do not know the conscious

perceptions of participants.

Figure 4 illustrates the time courses of the within-natural decoding and within-grey decoding.

1 To be noted, in order to simplify the reading, and given the way in which stimuli were created and coded,

sometimes we will use the term “distance” to actually refer to the “position” of objects in grey stimuli; in grey

stimuli we cannot truly talk about “distance” because of the absence of bottom-up depth cues necessary to give

rise to a distance percept.
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Significant above-chance decoding accuracy was observed within each condition. Specifically,

decoding within  the natural  condition was reliable  from 80ms to 500ms with respect  to

stimulus onset, reaching its maximum at 150ms (Fig. 4, red line). Decoding within the grey

condition  was  also  reliable  from 80ms  to  500ms,  peaking  at  140ms  (Fig.  4,  blue  line).

Decoding of distance within the natural condition was stronger and more reliable than within

the grey condition from 140ms to 190ms. 

Figure 4. Results of the decoding analysis of near vs. distant objects separately for natural and grey stimuli. Lines

represent the time courses. Shaded colored areas represent SEM. Asterisks indicate time points at which decoding

is significantly above chance (p < 0.05, corrected for multiple comparisons). The time course of the decoding of

distance in natural stimuli (Within-Natural, red line) is significant from 80ms to 500ms (maximum at 150ms). The

time course of decoding of distance in grey stimuli (Within-Grey, blue line) is significant from 80ms to 500ms

(maximum at 140ms). Natural-Grey difference decoding (green asterisks) is  significant from 140ms to 190ms

(green asterisks). 

The results  of  this  preliminary  analysis  show that  object  position can be decoded

equally well in both grey and natural stimuli. The presence of a decoding difference between

natural  and grey stimuli  shows that  object  distance  can be  decoded from brain  patterns

evoked by natural stimuli from 140ms after scene onset. This is an important result, as it

demonstrates the presence of a basic distance effect (only present in natural stimuli), likely

triggered by depth cues, which is necessary for the occurrence of size-constancy mechanisms.
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3.2. Decodi
g of perceived size i
 
atural a
d grey stimuli (withi
-experime
t)

After establishing that MEG activity patterns elicited by natural stimuli contained information

about distance (near vs. distant objects), we sought to determine when the representation of

perceived object size emerged. For this purpose, we performed two series of analyses, one

within natural stimuli and the other within grey stimuli. Each analysis was made up of two

conditions. (1) In the different perceived size condition, classifiers were trained and tested on

data evoked by stimuli with near-small objects vs. distant-big objects, which have different

retinal size and different perceived size. (2) In the same perceived size condition, classifiers

were trained and tested on data elicited by near-big objects vs. distant-small objects, which

have different retinal  size but same perceived size.  Figure 3 illustrates examples of these

conditions. Like the previous analysis, each dataset was divided into 10 independent chunks;

classifiers were iteratively trained on 9 chunks and tested on 1 chunk, and the results were

averaged. The results of the same perceived size condition were then subtracted from the

results  of  the  different  perceived  size  condition  (different-same  condition)  in  order  to

highlight when two objects of different retinal size started being perceived as having the same

size; or, in other words, the time at which size constancy mechanisms are initiated. Finally,

the results of the different-same condition within the grey stimuli condition were subtracted

from the results of the different-same condition within the natural stimuli condition.

The results showed that in the natural stimuli condition, decoding of different perceived size

was significant from 90ms to 500ms (Fig. 5a, red line), and decoding of same perceived size

was  significant  from  80ms  to  400ms  (Fig.  5a,  blue  line).  The  different-same  difference

decoding was significant from 260ms to 420ms (Fig. 5a, green asterisks). In the grey stimuli

condition, decoding of different perceived size was significant from 80ms to 500ms (Fig. 5b,

red line), and decoding of same perceived size was significant from 80ms to 500ms (Fig. 5b,

blue line).  The different-same difference decoding was significant from 160ms to 180ms,

from 250ms to 310ms, and from 390ms to 410ms (Fig. 5b, green asterisks).

Notably, the different-same difference in natural stimuli was not significantly different from

the different-same difference in grey stimuli (Fig. 5c).
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Figure 5.  Time courses  of  perceived  size  in  natural  and  grey  stimuli.  Shaded  colored  areas  represent  SEM.

Asterisks highlight time points where decoding is significantly above chance (p < 0.05, corrected for multiple

comparisons).  (a)  Decoding of different  perceived size in  natural  stimuli  (red line;  near-small  vs.  distant-big

objects) is significant from 90ms to 500ms (maximum at 160ms). Decoding of same perceived size in natural

stimuli (blue line, near-big vs. distant-small objects) is significant from 80ms to 400ms (maximum at 150ms). The

different-same difference decoding (green asterisks) is significant from 260ms to 420ms. (b) Decoding of different

perceived size in grey stimuli  (red line;  near-small  vs.  distant-big objects)  is significant from 80ms to 500ms

(maximum at  150ms).  Decoding  of  same perceived  size in  grey  stimuli  (blue line,  near-big  vs.  distant-small

objects) is significant from 80ms to 500ms (maximum at 140ms). The different-same difference decoding (green

asterisks) is significant from 160ms to 180ms, from 250ms to 310ms, and from 390ms to 410ms. Panel (c) shows

the different-same difference decoding separately for natural stimuli (significant from 260ms to 420ms; maximum

at 400ms) and grey stimuli (significant from 160ms to 180ms, from 250ms to 310ms, from 390ms to 410ms;

maximum at 280ms). The difference between these two time courses was not significant.

The  difference  between different  perceived and same perceived size  conditions  in

natural  stimuli  suggest  that  size  constancy mechanisms are initiated around 260ms after

scene onset (in other words, two objects with different retinal size but same perceived size,
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start being perceived as having the same size around 260ms).

Surprisingly, we find a similar pattern of results within grey stimuli as well: it appears that

they do trigger some size constancy mechanism, as demonstrated by the result that perceived

size starts being represented around 160ms after stimulus onset. Furthermore, the absence of

a decoding difference between natural  and grey stimuli  suggests that grey stimuli  are as

effective as natural stimuli in eliciting size constancy processes.

3.3. Cross-decodi
g of perceived size

Training and testing classifiers within a specific stimulus type, even though the two data sets

are independent  from each other,  might not be optimal,  because stimulus-specific  factors

might contribute to the decoding. Therefore, we next investigated the temporal dynamics of

perceived size (size constancy mechanisms) using a cross-decoding procedure. This question

was addressed in two complementary ways. First, we considered a condition similar to the

Ponzo illusion, also employed in past fMRI studies (Murray et al., 2006; Fang et al., 2008).

Specifically,  in  this  situation the  near  and distant  object  have  the  same retinal  size,  but

different perceived size due to size-constancy mechanisms (the distant object is perceived as

having a bigger size than the near object). We will refer to this situation, in which two objects

with same retinal size are perceived as having different size, as the Ponzo illusion condition.

Then, we considered a more typical situation in which a specific object is perceived as having

the same size even though its retinal size varies as a function of distance (i.e., small retinal

size when it is distant, big retinal size when it is near). We will refer to this situation, in

which two objects with different retinal size are perceived as having the same size, as the

typical condition. This analysis is the equivalent of the previous analysis (3.2.) but adopting a

cross-decoding approach. These two conditions are exemplified in Figure 2.

3.3.1. Cross-decodi
g of perceived size i
 the Po
zo illusio
 co
ditio


In the classical Ponzo illusion and in its variations (Murray et al., 2006; Fang et al., 2008),

when the  retinal  size  of  a  near  object  and  a  distant  object  is  kept  equal,  size-rescaling

mechanisms lead us  to  perceive  the distant  object  as  being  bigger  than the  near  object.

Therefore, in this analysis we asked when near objects are more often classified as small than

distant objects (or, when distant objects are more often classified as big than near objects).

Another way to think of this analysis, is when a near object, having the same retinal size of a

71



Chapter 5: MEG decoding in size-constancy

distant object, starts being perceived as being smaller (or, when the distant object starts being

perceived as being bigger).

To this  end,  we performed a  standard cross-decoding  analysis  (in  which  classifiers  were

trained on data from grey stimuli, and tested on data from natural stimuli) and a reverse

cross-decoding  analysis  (where  classifiers  were  trained  on data  from natural  stimuli  and

tested on data from grey stimuli). In both standard and reverse cross-decoding, classifiers

were trained on different retinal size (big vs. small objects, regardless of position and shape),

and tested on different distance (near vs. distant objects, regardless of size and shape). To

determine whether classification was limited to a specific training-testing direction (standard

vs. reverse), we tested their difference by subtracting the results of the reverse analysis from

the results of the standard analysis.

Results  showed  that  decoding  accuracy  in  the  standard  cross-decoding  condition  was

significantly above chance from 160ms to 190ms, and from 240ms to 350ms (maximum at

170ms; Fig. 7, red line).  Decoding in the reverse cross-decoding condition was reliable as

well, reaching significance from 260ms to 270ms, and from 320ms to 500ms (maximum at

410ms). The comparison between the two decoding directions (standard-reverse) revealed no

significant difference.

Figure 7. Results of the cross-decoding analysis of perceived size in the Ponzo illusion: time courses of standard

and reverse cross-decoding conditions. Shaded colored areas reflect SEM; asterisks indicate where decoding is

significantly above chance (p < 0.05, corrected for multiple comparisons). Decoding in the standard condition was
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significant from 160ms to 190ms, and from 240ms to 350ms; peaking at 170ms. Decoding in the reverse condition

was significant from 260ms to 270ms, and from 320ms to 500ms; peaking at 410ms. No difference between these

two diagonals is present.

The  reliability  of  decoding  in  both  conditions  suggest  that,  in  a  Ponzo  illusion

situation, two objects with same retinal size were perceived as having different sizes. The

results suggest that in natural stimuli, this rescaling process appears around 160ms, while in

grey stimuli emerged about 100ms later (around 260ms). One could speculate that this delay

might be due to a purely “downward” (top-down) rescaling (as opposed to a more “upward”

or  bottom-up  initiated  rescaling  in  natural  stimuli),  which  would  take  more  time  to  be

initiated because it does not come from fast feedforward signals related to perspective cues.

The absence of a difference between standard and reverse cross-decoding indicates that our

grey stimuli triggered size-rescaling processes to a similar degree of natural stimuli, in line

with the results of the previous analysis.  This is another surprising result,  because in the

reverse cross-decoding classifier testing is performed in grey stimuli with objects at different

positions and not containing distance information per se. 

3.3.2. Cross-decodi
g of perceived size i
 typical co
ditio
s

Another way to investigate the temporal dynamics of size-constancy, and more relatable to

everyday situations,  is  when a near-big object  and distant-small  object  (where the object

would be the same) start being perceived as having the same size (Fig. 3). In this analysis we

go back to the question addressed in analysis 3.2., but employing a cross-decoding approach.

In other words, when do perceived object size effect emerge (because of distance)?

The cross-decoding analysis was performed once in a standard direction (training on data

from grey stimuli and testing on data from natural stimuli), and once in a reverse direction

(training  on  data  from natural  stimuli  and  testing  on  data  from  grey  stimuli).  In  both

analyses, classifiers were trained on MEG activity patterns evoked by different retinal size

(big vs. small objects, regardless of shape and distance). Then, they were tested as a function

of perceived size: in the different perceived size condition, on the near-small vs. distant-big

classification;  in  the  same  perceived  size  condition,  on  the  near-big  vs.  distant-small

classification.  Then,  the difference between the two condition (different perceived - same

perceived size) was tested against zero in order to extract the time at which size-constancy is
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initiated (i.e., when two objects of different retinal size, located at different distances from

the observer (specifically, a near-big object and a distant-small object), start being perceived

as having the same size). 

We expected decoding accuracy in the different perceived size condition to be significantly

above chance at all time points, because the two compared objects had different retinal size

and different perceived size.  Whereas,  in the same perceived size condition, we expected

decoding accuracy to initially rise at early time points (because objects have different retinal

size) but to decrease in time (because objects start to be perceived as having the same size).

Thus, we hypothesized the presence of a difference between these two conditions (different

perceived - same perceived) at late time points.

Furthermore, the difference of the difference (i.e., Different-Same in Standard - Different-

Same in Reverse) was evaluated to understand whether the effect was limited to a specific

decoding direction, and therefore whether it was stimulus-specific (i.e., specific to natural

stimuli or whether it extended to grey stimuli). 

Figure 6 illustrates the results. In the standard cross-decoding (Fig. 6a), as expected, we find

decoding in the different perceived size condition to be sustained in the whole time interval

(specifically,  it  is significant from 140ms to 470ms, peaking at  170ms; Fig.  6a,  red line).

Contrary  to  our  hypothesis,  decoding  in  the  same  perceived  size  condition  is  reliable

throughout the whole time interval as well, but for shorter intervals (from 100ms to 140ms,

from 370ms to 380ms, and from 440ms to 500ms, with maximum at 130ms; Fig. 6a, blue

line). Crucially, a difference between these two conditions rises at 170ms (specifically, from

170ms to 190ms, and from 240ms to 320ms; Fig. 6a, green asterisks), suggesting that size-

rescaling mechanisms start to act around 170ms. In the reverse cross-decoding (Fig. 6b), we

find the decoding in the different perceived size condition to be significantly above chance

from 100ms to 500ms (Fig. 6b, red line), while decoding in the same perceived size condition

does not reach significance (Fig. 6b, blue line). The comparison of the two conditions pointed

out a significant difference from 170ms to 190ms, and from 320ms to 430ms (Fig. 6b, green

asterisks), suggesting that grey stimuli elicit size-rescaling processes as well. Next, we tested

whether there was a difference between the two decoding procedures (standard vs. reverse)

in the time course of perceived size (as reflected by the difference between the different

perceived size and the same perceived size conditions). This allowed to assess again whether

grey stimuli elicited size constancy mechanisms. We found no significant difference between
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the  standard  and  reverse  cross-decoding  analyses,  and  the  two  time  courses  tended  to

resemble each other (Fig. 6c).

Figure 6. Time course of the standard and reverse cross-decoding of perceived size in typical situations. Shaded

colored area represent SEM. Asterisks indicate where decoding accuracy is significantly above chance (p < 0.05,

corrected for multiple comparisons). (a) Standard cross-decoding: classification in the different perceived size

condition (red line) is significant from 140ms to 470ms, peaking at 170ms; decoding in the same perceived size

condition (blue line) is significant from 100ms to 140ms, from 370ms to 380ms, and from 440ms to 500ms

(maximum at 130ms); the difference (different-same, green asterisks) is significant from 170ms to 190ms, and

from 240ms to 320ms. (b) Reverse cross-decoding: classification in the different perceived size condition (red

line) is significant from 100ms to 500ms, peaking at 150ms; decoding in the same perceived size condition (blue

line) is not significant (maximum at 120ms); the difference (different-same, green asterisks) is significant from

170ms to 190ms, and from 320ms to 430ms. (c) No difference between standard and reverse cross-decoding

procedures was observed.

The above results show that in natural stimuli, two objects with different retinal size
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(one big, one small) and with different positions (near and distant, respectively), start being

perceived as having the same size around 170ms, as shown by the difference between the

time courses of decoding in the different perceived size condition and the same perceived size

condition (Fig. 6a). Surprisingly, also in grey stimuli, which do not provide perspective/depth

cues  and  hence  distance  information,  there  is  a  difference  between  the  time  courses  of

decoding  of  different  perceived  size  and  same  perceived  size  conditions  (Fig.  6b).

Furthermore, the comparison of the time course of perceived size in natural and grey stimuli

(as shown by the results from the standard and reverse cross-decoding analysis, respectively;

Fig. 6c) highlighted no significant difference between them, and a similarity in the temporal

dynamics. Taken together, these results show that size-rescaling processes in natural stimuli

begin around 170ms, and that such rescaling processes are present also in grey stimuli. In

addition, the absence of a difference between the two decoding directions provides further

support to the general finding that grey stimuli triggered some size constancy mechanisms, at

least to a similar degree of our natural stimuli.

4. Discussion

The study of perceptual size constancy has its origins more than three centuries ago, when it

was described by Renè Descartes in his Dioptrics (Descartes,  1637; Gregory, 2015). Since

then, a lot of progress has been made: theories have been developed, and some of its neural

mechanisms have been unraveled. However, much work is yet to be done to fully understand

how the brain  achieves  an invariant  perception of  size  for  familiar  objects.  Recent  fMRI

studies have provided incontrovertible evidence of the neural basis of perceived size. The

primary visual cortex (V1) is the first cortical area that computes signals coming from the

eyes. Since the retinal image size of an object is inversely proportional to its distance (Euclid’s

law),  it  would be plausible to expect activity in V1 to be directly related to retinal  size.

However, the aforementioned fMRI studies actually found its activity to be related to the

perceived size of an object (Murray et al., 2006; Fang et al., 2008; Sperandio et al., 2012; for

a  review,  see  Sperandio  and  Chouinard,  2015).  This  was  a  surprising  result,  because  it

challenged the notion that V1 activity simply reflected information related to feedforward

processing, as it was commonly assumed at the time. Instead, this V1 effect was described to

be  related  to  feedback  connections  from higher-level  areas,  or  from  lateral  connections
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coming  from adjacent  areas  computing  information  related  to  the  context  in  which  the

objects were embedded, such as depth and perspective.

Because of the fMRI methodological limitations, one aspect that these studies could

not  address  were  the  temporal  dynamics  of  these  perceptual  rescaling  processes.

Furthermore, rescaling processes can be investigated at least in two ways. One simulating a

situation  in  which  two  identical  objects,  with  same  retinal  size,  that  are  positioned  at

different distances in an image are being perceived as having different sizes (specifically, the

nearest object is perceived as being smaller than the farthest object). The other simulating a

situation in which a near object (having a big retinal size) and a distant object (having a

small retinal size) are perceived as being the same object (i.e. having the same perceived

size). The previous fMRI studies adopted only the foremost method, also known as Ponzo

Illusion (Murray et al.,  2006; Fang et al.,  2008).  We believe that these two methods are

complementary in the study of size constancy, and in order to fully explain this phenomenon,

both should be addressed. 

In  the  present  study,  we  employed  a  MEG decoding  approach  to  investigate  the

temporal dynamics of size constancy. Participants performed an oddball task unrelated to the

dependent variables of interest while recording MEG data. Objects with different shapes were

embedded in natural scenes or blank grey backgrounds, and could be positioned either in the

foreground (near) or in the background (distant), and have a big or small size. We performed

several  analysis  within stimulus type (within-natural  or  within-grey),  where we used the

within-grey results as a control condition to test whether effects within natural stimuli were

limited to them or generalized to grey  stimuli  (our initial  hypothesis  was that  effects  in

natural stimuli should not emerge to the same extent in grey stimuli). In the cross-decoding

procedures, in which classifier training and testing were performed with different stimulus

types, we used the reverse decoding (train on natural, test on grey) as a control condition,

and we expected effects  to  be stronger in the standard condition (train  on grey,  test  on

natural).

We run a first preliminary analysis in order to ensure that information about objects’

distance could be decoded from MEG activity patterns, a necessary condition for rescaling

processes to arise (as postulated by the size-distance invariance hypothesis, SDIH, at the basis

of size constancy). We found decoding of object position (slightly lower for near objects and

slightly upper for distant objects) to be reliable in both natural and grey stimuli; however,
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decoding of object distance was more reliable in (and restricted to) natural stimuli. With the

second analysis we observed that decoding of perceived size was significantly above chance

in both natural and grey stimuli, with, surprisingly, no difference between them. The third

analysis, investigating the temporal dynamics of perceived size in two ways, revealed not only

the  time  course  of  perceived  size  in  natural  stimuli,  but  also  the  similarity  in  temporal

patterns of size rescaling between the two stimulus types.

Taken together, two overall major results stand out. First, size-rescaling processes in

natural scenes arise around 160ms after scene onset, as shown in Fig. 6 (red line, standard

cross-decoding) and Fig. 7a (green asterisks, reflecting the difference between the different

perceived  size  and  the  same perceived  size  conditions).  Second,  our  results  suggest  the

presence of size-rescaling mechanisms also in grey stimuli (as shown in Fig. 5, 6, and 7),

which  contain  no  bottom-up  depth  cues  and  therefore  no  distance  information.  This  is

surprising because, by definition, rescaling mechanisms are triggered by depth information,

and grey stimuli do not provide it. Therefore, we asked whether such results could be due to

other variables. For example, in the experiment, we did not record eye movements, and no

fixation point was displayed in the stimulus (although the “+” presented before and after the

presentation of the stimulus, and the verbal instructions, should have encouraged participants

to keep their gaze on the center of the screen); therefore we had no way to know where they

fixated when the stimulus was presented. A post-experiment scrutiny of the stimuli revealed

that near objects tended to be closer to the center of the stimulus scene than distant objects

(Supplementary Materials, 1. Stimulus analysis). Therefore, if participants fixated the center

of the screen, because of foveal magnification there should be more signal/information (i.e.

better decoding) for near objects than distant objects. The presence of a processing difference

between  near  and  distant  objects  (near  >  distant)  could  be  a  reason  for  the

supposed/apparent  rescaling  mechanisms  in  grey  stimuli.  To  clarify  this  issue,  we  ran  a

further analysis (Supplementary Materials, Fig. 1) in which we compared the classification of

big vs. small objects as a function of their distance (in the near condition, classifiers were

trained and tested on the discrimination near-big vs. near-small; in the distant condition, they

were trained and tested on distant-big  vs.  distant-small),  separately for  grey and natural

stimuli. We found no difference between the classification of near vs. distant objects, neither

for natural nor grey stimuli, therefore ruling out the possible explanation in which our results

would  be  due  to  such  differences  (the  objects  are  equally  strongly  represented  in  both
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locations,  so  the effects  that  we find are unlikely  to be due to more general  differences

between far and near positions; e.g., because of fixation point). This control analysis thus

provides  support  to  the  overall  finding  that  our  grey  stimuli  triggered  some  rescaling

processes. But how can we explain this?

Given the absence of depth information by contextual cues, no bottom-up information

on distance was present in grey stimuli; however, seeing the same objects placed in natural

stimuli might lead participants to infer that lower vs. upper objects in grey stimuli are also

near vs. distant, automatically activating a scene frame and generalizing some aspect of prior

experience  to  grey  stimuli.  Alternatively,  maybe  these  results  highlight  some  more

fundamental property of the visual system, linking location and size. Specifically, it could be

possible that, by default, the visual system links certain locations with certain distances and

real-world sizes (Kaiser and Cichy,  2018; Kaiser et al.,  2018). Within a predictive coding

framework, a distance representation might be inferred from stored knowledge acquired in a

lifetime, either related to the fact that objects located slightly upper in the visual field tend to

be distant and objects that are placed slightly lower in the visual field tend to be nearer, or

that near objects subtend a larger image on the retina than distant objects. Finally, it is also

possible that this effect simply reflects where participants fixated. Further research would be

needed to clarify this issue.

In  conclusion,  the  present  results  show  that  rescaling  processes  underlying  size

constancy act rather early in time, around 160-170ms after scene onset. Interestingly, these

processes appear to operate with similar temporal dynamics also in blank stimuli without

depth-related information, suggesting that experience might give rise to associations between

object locations and size. However, some experimental lacks of this study (e.g. not recording

eye  movements,  and  not  controlling  the  position of  objects  relative  to  the  center  of  the

stimuli),  make it  non-conclusive  in  establishing  with  certainty  the  temporal  dynamics  of

rescaling processes and their extension to gray stimuli.  Therefore, a second study will  be

needed to replicate the present findings. Despite these drawbacks, this study demonstrates

that MEG decoding can be an important and valid tool in the study of the temporal dynamics

of perceptual size constancy. 
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5. Supplementary Materials

1. Stimulus a
alysis

As a check, we tested whether near objects and distant objects were equidistant from the

fixation point. To this end, we considered only stimuli with grey background (since stimuli

with natural background were created just by replacing the background of grey stimuli). A

one-tailed t-test revealed that the distance from the center of distant objects (mean = 74 px,

SD = 45.1 px) was significantly larger (t(179) = 5.67, p < 0.0001) than the distance from

the center of near objects (mean = 51 px, SD = 42.6 px).

2. Decodi
g co
trol

Figure 1 SM: Results of the control analysis. Time course of retinal size decoding as a function of distance and

stimulus  type.  A  control  decoding  analysis  was  performed separately  within  natural  stimuli  and within  grey

stimuli. Within each stimulus type, two analyses were run. First, classifiers were trained and tested on the big-near

vs.  small-near  classification.  Second,  classifiers  were  trained  and  tested  on  the  distant-big  vs.  distant-small

classification. Then, the difference between these conditions (distant-near) was tested against zero. In terms of

analysis parameters, we adopted the same procedure of the analysis described in the Methods section, paragraph

2.6.  Specifically,  classifier  training and testing was performed on independent  subsets  of  the data (data was

divided into 10 chunks, classifiers were trained on 9 chunks and tested on 1 chunk iteratively). (a) Within natural

stimuli, decoding of retinal size (big vs. small) for distant objects (blue line) was significant from 90ms to 470ms,

and  from 490ms  to  500ms  (maximum at  200ms).  Decoding  of  retinal  size  for  near  objects  (red  line)  was

significant from 110ms to 320ms, and from 350ms to 430ms (peak at 140ms). No difference was found between

the distant and near condition. (b) Within grey stimuli, decoding of retinal size (big vs. small) for distant objects

(blue line) was significant from 90ms to 280ms, and from 300ms to 480ms (peak at 200ms). Decoding of retinal
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size for near objects (red line) was significant from 100ms to 370ms, and from 400ms to 480ms (maximum at

180ms).  No  significant  retinal  size  decoding  difference  was  found between the  conditions  (distant-near).  In

addition, the comparison of the retinal size decoding difference as a function of distance between the two stimulus

types revealed no significant difference.

3. Behavioral a
alysis

Behavioral performance was analyzed for target present trials (i.e., trials with golden colored

objects)  with  stimuli  with  grey  background  vs.  stimuli  with  natural  scenes.  Too-slow

responses were considered as incorrect. In the RT analysis, only correct response trials were

used. 

A two-tailed t-test was applied on the difference between RT in grey stimuli (mean = 540ms,

SD  =  102)  and  RT  in  natural  stimuli  (mean  =  537ms,  SD  =  155ms);  it  revealed  no

significant difference (t(16) = -0.13). 

A two-tailed t-test was applied on the difference between response accuracy in grey stimuli

(mean = 87%, SD = 12%) and response accuracy in natural stimuli (mean = 87%, SD =

9%), and no difference was found (t(16) = 0.24).
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Chapter 6: 

General Discussion and Conclusions1

This thesis addressed several topics related to naturalistic vision: the characteristics of attentional

templates when preparing to search for objects in scenes; the temporal course of spatial attention

guidance; and finally, the temporal dynamics of size-constancy mechanisms in real-world scenes. 

In the following pages I will briefly summarize and discuss the results, draw the conclusions,

and delineate questions for future research.

1. The characteristics of preparatory attentional templates in real-world visual search

Top-down  preparatory  attentional  mechanisms  code  relevant  target-defining  features,  biasing

processing toward template-matching items once a search scene appears (Battistoni et al., 2017).

However, research suggested that, in order to be most effective in terms of attentional guidance,

templates could represent those features that optimally distinguish targets from distractors (Becker,

2010).  Chapter 2 investigated whether such type of templates, optimally-tuned to the expected

features of the context, could be established also for real-world visual search. Specifically, we aimed

to  determine  whether  expectations  on  the  distractors’  context  influenced  the  characteristics  of

preparatory  templates.  We  asked  whether  expecting  scenes  where  targets  and  distractors  had

orthogonally different orientations led participants to establish attentional templates based on low-

level features, compared to scenes in which targets and distractors had the same orientations and

for which we expected participants to adopt a template based on category-diagnostic features, like

previously  shown (Reeder  and  Peelen,  2013).  We  found  no  evidence  for  a  modulation  of  the

characteristics of preparatory attentional templates as a function of the expected relation between

the orientation of targets and distractors. Orientation-based, low-level templates were not engaged

even when the degree of clutter of distractors in scenes was drastically reduced. This pattern of

results suggests that when searching for objects in scenes, observers tend to adopt templates based

on high-level category-diagnostic features, regardless of the expected relation between the features

of  the target  and the features  of  the distractors.  This  suggests  that  relational  target  templates

(Becker, 2010) do not seem to be engaged in real-world visual search tasks. It is possible that, a life-

1 This chapter contains part of journal papers published elsewhere: (1) Battistoni, E., Stein, T., & Peelen, M. V. (2017).

Preparatory attention in visual cortex.  Annals of  the New York Academy of Sciences,  1396(1), 92-107. (2)  Spatial

attention  follows  category-based  attention  during  naturalistic  visual  search:  evidence  from MEG decoding.  Elisa

Battistoni, Daniel Kaiser, Clayton Hickey, Marius V. Peelen. bioRxiv 390807; doi: https://doi.org/10.1101/390807
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long experience of seeing natural scenes, leads us to form templates based on category-diagnostic

features that are always automatically activated regardless of contextual expectations. Therefore,

even in situations in which a  low-level  template would seem to be the most efficient  and less

demanding strategy in terms of cognitive resources (e.g., intuitively, it would appear less costly to

pre-activate just “vertical” than the arms, torso and other features diagnostic of a person), observers

still adopt category-based templates. Activating a low-level set of features might actually be more

costly  than  pre-activating  the  learned  set  of  category-diagnostic  features.  In  support  of  this

hypothesis, several studies have shown that the more detailed templates are, the more efficient

attentional selection is (Vickery et al., 2005; Schmidt and Zelinsky, 2009; Maxfield and Zelinsky,

2012; Wu et al., 2013). 

To note, our findings would need to be replicated. Like it was found by Reeder and Peelen

(2013),  the  validity  effect  is  characterized  by  a  very  small,  but  consistent  across  participants,

difference between RTs of different experimental conditions. This leaves open the possibility that a

further modulation might be so small to go unnoticed. Therefore, to conclude with certainty that

the  attentional  templates  in  real-world  visual  search  are  not  influenced  by  distractors’  context

expectations, other studies will need to address this question, likely with a different approach or by

making the difference between targets and distractors more extreme.

The purpose of the experiment in Chapter 3 was to determine whether expectations about

the distance of targets were coded at a template level. Specifically, we adopted a paradigm similar

to the experiments in Chapter 2, and we hypothesized that if templates represent the distance of

expected targets, then their size would not be constant, but it would reflect the expected target’s

retinal  size.  The RTs results  did not  show an effect  of  expected target  distance on the size of

category-based preparatory attentional templates. However, response accuracy results suggested the

presence of an effect: there was a bigger difference in response accuracy between valid and invalid

trials in the consistent size condition (where the size of the silhouettes was consistent to the size of

the expected target) than in the inconsistent size condition. It is possible that in the inconsistent size

condition, attention was less captured towards the silhouette that matched the template because the

size was not consistent, allowing participants to be more accurate on those trials, and therefore

exhibiting a smaller difference of response accuracy between valid and invalid trials. This suggests

that  participants  established  small-sized  templates  when targets  in  scenes  were  distant  (in  the

background), and big-sized templated when targets were near (in the foreground).
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However, based on the present data, we cannot conclude with certainty that participants

scaled the size of templates as a function of expected target distance: first of all, the effect was

present only in accuracy data but not in RTs data; secondly, the effect size were very small.

Similarly to Chapter 2,  one reason for  the lack of  effect  in RTs might be linked to the

properties of the validity effects: since the difference in RTs between valid and invalid conditions is

already small – even though consistent – further modulations might be too little to be statistically

significant. Therefore, before drawing final conclusions on whether templates code the expected

distance-size of targets, it is important for future research to investigate more this topic.

2. The temporal dynamics of object processing in natural scenes

In daily life, attention is often directed to high-level object attributes, such as when we look out for

cars before crossing a road. Previous work using MEG decoding investigated the influence of such

category-based attention on the time course of object category representations (Kaiser et al., 2016).

Attended object categories were more strongly represented than unattended categories from 180ms

after scene onset. In Chapter 4, we used a similar approach to determine when, relative to this

category-level  modulation,  attention is  spatially  focused on the target.  Results  showed that the

location of both target and distracter objects could be accurately decoded shortly after scene onset

(50 ms). However, the emergence of spatial attentional selection – reflected in better decoding of

target location than distracter location – emerged only later in time (240 ms). Target presence itself

(irrespective  of  location  and  category)  could  be  decoded  from 180  ms  after  stimulus  onset.  

Combined  with  the  earlier  work,  these  results  indicate  that  naturalistic  category  search

operates  through an initial  spatially-global  modulation  of  category  processing  that  then guides

attention to the location of  the target.  This “feature- to location- based selection” (Hopf et  al.,

2004), also referred to as “global to local” process (Campana et al., 2016), has been proposed in

classical theories of attentional selection, among which Guided Search (Wolfe et al., 1989; Wolfe,

1994) and Reverse Hierarchy Theory (RHT; Hochstein & Ahissar, 2002; Ahissar et al., 2009), and

demonstrated for simple stimuli in artificial displays (Treisman and Sato, 1990; Cave, 1999; Hopf et

al., 2004; Eimer, 2014; Campana et al., 2016).

The studies by Kaiser et al. (2016) and by Battistoni et al. (2018) provide strong evidence

that such classical findings extend to more complex stimuli and tasks. Interestingly, together they

highlight at least two stages that characterize our visual search behavior in natural scenes. Initially,

at  around  50ms,  just  briefly  after  the  image  hits  the  retina,  MEG  activity  patterns  encode

information on the location of objects in scenes (regardless of behavioral relevance). At 180ms,
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object category information is more strongly represented for target than distracters, suggesting that,

at  this  time,  top-down  category-based  attentional  mechanisms  are  already  engaged  (the  first

emergence of category information is modulated by attention). This information then guides the

allocation of attention to the location of the target object, as evidenced by the result that at 240 ms

attention is spatially focused on the target. It is plausible to speculate that this attentional allocation

paves the ways for further visual and semantic processing (Wolfe and Cave, 1999; Wolfe, 2003;

Wolfe et al., 2011b).

3. Size-constancy and object processing

Size-constancy mechanisms are fundamental in everyday life, as they are one of the mechanisms

that  allow  us  to  achieve  an  invariant  perception  of  the  objects  around  us.  In  Chapter  5,  we

investigated  the  time course  of  the  perception  of  size,  distance,  and of  the  emergence  of  size

invariance,  in  stimuli  with grey  backgrounds  and stimuli  with natural  backgrounds using MEG

decoding. From the analyses, three overall results stood out.

First, a representation of position (slightly toward the bottom of the stimulus vs. slightly

toward the top of the stimulus) was decodable from MEG activity patterns elicited by objects in both

grey stimuli and natural stimuli from 80ms after stimulus onset. Importantly, grey stimuli did not

provide bottom-up depth cues, and therefore should not have elicited a representation of distance

(because, by definition, distance perception is triggered by depth and perspective cues). Given this

feature of grey stimuli, by comparing the two time courses (natural vs. grey) we were able to isolate

the time at which a representation of distance (triggered by depth cues) emerged for objects in

natural scenes (140ms, Fig. 4 in Chapter 5).

Second, in all the analyses in which it was possible to compare the time course of perceived

size  between  grey  and  natural  stimuli  (Fig.  5C,  Fig.  6,  Fig.  7C,  in  Chapter  5),  we  found  no

significant  difference  between them.  This  general  result  suggests  that  grey  stimuli  triggered  a

perception of size constancy to a similar degree of natural stimuli. A possible explanation could be

that,  given the nature of the experiment, the visual system tends to link certain positions with

certain distances (slightly bottom as near, slightly top as distant; Kaiser and Cichy, 2018; Kaiser et

al., 2018).

Third,  size-rescaling  mechanisms in  natural  stimuli  arise  around 160-170ms after  scene

onset (Fig. 6, Fig. 7A, in Chapter 5). Since a coarse form of object identification is necessary for

attention  to  be  allocated  on  that  object  (as  shown  by  the  results  of  Chapter  4),  one  could

hypothesize that information about the object’s size might be included in the representation guiding
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attention to the object. Following this logic, it is possible that a representation of object’s size could

appear before allocating attention to the target. Our results seem to be in line with this idea: in

Chapter 5 we find size-rescaling processes (which index the presence of a representation of size)

around 160-170ms, while in Chapter 4 we find that spatial attention is focused on the target around

240ms. Interestingly, several studies have shown that an invariant perception of real-world objects

is achieved within 150-200ms after stimulus onset (Thorpe et al., 1996; for a review, see DiCarlo et

al., 2012). Therefore, our results appear to be consistent with other research on invariant object

recognition, supporting that size and object invariance tend to be computed before 200ms.

4. Closing remarks and questions for future research

This  thesis  constitutes  a  collection  of  evidence  on  some  fundamental  top-down  attentional

mechanisms acting in real-world visual search: specifically, the processing stages of preparation,

guidance, selection, and identification (Eimer, 2014). 

Concerning  the  preparatory  phase, we  propose  that  attentional  templates  in  real-world

visual search tasks are based on category-diagnostic features even when other lower-level strategies

would be effective as well. Furthermore, we showed that such templates code the expected target

size/distance,  suggesting that there is  no size invariance at  the level  of preparatory attentional

templates. 

In the context of the attentional guidance and selection stage, we demonstrate that attention

spatially  focuses  on  targets  around  240ms,  following  category-based  attentional  modulations

appearing at 180ms after scene onset. Moreover, we showed that size-constancy mechanisms appear

before 200ms post-scene.  This is  in line with the expectation that a coarse identification of  an

object, including its size, should be computed before spatially focusing attention onto the target.

This spatially global-to-local pattern provides evidence in support of theories of attentional selection

(Wolfe, 1994) and it is in line with the Reverse Hierarchy Theory (Hochstein & Ahissar, 2002):

vision at a glance happens before 200ms and includes activations of spatially-global target-category

representations and computations of its size; then,  vision with scrutiny allows to allocate spatial

attention onto the target for further behavioral processing.

The findings outlined in this thesis raise some possible questions that future research could

address:

• Is the timing of spatial attentional selection influenced by expected target size? Expecting a

big-near target but then being presented with a small-distant target delays the timing of

attentional allocation onto the target?
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• Are  the  results  on  the  timing  of  size-constancy  processes  extendable  to  even  more

naturalistic conditions, with cars and people instead of simple objects?

• How do size-variant attentional templated interact with size-constancy mechanisms? Future

experiments could combine manipulations of  attentional templates and manipulations of

same  vs.  different  perceived  size  to  further  deepen  our  knowledge  on  size-constancy

mechanisms.

• Finally,  virtual reality headsets could really improve the ecological  validity of studies on

naturalistic visual search, therefore it would be interesting if future research will being to

employ such devices.

To conclude, this thesis contains studies that help to improve our understanding of top-down

attentional processes engaged in real-world visual search, and paves the way for questions that

future research could address.
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