
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE

ICT International Doctoral School

Network and Cascade

Representation Learning
Algorithms based on Information Diffusion Events

Zekarias Tilahun Kefato

Advisor

Prof. Alberto Montresor

Università degli Studi di Trento

April 18, 2019

Dedicated to

my father Tilahun Kefato

and

my mother Elisabeth Ergeno

Abstract

Network representation learning (NRL) and cascade representation learn-

ing (CRL) are fundamental backbones of different kinds of network analysis

problems. They are usually carried out in settings where the structure of

the network under consideration is known. Motivated by real-world prob-

lems, this study presents several algorithms for scenarios where the network

structure is partially or completely unknown.

The objective of network representation learning is to identify a mapping

function that projects sparse and high-dimensional network graphs into a

dense latent representation, which preserves the original information about

nodes and their neighborhoods. The notion of neighborhood, however, be-

comes illusive when the network structure is partially or completely hidden.

Inspired by previous results, in our thesis work we have developed novel

algorithms that are resilient to such lack of knowledge. These results estab-

lish a correlation between the properties of the network and different kind

of node activities performed over it, information which is generally more

available and can be easily observed. In particular, we focus on diffusion

events – also called cascades – such as shares, retweets and hashtags.

In the first of our contributions, we have developed a novel NRL algorithm

called Mineral, a simple technique that combines the observed cascades

with the partially accessible network structure by sampling artificial cas-

cades. Node representation is then learned from the observed and sampled

cascades by using the SkipGram model that is widely used for word rep-

6

resentation learning in natural language documents.

In our second contribution, called NetTensor, we assume that the net-

work structure is completely hidden and we propose novel techniques that

are capable to estimate both the hidden neighborhood (proximity) and the

similarity of nodes. Such estimated values are then used to learn a unified

embedding of nodes using a scalable truncated singular value decomposition

and deep autoencoders.

In addition to the NRL algorithms, we have also proposed a novel CRL

algorithm called cas2vec for virality (popularity) prediction. Again, we

pursue a network-agnostic approach following the above assumption that

the network structure is completely unknown. Unlike prior studies that

rely on manual feature extraction, cas2vec automatically learns cascade

representations based on convolutional neural networks, that are effective

in predicting virality of cascades.

We have carried out extensive experiments using several real-world datasets

for all of our methods and compared them against strong baselines from the

state-of-the-art, achieving significantly better results than many of them.

Keywords

[Network representation learning, information diffusion, deep learning, ma-

trix factorization, social network analysis, cascade prediction]

Contents

1 Introduction 1

1.1 Motivation . 3

1.2 Research challenges and contributions 5

1.3 Applications . 9

1.4 Structure of the Thesis . 12

2 Models and Preliminaries 13

2.1 Information Network . 13

2.2 Information Diffusion Events 14

2.3 Additional notations . 15

3 Background 19

3.1 Truncated Singular Value Decomposition (TSVD) 20

3.2 Neural Non-Negative Matrix Factorization (NNMF) 20

3.3 SkipGram . 22

3.4 AutoEncoder . 26

3.5 Convolutional Neural Networks (CNN) 28

4 Network Representation Learning with Structural Infor-

mation 31

4.1 Summary of Contributions 34

4.2 Background and Problem 35

i

CONTENTS ii

4.3 The Learning Algorithm 39

4.3.1 Cascade Sampling 40

4.3.2 SkipGram formulation 42

4.4 Experimental Evaluation 43

4.4.1 Datasets . 43

4.4.2 Baselines . 44

4.4.3 Link Prediction . 45

4.4.4 Node Label Classification 47

4.4.5 Network Visualization 48

4.4.6 Parameter Sensitivity 49

5 Network Representation Learning without Structural In-

formation 51

5.1 Summary of Contributions 53

5.2 Node Proximity Models 53

5.2.1 Delay-Aware Node Proximity Models 55

5.2.2 Delay-Agnostic Node Proximity Model 57

5.2.3 Window-Based Pairwise Proximity Model Optimiza-

tion . 58

5.3 Node Feature Extraction 60

5.3.1 Statistical Feature Extraction 60

5.3.2 Local Feature Extraction 61

5.3.3 Topic Feature Extraction 62

5.4 Practical Consideration . 68

5.5 Problem Statement . 69

5.6 Unified Embedding . 69

5.7 Experimental Evaluation 72

5.7.1 Datasets . 72

5.7.2 Baselines . 74

CONTENTS iii

5.7.3 Link Prediction . 74

5.7.4 Network Reconstruction 76

5.7.5 Node Classification 79

5.7.6 Node Model Analysis 81

5.7.7 Parameter Analysis 84

5.7.8 Application to Learning Influence Propagation Prob-

abilities . 86

6 Cascade Representation Learning for Virality Prediction 89

6.1 Summary of Contributions 93

6.2 Background and Problem 93

6.3 The Learning Algorithm 96

6.3.1 Pre-processing Cascades 98

6.3.2 CNN model for cascade prediction 102

6.4 Experimental Evaluation 103

6.4.1 Datasets . 103

6.4.2 Baselines . 104

6.4.3 Evaluation Settings 105

6.4.4 Virality Prediction 105

6.4.5 Early Prediction 107

6.4.6 Break-out Coverage 109

6.4.7 Effect of hyper-parameters 110

7 State of the Art 113

7.1 Network Representation Learning 113

7.2 Cascade Representation Learning 128

7.2.1 Overview on Cascade Prediction 128

7.2.2 Methods . 129

8 Conclusions 135

CONTENTS iv

Bibliography 141

List of Tables

2.1 Notations and Conventions 16

4.1 Cascades extracted from observed hashtag use of nodes of

the social network in Fig. 4.1(A). A cascade is constructed

by sorting nodes according to the time stamp that they have

used a particular hashtag. 38

4.2 Summary of the datasets 43

4.3 Results for the link prediction task on the Twitter dataset 45

4.4 Results for the link prediction task on the Memetracker dataset 45

4.5 Results for the link prediction task on the Flickr dataset . 45

4.6 Node classification accuracy on different levels of labeled

training set ratio for the Twitter dataset 46

4.7 Node classification accuracy on different levels of labeled

training set ratio for the Memetracker dataset 46

5.1 Dataset summary. 73

5.2 Edge feature construction techniques. Φ[uv] is an edge fea-

ture vector for a pair of nodes u, v ∈ V and Φ[uv, i] is the

ith component. 73

5.3 AUC score for link prediction with rate = 30%. Bold indi-

cates the best performing algorithm for a dataset and un-

derline indicates the best performing feature construction

technique for each dataset and each algorithm. 76

v

LIST OF TABLES vi

5.4 AUC score for link prediction, with rate = 50% and Aver-

age edge feature learning method. Bold indicates the best

performing algorithm for a dataset. 77

5.5 P@K results for the network reconstruction task, λ = 1. . . 78

5.6 P@K results for the network reconstruction task, K = 500K. 78

5.7 Micro-F1 results for node classification alongside the stan-

dard deviations with 95% confidence interval. 81

5.8 Macro-F1 results for node classification alongside the stan-

dard deviations with 95% confidence interval. 81

List of Figures

1.1 An example social network 4

1.2 A subgraph of the social network in Fig. 1.1. 4

3.1 Architecture of the neural-non-negative matrix factorization

model. Dotted lines indicate optional components. If the

dotted box is left out, the NNMF is equivalent to NMF and

instead of concatenation we compute dot product. 21

3.2 Architecture of the SkipGram model 23

3.3 A standard architecture of an autoencoder. Each units of

the feed-forward network constitutes a non-linear activation

(f) of the linear transformation
∑

of its input. 26

3.4 CNN model for sentence classification 28

4.1 An example of a complete social network (A) and possible

subgraphs (B) and (C) that could be crawled as a result of

privacy settings of nodes. (B) If only node 2 have set its

connection setting to private; and (C) if 3 have also decided

to go private on its connections alongside 2. 36

4.2 Multi-label classification (using one-vs-rest logistic regres-

sion classifier) on the Blogcatalog dataset 47

4.3 Multi-label classification (using one-vs-rest logistic regres-

sion classifier) on the Flickr dataset 47

vii

LIST OF FIGURES viii

4.4 Visualization of top-5 communities with at most 2000 users

in the Twitter Dataset using (A) Mineral (B) DeepWalk

and (C) Line . 49

4.5 Sensitivity of the parameter h using the link prediction task

on Blogcatalog . 49

5.1 Cascade size distribution for the datasets used in our exper-

iments . 54

5.2 Relations between properties of a network structure, inter-

action patterns in diffusion events and an embedding space 55

5.3 An example graph with two communities, C1 and C2. . . . 56

5.4 User-cascade bipartite graph illustration. Two groups of

users discussing about the AC Milan football club and Ethiopian

politics . 62

5.5 Relations between local context and topic feature extrac-

tions. The former method uses a bipartite graph in (A).

Similarly the latter one can be modeled as a weighted bi-

partite graph by taking the rows of the transformed event

matrix E′ to put weights on the edges 65

5.6 Topic (A), where order matters, vs. local context (B) fea-

tures, where order does not matter. (A) is plotted form LF

and (B) from TF. 67

5.7 NetTensor Framework 70

5.8 Performance of Node Models in Link Prediction. 82

5.9 Performance of Node Models in Network Reconstruction,

λ = 2 and K = 500K. 82

5.10 Performance of the two kinds of features in the three types

of node classification tasks. 83

LIST OF FIGURES ix

5.11 Effect of proximity window, local context window, and em-

bedding sizes, AUC and P@K are the scores for link predic-

tion (Link Pred.) and network reconstruction (Net. Rec.),

respectively. 85

5.12 Effect of the final embedding size d on node classification . 85

6.1 Examples of two recent hashtag campaigns. (A) The tweet-

ing frequency of each hashtag; #metoo achieved more spread

compared to #gamergate. (B) The network properties of

the participating nodes in each hashtag in terms of average

number of followers; the nodes engaged in the first 12 hours

almost achieve similar reachability in both hashtags. 91

6.2 Two slices of size 2 hours, applied to the user coverage dis-

tribution of a viral hashtag (#thingsigetalot) and a non-

viral one (#bored), which have reached 13711 and 43 users

in an observation window size of 4 hours. 98

6.3 Constant sequence as a step function 100

6.4 The distribution of the user coverage for the viral and non-

viral classes. The user coverage distribution is computed at

observation time to as |C(to)| and virality is computed at

prediction time to + ∆. A cascade is viral if |C(to + ∆)| ≥
1, 000 and not-viral if |C(to + ∆)| < 1000 101

6.5 The CNN model adopted for cascade prediction 102

6.6 Virality prediction results for both of our datasets. For

Twitter, filter sizes = 3, 5, 7 and for each filter we have

16 of them. For Weibo, filter sizes = 2, 4, 5, 7 and for each

filter we have 64 of them. For both datasets, the size of the

embedding matrix is 128, the number of units in the fully

connected layer is 32, and the number of slices is 40. . . . 106

LIST OF FIGURES x

6.7 Evaluation results of early prediction experiments for the

Twitter and Weibo datasets. The prediction time is fixed to

16 hours for Twitter and 34 hours for Weibo, and the same

hyper-parameter values as Fig. 6.6 is used 108

6.8 Break-out coverage for k = 100 and k = 200 for the Twitter

dataset. 109

6.9 Break-out coverage for k = 10 and k = 20 for the Weibo

dataset. 110

6.10 Effect of the number of slices on virality prediction at to = 1

hour and ∆ = 12 hours. 111

6.11 Effect of sequence length on running time. 112

6.12 Effect of sequence length on virality prediction. 112

7.1 Harp’s Graph coarsening techniques (A) - edge coarsening

and (B) - star coarsening 118

7.2 sdne model . 119

Chapter 1

Introduction

Graphs are widely used to model sets of entities that interact over a given

medium, such as users in social networks, blogs over the Internet, proteins

in biological networks, locations in road networks, and so on. Efficiently

representing the entities (nodes) and their interactions (edges) is a critical

step towards performing meaningful analysis over such complex networks.

Graphs are usually represented “as is”, using basic data structures such

as adjacency or incidence matrices. For example, an adjacency matrix

M ∈ [0, 1]n×n, where n is the number of nodes, is such that M[i, j] captures

the existence (1) or the absence (0) of an edge between node i and j.

Despite its simplicity, performing some kinds of tasks (e.g., link prediction

or node classification) based on such complete representation usually leads

to poor performance; the resulting computation can be very expensive

depending on n, commonly known as the curse-of-dimensionality.

For this reason, alternative techniques have been designed to encode

graphs in more compact and efficient ways. Consider an encoding oracle

O : [0, 1]n×n → Rn×d, which transforms a complete representation M into

an encoded representation Z = O(M), where d� n.

Z is a compact and dense representation obtained by applying the oracle

O such that the “most important” properties of M are preserved in Z. The

1

2

problem of network representation learning (NRL) or graph embedding

amounts to identifying the oracle O.

In the last few decades, several strategies have been proposed towards

this goal. The classical approaches are based on explicit matrix factor-

ization, such as latent semantic indexing (LSI) [14], non-negative matrix

factorization (NMF) [60, 49], or singular value decomposition (SVD).

More recent approaches utilize artificial neural networks and can be

subdivided in two main groups. On one hand, some studies seek to preserve

the local and/or global properties of nodes [64, 70, 28, 77, 19, 32, 1, 59, 45,

29, 44]. Potential properties of interest are first-order, second-order, and

in general higher-order proximities of nodes, or cohesive structures such

as community subgraphs, etc. These approaches are usually suitable to

preserve similarities (homophily) between nodes.

On the other hand, some complementary studies have endeavored to pre-

serve the role of nodes, such as being hubs, bridges or peripheral nodes [32,

19, 1, 45, 30].

In addition to the aforementioned works, recent studies have been pro-

posed to take advantage of additional aspects of graphs, as well. In the

early stage of the neural network representation learning (NNRL), sev-

eral papers have exploited the network structure only [64, 28, 70, 77].

Follow-up studies have proposed to incorporate node attributes and have

empirically proven that such approach leads to a better quality represen-

tation [85, 34, 55, 66].

Furthermore, alternative studies [9, 38, 39, 40] have also been proposed

to exploit explicit interaction between nodes of a network. In particular,

these studies have focused on interactions that led to information diffusion

events. The main advantage of these studies is that their methods can

be used for predicting the future state of the diffusion events themselves

(cascade prediction).

1. INTRODUCTION 3

The focus of this thesis is on the use of information diffusion events in

order to achieve network and cascade representation learning (NRL and

CRL, respectively). Towards this end we follow two main directions: on

one hand, we consider scenarios where the network structure is partially

or completely known; on the other hand, we consider scenarios where the

network structure is hidden. In particular, we give more emphasis to the

latter case.

While the entire study could be motivated by the list of applications

presented in Section 1.3, we first highlight why we need techniques based

on diffusion events when the network structure is partially or fully hidden.

1.1 Motivation

Existing studies dedicated to both NRL and CRL are heavily reliant on the

network structure. This is, however, a problem as there are several cases

where one might lack the complete or partial structure of the network.

For example, consider online social networks (OSN) such as Twitter and

Facebook. The follower/friend links on these networks are usually very

difficult to obtain by interested third parties (researchers or businesses)

working outside the OSN host companies, due to privacy policies and com-

petitive market advantages [2]. Even when the data is publicly available, it

may take several months to extract just a portion of the network. Another

scenario could be an epidemic, where we know who has been infected and

when, but not how they got infected.

Motivating example: Let us consider an excerpt of a hypothetical friend-

ship subgraph of a Facebook like social network depicted in Fig. 1.1. Users

of such social networks normally have the possibility to make their friend-

ship links private, and hence let us suppose 2, 3, and 9 have done so.

1.1. MOTIVATION 4

2 3

4

6

Text

7 8

9

10

51

Figure 1.1: An example social network

2 3

4

6 7 8

9

10

51

Figure 1.2: A subgraph of the social network in Fig. 1.1.

Now, consider a particular startup company xyz plc that wants to use the

friendship network of the above social network for some of its services.

A developer from xyz plc crawls the friendship network; the best she can

manage to obtain, however, is the graph that is shown on Fig. 1.2, due

to the privacy policy. Any representation R learned over such graph is

apparently far from what one desires to achieve. We need to carefully ex-

amine other sources of information that might enable us to achieve a better

1. INTRODUCTION 5

representation than R.

Fortunately, previous studies have shown a strong correlation between

the dynamics of information diffusion events and the network structure [82,

83]. That is, in most diffusion events, similar users have the tendency to

participate together. For example, if two users are connected, then they

have a better likelihood of being involved in similar diffusion events with

respect to a random user that is not connected to them. Therefore, one

can use diffusion events as a proxy to the network structure by carefully

probing the aforementioned kinds of correlations.

As a result, it is imperative to design representation learning algorithms

– for both network and cascade prediction scenarios – that are not depen-

dent on the knowledge of the complete network structure, but are still ca-

pable of producing “very good” results using information diffusion events.

1.2 Research challenges and contributions

We investigate the problem of representation learning in the context of

informations graphs from three points of view, as discussed below.

Network representation learning with Structural Information

Similarly to most of the existing studies, the first contribution is to study

the NRL problem when the network structure is already known. Our study

is not limited to that, however; we consider also information coming from

user interactions and other available attributes. The goal is to address the

research question “can we improve existing NRL results by incorporating

the interactions among users and potential attributes describing them?”.

A naive solution can be provided by independently learning represen-

tations from three sources, i.e. the topology, the interactions and the

attributes; then, these representation are concatenated into a single one.

1.2. RESEARCH CHALLENGES AND CONTRIBUTIONS 6

This approach, however, fails to account for the correlation between the

learned features. Thus, our main challenge here is to find an algorithm

that learns a joint representation from three sources.

Towards this end, we first propose a simple edge-weighting scheme based

on the attribute similarity of the endpoints of an edge. Second, we intro-

duce a complementary approach to capture nodes proximity based on ar-

tificial or simulated information diffusion over a weighted graph. Finally,

we incorporate actual or observed interaction histories that have led to

diffusion events and combine them with the simulated diffusion events to

complete the NRL task.

Unlike most existing techniques, the approach proposed here is robust to

partially hidden network topologies, as it makes use of information diffusion

events that occur over them.

We evaluate the effectiveness of our approach by comparing it over

four real-world datasets against existing state-of-the-art techniques that

are based on network structure only.

List of Publications

1. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. Min-

eral: Multi-modal network representation learning. In Proc. of the

3rd International Conference on Machine Learning, Optimization and

Big Data, MOD’17. ACM, September 2017.

2. Nasrullah Sheikh, Zekarias Kefato, and Alberto Montresor. GAT2VEC:

Representation learning for attributed graphs. Computing, 2018.

3. Nasrullah Sheikh, Zekarias T. Kefato, and Alberto Montresor. HET-

NET2VEC: Semi-Supervised Heterogeneous Information Network Em-

bedding for Node Classification using 1D-CNN. In Proc. of the First

International Workshop on Deep and Transfer Learning (DTL’18).

1. INTRODUCTION 7

IEEE, November 2018.

Network Representation Learning w/o Structural Information

Although scenarios where the information about the network structure is

completely missing are particularly common, especially when dealing with

social networks, only little emphasis has been given to the NRL problem in

this context. Here we intend to address a second research question, that is,

“Can we learn an effective representation of nodes of a particular network

when the structure is hidden?”

Unlike the first contribution, however, here there is no straightforward

way to see who is connected to who. Usually the NRL methods in the above

category exploit the local neighborhood of nodes or the proximity between

them. The lack of knowledge about the network structure constitutes a

difficult challenge. That is, we need to find a mechanism where we can

somehow compute the local neighborhood or the proximity of nodes in the

original network by merely analyzing diffusion events only.

To address this problem, we propose different techniques to extract fea-

tures from diffusion events that are indirectly related to the property of

the original network. We achieve this by capitalizing on findings from

previous studies regarding how the network structure and diffusion events

over the network are related. Although it is inherently difficult to achieve

performances as good as those obtained from NRL techniques based on

a known structure, we have managed to obtain “reasonably close” results

with respect to the state-of-the-art.

The ideas introduced to answer this research question are validated

through an extensive experimental evaluation against real-world datasets

and state-of-the-art NRL techniques that take advantage of the network

structure.

1.2. RESEARCH CHALLENGES AND CONTRIBUTIONS 8

List of Publications

1. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. Net-

Tensor: Network Representation Learning with Incomplete Informa-

tion. Journal of Machine Learning Research, JMLR’18. Submitted

for publication, September 2018.

2. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. RE-

FINE: Representation learning from diffusion events. In Proc. of the

4th Conference on Machine Learning, Optimization and Data science,

LOD’18. Springer, September 2018.

3. Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. Deep-

Infer: Diffusion network inference through representation learning. In

Proc. of the 13th International Workshop on Mining and Learning

With Graphs, MLG’17. ACM, August 2017.

Representation Learning for Cascade Prediction

Finally, we examine how we can learn a representation of diffusion events

(cascades) to predict their future states. Existing techniques for cascade

prediction are mainly based on manual feature extraction. Such techniques,

however, cannot be applied when the network structure is hidden. Further-

more, manual feature extraction could be expensive and time-consuming

as it might depend on domain experts and external factors.

The third contribution answers thus the following research question:

“Can we learn representation of cascades that effectively predict their future

states without the network structure and manually crafted features?”.

The challenge is twofold: we need to avoid manual efforts provided by

domain experts and we should only depend on the information available

in the cascades.

1. INTRODUCTION 9

To meet this need, we propose a network-agnostic technique that auto-

matically extracts features from cascades capable of effectively predicting

them.

Similar to the previous contributions, we have also experimentally eval-

uated the performance of this algorithm using data from two popular social

networks and compared it against the state-of-the-art.

List of Publications

1. Zekarias T. Kefato, Nasrullah Sheikh, Leila Bahri, Amira Soliman,

Alberto Montresor and Sarunas Girdzijauskas. CAS2VEC: Network

Agnostic Cascade Prediction in Online Social Networks. In Proc.

of the 5th Conference on Social Network Analysis, Management and

Security, SNAMS18. IEEE, November 2018. (Best Paper)

1.3 Applications

Traditionally, to analyze information networks, one has to engineer sepa-

rate sets of features for different kinds of applications. Nonetheless, NRL

techniques turn out to be incredibly useful as they spare us from the re-

peated feature engineering and empower us to use the same representation

across different applications.

In this section, we discuss some of the major application areas of both

network and cascade representation learning when the same set of repre-

sentations can be used.

Network Reconstruction

An important problem in different fields such as systems biology, epidemi-

ology and social sciences is the reconstruction of a hidden interaction net-

work of agents based on observed traces of diffusion events. As an example,

1.3. APPLICATIONS 10

consider the reconstruction of the underlying interaction network between

people infected by an epidemic.

One of the constraints of NRL is that the representation should pre-

serve the most important properties of the underlying network, such as

the structure and topology of the network. If the structure of the network

is preserved while embedding the nodes of the graph into a latent vector

space, then one should be able to reconstruct the original network.

An interesting property of diffusion events is that they unveil an inter-

esting pattern that describes how the agents are linked or interact in the

underlying hidden network. That is, nodes participation in diffusion events

follows a certain pattern that indicate their structural connection.

Therefore, one can embed the agents participating in diffusion events

into a latent vector space so as to capture the aforementioned patterns.

This is indirectly equivalent to preserving the structure of the network

as the patterns in cascades are related to the network structure. Then,

one can reconstruct the network, for instance by computing distance or

similarity between the embedding vectors of the agents.

Link Prediction

Link prediction is one of the most important problems in social network

analysis. The task is to recommend possible connections between nodes

that are currently not connected but are highly likely to be connected in

the future. In general, there are three main directions towards solving

this problem, which are based on node similarity, topology, and social

theory [79]. Very often, such techniques rely on experts to craft informative

features that tries to capture nodes local neighborhood information.

On the other hand, learned embeddings are usually designed in such a

way that they capture the local neighborhood information of nodes. This

property of NRL algorithms naturally benefits link prediction algorithms.

1. INTRODUCTION 11

For example, in a traditional link prediction pipeline, one can use node

embeddings learned through a NRL algorithm instead of manually crafted

features.

Node Classification

In node classification, the goal is to assign labels to unlabeled nodes based

on the labels associated to their neighbors. Node classification algorithms

are usually designed based on the theory of homophily from social studies,

which argues that nodes with similar characteristics have the tendency to

be connected.

Akin to link prediction, traditionally, features that capture the similarity

between the properties of nodes are manually crafted by experts. Yet again,

features can be learned using NRL algorithms and node classification can

be carried out using node embeddings.

Network Visualization

Before designing a particular algorithm for a given problem, the first step

is to understand the data at hand. Visualization is one of the most im-

portant tools to acquire insights about the data. For example, it enables

to understand whether the graph is organized into modular components or

communities.

Visualizing the community structure of a small graph might be easy; as

the size of graph grows, however, obtaining a visualization where one can

draw meaningful insights is challenging.

To solve this problem, it is useful to project the graph into a lower-

dimensional vector space and build a representation based on such space.

It is easy to see how NRL techniques fit in such application.

1.4. STRUCTURE OF THE THESIS 12

Rumor Detection

After having seen several applications of NRL techniques, we conclude by

providing an example related to cascade prediction.

In rumor detection, we are usually interested in identifying online con-

tents that are intended to misinform or spread false/fake news to social

network users. Classifying whether a certain content is rumor, however, is

to no avail if it is not going to affect a “significant” number of users, or if

the effect of the content is not “significant”. Thus one has to first identify

whether a post has a “significant” effect or not before a rumor detection

task. We can also turn the problem upside down and decide whether a

content classified as a rumor is going to have a “significant” effect.

Regardless of the choice of the order of the rumor detection task, it is

important to identify the effect of a content. Usually this task is known as

popularity or cascade prediction. Therefore one can use the representation

learning for cascade prediction component to aid the rumor detection task.

1.4 Structure of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2 we intro-

duce the formal graph and cascade models and other definitions that are

used throughout the paper. Next, in Chapter 3 we give a comprehensive

background for all the algorithms used in the thesis. From Chapter 4 to

Chapter 6 we discuss the three algorithms we propose to address the three

research questions raised in Section 1.2. The state-of-the-art is covered in

Chapter 7 and we conclude the thesis in Chapter 8.

Chapter 2

Models and Preliminaries

This thesis is focused on the concepts of information networks and cas-

cades (a.k.a. information diffusion events). This chapter introduces the

notation used in the rest of the work, including the basic concepts that

model information networks and the diffusion of information across them,

also know as cascades.

2.1 Information Network

Throughout the thesis, we consider generic information networks that can

be described as directed, weighted, and labeled graphs G = (V,E,W, a),

where V is a set containing n nodes, E ⊆ V × V is a set containing m

edges, W ∈ Rn×n is a weight matrix of size n × n, and a : V → A that

associates each node u ∈ V with a set of attributes a(u) taken from an

attribute collection A. W[i, j] is the entry in the ith row and jth column

of W and corresponds to the weight associated to the edge (i, j) ∈ E. We

use Eq. 2.1 and 2.2 to denote the set of outgoing and incoming neighbors

of node i, respectively.

out(i) ={j : (i, j) ∈ E} (2.1)

in(i) ={j : (j, i) ∈ E} (2.2)

13

2.2. INFORMATION DIFFUSION EVENTS 14

Note that the proposed techniques can be easily applied to undirected

and unweighted graphs as well, by simply putting two directed edges (i, j)

and (j, i) for every undirected edge (i, j) ∈ E and by assigning a constant

weight w(i, j) = 1 to all edges.

2.2 Information Diffusion Events

Usually, nodes in information networks are involved in activities such as

content generation, message exchanges, information sharing and so on.

In this study, we focus on information sharing activities that lead to the

spread or diffusion of a piece of content. We refer to the piece of content

as a contagion; it can be a piece of text, a picture, a video or any valid

content that can be generated by nodes in information networks.

The first node that generates a contagion is called the origin; the last

node where the diffusion of the contagion stops is called the sink. We

refer to the moment when a piece of content reaches a node v ∈ V as the

infection event of node v. The complete propagation process of a contagion

from the origin up to the sink is called a diffusion event or cascade.

More formally, a cascade C ∈ C is defined as an ordered sequence of

infection events:

C = [(u1, t1), . . . , (u|C|, t|C|)], (2.3)

where (ui, ti) is the ith infection event and ui and ti are the ith infected

node and infection timestamp, respectively. We denote the set of all cas-

cades as C = {C1, . . . , Cc}.
Note that indexing in cascades does not pertain to node identities; it

rather refers merely to the order of infection events; that is, here i is only

associated to a position in a cascade. As infection events are ordered, such

that 1 ≤ i < j ≤ |C| ⇒ ti < tj, for any cascade C and any pair of indices

2. MODELS AND PRELIMINARIES 15

i, j.

In addition, for any cascade C, the timestamp associated to the first

infection event t1 is always 0, and the following timestamps are relative to

it:

C = [(u1, t1 = 0), . . . , (u|C|, t|C|)]

We also assume that nodes can only be infected once, therefore in a

cascade C if a node u ∈ V is infected at infection time step i, that is,

C = [. . . , (ui = u, ti), . . .]

then there is no index j 6= i such that

C = [. . . , (uj = u, tj), . . .]

2.3 Additional notations

We use C(i) = (ui, ti) to denote the ith event of a cascade C. To easily

identify the set of all cascades associated with a particular node v ∈ V , we

use Cv defined as:

Cv = {C : ∃j ∧ 1 ≤ j ≤ |C| ∧ C(j) = (uj = v, tj)} (2.4)

We consider a generic similarity function sim : V × V × Rx×y → [0, 1],

that measures the similarity between pairs of nodes u, v as described by

the row vectors W[i] and W[j], respectively. For example, we could adopt

cosine similarity:

sim(i, j; W) = cos(W[i],W[j])

The aforementioned formulation captures similarity between nodes merely

based on their position in the network. However, that is a simplified as-

sumption; in reality, a richer set of factors play crucial roles in deciding

2.3. ADDITIONAL NOTATIONS 16

Sample Symbol Description

X, Ψ A convention used to denote a matrix – bold caps letter

or Greek caps letter

X[i] or xi A convention used to denote the ith row of the matrix X

X[i, j] or xi[j] A convention used to denote the ith row and jth column

of the matrix X

x A convention used to denote a vector – bold small letter

x[i] A convention used to denote the ith component of the

vector x

XT , xT A convention used to denote the transpose of a matrix or

a vector, respectively

S A convention used for sequence or set of scalar values is

denoted by caps letter

S A set of sets or sequences is denoted by a calligraphic

symbol

G An information graph

V The set of nodes of G

E The set of edges of G

W The weight matrix associated with G

n The number of nodes

m The number of edges

C The set of cascades

Ci The set of cascades of node i

Φ A low-dimensional dense embedding or representation

matrix

Hk The weight-matrix of the kth hidden layer of a feed-

forward neural network

in(u) Incoming neighbors of a node u ∈ V
out(u) Outgoing neighbors of a node u ∈ V
N(u) = in(u) ∪ out(u) Neighbors of a node u ∈ V

Table 2.1: Notations and Conventions

how similar nodes are [56]. In this study we enrich the similarity function

by incorporating node attributes and/or activity or interaction profiles.

For ease of discussion, let us consider an overloaded oracle sim that

2. MODELS AND PRELIMINARIES 17

computes similarity between a pair of nodes based on any given input

space. The input space could be topological information (W – Eq. 2.5),

attribute information (A – Eq 2.6), interaction profiles recorded in cascades

(C – Eq. 2.7), or the combination of one or more of them (Eq. 2.8).

sim : V × V ×W→ [0, 1] (2.5)

sim : V × V ×A → [0, 1] (2.6)

sim : V × V × C → [0, 1] (2.7)

sim : V × V ×W∗ ×A∗ × C∗ → [0, 1] (2.8)

In Eq. 2.8, the ∗ indicates that the corresponding input space is op-

tional. Hence, it is not necessary for all the input sources to be specified;

sim can be defined depending on the availability of the input spaces. For

example, using just the cascade input space, sim could be computed as the

probability of node u to occur in a cascade, under the condition that v has

also occurred (in any order) (Eq. 2.7).

sim(u, v; C) = p(u|v) (2.9)

The conditional probability p(u|v) could be estimated using a simple nor-

malized co-occurrences between the pairs as:

p(u|v) =
|Cu ∩ Cv|
|C|

(2.10)

We can also further improve the simple estimation of p(u|v) by introducing

strong constraints like co-occurrences within a context window [63] and so

on.

Finally, throughout the thesis we use terms embedding and represen-

tation of nodes and cascades interchangeably. The list of notations and

conventions used throughout the thesis are presented in Table 2.1.

2.3. ADDITIONAL NOTATIONS 18

Chapter 3

Background

In order to solve the three research questions discussed in Chapter 1, we

have developed algorithms that are based on already existing matrix fac-

torization and neural network models. In the former models, we adopt

both traditional matrix factorization and more recent approaches based

on neural networks. The main motivation for using neural matrix factor-

ization (NMF) is their capability to model non-linear problems. As the

structure and dynamics of diffusion events over information networks are

highly non-linear, NMF techniques are the perfect fit. In the latter models,

we adopt both shallow and deep neural networks.

For the sake of completeness, in this chapter we give a detailed discus-

sions of the algorithms that we have adopted in the thesis. The following

is the list of algorithms employed:

1. Truncated Singular Value Decomposition

2. Neural Non-Negative Matrix Factorization

3. SkipGram

4. AutoEncoder

5. Convolutional Neural Networks

19

3.1. TRUNCATED SINGULAR VALUE DECOMPOSITION (TSVD) 20

3.1 Truncated Singular Value Decomposition (TSVD)

SVD is a matrix factorization technique which decomposes a given matrix

Z ∈ RN×M with rank K ≤ min(M,N) as follows:

Z = AΣBT =
∑
i

σi · ai · bTi (3.1)

where A ∈ RN×K , BT ∈ RK×N are column orthonormal matrices – AAT =

BBT = I, and Σ = diag(σ1, . . . , σK) are singular values. Computing the

full-rank SVD factorization is expensive for large matrices, and not rele-

vant to our problem. Therefore we use the truncated generalized version

(TSVD) [33] that has been shown to be scalable for large-scale graphs [59].

Here, instead of the full-rank K decomposition, TSVD computes the basis

of a k–dimensional left singular subspace of Z, where k � K, using for

example power iteration techniques [4].

If Z is not symmetric (Z[i] 6= Z[i]T), then following [59] we decompose

it into two factor matrices X ∈ Rk and Y ∈ Rk as

X =[
√
σ1 · a1, . . . ,

√
σk · ak] (3.2)

Y =[
√
σ1 · b1, . . . ,

√
σk · bk] (3.3)

Otherwise, if Z[i] = Z[i]T , we only materialize X.

3.2 Neural Non-Negative Matrix Factorization (NNMF)

Given a non-negative matrix Z, the goal of non-negative matrix factoriza-

tion is to find two lower-rank factor matrices X and Y that approximate

Z ≈ XY provided the constraints X ≥ 0 and Y ≥ 0 are satisfied. To

quantify the quality of the approximation, different optimization strate-

gies could be employed; for example, both distance- (such as Euclidean)

3. BACKGROUND 21

X

Y

∑ f

∑ f ∑ f

∑ f

∑ f

Non­Linear Layers

 ∑ f

Figure 3.1: Architecture of the neural-non-negative matrix factorization model. Dotted

lines indicate optional components. If the dotted box is left out, the NNMF is equivalent

to NMF and instead of concatenation we compute dot product.

and divergence-based approaches (such as Kulback, Bregman) [50, 16] have

been used. For example, using the Euclidean distance, the objective is

specified as

min ||Z−XY||2F =
∑

(Z[i, j]− (X[i] ·Y[j]T))2 (3.4)

subj. to X,Y ≥ 0

X and Y are then iteratively updated until convergence using algorithms

such as stochastic gradient descent (SGD) or its variants. Due to its ex-

pressive power that enables us to incorporate non-linearity, in this work

we propose a simple and general neural-non-negative matrix factorization

(NNMF) for extracting latent factors. The general overview of the model

is given in Fig. 3.1 and we adjust the optimization objective in Eq. 3.4 as

follows

min ||Z− layers(H1 · (X⊕Y))||2F =
∑

(zi[j]− layers(H1 · (xi ⊕ yj))
2

subj. to X,Y ≥ 0 (3.5)

where layers is a composition of non-linear functions of linear trans-

3.3. SKIPGRAM 22

formations (‘Non-Linear Layers’ in Fig. 3.1), and Hi is the weight matrix

of the ith hidden layer. For all the layers except the last one, we use tanh;

we use relu at the output layer instead, to predict the non-negative entries

of Z. The input is specified by the concatenation of X and Y using the ⊕
operation as shown in Fig. 3.1.

The task is to predict the entries zi[j] of Z using the current projections

of xi and yj. In every iteration, a prediction z̃i[j] of zi[j] is computed as

z̃i[j] = layers(H1 · (xi ⊕ yj)) (3.6)

= relu(HL · tanhL−1(. . .H2 · tanh1(H1 · (xi ⊕ yj)) . . .))

where L is the number of layers and HL is the weight matrix of the Lth

layer. Note that HL is a vector as we have only one neuron at the output

of the model and HL has the same number of components as the output

of the (L-1)th layer.

Finally, depending on the incurred loss (Eq. 3.5) of each of the iterations,

X and Y will be updated until convergence or the squared distance (loss)

is minimized (||Z− Z̃||2F ≈ 0), using stochastic gradient descent.

3.3 SkipGram

The SkipGram [57] model has been developed inside the natural language

processing community. It has been used for language modeling based on

the distributional hypothesis from linguistics. According to this hypoth-

esis, words meaning can be understood by a proper examination of their

context [20, 21]. That is, a word cannot have a meaning without other

words frequently accompanying it in its occurrence, and this is the notion

that was introduced by linguists like J. R. Firth (known for his famous

quote “you shall know a word by the company it keeps”).

The essential idea of the SkipGram model, depicted in Fig. 3.2, is

3. BACKGROUND 23

0

0

..,

1

0

0

..,

0

0

∑

∑

∑

∑

∑

∑

∑

Position of the
target word wt

P(∣ Φ())w1 wt

P(∣ Φ())w2 wt

P(|Φ())w||−1 wt

P(|Φ())w|| wt

The probability that
is in a context of

w1

wt

|| Components

 Neuronsd

|| Neurons

One­hot
Input Vector

Projection
(Hidden) Layer
Linear Units

Softmax Classification
Layer

Figure 3.2: Architecture of the SkipGram model

to project words into a latent continuous vector space that preserves the

distributional semantics of words. That is, in the vector space, words

that tend to co-occur within a context should be projected close to each

other. In other words, we seek to learn a low-dimensional representation

(the ‘Projection Layer’ of Fig. 3.2) of a target word that is capable of

predicting its nearby or context words. To formally define the model,

suppose we have a document corpus D = {Di : 1 ≤ i ≤ |D|}, and let Si be

the set of sentences in document Di, and S ∈ Si be a sentence specified as

a sequence of words:

S = w1, w2, . . . , w|S|, (3.7)

where each word wi is a sample from a vocabulary V . Consider the

functions S(i) = wi that returns the ith word in the sentence S and function

context(S,wt, s) that extracts the context words of wt from the sentence S

3.3. SKIPGRAM 24

within a context size s:

context(S,wt, s) = {S(j) = wj : 1 ≤ t− s ≤ j ≤ t+ s ≤ |S|, j 6= t}

Then, for each target word S(t) = wt and a given context size s, the

SkipGram model maximizes the log probability of observing the set of

context words given the current target word:

max

|S|∑
t=1

logP (context(S,wt, s)|wt) (3.8)

max

|S|∑
t=1

∑
wc∈context(S,wt,s)

logP (wc|wt) (3.9)

As the goal is to embed words into a latent vector space, we condition

on the current embedding of the target word Φ(wt) and rewrite Eq. 3.9 as

min−
|S|∑
t=1

∑
wc∈context(S,wt,s)

logP (wc|Φ(wt)) (3.10)

The technique employed by the SkipGram model is also known as

“learning by prediction” [3]. This is due to the optimization objective in

Eq. 3.10 that is formulated as a prediction task of each context word given

the embedding of a target word. The prediction task is normally handled as

a softmax classification problem (hence the “Softmax Classification Layer”

of Fig. 3.2) :

P (wc|Φ(wt)) =
exp(Φ(wc)

T · Φ(wt))∑
w∈V exp(Φ(w)T · Φ(wt))

(3.11)

That is, the model produces a conditional distribution P (wi|Φ(wt)) that

encodes the probability that each word wi ∈ V is a context word of a target

word wt. Next, the prediction P (·|Φ(wt)) ∈ [0, 1]|V| is checked against

3. BACKGROUND 25

each encoding 1wc
of the ground truth context word wc ∈ context(S,wt, s),

where 1wc
∈ {0, 1}V is a one-hot vector of wc that has 1 for the component

associated with the position of wc and 0 everywhere as shown below.

1wc
=


0
...

1
...

0


However, training the SkipGram model using the softmax formulation

in Eq. 3.11 is very expensive due to the normalization constant that needs

to be computed over all the vocabulary words w ∈ V . In this thesis we

adopt the “negative sampling” technique [57] that characterizes a good

model by its power to discriminate noise from the correct context words.

Then, the computation of log P (wc|Φ(wt)) using the negative sampling

strategy is specified as:

P (wc|Φ(wt)) = log σ(Φ(wc),Φ(wt)) + neg(wt, `), (3.12)

where σ is a sigmoid function, and the goal is to train a model that is capa-

ble of effectively differentiating the proper context word wc of wt from the

` negative (noisy) samples wn drawn from some noise distribution N (wt)

of the target word wt. neg(wt, `) is the noise model, defined as:

neg(wt, `) = ` · Ewn∼N (wt)[− log σ(Φ(wn),Φ(wt))] (3.13)

Equation 3.12 is equivalent to querying the model regarding its belief that

wc is a correct context word of wt as opposed to the negative samples wn.

Numerically, a good model should produce a small expected probability for

the noise model and larger probability for the data model (the first term

on the right-hand-side of Eq. 3.12).

3.4. AUTOENCODER 26

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

∑ f

Figure 3.3: A standard architecture of an autoencoder. Each units of the feed-forward

network constitutes a non-linear activation (f) of the linear transformation
∑

of its input.

Finally, one can train the model using the entire document corpus D and

an optimization algorithm like stochastic gradient descent (SGD). After a

proper training – or after the model parameters (Φ) are tuned – we can

use the embedding Φ(w) of each word w ∈ V for different kinds of natural

language processing tasks.

3.4 AutoEncoder

An autoencoder (Fig. 3.3) is a feed-forward neural network that is com-

monly used for an unsupervised machine learning. It has two components,

which are called encoder and decoder. The encoder (the blue layers) is

used to generate a compact and dense representation (the white layer) of a

typically sparse and high-dimensional input data. The decoder (the green

layers) tries to reconstruct the original input data from the compressed

code. Informally, the objective is to train a model that learns a high-

3. BACKGROUND 27

quality compact representation of the input data capable to reconstruct

the input data from the representation.

More formally, let I be the high-dimensional input data to the autoen-

coder. Then we define, respectively, the encoder enc and dec in Eq. 3.14

and 3.15 as a composition of non-linear functions

Φ = encL(HL
enc · encL−1(. . .H2

enc · enc1(H1
enc · I) . . .)) (3.14)

I′ = decL(HL
dec · decL−1(. . .H2

dec · dec1(H1
dec · Φ) . . .)) (3.15)

where L is the number of layers, Hl
enc and Hl

dec are the weight matrices,

and encl and decl are the non-linear functions, such as sigmoid and tanh,

of the lth layer of the encoder and decoder, respectively.

The training objective is commonly modeled as a minimization of the

input reconstruction error

min ||I− I′||2F (3.16)

Very often, due to the sparsity of I, the basic formulation is prone to

learning to reconstruct the zeros, and a simple penalization trick is com-

monly used to avoid this [77]. For this reason, the model is strongly penal-

ized when it fails to reconstruct the non-zero elements and weakly penalized

for the zeros of the input data. This trick is achieved by introducing a term

S to the above equation as follows

min ||(I− I′)⊗ S||2F (3.17)

where ⊗ is the Hadamard product and S ∈ Rn×n is associated with

the input I, i.e. if I[i, j] = 0, then S[i, j] = 1; otherwise S[i, j] = µ > 1.

3.5. CONVOLUTIONAL NEURAL NETWORKS (CNN) 28

Sentence Embedding Layer
with multiple channels Convolutional Layer Max pooling overtime

Fully Connected
Softmax Layer

w2
w3

ws

w1

Input
Sentence

Figure 3.4: CNN model for sentence classification

The larger the value of µ, the stronger the penalty is on the reconstruction

errors for the non-zero entries of I.

Usually, a regularization term or a dropout regularization technique is

used to avoid over-fitting. Finally, one can train the model by optimizing

either of the objectives in Eq. 3.16 or 3.17 depending on the sparsity of the

input data I using algorithms such as stochastic gradient descent (SGD).

3.5 Convolutional Neural Networks (CNN)

Convolutional neural networks are widely used in different areas, such com-

puter vision and NLP. In particular, they have proved to be highly effective

in tasks such as object detection/recognition.

Generally, we can group them into two broad categories based on the

type of input they process: 2-dimensional objects (such as images, video

frames) and 1-dimensional objects (such as time-series, signals, and sen-

tences in documents). In this thesis, we focus on the 1D variant that we

have adapted to our problem.

In the following, we give an overview of the model introduced for sen-

3. BACKGROUND 29

tence classification [42], whose architecture is depicted in Fig. 3.4.

The model takes a sentence S = w1, . . . , ws of length s as input. Each

sentence is embedded using a multi-channel embedding matrix. In the

approach proposed by Kim [42], a fixed channel, based on pre-trained word

embeddings and trainable channel that can be optimized with respect to

the task-at-hand, for example sentence classification, have been used.

We illustrate now how a classification is carried out during inference

time, supposing that all the model parameters have been already trained.

Given an input test sentence St = w1, . . . , ws, its embedding matrix E =

[we1, . . . ,wes]
T is constructed using the trained word embedding vectors

wei ∈ Rd of each word wi : i = 1, . . . , s. This corresponds to the sentence

embedding layer in Fig 3.4.

Then, in the convolutional layer the prediction task starts by applying

a set of p filters on the cascade embedding matrix. That is, we apply p

filters (denoted by different colors) of different sizes on every possible slice

of the input of the convolutional layer (the cascade embedding matrix).

More formally,

φi,r = σ(hi · ejk + b) (3.18)

where the vector hi ∈ Rkd is the ith filter (kernel), b ∈ R is the bias,

σ is an activation function, such as relu, k is the size of the ith filter,

φi,r is the feature value of the ith filter on the rth round convolution, and

ejk = ej ⊕ . . . ⊕ ej+k ∈ Rkd is a concatenation of k rows of the matrix E,

starting from the jth row. Generally, the ith filter of size k is convolved

s−k+1 times, to give the feature maps φi = [φi,1, . . . , φi,s−k+1]. φi captures

patterns in high-level features, such as n–grams in language documents.

Next, a max-pooling (or a max-pooling overtime) operation is applied

over each feature map to sample from a specified pooling window, and the

simplest technique is the one that draws from the entire feature vector,

i.e. max(φi) = φ̂i ∈ R. Intuitively, this corresponds to selecting the

3.5. CONVOLUTIONAL NEURAL NETWORKS (CNN) 30

best feature that is activated when a certain pattern in the input space

is detected. The max-pooling output, more formally z = [φ̂1, . . . , φ̂p], is

followed by a fully connected softmax classification layer. The vector z can

be viewed as the final set of features extracted for the current sentence,

and it will be used to predict the sentence into one of the l ≥ 2 target

classes Y = {yi : 1 ≤ i ≤ l}. This model was original proposed for binary

classification l = 2, henceforth we assume this setting.

The above description assumes that the model is trained; to perform

the training, the optimization objective of the model is specified as the

minimization of the misclassification error of the sentences. More formally,

we adopt the standard binary cross-entropy objective function:

min−
∑
i

yi log(model(Si)) + (1− yi) log(1− model(Si)) (3.19)

Here, Si and yi ∈ {0, 1} are the ith sentence and class label, respectively.

model is the proposed model that produces a probability distribution (pre-

diction) y for the given training sentence Si over the classes (1 and 0):

y = h · (z ◦ v) + b (3.20)

where v = [v1, . . . , vp] is a Bernoulli distribution used for dropout regular-

ization as proposed in [42], with vi ∈ {0, 1}.
Ultimately, the model parameters [E, b,hi,h] are trained using the back-

propagation algorithm.

Chapter 4

Network Representation Learning

with Structural Information

As we have discussed in the introduction, we approach the NRL task from

two perspectives. This chapter is dedicated to the first one, where the

network structure could be partially or completely known.

In general, the goal of a NRL task is to embed the nodes of the graph

into a latent vector space in such a way that the most important properties

of the network are preserved. Among such properties, for instance, those

associated to the topology of the network are particularly important. For

example, connectivity of nodes, the shape of their neighborhood, or their

organization as a community; in general, the global proximity that each

node has with rest of the nodes in the network. Preserving these proper-

ties while embedding the nodes in the latent space enables one to perform

different kinds of network analysis, such as link prediction and node clas-

sification, in an efficient and effective way.

Thus, in order to obtain high-quality node embeddings that are going to

be successful in the aforementioned tasks, we need to carefully investigate

factors that govern nodes proximity or that could be attributed to their

observed proximity.

In other words, first we should examine what factors have led users to

31

32

be located in a close proximity towards a given set of users and farther

apart from others in a given information network. One of the most widely

accepted theories from social science regarding the mechanism by which

nodes might end up in a close proximity or create connection between

them is homophily [56]. According to homophily, nodes prefer to connect

with other nodes with whom they share similar properties, creating tightly

connected communities. For example, in online social networks such as

Facebook, users are more likely to befriend others with whom they share

common characteristics (field of study, religion, race, schools, interests,

etc.) rather than a random and unknown user [56, 88]. In addition, the

homophily theory also highlights that ties between non-homogeneous nodes

have less chance of surviving the test of time.

For this purpose, similar to [88], we associate a functional essence to

every node in an information network, that characterize its intrinsic pref-

erences. The following can be taken as examples of functional aspects of

nodes in an information network:

• profile of a user in a social network

• attributes of an author in a scientific collaboration network

• functions of a protein in a protein interaction network

Secondly, we need to account for observed proximities, through the fac-

tors that explain the observation itself, or through factors that could serve

as a proxy for a certain level of observed proximity.

In summary, we account for three facets of an information network in

learning embeddings of nodes:

• nodes functional essence

• observed proximity

4. NRL WITH STRUCTURAL INFORMATION 33

• an indicator of the observed proximity

We assume that the nodes functional essence is the key factor that

governs why nodes might prefer to be part of particular neighborhood

in the network over the other. For example, assume that the interest

Θ = θ1, . . . , θτ over a set of τ topics corresponds to the functional essence

of nodes. Then, in line with homophily [56], nodes are likely to create

connections or to be in a close proximity if they share strong interest in a

set ϑ ⊆ Θ of topics.

Needless to say, it is necessary to account for the observed proximity.

The third aspect is particularly important in cases where such proximity

is only partially accessible or completely unaccessible. For example, the

friendship and follower link structures of some users of social networks

such as Facebook and Twitter is usually not accessible due to privacy

constraints. In Wikipedia, the existing link structure between articles is

incomplete due to the expensive manual effort involved to maintain it [62].

There is already a line of research that endeavors to improve the qual-

ity of the links by exploiting Wikipedia clickstreams or human navigation

traces [62, 72, 84], considering them as possible signals for a hidden proxim-

ity between unlinked articles. For the case of social network users, processes

like information diffusion events could play the role of the aforementioned

signal.

In this study, attributes play the role of a functional essence of nodes

and information diffusion events (cascades) that occur as a result of users

interactions are used as indicators of an observed proximity. Intuitively,

the main hypothesis behind the design of the proposed method in this

chapter is as follows:

• if nodes have a strong attribute similarity, then they are likely to be

in a close proximity;

4.1. SUMMARY OF CONTRIBUTIONS 34

• if nodes are in close proximity, then they are likely to have a strong

interaction than random users farther away.

That is, we seek to develop an algorithm that preserves the topologi-

cal proximity, attribute similarity and interaction history to learn a high-

quality embeddings of nodes in an information network.

4.1 Summary of Contributions

In this study we propose a network representation learning algorithm based

on topology, attributes and interaction histories. Earlier methods have fo-

cused on topology alone, and recent approaches revisited NRL by incorpo-

rating attributes. Although [82, 83] already noticed that diffusion events

unveil interesting patterns about the topological orientation of nodes, ex-

isting studies in NRL have overlooked this insight. In this chapter, we

examine how we can incorporate information diffusion events into NRL.

This is particularly useful when part of the network topology is missing.

We took inspiration from previous studies who examine the correlation

between the network topology and the dynamics of information diffusion

events. That is, we take advantage of the aforementioned studies to indi-

rectly account for missing links in network structure by exploiting diffusion

events that have propagated over the entire network, including the non-

accessible part. This gives us an edge over most existing studies, that

require the presence of the full network structure.

A naive approach towards designing a NRL that uses topology, at-

tributes, and information diffusion sources could be to learn independent

representations from each of these sources, to later merge the learned rep-

resentations. However, this fails to account for the correlation that may

exist between the representations [55]. For this reason, we propose a novel

method that jointly learn embeddings from the aforementioned three facets

4. NRL WITH STRUCTURAL INFORMATION 35

of information networks.

We have carried out an extensive experimental evaluation of the pro-

posed method using four real-world datasets, comparing it against state-of-

the-art NRL techniques that are trained using the network structure only,

across three kinds of network analysis problems.

4.2 Background and Problem

We use the graph definition proposed in Chapter 2, with uniform weights.

That is, we consider a graph G = (V,E,W, a) where (i, j) ∈ E ⇒W[i, j] =

1. In addition, we also use cascades without timestamps, that is, a cascade

C = [(u1, t1), . . . , (u|C|, t|C|)] is transformed to strip(C) = [u1, . . . , u|C|].

The set of cascades transformed by striping time information are denoted

by C ′ = {strip(C) : C ∈ C}.
The last but not least information that we use are attributes; in this

chapter, we consider textual attributes, that is, keywords associated to

nodes. For a node v ∈ V , a(v) corresponds to the set of keywords associated

to v. Then we compute a new graph G′ = (V,E,W′) where W′ is a new

weight matrix and each entry W[i, j]′ is defined as

W[i, j]′ =
|a(i) ∩ a(j)|
|a(i) ∪ a(j)|

(4.1)

In other words, the weights correspond to the Jaccard similarity between

the set of keywords of node i and j. Note that W′ could be a very dense

matrix if there is a popular attribute shared by all nodes. One can simply

pruneG′ to reduce these kinds of trivial similarities, however in our datasets

no such attribute exist. In a follow-up study [66] we have tackled this issue

by modeling attributes as a separate bipartite graph.

We take into account interaction histories that are recorded as a reaction

of users to others’ post sorted according to their reaction time. This is

4.2. BACKGROUND AND PROBLEM 36

4

1

5

32

6

4

1

5

32

6 4

1

5

32

6

(A)

(B) (C)

Figure 4.1: An example of a complete social network (A) and possible subgraphs (B) and

(C) that could be crawled as a result of privacy settings of nodes. (B) If only node 2 have

set its connection setting to private; and (C) if 3 have also decided to go private on its

connections alongside 2.

exactly how we defined cascades in Chapter 2. Our assumption is that if

a user generates a post, then it is more likely for another user in a close

proximity to react to her post rather than a random user far away from the

poster. In other words, we expect users in a close proximity to be involved

in relatively similar cascades.

Suppose we have two disjoint communities, based on their interest in

the Italian football club AC Milan and in Ethiopian politics. If a member

of the AC Milan community posted a piece of content about the club, then

its very likely for another member of this community to first react to the

post than a member from the Ethiopian politics community. In general,

we assume members of the Milan club community will have the tendency

to appear in posts related to AC Milan and the Ethiopian community in

posts related to the Ethiopian politics.

4. NRL WITH STRUCTURAL INFORMATION 37

Furthermore, as stated earlier, cascades will also give us the advantage

in case we only have a partially observed topology of the network. We

claim that they play a vital role when only part of the true proximity is

accessible and no other side information is available, for example due to

privacy constraints in social networks.

If we examine the sample social network in Fig. 4.1, the true connections

might look like as the one in (A). However, as a result of users privacy

setting an interested third party in need of access to the social network

could end up crawling different kinds of subgraphs. For instance, if only

node 2 sets its connection to private, the most complete subgraph one can

crawl is the one in (B); if both nodes 2 and 3 also decide to make their

connections private, then one could only crawl at best the subgraph in (C).

Clearly, the node embedding learned from subgraphs (B) and (C) could be

rather far from the optimal one, and hence it is imperative to incorporate

additional sources of information that provide a clue regarding the missing

links.

In social networks like in Fig. 4.1, cascades can be extracted from hash-

tags, share and retweet activities, as shown in Table 4.1. We can exploit

these to account for the missing links. Thus, even though one only has

the subgraph in Fig 4.1 (B) or (C), a clever strategy could be devised to

capitalize on possible patterns of interaction that could be associated with

actual connections.

In this chapter, we only make a simple use of the cascades by combining

them with sampled cascades. In Chapter 5 we shall demonstrate novel

strategies to make a better use of the cascades for the NRL task. Now, we

shall formally state the network representation learning problem that we

seek to tackle in this chapter as follows:

Problem 1. Given a network G′ = (V,E,W′), a set of cascades C ′ with

no time information, a dimension d, we seek to learn a representation of

4.2. BACKGROUND AND PROBLEM 38

Hashtag Users sorted according to infection timestamps

#ht1 2,3,1,5,6

#ht2 3,4,2,1,5

#ht3 6,3,5,4,2

#ht4 1,6,5,3,4,2

#ht5 5,2,6,3

#ht6 1,3,4,5,2,6

Table 4.1: Cascades extracted from observed hashtag use of nodes of the social network

in Fig. 4.1(A). A cascade is constructed by sorting nodes according to the time stamp

that they have used a particular hashtag.

the network specified by Φ : V → Rd, provided that Φ preserves nodes’

• topological information (observed proximity);

• functional essence (preferred attributes);

• interaction pattern (tendency to reacting to others’ post).

Similar to [29], the aforementioned problem statement can be specified

as solving the cost function

L = loss(sim(u, v; W, a, C ′), sim(u, v; Φ)) (4.2)

Recall that the attribute information is now captured by the weights on

the edges, and hence Eq. 4.2 can be reformulated as

L = loss(sim(u, v; W′, C ′), sim(u, v; Φ)) (4.3)

In this study, L is materialized using cross-entropy as in Eq. 4.4. That

is, the deviation of the similarity – sim(u, v; Φ) between any pair of nodes

u, v ∈ V in the output or representation space Φ from their similarity –

sim(u, v; CI) in the input space CI .

L = −
∑
u,v∈V

sim(u, v; CI) log sim(u, v; Φ), (4.4)

4. NRL WITH STRUCTURAL INFORMATION 39

where the input space CI is a combination of the transformed cascades

C ′ and a new set of simulated cascades C ′′; more concretely,

CI = C ′ ∪ C ′′

We provide the details of the technique used to sample simulated cas-

cades C ′′ from W′ in Section 4.3.1.

4.3 The Learning Algorithm

As the weighted network captures both topological and attribute informa-

tion, from now on it should be understood when we refer to the structure

in this chapter, attributes are implicitly referred to. Therefore, we pro-

pose an algorithm called Mineral (Multi-modal Network Representation

Learning), inspired by an algorithm for language modeling called Skip-

Gram.

As we have discussed in Chapter 3, the SkipGram model is used to

project words into a latent vector space. The projection is done by ensuring

that the latent vectors of words that have the tendency to frequently appear

in the same context are embedded close to each other.

In our problem setting, we want to achieve a similar goal and seek to

project nodes to a latent vector space where nodes that:

• are in a close proximity

• have similar functional essence

• have the same interaction patterns

should be embedded close to each other. SkipGram, however, is special-

ized for natural language documents. This introduces a challenge for our

case, as the topological and functional essence of nodes are encoded in a

4.3. THE LEARNING ALGORITHM 40

graph using G′, which is not a sequence and can not be directly used in

SkipGram. Therefore we propose a simulation of an information diffusion

process to sample artificial cascades, which are sequence data.

4.3.1 Cascade Sampling

The goal is to sample cascades that capture nodes structural orientation

in G′. Recall that the edges of G′ encode attribute similarity. Intuitively,

when sampling a cascade originating from a certain community, it should

tend to stay within the community. There is a similar line of research [64,

28] that uses random walks for sampling sequences. In this study, we

propose the simulation of information diffusion as it has been observed

that the dynamics of diffusion processes reveal complex local and global

structural patterns of the network. Therefore, we simulate the diffusion of

influence or information using the independent cascade (IC) model [41].

Algorithm 1 shows the high-level steps required to generate cascades.

We start by initializing CI with the observed cascades C ′ (line 1). Then, in

line 2 for each node i ∈ V , r (line 3) cascades are sampled starting from

i based on the IC model that is guided by the attribute similarity or edge

weights W′ of G′ as an unnormalized probability of infection.

When simulateDiffusion(G′, i, h) (line 4) is invoked, a cascade of size

h is generated starting from node i. Let It denote the set of nodes infected

at time step t; the simulation of a diffusion process works as follows:

1. At time step t1 = 0, an artificial cascade sequence is initiated by

infecting the current root, i.e., C ′′ = [i], and I1 = {i}.

2. At time step tl, for l > 1, each node j ∈ Il−1 infected in the previ-

ous time step makes a single attempt to infect each of its outgoing

neighbor k ∈ out(j) 1 that is not already infected (i.e., k 6∈ C ′′), with

1out(j) is used if the semantics of the edge (j, k) is influence flow; if not, infection attempts will be

4. NRL WITH STRUCTURAL INFORMATION 41

Algorithm 1: CascadeGenerator(G′, r, h)

1 CI = C ′

2 for i ∈ V do

3 repeat r times

4 C ′′ = simulateDiffusion (G′, i, h)

5 CI .insert(C ′′)

6 return CI

a probability proportional to W[j,k]′. If the infection succeeds, k

is (i) appended to C ′′, i.e. C ′′ = C ′′ ⊕ [k], where ⊕ is a sequence

concatenation operation, and (ii) included in Il, i.e. Il = Il ∪ {k}.

3. Proceed to the next time step tl+1 and repeat the process starting

from step 2 while |C ′′| ≤ h

After sampling each C ′′, it is added to CI (line 5) to build an input

corpus. We restrict the size of cascades (the number of infected nodes) to

be at most h nodes, because large, viral cascades (unlike non-viral ones)

usually do not capture any relevant local or global structural relation of

nodes [82, 83]. In other words, as the size of h gets larger, the probabil-

ity of the diffusion process spreading throughout the network increases.

This leads to cascade samples that have a mixture of nodes from multiple

communities and that means introducing noise as cascade samples are less

coherent in terms of their constituency.

Finally, once the sampled artificial cascades (C ′′) are combined with the

actual cascades(C ′), we apply the SkipGram model on top of CI to learn

the representation of nodes.

directed towards each incoming neighbor k ∈ in(j)

4.3. THE LEARNING ALGORITHM 42

4.3.2 SkipGram formulation

The SkipGram model described in Section 3.3 is formulated by consid-

ering a natural language document corpus. In our setting, the document

corpus corresponds to the set of combined cascades CI that we have just

generated in the previous section. Therefore, instead of words, our focus

is on nodes, and the goal is to embed them into a latent continuous vector

space that preserves nodes structural proximity and interaction patterns.

As we have already seen, this is exactly what the SkipGram model enables

us to achieve.

To use this model, in the following we show how we can simply adopt

the utility functions on cascades. The first is function context(S,wt, s); for

cascades assuming a target node C(t) = vt, it is re-defined as:

context(C, vt, s) ={C(j) : 1 ≤ t− s ≤ j ≤ t+ s ≤ |C|, j 6= t} (4.5)

s.t. C ∈ CI

Therefore, the objective function of the SkipGram model based on the

negative sampling for our problem is to minimize the log likelihood:

min−
|C|∑
t=1

∑
vc∈context(C,vt,s)

logP (vc|Φ(vt)) (4.6)

P (vc|Φ(vt)) = σ(Φ(vc),Φ(vt)) + neg(vt, `) (4.7)

At this point, we are ready to train our model using the entire cascade

corpus CI in exactly the same way as the SkipGram model in Section 3.3

of Chapter 3.

4. NRL WITH STRUCTURAL INFORMATION 43

Dataset |V| |E| |C| # labels Type of labels

Twitter 595,460 14,273,311 397,681 5 top-5 communities

Memetracker 3,836,314 15,540,787 71,568 5 top-5 communities

Flickr 80,513 5,899,882 - 195 Groups

Blogcatalog 10,312 333,983 - 39 Interests

Table 4.2: Summary of the datasets

4.4 Experimental Evaluation

In order to demonstrate the effectiveness of our algorithm, we have carried

out several experiments across multiple network analysis problems using

multiple datasets.

4.4.1 Datasets

A brief summary of the datasets is given in Table 4.2.

• Twitter [82]: a dataset containing the follower network of Twitter

users and cascade information of hashtags. Each time a user adopts

a hashtag (by creating a new or using an existing one), it is added to

the set of her keywords. A cascade is constructed by sorting the users

according to their first use of a particular hashtag.

• Memetracker [51]: A dataset constructed by tracking news stories

(memes) spread over mainstream medias and personal blog posts. A

node corresponds to a website (mass media or personal blog) and

cascades are constructed by tracking stories post across the websites

over a period of nine months. A ground truth network structure is

built based on hyperlinks found on the websites. If a given page A

has a hyperlink to another page B, a direct link A → B is created

to indicate that A has cited or referred B while discussing a certain

story (meme).

4.4. EXPERIMENTAL EVALUATION 44

• Blogcatalog [71]: a dataset containing a network of bloggers. There

are 39 topic categories which are considered as content information

for each author.

• Flickr [71]: a photo sharing site paired to a social network. Users

place their pictures under a set of predefined categories which can be

considered content information.

For Twitter and Memetracker, users are labeled based on their com-

munities. First we identify the (non-overlapping) community to which a

user belongs using [7], and then we associate it as her label. Only Twitter

and Memetracker datasets have observed cascades. In addition, in all the

experiments we have used h = 500 for Twitter and Memetracker, h = 200

for Flickr and h = 50 for Blogcatalog.

4.4.2 Baselines

Existing methods [85, 34] that consider content information are usually

based on matrix factorization, which makes them not scalable for large

networks. For this reason, we only consider the following two content-

oblivious approaches as baseline methods:

1. DeepWalk [64]: is a method that utilizes truncated random walks

for network embedding, where each step of a walk is chosen uniformly

at random. Equivalent to the current work, they use the SkipGram

model and it is trained using the walks.

2. Line [70]: is a proximity based approach, trained by concatenating

two independently trained models based on the notions of first-order

and second-order similarity of nodes. In other words, in the first

phase they train a model that preserves the undirected link structure

4. NRL WITH STRUCTURAL INFORMATION 45

Algorithm P@100 P@500 P@1K P@5K P@10K p@50K p@100K p@500K

Mineral 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.0

DeepWalk 96.6 97.0 97.1 97.1 97.1 97.1 97.1 96.9

Line 99.3 99.8 99.9 99.8 99.7 98.5 94.5 71.0

Table 4.3: Results for the link prediction task on the Twitter dataset

Algorithm P@100 P@500 P@1K P@5K P@10K p@50K p@100K p@500K

Mineral 100.0 99.9 99.9 99.6 99.5 99.5 99.4 98.6

DeepWalk 99.1 99.0 99.0 99.1 99.0 99.0 99.0 99.0

Line 91.2 92.2 89.9 85.2 83.3 72.8 68.9 65.4

Table 4.4: Results for the link prediction task on the Memetracker dataset

Algorithm P@50 P@100 P@500 P@1K p@5K p@10K p@50K p@100K

Mineral 99.2 99.6 99.6 99.6 99.4 99.2 97.4 94.9

DeepWalk 96.6 96.6 97.4 97.5 97.5 97.5 97.4 97.1

Line 54.4 61.0 61.6 58.8 51.6 48.9 44.2 42.5

Table 4.5: Results for the link prediction task on the Flickr dataset

between nodes; in the second phase, they train a model that preserves

the directed or undirected 2-hop link structure of the network.

4.4.3 Link Prediction

One of the applications that we have introduced as an application of NRL

algorithms is Link Prediction. Here we report the performance of algo-

rithms for this task. As discussed in Section 1.3, the node embeddings

learned by a NRL algorithm can be used instead of manually-crafted fea-

tures. Towards this end, first we randomly sample 15% of the existing edges

from the network; we also randomly sample the same amount of node pairs

that are not in the edge set. We then use the learned embedding to ef-

fectively predict the links. That is, given a pair of nodes {u, v} ⊆ V , we

compute the probability p(u, v) of an edge existing between the two nodes

4.4. EXPERIMENTAL EVALUATION 46

Training Ratio

Algorithm 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mineral 98.19 98.05 97.97 97.98 97.95 97.91 97.74 97.51 96.93

DeepWalk 97.78 97.76 97.86 97.67 97.61 97.45 97.42 97.02 96.01

Line 84.19 85.74 85.02 85.11 85.18 84.69 84.06 82.20 76.19

Table 4.6: Node classification accuracy on different levels of labeled training set ratio for

the Twitter dataset

Training Ratio

Algorithm 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mineral 98.19 98.05 97.97 97.98 97.95 97.91 97.74 97.51 96.93

DeepWalk 97.78 97.76 97.86 97.67 97.61 97.45 97.42 97.02 96.01

Line 84.19 85.74 85.02 85.11 85.18 84.69 84.06 82.20 76.19

Table 4.7: Node classification accuracy on different levels of labeled training set ratio for

the Memetracker dataset

as:

p(u, v) =
1

1 + e−(Φ(u)T ·Φ(v))

Then we sort the predicted edges according to p(u, v) in descending order

and evaluate the performance of a NRL algorithm in correctly predict-

ing the edges using the precision-at-K (P@K) score. P@K measures the

fraction of correctly predicted edges on the top-K results as

P@K =
|{u, v : (u, v) ∈ E ∧ rank(u, v) ≤ K}|

K
(4.8)

where rank(u, v) is computed based on p(u, v) score.

For each K value, we repeat the experiments 10 times and report the

average. Tables 4.3, 4.4 and 4.5 show the results for the Twitter, Meme-

tracker and Flickr datasets; Mineral achieves a performance as good or

better than the baselines in most of the experiments.

4. NRL WITH STRUCTURAL INFORMATION 47

●
●

● ● ● ● ● ● ●

0.3

0.4

0.5

0.6

0.7

0.25 0.50 0.75

Training Ratio

F
1−

M
ic

ro

●
●

● ● ● ● ● ● ●0.2

0.3

0.4

0.5

0.25 0.50 0.75

Training Ratio

F
1−

M
ac

ro
Algorithm ● DeepWalk Line Mineral

Figure 4.2: Multi-label classification (using one-vs-rest logistic regression classifier) on the

Blogcatalog dataset

● ● ● ● ● ● ● ● ●

0.3

0.4

0.5

0.6

0.7

0.8

0.25 0.50 0.75

Training Ratio

F
1−

M
ic

ro

●
● ● ● ● ● ● ● ●0.2

0.4

0.6

0.25 0.50 0.75

Training Ratio

F
1−

M
ac

ro

Algorithm ● DeepWalk Line Mineral

Figure 4.3: Multi-label classification (using one-vs-rest logistic regression classifier) on the

Flickr dataset

4.4.4 Node Label Classification

The second application that we consider is node label classification. We

consider two instance of it, namely multi-class and multi-label classifica-

4.4. EXPERIMENTAL EVALUATION 48

tions. For the Twitter and Memetracker datasets, we tackled the multi-

class classification problem, because – as shown in Table 4.2 – labels are

communities and each node belongs to just a single community. In the

other datasets, given that multiple labels are present, we performed multi-

label classification. To evaluate the effectiveness of a model in the classifi-

cation task, we adopt the same evaluation metrics as in previous studies,

and hence we use Accuracy, F1-Micro and F1-Macro metrics.

The Multi-class classification results for the Twitter and Memetracker

datasets are reported in Table 4.6 and 4.7, respectively. Similar to previous

studies, we performed these experiments on different fractions of labeled

training sets (Training Ratio ∈ [10% − 90%], with a step of 10%). Under

this setting, accuracy is the evaluation metric; and as shown in the tables,

Mineral performs slightly better than DeepWalk and significantly bet-

ter than Line. For the other datasets, however, Mineral significantly

outperforms both baselines in multi-label classification. Figure 4.2 and 4.3

report the results on different training ratios (x-axis) using F1-Micro and

F1-Macro measures (y-axis).

4.4.5 Network Visualization

The last but not the least application of NRL is network visualization. We

use the Twitter dataset for this task, and the visualization is performed

using t-Distributed Stochastic Neighbor Embedding (t-SNE) [74]. Given a

set of q communities, an informative visualization should maintain a knit

cluster for members of the same community and maintain clear boundaries

between different communities. As shown in Fig. 4.4, Mineral’s visualiza-

tion gives the best visual result. Members of each community are densely

clustered and are far from members of other communities.

4. NRL WITH STRUCTURAL INFORMATION 49

(A) (B) (C)

Figure 4.4: Visualization of top-5 communities with at most 2000 users in the Twitter

Dataset using (A) Mineral (B) DeepWalk and (C) Line

●
●●

●

●

● ●

0.3

0.5

0.7

0 2500 5000 7500 10000
k

p@
k

h
● 50

100
250
500
1000

Figure 4.5: Sensitivity of the parameter h using the link prediction task on Blogcatalog

4.4.6 Parameter Sensitivity

To conclude the chapter, we analyze the sensitivity of the hyper-parameters

of the model, namely r and h, controlling the number and length of cascades

to sample, respectively. Recall that earlier we have argued that its sufficient

to sample truncated cascades. As shown in Fig 4.5, the precision-at-K

significantly drops as we increase the size of h.

For example, for a fixed K = 10, the precision-at-K is P@K = 0.86

for h = 50, P@K = 0.6 for h = 100, P@K = 0.29 for h = 500, and

P@K = 0.15 for h = 1000. This is caused by the introduction of noise as

a result of increasing h. Because as we increase h to very large values the

likelihood of sampling unrelated neighbors also increase.

4.4. EXPERIMENTAL EVALUATION 50

Chapter 5

Network Representation Learning

without Structural Information

Most studies on network representation learning are based on the assump-

tion that the structure of the network is known. However, as we have

already argued in the introduction and in the previous chapter, this is not

always the case and there are several instances where one might lack partial

or complete information about the structure [27, 26, 18].

Not all hope is lost, though: even though the underlying network over

which a physical or virtual process takes place may be unknown, we can

often record or reconstruct traces of events that occurred over the net-

work [26, 52]. For example, it is relatively simple to acquire traces of

public share events from OSNs, or keep record of infection events during

an epidemic. We can use such kinds of events as a window to look inside

the actual network.

The considerable research work [27, 26, 18, 38, 46] towards reconstruct-

ing or inferring the hidden network from the diffusion events that have

occurred over this network could be taken as motivation to what we seek

to achieve in this chapter.

In fact, very recently several papers have shown that such inference

is indeed possible using node embeddings that are learned directly from

51

52

diffusion events [46, 38] or from partially observed network structure [87].

Therefore, it is particularly important to design algorithms to effectively

and efficiently learn representations of nodes when the underlying network

structure is completely unknown, by exploiting information about cascades.

This chapter introduces the NetTensor framework, which responds to

this need.

With respect to existing works that propose to learn a network repre-

sentation based on completely or partially missing information about the

network structure [46, 38, 87], NetTensor provides a full-fledged solution

for NRL, capable to exploit multiple types of information extracted from

cascades and applicable to several different problems, such as link pre-

diction, network reconstruction and node classification. Because of this,

we compare it against three strong baselines in the field of NRL, namely

DeepWalk [64], Node2Vec [28] and Line [70]. Clearly, the proposed

comparison is unfair, as all the baselines are based on the full knowledge

of the structure of the network. Our goal is thus not to show that Net-

Tensor outperforms the baselines (an inherently impossible goal for Net-

Tensor), but rather show that it does an “excellent” job in solving the

aforementioned problems.

Properties and roles of nodes are well-defined when the network topology

is known. Contrarily, when the topology is hidden, the first challenge

is to model nodes in order to approximate their true neighborhood or

proximity information and any other relevant features. Towards this end,

we revisit previous findings on the correlation between properties of the

network structure and interaction patterns in cascades that occur over

such networks. Then, we propose novel techniques to model nodes, so as to

estimate nodes proximity and extract relevant node features by exploiting

cascades. Therefore, in Sections 5.2- 5.3 we introduce the node proximity

models and feature extraction techniques.

5. NRL WITHOUT STRUCTURAL INFORMATION 53

5.1 Summary of Contributions

When the topology of a network is known, one can easily extract prox-

imity of local neighborhood information regardless of the computational

cost. However, when the topology is hidden, the aforementioned task is

not straightforward. Therefore, in this chapter we propose an array of

techniques that can be used to extract nodes proximity and features that

are indirectly related to the network topology.

We have experimentally evaluated and shown that these techniques per-

form well in different kinds of network analysis problems by comparing

them against the state-of-the-art NRL techniques that require topology

information.

5.2 Node Proximity Models

For modeling nodes proximity, we propose two paradigms, one delay-aware

and another delay-agnostic. In the former, nodes are modeled according

to their reaction time with respect to the other nodes in cascades. In the

latter, we simply model nodes according to their order of appearance in

cascades, irrespectful of time.

As we have been arguing in the previous chapter, we also assume that

if nodes have shared functional essence, i.e., share attribute information

or interest in related topics, they are likely to interact with each other.

Based on this assumption, we propose three kinds of feature extraction

techniques, yet again using cascades only.

The node modeling techniques are inspired by observations from ex-

isting studies that have empirically shown that nodes that are closely in-

terconnected (e.g., directly connected or sharing community membership)

are likely to cause complex contagions, i.e. non-viral events that lead to

5.2. NODE PROXIMITY MODELS 54

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●

●●

●

●● ●

●

●

●

●●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●
●

●● ●

●

●

●●●

●

●

●

●● ●●●●● ●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

● ●● ●●

●

●●

●

●● ●●

●

●●●●

●

●

●

●●

●

● ●●● ●

●

● ●●●● ●●●● ●● ●● ●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

●
●●

●
●

●

●●

●

●●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●●●

●

●
●

●

● ●●

●

●
●

●
●

● ●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●●

●

●
●

●●

●
●

●

● ●●●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●●●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●● ● ●●

●

●

●●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●
●●

●
● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●● ●

●
●

●

● ●

●

● ●●

●
●

●●

●●

●

●

●

●●

●

● ●●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●

●

● ●● ●

●● ●
●

●

●●

●

●

●

●● ●● ●

●

● ● ●

●

●

●

● ●

●

●
●

● ● ●

●

●

●

●

●

●●●

●

●

●

●●

● ●

●

●

●
●

●●

●

●●

●●

● ●

●

●

●

●

●●

●

●●

●

●
●

●●● ● ●● ●

●

●

●

●

●●

●

●

● ● ●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●● ● ●

●

●

●

● ●●
●

●

●

●

●

●● ●

●

●●

●

●

●

●
●●●

●

●

●
●●

● ●●

●●●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●

●

●●

●

● ● ●

●

●

●●

●

● ●

●

●

●

●● ●

●

● ●

●●

●●

●

● ●

●

●● ●

●

● ●

●

●

●

● ● ●●● ●

●

●

●
●

● ●●● ●●

●

●

●

●● ●

●

●●

●

●

●
●

● ● ●

●

●●

●

● ● ●

●

●

●

●

●●●

●

●●●

●● ●

●●● ● ●●● ●●● ●●

●

●
●

●●

●
●

●

●

●

●●

●

●

●
●

●●●●

●
●

●

●

●
●

●●

●

●

● ●● ●

●

●●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●● ●●●

●

●

●

●●

●●

●

●

● ●●●● ●

●

● ●●●● ●●

●

●

●

● ●

●●

●●● ●●

●
●

●

● ●

● ●

●●● ●● ● ●

●

●

●

●

●

●● ●● ● ●

●

●

●

●

●

●

●● ●● ●● ●

●

● ●●

●

● ●●

●

●

●●

●

● ●● ●●

●

● ●● ●●●

● ●

●

●●

●●● ●

●

●●

●
●

●●

●

●●

●

●

●

●

● ●● ●●●

●

●● ●●

●

● ●

●

●

●●

●● ●● ● ●●●●

●

●● ●

●●

●

●

●

●●● ●● ● ●●● ●● ●●

●

●● ●

●

●

●

● ●

●
●

●

● ●● ●●

●

●●●

●

● ●● ●

●

●

●

●●● ●

●

●● ●

●

● ●● ●●●● ●●●● ●●●● ●

●

●

●

● ●●●●●

●

●

●

●

●

●● ● ●

●

●● ●

●

●● ● ●● ●●●

● ●●

●●● ●●

●

●

●

●●●●●

●

● ●● ●●● ● ●●● ●● ● ●●●● ●

●

● ●

●

●● ●

●

●● ● ●●●●● ●●●

●●

●

●

●●

●

●

●

●● ●●●●●● ●● ●●

●●●

●

● ●

●●

● ●

● ●● ●●●● ● ●●

●

●●●

●

● ●● ●●● ●

●

●● ● ●●●● ●● ● ●● ●● ● ●●●● ● ● ●● ●● ●●●●● ●

●

●

●

●

●

●●● ● ● ●●● ●● ●● ● ●●● ●●●● ●●●●● ●●● ●●●● ● ●●●

●●

●

●

● ●●●●● ● ●●● ● ●●● ●

●

●●●●●● ●● ● ●●●●● ●●● ●

●

●● ● ●● ● ● ●●

●

●●●● ● ●●●● ●●●● ●●●● ●● ● ●●● ●●

●

●● ● ●●●● ● ●●● ●●●●

●

●● ●● ●● ●●● ●● ●● ●●● ● ●●

●

●●●●● ●●●●● ●● ●● ● ●●● ●●● ●● ●● ●● ●● ●

●

●● ● ●● ●●●● ● ●●●●

●

●● ●●●●●● ● ●● ●● ●●● ●● ● ●● ●●● ●● ● ●●● ●● ● ●● ●● ●● ●●●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●●● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

● ● ●

● ●

●

●

●

● ●

●

●

●

●

●

●

● ●

●● ●

●

●

●

● ●

●

●

●

●

●● ●

●

●

●●

●
●

●

●●

●

●●

●

●

●

●

●

● ●●●

●

●●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●●● ●

●

●●●

●

●

●

●

●

●● ●

●

●

●

●●

●

●● ●

●

●●●

●

● ●●

●

●

●●

●● ●

●●

●

●●● ●●●● ●●●

●

●

●

●

●

● ●● ●●● ●

● ●

● ●

●●

●

●● ●● ●●

●

●●● ● ●●

●

● ●

●

●●●

●

●●● ●

●

●

●

●

●

●●

●

● ●●

●

●●

●

●

●

●

●●

●

●●●

●

●●

●

●

●●● ●

●

●

●

●

● ●

●●

●

●● ●●● ●

● ●

● ●● ●

●

●●●

●

●●

●

●●

●

●

●

● ●

●

●

●

● ●●●

●

●● ●●

●

● ●● ● ●● ●● ●●●

●

● ●●●●● ●●

●

● ●● ●●● ●

●

●

●

●●● ●● ●

●

●● ●

●

● ● ●●●● ●●

●

● ● ● ●● ● ●● ● ●● ●● ●● ●●●● ●●●● ●●●●

●

●●● ● ●● ● ●●●

●

●● ● ●● ●●●● ●●

●

●● ●

●

● ●●● ●

●

●●

●

● ●●● ●●● ● ●●

●

●●

●

● ●● ●● ●●● ● ●● ●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●
●

●●

●

●

●

●

●

● ●●

●

●●

●

●

●● ●

●

●

●

●

●●

●

● ●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●● ●

●

●

●

● ● ●●●● ●● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●●

●

●●

●

●

●● ●

●

●●● ●● ●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●● ●●●

●

●●● ●●

●

●

● ●● ●

●

●●●

●

●

●

● ●

●

●

●

●

●

●● ●●

●

●

● ●●●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

● ●

●

●

● ●

●

●● ●

●

●

●

●●● ●

●

●

●● ● ●

●

●●

●
●
●

●●

●

●●

● ●

●

●

● ●●●●●● ●

●

●

●

●●

●

●●

●

●

Memetracker Twitter−HT Twitter−RT Yelp

100 10000 100 10000 100 10000 10 1000

10

1000

10

1000

10

1000

10

1000

Cascade Size

F
re

qu
en

cy

Figure 5.1: Cascade size distribution for the datasets used in our experiments

cascades that are trapped within a community [82, 83]. Interestingly, dif-

fusion events in social networks are known, often, for following a long-tail

distribution (powerlaw, log-normal) as shown in Fig. 5.1; i.e., most of them

spread like complex contagions.

Besides, the node modeling techniques are inspired by the assumption

that nodes are likely to appear close to each other (in terms of time and

position) in diffusion events if they share attributes or interest in related

topics or in general if they can influence each other (that is, if they are

in a “close” proximity in the underlying social network). This assumption

is similar to those proposed by [26, 27, 18, 86]. In other words, close

proximity (homophily) in the social network is likely to lead to frequent

and close co-occurrences in cascades.

These are all desirable properties, as they allude to a direct relation be-

tween the properties of nodes in the network and their interaction patterns

in diffusion events, as shown by the causality relations in Fig. 5.2. Thus, if

the learning goal of a NRL method is to preserve proximity, attribute sim-

ilarity, interest in topics (as shown in the blue arrow), equivalently one has

to preserve different interaction patterns such as response times, closeness

and frequency of interactions of nodes in cascades (as shown in the red

arrow) while learning nodes representation without knowing their actual

topology.

In the following delay-aware and delay-agnostic node proximity models

5. NRL WITHOUT STRUCTURAL INFORMATION 55

Properties of the Network Structure

Direct Connections

Close Proximity

Shared Community Membership

Shared Common Attributes

Interest in Related Topics

Interaction Patterns in Cascades

Participation in Complex Contagions

Quick Reaction

Close Interaction

Frequent Interaction

Embedding Space

Embedded Close to Each Other

Causal

Figure 5.2: Relations between properties of a network structure, interaction patterns in

diffusion events and an embedding space

we intend to estimate nodes proximity from cascades.

5.2.1 Delay-Aware Node Proximity Models

When a node posts a piece of content, such post first has to reach the

immediate neighbors before reaching the farthest part of the network. For

example, consider Fig. 5.3: if node i has created a post, node a can not

see/share the post unless node e shares it first, and similarly node v has

to wait until either node j or u shares it before she can share/see it. In

addition, before the post is visible to the members of another community

– e.g. C2, first, it has to get to node v that bridges community C2 with C1

(where the post has originated from).

The main assumption behind our model of node proximity follows this

observation: if a pair of nodes are closely connected in the original net-

work, either directly or by belonging to a community, then it is more likely

5.2. NODE PROXIMITY MODELS 56

b

a

e

j

i

u

v α ρ

ɛ

β

C1 C2

Figure 5.3: An example graph with two communities, C1 and C2.

for these nodes to quickly react to posts from either of them rather than

reacting to posts coming from a random node farther away.

Therefore, if we observe a tendency among pairs of nodes to appear

close to each other in cascades, we consider that as a strong signal for a

close proximity in the hidden network.

We define a delay-aware proximity vector that associates each node u

with an n-dimensional pairwise proximity vector pu, where pu[v] is a non-

symmetric proximity value between node u and any other node v ∈ V .

To compute pu, we first compute a reaction time summary over all

the cascades contained in C, as follows. Let C ∈ C be a cascade, and

let i, j be two indexes such that C(i) = (ui, ti) and C(j) = (uj, tj), with

1 ≤ i < j ≤ |C| and thus ti < tj. The reaction time between the events

associated to ui and uj in C is the distance between the two timestamps:

distC(ui, uj) =

tj − ti tj ≥ ti

+∞ tj < ti
(5.1)

Next, we compute the pairwise proximity prxC(ui, uj) ∈ [0, 1] with re-

5. NRL WITHOUT STRUCTURAL INFORMATION 57

spect to C as:

prxC(ui, uj) =
1

1 + distC(ui, uj)
(5.2)

The higher prxC(ui, uj) is, the smaller is the reaction time between ti and

tj. Working with prxC(ui, uj) is mathematically more convenient than

working with distC(ui, uj); it leads to a very sparse matrix whose sparsity

can be leveraged to reduce the memory footprint and the computational

cost. Note that prxC(ui, uj) 6= prxC(uj, ui); if uj react after ui, by definition

ui does not react after uj and thus distC(uj, ui) =∞ and prxC(uj, ui) = 0.

We obtain pu[v] by aggregating the proximities over all the cascades

containing both u and v:

pu[v] =
∑

C∈Cu∩Cv

prxC(u, v) (5.3)

The complete proximity matrix P = [p1, . . . ,pn]T , computed over all

the cascades, is obtained by combining the individual proximity vectors.

The row vector P[i] and the column vector P[i]T model node i’s proximity

from two different perspectives, i.e. after and before i has been infected,

respectively. Consequently, it is worth to note that the matrix P is not

symmetric, since P[i] 6= P[i]T .

This property has proved to be useful for predicting influence propaga-

tion probabilities in the independent cascade (IC) model [8, 41]. As shown

later, we capitalize on such property to propose a unified model to learn

influence propagation probabilities for the IC model. The computational

complexity of computing P is quadratic in the length of cascades and linear

in the number of cascades: O(c · `2), where ` = max{|C| : C ∈ C}.

5.2.2 Delay-Agnostic Node Proximity Model

The delay-agnostic node proximity model is similar to the delay-aware

variant and is established under the same assumptions. It differs because

5.2. NODE PROXIMITY MODELS 58

the timestamp are discarded and only the time-induced order of nodes in

each cascade is used. The distance computation in Eq. 5.1 is replaced by

distC(ui, uj) =

j − i j ≥ i

+∞ j < i
(5.4)

and hence instead of reaction time, dist captures the order of nodes.

Similarly as before, the distances are used as building blocks of the

proximity matrix P; this time, however, such matrix is delay-agnostic.

Such modeling will complement the aforementioned approach by utilizing

the order of infection, particularly when there is a lack of pattern in the

reaction time of nodes.

5.2.3 Window-Based Pairwise Proximity Model Optimization

Following our assumption on the tendency of similar nodes to quickly react

to each others post and the empirical observation that most cascades occur

between similar nodes [82, 83], we propose a window-based optimization

for the pairwise node modeling strategy, for both the delay-aware and the

delay-agnostic approaches.

Given a model parameter pw that specifies the size of proximity window,

we only consider the pairwise proximity measure between nodes within

a sliding window, instead of considering the entire collections of nodes

involved in the cascade. Let

C = [(s, 0), (t, 2), (u, 3), (v, 4), (w, 9), (x, 20), (y, 30), (z, 50)]

be a cascade and pw = 4 a window size. In the original pairwise proximity

models, we would need to compute the proximity for each pair of nodes in

C ′ = (s, t, u, v, w, x, y, z)

that is, 82 = 64 operations.

5. NRL WITHOUT STRUCTURAL INFORMATION 59

In the window-based version, we have to evaluate the pairs in each of

the subsequences of the set S

S = {S1 = (s, t, u, v), S2 = (t, u, v, w), S3 = (u, v, w, x),

S4 = (v, w, x, y), S5 = (w, x, y, z)}

that are generated by a sliding window of pw = 4; and the computational

cost is proportional to O(pw2∗`), that is, 42 ·8 = 128 operations. Obviously

such cost is incurred due to redundant computations that can be avoided.

For example the set of pairs {(t, u), (t, v), (u, v)} in the evaluation of S2

and {(u, v), (u,w), (v, w)} in the evaluation of S3 would have been already

processed during the evaluation of S1 and S2 respectively. Similarly, the

evaluation of S3, S4 and S5 contains redundant computations.

In general, computing the ith sequence Si will require the extra cost of

evaluating (
pw − 1

2

)
− pw + 1

number of pairs that have already been computed during the evaluation of

Si−1. In total,

(|C ′| − pw + 1) · (
(
pw − 1

2

)
− pw + 1)

repeated operations are required to evaluate C; for the entire set of cascades

C, there is an extra asymptotic cost

c · (`− pw + 1) · (
(
pw − 1

2

)
− pw + 1)

Upon a simple probing of each sequence, we realize that in the ith se-

quence Si for i > 1 only the last node, i.e. y = Si[|Si| − 1], is the new

one; the rest are dragged from Si−1, and that is what caused the repeated

evaluations. Such repetitions can be avoided with a simple trick. We only

perform a pairwise computation for the first subsequence S1, which requires

5.3. NODE FEATURE EXTRACTION 60

pw2 operations. For the remaining subsequences S>1 = {Si ∈ S : i > 1} we

only have to generate pw−1 pairs {(x, y)k : k = 1, . . . , pw−1} between the

last element y and the remaining elements [Si[j] = x : 0 ≤ j < |Si| − 1] of

Si and this cost is proportional to (`−pw+1) ·pw. The overall asymptotic

cost will then be reduced to O(c · (pw2 + ` · pw)), that is, 42 + 8 · 4 = 48

operations for the above example.

5.3 Node Feature Extraction

The pairwise proximity models proposed above are intended to capture the

global proximity of all nodes. Here, we seek to extract additional features

that capture both global and local properties of a node. Towards this

end, we propose three kinds of feature-extraction techniques from cascades,

based on co-occurrence, local neighborhood and topic features.

5.3.1 Statistical Feature Extraction

Computing statistical features from a document corpus is one of the most

widely used strategies to acquire syntactic and semantic relation between

words. In the case of graphs, the co-occurrence feature extraction technique

computes co-occurrence statistics between nodes. It is based on the simple

assumption that if two nodes tend to frequently co-occur in cascades, there

is some latent similarity between them. This is a global feature as we have

to compute pairwise co-occurrence counts. We use cfu ∈ Rn
+ to denote

the co-occurrence feature vector of u where cfu[v] = |Cu ∩ Cv| is the co-

occurrence between node u and v. Note that cfu[v] = cfv[u], and hence

CF = [cf1, . . . , cfn]T is a symmetric matrix. The computational cost of

computing CF is similar to that of P; the advantage, however, is that

we can compute both P and CF simultaneously using the window-based

optimization in Section 5.2.3.

5. NRL WITHOUT STRUCTURAL INFORMATION 61

5.3.2 Local Feature Extraction

Inspired by [29] who proposed to aggregate neighborhood features of a

node (such as the degree of its neighbors) in order to somehow capture

its local context, we propose here to capture the local context of nodes

directly from the cascades. As before, the assumption is that a node and

its local neighbors (direct connections) are more likely to appear close to

each other in cascades.

Towards this end, we utilize a method known as SkipGram [57] taken

from the NLP area. As we have discussed in Chapter 3, SkipGram

projects words in a document corpus into a vector space in such a way

that their distributional semantics is preserved. Equivalently, our goal

here is to use the context information of nodes in cascades just like words

in documents. This is similar to the technique that we have used for Min-

eral in Section 4.3. Note that, unlike the proximity models, the features

computed in this manner are oblivious to the order of nodes appearance in

cascades. We use an l–dimensional vector lfu ∈ Rl to denote the context

feature of node u, and LF = [lf1, . . . , lfn]T .

One might face a situation where the quality of the extracted features

is poor due to an insufficient number of cascade samples. Nonetheless, as

reaction-time and order are not relevant for this technique, we propose an

optional order- and time-oblivious sequence sampling phase as follows.

First, we build a user-cascade bipartite graph from users to the cascades

as shown in Fig. 5.4, connecting every user to every cascade that the user

is involved in. Then, we sample a sufficient number of sequences from the

bipartite graph by simulating multiple truncated random walks over the

user-cascade graph [64]. Note that this network should not be confused

with the actual interaction network, as we are merely utilizing just the

cascades to build it. Once a sufficient number of sequences are sampled,

5.3. NODE FEATURE EXTRACTION 62

2

3

5

7

8

9

1

4

6

Users Cascades

#MilanManUtd

#ForzaMilan

#MilanJuve

#Ethiopia

#PMAbiyAhmed

#EthiopianElection

Figure 5.4: User-cascade bipartite graph illustration. Two groups of users discussing

about the AC Milan football club and Ethiopian politics

we apply the SkipGram model on the sampled sequences instead of the

cascades and extract the relevant features.

5.3.3 Topic Feature Extraction

One of the most widely used feature in classical NLP is the term-document

matrix that is constructed from tf-idf (term frequency-inverse document

frequency) weights. The matrix is constructed by computing the frequency

(tf) of each word within a given document and the inverse of the word’s

frequency across documents (idf) in a given corpus. Several topic detection

algorithms, such as the Latent Semantic Indexing (LSI) [14], Latent Dirich-

let Allocation (LDA) [6] and Non-Negative Matrix Factorization (NMF),

are normally executed over such matrix.

Inspired by this, we consider cascades as documents and nodes as words

and we build a node-to-cascade matrix. To build this matrix, however, we

5. NRL WITHOUT STRUCTURAL INFORMATION 63

utilize infection events instead of tf-idf. As in the case of the proximity

models, we employ both delay-aware and delay-agnostic events. Thus for

each node u we build a c–dimensional event vector eu = [eu[1], . . . , eu[c]],

based on the time or order of node u’s infection events in all the cascades.

Each entry eu[i], for 1 ≤ i ≤ c, is associated with the infection time or

order of u in the ith cascade. Given the ith cascade C and j : 1 ≤ j ≤ |C|,
let C(j) = (uj = u, tj); then eu[i] = tj and eu[i] = j are the components of

the delay-aware and delay-agnostic vectors, respectively. If a node never

occurs in the ith cascade, then eu[i] = ∞, and the event matrix is E =

[e1, . . . , en]T . The computational complexity of constructing E is O(c · `),
as we only need to scan each cascade once.

Here, our intuition is that if two users are highly interested in some

topic-like latent structure θ, then they are more likely to have a close

(in terms of time or order) interaction pattern than another random user

who is less interested in the topic. We assume that the cascades were

generated as a result of discussion over a set of τ topic-like latent structures

ϑ = {θ1, . . . , θτ}.
Therefore, given the number of topics τ and the event matrix E, we com-

pute a topic-like feature matrix TF = Θ(E; τ) ∈ Rn×τ , where Θ can be any

topic modeling algorithm such as LDA and NMF. In this work we have ex-

perimented with Neural-Non-Negative Matrix Factorization (NNMF) and

Truncated Singular Value Decomposition (TSVD), which we have discussed

in Chapter 3. We have observed a small qualitative gain by using NNMF,

however TSVD is more computationally efficient (by more than an order

of magnitude).

Relation to Local Context Features This approach is closely related to

the local feature extraction technique in the previous section; it assumes,

however, that similarity in the latent structure is dependent on the order

5.3. NODE FEATURE EXTRACTION 64

and/or reaction times. To shed more light on these models and their re-

lation, let us consider the following illustration under the delay-agnostic

paradigm.

Suppose we are given the following set of cascades C

C = {C1 = [(u1 = 1, t1), (u2 = 4, t2), (u3 = 3, t3), (u4 = 2, t4)],

C2 = [(u1 = 1, t1), (u2 = 4, t2), (u3 = 5, t3)],

C3 = [(u1 = 1, t1), (u2 = 4, t2)],

C4 = [(u1 = 1, t1), (u2 = 4, t2), (u3 = 5, t3), (u4 = 2, t4), (u5 = 3, t5)],

C5 = [(u1 = 8, t1), (u2 = 7, t2), (u3 = 5, t3), (u4 = 6, t4), (u5 = 9, t5)],

C6 = [(u1 = 8, t1), (u2 = 7, t2)],

C7 = [(u1 = 8, t1), (u2 = 7, t2), (u3 = 9, t3), (u4 = 6, t4)]

C8 = [(u1 = 8, t1), (u2 = 7, t2), (u3 = 5, t3), (u4 = 9, t4), (u5 = 6, t5)]}

In the delay-agnostic paradigm, only the time induced order of infection

events is relevant, therefore for ease of readability we can simplify the set

of cascades C as

C = {C1 = [1, 4, 3, 2], C2 = [1, 4, 5], C3 = [1, 4], C4 = [1, 4, 5, 2, 3]

C5 = [8, 7, 5, 6, 9], C6 = [8, 7], C7 = [8, 7, 9, 6], [8, 7, 5, 9, 6]}

As discussed in Section 5.3.2, we can then easily construct the bipartite

graph in Fig. 5.5 (A) and use it to extract the local context features. We can

also formulate the bipartite graph as a binary user-cascade weight matrix

W as in Eq. 5.5.

5. NRL WITHOUT STRUCTURAL INFORMATION 65

2

3

4

5

1

C1

C3

C2

C4

C5

C6

C7

7

8

9

6

2

3

4

5

1

C1

C2

C3

C3

C4

C5

7

8

9

6

(A) (B)

C8

C4

C8

[0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0]

[0.2, 0.25, 0, 0.17, 0, 0, 0, 0]

[0.25, 0.2, 0, 0.2, 0, 0, 0, 0]

[0.33, 0.33, 0.33, 0.33, 0, 0, 0, 0]

[0, 0, 0, 0.25, 0.25, 0, 0, 0]

[0, 0, 0, 0, 0.17, 0, 0.20, 0.33]

[0, 0, 0, 0, 0.33, 0.33, 0.33, 0.2]

[0, 0, 0, 0, 0.5, 0.5, 0.5, 0.25]

[0, 0, 0, 0, 0.2, 0, 0.25, 0.5]

Figure 5.5: Relations between local context and topic feature extractions. The former

method uses a bipartite graph in (A). Similarly the latter one can be modeled as a

weighted bipartite graph by taking the rows of the transformed event matrix E′ to put

weights on the edges

W =



1 1 1 1 0 0 0 0

1 1 0 1 0 0 0 0

1 1 0 1 0 0 0 0

1 1 1 1 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 0 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1


(5.5)

Each row W[u] of W encodes user u’s participation in each cascade Ci ∈ C

5.3. NODE FEATURE EXTRACTION 66

according to the following rule

W[u, i− 1] =

1, if ∃j : 1 ≤ j ≤ |Ci|, Ci(j) = (uj = u, tj)

0, otherwise

Earlier in this section, we have seen the method used to construct the

event matrix E in Eq. 5.6. Nonetheless, working directly on E is not

mathematically convenient; Section 5.4 shows how it can be transformed

for practical purpose. For the moment, suppose we have applied the de-

sired transformation and obtained the matrix E′ in Eq. 5.7, which has an

equivalent semantics as E but in an opposite way. Then, it is straightfor-

ward how one can easily build a weighted user-cascade bipartite graph as

in Fig. 5.5(B) based on E′.

E =



1 1 1 1 ∞ ∞ ∞ ∞
4 3 ∞ 5 ∞ ∞ ∞ ∞
3 4 ∞ 4 ∞ ∞ ∞ ∞
2 2 2 2 ∞ ∞ ∞ ∞
∞ ∞ ∞ 3 3 ∞ ∞ ∞
∞ ∞ ∞ ∞ 4 ∞ 4 2

∞ ∞ ∞ ∞ 2 2 2 4

∞ ∞ ∞ ∞ 1 1 1 3

∞ ∞ ∞ ∞ 5 ∞ 3 1


(5.6)

5. NRL WITHOUT STRUCTURAL INFORMATION 67

E′ =



0.5 0.5 0.5 0.5 0 0 0 0

0.2 0.25 0 0.17 0 0 0 0

0.25 0.2 0 0.2 0 0 0 0

0.33 0.33 0.33 0.33 0 0 0 0

0 0 0 0.25 0.25 0 0 0

0 0 0 0 0.17 0 0.20 0.33

0 0 0 0 0.33 0.33 0.33 0.2

0 0 0 0 0.5 0.5 0.5 0.25

0 0 0 0 0.2 0 0.25 0.5


(5.7)

Finally, if we simply apply any kind of matrix factorization or represen-

tation learning algorithm over W and E′, we get the two embeddings in

Fig. 5.6.

Pertinent to their participation in cascades, exactly as it is shown in

0.25 0.00 0.25 0.50

0.6

0.4

0.2

0.0

0.2

0.4

1

23

4

5

6 7
8

9

(A)

0.4 0.2 0.0 0.2 0.4

1 234
5

6 789

(B)

Figure 5.6: Topic (A), where order matters, vs. local context (B) features, where order

does not matter. (A) is plotted form LF and (B) from TF.

5.4. PRACTICAL CONSIDERATION 68

Fig. 5.5(A), the node embeddings computed from W are clustered into

two sets of cohesive groups as shown in Fig. 5.6 (B). Furthermore, nodes 1

and 4 are equidistant from 2 and 3, similarly nodes 6 and 9 from 7 and 8.

On the other hand, in Fig. 5.6(A), even though we still have the two

groups related to their preference (participation in cascades), the arrange-

ment of the nodes in each group captures their true closeness to one another

and order of appearance in C. For example, node 1 is closer to 4 than to

2 and 3, and node 4 is closer to 2 and 3 than 1 is to 2 and 3. We also see

a similar trend in the members of g2 according to their closeness recorded

in C. In addition, recall that nodes 1 and 8 have the tendency to trigger

most of the diffusion events in the two groups as recorded by C, and this

fact can also be inferred from the embedding in Fig. 5.6 (A) and not (B).

Therefore the former kind of embeddings can be exploited in problems like

influence modeling.

5.4 Practical Consideration

For ease of implementation in both the delay-aware and delay-agnostic

models, we have made the following assumptions:

1. Without loss of generality, we only consider the subset V ′ ⊆ V of

nodes that are observed in cascades (some nodes may never appear in

cascades, and are thus ignored).

2. Each entry eu[i] of the event vector eu is transformed to e′u[i] = 1
1+eu[i] ,

where u is the index of a node, i is the index of a cascade, and eu[i] =

tj or eu[i] = j under the delay-aware and delay-agnostic settings,

respectively. Given that

lim
eu[i]→0

1

1 + eu[i]
= 1 and lim

eu[i]→∞

1

1 + eu[i]
= 0, (5.8)

5. NRL WITHOUT STRUCTURAL INFORMATION 69

each node u that occurs during the early stages of the ith cascade will

have e′u[i] ≈ 1; and each node v that have never occurred in C will

have e′v[i] = 0.

5.5 Problem Statement

After the definition of the above models, we are ready to formally define the

network representation learning problem when G’s topology is unknown as

follows:

Problem 2. Given a model M that can be f(P), f(CF), f(LF), f(TF)

or their concatenation f(P)⊕ f(CF)⊕ f(LF)⊕ f(TF), then the problem

is to identify a function Φ : V → Rd, where the optimization objective L
is given by

L = min
∑
{u,v}⊆V

||sim(u, v; M)− sim(u, v; Φ)||22 (5.9)

and f : M→ Rn×r for r ≥ 1 is a transformation function that maps M to

a vector subspace, for example the identity function f : M→M.

5.6 Unified Embedding

To make the computation more efficient, the NetTensor framework first

pre-process the inputs; in particular, P and CF are transformed using

TSVD, while the LF (local) and the TF (topic) features are passed as is

through an identity function.

Recall that the matrix P is non-symmetric, that is, P[i] and P[i]T are

associated to node i’s pairwise proximity by considering all infection events

that happened after and before i’s infection, respectively. Intuitively, we

can think of P[i] and P[i]T as models that capture node i’s proximity when

5.6. UNIFIED EMBEDDING 70

Input Transf ormation

AutoEncoder

Node Models

P =

⎛

⎝

⎜
⎜
⎜

p
1

⋮

p
n

⎞

⎠

⎟
⎟
⎟

n

CF =

⎛

⎝

⎜
⎜
⎜

cf1

⋮

cfn

⎞

⎠

⎟
⎟
⎟

n

TF =

⎛

⎝

⎜
⎜
⎜

tf1

⋮

tfn

⎞

⎠

⎟
⎟
⎟

τ

LF =

⎛

⎝

⎜
⎜
⎜

lf1

⋮

lfn

⎞

⎠

⎟
⎟
⎟

l

TSVD

S = ℝ
n×k

R = ℝ
n×k

=CF
~

ℝ
n×k

Reconstruction Output - M˜

∑ f ∑ f ∑ f∑ f

∑ f ∑ f∑ f

∑ f∑ f

∑ f ∑ f ∑ f∑ f

∑ f ∑ f∑ f

∑ f∑ f

Encoder DecoderCascades

Unified Embedding

Input Data - M

si ri cf˜i
tfi lfi

Proximity Computation and Feature Extraction
SkipGram NNMFTSVD

I

TF ∈ ℝ
n×τ

LF ∈ ℝ
n×l

Figure 5.7: NetTensor Framework

sending and receiving contagions, respectively. Therefore we transform P

into two matrices S,R ∈ Rn×k using the TSV D(P) function as:

P = AΣBT (5.10)

S = [
√
σi ·A[i], . . . ,

√
σk ·A[k]]

R = [
√
σi ·B[i], . . . ,

√
σk ·B[k]]

We apply a similar transformation on the statistical feature matrix CF

– TSV D(CF), however, since CF is a symmetric matrix, we materialize

the transformation using the left singular vectors only and obtain

C̃F = [
√
σi ·A[i], . . . ,

√
σk ·A[k]] (5.11)

As of now, we have five dense matrices that encode proximity and differ-

ent features of nodes, henceforth simply referred to as features. Our goal

5. NRL WITHOUT STRUCTURAL INFORMATION 71

is therefore to learn a unified embedding that preserves what is encoded in

all these features.

A straightforward approach towards achieving this is simply to con-

catenate them. This however fails to capture the correlation between the

different features, as each of them are trained separately. Therefore, we

learn a unified embedding that enables us to optimize the embedding model

parameters simultaneously as suggested in [55].

For this purpose, we propose to use a simple and unsupervised neural

network model, an autoencoder. As shown in the ‘Unified Embedding’

component of Fig. 5.7, an auto-encoder has two components called encoder

and decoder.

Intuitively, the encoder generates a compressed code Φ[i] representing

the unified embedding from an input vector M[i]; the decoder attempts to

reconstruct, M̃[i] ≈M[i], the input vector from the compressed code. Let

M = TSVD(P)⊕TSVD(CF)⊕I(TF)⊕I(LF) = S⊕R⊕ C̃F⊕TF⊕LF

then, the objective of the auto-encoder is normally specified as minimizing

the squared distance as

min ||M− M̃||2F (5.12)

Φ = encL(. . . (enc1(H1
enc ·M)) . . .)

M̃ = decL(. . . (dec1(H1
dec · Φ)) . . .)

where enci and deci are the activation functions, such as tanh and relu,

and Hi
enc and Hi

enc are weight matrices of the encoder and decoder, re-

spectively, at the ith layer and L is the total number of layers.

The optimization objective of Eq. 5.12 can then be solved using the

stochastic gradient descent method or its variants. Once the optimization

has converged, after all the model parameters Hi
enc,H

i
dec : i = 1, . . . , L

have been fixed to an optimal value, we take Φ = encL(. . . (H1
enc ·M) . . .) ∈

5.7. EXPERIMENTAL EVALUATION 72

Rn×d as the unified embedding. Furthermore, during the training phase we

apply a dropout regularization to avoid over-fitting.

5.7 Experimental Evaluation

In this section, we compare the performance of our approach with strong

and popular baselines for network representation learning, against five real

datasets.

It is important to stress again that the baselines require the complete

knowledge of the structural information of the network, while our results

are obtained by only using information about cascades, without any knowl-

edge of the network at all. Our goal is to achieve performance levels as

close as possible to the state-of-the-art NRL techniques, but we are per-

fectly satisfied by results that are marginally lower than baselines.

The baselines are trained using the source code provided directly from

authors. For our algorithm, we separately report the results of NetTensortime

and NetTensororder , i.e. the variants of NetTensor corresponding to

delay-aware and delay-agnostic approaches, respectively.

5.7.1 Datasets

The evaluation is carried out on the following datasets, summarized in

Table 5.1.

1. Memetracker [52]: The same Memetracker dataset described in the

previous chapter.

2. Twitter [82, 83]: Two datasets associated with users and their inter-

actions through hashtags and retweets on the Twitter social network.

There are two kinds of cascades constructed using retweet and hash-

tag activities of users. The underlying network contains reciprocal

5. NRL WITHOUT STRUCTURAL INFORMATION 73

Dataset #Nodes # of Edges #Cascades

Memetracker 259,136 7,765,325 71,568

Twitter Hashtag (HT) 500,294 11,781,154 128,611

Twitter Retweet (RT) 292,061 6,613,937 23,703

Yelp 175,305 2,166,226 53,312

MovieLens 6040 9,985,110 3,592

Table 5.1: Dataset summary.

Feature Weighted-L1 Weighted-L2 Hadamard Average

Φ[uv, i] |Φ[u, i]− Φ[v, i]| |Φ[u, i]− Φ[v, i]|2 Φ[u, i] ∗ Φ[v, i] Φ[u,i]+Φ[v,i]
2

Table 5.2: Edge feature construction techniques. Φ[uv] is an edge feature vector for a pair

of nodes u, v ∈ V and Φ[uv, i] is the ith component.

follower links.

3. Yelp 1: A review dataset containing user reviews about businesses. A

cascade is associated with a sequence of reviews given to a business

overtime. Reviews up to 2014 are used. The underlying network

contains friendship links.

4. MovieLens 1M [31]: A movie review dataset containing user reviews on

movies. Cascades are generated in the same way as Yelp. The dataset

however does not have an actual interaction network, therefore we

build a co-rating network of users. That is, we add an edge between

a pair of users u and v, if they review a number τ of common movies.

We simply set τ = 22, which is the mean value of the number of

co-rated movies, that generates a dense network with ≈ 10M edges.

For all the datasets the ground truth network contains users that are

involved in the cascades and this will enable us to have a fair comparison

between NetTensor and the baselines.

1https://www.yelp.com/dataset

5.7. EXPERIMENTAL EVALUATION 74

5.7.2 Baselines

The research in NRL has recently produced a plethora of studies focusing

on different properties of networks. However, it is not possible to provide

an exhaustive comparison with all the existing methods, and hence we pick

three among the most popular state-of-the-art NRL techniques, i.e., Deep-

Walk [64], Node2Vec [28] and Line [70]. A comprehensive overview of

these algorithms is given in Chapter 7.

5.7.3 Link Prediction

In Chapter 4, we have already established that link prediction is one of the

applications where NRL techniques play a crucial role, and here we present

the experimental evaluation results on this task.

Setting

We adopt here the same strategy followed by previous studies [28, 77, 22],

namely we remove a certain percentage, denoted rate, of the edges from the

ground truth network, while ensuring that the residual network remains

connected as suggested in [28]. The removed edges will be considered as

true edge samples, while an equal number of false edges (edges that do not

exist in the network) will be sampled for comparison.

During the NRL phase, we train the baseline methods on the residual

network; given that our method requires no knowledge of the network

structure, we simply train it on the cascades. Finally, in line with existing

studies [28, 22], we learn features for the sampled edges using the four

techniques listed in Table 5.2. All the results are reported as percentages

and higher means better.

The hyper-parameters are tuned using random search and the final con-

figuration of NetTensor is as follows: S,R, C̃F ∈ Rn×256 and TF,LF ∈

5. NRL WITHOUT STRUCTURAL INFORMATION 75

Rn×128. This leads to a combined node model M ∈ Rn×1024. The size

of the layers of the autoencoder in the unified embedding model is then

[1024, 512, 256, 128], and hence Φ ∈ Rn×128, with a dropout regularization

rate of 0.4. To solve the optimization objective of Eq. 5.12 we use the Adam

stochastic optimization technique [43] with a learning rate of 0.0001. The

proximity window size to compute S and R is set to 100 for all datasets

but HT, for which it is set to 50. The context window size to compute LFl

is set to 15 for all datasets. For all the baselines, the nodes embedding

size is set to 128; for Node2Vec, parameters p and q are set to 1. For

DeepWalk and Node2Vec, the number of walks and walk length are

set to 10 and 80, respectively. All the results are reported as percentages

and higher means better.

Results and Discussions

In Table 5.3 and 5.4, we report the Area Under Curve (AUC) results, with

rate = 30% and rate = 50%, using the edge feature construction techniques

listed in Table 5.2. In almost all the cases, the Average technique gives

the best results, underlined in the table; all the baselines score their lowest

with Hadamard. The bold results show the algorithm with the best per-

formance. As it can be seen from Table 5.3, NetTensor achieves a good

result that is marginally smaller (for HT, RT and Yelp) and marginally

greater (for Memetracker) than the baselines, for rate = 30%.

In Table 5.4 we report the results with rate = 50%; NetTensor

achieves the best results with Memetracker and RT, while Node2Vec

and Line are the best algorithm for HT and Yelp, respectively.

Note that even though NetTensor gives us the flexibility to choose

between different models, we have used here the full model that includes all

the feature types. As described in Section 5.7.6, however, we can achieve

a very good performance even using simplified models.

5.7. EXPERIMENTAL EVALUATION 76

Algorithm Feature
Dataset

Memetracker HT RT Yelp

NetTensortime

Weighted-L1 92.74 86.41 85.39 92.14

Weighted-L2 93.02 83.48 82.29 92.63

Hadamard 90.67 66.86 66.17 77.21

Average 98.21 96.30 95.74 97.16

NetTensororder

Weighted-L1 92.87 82.85 85.92 91.73

Weighted-L2 93.21 80.27 81.90 92.21

Hadamard 92.28 68.72 66.32 81.12

Average 97.76 95.68 92.56 97.27

DeepWalk

Weighted-L1 92.15 82.10 84.34 99.86

Weighted-L2 92.35 80.53 82.38 99.84

Hadamard 90.96 84.20 80.42 97.24

Average 87.03 95.79 96.19 99.63

Line

Weighted-L1 84.92 86.01 85.06 99.01

Weighted-L2 85.81 89.15 87.99 98.54

Hadamard 80.14 79.13 81.73 97.01

Average 96.97 97.52 97.85 99.89

Node2Vec

Weighted-L1 85.64 83.53 82.56 99.34

Weighted-L2 85.87 81.98 82.04 99.45

Hadamard 82.34 71.36 68.51 88.60

Average 91.42 97.66 97.86 99.85

Table 5.3: AUC score for link prediction with rate = 30%. Bold indicates the best

performing algorithm for a dataset and underline indicates the best performing feature

construction technique for each dataset and each algorithm.

5.7.4 Network Reconstruction

One way to measure the quality of NRL algorithms is their ability to re-

construct the original graph [77]. Besides, network reconstruction from

diffusion cascades is an important research question in the area of social

network analysis. For these reasons, we have evaluated the performance

of our algorithm and the baselines in reconstructing the original network

structure.

5. NRL WITHOUT STRUCTURAL INFORMATION 77

Algorithms
Datasets

Memetracker HT RT Yelp

NetTensortime 95.84 92.31 94.00 96.49

NetTensororder 95.42 92.72 95.02 95.92

DeepWalk 84.91 94.46 92.92 96.67

Line 86.92 95.13 94.20 99.89

Node2Vec 92.99 95.18 94.13 99.46

Table 5.4: AUC score for link prediction, with rate = 50% and Average edge feature

learning method. Bold indicates the best performing algorithm for a dataset.

Setting

For this experiment, the baselines are trained using the complete network

structure, while NetTensor is trained using the cascades. In line with

existing studies [77, 22], we adopt the precision-at-K (P@K) metric, which

is already defined in Chapter 4 – Eq. 4.8. Recall that the P@K metric is

based on a rank(u, v) function according to the score on the edges. Here

we seek to compute score for pairs u, v and we use the sigmoid as a scoring

function score(u, v) :

score(u, v) =
1

1 + e−dot(Φu,Φv)

where dot(x,y) is the dot product between two vectors x and y.

Computing the score(·, ·) function for all pairs of nodes is expensive –

O(|V |2) – for large networks. Instead, we sample pairs including all the

true edges and a factor λ of pairs that are not connected, drawing in total

|E|+ λ× |E| sample pairs out of all |V |2 pairs of nodes.

The same configuration of hyper-parameters as in the link prediction

task is used.

5.7. EXPERIMENTAL EVALUATION 78

Algorithm K
Dataset

Memetracker HT RT Yelp

NetTensortime

100K 97.01 99.94 98.96 93.85

500K 87.54 99.67 94.33 70.97

1M 81.67 99.36 81.93 62.34

NetTensororder

100K 99.11 99.95 99.03 93.76

500K 90.06 99.68 94.35 70.37

1M 83.10 99.34 81.58 62.02

DeepWalk

100K 100 100 100 100

500K 99.99 100 99.88 69.69

1M 99.98 100 99.79 62.36

Line

100K 100 62.84 68.21 55.14

500K 67.31 62.85 62.69 53.00

1M 60.89 62.29 60.15 51.66

Node2Vec

100K 100 100 99.95 99.82

500K 99.99 100 99.86 90.27

1M 99.97 100 99.80 78.14

Table 5.5: P@K results for the network reconstruction task, λ = 1.

Algorithm λ
Dataset

Memetracker HT RT Yelp

NetTensortime

2 79.99 99.21 90.00 58.53

3 74.59 98.77 85.90 51.55

NetTensororder

2 83.46 99.23 89.79 58.01

3 78.56 98.75 85.58 51.15

DeepWalk
2 99.36 99.99 99.36 33.26

3 99.98 99.99 98.71 4e-6

Line
2 58.84 47.74 50.44 37.63

3 54.70 39.16 42.77 30.59

Node2Vec
2 99.29 99.99 99.29 86.25

3 99.97 99.99 98.62 83.95

Table 5.6: P@K results for the network reconstruction task, K = 500K.

Results and Discussion

Table 5.5 and 5.6 show the results of the network reconstruction task for

fixed λ = 1 and K = 500K, respectively. For all the datasets, either one

5. NRL WITHOUT STRUCTURAL INFORMATION 79

or both the variants of NetTensor achieve a reasonably close result with

respect to that of Node2Vec and DeepWalk, with a gap between 0.06%

and ≈ 18% for values of K ranging from 100K to 1M. It is interesting to

note that both variants perform significantly better than Line, except in

one case (Memetracker, λ = 1 and K = 100K). As we introduce more

noise, which is controlled by λ, a significant decrease for all the algorithms

is observed for the Yelp dataset. NetTensor performs significantly worst

than Node2Vec (a difference around 32%), while it performs better than

DeepWalk (a decrease around 4%) and Line.

Another important observation is that the difference between the two

variants of our algorithm are insignificant, except for the ≈ 4% difference in

the Memetracker dataset, as shown in Table 5.6. A plausible explanation

is that in the other datasets, the nodes interact in a single OSN platform

that enables them to be aware of their neighbors activity, for example

using the news feed of Twitter. In such condition, it is likely that time and

order capture the interaction patterns equally. For Memetracker, on the

other hand, interaction occurs across different platforms, such as bbc.com

and aljazeera.com, requiring users in Memetracker to intentionally browse

other node’s page to follow their activities. In such cases, the order of how

information propagates could uncover a better interaction pattern than

reaction times; a similar argument is raised by Du et.al. [18].

5.7.5 Node Classification

The last but not the least application that we consider is node classification.

We evaluate the algorithms performance using the MovieLens dataset, as

it is the only one with labels.

5.7. EXPERIMENTAL EVALUATION 80

Setting

The dataset contains three kinds of labels, which are age (7 classes), occu-

pation (21 classes) and gender (binary classification, male/female).

As there is no underlying interaction/influence network that lead to the

cascades that we have extracted, NetTensor simply uses the statistical

and local-context features in this experiment. As discussed in Sections 5.3.1

and 5.3.2, these features are oblivious to time and order and simply capture

contextual patterns.

In all the experiments, we perform a K-fold cross validation by using a

certain fraction TR of the data to train the model, while the rest is used to

test the trained model. We use K = 10 in all the experiments and report

the expected value along with the standard deviation at 95% confidence

interval. All the results are reported as percentages and higher means

better. A similar configuration of hyper-parameters as in the previous

experiments is used. As NetTensor uses only two of its features, however,

the layers of the autoencoder in the unified embedding model are configured

as [384, 200, 128]. Similar to existing NRL studies, we use macro-F1 and

micro-F1 evaluation metrics.

Results and Discussions

The Micro-F1 and Macro-F1 classification results over the three types of la-

bels are reported in Tables 5.7 and 5.8. Overall, NetTensor significantly

outperforms all the baselines in both metrics. It only achieve a slightly

lower Micro-F1 result than Node2Vec for the occupation classification

task. Alhough it is difficult to establish that NetTensor is superior than

the baselines in the above task, as they are not trained on an actual inter-

action network, it can however shade light on the strong potential use of

models trained using cascades for node classification.

5. NRL WITHOUT STRUCTURAL INFORMATION 81

Label TR
Algorithms

NetTensor DeepWalk Line Node2Vec

Age

10% 41.35± 0.01 35.45± 0.007 36.39± 0.002 36.28± 0.002

30% 44.97± 0.009 36.51± 0.005 36.46± 0.003 36.37± 0.006

50% 46.25± 0.006 36.85± 0.004 36.36± 0.006 36.59± 0.005

Gender

10% 78.35± 0.006 75.42± 0.003 73.83± 0.001 73.84± 0.002

30% 80.11± 0.004 75.87± 0.003 73.88± 0.004 73.87± 0.004

50% 80.55± 0.007 76.17± 0.006 74.02± 0.006 74.00± 0.006

Occupation

10% 16.00± 0.008 10.87± 0.006 11.78± 0.008 17.36± 0.007

30% 17.62± 0.005 10.74± 0.004 12.13± 0.010 18.71± 0.004

50% 18.81± 0.005 10.86± 0.004 12.57± 0.006 18.90± 0.005

Table 5.7: Micro-F1 results for node classification alongside the standard deviations with

95% confidence interval.

Label TR
Algorithms

NetTensor DeepWalk Line Node2Vec

Age

10% 21.18± 0.018 14.37± 0.01 7.80± 0.001 8.13± 0.006

30% 26.89± 0.018 17.13± 0.008 7.84± 0.001 8.11± 0.006

50% 29.53± 0.010 17.59± 0.004 7.87± 0.001 8.24± 0.006

Gender

10% 64.48± 0.018 55.01± 0.018 42.54± 0.001 42.47± 0.0006

30% 69.65± 0.013 59.49± 0.012 42.59± 0.001 42.48± 0.001

50% 70.92± 0.009 60.65± 0.012 42.79± 0.002 42.52± 0.002

Occupation

10% 5.59± 0.005 4.24± 0.004 1.82± 0.002 2.48± 0.004

30% 7.26± 0.004 5.06± 0.002 1.90± 0.004 2.65± 0.002

50% 8.04± 0.004 5.31± 0.004 1.99± 0.002 2.85± 0.002

Table 5.8: Macro-F1 results for node classification alongside the standard deviations with

95% confidence interval.

5.7.6 Node Model Analysis

In this section, we analyze the effect of each node model (feature) inde-

pendently on the tasks that we have carried out in the previous sections.

In the following set of experiments, we use Twitter RT and Yelp for link

prediction and network reconstruction, given their relatively small size;

instead, we use MovieLens for the node classification task.

5.7. EXPERIMENTAL EVALUATION 82

98.82

78.8

98.1 99.38
94.54

99.44

67.96 68.13

99.81

84.26

99.5 99.21 99.22 98.42

81.41 81.67

RT Yelp
C

oO
cc

ur
re

nc
e

Lo
ca

lC
on

te
xt

R
ec

ei
ve

rO
rd

er

R
ec

ei
ve

rT
im

e

S
en

de
rO

rd
er

S
en

de
rT

im
e

To
pi

cO
rd

er

To
pi

cT
im

e

C
oO

cc
ur

re
nc

e

Lo
ca

lC
on

te
xt

R
ec

ei
ve

rO
rd

er

R
ec

ei
ve

rT
im

e

S
en

de
rO

rd
er

S
en

de
rT

im
e

To
pi

cO
rd

er

To
pi

cT
im

e

0

25

50

75

100

Features

A
U

C

Figure 5.8: Performance of Node Models in Link Prediction.

79.38 80.65

65.73

73.85
67.42

71.58

63.46 63.46

54.65 56.94
51.64

46.29 48.69
45.39

52.89 52.86

RT Yelp

C
oO

cc
ur

re
nc

e

Lo
ca

lC
on

te
xt

R
ec

ei
ve

rO
rd

er

R
ec

ei
ve

rT
im

e

S
en

de
rO

rd
er

S
en

de
rT

im
e

To
pi

cO
rd

er

To
pi

cT
im

e

C
oO

cc
ur

re
nc

e

Lo
ca

lC
on

te
xt

R
ec

ei
ve

rO
rd

er

R
ec

ei
ve

rT
im

e

S
en

de
rO

rd
er

S
en

de
rT

im
e

To
pi

cO
rd

er

To
pi

cT
im

e

0

20

40

60

80

Features

P
at

K

Figure 5.9: Performance of Node Models in Network Reconstruction, λ = 2 and K =

500K.

We start our analysis with link prediction, and in Fig. 5.8 we report

the results we have obtained for all the features. As depicted in the figure,

topic is the least informative feature for link prediction in both datasets.

Local context features are the second least informative ones and the rest

of them are more or less similar and strongly informative for this task.

Another observation is that the delay-aware features achieve a higher

performance compared to the delay-agnostic variants in the Twitter RT

5. NRL WITHOUT STRUCTURAL INFORMATION 83

Age Gender Occupation

M
acro−

F
1

M
icro−

F
1

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

Training Ratio

M
ea

n

Features CoOccurrence LocalContext

Figure 5.10: Performance of the two kinds of features in the three types of node classifi-

cation tasks.

dataset. The difference is particularly pronounced for the sender features,

that is, 94% and 99%. We conjecture that the existence of a dedicated plat-

form where users can be notified of their friends activity has contributed

to such manifestation of a stronger interaction patterns of reaction time

than order.

Next, we move to the analysis of the features for the network reconstruc-

tion task. The results are reported in Fig. 5.9. Similarly to the previous

experiment, we observe that delay-aware models perform better in the RT

dataset, adding more evidence to our conjecture. In addition, we observe

that the statistical (co-occurrence) and local context features also give a

comparable result for this task.

Finally, we analyze the performance of the statistical (co-occurrence)

and local context features used in the node classification task. Fig. 5.10

reports their performance in this task and shows that local-context features

5.7. EXPERIMENTAL EVALUATION 84

are more predictive than the statistical ones.

5.7.7 Parameter Analysis

NetTensor has a few hyper-parameters that needs to be tuned:

• In the proximity model, the window size pw

• In the local-context features, the context window size cw; if the op-

tional sequence sampling is carried out during the local-context feature

construction, the number ns of sequences per node and the sequence

length sl should be added as well;

• The dimension sizes of the features TF ∈ Rn×τ , LF ∈ Rn×l, i.e. τ , l

respectively

• Finally, the configuration of the unified embedding model, i.e., the

number of layers L and the number of neurons (units - nu) in each

layer.

In total, NetTensor has thus either 7 or 9 hyper-parameters depend-

ing on the use of the optional sequence sampling step of the local feature

extraction in Section 5.3.2. Such large number of hyper-parameters is due

to the multiple components of NetTensor. As shown below, however,

our algorithm is sensitive only to a very few of them; besides, as illustrated

in the previous subsection, NetTensor gives us the flexibility to use one

or more of the individual components based on the task on hand.

Fig. 5.11 shows the effect of proximity window, context window and em-

bedding size on the link prediction and network reconstruction tasks. The

embedding size is the one of the unified embedding model. As shown in the

figures, NetTensor is not sensitive to the variation of these parameters.

For the node classification task, we have only analyzed the effect of the

embedding size as we have discarded the proximity and node features for

5. NRL WITHOUT STRUCTURAL INFORMATION 85

97
.5

8
97

.6
1

98
.1

7
98

.1
9

97
.6

5
97

.6
6

98
.0

2
98

.0
1

58
.3

6
58

.5
6

58
.1

2
59

.2
3

57
.9

6
59

.3
6

58
.2

6
59

.2
8

Link Pred. Net. Rec.

50 100 150 200 50 100 150 200

0

25

50

75

100

Proximity Window Size

S
co

re

Algorithm NetTensorOrder NetTensorTime
97

.2
1

98
.1

9

97
.6

7

97
.2

7

97
.6

5

97
.7

58
.1

3

59
.2

1

59
.9

7

60
.2

2

61
.7

9

61
.7

6

Link Pred. Net. Rec.

10 15 20 10 15 20
Context Window Size

Algorithm NetTensorOrder NetTensorTime

96
.7

97
.2

1

97
.7

9
98

.2

98
.4

7
98

.7
4

98
.9

1
98

.7
2

58
.2

6
58

.8
9

58
.1

1
58

.9
1

58
.1

7
59

.1
5

58
59

.1
6

Link Pred. Net. Rec.

50 100 150 200 50 100 150 200
Embedding Size

Algorithm NetTensorOrder NetTensorTime

Figure 5.11: Effect of proximity window, local context window, and embedding sizes, AUC

and P@K are the scores for link prediction (Link Pred.) and network reconstruction (Net.

Rec.), respectively.

Age Gender Occupation

M
acro−

F
1

M
icro−

F
1

0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.8

Training Ratio

M
ea

n

size 50 100 150 200

Figure 5.12: Effect of the final embedding size d on node classification

the reasons discussed in Section 5.7.5. Fig. 5.12 shows the effect of this

parameter. As expected, improvements can be seen with the increase of

the embedding size; this is particularly pronounced for Macro-F1.

5.7. EXPERIMENTAL EVALUATION 86

5.7.8 Application to Learning Influence Propagation Probabili-

ties

Influence maximization is an important area of research in social network

analysis, with relevant real-world applications such as the identification of

the top-k influencers in the network. Motivated by this need, the semi-

nal work of [41] has introduced two approaches, the independent cascade

model (IC) and the linear threshold model, to tackle such problem. For

illustration purpose, we focus on the former.

According to the IC model, a pair of users u, v has a probability P (u, v)

of spreading influence among each other. In the iterative influence max-

imization procedure, at every step each user u influenced in the previous

step will be given one chance of spreading influence to its uninfluenced

neighbors v with a probability P (u, v).

Several studies have been suggested to learn the aforementioned proba-

bilities from cascades [58, 25, 26, 27, 9, 38].

However, some of them discard the reaction time or the order of nodes

infection in these events; some assume that the propagation probability is

symmetric, i.e. p(u, v) = p(v, u); others assume a fixed parametric form of

influence propagation rates, such as exponential or power-law distributions.

A study, however, has empirically shown that these are strong assumptions

and real networks exhibit a more complex dynamics [18].

We propose here a simple data-driven technique that uses the sender

and receiver node proximity models to estimate these probabilities. Our

scheme is non-symmetric and it is based on the behavior of users or their

tendency in spreading and receiving influence. As discussed in Section 5.2,

the node-proximity models of the sender S and the receiver R are designed

in such a way that they capture the pattern in users tendency to spreading

and receiving influence. Thus, we assume that the probability of a node

5. NRL WITHOUT STRUCTURAL INFORMATION 87

u influencing another node v depends on node u’s tendency to spread

influence and v’s tendency to receive influence; in other words, S[u] and

R[v], respectively.

Therefore, we specify a unified framework to estimate the influence prop-

agation probabilities between a pair of users as:

p(u, v) =
1

1 + e−dot(S[u],R[v])
(5.13)

Note that p(u, v) = p(v, u) does not necessarily hold. Furthermore, one

has the flexibility to use the delay-aware or delay-agnostic versions of S[u]

and R[v], if needed.

5.7. EXPERIMENTAL EVALUATION 88

Chapter 6

Cascade Representation Learning for

Virality Prediction

In the previous chapters, we have observed how we can use diffusion events

in order to aid NRL when the structure of the network is known, partially

known, or hidden. Obviously, the output of NRL algorithms is a low-

dimensional, dense embedding of nodes in an information network. We

have seen how these embeddings can be used for different kinds of network

analysis problems. Unlike traditional techniques that are based on manual

feature extractions, these embeddings are not task-dependent: the same

embedding of nodes is used across different problems.

One important problem where we might apply such embeddings is pre-

dicting the future states of diffusion events themselves. Online social net-

works are the quintessence of information networks where diffusion events

take place, in the form of posts or tweets that start from a few sources and

then suddenly spread like a wildfire. Just to mention a recent example,

the post celebrating the landing of the Falcon-Heavy rocket sent from the

SpaceX1 Twitter account on February 6th, 2018, has been retweeted more

than 75k times within the same day of posting. Such diffusion events are

called viral cascades and predicting them at early stages is vital for different

1https://twitter.com/SpaceX

89

90

applications, for example to forecast trends and rumor break-outs [97].

As pointed out in the previous chapter, it is common to be in a strenuous

situation to have access to the network structure where the diffusion events

occur. For this reason, recent studies [68, 97] have dedicated several efforts

to the prediction of content popularity with the focus of achieving good

predictions in the shortest possible time, using as small information as

possible about the underlying network structure.

Early research on predicting cascade virality assumed strong correla-

tions between the propagation of content and the structural properties of

early starters of the spreading events. Therefore, most of the early at-

tempts towards predicting the virality of cascades have relied on manually

extracted features from the underlying network structure and the cascade

itself [53, 82, 94, 93, 12, 69]. Information such as the number of follow-

ers/followees that engaged users have, users connections and community

structure, activity level, etc., have been exploited.

This, however, poses two kinds of issues. First, manual feature crafting

is an expensive and challenging task. In most cases, domain knowledge

and external information about the content in question is required. For

instance, content popularity may be linked to several parameters, such as

event topic, external events or the content relevance to given periods of

time (e.g., posting about football during the World Cup), etc.

Besides, the optimal number and relevance of features that need to be

extracted is not obvious, making it difficult to decide when to stop looking

for additional ones [28]. Furthermore, some recent cascade examples show

different spread patterns even when showing similar network properties of

the engaged nodes in the underlying social graph; thus, network properties

may not be the optimal or the only indicator for virality. For example,

Fig. 6.1(A) shows the spread patterns of two hashtag campaigns (#metoo

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 91

24−Oct−2017 25−Oct−2017

0 5 10 15 20 0 5 10 15 20

0

500

1000

1500

2000

2500

Hour of the Day

Tw
ee

t C
ov

er
ag

e

(A)

24−Oct−2017 25−Oct−2017

0 5 10 15 20 0 5 10 15 20

0

250000

500000

750000

1000000

Hour of the Day

E
xp

ec
te

d
fo

llo
w

er
s

(B)

Hashtag gamergate metoo

Figure 6.1: Examples of two recent hashtag campaigns. (A) The tweeting frequency of

each hashtag; #metoo achieved more spread compared to #gamergate. (B) The network

properties of the participating nodes in each hashtag in terms of average number of fol-

lowers; the nodes engaged in the first 12 hours almost achieve similar reachability in both

hashtags.

and #gamergate) that happened almost at the same time2. As shown,

#metoo went viral in the first two days. The hashtag #metoo was tweeted

more than 200k times by the end of October 15, 20173. On the other

hand, #gamergate did not become viral like #metoo, even though they

have reasonably similar network properties such as the expected number

of followers (indicator for potential spread in the future) of early starters,

as shown in Fig. 6.1(B).

In addition to that, acquiring information about the social network

structure is usually very expensive for those who work outside the compa-

nies hosting the data. For example, for popular social networks such as

Twitter and Facebook, it may take several months to extract just a portion

2The dataset for these two hashtags is collected based on information available via

https://github.com/datacamp/datacamp-metoo-analysis and https://github.com/awesomedata/

awesome-public-datasets, respectively
3https://en.wikipedia.org/wiki/Me Too movement

https://github.com/datacamp/datacamp-metoo-analysis​
https://github.com/awesomedata/awesome-public-datasets
https://github.com/awesomedata/awesome-public-datasets

92

of the network. Moreover, due to privacy constraints and policies of such

systems, the extracted network is usually lacking a significant amount of

structural information, such as edges of some users participating in hashtag

campaigns who set their connections to be private [65].

For the reasons above, it becomes imperative to design algorithms that

do not require manual feature engineering or information about the un-

derlying network, but are still capable of effectively predicting cascade

virality in the very early stages of the diffusion. Some initial but also

strong attempts towards exploring this network-agnostic approach have

already demonstrated the potential for effective and timely prediction,

merely based on information that could be extracted from the cascades

themselves without requiring any other additional information [68]. How-

ever, most of the works available in the literature are mainly adopting ei-

ther “network-aware” or at best “quasi-network-agnostic” approaches [97],

relying on “less expensive” structural information, such as node degrees.

In this chapter we propose a novel network-agnostic algorithm called

cas2vec that predicts cascade virality simply based on information ex-

plicitly available in the cascade itself (i.e., the time between share events).

Our main premise is that the reaction time between the sequence of events

encoded in a cascade is often a sufficient indicator to whether it will become

viral or not in the near future. The reaction times in the early sequence

of events can be used to model the cascade initial speed (i.e., the speed by

which a cascade starts its spread), as well as its momentum.

By analyzing the distribution of reaction times for viral and non-viral

cascades on multiple datasets, and based on corroborating observations

supporting our premise, we have modeled cascades as a series of times-

tamps, where each element of the series is the reaction time measured from

the source signal. Furthermore, our work is partly inspired by iSAX [10],

that is used for indexing time series data. Particularly, we apply a similar

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 93

technique as iSAX on cascades to transform them into instances of one-

dimensional point processes in time space, such that each point of the time

series of the cascade is a discrete value obtained by using equally-sized

periods of times.

Finally we automatically learn representations of cascades that are ca-

pable of predicting virality using the transformed cascades.

6.1 Summary of Contributions

cas2vec provides a novel network-agnostic approach that models infor-

mation cascades as time series by discretizing them using time slices. Es-

sentially, cas2vec learns high-quality features that can predict whether a

cascade is going to become viral or not, simply by exploiting time series

data computed from the cascades. To show the effectiveness of the learned

representations in cascade prediction, we have performed extensive exper-

iments and compared it against strong baselines.

Our results show that in predicting virality, the features learned using

cas2vec outperform the baselines by more than an order of magnitude.

Besides being able to perform predictions, its important to make them as

early as possible. Thus we have shown that, compared to the state-of-

the-art, the cas2vec performance particularly stands-out in detecting the

virality of a popular content at the very early stage of its growth.

6.2 Background and Problem

The cascade definition that we introduced in Chapter 2 models a series

of share events associated with the infection of users. Given that we are

adopting a network-agnostic approach, we shall have no assumptions re-

garding the identity and underlying connectivity of users, and we will sim-

6.2. BACKGROUND AND PROBLEM 94

ply consider a cascade as a sequence of events.

For this reason, we strip out any user information and re-formulate

cascades as a series of timestamps:

C = [t1, . . . , t|C|] (6.1)

We use trace(C, tb, te) to denote the sub-sequence of events whose times-

tamps are between the beginning time tb (included) and the end time te

(excluded):

trace(C, tb, te) = [t : t ∈ C ∧ tb ≤ t < te] (6.2)

For the sake of brevity, we use trace(C, te) to denote the prefix of the

subsequence including the events occurring before te since the initial event

t1 = 0, i.e.

trace(C, te) = trace(C, t1, te) (6.3)

The features that we intend to learn for cascades could be optimized

for different types of prediction problems. In this chapter, we will focus

learning features that are optimized for virality prediction, i.e. the task of

deciding whether a cascade, after an observation period, is going viral or

not before a given amount of time. From a practical perspective, this is a

very important challenge [68].

To formally state our problem, we first define an observation of C

trace(C, to) = [t1 = 0, . . . , ti = to]

for the early hours starting from the beginning t1 = 0 of the cascade C up

to an observation time to. We refer to the time period between 0 and to as

an observation window.

Given an observation O = trace(C, to), we then define a prediction win-

dow or a delay window ∆ as a period starting from time to and up to

to + ∆ time, after which we want to establish whether a specific cascade

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 95

C is going viral or not. In other words, at a prediction time tp = to + ∆,

our goal is to examine the state trace(C, tp), which is by comparing it size

|trace(C, tp)| against a threshold.

Similar to existing studies [82, 68], we consider two ways of choosing a

threshold that governs whether a cascade is viral or not:

• through an absolute threshold θa ∈ R+, the cascade C is viral if

|trace(C, tp)| ≥ θa;

• through a relative threshold θr ∈ (0, 1), the cascade C is viral if

|trace(C, tp)| > |C ′|,∀C ′ ∈ C \ perc(C, θr), where perc(C, θr) is the

θr-percentile set of largest cascades among the cascades in C and it

can be formally specified as

perc(C, θr) = {C : rank(C) ≤ b|C| × θrc}

where

rank : C → N

is a function that ranks each C ∈ C according to their size. Suppose

Cmax is the largest cascade, i.e @C ∈ C \Cmax such that |C| > |Cmax|,
then rank(Cmax) = 1.

Finally, we state the formal definition of our problem as:

Problem 3. Given an observation and prediction times to and tp, respec-

tively, a set of observations of early events of cascades O = {trace(C, to) :

C ∈ C} and number d, we seek to learn a representation

Φ : O → Rd

subj. to

min−
|O|∑
i=1

yi log f(Φ(Oi)) + (1− yi) log(1− f(Φ(Oi)))

6.3. THE LEARNING ALGORITHM 96

where yi ∈ {1 = viral, 0 = non-viral} is the label of the ith observation

Oi ∈ O computed at tp and

f : Rd → {0, 1}

is a binary classifier that predicts the class of an observation of the early

events Oi = trace(C, to) of a cascade C ∈ C using the representation Φ(Oi).

6.3 The Learning Algorithm

The design of our algorithm is inspired by the observation that most viral

cascades spread like a wildfire within the very first few hours. In contrast,

non-viral cascades require several hours just to reach merely a handful of

users. For instance, Fig. 6.2 shows the user coverage distribution of two

hashtags in a 24-hour period, one viral (#thingsigetalot) and one not

(#bored).

Some state-of-the-art studies [97, 89, 24] start from a similar assumption

as in the above and develop elegant solutions based on point processes.

Such techniques rely on the frequency (density) estimation of the rate of

cascade growth during its observation period to predict its ultimate size

after a certain period ∆.

Our approach is partially related, in the sense that it implicitly utilizes

the rate of growth of the number of events within an observation period

during the transformation of a cascade into a time series. However, it is

completely network-agnostic. Based on our main premise, intuitively we

seek to model the initial speed of a cascade (that is, the speed by which a

cascade starts its spread) or the user reaction times at the early stage of

the cascade, as well as its momentum. As we shall empirically demonstrate

in Section 6.3.1, this is a strong signal for potential virality.

In Algorithm 2, we present the high-level steps required to train a

cas2vec model that learns a representation of cascades for virality pre-

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 97

Algorithm 2: cas2vecTrain (Ctrain, to, tp, θ, d,Ns, ts)

1 L = ∅ /* Initialize a place holder for the label of cascades */

2 T = ∅ /* Initialize a place holder for the set of observed cascades

transformed into time series */

3 for Ci ∈ Ctrain do

4 Oi = trace(Ci, to)

5 Ti = transformCascade(Oi, Ns, ts) /* The preprocessing step in

Section 6.3.1 */

6 sizei = |trace(Ci, tp)|
7 Li = labelCascade(sizei, θ) /* Label computed at tp */

8 T .insert(Ti)
9 L.insert(Li)

10 model = trainCNN(T ,L, d)

11 return model

diction. Essentially the algorithm has the following major operations for

each cascade Ci in our training data set Ctrain:

• First, we extract the observation trace(Ci, to) (line 4), where to is

the observation time at which the observation period ends and the

prediction starts;

• We discretize each observation trace(Ci, to) by transforming it (line 5)

into a format that can be fed to our classification task;

• We label (line 7) the cascade Ci as viral or not viral, based on the

threshold θ according to the size of events (sizei – line 6) observed at

time tp = to + ∆, as discussed in the previous section.

• Finally, we train a model based on CNN that learns representation

of cascades optimized for virality prediction (line 10) using the trans-

formed cascades T and the associated labels L.

During inference time, we use the model returned by Algorithm 2 to infer

a representation of a given observation O = trace(C, to) of a cascade C ∈

6.3. THE LEARNING ALGORITHM 98

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●0

2000

4000

6000

0 5 10 15 20
Hours

U
se

r
co

ve
ra

ge

#thingsigetalot

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

0

10

20

30

0 5 10 15 20
Hours

#bored

Figure 6.2: Two slices of size 2 hours, applied to the user coverage distribution of a viral

hashtag (#thingsigetalot) and a non-viral one (#bored), which have reached 13711 and

43 users in an observation window size of 4 hours.

Algorithm 3: cas2vecInference (model, O,Ns, ts)

1 T = transformCascade(O,Ns, ts)

2 Φ(T) = inferCNN(model, T) /* Φ(T) ∈ Rd is an embedding of T */

3 y = predictVirality(Φ(T)) /* y is the predicted class 1 or 0. */

4 return y

Ctest and predict it, where Ctrain ∩Ctest = {}. The overview of the inference

procedure is shown in Algorithm 3. Its input is the trained cas2vec

model, an observation O of a cascade C, the number of slices Ns and the

slice size ts. In line 1, we discretize the observed cascade O as required by

the cas2vec input specification. Then, we infer the representation (line

2) of the transformed cascade T and finally the predicted state (line 3)

of the cascade is returned. In the following we discuss the details of the

aforementioned training and inference steps.

6.3.1 Pre-processing Cascades

Line 5 of Algorithm 2 takes an observation Oi = trace(Ci, to) of a cascade Ci

and two parameters known as number of slices Ns and slice size ts. These

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 99

values are used to apply slices over Oi so as to discretize it. Therefore,

as a result of applying slices the observation is divided into a collection of

slices, i.e. equally-sized time windows according to Ns and ts. For example,

Fig. 6.2 illustrates an application of Ns = 2 slices having an equal size of

ts = 2 on top of an observation O = trace(C, to = 4), visualized through

red boxes. The size of the observation window to should be an integer

multiple of ts, such that the number of slices Ns is equal to to/ts.

Based on the slices, we generate the following two kinds of pre-processed

sequences:

Counter sequence the sequence of integers representing the number of

events included in each slice:

Ccount = [|trace(C, i · ts, (i+ 1) · ts)| : 0 ≤ i < Ns] (6.4)

Constant sequence the sequence generated by discretizing every event

within each slice to a constant value, i.e. by assigning each event within a

slice the position of the slice itself.

Cconst = [dO(i)/tse : 1 ≤ i ≤ |O| ∧O = trace(C, to)] (6.5)

It can also be interpreted as a step function on the observed cascade

Cconst = [step(O, i) = [i + 1 : i · ts ≤ j ≤ (i + 1) · ts] : 0 ≤ i ≤ Ns],

as shown in Fig. 6.3.

For example, look again at Fig. 6.2 with cascades C1 (#thingsigetalot)

and C2 (#bored). By considering an observation window size of 4 hours

and a slice size of 2 hours, the counter sequences are equal to Ccount
1 =

[6 709, 7 002] and Ccount
2 = [15, 28]; in the former, there are 6 709 events in

the first 2 hours, and 7 002 in the second 2 hours. In the later, the numbers

6.3. THE LEARNING ALGORITHM 100

0 ts 2 ⋅ ts 3 ⋅ ts 4 ⋅ ts 5 ⋅ ts 6 ⋅ ts

1

3

2

4

5

6

7

8

Figure 6.3: Constant sequence as a step function

are just 15 and 28. The constant sequences are equal to:

Cconst
1 = [

step1 6,709 1′s︷ ︸︸ ︷
[1, . . . , 1] ,

step2 7,002 2′s︷ ︸︸ ︷
[2, . . . , 2]]

Cconst
2 = [

step1 15 1′s︷ ︸︸ ︷
[1, . . . , 1],

step2 28 2′s︷ ︸︸ ︷
[2, . . . , 2]]

Counter sequences and constant sequences have different predicting power.

However, counter sequences are much faster to train as a result of a fixed

length of training sequences, i.e. Ns, while constant sequences give us

the flexibility of choosing larger values for the length of sequences at the

expense of slower training time.

Based on our assumption regarding the dynamics of viral and non-viral

cascades, we base our algorithm on the following conjecture:

Conjecture 6.3.1. Consider two cascades C1 and C2 and an absolute

threshold θ. Given an observation to and a prediction window size ∆, if

the cascade sizes of C1 and C2 at time to+∆ are such that |C1(to+∆)| ≥ θ

and |C2(to + ∆)| � θ, then |C1(to)| � |C2(to)|.

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 101

Viral Non-viral
200

2000

4000

6000

8000

Us
er

 C
ov

er
ag

e

Figure 6.4: The distribution of the user coverage for the viral and non-viral classes. The

user coverage distribution is computed at observation time to as |C(to)| and virality is

computed at prediction time to + ∆. A cascade is viral if |C(to + ∆)| ≥ 1, 000 and

not-viral if |C(to + ∆)| < 1000

According to the conjecture, within the observation window, we expect

a significant number of events for viral cascades and very few of them for

the non-viral ones. For example, looking again at Fig. 6.2, we have 13, 711

events for the viral hashtag #thingsigetalot and just 43 events for the

non-viral hashtag #bored during the observation period. More generally,

the user coverage distribution for the two classes, shown in Fig. 6.4, further

establishes an empirical case for the conjecture.

6.3. THE LEARNING ALGORITHM 102

1 2 1 1 3 1 4 1 2 1 2 Discretized Input
Cascade

Cascade Embedding
Matrix

Convolutional layer
with filters of varying

size (feature
mappings)

Max Pooling

Fully Connected
logistic unit

ℝ10

ℝ9

Cascade
Representation

Figure 6.5: The CNN model adopted for cascade prediction

6.3.2 CNN model for cascade prediction

Once cascades are pre-processed using slices, we adopt the CNN model [42]

to learn representation of cascades or features that are capable of predicting

whether a cascade will go viral or not.

The architecture of the model that we adopted for cascade prediction is

shown in Fig. 6.5 [42]. As discussed in Section 3.4, this model was originally

proposed for sentence classification in natural language documents. Our

choice of this model is inspired by recent studies that have shown the

effectiveness of CNN for time-series classification tasks [96, 80], which have

strong resemblance to fit our problem. In the following, we give a brief

description of the model to show how it is translated to our problem.

Instead of words, the input to the model is a pre-processed cascade, the

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 103

“Discretized Input Sequence” part of Fig. 6.5. Next we have the “Cascade

Embedding Matrix”, which encodes each input by an embedding matrix.

Next we have the “Convolutional layer” where we apply a set of filters

followed by the “Max Pooling” layer. The same set of principles and op-

erations are applied here as in Section 3.4.

During the training phase, we iteratively update the embedding matrix

and the remaining model parameters (hi,h, b - Equations 3.18 and 3.20)

until the binary cross-entropy loss function defined in Equation 3.19 is min-

imized. Once the optimal values are obtained, at inference time we fix the

values of the model parameters to this values and compute a representation

of the discretized input sequence at the max pooling layer.

Finally, it is the output of this layer that we consider as a feature or

representation of an observed cascade that we use for predicting the virality

of the the cascade at the final layer.

6.4 Experimental Evaluation

In this section, we report on the experiments we performed to evaluate our

approach. Before discussing the actual results, we introduce the datasets

that have been used as input; we discuss the competing approaches against

which we compare our results; and finally, we describe the experiment

settings.

6.4.1 Datasets

We have evaluated our approach over two well-known datasets:

• Twitter : This dataset has been commonly used for cascade predic-

tion [97, 68]. It contains a full month of Twitter data from October,

7th to November 7th, 2011. There are a total of 166,076 tweets that

have been retweeted at least 50 times.

6.4. EXPERIMENTAL EVALUATION 104

• Weibo: This dataset contains 225,126 tweets recorded on the Chinese

micro-blogging site Weibo [93, 94].

6.4.2 Baselines

We have compared our algorithm against three competing approaches; nev-

ertheless, a well-known baseline [68] have not been included, because their

source code is not available.

• seismic: This is a recent, state-of-the-art study that predicts the

popularity of tweets using a self-exciting point process model [97]. It

estimates the infectiousness of a tweet at time t, based on the number

of re-shares Rt at time t, then the estimated infectiousness is used to

predict the ultimate size R∞ of the tweet. We follow a similar strategy

as [68] to label tweets based on R∞, that is viral if and only if R∞ ≥ θ.

We have used the source code provided by the authors 4.

• Logistic Regression (LOR): This baseline has been used in previous

studies [68, 12]. We use a set of features X = [x(1), . . . , x(Ns)] com-

puted based on the notion of slices in Section 6.3.1, where x(i) is the

number of users in slice i and Ns is the number of slices.

• Linear Regression (LR): This is also a baseline similar to the one used

in [97, 68]. It is specified as:

logR∞ = log(α ·Rto) + b+ ε,

where ε is a noise term with Gaussian distribution. We apply a similar

thresholding as we did with seismic to label R∞ as viral and non-viral,

taking into account the log transformation.

4http://snap.stanford.edu/seismic/

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 105

6.4.3 Evaluation Settings

To evaluate the performance of our algorithm against the baselines, we

have used the following settings. Recall that the prediction problem is

based on an observation time to and a prediction window ∆. So, in all

the reported results for all the classification algorithms, we have trained

a single classifier for every given value of ∆. Furthermore, since the class

distribution is highly skewed and the viral class is very rare, we use down-

sampling in all the experiments.

During the training phase, we tune the hyper-parameters, e.g. the num-

ber and size of filters, using a development set (dev-set), Cdev ⊂ Ctrain, sam-

pled from the training set Ctrain. Once the hyper-parameters are tuned, we

then fix the parameters at these values for all the experiments and evalu-

ate the performance of the algorithms. Towards this end, we have used a

3-fold cross validation on an unseen test set Ctest (which does not include

the training and dev sets) and reported the average result along with the

error margins.

Similar to [68], the evaluation metrics are F-score with β = 3 (since it

is a rare class prediction), recall and coverage. In all the experiments, the

threshold for labeling cascades is θa = 700 that is equivalent to θr ≈ 98%.

6.4.4 Virality Prediction

In the first set of experiments, we evaluate the performance of our algorithm

and the baselines in predicting the virality of cascades based on a given

observation to and prediction window ∆ expressed in hours. Here, our

goal is to evaluate the performance of algorithms in effectively classifying

both classes as far as possible in the future. Fig. 6.6 reports the evaluation

results. All the variants of our algorithm (cas2veccount, cas2vecconst)

outperform the baselines, and provide very similar results. The strongest

6.4. EXPERIMENTAL EVALUATION 106

● ● ● ●
● ●

● ● ● ●

● ● ● ● ● ● ●
●

● ●

●

●
●

● ● ● ● ●
● ●

●
●

●
●

● ●
●

● ● ●

Twitter

to : 0.3

Twitter

to : 1

Weibo

to : 0.3

Weibo

to : 1

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60

0.00

0.25

0.50

0.75

1.00

∆ (hours)

F
M

ea
su

re

Algorithms ●CAS2VECconst CAS2VECcount LOR LR SEISMIC

Figure 6.6: Virality prediction results for both of our datasets. For Twitter, filter sizes

= 3, 5, 7 and for each filter we have 16 of them. For Weibo, filter sizes = 2, 4, 5, 7 and

for each filter we have 64 of them. For both datasets, the size of the embedding matrix is

128, the number of units in the fully connected layer is 32, and the number of slices is 40.

baselines are seismic and LOR; in the Twitter dataset, seismic achieves

F-scores between 94% and 60% for to = 0.3 hours and between 96% and

63% for to = 1 hour. LOR is more robust than seismic and it achieves

F-scores between 90% and 83% for to = 0.3 and between 93% and 86%

for to = 1 hour. Whereas, cas2vec variants are much more robust in

predicting far in the future than all the baselines and achieves F-scores

between 97% and 88% and between 97% and 91% for to = 0.3 and to = 1

hours, respectively.

For the Weibo dataset, LOR achieves F-scores between 64% and 59%

for to = 0.3 hour and between 75% and 66% for to = 1 hour. seismic’s

performance on Weibo is poor and it achieves F-scores between 49% and

22% and between 81% and 31% for to = 0.3 and to = 1 hours, respectively.

cas2vec, on the other hand, achieves a significantly higher performance,

which is more than the performance of other baselines by at least 10%, i.e.

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 107

F-scores between 85% and 67% for to = 0.3 hour and between 92% and

76% for to = 1 hour.

In the following, unless stated otherwise, we focus on cas2veccount, as

it is faster to train.

The above experiments give us a perspective on how far an algorithm

can effectively predict in the future stages of a cascade life. As we can see

from the plots, performance decreases as ∆ increases, as it is difficult to

predict far in the future for both classes.

6.4.5 Early Prediction

The next step is to analyze how early in time virality can be predicted.

Subbian et al. have observed that most of the events occur within twice the

median virality time measured over all the cascades [68]. In our datasets,

the median time to virality is 8 hours for Twitter and 17 hours for Weibo.

Based on that, we select a distinct (but fixed) prediction time tp = to + ∆

(to = tp − ∆) for each of the dataset, i.e. tp = 16 hours for Twitter and

tp = 34 hours for Weibo.

We then vary the size of the prediction window size ∆, from 1 hour

to tp − 1 hours to fix an observation time to and evaluate how early the

algorithms can predict virality. In this setting, parameter ∆ is similar to

the time-to-virality parameter defined in [68]. Note that having fixed the

prediction time, this means that the observation time to varies inversely

w.r.t. the prediction windows size ∆, from tp− 1 hours to 1 hour. In both

cases, the variation step is 1 hour.

In the following experiment (Fig. 6.7), we evaluate the recall score only

for the viral classes, that is measured by the fraction of viral cascades

detected by an algorithm out of all the viral ones.

cas2vec obtains the best result for both datasets. As one might expect,

all the algorithms achieve good results for larger values of to (small values

6.4. EXPERIMENTAL EVALUATION 108

●●●●●●●●●
●

●
●

●
●

●

●●●●●●●●
●●●

●
●

●

●

●

●

●

Twitter Weibo

0 5 10 15 0 10 20 30

0.00

0.25

0.50

0.75

1.00

0.7

0.8

0.9

1.0

to

R
ec

al
l

Algorithms ●CAS2VEC LOR LR SEISMIC

Figure 6.7: Evaluation results of early prediction experiments for the Twitter and Weibo

datasets. The prediction time is fixed to 16 hours for Twitter and 34 hours for Weibo,

and the same hyper-parameter values as Fig. 6.6 is used

of ∆). For example, all algorithms except linear regression achieve more

than 96% recall in the Twitter dataset, with seismic achieving the highest

of all, i.e. 99%. Such result is trivial, however, and we want algorithms to

be robust in their prediction as we increase ∆ and the observation time to

gets smaller.

As we approach to ≈ 0 (only after a few activities have been detected),

the performance of the baselines drop faster than cas2vec, which achieves

the best recall. seismic achieves the best results after to = 7 and to = 25,

which is after observing for more than 7 and 25 hours for Twitter and Weibo

respectively. However, for earlier observation points to < 7 (Twitter) and

to < 25 (Weibo), seismic achieve far worst (≈ 10% lower for Twitter and

≈ 20% lower for Weibo) results than cas2vec; at to = 1, seismic’s recall

is only 86% for Twitter and 42% for Weibo. At the same value to = 1,

the other strong baseline, LOR, achieves 89% and 56% of recall, while

cas2vec achieves 95% and 62% for Twitter and Weibo respectively.

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 109

●
● ● ● ●

● ●
●

●
● ● ● ●

●
●

● ●
● ● ● ● ●

●
● ● ● ●

●
●

●

100 200

4 8 12 4 8 12
0.5

0.6

0.7

0.8

0.9

1.0

to

C
ov

er
ag

e

Algorithms ●CAS2VEC LOR LR SEISMIC

Figure 6.8: Break-out coverage for k = 100 and k = 200 for the Twitter dataset.

Besides the virality predictions shown previously, these experiments

demonstrate that cas2vec is highly robust compared to the state-of-the-

art method, seismic, and the strong baseline, LOR, in predicting cascades

virality as early as possible.

6.4.6 Break-out Coverage

One of the important tasks in cascade prediction is detecting break-out

events. Towards this end, similar to [97, 68], we take the top-k viral cas-

cades and evaluate the performance of algorithms in effectively covering

such cascades in their prediction. That is, the fraction of correctly pre-

dicted cascades out of the top-k viral cascades.

The results of this experiment are reported in Fig. 6.8-6.9. Yet again,

cas2vec consistently achieves a significant performance gain, specially as

∆ increases or for smaller values of to (x–axis). Similar to the previous

experiment, it is important to achieve a high coverage as to → 0, and this

is of vital importance in trend forecasting and rumor detection tasks. Note

6.4. EXPERIMENTAL EVALUATION 110

●●
●●●●●●

●●●

●●

●●
●

●

●

●

●

●

●
●

●

●●

●●

●●

●

●

●

●

10 20

0 10 20 30 0 10 20 30

0.4

0.6

0.8

1.0

to

C
ov

er
ag

e

Algorithms ●CAS2VEC LOR LR SEISMIC

Figure 6.9: Break-out coverage for k = 10 and k = 20 for the Weibo dataset.

that even though LOR was a strong baseline in the earlier experiments, its

performance degrades when it comes to detecting just the top-k break-out

cascades. For Twitter, in particular at to = 1, the strongest baseline in this

experiment achieves only 83% break-out coverage for k = 100, and 76% for

k = 200. cas2vec, however, achieves a remarkable performance of 95%

and 90% for k = 100 and k = 200, respectively. For the Weibo dataset, all

the baselines score below 50% and 60%, whereas cas2vec achieves more

than 90% for k = 10 and 20, respectively.

6.4.7 Effect of hyper-parameters

In order to further validate our proposal, we conducted two brief experi-

ments on the effect of its hyper-parameters. First, we analyzed how the

performance varies with the number of slices. As shown in Fig. 6.10, the

performance increases as we increase the number of slices – up to a cer-

tain value. For Twitter, as we go from 10 to 30 the performance drops

and starts to improve until we get to Ns = 50, which is the best spot; for

6. CASCADE REPRESENTATION LEARNING FOR VIRALITY PREDICTION 111

●

●
●

●

●

●

●

●

●

●
●

●

Twitter Weibo

20 40 60 20 40 60
0.75

0.78

0.81

0.84

0.93

0.94

0.95

0.96

Number of slices

F
−

S
co

re

Figure 6.10: Effect of the number of slices on virality prediction at to = 1 hour and ∆ = 12

hours.

Weibo, the best F-score is achieved at Ns = 30. We have found out that

values between 30 and 50 give the best results.

The other hyper-parameter of our algorithm is sequence length; in par-

ticular, it is the major factor in the run-time of our algorithm. Fig. 6.11

show the effect of sequence length (determined by to) for the two variants

of our algorithms. Particularly cas2vecconst requires more time to finish

an epoch as we increase the sequence length. However, Fig. 6.12 shows that

increasing the sequence length beyond a certain value (150 in the figure)

does not give significant performance gain.

6.4. EXPERIMENTAL EVALUATION 112

● ● ● ● ●

0

100

200

300

400

0.1 0.2 0.3 0.4 0.5

to

R
un

 ti
m

e
(s

ec
on

ds
)

Preprocessing Techniques ● CAS2VECcount CAS2VECconst

Figure 6.11: Effect of sequence length on running time.

●

●

●

●

●

0.90

0.92

0.94

0.96

100 200
Sequence Length

F
−

S
co

re

Figure 6.12: Effect of sequence length on virality prediction.

Chapter 7

State of the Art

In this thesis we have addressed the problem of representation learning in

the context of information networks, focusing on two variants called:

1. Network Representation Learning

2. Cascade Representation Learning

In the former case we have shown the learned representations are general-

purpose and can be applied to different kinds of problems that may arise

in network analysis. In the latter case, on the other hand, the learning was

carried out with virality prediction as a goal. This chapter covers selected

state of the art studies in these two directions.

7.1 Network Representation Learning

As in many other areas, such as computer vision, natural language pro-

cessing, the state-of-the-art in NRL is dominated by algorithms based on

neural networks – neural NRL algorithms. Traditionally, dimensionality

reductions based on matrix factorization (MF) techniques have ruled the

domain. However, these techniques have two major limitations.

• they are linear models

113

7.1. NETWORK REPRESENTATION LEARNING 114

• they do not scale

Information networks have a highly non-linear structure [77]; for this rea-

son, exploiting non-linear learning models have proved to be much more

effective than the linear MF methods. In addition, eigenvalue decompo-

sition is usually at the core of these approaches, a technique that is very

expensive for large graphs. Hence, MF is not the best choice for such

graphs.

Since the seminal work of Perozzi et al.(DeepWalk [64] that has in-

spired several studies [28, 61, 66, 22, 11, 39, 17, 67, 90], we have witnessed

an explosion of neural NRL algorithms that are scalable to graphs with

millions of nodes and capable of capturing highly non-linear graph struc-

tures.

The basic idea of DeepWalk is inspired by the SkipGram algorithm

from language model. As discussed in Chapter 3, the SkipGram is known

for its effectiveness in learning low-dimensional latent representation of

words that capture their distributional semantics. We have also pointed

out that this model requires a linearly organized input and graphs are not

one of them.

The goal of NRL is also to learn a low-dimensional representation of

nodes that capture their context (local and global neighborhoods). In

DeepWalk [64], the authors devise a walk sampling strategy to build a

linear ordering of nodes that capture their context and compatible with

the SkipGram input specification. During the sampling process, they

uniformly draw a set S of truncated random walk sequences that effectively

encode the local neighborhood information of nodes.

S = {Su : u ∈ V }

Su = {Si : i = 1, . . . , w},

7. STATE OF THE ART 115

where Si = [s1, . . . , sl] is a walk sequence, l is the maximum length of any

walk sequence, and w is the number of walks to be sampled from each node

u ∈ V .

Since random walks have a linear ordering of nodes, they are a sim-

ple yet novel trick to resolve graphs compatibility issue with SkipGram.

Finally, akin to the DeepWalk model where a document corpus is con-

sumed to create a word embedding, SkipGram consumes the walk corpus

S. The learning objective is then exactly the same as the one we specified

in Section 3.3, which maximizes the log likelihood (Eq. 7.1) of seeing each

context node vc ∈ context(S, vt, s) of a target node vt, where S ∈ S:

max
∑

logP (vc|vt) (7.1)

Though DeepWalk is very effective and outperforms traditional tech-

niques, it has severe limitations for weighted graphs, where uniform ran-

dom walks are not the right choice. A follow up study by Grover et

al. [28](Node2Vec) has identified this problem and suggested an exten-

sion of DeepWalk, which does biased random walks.

The biased random walks of Node2Vec are governed by two hyper-

parameters called p and q. The choice of this parameters will allow us to

perform a biased random walk that could alternate or be balanced between

breadth- or depth-first graph traversal strategies.

We have also proposed a technique, which we have covered in Sec-

tion 4.3.1; a biased sequence sampling technique that draws inspiration

from information diffusion processes. Regardless of the sequence sampling

techniques, most techniques that are based on random walks have the same

learning objective given in Eq. 7.1.

There are also techniques that are not based on random walks, and the

pioneer is Line by Tang et al. [70]. The main goal of Line is to learn

embeddings of nodes that preserve their first- and second-order proximity.

7.1. NETWORK REPRESENTATION LEARNING 116

In preserving the first-order proximity, the objective is to make sure that

the embedding of nodes that are connected by an edge are close to each

other, in a manner similar to Laplacian eigenmaps [5]. More formally, given

a weight (binary or real) matrix W of a graph, the objective is specified

by the KL-divergence (Eq. 7.2) between an empirical distribution, p̃(ui, uj)

and a joint probability distribution p(ui, uj) defined between ui and uj,

where (ui, uj) ∈ E

−
∑

(ui,uj)∈E

p̃(ui, uj) log p(ui, uj) (7.2)

p̃(ui, uj) =
W[i, j]∑

(ui,uk)∈E W[i,k]
(7.3)

p(ui, uj) =
1

1 + exp(Φ1(ui)T · Φ1(uj))
(7.4)

where Φ1(u) is the first-order embedding of node u.

In the second-order case, the intuition is that if two nodes have a similar

set of common neighbors, their embeddings should be close to each other.

Now, each node u ∈ V has two roles, which are as itself and as a neighbor

of another node v ∈ V ; and hence Φ2(u), and Φ′2(u) denote its second-

order embeddings as itself and as a neighbor, respectively. Then again,

they specify the objective for the second order learning by KL-divergence

as follows

−
∑

(ui,uj)∈E

p̃(ui, uj) log p(uj|ui) (7.5)

where the p(uj|ui) is the probability that node uj is in the outgoing neigh-

borhood of ui and its specified by

p(uj|ui) =
exp(Φ′2(uj)

T · Φ2(ui))∑
(ui,uk)∈E exp(Φ′2(uk)

T · Φ2(ui))
(7.6)

7. STATE OF THE ART 117

They use the negative sampling trick to make Eq. 7.6 tractable. At the

end, they separately optimize the two objectives in Eq. 7.2 and 7.6 and con-

catenate the two embeddings, Φ1(u) and Φ2(v), as the output embedding

Φ[u] of each node u ∈ V .

A crucial limitation of the aforementioned techniques is that they can

only capture a local view of nodes. The direct connections and a few hope

neighborhood view, that is due to the truncated walk and diffusion simu-

lations. One particular study [11](Harp) endeavored towards addressing

this challenge by applying a hierarchical approach on top of the core com-

ponent of the aforementioned algorithms. Instead of directly executing

these algorithms on the input graph G, they first generate a hierarchical

view of G by applying multiple levels of graph coarsening. Given the graph

G and a threshold τ , they compute G,

G = [G=(V,E), G1 = (V1, E1), . . . , Gl = (Vl, El)]

where each graph Gi with i > 1 is obtained by applying graph a coarsening

function on the previous graph Gi−1, until the number of vertexes |Vl| is

smaller than a threshold τ . The first graph G0 is the original one

Learning is performed in the reverse direction starting from the last

graph Gl = (Vl, El), by executing the core component of any algorithm h,

say h = DeepWalk, as Rl = h(Gl, ∅) ∈ R|Vl|×d, where

h : G × Rni+1×d → Rni×d

is trained on a finer level Gi = (Vi, Ei) ∈ G, where ni = |Vi| by starting from

the representations Ri+1 ∈ Rni+1×d learned on the coarser graph Gi+1 =

(Vi+1, Ei+1) ∈ G, where ni+1 = |Vi+1|.
Since Gl is the coarsest graph, its embedding, Rl = h(Gl, ∅), is learned

from a random initialization. For the rest, learned representations Ri+1 are

propagated to Ri, i.e., Ri = h(Gi,Ri+1) from the coarse Gi+1 to the fine Gi

graph until we get to the finest or original graph G, i.e., Φ = R = h(G,R0).

7.1. NETWORK REPRESENTATION LEARNING 118

1 2

3 4

1,2

3,4

3 4

1

6 7

5

2

4

1,3

6,7

1,3

(A) (B)

Figure 7.1: Harp’s Graph coarsening techniques (A) - edge coarsening and (B) - star

coarsening

For the graph coarsening, they proposed two techniques, known as edge

and star coarsening shown in Fig. 7.1. The edge coarsening collapses two

incident nodes u and v of an edge (u, v) ∈ E ′ ⊆ E as one super node uv,

such that in a given step no node u is collapsed more than once.

Besides the locality, another problem with Line is that the first- and

second-order objectives are trivially combined. In a follow up study, Wang

et al. have proposed a more principled way for jointly optimizing both

objectives [77]. Their approach, called sdne, is a semi-supervised model

using a deep autoencoder architecture, as shown in Fig. 7.2. The gist of

the joint objective of the model is to minimize the loss function in Eq. 7.7.

L = α ·tr(ΦTLΦ) + ||(W−W̃)⊗B||2F +γ
∑
l

||Hl
enc||2F + ||Hl

dec||2F , (7.7)

where Hl is part of the model parameters (weight matrix of the lth

hidden layer) and L is the graph Laplacian matrix.

The first term of the equation used for preserving first-order proximity

is a supervised loss specified using Laplacian eigenmaps. The second term

is a reconstruction loss for preserving second-order proximity, and B is

introduced to avoid the trivial and unwanted solution obtained by recon-

7. STATE OF THE ART 119

[i]W˜

Φ[i]

W[i]

[j]W˜

Φ[j]

W[j]

H1

enc

H2

enc

H1

dec

H2

dec

First order loss
(Laplacian Eigenmaps)

Second order loss
(Reconstruction loss)

H1

enc

H2

enc

H2

dec

H1

dec

Figure 7.2: sdne model

structing the zeros of W, which is what we have already covered in Sec-

tion 3.3. Finally, an L2 regularization term is added to avoid over-fitting.

Note that weights are shared between the left and right autoencoders. The

model has two hyper-parameters α and γ, which control the contribution

from the first order and regularization loss terms.

All the techniques that we have covered so far consume just the topology

of a given graph. However, most real-world graphs have high-quality side

information associated with nodes and edges. In the following, we cover

results achieved by techniques capable to use auxiliary information to the

network topology. TriDnr [61] is one of the first examples to couple

topological, attribute and label information for NRL. In addition to the

set of nodes V and edges E, a graph G formulation in TriDnr consists of

a document corpus

D = {Du : u ∈ V }

Du = {wi : 1 ≤ i ≤ |Du|, wi ∈ V}

and a partial set of labels C = L ∪ U associated with nodes of the graph,

where L and U denote the set of labeled and unlabeled nodes, respectively.

Then, the model objective in Eq. 7.8 is specified with two necessary and

a third optional term.

7.1. NETWORK REPRESENTATION LEARNING 120

L = (1− α) ·DeepWalk + α ·Doc2Vec + α · h (7.8)

The first term has exactly the same formulation as DeepWalk (more

accurately – a weighted DeepWalk), and the second one introduces a

loss term sensitive to preserving textual information associated to nodes,

similar to the Doc2Vec [47] model for sentence representation learning.

On the other hand, the objective of the weighted Doc2Vec formulation

in TriDnr is to maximize the log-likelihood of a particular word wi ∈ Du

given u.

Doc2Vec =
∑

logP (wi|u) (7.9)

Finally, the optional term h is used for semi-supervised learning using

the labels of each node u ∈ L. Here, the goal is yet again to maximize the

log-likelihood of a word wi ∈ Du given the class label cu of each labeled

node u.

h =
∑
u∈L

P (wi|cu) (7.10)

Both Eq. 7.9 and 7.10 are computed using the standard softmax form

similar to Eq. 7.6. Note that, if L = ∅, the model becomes purely un-

supervised. Furthermore, it has a hyper-parameter α that governs the

contribution of each term.

Provided its effectiveness as opposed to purely structural techniques, one

of TriDnr’s limitation is that when D is very sparse its gain is marginal.

To tackle this problem, in one of our papers [66] we propose a technique

called gat2vec that samples more textual information via truncated ran-

dom walks by modeling D as a separate bipartite graph Gatt = (Vatt, Eatt).

That is, for every word w ∈ Du, we create a node uw ∈ Vatt and we build

an undirected edge (u, uw) ∈ Eatt. Then, we run walk samplings both on

top of G and Gatt and obtain the walk sequences S and Satt, respectively.

7. STATE OF THE ART 121

Finally, the two walk sequences are combined into a single walk corpus

S ′ = S ∪ Satt and we optimize the standard DeepWalk objective. We

have shown that this simple trick is very effective and obtains a significant

performance gain over TriDnr.

Like the purely structural variants, different and complementary non-

random walk techniques have been proposed for attributed graph embed-

dings. sne [55] proposes a technique using the standard deep feed-forward

neural network architecture. Their novelty is that the network is fed in-

formation coming from topology and attributes (features). The input to

their algorithm is a one hot-encoded vector of nodes and a generic feature

vector that encodes different kinds of side information. The two inputs

are projected into a structural Φs[u] and Φf [u] feature embedding of each

node u, which is then jointly passed to a feed-forward network. Finally, the

output of the model is a conditional probability distribution p(v|u) over

each node v ∈ V given a node u ∈ V . p(·|u) is a distribution predicting the

probability that each node v ∈ V has an edge with u. Ultimately, the ob-

jective is to train the feed-forward network to maximize the log-likelihood

of the graph L(G; Θ) that is similar to what we have seen in several of the

earlier models.

The problem with this approach is that even though it uses side informa-

tion, the optimization is constrained on the specific objective of predicting

links or G. This makes it suitable for link prediction but not for other net-

work analysis tasks. Most recent achievements have addressed this issue

and are able to optimize a more general objective.

One study [23](dane) extended the deep autoencoder model of sdne to

explicitly exploit both the structural and side (attributes) information. In-

tuitively, their objective function optimizes the loss function in Eq. 7.7 for

structure and attributes. More concretely, there are two weight matrices

W and F corresponding to two structural proximity and feature matrixes,

7.1. NETWORK REPRESENTATION LEARNING 122

respectively. Therefore, a structural component of the model works on op-

timizing Eq. 7.7 using W and the attribute component using F, and this

will enable them to obtain the embeddings Φs[u] and Φf [u] corresponding

to the two components, respectively. However, Φs[u] and Φf [u] live into

different spaces and the trivial solution of concatenating them is subopti-

mal [23]. For this reason, they incorporate an extra loss term that ensures

the two embeddings are consistent.

A complementary study(anrl) that was published in the same venue

also uses a different autoencoder like architecture for the same purpose [95].

Similar to dane they have the two ground-truth matrices, W and F, but

F could be an adjacency or some higher order proximity matrix. However,

unlike dane instead of feeding two inputs to two separate autoencoders in

anrl they only have a single encoder that takes nodes features fi from F as

an input. Then, they replace the decoder of the standard autoencoder with

two branches that tries to predict W̃ ≈ W and F̃ ≈ F. Essentially, the

intuitive objective of their algorithm is to minimize the prediction errors

on W̃ and F̃ in a manner similar to Eq. 7.7.

Most of the techniques we have seen so far are obviously unsupervised in

relation to node labels. Even if this is desirable to extract the inherent pat-

terns in the data and could be useful across multiple problems, sometimes

one might be interested in task-specific embeddings of nodes or can also

improve the quality of the embeddings by incorporating labels whenever

possible.

An collection of works have responded to this need and proposed differ-

ent kinds of semi-supervised techniques that utilize partial label informa-

tion [90, 54, 44, 29, 91, 15].

A method called Planetoid formulates the representation learning as

a two way learning problem [90]. An input is denoted by F = [f1, . . . , fn],

the feature vector of nodes. Suppose φp(. . .x . . .) denotes a feed-forward

7. STATE OF THE ART 123

neural network (multilayer layer perceptron - MLP) with p layers of linear

transformations and non-linear activations. Then, the current input feature

fu of node u is fed into two MLPs:

H[u] = φp(. . . fu . . .)

Φ[u] = φq(. . . fu . . .)

Φ[u] ∈ Rn×d itself is again fed to

P (v|Φ[u])

H′[u] = φt(. . .Φ[u] . . .),

where P (v|Φ[u]) is the standard softmax classifier used to learn the graph

context nodes v of the target node u in an unsupervised manner similar to

DeepWalk. Finally, h′u = H′[u] and hu = H[u] are combined together

and used to predict the class label of node u:

P (cu|(h′u ⊕ hu))

The two classifiers P (v|Φ[u]) and P (cu|(h′u⊕hu)) are intended to predict

a context node v ∈ {Context(S, u, s) : S ∈ S} and class label cu of node

u, where S is obtained by sampling random walks from the graph G like

DeepWalk and Node2Vec. The model is trained by a back-propagation

algorithm based on the misclassification errors on the unsupervised (graph

context) and supervised (node label) predictors.

Recently, a new kind of architecture called graph convolutional net-

works(gcn) have received a considerable attention for supervised and semi-

supervised network representation learning. Normally, convolutional neu-

ral networks (CNN) have been successfully and widely used on inputs like

images, texts, signals, and videos. Nonetheless, due to the requirement

of a regular grid like inputs, there was no straightforward way of adopt-

ing them to irregular structures like graphs. This has triggered recent

7.1. NETWORK REPRESENTATION LEARNING 124

studies [15, 44, 29, 76, 91] in an attempt to generalize CNN to any kind

of shape. They are generally categorized into spectral and non-spectral

approaches [75].

The main challenge in designing graph convolutional neural networks

is how we define localized features that are “space”- and “translation”-

invariant, similar to standard CNNs. In spectral approaches, these issues

are addressed by answering what convolutions are at the low-level, which

corresponds to a diagonal operator in the eigenspace of the graph Lapla-

cian [48], which is the Fourier space. The diagonal operator gθ = diag(θ)

that is used as a filter is parameterized by θ ∈ Rn. The application of a

graph convolution on an input feature fu ∈ Rn using the above filter is

given by

gθ ? fu = UgθU
T fu (7.11)

where U is the matrix associated with the eigenvectors of the normalized

graph Laplacian matrix

L = IN −D−
1
2WD−

1
2 = UΛUT (7.12)

and UT fu is the Fourier transform of the input fu [15, 76, 44, 48].

However, computing the eigenvectors of L is not computationally pos-

sible for large graphs. Noting this limitation, in a subsequent study [15]

the graph filter gθ of Eq. 7.11 is approximated by K–order Chebyshev

polynomials TK(·) as:

gθc ? fu =
K∑
k=1

θckTk(L̃)fu (7.13)

where

L̃ =
2

λmax
L− IN ,

λmax is the largest eigenvalue of L̃ and the parameter θck is the coefficient

of the kth–order Chebyshev polynomial. It has been shown that stacking

7. STATE OF THE ART 125

a number h of graph convolutions based on the aforementioned filter for

a given target node u successfully convolves over the h–hop neighborhood

of u. Again, the formulation in Eq. 7.13 has been further simplified by

simply considering a first order Chebyshev polynomials, that is K = 1 for

scalability and yet manages to achieve state-of-the-art results [44].

Other studies related to gcn follow a non-spectral approach and propose

algorithms that are impressively scalable, having been successfully applied

on graphs with billions of nodes and edges [29, 91]. Given a node u and

a number k associated to the execution of the kth layer, to estimate the

current embedding Φk[u] of u, first they aggregate the previous embeddings

Φk−1[v] of the neighbor nodes v of node u, where v ∈ N(u) = in(u)∪out(u)

into a single u’s neighborhood representation Ψk−1[u]:

Ψk−1[u] = agg({Φk−1[v] : v ∈ N(u)}) (7.14)

and agg is any kind of trainable aggregation function over a set of un-

ordered vectors. Three set of aggregation functions, which are mean,

LSTM, and pooling are proposed in these studies [29, 91]. Second, Ψk−1[u]

is concatenated with the previous embedding Φk−1[u] of the node u itself

as

Φ′k−1[u] = Ψk−1[u]⊕ Φk−1[u] (7.15)

Finally, Φk[u] is obtained by feeding Φ′k−1[u] into a feed-forward neural

network as

Φk[u] = σ(HkΦ′k−1[u] + b) (7.16)

where σ is a non-linear activation function. After the final pass (layer)

k = K, the normalized vector

Φ[u] =
Φk[u]

||Φk[u]||2
(7.17)

is returned as the embedding of node u.

7.1. NETWORK REPRESENTATION LEARNING 126

As directly working on N(u) is not convenient with respect to the time

complexity and memory footprint of such algorithm [29, 91] due to a vary-

ing size of N(u), Hamilton et al. proposed to sample a fixed number

of neighbors in a uniform way [29]. It has been later proposed, how-

ever, to sample a fixed number of neighbors according to a score function

score(N(u)), which measures each neighbor node’s v ∈ N(u) influence on

node u [91].

Similar to the spectral approaches, an interesting aspect of these meth-

ods is that at the kth layer of a target node u, the k–hope neighborhood

information is used to compute Φk[u]. In this way, k–hope node features

are effectively propagated. Finally, these gcn architectures can be trained

in a semi-supervise fashion based on a set of target node labels.

In the non-spectral gcn approaches the fixed number of neighborhood

samples considered for scalability will force them to ignore the complete

neighborhood space. To gracefully deal with this limitation, the notion of

graph attention networks(gat) has been introduced in [75].

The gat technique has a resemblance with gcn techniques, in the sense

that an estimation of an embedding Φ[u] of a target node u involves gather-

ing features fv of neighboring nodes v ∈ N(u) through self attention mech-

anism. The core component of gat is this attention mechanism, which

enables them to consider an entire neighborhood of a node as a opposed

to the fixed number of sampled neighbors considered in [29, 91].

Like most of the supervised and semi-supervised models that we have

seen, the input of gat is specified by a feature matrix F ∈ Rn×r. Then,

a MLP with L layers and self-attentions are successively applied on F to

obtain an embedding of nodes Φ ∈ Rn×d, d � r. We use Fl to denote

the output of the lth layer of the MLP, when applied to F. Following our

notational convention f lv or Fl[v] corresponds to the vth row of Fl. In a

given layer l, a weight matrix Hl ∈ Rrl−1×rl shared by all nodes is used

7. STATE OF THE ART 127

to apply a linear transformation (Eq. 7.18) of its input f l−1u ∈ Rrl−1 (the

output of the previous layer) and for the base case, or at the first layer

l = 1, the input is F[u].

xl
u = Hlf l−1u (7.18)

After the linear transformation, each node u attends to all of its neighboring

nodes v ∈ N ′(u), where N ′(u) = N(u) ∪ {u}, to obtain a normalized

attention coefficient αuv ∈ R as

euv = att(xl
u,x

l
v) (7.19)

αuv =
exp(euv)∑

w∈N ′(u) exp(euw)
(7.20)

Where the attention att layer parameterized by a weight vector hl ∈ R2rl

is defined using a LeakyReLU as

att(xl
u,x

l
v) = LeakyReLU(hlT · (xl

u ⊕ xl
v)) (7.21)

Finally, the attention weighted linear combination of xl
v of each neighbor

node v ∈ N ′(u) is passed through non-linear function as follows to obtain

f lu

f lu = σ(
∑

v∈N ′(u)

αuvx
l
v) (7.22)

where σ is a non-linear activation function. This model is extended by us-

ing multi-head attention mechanism to ensure that the learning process is

stable [75]. A multi-head attention technique simply employs K indepen-

dent self-attention mechanisms, which yields αkij, k = 1, . . . , K attention

coefficients that are used in concatenated/aggregated form to obtain f lu.

Eventually, for an L-layer gat model, the value fLu is used as an embed-

ding Φ[u] of node u and it is trained using the labels of nodes.

7.2. CASCADE REPRESENTATION LEARNING 128

7.2 Cascade Representation Learning

Traditionally, cascade representation learning (CRL) amounts to building

hand-crafted sets of features for a cascade. Normally, the features are

extracted from the underlying graph and cascades. The graph features

include different kinds of structural features of the early starters of a cas-

cade. Such features include for example in- and out-degree, community

affiliation, structural roles and so on [82, 83, 12, 53]. Besides, features as-

sociated with the cascade itself has also been used to represent cascades.

These include content features, time features, original poster features [12]

and so on. Ultimately, the combination of such representations are used

for the sole purpose of predicting cascades, regardless of the formulation,

which is classification or regression. Before discussing CRL methods in

Section 7.2.2 that aim at automatically extracting representation of cas-

cades, in the following section we first give a brief overview on the cascade

prediction task itself to provide a richer context.

7.2.1 Overview on Cascade Prediction

In general, the problem of cascade prediction can be considered from either

a macroscopic or a microscopic perspective [86].

In the macroscopic case, usually the goal is to predict the final state of

the entire cascade. Research efforts in this direction have formulated the

prediction task as a regression – predicting the potential size a cascade will

ultimately grow to [97, 73, 92, 53, 69], or as a classification task – predicting

whether a cascade will become popular (viral) or not [82, 83, 12, 68, 13, 36].

As we have discussed already, most of the methods in both cases have

been based on either topological information of the early starters and/or

on features manually crafted from the cascades.

In the microscopic case, given the current state of the cascade, we are

7. STATE OF THE ART 129

interested in predicting what will happen next, i.e. who will be infected

next? at what time? [81, 35, 86]. This approach is particularly relevant in

applications like product recommendation [86]. For example, given a set of

users that have purchased a product, who is the user that is highly likely

to make the same purchase?

Even though most of the early studies have relied on manually extracted

features, recent efforts leveraged the power of neural networks to automati-

cally learn features for both the macroscopic and microscopic settings. The

methods that are discussed in the following section embed cascades and/or

users in a latent continuous vector space and use such embeddings for the

prediction task at hand. Some of these works automatically learn an in-

trinsic single representation that captures the cascade pattern [35, 53, 37],

while others learn a representation of the early starters during the obser-

vation period of the cascade and use different strategies, which will be

covered below, to aggregate those into a single representation of a cas-

cade [78, 86, 9].

7.2.2 Methods

The apparent problem with techniques based on manual feature engineer-

ing is that usually they are dependent on prior (expert) knowledge and

external factors to identify the highly predictive features. The recent suc-

cess of deep learning techniques in different fields, however, inspired several

studies to leverage their power to automatically extract representation of

cascades for predicting their future state. In this survey of the state-of-

the-art we consider representative techniques exploiting neural networks

for cascade representation learning.

The algorithm DeepCas in [53] introduced a recurrent neural network

(RNN), or more specifically a gated recurrent neural network (GRU), to

learn a representation that can predict the ultimate size of a cascade. A

7.2. CASCADE REPRESENTATION LEARNING 130

graph Gt = (Vt, Et), where Vt ⊆ V and Et ⊆ E, is used to model an obser-

vation trace(C, t) = [(u1, t1), . . . , (ui, ti = t)] of a cascade C at time t with

a sequence of users [u1, . . . , ui]. Then, multiple random walks are sam-

pled from Gt in a manner similar to DeepWalk and Node2Vec. Once

sampled, the set of walks are fed into a recurrent neural network with at-

tention to learn a single representation of the cascade under consideration.

The learned representation is then used to predict the size of the cascade

|trace(C, t′)| at the prediction point t′ = t + ∆. The model is trained by

minimizing the mean square error (MSE) between the predicted size yc of

the cascade and the true size |trace(C, t′)|.
In a similar line as DeepCas, another method called TopoLSTM by

Wang et. al. [78] proposed to use another family of RNN’s called LSTM.

Besides using a different kind of RNN, in this work they have extended

the LSTM architecture to TopoLSTM that is capable of encoding a di-

rected acyclic graph (DAG). The DAG’s are associated to a cascade and

are intended to capture the structure of the cascade in G.

Given a graph G and an observation trace(C, t) = [(u1, t1), . . . , (ui, ti =

t)] of a cascade C at time t, to learn a representation of the cascade they

utilize an induced directed acyclic subgraph Gt = (Vt, Et) of G. Where

Vt = {u1, . . . , ui} ⊆ V and Et ⊆ Et−1 ∪ E contains edges from previous

time step t − 1 and new edges (u, v) ∈ E that were added to Gt in either

of the following two conditions:

• If u ∈ Vt−1 succeeded to spread a contagion to v ∈ V \ Vt−1.

• If u made an attempt to spread a contagion to v.

In the next step, they combine the embedding of nodes in the TopoL-

STM architecture in a way that captures the structure of the cascade in

relation to G. This allows them to project the cascade into a single rep-

resentation that is used to predict the user that is likely to be infected at

7. STATE OF THE ART 131

time t + 1. Besides the representation of the cascade, the TopoLSTM

model is parameterized by two kinds of user embeddings associated to a

users state, which are ‘active’ and ‘inactive’. Thus their model not only

learns an embedding of cascade but also the users. Ultimately, TopoL-

STM is trained based on the prediction error on the ground truth user

ui+1, C(ti+1) = (ui+1, ti+1 > t) of each training cascade C.

A more recent study has incorporated a structure attention model with

LSTM parameterized by both node and cascade embeddings [81]. The

LSTM is used to learn the sequential pattern of the cascade, and the at-

tention mechanism is used for capturing node structural information. They

have a similar problem setting as TopoLSTM where they want to pre-

dict the node that is likely to be infected at time ti+1 > t, based on the

observation trace(C, t) = [(u1, t1), . . . , (ui, ti = t)] of the cascade at t. The

structural attention av, computed over the inactive neighbors of a node

v infected at tj ≤ t, C(j) = (uj = v, tj), is combined with its current

representation Φ[v] and the previous state hj−1
c of the cascade through the

gating mechanism of LSTM’s to obtain the current state

hj
c = gate(av,h

j−1
c ,Φ[v]).

Finally, the current state hj
c is used to predict the user uj+1 that is likely

to be infected at next time step tj+1 in C.

The final state hi
c can then be considered as a representation of the

observed cascade that summarizes the information encoded in the cascade

at an observation time ti = t.

This representation hc
i is then used to predict the next state ui+1 of

the cascade C after the observation period ti, or at ti+1. As they have a

similar objective as the previous two methods, their algorithm is trained

in a similar way.

One of the strong assumptions in the above methods is that they con-

7.2. CASCADE REPRESENTATION LEARNING 132

sider all infected users to be equally active and equally likely to spread a

contagion. Yang et al. have relaxed this assumption and devise an atten-

tion mechanism to extract active users and consider these users to have a

better chance of spreading the contagion [86]. Thus, the infection of a new

user u is not equally attributed to all the previously infected users, but

to the subset of them that are active. These set of active users denoted

by act(u) are potentially responsible for infecting u. The core idea behind

their algorithm lies in identifying the active users in a cascade C at a cer-

tain time ti in the life of C and using their embedding to predict the user

to be infected at ti+1. To obtain the active embedding Φact[ui] of a user ui,

C(i) = (ui, ti = t), they first compute a normalized attention coefficient αij

for all the previously infected users uj in {C(j) = (uj, tj) : tj < t}, similar

to the attention mechanism we have seen in Eq. 7.20. Then, the attention

weighted sum of the embeddings Φact[uj] of the previously infected users

uj is taken as Φact[ui]:

Φact[ui] =
∑

{C(j)=(uj ,tj):tj<t}

αijΦact[uj]

Finally, the embedding Φact[uj] of the set of active users uj ∈ act(ui) is

combined with Φact[ui] using CNN to predict the next user ui+1 in C.

Like the previous microscopic methods, their model is trained based on

the softmax classification error on the ground truth user ui+1, C(ti+1) =

C(ui+1, ti+1).

Almost all of the previous methods rely on the presence of the network

structure, for example in [81] building the DAG associated with a cascade

requires knowledge of the underlying graph. As we have been repeatedly

argued throughout the thesis, it is possible to simply make use of the

information available in the training cascades and avoid any assumption

regarding the knowledge of the underlying graph [35]. Moreover, their

objective is not only to predict the node ui+1 in the next step, but also the

7. STATE OF THE ART 133

actual next infection time ti+1. Similar to some of the above methods, they

employ LSTM’s along with point processes for representing the cascades

and ultimately predicting the tuple (ui+1, ti+1).

7.2. CASCADE REPRESENTATION LEARNING 134

Chapter 8

Conclusions

In this thesis we have addressed the problem of representation learning, fo-

cusing on networks and cascades, in the context of information networks.

We have proposed novel algorithms with the relaxed assumption that the

network structure under consideration may be partially or completely un-

known. The assumption is inspired by real-world scenarios where access

to information networks is limited or completely unavailable.

For instance, followers and friendship links of social networks can only

be partially accessed due to privacy policies. In addition, because of quotas,

access to the crawler API’s of the social networks is restricted to a few calls

per unit of time. Therefore, one has to wait several weeks or even months

before obtaining the partial network structure for a few thousand users.

These issues are a challenge for business providing services based on social

network data.

For this reason, we have developed several algorithms that are resilient

to the lack of the above information; we present three of them in this thesis.

Particularly, we present two novel algorithms for network representation

learning and one for cascade representation learning.

In general, the goal of network representation learning is to project

nodes into a latent continuous vector space that is dense and preserves the

135

136

original neighborhood information. However, when the network topology

is partially or completely hidden, the notion of neighborhood becomes il-

lusive. Hence our main challenge is how to account for such neighborhood

of nodes in such a precarious situation. Our contribution is a collection of

novel techniques that tackle this problem and approximate or estimate the

neighborhood information of nodes.

To achieve this, our techniques took inspiration from previous results

that empirically show the correlation between the properties of the network

and users activities performed on top of it. In particular, we consider user

activities that are recorded as diffusion events (cascades), such as shares,

retweets and hashtags.

In the first network representation learning algorithm, called Mineral,

we follow the assumption that the network structure might be partially

accessible. Thus we simply utilize the cascades as a complementary infor-

mation along with the provided neighborhood information. That is, we

simply sample artificial cascades from the partially observed network and

combine them with the observed cascades to learn the representation of

nodes. Following one of the aforementioned findings of previous studies,

Mineral is designed based on the SkipGram model, which considers

that two nodes belong to the same context (neighborhood) if they tend to

closely co-occur within the sampled and observed cascades.

In the second algorithm called NetTensor, instead, we assume that

the network structure is completely hidden and we only have access to

nodes activity. For this reason, we first propose several methods that

estimate nodes neighborhood or proximity and also extract different kinds

of features merely based on the only available information, cascades. We

finally exploit the estimated neighborhood information and the extracted

features to jointly learn representation of nodes.

We have performed several experiments and evaluated the performance

8. CONCLUSIONS 137

of our NRL methods by comparing them against strong methods that make

use of the complete graph. In some cases, such as Mineral, we have

achieved better performance than the state-of-the-art; in other cases, such

as in NetTensor, we have achieved comparable results in spite of the

missing information.

The last but not the least contribution is a novel cascade representa-

tion learning algorithm (CRL) called cas2vec. In CRL, the main goal

is essentially to find embeddings of cascades that are useful for predicting

their future state. cas2vec is a CRL method for cascade virality (popu-

larity) prediction. Prior to cas2vec, most techniques have relied on man-

ually crafted features taken from the cascade and network structure, and

hence requires knowledge about the such network. Our method is network-

agnostic and can automatically extract features using convolutional neural

networks that are highly effective for virality prediction. We have carried

out several experiments and compared cas2vec against state-of-the-art

methods and other widely-used strong baselines. cas2vec consistently

outperforms them in all kinds of the experiments we have carried out.

Acknowledgment

First and foremost, I’m eternally thankful for my God and Saviour, God

the Father, God the Son, God the Holy Spirit for the beautiful gift of life

and all the undeserved extra blessings.

Second, I would like to express my sincere gratitude for my advisor Prof.

Alberto Montresor for his continuous support. This work would not have

been successful if it was not for his knowledge, kindness, motivation and

patience during my study. In addition, I would like to express my sincere

gratitude for Prof. Sarunas Girdzijauskas who was my co-supervisor during

a couple of visits at KTH Royal Institute of Technology.

I would like to thank my colleagues Nasrullah Sheikh, Cristian Con-

sonni, Leila Bahri, and Amira Soliman for the invaluable knowledge and

experience that I have gained from you all during our meetings and collab-

orations.

I am thankful for my beloved family, Aba and Mami, my sisters Meazi

(plus her husband Engedaye) and Lalaye (plus her husband Wondesho),

and my brother Abi who walked with me through continuous prayers and

emotional support.

Thank you to all my friends in Ethiopia, Italy, and Sweden with whom

I have shared a number of unforgettable moments.

Bibliography

[1] Nesreen K. Ahmed, Ryan Rossi, John Boaz Lee, Xiangnan Kong,

Theodore L. Willke, Rong Zhou, and Hoda Eldardiry. Learning role-

based graph embeddings. CoRR, abs/1802.02896, 2018.

[2] Nicola Barbieri, Francesco Bonchi, and Giuseppe Manco. Cascade-

based community detection. In Proc. of the 6th ACM Int. Conf. on

Web Search and Data Mining, WSDM ’13, pages 33–42. ACM, 2013.

[3] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count,

predict! a systematic comparison of context-counting vs. context-

predicting semantic vectors. In Proceedings of the 52nd Annual Meet-

ing of the Association for Computational Linguistics (Volume 1: Long

Papers), pages 238–247. Association for Computational Linguistics,

2014.

[4] Michael Behrisch, Benjamin Bach, Nathalie Henry Riche, Tobias

Schreck, and Jean-Daniel Fekete. Matrix reordering methods for table

and network visualization. Computer Graphics Forum, 35(3):693–716,

2016.

[5] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spec-

tral techniques for embedding and clustering. In Proceedings of the

14th International Conference on Neural Information Processing Sys-

tems: Natural and Synthetic, NIPS’01, pages 585–591, Cambridge,

MA, USA, 2001. MIT Press.

141

BIBLIOGRAPHY 142

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet

allocation. J. Mach. Learn. Res., 3:993–1022, March 2003.

[7] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and

Etienne Lefebvre. Fast unfolding of communities in large net-

works. Journal of Statistical Mechanics: Theory and Experiment,

2008(10):P10008, 2008.

[8] Simon Bourigault, Cedric Lagnier, Sylvain Lamprier, Ludovic De-

noyer, and Patrick Gallinari. Learning social network embeddings for

predicting information diffusion. In Proc. of the 7th ACM Int. Conf.

on Web Search and Data Mining, WSDM ’14, pages 393–402. ACM,

2014.

[9] Simon Bourigault, Sylvain Lamprier, and Patrick Gallinari. Repre-

sentation learning for information diffusion through social networks:

An embedded cascade model. In Proc. of the Ninth ACM Int. Conf.

on Web Search and Data Mining, WSDM ’16, pages 573–582. ACM,

2016.

[10] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn

Keogh. iSAX 2.0: Indexing and mining one billion time series. In

Proc. of ICDM’10, pages 58–67, Washington, DC, USA, 2010. IEEE

Computer Society.

[11] Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena.

HARP: hierarchical representation learning for networks. CoRR,

abs/1706.07845, 2017.

[12] Justin Cheng, Lada Adamic, P. Alex Dow, Jon Michael Kleinberg,

and Jure Leskovec. Can cascades be predicted? In Proc. of WWW’14,

pages 925–936, New York, NY, USA, 2014. ACM.

BIBLIOGRAPHY 143

[13] Peng Cui, Shifei Jin, Linyun Yu, Fei Wang, Wenwu Zhu, and Shiqiang

Yang. Cascading outbreak prediction in networks: a data-driven ap-

proach. In KDD, 2013.

[14] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K.

Landauer, and Richard Harshman. Indexing by latent semantic

analysis. Journal of the American Society of Information Science,

41(6):391–407, 1990.

[15] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Con-

volutional neural networks on graphs with fast localized spectral fil-

tering. CoRR, abs/1606.09375, 2016.

[16] Inderjit S. Dhillon and Suvrit Sra. Generalized nonnegative matrix

approximations with bregman divergences. In Proc. of the 18th Int.

Conf. on Neural Information Processing Systems, NIPS’05, pages 283–

290. MIT Press, 2005.

[17] Yuxiao Dong, Nitesh V. Chawla, and Ananthram Swami. Metap-

ath2vec: Scalable representation learning for heterogeneous networks.

In Proceedings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’17, pages 135–144,

New York, NY, USA, 2017. ACM.

[18] Nan Du, Le Song, Ming Yuan, and Alex J. Smola. Learning networks of

heterogeneous influence. In F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, editors, Advances in Neural Information Processing

Systems 25, pages 2780–2788. Curran Associates, Inc., 2012.

[19] Daniel R. Figueiredo, Leonardo Filipe Rodrigues Ribeiro, and Pedro

H. P. Saverese. struc2vec: Learning node representations from struc-

tural identity. CoRR, abs/1704.03165, 2017.

BIBLIOGRAPHY 144

[20] J. R. Firth. The technique of semantics. In Transactions of the Philo-

logical Society, pages 36–73, 1935.

[21] J. R. Firth. A synopsis of linguistic theory 19301955. In In Studies in

linguistic analysis, pages 1–32, 1957.

[22] Tao-yang Fu, Wang-Chien Lee, and Zhen Lei. Hin2vec: Explore meta-

paths in heterogeneous information networks for representation learn-

ing. In Proc. of the 2017 ACM Conf. on Information and Knowledge

Management, CIKM ’17, pages 1797–1806. ACM, 2017.

[23] Hongchang Gao and Heng Huang. Deep attributed network embed-

ding. In Proceedings of the Twenty-Seventh International Joint Con-

ference on Artificial Intelligence, IJCAI-18, pages 3364–3370. Inter-

national Joint Conferences on Artificial Intelligence Organization, 7

2018.

[24] Shuai Gao, Jun Ma, and Zhumin Chen. Modeling and predict-

ing retweeting dynamics on microblogging platforms. In Proc. of

WSDM’15, pages 107–116, New York, NY, USA, 2015. ACM.

[25] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf.

Uncovering the temporal dynamics of diffusion networks. CoRR,

abs/1105.0697, 2011.

[26] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Infer-

ring networks of diffusion and influence. ACM Trans. Knowl. Discov.

Data, 5(4):21:1–21:37, February 2012.

[27] Manuel Gomez Rodriguez, Jure Leskovec, and Bernhard Schölkopf.

Structure and dynamics of information pathways in online media. In

Proc. of the 6th ACM Int. Conf. on Web Search and Data Mining,

WSDM ’13, pages 23–32. ACM, 2013.

BIBLIOGRAPHY 145

[28] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning

for networks. In Proc. of the 22Nd ACM Int. Conf. on Knowledge

Discovery and Data Mining, KDD ’16, pages 855–864. ACM, 2016.

[29] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive repre-

sentation learning on large graphs. CoRR, abs/1706.02216, 2017.

[30] William L. Hamilton, Rex Ying, and Jure Leskovec. Represen-

tation learning on graphs: Methods and applications. CoRR,

abs/1709.05584, 2017.

[31] F. Maxwell Harper and Joseph A. Konstan. The movielens datasets:

History and context. ACM Trans. Interact. Intell. Syst., 5(4):19:1–

19:19, December 2015.

[32] Keith Henderson, Brian Gallagher, Tina Eliassi-Rad, Hanghang Tong,

Sugato Basu, Leman Akoglu, Danai Koutra, Christos Faloutsos, and

Lei Li. Rolx: Structural role extraction & mining in large graphs.

In Proc. of the 18th ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining, KDD ’12, pages 1231–1239. ACM, 2012.

[33] M.E. Hochstenbach. A jacobi davidson type method for the gener-

alized singular value problem. Linear Algebra and its Applications,

431(3):471 – 487, 2009. Special Issue in honor of Henk van der Vorst.

[34] Xiao Huang, Jundong Li, and Xia Hu. Label informed attributed

network embedding. In Proc. of the Tenth ACM Int. Conf. on Web

Search and Data Mining, WSDM ’17, pages 731–739. ACM, 2017.

[35] Mohammad Raihanul Islam, Sathappan Muthiah, Bijaya Adhikari,

B. Aditya Prakash, and Naren Ramakrishnan. DeepDiffuse: Predict-

ing the ’who’ and ’when’ in cascades. In IEEE International Confer-

ence on Data Mining, ICDM’18, pages 1055–1060, 2018.

BIBLIOGRAPHY 146

[36] Maximilian Jenders, Gjergji Kasneci, and Felix Naumann. Analyzing

and predicting viral tweets. In WWW, 2013.

[37] Zekarias T. Kefato, Nasrullah Sheikh, Leila Bahri, Amira Soliman,

Alberto Montresor, and Sarunas Girdzijauskas. CAS2VEC: network-

agnostic cascade prediction in online social networks. In Fifth Inter-

national Conference on Social Networks Analysis, Management and

Security, SNAMS 2018, Valencia, Spain, October 15-18, 2018, pages

72–79. IEEE, 2018.

[38] Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. Deep-

infer: Diffusion network inference through representation learning. In

Proc. of the 13th Int. Workshop on Mining and Learning With Graphs,

MLG’17. ACM, August 2017.

[39] Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. Min-

eral: Multi-modal network representation learning. In Proc. of the 3rd

International Conference on Machine Learning, Optimization and Big

Data, MOD’17. ACM, September 2017.

[40] Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. RE-

FINE: Representation learning from diffusion events. In Proc. of the

4th Conference on Machine Learning, Optimization and Data science,

LOD’18. Springer, September 2018.

[41] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread

of influence through a social network. In Proc. of the Ninth ACM Int.

Conf. on Knowledge Discovery and Data Mining, KDD ’03, pages 137–

146. ACM, 2003.

[42] Yoon Kim. Convolutional neural networks for sentence classification.

In Proc. of EMNLP’14, pages 1746–1751, 2014.

BIBLIOGRAPHY 147

[43] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic

optimization. CoRR, abs/1412.6980, 2014.

[44] Thomas N. Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. CoRR, abs/1609.02907, 2016.

[45] Yi-An Lai, Chin-Chi Hsu, Wen Hao Chen, Mi-Yen Yeh, and Shou-De

Lin. Prune: Preserving proximity and global ranking for network em-

bedding. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fer-

gus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural

Information Processing Systems 30, pages 5257–5266. Curran Asso-

ciates, Inc., 2017.

[46] Sylvain Lamprier, Simon Bourigault, and Patrick Gallinari. Extracting

diffusion channels from real-world social data: A delay-agnostic learn-

ing of transmission probabilities. In Proc. of the 2015 IEEE/ACM

Int. Conf. on Advances in Social Networks Analysis and Mining 2015,

ASONAM ’15, pages 178–185. ACM, 2015.

[47] Quoc Le and Tomas Mikolov. Distributed representations of sentences

and documents. In Proceedings of the 31st International Conference on

International Conference on Machine Learning - Volume 32, ICML’14,

pages II–1188–II–1196. JMLR.org, 2014.

[48] Yann LeCun. Graph embeddings, content understanding,and self-

supervised learning. 2018.

[49] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects

by nonnegative matrix factorization. Nature, 401:788–791, 1999.

[50] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative

matrix factorization. In Proc. of the 13th Int. Conf. on Neural In-

BIBLIOGRAPHY 148

formation Processing Systems, NIPS’00, pages 535–541. MIT Press,

2000.

[51] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking

and the dynamics of the news cycle. In Proc. of the 15th ACM Int.

Conf. on Knowledge Discovery and Data Mining, KDD ’09, pages 497–

506. ACM, 2009.

[52] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. Meme-tracking

and the dynamics of the news cycle. In Proc. of the 15th ACM

SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD

’09, pages 497–506. ACM, 2009.

[53] Cheng Li, Jiaqi Ma, Xiaoxiao Guo, and Qiaozhu Mei. DeepCas: An

end-to-end predictor of information cascades. In Proc. of WWW’17.

Int. World Wide Web Conferences Steering Committee, 2017.

[54] Jiongqian Liang, Peter Jacobs, and Srinivasan Parthasarathy.

SEANO: semi-supervised embedding in attributed networks with out-

liers. CoRR, abs/1703.08100, 2017.

[55] Lizi Liao, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. At-

tributed social network embedding. CoRR, abs/1705.04969, 2017.

[56] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of

a feather: Homophily in social networks. Annual Review of Sociology,

27(1):415–444, 2001.

[57] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jef-

frey Dean. Distributed representations of words and phrases and their

compositionality. In Proc. of the 26th Int. Conf. on Neural Infor-

mation Processing Systems, NIPS’13, pages 3111–3119. Curran Asso-

ciates Inc., 2013.

BIBLIOGRAPHY 149

[58] Seth A. Myers and Jure Leskovec. On the convexity of latent social

network inference. In Proc. of the 23rd Int. Conf. on Neural Infor-

mation Processing Systems - Volume 2, NIPS’10, pages 1741–1749.

Curran Associates Inc., 2010.

[59] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu.

Asymmetric transitivity preserving graph embedding. In Proc. of the

22Nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data

Mining, KDD ’16, pages 1105–1114. ACM, 2016.

[60] Pentti Paatero and Unto Tapper. Positive matrix factorization: A

nonnegative factor model with optimal utilization of error estimates

of data values. Environmetrics, 5(2):111–126, 1994.

[61] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang.

Tri-party deep network representation. In Proceedings of the Twenty-

Fifth International Joint Conference on Artificial Intelligence, IJ-

CAI’16, pages 1895–1901. AAAI Press, 2016.

[62] Ashwin Paranjape, Robert West, Leila Zia, and Jure Leskovec. Im-

proving website hyperlink structure using server logs. In Proceedings

of the Ninth ACM International Conference on Web Search and Data

Mining, WSDM ’16, pages 615–624, New York, NY, USA, 2016. ACM.

[63] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.

Glove: Global vectors for word representation. In Proceedings of the

2014 Conference on Empirical Methods in Natural Language Process-

ing, EMNLP 2014, pages 1532–1543, 2014.

[64] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online

learning of social representations. In Proc. of the 20th ACM Int. Conf.

on Knowledge Discovery and Data Mining, KDD ’14, pages 701–710.

ACM, 2014.

BIBLIOGRAPHY 150

[65] Eldar Sadikov, Montserrat Medina, Jure Leskovec, and Hector Garcia-

Molina. Correcting for missing data in information cascades. In Proc.

of WSDM’11, pages 55–64. ACM, 2011.

[66] Nasrullah Sheikh, Zekarias T. Kefato, and Alberto Montresor.

GAT2VEC: representation learning for attributed graphs. Comput-

ing, April 2018.

[67] Chuan Shi, Binbin Hu, Wayne Xin Zhao, and Philip S. Yu. Hetero-

geneous information network embedding for recommendation. CoRR,

abs/1711.10730, 2017.

[68] Karthik Subbian, B. Aditya Prakash, and Lada Adamic. Detecting

large reshare cascades in social networks. In Proc. of WWW’17, pages

597–605. Int. World Wide Web Conferences Steering Committee, 2017.

[69] Gabor Szabo and Bernardo A. Huberman. Predicting the popularity

of online content. Commun. ACM, 53(8):80–88, August 2010.

[70] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and

Qiaozhu Mei. LINE: large-scale information network embedding.

CoRR, abs/1503.03578, 2015.

[71] Lei Tang and Huan Liu. Relational learning via latent social dimen-

sions. In Proc. of the 15th ACM Int. Conf. on Knowledge Discovery

and Data Mining, KDD ’09, pages 817–826. ACM, 2009.

[72] P. Thruesen, J. echk, B. Sezec, R. Castalio, and N. Kanhabua. To

link or not to link: Ranking hyperlinks in wikipedia using collective

attention. In 2016 IEEE International Conference on Big Data (Big

Data), pages 1709–1718, Dec 2016.

BIBLIOGRAPHY 151

[73] Oren Tsur and Ari Rappoport. What’s in a hashtag?: content based

prediction of the spread of ideas in microblogging communities. In

WSDM, 2012.

[74] L.J.P. van der Maaten and G.E. Hinton. Visualizing high-dimensional

data using t-sne. Journal of Machine Learning Research, 2008.

[75] Petar Velikovi, Guillem Cucurull, Arantxa Casanova, Adriana

Romero, Pietro Li, and Yoshua Bengio. Graph attention networks.

In International Conference on Learning Representations, 2018.

[76] Priyesh Vijayan, Yash Chandak, Mitesh M. Khapra, and Balara-

man Ravindran. Fusion graph convolutional networks. CoRR,

abs/1805.12528, 2018.

[77] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network

embedding. In Proc. of the 22Nd ACM Int. Conf. on Knowledge Dis-

covery and Data Mining, KDD ’16, pages 1225–1234. ACM, 2016.

[78] Jia Wang, Vincent W. Zheng, Zemin Liu, and Kevin Chen-Chuan

Chang. Topological recurrent neural network for diffusion prediction.

In ICDM, pages 475–484, 2017.

[79] Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. Link pre-

diction in social networks: the state-of-the-art. Sci. China Inform.

Sci., 58(1):1–38, 2015.

[80] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classi-

fication from scratch with deep neural networks: A strong baseline.

CoRR, abs/1611.06455, 2016.

[81] Zhitao Wang, Chengyao Chen, and Wenjie LI. A sequential neural in-

formation diffusion model with structure attention. In Proceedings of

BIBLIOGRAPHY 152

the 27th ACM International Conference on Information and Knowl-

edge Management, CIKM ’18, pages 1795–1798, New York, NY, USA,

2018. ACM.

[82] L. Weng, F. Menczer, and Y.-Y. Ahn. Virality prediction and com-

munity structure in social networks. Sci. Rep., 3(2522), 2013.

[83] Lilian Weng, Filippo Menczer, and Yong-Yeol Ahn. Predicting success-

ful memes using network and community structure. In Eytan Adar,

Paul Resnick, Munmun De Choudhury, Bernie Hogan, and Alice H.

Oh, editors, ICWSM. The AAAI Press, 2014.

[84] Robert West, Ashwin Paranjape, and Jure Leskovec. Mining missing

hyperlinks from human navigation traces: A case study of wikipedia.

In Proceedings of the 24th International Conference on World Wide

Web, WWW ’15, pages 1242–1252, Republic and Canton of Geneva,

Switzerland, 2015. International World Wide Web Conferences Steer-

ing Committee.

[85] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y.

Chang. Network representation learning with rich text information. In

Proc. of the 24th Int. Conf. on Artificial Intelligence, IJCAI’15, pages

2111–2117. AAAI Press, 2015.

[86] Cheng Yang, Maosong Sun, Haoran Liu, Shiyi Han, Zhiyuan Liu, and

Huanbo Luan. Neural diffusion model for microscopic cascade predic-

tion. CoRR, abs/1812.08933, 2018.

[87] Dejian Yang, Senzhang Wang, Chaozhuo Li, Xiaoming Zhang, and

Zhoujun Li. From properties to links: Deep network embedding on

incomplete graphs. In Proc. of the 2017 ACM on Conf. on Information

and Knowledge Management, CIKM ’17, pages 367–376. ACM, 2017.

BIBLIOGRAPHY 153

[88] J. Yang and J. Leskovec. Defining and evaluating network communities

based on ground-truth. In 2012 IEEE 12th International Conference

on Data Mining, pages 745–754, Dec 2012.

[89] Shuang-Hong Yang and Hongyuan Zha. Mixture of mutually exciting

processes for viral diffusion. In Proc. of ICML’13, pages II–1–II–9.

JMLR.org, 2013.

[90] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Re-

visiting semi-supervised learning with graph embeddings. CoRR,

abs/1603.08861, 2016.

[91] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.

Hamilton, and Jure Leskovec. Graph convolutional neural networks

for web-scale recommender systems. CoRR, abs/1806.01973, 2018.

[92] Linyun Yu, Peng Cui, Fei Wang, Chaoming Song, and Shiqiang Yang.

From micro to macro: Uncovering and predicting information cas-

cading process with behavioral dynamics. 2015 IEEE International

Conference on Data Mining, pages 559–568, 2015.

[93] Jing Zhang, Biao Liu, Jie Tang, Ting Chen, and Juanzi Li. Social

influence locality for modeling retweeting behaviors. In Proc. of IJ-

CAI’13, pages 2761–2767. AAAI Press, 2013.

[94] Jing Zhang, Jie Tang, Juanzi Li, Yang Liu, and Chunxiao Xing. Who

influenced you? predicting retweet via social influence locality. ACM

Trans. Knowl. Discov. Data, 9(3):25:1–25:26, April 2015.

[95] Zhen Zhang, Hongxia Yang, Jiajun Bu, Sheng Zhou, Pinggang Yu,

Jianwei Zhang, Martin Ester, and Can Wang. Anrl: Attributed net-

work representation learning via deep neural networks. In Proceedings

of the Twenty-Seventh International Joint Conference on Artificial

BIBLIOGRAPHY 154

Intelligence, IJCAI-18, pages 3155–3161. International Joint Confer-

ences on Artificial Intelligence Organization, 7 2018.

[96] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu. Convolutional neural

networks for time series classification. Journal of Systems Engineering

and Electronics, 28(1):162–169, Feb 2017.

[97] Qingyuan Zhao, Murat A. Erdogdu, Hera Y. He, Anand Rajaraman,

and Jure Leskovec. SEISMIC: A self-exciting point process model for

predicting tweet popularity. In Proc. of KDD’15. ACM, 2015.

	Introduction
	Motivation
	Research challenges and contributions
	Applications
	Structure of the Thesis

	Models and Preliminaries
	Information Network
	Information Diffusion Events
	Additional notations

	Background
	Truncated Singular Value Decomposition (TSVD)
	Neural Non-Negative Matrix Factorization (NNMF)
	SkipGram
	AutoEncoder
	Convolutional Neural Networks (CNN)

	Network Representation Learning with Structural Information
	Summary of Contributions
	Background and Problem
	The Learning Algorithm
	Cascade Sampling
	SkipGram formulation

	Experimental Evaluation
	Datasets
	Baselines
	Link Prediction
	Node Label Classification
	Network Visualization
	Parameter Sensitivity

	Network Representation Learning without Structural Information
	Summary of Contributions
	Node Proximity Models
	Delay-Aware Node Proximity Models
	Delay-Agnostic Node Proximity Model
	Window-Based Pairwise Proximity Model Optimization

	Node Feature Extraction
	Statistical Feature Extraction
	Local Feature Extraction
	Topic Feature Extraction

	Practical Consideration
	Problem Statement
	Unified Embedding
	Experimental Evaluation
	Datasets
	Baselines
	Link Prediction
	Network Reconstruction
	Node Classification
	Node Model Analysis
	Parameter Analysis
	Application to Learning Influence Propagation Probabilities

	Cascade Representation Learning for Virality Prediction
	Summary of Contributions
	Background and Problem
	The Learning Algorithm
	Pre-processing Cascades
	CNN model for cascade prediction

	Experimental Evaluation
	Datasets
	Baselines
	Evaluation Settings
	Virality Prediction
	Early Prediction
	Break-out Coverage
	Effect of hyper-parameters

	State of the Art
	Network Representation Learning
	Cascade Representation Learning
	Overview on Cascade Prediction
	Methods

	Conclusions
	Bibliography

