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ABSTRACT 

 

The absence of clear criteria to recognize life and evaluate attempts at building a cell 

from component parts has slowed progress towards the construction of cellular mimics 

that fully display the properties of natural living cells. In the first part of this PhD thesis, 

a method to objectively quantify progress is proposed. In the second part of the thesis, 

preliminary results are shown and discussed for the construction of out-of-equilibrium 

cellular mimics generated by thermal gradients that do not rely on compartments made 

from lipid membranes.  
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THESIS SUMMARY AND CONTRIBUTION 

 

It is generally accepted that cellular components alone, such as DNA, proteins or lipids, 

are non-living. However, somehow when combined in the right way the result of their 

cooperation is referred to as living. To date, no one has been able to assemble a living 

cell from component parts. Part of the problem is that without a satisfactory definition 

of life, it is difficult to recognize progress in reaching the goal of synthesizing an 

artificial living cell. In the first chapter, this topic is discussed. For the first time, cellular 

mimics (also called artificial cells) were built that were able to chemically communicate 

with natural cells by sensing and sending information in the form of small chemical 

molecules. This technology permitted the implementation of a type of cellular imitation 

game where natural cells could test the life-like behaviour of the artificial cells by 

assessing how well the artificial systems were able to communicate. Since chemical 

communication leads to changes in gene expression, we proposed a more direct and 

unbiased way to quantify the life-likeness of the artificial cells by analysing the 

response of the natural cells through RNA sequencing analysis. The transcriptome of 

Vibrio fischeri was analysed and compared when the bacteria were in the presence of 

functional artificial cells that could communicate or nonfunctional artificial cells that 

could not. The analysis revealed that functional artificial cells better deceived V. 

fischeri than nonfunctional artificial cells, since functional artificial cells affected the 

gene expression of V. fischeri more closely to other V. fischeri than to nonfunctional 

artificial cells. Furthermore, artificial cells were constructed that sensed V. fischeri and 

in response degraded a quorum molecule of the pathogen P. aeruginosa, laying the 

foundation for future therapeutic applications.  

 

The construction of cellular mimics has relied thus far on the compartmentalization of 

biological molecules within lipid membranes or synthetic amphiphiles that self-

assemble into cell-like structures. Compartmentalization provides a way to confine the 

cell-like components in a defined space separated from the environment. In the 

second chapter, thermal gradients are used as another mechanism for the 

accumulation of biomolecules in confined spaces that does not depend on a physical 
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barrier to define the compartment. Preliminary experiments are presented showing the 

accumulation of the components of transcription and translation machinery from an E. 

coli cell extract inside of a thermophoretic chamber subjected to a thermal gradient.  

 

Chapter 1:  

This chapter was adapted from the article “Two-way chemical communication between 

artificial and natural cells” published in ACS Central Science in 2017. Experiments 

were conceived by Sheref Mansy, Roberta Lentini and Noël Yeh Martín (co-first co-

author). I performed all the experiments presented in this chapter except for the RNA-

seq analysis, which was performed by Luca Belmonte and Michele Forlin. Roberta 

Lentini performed the experiments shown in Supplementary Figures 1 and 6. I 

conducted experiments presented in Figure 6 and Figure 18 in parallel with Roberta 

Lentini. Plasmid names starting with “RLxxx” were cloned by Roberta Lentini. Plasmid 

MC002 was cloned by Michele Cornella. The chapter has been completely rewritten 

with respect to the aforementioned manuscript except for the RNA sequencing 

analysis part in the material and method section that has been copied from the 

manuscript. Furthermore, figures have been modified and complemented with further 

data and details. 

 

Chapter 2:  

The project presented in (chapter 2) is a collaboration between the laboratories of 

Sheref Mansy (Univeristy of Trento) and Dieter Braun (Ludwig Maximilians Universität, 

LMU-Munich) with the invaluable help of Christof Mast (LMU-Munich). Christof Mast 

conceived, designed and built the experimental setup used for the thermal 

accumulation experiments and developed with LabVIEW a software that controls the 

setup and another software to analyze the data. I implemented a working protocol to 

make a homemade E. coli cell extract and cloned genetic constructs for the thermal 

accumulation experiments. I learnt the different procedures to build the thermophoretic 

chambers and participated in the accumulation experiments under the supervision of 

Christof Mast.  
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Other contributions:  

• I participated in the writing of a review article entitled “Communicating artificial 

cells” published in Current Opinion in Chemical Biology in 2016. 

• I provided data during the revision of the article entitled “Cell-free translation is 

more variable than transcription” published in ACS Synthetic Biology in 2017. 

In particular, I contributed to Figure 4 (main text), Supplementary Figure S8, 

S12 and S21. Experiments were conducted in parallel with Giuliano Berloffa to 

provide evidence that translation is more variable than transcription in a 

homemade E. coli cell extract. 

• I am currently exploring experimental conditions to assess whether transition 

metal ions could have templated amino acid polymerization in the absence of 

enzymes. For this reason, I am investigating the stability of peptide-metal 

complexes under different conditions. Obtained preliminary data are shown in 

Appendix. 
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Chapter 1: A Turing test-like approach to guide progress 

towards the construction of artificial cellular life 
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INTRODUCTION 
 

Despite the impressive progress of science and technology, building a living cell from 

scratch remains a great challenge. Scientists working in this direction encounter the 

following problems. First, our incomplete understanding of cellular complexity limits 

what can be built in the laboratory that can mimic or fully display the properties of living 

cells. Second, there is neither a satisfactory definition of life nor are there well-defined 

criteria to differentiate living from non-living systems (1). Consequently, any attempts 

at building living cells from their component parts have relied on subjective evaluations 

of progress. To avoid the problems related to the current subjective definitions of life, 

we instead decided to develop an objective measure of progress towards the 

construction of artificial cellular life without relying on a definition of life. 

 

 

Synthetic minimal cells 
 

Extant cells gradually became complex systems over billions of years of evolution. 

Thus, it is not surprising that the Mycoplasmas, known as the simplest culturable and 

free-living cells, contain hundreds of genes. Among the Mycoplasmas, Mycoplasma 

genitalium is to date the free living natural bacterium that possesses the smallest 

genome with 580 kilobase pairs and approximately 500 genes (2). However, M. 

genitalium is still a remarkably complex organism that can be used as an experimental 

platform to identify the minimum set of components needed to sustain life as we know 

it. Following this line of research, the Craig Venter team developed and improved over 

the years different tools and methods for the in vitro construction and transplantation 

of synthetic minimal genomes (2–5). After identifying the genes that were not essential 

under ideal laboratory conditions by means of improved mutagenesis techniques, the 

team impressively succeed in chemically synthesizing a minimal version of the 531 kb 

genome of Mycoplasma mycoides with a total of 473 genes. The minimized genome 

was functional and controlled the recipient cells after transplantation (6). The resulting 

new synthetic cell named JCVI-syn3.0 contained a smaller genome than M. genitalium 

and was capable of autonomous growth under controlled conditions. JCVI-syn3.0 is 

to date the best approximation of a minimal living cell that has been partially built in a 
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laboratory. Creating synthetic, simplified versions of natural genomes can be one 

strategy to discover the minimum set of essential parts to create and sustain living 

cells similar to life as we know it. However, the abovementioned minimal genome 

depended on the transcription and translation machinery and other cytoplasmic 

components of a pre-existing cell. In addition, JCVI-syn3.0 cells needed 149 genes of 

unknown function to live. In this regard, the minimization approach taken by Venter et 

al did not provide complete knowledge on how cells work nor on how to assemble the 

needed set of components in a way to build a cell from scratch. 

 

 

Cellular mimics 
 

The identification and individual characterization of the molecules of a cell are not 

enough to understand how a cell manages to persist as a living entity over time. 

Instead, it is important to delineate how the individual molecules interact and 

cooperate to give rise to a living cell. Such an endeavor exploits a learning by building 

methodology more akin to that of engineering while also accepting the complexity that 

is often described by systems biology/chemistry. Current attempts at building living 

cells are quite primitive, essentially placing DNA and transcription-translation 

machinery within lipid vesicles in a way that mimics a predefined feature of some target 

cell. Although many simpler versions that only contain purified proteins within lipid 

vesicles are still being built, most modern attempts at building artificial cells rely on 

either cell extracts or purified RNA and protein components to mediate the 

transcription and translation reactions needed to generate the desired phenotype. Cell 

extracts from E. coli are commercially available, and well developed protocols are 

available to produce functioning extracts in-house (7, 8). Alternatively, each purified 

component of the translation machinery from E. coli, i.e. the PURE system (9, 10), can 

be similarly bought commercially or generated in the laboratory (11). The differences 

between the extract and purified systems is that the extract is cheaper and provides 

more robust activity, whereas the PURE system is much more tractable in terms of 

understanding the role of every single component of the assembled cellular mimic and 

lacks endogenous nuclease activity. To date, the maximum genetic complexity that 

has been expressed inside of phospholipid vesicle compartments is a six gene circuit 

using a homemade E. coli cell-free extract (12). The total synthesis of the T4 
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bacteriophage from its 169 kbp genome has also been recently achieved by the same 

group using a similar E. coli extract (13). With further development, this technology 

could be used to program artificial cells with more complex genetic circuits or even 

with complete genomes to potentially mimic increasingly complex biological functions.  

 

To mimic the cellular compartment, artificial cells are typically assembled within lipid 

defined structures, usually made of phospholipids. However, a variety of other 

unnatural compartmentalization possibilities also exist. Examples include synthetic 

compartments made of protein-polymer conjugates (proteinosomes), inorganic 

nanoparticles (colloidosomes), amphiphilic block copolymers (polymersomes) or 

membrane-free compartments (coacervates) (14). In the past years, several groups 

have reported simplified reconstitutions of the spatial organization of cells inside 

polymeric vesicles (15) and phospholipid vesicles (16). Such spatially organized 

artificial cells are able to mediate cascading reactions through the cooperation of 

different sub-compartments that resemble cellular organelles. These artificial systems 

provide advantages and disadvantages. These new types of compartments, for 

example, may provide new functionalities that are not easily implemented with 

biological molecules. However, the nonbiological molecules that compose the 

compartment may not be compatible with the needed biological machinery. 

 

One of the more active areas of research is the development of mechanisms to divide 

vesicles into daughter vesicles. Several groups have reported the first steps of division 

by reconstituting minimal E. coli division machinery inside of lipid vesicles (17, 18). It 

is also possible to divide artificial cells without proteins. For example, DNA replication 

by PCR was shown to induce vesicle division in a highly contrived chemical system 

(19). Replication and division are also of main interest from an origin of life perspective. 

In this case, artificial systems are built from prebiotically plausible molecules. The main 

goal is to construct a simple chemical system capable of replicating its genetic material 

without the need of proteins and that grows and divides to eventually start evolving. 

Intense research is conducted to discover plausible ways of achieving those aspects. 

For example, fatty acid vesicles upon the addition of fatty acid micelles convert into 

unstable filament-like structures that divide into daughter vesicles after mild agitation 

(20). Other groups focus on RNA enzymes capable of self-replication (21, 22) or on 

non-enzymatic RNA polymerization (23).  
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An often neglected but essential property of life is communication. Living organisms 

actively communicate to adapt to the environment by sensing and responding to 

different molecules. Some examples of chemical communication between similar or 

different types of artificial cells have been recently reported (24, 25). Interestingly, in a 

recent paper the Ces group showed the construction of hybrids cells composed of a 

living cell encapsulated in an artificial cell compartment. Both parts were shown to 

chemically cooperate to produce a fluorescent molecule (26). Some artificial cells have 

also been shown to elicit a response in natural cells. For example, Gardner et al 

constructed an artificial cell that produced molecules via the autocatalytic formose 

reaction that elicited a luminescent response from natural cells (27). In recent work, 

phospholipid vesicles encapsulating the PURE system were capable of synthesizing 

and releasing a small natural molecule that activated a reporter gene inside P. 

aeruginosa (28).  

 

In previous work from our laboratory, artificial cells were built that could act as chemical 

translators expanding the ability of natural cells to respond to chemicals that the 

natural cells could not naturally sense (29). In this case, artificial cells were engineered 

to sense a molecule, not recognized by bacteria, and in turn release a molecule that 

induced the activation of a reporter gene in E. coli cells. Cellular mimics provide a 

better understanding of the essential processes, mechanisms and functions of living 

cells. Importantly, this technology with further development could also lead to 

therapeutic and industrial applications. However, if the goal is to build a complex 

system displaying the properties of life, none of the described systems help in 

evaluating progress in that direction. Without well-defined benchmarks that can be 

objectively satisfied for a system to be considered alive, efforts at building cellular 

mimics with the purpose of building a living cell will be evaluated with a certain degree 

of subjectivity. 
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The imitation game 
 

Scientists and engineers in the field of artificial intelligence encountered 70 years ago 

similar problems. Creating a machine that “thinks” or that displays some sort of 

“intelligence” was challenging in the absence of an agreed-upon definition of the terms 

“thought” and “intelligence”. To bypass that issue, the mathematician Alan Turing 

suggested the “imitation game” in his seminal paper “Computing machinery and 

intelligence” (30). The game is set in a way that a human and a computer communicate 

through text-based digital communication. Both are physically separated to avoid 

direct recognition. The role of the human is to interrogate, while the computer tries to 

deceive the human into thinking that communication takes place with another human. 

The computer passes the test if the human is not capable of distinguishing the 

computer’s responses from the responses of a human. By replacing the question “Can 

machines think?” with “Can computers deceive a human into thinking that the 

computer is another person?” Alan Turing provided an alternative method to assess 

progress in building machines that display intelligence. Such an imitation game, later 

known as the Turing test, did not give a definition of “thought” but nevertheless paved 

the way for progress in artificial intelligence. 

 

 

Cellular Imitation game 
 

Similarly, to bypass the problems associated with a lack of a definition of “life”, Cronin 

and colleagues proposed that a type of cellular imitation game could be used to guide 

the construction of cellular mimics (31). As mentioned earlier, living cells chemically 

communicate with one another and with their environment. If artificial cells can be built 

that perceive the molecules secreted from living cells and in response synthesize the 

same or similar chemical messages that can go back to the natural cells, then it should 

be possible to evaluate the performance of the artificial cell by observing or analyzing 

the response of natural cells. As in the case of the Turing test where the human 

evaluates the “intelligence” of a computer by textual communication, in the cellular 

version of the game, the natural cell evaluates the “life-like behavior” of the artificial 

system by chemical communication. Artificial cells that sense and produce chemical 
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molecules that engage in two-way chemical communication with natural cells had not 

been constructed by the time we started to implement the cellular imitation game and 

has not to date been achieved by other laboratories. To the best of our knowledge the 

closest example found in the literature consists of water-in-oil droplets encapsulating 

an E. coli cell extract and DNA engineered to express proteins that either sense or 

synthesize a biological molecule naturally produced by a luminescent bacterium. 

Chemical communication happened between artificial sender cells and engineered E. 

coli cells carrying a fluorescent reporter gene or between artificial sensor cells and 

producer engineered E. coli cells (32). This experimental setting required, however, 

the use of genetically modified natural cells to assess whether one-way 

communication was taking place. In other words, communication was forced to 

happen in a specific and programmed way, and only in one direction. 

 

To develop a cellular version of the Turing test, intact natural cells were needed that 

could also evaluate in a natural and unbiased manner the communication process. 

Bacteria were desirable to fill the role, because bacteria are much simpler than 

eukaryotic cells, thus facilitating the construction of the cellular mimics. Additionally, 

bacterial chemical communication is well characterized. Bacteria speak to each other 

by sensing and sending messages in the form of small chemical molecules called 

autoinducers that diffuse through membranes and activate specific genes involved in 

the production of luminescence and/or biofilms, depending on the bacterial species. 

This chemical language is also known as quorum sensing (QS), and QS is used to 

coordinate the behavior of bacteria in a cell density dependent manner (33). One of 

the best-known quorum sensing pathways is that of Vibrio fischeri. V. fischeri are 

typically found living in symbiosis with squid or fish species and use QS to coordinate 

the production of light (34). To communicate, V. fischeri use an amphipathic molecule 

composed of a homoserine lactone ring and an oxygen containing six carbon atoms 

oxidized acyl chain. More specifically, this homoserine lactone is N-(3oxohexanoyl)-L-

homoserine lactone (hereafter referred to as 3OC6 HSL) (Figure 1). The synthesis of 

3OC6 HSL is catalyzed by the LuxI enzyme, using as substrates S-

adenosylmethionine (SAM) and 3-oxohexanoyl acyl chains (35). The genes involved 

in the production of light (lux genes) are six, and the genes all belong to the lux operon 

(luxICDABEG), which also contains the luxI gene. The activation of these genes 

occurs via the transcriptional activator protein LuxR that in the presence of 3OC6 HSL 
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binds to a consensus binding site within the promoter region called the lux box and 

hereafter referred to as plux (Figure 2). 

                                

Figure 1. Chemical structure of the V. fischeri quorum molecule N-(3-oxohexanoyl)-L-
homoserine lactone. This amphipathic quorum molecule is composed of a homoserine lactone ring 
and a 6-carbon oxidized acyl chain, highlighted in red. 
 

 

V. fischeri seemed to be a perfect candidate to play the role of the natural cell in the 

cellular imitation game. Reconstituting a simplified and minimal version of one of the 

QS pathways of V. fischeri would require only two genes, luxR and luxI. Moreover, the 

amphipathic nature of the homoserine lactone allowed for the simple diffusion of the 

chemical signal through a phospholipid based artificial compartment without the need 

of any membrane protein system. Importantly, since this QS mechanism leads to the 

production of light, communication could be easily assessed by measuring the 

luminescence coming from the bacteria. And more importantly, since chemical 

communication in this case leads to changes in gene expression, next generation 

sequencing technologies could be used to quantify the extent of communication 

allowing for a more objective way to evaluate the extent of mimicry or life-likeness of 

the artificial cell. It is a more objective and unbiased method because the performance 

of the artificial system is directly evaluated by the natural cell and not by an observer. 

                   

 

 

 



17 

 

       

Figure 2. Schematic representation of the activation of the lux genes in V. fischeri. The LuxR-
3OC6 HSL complex binds the lux box consensus sequence (black rectangle) and activates the 
transcription of the lux operon. 

 

To pass the cellular version of the imitation game, artificial cells need to speak the 

same chemical language as natural cells. For this purpose, to participate in the game 

artificial cells need to be equipped with DNA coding for the genes necessary to 

perceive and produce homoserine lactone, transcription and translation machinery 

that allows for the intended communication, and a compartment that is compatible with 

the release of the homoserine lactone. To avoid the problems associated with a lack 

of a definition of life, the artificial cells were assessed for their ability to communicate 

with Vibrio fischeri in a way that mimicked natural Vibrio fischeri (Figure 3). 

 

                                         

Figure 3. Schematic representation of the cellular imitation game implemented in this work. 
Artificial cells (circles) and V. fischeri cells (teal rectangles) are engaged in two-way chemical 
communication. Artificial cells capable of sensing and producing 3OC6 HSL (teal circle) are expected 
to better deceive V. fischeri cells than artificial cells that are not capable of communicating (grey circle). 
 
 

?
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RESULTS 

 

To construct artificial cells that can chemically communicate with natural cells, 

simplified versions of the quorum sensing pathway of the Gram-negative bacterium 

Vibrio fischeri were reconstituted and tested for activity. Chemical communication in 

this case, as previously described, depends on the production, release and sensing of 

a small chemical molecule termed N-3-(oxo-hexanoyl) homoserine lactone (3OC6 

HSL). 

 

 

Sensing quorum molecules in vitro 

 

The first thing was to assemble genetic constructs that could confer upon the artificial 

cells the ability to sense the quorum molecules produced and released by V. fischeri. 

For this purpose, the DNA construct (BBa_T9002) from the registry of standard 

biological parts perfectly matched our needs. The genetic construct encoded the wild 

type LuxR receptor under the pTet constitutive promoter. Importantly, the genetic 

construct also contained the gene coding for the fluorescent protein GFPmut3b under 

the plux inducible transcriptional regulator binding site. In this way, since LuxR has 

been shown to act as a transcriptional activator upon the binding of 3OC 6HSL, the 

ability to sense 3OC6 HSL could be easily monitored by fluorescence. A commercial 

E. coli cell extract provided the transcription-translation machinery needed to test the 

function of the DNA construct. GFPmut3b was 4-fold more expressed in the presence 

of 10 μM of commercial 3OC6 HSL than in the absence of this quorum signal (Figure 

4). 
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Figure 4. Sensing 3OC6 HSL in vitro. Top: schematic representation of the genetic parts of the 
quorum sensor DNA (BBa_T9902) extracted from the registry of biological standard parts.  Bottom: 
GFPmut3b expression from in vitro transcription-translation reaction in the presence or absence of 10 
µM of commercial 3OC6 HSL was monitor over 6 h by fluorescence spectroscopy.  n= 1 representative 
experiment. 
 

 

Interestingly, N-octanoyl-L-homoserine lactone (C8 HSL), another quorum molecule 

produced by V. fischeri with an eight carbon atoms oxidized acyl chain, can also bind 

the LuxR transcriptional activator, but such an interaction leads to  a weaker activation 

of gene expression in vivo compared to 3OC6 HSL (36). However, a higher affinity 

mutant version of the protein for both homoserine lactones (T33A S116A S135I LuxR, 

hereafter referred to as LuxR*) has been reported (37). This LuxR mutant when tested 

in in vitro transcription-translation reactions, activated GFPmut3b cell-free expression 

7-fold in the presence of C8 HSL and 6-fold in the presence of 3OC6 HSL with respect 

to the control sample where the homoserine lactones were not added (Supplementary 

Figure 1 and Supplementary Table 1). Moreover, (T33A,M65R,S116A,S135I LuxR, 

hereafter referred to as M65R*) was only responsive to C8 HSL, as reported in the 

same study (37) (Supplementary Figure 1 and Supplementary Table 1). 
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Artificial cells can sense Vibrio fischeri quorum molecules 

 

Next, to assess whether the synthetic sensing mechanism of the artificial cells was 

able to respond to the natural quorum molecules of V. fischeri, the supernatant of a V. 

fischeri culture at high cell density was added to a suspension of 1:2 POPC (1-

palmitoyl-2-oleoyl-glycero-3-phosphocholine):cholesterol liposomes encapsulating 

commercial E. coli cell extract that expressed constitutively wild type or mutant 

versions of LuxR. POPC is a phospholipid molecule composed of a choline head group 

and two acyl chains of 16 and 18 carbon atoms (Figure 5). In this case, the genetic 

constructs encoded firefly luciferase instead of GFPmut3b (Table 1).  

                      

            

Figure 5. Chemical structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). 
POPC is a phospholipid composed of a choline head group (highlighted in red), a phosphate group 
(highlighted in green), glycerol (highlighted in blue) and two acyl chains of 16 (palmitoyl) and 18 (oleoyl) 
carbon atoms. 

 

 

After 4 h of incubation at 30 ºC, artificial cells were disrupted with triton x-100 and the 

substrate of the firefly luciferase (luciferin) was added to the solution. 69-, 19-, and 8- 

fold more luminescence was observed for artificial cells expressing LuxR, LuxR*, and 

M65R LuxR*, respectively, in response to the supernatant of V. fischeri than in the 

absence of the supernatant (Figure 6). Here, the supernatant of a V. fischeri culture 

was used to distinguish the luminescence produced by the artificial cells from the 

natural luminescence coming from the bacterium itself. The data indicate the ability of 

artificial cells to sense molecules secreted from V. fischeri. 
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Plasmid 

name 

Vector Insert Function 

RL082A pSB1A3 pTet-luxR- plux-fireflyluciferase C6 sensing 

RL093A pSB1A3 pTet-(T33A,S116,M135I) luxR- plux-fireflyluciferase C6/C8 sensing 

RL094A pSB1A3 pTet-(T33A,R65M,S116,M135I) luxR- plux-fireflyluciferase C8 sensing 

Table 1. list of genetic constructs used for sensing V. fischeri quorum molecules inside of 
artificial cells.  
 

 

                   

                              

Figure 6.  Artificial cells can sense quorum molecules released by Vibrio fischeri. Top: Schematic 
representation of the experimental setting. V. fischeri (teal, oblong) release quorum molecules that are 
sensed by artificial cells (gray circles). Artificial cells (AC) expressing either LuxR or LuxR* and in 
contact with the supernatant of V. fischeri (+sup) were able to sense the presence of homoserine 
lactones and in turn express the encoded firefly luciferase gene in a greater extent than artificial cells 
encoding M65R luxR*. Negative control reactions were the artificial cells encapsulating the same 
genetic constructs in the absence of the supernatant from V. fischeri. Dotted lines in the graph represent 
the mean of n=3 independent experiments, dashed lines indicate the mean and error bars correspond 
to the standard error of the mean (SEM). RLU (relative luminescence units). a.u. (arbitrary units).  
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Artificial cells can synthesize N-(3-oxo-hexanoyl)-L-homoserine lactone 

 

The next step was to demonstrate that artificial cells can also produce and release 

quorum molecules to V. fischeri. The synthesis of 3OC6 HSL in V. fischeri cells is 

catalyzed by the LuxI enzyme as described earlier. Interestingly, mutant versions of 

LuxI obtained by error-prone PCR in directed evolution experiments have been 

reported to produce higher amounts of 3OC6 HSL with respect to the wild type enzyme 

when tested in E. coli (38). To confer upon the artificial cells the ability to synthesize 

3O6HSL and to test for the best activity, genetic constructs encoding wild type or 

mutant versions of luxI synthase were cloned under a T7 constitutive promoter (Table 

2). DNA coding for wild type luxI, E34G E63G LuxI (hereafter referred to as LuxI**), 

and E34G E40G E63G LuxI (hereafter referred to as LuxI*) and the 

transcription−translation machinery provided by a commercial E. coli extract were 

placed directly inside of liposomes to ensure that the synthesized quorum molecule 

could escape the artificial cell membranes. Liposomes were incubated with V. fischeri 

for 3 h at 30 ºC. The luminescence per colony forming unit data indicated that 

liposomes expressing the three different versions of the LuxI enzyme were capable of 

inducing a greater luminescent response from V. fischeri than liposomes without DNA.  

This indicated that artificial cells successfully produced and released 3OC6 HSL 

(Figure 7). The bulk luminescence levels of V. fischeri over 3 h of incubation were 

similar, independent of the LuxI version expressed inside the artificial cells. 

(Supplementary Figure 2). This suggests that the different mutations in the luxI 

sequence did not sufficiently alter the kinetics of the synthesis of 3OC6 HSL, at least 

not under the employed experimental conditions. Since the artificial cells could not 

divide, the colony forming units only reflected the number of viable V. fischeri cells 

(Supplementary Figure 2). Sample controls for this experiment were diluted and 

undiluted samples of V. fischeri, V. fischeri cultured with liposomes encapsulating only 

LBS and V. fischeri diluted with 100 nM 3OC6 HSL. 
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Plasmid 

name 

Vector Insert Function 

MC002A pET21b pT7-luxI C6 sending 

NY015A pET21b pT7- E63GluxI C6 sending 

NY018A pET21b pT7- (E34G,R40G,E63G) luxI C6 sending 

NY019A pET21b pT7- (E34G,E63G) luxI C6 sending 

Table 2. list of the genetic constructs coding for wild type or mutant versions of the LuxI 
synthase. 
 
 

                                                   

                        

Figure 7. Artificial cells can produce Vibrio fischeri N-(3-oxo-hexanoyl)-L-homoserine lactone. 
Top: schematic diagram of the experimental setting. Artificial cells encapsulating and expressing three 
different versions of the LuxI synthase produce 3OC6 HSL, which diffuses towards V. fischeri cells and 
activates the production of luminescence. Bottom: Artificial cells expressing luxI, luxI* and luxI** 
successfully induced the production of bioluminescence in V. fischeri. Sample controls (black dots) were 
V. fischeri with: artificial cells without DNA (NTC); 1:2 POPC:cholesterol vesicles encapsulating LBS 
(Ves); LBS=Bacteria liquid medium (LBS); Vibrio fischeri non-diluted culture (V); or supplemented with 
100nM of commercial N-(3-oxohexanoyl)-L-homoserine lactone (V+3OC6 HSL). Y-axis is in log scale. 
Dotted lines correspond to the mean of n=3 independent experiments; error bars indicate the standard 
error of the mean (SEM). RLU/CFU, relative luminescence units/per colony forming unit per milliliter. 
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Two-way chemical communication between artificial and V. fischeri cells 

 

Chemical communication requires the ability to both sense and send information in the 

form of molecules. After showing that the artificial cells were capable of sensing and 

sending quorum signaling molecules, the final step was to build artificial cells that 

could combine both parts to chemically communicate directly with Vibrio fischeri. First, 

to confirm that the homoserine lactones produced by a low-density V. fischeri culture 

were sufficient to activate the production of LuxI synthase inside artificial cells, E. coli 

transformed with the BBa_T9002 genetic construct were incubated with the 

supernatant of V. fischeri at OD600 nm = 0.25. The number of cells expressing 

GPFmut3b was assessed by flow cytometry (Supplementary Figure 3) and was similar 

to the number of cells expressing the same genetic construct in the presence of 10 nM 

3OC6 HSL. Then, four different genetic constructs that included the wild type or mutant 

versions of the LuxR transcriptional activator and LuxI synthase were initially tested 

for activity (Table 3 and Supplementary Figure 4). 

 

Plasmid 

name 

Vector Insert Function 

Sensing Sending 

RL078A pSB1A3 pTet-luxR- plux-luxI C6 C6 

NY009A pSB1A3 pTet-(T33A,S116,M135I) luxR- plux-luxI C6/C8 C6 

NY013A pSB1A3 pTet-(T33A,S116,M135I) luxR- plux-

(E34G,R40G,E63G) luxI 

C6/C8 C6 

NY014A pSB1A3 pTet-luxR- plux-(E34G,R40G,E63G) luxI C6 C6 

RL081A  pSB1A3 pTet-luxR-plux-T7polimerase C6 T7pol 

Table 3. Genetic constructs tested for the cellular imitation game experiments.  

 

 

Artificial cells were added to a V. fischeri culture at OD600 nm= 0.2-0.3 exhibiting low 

luminescence and incubated for 3 h at 30 °C. The artificial cells containing DNA 

encoding luxR* and luxI* were the only artificial cells that induced a detectable 

luminescent response per colony forming unit (CFU) and, therefore, were the only 

artificial cells capable of chemically communicating with V. fischeri (Supplementary 

Figure 4). To confirm that artificial cells could withstand the presence of V. fischeri, the 
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stability of the artificial cells was assessed by a calcein leakage assay (Supplementary 

Figure 5). 80 mM of the calcein dye was added to 1:2 POPC: cholesterol liposomes 

encapsulating the same DNA and components required for optimal chemical 

communication. Liposomes were incubated with V. fischeri at OD600 nm= 0.28 for 3 h at 

30 °C. At this concentration, the fluorescence of calcein was low due to self-quenching. 

Upon the breakage of the liposomes, calcein would be released, thus giving rise to 

increased fluorescence. The calcein signal remained low and constant over the 3 h of 

incubation, indicating that the artificial cells were stable in the presence of V. fischeri. 

After identifying the optimal genetic construct that conferred upon the artificial cells the 

ability to sense and synthesize 3OC6 HSL and confirming that the artificial cells could 

withstand the presence of V. fischeri and that the supernatant of a low-density V. 

fischeri culture contains enough homoserine lactones to activate the expression of luxI, 

the next step was to setup a type of cellular imitation game to assess how well the 

artificial cells were able to communicate. For this purpose, artificial cells carrying DNA 

coding for luxR* and luxI* (hereafter referred as to functional artificial cells) or carrying  

RL081A (Table 3) coding for luxR* and T7 RNA polymerase (hereafter referred as to 

nonfunctional artificial cells) were constructed. Nonfunctional artificial cells were able 

to sense 3OC6 HSL but were not capable of synthesizing the quorum molecule in 

response. Nonfunctional artificial cells were used as negative controls for the two-way 

communication experiments. The experiments also included an undiluted culture of V. 

fischeri as a positive control for chemical communication. Artificial cells encapsulating 

LBS (hereafter referred as to empty artificial cells) and cultures of V. fischeri diluted 

with LBS with or without 100 nM 3OC6 HSL were additional used as controls. The 

luminescence per single cell induced by functional artificial cells was similar to the 

luminescence levels of the undiluted V. fischeri culture (Figure 8). Both luminescence 

values were considerably higher than the luminescence induced by nonfunctional 

artificial cells. 
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Figure 8. Luminescence of V. fischeri induced by functional and nonfunctional artificial cells. 
Top: schematic representation of the experimental setting for two-way chemical communication 
between artificial cells and V. fischeri. Functional artificial cells sense both 3OC6 HSL and C8 HSL and 
respond by synthesizing and releasing 3OC6 HSL. Nonfunctional artificial cells sense 3OC6 HSL and 
respond by synthesizing T7 RNA polymerase. V. fischeri sense and synthesize both 3OC6 HSL and C8 
HSL. Bottom: Similar luminescence response per single cell was induced by functional artificial cells 
and V. fischeri.  (AC) Artificial cell. Sample controls were: (Vibrio) non-diluted culture, (Empty AC) 
Artificial cells encapsulating LBS, (diluted Vibrio) V. fischeri culture diluted 1:1 (volume ratio) with LBS 
and (Vibrio+3OC6 HSL) V. fischeri diluted culture with LBS supplemented with 100nM commercial 3-
oxo-hexanoyl-homoserine lactone. Dotted lines represent the mean of n=6 independent experiments, 
error bars correspond to the standard error of the mean (SEM). (RLU/CFU) relative luminescence units 
per colony forming units per milliliter. (a.u.) arbitrary units. Y-axis is in log-10 scale. 
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The luminescence data was confirmed by RT-qPCR (Figure 9), which showed that the 

expression of luxA and luxB, two lux genes coding for the two subunits of V. fischeri 

luciferase, was similarly upregulated 5-fold both for communication mediated by 

artificial cells and for natural V. fischeri-V. fischeri communication corresponding to the 

undiluted culture sample. luxA and luxB were previously reported to be upregulated 

by 3OC6 HSL (34). 

 

          

Figure 9. Transcription activation of the V. fischeri luciferase subunit genes in the presence of 
functional and nonfunctional artificial cells.  Shown is the fold expression of luxA and luxB 
(assessed by RT-qPCR) normalized to the negative control (V. fischeri in the presence of nonfunctional 
artificial cells). Sample controls were: (Vibrio) non-diluted culture, (Empty AC) Artificial cells 
encapsulating LBS, (diluted Vibrio) V. fischeri culture diluted 1:1 (volume ratio) with LBS and 
(Vibrio+3OC6 HSL) V. fischeri diluted culture with LBS supplemented with 100 nM commercial 3-oxo-
hexanoyl-homoserine lactone. Solid lines indicate the mean of n=6 independent experiments, error bars 
correspond to the standard error of the mean (SEM). 

 

 

RNA-seq can be used to quantify the extent to which artificial cells mimic natural cells. 

Although the luminescence and RT-qPCR data showed that the artificial cells behaved 

to some extent as natural V. fischeri, such data were not enough to determine the 

extent of mimicry. To more quantitatively assess the performance of the artificial cells, 

the gene expression profile of natural cells in response to the activity of artificial cells 

was evaluated. The six experiments of the cellular imitation game were subjected to 
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RNA-sequencing analysis. Incubation of V. fischeri with nonfunctional artificial cells 

gave 175 differently expressed coding sequences with respect to the V. fischeri−V. 

fischeri communicating sample (Tables 4 and 5). The same experiment in the 

presence of functional artificial cells containing DNA encoding luxR* and luxI* instead 

gave 107 differently expressed coding sequences with respect to the V. fischeri−V. 

fischeri communicating sample (Tables 4 and 6), meaning that the functional artificial 

cells better mimicked the influence of natural V. fischeri on V. fischeri than 

nonfunctional artificial cells. Although the RNA sequencing analysis, after false 

discovery rate (FDR) adjusted p value >0.05, did not identify statistically significant 

differences in the expression of the lux operon in response to functional and 

nonfunctional artificial cells, the average increase in the number of reads from the six 

RNA-seq samples (Figure 10) was similar to the activation measured by RT-qPCR 

(Figure 9). The lux genes did not significantly differ in expression between samples 

due to the great variability among the six experiments (Figure 9). To better visualize 

the difference in transcript levels, the fragments per kilobase of transcript per million 

mapped reads (FPKM) values for the lux genes for the six individual experiments were 

plotted for the two comparisons and clearly revealed that the expression over the 

entire lux operon, except for luxI and luxR, was more similar between natural V. fischeri 

and functional artificial cells than with nonfunctional artificial cells (Figure 11 and 12). 

 

 

Figure 10. Transcript levels of the lux operon genes from V. fischeri in contact with V. fischeri, 
functional and nonfunctional artificial cells. Error bars indicates the standard error of the man (SEM) 
of n=6 independent experiments. FPKM (Fragments per kilobase of transcript per million mapped 
reads). 
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The interpretation of the luxI and luxR data was more difficult and should not be 

considered due to the impossibility to discriminate between the in vivo or artificially 

transcribed RNA transcripts since total RNA was extracted from the same sample pool 

containing both artificial and natural cells. Both genes were expressed in V. fischeri 

and functional artificial cells and luxR transcripts were also present in nonfunctional 

artificial cells. 

 

 

Figure 11. Transcript levels of the lux operon genes from sample comparisons (Vibrio fischeri + 
Vibrio fischeri vs Vibrio fischeri + functional AC). Shown are the FPKM of 6 individual replicates. 
FPKM (Fragments per kilobase of transcript per million mapped reads). 
 

 

 

Figure 12. Transcript levels of the lux operon genes from sample comparisons (Vibrio fischeri + 
Vibrio fischeri vs Vibrio fischeri + nonfunctional AC). Shown are the FPKM of 6 individual replicates. 
FPKM (Fragments per kilobase of transcript per million mapped reads). 
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Furthermore, a correlation between the gene expression profile of V. fischeri in 

response to functional and nonfunctional artificial cells showed that six of the seven 

genes of the lux operon fell off the correlation trend (Figure 13) suggesting that the 

critical difference between the two types of artificial cells was their effect on quorum 

signaling, as expected. 

 

         

Figure 13. Correlation plot of V. fischeri gene expression in response to functional and 
nonfunctional artificial cells. V. fischeri was highly correlated, r= 0.99. Blue dots indicate the genes 
falling off the correlation trend, including six out of the seven genes of the lux operon. FPKM (Fragments 
per kilobase of transcript per million mapped reads). 

 

 

The data were then plotted in a way to visualize how much more Vibrio-like were 

functional artificial cells with respect to nonfunctional artificial cells (Figure 14). Here 

we considered the coding sequences all over the Vibrio fischeri genome, 

independently of whether the coding sequences were statistically differently expressed 

or not. The average FPKM values obtained per coding sequence from the six replicate 

experiments for both comparisons were subtracted. In comparison 1, average FPKM 

values of the sample (bacteria in presence of functional artificial cells) were subtracted 

from the average FPKM values of the sample (bacteria in presence of same bacteria). 

The same was done for comparison 2 (bacteria in contact with nonfunctional artificial 

cells) compared with (bacteria in presence of bacteria). The plot showed that the 

overall distribution of the computed FPKM values for each coding sequence of V. 

fischeri in the presence of functional artificial cells (green area) was closer to 0 than 

the distribution of the coding sequences of V. fischeri in the presence of nonfunctional 
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artificial cells (black area). Therefore, functional artificial cells were more V. fischeri-

like than nonfunctional artificial cells (Figure 14). 

 

                    

 

Figure 14.  V. fischeri transcriptome correlation. Distribution of the difference in FPKM per coding 
sequence between comparison 1 (V. fischeri with functional artificial cells) compared to (V.fischeri-
V.fischeri) (green) and V. fischeri–V. fischeri with V. fischeri– nonfunctional artificial cells (black). FPKM 
(fragments per kilobase of transcript per million mapped reads), CDS (Coding DNA Sequences). Purple 
dotted line indicates the V. fischeri reference coding DNA sequences distribution.  
 

 

From the obtained RNA-seq data, we proposed a way to calculate how V. fischeri-like 

the artificial cells were. The nonfunctional artificial cells changed the expression of 175 

coding sequences differently than V. fischeri. Instead, an artificial cell that would have 

functioned identically to V. fischeri would not have induced any differences in gene 

expression. If we assume that nonfunctional artificial cells were 0% V. fischeri-like, 

then any reduction in the number of differences in gene expression would increase the 

degree of likeness of the artificial cell to V. fischeri. This calculation would indicate that 

the functional artificial cells in our case were 39% more V. fischeri-like than 

nonfunctional artificial cells ([(175 − 107)/175] × 100). This value is clearly an 

overestimation because only two genes, luxR* and luxI* were genetically encoded 
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inside the functional artificial cells. The remaining components came from an E. coli 

cell extract that was used to provide the transcription and translation machinery. The 

percentage of reduced genomes dedicated to gene expression is similar to the 39% 

lifelike value calculated here. For example, 41% of the synthetically produced, reduced 

Mycoplasma mycoides genome (i.e., JCVI-syn3.0) is necessary for gene expression 

(6). In other words, the data only make sense when put into the context of the entire 

genetic system required to support the synthesis of RNA, protein, and the products of 

protein enzymes, in this case quorum molecules. That is, it is more accurate to say 

that if the artificial cells used here were completely genetically encoded, then these 

artificial cells would be 39% more V. fischeri-like than nonfunctional artificial cells, 

according to the described cellular imitation game.  
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Table 4. 81 differently expressed genes commonly found in both V. fischeri in 

presence of functional and nonfunctional artificial cells  

identifiers Protein names 

VFMJ11_0124 50S ribosomal protein L28 

VFMJ11_2503 Acetyl-coenzyme A synthetase  

VFMJ11_2417 Acetylglutamate kinase  

VFMJ11_2396 Acetylornithine aminotransferase 

VFMJ11_2240 Acriflavin resistance plasma membrane protein 

VFMJ11_0310 Adenylyl-sulfate kinase  

VFMJ11_0599 Amino-acid acetyltransferase  

VFMJ11_2164 Amino-acid carrier protein AlsT 

VFMJ11_0730 Antibiotic biosynthesis monooxygenase 

VFMJ11_2395 Arginine N-succinyltransferase 

VFMJ11_2415 Argininosuccinate lyase  

VFMJ11_2416 Argininosuccinate synthase  

VFMJ11_A0831 BfdA 

VFMJ11_2512 Bifunctional purine biosynthesis protein PurH  

VFMJ11_2516 CBS-domain containing protein 

VFMJ11_2501 Cyclic nucleotide binding protein 

VFMJ11_2028 Cysteine synthase  

VFMJ11_2330 Cytochrome b 

VFMJ11_2643 Dipeptide transport system permease protein DppB 

VFMJ11_2642 Dipeptide transport system permease protein DppC 

VFMJ11_2644 Dipeptide-binding protein 

VFM11_0634 Fe-S protein assembly co-chaperone HscB 

VFMJ11_A0502 Formimidoylglutamase  

VFMJ11_2645 Glutathione import ATP-binding protein GsiA  

VFMJ11_2605 Hydrolase 

VFMJ11_0262 Immunogenic protein 

VFMJ11_0628 Inositol-1-monophosphatase  

VFMJ11_A0804 Lipoprotein, putative 

VFMJ11_0601 Membrane-bound lytic murein transglycosylase A  

VFMJ11_2421 Methylenetetrahydrofolate reductase 

VFMJ11_2418 N-acetyl-gamma-glutamyl-phosphate reductase  

VFMJ11_2394 N-succinylglutamate 5-semialdehyde dehydrogenase  

VFMJ11_2241 Periplasmic component of efflux system 

VFMJ11_0299 Phosphoadenosine phosphosulfate reductase  

VFMJ11_0204 Phosphoribulokinase 1  

VFMJ11_2409 Pili assembly protein PilM 

VFMJ11_2406 Pilus expression protein 

VFMJ11_2377 Probable HTH-type transcriptional regulator LeuO 

VFMJ11_2526 Regulatory protein CsgD 

VFMJ11_2279 RNA polymerase-binding transcription factor DksA 

VFMJ11_0308 Sulfate adenylyltransferase subunit 1  

VFMJ11_0307 Sulfate adenylyltransferase subunit 2  
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VFMJ11_0297 Sulfite reductase [NADPH] flavoprotein alpha-component  

VFMJ11_0298 Sulfite reductase [NADPH] hemoprotein beta-component  

VFMJ11_0602 ThiF family protein 

VFMJ11_0261 Transporter 

VFMJ11_0309 Transporter, divalent anion:sodium symporter family 

VFMJ11_2508 tRNA-dihydrouridine synthase  

VFMJ11_2495 Two-component response regulator 

VFMJ11_A0807 Type VI secretion protein, family 

VFMJ11_A0824 Type VI secretion-associated protein, family 

VFMJ11_0199 Uncharacterized protein 

VFMJ11_0660 Uncharacterized protein 

VFMJ11_2393 Uncharacterized protein 

VFMJ11_2496 UPF0056 inner membrane protein 

VFMJ11_0300 VcgC 

VFMJ11_0306 2',3'-cyclic-nucleotide 2'-phosphodiesterase  

VFMJ11_0304 Acetyltransferase 

VFMJ11_2293 Acetyltransferase component of pyruvate dehydrogenase complex  

VFMJ11_2475 Anaerobic C4-dicarboxylate transporter 

VFMJ11_2474 Aspartate ammonia-lyase (Aspartase)  

VFMJ11_2158 Catalase  

VFMJ11_2157 CytC 

VFMJ11_2413 Dihydrolipoamide dehydrogenase 

VFMJ11_1700 Formate acetyltransferase  

VFMJ11_A0425 Formate/nitrite transporter family protein 

VFMJ11_2456 Fumarate reductase flavoprotein subunit 

VFMJ11_2458 Fumarate reductase subunit C 

VFMJ11_2459 Fumarate reductase subunit D 

VFMJ11_2412 Hybrid peroxiredoxin hyPrx5  

VFMJ11_1621 L-asparaginase 2  

VFMJ11_2391 OsmC/Ohr family protein 

VFMJ11_2620 suppressor for copper-sensitivity A 

VFMJ11_2294 Pyruvate dehydrogenase E1 component  

VFMJ11_2370 Pyruvate kinase  

VFMJ11_2160 Superoxide dismutase [Cu-Zn]  

VFMJ11_2156 Uncharacterized protein 

VFMJ11_2155 Uncharacterized protein 

VFMJ11_2045 Uncharacterized protein 

VFMJ11_2581 Uncharacterized protein 

VFMJ11_0691 Urea amidohydrolase subunit alpha 

Upregulated genes are highlighted in red, blue instead indicate the downregulated genes 
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Table 5. List of 94 differently expressed coding sequences found in V. fischeri 
in presence of nonfunctional artificial cells 

Gene identifier Protein names 

VFMJ11_0421 A/G-specific adenine glycosylase 

VFMJ11_A0118 ABC transporter ATP-binding protein 

VFMJ11_2112 Accessory colonization factor AcfA 

VFMJ11_2691 Acetolactate synthase 

VFMJ11_0599 Amino-acid acetyltransferase  

VFMJ11_2215 Amino-acid carrier protein AlsT 

VFMJ11_2151 Amylo-1,6-glucosidase 

VFMJ11_2131 Chaperone protein DnaK 

VFMJ11_0587 Chromate transport protein 

VFMJ11_2558 Conserved domain protein 

VFMJ11_0007 Cystine transport system permease protein 

VFMJ11_0008 Cystine-binding protein 

VFMJ11_0074 Cytochrome c4 

VFMJ11_2651 Cytochrome c5 

VFMJ11_2502 DNA polymerase III subunit epsilon 

VFMJ11_2509 DNA-binding protein Fis 

VFMJ11_0656 Endoribonuclease L-PSP 

VFMJ11_1979 Flagellar hook-length control protein 

VFMJ11_2184 Flagellin 

VFMJ11_2280 Glutamyl-Q tRNA(Asp) synthetase  

VFMJ11_1267 GTP cyclohydrolase-2  

VFMJ11_2169 Homoserine O-succinyltransferase  

VFMJ11_0006 L-cystine import ATP-binding protein 

VFMJ11_0535 Long-chain-fatty-acid--CoA ligase 

VFMJ11_2154 Magnesium transporter 

VFMJ11_2147 Maltose transport system permease protein MalF 

VFMJ11_2148 Maltose transport system permease protein MalG 

VFMJ11_2146 Maltose/maltodextrin-binding protein 

VFMJ11_2149 Multiple sugar-binding transport ATP-binding protein 

VFMJ11_2668 N5-carboxyaminoimidazole ribonucleotide mutase 

VFMJ11_2669 N5-carboxyaminoimidazole ribonucleotide synthase  

VFMJ11_2152 Neopullulanase  

VFMJ11_0475 OmpU, outer membrane protein 

VFMJ11_0397 Ornithine carbamoyltransferase 

VFMJ11_0033 Phosphomethylpyrimidine synthase  

VFMJ11_2063 Phosphoribosylformylglycinamidine cyclo-ligase  

VFMJ11_2064 Phosphoribosylglycinamide formyltransferase  

VFMJ11_2218 Putative Hemerythrin HHE cation binding domain  

VFMJ11_0004 Ribonuclease P protein component  

VFMJ11_2173 RNA polymerase sigma factor RpoS (Sigma-38) 

VFMJ11_0439 S-adenosylmethionine synthase  

VFMJ11_2104 S-adenosylmethionine:tRNA ribosyltransferase-
isomerase  
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VFMJ11_A0825 Serine-threonine protein kinase 

VFMJ11_0460 Sodium-dependent phosphate transporter 

VFMJ11_2430 Sodium-type polar flagellar protein (MotX) 

VFMJ11_0453 Transcriptional regulator 

VFMJ11_A0866 Transcriptional regulator (LysR family) 

VFMJ11_0043 Transporter (metabolite exporter family) 

VFMJ11_0057 Uncharacterized protein 

VFMJ11_2150 Uncharacterized protein 

VFMJ11_2217 Uncharacterized protein 

VFMJ11_2204 Uncharacterized protein 

VFMJ11_0150 Uncharacterized protein 

VFMJ11_0345 Uncharacterized protein 

VFMJ11_0376 Uncharacterized protein 

VFMJ11_0498 Uncharacterized protein 

VFMJ11_1786 UPF0260 protein VFMJ11_1786 

VFMJ11_0151 WbfD protein 

VFMJ11_0114 Xanthine permease 

VFMJ11_0023 3-ketoacyl-CoA thiolase  

VFMJ11_2105 Acetoin utilization AcuB protein 

VFMJ11_2067 Acyl-coenzyme a dehydrogenase  

VFMJ11_2170 Anaerobic C4-dicarboxylate transporter 

VFMJ11_0395 Aspartate carbamoyltransferase regulatory chain 

VFMJ11_2221 Autonomous glycyl radical cofactor 

VFMJ11_0506 Deoxyribose-phosphate aldolase 

VFMJ11_A0108 Ferredoxin-type protein NapF 

VFMJ11_A0177 Formate acetyltransferase  

VFMJ11_0070 Glycerol-3-phosphate transporter 

VFMJ11_A0597 Integral membrane protein 

VFMJ11_2657 Ketol-acid reductoisomerase  

VFMJ11_0452 Lysine-tRNA ligase   

VFMJ11_1732 Methyl-accepting chemotaxis protein 

VFMJ11_0357 MshA, mannose-sensitive haemaglutinin 

VFMJ11_0018 NADH dehydrogenase subunit ii-related protein 

VFMJ11_0504 Nucleoside permease 

VFMJ11_2109 Peroxiredoxin-2  

VFMJ11_0508 Phosphopentomutase  

VFMJ11_0022 Protein YhdH 

VFMJ11_0509 Purine nucleoside phosphorylase DeoD-type  

VFMJ11_0685 Putative N-acetylmannosamine kinase  

VFMJ11_0019 Sulfurtransferase TusA homolog  

VFMJ11_1508 Tetratricopeptide repeat family protein 

VFMJ11_0507 Thymidine phosphorylase 

VFMJ11_2165 Transcriptional activator CadC 

VFMJ11_2482 Transcriptional regulator, ArsR family 

VFMJ11_0898 Uncharacterized protein 

VFMJ11_2681 Uncharacterized protein 
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VFMJ11_2118 Uncharacterized protein 

VFMJ11_2480 Uncharacterized protein 

VFMJ11_A1010 Uncharacterized protein 

VFMJ11_0081 Universal stress protein 

VFMJ11_2476 Universal stress protein 

VFMJ11_0505 XapX domain, putative 

Upregulated genes are highlighted in red, blue instead indicate the downregulated genes 

 

Table 6. List of 26 differently expressed coding sequences found in V.fischeri in 
the presence of artificial functional cells 

identifiers Protein names 

VFMJ11_0196 60 kDa chaperonin 

VFMJ11_0708 ABC transporter, permease protein 

VFMJ11_2390 ATP-dependent protease ATPase subunit HslU  

VFMJ11_0818 Copper-transporting P-type ATPase  

VFMJ11_0673 Endochitinase 

VFMJ11_A0504 Histidine utilization repressor 

VFMJ11_A0503 Imidazolonepropionase  

VFMJ11_0301 Peptidyl-prolyl cis-trans isomerase  

VFMJ11_1809 Recombination protein RecR 

VFMJ11_0659 S-(hydroxymethyl)glutathione dehydrogenase  

VFMJ11_0663 S-(hydroxymethyl)glutathione dehydrogenase  

VFMJ11_A0759 Site-specific recombinase IntIA 

VFMJ11_A0805 Type VI secretion system FHA domain protein 

VFMJ11_2525 Uncharacterized protein 

VFMJ11_2159 AnkB protein 

VFMJ11_2134 ATP-dependent NAD kinase 

VFMJ11_1225 Carbon starvation protein A 

VFMJ11_1948 Lipoprotein VacJ 

VFMJ11_0927 Putative transport protein 

VFMJ11_0611 TPR-repeat-containing protein 

VFMJ11_0189 UDP-D-quinovosamine 4-dehydrogenase 

VFMJ11_0693 Urea amidohydrolase subunit gamma 

VFMJ11_0694 Urease accessory protein UreD 

VFMJ11_0690 Urease accessory protein UreE 

VFMJ11_0689 Urease accessory protein UreF 

VFMJ11_0688 Urease accessory protein UreG 

Upregulated genes are highlighted in red, blue instead indicate the downregulated genes 
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Artificial cells can sense Vibrio fischeri and disrupt P. aeruginosa quorum 

sensing 

 

After showing that artificial cells can be built that can chemically communicate by 

sensing and synthesizing 3OC6 HSL, we next sought to determine whether such 

artificial cells could be used for technological purposes. Pathogenic bacteria are 

known to regulate the expression of their virulent genes through quorum sensing (39). 

For example, the opportunistic human pathogen P. aeruginosa uses N-(3-

oxododecanoyl)-L-homoserine lactone, hereafter referred as 3OC12 HSL (Figure 15), 

to control the initial stages of biofilm formation (40) and the production of virulence 

factors (39). 

 

                                

Figure 15. Chemical structure of the P. aeruginosa quorum sensing molecule N-(3-
oxododecanoyl)-L-homoserine lactone. This amphipathic quorum molecule is composed of a 
homoserine lactone ring and 12-carbon atoms oxidized acyl chain highlighted in red. 

 

 

The mechanism of activation of gene expression is similar to that of V. fischeri. In the 

case of P. aeruginosa, the activation relies on the transcriptional activator LasR, which 

upon interaction with 3OC12 HSL binds to a specific DNA binding site termed las box, 

hereafter referred to as (plas). Reconstituting simplified versions of the quorum 

sensing mechanism of P. aeruginosa was complicated. Several genetic constructs 

designed and engineered to detect and respond specifically to 3OC12 HSL failed at 

sensing the molecule in in vitro transcription translation reactions. (Table 7). Only 

NY008A coding for the lasR transcriptional activator under the control of pTet 

constitutive promoter and GFPmut3b under a LuxR responsive promoter showed a 

two-fold increase in protein expression in the presence of the quorum molecule (Figure 

16). LasR has been shown to also bind the V. fischeri LuxR responsive promoter (41). 
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Plasmid 

name 

Vector Insert Function Ratio RFU (a.u.) 

end time point Sensing 

NY001A pET21b lasR-pJ23100-plux-sfGFP 3OC12 HSL 0.71 

NY002A pET21b lasR-pT7-plux 3OC12 HSL 1.16 

NY003A pET21b lasR-pJ23100 3OC12 HSL 0.56 

NY004A pET21b pluxR-sfGFP 3OC12 HSL  

NY005A pET21b lasR-pT7-plas-sfGFP 3OC12 HSL 0.91 

NY008A pSB1A3 pTet-lasR-plux-GFPmut3b 3OC12 HSL 2.3 

Table 7. Genetic constructs tested for 3OC12 HSL sensing in vitro. TX/TL reactions were 
assembled with different genetic constructs engineered to sense 3OC12 HSL. Reported are the ratios 
of the end time point fluorescence values after 6 h from reactions that were supplemented with 10 µM 
commercial 3OC12 HSL over the values obtained from reactions that were carried in the absence of 
quorum molecule. NY002A and NY003A encoding the lasR transcriptional activator under the T7 or 
J23100 constitutive promoters respectively were used in equimolar concentration with NY004A coding 
for sfGFP reporter under the control of a pluxR responsive promoter, in the same reactions. Indicated 
ratios were obtained from 1 representative experiment. pJ23100 RFU (Relative Fluorescence Unit). 
 

                                 

                        

Figure 16. Sensing 3OC12 HSL in vitro. Top: schematic representation of the genetic parts of the 

quorum sensor DNA (NY008A).  Bottom: GFPmut3b expression from in vitro transcription-translation 
reaction in the presence or absence of 10 µM of commercial 3OC12 HSL was monitor over 6 h by 
fluorescence spectroscopy.  n= 3 representative experiments. 
 

 

Artificial cells encapsulating TX/TL machinery and carrying a genetic construct coding 

for the lasR transcriptional activator and firefly luciferase under the control of a LuxR 

responsive promoter were not responsive to 10 µM commercial 3OC12 HSL after 4 h 

of incubation at 37 ⁰C (Supplementary Figure 7 and Supplementary Figure 2). Then a 
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calcein leakage assay showed that the artificial cells were unstable in the presence of 

P. aeruginosa (Figure 17), consistent with previous reports showing that P. aeruginosa 

produce and release phospholipases of various types (42).  

 

                        

Figure 17. Stability of artificial cells in contact with P. aeruginosa determined by a calcein 
leakage assay. The increase in fluorescence due to calcein release from liposomes, indicated that 
artificial cells were disrupted in the presence of P. aeruginosa.  (*) indicates the addition of 0.3% (v/v) 
Triton X-100. RFU (Relative Fluorescence Units); a.u. (arbitrary units). 

 

 

Interestingly, acyl-homoserine lactones are degraded by the Bacillus thuringiensis 

enzyme AiiA (43). This suggested that artificial cells capable of sensing homoserine 

lactones produced by P. aeruginosa and in response synthesize and release AiiA could 

disrupt the QS pathways of pathogenic bacteria. Since 3OC12 HSL sensing did not 

work inside phospholipid vesicles, (Supplementary Figure 6) a genetic construct was 

then cloned that encoded luxR* under a pTet constitutive promoter and aiiA under the 

control of a LuxR responsive promoter (Table 8). DNA was encapsulated together with 

the cell-free extract inside 1:2 POPC:cholesterol vesicles. Artificial cells were 

incubated with the supernatant of V. ficheri for 4 h at 37 ⁰C to activate the expression 

of AiiA lactonase. Then a culture of P. aeruginosa at OD600 nm= 0.3 was mixed with the 

suspension of artificial cells and incubated for 2 h at 37 ⁰C. During the incubation time, 

artificial cells broke and released the AiiA enzyme that degraded the homoserine 

lactones produced and released by P. aeruginosa. Quantification of extracellular 

3OC12 HSL was done using an E. coli sensor strain transformed with the DNA 

construct BBa_K575024 which coded for the lasR transcriptional activator (Table 8). 
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The genetic construct expressing aiiA under the control of LuxR* allowed the artificial 

cells to decrease the extracellular 3OC12 HSL by 95% only in the presence of V. 

fischeri (Figure 18). Positive controls were the addition of 100 nM commercial 3OC12 

HSL or the supernatant of a culture of P. aeruginosa to the E. coli reporter strain. 

Negative controls included the reporter strain without the addition of the quorum 

molecule or the addition of the supernatant of V. fischeri to monitor unspecific 

interactions. 

 

Plasmid name Vector Insert Function 

sensing sending 

NY017A pSB1A3 pTet-luxR*-plux-aiiA C6/C8 AiiA 

BBa_K575024 pSB1C3 plas-GFPmut3b-pJ23100-lasR C12  

Table 8. Genetic constructs used for QS quenching of P. aeruginosa experiments. The plasmid 
BBa_K575024 was extracted from the registry of biological standard parts. C6/C8 (3OC6 HSL and C8 
HSL), C12 (3OC12 HSL). 
 

  

Figure 18. Artificial cells quench P. aeruginosa quorum molecules. Top: schematic representation 
of the experimental setting. Artificial cells (gray, circles) sense homoserine lactones present in the 
supernatant of a V. fischeri culture (teal, oblong) and in response express aiiA. Upon incubation with P. 
aeruginosa (pink, oblong), artificial cells break and AiiA degrades the 3OC12 HSL released by P. 
aeruginosa. E. coli sensor strain (gray, oblong) constitutively expressing LasR transcriptional activator 
detects the remaining 3OC12 HSL by producing GFPmut3b. Bottom: Quantification of extracellular 
3OC12 HSL was with an E. coli sensor strain by flow cytometry. Bottom left: (% of green cells) indicate 
the percentage of 3OC12 HSL E. coli sensor cells that expressed GFPmut3b in response to the 
remaining 3OC12 HSL present in the different samples. Bottom right: shown are overlay histograms 
showing the distribution of the green fluorescence intensity from E. coli sensor cells. (% of max) 
corresponds to the percentage of E. coli reporter cells normalized to the total number of counted cells 
per sample. X-axis is in log scale.  n = 4 independent experiments; Solid lines represent the means and 
the error bars correspond to standard error of the mean (SEM). (AC) indicates artificial cells. 
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Finally, to confirm the use of such technology for therapeutic applications, a 

preliminary experiment was performed to assess whether artificial cells could be built 

to disrupt the formation of biofilm from the pathogenic bacteria. A biofilm assay was 

performed according to O’Toole’s instructions (44). An overnight culture of P. 

aeruginosa grown in LB was diluted, placed in a 96-well plate and incubated for 5 h at 

37 ⁰C to allow the formation of the biofilm. The culture was either mixed with artificial 

cells that constitutively expressed aiiA or with artificial cells expressing aiiA under the 

control of a LuxR responsive promoter in response to 3OC6 HSL (Table 9). Negative 

controls were artificial cells that were not supplemented with DNA or liposomes 

encapsulating LB. The formation of biofilm was inhibited only in the wells where 

artificial cells produced AiiA (Figure 19). 

 

 

Plasmid name Vector Insert Function 

sensing sending 

NY017A pSB1A3 pTet-luxR*-plux-aiiA C6/C8 AiiA 

RL089A pSB1A3 pTet-aiiA  AiiA 

Table 9. Genetic constructs used for the biofilm disruption experiment.  
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Figure 19. Artificial cells expressing aiiA inhibit P. aeruginosa biofilm formation. Top: schematic 
representation of the experimental setup. Artificial cells express AiiA constitutively or in response to 
commercial 3OC6 HSL. P. aeruginosa break artificial cells and AiiA degrades P. aeruginosa quorum 
molecules. The formation of biofilm is assessed by a biofilm assay conducted in a 96-well plate. Bottom: 
crop image of wells from a 96-well PVC plate after 5 h incubation with P. aeruginosa in the presence of 
either artificial cells constitutively expressing AiiA (well 3), or artificial cells expressing AiiA in response 
of 10 uM 3OC6 HSL(well 5). Negative controls were samples with P. aeruginosa in the presence of 
liposomes encapsulating LB (lane 7), artificial cells without DNA (wells 4 and 6). Well 1 was loaded with 
LB while well 2 contained only P. aeruginosa.  Biofilm was stained with 0.1% crystal violet aqueous 
solution. 
 

 

Although the data need to be reproduced and confirmed and more work is needed to 

convert such artificial cells into a useful technology, including the development of a 

membrane that can withstand P. aeruginosa, the data suggest that artificial cells could 

potentially be built to interfere with biofilm formation. 
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SUPPLEMENTARY FIGURES 
 

 

                                       

                              

Supplementary Figure 1. Single point mutations are enough to affect the extent of interaction 
between luxR transcriptional activator and V. fischeri homoserine lactones and the subsequent 
activation of gene expression. Top: schematic representation describing the genetic constructs tested 
for luxR activation of gene expression in the presence of commercial 3OC6 HSL and C8 HSL. Bottom: 
the activity of each genetic construct was assessed by monitoring the GFPmut3b fluorescence coming 
from in vitro reactions. Error bars indicate the standard deviation of the mean of n=3 independent 
experiments. 
 

 

 

         
                        
Supplementary Figure 2.  Artificial cells expressing different versions of the LuxI synthase were 
inducing similar levels of luminescence to V. fischeri. Left: kinetics of V. fischeri induced 
luminescence by artificial sender cells over 3h of co-incubation. Right: colony forming units per mL per 
sample. Solid lines indicate the mean. Error bars indicates the standard error of the mean of n=3 
independent experiments. 
                            

5

luxR luxR* M65R luxR*

3OC6 HSL

no HSL

C8 HSL
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Supplementary Figure 3. 3OC6 HSL detection in V. fischeri culture supernatant. Top: schematic 
representation of the experimental setting. V. fischeri produce and release 3OC6 HSL, E. coli cells 
transformed with DNA BBa_T9002 and constitutively expressing LuxR transcriptional activator are 
incubated with the supernatant of a V. fischeri culture at OD600 nm=0.25. 3OC6 HSL diffuses through the 
E. coli sensor strain wall and membranes and activates GFPmut3b expression. The number of 
fluorescent cells is assessed by flow cytometry. Bottom:  overlay histograms showing the distribution of 
the green fluorescence intensity from E. coli sensor cells. (% of max) corresponds to the percentage of 
E. coli reporter cells normalized to the total number of counted cells per sample. X-axis is in log scale. 
Positive controls were the addition to the sensor strain of 1 nM,10 nM and 100 nM of commercial 3OC6 
HSL. 
 
 

 
 

          

Supplementary Figure 4. Preliminary experiment for two-way chemical communication between 
artificial and V. fischeri cells. Artificial cells expressing LuxR* and LuxI* were the only capable of 
inducing a detectable luminescence signal per V. fischeri colony forming unit (left).  Right: Colony 
forming units per mL (CFU/mL) RLU (Relative Luminescence Unit). 
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Supplementary Figure 5. Artificial cells stability in the presence of Vibrio fischeri.  Left: schematic 
of the calcein leakage experiment. 80mM Calcein, the genetic construct encoding luxR* and luxI* 
mutant and a transcription-translation machinery provided by a commercial E. coli extract were 
encapsulated inside 1:2 POPC:cholesterol liposomes. Artificial cells were incubated with V. fischeri for 
3h at 30 ⁰C. At this concentration, calcein fluorescence is low due to self-quenching. Upon liposome 
breakage, calcein is released thus giving rise to increased fluorescence. Right: graph showing the fold 
increase of calcein fluorescence over time. (*) indicates the addition of 0.3% Triton (v/v) to break the 
liposomes.  
 
 
 
 
 
 

                     
 
 
 

                                   
 
Supplementary Figure 6. Artificial cells failed at sensing 3OC12 HSL. Artificial cells constitutively 
expressing the transcriptional activator LasR did not activate firefly luciferase expression in response 
to 10 µM of commercial 3OC12 HSL after 4 h incubation at 37 ⁰C. Error bars correspond to the standard 
deviation. n=3 independent experiments. 
 
 

 

 

 

lysislysis 
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Supplementary Figure 7. Influence of the artificial cell membrane composition on chemical 
communication with V. fischeri. Left: Artificial cells with different membrane composition (POPC only, 
10:1 or 1:2 POPC:cholesterol molar ratios) expressing DNA encoding luxR* and.luxI* were tested for 
communication with V. fischeri. The luminescent response per single cell of V. fischeri after 3 h of 
incubation showed a clear dependence on the concentration of cholesterol. Right: The number of viable 
V. fischeri cells per sample was determined by counting the colony forming units. The negative control 
was an unencapsulated S30 reaction containing the same DNA and necessary components for 
transcription-translation. RLU/CFU (Relative Luminescence Units/Colony Forming Units per mililiter), 
CFU/mL (Colony Forming Units per mililiter). Solid lines indicate the mean. Error bars indicate the 
standard error of the mean (SEM). n=3 independent experiments (data values obtained from each 
experiment are labelled with a different color). 
 

 

                         

Supplementary Figure 8. Control experiment to assess the activity of non-encapsulated 
transcription and translation reactions. A TX/ TL reaction was assembled with the 3OC6 HSL sensor 
construct BBa_T9002. As for encapsulated reactions in artificial cells, proteinase K and RNAseA/T1 

were added and the reaction was diluted 1:1 (volume ratio) with a V. fischeri culture at OD600 nm=0.3. 

No GFP expression was detected over 3h of incubation at 30 ⁰C indicating that proteinaseK, RNAses 
and the dilution factor were inhibiting any potential activity of non-encapsulated transcription translation 
reactions. RFU (Relative Fluorescence Unit), a.u. (arbitrary unit). 
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Supplementary Figure 9. Comparison of different plating methods for enumerating CFU of Vibrio. 

fischeri cells. Bacteria were grown at 30 ºC, 145 rpm until OD600 nm= 0.3 in 5mL of LBS starting from 

a 200µL glycerol stock aliquot. Before plating, cells were 10-fold serially diluted and 10µL of the non-
diluted culture (line 1) or the serial dilutions,10-1 (line 2), 10-2 (line 3), 10-3 (line 4), 10-4 (line 5), 10-5 (line6) 
were plated in LBS agar plates with the track dilution method (45). 10 µL of the 10-4 dilution were 
combined with 90 µL of water and were also plated with an L-shape spreader or with glass beads. Top 
pictures (day light) bottom pictures (luminescence). The glass bead method was discarded because of 
the consistent and substantial loss of cells during each spreading. The track method offered instead an 
easy way to plate and count cell colonies from different samples and different dilutions in the same 
plate. 

           

 

Supplementary Figure 10. Stability of artificial cells in contact with E. coli sensor strain and V. 
harveryi BB170 determined by a calcein leakage assay. The low and constant vales of calcein 
fluorescence measured over 6h of incubation with bacteria indicated that artificial cells were stable.  (*) 
indicates the addition of 0.3% (v/v) Triton X-100. RFU (Relative Fluorescence Units); a.u. (arbitrary 
units). 
 
 

L-shape spreaderTrack method Glass beads
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Supplementary Figure 11.  Promoter sequences determine different GFPmut3b expression 
levels.  Three genetic constructs coding for luxR transcriptional activator under three different promoter 
sequences were tested for activity in the presence of 10 µM of commercial 3OC6 HSL (Supplementary 
Table 3). Shown is the fluorescence fold increase respect to time 0 min normalized against fluorescence 
values from the same reactions without quorum molecules. GFPmut3b expression was monitor by 
fluorescence spectroscopy. DNA coding for pT7 promoter used the E. coli T7 high yield commercial cell 
extract (Promega), while for DNA coding for the E. coli endogenous promoters (pTet and pJ23100) used 
the E. coli extract for circular DNA template (Promega.) n=1 representative experiment. 
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SUPPLEMENTARY TABLES 
 

 
Plasmid 

name 

Vector Insert Function 

BBa_T9002 pSB1A3 pTet-luxR- plux-GFPmut3b C6 sensing 

RL086A pSB1A3 pTet-(T33A,S116,M135I) luxR- plux-GFPmut3b C6/C8 

sensing 

RL087A pSB1A3 pTet-(T33A,R65M,S116,M135I) luxR- plux-GFPmut3b C8 sensing 

Supplementary Table 1: list of genetic constructs used for the sensing of V. fischeri quorum 
molecules in in vitro transcription-translation reactions. BBa_T9002 was extracted from the 
registry of biological standard parts.  
 

 

 

Plasmid name Vector Insert Function 

RL092A pSB1A3 pTet-lasR-plux-fireflyluciferase 3OC12 HSL sensing 

Supplementary table 2. Genetic construct used to check 3OC12 HSL sensing activity inside artificial 
cells. 
 
 
 
 

Plasmid 

name 

Vector Insert Function 

BBa_T9002 pSB1A3 pTet-luxR- plux-GFPmut3b C6 sensing 

NY006A pSB1A3 pT7-luxR- plux-GFPmut3b C6 sensing 

NY007A pSB1A3 pJ23100-luxR- plux-GFPmut3b C8 sensing 

Supplementary Table 3: list of genetic constructs tested for 3OC6 HSL sensing activity.  
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MATERIAL AND METHODS 
 

Bacterial strains and media 
 

Allivibrio fischeri MJ11 (46) was grown in LBS (10 g/L tryptone, 5 g/L yeast extract, 20 

g/L NaCl, 50mM Tris-HCl, 0.3% glycerol) in absence of antibiotics. E. coli NEB express 

and Pseudomonas aeruginosa  PT5 PAO1 (47) were grown in LB (10 g/L tryptone, 10 

g/L NaCl and 5 g/L yeast extract). Cultures from E. coli NEB express cells transformed 

with plasmids BBa_T9002 or BBa_K575024 were supplemented with either 100 µg/mL 

ampicillin or 50 µg/mL chloramphenicol respectively. P. aeruginosa PT5 PAO1 was 

grown in absence of antibiotics. V. harveyi BB170 was grown in Autoinducer Bioassay 

(AB) media (17.5 g/L NaCl, 12.3 g/L MgSO4•7H2O, 2 g/L casamino acids, 10 mM 

potassium phosphate pH 7, 1 mM L-ariginine, 1% (v/v) glycerol) with 50 µg/mL 

kanamycin.  

 

Colony forming unit assay  
 

To enumerate viable V. fischeri, cells were plated in LBS agar plates (without 

antibiotics) with the Track dilution method (45). Briefly, 5 µL of each sample containing 

V. fischeri were 100-fold diluted in LBS for two consecutive times. The 10-4-fold 

dilutions were diluted 10-fold.  10 µL of the serial dilutions 10-5 were spotted at the top 

side of the plates. To distribute cells over the surface of the agar plates, plates were 

left titled until the spotted droplet reached the bottom of the plates. After 5 min drying, 

plates were incubated at 30 ⁰C overnight. Luminescent bacteria colonies were 

photographed in a dark room with an Olympus OM-D EM5 camera coupled with a M-

Zuiko ED 12-50 mm 1:3.5-6.3 EZ objective lens using an exposure of 40 s at F 5 and 

an ISO of 200. The number of luminescent colonies or colony forming units (CFU) 

were counted manually from one plating per sample per experiment. To avoid 

unbiased counting, colonies were counted without previously knowing from which 

sample they were coming from.  
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Preparation of liposomes 
 

Starting from 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 

cholesterol stocks solutions dissolved in chloroform to 100 and 40 mg/mL respectively, 

the required volume from each solution was calculated according to the molar ratio 

between the two components, then mixed and transferred into a 5mL round flask. The 

solvent was evaporated for about 30min at room temperature using a rotary 

evaporator (Buchi). The thin lipid films created at the bottom of the flask were 

resuspended in distilled water to a final concentration of 24 mM with different POPC 

and cholesterol molar ratios. The suspended liposomes were homogenized for 1min 

with T10 basic ULTRA-TURRAX disperser set at power 4. The solution was split into 

100 µl aliquots in 2 mL Eppendorf tubes, flash-frozen in liquid nitrogen and dehydrated 

overnight at 37 °C with a benchtop vacuum concentrator (Labconco). Aliquots were 

stored at -20 °C. Thin lipid films were hydrated with in vitro transcription translation 

reactions containing DNA by vortexing for 30 s. Suspended liposomes solutions were 

used directly for the experiments without further purification. Note that all experiments 

involving artificial cells in chapter 1 were performed with 1:2 POPC cholesterol 

liposomes apart from the experiment in Supplementary Figure 7 where POPC and 

10:1 POPC cholesterol liposomes were also used. 

 

 

In vitro transcription-translation reactions 
 

Genetic constructs designed and cloned to reconstitute P. aeruginosa and V. fischeri 

quorum pathways parts used either a cell-free E. coli S30 extract for circular DNA 

(Promega) (20 µL premix, 15 µL S30 extract, 5 µL amino acids mix, 40 U of RNase 

inhibitor, and 2 µg of DNA) or  E. coli S30 T7 High Yield Protein Expression System 

(Promega) (20 µL S30 premix, 18 µL T7 S30 extract, 40 U of RNase inhibitor, and 1 

µg of DNA). 10 µM of 3OC12 HSL, C8 HSL or 3OC6 HSL (Sigma Aldrich or Cayman 

Chemical) were used to activate gene expression. In vitro reactions were monitored 

for 6 h at 37 °C. Reactions that were assembled for sensing 3OC12 HSL with NY008A, 

were shaken for 50 s (1 mm orbital amplitude) prior to fluorescence acquisition every 

min) in 384 microwell plates (781076 Greiner Bio One) during incubation in an Infinite 
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m200 plate reader (Tecan). Fluorescence from in vitro reactions assembled for the 

sensing of 3OC12 HSL using NY001A, were acquired at the Rotor-gene Q 6plex 

(Quiagen) with green channel (excitation: 470 ± 10 nm; emission: 510 ± 5 nm). 

Negative controls were the same reactions in the absence of quorum molecules. 

Fluorescence from in vitro reactions assembled with genetic constructs coding for luxR 

mutants was measured with a CFX96 Touch Real-Time PCR Detection System (Bio-

Rad) with the FAM channel (excitation: 450-490 nm; emission: 510-530 nm). For the 

rest, fluorescence was measured with a Photon Technology International (PTI) 

QuantaMaster 40 UV−vis spectrofluorometer, for GFPmut3b (excitation: 501 nm; 

emission: 511 nm) for sfGFP (excitation: 485nm; emission: 510 nm). 

 

Artificial sensing cells 
 

1:2 POPC: cholesterol thin lipid film aliquots were hydrated with 50 µL of S30 E. coli 

extract containing 20 µL S30 premix, 15 µL S30 extract, 5 µL amino acids mixture, 40 

U of RNase inhibitor, and 4 µg of DNA RL082A, RL093A or RL094A (Table 1). For 

sensing of natural quorum molecules, V. fischeri, bacteria were grown from 200 µL 

glycerol stock aliquot at (30 °C, 145 rpm) in 5 mL of LBS until OD600 nm = 1.8. Bacteria 

were then harvested, and the supernatant was filtered through a 220 nm pore 

membrane (Sartorious). 100 µL of supernatant was mixed with 50 μL of artificial cells. 

0.7 mg/mL proteinase K, 0.07 mg/mL RNase A, and 170 U/mL RNase T1 (Thermo 

Fisher Scientific) were supplemented to avoid any residual activity outside the 

liposomes. As a negative control LBS was used in place of the V. fischeri supernatant.  

Instead, for sensing commercial quorum molecules, 10 µM of 3OC12 HSL (Sigma 

Aldrich) was added to the suspension of artificial cells carrying DNA RL092A. Samples 

were incubated at 30 °C with the supernatant of V. fischeri or at 37 °C with commercial 

3OC12 HSL for 4 h, then artificial cells were collected and loaded into 96 well plates 

(Thermo Fischer Scientific, 216305). 0.3% (v/v) Triton X-100 was added to disrupt the 

artificial cells, and 150 µL of the luciferase assay reagent (Promega) containing 

luciferin was added to the samples. Luminescence was recorded immediately with a 

plate reader (Tecan). Firefly luciferase catalyzes the oxidation of luciferin using 

ATP●Mg2+ as co-substrate and forming oxyluciferin as product. In the process light is 

emitted. 
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Artificial sender cells 
 

1:2 POPC:cholesterol thin lipid films  were hydrated with 50 µL of S30 T7 High-Yield 

Protein Expression System supplemented with 2 µg of DNA encoding the 

corresponding synthase behind a T7 promoter (constructs MC002A, NY018A, 

NY019A Table 2). 1 mM S-adenosyl-L-methionine and 700 µM acetyl coenzyme A 

were added for the synthesis of acyl homoserine lactones. Artificial sender cells were 

diluted 1:1 (v/v) with V. fischeri MJ11 at OD600 nm= 0.2-0.3 and 0.7 mg/mL Proteinase 

K, 0.07 mg/mL RNase A, and 170 U/mL RNase T1 (Thermo Fisher Scientific) were 

also added to avoid any residual activity of the S30 reactions outside the artificial cells. 

Samples were incubated at 30 °C in 96-well plates (Thermo Fischer Scientific, 216305) 

without shaking. Every hour luminescence was measured with an Infinite M200 plate 

reader (Tecan). After 3 h of incubation, 5 µL of each sample were serially diluted and 

10 µL of the 10-5-fold dilution were plated on LBS agar following the “track dilution” 

method to enumerate the colony forming units (CFU) with one plating per sample per 

experiment. Pictures from luminescent bacteria colonies were captured in a dark room 

with an Olympus OM-D EM5 camera and a M-Zuiko ED 7 12-50 mm 1:3.5-6.3 EZ lens 

using an exposure of 40 s at F 5 and an ISO of 200. Negative controls were liposomes 

encapsulating the S30 extract without DNA or liposomes encapsulating only LBS. 

Positive control was the addition of 100 nM 3OC6 HSL. V. fischeri non-diluted and 1:1 

(v/v) diluted cultures were also tested. 

 

Cellular Imitation game 
 

1:2 POPC:cholesterol thin lipid films were hydrated with 50 µL S30 E. coli extract for 

circular DNA template (Promega) supplemented with 4 µg of DNA, 700 µM acetyl 

coenzyme A and 1 mM S-adenosyl-L-methionine. 200 µL of a 20% glycerol stock of V. 

fischeri MJ11 were grown in 5 mL of LBS (30 °C, 145 rpm) until OD600 nm = 0.2-0.3. 

Cells were undiluted (Vibrio fischeri-Vibrio fischeri sample) or mixed in a 1:1 volume 

ratio with either functional artificial cells encapsulating DNA plasmids RL078A, 

NY009A, NY013A, or NY014A (Table 3) coding for the multiple versions of luxI and  

luxR or nonfunctional artificial cells containing RL081A (Table 3) coding for luxR and 

T7 RNA polymerase. 0.7 mg/mL Proteinase K, 0.07 mg/mL RNase A, and 170 U/mL 
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RNase T1 (Thermo Fisher Scientific) were added to the extravesicular solution to 

avoid any unwanted activity of the S30 E. coli extract outside of the artificial cells. 

Samples were placed in 96-well plates (Thermo Fischer Scientific, 216305) with at 

least 2 wells of interspace separation between each sample. Plates were incubated at 

30 °C without shaking. Luminescence was acquired with an Infinite M200 plate reader 

(Tecan) every hour with the following settings (prior each luminescence acquisition, 

the plates were shaken for 5 s with 3 mm orbital shaking, attenuation= OD1; integration 

time= 500 ms). At 3 h of incubation, 5 µL of each sample were serially diluted and 10 

µL of the 10-5-fold dilution were plated on LBS agar plates without antibiotics with the 

“track dilution” method (45). The rest of the samples were collected for RNA extraction. 

Plates were incubated overnight at 30 °C. Total RNA isolation was performed with the 

GeneJET RNA Purification Kit (Thermo Fischer Scientific), and 500 ng of RNA was 

retro transcribed with the RevertAid Reverse Transcriptase kit (Thermo Fischer 

Scientific). 5 ng of cDNA was mixed with the iQ SYBR Green supermix (Bio-Rad) and 

supplemented with the appropriate primers. 10 µL reactions were loaded in 96-well 

plates (HSP9655 Bio-Rad), and the cDNA was quantified with a CFX96 Touch real-

time PCR (Bio-Rad) with SYBR green detection. The real-time PCR run protocol was 

one initial cycle of denaturation at 95 °C for 3 min followed by 40 cycles of denaturation 

(95 °C, 10 s) and annealing + extension (60 °C, 30 s) followed by one melt curve cycle 

(55-95 °C with 0.5 °C, 40 s). Primers used to quantify the cDNA of luxA and luxB were 

luxA FW: 5'-cagagtttggtcttacgggaaat-3', luxA REV: 5'- gggtgtgctgtcggaataac-3', luxB 

FW: 5'-attaccacccatcaccctgt-3', luxB REV: 5'- gtcactaaaaccaagaatgaagcg-3’. The 

concentration of luxA primer was 150 nM and for luxB primers was 250 nM. Gene 

expression of both genes was normalized to the expression of the malate 

dehydrogenase (mdh) housekeeping gene that was amplified with the following 

primers mdh FW: 5'-cactctggtgttactatcttacctct-3' and mdh REV: 5'-

acttctgttcccgcattttgg-3' at 300 nM. Primers were designed with Primer3 software. 

  

RNAseq analysis 
 

Total RNA was treated with DNase (RapidOut DNA Removal kit, Thermoscientific) 

prior to RNA quantification with a spectrofluorometric detection method using the 

Quant-iTTM RiboGreenTM RNA assay kit (Life-Technologies). Library preparation and 

sequencing were performed at Edinburgh Genomics (Ashworth laboratories, 
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University of Edinburgh). Briefly, libraries were prepared using the TruSeq stranded 

total RNA-seq kit (Illumina) and the depletion of ribosomal RNAs was accomplished 

with the RiboZero rRNA removal kit for Gram negative bacteria (Illumina). Libraries 

were then sequenced on one lane of an Illumina HiSeq2500 in high output mode with 

v4 chemistry to a length of 125 base paired end. The quality of the raw sequence data 

was assessed with FastQC (48). The average number of reads were 10,397,486, 

11,006,173, and 11,077,471 for samples containing functional artificial cells, 

nonfunctional artificial cells, and no artificial cells, respectively. Reads in FASTQ 

format were mapped to the V. fischeri MJ11 genome reference sequence using bowtie 

(49). Transcripts were assembled with cufflink and cuffmerge and the quantification of 

isoforms was with cuffdiff (50–52). The sample size for the RNA-seq experiments was 

chosen based on the average number of reads per sample (10M), read length (200 

bp), preliminary results, and prior reports (53) showing an effect size of at least two for 

lux operon gene expression from activation by quorum sensing. Therefore, to ensure 

a statistical power of at least 0.8 at a significance level of 0.05 for a standard two-tailed 

t-test, the sample size was set to six. Differences in the mean between groups were 

assessed using an unpaired two-tailed standard t-test. Standard errors of the mean 

are shown in the bar plots as a measure of variability. RNA-seq differentially expressed 

genes were determined by cufflinks/cuffdiff after p value adjustment for multiple 

comparisons using FDR (False Discovery Rate).  

 

Quenching P. aeruginosa 
 

Dehydrated aliquots of 1:2 POPC:cholesterol vesicles  were hydrated with 50 µL of 

S30 E. coli extract supplemented with 4 µg of DNA NY017A (Table 8). An aliquot of a 

V. fischeri culture at OD600 nm= 0.2-0.3 was added to the suspension of artificial cells. 

An aliquot of LB was added instead to another batch of artificial cells as negative 

control for the production of AiiA.  Samples were incubated at 37 °C for 4 h. P. 

aeruginosa was grown from 200 μL of a glycerol stock in LB until nm= 0.3 and added 

to artificial cells in a 1:1 (v/v) ratio. After 2 h of incubation (37 °C 220 rpm) cells were 

harvested and the supernatants mixed 1:20 with the 3OC12 HSL E. coli sensor strain 

carrying the BBa_K575024 plasmid. Samples were incubated at 37 °C for 2h. 2 μL 

were then collected from each sample, 10-2-fold diluted in PBS, and monitored by flow 

cytometry with a FACSCanto A (BD Biosciences) samples were analyzed with BD 



57 

 

FACSDiva software. Parameters used were: Forward Scatter (FSC) signal (excitation: 

488 nm, Type: Area, Voltage: 525); Side Scatter (SSC) signal (excitation: 488 nm, 

emission: 488 +/- 10 nm, Type: Area, Width, Voltage: 403); Green channel (FITC) 

signal (excitation: 488 nm, emission: 530 +/- 30 nm, Type: Area, Voltage: 600); 

Threshold parameters (FCS: 200, SSC: 200, threshold operator: And). 10000 events 

were acquired per sample. The population distribution was analyzed and plotted with 

FlowJo software. Positive controls were the addition of 100 nM commercial 3OC12 

HSL or the supernatant of a culture of P. aeruginosa at OD600 nm= 0.3 to the E. coli 

reporter strain. Negative controls included the reporter strain without the addition of 

quorum molecule or with the addition of the supernatant of a V. fischeri culture at OD600 

nm= 0.2-0.3. 

 

Biofilm disruption 

 

Dehydrated aliquots of 1:2 POPC:cholesterol vesicles  were hydrated with 50 µL of 

S30 E. coli extract for circular DNA template (Promega) supplemented with 2 µg of 

DNA NY017A or RL089C (Table 9). 10 µM commercial 3OC6 HSL was added to the 

suspension of artificial cells carrying NY017A. Artificial cells were incubated for 6 h at 

37 ⁰C to allow the production of AiiA. To assess whether artificial cells could disrupt or 

inhibit the biofilm formation of P. aeruginosa a biofilm assay was conducted following 

O’Toole ‘s indications (44). P. aeruginosa were grown from a 200 μL glycerol aliquot 

stock in 10 mL of LB at 37 ⁰C, 220 rpm overnight. Cells were diluted 1:100 and 50 µL 

were loaded in 96-well “U” shape flexible plates (Thermo). Bacteria were mixed in a 1: 

1 volume ratio with artificial cells expressing aiiA constitutively or in response to 3OC6 

HSL. Negative controls were bacteria incubated with liposomes encapsulating LB, or 

artificial cell containing the cell extract without DNA. As control for biofilm formation 

one sample consisted of P. aeruginosa diluted with LB. Samples were incubated for 5 

h at 37 ⁰C without shaking. After the incubation, non-adherent cells were removed by 

turning upside down the plate. Adherent cells were carefully washed three times by 

submerging the plate in a water container. Finally, the adherent cells forming the 

biofilm in the surface of the wells were stained with 0.1% crystal violet aqueous 

solution. 
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Vesicle stability 
 

To test whether bacteria could break phospholipid vesicles, a dye leakage assay (54) 

was performed. Dehydrated aliquots of 1:2 POPC:cholesterol vesicles were hydrated 

with 60 µL S30 E. coli extract for circular DNA template (Promega) supplemented with 

4 µg of DNA RL081A (Table 3), 1 mM S-adenosyl methionine, 700 µM acetyl coenzyme 

A, and 80 mM calcein (Sigma). Liposomes were then extruded 11 times through a 19 

mm polycarbonate membrane with 1 µm pores (Whatman) with an Avanti mini-

extruder and purified by gel filtration with a sepharose 4B (Sigma-Aldrich) column. 

Eluent fractions were collected with a FC 203B fraction collector (Gilson) into flat 

bottom transparent 96-well plates (Eppendorf). Fractions with suspended liposomes 

were mixed in a 1:1 (v/v) ratio with a culture of V. fischeri grown in LBS at OD600 nm= 

0.25 or a culture of P. aeruginosa grown in LB at OD600 nm= 0.3. Fluorescence was 

acquired every minute for 3 h and monitored with a Photon Technology International 

(PTI) QuantaMaster 40 UV−vis spectrofluorometer with excitation and emission at 495 

nm and 515 nm, respectively. Subsequently, 0.3% (v/v) Triton X-100 was added as a 

control to break the vesicles. The same assay was also performed to test the stability 

of artificial cells in presence of E. coli NEB express sensor strain and V. harveyi  BB170 

(Supplementary Figure 10) that were used in Figure 2C and Figure 3A of the article 

entitled “Two-way chemical communication between artificial and natural cells”. 

 

The effect of cholesterol on chemical communication 

 

Thin lipid films of POPC containing either 0 mol%, 10 mol%, or 66 mol% cholesterol 

were hydrated with 50 µL S30 E. coli extract for circular DNA template (Promega) 

supplemented with 4 µg of DNA NY013A (Table 3), 700 µM acetyl coenzyme A and 1 

mM S-adenosyl-L-methionine. The experiments were conducted as described in the 

cellular imitation game section. This test was performed to check the permeability of 

3-oxo-hexanoyl homoserine lactone through the membranes of artificial cells. 
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SUMMARY 
 

 

Artificial cells expressing wild type or mutant versions of the luxR transcriptional 

activator were shown to sense the quorum sensing molecules produced by Vibrio 

fischeri. Subsequently, artificial cells expressing different versions of luxI synthase 

were also able to produce 3OC6 HSL and induced the expression of the lux genes of 

the same bacterial cells. Activity was assessed by fluorescence, luminescence and 

RT-qPCR. Then, artificial cells capable of two-way chemical communication with Vibrio 

fischeri were constructed and tested by a type of cellular imitation test. The extent to 

which artificial cells could communicate with natural cells, in other words the extent of 

mimicry, was initially determined by luminescence and RT-qPCR and subsequently 

evaluated and quantified by RNA-seq analysis. The transcriptome analysis of V. 

fischeri in the presence of functional artificial cells capable of sensing and in response 

synthesizing and releasing 3OC6 HSL revealed a higher degree of likeness to natural 

V. fischeri than the nonfunctional artificial cells that could only sense 3OC6 HSL. The 

degree of likeness was quantified according to the difference in the number of 

differently expressed genes induced by functional and nonfunctional artificial cells with 

respect to Vibrio fischeri. Artificial cells were also constructed that could sense 3OC6 

HSL and in response produce a lactonase that disrupted the homoserine lactone QS 

pathways of P. aeruginosa. Finally, preliminary results indicate that artificial cells could 

be built to disrupt the biofilm formation of pathogenic bacteria. 
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DISCUSSION AND FUTURE PERSPECTIVES 
 

Considerations on the artificial lipid membrane composition 
 

The lipid composition used for the experiments described above were for historical 

reasons, i.e. the lipid composition was the best for the activity of artificial cells that 

depended upon the function of α-hemolysin (29). However, this lipid composition was 

likely not optimal for quorum signaling with V. fischeri. Artificial cells with different 

membrane compositions (POPC only, 10:1 or 1:2 POPC: cholesterol molar ratios) 

containing DNA encoding luxR* and luxI* and the transcription and translation 

machinery from a commercial E. coli extract were incubated and tested for activity with 

V. fischeri for 3 h at 30 ºC. The maximum luminescence response per cell was 

observed for samples containing liposomes composed of POPC, while bacteria in the 

presence of liposomes with high cholesterol content showed considerably lower 

luminescence (Supplementary Figure 15). This effect is consistent with the fact that 

cholesterol molecules are known to decrease the permeability of phospholipid 

membranes by increasing the rigidity and the order of the membrane. The rigidity is 

achieved through hydrophobic interactions between the steroid ring of cholesterol and 

the fatty acyl chain of the phospholipids. This effect might also explain why V. fischeri 

cells in contact with liposomes encapsulating LBS or the non-template DNA were 

consistently less luminescent. However, in our case functional artificial cells with 1:2 

POPC:cholesterol counteracted the permeability effect by synthesizing 3OC6 HSL. 

The negative control for this experiment was an unencapsulated S30 reaction 

containing the same DNA and necessary components for transcription-translation. 

Such a negative control was chosen to demonstrate that the unencapsulated in vitro 

reactions that were not discarded neither by dialysis nor gel-filtration after liposome 

preparation were not capable of engaging in chemical communication with V. fischeri. 
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Considerations on the RNA-seq data interpretation 
 

To avoid confusion or misinterpretation, it should be first emphasized that the 

functional artificial cells presented in this work are not alive. The cellular version of the 

imitation game implemented here did not intend to give a definition of life but instead 

demonstrated an objective way to quantify cellular mimics. It should be clarified in this 

regard, that the 39% value was calculated with respect to nonfunctional artificial cells 

that was assumed to be 0% V.fischeri-like. In our case, the nonfunctional artificial cells 

were carrying DNA encoding luxR* and T7 polymerase but another negative control 

sample could have been chosen. For instance, liposomes encapsulating LBS only, or 

artificial cells carrying the same genetic construct as functional artificial cells but 

lacking an essential component of the transcription or translation machinery. In any of 

those cases, each comparison with respect to our functional artificial cells would have 

likely given a different number of genes that were differently expressed and therefore 

would have given another value for the estimation for V. fischeri likeness. Therefore, it 

is important to interpret the data in the context of the specific controls used in the 

experiment. 39% did not indicate that functional artificial cells were 39% identical to V. 

fischeri, but instead indicated in a relative way that functional AC were more V. fischeri 

like than the nonfunctional artificial cells. Moreover, if another arbitrary system would 

have randomly induced the same number of differently expressed genes as the 

functional artificial cells, the arbitrary system would have been considered as V. 

fischeri-like as functional artificial cells. This might be considered as subjective 

evaluation of likeness. However, we have to contextualize the data in the frame of an 

imitation game where functional artificial cells are intended to mimic V. fischeri while 

nonfunctional artificial cells are not and where V. fischeri is conceptually interrogating 

itself, functional artificial cells and nonfunctional artificial cells. In our method, the self-

comparison sample (V. fischeri interrogating itself) is the key and a more objective 

reference to compare with. The importance of this work lies in the fact that the natural 

cell is directly evaluating the performance of both artificial systems with respect to itself 

by differently expressing different number of genes. The number of differently 

expressed genes induced by functional or nonfunctional artificial cells were 107 and 

175 respectively. This data indicated that functional artificial cells that were specifically 

intended to mimic quorum sensing communication were considered more similar to 
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bacteria because the induced number of differently expressed genes was lower. This 

method is then a more direct and objective way of assessing cell-likeness because 

these numbers resulted from the direct comparison respect to the target natural cell to 

be mimicked. 

 

Consideration on the cellular imitation game 
 

In the original imitation game or Turing test, one human is intended to interrogate one 

computer and both human and computer are supposed to be physically separated to 

avoid any direct recognition. In the type of cellular imitation game that we have 

implemented, a culture of V. fischeri was in direct contact with many artificial cells. In 

the latter case, the observed effect was the result of the average chemical 

communication that took place in each sample. To test the individual activity of artificial 

cells, artificial cells made by hydrodynamic flow focusing (55) could be mixed with 

natural cells within a microfluidic device. With the current technology it is possible to 

build microfluidic chips with the design and geometry of interest. Two parallel arrays 

of micro-chambers connected by a semipermeable membrane would be ideal for 

chemical communication. With hydrodynamic cell isolation array techniques (56), it 

would also be possible to trap in each micro-chamber, either one artificial or one 

natural cell. Before natural cells start dividing, cells should be collected, their RNA 

extracted and subjected for analysis to bacterial single cell RNA-seq (57). Using these 

technologies, it would be also possible to assess the variability in response among 

natural cells since it is well known that bacteria are rarely 100 % identical. Improved 

versions of functional cells with a compartment that better mimics the compartment of 

natural cells could help in gaining a better understanding of other types of 

communications since communication might not only involve the sensing and release 

of chemical signaling molecules. Physical recognition by direct contact might also play 

a role in the way natural cells communicate. In the future other potential imitation 

games could be implemented. For example, artificial cells that mimic the light organ 

environment of the squid or the fish with which V. fischeri are typically found in 

symbiosis. Or conversely, artificial cells capable of colonizing. A similar method as 

proposed in this chapter to measure progress can be used for those case since 

transcriptome analysis of V. fischeri over the different stages of the colonization of the 

light organ have been conducted and reported in literature (58). Other types of 
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imitation games that test for other properties of living cells will only be possible to 

implement in the future if we will find the way to observe and quantify the natural cell 

assessment of the artificial system. 

 

 

Improving artificial cells for chemical communication with V. fischeri 
 

Several aspects can be taken into consideration to improve artificial cells capable of 

chemically communicating with V. fischeri. If liposomes can be made that better mimic 

the V. ficheri cell wall and membrane composition, first, the robustness and stability of 

the artificial cells would improve, second, the diffusion of homoserine lactones across 

the artificial cell membranes would take place in a more similar and reliable way and 

third, other types of communication relying on physical interactions could take place. 

To better mimic the production levels of homoserine lactones in the presence of 

bacteria, genetic constructs can be fine-tuned to produce similar levels. In this regard, 

simply by changing the promoter sequence of the genetic construct responsive to 

3OC6 HSL was enough to activate the expression of the fluorescent reporter gene at 

different levels. (Supplementary Figure 11 and Supplementary Table 3). Artificial cells 

carrying more complex genetic circuits including for example the whole lux operon or 

even the complete quorum sensing pathway would allow for a more complete and 

natural response in the presence of homoserine lactones. Moreover, artificial cells with 

the ability to replicate their genetic content and divide would be able to engage in 

chemical communication for longer periods of time but the risk exists that such artificial 

cells could evolve and lose their functionality. 

 

Here we have proposed an objective method to quantify the life-likeness of artificial 

cells respect to a target natural cell by analyzing the response of the natural cell in the 

presence of the artificial cell. The artificial cells presented in this chapter were not 

perfect and leave much room for improvement but we hope to have built the 

foundations that will pave the way to guide the construction of artificial cells that will 

better display the features and properties of living cells. 
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Chapter 2: Cellular mimics inside non-equilibrium, open 
thermophoretic chambers. 
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INTRODUCTION 
 

 

Cell membranes 
 

Extant living cells, from a simplistic point of view, can be described as compartments 

containing a crowded mixture of DNA, RNA and protein. DNA contains the genetic 

information that codes for proteins through the intermediary messenger RNA. Proteins, 

in turn, catalyze cellular metabolic reactions, including the synthesis of RNA and 

proteins, that allows the cell to adapt to the environment, persist over time, and grow 

and divide. Importantly, the content of the cell is separated from the environment and 

is confined to a defined space by a lipid membrane. Compartmentalization allows, for 

example, for cellular evolution to take place by maintaining a link between the 

genotype (DNA) and the phenotype (the activity of the cell mediated by encoded 

proteins and RNAs). Confinement within compartments also facilitates interactions 

among the components of the cell and provides a spatial organization that favors flux 

down specific pathways. Moreover, cell membranes contain a large percentage of 

proteins that are responsible, in part, for converting metabolic activity into 

concentration gradients that are then used to fuel the cell. For example, the lipid 

compartment controls the passive and active transport of ions and molecular 

feedstocks leading to the generation of electrochemical gradients that can be used to 

drive the synthesis of ATP. In other words, lipid membranes are essential to keeping 

cells alive, i.e. in a state of thermodynamic disequilibrium. Although concentration 

gradients across lipid membranes is how life as we know it operates, in theory, it 

should be possible to generate similar disequilibrium states in the absence of a 

physical membrane. 

 

Thermophoresis 
 

Thermophoresis, sometimes referred to as thermal diffusion or the Soret effect, is a 

physical phenomenon that can be described as the directed movement of particles 

induced by a temperature gradient. The thermophoretic velocity “v” of particles in a 

fluid, v=−ST D ∇ T, is directly proportional to the thermal gradient “∇ T,” the diffusion 

coefficient “D” and the Soret coefficient “ST” (59). The Soret coefficient, in turns, 
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depends on the surface charge, the hydration shell, and the size of the molecule (60, 

61).  Molecules with a positive Soret coefficient that are dissolved in aqueous solution 

and are located within a chamber are driven by thermophoresis from the hot to the 

cold region of a thermal gradient. Additionally, temperature differences generate 

thermal convective flows resulting from density changes. Within the hot region, the 

liquid expands and moves upwards while in the cold region the liquid contracts and 

moves downwards. Combined, both phenomena result in an accumulation of 

molecules at the bottom, colder side of the chamber until a steady state of 

thermodiffusion and counteracting Brownian diffusion is reached (Figure 1). This 

accumulation of molecules is also known as thermal trapping. In the past decade, 

thermophoresis coupled with convective fluid flow was used to amplify DNA by PCR 

and to selectively accumulate oligonucleotides (62). Similarly, molecules of fatty acids 

were accumulated and self-assembled into vesicles within a chamber with an applied 

thermal gradient (63), and the partitioning of charged molecules was shown to 

generate a pH gradient (64). Thermophoresis alone has even been developed as a 

commercial technology to measure binding affinities between biomolecules (65). 

However, all of these examples exploited relatively simple mixtures of molecules. What 

is unclear is whether vastly different molecules can be accumulated together into a 

functioning system. 

 

                

Figure 1. Thermophoresis and convection drive the accumulation of molecules. In the presence 

of a thermal gradient (∇T) across a chamber, thermophoresis transports molecules with a positive Soret 

coefficient from the hot to the cold side, while convective flows move molecules vertically. The 

combination of both effects results in the accumulation of molecules in the corner of the cold side of the 

chamber. Arrows indicate the direction of the movement of the molecules inside the chamber. 
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Cellular mimics in out-of-equilibrium conditions 
 

The construction of cellular mimics is intended to provide a deeper understanding of 

how living cells work by reconstituting the cellular functions and properties from their 

component parts. As presented in the first chapter, this approach has typically relied 

upon vesicles composed of natural lipids or synthetic amphiphiles that form structures 

similar to biological membranes encapsulating the biological components needed to 

confer upon the artificial cells the ability to mimic specific cellular functions. Here, we 

chose to begin building a cellular mimic that possesses some of the functionalities of 

a lipid membrane without containing a physical barrier at all. Instead, convection and 

thermophoresis are used to compile the cellular components in the absence of lipids 

and to generate a disequilibrium state reminiscent of natural living cells. To build such 

an artificial system, a microfluidic chamber was designed, built, and subjected to a 

thermal gradient in order to accumulate the hundreds of components needed to 

reconstitute transcription and translation from a diluted extract of E. coli.  In this chapter, 

preliminary experiments are shown that suggest that in the presence of a thermal 

gradient the components of an E. coli extract accumulate in confined and defined 

spaces at the air-water interphase where transcription and translation were shown to 

likely work. The feasibility of reconstituting complex cellular mimics under out-of-

equilibrium conditions driven by thermal gradients is explored and discussed. 
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Figure 1. Schematic representation of the accumulation of the components of a cell-free extract 
by thermophoresis and convection. Upon accumulation of DNA and the transcription and translation 
machinery, RNA and protein synthesis are localized to a confined and defined space without the need 
of a membrane compartment. The disequilibrium state is generated by a thermal gradient applied 
across the chamber. Blue double helix structures represent DNA, the purple hexagons represent RNA 
polymerase, the black clover-like structures represent tRNA, red filaments represent mRNA transcripts, 
chains of green circles represent nascent protein, and ribosomes are represented in yellow.  
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RESULTS 
 

To assess whether complex reactions, such those mediated by transcription and 

translation, could be reconstituted in a manner dependent upon convection and 

thermophoresis, a crude cell extract providing the transcription and translation 

machinery of E. coli supplemented with DNA coding for a fluorescent protein were 

loaded inside of a microfluidic container referred to as thermophoretic chamber. In 

other words, the goal was to have a solution that was too dilute to support transcription-

translation in the absence of a thermal gradient. Then, due to convection and 

thermophoresis, the molecular components needed to support transcription and 

translation would accumulate within the same region of the thermophoretic chamber 

when the thermal gradient was established, thus leading to the onset of activity. The 

assessment of the activity of the system was by fluorescence, as both the synthesized 

RNA and protein led to fluorescence in the described system. 

 

Cell-free extract 
 

To mimic the internal content of the cell we decided to use a crude cell extract from E. 

coli. The preparation of the cell extract included the following steps. First, E. coli cells 

were cultured under aerobic conditions to mid-exponential phase. Then the cells were 

harvested and lysed, membranes and debris were removed by centrifugation and the 

endogenous nucleic acids were digested by the endonucleases present in the lysate. 

The lysate, composed mainly of ribosomes and proteins, was subsequently dialyzed 

to remove metabolic waste products. After dialysis, the cell-extract was ready to use 

or to be stored at -80 ⁰C by the flash freezing of aliquots (Figure 1). The cell extract 

provided the endogenous transcription and translation machinery of E. coli. However, 

to function in vitro the extract needed to be supplemented with tRNAs, the 20 canonical 

amino acids and the ribonucleotide triphosphates required for the synthesis of RNA 

and protein, which were lost during dialysis. The cell extract was typically also 

supplemented with other additives that helped the efficiency of in vitro transcription 

and translation, such as salts, crowding agents and components needed to regenerate 

ATP (Figure 2 and material and methods). To assess the activity of the cell-free extract, 

a genetic construct was built that coded for a monomeric A206K Ypet fluorescent 
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protein under the control of a constitutive promoter (Tac). We chose Ypet because of 

the high brightness and photostability of the protein (66, 67). To monitor transcription, 

three malachite green aptamers were cloned inside of a pRNA-3WJ motif (68) at the 

3’ UTR of the coding sequence of Ypet. The pRNA-3WJ is an RNA motif composed of 

three interspaced interacting 18 nt fragments that fold in a three-way junction ultra-

structure and that can accommodate the insertion and proper folding of other RNA 

sequences of interest. One malachite green aptamer was cloned per junction. The 

detection of the RNA transcripts occurred upon the binding of malachite green to the 

malachite green aptamers.  

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 2. Homemade cell-free extract and in vitro transcription translation reactions. Top: 
Schematic representation of the main steps for the preparation of an E. coli cell-free extract. Bottom: 
Schematic diagram showing the genetic construct used for the experiments of this chapter. The DNA 
codes for A206K Ypet, a monomeric version of the Ypet fluorescent protein. Three malachite green 
aptamers were cloned downstream of the Ypet coding sequence to allow for the monitoring of RNA 
synthesis upon the addition of malachite green. 

 

 

 

Thermophoretic chamber 
 
The thermophoretic chamber was composed of various material parts (Figure 3). The 

shape and thickness of the chamber were determined by the thickness and the 

geometry of the Teflon, fluorinated ethylene propylene (FEP) foil 6), which was cut with 

a 2D plotting cutter (material and methods). The chamber was placed between two 

heat-conductive materials, that is, a silicon wafer 5) on one side and a sapphire block 
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(14 x 30 mm) 7) on the other side. Both materials contained flat surfaces that provide 

a homogenous distribution of heat over the entire surface. Moreover, the sapphire 

block was transparent, which allowed for the monitoring of fluorescence. To complete 

the assembly of the thermophoretic chamber (Figure 3), the silicon wafer was placed 

and glued with thermal paste on top of a copper block 8). Copper is known for its high 

heat capacity so that the chamber could be kept on ice or at 4 ºC to avoid any potential 

activity of the cell-free extract prior to starting the experiment. A copper holder for the 

heat resistors 3) was placed and glued on top of the sapphire block with thermal paste. 

A steel mounting support 4) held the whole structure of the chamber together with 

plastic screws. PFTE poly(tetrafluoroethylene) Teflon tubing 2) was used to load the 

cell-free reaction inside the thermophoretic chamber. Teflon was chosen since this 

material is inert and thus minimizes possible unwanted interactions between the 

components of the cell extract and the tubing. The inner diameter of the tubing was 

0.18 mm, which minimized the dead volume. 

 

                              

                

Figure 3. Thermophoretic chamber. Top left, Parts of a thermophoretic chamber. 1.plastic screws, 2. 
Teflon PTFE (Polytetrafluoroethylene) tubing, 3. Copper holder for heater resistors, 4. Steel mounting 
support, 5. Silicon wafer, 6. Teflon FEP (fluorinated ethylene propylene) with the trap geometry of 
interest, 7. Sapphire and 8. Copper block. Top right: Teflon geometry on top of a silicon wafer. Bottom 
left:  schematic representation of the assembly of the different parts of a thermophoretic chamber. 
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Bottom right: profile view of an assembled thermophoretic chamber.  

 

 

The dimensions of the trap were (11.2 x 21.2 mm) (Figure 4). The reasoning behind 

the trap geometry was to optimize the loading process by avoiding the formation of 

bubbles that could eventually alter the continuity of the thermal gradient and thus alter 

the accumulation of the transcription-translation machinery. Another trap geometry 

was also designed to maximize the amount of oxygen available for the maturation of 

the chromophore of the fluorescent protein. The posttranslational formation of the 

chromophore of GFP and GFP related fluorescent proteins, as in the case of A206K 

Ypet, requires molecular oxygen. More specifically, the polypeptide backbone of the 

protein has to undergo folding, the cyclization of side-chains, oxidation and 

dehydration. Without the oxidation and dehydration steps, the conjugate double bonds 

of the chromophore cannot be formed (69). Several notches (indentations) were 

included to create small oxygen reservoirs at the bottom of the chamber (Figure 4). 

Upon loading, water could not go inside the notches because of the surface tension at 

the interphase with the air.  

 

                                

Figure 4. Thermophoretic chamber geometries. Left, regular geometry. Right, geometry containing 

small indentations at the bottom to create oxygen reservoirs. White area corresponds to the geometry 

of the thermophoretic chamber while the black area indicates Teflon.  

 

 

 

 

 

 

 



73 

 

 

Setup 
 

The custom-built setup (Figure 5) was composed of a metallic multi-support for the 

thermophoretic chambers, a microscope and software. The microscope was equipped 

with a 4x objective, a CCD camera and two light emitting diodes (470/625 nm) that 

allowed for the monitoring of the fluorescence of Ypet and malachite green. The 

microscope was mounted on top of a motorized stage (attached to the multi-support) 

and controlled by three-step motors that could be moved in three dimensions. This 

setup allowed for the acquisition of fluorescence at multiple positions of the 

thermophoretic chamber. The metallic multi-support could hold up to 10 trap chambers. 

Each chamber support was composed of a metallic magnet that held the chamber in 

a fixed position, and the chamber was directly connected to a thermal bath with water 

filled tubes.  

 

                          

Figure 5. schematic representation of the custom-built set up to monitor de fluorescence coming 
from the thermophoretic chamber. The set up includes a microscope and a multi-support for the 

thermophoretic chambers and a computer that controls the data acquisition. 
 

 

The LabVIEW-based software allowed for the sequential read-out of fluorescence at 

specific selected positions of multiple thermophoretic chambers (Figure 6). To create 

a thermal gradient inside the chamber, the cold temperature was set manually with a 

heat bath, while the hot temperature was set via the software that controlled the 

resistor’s temperature.  
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Figure 6. User interface of the LabVIEW software. The software allows for data acquisition and 
contains the following implementations: 1- Real time control (black rectangles). Allows the visualization 
in real time of the position of the microscope (1), the temperature of the heat resistors for the current 
trap (3) or for all the traps belonging to the same workflow (3’), the camera image (2) and the acquired 
fluorescence signal from the current trap (4) or all the traps belonging to the same workflow (4’). 2- 
Workflow settings (red rectangles). Allows the setting of the workflow parameters. Selection of the 
positions inside the chamber to be acquired (1), temperature at the resistors (2), which exposition time 
and LED to use (3), how many acquisitions per chamber (4), camera trigger, overall time course 
(duration) of the experiment (3). 
 

 

Thermal accumulation experiments 
 

Before starting the accumulation experiments, transcription and translation reactions, 

hereafter referred to as (TX/TL), were assembled and supplemented with DNA coding 

for Ypet and malachite green aptamers. TX/TL reactions were run in test tubes at 

different temperatures ranging from 20 to 45 ⁰C. According to the fluorescence arising 

from the reactions over 8 h, the working temperature range was from 25-40 ⁰C with a 

maximum of protein and RNA production observed in the range of 28-31 ⁰C (Figure 7). 

This data indicated the maximal temperature gradient that could be applied to the 

thermophoretic chamber that did not impair substantially the efficiency of the TX/TL 

reactions. 
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Figure 7. Working temperature range of in vitro TX/TL reactions. The activity of TX/TL reactions 
from an E. coli homemade extract supplemented with malachite green and a genetic construct coding 
for Ypet and three malachite green aptamers was checked at different temperatures. Fluorescence was 
monitored with the appropriate channels using a qTower3 thermal cycler. Protein production is shown 
in green and the levels of mRNA are shown in red. 

 

 

To assess whether the components of the cell-free extract and the DNA could 

accumulate and still function to produce RNA and protein inside the thermophoretic 

chamber, a cell-free TX/TL reaction was assembled containing the genetic construct 

encoding Ypet followed by three malachite green aptamers. The solution was loaded 

inside a 250 µm chamber and a temperature gradient of ~ 10 ⁰C (28 ⁰C cold side/ 38 

⁰C hot side) was applied. RNA and protein expression were monitored over 2.5 h at 5 

different positions of the chamber (Figure 8). 

 

   
Figure 8. RNA and protein expression inside a thermophoretic chamber subjected to a 
temperature gradient. Shown are frames selected at the indicated time points over the experiment. 
Each frame is composed of 5 different subframes that correspond to 5 different positions of the 
thermophoretic chamber (highlighted in red). The temperature gradient was ~10 °C.  
 

 
Fluorescence arising from the malachite green aptamers within the mRNA was rapidly 

detected all over the chamber (Supplementary movie 1 and 2). The intensity of the 

signal began to decrease at the top of the chamber after 1 h and after 1.5 h aggregate-

like structures were observed at the bottom of the chamber, potentially indicating a 

slight accumulation of synthesized RNA. Conversely, the fluorescence signal of Ypet 
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only slightly increased over time. A lack of fluorescence in this case did not necessarily 

indicate a lack of protein expression. As explained above, molecular oxygen was 

required for the maturation of Ypet. Therefore, the concentration of oxygen present in 

the cell-free reaction solution might not have been enough to support the formation of 

the chromophore. Similarly, previous reports have observed that protein synthesis 

correlated with  oxygen availability in TX/TL reactions (70, 71). To confirm that protein 

expression could take place inside the thermophoretic chamber, the experiment was 

repeated with the same batch of cell-free extract and genetic construct. However, for 

this test a thermophoretic chamber of the same thickness, i.e. 250 μm, was built that 

contained a slightly modified geometry that included several notches to facilitate the 

formation of small air/oxygen reservoirs at the bottom of the chamber. In this way, if 

Ypet was produced and was properly folded, then the chromophore would form due to 

the presence of oxygen. The thermophoretic chamber was subjected to a temperature 

gradient of ~10 ⁰C (28 ⁰C cold site/ 38 ⁰C hot site). Fluorescence was monitored for 20 

h (Figure 9) at the same positions described above. The data revealed fluorescence 

arising from both Ypet and RNA but only at the air-water interphase at the rim of the 

notches (Figure 9 and supplementary movie 3 and 4).  

 

                               

        

Figure 9. Accumulation kinetics of RNA and protein inside a thermophoretic chamber containing 
multiple air-water interphases. Selected acquired frames at the indicated time points showed the 
accumulation of RNA and protein at the air-water interphase. The temperature gradient was ~10 ⁰C. 
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Interestingly, over time at the air-water interphase bubble like structures were growing 

inwards. The fluorescence signals from both RNA and protein were co-localized within 

the “growing” bubbles. The same effect was observed when the experiment was 

repeated under the same conditions with a temperature gradient of ~5 ⁰C (28 ⁰C cold 

side/ 33 ⁰C hot side) (Figure 10). 

 

                

 

Figure 10. Accumulation kinetics of RNA and protein inside a chamber containing multiple air-
water interphases. Selected acquired frames at the indicated time points show the accumulation of 
RNA and protein at the air-water interphase. The temperature gradient was ~5 ⁰C. 
 
 

After the experiment concluded, the chamber containing the air bubbles was 

photographed. A remarkable white precipitate could be observed at the air-water 

interphase, likely indicating a strong accumulation of protein, RNA and the 

components of the cell extract (Figure 11). 
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Figure 11: left, photograph of a thermophoretic chamber containing a cell-free TX/TL solution and DNA 

after being subjected to temperature gradient of 10 ⁰C for 20 h. Right, magnification of the bottom of the 

chamber at the air-cell-free extract interphase. 

 

 

The observed accumulation of RNA and protein at the air-water interphase did not 

seem to depend on thermophoresis. The Braun group has also observed a strong 

accumulation of DNA at air-water interphases inside similar thermophoretic chambers 

(manuscript in preparation by Morash et al.). Simulations have been conducted that 

indicated that the thermal gradient applied to the thermophoretic chamber generates 

a convective flow that transports molecules to the air-water interphase. The 

temperature gradient also induced a surface tension gradient along the air-water 

interphase generating a fluid motion from low surface tension (hot side) to high surface 

tension (cold side) regions. This phenomenon is known as thermo-capillary convection 

or the Marangoni effect. However, a key point is that water evaporates at the hot side 

of the chamber and condenses at the cold side. This creates strong local flows that 

overcome Marangoni and convection flows at the meniscus, allowing the 

concentration of molecules at the air-water interphase at the hot side of the chamber 

(Figure 12). 
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Figure 12: Schematic explanatory diagram of the accumulation inside the thermophoretic 

chamber. Yellow circles represent the accumulated molecule. Red arrow indicates the direction of 

accumulation of molecules induced by a strong flow that opposes Marangoni and convection effects.  

 

 

The inefficient accumulation of the components of the E. coli cell extract observed with 

the thermophoretic chambers without notches were also confirmed by COMSOL 

simulations. The simulations screened the accumulation of DNA oligonucleotides of 

different lengths (1, 50, 100, 150, 200 bp) in chambers with different thicknesses in 

the range of 50-500 µm with the same volume and geometry as the chambers used 

for the experiments shown earlier and subjected to a temperature gradient of ~10 ⁰C. 

The COMSOL simulations indicated that 100 µm was the optimal thickness for favoring 

the highest accumulation after either 2 h or after reaching steady state (Figure 13). 

For a 250 µm chamber instead, the accumulation was one or several orders of 

magnitude lower at 2 h or at steady state, respectively. These data suggest that 

thermophoresis and convection for chambers thicker than 100 µm cannot enrich more 

than 10-fold. This is in agreement with the fact that the thicker the chamber, assuming 

the same temperature difference at both ends, the less steep the thermal gradient is, 

which leads to lower thermophoretic mobility. 
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Figure 13. Simulations of the accumulation of different DNA oligonucleotide lengths in chambers 

of different thicknesses. Accumulation shown after 2 h (left) or after reaching steady state (right) within 

a thermal gradient of 10 ⁰C. 
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SUPPLEMENTARY FIGURES 
 

 

                                      

Supplementary Figure 2. The effect of dilution and crowding agents on RNA and protein 
synthesis in cell-free TX/TL reactions in batch mode. DNA encoding Ypet and three malachite green 
aptamers allows for the monitoring of the production of Ypet fluorescent protein and RNA upon addition 
of malachite green. Cell-free reactions were conducted at 33 ºC in batch mode. Non-diluted samples 
(a,a’) or samples either diluted 1:1 (volume ratio) (c,c’) or 1:2 (volume ratio)(d,d’) with water. Samples 
(b,b’) did not contain PEG-8000, while samples (e,e’) were the non-DNA template controls.  
 

 

 
 
Supplementary Figure 3. Recovery of activity of an E. coli cell extract after lyophilization and 
rehydration. To show, as a proof of concept, that a diluted nonfunctional extract can be made active 
again upon concentration, TX/TL reactions were assembled and supplemented with DNA coding for 
A206K Ypet under a constitutive T7 transcriptional promoter. The reaction was either non-diluted or 
diluted in a 1:1, 1:2, 1:3, 1:4 volume ratios with water. Fluorescence arising from the reactions was 
acquired for 1.5 h. Then samples were flash-frozen and lyophilized with a Genevac evaporator EZ-
2elite set for aqueous solvents until complete dryness. The sample pellets were rehydrated with water 
up to the initial volume before dilution to give a 1x concentration and fluorescence was acquired again 
with the appropriate channels using a qTower 3 thermal cycle 
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Supplementary Figure 4. COMSOL simulations showing the accumulation of a 100 bp DNA 
oligonucleotide inside of a thermophoretic chamber with homogenous 100 µM thickness or inside of 
differently titled thermophoretic chambers (100-300, 100-500, 100-700, 100-900 and 100-1100 µM). 
DNA is shown to accumulate 1000-fold more in a titled chamber with a gradient of thickness. The 
temperature gradient was set to 10 ⁰C. 
 

 

         

Supplementary Figure 5. High precision optical micrometer used to measure the thickness of 

the thermophoretic chambers. Left: The chamber is placed on top of a stage between an LED and a 

CMOS sensor. The stage can be manually controlled in the x and z- axis to position the chamber in the 
appropriate position to allow for thickness measuring. Transmitted green light passing through the 
chamber is detected by a sensor. Right: the device is connected to a computer that displays the 
chamber image. The sensor detects the position of the edges between light and dark edges and 
calculate the distances. 
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Supplementary Figure 6. Example of 3D printed thermophoretic chamber. PLA was used to print 
the geometry of the chamber on top of a silicon wafer while two parallel lignine spacers were printed 
next to determine the thickness of the chamber. 

 
 

 

                        

Supplementary Figure 7. Descriptive pictures for the printing of a resin-based thermophoretic 
chamber. Left: example of a 2D geometry mask design printed in a transparent foil. Middle: shown is 
the homemade 64 LED array printing device. Right: resin geometry printed directly on top of a silicon 
wafer. 

 
 

 

             

Supplementary Figure 8.  Left: RNA fluorescence signal distributes homogenously inside a Teflon-
based thermophoretic chamber. Right: RNA fluorescence signal inside a resin-based thermophoretic 
chamber was detected at the border and in contact with the resin surface. 

 

 

 



84 

 

 

SUPPLEMENTARY TABLES 
 

Chamber 

version 

Printing 

device 

Thickness Material Main 

advantages 

Main 

Disadvantages 

1.0 3D printer Lignine 

spacer 

PLA and 

PC 

biocompatible leakage 

2.0 LED array Steel 

spacer 

Flexible 

resin 

Fast building Extract 

interaction 

3.0 No Teflon foil Teflon FEP Chemically 

inert 

 

No tilting trap 

Supplementary Table 1. Thermophoretic chamber versions built with different methods for the 
accumulation experiments. 
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MATERIAL AND METHODS 

 

E. coli homemade cell extract 
 

E. coli Rosetta 2(DE3), provided by Prof. Friedrich C. Simmel, was grown from a 10% 

glycerol stock in 2xYTP media supplemented with 40 mM K2HPO4, 22 mM KH2PO4, 

and 34 µg/mL of chloramphenicol for 15 h at 37 °C, 220 rpm. The culture was diluted 

to OD600 nm = 0.01, and isopropyl-β-D-1-thiogalactopyranoside (IPTG) was added to a 

final concentration of 0.1 mM to induce the expression of the T7 RNA polymerase. In 

this way, the cell extract could also be used with T7 transcriptional promoter containing 

plasmids. The culture was then incubated for 3.5 h at 37 °C, 220 rpm. Flask volume 

to the cell culture volume was always kept at a ratio 5:1. Cells were harvested at 6,000 

xg for 10 min at 4 °C. Starting from the bacterial pellet, the S30 extract was prepared 

following Noireaux’s protocol (72) with some exceptions. For simplicity, only the main 

steps are described. The cell pellet was washed twice in S30 A buffer (14 mM Mg-

glutamate, 60 mM K-glutamate, 50 mM Tris, 2 mM DTT buffered with glacial acetic 

acid to pH 7.7). Bacterial cells were lysed with ~ 0.1 mm Ø glass beads using the 

Fastprep-24 homogenizer (MP) in place of the Mini-Beadbeater-1 (BioSpec) in two 

rounds of 1 min at 6.5 m/s with an interval of 5 min incubation on ice. To discard lipid 

membranes and cellular debris, the cell extract was centrifuged at 12000 xg for 10 min 

at 4 ⁰C. Remaining nucleic acids in the cell extract were digested by endogenous 

nucleases for 80 min at 37 ⁰C 220rpm. Then the cell extract was dialyzed at 4 ⁰C for 3 

h against 180 volumes of S30 B buffer (14 mM Mg-glutamate, 60 mM K-glutamate, 1 

mM DTT buffered to pH 8.2 with 2M Tris). For the dialysis step, SnakeSkinTM Dialysis 

Tubing (Thermo Fisher Scientific) was used in place of Slide-A-Lyzer dialysis 

cassettes. The S30 Crude Extract final solution was aliquoted, flash-frozen and stored 

at -80 ⁰C as 3x concentrated stock. The S30 energy solution was prepared as 14x 

concentrated stock and contained: HEPES pH 8 700 mM, ATP 21 mM, GTP 21 mM, 

CTP 12.6 mM, UTP 12.6 mM, tRNA 2.8 mg/mL, CoA 3.64 mM, NAD 4.62 mM, cAMP 

10.5 mM, folinic acid 0.95 mM, spermidine 14 mM and 3-PGA 420 mM. The amino 

acid solution contained the 20 canonical amino acids at equimolar concentration, was 

adjusted to pH 7.86 with glacial acetic acid and was prepared according to Noireaux’s 

indications (73). The S30 in vitro transcription translation reaction used for the 



86 

 

experiments contained: 1x S30 Crude Extract, 1.5 mM of each amino acid, 1x energy 

solution, 12 mM maltose, 7.5 mM Mg-glutamate, 2% (w/v) polyethylene glycol (PEG) 

8000, 50 µM Malachite green and 10 nM plasmid DNA template. The working 

concentrations of maltose, Mg-glutamate and Malachite green were calibrated. 

Maltose was used to prolong the functionality of the TX/TL reactions for longer periods 

of time since it allows the inorganic phosphate recycling and ATP regeneration (71). 

Mg glutamate is essential for TX/TL functionality, Mg2+ ions participate in transcription 

elongation (74), translation initiation (75) and maintain the structure of the ribosomes 

(76). If Mg glutamate was not added, no RNA or protein synthesis was observed. 

 

Uninterrupted bacterial cell growth was of fundamental importance for achieving a 

good working extract. Initially, Noireaux’s protocol was strictly followed (72). The 

bacterial growth consisted in an initial overnight incubation at 37 ⁰C of E. coli 

Rosetta2(DE3) streaked on 2xYTP agar plates, one colony was then inoculated in 4 

mL of 2xYTP and incubated for 8 h (37 ⁰C 220 rpm), an aliquot was diluted 50x in 50 

mL 2xYTP and incubated for 8 h (37 ⁰C, 220 rpm), subsequently an aliquot was diluted 

100x into 660mL of 2xYTP and incubated for 3-3.5 h at 37 ⁰C, 220 rpm).  Many trials 

following that protocol failed to provide a good working extract because bacterial 

growth was interrupted several times to monitor OD600. Interruption of cell growth 

increased the doubling time. Therefore, cells were never collected at doubling times ≤ 

30 min or corresponding to exponential phase. Different conditions to try to improve 

the performance of the extract were tried, including growing cells in 2xYTP 

supplemented with 2.5% maltose, collecting cells at different time point during the 

growth curves   and preparing the cell extract without the dialysis step. None of the 

trials gave extract that worked as well as from the procedure described above. 

 

Cutting the geometry of the thermophoretic chamber 
 
The geometry of interest was cut directly on the Teflon foil with the Graphtec ce6000-

40 computer-controlled 2D cutting plotter. The software recognizes the geometry and 

the cutter cuts it precisely along the path. The thickness of the thermophoretic chamber 

was determined by the thickness of the Teflon foil. 
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Thickness measurement of the thermophoretic chamber 
 
After the complete assembly of the thermophoretic chambers, the thicknesses of the 

chambers were measured with a LS-9501P Keyence device. It is a high-precision 

optical micrometer equipped with a complementary metal oxide semiconductor 

(CMOS) sensor and a high-intensity green LED. The thermophoretic chamber is 

placed in between the sensor and the LED on top of a stage. The green light is emitted 

as a uniform collimated beam that goes through the chamber and the CMOS sensor 

detects the position of the edge between light and dark edges of the transmitted light 

and calculates measured values (Supplementary Figure 5). The measurement 

accuracy is of ±0.5µm.  

 

Temperature measurement inside the thermophoretic chamber  
 

Despite the good heat conductivity properties of the materials used to assemble the 

thermophoretic chamber, heat is not transferred completely from one material to 

another. Consequently, if two different temperatures are applied at both ends of the 

thermophoretic chamber (cooper parts), the temperature at the silicon and at the 

sapphire will not be the same because the temperature gradient will distribute over the 

different materials composing the chamber. To estimate the temperature inside the 

thermophoretic chamber, the fluorescent dye 2′,7′-Bis-(2-carboxyethyl)-5(6)-

carboxyfluorescein (BCECF) in combination with Tris buffer were used. Tris is known 

to have temperature dependent pKa values, when the temperature varies the pka value 

of Tris changes and modifies the pH of the solution accordingly. BCECF in turn, is a 

pH sensitive ratiometric dye. A calibration curve was obtained by plotting and fitting 

the BCECF ratio (420/470 nm) data values obtained for different temperatures. First, 

different temperatures were set manually in the thermal bath, the temperature was 

then measured with a thermistor directly on the surface of the silicon wafer to have a 

more precise correlation between BCECF fluorescent signal and temperature. This 

method was also used to assess the average temperature inside the thermophoretic 

chamber when a thermal gradient was applied by comparing the expected values of 

BCECF from the cold and hot set temperatures and calculating the offset (difference) 

with the real values obtained. 
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Labview software for data acquisition analysis 

 

A labview software was programmed to analyze and plot the fluorescent data acquired 

by the setup. The software allows the visualization of the acquired frames and 

computes the average pixel intensity of a selected region of interest (ROI). To show 

the fold intensity over time, the average pixel intensity of each selected ROI is divided 

by the average pixel intensity of the same ROI of the first acquired frame. To subtract 

background noise of the thermophoretic chamber or the background noise of the CCD 

camera, normalization against a water filled chamber or with LED switched off can be 

also performed. The software allows for the analysis and plotting of multiple ROI per 

thermophoretic chamber positions and will be used for future experiments. 

 

Finite element simulations  
 
Simulations were performed with COMSOL, a discrete solver that was used to 

simulate the movement and the accumulation of DNA oligonucleotides of different 

lengths over time with a given series of parameters that included the thickness and 

geometry of the chamber, the temperature gradient and the Soret coefficient. For the 

simulation, the software first divides the total volume of the chamber into a 3D mesh 

of arbitrary small volumes. Then, for each volume COSMOL solves and finds the 

numerical solutions of Navier Stockes diffusion and thermophoresis equations that 

explains the movement of the particle within each volume. The simulations presented 

in the chapter show the accumulation of DNA oligonucleotides of different lengths in 

chambers of different thicknesses subjected to different temperature gradients. 

Included are also simulations inside titled thermophoretic chambers. 

 

Previous thermophoretic chambers 

 

A considerable amount of time was spent to optimize the thermophoretic chamber. We 

started building chambers by 3D printing the geometry on top of silicon wafers with 

biocompatible thermoplastics, such as polylactic acid (PLA) or polycarbonate (PC), 

using a Ultimaker2 3D printer. The thickness of the chamber was determined by two 

parallel lignine filaments that served as thickness spacers that were printed on the 
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sides of the chamber structure (Supplementary Figure 6). The disadvantages of this 

method were that the complete assembly of the chamber on average took around 90-

120 min, the top layer of the lignine spacers was not completely straight and from time 

to time there were irregularities in the surface causing leakage problems since the 

thermophoretic chambers could not be completely tightened (Supplementary Table 1). 

The next method we tried consisted of a black and white 2D geometry design that was 

printed on transparent foil that served as a printing mask. The printing device was a 

homemade 64 blue LED array with a microcontroller that controlled the exposure time 

of light. Two steel spacers of the selected thicknesses and a blue light photoactivatable 

resin (Photocentric 3D day light flexible resin) were added on top of the printing mask. 

Then a piece of silicon wafer was added on top. Upon irradiation with 475 nm light the 

resin was cured only in the transparent areas of the mask remaining attached to the 

silicon (Supplementary Figure 7). The thermophoretic chamber was then assembled 

as described in the main text. This method provided a faster assembly procedure. A 

thermophoretic chamber could be built in less than 30 min. However, a similar problem 

of leakage was encountered and furthermore, we have observed that RNA from TX/TL 

reactions interacted with the resin. While it was not the case for the Teflon-based 

thermophoretic chambers since Teflon is chemically inert (Supplementary Figure 8 and 

Supplementary Table 1).  
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SUMMARY 
 

 

The construction of cellular mimics has relied thus far on the compartmentalization of 

biological components in defined, self-assembled structures typically made of natural 

lipids or synthetic amphiphiles. Examples of alternative membrane-free cellular mimics 

have also been reported that exploited coacervation (77), aqueous two-phase systems 

(ATPS) (78) or microfluidic devices (79).These three systems have been shown to 

support cell-free transcription and translation reactions. However, in the 

aforementioned cases, the cellular mimics were typically confined within regions 

physically demarcated in some way. For example, confinement was to the aggregates 

that formed the coacervate droplets, the phase separated polymers, water-in-oil 

emulsion droplets or a microfluidic chip, respectively. Here instead, we have begun to 

build cellular mimics through themophoretic/convention-mediated confinement in an 

open microchamber.  

 

Our cellular mimics rely on transcription and translation machinery from an E. coli 

homemade cell extract supplemented with DNA coding for the fluorescent protein 

A206K Ypet and for RNA aptamers that could also be monitored by fluorescence. To 

mimic some of the functionalities provided by cellular compartmentalization (i.e. spatial 

localization and concentration) in the absence of a membrane defined compartment, 

the cell extract was loaded inside of 250 µm Teflon-based microchambers that were 

subjected to mild temperature gradients (~ 10 ⁰C). Thermal gradients, in this case, 

provided the disequilibrium conditions required to accumulate and concentrate the 

numerous components of the cell-extract by thermophoretic and convective flows. 

Preliminary results indicated that the RNA fluorescence signal was slightly more 

localized at the bottom of the chamber with respect to the top of the chamber, 

indicating an inefficient accumulation of the cell-extract components after 2 h 

incubation within the thermal gradient. Instead, the signal corresponding to A206K 

Ypet was poorly detected. The inefficient accumulation of RNA was confirmed by finite 

element simulations conducted under similar conditions as the wet lab experiments. 

The simulations indicated that 100 µm was the optimal thickness for accumulation of 

components by thermal trapping. When the same experiment was repeated inside of 

the same microchambers that also incorporated notches at the bottom to provide small 
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air reservoirs, a strong signal for both RNA and protein was only detected at the rim of 

the air-water interphase, likely indicating an efficient accumulation of RNA, matured 

protein and the components of the cell extract. The data likely reflect phenomena not 

dependent on thermophoresis but rather on the strong flows near the air-water 

interphase originating at the hotter regions of the chamber due to the evaporation of 

water. 

 

 

DISCUSSION AND PERSPECTIVES 
 

The goal of this project is to build cellular mimics that possess the functionality of cell 

membranes without actually possessing a physical barrier or compartment, i.e. without 

possessing a cell membrane. The presented preliminary data suggest that a thermal 

gradient might be sufficient to accumulate and concentrate the components of a cell 

extract in defined and localized regions in a way that can still interact and function in 

the absence of encapsulation. The next step is to reconstitute the activity of 

transcription and translation from a diluted and thus non-functional cell extract. RNA 

and protein synthesis from diluted TX/TL reactions in test tubes are considerably 

impaired (Supplementary Figure 1), but the activity can be recovered upon 

concentrating the TX/TL solutions (Supplementary Figure 2). E. coli transcription and 

translation machinery can also function outside of artificial compartments and can be 

used, for example, to characterize and test new genetic circuits. The main difference 

between an in vitro transcription and translation reaction that is unencapsulated in a 

test tube and the same reaction that is thermally trapped inside a microchamber is that 

in the latter case, the accumulated components are continuously kept under 

disequilibrium. However, unencapsulated reactions require the continuous addition of 

consumable components to allow for continuous gene expression. Thermal trapping 

may provide a continuous accumulation of large components, such as proteins, RNA 

and other factors, while small molecules and building blocks such amino acids, tRNA, 

nucleotides triphosphate are moderately accumulated or metabolic waste products 

can leave the trap by diffusion. We would like to build such a system that can be 

maintained in an out-of-equilibrium state as in the case of living cells. The 

accumulation of diluted biomolecules is also of interest from an origin of life 

perspective where the “concentration problem” is one of the problems scientists in the 
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field are facing. Reconstituting primitive cell-like systems with diluted prebiotically 

plausible molecules may provide a deeper knowledge on the series of transitions that 

took place from non-living matter to living cells.   

 

From a technical point of view, we are still in the process of improving the 

thermophoretic chambers used for the accumulation experiments. We plan to 

substitute the silicon wafer with a thin layer of Teflon foil. In this way, the chamber 

would be completely delimited by chemically inert material avoiding potential 

interactions with the cell extract and DNA. When we were conducting the first 

accumulation experiments, we did not have Teflon foils thinner than 250 µm. The 

strong accumulation of the components of the E. coli cell extract at the air-water 

interphase is an interesting phenomenon that can be used to accumulate different 

DNA constructs coding for different functionalities. With sufficient time, bubble-like 

structures will fuse and emerging new activities could be reconstituted through the 

cooperation of individually concentrated components (genetic circuits, for example, 

could be implemented in this way). However, we will also try to accumulate the 

components of the cell extract by thermophoresis and convection. We will build, with 

the same geometry, thermophoretic chambers of 100 µm to maximize accumulation, 

as the simulations indicated. To avoid accumulation at the air-water interphase, we will 

use a genetic construct coding for a fluorescent protein based on the flavin-binding 

LOV (light, oxygen, or voltage sensing) domain that exhibits fluorescence under 

aerobic and anaerobic conditions. Interestingly, we have conducted some new 

simulations that indicated that the accumulation of molecules is increased by several 

orders of magnitude when using tilted thermophoretic chambers with a gradient in 

thickness (Supplementary Figure 4). However, with the current version of the Teflon-

based thermophoretic chamber, it will be difficult to implement this design, because 

Teflon foils have a constant thickness. 

 

Although we have yet to achieve our goal of building a robust, cell-like, membrane-

less system that generates an active transcription and translation network from dilute 

solutions, we have built a foundation from which further studies can and will be 

pursued.  We are hopeful that our system will help us gain a deeper understanding of 

the fundamental processes needed to sustain cellular life and the physico-chemical 
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role of cellular membranes. Ultimately, we may be able to say whether cellular 

membranes are dispensable or not. 
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CONCLUSIONS 
 

Without an agreed upon definition of life, efforts in building living cells from component 

parts have relied on subjective evaluations of progress. The lack of well-defined 

criteria to recognize and distinguish living from nonliving systems has slowed progress 

in building cellular mimics (also called artificial cells) that fully display the properties of 

natural living cells. Thus far, there were no methods to quantify the performance of the 

artificial life-like systems in an objective way. In Chapter 1 we proposed a solution to 

the problem that did not rely upon a definition of the term life. We built cellular mimics 

that were able to chemically communicate with V. fischeri by sensing and synthesizing 

information in the form of quorum sensing molecules. In this way we could implement 

a cellular version of the Imitation game or Turing test that was originally meant to 

evaluate the intelligence of machines. Here we took the same concept whereby the 

natural cell directly evaluated the performance of the artificial system by assessing 

how well the artificial system was able to communicate. Since chemical 

communication leads to changes in gene expression, we decided to exploit RNAseq 

technology to observe genome wide the response of natural cells when 

communicating with V. fischeri like cells. By comparing the total number of genes that 

resulted differently expressed from chemical communication between artificial cells 

and V. fischeri we came up with a way to more objectively quantify the performance of 

the artificial system. With this approach the evaluation is directly taken by the natural 

cells and not by an observer, therefore for the first time, the field has a less biased 

metric to quantify progress towards the construction of cellular mimics that possess 

the properties of living cells. Importantly, with such technology we succeed in building 

life-like technologies that were capable of quenching the chemical communication of 

P. aeruginosa. With further advancement, this technology could be potentially used for 

therapeutic purposes.  

 

The focus of the second chapter instead was to build cellular mimics without any direct 

physical barrier or compartment. We took advantage of thermal gradients to generate 

disequilibrium conditions. Thermal gradients have been reported to effectively 

accumulate biomolecules and indeed preliminary experiments suggested that thermal 

gradients might confer upon a thermally trapped artificial system some of the 
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functionalities of cell membranes. i.e. we have observed RNA and protein synthesis at 

the air-water interphase inside microcontainers that were subjected to a temperature 

gradient, indicating that the complex mixture of components of an E. coli cell extract 

were accumulating and still interacting to function in the absence of membrane 

compartments. By building a system that possess the functions of a membrane without 

the need of compartmentalization we expect to gain a deeper understanding on the 

role and functions of cell membranes and the required processes needed to originate 

and sustain life as we know it.  
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APPENDIX 

 

Metal ions are indispensable for extant living cells, and many cellular processes are 

carried out by metalloproteins that depend on metal ions to fold and function properly. 

Therefore, extant metalloproteins may be an evolutionary outcome of chemistry that 

was mediated by metal ions and short peptide-metal ion complexes on the prebiotic 

Earth.  

 

Modern-day Zn2+ and iron-sulfur proteins have  been proposed to originate from 

duplications of short CX2CG and CX2CX2C peptides motifs, respectively (80). This 

hypothesis has been recently supported by experimental data showing that a short 

cysteine containing tripeptide γ-ECG (L-glutathione) was capable of coordinating iron 

sulfur clusters in aqueous solutions and that longer peptides resulting from the 

synthesis of multiple γ-ECG  sequence units containing the CX2CX2C motif were 

better able to stabilizing iron-sulfur clusters (81). Furthermore, γ-ECG coordinating 

Fe3+ was recently shown to lead to the formation of iron-sulfur clusters upon UV-light 

irradiation that induced cysteine desulfurization by breaking the carbon-sulfur bond 

(82).  

 

Our interest is now focus in assessing the stability of the sulfhydryl groups of short 

cysteine containing peptide motifs sequences under UV-light irradiation and high 

temperature conditions in the presence of different metal ions. Shown in the following 

section are the experiments I conducted under high temperature conditions while 

Daniele Rossetto, a new PhD student of the Mansy laboratory is currently conducting 

experiments under UV-light irradiation. 

 

Preliminary data indicate that a short cysteine containing peptide does not undergo 

desulfurization when exposed to high temperature conditions in the presence of Zn2+.  
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RESULTS 

 

The tripeptide (L)-glycyl-cysteinyl-glycine was heated at 150 °C for 4 min in the 

presence or absence of Zn2+. Glycyl-glycine was used as a buffer to keep the pH of 

the solution near the pKa value of the sulfhydryl group of cysteine to favor the 

coordination between the tripeptide and Zn2+. Samples were subjected to high 

performance liquid chromatography (HPLC). The analysis revealed the detection of 

the intact tripeptide in the metal containing sample as in the non-heated sample control 

while in the absence of metal the chromatogram peak corresponding to the tripeptide 

was considerably lower in intensity (Figure 1). The mass of the tripeptide was also 

assessed and confirmed by mass spectrometry (Figure 2) as well as for glycyl-glycine 

(Figure 3) and the oxidized version of the tripeptide (Figure 4). This observation 

indicated that Zn2+ protected the integrity of the tripeptide avoiding desulfurization. 

Glycyl-alanyl-glycine was not detected upon heating in any of the samples indicating 

that apart from cysteine desulfurization other chemical rearrangements could have 

occurred that will be further investigated. 
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Figure 1. Zn2+ protects the integrity of a cysteine containing tripeptide at high temperature. 
Shown are representative UV-chromatograms acquired at 210 nm of an aqueous solution containing 5 
mM glycyl-cysteinyl-glycine (GCG) and 20 mM glycyl-glycine (GG) at room temperature (top 
chromatogram) or heated for 4 min at 150 °C in the absence (mid chromatogram) or presence of 5 mM 
Zinc (bottom chromatogram). (GCGox) corresponds to the oxidized form of Glycyl-cysteinyl-glycine. 
(GG) corresponds to glycyl-glycine that was used as buffer. The chromatogram peak at retention time 
15 min is not yet characterized. The experiment was conducted in triplicate. 
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Figure 2. Mass spectrum of the chromatogram peak detected at 3.1 min for the Zn2+ containing 
sample.   
The observed [M+H]+= 236.5 m/z indicates the presence of the intact (L)-glycyl-cysteinyl-glycine 
tripeptide with a theoretical [M+H]+= 236.0699 m/z. The observed [2M+H]+= 471.4 m/z corresponds to 
the mass of the dimeric tripeptide ion cluster. 
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Figure 3. Mass spectrum of the chromatogram peak detected at 1.7 min for the Zn2+ containing 
sample.   
The observed [M+H]+= 133.2 m/z indicates the presence of intact glycyl-glycine dipeptide with a 
theoretical [M+H]+= 133.0607 m/z. The observed [2M+H]+= 265.3 m/z corresponds to the mass of the  
glycyl-glycine dimeric ion cluster. 
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Figure 4. Mass spectrum of the chromatogram peak detected at 5.8 min for the Zn2+ containing 
sample.   
The observed [M+H]+= 469.3 m/z indicates the presence of the intact oxidized version of the (L)-glycyl-
cysteinyl-glycine tripeptide with a theoretical [M+H]+= 469.1170 m/z.  
 
 
 
 
 

MATERIAL AND METHODS 
 
 

Sample preparation and heating experiments 
 
A 10 mL stock solution of 5 mM (L)-glycyl-cysteinyl-glycine in 20 mM glycyl-glycine 

was prepared under controlled N2 atmosphere using a Schlenk line and Schlenk 

glassware. Milli-Q (MIlipore) water was distilled under N2 flow and was used as 

anoxygenic solvent. To keep the pH near the pKa value of the sulfhydryl group of 

cysteine to allow for coordination with Zn2+, the pH of the solution was adjusted to 8.7 

with NaOH and 20 mM glycyl-glycine was used as a buffer. 100 µL of peptide solution 

without or supplemented with 5 mM zinc sulfate were heated at 150 °C for 4 min in a 

dry bath (FB15101 Fisher Scientific) inside 2 mL glass vials (12x32 mm CLR TARGET 

DP I-D-Thermo Scientific). Prior LC-MS analysis, 100 µL anoxygenic water was used 

to resuspend the peptide-metal solid precipitate.  
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Solid phase peptide synthesis 

 

The synthesis of (L)-glycyl-cysteinyl-glycine tripeptide was performed by solid phase 

peptide synthesis as described earlier (81, 82). Dichloromethane (DCM) and N,N-

dimethyl formamide (DMF) were used as solvents for washing and coupling steps. 

Preloaded fluorenylmethyloxycarbonyl-glycyl Wang resin (Fmoc-Gly Wang) was 

coupled to trityl-protected Fmoc-L-cysteine (Fmoc-L-Cys(Trt)-OH) and subsequently 

to Fmoc-glycine (Fmoc-Gly-OH). The peptide chain elongation resulted from the 

sequential Fmoc deprotection of the last amino acid attached to the resin and Fmoc-

X-OH (X= Cys,Gly) coupling. For Fmoc deprotection, a solution consisting of 20% (v/v) 

piperidine in DMF was used. For each coupling step, a 3:1 excess of the Fmoc-amino 

acid-OH derivative respect to the peptide-anchored resin was used.  Fmoc-L-Cys(Trt)-

OH was activated with a HOBt/N,N’-diisopropylcarbodiimide (DIC) mixture for 10 min 

at room temperature prior to the addition to the Fmoc-Gly wang resin. Fmoc-Gly-OH 

was instead activated for 10 min at room temperature with hydroxyl-benzotriazole 

(HOBt), O-(Benzotriazol-1-yl)-N,N,N’,N’- tetramethyluronium hexafluorophosphate 

(HBTU), and N,N-diisopropylethylamine (DIPEA). Coupling reactions were carried out 

at room temperature in a tube revolver rotator for 1 hour. After each coupling step, the 

peptide-anchored resin was washed with DMF and DCM to remove the coupling 

reagents leftover. After the elongation step, the tripeptide was Fmoc-deprotected and 

cleaved from the resin with trifluoroacetic acid (TFA) using 1,2-ethanedithiol (EDT), 

water, and triisopropyl silane (TIS) as scavengers (volume ratio 92.5:2.5:2.5:2.5). The 

solution was then precipitated with cold diethyl ether/petroleum ether (70:30 (v/v)) and 

dried under nitrogen atmosphere to avoid the oxidation of the sulfhydryl group of 

cysteine. The tripeptide was stored at -20 ⁰ C until use. 

 

High Performance Liquid Chromatography-Mass spectrometry 

 

Mass spectra were acquired with a triple quadrupole API 3000 Sciex/Applied 

Biosystem mass spectrometer in positive mode. The instrument was equipped with an 

electrospray ion source and coupled to a Prominence modular HPLC instrument 

(Shimadzu) with a LC-20AB binary pump and a SPD-M20A detector. 2.5 µL of peptide 
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samples were injected in an Agilent Eclipse XDB_C18 column (4.6 x 150 mm; 3.5 µm). 

The solvent system used was 0.1 % (v/v) trifluoracetic acid (TFA) in mQ water (solvent 

A) and 0.1 % (v/v) TFA in acetonitrile HPLC grade (solvent B). The peptides were 

eluted from the column at a constant flow rate of 1 mL/min with a gradient starting with 

1 % B to 20% B in 20 min. UV-chromatograms were acquired at 210 nm. 

  

 
 
 

SUMMARY AND FUTURE PERSPECTIVES 

 

The stability of (L)-glycyl-cysteinyl-glycine was investigated under high temperature 

(150 °C) in the presence or absence of Zn2+. Upon heating, the level of intact tripeptide 

was considerably higher when Zn2+ was present in the sample than in the absence of 

Zn2+. This observation indicates that Zn2+ protected the integrity of the tripeptide under 

high temperature.  

 

In light of the preliminary results obtained, we will further investigate whether the 

protection effect can be also observed in the presence of other short peptide 

sequences carrying similar glycine cysteine motifs. In this regard, other metal ions will 

be tested for the same purpose. Affinity studies between the different peptides-metal 

complexes will be assessed as well. We would like to investigate the mechanism by 

which the protection effect takes place. Whether it depends on peptide-metal 

coordination or the protection occurs by other means. We next plan to conduct survival 

competition experiments. Starting from a pool of peptides with different cysteine 

glycine containing peptide motifs we expect that only the peptide sequence that 

coordinate the metal with higher affinity will better withstand the high thermal or UV-

light irradiation conditions. Furthermore, we would like to test whether metal ions could 

have templated the polymerization of coordinating peptides, facilitating peptide bond 

formation among the peptides brought to close proximity and in the right conformation 

that might have led to peptide sequences motifs found in modern-day proteins. 

Samples will be then sent to Earth Life Science Institute (ELSI) in Tokyo and will be 

analyzed by Dr. Yayoi Hongo by High Performance Liquid Chromatography in tandem 

with high precision mass spectrometry. 
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These results open a new prebiotic scenario where metal ions could have provided a 

selective advantage for specific short cysteine containing peptide sequences by 

conferring protection from desulfurization under various prebiotic conditions.  
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