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ABSTRACT 

 
 

ETV7 is a poorly characterized transcriptional repressor that belongs to the large family of 

ETS transcription factors, whose members have been associated with several cancer-

related processes. ETV7 is a well-recognized Interferon-stimulated gene (ISG), and it was 

shown that its expression can be synergistically induced by the combined treatment with 

the chemotherapeutic drug Doxorubicin and the inflammatory cytokine TNFa in different 

cancer cell lines, including the breast cancer-derived MCF7 cells. Recently, it has been 

shown that ETV7 expression is significantly increased in breast cancer tissues, compared 

to the normal breast; however, the roles and the impact of ETV7 expression in breast 

cancer have still to be elucidated. 

This project aimed at understanding the effects caused by increased ETV7 expression on 

breast cancer (BC) progression and resistance to conventional anti-cancer drugs. 

We first observed that ETV7 expression can be induced by different stimuli, particularly 

by the treatment with several chemotherapeutic drugs able to induce DNA damage. We 

also demonstrated that the expression of ETV7 could affect the sensitivity of BC cell lines 

to standard anti-cancer therapies, such as Doxorubicin, 5-Fluorouracil and radiotherapy, 

and this evidence was correlated with an increase in ABC transporters and anti-apoptotic 

proteins expression. By investigating the possible mechanism responsible for ETV7-

dependent Doxorubicin resistance we identified a novel target gene of ETV7, DNAJC15, 

which is a co-chaperone protein whose repression was previously associated with drug 

resistance.  

Given the ability of cancer stem cells (CSCs) to be more chemoresistant, we analyzed the 

effects of ETV7 expression on the sub-population of breast CSCs. We found that ETV7 

expression could exert a strong effect on breast cancer cells stemness, confirmed by both 

an increase in CD44+/CD24low population and mammosphere formation efficiency. 

In order to investigate the mechanisms responsible for these effects, we performed an 

RNA-seq analysis, which revealed significant repression of a signature of Interferon-
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stimulated genes, suggesting a possible negative feedback mechanism in the regulation 

of the response to Interferon. Finally, prolonged treatment of breast cancer cells with IFN-

b was able to rescue the effects on CSCs content. 

Taken collectively, our data revealed that ETV7 can affect the sensitivity of breast cancer 

cells to some chemotherapeutic drugs and we propose ETV7 as an important contributor 

to the tumor-initiating capabilities of BC cells. 
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INTRODUCTION 

 
 

1. Breast cancer  

 

The breast is made up of adipose tissue, together with blood and lymph vessels and 

connective tissue. Each breast is divided into 12 to 20 sections called lobes, which are 

subdivided into lobules, glands responsible for milk production; and the lobes are linked 

by ducts, thin canals that drain milk from the lobules to the nipple 1. 

Breast cancer (BC) refers to a malignant tumor occurring when cells in the breast start to 

divide and grow uncontrollably. Most frequently, breast cancer starts in the milk ducts 

(ductal carcinomas) or can originate from the cells of the lobules (lobular carcinomas). 

Less commonly, it can originate from the stromal tissues, which include the fibrous and 

fatty connective tissues in the breast. 

Breast cancer is the second most common cancer overall and the most common cancer in 

women worldwide, and it is estimated that about 1 woman in 8 will develop breast cancer 

in her lifetime. The mortality rate is decreasing in the last years thank to earlier diagnosis 

and treatment strategies improvements, however, breast cancer still represents the fifth 

cause of cancer-related deaths in women 2,3. Risk factors include increasing age, family 

history with the main inheritance susceptibility represented by germline mutations in 

BRCA1 and BRCA2 genes, alcohol consumption, hormone therapy, obesity, and radiation 

exposure 4. 

In the past, breast cancer was recognized as a single disease, with differential features 

and systemic treatment responses. However, thanks to the development of high 

throughput technologies for gene expression analysis, breast cancer is now considered a 

highly heterogeneous disease, both at the clinical and at the genetic level 5. 
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1.1 Breast cancer classification 

In an attempt to standardize breast cancer heterogeneity, thus helping in treatment and 

prognostic evaluation, several types of classifications have been developed, including 

histopathological and molecular classification of breast cancers. 

 

1.1.1 Histopathological classification 

The histopathological classification of breast cancer consists of classifying breast 

carcinomas based on the morphological features of the tumor. This type of classification 

is spread worldwide and allows the distinction of 20 major types and 18 minor subtypes 

of the tumor. Breast tumors can be classified as in situ or invasive (infiltrating) carcinomas. 

In situ carcinomas can be further subdivided into the more common ductal (DCIS) or 

lobular (LCIS) carcinoma in situ and include a heterogeneous sub-group of breast cancer 

types. Similarly, also invasive carcinomas represent a heterogeneous group of malignant 

tumors and include tubular, ductal/lobular, invasive lobular, infiltrating ductal, mucinous, 

medullary and papillary carcinomas 6. However, about 70-80% of all invasive breast cancer 

belong to invasive ductal carcinomas (IDC), revealing the need to use molecular 

biomarkers to further classify the status of this breast cancer subtype 7. Indeed, it is of 

fundamental importance to improve patients’ stratification according to the relative risk 

of relapse or progression. 

  

1.1.2 Molecular classification  

Thanks to the advancement in gene expression analyses, it is now possible to better 

stratify breast cancer patients according to the “intrinsic” (or biological) molecular 

classification 5. Perou and collaborators proposed the classification of breast cancer into 

subtypes based on the hierarchical clustering of gene expression profiles 8, identifying the 

following subtypes: luminal A, luminal B, HER2+, basal-like and normal breast-like subtype 

(Figure I), which has been proved to have good prognostic values and to be predictive of 

the response to commonly used chemotherapy 9–11. However, this type of classification 

was obtained from fresh-frozen samples and is not possible to easily apply it to the more 

commonly used formalin-fixed and paraffin-embedded (FFPE) samples, reducing the 

applicability of this classification to the clinical practice. In order to overcome this 
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problem, a gene expression assay of 50 genes based on qRT-PCR, called PAM50, has 

recently been developed and has shown to be able to generate risk-of-relapse scores with 

good prognostic values 12. 

A further improvement of the applicability of the molecular classification to the clinical 

practice has been obtained with the identification of surrogate immunohistochemical 

markers ER, PR, HER2 and Ki67 13. 

The luminal subtypes account for approximately 70% of all breast cancer cases, they are 

usually characterized by estrogen receptor (ER) and progesterone receptor (PR) positivity 

and present a favorable prognosis. Luminal B subtype can be negative for PR, show HER2 

positivity or high levels of Ki67, it is often poorly differentiated and usually Luminal B 

breast cancer patients have a worse prognosis compared to luminal A. 

Normal-like tumors represent 5-10% of cases in a lymph node negative cohort and are 

characterized by an IHC status similar to luminal A, but they present a normal breast tissue 

profiling 14. 

The HER2 subtype accounts for the 10-15% of breast cancers and it is characterized by the 

amplification and over-expression of the ERBB2 gene and thus high membrane expression 

of the HER2 protein. Despite the high aggressiveness, this tumor subtype is predictive of 

good responsiveness to the targeted therapy with anti-HER2 treatment strategies 15. 

Figure I. Schematic illustration of the breast cancer subtypes (invasive ductal carcinoma) according to the expression 

of immunohistochemical markers ER, PR and HER2. Luminal subtypes are characterized by ER and/or PR positivity, 

variable expression of HER2 and Ki67. Her2+ subtypes are usually ER negative and HER2 positive. Basal-like subtypes 

are mainly represented by triple negative breast cancers (ER, PR and HER2 negative), or can also be characterized by 

high levels of expression of mesenchymal markers, CK5/6 and /or EGFR positivity. 
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The basal-like subtype is the most aggressive subtype of breast cancer and it represents a 

highly heterogeneous type of tumor. Most of the cases of basal-like subtype (80%) are 

represented by the triple negative profile, which is ER, PR, and HER2 negative, and are 

often associated with mutations in BRCA1 gene 16. This subtype of breast cancer is 

showing a very poor prognosis with frequent metastases and reduced sensitivity to 

standard therapeutic approaches 17. Interestingly, given their heterogeneity, the basal-

like BCs have been also sub-divided into 6 groups using gene expression analyses from 21 

available breast cancer datasets: basal-like 1, basal-like 2, immunomodulatory, 

mesenchymal, mesenchymal stem-like, and luminal androgen receptor 18. 

 

1.2 Therapeutic strategies 

Current therapeutic approaches for breast cancer depend on the subtype of breast 

cancer, its mass, the localization, the stage and the physical condition of the person 

affected. Therapeutic strategies most commonly used include both local, and systemic 

treatments. Local treatments are represented by surgery and radiation therapy, whereas 

systemic treatments include chemotherapy, endocrine (hormonal) therapy and targeted 

therapy. 

The leading approach for the treatment of localized breast cancer is conservative surgery, 

which can be preceded by neoadjuvant therapy to shrink the tumor and is usually followed 

by other systemic adjuvant therapies to reduce the risk for local recurrence 19. 

Neoadjuvant therapy is chosen for the treatment of large and locally advanced operable 

tumors in order to reduce the tumor and facilitate surgery and can exploit chemotherapy, 

endocrine therapy and targeted therapy 20. 

Adjuvant therapy strategies for breast cancer are determined by the characteristics of the 

tumor and particularly are distinguished between endocrine-responsive and non-

responsive histology 21. 

Endocrine therapy aims at balance or block hormones and is indicated for the treatment 

of patients with detectable ER and PR expression and it is therefore commonly used for 

the treatment of luminal subtypes of breast cancer, either alone or in combination with 

chemotherapy or targeted therapies 22. 
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Chemotherapy is recommended for the treatment of most of the triple negative, HER2+, 

and high-risk luminal breast cancers, and can reduce breast cancer mortality by about 

one-third 23. However, chemotherapy is not specifically selective for cancer cells and can 

eliminate also normal healthy cells, especially fast dividing cells, like immune cells, 

resulting in immune suppression and organ toxicity 24. Chemotherapy treatment for 

breast cancer has various side effects, which most frequently include myelosuppression, 

nausea and vomiting, alopecia, weight gain and ovarian failure 25. 

Most commonly used chemotherapeutic regimens include anthracyclines (i.e. 

Doxorubicin and Epirubicin), taxanes (i.e. Paclitaxel and Docetaxel), 5-Fluorouracil (5-FU), 

Cyclophosphamide, Methotrexate, and Carboplatin 26. 

 

1.2.1 Doxorubicin 

Doxorubicin (also known as Adriamycin) is a cytotoxic anthracycline, an antibiotic with 

anti-neoplastic activity isolated from the bacterium Streptomyces peucetius 27. 

Doxorubicin is one of the most effective anti-cancer agents and has been used for the 

treatment of osteosarcoma, breast cancer, lung cancer, prostate cancer, and many other 

cancers for over 30 years. Unfortunately, Doxorubicin causes also life-threatening toxicity 

to most major organs, such as brain, liver, kidney and heart 28. 

Doxorubicin can exert its anti-tumor activity by intercalating the base pairs of the DNA's 

double helix, thereby preventing DNA replication and inhibiting RNA transcription 29. 

Furthermore, it can inhibit topoisomerase enzymes I and II, thus preventing the ligation 

of the nucleotide strands after double-strand breaks. These mechanisms induce a range 

of cytotoxic and anti-proliferation effects resulting in DNA damage 30. Other Doxorubicin 

actions include the generation of free radicals resulting in further DNA damage and 

unwinding, increased alkylation and inhibition of macromolecule production 31. 

Moreover, Doxorubicin can directly affect the cell membrane by binding to plasma 

proteins, causing the formation of highly reactive species of hydroxyl free radicals, which 

are responsible for the dangerous side effects of toxicity, with cardiotoxicity being the 

most prominent one 32. 
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1.2.2 5-Fluorouracil 

5-Fluorouracil (5-FU) is a widely used chemotherapeutic drug for the treatment of a range 

of cancers, including breast, colorectal and skin cancer. 5-FU is one of few clinically useful 

anti-tumor agent rationally designed based on tumor biochemistry studies. Its discovery 

dates back to 1957 33, after the observation of an increased use of exogenous uracil in 

malignant tissues compared with normal tissues in rats’ hepatic tumors 34, suggesting that 

uracil analogs might interfere with tumorigenesis. A rational study of physicochemical 

properties allowed the design of 5-FU, a heterocyclic aromatic organic compound which 

is an analogue of uracil with a fluorine atom at the C-5 position in place of hydrogen.  

The cytotoxic effects of 5-FU are caused by alterations of RNA and DNA normal synthesis 

and functioning 35. In mammalian cells, 5-FU enters the cells via the same transport 

mechanism as uracil and it is then converted into fluorodeoxyuridine monophosphate 

(FdUMP), which can interact with the enzyme thymidylate synthase (TS) by binding to its 

nucleotide binding site. This interaction causes the inhibition of the synthesis of new 

deoxythymidine monophosphate (dTMPs), which are highly required by rapidly dividing 

cells, like cancer cells. Moreover, TS inhibition results in depletion of dTMP with the 

accumulation of deoxyuridine monophosphate (dUMP), which causes an imbalance in 

intracellular nucleotides level, and accumulation of deoxyuridine triphosphate (dUTP), 

which, together with FdUTP, can be misincorporated into the DNA. Both these effects 

result in excessive endonuclease-induced double-strand breaks in the DNA, ultimately 

resulting in cell death 36. 

Furthermore, 5-FU can exert its cytotoxic effects via interference with the RNA. Indeed, 

5-FU has been shown to interfere with normal processing and function of various RNA 

species, such as pre-rRNAs 37, tRNAs 38 and small nuclear RNAs 39. Moreover, FdUTP can 

also be incorporated into mRNA, which can alter its metabolism and expression 40. 

 

1.2.3 Radiotherapy 

Radiotherapy, or radiation therapy, is a type of local cancer treatment exploiting high 

doses of radiation (predominantly X-rays) to kill cancer cells, resulting in tumor shrinkage. 

The use of radiation for cancer treatment was first introduced by Emil Grubbé in Chicago, 

who used the just discovered X-rays for the treatment of an incurable breast cancer 41. 
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Subsequent technological advancements allowed the improvement of doses and 

precision of the treatment. Now, breast-conservative surgery followed by radiation 

therapy is a widely accepted standard approach, able to halve the overall recurrence rate 

and reduce BC mortality of more than 15% 42. 

Radiotherapy can be administered both from the outside or the inside of the body. 

Internal administration can be performed by implanting radioactive sources in tissues or 

cavities of the body (i.e. brachytherapy), or by systemic administration of 

radiopharmaceutical agents 43. Administration of radiation from the outside of the body 

is called external beam radiation therapy and it is conducted with a linear accelerator 

(LINAC) machine, which produces a photon beam and directs it to the tumor site. The 

radiation dose is measured with the standard unit called Gray (Gy), which express the 

radiation dose in terms of absorbed energy per unit mass of tissue; in particular, 1 Gray 

corresponds to 1 Joule of energy per kilogram of matter. 

Radiation therapy can use low and high linear energy transfer (LET) radiation, which 

measures the number of ionization caused per unit distance while it traverses the living 

tissue. Low LET radiations include X-rays, g-rays and b-particles and can deposit a relatively 

small amount of energy, whereas charged radiation particles (electrons, protons, a-rays, 

etc.) deposit more energy on the targeted areas causing more biological effects and 

allowing for dose minimization 44. 

The radiotherapy approach is based on the observation that rapidly proliferating cancer 

cells are more sensitive to ionizing radiations compared to normal cells since cancer cells 

have a slower DNA repair system and also produce more DNA breaks than normal cells 

45,46. Indeed, the mechanism of action of radiotherapy includes both direct and indirect 

effects which both result in DNA damage and subsequent cell death 47. 

Radiation can induce direct DNA damage by inducing ionization on the DNA, resulting in 

double-strand breaks (DSBs) or single strand breaks (SSBs). Furthermore, it can produce 

free radicals derived from ionization or excitation of water molecules inside the cell, which 

finally result in DNA damage 44. Radiation-induced DSBs are the most dangerous types of 

DNA damage, which can lead to cell death if not repaired by the DNA damage response 

(DDR) system. 
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2. Chemoresistance and radioresistance  

 

One of the main challenges in cancer treatment is the development of resistance to 

standard therapies, such as chemoresistance and radioresistance, which causes failure of 

the therapy, with subsequent disease relapse and metastases formation. This event can 

appear when patients initially responsive to the treatment show a reduced response later 

on, which can result in the regrowth of the tumor 48. 

This phenomenon can be explained by two causes: either the tumor cells are intrinsically 

resistant to the therapy possibly due to genetic features (intrinsic resistance), or they can 

become resistant after the exposure to the therapy (acquired resistance) 49. Since intrinsic 

resistance is usually present in about 1 in 106-107 cancer cells, the probability of successful 

elimination of the cancer cells is related to the tumor size at the beginning of the 

treatment 48. 

Given the high individual variability and complexity of the biological processes altered in 

resistant cells, as well as the absence of proper diagnostic tools to evaluate the resistance 

before the start of the therapy, it is an urgent need to better understand the mechanisms 

involved in the processes of resistance. 

 

2.1 Molecular mechanisms of chemoresistance  

Chemoresistance can be influenced by genetic and epigenetic alterations affecting drug 

uptake, metabolism, and export. There are several mechanisms contributing to 

chemoresistance, such as tumor heterogeneity, increased drug efflux, drug inactivation, 

evasion of apoptosis, deregulation of oncogenes and tumor suppressor genes, enhanced 

DNA repair, mitochondrial alteration, autophagy, epithelial-to-mesenchymal transition 

(EMT), cancer stemness, and exosomes production, but also the tumor microenvironment 

(TME) has been shown to be a key player in this process 50,51 (Figure II). 

A typical molecular mechanism of resistance to chemotherapy is the increased expression 

of transporter pumps, which are responsible for enhanced efflux of cytotoxic molecules 

across the cellular membranes, keeping the intracellular concentration of the drugs below 

the lethal threshold. These types of transporters belong to the ATP-binding cassette (ABC) 

superfamily and are responsible for the absorption, distribution, and excretion of many 
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drugs. In addition to their role in cytotoxic chemotherapeutics transport, it has been 

proposed that ABC transporter can also transport cell-signaling molecules that may 

contribute to tumorigenesis, such as peptides, inorganic ions, proteins, amino acids, 

polysaccharides, and vitamins 52,53. There are at least 48 genes encoding ABC transporters, 

and ABC proteins have been divided into 7 subclasses named from A to G (ABCA, ABCB, 

ABCC, ABCD, ABCE, ABCF, and ABCG) based on sequence homology and genomic 

organization 54,55. The most commonly deregulated ABC transporters in breast cancer are 

ABCB1 (also known as MDR1 or P-glycoprotein), ABCC1 (MRP1) and ABCG2 (BCRP), that 

can drive the so-called multidrug resistance (MDR) 56. 

Alternatively, some metabolic effects can alter the effective concentration of the drug 

within the plasma, reducing its efficacy. The over-expression of drug-metabolizing 

enzymes or carrier molecules can reduce the sensitivity to anti-cancer drugs by reducing 

its concentration 57,58, or, on the other side, the reduced expression of drug-metabolizing 

Figure II. A schematic representation of some of the processes that can be involved in the development of 

chemoresistance. The shown processes include the enhanced drug inactivation via drug metabolism, decreased drug 
import or increased drug efflux via ABC transporters, inhibition of apoptosis, increased DNA repair and increased 

production of extracellular matrix (ECM) proteins which provide a physical barrier against the drug intake. 
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enzymes can instead reduce the efficacy of the drug when the administered pro-drug 

needs to be metabolized in order to get activated 59. 

Another factor contributing to chemoresistance is the hyper-activation of oncogenes or 

the inactivation of tumor suppressor genes. Examples of oncogenes responsible for 

enhanced chemoresistance include epidermal growth factor receptor (EGFR), which can 

activate STAT3 and NF-kB pathways, thus leading to inflammation-associated 

chemoresistance, the PI3K/Akt pathway and ERK. Alternatively, the inactivation of tumor 

suppressor genes like p53 can enhance chemoresistance. In particular, p53 inactivation, 

either due to mutations or its inhibition, was shown to be involved in the resistance to 

several chemotherapeutic drugs, mainly via the impairment of apoptosis and cell cycle 

arrest 51. Indeed, another mechanism of resistance to therapy is based on defects in the 

apoptotic pathway, which usually affect the efficacy of most of the anti-cancer agents. In 

this case, cancer cells can acquire the resistance by inducing the expression of anti-

apoptotic proteins such as BCL-2/BCL-xL and IAP proteins, or, alternatively, by mutating 

or down-regulating the expression of pro-apoptotic proteins (i.e., BAX or Caspase-8) 60. 

Among the many ways cancer cells can become or be intrinsically resistant to 

chemotherapy, mitochondrial alterations need to be mentioned. Indeed, mitochondria 

are the centers of cellular energy production and play key roles in cancer progression, 

metabolic reprogramming and response to chemotherapeutic drugs. As previously 

mentioned, mitochondrial apoptosis is one of the mechanisms which can mediate the 

resistance to therapy, and it is mainly regulated by the B-cell lymphoma 2 (BCL-2) proteins. 

Pro-apoptotic (BAX, BAK, and BCL-xS) and anti-apoptotic (BCL-2, BCL-xL, and MCL-1) 

proteins can regulate the mitochondrial apoptosis by stabilizing mitochondrial 

permeability and thus regulating the release of Cytochrome c from the mitochondria into 

the cytosol, where it can activate Caspase-3 and Caspase-9, finally leading to apoptosis 51. 

Moreover, mitochondria functioning can alter the sensitivity to chemotherapy by altering 

cellular metabolism. In fact, most of the cancer cells harbor somatic mutations or 

alterations in the mitochondrial genome (mtDNA), resulting in mitochondrial dysfunction. 

However, cancer cells do not turn off completely the mitochondrial metabolism, but 

rather they alter the bioenergetic profile of the cells by changing the transcription and 

activation of cancer-related genes and signaling pathways. Cancer cells can then undergo 
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different bioenergetic choices, increasing the tumor heterogeneity, which will include 

both more glycolytic or more oxidative cellular metabolisms 61. 

A further way by which cells can become resistant to chemotherapy, in particular to those 

therapies which exploit the DNA damage as the main mechanism of action, is the 

increased ability to repair the DNA efficiently. DNA repair is a biological system able to 

identify and correct the damage to DNA molecules which can be induced by several 

causes, such as ultraviolet (UV) radiation, X- and g-rays, endogenous ROS, toxins, 

mutagenic chemicals and some chemotherapeutics 51. Thus, the over-expression or the 

hyper-activation of DNA repair proteins can mediate the resistance to chemotherapy. For 

example, the over-expression of ERCC1, which participates in the Nucleotide Excision 

Repair pathway, has been linked to resistance to platinum-based chemotherapies in 

various cancer types 62, and the up-regulation of the DNA repair enzyme O(6)-

methylguanine DNA methyltransferase (MGMT) has been involved in the 

chemosensitivity to alkylating agents 63. 

A common resistance mechanism, which is particularly effective for targeted therapies, is 

the development of alterations in the target molecules. In fact, during the course of the 

treatment, the target of the drug can be modified or reduced in the expression, ceasing 

to have any biological influence useful to target. For example, in endocrine-resistant 

breast cancers, the tumor initially responsive to anti-estrogen therapy (e.g., tamoxifen), 

undergoes a loss of estrogen receptors, resulting in treatment resistance 64. Similarly, 

mutations in the Topoisomerase protein can alter its nuclear localization, making cancer 

cells resistant to the chemotherapeutic drugs targeting the activity of Topoisomerase II, 

such as Etoposide 65. 

 

2.2 Molecular mechanisms of radioresistance 

The determination of failure or success of radiotherapy is based on what is called the 5 

R’s of radiobiology: Repair of the DNA, Redistribution of cells in the cell cycle, 

Repopulation, Reoxygenation of hypoxic tumor areas and Radiosensitivity 66. 

Repair of the DNA is the primary source of resistance to radiotherapy. In fact, ionizing 

radiation induces direct DNA damage, which leads to the activation of the ATM-p53 

pathway, responsible for replication blockage and induction of DNA repair systems 67. 
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Therefore, similarly to the mechanisms of resistance to chemotherapy, radioresistant 

cancer cells usually have a higher expression of DNA repair enzymes and anti-apoptotic 

proteins. 

The second R of radiobiology is Redistribution of cells in the cell cycle and refers to the 

fact that the sensitivity of cells to radiation is different during the different phases of the 

cell cycle. Cells in mitosis are in fact the most sensitive to DNA damaging agents, whereas 

the cells in late S-phase are the most resistant 68. Thus, the redistribution of radiotherapy 

treated surviving cells into less sensitive phases of the cell cycle may account for increased 

resistance to the following doses. 

Repopulation of tumors is another common reason for the failure of radiation therapy. 

Repopulation refers to the tissue’s response to a decrease in cell number, however, also 

the tumor can undergo an accelerated repopulation, which results in a faster cellular 

growth rate of treated tumors compared to untreated ones 69. 

Reoxygenation of hypoxic tumor areas is also believed to improve the efficacy of 

radiotherapy. Indeed, several experiments have shown that oxygen is one of the most 

potent modifiers of radiosensitivity and that hypoxic cells are more resistant to radiation 

therapy 69,70. Hypoxia can be either transient or chronic, based on the presence of blood 

vessels or their intermittent closure, thus affecting the reoxygenation process 71,72. It is 

now clear the importance of targeting the hypoxic areas of the tumor in order to improve 

the therapeutic outcome. However, it is still to be elucidated whether acute or chronic 

hypoxia is the most relevant for radioresistance. 

The last and newest R is Radiosensitivity, which refers to the fact that some cells are more 

sensitive to radiotherapy than others. Radiosensitivity is the response of a tumor to 

irradiation and can be measured by the rapidity of response, its durability and the extent 

of regression 73. 

 

 

3. Cancer stem cells  

 

Despite the molecular mechanisms of chemoresistance and radioresistance can partially 

explain the appearance of the resistance to therapy, the recently proposed theory of 
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cancer stem cells (CSCs) can improve the understanding of resistance and implement it 

within a better model. 

The cancer stem cells theory opposes to the stochastic model of cancer in the explanation 

of cancer formation. 

According to the stochastic (clonal evolution) model, every cell within the tumor is 

potentially capable of propagating and forming a tumor. This model proposes that a 

normal somatic cell, which undergoes at least five genetic mutations in order to acquire 

the ten hallmarks of cancer, can originate a tumor. However, this theory cannot explain 

the higher incidence of some types of cancer during the childhood compared to adulthood 

or the fact that usually a large number (more than 10,000) of cells is required to initiate a 

tumor in immunocompromised mice 74. 

On the opposite, the CSC theory is based on the observation that cancer cells within a 

tumor are different, but are hierarchically organized, with some rare undifferentiated 

CSCs able to give rise and to maintain the whole population of cells within the tumor 75. 

The cancer stem cells theory is based on two related concepts stating that: 1) tumors can 

originate from either tissue stem cells or their immediate progeny because of self-renewal 

dysregulation and 2) tumors contain and are driven by cells displaying some stem cells 

properties 76. 

The origin of this theory dates back about 150 years ago when Rudolf Virchow proposed 

the idea that cancer is a disease which originates from an immature cell, paving the basis 

for the concept of cellular hierarchy 77. 

However, the modern concept of CSCs was first described in 1971, when Pierce and 

Wallace showed that some malignant undifferentiated cells were able to originate benign, 

well-differentiated cells in squamous cell carcinoma, giving the first experimental 

evidence of the existence of cellular hierarchy in a tumor 78. Another critical evidence 

came in 1990, when Fialkow and colleagues, by labeling and tracing the lineage of cancer 

cells in chronic myeloid leukemia (CML), demonstrated that a pluripotent stem cell is 

initially transformed and can then give rise to malignant clonal progeny 79. 

A few years later, cancer stem cells were first isolated from acute myeloid leukemia (AML) 

using a phenotypic cell isolation strategy based on fluorescently labeled cell surface 

protein, and the authors showed that a population of the isolated cells was able to 

transplant AML into severe combined immunodeficiency (SCID) mice 80. 
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Subsequent studies recognized CSCs in various solid tumors, including breast, prostate, 

ovarian, melanoma, brain, bone sarcoma, colon, and renal cancer 81. Nevertheless, the 

identification and characterization of CSCs in most tumor types is still evasive and, it is still 

under debate whether CSCs could exist in all human tumors. 

With cancer stem cells or tumor-initiating cells, we now refer to the subset of cancer cells 

thought to be the main drivers of tumorigenesis, which are responsible for tumor growth, 

resistance to therapy and metastatic spread 82. The definition of CSC describes it as a cell 

within the tumor which has self-renew capacity and differentiation potential, meaning 

that it can give rise to the heterogeneous lineages of cancer cells within the tumor. 

Basically, CSCs are defined by their intrinsic ability to propagate tumor cells 83. Similarly to 

stem cells (SCs), which are essential for maintaining tissue homeostasis, CSCs have long 

term self-renew potential, meaning that upon division they give origin to cells that retain 

the ability of self-renewal. This can be accomplished by either symmetric or asymmetric 

divisions 83. During symmetric division, one CSC will originate two identical daughter cells, 

whereas with asymmetric division it will produce one daughter cell which will retain its 

CSC identity, and another which could undergo several rounds of division and post-mitotic 

differentiation, accomplishing the second task defining a cancer stem cell 84. 

 

3.1 Drug resistance of cancer stem cells 

Another important property of CSCs is their intrinsic capacity to resist to both 

chemotherapy and radiotherapy (Figure III).  

Figure III Model of cancer stem cells resistance to standard cancer treatments. Heterogeneity within the bulk initial 

tumor is represented by different colors of the cells. In response to the treatment with standard anti-cancer agents,  

the cancer stem cells population (in red) can survive and subsequently give origin to a recurring tumor which will 

present heterogeneity similar to the initial tumor. 
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There are several molecular mechanisms responsible for the increased resistance of CSCs 

to anti-cancer therapy, including cell cycle kinetics, DNA replication and repair 

mechanisms, asymmetric cell division, anti-apoptotic proteins, and transporter proteins 

expression, etc. 76. 

Cell cycle kinetics of cancer stem cells differs from that of cancer cells because most of 

the cancer stem cells are not- or slowly-cycling and are usually in G0 phase of the cell 

cycle, in a state called quiescence, thus becoming resistant to radiotherapy or 

chemotherapy agents who depend on cell cycle progression for their function 85. 

As previously mentioned, the resistance to DNA damaging agents can also be mediated 

by alterations in the DNA replication and repair mechanisms, which are often found 

deregulated in cancer stem cells, given the fact they can undergo asynchronous DNA 

synthesis and usually present an increased DNA repair potential compared to cancer cells 

86,87. 

The property of cancer stem cells to undergo asymmetric cell division is also contributing 

to the resistance to therapy, as, during the asynchronous DNA synthesis, the parental DNA 

strand selectively segregates with the cancer stem cell and not with the differentiated 

daughter, a process regulated by the oncosuppressor p53 88,89. In this way, the 

undifferentiated compartment is protected by the accumulating mutations and by the 

DNA-damaging agents. 

Another characteristic of cancer stem cells mediating drug resistance is the elevated 

expression of anti-apoptotic proteins, including BCL-2 and IAP family members, which 

protect the cells from therapy-induced apoptosis 90. 

Finally, cancer stem cells were shown to express high levels of transporter proteins often 

involved in chemoresistance such as ABC transporters 91. However, there are several other 

mechanisms driving resistance in cancer stem cells including ROS detoxification, EMT 

induction, increased telomerase activity, and the activation of stemness signaling 

pathways. 

 

3.2 Cancer stem cell plasticity  

According to the CSC theory, cancer stem cells are placed at the top of the cellular 

hierarchy and are usually originated from normal stem cells or progenitor cells which have 
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gained the ability to generate tumors when they encounter particular genetic mutations 

or some environmental cues. An alternative origin of CSCs could be the de-differentiation 

of normal somatic cells acquiring stem-like characteristics and malignant behavior 

through genetic or heterotypic alterations, such as EMT 84. 

However, accumulating evidence shows that cancer stem cells can also arise from the 

transition of non-stem cells, revealing the possibility of a bidirectional conversion 

between self-renewing and non-self-renewing cells, which adds a level of complexity to 

the origin of heterogeneity. When CSCs are generated by non-stem cells acquiring CSC 

properties, we usually refer to them as “cancer stem-like cells” (CSC-like) 92. 

This dynamic process in which cancer cells can bidirectionally shift from non-CSC state to 

CSC-like state is referred to as “cancer stem cell plasticity” (Figure IV) and can be 

modulated by specific stimuli 

which are often regulated by 

endogenous transcription factors 

92. An important contributor to 

CSCs plasticity is the tumor 

microenvironment, which is 

composed of non-tumorigenic cells 

including mesenchymal stem cells, 

stromal cells and immune cells 

such as macrophages and myeloid-

derived suppressor cells 93. The 

particular TME surrounding CSCs 

creates a specialized environment providing secreted factors and cell to cell contact 

critical for CSCs function and plasticity, which is defined as “cancer stem cell niche” 94. 

The dynamics in CSC plasticity supports the fact that the CSC and non-CSC states are not 

permanent, but are instead transitory and can regulate the equilibrium in the proportions 

of cellular states 95. Based on this concept, the conversion of non-CSCs into CSCs may 

account for another way of resistance to therapy.  Indeed, according to the original 

interpretation of the relapse process, non-CSCs were killed by the therapy, whereas pre-

existing CSCs could survive the treatment and re-populate the tumor. However, recent 

evidence suggests that chemotherapy and radiotherapy can induce the de novo 

Figure IV. The dynamic model of CSCs plasticity. Cancer stem cells 

(yellow) have self-renewal and differentiation potential and can give 
origin to differentiated cells (blue) or non-cancer stem cells, which 

can dynamically interconvert into CSCs. 
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generation of cells with CSC properties, by causing the transition of non-CSCs into drug-

tolerant CSC-like cells 96. 

These observations sustain a model of acquired and transitory resistance to therapy, a 

concept that has to be taken into consideration for the therapeutic targeting of CSCs. It is 

therefore of fundamental importance to consider targeting the CSC plasticity processes, 

rather than merely the CSC properties. 

 

3.3 Breast cancer stem cells  

Breast cancer stem cells (BCSCs) were first identified and isolated about 15 years ago 

when Al-Hajj and colleagues isolated a subpopulation of cells from human breast cancer 

specimens able to form tumors in mice. They showed that a small amount of these cells, 

identified by flow cytometry fractionation based on cell surface markers expression, was 

able to originate a tumor when injected into the mammary fat pads of non-obese 

diabetic/severe combined immunodeficiency (NOD/SCID) mice. Moreover, the tumors 

initiated by this population of tumor-initiating cells were able to reproduce the 

heterogeneity found in the original tumor 97. The isolation of this sub-population was 

based on the detectable expression of CD44 and the low expression of CD24 surface 

markers (CD44+/CD24low/-), which are still nowadays reliable markers for the identification 

of breast cancer stem cells. 

The identification, isolation, and characterization of CSCs have always been a challenging 

factor, given the fact that CSCs usually constitute a very small fraction of the total 

population of cells within the tumor and can express the same surface markers of non-

stem cancer cells. It is thus of fundamental importance to define specific CSCs markers, 

which can be very diverse in different tumor types and should also consider the 

heterogeneity of tumors, in particular for very heterogeneous tumors such as breast 

cancer 98. 

Breast cancer stem cells research has now identified several putative markers to 

accurately identify BCSCs; most of those are surface markers, which do not only contribute 

to cell interactions, but also provide them with peculiar features. The most well-accepted 

surface markers for BCSCs are still CD44 and CD24, but other surface markers used for 

BCSCs isolation include CD133, EpCAM, CD49f, CD29, CD133/2 and CD61 99. 
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CD44 is a cell surface glycoprotein acting as a specific receptor for hyaluronan. Moreover, 

CD44 can mediate cell-cell and cell-matrix interactions by also interacting with 

osteopontin, collagens and matrix metalloproteinases, thereby affecting cell adhesion, 

migration, and invasion, but also proliferation and tumor angiogenesis, resulting in tumor 

progression 100,101. CD24 is also a surface glycoprotein involved in modulation of growth 

which can play a role in cell differentiation 102. 

Another recently recognized marker for BCSCs is the aldehyde dehydrogenase (ALDH), 

which is a family of cytosolic enzymes responsible for the detoxification by oxidation of 

intracellular aldehydes and are involved in the retinol to retinoic acid oxidation during 

stem cells differentiation 103. ALDH family is composed of nineteen members, of which 

four (ALDH1A1, ALDH1A2, ALDH1A3, ALDH8A1) can interfere with retinoic acid signaling, 

which has been shown to negatively interfere with BCSCs 104. A standard method to 

measure ALDH activity, and thus to analyze the BCSCs sub-population, uses ALDEFLUOR 

assay, a non-immunological fluorescence system (see Methods section for details). 

However, CD44+/CD24low/- BCSCs can overlap only partially with ALDH+ BCSCs, and present 

different properties. Liu et al. recently demonstrated that BCSCs exist in two distinct 

states: a mesenchymal-like and an epithelial-like state 105. CD44+/CD24low/- cells belong to 

the mesenchymal-like BCSCs, are primarily quiescent, highly invasive and are localized at 

the tumor invasive front. Conversely, the ALDH+ cells are the epithelial-like BCSCs, are 

highly proliferative, characterized by the expression of epithelial markers and are localized 

more centrally within the tumor mass 105 (Figure V). This model can somehow explain the 

Figure V. Model of the epithelial and mesenchymal breast cancer stem cells switch suggested by Liu and colleagues. 

According to this model we can distinguish between different types of BCSCs based on the expression of the 

CD44/CD24/ALDH markers. These states are dynamic and cells can interconvert between the different states, giving 

origin to either epithelial-like or mesenchymal-like breast cancer cells. 
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contradictory data about CSCs and the EMT state, as some studies suggest a commonality 

between the two states 106, whereas others suggest that these processes are mutually 

exclusive 107, and this is a further proof of cancer stem cell plasticity in BC, as BCSCs can 

switch between the two states. 

Given the contradictory data regarding BCSCs makers, another option to identify and 

isolate cancer stem cells is based on their self-renew capability. Commonly used methods 

measure their clonogenic potential in vitro or their ability to form mammospheres, which 

are single cell-derived clumps of mammary cells generated by clonal expansion when cells 

are grown in non-adherent and non-differentiating conditions 108. 

Testing the BCSCs activity in vivo is usually achieved by xenotransplantation of the cells 

into immune-compromised mice and, in particular, by their ability to generate serially 

transplantable tumors 98. 

Regarding the molecular mechanisms involved in breast cancer stem cells maintenance, 

several pathways and proteins have been shown being often deregulated in these cells. 

The Wnt, Notch, and Hedgehog pathways are among the most well characterized, 

however also the transcription factors associated with embryonal stemness have been 

related to BCSCs activity 109. However, the Wnt, Notch, and Hedgehog pathways can be 

regulated by several signaling cascades, which have also been involved in breast cancer 

stem cells maintenance, such as NF-kB, TGF-b, JAK/STAT, PI3K/AKT, and MAPK pathways. 

Understanding the molecular determinants in both breast cancer stem cells maintenance 

and plasticity is of fundamental importance, as it can allow the development of CSCs direct 

targeting, thereby paving the way to overcome chemotherapy and radiotherapy 

resistance and avoid subsequent tumor relapse. 

In this work, we identified ETV7 as a novel factor involved in breast cancer stem cells 

plasticity and its associated chemoresistance. 

 

4. ETV7 

 

4.1 The ETS family of transcription factors 

ETV7, also called TEL2 or TELB, is a member of the large family of ETS (E26 Transforming 

Specific) transcription factors, whose members can regulate the expression of genes 
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involved in various processes, such as development, differentiation, cell proliferation, 

migration, and apoptosis.  

Given their role in essential cellular functions, their dysregulation can result in severe 

impairments within the cell, as demonstrated by the involvement of ETS factors in various 

diseases. In particular, many ETS factors have been associated with cancer initiation, 

transformation and metastatic spread 110. ETS transcription factors are mainly involved in 

oncogenesis, however, some of them can also act as tumor suppressor genes 111.  

There are several mechanisms by which ETS can mediate oncogenesis. Tumorigenesis can 

be caused by ETS hyper-activation by mRNA/protein over-expression or gene 

amplification, which are frequently observed in breast, prostate and hematological 

cancers. Several ETS factors, including ELF3, PEA3, ETS-1, ETS-2, and ELF5 have been 

shown to be up-regulated in tumor tissues and were associated with poor prognosis by 

affecting the expression of HER2/NEU, UPA, MMPs, MET, BCL2, VEGF and Survivin, 

oncogenes that regulate transformation, proliferation, migration, invasion, angiogenesis 

and apoptosis 112. 

The most common mechanisms of ETS activation in hematological cancers is the process 

of gene fusion caused by chromosomal translocation, which usually involves the fusion of 

TEL (ETV6) with different partners, such as AML1, EVI1, TRKc, ABL and JAK2 110. Gene 

fusions involving ETS factors are instead rarer in solid cancer, except for prostate cancer, 

with ERG and ETV1 commonly rearranged, and Ewing sarcoma, which usually involves 

EWS gene fusion 113. 

ETS-mediated oncogenesis can also be initiated by cytoplasmic localization of ETS factors 

114 or by their expression in the stromal tissue, which can contribute to cancer progression 

by stimulating tumor growth and promoting angiogenesis, invasion and metastasis 115. 

ETS factors can also exert oncogenic functions by gaining transcriptional activity through 

the binding to genome regulatory regions undergone cis-acting mutations, as seen for 

example for telomerase reverse transcriptase (TERT), which can frequently harbor 

mutations generating an ETS-binding site in its promoter 116. 

Furthermore, ETS proteins can also gain increased transcription activity due to post-

translational modification, protein-protein interaction or protein stabilization, or can 

switch their functions from activator to repressor and vice versa 110. 
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The ETS family is one of the largest family of TFs and include 27 genes in humans, which 

can be structurally characterized into 11 subfamilies: ETS, ERG, ELG, ELF, ESE, ERF, PEA3, 

SPI, TCF, PDEF, and TEL, to which belong ETV6 and ETV7 117.  

 

4.2 ETV7 structure and function  

All the ETS proteins share a conserved helix-turn-helix DNA binding domain of about 85 

amino acids called ETS domain, which binds to a consensus purine-rich 5’-GGA(A/T)-3’ 

motif in the regulatory regions of target genes 118. 

ETV7 was recently isolated and shown to be highly related to TEL/ETV6, the only other 

characterized member of the TEL subfamily. ETV7 and ETV6 both act as transcriptional 

repressors, they bind similar DNA sequences, and can directly interact; however, they play 

separate biological functions 119.   

Also their structure is very similar, as they both contain an N-terminal pointed (PNT) 

domain, a central domain, and the following ETS domain. Given the presence of the PNT 

domain, which is a protein-protein interaction domain required for the formation of 

homo-/heterodimers or oligomers and involved in transcriptional repression, ETV7 can 

either self-associate or form hetero-dimers/oligomers with ETV6, which indeed also acts 

as transcriptional repressor 120. The central domain is less conserved and has been shown 

to be the main contributor to the repressor activity of TEL factors 121, whereas the ETS 

domain is highly conserved (>85% identity) and can strongly bind to a core “ccGGAAgt” 

sequence 118 (Figure VI). 

 

Figure VI. The structure of ETV7 gene and the encoded proteins. A schematic representation of the ETV7 gene with 

numbered boxes corresponding to exons, which are shaded according to the corresponding domains on the encoded 

ETV7 protein,  whose function is shown above. 
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Despite their high similarity, these two proteins exert different biological effects. For 

example, ETV6 has been shown to inhibit colony formation, whereas ETV7 stimulates it 

122. In contrast to ETV6, which is ubiquitously expressed, ETV7 expression is low in most 

of the tissues but significantly higher in the hematopoietic ones 123.  

The regulatory mechanisms mediating ETV7 expression are still to be uncovered; 

however, the presence of alternative isoforms may remove putative MAPK 

phosphorylation sites within the PNT domain, suggesting possible regulation from the 

MAPK pathway. Indeed, ETV7 gene can encode six differentially expressed alternative 

splicing isoforms, which can vary in the N-terminal PNT domain or in the C-terminal, 

possibly altering the regulation of their expression 124. 

In a previous study, it was observed the synergistic induction of ETV7 in cancer cells 

treated with a combination of Doxorubicin and the inflammatory cytokine TNFa and 

reported p53 and NF-kB as direct regulators of ETV7 125. ETV7 is also recognized as an 

Interferon-stimulated gene (ISG), as its expression was shown to be induced by type I, 

type II and type III IFN treatment in different cell types 126–129. Moreover, ETV7 was up-

regulated in hESCs-derived hepatocytes infected with Hepatitis C Virus (HCV) 130, 

suggesting a possible role for ETV7 in antiviral immunity. 

The roles of ETV7 are still poorly understood and studied, partially because of the absence 

of ETV7 gene in most rodent species, including mice 131. However, several studies 

highlighted multiple roles for ETV7 in hematopoiesis. For examples, the over-expression 

of ETV7 in both human and mice hematopoietic stem cells (HSCs) could increase the 

proliferation and deplete HSCs 132. Moreover, ETV7 over-expression in human U937 cells 

was shown to impede monocytic differentiation 122.  

 

4.3 ETV7 roles in cancer 

The human ETV7 gene is located within the MHC cluster region at chromosome 6p21, a 

region that has been involved in a variety of different cancers, such as B-cell non-Hodgkin's 

lymphomas, cervical cancer, non-small cell lung carcinomas, ovarian and breast 

carcinomas 133. However, the role of ETV7 in cancer has been poorly investigated.  

Elevated ETV7 expression has been associated with several tumor types. In particular, the 

analysis of ETV7 expression in cancer revealed its up-regulation in 70% of ALL and AML 
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samples 134 and 48% of pediatric solid tumor xenografts 135. Among solid tumors, ETV7 

was shown to be 1 of the 10 most frequently up-regulated proteins in hepatocellular 

carcinoma 136 and was found to be up-regulated in 85% of medulloblastoma cases 137. 

Recently, Piggin and colleagues reported an average higher level of ETV7 expression in 

tissues from all the breast cancer subtypes compared to normal breast tissues, with a 

correlation of ETV7 expression and breast cancer aggressiveness 138. 

ETV7 was shown to cooperate with Eμ-MYC in promoting B-lymphomagenesis and Myc-

induced apoptosis inhibition and exhibited pro-proliferative and anti-differentiation 

functions in myeloid and lymphoid cells 139. Moreover, forced expression of ETV7 in mouse 

bone marrow was shown to cause myeloproliferative diseases, even if with a long latency, 

and the treatment with DNA-damaging agents greatly accelerated the tumor 

development, suggesting TEL2 as a bona fide oncogene 134. Besides, the crossing of the 

latest established ETV7 transgenic mouse model with an established leukemic mouse 

model revealed a remarkable acceleration in Pten-/- leukemogenesis 140.  

Further evidence supporting ETV7 pro-tumorigenic functions comes from the recent 

identification of a transcriptional-independent activity of ETV7, which was shown to 

physically interact with mTOR into the cytoplasm generating a novel complex called 

mTORC3, which contributes to resistance to rapamycin, an mTOR-targeting anti-cancer 

agent 137. 

In contrast, ETV7 was shown to act as tumor suppressor in nasopharyngeal carcinoma by 

repression of SERPINE1 gene expression 141, and its down-regulation was observed in 

drug-resistant cancer cells 142. 

In this work, we observed that the expression of ETV7 can affect the breast cancer stem-

like cell plasticity and that this effect can be reverted by Interferon treatment. Moreover, 

we observed that ETV7 can mediate the repression of a signature of Interferon-stimulated 

genes (ISGs). Thus, being ETV7 an ISG itself, we speculate that ETV7 may play a role in the 

negative feedback regulation of the IFN response. 
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5. Interferon and interferon response 

 

5.1 Interferon (IFN) 

The Interferons (IFNs) are heterogeneous glycoproteins with an antiviral activity which 

are secreted by cells in response to different stimuli 143. IFNs were first recognized in 1957, 

when Isaacs and Lindenmann, studying the process known as viral interference, 

discovered a secreted factor able to protect the cells from viral infection, from which the 

name “Interferon” 144. Viral interference refers to the fact that some cells, after being 

infected with a virus, can develop resistance to subsequent infections by the same or by 

similar viruses 145. The discovery of IFNs also represented the first identification of 

cytokines; moreover, among these, IFNs were the first used therapeutically 146. Indeed, 

given their ability to modulate the immune response, IFNs have been widely used for the 

treatment of viral infection, such as HCV and HBV infections 147. 

IFNs are members of class II family of a-helical cytokines, and, based on the structure of 

their receptors, are classified into three types: type I IFN, type II IFN and the most recently 

identified type III IFN (or IFN-like proteins) 147. 

Type I IFNs signal by binding to the dimeric IFN-a/b receptor called IFNAR, constituted by 

IFNAR1 and IFNAR2, and in humans comprise at least 12 IFN-a species (encoded by 14 

genes), and a single species of IFN-b, IFN-k, IFN-w and IFN-e 148. 

Type II IFNs include a single known subtype, which is IFN-g, that exerts its action by binding 

to the tetrameric IFN-g receptor (IFNGR) composed by 2 subunits, IFNGR1 and 2 of IFNGR2 

149. 

Type III IFNs include 4 known subtypes (IFN-l1, -l2, -l3 and -l4), which activate the IFN-

l receptor (IFNLR), a heterodimeric complex formed by IFNLR1 and IL10RB 150. 

Despite, their common ability to inhibit virus replication of infected cells, the different 

IFNs types can exert distinct functions, which are mainly based on their (or their 

receptors’) differential cell- and tissue-expression, and their different activation of signal 

transduction pathways, that drive the expression of different groups of Interferon-

stimulated genes (ISGs) 149. Indeed, IFNs and their receptors are not expressed by all the 

cell types. For example, plasmacytoid dendritic cells (pDCs) are the major producers of 

IFN-a in response to microbial infection 151, IFN-g is produced by other cells of the immune 
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system (e.g., natural killer cells, natural killer T-cells, B-cells and antigen presenting cells) 

150, IFN-e is expressed in the female reproductive tract 152, IFNAR is ubiquitously expressed, 

whereas IFNLR subunits are produced mainly in cells of epithelial origins and hepatocytes 

149,153. Moreover, different IFNs types regulate the expression of different sets of ISGs, 

either through the activation of various intracellular signaling pathways by the different 

receptors or by the cell type-specific expression of additional transcription factors 149. 

 

5.2 IFN signaling pathway 

All the IFNs, by binding to their receptors on the cell surface membrane, transmit the 

signal into the cell through the JAK-STAT signaling pathway, finally resulting in ISGs 

transcription 154. However, IFNs can bind with different affinity to their receptors, causing 

quantitative differences in the activation of the JAK-STAT pathway, which may partially 

explain the different biological outcomes observed 155. 

In normal conditions, the cytoplasmic domains of IFN receptor chains are bound to 

inactive JAK proteins, but, when IFN binds to the receptor, the conformational changes of 

the receptor bring the cytoplasmic chains nearby, allowing JAKs trans-phosphorylation 

and activation 154. Subsequently, JAKs can phosphorylate the IFN receptor chains causing 

the binding or repositioning of STAT proteins, which are then phosphorylated on 

conserved tyrosine residues by the receptor 156. STATs phosphorylation causes 

conformational changes resulting in their release from the receptor, the formation of 

homo- or heterodimers and their translocation into the nucleus, where they can activate 

ISGs transcription 157,158.  

Signal Transducers and Activators of Transcription (STAT) proteins include 7 members in 

mammals, all of which can play some functions in the innate immune response. However, 

STAT1 and STAT2 are the most important in the regulation of IFN signaling 154.  

The binding to type II IFN receptor drives the phosphorylation of STAT1 on tyrosine 701, 

with subsequent homo-dimerization and nuclear translocation 159. Once in the nucleus, 

STAT1 homo-dimers bind to gamma-activated sequence (GAS) elements upstream IFN-g 

induced genes, activating their transcription 160. 

On the other hand, type I and type III IFNs receptor activation causes the phosphorylation 

of both STAT1 and STAT2, which leads to their hetero-dimerization and interaction with 
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the IFN regulatory factor 9 (IRF9), forming a complex called ISGF3 161. ISGF3 can 

translocate to the nucleus where it binds to IFN-stimulated regulatory elements (ISREs) 

upstream type I or type III ISGs, inducing their transcription 162. Alternatively, IFNs can 

induce the phosphorylation and homo-dimerization of STAT3, which can regulate the 

transcription of genes containing the enhancer sequence STAT3-binding element 147. 

Additionally, IFNs can exert their activity via other members of the STAT family or by other 

pathways, such as the PI3K/AKT pathway, NF-kB pathway and the RAS/MAPK pathway 143.  

The regulation of IFN signaling is tuned by many different mechanisms, such as post-

translational modification (e.g., acetylation, methylation, SUMOylation or palmitoylation) 

and by the modulation of IFN receptors mRNA splice variants 149. 

Moreover, negative feedback regulatory mechanisms are essential for attenuating the IFN 

response and are mainly mediated by two families of proteins: suppressor of cytokine 

signaling (SOCS) and protein inhibitors of activated STATs (PIAS). Furthermore, also the 

ubiquitin-proteasome pathway has been reported to negatively regulate STATs activity 

143. 

 

5.3 IFN biological activities and roles in cancer  

The main and defining function of IFNs is the establishment of a state of resistance to viral 

infectivity in the target cells by blocking or impairing viral replication. This activity is 

achieved through the induction of proteins which can inhibit any stage of viral replication, 

including entry, transcription, RNA stability, translation, maturation, assembly and release 

163. 

Moreover, increased interest in IFN study was acquired when Gresser and colleagues 

showed that Interferon was able to suppress the growth of tumors in vivo 164. Since then, 

many studies revealed that IFNs could play pleiotropic functions through the activation of 

ISGs. IFNs were shown to play a central role in innate and adaptive immunity, to regulate 

cell cycle, angiogenesis, hematopoiesis, to increase the expression of tumor-associated 

cell surface antigens and MHC class I and II antigens, to induce the expression of pro-

apoptotic genes and proteins (e.g. BAK, BAX, Caspases, TRAIL), to repress anti-apoptotic 

proteins (e.g. BCL-2 and IAP) and to modulate the differentiation 148,165. 
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These functions make IFN a promising factor for the treatment of various diseases, 

including cancer; and its use has already been approved for the treatment of several 

cancer types, such as hairy cell leukemia, malignant melanoma, follicular lymphoma, 

bladder and renal cancer 165. 

However, IFNs can play opposing functions in cancer, as it can be both immunostimulatory 

or immunosuppressive. The factors driving IFN activity towards the stimulation or 

suppression of immunity in cancer are still not completely understood. However, these 

factors include the type of cells targeted with IFNs (cancer cells vs. immune cells), the 

stimulus inducing IFN signaling, its timing and the ISGs expressed 166. IFN signaling has also 

been involved in the resistance to cancer therapy, in which again it can play opposing 

activities. ISGs signatures related to IFN signaling are widely expressed in various human 

tumors, and have been shown to predict therapy response; however, different studies 

associated it with either good or poor response 167–171.  

IFN plays a central role in the induction of immunogenic cell death (ICD), a type of death 

of tumor cells occurring when the therapy generates an immune-dependent response and 

immunological memory 172. Recent evidence suggested that DNA damage can result in 

IFN-driven immune modulation, as DNA damage-associated single-stranded DNA can be 

sensed by cytoplasmic DNA sensors (e.g., cytosolic DNA sensor cyclic GMP-AMP synthase 

- cGAS), that activate STING, which can induce IFN production 173. In this way, IFN activated 

by DNA damaging therapy can contribute to immune-recognition of cancer cells and their 

removal, reinforcing the therapy action. 

On the other side, some studies showed that IFNs could also have detrimental effects, as 

they can promote tumor growth. For example, low dose or autocrine exposure to IFN-g in 

melanoma and breast cancer cells were shown to enhance their metastatic ability and 

caused resistance to natural killer cells 174,175. 

Despite the recognized central role of IFNs in the regulation of cell intrinsic, extrinsic and 

immune-mediated effects of tumor therapy response, the complexity of IFN functions in 

cancer still needs to be completely understood, and further studies are needed to better 

understand its opposing functions. 
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PREFACE 
 

Preliminary work in the laboratory showed that the combined treatment with Doxorubicin 

and TNFa in the breast cancer cell line MCF7 was able to increase the migration 

capabilities of the cells and to induce the synergistic up-regulation of a signature of genes, 

which was shown to have prognostic value in breast cancer patients data 125. Among the 

top synergistically up-regulated genes we identified ETV7, a poorly studied transcription 

factor with demonstrated pro-tumorigenic functions in hematological malignancies 134. 

The synergistic effect of Doxorubicin and TNFa on ETV7 expression was further confirmed 

in various other breast and non-breast cancer cell lines and, along with LAMP3 (a 

lysosome-associated membrane protein), was one of the most conserved synergistically 

up-regulated genes tested. Moreover, ETV7 expression was recently shown to be higher 

in cancer tissues compared to normal tissues in breast cancer patients 138, suggesting a 

possible involvement of ETV7 in breast cancer pathogenesis. 

Given these preliminary works, the few literature data regarding ETV7, and in particular 

the absence of studies focusing on its impact in breast cancer, we decided to explore the 

roles and functions of ETV7 in this cancer type. 

Therefore, this work aims to characterize the effects of the increased ETV7 expression in 

breast cancer, particularly focusing on its pro-tumorigenic functions and its involvement 

in the resistance to cancer therapy.  
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RESULTS  
 

This section of the thesis presents the results I obtained during my doctoral studies, and 

it is divided into three chapters. 

In the first chapter, I will present my contribution to the published manuscript attached 

in Annex I (Alessandrini, Pezzè et al., 2018), implemented with some unpublished data. In 

this study we uncovered a novel mechanism mediating the ETV7-dependent resistance to 

Doxorubicin in breast cancer cells; we suggested this effect involves the repression of 

DNAJC15 gene. 

In the second part of this project (manuscript in preparation), I will describe the impact of 

ETV7 increased expression on the resistance to other conventional treatments for breast 

cancer (i.e., 5-FU and radiotherapy) and its involvement in cancer stem cell-like plasticity 

in breast cancer. We also investigated genome-wide the pathways regulated by ETV7 and 

shortlisted a group of ETV7 targets possibly responsible for the observed effects. 

In the last chapter, I will present some preliminary results regarding the role of ETV7 in 

the survival of breast cancer cells and the involvement of p53 in the cell death associated 

with reduced expression levels of ETV7.   

 

 

1. ETV7 promotes the resistance to Doxorubicin via DNAJC15 

repression 

 

1.1 ETV7 is activated in response to Doxorubicin and other DNA damaging 

agents in MCF7 cells 

Given the previously observed induction of ETV7 expression following Doxorubicin 

treatment in MCF7 cells 125, we first tested a panel of cytotoxic drugs in order to evaluate 

the differential expression of ETV7 in response to different stimuli in this breast cancer-

derived cell line (Figure 1). We observed a significant induction of ETV7 expression with 

most of the drugs, especially the DNA damaging agents (Doxorubicin, 5-FU, Camptothecin, 



 36 

and Etoposide), among which Doxorubicin was the most effective inducer of ETV7 

expression. Also, the treatment with Paclitaxel (a mitotic inhibitor), and Nutlin-3a (a 

specific activator of p53) could trigger an increase in ETV7 levels, while Everolimus (an 

mTOR inhibitor), Imatinib (a tyrosine kinase inhibitor) and Tamoxifen (an estrogen 

modulator) had no significant effect on its mRNA expression. 

 

 

1.2 The over-expression of ETV7 induces increased resistance to 

Doxorubicin 

In order to investigate the effects of ETV7 induction upon the treatment with 

chemotherapeutics, we tested whether the altered expression of ETV7 could affect the 

sensitivity of the cells to these drugs. In particular, in this first part of the work, we focused 

on Doxorubicin, which was the strongest inducer of ETV7 expression.  

To accomplish this task, we first generated MCF7 cells stably over-expressing ETV7 by 

transfecting either the empty vector (pCMV6-Entry plasmid) or the vector carrying ETV7 

cDNA (pCMV6-ETV7 plasmid). We thus obtained cells from now on referred to as “MCF7 

Empty” and “MCF7 ETV7”, whose ETV7 expression was tested by western blot analysis 

(Figure 2A). 
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Figure 1. The expression of ETV7 is induced by several DNA damaging agents. RT-qPCR analysis of ETV7 expression in 

MCF7 cells treated with different chemotherapeutic agents for 24 hours. Bars represent average Fold Change relative 

to untreated control and standard deviations of at least three biological replicates. * = p-value  < 0.01. 
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Figure 2. ETV7 triggers breast cancer resistance to Doxorubicin. A) Western blot analysis demonstrating the over-
expression of ETV7 in MCF7 cells. B) MTT Assays for survival analysis upon Doxorubicin treatment in MCF7 cells 

over-expressing ETV7 and their empty control. Each dot corresponds to a. tested dose of Doxorubicin. C) MTT 

Assays for survival analysis upon Doxorubicin treatment in MCF7 cells transiently transfected with plasmid over-

expressing ETV7 or their empty control. Each dot corresponds to a tested dose of Doxorubicin. D-E) Cell death 
analysis of Doxorubicin treated (three different doses) MCF7 Empty and ETV7 cells. A representative image of cells 

treated with Doxorubicin 0.5 µM is shown in panel D, and the percentage of dead cells (panel E) was obtained 

through fluorescence studies (at Operetta, Perkin Elmer) calculated as the ratio between the amount of Topro-3 

positive cells (dead cells) and the total number of cells (Hoechst 33342 positive cells). A merged image with 

overlapping fluorescent signal is shown on the right.  F) RT-qPCR analysis of ABCB1, ABCC1 and ABCG2 expression 
in MCF7 Empty and ETV7. Bars represent the average Fold Change relative to the untreated control and the 

standard deviations of at least three biological replicates. * = p-value < 0.01. 
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In the following step, we analyzed the sensitivity of these cells to Doxorubicin by 

measuring cell viability via MTT assay, showing that ETV7 over-expression could exert a 

protective role against Doxorubicin toxicity (Figure 2B). We then confirmed that the 

observed effect is truly dependent on ETV7 expression by testing the viability of MCF7 

cells upon Doxorubicin treatment following transient transfection with ETV7 over-

expressing plasmid and their relative control (Figure 2C). We further tested the effect of 

ETV7 expression on Doxorubicin-induced cell death by using the cell-impermeable dye 

Topro-3, which can permeate only in dying or dead cells. By image analysis of Topro-3 and 

Hoechst 33342 stained cells, we measured the percentage of cell death, and we confirmed 

that the over-expression of ETV7 remarkably reduced the sensitivity of MCF7 cells to 

Doxorubicin treatment (Figure 2D and 2E).  

Since drug efflux mediated by ABC transporters is one of the most common mechanisms 

responsible for increased chemoresistance, we tested the expression of some of the ABC 

family members which are more commonly deregulated in chemoresistant breast 

cancers: ABCB1/PgP, ABCC1/MRP1, and ABCG2/BCRP. Noteworthy, we observed a 

significant up-regulation of the three ABC transporters at the transcript levels, with ABCB1 

and ABCG2 induced more than 3-fold (Figure 2F), suggesting that ETV7-dependent 

resistance to Doxorubicin could be mediated by the regulation of ABC transporters. 

 

1.3  DNAJC15 as a possible target for ETV7-mediated Doxorubicin resistance 

In order to identify a possible mechanism by which the over-expression of ETV7 could 

decrease the sensitivity of the cells to Doxorubicin, we looked for its putative targets by 

analyzing the previously cited microarray data obtained in our lab on MCF7 cells treated 

with Doxorubicin 125. Being ETV7 a transcriptional repressor, we focused our search on 

genes whose repression was already known to be involved in the resistance to 

Doxorubicin in breast cancer cells. In particular, we considered a short list of genes 

obtained from a recent study by Boettcher and colleagues 176, whose hyper-methylation, 

and subsequent repression correlated with Doxorubicin resistance in breast cancer, which 

included BRCA1, ESR1, DNAJC15, CDH1, RAB6C, and SULF2. Since Doxorubicin strongly 

activated the expression of ETV7, we expected to observe a significant down-regulation 

of ETV7 putative targets under the same treatment condition. Out of the six genes 
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mentioned above, three of them, DNAJC15, BRCA1, and ESR1 were down-regulated upon 

Doxorubicin treatment in MCF7 cells, whereas an induction or no significant effects were 

observed for CDH1 and RAB6C, and SULF2 (Figure 3A). Furthermore, we found that most 

of the DNAJC family members were down-regulated upon Doxorubicin treatment in MCF7 

cells (Figure 3B). We then validated some of the highly down-regulated members of 

DNAJC family by RT-qPCR in Doxorubicin-treated MCF7 cells, and we confirmed the 

repression of DNAJC2, C7, C14, C15, and C17 upon Doxorubicin treatment (Figure 3C). 
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Figure 3. Identification of DNAJC15 as a putative target of ETV7. A-B) Expression values from microarray data 

previously obtained by our group from MCF7 cells treated with Doxorubicin (GSE24065) of the gene list studied by 

Boettcher and colleagues (A), and of the DNAJC family members (B). Results are presented as logarithm of Fold Change 
from Doxorubicin-treated samples calculated over Mock condition. C) RT-qPCR analysis of the expression of a selected 

group of DNAJC family members in MCF7 cells treated or untreated with Doxorubicin 1.5 µM for 24 hours. D) 

Expression analysis of DNAJC15 mRNA upon the treatment with different chemotherapeutics for 24 hours in breast 

cancer-derived MCF7 cells. Bars represent the averages Fold Changes relative to the untreated condition of at least 

three biological replicates and the standard deviations.  * = p-value < 0.01. 
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Given these observations and the involvement of DNAJC15 in the negative regulation of 

ABCB1 transcription 177, we decided to focus our attention on DNAJC15 as a putative 

mediator of the ETV7-dependent resistance to Doxorubicin in breast cancer cells. 

DNAJC15 is a tumor suppressor gene belonging to the HSP40/DNAJ family of co-

chaperones, mainly contributing to ATP hydrolysis and the consequent activation of the 

HSP70 chaperone, thus helping in protein folding, trafficking, interaction, import, and 

export 178,179. DNAJC15 down-regulation was associated with increased drug resistance in 

ovarian and breast cancer 180, and Hatle and colleagues showed that the expression of 

DNAJC15 in the Golgi was responsible for the degradation of some proteins, including the 

transcription factor c-JUN 181. Therefore, the inhibition of DNAJC15 in Doxorubicin-

resistant MCF7 clones resulted in increased levels of c-JUN protein, which was responsible 

for an enhanced transcription of the multidrug transporter ABCB1/MDR1 181. Other 

studies reported that DNAJC15 could control the respiratory chain and the production of 

ROS by localizing into the mitochondrial inner membrane 182.  

Moreover, DNAJC15 could exert its tumor suppressor role also by promoting the release 

of pro-apoptotic molecules through the mitochondrial permeability transition pore 

complex 183. We thus extended the analysis of DNAJC15 transcript expression levels to the 

other DNA damaging agents able to induce expression of ETV7 in MCF7 cells and verified 

the significant down-regulation of DNAJC15 in response to all of the analyzed agents 

(Figure 3D). 

 

1.4  ETV7 downregulates the expression of DNAJC15 

To test whether DNACJ15 could represent a novel target of ETV7 and whether it could 

mediate the enhancement in resistance to Doxorubicin in MCF7 cells, we first analyzed 

the mRNA expression of DNAJC15 in ETV7-over-expressing cells and we could appreciate 

a slight but significant repression of DNAJC15 in MCF7 ETV7 compared to the Empty 

control (Figure 4A).  The transcriptional repression of DNAJC15 was further confirmed by 

gene reporter assay performed with a luciferase reporter vector in which a region of 

DNAJC15 promoter containing two putative binding sites for ETV7 was cloned. We 

observed strong repression of luciferase activity in MCF7 ETV7, confirming the 

transcriptional repression of DNAJC15 (Figure 4B). We then performed site-directed 
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mutagenesis on the two putative ETV7 binding sites (BS1 and BS2), to test their 

contribution to the ETV7-dependent down-regulation of DNAJC15. The mutation of ETV7 

binding site 1 (BS1 – chr.13: 43ʹ597’329–43ʹ597’335) did not affect the repression of 

luciferase activity in response to ETV7 over-expression, whereas the disruption of binding 

site 2 (BS2 – chr.13: 43ʹ597’624–43ʹ597’632) in the DNAJC15 promoter was able to 

prevent the inhibition of the luciferase activity induced by ETV7 over-expression, 

demonstrating the importance of ETV7 binding to this site in the modulation of DNAJC15 

transcriptional expression (Figure 4B). 

Moreover, we demonstrated the direct binding of ETV7 to the BS2 region within DNAJC15 

promoter by chromatin immunoprecipitation (ChIP) analysis (Figure 4C).  

 

 

1.5  The ETV7-mediated repression of DNAJC15 is methylation-dependent 

Since DNAJC15 expression is well-recognized for being methylation controlled, and its 

promoter methylation has been associated with chemoresistance 177, we investigated the 

methylation status of DNAJC15 promoter in our context. Thus, we performed genomic 

DNA bisulfite conversion followed by PCR and sequencing for the analysis of the presence 

of methylated or un-methylated CpGs within a frequently hypermethylated region of the 
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DNAJC15 promoter which includes the newly identified ETV7 binding sites. We observed 

an increase in CpGs methylation of DNAJC15 promoter in response to Doxorubicin 

treatment, which was even more remarkable in ETV7-over-expressing cells (Figure 5A). 

To test the dependency of ETV7-mediated DNAJC15 repression on DNA promoter hyper-

methylation, we treated the cells with the DNA methyltransferase (DNMT) inhibitor 5-

Aza-2ʹ-deoxycytidine (5-Aza). The treatment with 5-Aza was not able to affect the 

repression of DNAJC15 expression caused by Doxorubicin treatment (Figure 5B), 

suggesting that the repression of DNAJC15 expression upon Doxorubicin is only partially 

dependent on hyper-methylation. The repression of DNAJC15 in ETV7 over-expressing 

cells was instead reversible by 5-Aza treatment, suggesting that the mechanism of 

DNAJC15 inhibition mediated by ETV7 involves methylation of the promoter (Figure 5C). 

Since DNMTs were shown to play key roles in Doxorubicin resistance 184, we hypothesized 

Figure 5. ETV7 dependent repression of DNAJC15 involves DNA methylation. A) Methylation status of CpGs within 

DNAJC15 promoter analyzed by bisulfite conversion followed by PCR and direct sequencing in MCF7 untreated, treated 
with Doxorubicin for 24 hours or transiently transfected with pCMV6-Entry or pCMV6-ETV7 plasmids for 48 hours. 

Methylated CpGs are shown as black dots, whereas unmethylated CpGs as white dots. B) RT-qPCR analysis of DNAJC15 

expression in MCF7 treated with Doxorubicin for 24 hours and/or DMSO or 5-Aza-2ʹ-deoxycytidine for 48 hours. C) RT-

qPCR analysis of DNAJC15 expression in MCF7 transfected with pCMV6-Entry-Empty or pCMV6-Entry-ETV7 and treated 
with DMSO or 5-Aza-2ʹ-deoxycytidine for 48 hours. D) RT-qPCR analysis of DNMT1, DNMT3A and DNMT3B expression 

in MCF7 treated with Doxorubicin for 16 hours. E) RT-qPCR analysis of DNMT1, DNMT3A and DNMT3B expression in 

MCF7 Empty and MCF7 ETV7. F) Western blot of DNMT3A and ETV7 on the immunoprecipitation with an antibody 

against ETV7 or normal IgG as control and on INPUT lysates in MCF7 transfected with pCMV6-ETV7 plasmid. * = p-value 

< 0.01  
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that ETV7 could mediate the repression of the DNAJC15 promoter by recruiting specific 

DNMTs responsible for the observed hyper-methylation in ETV7 over-expressing cells. To 

demonstrate this, we tested whether ETV7 and DNMTs could possibly physically interact. 

We first analyzed the expression of DNMT1, DNMT3A and DNMT3B genes in Doxorubicin-

treated MCF7 cells by RT-qPCR, revealing the up-regulation of the only DNMT3A among 

these DNMTs, while both DNMT1 and DNMT3B were down-regulated in response to the 

treatment (Figure 5D). We observed a similar trend for DNMTs expression upon ETV7 

over-expression in MCF7 cells, even if only for DNMT1 we could appreciate statistically 

significant alterations (Figure 5E). Therefore, we hypothesized that DNMT3A might 

cooperate with ETV7 in DNAJC15 repression. Thus, we tested their putative interaction by 

immunoprecipitation of ETV7 and we found in ETV7 over-expressing cells that DNMT3A 

and ETV7 can directly interact (Figure 5F).   

 

1.6 The over-expression of DNAJC15 can partially rescue the ETV7-

mediated resistance to Doxorubicin 

 To finally confirm that the ETV7-mediated Doxorubicin resistance mechanism is, at least 

partially, dependent on DNAJC15 repression, we over-expressed DNAJC15 in MCF7 ETV7 

cells and we analyzed the sensitivity of the cells to Doxorubicin using the MTT assay 

Figure 6. DNAJC15 over-expression can partially rescue Doxorubicin sensitivity in ETV7-over-expressing cells. A) MTT 
Assay in ETV7-over-expressing MCF7 cells transiently transfected with pCMV6-Entry or pCMV6-DNAJC15 plasmids and 

treated with Doxorubicin 1.5 μM or 3 μM for 72 hours. B) RT-qPCR analysis to measure the expression levels of DNAJC15 

and ABCB1 expression in ETV7-over-expressing MCF7 cells transiently transfected with pCMV6-Entry or pCMV6-

DNAJC15 plasmids. Bars represent averages and standard deviations of at least three biological replicates. * = p-value 

< 0.01. 
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(Figure 6A). Despite the over-expression of ETV7, cells further over-expressing DNAJC15 

became more sensitive to Doxorubicin-mediated toxicity, supporting the idea that 

DNAJC15 repression is exploited by ETV7 as a mechanism of resistance to Doxorubicin. 

Moreover, the over-expression of DNAJC15 was also able to down-regulate the expression 

of ABCB1 in MCF7 cells over-expressing ETV7, in agreement with its reported negative role 

in ABCB1 expression (Figure 6B). 

 

 

2. ETV7 regulates BCSC-like plasticity by the repression of IFN 

response genes  

 

2.1 ETV7 regulates the resistance to 5-FU and radiotherapy  

Given the observed effects of ETV7 on Doxorubicin resistance in MCF7 cells, we decided 

to test whether ETV7 could confer increased resistance to other therapeutic agents and 

whether these effects could be conserved in other breast cancer cell lines.  

 

2.1.1 The over-expression of ETV7 induces an increased resistance to 5-FU 

We first generated different breast cancer cell lines stably over-expressing ETV7 through 

lentiviral transduction of a plasmid carrying the ETV7 gene (pAIP-ETV7) or the empty 

counterpart (pAIP). After selection with Puromycin, we obtained two cell lines stably over-

expressing ETV7: MCF7 and T47D (Figure 7A and 7B). We chose to use these cell lines 

because they are representative for the luminal breast cancer subtypes, thus belonging 

to poorly aggressive subtypes of breast cancer, which usually express low levels of ETV7 

138 in order to appreciate its pro-tumorigenic potential.  

We thus tested the sensitivity of breast cancer cells over-expressing ETV7 to 5-FU, which, 

similarly, to Doxorubicin, is commonly used for breast cancer treatment and it is also able 

to induce the expression of ETV7 (Figure 1). We analyzed the sensitivity of these cells using 

the Cell Titer Glo Assay, and we observed that T47D cells were much more resistant to 5-

FU treatment compared to MCF7 cells. Furthermore, we obtained a significant increase in 

cell viability in ETV7 over-expressing cells, both for MCF7 and T47D (Figure 7C and 7D). To 
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further confirm this increased resistance, we tested the induction of cell death, and in 

particular of apoptosis, in response to 5-FU treatment by the staining with Annexin V-

FITC/PI staining and flow cytometry analysis. ETV7 over-expressing MCF7 cells showed a 

significant decrease in the rate of cell death and apoptosis compared to the empty control 

(Figure 7E, 7F, and 7G), suggesting that the over-expression of ETV7 can decrease the 

sensitivity of BC cells to 5-FU as well. 
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2.1.2 The over-expression of ETV7 induces increased resistance to 

radiotherapy 

We then tested the sensitivity of the cells to another commonly therapeutic option for 

the treatment of breast cancer: radiotherapy. In order to assess the viability of the cells 

in response to radiotherapy, we measured the percentage of viable cells in response to 

different doses of radiation (from 2 to 10 Gy) (Figure 8A and 8B). By this analysis we found 

that T47D cells are more sensitive to radiation compared to MCF7 cells, thus showing an 

opposite behavior compared to the one observed in response to 5-FU. However, also in 

this case, the cells over-expressing ETV7 showed reduced sensitivity to the treatment in 

both the analyzed cell lines.  
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Figure 8. ETV7 expression affects the sensitivity of breast cancer cells to radiotherapy. A-B) ViCell Assay for 

survival analysis upon radiotherapy treatment in MCF7 (A) and T47D (B) cells over-expressing ETV7 and their 
empty control. C-D) Annexin V-FITC/PI staining of MCF7 (C) and T47D (D) Empty or over-expressing ETV7 

treated with radiotherapy with 2-6-10 Gy for 72 hours.  Relative percentage of Annexin V positive cells 

calculated as difference of treated and untreated cells. Bars represent the averages and standard deviations 

of at least four biological replicates. * = p-value < 0.05; ** = p-value < 0.01 
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We then measured the induction of apoptosis in response to radiotherapy following 

different doses of radiation. ETV7 over-expressing cells showed a significant decrease in 

the percentage of apoptosis in response to radiotherapy at the lowest dose used (2Gy), 

whereas no significant differences could be observed with higher doses in both the cell 

lines tested (Figure 8C and 8D). These results suggest that the increased expression of 

ETV7 can affect the sensitivity of breast cancer cells to several different therapeutic 

agents, including chemotherapy (i.e. Doxorubicin and 5-FU) and radiotherapy. However, 

the mechanism of resistance to radiotherapy seems to involve only partially the apoptotic 

response, and further investigations are needed to better explain the contribution of ETV7 

to this mechanism. 

 

2.1.3 ETV7 over-expressing cells present drug resistance-related properties 

We showed that the over-expression of ETV7 could increase the resistance to 

Doxorubicin, 5-FU, and radiotherapy; however, the upregulation of ABC transporters 

(Figure 2D) can only partially explain the resistance to chemotherapy, but this is not 

sufficient to explain the resistance to radiotherapy. We thus investigated some of the 

properties that can confer resistance to the cells. Notably, we could appreciate a strong 

increase in the expression of the anti-apoptotic proteins BCL-2 and Survivin (Figure 9A), 

which can explain the decreased rate of apoptosis observed in ETV7 over-expressing cells 

upon the treatment with 5-FU or radiotherapy. Since both 5-FU and radiotherapy exert 

their action when the cells divide, their activity is strongly dependent on the proliferative 

rate of the cells. Thus, we analyzed their proliferative capacity by measuring their doubling 

time by the ViCell instrument. We observed a significant increase in the doubling time of 

MCF7 ETV7 compared to MCF7 Empty cells, demonstrating that cell proliferation was 

much slower in cells over-expressing ETV7 compared to the empty control (Figure 9B). In 

T47D cells, this increase in the doubling time was instead slight and not significant (Figure 

9C). We then tested the colony formation potential of ETV7 over-expressing cells by 

clonogenic assay, and we could appreciate a significant decrease in the capacity of ETV7 

over-expressing cells to form colonies when grown on plastic in both MCF7 and T47D cells 

(Figure 9D and 9E). Thus, the decreased proliferative rate of the cells could also contribute 

to the increased resistance to 5-FU and radiotherapy, together with the increased 
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expression of anti-apoptotic proteins and ABC transporters.  
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Figure 9. ETV7 over-expressing BC cells express high levels of anti-apoptotic proteins and display different proliferative 

potential. A) Western Blot analysis of the anti-apoptotic BCL-2 and Survivin protein expression in MCF7 Empty and MCF7 
ETV7. B-C) Doubling time of MCF7 (B) and T47D (C) Empty and ETV7 cells calculated by cell count at ViCell instrument. 

D-E) Colony formation/clonogenic assay of MCF7 (D) and T47D (E) Empty and ETV7 cells after 3 weeks of growth. On 

the left a representative image and on the right the total colonies area calculated with the ImageJ software. F-G) Soft 

agar colony formation assay of MCF7 (F) and T47D (G) Empty and ETV7  cells after 3 weeks of growth. On the left a 

representative image and on the right the average colony area calculated with the ImageJ software. Bars represent the 
averages and standard deviations of at least three biological replicates. * = p-value < 0.05; ** = p-value < 0.01; *** = p-

value < 0.001 



 49 

Surprisingly, when we analyzed the colony formation capacity of the cells in an anchorage-

independent system with the soft agar assay, we observed an opposite proliferative 

behavior. Both MCF7 and T47D cells over-expressing ETV7 formed more abundant and 

larger colonies when grown in soft agar compared to plastic (Figure 9F and 9G). Despite 

these apparently contradictory data, the anchorage-independent growth is commonly 

considered a pro-tumorigenic feature; thus, these results might suggest that cells over-

expressing ETV7 can switch to different proliferative behaviors based on the 

environmental conditions.  

 

2.2 ETV7 affects BCSC-like plasticity  

We observed that the over-expression of ETV7 could determine an increased resistance 

to standard anti-cancer therapies (i.e. Doxorubicin, 5-FU, and radiotherapy), which is 

accompanied by i) an increase in ABC transporter expression, ii) higher anti-apoptotic 

protein expression and iii) a differential switchable proliferative rate.  

Given these observations, and data from the literature reporting the involvement of ETV7 

in cell differentiation 139, we hypothesized that ETV7 could play a role in breast cancer 

stemness. 

 

2.2.1 The expression of ETV7 affects BCSCs markers expression 

To test this hypothesis we first analysed some of the most commonly used markers for 

breast cancer stem cells, including CD44 and CD24 expression and ALDH activity. We 

analysed the percentage of CD44+ and CD24- cells (representing the BCSCs population 

according to most of the researchers) in MCF7 and T47D cells over-expressing ETV7 or 

their relative control. Both the parental cell lines present a very low or almost absent 

population of CD44+/CD24- cells; however, we could appreciate an impressive increase in 

this population in both the cell lines tested upon ETV7 over-expression (Figure 10A and 

10B). Importantly, this increase in breast cancer stem cells population was not due solely 

on alterations in either CD44 or CD24 expression, but the over-expression of ETV7 could 

stimulate both an increase in CD44 expression and a decrease in CD24 expression on the 

plasma membrane of the cells.  
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The histogram on the left summarizes the percentage of ALDH positive cells in Empty and ETV7 over-expressing cells; 
on the right a representative dot plot of the results obtained at FACS Canto II. Bars represent the averages and standard 

deviations of at least three biological replicates. *** = p-value < 0.001 
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We then analysed the activity of ALDH via ALDEFLUOR kit in our models. Here again, the 

population of ALDH+ cells was very low in the parental cell lines, but, either a decrease in 

this already small population or no significant differences were observed in response to 

ETV7 over-expression in MCF7 (Figure 10C)  and T47D (Figure 10D)  cells respectively. 

Therefore, ETV7 over-expression seems to drive a strong polarization of the analysed 

breast cancer cells toward a more cancer stem cell-like phenotype, which is mainly 

represented by the CD44+/CD24- population. 

To further confirm these results, we tested whether modulating the expression of ETV7 in 

the opposite direction could also affect the population of CD44+/CD24- cells. In order to 

detect whether the knock-down of ETV7 could decrease the population of BCSC-like cells, 

we tested ETV7 silencing in the aggressive triple negative BC cell line MDA-MB-231, which 

is known from the literature to present almost exclusively CD44+/CD24- cells. We knocked-

down ETV7 expression using 2 different siRNAs against ETV7 (siETV7#1 and siETV7#2) and 

we confirmed their activity by RT-qPCR analysis (Figure 11A). Importantly, in both MDA-

MB-231 samples silenced for ETV7, it was possible to observe a population of cells with 

decreased CD44 membrane expression compared to the scramble control, suggesting that 

tuning the expression of ETV7 can bi-directionally affect the population of CD44+/CD24- 

cells (Figure 11B). 
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Figure 11. The silencing of ETV7 decreases CD44 membrane expression in MDA-MB-231 cells. A) RT-qPCR analysis of 

ETV7 expression in MDA-MB-231 transfected with siRNA against ETV7 (siETV7 #1 and #2) and the relative scramble 
control for 72 hours. Bars represent the averages and standard deviations of at least three biological replicates. * = p-

value < 0.05. B) Representative dot plot of CD44-APC and CD24-FITC staining and flow cytometry analysis in MDA-MB-

231 cells transfected with siRNA against ETV7 (siETV7 #1 and #2) and the relative scramble control for 72 hours. 
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2.2.2 ETV7 expression affects the potential to form mammospheres 

Given the conflicting literature data on the use of markers for the detection of breast 

cancer stem cells, we tested another common well-accepted feature of cancer stem cells 

by measuring their potential to form spheres when grown in non-differentiating and non-

adherent conditions. We measured the mammosphere formation efficiency (MFE) of 

MCF7 Empty and MCF7 ETV7 cells and we could observe a significant increase in the 

mammosphere formation efficiency of MCF7 cells over-expressing ETV7 compared to the 

control (Figure 12A and 12B). We then tested the propagation potential of 

mammospheres by passaging them in culture, and we could appreciate the ability of cells 

over-expressing ETV7 to generate second, third and fourth generation mammospheres  
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Figure 12. ETV7 over-expression enhances the mammospheres formation potential of MCF7 cells. A) A representative 

image of first generation mammospheres obtained from MCF7 Empty and MCF7 ETV7 cells. B) The percentage of 
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well/number of cells seeded per well X 100. C) % MFE in second, third and fourth generation mammospheres obtained 

by passing the mammosphere once a week. Bars represent the averages and standard deviations of at least three 

biological replicates. * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001. 
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(Figure 12C). These data confirmed that the over-expression of ETV7 in breast cancer cells 

can enhance the cancer stem cell-like properties and thus suggest a role for ETV7 in breast 

cancer stem cell-like plasticity.  

We also tested the mammosphere formation potential in T47D cells; however, when 

grown in non-adherent and non-differentiating conditions, T47D cells were forming only 

aggregates of cells with unorganized structures, that cannot be defined as 

mammospheres (data not shown). 

  

2.2.3 Metabolic alterations in ETV7 over-expressing cells 

Since we observed a plastic and adaptable proliferative rate in ETV7 over-expressing cells, 

and an increase in CSC-like cells,  which are usually characterized by differences in the 

metabolic phenotype 185, we investigated whether the over-expression of ETV7 could 

affect the energetic phenotype of breast cancer cells.  

We first performed an analysis of the cell energetic phenotype by using the specifically 

designed kit for Seahorse XFp instrument, which measures the oxygen consumption rate 

(OCR), a measure of the rate of cellular mitochondrial respiration, and the extracellular 

acidification rate (ECAR), which is instead a measure of the glycolysis rate of the cells. By 

the addition of two stressor compounds, Oligomycin and FCCP (Carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone), it is possible to measure the metabolic potential of 

the cells, which measures the ability of the cells to meet an energetic demand via 

respiration and glycolysis. Indeed, Oligomycin is an inhibitor of ATP synthase, which stops 

ATP production by the mitochondria, causing an increase in compensatory glycolysis, 

whereas FCCP is a mitochondrial uncoupling agent that depolarizes the mitochondrial 

membrane driving an increase in OCR, as mitochondria attempt to restore their 

membrane potential. By this analysis, we could observe that cells over-expressing ETV7 

presented a significant higher OCR compared to their relative control already in basal 

condition, which are also maintained in stressed condition in both MCF7 and T47D cells 

(Figure 13A and 13D), whereas there were no significant differences in the ECAR 

measurements (Figure 13B and 13E). However, the metabolic potential of the cells was 

partially different only in MCF7 cells, in which the over-expression of ETV7 could stimulate 

an increase in the glycolytic metabolic potential of the cells, which was not confirmed in 
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T47D cells (Figure 13C and 13F).  

 

Given the observed increase in the OCR of ETV7 over-expressing cells in basal condition, 

we analyzed more in-depth the mitochondrial respiration parameters of the cells using 

the Cell Mito Stress Test kit at the Seahorse XFp instrument (Figure 14E). Interestingly, 

MCF7 cells over-expressing ETV7 showed a significant increase in most of the 

mitochondrial parameters analyzed (i.e. basal respiration, maximal respiration, ATP 

production, and spare respiratory capacity), showing a general increase in the oxygen 

consumption rate (Figure 14A and 14B). Moreover, MCF7 ETV7 cells showed a significant 

increase also in non-mitochondrial oxygen consumption, suggesting that this increased 

OCR was not solely dependent on mitochondria contribution. Similar behavior was also 

observed in T47D cells, with a significant increase in basal and maximal respiration in ETV7 

over-expressing cells (Figure 14C and 14D). However, T47D cells presented a different 

mitochondrial energetic profile compared to MCF7 cells, as displayed by the OCR 

measurements over time, since they have increased proton leak and almost absent spare 
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Figure 13. ETV7 over-expression affects the energetic phenotype of the cells. Cell energy phenotype analysis of MCF7 

(A-C) and T47D (D-E) Empty and ETV7 cells performed with the Seahorse XFp instrument and Cell Energy Phenotype 
Test kit. A and D) Measure of Oxygen Consumption Rate (OCR) at starting condition (Baseline) and in the presence of 

stressor compunds (i.e. Oligomycin+FCCP) in MCF7 (A) and T47D (D) Empty and ETV7 cells. B and E) Measure of 

Extracellular Acidification Rated (ECAR) at starting condition (Baseline) and in the presence of stressor compounds 

(Stressed) in MCF7 (B) and T47D (E) Empty and ETV7 cells. C and F) Measure of Metabolic  Potential, calculated as the 

percentage of the increase of stressed OCR or ECAR over baseline OCR or ECAR respectively, in MCF7 (C) and T47D (F) 
Empty and ETV7 cells. Bars represent the averages and standard deviations of at least three biological replicates. * = p-

value < 0.05. 
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Figure 14. ETV7 over-expression affects the mitochondrial respiration in breast cancer cells. Mitochondrial respiration 
analysis of MCF7 (A-B) and T47D (C-D) Empty and ETV7 cells performed with the Seahorse XFp instrument and Cell Mito 

Stress Test kit. A and C) Measure of Oxygen Consumption Rate (OCR) during time in MCF7 (A) and T47D (C) Empty and 

ETV7 cells. B and D) Data extrapolated from the OCR measurement over time following different stressors 

administration in MCF7 (B) and T47D (D) cells. E) A schematic representation of the protocol and the way used to 
extrapolate data from OCR measurements over time. Non-mitochondrial oxygen consumption (OCR) is the minimum 

rate of OCR after the last (Rotenone/antimycin A) injection. Basal respiration represents the difference between the 

last OCR measurement before the first stressor (Oligomycin) injection (20 minutes after the start) and Non-

Mitochondrial Oxygen consumption. Maximal Respiration is the difference between the maximum rate measurement 

after second stressor (FCCP) injection 50 min after the start and the Non-mitochondrial OCR. Proton leak is the 
difference between the minimum rate measurement after Oligomycin injection and non-mitochondrial OCR. ATP 

production is calculated as the difference between the last measurement before Oligomycin injection and the minimum 

rate measurement after Oligomycin injection. Spare Respiratory Capacity is the difference between the Maximal 

respiration and basal respiration. Bars represent the averages and standard deviations of at least three biological 

replicates. * = p-value < 0.05. ** = p-value < 0.01. 
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respiratory capacity. These results suggest that the over-expression of ETV7 in breast 

cancer cell lines can drive a different metabolic profile, with an increased oxygen 

consumption rate, mainly due to augmented basal and maximal mitochondrial 

respiration, which is in agreement with the increasing observations reporting that CSCs 

preferentially rely on mitochondrial respiration and oxidative metabolism rather than to 

the glycolytic phenotype, a condition more frequently characterizing the non-CSCs 186. 

 

2.2.4 ETV7 over-expression influences the migration potential  

Cancer stem cells plasticity has frequently been associated with epithelial to 

mesenchymal transition (EMT). Thus, we tested some EMT properties in MCF7 cells over-

Figure 15. MCF7 cells over-expressing ETV7 present increased motility. A) Scratch Assay measuring the motility of MCF7 
Empty and ETV7 cells. On the left a representative image and on the right the average percentage of open wound area 

calculated with the TScratch software221. B) RT-qPCR analysis of SNAIL and TWIST gene expression in MCF7 cells -over-

expressing ETV7. C) Western Blot analysis to measure MMP9 protein expression in MCF7 cells over-expressing ETV7; 

GAPDH served as reference protein. Bars represent the averages and standard deviations of at least three biological 

replicates. * = p-value < 0.05.  
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expressing ETV7. We first measured the motility ability of the cells by wound healing assay  

(also known as scratch assay) and we could observe a significant increase in the motility 

potential of the cells over-expressing ETV7 (Figure 15A). We then analyzed the expression 

of some mesenchymal markers associated with increased migration and invasion capacity. 

Interestingly, in cells over-expressing ETV7 we observed a significant increase in the 

expression of the EMT master regulators SNAIL and TWIST (Figure 15B), as well as an 

increase in MMP9 expression (Figure 15C), which is often associated with increased 

invasive capacity.  

 

2.2.5 Testing the ETV7 pro-tumorigenic potential in vivo 

In order to test the pro-tumorigenic functions of ETV7 in vivo, we decided to perform 

xenotransplantations of our breast cancer cell lines over-expressing ETV7. We chose to 

use the zebrafish embryo model given its easy manipulation, fast reproduction, and 

transparency, which allow following the transplanted cells during time. In particular, we 

used either the transparent Casper model 187 or the SCID Prkdc-/- model 188. We first 

generated cellular clones stably expressing a nuclear eGFP by viral transduction with PGK-

H2BeGFP and isolation by FACS sorting in order to visualize the transplanted cells within 

the embryos. 

We then injected the MCF7 and T47D Empty and ETV7 fluorescent cells into either the 

yolk sac or the Duct of Cuvier of 2 days post-fertilization zebrafish embryos (0 days post-

injection, dpi), and followed the cell fluorescence over time until 3 days post-injection 

(maximum time allowed by the Italian Ministry of Health for working with zebrafish 

embryos) (Figure 16A). Cells injected into the Duct of Cuvier were usually not able to 

survive 3 days after injection (data not shown), whereas cells injected into the yolk could 

survive. Despite their ability to survive, injected cells were not able to proliferate in the 

first 3 days after the transplantation. Furthermore, we could not appreciate any difference 

in the relative number of transplanted cells at 3 dpi compared to the cells injected, both 

for cells over-expressing ETV7 and their relative control in either MCF7 (Figure 16B) or 

T47D (Figure 16C). This result may be due to the slow proliferative potential of MCF7 and 

T47D cells given the low aggressiveness of the luminal breast cancer subtypes, for which 

the 3 days allowed for the experiment might not be sufficient to observe differences. 
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Figure 16. Xenotransplantation of fluorescent cells over-expressing ETV7 into PRDKC-/- zebrafish embryos. A) Schematic 

representation of a zebrafish embryo with the preferred sites of injection, which include the yolk, which is re-absorbed 
during development and the Duct of Cuvier, which facilitates the entering of the cells into the blood stream. B-C) Image 

analysis of MCF7 (B) and T47D (C) cells transplantation within the yolk of 2 days PRDKC-/- zebrafish embryos. On the 

left a representative image of cells injected at 0 or 3 days post injections (dpi), with a white arrow to pinpoint the 

fluorescent cells. On the right, the percentage of transplanted cells calculated as the number of cells 3 dpi relative to 
the number of cells injected at 0 dpi X 100. Images were obtained with a stereomicroscope. The same experiment was 

performed in Casper embryos and gave similar results. Number of embryos injected per group>6. N.S.: not statistically 

significant. 
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2.3 Molecular mechanisms regulated by ETV7  

We showed that the over-expression of ETV7 in breast cancer cells was able to induce 

increased chemoresistance as well as modulate breast CSCs plasticity; however, the 

down-regulation of DNAJC15 could only partially explain some of these effects. In order 

to investigate the molecular mediators of the biological effects observed at the genome 

scale, we performed an analysis of the transcriptome on MCF7 and T47D cells over-

expressing ETV7 or the relative empty plasmid by RNA-seq. In fact, being ETV7 a 

transcription factor, we expect that most of its effects could be explained by the genes it 

regulates at the transcriptional level. 

 

2.3.1 ETV7 is responsible for the repression of a set of Interferon response 

genes 

The analysis of the genes differentially expressed (DEGs) in cells over-expressing ETV7 

compared to the empty control identified 5,387 genes for MCF7 and 1,883 genes for T47D 

cells. The higher number of DEGs in MCF7 cells can be possibly explained by the method 

of generation of stable ETV7 over-expression in the two cell lines: MCF7 cells were in fact 

obtained by single cell clone expansion, thus it may account for intrinsic clones diversity, 

whereas T47D cells were grown from the selected pool of transduced cells.  

Through the separation of the up- and down-regulated genes, it was possible to observe 

a similar number of genes in the two clusters, which was conserved in the two cell lines 

(Figure 15A). By comparing the list of DEGs from two cell lines, it was possible to identify 

a reasonable amount of genes which were commonly regulated in the two cellular 

systems (427 commonly down-regulated and 294 commonly up-regulated genes), with a 

lower number of genes which were inversely regulated in MCF7 and T47D cells (Figure 

17A). Given that most of the biological effects previously observed in cells over-expressing 

ETV7 were common to both the cell lines, we focused our subsequent analyses on the 

common DEGs. Particularly, being ETV7 known as a transcriptional repressor, we focused 

on the commonly down-regulated genes, which might be more directly regulated by ETV7. 

Interestingly, the most significant terms obtained by the gene ontology analysis of 

common down-regulated genes were involved in the innate immune response and 

inflammatory response, with several terms referred to the pathogen/viral entry into the 
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Figure 17. RNA-seq analysis reveals a repression of a set of Interferon response genes in ETV7 over-expressing cells. A) 

A Venn diagram of differential expression summary with the secific number of DEGs (ETV7 vs. Empty) in MCF7 and T47D 
Empty and ETV7 with a False Discovery Rate (FDR) < 0.05. B) Gene ontology analysis of commonly downregulated DEGs 

(orange area in panel A) in MCF7 and T47D cells(ETV7 vs. Empty). In the image are shown the top 10 significant terms. 

C-D) Gene Set Enrichment Analysis (GSEA) of down-regulated genes in MCF7 and T47D cells (ETV7 vs. Empty). 

Enrichment plots for Type 1 Interferon response (C) and Type 2 Interferon response (D) were obtained using the 
Hallmark Collection. Common gene lists obtained from GSEA is shown on the right of the enrichment plots from which 

they were retrieved. In orange the genes with an FDR < 0.05 and a Fold Change (FC) < -2 in both the cell lines, which 

were chosen for validation. E-F) RT-qPCR for validation of genes obtained from the lists in panel C and D in MCF7 (E) 

and T47D (F) Empty and ETV7 cells. Bars represent the averages and standard deviations of at least three biological 

replicates. * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001.  
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host (Figure 17B). We thus performed a gene set enrichment analysis (GSEA) using the 

Hallmark collection, from which the only commonly significant gene sets enriched were 

“Interferon_alpha_response” and  “Interferon_gamma_response”, which refer to the 

genes that have been involved in the response to type I or type II Interferons (Figure 17C 

and 17D). From these analyses, we then obtained two short lists of genes significantly 

down-regulated (FDR < 0.05) in both the cell lines. Notably, most of the genes were 

common to both the lists, as genes responsive to one type of Interferon are often 

responsive to other types as well. We next selected for validation by RT-qPCR the genes 

of the lists whose Fold Change was lower than -2 in both the cell lines, and we were able 

to confirm the repression of all of them in ETV7 over-expressing MCF7 (Figure 17E) and 

T47D (Figure 17F) cells over-expressing ETV7, except for CFB gene, whose repression could 

be proved only in T47D cells. 

 

2.3.2 The genes regulated by ETV7 are differentially responsive to type I-type 

II IFNs 

We then tested the induction of the selected genes upon type I and type II IFN treatment 

in MCF7 cells, to verify whether these genes can respond differently to the IFN types. In 

particular, we chose to use IFN-b as type I IFN, given the previous literature data 

suggesting a role for this IFN in 

breast cancer stemness 189 , and 

IFN-g as type II IFN, being the 

only member of this subfamily. 

Since ETV7 itself is a well-

recognized Interferon-

stimulated gene (ISG), we first 

checked how its expression 

could be regulated during time 

in response to IFN-b and IFN-g in 

MCF7 cells. We could observe a 

robust and significant induction 

of the expression of ETV7 in 
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Figure 18. ETV7 expression is induced in response to IFN-b and IFN-g in 

MCF7 cells. RT-qPCR analysis of normalized ETV7 expression relative to 

untreated control in MCF7 cells treated with IFN-b (orange) or IFN-g 
(black) 5ng/ml at different time points. Bars represent the averages 

and standard deviations of at least three biological replicates. 
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response to both types of IFNs, with a peak of induction at 8 hours, confirming that IFN is 

a strong inducer of ETV7 expression also in breast cancer-derived MCF7 cells (Figure 18). 

We then analyzed the expression of the genes regulated by ETV7 chosen for validation in 

response to IFN-b and IFN-g. Importantly, all the analyzed genes, except for ICAM1, were 

more strongly induced by IFN-b than by IFN-g (Figure 19), although some of these genes 

(i.e. CASP4, APOL6, and CFB) were identified by GSEA as type II, but not type I, Interferon-

stimulated genes. Moreover, the kinetics of the response to IFN types was slightly 

different, with IFN-b inducing the expression of the genes with a peak at 8 hours, whereas 

IFN-g stimulated a delayed and more transient induction with a peak at 24 hours. 
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Figure 19. The genes regulated by ETV7 can respond differently to IFN-b and IFN-g. RT-qPCR analysis of the normalized 

expression of the genes regulated by ETV7 (IFITM2, IFI25, HERC6, PROCR, APOL6, CASP4, CFB, PARP14 and iCAM1) in 

MCF7 treated with IFN-b (orange) or IFN-g (black) 5ng/ml at different time points. Bars represent the averages and 

standard deviations of at least three biological replicates. 
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2.3.3 IFN treatment partially rescues ETV7-repressed genes expression 

We then tested whether the treatment with IFN-b and IFN-g could rescue the repression 

determined by ETV7 on the ISGs. We, therefore, treated both MCF7 Empty and MCF7 

ETV7 cells with either IFN-b or IFN-g and checked the expression levels of the ISGs 

repressed in cells over-expressing ETV7. In ETV7 over-expressing cells the expression of 

most of the genes (IFI35, HERC6, APOL6, CFB, and PARP14) could still be induced and 

rescued at the level obtained with Empty cells by treatment with IFN-b, whereas IFN-g 

treatment, whose induction of these genes was more transient, could only partially 
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Figure 20. IFN treatment partially rescues the endogenous expression levels of genes repressed by ETV7 in ETV7 over-

expressing cells. RT-qPCR analysis of ISGs repressed by ETV7 in MCF7 cells over-expressing ETV7 treated with IFN-b and 

IFN-g 5ng/ml at different time points. The expression is normalized on housekeeping genes and relative to the 
expression levels of untreated MCF7 Empty cells (dotted line). Bars represent theaverages and standard deviations of 

at least three biological replicates. 
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restore the expression of APOL6, CFB, and PARP14, which were again repressed 48 hours 

after the treatment (Figure 20). 

 

2.3.4 ETV7 does not alter the STAT1 activation induced by Interferon 

STAT1 is well-recognized as an essential component of IFN signalling that, in response to 

IFN, can bind to the promoter of ISGs and regulate their expression 190.  

Given the repression of a set of ISGs in cells over-expressing ETV7, we tested whether this 

repression might be related to an altered induction of STAT1 expression or its activation. 

Thus, we analysed the expression of STAT1 protein and its phosphorylation (a 

modification which mediates its activation and translocation into the nucleus) in MCF7 

Empty and ETV7 cells upon IFN-b and IFN-g treatment. As previously observed 189, a single 

dose of IFN could cause a rapid and transient induction of phosphorylated STAT1 (p-

STAT1), followed by sustained induction of unphosphorylated STAT1 expression (Figure 

21). Importantly, the same kinetics and levels of expression were observed in both MCF7 

Empty and ETV7 treated with either IFN-b or IFN-g. This observation suggests that ETV7 

over-expression does not alter STAT1 activation, and supports the concept that ETV7 over-

expressing cells maintain the responsiveness to IFN-b and IFN-g,  at least for what regards 

STAT1 activation, possibly indicating that the ETV7-dependent regulation of the previously 

identified ISGs involves a STAT1-independent mechanism. 
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Figure 21. Activation of STAT1 in response to IFN-b and IFN-g  is not altered in cells over-expressing ETV7. A-B) Western 

Blot analysis of phosphorylated and un-phosphorylated levels of STAT1 in MCF7 Empty and ETV7 cells in response to 

IFN-b (A) and IFN-g (B) 5ng/ml at different time points. Tubulin served as reference protein. 
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2.3.5 IFN-b can revert ETV7-dependent BCSC-like plasticity 

We observed that the over-expression of ETV7 can modulate BCSC-like plasticity in both 

MCF7 and T47D cells and that the most significant conserved effect at the transcriptional 

level is represented by the strong repression of a set of IFN-stimulated genes. Therefore, 

we hypothesized that the repression of these genes might be at least partially responsible 
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Figure 22. IFN-b treatment decreases the population of CD44+/CD24- cells in MCF7 and T47D cells over-expressing 

ETV7. A-C) CD44-APC and CD24-FITC staining and flow cytometry analysis in MCF7 (B) and T47D (A,C) Empty and 

ETV7 cells treated with IFN-b and IFN-g 5ng/ml for 2 weeks. A) A representative dot plot of the results obtained at 
FACS Canto A in T47D. B-C) Histograms summarizing  the percentage of CD44+/CD24- cells in MCF7 (B) and T47D (C) 

Empty and ETV7 over-expressing cells. Bars represent  the averages and standard deviations of at least three 

biological replicates. * = p-value < 0.05 
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for the effects on breast cancer cells stemness. Since we observed that ETV7 over-

expressing cells are still responsive to IFN-b and IFN-g and that the treatment with these 

cytokines can rescue, at least in part, the expression of the repressed ISGs, we speculated 

that the treatment with IFN-b and IFN-g could revert the effects of ETV7 on BCSC-like 

plasticity. 

Thus, we analyzed by flow cytometry the membrane expression of CD44 and CD24 protein 

in MCF7 and T47D Empty or ETV7 cells treated with IFN-b and IFN-g for 2 weeks. Notably, 

IFN-b treatment could significantly revert the increase of CD44+/CD24- cells population 

observed in ETV7 over-expressing cells, whereas IFN-g treatment did not influence the 

abundance of this population (Figure 22).  

We then tested the effects of these cytokines on the mammosphere potential of MCF7 

Empty and ETV7 cells, and on their ability to be maintained across different passages in 

culture (Figure 23A and 23B). Again, IFN-b, but not IFN-g, exerted a potent inhibition of 

the mammosphere formation ability of MCF7 cells over-expressing ETV7. Moreover, this 

effect was even more pronounced in the following passages, where IFN-b treatment could 

completely inhibit the formation of mammospheres (Figure 23C, 23D, and 23E).  

In the light of these results, we propose a novel role for ETV7 as a regulator of breast 

cancer stem cell-like plasticity, which is mediated by the repression of IFN-stimulated 

genes and that can be reverted by the stimulation of IFN response with IFN-b. 
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Figure 23. The treatment with IFN-b inhibits mammosphere formation potential of MCF7 cells over-expressing ETV7. A) 

A representative image of first generation mammospheres obtained from MCF7 Empty or MCF7 ETV7 cells in response 

to the treatment with IFN-b or IFN-g 5ng/ml. B-E) Percentage of first (B), second (C), third (D) and fourth (E) generation 
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3. ETV7 knock-down induces p53-dependent apoptosis 

 

In this last part of the study, we analyzed the effects of ETV7 knock-down on cell viability 

using siRNAs targeting ETV7 expression. The following experiments here presented are 

still preliminary and might pave the way for subsequent studies focusing on ETV7 

targetability in breast cancer. 

 

3.1 The knock-down of ETV7 in MCF7 cells results in apoptotic cell death 

Given the observed effects of the over-expression of ETV7 on chemo- and radio-sensitivity 

of breast cancer cells, and on breast cancer stem-like cells population, we decided to 

investigate the effects of ETV7 knock-down in breast cancer cells. If the over-expression 

of ETV7 is able to confer the cells some pro-tumorigenic features (i.e. survival to therapy 

and stemness-like features), its targeting might possibly represent a therapeutic approach 
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Figure 24. ETV7 knock-down induces strong apoptosis in MCF7 cells. A) Western Blot analysis of ETV7 expression in 
MCF7 cells transfected with siRNAs against ETV7 (siETV7#1 and siETV7#2) or the relative Scramble control for 72 hours. 

B and C) AnnexinV-FITC/PI staining and flow cytometry analysis of MCF7 transfected with siRNA against ETV7 (siETV7#1 

and siETV7#2) or the relative Scramble control for 72 hours. B) Representative dotplots of the flow cytometry analysis. 

C) Quantification of the flow cytometry experiments represented in panel B. D) Western Blot analysis of PARP cleavage 
in MCF7 cells transfected with siRNAs against ETV7 (siETV7#1 and siETV7#2) or the relative Scramble control for 72 

hours. Bars represent the averages and standard deviations of at least three biological replicates. * =  p-value < 0.05. 
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for breast cancer. Thus, we performed a knock-down experiment in MCF7 cells with two 

differently designed siRNAs targeting ETV7. We first confirmed their efficacy by analyzing 

the protein expression of ETV7 (Figure 24A), and we then tested their effect on cell 

viability. Interestingly, the knock-down of ETV7 induced massive apoptosis in MCF7 cells, 

which could be confirmed both by Annexin V/PI analysis at FACS (Figure 24B and 24C) and 

PARP cleavage detection by western blot (Figure 24D).  

 

3.2 The knock-down of ETV7 does not induce apoptosis in MDA-MB-231 

cells 

We, therefore, tested whether the same effect could be reproduced in a more aggressive 

breast cancer cell line, such as MDA-MB-231 triple negative BC-derived cells. However, 

ETV7 knock-down did not affect the viability of the cells in this cell line, which showed no 

increase in the number of apoptotic cells (Figure 25). Similar results could also be obtained 

in T47D and SK-BR-3 cells, whose viability was not affected by ETV7 silencing (data not 

shown).  

 

3.3 The induction of apoptosis caused by ETV7 knock-down in MCF7 cells is 

p53-dependent  

Since only MCF7 cells, among the BC-derived cell lines tested, were undergoing apoptosis 

upon the silencing of ETV7, we looked for genetic differences among the cell lines that 

might be responsible for this cell line-specific apoptosis. Since MCF7 cells expressed a wild 

type p53, whereas the other cell lines were p53 mutated, we hypothesized that the 
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Figure 25. ETV7 knock down does not induce apoptosis in MDA-MB-231 cells. A-B) AnnexinV-FITC/PI staining and flow 

cytometry analysis of MDA-MB-231 cells transfected with siRNAs against ETV7 (siETV7#1 and siETV7#2) or the relative 

Scramble control for 72 hours. A) Representative dotplot of flow cytometry analysis. B) Quantification of the flow 

cytometry experiments represented in panel A. Bars represent the averages and standard deviations of at least three 

biological replicates. N.S. = not statistically significant.  
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apoptosis caused by ETV7 knock-down might be p53-dependent. Indeed, one of the most 

important functions of p53 is its ability to control the induction of apoptosis 191. 

We first checked whether the silencing of ETV7 in MCF7 cells affected p53 expression, and 

we observed a strong p53 accumulation in response to ETV7 silencing in MCF7 cells (Figure 

26A). Therefore, we tested whether p53 was responsible for the observed induction of 

apoptosis. We thus double-transfected MCF7 cells with a siRNA against p53 first, and 

siRNAs against ETV7 later or their relative Scramble controls and checked for the induction 

of apoptosis. We first confirmed the partial silencing of p53 (Figure 26B), and we then 

tested the induction of apoptosis by Annexin V/PI analysis. Interestingly, we observed 

that, knocking down p53 before ETV7 was able to inhibit the induction of apoptosis caused 

by ETV7 deficiency in MCF7 cells (Figure 26C and 26D), suggesting that the expression of 

ETV7 is needed for cell survival only in a p53 wild type context. However, further 

experiments using other BC, and non-BC, cell lines will be required to confirm these 
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Figure 26. Apoptosis induced by ETV7 knock-down in MCF7 cells  is p53 dependent. A) Western Blot analysis of p53 

expression in MCF7 cells transfected with siRNA against ETV7 (siETV7#1 and siETV7#2) or the relative Scramble control 

for 72 hours. B) Western Blot analysis of p53 expression in MCF7 cells co-transfected with siRNA against p53 or relative 
Scramble control for 96 hours and against ETV7 (siETV7#1 and siETV7#2) or the relative Scramble control for 72 hours.   

C-D) AnnexinV-FITC/PI staining and flow cytometry analysis of MCF7 transfected with siRNA against p53 (sip53) or ETV7 

(siETV7#1 and siETV7#2) or the relative Scramble controls for 96 and 72 hours respectively. C) Representative dotplot 

of flow cytometry analysis. D) Average replicates analysis of flow cytometry experiments Bars represent the averages 

and standard deviations of at least three biological replicates. N.S. = not statistically significant; * =  p-value < 0.05. 
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observations. Moreover, the mechanisms by which ETV7 knock-down causes p53 

activation are still to be elucidated.  
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DISCUSSION 

 
 

ETV7 is a poorly studied transcriptional repressor of the ETS family of transcription factors, 

which is mainly considered as an oncoprotein 134,192. ETV7 is well-recognized as Interferon 

(IFN)-stimulated gene (ISG) 126,127, and it was previously showed that its expression could 

be synergistically induced by the combined treatment with the chemotherapeutic drug 

Doxorubicin and the inflammatory cytokine TNFa in the breast cancer-derived cell line 

MCF7 125. Recently, it was shown that the expression of ETV7 is significantly higher in 

breast cancer tissues compared to normal breast 138, suggesting a possible role for ETV7 

in breast cancer pathogenesis; however, the functions and impact of ETV7 expression in 

breast cancer were still to be elucidated. 

In this work, we studied the effects of altered ETV7 expression on breast cancer 

progression and resistance to conventional anti-cancer drugs.  

 

In the first part of this project, we showed that the increased expression of ETV7 in MCF7 

cells can decrease the sensitivity of the cells to Doxorubicin, and we identified DNAJC15 

as a novel target of ETV7 partially responsible for this effect. Firstly, we observed that 

ETV7 expression could be induced by different stimuli, in particular by the treatment with 

chemotherapeutic drugs able to cause DNA damage, whereas its expression was not 

affected by other types of anti-cancer agents treatments, such as Tamoxifen (estrogen 

antagonist), Imatinib (tyrosine kinase inhibitor) or Everolimus (mTOR inhibitor) (Figure 1). 

This observation is in accordance with previous data showing that p53 is a direct regulator 

of ETV7 expression 125, as all of the drugs inducing the expression of ETV7 are also known 

to activate p53 in the p53 wild-type MCF7 cell line. However, the expression of ETV7 could 

still be induced upon the same treatments, even if less strongly, also in the MDA-MB-231 

breast cancer-derived cell line, which expresses a mutated form of p53 193; thus, other 

pathways may be involved in ETV7 induction. Since ETV7 is known to be an Interferon-

stimulated gene, and we showed that its expression is strongly induced by Interferon 
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treatments in MCF7 cells, we may speculate that its activation in response to the 

chemotherapeutic treatments mentioned above may be due to the production of type I 

IFN, which is well known to be induced upon DNA damage 173,194; however, further 

investigations would be needed to determine the contribution of IFN signaling to the 

chemotherapy-dependent induction of ETV7 expression.  

We then demonstrated that the stable over-expression of ETV7 in MCF7 cells was able to 

decrease the sensitivity of the cells to Doxorubicin, the most potent inducer of ETV7 

expression among the ones tested, and that it was accompanied by an increase in the 

expression of some ABC transporters frequently responsible for chemoresistance in 

breast cancer (i.e. ABCB1, ABCC1, and ABCG2) (Figure 2). We then investigated the 

possible mechanism responsible for ETV7-dependent resistance to Doxorubicin. Being 

ETV7 known as a transcription factor, we looked for putative ETV7 targets that could 

mediate the increased resistance, and we identified DNAJC15, a co-chaperone protein 

whose repression was previously associated with drug resistance and ABCB1 increased 

expression in breast cancer 180 (Figure 3). We pinpointed the binding site of ETV7 within 

DNAJC15 promoter, located at +377 bp from the TSS, and we demonstrated its direct 

binding (Figure 4). Furthermore, we identified DNA methylation as a putative mechanism 

of transcriptional repression exerted by ETV7 on the DNAJC15 promoter.  

Since DNAJC15 was reported to be frequently repressed through hyper-methylation of 

the promoter in cancer 180, we investigated whether the repression of DNAJC15 driven by 

ETV7 could involve the same mechanism. Therefore, we mapped the methylation status 

of the CpGs localized near the ETV7 binding site within DNAJC15 promoter, and we 

observed a slight increase in methylation upon Doxorubicin treatment while a stronger 

hyper-methylation was observed in ETV7 over-expressing cells (Figure 5). Moreover, we 

confirmed the methylation dependency of the ETV7-mediated repression of DNAJC15 

with the DNA Methyltransferase (DNMT) inhibitor (5-Aza) treatment, which was able to 

revert the inhibition of DNAJC15 expression. Furthermore, we propose that this hyper-

methylation might be due to the recruitment of DNMT3A on the DNAJC15 promoter, given 

the observed physical interaction between ETV7 and DNMT3A (Figure 5). 

We finally confirmed the contribution of DNAJC15 to the ETV7-mediated resistance to 

Doxorubicin by performing a rescue experiment in which we over-expressed DNAJC15 in 
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ETV7 over-expressing cells, and we showed the partial rescue of Doxorubicin sensitivity in 

these cells (Figure 6). 

We thus propose a model for this new mechanism of Doxorubicin resistance in breast 

cancer, in which ETV7 plays a major role. According to our model, the increased 

expression of ETV7, which is itself driven by Doxorubicin treatment, can negatively 

regulate the expression of DNAJC15, which results in the increased resistance to 

Doxorubicin. The proposed mechanism of repression involves the direct binding of ETV7 

to DNAJC15 promoter, where ETV7 can recruit DNMT3A, which enhances the promoter 

methylation, thereby resulting in transcriptional repression (Figure 27).  

In the light of our findings, we uncovered a novel molecular mechanism that might explain 

the acquired resistance to the standard-of-care treatment for breast cancer Doxorubicin, 

which involves ETV7, DNMT3A, and DNAJC15, all of which have the potential for 

pharmacological targeting. Furthermore, our data provided the first evidence for a role of 

ETV7 in the resistance to a chemotherapeutic drug in BC cells.  

 

In the second part of this study, we observed that the decreased drug sensitivity observed 

in MCF7 cells over-expressing ETV7 is not limited to Doxorubicin, but is also valid for 5-FU 

treatment. We confirmed the increased resistance to 5-FU also in another luminal breast 

cancer model using the T47D cell line, and we observed a decreased rate of apoptosis in 

Figure 27. Schematic representation of the proposed model for ETV7-dependent resistance to Dpxorubicin in breast 

cancer cells 193. Under normal conditions, ETV7 and DNMT3A are kept at basal levels and DNAJC15 is regularly expressed. 
Upon Doxorubicin treatment, the expression of ETV7 is strongly induced, with DNMT3A slightly increasing as well. ETV7 

can then bind to chromatin in the region of the DNAJC15 promoter, where it recruits, through direct interactions with 

putative additional cofactors,  DNMT3A, that is in turn responsible for the CpGs methylation. This process results in 

DNAJC15 repression and ultimately leads to the resistance to Doxorubicin. EBS: ETV7 Binding Site. Methylated CpGs are 

shown as black-filled circles, whereas unmethylated CpGs as white-empty circles. 
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ETV7 over-expressing cells treated with 5-FU compared to the empty control (Figure 7). 

Notably, similar results could be obtained by treating the cells with a different anti-cancer 

therapy: radiotherapy (Figure 8). This enhanced resistance to chemo- and radiotherapy 

can be partially explained by the increased expression of the anti-apoptotic proteins BCL-

2 and Survivin, and by the decreased proliferative potential observed in ETV7 over-

expressing cells, since both 5-FU and radiotherapy efficacy depend on cell division (Figure 

9). Indeed, the observed increase in the expression of ABC transporters and anti-apoptotic 

proteins, together with the decreased cell proliferation, are common drug resistance-

associated properties 60,65,68.  

Interestingly, we observed that the proliferation rate of the cells underwent a switch 

when the cells were grown in an anchorage-independent manner. In fact, the soft agar 

colony formation potential of the cells was significantly higher in ETV7 over-expressing 

cells compared to the empty counterpart, whereas the opposite behavior was observed 

when the colony formation efficiency was measured on plastic-support (Figure 9). This 

observation suggests a flexible behavior of the cells over-expressing ETV7, which can 

adapt their proliferative potential to the environmental conditions. Moreover, anchorage-

independent growth is a pro-tumorigenic feature 195, suggesting that the over-expression 

of ETV7 may drive pro-tumorigenic effects in breast cancer cells. 

Given these observations in ETV7 over-expressing cells, and the literature data reporting 

anti-differentiation roles for ETV7 139, we hypothesized that the altered expression of 

ETV7 could affect the breast cancer stem cells population. 

Indeed, cancer stem cells (CSCs) are known to be chemo- and radioresistant 196, and 

usually present all the features we observed in ETV7 over-expressing cells. Thus, we 

analyzed some of the commonly used markers for breast CSCs detection, which can be 

represented by CD44+/CD24low population and/or cells with enhanced activity of ALDH 

protein. We found that ETV7 expression could exert a remarkable effect on breast cancer 

stem-like cells, with a massive increase in CD44+/CD24low population in both MCF7 and 

T47D cells over-expressing ETV7 (Figure 10). Importantly, we observed that the ETV7-

dependent effect on this population was true in both directions, as knocking-down ETV7 

expression in the triple negative breast cancer cell line MDA-MB-231 was able to decrease 

the membrane expression levels of CD44 (Figure 11). Thus, tuning the expression levels of 

ETV7 can modulate the content of CD44+/CD24low cells in breast cancer cells, suggesting a 
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novel role for ETV7 in breast cancer stem cells plasticity. Given the debated reliability of 

CD44 and CD24 as BCSCs markers 197, we measured another commonly recognized 

property of BCSCs: the ability to grow as spheres (called mammospheres) when grown in 

non-adherent and non-differentiating conditions. Also with this method, we could 

observe a substantial increase in the mammosphere formation efficiency of MCF7 cells 

over-expressing ETV7, which was further supported by the ability to propagate 

mammospheres by sequential passages in culture (Figure 12). 

We then analyzed the metabolic phenotype of ETV7 over-expressing cells, as several 

publications reported an increase of the OXPHOS dependency in cancer stem cells 198–207. 

Interestingly, we could observe an increase in the oxygen consumption rate (a measure 

related mainly to the mitochondrial respiration) in ETV7 over-expressing cells, whereas no 

significant differences could be observed in the extracellular acidification rate (glycolytic 

rate) of the cells under basal condition (Figure 13). A deeper investigation of the 

mitochondrial parameters affected revealed that ETV7 over-expressing cells present 

significantly higher basal and maximal respiration compared to the parental cells (Figure 

14), suggesting that cells over-expressing ETV7 may rely more on OXPHOS compared to 

the relative control. These data are in agreement with previous literature data which 

observed the same phenotype in breast cancer stem cells 198–207, even though few 

publications reported an increased glycolytic rate in cancer stem cells 208–210. 

Nevertheless, these contradictory data can possibly support the idea of cancer stem cells 

behavior as plastic and adaptable to external conditions, and further studies are needed 

to fully explain the relation of cancer stem cells and metabolism. Therefore, a more in-

depth investigation of the metabolic alterations observed in ETV7 over-expressing cells 

might provide a rationale for targeting the ETV7 network in cancer cells. 

Breast cancer stem-like cells are also frequently characterized by increased migratory and 

invasive potential 211. We thus analyzed the motility of ETV7 over-expressing cells, and we 

could appreciate a significant increase in their migratory ability in MCF7 cells, which was 

accompanied by the slight, but significant, enhanced expression of the mesenchymal 

markers SNAIL and TWIST, together with a strong increase in the invasive marker MMP9 

(Figure 15).  

To test whether ETV7 could have pro-tumorigenic potential also in vivo, we generated 

ETV7 over-expressing MCF7 and T47D cells stably expressing a nuclear GFP and injected 
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them into the yolk of zebrafish embryos. However, the limited time available for the 

experiment was not sufficient to appreciate any difference in the number of cells, as, 

possibly, the proliferation of the cells was too slow (Figure 16). To appreciate any possible 

difference, further experiments with longer cell tracking time would be needed. 

Moreover, to confirm the self-renew capacity in vivo, we should perform a serial 

transplantation experiment. However, the use of immunocompromised mouse models 

would be more appropriate for this type of experiments. 

In the meantime, in order to investigate genome-wide the mechanisms responsible for 

the effects of ETV7 observed in culture, we performed an RNA-seq analysis on MCF7 and 

T47D cells over-expressing ETV7 and the relative controls. In fact, ETV7 is mainly known 

for its functions as a transcription factor, and we thus expect it to mediate the observed 

biological effects by transcriptional regulation, even though Harwood and colleagues have 

recently shown a novel function of ETV7 exerted in the cytoplasm, which is independent 

on its transcriptional activity 137. Since ETV7 is known to act as a transcriptional repressor, 

we focused our analysis mainly on the commonly down-regulated genes in MCF7 and 

T47D cells over-expressing ETV7. Interestingly, the enrichment analysis revealed 

significant repression of a signature of Interferon-stimulated genes (ISGs) (Figure 17).  

Therefore, we hypothesized that, if ETV7 exerts its effect on breast cancer stem cell 

plasticity via the repression of IFN response genes, stimulating the re-expression of these 

genes in the cells might possibly revert the observed effects. We thus selected IFN-b and 

IFN-g as representative of type I and type II IFN respectively, and tested the 

responsiveness of the obtained signature of ISGs in MCF7 cells. Interestingly, despite the 

fact that several genes were classified by GSEA as type II ISGs, almost all of the analyzed 

genes were more responsive to IFN-b than to IFN-g (Figure 19), and IFN-b treatment could 

rescue the parental expression levels of most of the tested genes (Figure 20). Since ETV7 

is also known to be an ISG, we examined its activation in response to IFN-b and IFN-g in 

MCF7 cells, and we confirmed its robust induction upon both the treatments (Figure 18), 

suggesting that ETV7 could play a role in the IFN response as a negative feedback regulator 

of this pathway. However, ETV7 expression did not affect STAT1 induction in response to 

IFN treatment, suggesting that the repression of the ISGs may act independently, or 

possibly downstream, on STAT1 activation (Figure 21). Interestingly, other ETS family 

members, among which the ETV7-closely related ETV6, were previously shown to 
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physically interact with protein members of the Interferon regulatory factors (IRF) family 

and play a role in the regulation of Interferon-responsive genes 212,213. Thus, another 

possible mechanism by which ETV7 regulates the transcription of interferon stimulated 

genes, might involve the binding to their transcriptional regulatory regions, or the binding 

to other proteins which regulate their transcription. However, further experiments would 

be needed to test these hypothesis.  

Finally, we tested the effects of IFN-b and IFN-g treatment on the CSC-like population. 

Interestingly, we showed that the prolonged treatment of the cells with IFN-b, but not 

with IFN-g, was able to rescue the effects on CSCs content analyzed by CD44 and CD24 

membrane expression (Figure 22). Moreover, IFN-b treatment was also able to revert the 

first and subsequent generations mammospheres formation ability of MCF7 cells over-

expressing ETV7 (Figure 23). The fact that IFN treatment, and in particular IFN-b, but not 

IFN-g, can revert the observed effects on CSC plasticity, supports the hypothesis that ETV7 

mediates its functions via the repression of ISGs, as IFN-b is a stronger inducer of the ETV7-

repressed genes compared to IFN-g. Our results support the observations made in 

previous studies, which showed that immune-repressed triple-negative breast cancers 

lacking endogenous IFN signaling were highly recurrent, therapy-resistant and 

characterized by CSC-like features 171,214. Moreover, Doherty and colleagues, recently 

showed that the treatment with IFN-b, which was able to restore the IFN signaling, could 

revert the CSCs properties observed in transformed mammary epithelial cells, suggesting 

it as a potential therapeutic approach for TNBC treatment 189. Our data strengthen the 

validity of these data and provide a novel role for ETV7 in breast cancer stem-like cell 

plasticity.  

 

Given these results, we finally investigated the possibility of ETV7 targeting in breast 

cancer cells. We tested the effects of ETV7 knock-down in MCF7 cells, and we observed a 

strong induction of apoptosis (Figure 24). However, the same effect was not observed in 

the other BC cell lines tested (Figure 25). We finally showed that the induction of apoptosis 

following ETV7 knock-down was dependent on p53 activity, as silencing p53 could revert 

the induction of apoptosis (Figure 26).  
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These preliminary results suggest that ETV7 is fundamental for survival in MCF7 cells, 

when p53 is active, whereas it is not required for survival when p53 is mutated. Since the 

mutation of p53 is a frequent event in breast cancer patients 215, whereas it is usually not 

occurring in normal breast tissue, we might speculate that the direct targeting of ETV7 

may not be a suitable option for breast cancer treatment, as it might affect the viability of 

normal mammary epithelial cells as well and be less efficient on p53 mutated BCs. 

However, further investigation is needed to test this concept.  
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CONCLUSION AND FUTURE PERSPECTIVES 

 
 

Taken collectively, our data revealed that the altered expression of ETV7 can affect the 

sensitivity of BC cells to some anti-cancer agents (i.e. Doxorubicin, 5-FU, and radiotherapy) 

and that it may accomplish this task by modulating the breast cancer stem cells plasticity. 

Particularly, by transcriptomic analysis, we identified the molecular mechanism that 

mediates this effect in the repression of a signature of Interferon-stimulated genes. Being 

ETV7 itself an ISG, we also uncovered a novel putative negative feedback regulatory 

mechanism of the Interferon signaling. Since timing is a crucial factor in the IFN response 

signaling, ETV7 might normally act in this signaling pathway to attenuate the IFN response. 

However, when the expression of ETV7 is not due to a transient IFN stimulation, but it is 

maintained high (a condition frequently observed in some cancer tissues), this may cause 

the prolonged repression of the ISGs that it regulates, which can result in the induction of 

a CSC-like status in breast cancer cells. We finally showed that the re-induction of these 

ISGs by prolonged treatment with IFN-b could revert this status. Therefore, we propose a 

novel role for ETV7 in breast cancer stem cell plasticity, which involves the regulation of 

IFN response genes. Finally, we showed that ETV7, which is usually expressed at low levels, 

is necessary for cells survival in p53 wild type MCF7 cells since its silencing can induce 

tremendous apoptosis. However, the viability of p53 mutated cell lines is not affected by 

ETV7 knock-down. Since T47D is a p53 mutated BC cell lines, whereas MCF7 is a p53 wild 

type cell lines, the effects observed in ETV7 over-expressing cells on chemotherapy 

resistance, on BCSC-like plasticity, and on ISGs regulation seem to be independent on the 

p53 status, as they can be reproduced in both the cellular systems. Thus, targeting the 

molecular pathways activated by ETV7, such as IFN signaling, may represent a better 

option compared to a direct ETV7 targeting.  

In conclusion, this work provided evidence for a novel role of ETV7 in resistance to 

chemotherapy and breast cancer stem-like cells plasticity.  
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Nevertheless, several further experiments could be performed for a more comprehensive 

understanding of the phenomenon observed.  

Firstly, the cancer stem-like cells properties acquired by BC cells over-expressing ETV7 

should be confirmed also in vivo. As previously mentioned, a serial transplantation 

experiment in immunocompromised mice might be needed to demonstrate the self-

renew capacity of the BCSC-like cells. Moreover, we showed that the ETV7 knock-down 

can affect the membrane expression of CD44 in MDA-MB-231 cells; however, this 

mechanism needs further investigations. Since prolonged ETV7 repression should be 

more efficient in affecting BCSC-like plasticity, we might generate ETV7 knock-out or 

stable knock-down cells and perform other experiments to characterize them, such as 

mammosphere formation efficiency, expression of ABC transporters, anti-apoptotic 

proteins, as well as in vivo transplantation experiments.  

Furthermore, the molecular mechanism by which ETV7 can repress the signature of ISGs 

needs further investigation. In fact, ETV7 might repress the ISGs in a direct way, by acting 

as a transcriptional repressor, or it may affect their transcriptional regulation indirectly. 

We observed no differences in STAT1 induction upon IFN treatments in ETV7 over-

expressing cells; however, ETV7 may regulate its activity or may affect the expression or 

the activity of other IFN signaling mediators, such as other STAT proteins or other 

pathways, such as PI3K/AKT or NF-kB. 

We also showed that long term treatment with IFN-b, but not IFN-g, could reduce the 

population of CD44+/CD24low cells and the mammosphere formation efficiency. This may 

suggest the use of IFN-b as a therapeutic approach for breast cancer treatment. We 

showed that IFN-b was a stronger inducer of the tested ISGs repressed by ETV7 compared 

to IFN-g, however, other types of IFNs may be even more efficient, and should, therefore, 

be tested. A global analysis of the effects of all the IFN subtypes on ETV7 over-expressing 

cells could thus allow the identification of putative treatment options for breast cancer. 

In addition, since the over-expression of ETV7 could induce the resistance to treatment, a 

possible combinatorial approach of Doxorubicin, 5-FU, radiotherapy or other treatments 

with IFN-b could be tested to target ETV7 over-expressing cells. 

Finally, we uncovered a novel role for ETV7 in IFN response regulation, in which it can act 

as a negative feedback regulator. Given the central role of IFN response in the immune 
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regulation, ETV7 may play a role in immunity as well. Thus, exploring how ETV7 over-

expression affects the immune-recognition of cancer cells, may represent a possible 

future direction inspired by this work. Moreover, it would be interesting to analyze the 

effects of ETV7 over-expression also in immune cells, to test whether the repression of 

ISGs expression could be conserved in this cell type and to study its effects. 

In addition, IFN signaling plays its defining functions in antiviral response, and ETV7 was 

already shown to be up-regulated following HCV infection in hESCs-derived hepatocytes 

130. Given the observed effects of ETV7 in the negative feedback regulation of IFN 

signaling, its increased expression may represent an advantage for viruses infecting cells. 

However, a better understanding of the role of ETV7 in the IFN response and studying the 

effects of host cells’ altered ETV7 expression on viral infectivity may elucidate the role of 

ETV7 in the antiviral response.  

Finally, since ETV7 shares several structural and functional similarities with the other ETS 

family members, it could be interesting to understand whether the biological and 

molecular effects of ETV7 may be regulated by a crosstalk with other ETS proteins. The 

ETS family proteins have been mainly studied in prostate cancer and hematological 

malignancies, but some family members are emerging to play a crucial role in breast 

cancer tumorigenesis as well. In particular, similarly to ETV7, ETS1 was found to be 

involved in breast cancer tumorigenesis, promoting EMT and invasiveness 104,216 and ETV4 

has been suggested as a breast cancer therapeutic target, given its involvement in tumor 

aggressiveness, motility and invasiveness 217–219. Moreover, as previously mentioned, 

other ETS proteins have already been shown to regulate the transcriptional activity of 

interferon stimulated genes through protein-protein interaction or DNA binding 212,213. 

Given their shared structural domains and similar DNA binding motifs, the investigation 

of the involvement of other ETS proteins in ETV7 functions and target genes regulation 

might be of particular interest. 

In conclusion, this work supports the value of a better characterization of ETV7 and the 

other ETS family members in breast cancer. 
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METHODS 

 
 

Cell lines and culture conditions  

MCF7 cells were obtained from Interlab Cell Line Collection bank (Genoa, Italy), T47D cells 

were received from Dr. U. Pfeffer (National Institute for Cancer Research, Genoa, Italy), 

HEK293T cells were a gift from Prof. J. Borlak (Hanover Medical School, Germany), while 

MDA-MB-231 cells were a gift from Prof. A. Provenzani (CIBIO, University of Trento, Italy). 

MCF7, T47D, and HEK293T cells were grown in DMEM medium (Gibco, Thermo Fisher 

Scientific, Milan Italy) supplemented with 10% FBS (Gibco), 2mM L-Glutamine (Gibco) and 

a mixture of 100U/ml Penicillin / 100µg/ml Streptomycin (Gibco). MDA-MB-231 cells were 

cultured in the same medium with the addition of 1% Non-Essential Amino acids. Cells 

were grown at 37°C with 5% CO2 in a humidified atmosphere. 

 

Treatments 

Doxorubicin (Sigma-Aldrich, Milan, Italy) and 5-FluoroUracil (5FU) were used at different 

concentrations and for different times based on the experiment. Treatments with the 

following drugs were performed for 24 hours: Etoposide 50μM (Enzo Life Science, Rome, 

Italy), Nutlin-3a 10μM, Camptothecin 0.5μM, Everolimus 50 nM, Paclitaxel 1 μM 

(Selleckchem, Aurogene, Rome, Italy), Tamoxifen 1μM, Imatinib 3μM (Selleckchem). 5-

Aza-2’-deoxycytidine treatment was performed for 48 hours at the concentration of 5 μM. 

Recombinant human IFN-b and IFN-g (Peprotech, Tebu-Bio, Milan, Italy) were used at 

different concentrations and for different times based on the experiment. Compounds 

were purchased from Sigma-Aldrich when not specifically indicated. Radiation treatment 

was performed using a linear accelerator (Elekta) for different doses and times.  

 

Plasmids 

The expression vectors pCMV6-Entry-Empty, pCMV6-Entry-ETV7, and pCMV6-Entry-

DNAJC15 C-terminally tagged with DDK-Myc tags were purchased from Origene (Tema 
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Ricerca, Bologna, Italy). The pGL4.26-DNAJC15 reporter was obtained by cloning the 

promoter region of DNAJC15 (-299 to +512 bp from TSS according to the Eukaryotic 

Promoter Database, http://epd.vital-it.ch/) upstream the Photinus pyralis luciferase gene 

into the pGL4.26 reporter vector (Promega, Milan, Italy). The pRL-SV40 (Promega) vector 

constitutively expressing the Renilla reniformis luciferase cDNA was used as transfection 

efficiency control for gene reporter assays. The lentiviral vector pAIP-ETV7 was obtained 

by cloning using the following primers to amplify the ETV7 gene from pCMV6-Entry-ETV7 

and inserting it into the pAIP plasmid:  

Fw: aggttaacATGCAGGAGGGAGAATTGGCTA 

Rv: gagaattcTTAAACCTTATCGTCGTCATCC 

pAIP was a gift from Jeremy Luban (Addgene plasmid # 74171 ; 

http://n2t.net/addgene:74171 ; RRID:Addgene_74171, Watertown, MA, USA). 

Purified PCR product was inserted into pAIP backbone using HpaI and EcoRI restriction 

endonucleases (New England Biolabs; Euroclone, Milan, Italy). Cloning was checked by 

restriction analysis and direct sequencing (Eurofins Genomics, Ebersberg, Germany). 

PGK-H2BeGFP was a gift from Mark Mercola (Addgene plasmid # 21210 ; 

http://n2t.net/addgene:21210 ; RRID:Addgene_21210). 

 

Generation of stable pCVM6-Entry-ETV7 and Empty MCF7 cells 

In order to get MCF7 cells stably over-expressing ETV7 and the empty control, cells were 

seeded in 6-well plates and subsequently transfected for 48 hours with 1 μg of pCMV6-

Entry-Empty or pCMV6-Entry-ETV7 (Origene) using Lipofectamine LTX and Plus Reagent 

(Life Technologies, Thermo Fisher Scientific). Afterward, cells were split, and Geneticin 

(Life Technologies) was added at a concentration of 600 μg/ml; each 3 days medium was 

replaced, and after 4 cycles of selection, single cell cloning was performed according to 

the Corning protocol for cell cloning by Serial dilution in 96-well plates. During the single 

cell cloning procedure Geneticin concentration was gradually reduced to 300 μg/ml. 

 

Generation of stable pAIP-ETV7 and Empty MCF7 and T47D cells 

To obtain cell lines having a stable over-expression of the ETV7 gene, MCF7 and T47D cells 

were transduced with the lentiviral vector pAIP Empty and with the lentiviral vector for 
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the expression of the heterologous gene ETV7, pAIP ETV7. After 72 hours, cells were split, 

and Puromycin (Life Technologies) was added at a concentration of 1.5 and 2.5 μg/ml 

respectively for MCF7 and T47D cells. Each 3 days medium was replaced, and after 4 cycles 

of selection, single cell cloning was performed for MCF7 cells according to the Corning 

protocol for cell cloning by Serial dilution in 96-well plates. During the single cell cloning 

procedure Puromycin concentration was gradually reduced to 0.75 μg/ml. T47D did not 

undergo serial dilution but were kept as the pooled population under Puromycin selection 

(1.5 μg/ml). 

For zebrafish transplantation experiments, cells were subsequently transduced with 

lentiviral vectors for expression of nuclear eGFP produced using the pGK-H2B-eGFP 

plasmid. 1 week after transduction, eGFP positive cells were selected by cell sorting. 

Sorting experiment was conducted at the CIBIO Cell Analysis and Separation Core Facility 

using the FACS Aria instrument (BD Biosciences, Milan, Italy).  

 
Viral vectors production in HEK293T 

To obtain viral particles, HEK293T packaging cells were seeded into P150 dishes and 

transfected with a mix containing 17.5 μg pCMV-D8.9 plasmid (expression GAG and POL 

viral genes), 7.5 μg pCMV-VSVg plasmid (expressing the ENV protein from VSVg virus), 25 

μg lentiviral vector containing the gene of interest and 112.5 μl PEI 2X transfection 

solution (Sigma-Aldrich). After 48 hours, viral vectors containing the plasmid of interest 

were collected in the supernatant and filtered through a 0.45 μm filter. Vectors yield was 

quantified with PERT (product-enhanced reverse transcriptase) assay. 

 

RNA interference 

Silencing of target RNAs was performed using small interfering RNAs (siRNAs) and the 

transfection reagent INTERFERin® (Polyplus-Transfection, Euroclone). Scramble siRNA 

was used as control. Scramble and ETV7 targeting siRNA were purchased from Integrated 

DNA Technologies (IDT, Tema Ricerca). 

Cells were seeded in 6-well plates 24 hours prior transfection in order to get 40-50% 

confluence and were then transfected with 10 nM siRNA and 8 μl INTERFERin reagent 

respectively, diluted in 200 μl of OptiMEM (Life Technologies). The mix was vortexed 10 
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seconds, then incubated 10 minutes at room temperature and finally added to the wells. 

Analyses were performed 48 or 72 hours post-transfection.  

 

RNA isolation and RT-qPCR 

Total RNA was extracted using the Illustra RNA spin Mini Kit (GE Healthcare, Milan, Italy), 

converted into cDNA with the RevertAid First Strand cDNA Synthesis Kit following 

manufacturer’s recommendations (Thermo Fisher Scientific) and RT-qPCR was performed 

with 25 ng of template cDNA into 384-well plates (BioRad, Milan, Italy) using the Kapa 

Sybr Fast qPCR Master Mix (Kapa Biosystems, Resnova, Ancona, Italy) or the qPCRBIO 

SyGreen 2X (PCR Biosystems, Resnova) and the CFX384 Detection System (BioRad). 

YWHAZ and GAPDH genes were used as housekeeping genes to obtain the relative fold 

change with the ΔΔCt method 220. Primer sequences were designed using Primer-BLAST 

designing tool (https://www.ncbi.nlm.nih.gov/tools/primerblast/), checked for specificity 

and efficiency, and are listed in Table 1 (Eurofins Genomics). 

Table 1: List of primers used for RT-qPCR 

ETV7-FW CAAGATCTTCCGAGTTGTGGA 

ETV7-RV GTTCACCCGGTTCTTGTGAT 

YWHAZ-FW CAACACATCCTATCAGACTGGG 

YWHAZ-RV AATGTATCAAGTTCAGCAATGGC 

GAPDH-FW TCCAAAATCAAGTGGGGCGA 

GAPDH-RV AGTAGAGGCAGGGATGATGT 

DNAJC22-FW AGGACAGCTTGGGTTGGATG 

DNAJC22-RV CGCTCCTATCTGTAGTGCTCAA 

DNAJC17-FW CTAGGCATTGAGGAGAAGGCA 

DNAJC17-RV AGAGTTCAGCTGCTCTGGGATT 

DNAJC2-FW GGCTCGGAGTGAGAGGTAGA 

DNAJC2-RV GAGTGTAGAGGCAGAGGTCAG 

DNAJC7-FW CGGAGCTGCTCTATGCTCCA 

DNAJC7-RV AAAGTCTCTGCTTCCCTCTTCG 

DNAJC14-FW GTAGCTAGTGGGCGCTACTG 

DNAJC14-RV GCTGCTCGCAAAACCTTGAA 

DNAJC15-FW TGGTGTCATCGCTCCAGTTG 

DNAJC15-RV ATGCGTAGCGACCTGCAAAT 

ABCB1-FW TGCCTATGGAGACAACAGCC 

ABCB1-RV TGAAGGCATGTATGTTGGCCT 

ABCC1-FW CCCGCTCTGGGACTGGAA  

ABCC1-RV GTAGAAGGGGAAACAGGCCC 

ABCG2-FW TCAGCTGGTTATCACTGTGAGG  

ABCG2-RV GGCTCTATGATCTCTGTGGCT 

DNMT1-FW ACATCCTGGACAAGCACCG 
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DNMT1-RV TTTAGCTGAGGCACTCTCTCG 

DNMT3A-FW GTGTCTTGGTGGATGACGGG 

DNMT3A-RV CGGCATCAGCTTCTCAACAC 

DNMT3B-FW TAAGTCGAAGGTGCGTCGTG 

DNMT3B-RV CGTCTTCGAGTCTTGTTCTCGTA 

IFITM2-FW CGCGTACTCCGTGAAGTCTA  

IFITM2-RV ACGACCAACACTGGGATGAT 

IFI35-FW TGAGAGAGACCACAGCCCTT 

IFI35-RV GGAGGGCGGCATCCAGT 

HERC6-FW GGAGCTGCCAGAACCAATTC 

HERC6-RV AAGACCCTTCCTTTGTGGCA 

PROCR-FW CTCGGTATGAACTGCGGGAA 

PROCR-RV TTGTTTGGCTCCCTTTCGTG 

APOL6-FW TTTCTCCAGCCCAGACACTC 

APOL6-RV TCAAATGATTTTCTTCTCTCCACGG 

CASP4-FW CTGTTCCCTATGGCAGAAGGC 

CASP4-RV TCTGCCATGACCCGAACTTT 

CFB-FW GACACGAGAGCTGTATGGGG 

CFB-RV CTTCTCCCCTCCTACGCTGA 

PARP14-FW TGCCAAGAATGGCCAGACAA 

PARP14-RV TATGCCACAGCATTCTTTCCG 

ICAM1-FW ATGGCAACGACTCCTTCTCG 

ICAM1-RV GCCGGAAAGCTGTAGATGGT 

 

Western Blot 

Total protein extracts were obtained by lysing the cells in RIPA buffer (150mM Sodium 

Chloride, 1.0% NP-40, 0.5% Sodium Deoxycholate, 0.1% SDS, and 50mM TrisHCl pH 8.0) 

and proteins were quantified with the BCA method (Pierce, Thermo Fisher Scientific); 20-

50 μg of protein extracts were loaded on appropriate 7.5%, 10% or 12% polyacrylamide 

gels and SDS-PAGE was performed. Proteins were then transferred on Nitrocellulose 

membranes, which were probed over-night at 4°C with specific antibodies diluted in 1% 

non-fat skim milk-PBS-T solution: GAPDH (6C5, sc-32233), ETV7/TEL2 (E-1, sc-374478), 

ETV7/TEL2 (H-88, sc-292509), α-Actinin (H-2, sc-17829), b-Tubulin (3F3-G2, sc-53140), 

DNMT3A (GTX129125, GeneTex, Prodotti Gianni, Milan, Italy), STAT1 (D1K9Y, 14994S, Cell 

Signaling Technology, Euroclone), p-STAT1(Y701) (#7649S, Cell Signaling Technology), 

MMP9 (D603, 13667P, Cell Signaling Technology), BCL-2 (100, sc-509), Survivin (D-8, sc-

17779), PARP (GTX628838). Antibodies were obtained from Santa Cruz Biotechnologies 

(Milan, Italy) when not explicitly indicated. Detection was performed with ECL Select 

reagent (GE Healthcare) using the UVITec Alliance LD2 (UVITec Cambridge, UK) imaging 

system. 
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Site-directed mutagenesis 

Site-directed mutagenesis was performed using the GENEART Site-Directed Mutagenesis 

kit (Life Technologies) according to manufacturer’s instructions. In order to mutate ETV7 

binding sites within pGL4.26-DNAJC15 (substituting the GGA conserved bases with ATC 

random sequence), the reporter plasmid was first methylated and then amplified with 

AccuPrime Pfx DNA Polymerase (InVitrogen, Life Technologies) in a mutagenesis reaction 

with the following primers (Eurofins Genomics): 

BS1_Fw: GGGAAGAAAGGCTGCCCatcAGGGGGTCAGGAAAGC; 

BS1_Rv: GCTTTCCTGACCCCCTgatGGGCAGCCTTTCTTCCC; 

BS2_Fw: GGTGAGAAGGGTATCTgatGGGAACCTCGCCTTTAA; 

BS2_Rv: TTAAAGGCGAGGTTCCCatcAGATACCCTTCTCACC. 

Mutagenesis was then followed by an in vitro recombination reaction to enhance 

efficiency and colony yield. Mutated plasmids (pGL4.26-DNAJC15-BS1 and -BS2) were 

subsequently transformed into DH5α-T1R E. coli competent cells, which circularize the 

linear mutated DNA and exploit McrBC endonuclease activity to digest methylated DNA. 

Complete and correct mutagenesis was verified by direct sequencing (Eurofins Genomics). 

 

Gene reporter Assay 

24 hours prior transfection, 7 x 104 MCF7 cells were seeded in 24-well plates. Cells were 

transfected with Lipofectamine LTX and Plus Reagent (Thermo Fisher Scientific) along with 

250 ng pGL4.26-DNAJC15 reporter, 250 ng pCMV6-Entry-Empty or pCMV6-Entry-ETV7 

vectors, and 50 ng pRL-SV40 for each well. After 48 hours, cells were washed once in PBS 

and lysed in 1X PLB buffer (Promega), and luciferase activity was measured using the Dual-

Luciferase Reporter Assay System (Promega) following manufacturer’s instructions and 

detected using the Infinite M200 plate reader (Tecan, Milan, Italy). Renilla luciferase 

activity was used as an indicator of transfection efficiency and used to obtain the Relative 

Light Unit (RLU) values. 
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MTT Viability Assay 

Cells were seeded in 96-well plates and treated with different concentrations of 

Doxorubicin for 72 hours. 10 μl of 5ng/ml MTT reagent (Sigma-Aldrich) was added to 100 

μl of culture medium and left in incubation for 3 hours. Afterward, medium was accurately 

removed and cells were lysed in 100 μl of DMSO (Sigma-Aldrich), and a colorimetric 

measure was performed at the Infinite M200 plate reader (Tecan). Viability was calculated 

as a % ratio of viable cells treated with the indicated drug respect to an untreated control. 

 

Cell Death Analysis (Operetta) 

6x103 MCF7 cells were seeded in 96-well plates and 24 hours after seeding cells were 

treated with different concentrations of Doxorubicin. 72 hours after treatment cells were 

incubated with Hoechst 33342 2μg/ml (Life Technologies) for 30 min (to stain nuclei of 

both viable and dead cells) and Topro-3 0.1μM (Life Technologies) for 15 minutes (to 

visualize dead cells). Fluorescent images were obtained with the Operetta High Content 

Imaging System (Perkin Elmer) at CIBIO HTS Facility. The Topro-3 and Hoechst 33342 

positive objects were detected using the Harmony 4.1 PhenoLOGIC software (Perkin 

Elmer); subsequently, the relative ratio of Topro-3 positive objects on the total number of 

objects (Hoechst 33342 positive) was calculated. 

 

Cell Titer Glo Viability Assay 

Viability assay was performed using the Cell Titer-Glo Luminescent cell viability assay 

(Promega) according to the manufacturer’s instructions. Cells were seeded in white flat 

96-well plates and treated with different concentrations of 5-FU for 72 hours. Afterward, 

the plates were equilibrated at room temperature for 30 minutes; then, 100 μl of Cell 

Titer-Glo reagent was added to 100 μl of medium and left in incubation for 2 minutes on 

an orbital shaker. Then, a luminescence measure was performed at the Infinite M200 

plate reader (Tecan). Viability was calculated as a % ratio of viable cells treated with the 

indicated drug respect to DMSO control. 
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Vi-CELL Viability Assay and doubling time calculation 

The cell viability after radiotherapy treatment was measured using the Vi-CELL viability 

analyzer (Beckman Coulter), which performs trypan blue dye exclusion method with an 

automated system. Cells were seeded in 6-well plates for 24 hours and then treated with 

different radiation doses (2 to 10 Gy) and incubated for 72 hours. Afterward, cells were 

harvested using trypsin and re-suspended in PBS. Vi-CELL performed the automated count 

of viable cells in the sample, allowing for viability measurement. The viability was 

calculated as the percentage of viable cells respect to the untreated control. 

Doubling time was calculated with the following formula:  

Doubling time (hours) = time in culture (hours) x ln(2)/ln(# cells harvested/# cells seeded) 

 

Chromatin Immunoprecipitation (ChIP) Assay 

MCF7 cells were seeded in P150 dishes and transiently transfected with 10μg of pCMV6-

Entry- Empty or -ETV7 vectors using Lipofectamine LTX and Plus Reagent (Thermo Fisher 

Scientific) for 48 hours. ChIP was performed following a revised version of Myers Lab 

protocol 193. 5 μg of anti-ETV7/TEL2 antibody (H-88, sc-292509) and normal rabbit IgG (sc-

2027, Santa Cruz Biotechnologies) were used for immunoprecipitation with the aid of 

Dynabeads protein A magnetic beads (Life Technologies). 2 μl of purified 

immmunoprecipitated DNA was then used for qPCR analysis and calculation was 

performed using the ΔCt method in respect to non-immunoprecipitated DNA (% of input). 

A genomic region within GAPDH gene was used as a negative control. The qPCR on purified 

immunoprecipitated DNAs was performed as indicated above using the following primers: 

DNAJC15-ChIP-Fw: TGCGAACAGAAGTTGAGAGTGG 

DNAJC15-ChIp-Rv: AGTAAGCTCGGAGTCTAGCTGT 

GAPDH-ChIP-Fw: AAAAGCGGGGAGAAAGTAGG 

GAPDH-ChIP-Rv: CTAGCCTCCCGGGTTTCTCT. 

 

Co-Immunoprecipitation 

MCF7 were seeded in P150 dishes and transiently transfected with pCMV6-Entry-ETV7 as 

above. 48 hours post-transfection cells were lysed in CHAPS buffer and then incubated 
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overnight with 2μg of an anti-ETV7 antibody (H-88, sc-292509) or normal rabbit IgG (sc-

2027) previously bound to Dynabeads protein A magnetic beads (Life Technologies). 

Beads were then washed, and the immunoprecipitated lysate was eluted and loaded on 

a polyacrylamide gel for SDS-PAGE. 

 

Bisulfite-conversion 

Genomic DNA was extracted from MCF7 cells left untreated, treated with Doxorubicin or 

over-expressing pCMV6-Entry-Empty or -ETV7 vectors. DNA and RNA extractions were 

obtained from the same samples using the AllPrep DNA/RNA/Protein Mini Kit (Qiagen, 

Milan Italy). Purified DNA was then denaturated and subjected to bisulfite conversion with 

the EZ DNA Methylation-Lightning™ Kit (Zymo Research, Euroclone) according to 

manufacturer’s recommendations. The resulting product was subsequently PCR amplified 

and sequenced using the following bisulfite-specific primers (Eurofins Genomics):  

Fw: TTGGTAGGATTTATTAGTTTTTGTTGG 

Rv: CACCCAACTAATCTTTATATTTTTAATAAA. 

 

Annexin V-FITC/PI staining and flow cytometry analysis 

Apoptosis was measured using the FITC Annexin V Apoptosis Detection Kit I (BD 

Biosciences). Cells were stained with Annexin V conjugated to FITC fluorochrome together 

with the vital dye propidium iodide (PI), which can permeate only the membranes of dead 

or damaged cells; this combination of dyes allows for the identification of various stages 

of apoptosis.  

After the appropriate treatment, cells were harvested in tubes and counted. Cells were 

then washed twice with cold PBS and re-suspended in 1X Annexin V Binding Buffer at the 

concentration of 1.5x106 cells/ml. 

100 µl of the cell suspension was then incubated with 2.5 µl of FITC Annexin V and 5 µl of 

PI for 15 minutes at room temperature in the dark. Subsequently, 400 µl of 1X Annexin V 

Binding Buffer was added to each tube and samples were then analyzed. Flow cytometry 

analysis was conducted at the CIBIO Cell Analysis and Separation Core Facility using a FACS 

Canto A instrument (BD Biosciences). Thresholds and gates were set by the analysis of the 
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following controls: unstained cells, cells stained only with FITC Annexin V and cells stained 

with PI only. 

 

CD44/CD24 staining and flow cytometry analysis 

The membrane expression of CD44 and CD24 cell surface markers was measured by 

double staining with antibodies conjugated with fluorophores and flow cytometry 

analysis. Cells were seeded in 6-well plate or T25 flasks and, after the appropriate 

treatments, were harvested, washed with PBS, and counted. 3x103 cells were re-

suspended in 30 μl PBS + 0.1% BSA and incubated with APC mouse anti-human CD44 

(cat.no 559942, BD Bioscience) and FITC mouse anti-human CD24 (cat.no 555427, BD 

Bioscience) antibodies or with their isotype controls (FITC mouse IgG2a, k isotype -cat.no 

556652, BD Bioscience – and APC mouse IgG2b, k isotype – cat.no 555745, BD Bioscience) 

in ice for 30 minutes. After incubation cells were washed three times with PBS and finally 

re-suspended in 300 μl PBS. Flow cytometry analysis was performed at the CIBIO Cell 

Analysis and Separation Core Facility using a FACS Canto A instrument (BD Biosciences). 

Thresholds and gates were set by the analysis of the following controls: unstained cells, 

cells stained with an isotype mix. 

 

ALDEFLUOR analysis 

ALDEFLUOR kit (STEMCELL Technologies, Cologne, Germany) was used to identify cells 

expressing high levels of ALDH enzyme. Experiments were performed following the 

manufacturer’s instructions. Briefly, cells were harvested and re-suspended in 

ALDEFLUOR Assay Buffer at the concentration of 3x105 cells/ml. Then, 5 μl of activated 

ALDEFLUOR reagent was added to the cells and mixed. 500 μl of the cell suspension and 

reagent mixture was immediately moved to the control tube containing 5 μl of DEAB 

(diethylaminobenzaldehyde) reagent, a specific inhibitor of ALDH activity. Samples and 

controls were incubated for 45 minutes at 37°C. After the incubation, cells were 

centrifuged and re-suspended in ALDEFLUOR Assay Buffer. Flow cytometry analysis was 

performed at the Tyrolean Cancer Research Institute using a FACS Canto II instrument (BD 

Biosciences). Thresholds and gates were set by the analysis of the following controls: 

unstained cells, DEAB control. 
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Colony formation assays 

The clonogenic assay was performed seeding single cell suspension with 2x103 MCF7 or 

4x103 T47D cells in 6-well plates in complete growth medium. Cells were let grow for 3 

weeks changing the medium twice a week. After 3 weeks, the cell colonies were gently 

washed with PBS and stained by the incubation with 0.1% Crystal Violet solution in 20% 

methanol for 20 minutes. Excess staining was removed, and colonies were washed twice 

in PBS. Image analysis was performed with the Image J software in order to calculate the 

percentage of well’s area occupied by colonies. 

To characterize the capability of transformed cells to grow independently from a solid 

surface (anchorage-independent growth), we performed soft agar colony formation 

assay.  

The wells of 6-well plates were prepared with a layer of base agar (0.7% agarose in DMEM 

complete medium + 10% FBS). After the solidification of the base, single cell suspension 

containing 1.5x104 (MCF7) or 2x104 (T47D) cells/well was rapidly mixed to the soft agar 

solution (0.35% agarose in DMEM complete medium) and disposed of as a layer over the 

previously prepared base agar. Finally, 1 ml of growing medium was added on the top. 

Cells were let grow for 3 weeks changing the top medium twice a week. Afterward, cells 

were stained with of 0.1% Crystal Violet solution in 20% methanol and washed several 

times with PBS 1X to remove the excess of Crystal Violet solution. Image analysis was 

performed with the Image J software in order to calculate the average size of the colonies. 

 

Mammospheres culturing 

To generate primary mammospheres, cells were harvested with trypsin, centrifuged and 

re-suspended in mammosphere medium (DMEM/F12 supplemented with 2mM L-

Glutamine, 100U/ml penicillin, 100µg/ml streptomycin with the addition of 20ng/ml 

recombinant human Epidermal Growth Factor (EGF), 10ng/ml recombinant human basic 

Fibroblast Growth Factor (bFGF) and 1x B27 supplement. Cells were then counted and 

passed through a 25G needle to obtain a single cell suspension. Then, 103 cells/well were 

seeded in ultra-low attachment 24-well plates (Corning, Rome, Italy) in 800 μl of 

mammosphere medium. Plates were incubated at 37°C for one week, and images were 



 94 

obtained at DM IL LED Inverted Microsocope (Leica). Mammospheres were split by 

harvesting the mammospheres with PBS, centrifuging and re-suspending with TrypLE 

Express Reagent (Thermo Fischer) as an alternative to trypsin. The single cell suspension 

was then again counted, and seeded at the same starting concentration in mammosphere 

medium. 

After 1 week, mammospheres were counted and it was possible to calculate the 

Mammosphere Forming Efficiency (%) using the following equation:  

MFE(%) = (# of mammospheres per well) / (# of cells seeded per well) x 100 

 

Metabolic Assays 

Metabolic assays were performed using the Agilent Seahorse XFp instrument (Agilent 

Technologies, Mila, Italy) with standard miniplates. The metabolic phenotype of the cells 

was determined using the Cell Energy Phenotype Test (Agilent Technologies). 

The mitochondrial respiratory ability of the cells was determined using the Agilent 

Seahorse XF Mito Stress Test (Agilent Technologies). 

For both the tests, 1x104 (MCF7) or 1.5x104 (T47D) cells were plated in the Agilent 

Seahorse XFp culture miniplates with complete growth medium the day prior to the assay 

and incubated at 37°C. The day of the assay, the medium was substituted with 180 μl of 

assay medium/well (Agilent Seahorse XF Base Medium supplemented with 1mM 

Pyruvate, 2mM L-Glutamine, 10 mM Glucose) and the plates were incubated for 1 hour 

at 37°C into a non-CO2 incubator. 

For Cell Energy Phenotype Test, oxygen consumption rate (OCR) and extracellular 

acidification rates (ECAR) were measured by Seahorse XFp extracellular flux analyzer 

(Agilent Technologies) before and after the injection with a mix of 1μM Oligomycin and 

1μM FCCP.  

For Mito Stress Test, oxygen consumption rate (OCR) was measured by Seahorse XFp 

extracellular flux analyzer (Agilent Technologies) with sequential injection 1μM 

Oligomycin, 1μM FCCP and 0.5μM Rotenone/Antimycin A. Data were analyzed with the 

Seahorse Wave Desktop software. 
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Wound healing migration assay 

For wound healing assay, cells were seeded 24 hours prior treatment in order to get to 

80-90% confluence. Then, a scratch was introduced using a 10 μl tip, and cells were rinsed 

twice with PBS to remove detached cells. Culture medium was re-added, and wound 

closure was followed for 48 hours. Images were obtained with DM IL LED Inverted 

Microscope (Leica) and quantified with the software TScratch (CSE Lab, ETH, Zurich, 

Switzerland) 221. The software expresses the results as the percentage of Open Wound 

area, namely the area of the wound generated that remains non-colonized by the cells.  

 

Xenografts into zebrafish embryos 

Xenografts were performed 2 days post-fertilization on Casper or PRKDC-/- embryos. Few 

minutes before the transplant, fluorescent cells were harvested, counted, and re-

suspended at a concentration of 1x107 cells/ml in 2% PVP (Polyvinylpyrrolidone) solution 

in E3 medium. Dechorionated embryos were then anaesthetized using 1X Tricaine 

Methane Sulfonate in E3 medium and disposed on a previously prepared 1.5% agarose 

dish. 10 μl of cell suspension was then loaded into the needle previously prepared using 

borosilicate capillary without filaments. The loaded needle was then inserted into a 

micromanipulator and injections were performed into the yolk or the duct of Cuvier of 

the embryos. The micromanipulator was set with the following parameters in order to 

inject about 50 cells/embryo: pressure of injection ~ 3-4 PSI, time of injection: 0.1-0.2 s. 

Images were obtained at a  Leica MZ10F stereo microscope by loading the embryos on 3% 

methylcellulose (Sigma Aldrich). After transplant and image acquisition, embryos were 

maintained in E3 medium at 32°C for 3 days. 

 

RNA-seq  

RNA from three independent biological samples for MCF7 and T47D cells stably 

transduced with pAIP and pAIP-ETV7 was converted into cDNA libraries according to the 

Illumina TruSeq Stranded mRNA Sample Preparation Guide (Illumina) following 

manufacturer’s instructions. Pair-end reads (2x75 bp) were generated from the libraries 

using the Illumina HiSeq2500 sequencer at CIBIO NGS Core Facility according to the 
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standard Illumina protocol. The entire analysis of RNA-seq data was performed by Dr. 

Mattia Forcato and Prof. Silvio Bicciato (Center for Genome Research, University of 

Modena and Reggio Emilia, Italy).  

 

Statistical analysis 

Statistical analyses were performed using the GraphPad Prism version 6.0 software. When 

appropriate, unpaired t-test was applied for statistical significance. We selected 

throughout this study the two-sample Student’s t-test for unequal variance, given that we 

generally compared two conditions (i.e., treated vs. untreated samples, or over-

expression of ETV7 vs. Empty control). 
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Abstract
Breast cancer treatment often includes Doxorubicin as adjuvant as well as neoadjuvant chemotherapy. Despite its
cytotoxicity, cells can develop drug resistance to Doxorubicin. Uncovering pathways and mechanisms involved in
drug resistance is an urgent and critical aim for breast cancer research oriented to improve treatment efficacy.
Here we show that Doxorubicin and other chemotherapeutic drugs induce the expression of ETV7, a
transcriptional repressor member of ETS family of transcription factors. The ETV7 expression led to DNAJC15
down-regulation, a co-chaperone protein whose low expression was previously associated with drug resistance in
breast and ovarian cancer. There was a corresponding reduction in Doxorubicin sensitivity of MCF7 and MDA-MB-
231 breast cancer cells. We identified the binding site for ETV7 within DNAJC15 promoter and we also found that
DNA methylation may be a factor in ETV7-mediated DNAJC15 transcriptional repression. These findings of an
inverse correlation between ETV7 and DNAJC15 expression in MCF7 cells in terms of Doxorubicin resistance,
correlated well with treatment responses of breast cancer patients with recurrent disease, based on our analyses
of reported genome-wide expression arrays. Moreover, we demonstrated that ETV7-mediated Doxorubicin-
resistance involves increased Doxorubicin efflux via nuclear pumps, which could be rescued in part by DNAJC15
up-regulation. With this study, we propose a novel role for ETV7 in breast cancer, and we identify DNAJC15 as a
new target gene responsible for ETV7-mediated Doxorubicin-resistance. A better understanding of the opposing
impacts of Doxorubicin could improve the design of combinatorial adjuvant regimens with the aim of avoiding
resistance and relapse.

Neoplasia (2018) 20, 857 –14

Introduction
Chemotherapy is commonly adopted for the pre- and post-surgical
treatment of many solid tumors, including breast cancer, and it is still
the only therapeutic option for most cases of metastatic spread.
Among the drugs used in different regimens, Doxorubicin is often
employed and is one of the most effective [1]. This drug is an
anthracyclin intercalator that poisons topoisomerase II, thereby
causing DNA damage and subsequent cytotoxicity [2]. As for most
chemotherapeutic agents, several unwanted side-effects have been
reported and, unfortunately, Doxorubicin is also known for late-onset
cardiotoxicity determined by a complex cascade of events [3]. Despite
the efficacy of Doxorubicin and other chemotherapeutic drugs, cancer
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cells may develop chemoresistance, resulting in treatment failure and
recurrence. Indeed, there are many survival strategies available to
cancer cells and some of them can even be activated by chemotherapy
itself. Some activation mechanisms can lay the groundwork for
unwanted future resistance to treatment, which can be driven or
stimulated by the activation of pro-survival or pro-tumorigenic
transcription factors, such as NF-κB [4,5] and FOXM1 [6,7].
Moreover, Doxorubicin can lead to an increased expression of drug
efflux pumps such as MRP1 in breast cancer [8] and to the activation
of the anti-apoptotic cascade HER3-PI3K-AKT in ovarian cancer [9].

ETV7 (Ets Variant Gene 7) is a transcription factor belonging to
the ETS (E26 transformation-specific) family of transcriptional
regulators. Various ETS factors, such as ETS1, ETS2, PU1, FLI1,
and ERG, are distinguished for their pro-tumorigenic functions and
are involved in chromosomal translocations often associated with
Ewing's sarcoma and prostate cancer [10]. ETV7 is a poorly
characterized protein that can act as a transcriptional repressor, which
presents an 85-amino acid ETS domain responsible for binding a
purine-rich GGAA core motif in the regulatory regions of target
genes. The protein also has a conserved pointed (PNT) protein–protein
interaction domain, required for the formation of homo−/hetero-
dimers and oligomers and involved in transcriptional repression
[11,12]. Given the presence of the PNT domain, ETV7 can either
self-associate or form heterodimers/oligomers with ETV6/TEL, a
highly related ETS family member with tumor suppressor functions
that also acts as transcriptional repressor [13]. In contrast, ETV7 is
generally acknowledged to be an oncoprotein, and some of its pro-
tumorigenic functions result from its ability to directly bind and inhibit
ETV6-mediated gene repression [14].

Deregulated high ETV7 expression levels has been linked to
hepatocellular carcinoma [15] and to leukemia [10,16]. Over-
expressed ETV7 can also cooperate with Eμ-MYC in promoting
lymphomagenesis and blocking Myc-induced apoptosis [17]. Fur-
thermore, ETV7 is able to enhance the Ras-driven transformation in
fibroblasts and shows pro-proliferative and anti-differentiation roles
observed in myeloid and lymphoid cells [10,17]. In contrast, ETV7
can act as a tumor suppressor in nasopharyngeal carcinoma through
binding SERPINE1 promoter and decreasing its expression [18].
Further, ETV7 down-regulation has been reported in drug-resistant
gastric cancer cells [19].

We recently observed in human breast cancer cells that ETV7 can
be transcriptionally activated upon Doxorubicin treatment and
synergistically induced by the combined treatment with Doxorubicin
and TNFα. Among the possible activators of its transcription, we
identified tumor suppressor p53 and NFκB (p65) as transcription
factors able to directly bind to ETV7 promoter [20].

Interestingly, ETV7 and DNAJC15 expression appear to inversely
correlate upon Doxorubicin treatment and also upon interferon
gamma expression. ETV7 is recognized as an interferon-stimulated
gene, whereas down-regulation of DNAJC15 has been reported in
interferon gamma treated macrophages [21]. DNAJC15 plays an
intriguing role among the tumor suppressor genes whose repression is
associated with tumor aggressiveness and chemoresistance. It belongs
to the HSP40/DNAJ family of co-chaperones, mostly involved in
helping ATP hydrolysis and thus the activation of the HSP70
chaperone with its roles in protein folding, trafficking, interaction,
import and export [22,23].

DNAJC15 is often hyper-methylated and repressed in malignant
pediatric tumors [24], neuroblastoma [25], Wilm's tumor and

melanoma [26]. Furthermore, its down-regulation associates with
increased drug resistance in ovarian and breast cancer [27,28]. Using
MCF7 breast cancer cells, Hatle and colleagues observed that in
Doxorubicin-resistant clones, the low expression of DNAJC15 in the
Golgi network was responsible for the degradation of some proteins
including the transcription factor c-JUN [29]. Therefore, inhibition
of DNAJC15 resulted in increased levels of c-JUN protein, which was
ultimately responsible for increased transcription of the multidrug
transporter ABCB1/MDR1 [29]. Other studies have reported the
localization of DNAJC15 inside the mitochondrial inner membrane
where it can control the respiratory chain and thus the production of
ROS [30]. Inside the mitochondria, it can also help mitochondrial
import of proteins by favoring the ATP hydrolysis of a chaperone
member of the TIMP23 translocase [26]. DNAJC15 exerts its tumor
suppressor role also by promoting the release of pro-apoptotic
molecules through the mitochondrial permeability transition pore
complex [31].

In this study, we identify a novel circuitry for Doxorubicin
resistance in breast cancer cells where ETV7 acts as a major player.
Given the pro-tumorigenic roles of ETV7, its activation upon
Doxorubicin treatment represents one of the unwanted side-effects
that could possibly unleash a drug resistance mechanism. In
particular, ETV7 appears to trigger the activation of a resistance
circuitry by directly binding and, therefore, repressing the transcrip-
tion of some tumor suppressor genes. Specifically, we demonstrate
that ETV7 can repress DNAJC15 in a methylation-dependent
manner. We propose a novel drug resistance mechanism directly
driven by Doxorubicin whereby Doxorubicin itself induces the up-
regulation of ETV7 that, in turn, down-regulates DNAJC15
expression giving rise to Doxorubicin resistance in breast cancer cells.

Materials and Methods

Cell Culture Conditions and Treatments
MCF7 cells were obtained from Interlab Cell Line Collection bank

(Genoa, Italy). A549 and U2OS cell lines were from ATCC
(Manassas, VA, USA), while A375M and MDA-MB-231 cells were a
gift from, respectively, Dr. D. Bergamaschi (Centre for Cell Biology
and Cutaneous Research, Blizard Institute, Barts and The London
School of Medicine & Dentistry, UK) and Prof. A. Provenzani
(Laboratory of Genomic Screening, CIBIO, University of Trento,
Italy). MCF7 and U2OS cells were grown in DMEM medium
supplemented with 10% FBS, 2 mM L-Glutamine and 2 mM of
Penicillin/Streptomycin; MDA-MB-231 cells in the same medium
with the addition of 1% Non-Essential Amino acids. A549 and
A375M cells were cultured in RPMI medium +10% FBS, 2 mM L-
Glutamine and 2 mM of Penicillin/Streptomycin. BJ1-hTERT cells
(immortalized normal fibroblasts) were obtained fromDr. K. Lobachev
(Georgia Institute of Technology, GA, USA) and were grown in
MEMmedium supplemented with 10% FBS, 2 mML-Glutamine, 2
mM of Penicillin/Streptomycin and Puromycin. MCF10A cells
(immortalized normal mammary epithelial cells) were received from
Dr. S. Soddu (Unit of Cellular Networks andMolecular Therapeutic
Targets, Regina Elena National Cancer Institute-IRCCS, Rome,
Italy) and cultivated in DMEM/F12 1:1medium supplemented with
5%Horse Serum, 17 ng/ml human epidermal growth factor (hEGF),
10% Mammary Epithelial Growth Supplement (MEGS: 0.4%
bovine pituitary extract; 1 μg/ml recombinant human insulin-like
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growth factor 1; 0.5 μg/ml hydrocortisone, 3 ng/ml hEGF), 100 ng/ml
cholera toxin (Sigma-Aldrich, Milan, Italy). When not explicitly stated,
cell culture reagents were obtained from Gibco (Life Technologies,
Thermo Fisher Scientific, Milan, Italy).
When needed cells were authenticated from the DNA Diagnostic

Center (DDC, Fairfield, OH, USA) or Eurofins Genomics
(Ebersberg, Germany). Mycoplasma test was done monthly as
scheduled by our CIBIO Cell Technology Facility (PlasmoTest™ —
Mycoplasma Detection Kit, InvivoGen, Toulouse, France). Exper-
iments were performed within one month from the thawing
procedure.
Human lymphocytes were isolated and cultured from the blood of

healthy donors as previously described, in accordance with an NIEHS
IRB-approved protocol IRB#10-E-0063 and in compliance with the
Helsinki Declaration. Prior to participation in the study, subjects
were informed of the procedures and potential risks and each signed a
statement of informed consent [32].
Doxorubicin (Sigma-Aldrich) was used at the concentration of 1.5

μM (for all cells except for U2OS and BJ1-hTERT cells, which were
treated with 0.5 μMDoxorubicin) for 16 hours treatment in the case
of qPCR analysis and western blotting and at different concentrations
for 72 hours for MTT viability assays.
Twenty-four-hour treatments were performed with the following

drugs and concentrations: Etoposide 50 μM (Enzo Life Science,
Rome, Italy), Nutlin-3a 10 μM, 5-FluoroUracil (5FU) 375 μM,
Camptothecin 0.5 μM, Everolimus 50 nM, Tamoxifen 1 μM,
Imatinib 3 μM (Selleckchem, Aurogene, Rome, Italy). Compounds
were purchased from Sigma-Aldrich when not specifically indicated.
5-Aza-2′-deoxycytidine (Sigma-Aldrich) treatment was performed

for 48 hours at the concentration of 5 μM.
Quercetin and Genistein were purchased from Extrasynthese

(Genay, Lyon, France), and treatments were performed for 16 hours
at the concentration of 50μM for Quercetin and 30μM for Genistein.

Plasmids
The expression vectors pCMV6-Entry-Empty, pCMV6-Entry-

ETV7 and pCMV6-Entry-DNAJC15 C-terminally tagged with
DDK-Myc tags were purchased from Origene (Tema Ricerca,
Bologna, Italy).
pGL4.26-DNAJC15 reporter was obtained by cloning the

promoter region of DNAJC15 (−299 to +512 bp from TSS according
to the Eukaryotic Promoter Database, http://epd.vital-it.ch/) ampli-
fied with Q5 High Fidelity DNA Polymerase (New England Biolabs,
Euroclone, Milan, Italy) and the following primers (Eurofins
Genomics): Fw: GCCTCGAGCAGCACAAACTCATTTGAGGG
and Rv: GCAAGCTTAGGCGGCCCGGAGACTCAAG. Purified
PCR product was inserted into pGL4.26 backbone using Xho I and
Hind III restriction endonucleases. Cloning was checked by
restriction analysis and direct sequencing (Eurofins Genomics). For
site-directed mutagenesis of this vector please refer to the section
below. The pRL-SV40 (Promega) vector constitutively expressing the
Renilla reniformis luciferase cDNA was used as transfection efficiency
control for gene reporter assays.

Generation of Stable pCVM6-Entry-ETV7 and Empty MCF7
and MDA-MB-231 Cells
In order to get MCF7, MDA-MB-231 and U2OS cells stably over-

expressing ETV7 and the empty control, cells were seeded in 6-well
plates and subsequently transfected for 48 hours with 1 μg of

pCMV6-Entry-Empty or pCMV6-Entry-ETV7 (Origene) using
Lipofectamine LTX and Plus Reagent (Life Technologies) or FuGene
HD (Promega, Milan, Italy) respectively for MCF7 or MDA-MB-
231 and U2OS cells. Afterwards, cells were split and Geneticin (Life
Technologies) was added at a concentration of 600 and 800 μg/ml
respectively for MCF7 or MDA-MB-231 and U2OS cells; each 3
days medium was replaced and after 4 cycles of selection, single cell
cloning was performed according to the Corning protocol for cell
cloning by Serial dilution in 96 well plates. During the single cell
cloning procedure Geneticin concentration was gradually reduced to
300 (MCF7) and 400 μg/ml (MDA-MB-231 and U2OS).

RNA Isolation and RT-qPCR
Total RNA was extracted using the Illustra RNA spin Mini Kit

(GE Healthcare, Milan, Italy), converted to cDNA with the
RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher
Scientific) and RT-qPCR was performed with 25 ng of template
cDNA in 384 wells-plate (BioRad, Milan, Italy) using the Kapa Sybr
Fast qPCR Master Mix (Kapa Biosystems, Resnova, Ancona, Italy)
and the CFX384 Detection System (BioRad). YWHAZ and B2M
genes were used as housekeeping genes to obtain the relative fold
change by the ΔΔCt method as previously described [33]. Primer
sequences were designed using Primer-BLAST designing tool
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/), checked for
specificity and efficiency, and are listed in Supplementary Table 1
(Eurofins Genomics).

Western Blot
Total protein extracts were obtained by lysing the cells in RIPA

buffer and proteins were quantified by the BCA method (Pierce,
Thermo Fisher Scientific); 20 to 50 μg of protein extracts were loaded
on 7.5% and 12% polyacrylamide gels, and western blotting was
performed as previously described [34]. Transferred proteins were
probed over-night at 4°C with specific antibodies diluted in 1% non-
fat skim milk-PBS-T solution: GAPDH (6C5, sc-32,233), ETV7/
TEL2 (F-8, sc-376,137X), ETV7/TEL2 (H-88, sc-292,509),
Histone H3 (FL-136, sc-10,809), α-Actinin (H-2, sc-17,829),
DNMT3A (GTX129125, GeneTex, Prodotti Gianni, Milan, Italy).
Antibodies were obtained from Santa Cruz Biotechnologies (Milan,
Italy) when not specifically indicated. Detection was performed with
ECL Select reagent (GE Healthcare) using a ChemiDoc XRS+
(BioRad) or UVITec Alliance LD2 (UVITec Cambridge, UK)
imaging systems.

In order to separate cytoplasmic and nuclear fractions of proteins,
MCF7 cells were seeded in p150 dishes and treated with Doxorubicin
for either 6 or 16 hours. Cytoplasmic proteins were extracted
following the instructions of NE-PER kit (Thermo Fisher Scientific).
Alternatively, in order to enrich the nuclear extracts for chromatin-
associated proteins, pellets remaining from cytoplasmic extraction
were directly resuspended in 1x Loading Buffer and boiled.
Approximately, 150 μg of nuclear protein extracts and 50 μg of
cytoplasmic protein extracts were loaded on a polyacrylamide gel,
blotted and detected as described above. Histone H3 and GAPDH
were used respectively as controls for nuclear and for cytoplasmic
extracts.

Gene Reporter Assay
24 hours prior to transfection, 7 × 104 MCF7 cells were seeded in

24 well-plate. Cells were transfected with Lipofectamine LTX and
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Plus Reagent (Thermo Fisher Scientific) along with 250 ng pGL4.26-
DNAJC15 reporter, 250 ng pCMV6-Entry-Empty or pCMV6-
Entry-ETV7 vectors, and 50 ng pRL-SV40 for each well. After 48
hours, cells were washed once in PBS and lysed in 1X PLB buffer and
luciferase activity measurements were performed using the Dual-
Luciferase Reporter Assay System (Promega) as previously described
[35,36] and detected using the Infinite M200 plate reader (Tecan,
Milan, Italy). Renilla luciferase activity was used as an indicator of
transfection efficiency and used to obtain the Relative Light Unit
(RLU) measure.

Site-Directed Mutagenesis
Site-directed mutagenesis was performed using GENEART Site-

Directed Mutagenesis kit (Life Technologies) according to manufac-
turer's instructions. In order to mutate ETV7 binding sites within
pGL4.26-DNAJC15 (substituting the GGA conserved bases with
ATC random sequence), the reporter plasmid was first methylated
and then amplified with AccuPrime Pfx DNA Polymerase (InVitro-
gen, Life Technologies) in a mutagenesis reaction with the following
primers (Eurofins Genomics):

BS1_Fw: GGGAAGAAAGGCTGCCCatcAGGGGGTCAG
GAAAGC;
BS1_Rv: GCTTTCCTGACCCCCTgatGGGCAGCCTTTCT
TCCC;
BS2_Fw: GGTGAGAAGGGTATCTgatGGGAACCTCGCCT
TTAA;
BS2_Rv: TTAAAGGCGAGGTTCCCatcAGATACCCTTCT
CACC.

Mutagenesis was then followed by an in vitro recombination
reaction to enhance efficiency and colony yield. Mutated plasmids
(pGL4.26-DNAJC15-BS1 and -BS2) were subsequently transformed
into DH5α-T1R E. coli competent cells, which circularize the linear
mutated DNA and exploits McrBC endonuclease activity to digest
methylated DNA. Complete and correct mutagenesis was verified by
direct sequencing (Eurofins Genomics).

Bisulfite-Conversion
Genomic DNA was extracted from MCF7 cells left untreated,

treated with Doxorubicin or over-expressing pCMV6-Entry-Empty
or -ETV7 vectors. DNA and RNA extractions were obtained from the
same samples using the AllPrep DNA/RNA/Protein Mini Kit
(Qiagen, Milan Italy).

Purified DNA was then denaturated and subjected to bisulfite
conversion with the EZ DNA Methylation-Lightning™ Kit (Zymo
Research, Euroclone) according to manufacturer's recommendations.
The resulting product was subsequently PCR amplified and
sequenced using the following bisulfite-specific primers (Eurofins
Genomics): Fw: TTGGTAGGATTTATTAGTTTTTGTTGG; Rv:
CACCCAACTAATCTTTATATTTTTAATAAA.

Doxorubicin Efflux Analysis
1.5 x 104 MDA-MB-231 cells were seeded in a 96 well-plate; the

subsequent day, 10 or 20 μMDoxorubicin was added for 3 hours and
cells were analyzed with the Operetta High Content Imaging System
(Perkin Elmer, Milan, Italy) at CIBIO High Throughput Screening
(HTS) Facility exploiting the intrinsic fluorescence of Doxorubicin.
By using the Harmony 4.1 PhenoLOGIC software (Perkin Elmer)

nuclear and cytoplasmic regions were detected; successively, the
relative ratio of nuclear respect to cytoplasmic fraction from
Doxorubicin signal was calculated. To measure the Doxorubicin
efflux area, the Doxorubicin spot area into the cytoplasm was
measured (see Suppl. Figure S2A for details).

Viability Assay
Cells were seeded in a 96 well-plate and treated with different

concentrations of Doxorubicin for 72 hours.Mediumwas removed and
wells were washedwith 1XPBS to avoid possible reduction effects of the
added compound withMTT reagent (Sigma-Aldrich). Ten μl of MTT
(5 mg/ml solution in 1X PBS) was added to 100 μl of fresh medium
and left in incubation for 3 hours. Afterwards, medium was accurately
removed and cells were lysed in 100 μl of DMSO (Sigma-Aldrich), and
a colorimetric measure was performed at the Infinite M200 plate reader
(Tecan). Viability was calculated as a % ratio of viable cells treated with
the indicated drug respect to an untreated control.

Cell Death Analysis
6 × 103 MCF7 cells were seeded in a 96 well-plate; 24 hours after

seeding, cells were treated with different concentrations of Doxoru-
bicin; 72 hours after treatment cells were incubated with Hoechst
33,342 2 μg/ml (Life Technologies) for 30 min (to stain nuclei,
therefore both viable and dead cells) and Topro-3 0.1 μM (Life
Technologies) for 15 minutes (to visualize dead cells). Fluorescent
images were obtained with the Operetta High Content Imaging
System (Perkin Elmer) at CIBIO HTS Facility. The Topro-3 and
Hoechst 33,342 positive objects were detected using the Harmony
4.1 PhenoLOGIC software (Perkin Elmer); subsequently, the relative
ratio of Topro-3 positive objects on the total number of objects
(Hoechst 33,342 positive) was calculated.

Chromatin Immunoprecipitation Assay
MDA-MB-231-ETV7 and MDA-MB-231-Empty cells were

seeded in p150 dishes (four dishes each condition) and ChIP-PCR
was performed following a revised version of Myers Lab protocol.
Mouse monoclonal anti-ETV7/TEL2 antibody (F-8, sc-376,137X,
Santa Cruz Biotechnologies) and normal mouse IgG (sc-2025, Santa
Cruz Biotechnologies) were used for immunoprecipitation. Two μl of
purified immmunoprecipitated DNA was then used for qPCR
analysis and calculation was performed using the ΔCt method in
respect to non-immunoprecipitated DNA (% of input) as previously
detailed described [37]. A genomic region within GTF2H5 gene was
used a negative control. A list of the primers sequences that were used
for ChIP-PCR analysis is presented in Supplementary Table 1
(Integrated DNA Technologies, Coralville, IA, USA and Eurofins
Genomics).

MCF7 cells were seeded in p150 dishes and transiently transfected
with 10 μg of pCMV6-Entry-Empty or -ETV7 vectors using
Lipofectamine LTX and Plus Reagent (Thermo Fisher Scientific) for
48 hours. ChIP was performed using the same protocol used for
MDA-MB-231 using anti-ETV7/TEL2 (H-88, sc-292,509) and
normal rabbit IgG (sc-2027, Santa Cruz Biotechnologies) for
immunoprecipitation. qPCR on purified immunoprecipitated
DNAs was performed as indicated above.

Co-Immunoprecipitation
MCF7 were seeded in p150 dishes and transiently transfected with

pCMV6-Entry-ETV7 as above (Origene). 48 hours post-transfection
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cells were lysed in CHAPS buffer and then incubated over-night with
an anti-ETV7 antibody (H-88, sc-292,509) or normal rabbit IgG (sc-
2027) previously bound to Dynabeads protein A magnetic beads (Life
Technologies). Beads were then washed and the immunoprecipitated
lysate was eluted and loaded on a polyacrylamide gel for SDS-PAGE.

Analysis of Genome-Wide Data
Available expression arrays from our group (GSE24065, Agilent-

014850 Whole Human Genome Microarray 4x44K G4112F) were
analyzed for the specific genes of interest as previously described [20,38].
Expression data of MCF7 cells resistant to Adriamycin -MCF7/

ADR- (e.g. Doxorubicin) were obtained from Affymetrix Human
Genome U133 Plus 2.0 Array platform and downloaded from GEO
(GSE76540). Two transcripts for each gene of interest (ETV7,
DNAJC15, and ABCB1) were available and expression averages were
calculated.
Expression levels of ETV7 and DNAJC15 were obtained from

microarray data of Triple Negative Breast Cancer patients who
underwent neoadjuvant chemotherapy protocols (GSE43502, Affy-
metrix Human Genome U133 Plus 2.0 Array). The study included
25 patients (out of 47) showing recurrence.

Statistical Analysis
When appropriate, Student's t-test was applied for statistical

significance. We selected throughout the manuscript the two-sample
Student's t-test for unequal variance.

Results

ETV7 is Activated by Doxorubicin and other DNA Damaging
Drugs in Cancer and Normal Cells
To investigate the differential expression of ETV7 in response to

various stimuli in breast cancer cells we tested a panel of cytotoxic
drugs in MCF7 cells. We observed a substantial induction of ETV7

expression with many of the treatments, especially DNA damaging
drugs, among which Doxorubicin was the most effective inducer of
ETV7 expression in comparison with 5FU, Camptothecin, and
Etoposide (Figure 1A). The treatment with Nutlin-3a, a p53 specific
activator [39] also triggered an increment in ETV7 mRNA levels
while Everolimus (mTOR inhibitor), Imatinib (tyrosine kinase
inhibitor) and Tamoxifen (estrogen modulator) had no effect
(Figure 1A). Moreover, ETV7 transcriptional activation by
Doxorubicin in MCF7 cells was reflected by an increase in protein
levels in the nuclear compartment (Suppl. Figure S1A), highlighting its
role as a transcriptional regulator.

We extended the analysis to the breast cancer cell line MDA-MB-
231 and confirmed the induction of ETV7 upon treatments with
DNA damaging agents, especially Doxorubicin (Figure 1B).
Nevertheless, the levels of ETV7 induction in this cell line were
not as high as in MCF7. The reduced level might be explained by the
presence of a mutant nonfunctional form of p53 in MDA-MB-231
since p53 is an activator of ETV7 transcription [20]. Doxorubicin
treatment also induced ETV7 in other cancer-derived cell lines: lung
adenocarcinoma (A549) and osteosarcoma (U2OS) and melanoma
(A375M) (Suppl. Figure S1B). Given the activation in the various
cancer cell lines, we investigated the ETV7 expression in normal cells.
Therefore, we treated lymphocytes obtained from healthy donors and
two non-cancerous cell lines (immortalized normal fibroblasts, BJ1-
hTERT, and immortalized normal mammary cells, MCF10A). These
results along with those from cancer cell lines establish that ETV7
induction is a conserved response to DNA damaging treatments
(Figure 1C and Suppl. Figure S1B).

ETV7 Can Promote Resistance to Doxorubicin in Breast
Cancer Cells

Given the observation that ETV7 is potently activated in response
to Doxorubicin treatment, we hypothesized that it may be involved in
drug resistance. To test this, we generated stable MCF7 and MDA-

A B C

Figure 1. DNA damaging drugs promote ETV7 transcriptional activation. RT-qPCR analysis of ETV7 expression upon different
chemotherapeutics treatment in breast cancer-derived MCF7 (A) and MDA-MB-231 cells (B), and in healthy donor-derived lymphocytes
(C). Bars represent average Fold Changes relative to the untreated condition and standard deviations of at least three biological replicates.
* = P-value b0.01.
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MB-231 cell lines over-expressing this transcription factor (Suppl.
Figure S2A and B, respectively) and evaluated whether this could
influence the survival upon Doxorubicin treatment. Importantly,

ETV7 over-expression exerted a protective role against Doxorubicin-
induced cell viability in both cell lines (Figure 2A-B). Interestingly, this
effect was also visible in non-breast cancer cells as shown for the

A B

C D

E F

Figure 2. ETV7 can trigger breast cancer resistance to Doxorubicin. A-B) MTT Assays for survival analyses upon Doxorubicin treatment in
MCF7 (A) and in MDA-MB-231 (B) cells over-expressing ETV7 with respect to their empty control. C) Cell death analysis on Doxorubicin-
treated (three different doses) MCF7 cells over-expressing ETV7 in comparison to the ones stably transfected with an empty vector.
Percentage of dead cells was obtained through fluorescence studies (at Operetta Perkin Elmer) calculated as a ratio between the amount of
Topro-3 positive cells (dead cells) and the total number of cells (Hoechst 33,342 positive cells). D) RT-qPCR analysis of ABCB1 expression in
MCF7 andMDA-MB-231 cells over-expressing ETV7. E) Analysis of the ratio between the nuclear and cytoplasmic intensity of Doxorubicin in
MDA-MB-231 cells over-expressing ETV7comparedwith their empty control, performed throughOperetta Perkin Elmer Software. F) Analysis
of the cytoplasmic area of Doxorubicin efflux in MDA-MB-231 cells over-expressing ETV7 in comparison to their empty counterpart. Images
are reporting one representative analyzed by Operetta PerkinElmer Software. Experiments are done in quadruplicate. * = P-value b0.01.
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osteosarcoma U2OS cells stably over-expressing ETV7 (Suppl. Figure
S2C-D). The effect of ETV7 over-expression on Doxorubicin-driven cell
death was analyzed using the cell-impermeable dye Topro-3 (a
representative image is presented in Supplementary Figure S2E).
MCF7 cells over-expressing ETV7 resulted in a remarkably reduced
sensitivity to Doxorubicin in comparison to cells stably transfected with
an empty vector (Figure 2C). Since drug efflux is one of the most
commonmechanisms responsible for increased chemoresistance [40,41],
we hypothesized that it could be affected by ETV7 expression. We
therefore checked for the expression of ABCB1/PgP, an ABC transporter
frequently over-expressed in doxorubicin-resistant cells [42–44], and we
observed a significant up-regulation of ABCB1 upon ETV7 over-
expression in both MCF7 and MDA-MB-231 cells (Figure 2D). To
further verify the aforementioned hypothesis, we monitored the nuclear
efflux of Doxorubicin exploiting its light emission property in the ETV7
over-expressing MDA-MB-231 cells relative to their empty-vector
counterpart. Bymeasuring the ratio of nuclear to cytoplasmicDoxorubicin
and the area of Doxorubicin efflux from the nuclei, we found a statistically
significant decrease of nuclear Doxorubicin in the MDA-MB-231 cells
over-expressing ETV7 that corresponded to an increased nuclear efflux of
Doxorubicin (Figure 2E-F and Suppl. Figure S2F, showing details
regarding the selection of nuclear and cytoplasmic regions).

DNAJC15 is a Good Target for ETV7-MediatedDrug Resistance
To further understand how ETV7, as a transcriptional repressor, could

influence drug resistance, we searched for its putative targets by restricting
the analysis to genes whose silencing is already known to be involved in
Doxorubicin resistance in breast cancer cells. In particular, we considered a
list of six genes (BRCA1, ESR1, DNAJC15, CDH1, RAB6C and SULF2)
whose hyper-methylation correlates with Doxorubicin resistance in breast
cancer (Table 1 from Boettcher et al., 2010 [45] and available at the
Archive of Functional Genomics Data, accession number #E-MEXP-
2698, using the ArrayExpress tool). To restrict the search to the most
promising ETV7 targets, we analyzed the expression of this group of genes
in microarray data that we previously described with Doxorubicin treated
MCF7 cells available (GSE24065, Gene Expression Omnibus, GEO,
NCBI [20,38]). Given that Doxorubicin potently activated ETV7
expression, we expected to observe significant down-regulation of its
targets upon the same treatment condition. Out of the six genes, three of
them -DNAJC15, BRCA1, and ESR1- displayed a strong down-
regulation pattern upon Doxorubicin treatment (Suppl. Figure S3A). No
significant effects were observed forCDH1 andRAB6C, while SULF2was
induced after Doxorubicin treatment. Moreover, most DNAJC family
members were repressed upon Doxorubicin in MCF7 cells, based on the
previously mentioned microarray data (Suppl. Figure S3B). Therefore, we
validated some of the highly down-regulated members of DNAJC family
with RT-qPCR experiments in Doxorubicin-treated MCF7 cells and
confirmed the repression of DNAJC2, C7, C14, C15, and C17 in
response to Doxorubicin treatment (Figure 3A). Furthermore, DNAJC15
has already been reported to be involved in the negative regulation of
ABCB1 transcription, thereby potentially explaining the ETV7-mediated
ABCB1 up-regulation and, at least partially, the drug resistance
mechanism associated with ETV7 [29]. We decided to focus our
attention on DNAJC15 as a putative mediator of the ETV7-dependent
Doxorubicin resistance.We extended the analysis ofDNAJC15 repression
to other DNA damaging agents in MCF7, MDA-MB-231 cells and in
lymphocytes (Figure 3B, C, andD, respectively), and verified DNAJC15
down-regulation in response to most of these agents.

ETV7 Transcriptionally Regulates DNAJC15 Expression
Since we observed that ETV7 and DNAJC15 expression were

inversely correlated in response to several stimuli and given the
presence of two putative ETV7 binding sites in the DNAJC15
promoter, we investigated the possibility of direct ETV7 influence on
DNAJC15 expression. First, we demonstrated that the modulation of
ETV7 expression inversely affected the mRNA levels of DNAJC15.
Specifically, ETV7 over-expression led to a small but significant,
repression of DNAJC15 both in MCF7 (Figure 4A) and MDA-MB-
231 (Suppl. Figure S4A) cells.

In order to assess whether transcriptional repression was associated
with ETV7 binding to DNAJC15, we cloned a region of the
DNAJC15 promoter containing two putative binding sites for ETV7
into a pGL4.26 luciferase reporter vector. We found that ETV7 over-
expression in MCF7 cells was able to decrease the expression of the
luciferase reporter gene under the control of the DNAJC15 promoter
(Figure 4B). We then performed site-directed mutagenesis to mutate
the most conserved bases within the two putative ETV7-binding sites
into the reporter vector in order to demonstrate the contribution of
these two binding sites in DNAJC15 repression. The mutation of the
binding site 1 (BS1 – chr.13:43′597’329–43′597’335) did not affect
the ETV7-mediated down-regulation of luciferase activity. However,
disruption of binding site 2 (BS2 – chr.13:43′597’624–43′597’632)
prevented repression of the luciferase reporter induced by ETV7,
demonstrating the importance of ETV7 binding to this site in the
repression of DNAJC15 (Figure 4B).

Furthermore, we were able to demonstrate with chromatin
immunoprecipitation the direct binding of ETV7 to the DNAJC15
promoter region (BS2) in both MCF7 and MDA-MB-231 cells
(Figure 4C and Suppl. Figure S4B, respectively). In particular, in
MDA-MB-231 cells over-expressing ETV7, the binding to the
DNAJC15 promoter was markedly stimulated by Doxorubicin
treatment. In order to better clarify this effect, we analyzed the
distribution of ETV7 protein within the nucleus and found that upon
Doxorubicin treatment the ETV7 protein was strongly enriched in
the nuclear fraction especially in chromatin-associated structures
(Suppl. Figure S4C).

DNAJC15 Over-Expression Partially Rescues ETV7-Mediated
Drug Resistance

To address the idea that ETV7-mediated drug resistance is, at least
partially, dependent on the repression of DNAJC15, we over-
expressed DNAJC15 in MCF7 and MDA-MB-231 cells stably over-
expressing ETV7 and analyzed cellular viability upon Doxorubicin
treatment. Cells over-expressing DNAJC15 became more sensitive to
Doxorubicin-mediated cell death, thus confirming this pathway as a
mechanism exploited by ETV7 for drug resistance (Figure 4D-E).
Furthermore, DNAJC15 over-expression was also able to down-
regulate ABCB1 expression in MCF7 as well as MDA-MB-231 cells
over-expressing ETV7, in accord with its reported negative role on
ABCB1 levels (Suppl. Figure S5A-B).

ETV7 Represses DNAJC15 Expression by DNA Methylation
DNAJC15 is recognized to be a methylation-controlled gene, and

its methylation-induced down-regulation has been associated with
chemoresistance [29]. We investigated whether ETV7-mediated
repression was dependent on DNA methylation. The methylation of
CpGs in the promoter of DNAJC15 in MCF7 cells following ETV7
over-expression or Doxorubicin treatment was determined by
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bisulfite-conversion of genomic DNA followed by PCR and direct
sequencing. In response to Doxorubicin, the promoter of DNAJC15
showed increased methylation of CpGs, which was even more evident
upon ETV7 over-expression, as shown in Figure 5A. Moreover,
ETV7-mediated effects on DNAJC15 transcript levels were abolished
by treatment with the DNA methyltransferase (DNMT) inhibitor 5-
Aza-2′-deoxycytidine (5-Aza) (Figure 5B), demonstrating that ETV7
repression of DNAJC15 expression is indeed methylation-dependent.

Given that DNMTs play key roles in Doxorubicin resistance as
demonstrated for Adriamycin-resistant MCF7 cells [46], we
hypothesized a possible direct interaction between ETV7 and
DNMTs mediating the methylation and subsequent repression of
the DNAJC15 promoter. Analysis of the expression of the DNMT1,

DNMT3A and DNMT3B genes in our microarray data from
Doxorubicin-treated MCF7 cells (GSE24065 [20,38]) (Suppl. Figure
S6A) and validation by RT-qPCR (Figure 5C), revealed the up-
regulation of only DNMT3A among these DNMTs. Conversely,
both DNMT1 and DNMT3B were down-regulated in response to
the treatment. Moreover, a similar trend could be observed for
DNMTs expression in response to ETV7 over-expression in MCF7
cells, even if the only statistically significant alteration in expression
was for DNMT1 (Suppl. Figure S6B). To test the putative interaction
of ETV7 with DNMT3A as a candidate mediator of DNAJC15
repression, we performed immunoprecipitation of ETV7 and found
the direct interaction of ETV7 with DNMT3A in MCF7 cells
transiently over-expressing ETV7 (Figure 5D).

A B

C D

Figure 3. DNAJC15 expression is repressed by DNA damaging drugs. A) RT-qPCR analysis in MCF7 cells of the expression of a selected
group of DNAJC family members repressed upon Doxorubicin treatment according to microarray analysis (GSE24065). B-C) Expression
analysis of DNAJC15 mRNA upon different chemotherapeutics treatment in breast cancer-derived MCF7 (B) and MDA-MB-231 cells (C),
and in healthy donor-derived lymphocytes (D). Bars represent averages Fold Changes relative to the untreated condition of at least three
biological replicates and standard deviations. * = P-value b0.01.
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ETV7-DNAJC15 Clinical Relevance and Possible Therapeutic
Strategy
We confirmed a dramatic decrease in DNAJC15 and a

corresponding increase in ETV7 expression in reported microarray
analysis performed with Adriamycin (i.e. Doxorubicin) resistant
MCF7 cells (MCF7/ADR, GSE76540, [47]) as shown in Figure 6A.
Moreover, this effect was associated with a large increase in ABCB1
expression in MCF7/ADR cells, an observation consistent with what
is observed in MCF7 and MDA-MB-231 cells over-expressing ETV7
(Suppl. Figure S2F-G).
To address possible clinical relationships between ETV7, DNAJC15

and Doxorubicin treatment, we evaluated data obtained from 25
chemoresistant samples among 47 neoadjuvant chemotherapy-treated
triple negative breast cancer (TNBC) patients (GSE43502, [48]). We

found an inverse correlation between the expression levels of ETV7 and
DNAJC15 in TNBC patients associated with recurrence. Specifically,
despite not stringently significant, it is visible an increase in ETV7
expression in patients with a recurrent disease that correlated with a
remarkable decrease in DNAJC15 expression. These data indicate that
ETV7-mediated repression of DNAJC15 could be linked to a worse
prognosis in breast cancer patients (Figure 6B).

Given that the over-expression of a particular gene is still a
challenging approach for therapeutic purposes, we tried to overcome
ETV7-mediated drug resistance using Quercetin, a flavonoid
recently shown to both increase therapeutic efficacy of Doxorubicin
[49–51] and to reduce its cardiotoxicity [52,53], and the isoflavone
Genistein, which can inhibit topoisomerase II [54] and DNMTs
[55] or act as a phytoestrogen [35]. The sensitizing action of
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Figure 4. ETV7 can repress DNAJC15 expression at the transcriptional level and DNAJC15 over-expression can rescue Doxorubicin
sensitivity. A) RT-qPCR analysis of ETV7 and DNAJC15 expression in MCF7 cells transfected with pCMV6-Entry-Empty or pCMV6-Entry-
ETV7 plasmids. B) Gene reporter assay of MCF7 cells transiently over-expressing pCMV6-Entry-Empty or pCMV6-Entry-ETV7 along with
pGL4.26-DNAJC15 reporter plasmid or the pGL4.26-DNAJC15-BS1 or -BS2 plasmids mutated in the putative ETV7 binding sites. Data are
normalized using pRL-SV40 and are shown as fold of induction relative to the empty control. C) ChIP-PCR of DNAJC15 and GAPDH
(control) promoter regions inMCF7 transfected with pCMV6-ETV7. Shown is the percentage of enrichment of ETV7 or control (IgG) bound
to DNAJC15 promoter region in respect to INPUT DNA. For panels A-C, bars represent averages and standard deviations of at least three
biological replicates. D-E) MTT Assay of ETV7-over-expressing MCF7 (D) and MDA-MB-231 (E) cells transiently transfected with pCMV6-
Entry-Empty or pCMV6-Entry-DNAJC15 plasmids and treated with Doxorubicin 1.5 μM or 3 μM for 72 hours. Experiments are done in
quadruplicate. * = P-value b0.01.
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Figure 5. ETV7 can regulate DNAJC15 expression in a methylation-dependent manner. A) Methylation status of CpGs within DNAJC15
promoter analyzed by bisulfite conversion followed by PCR and direct sequencing inMCF7 untreated, treated with Doxorubicin for 16 hours
or transfected with pCMV6-Entry-Empty or pCMV6-Entry-ETV7 plasmids.Methylated CpGs are shown as black dots, whereas unmethylated
CpGs as white dots. B) RT-qPCR analysis of DNAJC15 expression in MCF7 transfected with pCMV6-Entry-Empty or pCMV6-Entry-ETV7 and
treated with DMSO or 5-Aza-2′-deoxycytidine for 48 hours. C) RT-qPCR analysis of DNMT1, DNMT3A and DNMT3B expression in MCF7
treated with Doxorubicin for 16 hours. D) Western blot of DNMT3A and ETV7 on the immunoprecipitation with an antibody against ETV7 or
normal IgG as control and on INPUT lysates inMCF7 transfectedwith pCMV6-Entry-ETV7plasmid. *=P-valueb0.01. E) A graphicalmodel for
ETV7-dependent Doxorubicin resistance in breast cancer cells. In normal conditions, ETV7 and DNMT3A are maintained at basal levels
(particularly low in case of ETV7) and DNAJC15 can be regularly expressed. In response to Doxorubicin treatment, ETV7 levels get elevated
andDNMT3Aslightly increases aswell. InducedETV7can then accumulate into thenucleus and specifically to chromatin-enriched regions. In
the nucleus, ETV7 recruits DNMT3A (through direct interactionswith putative additional cofactors) on target DNA (DNAJC15 promoter in this
case) that in turn it is responsible for the methylation of CpGs. This will result in DNAJC15 repression and ultimately will lead to
chemoresistance, partly through the exclusion of the drug from the nucleus. EBS: ETV7 Binding Site. Methylated CpGs are shown as filled
circles, whereas unmethylated CpGs as empty circles.
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flavonoids has not been fully elucidated yet, but it seems to involve
the MDR transporter action. Surprisingly, we noticed that both
flavonoids Quercetin and Genistein were able to reduce ETV7
expression in MDA-MB-231 cells, thereby suggesting a novel
mechanism of sensitization for cancer cells (Figure 6C). Notably,
MDA-MB-231 cells that over-express ETV7 were more sensitive to
Quercetin relative to the empty counterpart, thereby unveiling a
mechanism that could represent a promising target for ETV7-
mediated resistance in cancer cells (Figure 6D).

Discussion
ETV7 has been recognized in the literature as an oncoprotein for
blood cancers but its role in solid cancers is still poorly studied
[10,17]. In this work, we showed that ETV7 is activated in response
to different DNA damaging agents in breast cancer cells, but its
expression is not affected by other types of anti-cancer treatments
such as estrogen antagonists, tyrosine kinase or mTOR inhibitors
(Figure 1). We observed that this transcriptional activation is
conserved in different cancer cell types and normal cells including

A B

DC

Figure 6. ETV7 and DNAJC15 levels inversely correlate with clinical status of breast cancer patients and ETV7 targeting could be exploited
pharmacologically. A) ETV7, DNAJC15 and ABCB1 expression levels from microarray data (GSE76540) of MCF7 cells resistant to
Adriamycin -MCF7/ADR- (e.g. Doxorubicin). Presented are the averages and standard deviations of at least three biological replicates. B)
ETV7 and DNAJC15 expression levels from microarray data of Triple Negative Breast Cancer patients treated with neoadjuvant
chemotherapy who were showing recurrence or not for the disease (GSE43502). C) ETV7 expression levels measured by RT-qPCR from
MDA-MB-231 cells untreated (Mock) or treated with Quercetin 50μM or Genistein 30μM for 16 hours. Bars represent averages and
standard deviations of at least three biological replicates. D) MTT assay in MDA-MB-231 cells over-expressing ETV7 or its empty vector
and treated with increasing concentration of Quercetin. Experiments are done in quadruplicate. * = P-value b0.01.

Neoplasia Vol. 20, No. xx, 2018 ETV7 mediates resistance to Doxorubicin Alessandrini et al. 867



lymphocytes obtained from healthy donors, thus highlighting its
biological relevance. Moreover, we have demonstrated that ETV7 can
directly promote resistance of breast cancer cells to standard-of-care
chemotherapy, i.e. Doxorubicin (Figure 2). The ETV7-dependent
mechanism of chemoresistance exploited by breast cancer cells
involves the direct efflux of Doxorubicin from the nucleus of cells
over-expressing ETV7 (Figure 2). This observation led us to
hypothesize that the effect can be driven by membrane-associated
transporters and, interestingly, we found that cells over-expressing
ETV7 showed higher expression levels of ABCB1, a member of the
family of ABC transporters (Figure 2). Despite being mainly
expressed on the plasma membranes, ABCB1 protein has often
been detected on nuclear membranes and Golgi compartments [56],
possibly mediating the phenomenon of resistance to Doxorubicin
observed in breast cancer cells in this study.

As a transcription factor, ETV7 can influence the expression of a
complex range of targets that may result in the observed increased
survival. Among the various possible ETV7 targets, we proposed
DNAJC15, a co-chaperone member of the HSP40 family, reported to
affect ABCB1 expression and anti-cancer drug efflux [29]. DNAJC15
has already been reported to be frequently hyper-methylated and
repressed in breast cancer cells resistant to therapy [27,28]. However,
which direct players were causing its transcriptional repression in breast
cancer was not known. We confirmed the DNAJC15 repression
triggered by Doxorubicin involves the direct binding of ETV7 on the
DNAJC15 promoter. We were also able to identify the precise
promoter region that ETV7 uses to reduce the expression of DNAJC15
located at +377 bp from the TSS (Figures 3 and 4). Given reports of
DNAJC15 hyper-methylation and decreased expression in cancer [28],
we investigated whether ETV7 could modulate DNAJC15 expression
through this mechanism. By mapping the CpG islands that are
methylated in response to Doxorubicin and ETV7 over-expression in
breast cancer cells, we demonstrated that ETV7-dependent DNAJC15
transcriptional repression is methylation-mediated (Figure 5). We
speculate that this may be achieved through the direct recruitment of
the DNA methyltransferase DNMT3A on chromatin mediated by
ETV7 given our observation of physical interaction between the two
proteins (Figure 5).

In Figure 5E, we propose a model for the novel mechanism of
Doxorubicin resistance in breast cancer cells that includes a pivotal
role for ETV7, which is directly activated by this chemotherapeutic
drug. The induced ETV7 acts as a direct negative regulator of
DNAJC15 expression through the DNAmethylation of the promoter
region via DNMT3A. DNAJC15 repression leads to the efflux of the
drug from the nucleus, a process possibly driven by the loss of the
DNAJC15-dependent repression of ABCB1.

A better knowledge of the transcriptional repressors that impact
DNAJC15 expression could help inform clinical treatment strategies
in order to avoid or minimize the activation of one of its direct
repressors such as ETV7. A combinatorial treatment could disrupt
this resistance circuitry driven by ETV7. Based on our findings, we
suggest considering the combined treatment of Doxorubicin with
Quercetin as a therapeutic strategy, given its protective role against
Doxorubicin cardiotoxicity and its negative action on ETV7
expression (Figure 6).

Taken collectively, our results uncovered a novel molecular
mechanism that underlies the resistance to a standard-of-care
treatment for breast cancer (Doxorubicin), providing insights on
the players that take part in this process: ETV7, DNMT3A, and

DNAJC15 all of which have the potential for pharmacological
targeting. Moreover, it is worth noting that our findings provide the
first evidence for a role of ETV7 expression and function in the
resistance to Doxorubicin in breast cancer cells. We propose that
further analyses on additional ETV7 targets could help investigations
for novel breast cancer prognostic markers.

In general, given the complex universe beyond chemoresistance in
cancer cells, it is of paramount importance to search for downstream
master regulators like transcription factors. Despite the difficulties
beyond their targeting, understanding how to restrict their activation
and activity could provide a more promising therapeutic strategy than
simply targeting a specific resistance effector.

Conclusions
With this study, we have uncovered a novel mechanism of resistance to
Doxorubicin where ETV7 plays a major role. We propose a novel role
for ETV7 in breast cancer, and we identify DNAJC15 as a new target
gene responsible for ETV7-mediated Doxorubicin-resistance. The
described molecular mechanism involves the ETV7-dependent
repression of DNAJC15 through promoter methylation, a process
that results in the increased expression of ABCB1. Overall, these
findings can help to better understand how resistance to conventional
chemotherapy can be hindered and possibly tackled pharmacologically.
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a b s t r a c t

Lysosomes are important cytoplasmic organelles whose critical functions in cells are increasingly being
understood. In particular, despite the long-standing accepted concept about the role of lysosomes as
cellular machineries solely assigned to degradation, it has been demonstrated that they play active roles
in homeostasis and even in cancer biology. Indeed, it is now well documented that during the process of
cellular transformation and cancer progression lysosomes are changing localization, composition, and
volume and, through the release of their enzymes, lysosomes can also enhance cancer aggressiveness.
LAMPs (lysosome associated membrane proteins) represent a family of glycosylated proteins present
predominantly on the membrane of lysosomes whose expression can vary among different tissues,
suggesting a separation of functions. In this review we focus on the functions and roles of the different
LAMP family members, with a particular emphasis on cancer progression and metastatic spread. LAMP
proteins are involved in many different aspects of cell biology and can influence cellular processes such
as phagocytosis, autophagy, lipid transport, and aging. Interestingly, for all the five members identified so
far (LAMP1, LAMP2, LAMP3, CD68/Macrosialin/LAMP4, and BAD-LAMP/LAMP5), a role in cancer has been
suggested. While this is well documented for LAMP1 and LAMP2, the involvement of the other three
proteins in cancer progression and aggressiveness has recently been proposed and remains to be
elucidated. Here we present different examples about how LAMP proteins can influence and support
tumor growth and metastatic spread, emphasizing the impact of each single member of the family.

& 2017 Elsevier Inc. All rights reserved.

1. Characteristics and functions of lysosomes

Lysosomes are eukaryotic acidic organelles originally thought
to be exclusively involved in the degradation of intracellular and
extracellular macromolecules into building blocks available for the
cells. Lysosomes have only recently been recognized as crucial
regulators of cell homeostasis and there is accumulating evidence
of their involvement in different diseases such as neurodegener-
ative disorders, cardiovascular diseases, and cancer [1,2]. Lyso-
somes are single-membrane cytoplasmic organelles present in
almost all eukaryotic cells. They exert several functions in the
regulation of cell homeostasis, including lysosomal exocytosis,
cholesterol homeostasis and, possibly more importantly, the
degradation of macromolecules, such as lipids, nucleic acids, and
proteins. This is achieved through the action of several hydrolases
(more than 50 different lysosomal hydrolases have been described
so far), among which cathepsins (proteases targeting either

cysteine or aspartic acid residues) occupy a prominent place
[3,4]. In particular, degradation of intracellular material is gener-
ally obtained via different forms of autophagy, whereas degrada-
tion of exogenous material occurs via endocytosis [1].

In the mid-twentieth century, de Duve referred to lysosomes as
“suicide bags” because of the important role of these organelles in
cell death signaling [5]. Indeed, lysosomes are implicated in three
main distinct pathways of cell death: apoptosis, necrosis, and
autophagy [6]. However, the recognition of autophagy as a cell
death mechanism is still controversial, being a process aimed at
survival during stress conditions that can also result is cell death
[7]. Specifically, the autophagic process (sometimes reported as
type II programmed cell death) represents an evolutionarily well-
conserved pathway where entire organelles or part of the cyto-
plasm are recycled as a response to starvation or to remove
damaged organelles. This multi-step process is mediated through
the formation of the so-called autophagosome, a double-mem-
brane vesicle that subsequently will fuse with the lysosomes
forming the autolysosome for the final degradation step [8].
Lysosomes are the most critical components for a proper clearance
of mature autophagosomes, which for instance can cause neuro-
degenerative disorders when they accumulate as a result of not
being properly digested. Alternatively, the phenomenon of
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lysosomal permeabilization and the consequent release of proteo-
lytic enzymes into the cytosol have been recognized as a “lysoso-
mal pathway for apoptosis.” In this process lysosomes are not just
passive bystanders, but rather play an active role that is tightly
regulated. The factor considered a key determinant in the kind of
cell death triggered by lysosomal enzymes, especially as regards
apoptosis versus necrosis, is believed to be represented by the
magnitude of lysosomal permeabilization, namely the amount of
proteolytic enzymes released into the cytosol [9]. A complete
collapse of the organelle itself with the release of high levels of
lysosomal enzymes triggers unregulated necrosis, while selective
lysosomes permeabilization results in the induction of apoptosis
[10,11]. As soon as lysosomal hydrolases are released into the
cytosol, they can take part in the execution of the apoptotic
cascade by acting either in concert with the canonical caspase
pathway or directly to actively cleave key cellular substrates
[12,13]. However, the precise mechanisms by which lysosomes
are involved in apoptosis are still poorly understood and currently
under intense investigation.

The lysosomal surface has been identified as the subcellular site
where mTORC1 (mammalian Target Of Rapamycin Complex 1)
activation in response to amino acids occurs [14]. mTOR, the main
catalytic component of mTORC1, is an atypical serine/threonine
kinase reported as master regulator of cell growth, energy pro-
duction, and protein synthesis [15]; its functions are often deregu-
lated in different diseases and, in particular, in cancer [16]. These
studies have demonstrated that amino acids trigger the trans-
location of the mTORC1 complex to the lysosomes where it gets
activated by interacting with Rag GTPases, and Ragulator and
Rheb, two proteins that are anchored to the lysosomes’ membrane
[14]. Active mTORC1 is responsible for the phosphorylation and
the subsequent accumulation in the cytosol of TFEB, a nuclear
transcription factor responsible for lysosomal biogenesis, thereby
integrating signals from the lysosomes to the nucleus [17].

2. Role of lysosomes in cancer

During transformation and cancer progression lysosomes are
changing localization, volume, and composition and, by releasing
their enzymes, they can increase cancer aggressiveness [4,18]. For
instance, several lysosomal enzymes, including cathepsins, are
over-expressed in different cancer types, such as breast, prostate,
and colon cancers [19,20], and there is data that their expression
levels can be clinically significant [11]. Different reports have
suggested that an increased production and subsequent secretion
of these proteases via exocytosis can foster proliferation and
invasion of cancer cells [19,21,22]. Therefore, this can enhance
cancer progression and metastasis formation by promoting the
degradation of the extracellular matrix and increasing the poten-
tial for angiogenesis [23]. Indeed, inhibition of cathepsin B by
synthetic cysteine protease inhibitors has been shown to effec-
tively reduce the invasiveness of glioblastoma [24] and breast
cancer cells [25]. At the same time cancer cells are strongly
dependent on lysosome function and are very sensitive to lyso-
some-mediated cell death [1,26]. Lastly, it has been demonstrated
that lysosomal dysfunction can promote the inclusion of lysosomal
materials (eg, proteins) to exosome cargo to simplify their elimi-
nation from cells (ie, neurons affected by Alzheimer disease) [27].
Exosomes are small vesicles (30–100 nm in diameter) derived
from the endosomal system that can be released from cells and
represent critical structures for different types of cellular commu-
nication, including the immune response [28]. Initially it was
thought that the fusion of exosomes with lysosomes would serve
exclusively for the removal of unnecessary exosomal materials
[29]; however, because exosome materials can be shuttled to

neighboring or even distant cells, secretion of unwanted material
to the extracellular environment within exosomes may have either
positive or negative effects on surrounding cells. Therefore, the
interplay between exosomes and lysosomes may represent a novel
layer of exploration for different pathologies including cancer.

This review focuses on the role of a specific family of highly
glycosylated membrane proteins usually found within lysosomal
membranes known as lysosomal associated membrane proteins
(LAMPs) and their involvement in cancer.

3. LAMP family of lysosomal proteins

The LAMP family is characterized by an evolutionary conserved
membrane-proximal LAMP domain, composed of around 200
amino acids and containing several conserved cysteine residues
that allow for the formation of two critical disulfide bonds [30].
Other common features in the family are represented by (i) a
specific proline and two glycine residues in their single trans-
membrane region [30], (ii) the presence of several N-linked
glycosylation sites within their luminal domain [31], and (iii) a
short cytoplasmic tail harboring an endosomal and lysosomal
sorting signal [32] (Fig. 1).

The LAMP family is composed of 5 known members: LAMP1/
CD107a, LAMP2/CD107b, LAMP3/DC-LAMP, LAMP4/Macrosialin/
CD68, and LAMP5/BAD-LAMP. LAMP1 and LAMP2 are ubiquitously
expressed in human tissues and cell lines, whereas LAMP3,
LAMP4/Macrosialin/CD68, and LAMP5/BAD-LAMP are cell-type
specific proteins. LAMPs are involved in a variety of cellular
processes including phagocytosis, autophagy, lipid transport, and
aging [30]; moreover, growing evidence suggests an important
role for LAMP family members in cancer (Tables 1–5 and
Figs. 2 and 3).

3.1. LAMP1 and LAMP2

LAMP1 and LAMP2 represent the major constituents of the
lysosomal membrane, are classified as type I transmembrane
proteins, and share similar length and 37% amino acid sequence
homology [30,33]. Their structure is characterized by a highly
glycosylated luminal region forming a glycoprotein layer in the
lysosomal lumen, a transmembrane region, and a short C-terminal
cytosolic domain (Fig. 1). LAMP1 has only one transcript, whereas
LAMP2 has three different splicing isoforms: LAMP2A, LAMP2B,
and LAMP2C [30,33]. LAMP2 isoforms are expressed in a tissue
specific manner and can exert opposing functions [34,35]. Specif-
ically, the LAMP-2A isoform is recognized to be responsible for
chaperone-mediated autophagy (CMA), a process that targets
specific proteins to degradation by lysosomes via recognition of a
specific motif within their amino acids sequence, and loss of the
LAMP-2A isoform is associated with the formation of α-synuclein-
positive aggregates in Parkinson's disease [36]. The LAMP-2B
isoform is not involved in CMA, but mutations in exon 9 have
been found in patients bearing a defective fusion process between

Fig. 1. Structural organization of the LAMP family members. Sequential boxes stand
for domains, small flags indicate glycosylation residues and protein length is also
provided for each depicted member. SP, signal peptide; LAMP, LAMP domain; H,
hinge region; TM, transmembrane domain; C, cytoplasmic domain.
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Table 1
Summary of cancer-associated functions for CD107a/LAMP1 (lysosome associated membrane protein-1).

Pro-tumorigenic roles Evidence Strength / Weakness of the Evidence

Early cancer progression [56] • In OVCAR3 cells, LAMP1 was up-regulated 1.84-fold 24 h
post-EGF treatment and down-regulated 48 h post-EGF
exposure

• Tissue microarray for LAMP1 positive in 35% of ovarian
serous adenocarcinomas

• Although confirmatory studies not reported, observations
are supported by GESA analysis using the TCGA database that
revealed LAMP1 positively associated with EGFR-modulated
molecular pathways (P o .0060)

Cancer cell survival [65] • Screening identified anti-malarial agent mefloquine as
compound selectively killing AML cells and stem cells

• Genome-wide functional screen for mefloquine sensitizers in
yeast, identified genes associated with yeast vacuole, the
homolog of mammalian lysosome, and demonstrated
mefloquine disrupts lysosomes by permeabilizing
membranes and releasing cathepsins into cytosol

• Knockdown of LAMP1 and LAMP2 reduced AML cell viability,
as did treatment with a lysosome disruptor, suggesting
lysosomal disruption preferentially targets AML cells and
progenitor cells, providing rationale for therapy. In support
of this observation, artemisinins, artesunate, and
dihydroartemisinin have been shown to be toxic to AML cells

Local tumor progression [55] • LAMP1 detected in cytoplasm of tumor cells and in blood
vessels in glioblastoma

• Percentage of LAMP1þ tumor cells and staining intensities
increased with tumor grade

• LAMP1 and CD133, a putative marker of stemness, were co-
expressed suggesting “cancer stem cells” contain LAMP1þ
lysosomes

• Data do not fully support higher number of lysosomes in
glioblastoma “cancer stem cells”

• Despite increase in LAMP1þ tumor cells with tumor grade,
association between LAMP1 expression and OS could not be
found

Cancer development [57] • LAMP1 was identified as a sialylated glycoprotein from
metabolically oligosaccharide-engineered pancreatic cells

• Immunohistochemistry showed preferential expression of
LAMP1 in tumor cells but not in paired non-tumor pancreatic
ductal cells

• At odds with previous studies showing longer survival after
resection for patients whose pancreatic tumors expressed
high levels of LAMP1 mRNA

• Transfection of CAPAN-1 cells with LAMP1 decreased cell
growth compared with non-transfected cells

• Role for LAMP1 in cancer development remains uncertain

Adhesion of cancer cells to ECM,
basement membrane and
endothelium [45]; ECM
remodeling [54]

• Flow cytometry showed LAMP1 expression on cell surface of
A2058, HT1080, and CaCo-2 cells, increasing with 2 mM
sodium butyrate treatment for 24–48 hr

• FACS analysis proved interaction between LAMP1 expressing
A2052 cells and Galectin-3 [45]

• LAMP1 down-regulation using shRNA in B16F10 murine
melanoma cells, decreases induction of MMP9 expression by
p38 MAPK signaling, activated by Galectin-3 binding to the
polyLacNAc present on LAMP1 [54]

• Data supported by studies showing increased LAMP1
expression on plasma membrane of highly metastatic
compared with poorly metastatic cells

• Associated with increased expression of carriers for
polyLacNAc that can represent ligand structures to cell-
adhesion molecules

• However, role of LAMP1 in adhesion to the ECM and in ECM
remodeling is indirect because it uses Galectin-3 as
mediator, giving more importance to the role of LAMP1 as
carrier of polyLacNAc rather than protein itself. Other
proteins can also be carriers of these modifications,
rendering role of LAMP1 in ECM regulation not exclusive
[45,54]

Metastasis [50,53] • Anti-LAMP1 antibodies proved to reduce lung metastasis of
murine melanoma B16F10 cells in four mice

• Data supported by previous studies showing increased
LAMP1 expression correlating with metastatic potential of
human colon carcinoma and melanoma cells, and by
silencing experiments linking LAMP1 expression with the
metastatic potential

• Absence of direct involvement diminishes possible
therapeutic potential of LAMP1 targeting

Cancer cell migration [51,52] • LAMP1 found as a BR96 antigen expressed on the cell surface
domains responsible for locomotion [51]

• FUT1 reported to be able to fucosylate LAMP1, thereby
influencing lysosomes localization and promoting cell
migration [52]

• The link between LAMP1 expression and migration is not
direct, but controlled by LAMP1 polylactosamine
modifications and fucosylation, responsible for the binding
to key antigens for migration such as BR96 [51,52]

Drug resistance [66–68] • Increased LAMP1 protein expression shown in RMS cells
resistant to AS-DACA [66] and in renal and colorectal cancer
cells resistant to TKIs [67]

• Higher LAMP1 expression found in human sarcomas
associated with relapse, and its direct role in increasing
lysosomal exocytosis was found to be responsible for
promoting invasion and doxorubicin-resistance in human
sarcomas

• Increased LAMP1 protein expression used as a proxy for
increased lysosomal capacity, without clearly stating the
molecular mechanism involved in this process [66,67]

• In contrast, detailed analysis of the role played by LAMP1 in
lysosomal exocytosis is clearly stated [68]

Abbreviations: AML, acute myeloid leukemia; AS-DACA, N- [2-(Dimethylamino) ethyl] Acridine-4-CarboxAmide; ECM, extracellular matrix; EGF, epidermal growth factor;
EGFR, epidermal growth factor receptor; GESA, gene-set enrichment analysis; OS, overall survival; polyLacNAc, poly-N-AcetylLactosamines; RMS, rhabdomyosarcoma; TCGA,
The Cancer Genome Atlas; TKIs, tyrosine kinase Inhibitors.
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lysosomes and autophagosomes, suggesting a function for this
isoform in macroautophagy [37]. Finally, LAMP-2C has been
demonstrated to act as an inhibitor of CMA particularly in B cells,
and to be capable of mediating the autophagy of nucleic acids by
binding to RNA and DNA [38,39]. Many different mutations have
been found in the LAMP2 gene and these are causative of Danon
disease, a severe condition characterized by skeletal and cardiac
myopathy and cognitive impairment [40–42]. Additionally, the loss
of the LAMP-2B isoform could represent the phenotypic leading
cause of Danon disease, probably given its putative role in macro-
autophagy [43]. A similar phenotype to Danon disease is observed
in LAMP2 knockout mice, whereas LAMP1 single knockout mice
are viable and fertile while LAMP1/LAMP2 double knockout mice
show embryonic lethality, suggesting these two proteins play key
and partially overlapping functions in cellular homeostasis [30].
LAMP2 deficiency has also been associated with pancreatitis,
strengthening the importance of a correct lysosomal/autophagic
compartment and its associated proteins for cell homeostasis [44].

Growing evidence of a role for lysosomes in different diseases
has raised interest in deciphering the role of LAMP1 and LAMP2
in cancer progression. Examples of the roles of LAMP1 and LAMP2
in cancer are summarized in Tables 1 and 2 and depicted in
Figs. 2 and 3. Reported roles for LAMP1 and LAMP2 as pro-
invasive and pro-metastatic factors refer to their abnormal local-
ization on the plasma membrane of cancer cells, as shown in

human melanoma A2058 cells, human colon carcinoma CaCo-2
cells, and human fibrosarcoma HT1080 cells [45]. There is still no
clear explanation on the way LAMP1 and LAMP2 translocate to
plasma membrane but, possibly, this could be the result of plasma
membrane damage leading to lysosome fusion and exocytosis as a
membrane repair mechanism [46]. It has been proposed that a
Rab3a-dependent complex or the tumor protein D52 could possi-
bly mediate LAMP1 and LAMP2 trafficking to the plasma mem-
brane [47,48]. In vitro studies have shown that the translocation of
LAMP2 could be driven by an acidic microenvironment, which
could support the thesis that plasma membrane damage recruits
lysosomes and LAMPs to the plasma membrane [49]. Specifically,
in the early phases of in situ breast carcinoma, progression,
glycolytic metabolism, and the absence of vascularization generate
an acidic microenvironment, which results in increased local-
ization of LAMP2 on the plasma membrane serving as a protective
shield, as shown in Fig. 4 [49]. In addition to protection, LAMP1
and LAMP2 expression on the plasma membrane provide binding
to E-selectin through sialyl-LeX residues and binding to galectin-3
through poly-N-acetyl-lactosamine (polyLacNAc)-substituted β1,
6 branched N-glycans. Thereby, LAMP1 and LAMP2 can promote
both the adhesion of cancer cells to extracellular matrix, basement
membrane, and endothelium and the migratory potential of cells
during metastasis [45,50]. Both LAMP1 and LAMP2 can also be
modified by the alpha1, 2-fucosyltransferases enzyme, FUT1,

Table 2
Summary of cancer-associated functions for CD107b/LAMP2 (lysosome associated membrane protein-2).

Pro-tumorigenic roles Evidence Strength / Weakness of the Evidence

Cancer pathogenesis [78,80] • Increased LAMP2 protein expression reported in poorly
differentiated human gastric adenocarcinoma relative to
adjacent gastric mucosal tissues [78]

• LAMP2 gene is located in a region involved in BCL1/JH t(11;14)
(q13;q32) translocation found in multiple myeloma patients [80]

• LAMP2 protein expression increase used as a proxy for
autophagy-lysosome signaling with no clear indications on its
specific role in the signaling

• Conflicting data regarding role of autophagy-lysosome circuitry
in cancer pathogenesis [78]

• Functional studies supporting pathogenic significance of LAMP2
in multiple myeloma still missing [80]

Cancer cell migration [52,77] • LAMP2 modification by FUT1 reported able to control
localization of lysosomes, which often shift from perinuclear to
peripheral compartment in invasive cancer [52]

• LAMP2 protein highly expressed in invasive OVISE human
ovarian clear cell adenocarcinoma cells, and ANXA4 knock-out
decreased LAMP2 protein expression and migration [77]

• LAMP2 is not directly involved in the regulation of migration,
but rather its modification by FUT1 plays a more important role
[52].

• A direct LAMP2 knock-out experiment is needed to confirm its
possible direct involvement in ovarian cancer cells migration
[77]

Support early cancer growth
[49]

• LAMP2 expression on plasma membrane supported early breast
cancer progression by acting as protective shield against acidic
extracellular microenvironment

• Relevance for a LAMP2 role in survival within acidic
microenvironment supported by strong data from both breast
cancer cell lines and patients

• Exact molecular mechanisms involved in LAMP2 protective
action not addressed in the reported study and are not yet
discovered

Adhesion of cancer cells to
ECM, basement membrane
and endothelium [45]

• LAMP2 observed by flow cytometry on cell surface of A2058,
HT1080 (human fibrosarcoma), and CaCo-2 (human colon
adenocarcinoma) cells; and interaction with Galectin-3 reported

• Data supported by previous studies but the fact modifications of
LAMP2 rather than their expression are reported as causal link
with ECM adhesion diminishes the therapeutic potential of their
targeting

Drug resistance [67] • Increased protein expression of LAMP2 reported in renal and
colorectal cancer cells resistant to TKIs [67]

• Study did not a provide data regarding mechanisms involved in
lysosomal control exerted by LAMP2 and how this could lead to
increased drug secretion

CMA activation [81,82] • Ectopic expression of LAMP2A isoform, through its key action on
CMA able to support cell survival upon oxidative stress;
conversely, its inhibition promoted apoptosis and doxorubicin
resistance in breast cancer cells [81]

• Inhibition of LAMP2A blocked constitutive activation of CMA and
led to the reduction of cell proliferation, the growth of pre-
existing tumors and promoted metastatic potential of lung
cancer cells [82]

• LAMP2A key role in cancer supported by high expression in
patient-derived invasive carcinoma compared with adjacent
tissues and in several cancer cell lines

• Given its direct control on CMA, LAMP2A inhibition could
represent a very promising strategy for sensitizing cancer cells
to chemotherapy [81,82]

Abbreviations: CMA, chaperone-mediated autophagy; ECM, extracellular matrix; TKIs, tyrosine kinase inhibitors.
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Table 3
Summary of cancer-associated function for DC-LAMP/LAMP3 (lysosome associated membrane protein-3).

Pro-tumorigenic
roles

Evidence Strength / Weakness of the Evidence

Metastasis
induction
[95,106,112]

• Ectopic over-expression of LAMP3 in a uterine cervical cancer cell line (TCS), led to
a higher migratory potential [106]

• In SCID mice, 82% (9/11) of injected LAMP3 over-expressing TSC cells efficiently
generated metastases (primarily to liver and lung) compared with 9% (1/11) of
controls [106]

• LAMP3 detection by RT-qPCR and IHC in lymph node metastases from cervical
carcinoma patients revealed distant metastasis formation associated with higher
expression levels of LAMP3 [106]

• Increased migration potential of breast cancer-derived cells correlated with higher
basal LAMP3 expression levels. LAMP3 knockdown resulted in decreased migration
potential of MDA-MB-231 cells after exposure to 1% O2. Moreover, MDA-MB-231-
derived spheroids depleted of LAMP3 showed reduced migratory properties and
lower invasion into collagen [95]

• Patients with breast cancer with soft tissue metastases showed higher LAMP3
mRNA expression compared with those with non-soft tissue or bone metastases
(P ¼ .034) [112]

• Results obtained in vitro also supported by in vivo
experiments. However, these results were based on over-
expression experiments and therefore rely on excessive
expression levels and need to be further validated.
However, data were also confirmed by analyses on human
patient samples [106]

• A stronger migration potential of LAMP3-expressing cells
also found in breast cancer-derived cell lines and
spheroids, structures that represent a more physiologic
model of the disease [95]

Lymph node
metastasis
[104,110]

• Despite variability among samples, high level of LAMP3 mRNA found in lymph
node-positive breast cancer patients (n¼183; P ¼ .019) and ER/PR-negative
tumors (P o .001) [104]

• Loco-regional recurrences in patients with breast cancer who underwent
lumpectomy and radiotherapy found more frequently in those whose tumors had
higher LAMP3 mRNA levels [104]

• IHC staining in biopsies from patients with HNSCC found high expression of LAMP3
restricted to normoxic regions of tumors and correlated with occurrence of lymph
node metastasis [110]. Moreover, worse metastasis-free survival observed in
patients whose tumors showed higher levels of LAMP3 [110]

• Data underline the relevant role of LAMP3 in tumor
progression and metastatic spread, including patient-
derived samples both from breast cancers [104] and
HNSCC [110]

• Surprisingly, same investigators reported controversial
observation that while LAMP3 expression is associated
with hypoxic regions in breast cancer tumors [104], it is
limited to normoxic regions in HNSCC [110]

Poor overall
survival of
patients
[105–108]

• TMA of gastric (n¼750) and colorectal (n¼479) tumors found LAMP3 expression
significantly higher in tumors compared with normal or benign tissues. In both
cancer types, significant association between high LAMP3 levels, tumor stage, and
poorer OS with HR of 2.8 and 2.9, also confirmed with multivariate analysis
(HR¼2.8 and 2.6).

• Study conducted on tumors from 24 patients with stage I or stage II cervical cancer
who underwent radical hysterectomy reported high LAMP3 mRNA levels
associated with poorer prognosis and higher mortality

• TMA from 117 LSCC tumors found stronger LAMP3 signal associated with worse
tumor stage (P ¼ .029), bigger size (P ¼ .012) and poorer prognosis (HR¼5.706)

• mRNA levels in 157 ESCC patients and 50 uninvolved normal tissues and protein
level by IHC in 46 paired normal and cancerous tissues reported elevated LAMP3
levels correlated with OS (HR ¼ 1.90) and DFS (HR ¼ 1.80)

• Increased expression of LAMP3 in cancer tissues correlated well with DNA Copy
Number Amplification (observed in 35/50 cases).

• Remarkable association between high LAMP3 levels in
tumors, clinical features and OS in patients with diagnosis
of gastric as well as colorectal cancer

• Relevance of results from patients with cervical cancer
limited by smaller number of patients

• Significant correlation between LAMP3 and TP53
expression was shown in LSCC, even if authors considered
LAMP3 and TP53 as independent prognostic markers for
LSCC

• Taken collectively these studies, while relevant, reported
retrospective analyses on human samples and the
conclusions drawn might not apply to the general
population. Moreover, there was not a direct impact on
the therapeutic strategy used and the OS

Resistance to
hormonal
therapy [112]

• In MCF7 cells silencing of LAMP3 increased sensitivity to tamoxifen. Observation
linked to activation of autophagy, a process associated with tamoxifen resistance.
Indeed, tamoxifen induced LAMP3 mRNA levels, leading to resistance

• LAMP3 mRNA levels 7-fold higher in tamoxifen-resistant MCF7 cells relative to
tamoxifen-sensitive counterparts

• In tumors of patients with advanced breast cancer treatedwith tamoxifen, higher LAMP3
expression associated with shorter PFS (P ¼ .003) and post-relapse OS (P ¼ .040)

• Inhibition of autophagy by silencing of associated genes
such as MAP1LC3B, ATG5, and BECN1 resulted in
enhanced sensitivity to tamoxifen, suggesting impact of
LAMP3 on autophagy is crucial step in tamoxifen
resistance

• LAMP3 inhibition may be clinically relevant to hinder
tamoxifen resistance in breast cancer

Resistance to
radiation
therapy [114]

• Silencing of LAMP3 (along with PERK and ATF4, two other members of UPR during
hypoxia) sensitized MDA-MB-231 breast cancer cells to radiation therapy. This
result seemed related to an attenuated DNA damage response during radiation
when LAMP3 was down regulated by siRNA as measured by the quantification of
γ-H2AX foci. Therefore, resistance to radiotherapy can be driven by up-regulation
of LAMP3 (and PERK and ATF4) through UPR pathway and relies on an increase of
DNA repair process

• Effect more evident with MDA-MB-231 cells compared with MCF7 breast cancer
cells with wild-type p53, suggesting presence of functional p53 may reduce effect
of LAMP3 knock-down

• The specific mechanism underlying the LAMP3-dependent
radio-resistance not completely elucidated and can rely on
autophagy, as shown for resistance to hormonal therapy

• Other evidence indicates MDA-MB-231 cells (but not
HCT116) can be sensitized by treatment with the autophagy
inhibitor chloroquine. Thus, these effects may be cancer
type-dependent

Resistance to
chemotherapy
[115]

• Research suggests LAMP3 may be a direct target of miR-205, a miRNA down-
regulated during EMT in prostate cancer

• miR-205 impaired autophagy through reduction of lysosome-associated proteins LAMP3
and RAB27A, thus enhancing the cytotoxic effects of cisplatin in prostate cancer cells

• Similar effects seen with silencing of LAMP3 with synthetic oligonucleotides,
confirming putative role of LAMP3 expression in the resistance to cisplatin

• Effects on LAMP3 based on in silico predictions and
indirect measurements, but did not provide direct
evidence of miR-205 binding to LAMP3 mRNA

• While miR-205 repression or loss in prostate cancer
patients is well established, expression of LAMP3 in the
same patients has not been evaluated

Abbreviations: DFS, disease-free survival; EMT, epithelial-to-mesenchymal transition; ER, estrogen receptor; ESCC, esophageal squamous cell carcinoma; HNSCC, head and
neck squamous cell carcinoma; HR, hazard ratio; IHC, immunohistochemistry; LSCC, laryngeal squamous cell carcinoma; OS, overall survival; PFS, progression-free survival;
PR, progesterone receptor; RT-qPCR, reverse transcription quantitative PCR; TMA, tissue microarray; UPR, unfolded protein response.
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which works by adding a fucose molecule to N-acetylglucosamine
via α1, 3-linkage and generates Lewis Y (LeY) antigens. The
presence of these modified LeY termini on LAMP1 is increased in
breast cancer cells relative to their normal mammary counterpart
and it has been associated with breast cancer cell migration
[51,52]. The presence of this modification on both LAMP1 and
LAMP2 is able to influence the localization of lysosomes and the
autophagic flux because FUT1 down-regulation has been demon-
strated to lead to an accumulation of lysosomes to perinuclear
regions and to correlate with increased autophagy and decreased
mTORC1 activity [52].

Despite the high expression of both LAMP1 and LAMP2 on
the surface of some types of invasive cancer cells, only the
surface translocation of LAMP1, but not LAMP2, has been
shown to correlate with the metastatic potential of melanoma,
non–small cell lung cancer (NSCLC), and laryngeal squamous
cell carcinoma [50,53]. One well-described mechanism responsible
for the LAMP1-mediated invasion in melanoma cells is
the high expression of polyLacNAc bound to LAMP1 that
activates the ERK and p38 pathways, thus leading to the secretion

of matrix-metallo-protease-9 (MMP-9) and consequent extracel-
lular membrane (ECM) remodeling [54]. In other types of cancer,
specifically glioblastoma, pancreatic, and ovarian cancer, LAMP1
expression on the cell surface plays a role during early phases of
cancer progression rather than in the metastatic process, thus
suggesting different LAMP1 functions depend on the cancer type
[55–57]. In these cases, the exact mechanism for LAMP1 tumor-
promoting role is still poorly studied, but there are data reporting a
regulation of the epidermal growth factor (EGF) pathway in some
serous ovarian malignancies [56]. One possibility is that local-
ization of LAMP1 to the plasma membrane could shape growth
factor signaling, thereby modulating cancer development at vari-
ous stages.

LAMP1 expression on the cell surface is also commonly found
in some types of immune cells, such as natural killer cells (NK
cells) and T cells, and is commonly used as a marker for degranu-
lation and active cytotoxicity (Fig. 5) [58–63]. In particular, in NK
cells LAMP1 is necessary for an efficient expression of perforin in
lytic granules, and at the same time to protect NK cells from
damage during exocytosis of cytotoxic granules [60,61]. LAMP1

Table 4
Summary of cancer-associated functions for CD68/Macrosialin/LAMP4 (lysosome associated membrane protein-4).

Pro-tumorigenic roles Evidence Strength / Weakness of the Evidence

Marker for pro-tumorigenic
TAMs in malignant uveal
melanoma [135]

• CD68/Macrosialin/LAMP4þ tumor-infiltrating macrophages
identified in 83% of 167 malignant uveal melanomas

• Abundance of CD68/Macrosialin/LAMP4þ TAMs associated with
parameters of known poorer prognosis, such as largest basal
diameter (LBD), heavy pigmentation, and high microvascular
density

• Melanoma-specific mortality rate 10 years from diagnosis higher
in patients with larger number of CD68/Macrosialin/LAMP4þ
macrophages

• Evidence regarding enrichment of CD68/Macrosialin/LAMP4
macrophages in uveal melanoma and its association with
aggressiveness is strong. However, as expected from functions
identified thus far for CD68/Macrosialin/LAMP4 protein, there is
not a direct role in cancer cells for CD68/Macrosialin/LAMP4,
rather it is only relevant its impact on TAMs, where it represents
one of the most used markers

Associated with TAMs in
Hodgkin’s lymphoma
[137,140]

• CD68/Macrosialin/LAMP4 expression in TAMs analyzed by IHC on
TMAs from lymph nodes of 166 patients with cHL, including 79
for whom treatment failed. Patients whose tumors were
“enriched” with CD68/Macrosialin/LAMP4þ TAMs had at least
eight times lower progression-free survival compared with
patients whose tumors had very low levels of CD68/Macrosialin/
LAMP4þ TAMs (o5%) [137]. Moreover, CD68/Macrosialin/
LAMP4 expression revealed to be more effective with respect to
the conventional IPS value used for cHL samples [137]

• In two series of advanced cHL patients (n¼266 and n¼103)
CD68/Macrosialin/LAMP4 expression used as macrophage marker
in IHC along with CD163, LYZ, and STAT1

• CD68/Macrosialin/LAMP4 the only marker associated with
clinical features [140]

• At least two different studies from three independent patients’
cohorts proved the prognostic value of CD68/Macrosialin/LAMP4
positivity within tumor tissues of cHL patients, suggesting
effectiveness and value of this measurement. Weakness of the
first observation is the reduced number of cHL cases with very
low levels of CD68/Macrosialin/LAMP4þ TAMs and low-risk
patients [137]

• Interestingly, the fact that only CD68/Macrosialin/LAMP4 staining
(among TAM markers) was significantly associated with clinical
parameters underlies possibility CD68/Macrosialin/LAMP4 could
be also expressed by cancer cells (see below)

Marker for TAMs in
advanced thyroid cancer
[138]

• CD68/Macrosialin/LAMP4 used as a marker for TAMs in thyroid
cancers. Using TMAs observed that TAMs density increased with
aggressiveness of thyroid cancer; specifically, from 27% in WDTC
(n¼33), to 54% in PDTC (n¼37), and 95% in ATC (n¼20)

• Remarkable correlation between CD68/Macrosialin/
LAMP4þ status and tumor progression (increased grade, invasion
property, and decreased survival) in thyroid cancers

Marker for TAMs in TNBCs
[139]

• CD68/Macrosialin/LAMP4þ TAMs found in 71.5% of TNBCs
• Increased presence of TAMs correlated with poorer prognosis and
was associated with enhanced expression of IL-6 and CCL-5
diffusible factors

• Another report supporting association of high infiltration of TAMs
(measured as CD68/Macrosialin/LAMP4þ cells) with cancer
progression and poorer prognosis in TNBCs

Associated to poor
prognosis [148]

• CD68/Macrosialin/LAMP4 immunostaining detected in histologic
sections of 51 primary astrocytic tumors (11 benign astrocytomas,
40 malignant tumors) and eight relapses

• CD68/Macrosialin/LAMP4 signal significantly higher in malignant
tumors compared with benign ones (P ¼ .036)

• Higher staining score for CD68/Macrosialin/LAMP4 associated
with a poorer OS for all the tumors analyzed (P o .01), with
remarkable enrichment for anaplastic astrocytomas (P ¼ .021)

• CD68/Macrosialin/LAMP4 can also be considered a marker for
microglia and in gliomas the infiltration of macrophages and
microglia has been established. This is in line with the
characteristics mentioned above

• Notably, authors showed presence of CD68/Macrosialin/LAMP4þ
also on the surface of cancer cells, as well as in U87 glioblastoma-
derived cell line

Abbreviations: ATC, anaplastic thyroid cancer; cHL, classical Hodgkin’s lymphoma; IHC, Immunohistochemistry; IPS, International Prognostic Score; OS, overall survival;
PDTC, poorly differentiated thyroid cancer; TAMs, tumor-associated macrophages; TMAs, tissue micro-arrays; TNBCs, triple negative breast cancers; WDTC, well-
differentiated thyroid cancer.
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expression on cancer cells could possibly recapitulate the role
carried out in immune cells, thus protecting cancer cells from lytic
granules and immune mediated destruction. Similarly, both
LAMP1 and LAMP2 expression have been associated with the
ability of leukocytes to adhere to the endothelium and to migrate,
and in this way favoring the migration of cancer cells [64].

LAMP1 over-expression can also influence cancer progression
from its normal localization inside the lysosomal membrane. In
particular, increased expression of LAMP1 can influence lysosomal
biogenesis and cancer cell viability: its knockdown in acute
myeloid leukemia cells leads to diminished cancer cell viability
through lysosome disruption [65]. In the lysosomal membrane,
LAMP1 can also promote drug resistance by increasing lysosomal
size and lysosomal exocytosis as it has been shown in rhabdo-
myosarcoma, soft tissue sarcomas, and renal and colorectal can-
cers. This ultimately leads to drug sequestration in lysosomes and
drug release via exocytosis, thereby causing drug resistance
[66,67]. Increased lysosomal exocytosis is also responsible for

increased invasiveness of aggressive soft tissue sarcomas [68].
However, reduced expression of LAMP1 and LAMP2 have been
reported in ovarian carcinoma cells resistant to cisplatin, suggest-
ing their role in drug resistance could either be drug specific or
cancer cell-type specific [69]. Tissue and type specificity effect of
LAMP1 could also explain some conflicting evidence regarding a
tumor-suppressing role of LAMP1 reported in pancreatic carci-
noma and ovarian carcinoma cells exposed to ascites. Indeed,
LAMP1 expression correlates with prolonged survival in pancreatic
carcinoma, whereas ascites-mediated up-regulation of LAMP1
expression in ovarian carcinoma cells is responsible for a
decreased cancer cell migration [70,71].

Increased expression of LAMP1 could be driven by the activa-
tion of specific cancer signaling pathways (such as STAT3, ETS1,
and p65), or could be a result of a gene amplification as seen in
chronic lymphocytic leukemia and in a number of p53 null and
basal-like breast cancers (ENCODE database [72,73]). In the latter
case, LAMP1 was seen to be over-expressed compared with normal

Table 5
Summary of cancer-associated functions for BAD-LAMP/LAMP5 (lysosome associated membrane protein-5), C20orf103.

Pro-
tumorigenic
roles

Evidence Strength / Weakness of the Evidence

Associated with
poor
prognosis
[156]

• BAD-LAMP/LAMP5 identified through gene expression profiling with
microarrays on FFPE samples along with seven other genes as part of the
GCPS as a high-risk gene for recurrence in three different cohorts of stage II
gastric cancer patients who underwent adjuvant chemo-radiotherapy

• Higher expression of BAD-LAMP/LAMP5 associated with poorer prognosis

• The GCPS was validated in more than 700 stage II GC patients and
proposed for routine use in the clinic. However, the increased BAD-
LAMP/LAMP5 expression was significantly higher in stromal cells
rather than in cancer cells, highlighting a more important role for
BAD-LAMP/LAMP5 in the tumor microenvironment

Abbreviations: FFPE, formalin-fixed paraffin-embedded; GC, gastric cancer; GCPS, Gastric Cancer Prognostic Score.

Fig. 2. LAMP1-LAMP2 subcellular localization and their roles in cancer. LAMP1 and LAMP2 can influence cancer biology in different ways depending on their localization. On the
plasma membrane they promote adhesion to the endothelium and the extracellular membrane (ECM), migration and metastasis; whereas on the lysosomal membrane they
promote drug resistance by increasing lysosomal drug sequestration and lysosomal exocytosis. LAMP1 expression on the plasma membrane can also play a role in ECM remodeling
and invasion, whereas LAMP2 can act as a protective shield. LAMP1 is often found expressed in tumor-derived exosomes but its role in exosome biology it is still unknown.
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mammary epithelium as a result of gene amplification, although
this phenomenon alone did not correlate with survival [72,73];
while, a homozygous deletion of the LAMP1 gene has been found
in some cases of gastric carcinoma, demonstrating again the
opposing roles of LAMP1 in cancer progression [74]. Finally, LAMP1
is also commonly found expressed on the membrane of exosomes
secreted by different types of tumors [28,75]. The exact role for
LAMP1 expression on secreted exosomes is still unknown. How-
ever, it could be involved in the different effects of exosomes on
the immune system by either promoting recognition of cancer
antigens or inducing immune tolerance to cancer cells [75,76].

LAMP2 has fewer reports on its involvement in cancer pro-
gression than LAMP1, but similarly to it, some contradictory
functions are also reported. LAMP2 may regulate migration of
ovarian clear cell adenocarcinoma, possibly through ANXA4
(Annexin A4), whose knockout in the OVISE cell line resulted in
a reduced expression of LAMP2 and was associated with a loss of
migration and invasion capability [77]. Compared with normal
tissues, LAMP2 is also highly expressed in poorly differentiated
human gastric adenocarcinoma, hepatocellular carcinoma, salivary
adenoid cystic carcinoma, and in the broncho-alveolar lavage fluid
of patients with lung adenocarcinoma, representing one novel
molecular marker for these cancer types [78,79]. It may be
involved in the pathogenesis of patients whose multiple myeloma
harbor a specific BCL1/JH t(11;14)(q13;q32) translocation and
could be used as a prognostic marker or therapeutic target [80].
The LAMP2A isoform has shown increased expression in breast
tumor tissues and prognostic value in NSCLC. Indeed, LAMP2A
inhibition or genetic knockdown resulted in the sensitization of
tumor cells to doxorubicin and radiation therapy [81–83]. Another
important role reported for the LAMP2A isoform in cancer refers to
its involvement in immunogenic cell death, a type of apoptosis

that stimulates anti-cancer immune response [84]. In particular,
the LAMP2A isoform can induce the expression of calreticulin and
the secretion of ATP upon mitoxantrone- and hypericin-based
photodynamic therapy, thus leading to immunogenic cell death,
thereby suggesting opposing roles for this isoform in cancer [84].

Another reported tumor-suppressor role for LAMP2 stands on
its ability to induce cell death upon depletion of the VEGF-NRP2
axis in prostate cancer cells. The up-regulation of LAMP2 and
WDFY1 resulting from autophagy blockade caused by VEGF-NRP2
axis inhibition leads to increased cell death [85]. Similar oncosup-
pressive effects have been observed in neuroblastoma cells cul-
tured under hyperoxia, which causes up-regulation of LAMP2 and
LC3-II, macro-autophagy, and ultimately induces apoptosis [86].
A protective role of LAMP2 in drug resistance has been reported in
lung cancer, where it is directly targeted by miR-487b-5p, a
microRNA often found over-expressed in temozolomide-resistant
lung cancer cells [87]. Finally, LAMP2 is often found expressed on
the membrane of exosomes secreted from immune cells, but its
role is still largely unknown; however, there could be a possible
role for both LAMP1 and LAMP2 exosomal expression in shaping
the immune system response (Fig. 3) [28].

3.2. LAMP3/DC-LAMP

Lysosomal-associated membrane protein 3 (LAMP3) is a 44-kDa
protein and, unlike LAMP1 and LAMP2, which are ubiquitously
expressed, LAMP3 is expressed only in specific conditions and
tissues. To avoid ambiguity, it is worth noting that the LAMP3
gene/protein name can also be wrongly referred to as CD63, which,
despite being a protein enriched in late endosomal and lysosomal
compartment, belongs to the tetraspanin family [88]. In this
review, we always refer to LAMP3 as a member of the LAMP family.

Fig. 3. LAMP1-LAMP2 subcellular localization and their roles in immune cells. LAMP1 and LAMP2 in immune cells can act as activation markers when expressed on the
plasma membrane and they can promote adhesion to endothelium and migration. LAMP1 specifically has a crucial role in the degranulation process, whereas LAMP2 is
expressed in immune cancer cells-derived exosomes.
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LAMP3 is also called DC-LAMP, because it was firstly shown to be
induced progressively upon maturation of human dendritic cells
(DCs), where it transiently co-localizes with major histocompati-
bility complex (MHC) class II molecules at the limiting
membrane of specific intracellular compartments (ie, MHC class II
compartment, MIIC), and is thus considered as a marker of mature
DCs in humans [89]. In the same year of this observation, LAMP3
was independently characterized as a gene specifically expressed in
lung tissue, and designated as TSC403 transcript [90]. Indeed,
LAMP3 is highly expressed in a specific cell type in mammals,
normal and transformed type II pneumocytes (PnIIs) [91], which are
specialized pulmonary cells important for the repopulation of lung
tissue during normal homeostasis and injury, and responsible for
surfactant synthesis, secretion, and recycling [92,93]. However, the
expression of LAMP3 in time and space is significantly different
between human DCs and type II pneumocytes. LAMP3 is transiently
expressed in the MIIC compartment (responsible for the exposure of
MHC class II/peptide complexes on the plasma membrane) during
the maturation of DCs and it then accumulates in perinuclear
lysosomes without localizing to the plasma membrane [89]. Con-
versely, LAMP3 is constitutively expressed at the limiting mem-
brane of PnII lamellar bodies (responsible for secretion of surfactant
proteins, and also containing MHC class II molecules), and low
levels of the protein can also be detected at the cell surface
membrane in these cells [91]. Functional similarity between MIIC
in DCs and lamellar bodies in PnIIs suggests a possible role for
LAMP3 in the regulation of the exocytosis of these lysosomes, and
particularly in MHC class II-restricted antigen presentation, which is
a characteristic of both mature DCs and PnIIs [94].

LAMP3 expression is induced by the unfolded protein response
(UPR) activated by hypoxic condition [95] and this induction is
mediated by the PERK/eIF2α arm of UPR [96]. Further, proteasome
inhibition induces LAMP3 expression in an ATF4 (a UPR tran-
scription factor)-dependent manner. Increased expression of
LAMP3 is able to trigger autophagy, whereas preventing LAMP3
induction enhanced apoptotic cell death, thereby demonstrating
that LAMP3 regulation is important for proteasomal degradation
and cell survival during proteasome dysfunction [97]. Further-
more, a recent meta-analysis of genome-wide association studies
in Parkinson disease has identified the MCCC1/LAMP3 genetic
locus associated with Parkinson disease risk [98,99]. LAMP3
expression is also driven by IFN-α during DC maturation [100],
and it has been shown to regulate the expression of antiviral genes
in cervical cancer [101]. LAMP3 expression is also induced in an
interferon-dependent manner upon influenza A and hepatitis C
virus infection and may play a role in the regulation of virus
replication and infection at the post-entry stages [102,103].

Growing evidence has shown that LAMP3 is over-expressed in
various human tumors, where it correlates with poor prognosis
(LAMP3 functions in cancer are summarized in Table 3 and
Figs. 4 and 6) [104,105]. Studies have revealed that LAMP3 might
be important in tumor metastasis and resistance to therapies,
suggesting LAMP3 could become a molecular marker for the
prognosis of various cancers [106,107]. Indeed, LAMP3 expression
has been shown to be higher in several primary cancers compared
with normal tissues, including cancers of the esophagus, colon,
fallopian tube, ovary, uterus, breast, and liver [90,108]. Moreover,
the 3q27 region where the LAMP3 gene is located is often

Fig. 4. LAMP3 subcellular localization and its roles in cancer and immune cells. LAMP3 can localize to different cellular compartments and can therefore exert different
functions. LAMP3 can be bound to the lysosomal membrane or to the plasma membrane and regulate migration, metastasis, and drug resistance in cancer cells. Moreover, its
cytoplasmic tail plays a role in the process of fusion of the lysosome with the autophagosome, thereby modulating the autophagic process, which can also mediate its pro-
tumorigenic functions. LAMP3 is also a marker for mature dendritic cells, in which it is progressively expressed during maturation. During this process LAMP3 co-localizes
with MHC class II molecules (MHCII) within the MHC class II compartment (MIIC), suggesting a possible role for LAMP3 in the antigen presentation process.
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amplified in various types of cancers, in particular squamous cell
carcinomas and penile carcinomas [109].

LAMP3 over-expression in uterine cervical cancer cell lines is
able to promote metastasis in vitro and in vivo [106], and its
expression has been associated with lymph node metastasis
[104,110] and increased migration in breast cancer cells [95],
suggesting a role for LAMP3 in the metastatic process [106].
However, the mechanism whereby it might promote metastases
has not been completely elucidated. Conversely, similarly to
LAMP1 and LAMP2, its exposure on the plasma membrane could
allow cancer cells to interact with endothelial cells. Nevertheless,
LAMP3 expression on the cellular plasma membrane could be
detected only in specific circumstances on cancer cells, such as

upon Influenza A virus infections in HeLa cells [102], whereas it
could not be detected on the plasma membrane of other cancer
cell lines, for example MDA-MB-231 [95]. Another possible mech-
anism by which LAMP3 expression can increase the metastatic
potential of cancer cells is through the modulation of the auto-
phagic flux, which is known to play key roles in cancer metastasis
[111]. Particularly, the cytoplasmic tail of LAMP3 seems to be
required for the fusion of the autophagosome with the lysosome
(ie, maturation step), a process inhibited in cancer cells when
LAMP3 is knocked down [112].

LAMP3 expression has also been correlated with poor overall
survival in head and neck squamous cell carcinomas [107,108],
uterine cervical cancer [106], and gastric and colorectal cancers
[105], whereas its expression levels, together with the expression
of other pneumocyte-specific genes, has been associated with
increased survival in the adenocarcinoma subgroup of NSCLC
[113]. These conflicting data could be attributed to the high levels
of LAMP3 expression in lung normal tissue, where LAMP3 could
play a specific role that could be compromised during cancer
development.

LAMP3 has also been implicated in drug resistance with up-
regulation of LAMP3 associated with resistance to chemotherapy
and radiotherapy in breast cancer [112,114], and its down-regu-
lation possibly increasing cisplatin sensitivity in prostate cancer
cells [115]. LAMP3 expression could decrease the sensitivity of
cancer cells to chemotherapy by modulating autophagy, a process
whose ability to influence drug resistance has been extensively
studied [116]. LAMP3-mediated radiotherapy resistance has con-
versely been attributed to its ability to positively regulate the

Fig. 5. CD68/Macrosialin/LAMP4 subcellular localization and its roles in cancer and immune cells. CD68/Macrosialin/LAMP4 represents a marker for tumor-associated
macrophages, where it can rapidly shuttle between the endosomal compartment and the plasma membrane. Recent observations suggest that CD68/Macrosialin/LAMP4 may
also have a negative role in the antigen presentation process. CD68/Macrosialin/LAMP4 has recently been found to also be expressed by some cancer cells, where it is
associated with increased malignancy, possibly caused by immune evasion mechanisms. Expression of this immune-cell marker by cancer cells could be explained by genetic
exchange between macrophages and cancer cells, which is supported by the recent detection of CD68/Macrosialin/LAMP4 in macrophages-derived exosomes.

Fig. 6. Roles of LAMP family members in cancer progression. All the LAMP proteins
are involved in cancer progression; LAMP1, LAMP2 and LAMP3 are also implicated
in migration and stress or drug resistance. LAMP1 and LAMP2 also promote
adhesion to the extracellular matrix (ECM) or remodeling whereas LAMP1 and
LAMP3 can induce metastasis formation. CD68/Macrosialin/LAMP4 is often
expressed on tumor-associated macrophages (TAMs).
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response to DNA damage [114]. Finally, induction of LAMP3 among
a subset of genes, following combined treatment with the chemo-
therapeutic drug doxorubicin and the inflammatory cytokine TNF-
α in breast cancer cells, suggests a possible involvement of LAMP3
in cancer-related inflammation [117].

Given that LAMP3 is highly expressed in DCs, it is essential to
distinguish between its contribution to cancer when expressed by
cancer cells or by DCs infiltrating the tumor. For example, it has
been observed that infiltration of LAMP3þ DCs in the sentinel
lymph nodes of melanoma patients was correlated with the
absence of metastasis in downstream lymph nodes [118].

3.3. CD68/Macrosialin/LAMP4

CD68, the human homologue to murine Macrosialin, is a
heavily glycosylated transmembrane glycoprotein mainly localized
in the endosomal/lysosomal compartment of macrophages show-
ing a distinctive structure corresponding to the LAMP signature,
with highest homology to LAMP3 [119,120]. Similarly to LAMP3,
CD68 contains only a single LAMP-like domain and a mucin-like
domain (Fig. 1) [119]; but, unlike LAMP3, which is mainly located
within lysosomes, CD68 is found in endosomes and can rapidly
shuttle to the plasma membrane [121].

CD68/Macrosialin/LAMP4 has been extensively used as a his-
tologic marker of macrophage lineage cells because it is preferen-
tially expressed by resident macrophages of multiple tissues,
including macroglia in the brain, Kupffer cells in the liver, and
bone marrow macrophages [122–124]. Although initially classified
as a group D scavenger receptor because of its ability to bind
oxidized low-density lipoproteins [125], CD68 silencing and
knockout experiments failed to affect oxidized low-density lip-
oprotein binding and uptake to macrophages [126,127]. Beyond
the use of CD68/Macrosialin/LAMP4 as a histologic marker to
identify macrophages, the apparent specificity of the expression
of CD68/Macrosialin/LAMP4 has led some to propose the use of
CD68 transcriptional regulatory sequences to specifically drive
in vitro and in vivo transgene expression, as well as for gene
therapy approaches [89,128,129]. However, recent studies show
that a high expression of CD68/Macrosialin/LAMP4 is not limited
to cells of macrophage lineage, but is also observed in other
hematopoietic and non-hematopoietic cells [130,131]; therefore,
CD68/Macrosialin/LAMP4 should be considered a non-specific
marker of macrophages.

Although a role for CD68/Macrosialin/LAMP4 in antigen process-
ing is unknown, studies have shown enhanced capacity of antigen
presentation to CD4þ T cells by CD68-/- mononuclear phagocytes,
suggesting CD68/Macrosialin/LAMP4 may have negative regulatory
functions in MHC class II trafficking or antigen uptake and loading
[127]. Interestingly, CD68 is also expressed in immature DCs, and its
expression progressively disappears during maturation at the same
time that LAMP3 accumulates in the lysosomes [89], suggesting a
putative competing role in the antigen presentation process.

Immunohistochemical staining of bone specimens has identi-
fied CD68/Macrosialin/LAMP4 expression in osteoclasts [124],
multi-nucleated cells responsible for bone reabsorption during
normal bone remodeling or pathologic conditions [132], and
genetic ablation of CD68/Macrosialin/LAMP4 resulted in morpho-
logic alteration and functional defects in osteoclasts and increased
bone in mice [133]. Importantly, infiltration of CD68/Macrosialin/
LAMP4þ cells is a marker for both inflammation and tumor
progression (see Table 4 and Figs. 5 and 6) [134,135]. A popula-
tion-based cohort study of malignant uveal melanoma observed
diffuse infiltration of CD68/Macrosialin/LAMP4þ macrophages in
83% of analyzed tumors, and the number of macrophages has been
associated with the largest basal tumor diameter, presence of
epithelioid cells, and high microvessel density in areas of high

vascularization [135], which represent independent high-risk
indicators for metastasis in uveal melanoma [135,136].

Tumor-associated macrophages (TAMs), for which CD68 repre-
sents one of the most recognized markers [137], are one of the
most abundant population of normal cells in the tumor micro-
environment. There is accumulating evidence for TAMs’ pivotal
role in driving pro-tumorigenic phenotype. Indeed, density of
CD68þ TAMs is increased in poorly differentiated thyroid cancers,
and a high density of these cells correlates with invasion and
decreased cancer-related survival in these advanced thyroid can-
cers [138]. Furthermore, increased expression of CD68þ macro-
phages in the tumor stroma of patients with a diagnosis of triple-
negative breast cancer and of patients with classic Hodgkin’s
lymphoma correlates with a poor prognosis [139,140]. In contrast,
a high density of CD68/Macrosialin/LAMP4þ macrophages corre-
lates with increased overall survival in NSCLC and esophageal
squamous cell carcinoma [141,142]. This discrepancy in the pre-
dictive power of CD68/Macrosialin/LAMP4 for tumor prognosis
could be because of several factors, including technical variability,
specificity of the antibodies, and differences in the case series
[143]. We have reported here some evidence of the role of CD68/
Macrosialin/LAMP4þ macrophages in the tumorigenic processes
and we refer to other recent reviews for a comprehensive
description of the role of TAMs in cancer [144–147].

Importantly, the association of CD68/Macrosialin/LAMP4 with
cancer is not only related to its expression in TAMs, but also in
tumor cells [131]. For example, CD68/Macrosialin/LAMP4 was
found to be highly expressed in human gliomas by both microglia
and tumor cells; its expression was associated with malignancy in
these tumors, and was suggested as a prognostic marker of
reduced survival in human gliomas [148]. This observation is in
agreement with the fact that tumor cells often express immune
cells-markers to evade the immune system during the metastatic
process, most frequently expression of macrophage antigens such
as CD68, CD47, CD163, and DAP12 [149–151]. The mechanism
explaining the expression of macrophage antigens by tumor cells is
still debated, and it seems to be mediated by genetic exchange as a
result of either direct macrophage-cancer cell fusion [152], or by
exosome-mediated transfer [149]. CD68 was found to be expressed
in mouse macrophages-derived exosomes [153], thereby supporting
the hypothesis that exosomes can mediate a genetic exchange
between macrophages and cancer cells and, ultimately, it could also
explain the expression of CD68/Macrosialin/LAMP4 in cancer cells.

Although CD68/Macrosialin/LAMP4 is widely used as diagnostic
and prognostic marker for several malignancies, the role of this
protein in cancer is still to be explained and further studies
investigating its mechanism of actions are needed.

3.4. BAD-LAMP/LAMP5

BAD-LAMP (Brain and Dendritic Cell associated LAMP-like
molecule), also known as LAMP5 or C20orf103 is the C. elegans
ortholog of UNC-46 and the latest characterized LAMP protein.
Unlike other LAMP family members, BAD-LAMP/LAMP5 does not
localize to late endosomes or lysosomes and, similarly to LAMP3
and CD68/Macrosialin/LAMP4, its expression is limited to specific
tissues. BAD-LAMP/LAMP5 is a 280 amino acid protein with a
transmembrane domain and a cytoplasmic tail containing a YKHM
sequence, corresponding to a classic YXXΦ internalization and
endosomal-targeting signal. It also contains several N-glycosyla-
tion sites, as well as four cysteine residues separated by a fixed
number of amino acids, allowing for the formation of the disulfide
bonds required for the “LAMP-fold” (Fig. 1) [32].

BAD-LAMP was first identified as a new LAMP family member
in mice, where it is mainly expressed in specific subtypes of
cortical projecting neurons. In these cells, BAD-LAMP expression
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considerably increased after birth, suggesting its involvement in
the late steps of neuronal differentiation. BAD-LAMP/LAMP5 can
be endocytosed and directed to uncharacterized vesicles clustered
in the growth cone of developing axons or in defined dendritic
domains, identified as a specific class of early neuronal endosomes
[32]. In C. elegans mutations in the BAD-LAMP ortholog, UNC-46,
cause defects in most GABA-mediated behaviors, and it has been
proposed as a sorting factor able to address the GABA transporter
(UNC-47) to the synaptic vesicles [154]. In humans, like in mice,
BAD-LAMP/LAMP5 is expressed at higher levels in the brain, but,
among blood cells, it is also specifically expressed in the type I IFN-
producing primary plasmacytoid dendritic cells (pDCs) and trans-
formed pDCs (blastic pDC neoplasms or BPDCNs), for which it
represents a relevant biomarker [155]. In these cells, BAD-LAMP/
LAMP5 is principally localized in the ER-Golgi intermediate com-
partment and its expression is lost upon pDC activation by Toll-like
Receptor ligands [155].

A second observation for an association between this poorly
studied protein and cancer comes from the analysis of the
expression of a set of genes, including BAD-LAMP/LAMP5, which
has been shown to be correlated with a poor prognosis in stage II
gastric cancer patients treated with chemo-radiotherapy (Table 5
and Fig. 6) [156]; however, it is not clear whether BAD-LAMP/
LAMP5 expression observed in the analyzed tissues is determined
by pDCs infiltration within the tumor or by a higher expression of
the protein in cancer cells. Further studies are required to establish
the putative role of BAD-LAMP/LAMP5 in cancer.

4. Conclusions

Correct functioning of the lysosomal compartment represents a
guarantor for an efficient cell homeostasis and a critical protection
against various diseases, among them cancer. Differential expres-
sion of proteins associated with the lysosomal membrane, catego-
rized as LAMP family members, can substantially influence various
processes of cancer progression. This review inspected the various
LAMP proteins and their reported roles in oncogenic processes,
with conflicting evidence for some of the members.

LAMP1 represents the most studied member of the family and,
together with LAMP2, is involved in various oncogenic processes,
such as local cancer progression, ECM adhesion and remodeling,
migration, drug resistance, and metastasis. The strong potential
of LAMP1 in cancer therapy encouraged the Sanofi S.A. pharma-
ceutical company to patent anti-LAMP1 antibodies and immuno-
conjugates for detection and treatment (patent number:
WO2014102299). Furthermore, LAMP1 and LAMP2 expression on
the plasma membrane of cancer cell renders them optimal targets
for immunotherapy approaches. Nevertheless, LAMP1 has impor-
tant reported roles in the immune system, thus when planning its
targeting by immunotherapies, it is crucial to bear in mind the
importance of specifically targeting LAMP1 and LAMP2 expressed
on cancer cells. A decreased expression of LAMP1 in NK cells
would reduce their perforin-mediated cytotoxicity, which repre-
sents the most efficacious NK-mediated cell death [157], thereby
considerably decreasing any anti-cancer immune response. Fur-
thermore, a better understanding of the role of LAMP1 in cancer-
derived exosomes and its effects on the immune system is of
paramount importance, also for future applications of exosomes in
cancer immunotherapy.

The other members of the LAMP family have not yet been
extensively studied, but there is growing evidence supporting their
pro-tumorigenic potential. For instance, LAMP3 and CD68/Macro-
sialin/LAMP4, which are activated by various stimuli often present
during cancer development and therapy and are closely connected
with inflammation, represent additional promising targets for

cancer therapy. The mechanisms by which LAMP3 expression
can affect tumor progression is still to be elucidated; however, a
possible explanation could be inferred from its role in the
trafficking of MHC class II/peptide complexes [158], which is
critical for antitumor immune response [159].

Interestingly, LAMP3, CD68/Macrosialin/LAMP4, and BAD-
LAMP/LAMP5 are highly expressed in immune cells and have been
shown to be associated with various types of tumors when
expressed on immune cells or cancer cells. Therefore, it would
be intriguing to investigate their role at the interplay between
cancer and the immune system and to elucidate whether they
could play a direct role in the immune response to cancer.

In conclusion, a better knowledge of the LAMP family and the
role of the lysosomes in cancer progression could represent a
fruitful approach in cancer research.
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Abstract
Several studies have revealed that endosomal sorting controls the steady-state levels of Notch at the cell surface in normal
cells and prevents its inappropriate activation in the absence of ligands. However, whether this highly dynamic physiologic
process can be exploited to counteract dysregulated Notch signaling in cancer cells remains unknown. T-ALL is a
malignancy characterized by aberrant Notch signaling, sustained by activating mutations in Notch1 as well as
overexpression of Notch3, a Notch paralog physiologically subjected to lysosome-dependent degradation in human cancer
cells. Here we show that treatment with the pan-HDAC inhibitor Trichostatin A (TSA) strongly decreases Notch3 full-length
protein levels in T-ALL cell lines and primary human T-ALL cells xenografted in mice without substantially
reducing NOTCH3 mRNA levels. Moreover, TSA markedly reduced the levels of Notch target genes, including pTα,
CR2, and DTX-1, and induced apoptosis of T-ALL cells. We further observed that Notch3 was post-translationally regulated
following TSA treatment, with reduced Notch3 surface levels and increased accumulation of Notch3 protein in the
lysosomal compartment. Surface Notch3 levels were rescued by inhibition of dynein with ciliobrevin D. Pharmacologic
studies with HDAC1, 6, and 8-specific inhibitors disclosed that these effects were largely due to inhibition of HDAC6 in T-
ALL cells. HDAC6 silencing by specific shRNA was followed by reduced Notch3 expression and increased apoptosis of T-
ALL cells. Finally, HDAC6 silencing impaired leukemia outgrowth in mice, associated with reduction of Notch3 full-length
protein in vivo. These results connect HDAC6 activity to regulation of total and surface Notch3 levels and suggest HDAC6
as a potential novel therapeutic target to lower Notch signaling in T-ALL and other Notch3-addicted tumors.

Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is a malig-
nancy of T lymphocytes precursors characterized by a
relatively unfavorable prognosis compared to B-cell ALL
[1]. Molecular studies uncovered that T-ALL is a disease
frequently driven by activating mutations of Notch1, which
are found in more than 50% of cases [2]. Although Notch3
mutations are uncommon in patients, Notch3 over-
expression is often observed in human T-ALL. Moreover,
enforced expression of the active intracellular domain of
Notch3 (Notch3-ICD) has been reported to cause T-cell
leukemia in mouse models [3, 4]. Given some limitations of
existing drugs blocking Notch signaling [5], it is important
to get new insights into the biology of Notch3 to further
stimulate the development of Notch-targeted therapies in
cancer.
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Several studies disclosed that ubiquitination and endo-
cytosis regulate activity of both Notch and its ligands [6]. In
Drosophila, Notch proteolytic processing is facilitated by

dynamin-dependent endocytosis of Notch in the signal-
receiving cell [7], with the contribution of the syntaxin
Avalanche and the Rab5 GTPase [8]. Activated Notch,
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together with Notch ligands and non-activated Notch, is
subsequently internalized and channeled into early sorting
endosomes. In flies, E3 ubiquitin ligases including Nedd4
and Su(dx) sort unstimulated Notch into an endosomal
compartment destined for recycling and/or degradation [9].
Steady-state levels of Notch at the surface and pathway
activity are modulated by this internalization process, which
also limits inappropriate activation of the receptor in the
absence of ligands [9]. In fact, trafficking of activated Notch
into late endosomal compartments, including multi-
vescicular bodies and degradative lysosomes, is associated
with attenuation of Notch signaling [10]. In this regard, Jia
et al. [11] reported that Notch3 full-length (FL) and Notch3-
ICD are subjected to lysosome-dependent degradation in
human cancer cells, suggesting a role of endocytosis in
Notch3 degradation and signaling.

Histone deacetylases (HDACs) catalyze epigenetic reg-
ulation of chromatin promoting repression of gene expres-
sion, and also deacetylate a number of non-histone proteins,
thus modulating their function [12]. Unlike other HDACs
with predominant chromatin remodeling activity, HDAC6
main targets are cytoplasmic proteins, such as α-tubulin,
Hsp90, and cortactin. In particular, HDAC6 inhibition
determines increased acetylation of α-tubulin, thus accel-
erating the association of microtubules with dynein and
kinesin and leading to increased routing into early endo-
somes [13]. Along this line, it was described that epidermal
growth factor receptor (EGFR) surface levels are regulated
by endocytic trafficking through a mechanism involving
HDAC6 and tubulin acetylation [14, 15]. Altogether, these
findings support a regulatory role for HDAC6 in endocytic
cargo transport of certain transmembrane receptors but
whether this might modulate expression of Notch is
unknown.

Here, we investigated effects of HDAC inhibitors
(HDACi) in T-ALL and found that pharmacologic or
genetic inactivation of HDAC6 is followed by increased
lysosomal localization of Notch3, which correlates with a
reduction in signaling strength. These findings suggest that,
in addition to well established approaches such as blocking
antibodies and γ-secretase inhibitors [5], targeting HDAC6
is a potential novel strategy to lower Notch3 signaling in T-
ALL cells.

Results

Trichostatin A downregulates Notch3 protein levels
in T-ALL cells

Previous studies demonstrated that acetylation regulates
Notch3-ICD stability in Notch3 transgenic mice and in one
human T-ALL cell line [16]. To validate and broaden these

findings, we initially investigated the effects of HDACi on
Notch3 in T-ALL cells treated in vitro with the pan-HDAC
inhibitor Trichostatin A (TSA) at 0.5 μM, a concentration
selected on the basis of published data [16, 17]. After 16 h
of treatment, whole-cell lysates were extracted and analyzed
by western blot. Accumulation of acetylated α-tubulin and
reduction of c-Myb, two known targets of HDACi [17],
were used as read-out of TSA activity in these experiments.
Interestingly, TSA decreased Notch3 FL levels in all the
three cell lines tested (Fig. 1a); Notch3-ICD levels were also
reduced (not shown). Following staining with an anti-
human Notch3 antibody which binds an extracellular epi-
tope of Notch3, flow cytometry analysis indicated that TSA
treatment was followed by reduction of Notch3 surface
levels in DND 41 and MOLT3 cells (Fig. 1b). To confirm
the results obtained in cell lines, we treated T-ALL cells
from several patient-derived xenografts (PDX) with distinct
molecular and clinical phenotypes [18]. After 16 h of
treatment, Notch3 FL and c-Myb protein levels were
strongly reduced in all samples analyzed (Fig. 1c). Impor-
tantly, TSA decreased expression of the Notch target genes
pTα, CR2, and DTX-1, thus suggesting reduction of Notch
signaling (Fig. 1d, e), induced apoptosis, and inhibited
proliferation of T-ALL cells (Suppl. Figure 1). Effects of
TSA on Notch3 levels and signaling were confirmed using
the pan-HDAC inhibitor Givinostat, which is currently used
in clinical trials (Suppl. Figure 2). Notably, we found no
reduction of pTα and CR2 levels in the SUPT11 cell line
treated with panHDACi TSA or with Givinostat (Fig. 1f),
indicating that HDAC inhibition fails to reduce Notch sig-
naling in cells which do not express detectable Notch3 [19].

To investigate whether these effects were associated with
inhibition of transcription, we analyzed mRNA levels of

Fig. 1 HDAC inhibition reduces Notch3 levels and signaling in T-
ALL cells. a T-ALL cells (DND 41, MOLT3, and Jurkat) were treated
with TSA (0.5 µM) or solvent (DMSO) for 16 h and protein levels
analyzed by western blot. Actin was used as a loading control and
tubulin acetylation and c-Myb levels as markers of HDAC inhibition.
b TSA reduces Notch3 surface expression in T-ALL cells. DND 41
and MOLT3 cells treated with TSA or DMSO for 16 h were stained
with PE anti-human Notch3 (anti-N3 Ab) or with isotype control
antibody and analyzed by flow cytometry. One representative
experiment of three performed is shown. Histogram reports fluores-
cence mean intensity (FMI) ± SD of three independent experiments
(**P < 0.01; *P < 0.05). c TSA reduces Notch3 expression in PDX-
derived T-ALL cells. T-ALL cells obtained from the spleen of xeno-
grafted mice were treated in vitro with TSA for 16 h and protein levels
were analyzed by western blot. d-h Effects of TSA on Notch3 target
genes and on Notch transcript levels. T-ALL samples, including both
cell lines (d, f, g) and PDX T-ALL cells (e, h), were treated with TSA
or Givinostat (GIV) (2 µM) for 16 h and mRNA levels of NOTCH3, c-
MYB, or Notch target transcripts (pTα, CR2, DTX-1) were analyzed by
qRT-PCR. n.d.: not detectable. Statistically significant differences are
indicated (*P < 0.05, **P < 0.01, ***P < 0.001, mean ± SD of three
independent experiments). Expression data are normalized to DMSO
samples
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NOTCH3 and c-MYB upon TSA treatment. Interestingly, c-
MYB mRNA displayed >80% reduction in all samples tes-
ted. In contrast, NOTCH3 transcripts were reduced in DND
41 but not in MOLT3 nor in Jurkat cells (Fig. 1g). Similar
results were obtained in three PDX samples (PD-TALL6,
PD-TALL8, and PD-TALL9) (Fig. 1h). Altogether, these
results indicate that TSA regulates Notch3 expression
mainly at post-transcriptional level in the majority of the T-
ALL samples analyzed.

Lysosomal degradation accounts for reduced
Notch3 levels in T-ALL cells treated with TSA

Several reports indicate that HDACi induce degradation
of oncogenes and other cellular proteins by affecting protein
stability [20]. To test whether protein degradation has a
role in the effects of TSA on Notch3 protein levels, we
inhibited protein translation in MOLT3 cells with cyclo-
heximide. As expected, based on the fact that HDACi
control c-Myb levels mainly at the transcriptional level
(Fig. 1g and [17]), the half-life of c-Myb, roughly 8 h in
MOLT3 cells, was not substantially changed by TSA. In
contrast, Notch3 protein levels decreased faster in the pre-
sence of TSA (Fig. 2a, b). This result shows that TSA
affects Notch3 protein stability, implying a post-
translational mechanism of regulation. To investigate the
molecular mechanism underlying increased Notch degra-
dation, we treated MOLT3 and TALL1 cells with TSA in
the presence of proteasome or lysosome inhibitors. Notch3
levels were rescued using the lysosome inhibitor chlor-
oquine (CHL), suggesting involvement of the endocytic
pathway. In contrast, the proteasome inhibitor MG132
further reduced Notch3 FL levels (Fig. 2c, d), whereas it
increased c-Myc protein levels (Suppl. Figure 3), a tran-
scription factor known to be degraded by the proteasome
[21, 22]. Similar results were obtained in MOLT3 cells by
using bafilomycin as alternative lysosome inhibitor (Suppl.
Figure 4). Moreover, treatment with ciliobrevin D, a dynein
inhibitor, rescued Notch3 surface levels upon TSA treat-
ment in MOLT3 cells (Fig. 2e), confirming the importance
of tubulin acetylation and vesicle transport through cyto-
plasmic dynein of Notch3 from the cell membrane to the
lysosome. In addition, immunofluorescence and confocal
microscopy analysis confirmed that MOLT3 cells treated
with TSA displayed increased co-localization of Notch3 and
the lysosomal marker LAMP2 (Fig. 3a–c). Fractionation
assays corroborated these findings by showing that Notch3
was mainly enriched in the lysosomal fraction in T-ALL
cells and upon TSA treatment there was a significant
increase in the lysosome/plasma membrane ratio (Fig. 3d, e
and Suppl. Figure 5). Taken together, these findings indi-
cate that HDAC inhibition results in the accumulation of
Notch3 in the lysosomal compartment.

HDAC6 modulates Notch3 expression and signaling
in vitro

To identify HDAC family member(s) responsible for the
effects previously characterized, we tested class-specific
HDACi. In particular, we used the HDAC6 inhibitor tuba-
cin, and two HDAC1 and HDAC8 inhibitors. Interestingly,
HDAC1i and HDAC8i did not reduce Notch3 FL protein
levels or Notch target genes expression and did not exert
apoptotic effects in T-ALL cell lines and PDX cells (Fig. 4).
On the contrary, the HDAC6-specific inhibitor tubacin
reproduced effects of TSA, including reduction of
Notch3 surface levels (Fig. 4), suggesting a role of this
specific HDAC in the phenomenon observed. To verify
activity of these compounds, we also analyzed histone 3
acetylation levels in MOLT3 and Jurkat cells. As expected,
tubacin did not change histone acetylation, whereas treat-
ment with HDAC1 and HDAC8 inhibitors increased histone
3 acetylation (Suppl. Figure 6).

Finally, HDAC6 silencing by two different shRNA in
MOLT3 and TALL1 cells was followed by reduced Notch3
FL protein levels (Fig. 5a–c) and induced apoptosis in T-
ALL cells (Fig. 5d), thus mimicking effects obtained with
tubacin and TSA. Apoptosis induction was not observed in
SUPT11 cells, which lack detectable Notch3 (Fig. 5d).
Interestingly, HDAC6-mediated regulation of Notch3 FL
protein seems specific for this NOTCH paralog, since
HDAC6 silencing did not reduce Notch1 FL levels in
MOLT3 cells (Suppl. Fig. 7).

Givinostat and HDAC6 silencing impair Notch3
expression and leukemia growth in vivo

To investigate whether modulation of Notch3 following
treatment with an HDACi occurred in vivo, we treated PD-
TALL12 xenografted NOD/SCID mice (n= 5/6 per group)
with Givinostat (25 mg/kg), a panHDACi used in clinical
trials, or PEG400/H20 (vehicle). The drug was administered
as a single dose upon establishment of the leukemia in the
mice and animals were killed 16 h after treatment (Fig. 6a).
At the time of administration of the drug, spleen and bone
marrow (BM) infiltration by T-ALL cells was very high and
comparable between treated and untreated mice (Suppl. Fig.
8A, B). Western blot analysis of T-ALL cells from the
spleen of Givinostat-treated mice or controls showed sig-
nificantly decreased Notch3 FL protein levels (Fig. 6b, c).
Although survival was not an endpoint of this experiment,
in our previous study we found that repeated Givinostat
administration can extend survival of mice engrafted with
PD-TALL12 cells [23].

Pharmacologic issues, in particular the low solubility of
tubacin, prevented us from performing this experiment in
mice. Therefore, we investigated whether genetic HDAC6
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inactivation would impair tumor growth by
HDAC6 silencing in the Notch3-dependent cell line
TALL1. To this end, we transduced TALL1 cells with a
lentiviral vector encoding the firefly luciferase gene (fLUC),
in order to track leukemia progression in vivo by optical
imaging. TALL1 fLUC cells were then infected with
shRNA or with shHDAC6 #1 and injected in NOD/SCID
mice (Fig. 6d). Results show significant reduction in leu-
kemia burden in shHDAC6#1 compared to shRNA mice,
measured by optical imaging (Fig. 6e, f). At sacrifice, we
measured reduction of human CD7-positive cells in the BM
and in the spleen (Fig. 6g), induction of apoptosis (Fig. 6h)
and reduction of Notch3 FL protein in the spleen of mice
injected with HDAC6-silenced T-ALL cells (Fig. 6i).
Overall, these results show that inhibition of HDAC6
activity exerts anti-leukemia effects in mice.

Discussion

Notch is constitutively internalized and it has been proposed
that endocytosis modulates Notch signaling both by con-
trolling the amount of surface levels of the receptor and by
regulating its activation [24–26]. However, it has been
debated whether endocytosis is required for full proteolytic
processing of Notch, whereas it seems fundamental to
downregulate signaling activity by lowering the potential
for Notch interactions with its ligands at the cell surface
(reviewed in [27]). Consistent with this model, Notch-
signaling defects observed upon disruption of the activity of
certain endocytosis-associated molecules, such as clathrin
or dynamin [28, 29], may derive from insufficient surface
Notch levels rather than selective disruption in receptor
internalization. Defects in recycling or in the biosynthetic
pathway might be associated with abnormal accumulation
of Notch in certain intracellular compartments, such as
Golgi [30].

These concepts stemmed from studies carried out in
invertebrates, while there is limited information about

mechanisms involved in Notch trafficking in human cancer
cells, whose dysregulation might perturb Notch homeostasis
leading to alterations in signaling. Conversely, interventions
on Notch trafficking might represent a new therapeutic
strategy to counteract aberrant Notch signaling in cancer.

Here, we describe a novel HDAC-mediated mechanism
of regulation of Notch3 involving the lysosomal pathway in
T-ALL cells. We report for the first time that HDAC inhi-
bition leads to increased accumulation of Notch3 in lyso-
somes, reducing total and surface Notch3 levels. Our
conclusions are supported by (I) reversion of HDACi effects
on Notch3 levels by two different lysosome inhibitors and
by blocking dynein function and (II) increased co-
localization of Notch3 and the lysosomal marker LAMP2
in T-ALL cells treated with TSA by immunofluorescence
studies and fractionation assays. Furthermore, involvement
of HDAC6 in the control of Notch3 degradation was shown
by both pharmacological inhibition and gene silencing
experiments. Our findings are fitting those of previous
works that demonstrated increased degradation of EGFR by
the endocytic compartment following pharmacologic or
genetic inactivation of HDAC6 [14, 15]. In these studies,
increased microtubule acetylation accelerated lysosomal
accumulation of EGFR-bearing vesicles by an HDAC6-
mediated mechanism [14, 15]. We speculate that HDAC6
could also affect Notch3-FL trafficking by indirect
mechanisms, namely by modulation of α-tubulin acetyla-
tion. This hypothesis stems from the above quoted studies
concerning EGFR and the apparent lack of direct interac-
tions between HDAC6 and Notch3 by immunoprecipitation
studies (not shown).

Although several studies previously reported pro-
apoptotic effects of HDACi in leukemia cells [reviewed in
[5]], to our knowledge only one study investigated effects
of HDACi on Notch3 levels. Palermo et al. [16] demon-
strated that acetylation controls Notch3 stability and func-
tion in murine T-ALL cells. In this paper, Notch3-ICD
acetylation increased following HDAC1 inhibition, leading
to Notch3 increased ubiquitination and proteasome-
dependent degradation. However, in our experiments the
proteasome inhibitor MG132 did not rescue Notch3 FL
degradation, indicating that increased proteosomal degra-
dation does not account for TSA effects on Notch3 FL
levels in human T-ALL cells. In fact, MG132 appeared to
further reduce Notch3 FL levels when combined with TSA
(Fig. 2c, d). Although further studies are needed to under-
stand the molecular basis of this interaction, it has been
reported that some proteasome inhibitors interact with
dynein and up-regulate endocytosis [31], thus modulating
the same biological process as HDAC6 inhibitors. Finally,
Notch signaling was not impaired in T-ALL cells following
treatment with an HDAC1-specific inhibitor, suggesting

Fig. 2 HDAC inhibition promotes Notch3 degradation through the
lysosomal pathway. a MOLT3 cells were treated with cyclohexymide
(CHX, 500 µM) or with CHX plus TSA (0.5 µM). At 1, 5, 8, and 16 h,
protein levels of c-Myb and Notch3 FL were analyzed. One repre-
sentative western blot is reported. b c-Myb (left) and Notch3 FL (right)
protein expression in three independent experiments was measured by
densitometric analysis and normalized to Actin (**P< 0.01). MOLT3
(c) or TALL1 cell lines (d) were treated with TSA plus MG132 (20
µM) or chloroquine (CHL) (20 µM) for 16 h followed by western blot
analysis. Numbers indicate results of densitometric analysis of Notch3
FL bands normalized to Actin. (e) MOLT3 were pre-treated with
ciliobrevin D (20 µM) for 24 h and then with vehicle or TSA (0.5 µM)
for 16 h. Cells were stained with PE anti-N3 antibody and analyzed by
FACS analysis. Statistically significant differences are indicated (**P
< 0.01, mean ± SD of three independent experiments)
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Fig. 3 TSA increases co-localization of Notch3 protein with LAMP2-
positive vesicles and increases the abundance of Notch3 FL in the
lysosomal compartment. MOLT3 cells were treated with DMSO or
TSA (0.5 µM) for 8 h and were subsequently immuno-stained for
Notch3 and LAMP2. n= 21 DMSO-treated cells and n= 24 TSA-
treated cells were analyzed by z-stack laser scanning microscopy using
a ×63 oil objective. Images were acquired with a resolution of 1024 ×
1024 pixels. a, b Representative optical slices taken in the apical
portion of the cells above the nucleus are shown. Scatterplots on the
right-hand portion of the panels indicate the fluorescence intensity of
Notch3 (X-axis) and LAMP2 (Y-axis) detected in each pixel. Detection
thresholds were set at 1000 for both channels. Region 1: Notch3 single
positive pixels. Region 2: LAMP2 single positive pixels. Region 3
double-positive (Notch3/LAMP2) pixels. c Co-localization coeffi-
cients were calculated in 21 mock-treated cells and 24 TSA-treated

cells using the Zeiss Histogram software tool. At least 15 optical slices
were analyzed for each cell. The values of the co-localization coeffi-
cients range between 0 and 1. Box plots reported medians, lower/upper
quartiles, and outliers of all co-localization coefficients obtained for
DMSO and TSA cells respectively. *** indicates P < 0.001
(Mann–Whitney test). d DND 41 cells were treated with DMSO or
TSA (0.5 µM) for 8 h and 1 × 108 pelleted cells underwent subcellular
fractionation. Protein extracts for each fraction were analyzed by
western blot. A representative blot is reported. WCL whole-cell lysate;
L lysosome; PM plasma membrane. e Histogram reports the quantified
ratio of lysosomal enriched Notch3 FL normalized to Notch3 FL
present on the plasma membrane. Expression of Notch3 FL in the
different fractions was normalized to each fraction-specific proteins.
Mean ± SD of two independent replicates (*P < 0.05, Student’s t-test)
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Fig. 4 Pharmacologic inhibition of HDAC6 lowers Notch3 FL protein
levels and signaling, triggering apoptosis of T-ALL cells. a T-ALL cell
lines (up) and PDX T-ALL cells (bottom) were treated in vitro for 16 h
with the HDAC6 inhibitor tubacin (TUB, 2 µM), HDAC1 inhibitor
(HDAC1i, 2 µM), or HDAC8 inhibitor (HDAC8i, 2 µM). Protein
levels were analyzed by western blot. b Tubacin reduces
Notch3 surface expression in T-ALL cells. DND 41 and MOLT3 cells
treated with tubacin (2 µM) or DMSO for 16 h were stained with PE
anti-human Notch3 (anti-N3 ab) and analyzed by flow cytometry. One
representative experiment of three performed is shown. Histogram

reports fluorescence mean intensity (FMI) ± SD of three independent
experiments (***P < 0.001). Expression levels of NOTCH3 (c) and
Notch target genes (d) in T-ALL cells treated as above were analyzed
by qRT-PCR (*P < 0.05, **P < 0.01, ***P < 0.001, mean ± SD of
three independent experiments). Expression data are normalized to
DMSO samples. Induction of apoptosis by HDACi in T-ALL cells (e)
and in PDX cells (f) was measured by flow cytometric analysis of
Annexin V staining (*P < 0.05, **P < 0.01, ***P < 0.001, mean ± SD
of three independent experiments)
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that the mechanism proposed by Palermo et al. did not
explain results obtained in our experiments.

Notably, shRNA against HDAC6 did not reduce Notch1
levels in MOLT3 cells (Suppl. Fig. 7). Although the reason
behind this remains unknown, given the similar molecular
structure of Notch1 and Notch3, this finding might under-
score differential modalities of degradation of Notch1
compared with Notch3 receptors. In this regard, it is
established that Notch1 undergoes ubiquitination and

subsequent degradation through the proteasome by FBW7/
Itch [32]. In contrast, Jia et al. [11] reported that Notch3 FL
and intracellular domain are mainly subjected to lysosome-
dependent degradation in various tumor cell lines. Thus,
alternative routes of intracellular degradation might be
involved in turnover of Notch1 and Notch3 receptors. In
any case, persisting Notch1 signaling in T-ALL cells
undergoing marked attenuation of Notch3 levels could
partially rescue expression of Notch target genes following

Fig. 5 Effects of HDAC6 silencing on Notch3 FL protein levels and
apoptosis of T-ALL cells. MOLT3 (top), TALL1 (middle), or SUPT11
(bottom) cells were transduced with lentiviral vectors encoding a
scramble shRNA or two different shHDAC6 vectors. qRT-PCR (a)
and western blot analysis (b) performed 96 h after transduction, con-
firmed the efficacy of HDAC6 silencing by both constructs. HDAC6
mRNA levels were normalized setting at one the shRNA sample. c
MOLT3 or TALL1 cells expressing shHDAC6 #1 or shHDAC6

#2 showed reduced Notch3 FL protein levels. Western blot analysis
was not performed in SUPT11 cells as it is known that these cells do
not express detectable Notch3 [19]. d HDAC6 silencing was asso-
ciated with increased apoptosis of T-ALL cells which express Notch3,
but not in SUPT11 cells. Apoptosis was analyzed by caspase 3–7
assay 5 days after transduction of cells with the indicated LV. Relative
Luminescence Units (RLU) are reported (*P < 0.05; **P < 0.01, ***P
< 0.001, mean ± SD, three independent experiments)
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HDAC6 silencing in T-ALL cells, and shield these cells
from the negative consequences of Notch signaling block-
ade, such as apoptosis or cell cycle arrest. Speculatively,
treatment with HDAC6i might exert stronger therapeutic
effects in tumor cells bearing Notch3 mutations in the
absence of Notch1 mutations, such as the TALL1 cell line.

In conclusion, our study disclosed that HDAC6 controls
trafficking and lysosomal degradation of Notch3, by a
mechanism likely involving acetylation of α-tubulin. Inhi-
bition of HDAC6 with selective drugs may thus represent a
new therapeutic approach for Notch3-addicted
malignancies.

Fig. 6 Pharmacologic or genetic HDAC6 inhibition is associated with
reduced Notch3 protein levels in vivo and impaired tumor growth. a
Outline of treatment. PD-TALL12 xenografted NOD/SCID mice were
randomized to receive either Givinostat (25 mg/kg) or vehicle i.p. and
sacrificed 16 h after treatment. b Leukemic cells were recovered from
the spleen of PD-TALL12 mice and Notch3 FL and acetylated α-
tubulin protein levels analyzed by WB. Numbers indicate results of
densitometric analysis of Notch3 FL bands normalized to Actin. c
Columns report the mean values ± SD of Notch3 to actin ratios (den-
sitometric analysis) in control and treated mice (***P < 0.001). d
TALL1 cells were serially transduced with a lentiviral vector encoding
the Firefly luciferase gene (fLUC) and with lentiviral vectors expres-
sing either a scramble shRNA or an HDAC6-specific shRNA

(shHDAC6 #1). Cells were i.v. injected in NOD/SCID mice (2.5 × 106

cells/mouse, n= 5 mice/group) and tumor growth was monitored by
optical imaging (e, f). Representative images (e) and quantitative
analysis (f) of luciferase activity at day 35 from TALL1 cells injection.
Statistically significant differences in average radiance in the two
groups of samples are indicated (*P < 0.05, mean ± SD, n= 5 mice/
group). g Flow cytometric analysis of CD7+ cells in the BM and
spleen of shRNA and shHDAC6#1 mice at sacrifice (41 days) (**P <
0.01, mean ± SD, n= 5 mice/group). h Apoptosis was analyzed by
caspase 3–7 assay in CD7+ cells sorted from the spleen of mice at
sacrifice (*P < 0.05, mean ± SD, n= 5 mice/group). i After sorting, T-
ALL cells obtained from different mice were pooled and Notch3 FL
protein levels analyzed by western blotting
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Materials and methods

In vivo experiments

PDX were established in NOD/SCID mice as previously
described [18]. PDX growth was monitored using flow
cytometry by testing the % of human CD5 and CD7 in
blood as reported elsewhere [18]. In a set of experiments,
PDX mice (at least 5 per group) were treated with Givi-
nostat (25 mg/kg) or vehicle (PEG400/H20) as a single dose
upon establishment of the leukemia and mice were eutha-
nized 16 h later.

In another set of experiments, TALL1 cells were serially
transduced with luciferase (fLUC) encoding lentiviral vec-
tors expressing either a HDAC6-specific shRNA or a
scramble shRNA as a control and their growth in mice was
monitored as previously described [33].

Cell lines

MOLT3 and Jurkat cell lines were purchased from ATCC
(Manassas, VA, USA); DND 41 and TALL1 cell lines were
kindly provided by academic colleagues; SUPT11 cell lines
were purchased from DSMZ (Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH, Braunschweig,
Germany); all these cell lines were cultured in complete
RPMI medium, as reported elsewhere [33]. Cells were
periodically tested for mycoplasma contamination. PDX
cells were cultured in MEMα medium (Thermo Fisher
Scientific) supplemented with 10% human heat inactivated
AB+ serum, 10% fetal calf serum (FCS), 1% Glutamax, 1%
penicillin/streptomycin and with 20 ng/ml FLT3 ligand,
10 ng/ml IL7, 50 ng/ml SCF (Peprotech, Rocky Hill, NJ,
USA), and 20 nM human insulin (Sigma Aldrich, Saint
Luis, MO, USA).

The following drugs were used: 0.5 µM TSA (Sigma
Aldrich), 500 µM cyclohexamide (Sigma Aldrich), 20 µM
MG132 (Sigma Aldrich), 20 µM CHL (Sigma Aldrich), 2
µM tubacin (Enzo Life Science, Farmingdale, NY), 100 nM
bafilomycin (Sigma Aldrich), 2 µM HDAC1i and HDAC8i
(Italfarmaco, Milan, Italy), 20 µM Ciliobrevin D. At plan-
ned time points, cells were harvested and processed for
assessment of cell viability, caspase assay, and RNA and
protein extraction.

Flow cytometry

Detection of PDX cells in mouse samples was carried out
with anti-human FITC-conjugated CD5 and PE-Cy5-
conjugated CD7 antibodies (Coulter, Fullerton, CA,
USA). Apoptosis was measured using Annexin V marker,
as reported [23]. Surface Notch3 levels were analyzed using
a PE anti-human Notch3 antibody (Biolegend, San Diego,

CA, USA). Samples were analyzed on a Beckman Coulter
EPICS-XL Flow Cytometer (Coulter) or a BD LSRII Flow
Cytometer (BD Biosciences, San Jose, CA, USA).

Transduction with lentiviral vectors

Lentiviral vectors encoding shRNA targeting human
HDAC6 (Sigma Aldrich; shHDAC6 #1:
TRCN0000314909; shHDAC6 #2: TRCN0000314976) or
the control shRNA vector were produced and titrated as
previously reported [34].

Reverse transcription-PCR and quantitative PCR
(qPCR)

Total RNA was purified by standard procedures as reported
elsewhere [23]. Quantitative PCRs of cDNAs were per-
formed with an ABI Prism 7900HT Sequencer (Thermo
Fisher Scientific), as described [23]. Primer sequences are
shown in Suppl. Table 1.

Immunoblot analysis

Western blot protocols have been previously published [23].
Immunoprobing was performed using the following anti-
bodies: mouse anti-acetylated α-tubulin (Santa Cruz Bio-
technologies, Dallas, TX, USA), rabbit anti-actin (Sigma
Aldrich), rabbit anti-Notch3 (Abcam, Cambridge, UK),
rabbit anti-Notch1 (Cell Signaling), mouse anti-c-Myb
(Thermo Fisher Scientific), rabbit anti-HDAC6 (Santa
Cruz Biotechnologies), rabbit anti-Histone H3 (Cell Sig-
naling or Abcam), rabbit anti-acetyl-Histone H3 (Lys 9)
(Cell Signaling), mouse anti-LAMP2 (Novus Biologicals,
Littleton, CO, USA), mouse anti-Pan-cadherin (Santa Cruz
Biotechnologies), mouse anti-GAPDH (Santa Cruz Bio-
technologies), rabbit anti-VDAC (Cell Signaling) followed
by incubation with a horseradish peroxidase-conjugated
anti-rabbit or anti-mouse secondary Ab (Perkin Elmer,
Waltham, MA, USA). Antigens were identified using
Western Lightning plus ECL (Perkin Elmer) or ECL Select
Western Blotting detection (GE Health Care) reagents and
detected by UVITec Alliance LD2 (UVITec Cambridge,
UK) imaging system.

Immunofluorescence analysis

The protocol for immunofluorescence analysis has been
reported elsewhere [35]. Primary antibodies used included
anti-Notch3 mAb (1:100; Abcam) and anti-LAMP2 mAb
(1:150; Novus Biologicals, Littleton, CO, USA), both
incubated overnight at 4 °C. Confocal microscopy was
carried out on a Zeiss LSM 510 microscope (Zeiss, Jena,
Germany) using a ×63 oil immersion objective (NA= 1.4).
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n= 21 DMSO-treated cells and n= 24 TSA-treated cells
were analyzed by z-stack scanning, with an optical slice of
1 μm and average of 15 optical slices/cell. Images were
acquired with a resolution of 1024 × 1024 pixels. The co-
localization coefficient (which indicates the extent of loca-
lization of Notch3 protein in LAMP2-positive vesicles) was
calculated, using the Zeiss Histogram software tool, as the
ratio between the Notch3/LAMP2 double-positive pixels
and total number of Notch3-positive pixels.

Subcellular fractionation

Subcellular fractionation was performed by differential
centrifugation in isotonic sucrose buffer with minor mod-
ification to previously described protocols [36]. Briefly, 1 ×
108 pelleted cells were resuspended in 1 ml of ice-cold
sucrose buffer (0.25 M sucrose in 10 mM Tris-HCl pH 7.4
and Protease Inhibitor Cocktail—Roche Diagnostic) and
homogenized for 4 min (10 s ON–10 s OFF) using Kimble
Kontes Pellet Pestle (Thermo Fisher Scientific). Homo-
genized cells were centrifuged at 4 °C at increasing speed to
isolate specific cellular compartments, as schematized in
Suppl. Figure 5. Pellets were resuspended in sucrose buffer
and proteins were quantified using Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific). Twenty-five micro-
grams of protein extracts for each fraction were then solu-
bilized with 3× Laemmli Sample Buffer with 0.1M DTT,
denaturated and analyzed by western blot using 7.5% or
4–15% polyacrylamide gels (BioRad, Munich, Germany).
LAMP2, Pan-cadherin, GAPDH, VDAC, Histone H3, and
β-tubulin were used as specific markers for lysosomes,
plasma membranes, cytosol, mitochondria, nuclei, and total
fractions, respectively.

Proliferation assay

Proliferation of T-ALL cells after HDAC inhibition was
measured by the CellTiter 96® AQueous One Solution Cell
Proliferation Assay (Promega, Madison, WI, USA).

Caspase activity assay

Caspase 3–7 activity was evaluated with the CaspaseGlo 3/
7 assay kit according to the manufacturer’s recommenda-
tions (Promega).

Statistical analysis

Results were expressed as mean ± standard deviation (SD).
Statistical analysis was performed using Student’s t-test or
the non-parametric Mann–Whitney test, depending on the
distribution of values. Differences were considered statisti-
cally significant when P < 0.05.
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Abstract

Objectives: To analyze p53 mutations and gene expression of p53, ∆40p53, and ∆133p53 isoforms in renal cell cancer (RCC) tissues
and normal adjacent tissue (NAT) and to associate them to clinical features and outcome.

Patients and methods: Forty-one randomly selected patients, with primary, previously untreated RCC, with complete clinicopathohisto-
logical data were analyzed. NAT samples were available for 37 cases. Expression of p53, ∆40p53 and ∆133p53 was determined using
RT-qPCR. A functional yeast-based assay was performed to analyze p53 mutations.

Results: More than half (56.1%) of patients harbored functional p53 mutations, and they were significantly younger than those with wild
type (WT) p53 (P = 0.032). Expression of p53, ∆40p53, and ∆133p53 was upregulated in mutant (MT) p53 RCC compared to WT p53 RCC
tissues. However, there was no difference in expression of these isoforms between MT p53 RCC tissues and NAT. Expression of ∆133p53
was significantly downregulated in WT p53 tissues compared to NAT (P = 0.006). Patients that harbored functional p53 mutation had better
overall survival (hazard ratio 4.32, 95% confidence interval 1.46−18.82, P = 0.006). Multivariate analysis demonstrated that tumor stage
and p53 mutation might be used as independent prognostic marker for overall survival in RCC patients.

Conclusions: Our findings support the specific events in the carcinogenesis of RCC. p53 isoforms can be differentially expressed
depending on p53 mutational status. ! 2019 Elsevier Inc. All rights reserved.

Keywords: p53; p53 isoforms; Renal cell cancer; p53 mutation

Abbreviation: RCC, renal cell cancer; NAT, normal adjacent tissue; WT p53, wild-type p53; MT p53, mutant p53; OS, overall survival, RT-qPCR, reverse
transcription quantitative polymerase chain reaction; RCF, red colony frequency; TBP, TATA binding protein; FASAY, functional analysis of separate allele in yeast.

1. Introduction

Renal cell cancer (RCC) represents 2% to 3% of all can-
cers, with the highest incidence in Western countries [1,2].
Over the last 2 decades the incidence of RCC is increased,
mostly due to increased detection of tumors by ultrasound

and computed tomography [3]. The Tumor, Nodes, Metas-
tasis (TNM) staging system is used to assess the anatomic
extent of disease [4]. The most common histologic subtype
is clear cell RCC which is believed to account for 80% to
90% of all RCCs [4]. Despite of all available prognostic
markers, it seems that RCC follows an unpredictable dis-
ease course [5]. To improve the prognosis of the disease
course, a better understanding of critical genes associated
with disease progression is required.

The p53 tumor suppressor protein is critical in the con-
trol of cell growth and the maintenance of genomic
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stability [6]. In contrast to other tumors, p53 is rarely
mutated in RCCs suggesting that p53 function might be
suppressed by other mechanisms [7−9]. p53 encodes 12
different isoforms that differ in their N- and C-terminus
due to alternative splicing, promotor or translation initia-
tion site [10]. The sum of their activities determines the
p53-mediated cell response in a given tissue [6,11−13].
They have structural differences, different subcellular
localization, they exert different effects on p53-mediated
gene expression while some isoforms exhibit some func-
tions independent of p53 [12,14−16]. The ∆40p53 isoform
lacks the first 39 amino acids and has lost the first transac-
tivating domain but still retains the second one and the
entire DNA binding domain. It has reduced ability to acti-
vate transcription of p53 mediated genes by itself, but it
can form complexes with p53 and modulate p53-depen-
dent gene expression in a positive and negative manner
depending on its relative levels and cellular context
[10,17]. ∆133p53 and ∆160p53 isoforms, produced from
internal promoter P2, lack the first 132 and 159 amino
acids, respectively, and have lost both transactivating
domains and a part of the first conserved cysteine box of
the DNA binding domain. ∆133p53 forms heterocomplex
with p53 and hence modulates gene expression in p53-
independent way [13].

The expression of p53 isoforms has been shown to be
dysregulated in several human cancer types, so we assume
that in RCC p53 isoforms might participate in p53 inactiva-
tion, in tumor initiation and progression. The aim of this
study was to analyze p53 mutation status in RCC tissues
and mRNA expression of p53, ∆40p53, and ∆133p53 iso-
forms in RCC tissues and normal adjacent tissues (NAT),
and to associate this information with clinical features and
outcome.

2. Patients and methods

2.1. Patients’ data

We prospectively analyzed 41 randomly selected patients
with primary, previously untreated RCC, with complete clin-
icopathohistological data. Inclusion criteria were as fol-
lowed: (1) histologically proven RCC (all cell types of RCC
are eligible), (2) patients with all stages of disease according
to TNM classification system, (3) patients were older than
18 years, (4) obtained written informed consent for the stor-
age and use of their tissue and clinical information in this
study. Thirty-seven patients underwent radical (90.2%), and
4 patients partial nephrectomy (9.8%) at the University Hos-
pital Centre Zagreb, Croatia, from November 2010 until
October 2013. Four patients (9.7%) had metastatic disease at
the beginning of the study and 13 patients (31.7%) had
locally advanced RCC defined by TNM classification
(T3/T4, N0, M0). This study complied with the Helsinki
Declaration and was approved by the ethical committee
from the University Hospital Centre Zagreb, Zagreb. Tissue

samples were collected immediately after nephrectomy and
evaluated by a pathologist; areas of histologically normal
adjacent renal cell tissue were available for 37 cases. All
clinical information was collected prospectively from hospi-
tal information system and anonymized.

2.2. RNA extraction and RT-qPCR

Total RNA was extracted from 50 to 100 mg of tissue
using TRIzol reagent (Thermo Fisher Scientific, USA) and
subsequent RNA clean-up through RNeasy Mini Kit
(Qiagen, USA) including DNase I treatment according to
the manufacturer’s instructions. Total RNA was quantified
and purity assessed using the BioSpec-nano Micro-volume
UV-Vis Spectrophotometer (Shimadzu, Japan). RNA was
reversely transcribed using High Capacity cDNA Reverse
Transcription Kit (Thermo Fisher Scientific, USA) accord-
ing to the manufacturer’s instructions.

Absolute copy numbers were determined using the stan-
dard curve method by qPCR using the ABI Prism 7300
Detection System (Thermo Fisher Scientific). Reactions
were performed in a final volume of 25 ml using the
TaqMan" Universal PCR Master Mix (Thermo Fisher Sci-
entific) under standard thermal cycling conditions (50˚C for
2 min and 95˚C for 10 min followed by 50 cycles at 95˚C
for 15 s and 60˚C for 1 min). Primers and probes sequences
(Metabion, Germany) are given in Supplementary Table
S1. The absolute copy numbers were calculated from stan-
dard curves generated from serial dilutions of linearized
plasmid construct carrying the amplicon with known con-
centration to allow copy numbers determination, and nor-
malized to the average levels of housekeeping gene TATA
box-binding protein (TBP). Reactions were conducted in
duplicates.

2.3. Functional analysis of separate allele in yeast
(FASAY)

We have adapted, and ad hoc modified the well-estab-
lished FASAY assay [18], also known as Gap Repair Assay
[19], in order to screen 41 patients for TP53 status. Briefly,
cDNA obtained from RCC patients was used as template for
a two-step PCR approach to amplify the TP53 gene. The
first-step PCR was performed using 25 mg of cDNA, the Go-
Taq G2 Green Master Mix (Promega, USA), p53-Ex2.1-
Fw (GTCACTGCCATGGAGGAGCCGCA) and p53-P4
(ACCCTTTTTGGACTTCAGGTGGCTGGAGTG) primers
(Eurofins Genomics, Germany). PCR products were diluted
1:400, and used for the second-step nested PCR using
again Go-Taq G2 Green Master Mix but p53-P3 (ATTT-
GATGCTGTCCCCGGACGATATTGAAC) and p53-Ex10-
Rv (CTTCCCAGCCTGGGCATCCTTG) more internal pri-
mers. cDNAs from MCF7 (WT p53) and MDA-MB-231
(only expressing the R280K p53 mutant allele) cells were
used as negative and positive controls, respectively.
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Five or 10 ml of the second-step nested PCR product was
added to 1.5 ml of double digested pRDI22 yeast expression
plasmid (CEN/ARS, LEU2) and cotransformed in yeast using
the Lithium acetate method [20] in the yeast reporter strain
yIG397 that contains the ADE2 reporter gene under the con-
trol of a p53 Responsive Element. LEU2+ yeast colonies were
selected on synthetic plates lacking leucine and containing
limiting amount of adenine (5 mg/l). Transformant colonies
were white in case of expression of WT p53, whereas MT p53
colonies appeared red. Colonies were counted, and red colony
frequency (RCF) was calculated. Given the overall higher
amount of background red colonies due to the two-step PCR
approach (about 15−20%), samples with an RCF higher than
60% were considered heterozygous for TP53. Samples with
an RCF below 40% were scored as homozygous wild-type,
while samples with almost all red colonies (RCF = 90−100%)
were considered homozygous/hemizygous TP53 mutants.
Lastly, samples with an RCF score between 40% and 60%
were uncertain and were re-analyzed for a more accurate
screening. However, heterozygous samples were considered
mutant due to the fact that heterozygous state is often transient
and the inactivation of the wild-type allele is likely to happen.
Moreover, many MT p53 proteins gain oncogenic activity
which overcomes the tumor suppressor activity of the remain-
ing WT p53 allele [21].

2.4. Statistical analysis

Normality of data was tested using D’Agostino and
Pearson Omnibus test. Continuous variables were log trans-
formed prior to analyses to distribute the data normally.
ANOVA and Student’s t-test were used to determine the
difference of p53 isoforms mRNA expression between vari-
ous subgroups. Spearman’s correlation coefficient was used
to calculate the correlation among p53 isoforms’ expres-
sion. Isoforms’ expression was dichotomized into “low”
and “high” by a median value. The relationship between
p53 isoforms’ expression and p53 mutation status to
clinical parameters was interrogated using chi-square test.
Overall survival (OS) was determined with Kaplan-Meier
method and log-rank test, while Cox proportional-hazards
regression model was used for multivariate analysis. Statis-
tical analyses were performed using MedCalc for Windows,
version 17.6 (MedCalc Software, Belgium). Two-tailed
P < 0.05 was considered to be significant.

3. Results

3.1. p53 mutation status in RCC patients

For the analysis of p53 mutation status we used the
FASAY that can distinguish inactivating mutations from
functionally silent mutations. Table 1 summarizes the clini-
copathological features of the cohort, as well as the results
of p53 mutation analysis. More than half of the patients
(56.1 %) harbored nonfunctional p53 mutations (including

both homozygous [36.6%] and heterozygous [19.5%]
mutants). Of note, p53 mutant cancers were associated
with younger age at diagnosis (median 60 for MT p53 vs.
69 years for WT p53, P = 0.032).

Table 1

Summary of the patient cohort and p53 status data.

Variable Number of patients in each

category by p53 status (%)

Total Wild-type

p53

Mutant

p53

P value*

Tumors, n (%) 41 (100) 18 (43.9) 23(56.1)

Gender 0.951
Male 23 (56.1) 10 13

Female 18 (43.9) 8 10

Age (years) 0.032
Median = 64
Range = 31−82
<60 15 (36.6) 4 11

60−70 14 (34.1) 5 9

>70 12 (29.3) 9 3
Presence of symptoms, n (%) 0.391

Asymptomatic 18 (43.9) 9 9

Abdominal pain 14 (34.1) 7 7
Hematuria 7 (17.1) 1 6

Symptoms of metastatic

disease

2 (4.9) 1 1

Histological subtype, n (%) 0.577
Clear cell 35 (85.4) 16 19

Non-clear cell 6 (14.6) 2 4

Fuhrman grade, n (%) 0.431

1 0 0 0
2 9 (22.0) 5 4

3 17 (41.5) 5 12

4 12 (29.3) 6 6
Not available 3 (7.3) 2 1

Tumor size (cm) 0.301

Median = 7

Range = 2−15
≤7 cm 19 (46.3) 10 9

>7 cm 22 (53.7) 8 14

Renal capsular invasion 0.453

Negative 27 (65.9) 13 14
Positive 14 (34.1) 5 9

Venous invasion 0.051

Negative 31 (79.5) 16 15
Positive 8 (20.5) 1 7

Perirenal fat invasion 0.793

Negative 29 (74.4) 13 16

Positive 10 (25.6) 4 6
Lymph node metastasis 0.134

Negative 31 (88.6) 11 20

Positive 4 (11.4) 3 1

Distant metastases 0.798
Negative 37 (90.2) 16 21

Positive 4 (9.8) 2 2

Tumor stage, n (%) 0.505

1 21 (51.2) 10 11
2 3 (7.3) 1 2

3 12 (29.3) 4 8

4 4 (9.8) 3 1

*x2 test. Significant P values are shown in bold.
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3.2. Low expression of p53 isoforms in RCC

To determine gene expression of p53 isoforms in RCC, the
mRNA expression of p53, D40p53 and D133p53 was ana-
lyzed by RT-qPCR in 41 tumors and 37 matched NATs. As
shown in Supplement Table 2, D40p53 and D133p53 had
remarkably weak expression compared to p53 − the p53
median expression was 8.85 times higher than the median

expression of D40p53 and 16.32 times higher than the median
expression of D133p53 isoform. Also, we observed signifi-
cantly lower D133p53 expression in RCC tissues compared to
NATs (P = 0.002) (Fig. 1). In addition, the expression of each
isoform within NATs and cancer tissues regardless of p53
mutation status was highly associated with one another
(Spearman’s rank correlation coefficients ranged from 0.700
to 0.886, all P values < 0.05).

Table 2

The relationship of p53 isoforms expression and clinical features.

Variable p53 P value* D40p53 P value* D133p53 P value*

Low
expression

High
expression

Low
expression

High
expression

Low
expression

High
expression

Gender 0.445 0.891 0.448
Male 13 10 11 12 13 10

Female 8 10 9 9 8 10

Age (years) 0.145 0.061 0.032
<60 6 9 7 8 5 10
60−70 6 8 4 10 7 7

>70 9 3 9 3 9 3

Symptoms 0.269 0.445 0.268
Absent 11 7 10 8 11 7

Present 10 13 10 13 10 13

Histologic subtype 0.945 0.349 0.349

Clear cell 18 17 16 19 19 16
Non-clear cell 3 3 4 2 2 4

Fuhrman grade 0.302 0.159 0.510

1 0 0 0 0 0 0

2 6 3 6 3 5 4
3 9 8 8 9 9 8

4 4 8 3 9 5 7

Tumor size 0.044 0.021 0.160

≤7 cm 13 6 13 6 12 7
>7 cm 8 14 7 15 9 13

Renal capsular invasion 0.040 0.013 0.158

Negative 17 10 17 10 16 11
Positive 4 10 3 11 5 9

Venous invasion 0.937 0.587 0.936

Negative 15 16 15 16 15 16

Positive 4 4 3 5 4 4
Perirenal fat invasion 0.176 0.057 0.528

Negative 16 13 16 13 15 14

Positive 3 7 2 8 4 6

Lymph node metastasis 0.269 0.857 0.268
Negative 14 17 14 17 14 17

Positive 3 1 2 2 3 1

Distant metastases 0.276 0.322 0.275
Negative 20 17 19 18 20 17

Positive 1 3 1 3 1 3

Stage 0.573 0.572 0.893

1 12 9 12 9 11 10
2 1 2 1 2 1 2

3 7 5 5 7 7 5

4 1 3 1 3 2 2

p53 status 0.003 0.009 0.0003
WT 14 4 13 5 15 3

MT 7 16 7 16 6 17

*x2 test. Significant P values are shown in bold.
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3.3. The expression of p53 isoforms in RCC is associated
with p53 mutational status

We have further analyzed whether the expression of p53
isoforms is associated with p53 mutation status in RCC
tissues (Supplementary Table S2). Cancer tissues that
harbored p53 mutations had a significantly higher expres-
sion of p53, D40p53, and particularly D133p53 isoforms
(P = 0.0009, P = 0.004 and P = 0.0008, respectively) com-
pared to WT p53 tumors (Fig. 2A.). When compared with
NATs separately in WT p53 and MT p53 RCCs, only in
WT p53 cancer tissues D133p53 expression was signifi-
cantly lower (P = 0.006) (Fig. 2B). We detected no signifi-
cant alteration of isoform expression in MT p53 tumors
compared to NATs (Fig. 2C).

3.4. The association between p53 isoforms expression and
clinical features

Table 2 summarizes the association between p53 iso-
forms’ expression and clinical features. There was no sig-
nificant difference in the expression of either p53, ∆40p53
or ∆133p53 in relation to gender, presence of symptoms,

Fuhrman grade, histologic type, lymph node metastases,
distant metastases, and tumor stage according to TNM clas-
sification system. However, higher mRNA expression of
p53 and ∆40p53 was associated with larger tumor size
(P = 0.044 and P = 0.021, respectively) and more often
renal capsular invasion (P = 0.040 and P = 0.013, respec-
tively). Younger patients had higher expression of ∆133p53
isoform (P = 0.032).

3.5. The association of p53 isoforms expression and p53
mutational status with OS

Next, we have investigated the connection between p53
isoform expression and OS. Median follow-up was 45
months (range 2−72 months). The median values for p53,
D40p53, and D133p53 were used to fractionate samples
into 2 groups, a high-expressing group, and a low-express-
ing group. There was no difference in OS regarding the
level of p53, D40p53, and D133p53 expression (Fig. 3).
However, we observed difference in OS of patients harbor-
ing WT p53 compared to those with p53 mutations (hazard
ratio 4.32, 95% confidence interval [CI] 1.46−18.82,
P = 0.006) (Fig. 3D). A median OS of 27 months (95% CI:

Fig. 1. Expression of p53, D40p53, and D133p53 isoforms in RCC tissues and NAT samples. Absolute quantification of p53, D40p53, and D133p53 by
RT−qPCR in 41 tumors and 37 NATs. Results are shown as absolute copy numbers, expressed per standard input total RNA normalized to the average levels

of housekeeping gene TATA box-binding protein (TBP). Values represent the median and interquartile range. Significant P values are shown in bold.
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Fig. 2. Expression of p53, D40p53, and D133p53 isoforms in renal cell cancer tissues in association with p53 mutational status. Absolute quantification of

p53, D40p53, and D133p53 isoforms by RT-qPCR in (A) 41 RCC tissues and (B,C) 37 matched RCC tissues and NAT in (B) wild type p53 tumors and (C)
mutant p53 tumors. Results are shown as absolute copy numbers, expressed per standard input total RNA normalized to the average levels of housekeeping

gene TBP. t-test was used for testing difference between 2 groups. Values represent median and interquartile range. Significant P values are shown in bold.
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13.0−56.8 months) was observed in patients with WT p53
while it was 53 months (95% CI: 37.4−60 months) in
patients with MT p53. In the univariate analysis, Fuhrman
grade, tumor stage, tumor size, and p53 mutation status
were statistically significant prognostic markers for OS
(Table 3). In the multivariate model, only tumor stage and
p53 mutation status can be considered as independent prog-
nostic marker (Table 3).

4. Discussion

The p53 regulates different cellular responses to stress
including DNA repair, cell cycle arrest, proliferation, senes-
cence, differentiation, cell migration, and cell death, hence
maintaining cell integrity. Therefore, p53 mutations, the
most common genetic changes in human cancers, often
are associated with worse disease outcome. Of note, p53
isoforms have distinct and independent roles in cancer. Sev-
eral clinical studies have reported that p53 isoforms are
abnormally expressed in human cancers suggesting that
they could contribute to cancer formation and progression
[22,23]. Two independent studies have determined the
expression of p53 isoforms in RCC tissues so far, using
semiquantitative analysis of p53 isoforms levels. However,
in both studies, p53 isoforms’ expression has not been asso-
ciated with clinical features and outcome [24,25]. Also,
many studies have analyzed p53 mutation status using
immunostaining and sequencing methods, but none of them
examined the functional mutation status of p53 in RCC tis-
sues [26,27]. The aim of this study was to determine the
expression of p53, ∆40p53, and ∆133p53 isoforms in RCC
and NATs, to determine the frequency of functional p53
mutations, and to associate the differential expression of
isoforms and p53 mutational status with clinical features
and outcome.

To this aim, we have determined the p53 status in our
tumor collection using FASAY and 56.1% of tumors were
identified as bearing a mutant p53 protein (either one
or both alleles were mutated). The possible explanation
for such a high frequency is the fact that most of the other
studies have used immunochemical methods to detect p53
mutations [26,27]. In these studies, high-level expression
of p53 is used as a surrogate mutation indicator due to
abnormally extended half-live of mutant p53. However, in
10% to 20% of mutant p53 cases, tumors may harbor non-
sense (truncating) mutations, which can lead to unstable
mutant proteins, that will be expressed at low levels and
falsely considered as WT p53 [9]. Furthermore, the major-
ity of studies analyzed the central core domain of the gene
(exons 4-8 or 5-8), the most common site of p53 muta-
tions. However, approximately 15% of p53 mutations
occur outside exons 5 through 8, that is in exons 4, 9, and
10, and therefore, it is likely that there will be some under-
estimation of p53 mutations in these studies [9].

The results of our study provide information about
mRNA expression of p53 and N-truncated isoforms in RCC

Fig. 3. Kaplan-Meier plots depicting the impact of p53 isoforms’ expres-
sion and p53 mutational status on OS of patients with renal cell cancer.

High (full line) or low (dotted line) expression of p53 (A), D40p53 (B) and

D133p53 (C) in 41 cases. Analysis of cases with MT (dotted line) or WT

(full line) in 41 cases (D). The log rank (Mantel-Cox) test P values are
shown. Tick marks indicate censored cases.
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and NATs by RT-qPCR. Full-length p53 was the most
expressed isoform in RCC tissues, while D40p53 and
D133p53 were notably less expressed. This finding is con-
sistent with study of Marabese and co-workers who had
found low levels of D40p53 and D133p53 isoforms in ovar-
ian carcinoma compared to p53 expression [28]. Also, in
squamous cell carcinoma of the head and neck, D133p53
expression is lower compared to transactivating full-length
isoforms of p53 (including p53b) [29].

We did not observe any significant difference in p53
and D40p53 expression in cancer tissues compared to
NATs, while D133p53 isoform was down-regulated in
cancer tissues. The lack of overexpression of p53 in RCC
could be explained on the basis of the study conducted
with transgenic mice exposed to ionizing radiation, which
have revealed that p53 is not necessarily up-regulated in
kidney tissues in response to stress and is less effective in
kidney than in other tissues [30]. Moreover, it is well

Table 3

Cox regression analysis of p53 isoform expression, TP53 status, and clinopathological parameters.

Variable (n) Univariate Multivariateb

HR (95% CI) P valuea HR (95% CI) P valuec

Gender

Male Reference

Female 0.458 (0.14−1.46) 0.188 / /
Age (years)

<60 Reference

60−70 1.20 (0.30−4.80) 0.799 / /

>70 2.34 (0.66−8.33) 0.188
Presence of symptoms

Asymptomatic Reference

Symptomatic 1.66 (0.56−4.98) 0.360 / /
Histological subtype

Clear cell Reference

Non-clear cell 1.09 (0.24−4.90) 0.907 / /

Fuhrman grade
2 and 3 Reference

4 5.54 (1.87−16.41) 0.002 NS NS

Tumor size (cm)

≤7 cm Reference
>7 cm 4.38 (1.21−15.81) 0.024 NS NS

Renal capsular invasion

Negative Reference

Positive 2.85 (0.99−8.21) 0.052 / /
Venous invasion

Negative Reference

Positive 1.16 (0.32−4.16) 0.822 / /
Perirenal fat invasion

Negative Reference

Positive 2.01 (0.67−6.03) 0.213 / /

Tumor stage
Stage 1 and 2 Reference

Stage 3 and 4 6.55 (2.02−21.20) 0.001 7.14 (1.65−30.83) 0.008
p53 status

WT Reference
MT 0.23 (0.07−0.73) 0.012 0.12 (0.03−0.455) 0.002

p53

Low expression Reference
High expression 0.79 (0.27−2.28) 0.663 / /

∆40p53
Low expression Reference

High expression 1 (0.35−2.86) 0.999 / /
∆133p53

Low expression Reference

High expression 0.56 (0.19−1.69) 0.306 / /

a Variables with P value < 0.05 obtained from univariate analyses were used for multivariate analysis.
bMultivariate analysis using Cox proportional hazards regression, stepwise method.
c Significant P value < 0.05 for multivariate analysis. Reference is the parameter used as baseline for comparison. /, not included in multivariate analysis;

CI, confidence interval; HR, hazard ratio; MT, mutated; NS, not significant; WT; wild type.
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accepted that full-length p53 expression is generally not
modulated at the mRNA level, but rather at protein levels,
often due to an array of several post-translational modifica-
tions. In contrast to this observation, another RCC study
detected up-regulation of TAp53 isoforms (p53, p53b, and
p53ɣ), but no significant alteration of D133p53 expression
was detected in different tumor stages as compared to normal
renal tissue [24]. However, down-regulation of D133p53b
and ɣ was found only in early tumor phases [24]. In another
RCC study, Song and collaborators observed the significant
up-regulation of p53b isoform in tumor samples which cor-
related with tumor stage. Again, the other isoforms were
expressed at different levels in both tumor and normal tissue
but without statistical significance [25]. Both studies used
semiquantitative analysis of p53 isoforms expression and did
not analyses p53 mutation status.

We have associated the expression of p53 isoforms with
p53 mutation status and found that the expression of all
examined isoforms was higher in tumor tissues harboring
mutant p53. In RCC tissues with WT p53 we have observed
down-regulation of ∆133p53 isoform when compared to
NATs. In tumors harboring MT p53 down-regulation of
∆133p53 was not observed.

As mentioned before, p53 and ∆40p53 are transcribed
from P1 promoter, while ∆133p53 expression is driven
by alternative promoter P2 [22], which can be activated
by p53 and suppressed by ∆40p53 through suppression of
p53 functions [31]. It seems that in the cases that retained
WT p53, the feedback regulatory loop might be altered,
resulting in lower p53 activity on P2 promoter, and down-
regulation of ∆133p53 isoforms. Based on these results,
we speculate that dysregulation of p53 isoforms could
contribute to cancer formation in WT p53 tissues. In addi-
tion, there was a trend of higher OS in patients with higher
expression levels of p53 and ∆133p53 isoforms (Fig. 3).
Analysis of larger sample size might validate p53 isoform
expression level as a prognostic biomarker in RCC
patients.

One of the clinically most interesting findings in this
study is the association of p53 mutant status with OS.
Patients that harbored p53 mutation tumors had longer OS
compared with patients with WT p53 tumors. This finding
could be explained by the fact that patients with MT p53
tumors were significantly younger and might have less
aggressive tumors (lower tumor stage) than those with WT
p53 tumors since higher Fuhrman grade and tumor stage
also have negative impact on OS (Fig. 3D, Table 3). Also,
they had higher levels of p53, ∆40p53, and ∆133p53 iso-
form expression in RCC tissues and no difference in expres-
sion of isoforms in RCCs compared to NATs, suggesting
that patients that have lower and dysregulated expression of
p53 isoforms could have unfavorable clinical outcome even
though they retained WT p53.

These observations confirm the result of a previous study
showing that silent p53 mutations or mutations in noncoding
regions are associated with cancer formation probably

because they lead to unbalanced p53 isoforms expression
despite expressing WT p53 [12]. Altogether, our results sug-
gest that the prognostic value of isoforms depend on p53
mutation status and the cancer type.

The results of our research reveal specific combinations
of isoforms expression and p53 mutation status providing
additional support for specific events in kidney carcinogene-
sis. These findings suggest that p53 function can be lost
either by specific p53 isoforms’ expression or by mutations.

Our study has limitations; we analyzed RNA expres-
sion rather than protein levels on a modest number of
samples. At present, RT-qPCR represents the best
method to specifically detect p53 isoforms expression
due to the lack of available isoform-specific antibodies.
Using RT-qPCR we have focused to distinguish the
expression level of N-terminal variants. However, we
were not able to differentiate specifically all p53 iso-
forms due to excessively long amplicons for RT-qPCR
and complex gene organization.

5. Conclusions

This study provides critical information on the mRNA
expression level of N-terminal isoforms in RCC in relation
to p53 functional mutation status. Tumors with WT p53
had lower expression of p53, ∆40p53, and ∆133p53 iso-
forms comparing to MT p53 harboring tumors, and down-
regulation of ∆133p53 isoforms comparing to NAT. Our
results underline the importance of considering both p53
mutational status and p53 isoforms’ expression in RCC
clinical studies. Further studies are needed to determine the
role of p53 isoform network in RCC carcinogenesis.
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