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Abstract

In the context of multicriteria decision making, the ordered weighted averaging (OWA)

functions play a crucial role in aggregating multiple criteria evaluations into an overall

assessment to support decision makers reaching a decision. The determination of OWA

weights is, therefore, an important task in this process. Solving real-life problems with a

large number of OWA weights, however, can be very challenging and time consuming. In

this research we recall that OWA functions correspond to the Choquet integrals associ-

ated with symmetric capacities. The problem of defining all Choquet capacities on a set

of n criteria requires 2n real coefficients. Grabisch introduced the k-additive framework

to reduce the exponential computational burden. We review the binomial decomposition

framework with a constraint on k-additivity whereby OWA functions can be expressed

as linear combinations of the first k binomial OWA functions and the associated coeffi-

cients of the binomial decomposition framework. In particular, we investigate the role

of k-additivity in two particular cases of the binomial decomposition of OWA functions,

the 2-additive and 3-additive cases. We identify the relationship between OWA weights

and the associated coefficients of the binomial decomposition of OWA functions. Anal-

ogously, this relationship is also studied for two well-known parametric families of OWA

functions, namely the S-Gini and Lorenzen welfare functions. Finally, we propose a

new approach to determine OWA weights in large-scale problems by using the binomial

decomposition of OWA functions with natural constraints on k-additivity to control the

complexity of the OWA weight distributions.

Keywords: Ordered weighted averaging, OWA weights determination, Choquet inte-

grals, symmetric capacities, binomial decomposition, k-additivity, large-scale optimiza-

tion problems.
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Cerdá, Cristina Mihalciuc, Hanh Le and Tin Phan for their prompt advice and support

in some moments of trouble.

In particular, I wish to express my sincere thanks to the Mariello family for their

unconditional love, and their constant support to my study and my life. Special thanks

to Andrea Mariello for always being present in my difficult moments and giving me all

his supports during the last stages of my Ph.D. His academic discussions and advice

have always helped me to overcome some difficulties in my work.

iii



iv

Lastly, I would like to thank my parents and the family of my sister for their faithful

trust in every single path I have taken in my life. They have always offered me their

everlasting love and encouragement throughout the duration of my doctoral study.



v

Publications

1. Bortot, S., Fedrizzi, M., Fedrizzi, M., Marques Pereira, R.A., Nguyen, T.H.:

The soft consensus model in the multidistance framework. In: Berger-Vachon, C.,

Gil-Lafuente, A.M., Kacprzyk, J., Kondratenko, Y., Merigó, J.M., Morabito, C.F.
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Chapter 1

Introduction

The central question in this thesis is the role of ordered weighted averaging (OWA) func-

tions in aggregation and optimization. Some research problems based on OWA functions

remain a challenge for researchers. In particular, the role of k-additivity in the bino-

mial decomposition of OWA functions requires further investigation. The relationship

between OWA weights and the associated coefficients of the binomial decomposition

framework must be extensively studied. In addition, we consider a research problem

related to the determination of OWA weights in high dimensions, which can lead to a

high computational cost. Our study aims at solving this problem by using the bino-

mial decomposition framework with a constraint on k-additivity to equivalently express

OWA functions in terms of the first k binomial OWA functions and the corresponding

coefficients. This framework allows us to transform the original problem, expressed in

terms of OWA weights, into a problem in which the weights are substituted by a new set

of coefficients, thus leading to the dimensionality reduction in terms of the number of

variables in the original problem. In the following, we present our research motivations

and our proposed solutions in more detail. Finally, the introduction is closed with the

outline of our thesis.

1.1 The context

In many decision making problems, decision makers have to provide their evaluations

for a number of alternatives with respect to a set of criteria. The evaluation for each

alternative is a process that combines multiple values according to a set of criteria and

produces an overall score to support the choices of decision makers. This score can

be obtained by using aggregation functions. Among different classes of aggregation

functions, the ordered weighted averaging (OWA) functions introduced by Yager [115]

2



Chapter 1. Introduction 3

are one of the most effective methods for aggregating data due to their flexible assignment

of weights to the values of the input arguments through a reordering step. This step

assigns a weight to the ordered value of an argument, instead of attaching a weight

to a specific criterion or to the source where the value comes from. OWA functions

are, therefore, symmetric regardless of the initial order of their input arguments. In

fact, OWA weights are considered special instances of Choquet symmetric capacities

[36, 50]. We recall that the problem of defining all Choquet capacities on a set of n

elements requires 2n coefficients. Grabisch [60, 63] introduced the k-additive framework

in order to control the complexity level of Choquet capacities. A capacity is k-additive

if it depends on coalitions of at most k cardinality (k ≤ n). Calvo and De Baets

[27], see also Bortot and Marques Pereira [21], proposed the binomial decomposition

framework whereby OWA functions can be expressed as linear combinations of the first

k binomial OWA functions and the associated coefficients of the binomial decomposition

framework. However, studies on the role of k-additivity in the binomial decomposition

of OWA functions are inadequate. We cannot fully understand how a constraint on k-

additivity affects the feasible region of the coefficients of the binomial decomposition of

OWA functions. Moreover, the relationship between OWA weights and these coefficients

has seldom been studied. In the binomial decomposition framework, OWA weights are

expressed as weighted sums of the associated coefficients of the binomial decomposition

of OWA functions. However, an inverse transformation for these coefficients in terms of

OWA weights is still unknown.

Another advantage of OWA functions is the fact that they allow decision makers

to dynamically set certain levels of importance for the ordered values, according to the

attitude of decision makers, their background and expectations on the underlying prob-

lems. This can be achieved by controlling the weight distributions. The determination

of OWA weights is, therefore, an important object of study in decision making. We re-

call that OWA weights are characterized by two important measures called orness and

dispersion [115]. The orness shows the similarity between the OWA function and the or

(maximum) function. A higher orness means that decision makers are more optimistic

while a lower orness means that they are more pessimistic. The dispersion, examples of

which are entropy, variance, and disparity, is used to measure how equally all criteria

are taken into account in the aggregation process.

One of the first approaches for determining OWA weights, proposed by O’Hagan

[92], solved a constrained optimization problem for a set of OWA weights having max-

imal entropy value for a specific level of orness. In 2003, Fuller and Majlender [54]

used the variance of OWA weights in their optimization problems in order to identify a

specific class of OWA functions with the minimal variability OWA weights. After the

pioneering work of O’Hagan [92] on the maximal entropy method and the variance-based
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methods of Fuller and Majlender [54], Wang and Parkan [107] proposed the minimax

disparity method in which the objective is to minimize the maximum absolute difference

between two adjacent weights. The minimax disparity method has received a great deal

of interest in the literature [4, 44, 53, 57, 96, 106]. Most studies, however, have been lim-

ited to solving problems with small dimensions, while optimization problems in applied

operational research often involve a large number of criteria. Solving these optimization

problems in high dimensions requires a heavy computational load.

1.2 Research Problems

In the context of the binomial decomposition framework, OWA functions can be ex-

pressed as linear combinations of the first k binomial OWA functions and the associated

coefficients of the binomial decomposition framework. OWA weights are, therefore,

defined as weighted sums of the coefficients of the binomial decomposition of OWA

functions. However, the main questions concerning whether these coefficients can be

expressed in terms of OWA weights and how they influence OWA weights when the con-

straints on k-additivity are imposed remain difficult to understand. One of the objectives

of our research is to study the relationship between OWA weights and the associated

coefficients of the binomial decomposition framework. In particular, we focus on iden-

tifying an analytical expression for these coefficients in terms of OWA weights. We

examine the feasible regions of the coefficients in two particular cases of the binomial

decomposition of OWA functions, the 2-additive and 3-additive cases.

Another research direction is the determination of OWA weights. However, previous

studies have given little consideration to large-scale problems. Large-scale optimization

problems are common in practice when decision makers have to take into account mul-

tiple input requirements in their decision making process. The lack of methodologies

for determining OWA weights in high-dimensional problems causes difficulties to deci-

sion makers in making an appropriate choice. In this work, we aim at providing a new

methodology to reduce the computational complexity of the underlying problems.

1.3 Solutions

The relationship between OWA weights and the coefficients of the binomial decompo-

sition framework can be identified if one considers two equivalent expressions of OWA

functions, the formal definition and the binomial decomposition of OWA functions. The

OWA functions, defined by Yager [115], are expressed as weighted sums of OWA weights
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and their input arguments. Alternatively, the binomial decomposition framework [21, 27]

expresses OWA functions as linear combinations of binomial OWA functions and the

corresponding coefficients. Solving the linear system involving OWA weights and the

coefficients of the binomial decomposition framework provides an analytical expression

that can be used to identify the relationship between OWA weights and the associ-

ated coefficients. In addition, we analyze the boundary and monotonicity conditions

for the coefficients of the binomial decomposition of OWA functions associated with the

2-additive and 3-additive cases. We study these constraints to identify the dependency

of the feasible regions on the level of k-additivity and on the increasing dimension n.

Concerning the research problem related to the determination of OWA weights in

large-scale optimization problems, we focus on the minimax disparity model. We use the

binomial decomposition framework, as previously described, to express OWA functions

as linear combinations of the first k binomial OWA functions and their corresponding

coefficients. An advantage of using the binomial decomposition framework is that it can

be approximated if one considers the k-additivity framework [60, 63]. In this thesis, we

use the binomial decomposition framework with a constraint on k-additivity to reduce

the number of variables in the original problems. This framework allows us to transform

the original problem, expressed in terms of OWA weights, into a problem in which the

weights are substituted by a new set of coefficients. In the transformed representation,

by exploiting the sparsity of these coefficients, we can consider only the reduced number

of variables, associated with the first k-additive levels, and we can set the remaining

coefficients to zero. The dimensionality of the transformed problems is significantly

reduced, thus leading to a lower computational cost.

1.4 Contributions

The research is carried out to support decision makers in efficiently solving optimization

problems related to OWA functions by using the binomial decomposition framework and

the concept of k-additivity. We present the feasible regions of the coefficients associated

with the 2-additive and 3-additive cases in n dimensions [23]. Moreover, we derive the

analytical expression for the coefficients of the binomial decomposition framework in

terms of OWA weights, and we apply our study to two parametric families of OWA

functions, namely the S-Gini and Lorenzen welfare functions [91]. In a similar way we

obtain the analytical formulations expressing the relationship between the weights of

these parametric welfare functions and the corresponding coefficients of the binomial
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decomposition framework. We also find some interesting analogy between the bino-

mial OWA functions and these social welfare functions in relation to the context of the

binomial decomposition framework [20].

In addition, we present a novel methodology to reduce the computational cost of

determining OWA weights in large-scale optimization problems [90]. The methodology,

based on k-additivity of the binomial decomposition framework, significantly reduces

the number of variables and therefore helps decision makers in finding optimal solutions

faster. Our experiments for the minimax disparity model show that the proposed model

markedly reduces the dimension up to
(
1− k

n

)
%, where n is the number of variables in

the original problem and k is the level of k-additivity.

1.5 Outline of the thesis

Chapter 2 introduces the state of the art of OWA functions. Three main methods

are then presented for obtaining a specific class of OWA functions based on: a) the

characteristic measures of orness and dispersion, b) learning OWA weights from data,

and c) weight-generating functions.

Chapter 3 presents some main contributions of our research. The first part describes

the feasible regions of the coefficients associated with the 2-additive and 3-additive cases

in n dimensions. We then prove the analytical expression for the coefficients of the

binomial decomposition framework in terms of OWA weights, thus broadening our un-

derstanding of their relationship in the binomial decomposition framework. The second

part proposes a new method to determine OWA weights in large-scale optimization

problems by taking advantage of the sparsity of the k-additivity in the binomial decom-

position framework. The experiments carried out for the minimax disparity model are

numerically presented and compared to the traditional approach.

Chapter 4 discusses the representation of the binomial decomposition framework in

the context of social welfare with respect to two parametric families of OWA functions,

namely the S-Gini and Lorenzen welfare functions. We focus on the study of the analogy

between the binomial OWA functions and the parametric welfare functions, and we

derive the analytical expressions for the coefficients of this framework in terms of S-Gini

weights and Lorenzen weights, respectively. We show the importance of our analytical

expression with respect to the S-Gini and the Lorenzen weights to better understand

the properties of their weight distributions.
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Chapter 5 includes our final remarks and our suggestions for future research. Ap-

pendix A is reserved for the detailed proofs of some classical identities used in our

thesis.



Chapter 2

OWA functions and weight

determination

In this chapter we introduce the basic definitions of aggregation functions, with a par-

ticular focus on weighted averaging (WA) and ordered weighted averaging (OWA) func-

tions. Recent studies on OWA functions are reviewed together with several methods

for determining OWA weights related to some instances of OWA families, including the

well-known minimax disparity method.

2.1 Background

In many disciplines, experts have to deal with the problem of aggregating multiple

input arguments and producing a single representative output within the application

context. Consider a problem of evaluating a set of proposed alternatives A1, . . . , Am

with respect to a set of n-tuple criteria {1, . . . , n}. Let x = (x1, . . . , xn) ∈ Dn denote the

degree to which each alternative satisfies a set of criteria. The goal is to combine these

multiple criteria evaluations into an overall score that represents the level of satisfaction

of available alternatives and it can effectively guide the decision making process. The

processing of combining multiple input arguments is possibly solved by using aggregation

functions. Aggregation functions have been extensively studied by Beliakov et al. [13,

14], Calvo et al. [28], Fodor and Roubens [51], Grabisch et al. [68], Marichal [84],

Marichal et al. [85], Mesiar et al. [88], Torra and Narukawa [105] and Yager et al. [126].

Among different classes of aggregation functions, the ordered weighted averaging

functions (OWA) introduced by Yager [115] have attracted a growing interest. One of the

main motivations behind the selection of the OWA functions in the aggregation process

8



Chapter 2. Ordered Weighted Averaging functions 9

is their flexibility in providing a general class of weighted aggregation functions bounded

by the min and the max functions. Moreover, the OWA functions distinguish themselves

from other aggregation functions by their dynamic assignment of OWA weights to the

values of the input arguments, instead of fixing a specific weight to a particular ordered

position of the arguments.

Since their introduction many studies have investigated the use of OWA functions

in several domains, such as multicriteria decision making (Bortot et al. [23], Yager

[115, 119]), group decision making (Bortot et al. [19], Fedrizzi et al. [46, 47, 48], Dong

et al. [41], Herrera-Viedma et al. [70], Palomares [93], Xu and Chen [110]), social

welfare (Aristondo and Ciommi [7], Aristondo et al. [8], Bortot and Marques Pereira

[20, 21]), fuzzy logic controllers (Yager [116, 123]), vision systems (López et al. [10],

Marichal [84]), expert systems (Carlsson [30], O’Hagan [92]), neural networks (Yager

[114, 117, 118]). A comprehensive review of OWA applications can be found in Yager

and Kacprzyk [125], and Yager et al. [126].

OWA functions are extensively used in multicriteria decision making for supporting

decision makers in evaluating a set of alternatives with respect to a set of criteria and

aggregating their evaluations to produce a combined score. This leads decision makers

to the best possible decision satisfying their requirements. Now let us consider the prob-

lem in the context of group decision making, in which two or more experts are involved

in the evaluation of a set of alternatives. Experts express their individual preferences on

a set of alternatives that might be heterogeneous according to their different attitudes,

backgrounds and knowledge on the underlying problems. One important research direc-

tion in group decision making is the development of an appropriate measure to support

experts in reaching a collective agreement.

The notion of consensus traditionally means unanimous agreement, which rarely

happens in practice. Kacprzyk and Fedrizzi [71, 72, 73] proposed a “soft” consensus mea-

sure, based on numerical fuzzy preferences, to compute the degree of collective agreement

when most of the experts agree on a final solution. Fedrizzi et al. [46] extended the

conventional soft consensus paradigm, by defining a smooth scaling function for the lin-

guistic quantifiers, and proposed a network dynamics for reaching soft consensus. The

consensus is defined as “dynamic” due to its process of reaching collective agreement

through the iterative process of preference transformation corresponding to the gradient

dynamics of the full cost function of the soft consensus model.

The full cost function is a linear combination of the collective dissensus measure and

the collective inertial cost function. The collective dissensus is defined as a summation

of individual dissensus measures that represent the diffusion interactions between the

individual preferences of an expert with respect to the preferences of the remaining
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experts in the group. The collective inertial cost, on the other hand, expresses the

aversion to a change of the opinion of an expert from his/her original opinion towards

the collective consensus trend.

A dissensus measure in the soft consensus reaching model can be represented by

means of multidistance [18, 19]. Martin and Mayor [87] introduced the multidistance by

extending the conventional distance between two arguments. Analogously, the multidis-

tance is defined as a measure for computing distance for collections of more than two

arguments. Among several classes of multidistances, the sum-based multidistance, with

the particular case of the OWA-based multidistance, introduced by Mart́ın and Mayor

[87], shows an analogous relationship with the dissensus measure in some consensus re-

lated optimization problems on m−ary adjacency relations [25, 26]. The OWA-based

multidistances are, therefore, used as an alternative approach to measure dissensus [18],

with the OWA weighting vector is chosen in a way that more importance is given to

small distance value and vice versa. Recent research by Bortot et al. [19, 22] has studied

in detail the multidistance dissensus measure, which is defined on the basis of binary

distances computed by means of a new subadditive scaling function. The studies have

also proved that the proposed subadditive scaling function is in analogy with the con-

ventional scaling function [46], which focuses on emphasizing small distances and at the

same time attenuating large distances in preferences.

OWA functions have been used in many application domains, thereby determining

OWA weights becomes an important research. The goal of the problems of determining

OWA weights is to provide a methodology for decision makers to select OWA weights in

a way that they can reflect different preferences of decision makers, from the optimistic

to the pessimistic attitudes, with respect to specific problems. The attitudinal character

of decision makers is measured by their orness, which is defined on the unit interval.

The maximum (minimum) orness value is reached when decision makers are purely

optimistic (purely pessimistic). Instead the dispersion, examples of which are entropy,

variance and disparity, is used to measure the degree to which all input arguments are

taken into account in the aggregation process. The determination of appropriate OWA

weights is, therefore, a very important object of study when applying OWA functions

in the context of decision making. Among various methods in the literature, namely

[109, 111, 119], and more recently [13, 29, 81, 45], we distinguish three main methods

based on: a) the characteristic measures of orness and dispersion, b) learning OWA

weights from data, and c) weight-generating functions.

The remainder of this chapter is organized as follows. In Sect. 2.2 we briefly

review OWA functions and their fundamental properties. Section 2.3 discusses three
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main methods for obtaining OWA weights and the associated OWA families. Finally,

Sect. 2.4 contains some conclusive remarks.

2.2 Definition of OWA functions and main properties

Given two points x ,y ∈ Rn, with n ≥ 2, the increasing and decreasing reordering of

the coordinates of x are denoted as x(1) ≤ · · · ≤ x(n) and x[1] ≥ · · · ≥ x[n], respectively.

This can be rewritten in a more general way as xσ = (xσ(1), . . . , xσ(n)) where σ is a

permutation on {1, . . . , n}. We use the notation x ≥ y instead of stating xi ≥ yi for

every i = 1, . . . , n. Accordingly, we use x > y when x ≥ y and x 6= y . We now

introduce the basic definitions of averaging functions, weighted averaging functions,

ordered weighted averaging functions and their fundamental properties.

2.2.1 Definitions

In this thesis, we assume that a point x = (x1, . . . , xn) belongs to the interval domain

Dn, where D = [a, b] ⊂ R is the domain that we work on.

Definition 2.1. A function A : Dn −→ D is called monotonic if it holds that A(x ) ≤
A(y) for all x ,y ∈ Dn where x ≤ y . On the other hand, it is called strictly monotonic

if it holds that A(x ) < A(y) for all x ,y ∈ Dn where x < y .

Definition 2.2. A function A : Dn −→ D is called idempotent if it holds that A(x·1) = x

for all x ∈ D.

Definition 2.3. A function A : Dn −→ D is called nilpotent if it holds that A(x ·1) = 0

for all x ∈ D.

Definition 2.4. A function A : Dn −→ D is called symmetric if it holds that A(xσ) =

A(x ) for any permutation σ of the argument xσ = (xσ(1), . . . , xσ(n)).

Definition 2.5. An aggregation function is a function A : Dn −→ D, with D = [a, b] ⊂
R, that aggregates n ≥ 2 arguments and produces a single output with the following

properties:

(i) boundary: A(a, a, · · · , a) = a and A(b, b, · · · , b) = b ;

(ii) monotonicity: given x ,y ∈ Dn, if x ≤ y then A(x ) ≤ A(y).

Aggregation functions consist of four main classes: averaging, conjunctive, disjunc-

tive and mixed functions [13]. In the context of this thesis, we focus on the averaging
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functions and in particular on two families: weighted averaging and ordered weighted

averaging functions.

Definition 2.6. An aggregation function A : Dn −→ D is called an averaging function

if it is idempotent.

We notice that the monotonicity and the idempotency implicitly mean the com-

pensativeness min(x ) ≤ A(x ) ≤ max(x ) for all x ∈ Dn.

Definition 2.7. A vector w = (w1, . . . , wn) is called a weighting vector if wi ∈ [0, 1]

and
∑n

i=1wi = 1 for i = 1, . . . , n.

Definition 2.8. A Weighted Averaging (WA) function of n arguments is an averaging

function A : Dn −→ D with an associated weighting vector w = (w1, . . . , wn) ∈ [0, 1]n,

such that
∑n

i=1wi = 1 and

A(x ) =
n∑
i=1

wi xi. (2.1)

Definition 2.9. An Ordered Weighted Averaging (OWA) function of n arguments is an

averaging function A : Dn −→ D with an associated weighting vector w = (w1, . . . , wn) ∈
[0, 1]n, such that

∑n
i=1wi = 1 and

A(x ) =
n∑
i=1

wi x(i). (2.2)

Different OWA functions are classified according to their weighting vectors. As

briefly discussed in Sect. 2.1 the OWA weights are characterized by two measures called

orness and dispersion. In the following section we review these two measures and their

properties.

2.2.2 Main properties

Consider an OWA function A : Dn −→ D with an associated weighting vector w =

(w1, . . . , wn) ∈ [0, 1]n such that
∑n

i=1wi = 1. The OWA function A has the following

fundamental properties which are monotonicity, idempotency (thus compensativeness),

and symmetry. The monotonicity is inherited directly from the properties of aggregation

functions while the idempotency is from the averaging function. In more detail:

(i) monotonicity: given x ,y ∈ Dn, if x ≥ y then A(x ) ≥ A(y);

(ii) idempotency: for all x ∈ D, it holds that A(x · 1) = x;
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(iii) symmetry: given x ∈ Dn and a permutation σ on {1, . . . , n}, A is symmetric due

to A(xσ) = A(x ).

We notice that the monotonicity and the idempotency implicitly mean the com-

pensativeness min(x ) ≤ A(x ) ≤ max(x ) for all x ∈ Dn.

Concerning the weighting vector, it is characterized by the two measures of orness

and dispersion introduced by Yager [115]:

orness(w) =
1

n− 1

n∑
i=1

(i− 1)wi (2.3)

dispersion(w) = −
n∑
i=1

wilnwi. (2.4)

The orness measure evaluates the similarity between the OWA function and the or (max)

operator. The dispersion measure, in contrast, indicates how equally input arguments

are taken into account in the aggregation process. The highest dispersion is, therefore,

associated with the uniform distribution of OWA weights.

Three special OWA weighting vectors associated with the min function, arith-

metic mean and max function are w∗ = (1, 0, . . . , 0), wAM = ( 1
n ,

1
n , . . . ,

1
n) and w∗ =

(0, . . . , 0, 1). For these vectors the orness is equal to 0, 0.5, and 1; and the disparity is

equal to 0, ln(n), and 0, respectively.

2.3 Methods for determining the OWA weights

OWA functions are characterized by their weighting vectors. The determination of

appropriate OWA weights is, therefore, a very important object of study when applying

OWA functions in the context of decision making. In this section we review some

methods for determining the OWA weights and the associated OWA families.

2.3.1 Methods based on the measures of orness and dispersion

Several methods have been introduced to obtain optimal OWA weights based on two

characterizing measures of orness and dispersion. In this regard, the pioneering work

of O’Hagan [92] introduced the maximal entropy method to compute a set of the OWA
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weights satisfying a constraint of a specific orness value. The related optimization prob-

lem is formulated as follow:

max
w

−
n∑
i=1

wilnwi (2.5)

s.t. 0 ≤ wi ≤ 1, i = 1 , . . . , n ,
n∑
i=1

wi = 1 ,

orness(w) = η =
1

n− 1

n∑
i=1

(i− 1)wi ,

where η, with 0 ≤ η ≤ 1, stands for the orness of the weighting vector.

The OWA weights that maximize the entropy function and satisfy the predefined

level of orness are called MEOWA. The optimization problem proposed by O’Hagan

[92] is then solved by Fuller and Majlender [53] by using a different approach. The

authors applied the Lagrangian method in order to transform O’Hagan constrained

optimization problem into the polynomial optimization problem which is more tractable

for the derivation of analytical solutions. This is achieved by introducing two Lagrangian

multipliers λ1, λ2 ∈ R to incorporate all constraints from the original problem into the

Lagrangian dual function L(w , λ1, λ2) as follows

max
w

L(w , λ1, λ2) = −
n∑
i=1

wilnwi + λ1

(
n∑
i=1

wi − 1

)
+ λ2

(
n∑
i=1

i− 1

n− 1
wi − η

)
. (2.6)

In the new formulation, the optimal weights are analytically derived from the partial

derivatives of the Lagrangian dual function as follows

∂L

∂wj
= −lnwj − 1 + λ1 +

j − 1

n− 1
λ2 = 0 , ∀j = 1, . . . , n ,

∂L

∂λ1
=

n∑
i=1

wi − 1 = 0 ,

∂L

∂λ2
=

n∑
i=1

i− 1

n− 1
wi − η = 0 .

The associated weighting vector is obtained by solving the equations of the partial

derivatives. The detailed steps for solving the problem are described in [53].

In the context of determining OWA weights based on their characterizing dispersion

measure, one can also use the concept of variance to propose a parameterized family of

OWA functions between the min and the max functions. The variance of an OWA

weighting vector in [120] is formulated as the average of the squared differences between



Chapter 2. Ordered Weighted Averaging functions 15

each single weight and the arithmetic mean as follows

D2(w) =
n∑
i=1

1

n
(wi − E(w))2 =

1

n

n∑
i=1

w2
i −

1

n2
(2.7)

where E(w) = 1
n ·w1 + . . .+ 1

n ·wn = 1
n stands for the arithmetic mean of OWA weights.

Fuller and Majlender [54] applied the concept of variance in their optimization problems

in order to identify the OWA weights with the minimal variability. The authors then

used the Karush-Kuhn-Tucker second-order conditions in order to solve the following

optimization problem analytically:

min
w

D2(w) =
1

n

n∑
i=1

w2
i −

1

n2
(2.8)

s.t. 0 ≤ wi ≤ 1 , i = 1, . . . , n ,
n∑
i=1

wi = 1 ,

orness(w) = η =
1

n− 1

n∑
i=1

(i− 1)wi ,

where η, with 0 ≤ η ≤ 1, stands for the orness of the weighting vector.

After the work of O’Hagan [92] on the maximal entropy method and the variance-

based methods of Yager [120], and Fuller and Majlender [54], Wang and Parkan [107]

proposed the minimax disparity method, in which the objective is to minimize the

maximum absolute differences between two adjacent weights, as follows:

min
w

{
max

i∈{1,...,n−1}
|wi − wi+1|

}
(2.9)

s.t. 0 ≤ wi ≤ 1 , i = 1, . . . , n ,
n∑
i=1

wi = 1 ,

orness(w) = η =
1

n− 1

n∑
i=1

(i− 1)wi ,

where η, with 0 ≤ η ≤ 1, stands for the orness of the weighting vector.

One of the advantages of the minimax disparity approach is the use of a simple

linear programming model in order to obtain the OWA weights. The objective function

is non-linear due to the absolute difference between two adjacent weights. In order

to overcome this non-linearity, the authors denote by δ = max
i∈{1,...,n−1}

|wi − wi+1| the

maximum absolute difference between two adjacent weights.
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We then have

|wi − wi+1| ≤ δ, i = 1, . . . , n− 1, (2.10)

or

− δ ≤ wi − wi+1 ≤ δ, i = 1, . . . , n− 1. (2.11)

This expression is equivalently rewritten by two inequations wi − wi+1 − δ ≤ 0 and

wi−wi+1 + δ ≥ 0 where i = 1, . . . , n− 1. The original optimization problem is, thereby,

reformulated into the linear programming problem as follows,

min
w

δ (2.12)

s.t. 0 ≤ wi ≤ 1 , i = 1, . . . , n ,
n∑
i=1

wi = 1 ,

orness(w) = η =
1

n− 1

n∑
i=1

(i− 1)wi ,

wi − wi+1 − δ ≤ 0 , i = 1, . . . , n− 1 ,

wi − wi+1 + δ ≥ 0 , i = 1, . . . , n− 1 ,

where η, with 0 ≤ η ≤ 1, stands for the orness of the weighting vector.

Moreover, Liu [80] has proved the equivalence in the solution of the minimum

variance approach suggested by Fuller and Majlender [54] and the minimax disparity

method proposed by Wang and Parkan [107] under a desired orness level. Further

discussion on the extensions of disparity-based models for determining OWA weights

can be found in [4, 44, 57, 96, 106]. A review of a number of approaches for determining

OWA weights based on the characterizing measures is briefly summarized in [52].

2.3.2 Methods based on data

Filev and Yager [49] suggested a new method to learn OWA weights from a collection

of observational data, see also Yager and Filev [124]. Let us consider a collection of K

samples, with each kth sample consisting of (n + 1)-tuples {(xk1, . . . , xkn), yk}, where

(xk1, . . . , xkn) ∈ Dn are n-ary input arguments and yk ∈ D is the relevant observed

aggregated value. The optimal OWA weights are obtained by minimizing the instance

errors between the current predicted aggregation value A(xk1, . . . , xkn) and the actual

observed value yk, for the entire set of samples. The problem is formulated as follows

min
w

K∑
k=1

1

2
(bk1w1 + . . .+ bknwn − yk)2 (2.13)
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s.t. 0 ≤ wi ≤ 1 , i = 1, . . . , n ,
n∑
i=1

wi = 1 ,

where k = 1, . . . ,K denotes the k-th sample in the collection and bki denotes the i− th
largest element of the argument vector (xk1, . . . , xkn) for every fixed k. The authors

transformed the constrained optimization problem into an unconstrained problem by

expressing the OWA weights as exponential function,

wi =
eλi∑n
j=1 e

λi
. (2.14)

The required properties of the weighting vector, that is, w = (w1, . . . , wn) ∈ [0, 1]n

and
∑n

i=1wi = 1, are implicitly satisfied by the new formulation. Other studies have

focused on solving the above problem by using quadratic programming methods [11, 12,

103, 104, 114, 117].

2.3.3 Methods based on weight-generating functions

Yager [115] introduced the OWA functions and described a mechanism for obtaining

OWA weights that is analogous to the procedure of combining multiple values under

the guidance of linguistic quantifiers. The author considered two extreme cases of OWA

functions. One extreme, associated with the and function, requires all the criteria to be

satisfied and it corresponds to the quantifier for all. The other, called or, requires at

least one of the criteria be satisfied and it corresponds to the quantifier there exists. In

the remaining cases, the OWA functions, bounded between the and and the or functions,

correspond to quantifiers, such as few, at least half, many, most. According to Zadeh

[128], these linguistic quantifiers can be mathematically expressed by a fuzzy subset Q

of the unit interval I = [0, 1] defined as Q : [0, 1] −→ [0, 1].

In the context of quantifiers guided aggregation, Yager [121] proposed a new ap-

proach for obtaining OWA weights by a fuzzy subset Q of the unit interval I = [0, 1].

The associated OWA functions are also called quantifier guided OWA functions. The

author introduced Regular Increasing Monotone (RIM) quantifiers which are monotonic

and continuous on the interval unit Q : [0, 1] −→ [0, 1] satisfying Q(0) = 0, Q(1) = 1

and Q(x) ≤ Q(y) if x ≤ y.

Using the RIM quantifiers, we obtain the associated OWA weights defined as

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
i = 1, . . . , n. (2.15)
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A generating function associated with the quantifier is a function f(x) : [0, 1] −→
[0,∞) defined as

Q(x) =

∫ x

0
f(t)dt. (2.16)

Generating functions based on quantifiers can produce OWA weights that satisfy

a set of criteria in accordance to the natural linguistic expressions. This method is also

applicable when the dimension of input arguments is unknown. The method, however, is

not widely used in practice because of the more complex intuition of the integral behind

it. Other studies that focused on this method are [79, 82, 94, 116, 122].

2.4 Discussion and conclusion

In many disciplines, aggregating multiple input arguments to produce an overall score

for a set of alternatives is a crucial part in decision making process, which can effectively

guide decision makers in reaching a decision. The OWA functions, introduced by Yager,

are considered as one of the most effective methods for aggregating data due to their

flexibility in providing a general class of weighted aggregation functions bound between

two extreme cases: the and function, when all criteria have to be satisfied; and the

or function, when at least one of the criteria has to be satisfied. The OWA functions

can be also seen as aggregation functions guided by the linguistic quantifiers, including

most, at least one, most of. The weights associated with the OWA functions reflect the

number of criteria and their level of satisfaction that are required by the applications.

Determining appropriate OWA weights has thus become an important object of study.

Several methods have been introduced for obtaining OWA weights and they can be

based on: a) the characteristic measures of orness and dispersion, b) learning OWA

weights from observational data, and c) OWA weight-generating functions. In the next

chapter we recall the binomial decomposition framework of OWA functions. We study

the relationship between OWA weights and the associated coefficients of the binomial

decomposition of OWA functions. We then revisit the minimax disparity model, as it

has recently received great deal of attention, in the context of large-scale optimization

problems, where a challenge is represented by a heavy computational load. We propose

a new approach based on the binomial decomposition of OWA functions and the k-

additivity framework to overcome this computational complexity.



Chapter 3

The binomial decomposition of

OWA functions

OWA functions can be equivalently represented in the binomial decomposition frame-

work. In this chapter we recall the binomial decomposition framework described in

the context of the k-additivity, with a particular focus on the 2-additive and 3-additive

cases. In addition, we identify the close relationship between OWA weights and the as-

sociated coefficients in the binomial decomposition framework. We derive an analytical

formulation expressing these coefficients as a function of OWA weights.

We then consider one possible application of the binomial decomposition of OWA

functions by revisiting the well-known minimax disparity method for determining OWA

weights in the context of large-scale optimization problems, which often requires heavy

computational loads. We propose a new approach based on the binomial decomposition

framework, with reference to the k-additive framework. This allows us to transform

the original problem, expressed in terms of OWA weights, into a problem in which the

weights are substituted by a new set of coefficients. In this transformed representa-

tion, we consider only a limited number of these coefficients, associated with the first

k-additive levels of the OWA function, and at the same time we set the remaining co-

efficients to zero, thereby reducing the computational loads in large-scale optimization

problems.

19
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3.1 Background

In many disciplines, decision makers have to deal with problems involving the aggrega-

tion and production of overall assessments from some evaluations according to a set of

criteria. The ordered weighted averaging functions (OWA), introduced by Yager [115],

are one of the fundamental aggregation functions in decision making theory. A review

of OWA functions and their applications in decision making are discussed in [125, 126].

An alternative approach to represent the preferences of decision makers over a set

of alternatives with respect to a set of criteria is the Choquet integral [36], which was

introduced in the classical multiattribute utility theory model. A synthesis on the use of

the Choquet integral and its applications in the context of multicriteria decision making

are discussed in [5, 6, 34, 38, 58, 59, 65, 66, 67, 84, 89, 97].

One of the advantages of the Choquet integral framework comes from its capacities

(also called fuzzy measures) that are able to model interactions between criteria in a

flexible way. Unlike common aggregation functions, such as the weighted arithmetic

mean, which assumes that the criteria are mutually independent, the Choquet integral

takes into account both the importance of a criterion as a singleton and its relevance

when interacting with other criteria in a group. The complex interactions among the

criteria, which cannot be modeled by the weighted sum, have been addressed by the Cho-

quet capacities by taking into account weakening and strengthening interactions among

criteria [58]. A weakening interaction happens among criteria that share some similar

features, which means that the satisfaction of one criterion is usually sufficient to the

satisfaction of another. The subadditive capacity is, therefore, used in order to avoid the

drawback of overestimated evaluations on overlapping criteria. A strengthening interac-

tion, in which the simultaneous satisfaction of two criteria is more important than the

individual satisfaction, can be modeled instead by a superadditive capacity. As concerns

the evaluation of the complex interactions, the Choquet integral provides an aggregation

method capable of measuring all possible interactions, including overlapping/supporting

or no interaction among criteria.

Several studies [34, 38, 58, 59, 84, 89] have showed that the Choquet integral in the

finite domain includes the weighted averaging (WA) and the ordered weighted averaging

(OWA) functions as two special cases associated with the additive and symmetric ca-

pacities, respectively. Fodor et. al. [50] proved that OWA functions can be equivalently

expressed as Choquet integrals with symmetric capacities.

Methods for defining the capacities of Choquet integration are reviewed in [64].

They, however, often require 2n real coefficients to be defined. If the number of criteria

is large, the definition of these coefficients can be exponentially increased. One of the
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possible solutions to reduce the complextity of the definition of symmetric capacities is to

transform them into the Möbius representation and to apply the k-additivity framework

introduced by Grabisch [60, 63], see also [61, 62]. A capacity is k-additive when its

computation depends on coalitions of at most k cardinality.

Choquet integrals with symmetric capacities, expressed by means of the Möbius

transform, can be reduced to OWA functions as proved in [50]. In the context of the

binomial decomposition framework proposed by Calvo and De Baets [27], OWA func-

tions can be uniquely written as linear combinations of binomial OWA functions and the

associated coefficients of the binomial decomposition framework. The binomial decom-

position framework was also studied in the restricted context of generalized Gini welfare

functions by Bortot and Marques Pereira [21].

In this chapter we investigate the 2-additive and 3-additive cases of the binomial

decomposition of OWA functions in n dimensions. We highlight the close relationship

between OWA weights and the coefficients of the binomial decomposition of OWA func-

tions. We derive an analytical expression for these coefficients in terms of OWA weights

[91]. We then revisit the well-known minimax disparity method for determining OWA

weights, as introduced in Sect. 2.3.1, in the context of large-scale optimization problems.

We propose a new approach based on the binomial decomposition framework expressed

in terms of k-additive capacities. This allows us to transform the original problem, ex-

pressed in terms of OWA weights, into a problem in which the weights are substituted by

a new set of coefficients. In this transformed representation, we consider only a limited

number of these coefficients, associated with the k-additivity of the OWA functions, and

we set the remaining coefficients to zero [90].

The structure of the remainder of this chapter is as follows. Section 3.2 introduces

the basic definitions on capacities, Choquet integration and the binomial decomposition

of OWA functions, with reference to the Möbius representation framework. We then

study the binomial decomposition of OWA functions in the 2-additive and 3-additive

cases. Section 3.3 derives the analytical expression for the coefficients of the binomial

decomposition of OWA functions in terms of OWA weights. Section 3.4 presents our

proposed approach, based on the binomial decomposition and k-additivity frameworks,

to solve the well-known minimax disparity method for determining OWA weights in

large-scale optimization problems. Finally, Sect. 3.5 contains some conclusive remarks.
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3.2 OWA functions in the binomial decomposition frame-

work

In this section we present the binomial decomposition of OWA functions and we recall the

main concepts related to the Choquet integral and the Möbius representation framework.

3.2.1 Capacities and Choquet integral

Let us consider a finite set of n elementsN = {1, 2, . . . , n}, which can represent attributes

or criteria in a decision making problem. Subsets S, T ⊆ N associated with cardinalities

0 ≤ s, t ≤ n are called coalitions, where s and t denote |S| and |T |, respectively. In

the following we recall the basic definitions of capacities and Choquet integration as in

[36, 38, 58, 59, 101, 21].

Definition 3.1. A discrete capacity defined on N = {1, 2, . . . , n} is a set function

µ : 2N −→ [0, 1] satisfying the following properties:

(i) boundary: µ(∅) = 0, µ(N) = 1;

(ii) monotonicity: S ⊆ T ⊆ N implies µ(S) ≤ µ(T ).

Since in this thesis we are interested only in discrete capacities, which are defined

on finite discrete subsets, we simply use the term capacities to refer to them. The notions

of capacities µ(S) and µ(T ) represent the importance of the associated coalitions. The

monotonicity condition implies that if a new element is added to a coalition, the capacity

of the extended coalition is not less than its weight. Capacities are also called fuzzy

measures in the multiattribute utility theory model [101]. A set of all the capacities

defined on a set N of n elements requires 2n coefficients, which are the value of µ(S)

for all possible coalitions S, where S ⊆ N and s = 0, 1, . . . , n. This includes singletons,

pairs of elements, and subsets of more elements. If the number of criteria is large,

representing the importance of all possible coalitions requires a large number of real

coefficients, making modeling large-scale problems more difficult.

Definition 3.2. Let us consider disjoint coalitions S, T ⊆ N , with S∩T = ∅. A capacity

µ is said to be:

(i) additive if µ(S ∪ T ) = µ(S) + µ(T ),

(ii) subadditive if µ(S ∪ T ) ≤ µ(S) + µ(T ),

(iii) superadditive if µ(S ∪ T ) ≥ µ(S) + µ(T ).
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for all disjoint coalitions S, T ⊆ N , with S ∩ T = ∅.

Definition 3.3. The discrete Choquet integral Cµ : Dn −→ D with respect to a capacity

µ is defined as follows:

Cµ(x ) =

n∑
i=1

[
µ(A(i))− µ(A(i+1))

]
x(i) (3.1)

where Ai = {(i), . . . , (n)} and A(n+1) = ∅, with (·) representing a permutation on N

given by x(1) ≤ x(2) ≤ . . . ≤ x(n).

The Choquet integral consists of two particular cases: WA functions, associated

with the additive capacities; and OWA functions, associated with the symmetric capac-

ities, as discussed in [34, 38, 58, 59, 84, 89].

The Choquet integral plays an important role in the aggregation process. To give a

comparison, we consider the weighted sum which assumes that the criteria are mutually

independent. The Choquet integral, in contrast, takes into account both the importance

of a criterion as a singleton and its relevance when interacting with other criteria in a

group. As an example, let us consider the problem of evaluating students in a high school

with respect to their scores on three subjects: mathematics, physics and literature, as

described in [58, 59]. The school policy prefers students who are good at all subjects.

However, it favors scientific subjects more than literature. The common weighted sum,

whose weights are interpreted as the importance of different subjects, insufficiently ful-

fills this policy, due to its overestimated evaluation on students with respect to the

scientific subjects; and its underestimated evaluation between scientific and literature

subjects. Instead, as described in Def. 3.2, Choquet capacities can be subadditive and

superadditive, thus providing flexible ways to properly evaluate the complex interactions

among three subjects as required by the school policy.

Definition 3.4. The Möbius transform mµ: 2N −→ R with respect to the capacity µ

on the set N is a set function defined for every T ⊆ N as

mµ(T ) =
∑
S⊂T

(−1)t−sµ(S) (3.2)

where s and t are the cardinality of the coalitions S and T , respectively.

In the Möbius representation, the boundary conditions take the form

mµ(∅) = 0
∑
T⊆N

mµ(T ) = 1 (3.3)



Chapter 3. The binomial decomposition of OWA functions 24

and the monotonicity conditions take the form:

∑
S⊆T

mµ(S ∪ {i}) ≥ 0 for all T ⊆ N \ {i} and i = 1, . . . , n . (3.4)

Notice that the boundary and monotonicity conditions of Möbius capacities correspond

to the same conditions of the capacities defined in Definition 3.1.

Definition 3.5. The Möbius transform for the capacity µ: 2N −→ R is the inverse of

the Möbius transform mµ given as

µ(T ) =
∑
S⊆T

mµ(S) T ⊆ N . (3.5)

The inverse Möbius transform provides an alternative to express capacities in terms

of mµ. The Choquet integral, therefore, can be rewritten in terms of mµ equivalently.

Definition 3.6. The Choquet integral with respect to the Möbius transform mµ of

capacities µ is given by [61, 84],

Cµ(x ) =
∑
T⊆N

mµ(T ) min
i∈T

(xi) . (3.6)

We recall that the problem of defining a capacity µ on a set N of n elements

requires 2n real coefficients to represent the importance of all possible coalitions T ⊆ N ,

including singletons, pairs of elements, and subsets of more elements. When the number

of criteria is large, one needs 2n real coefficients to represent the importance of all

possible coalitions. The computational load, therefore, increases exponentially. One

of possible solutions is proposed by Grabisch [63]. The author suggested the use of

k-additive capacities to control the level of complexity, thus reducing the exponential

computational burden.

Definition 3.7. A capacity µ defined on the set N is said to be k-additive if its Möbius

transform satisfies mµ(T ) = 0 for all T ⊆ N such that t > k, and there exists at least

one coalition T ⊆ N with t = k such that mµ(T ) 6= 0.

We then rewrite the capacity µ(T ), as expressed in (3.5), with the restriction given

by k-additivity, as follows

µ(T ) =
∑

S⊆T, s≤ k
mµ(S) T ⊆ N (3.7)

where the Möbius transform is subject to the boundary (3.3) and monotonicity (3.4),

conditions given as
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mµ(∅) = 0
∑

T⊆N, t≤ k
mµ(T ) = 1 (3.8)

∑
S⊆T, s≤ k−1

mµ(S ∪ {i}) ≥ 0 T ⊆ N \ {i} i = 1, . . . , n . (3.9)

We now examine the capacities in the k-additive case, focusing on two special cases

k = 1 and k = 2.

In the 1-additive case, the capacities for coalitions T ⊆ N are expressed as a sum

of the capacities of the singletons

µ(T ) =
∑
{i}⊂T

µ({i}) (3.10)

and we, therefore, need only n real coefficients to define capacities on the set N .

In the 2-additive case, the capacities are given by

µ(T ) =
∑

S⊆T, s≤ 2

mµ(S) T ⊆ N (3.11)

which reduces to

µ(T ) =
∑
{i}⊂T

mµ({i}) +
∑
{i,j}⊂T

mµ({i, j}) (3.12)

By replacing the Möbius transform mµ of the singletons and the pairs of criteria with

their values, as given in (3.2), the above expression can be written as

µ(T ) =
∑
{i}⊂T

µ({i}) +
∑
{i,j}⊂T

∑
S⊂{i,j}

(−1)2−sµ(S)

=
∑
{i}⊂T

µ({i}) +
∑
{i,j}⊂T

(
µ({i, j})− µ({i})− µ({j})

)
. (3.13)

In the second summation, if we expand them and group all components µ of the same

singletons together, we obtain

µ(T ) =
∑
{i}⊂T

µ({i}) +
∑
{i,j}⊂T

µ({i, j})− (t− 1)
∑
{i}⊂T

µ({i}) (3.14)

which can be reduced to

µ(T ) =
∑
{i,j}⊂T

µ({i, j})− (t− 2)
∑
{i}⊂T

µ({i}). (3.15)
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In this representation we notice that the 2-additive capacities on the set N depend

only on the capacities of the singletons µ({i}) and the pairs of criteria µ({i, j}), thus

requiring n(n+1)
2 real coefficients to express the importance of all coalitions. In the

general k-additive cases, the required number of coefficients is equal to
∑k

j=1

(
n
j

)
, which

is much less than the original number of 2n.

In the following we recall the basic definition of symmetric capacities. Fodor et. al.

[50] proved that the Choquet integrals associated with symmetric capacities correspond

to the OWA functions.

Definition 3.8. A capacity µ is called symmetric if the value µ(T ) depends only on the

cardinality of the coalition T ⊆ N

µ(T ) = µ(t) where t = |T | . (3.16)

Let S, T ⊆ N be two coalitions with the associated cardinalities s and t, respec-

tively. If their cardinalities are the same, it holds that

µ(S) = µ(T ) if s = t . (3.17)

Analogously, the Möbius transform mµ with respect to the symmetric capacities µ

takes the form

mµ(T ) = mµ(t) where t = |T | . (3.18)

The capacity µ(T ), as described in (3.5), takes the following form in the symmetric

case

µ(t) =
t∑

s=1

(
t

s

)
mµ(s) t = 1, . . . , n (3.19)

where the boundary and monotonicity conditions as in (3.3) and (3.4) can be written as

mµ(0) = 0

n∑
s=1

(
n

s

)
mµ(s) = 1 (3.20)

t∑
s=1

(
t− 1

s− 1

)
mµ(s) ≥ 0 t = 1, . . . , n . (3.21)

The Choquet integrals with symmetric capacities correspond to the OWA functions,

as proved by Fodor et. al. [50],

Cµ(x ) =
n∑
i=1

[µ(n− i+ 1)− µ(n− i)]x(i) =

n∑
i=1

wi x(i) = A(x ) (3.22)
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where the OWA weights are given by wi = µ(n − i + 1) − µ(n − i). The OWA weights

expressed in terms of symmetric capacities are non-negative wi ≥ 0, for i = 1, . . . , n,

due to the monotonicity of the capacity µ. The total sum of OWA weights is written as

n∑
i=1

wi =
n∑
i=1

(µ(n− i+ 1)− µ(n− i)) (3.23)

= (µ(n)− µ(n− 1)) + (µ(n− 1)− µ(n− 2)) + . . .+ (µ(1)− µ(0)) .

This sum is expressed in terms of telescoping series and so it can be reduced to
∑n

i=1wi =

µ(n)− µ(∅) = 1.

3.2.2 The binomial decomposition framework

In the following we recall the definitions of the binomial decomposition of OWA functions

introduced by Calvo and De Baets [27], see also Bortot and Marques Pereira [21]. We

consider the binomial decomposition of OWA functions in the k-additive framework

introduced by Grabisch [60, 63], see also [61, 62], with a particular focus on the 2-

additive and 3-additive cases [23].

Proposition 3.9. The binomial weights wji, with i, j = 1, . . . , n, are defined by the

following weighting vector

wji =

(
n−i
j−1
)(

n
j

) (3.24)

where the binomial weights wji, i, j = 1, . . . , n, are zero when i + j > n + 1, due to the

convention that
(
p
q

)
= 0 when p < q, with p, q = 0, 1, . . ..

Proof The binomial weights are evidently bounded in the unit interval wji ∈ [0, 1].

The sum of all binomial weights takes the following form, due to Pascal’s rule,

n∑
i=1

(
n−i
j−1
)(

n
j

) =
1(
n
j

) n∑
i=1

[(
n− i+ 1

j

)
−
(
n− i
j

)]
. (3.25)

Simplifying the summation, we obtain
(
n
j

)
that leads to

∑n
i=1wji = 1. �

Let us give examples of binomial weights wji, i, j = 1, . . . , n, in dimensions n =

2, 3, 4, 5, 6. In what follow we denote the vector of the binomial weights wji, i, j =

1, . . . , n, associated with the binomial OWA functions Cj , with j = 1, . . . , n, by w j .
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n = 2
w1 = (12 ,

1
2)

w2 = (1, 0)

n = 3
w1 = (13 ,

1
3 ,

1
3)

w2 = (23 ,
1
3 , 0)

w3 = (1, 0, 0)

n = 4
w1 = (14 ,

1
4 ,

1
4 ,

1
4)

w2 = (36 ,
2
6 ,

1
6 , 0)

w3 = (34 ,
1
4 , 0, 0)

w4 = (1, 0, 0, 0)

n = 5
w1 = (15 ,

1
5 ,

1
5 ,

1
5 ,

1
5)

w2 = ( 4
10 ,

3
10 ,

2
10 ,

1
10 , 0)

w3 = ( 6
10 ,

3
10 ,

1
10 , 0, 0)

w4 = (45 ,
1
5 , 0, 0, 0)

w5 = (1, 0, 0, 0, 0)

n = 6
w1 = (16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

w2 = ( 5
15 ,

4
15 ,

3
15 ,

2
15 ,

1
15 , 0)

w3 = (1020 ,
6
20 ,

3
20 ,

1
20 , 0, 0)

w4 = (1015 ,
4
15 ,

1
15 , 0, 0, 0)

w5 = (56 ,
1
6 , 0, 0, 0, 0)

w6 = (1, 0, 0, 0, 0, 0)
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Proposition 3.10. The relationship between two distinct binomial weights wj,i1 and

wj,i2 having the same index j is

wj,i1
wj,i2

=

i2−i1∏
m=1

n− i2 +m

n+ 1− j − i2 +m
(3.26)

where 1 ≤ i1 < i2 ≤ n and 1 ≤ j ≤ n.

The relationship between two distinct binomial weights wj1,i and wj2,i having the

same index i is

wj1,i
wj2,i

=
j1
j2

j2−j1∏
m=1

n− j2 +m

n+ 1− i− j2 +m
(3.27)

where 1 ≤ j1 < j2 ≤ n and 1 ≤ i ≤ n.

Proof. From (3.39), we have

wj,i1
wj,i2

=

(
n−i1
j−1
)(

n
j

) · (nj)(
n−i2
j−1
)

=
(n− i1)!

(j − 1)!(n+ 1− j − i1)!
· (j − 1)!(n+ 1− j − i2)!

(n− i2)!

=
(n− i1)!
(n− i2)!

· (n+ 1− j − i2)!
(n+ 1− j − i1)!

. (3.28)

Since it holds

(n− k1)!
(n− k2)!

=

k2−k1∏
m=1

(n− k2 +m) where 1 ≤ k1 < k2 ≤ n (3.29)

we rewrite (3.28) as

wj,i1
wj,i2

=

i2−i1∏
m=1

n− i2 +m

n+ 1− j − i2 +m
. (3.30)

Analogously, we prove that the (3.27) is true. �

Proposition 3.11. The binomial weights wji ∈ [0, 1], with i, j = 1, . . . , n, have the

following cumulative property,

k∑
i=1

wj−1,i ≤
k∑
i=1

wji k = 1, . . . , n (3.31)

for each j = 2, . . . , n.
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Proposition 3.12. Let B denote a real n by n matrix whose columns are the vectors

wj of the binomial weights wji =
(n−ij−1)
(nj)

corresponding to each value j = 1, . . . , n, such

that B = (wT
1 w

T
2 . . .wT

n ). Any vector w = (w1, . . . , wn) ∈ Rn can be written uniquely

as the linear combination of coefficients α = (α1, . . . , αn) ∈ Rn and the binomial weights

wji in the following linear system,

wi =

n∑
j=1

wjiαj i = 1, . . . , n (3.32)

or equivalently as,

w = Bα. (3.33)

Proof. The matrix B, whose elements are the binomial weights wji =
(n−ij−1)
(nj)

, has null

weights when i + j > n + 1. Therefore, the matrix B is an upper triangular matrix

with respect to its secondary diagonal. It is evident that the matrix is full rank and

invertible. Hence there always exists a unique vector of coefficients αj , with j = 1, . . . , n,

satisfying a set of equations wi =
∑n

j=1wjiαj , where i = 1, . . . , n. In other words, any

vector w = (w1, . . . , wn) ∈ Rn can be written uniquely as the linear combination of

coefficients α = (α1, . . . , αn) ∈ Rn.

Another way to prove that the linear system has a unique solution is to use the

Cramer’s rule. Let D be the determinant of the matrix B and let Dj be the determinant

of the matrix Mj formed by replacing the j-column values with the vector w. The

coefficient αj , with j = 1, . . . , n, are given by

αj =
Dj

D
j = 1, . . . , n. (3.34)

The determinant of the matrix B depends on the elements lying on the secondary

diagonal.

D = (−1)
(n−1)(n+4)

2 · w1,n · w2,n−1 · . . . · wn,1 = (−1)
(n−1)(n+4)

2

∏
i=1,...,n

wi,n−i+1. (3.35)

By substituting the binomial weights into the product and by simplifying, we obtain

the following determinant D,

D = (−1)
(n−1)(n+4)

2

∏
i=1,...,n

1(
n
i

) . (3.36)
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Since the determinant D is non-zero, the system of linear equations (3.32) has the

unique solution of coefficients αj , with j = 1, . . . , n,

αj =
Dj

D
j = 1, . . . , n (3.37)

where Dj is the determinant of the matrix Mj formed by replacing the j-column values

of the matrix B with the vector w.

In particular, for j = 1, the matrix M1 is triangular. Therefore,

D1 = (−1)
(n−1)(n+4)

2 wn
∏

i=2,...,n

wi,n−i+1 =
wn
w1,n

D (3.38)

and it is evident that α1 = D1
D = wn

w1,n
.

On the other hand, for j 6= 1, the matrix Mj , where j = 2, . . . , n, is not triangular,

therefore we cannot obtain the analytical formulation of the determinant Dj and of the

coefficients αj , with j = 1, . . . , n, by using the Cramer’s rule. �

Definition 3.13. The binomial OWA functions Cj : Rn −→ R, with j = 1, . . . , n, are

defined as

Cj(x ) =

n∑
i=1

wji x(i) =

n∑
i=1

(
n−i
j−1
)(

n
j

) x(i) j = 1, . . . , n (3.39)

where wji, i, j = 1, . . . , n, are the binomial weights.

Proposition 3.14. Any OWA function A : Rn −→ R can be written uniquely as

A(x) = α1C1(x) + α2C2(x) + · · ·+ αnCn(x) (3.40)

where the coefficients αj, j = 1, . . . , n, are subject to the boundary condition (3.20) which

can be written as
n∑
j=1

αj = 1 (3.41)

and the monotonicity condition (3.21) which reduces to

i∑
j=1

(
i−1
j−1
)(

n
j

) αj ≥ 0 i = 1, . . . , n. (3.42)

If we rewrite the boundary condition as α1 = 1 −
∑n

j−2 αj and substitute α1 into the

monotonicity condition, we obtain the compound boundary and monotonicity (BM)

conditions for the n− 1 coefficients α2, . . . , αn as follows

n∑
j=2

[
1− n

(
i−1
j−1
)(

n
j

) ]αj ≤ 1 i = 1, . . . , n. (3.43)
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The detailed proof of Proposition 3.14 is given in Calvo and De Baets [27], see also

Bortot and Marques Pereira [21].

In the next part, we investigate the binomial decomposition of OWA functions with

a restriction on the level of k-additivity for k = 2 and k = 3. We then examine the BM

conditions for the related coefficients of the binomial decomposition in the 2-additive

and 3-additive cases.

3.2.3 The 2-additive OWA functions

We now consider the binomial decomposition of OWA functions in the 2-additive case.

Proposition 3.15. Any 2-additive OWA function A : Rn −→ R can be written uniquely

as

A(x) = (1− α2)x̄ + α2C2(x) (3.44)

where C2(x) is the binomial OWA function given by

C2(x) =
n∑
i=1

w2ix(i) =
n∑
i=1

2(n− i)
n(n− 1)

x(i) (3.45)

and the coefficients α2 is subject to the BM conditions,

[
1− n

(
i−1
1

)(
n
2

) ]α2 ≤ 1 i = 1, . . . , n. (3.46)

Example 3.1. As an example to illustrate the BM conditions (3.46) in the 2-additive

case, we consider the cases n = 3, 4, 5, 6,

n = 3


α2 ≤ 1

0 ≤ 2

α2 ≥ −1

n = 4


α2 ≤ 1

α2 ≤ 3

α2 ≥ −3

α2 ≥ −1

(3.47)

n = 5



α2 ≤ 1

α2 ≤ 2

0 ≤ 2

α2 ≥ −2

α2 ≥ −1

n = 6



α2 ≤ 1

3α2 ≤ 5

α2 ≤ 5

α2 ≥ −5

3α2 ≥ −5

α2 ≥ −1

(3.48)
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We notice that the BM conditions (3.46) for any dimension n reduce to

− 1 ≤ α2 ≤ 1 (3.49)

which corresponds to the cases i = 1 and i = n due to their dominance power against the

other conditions when i = 2, . . . , n−1. The BM conditions are, therefore, independent of

n. The feasible region of the coefficient α2 is the line segment specified by −1 ≤ α2 ≤ 1.

3.2.4 The 3-additve OWA functions

Analogously, we now consider the binomial decomposition of OWA functions in the

3-additive case.

Proposition 3.16. Any 3-additive OWA function A : Rn −→ R can be written uniquely

as

A(x) = (1− α2 − α3)x̄ + α2C2(x) + α3C3(x) (3.50)

where C2(x) is given in (3.45) and C3(x) is the binomial OWA function defined as

C3(x) =

n∑
i=1

w3ix(i) =

n∑
i=1

3(n− i)(n− i− 1)

n(n− 1)(n− 2)
x(i) (3.51)

and the coefficients α2 and α3 are subject to the BM conditions,

[
1− n

(
i−1
1

)(
n
2

) ]α2 +
[
1− n

(
i−1
2

)(
n
3

) ]α3 ≤ 1 i = 1, . . . , n. (3.52)

Example 3.2. We now illustrate the BM conditions (3.52) for the coefficients α2 and

α3 in dimensions n = 3, 4, 5, 6,

n = 3


α2 + α3 ≤ 1

α3 ≤ 1

α2 + 2α3 ≥ −1

n = 4


α2 + α3 ≤ 1

α2 + 3α3 ≤ 3

α2 ≥ −3

α2 + 2α3 ≥ −1

(3.53)

n = 5



α2 + α3 ≤ 1

α2 + 2α3 ≤ 2

α3 ≤ 2

α2 + α3 ≥ −2

α2 + 2α3 ≥ −1

n = 6



α2 + α3 ≤ 1

3α2 + 3α3 ≤ 5

2α2 + 7α3 ≤ 10

2α2 − α3 ≥ −10

3α2 + 4α3 ≥ −5

α2 + 2α3 ≥ −1

(3.54)
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We see that the BM conditions in the 3-additive case are dependent on n. The

feasible region which is specified by the intersection of a set of halfspaces is a convex

polygon with n vertices and n edges. Fig. 3.1 gives a useful illustration of the feasible

region with respect to the coefficients α2 and α3. As the dimension n increases from 3

to 12, the feasible region is expanding to the upper left area and becomes asymptotic,

valid only when n → ∞. Further discussion about the asymptotic form of the feasible

region can be found in [23].
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(e) n = 3, · · · , 7

−6 −4 −2 0 2

−
2

−
1

0
1

2
3

4

α2

α 3

−6 −5 −4 −3 −2 −1 0 1 2 3

(f) n = 3, · · · , 8

−6 −4 −2 0 2

−
2

−
1

0
1

2
3

4

α2

α 3

−6 −5 −4 −3 −2 −1 0 1 2 3

(g) n = 3, · · · , 9

−6 −4 −2 0 2

−
2

−
1

0
1

2
3

4

α2

α 3

−6 −5 −4 −3 −2 −1 0 1 2 3

(h) n = 3, · · · , 10

−6 −4 −2 0 2

−
2

−
1

0
1

2
3

4

α2

α 3

−6 −5 −4 −3 −2 −1 0 1 2 3

(i) n = 3, · · · , 11
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Figure 3.1: Feasible regions associated with the BM conditions (3.52)
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3.3 The analytical expression for the coefficients in the

binomial decomposition

In the previous section, we reviewed the OWA functions and their alternative representa-

tion under the binomial decomposition framework. Any OWA function can be expressed

as a linear combination of the coefficients αj , with j = 1, . . . , n, and the binomial OWA

functions Cj , with j = 1, . . . , n. The linear combination shows the relationship between

OWA weights and the coefficients αj , with j = 1, . . . , n. In this section, our aim is to

derive an analytical expression for these coefficients in terms of OWA weights.

The binomial decomposition, as described in (3.40), expresses the linear combina-

tion of OWA weights and the coefficients αj , with j = 1, . . . , n, and it can be written

as the following linear system,
w1 = w11α1 + w21α2 + · · ·+ wn−1,1αn−1 + wn,1αn

w2 = w12α1 + w22α2 + · · ·+ wn−1,2αn−1 + wn,2αn

. . . .

wn = w1nα1 + w2nα2 + · · ·+ wn−1,nαn−1 + wn,nαn

(3.55)

where the binomial weights are given by wji =
(n−ij−1)
(nj)

, i, j = 1, . . . , n, and the coefficients

αj , with j = 1, . . . , n, are subject to the conditions (3.52).

The coefficient matrix of the linear system is composed of the binomial weights

wji =
(n−ij−1)
(nj)

, i, j = 1, . . . , n, with the first n− j+ 1 weights being positive and non-linear

decreasing, and the last j − 1 weights equal to zero. The linear system can be therefore

simplified into the reduced row echelon form,
w1 = w11α1 + w21α2 + · · ·+ wn−1,1αn−1 + wn,1αn

w2 = w12α1 + w22α2 + · · ·+ wn−1,2αn−1

. . . .

wn = w1nα1

(3.56)

where the binomial weights wji =
(n−ij−1)
(nj)

, i, j = 1, . . . , n, and the coefficients αj , with j =

1, . . . , n, are subject to the BM conditions (3.43).

The triangular form, where wi =
∑n−i+1

j=1 wjiαj associated with the coefficient

matrix, which is full rank and invertible, shows that there always exists a unique vector

of coefficients αj , with j = 1, . . . , n, satisfying the linear system for any OWA function,

see also Proposition 3.12. The coefficients αj , with j = 1, . . . , n, of the linear system can

be obtained by the backward substitution rule. It is evident that α1 can be determined by
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wn; α2 can be determined by wn−1, wn; . . .; and αn can be determined by w1, . . . , wn. In

general, each αj , j = 1, . . . , n, determined by the set of OWA weights {wn−j+1, . . . , wn},
can be expressed as follows

α1 =
1

w1,n
wn (3.57)

α2 =
1

w2,n−1
[wn−1 − w1,n−1α1] (3.58)

. . .

αn−1 =
1

wn−1,2

[
w2 −

n−2∑
k=1

wk,2αk

]
(3.59)

αn =
1

wn,1

[
w1 −

n−1∑
k=1

wk,1αk

]
. (3.60)

The generic formulation for the coefficients αj , with j = 1, . . . , n, can be seen as a

function of all the preceding αk, with k = 1, . . . , j − 1, given by

αj =
1

wj,n−j+1

(
wn−j+1 −

j−1∑
k=1

wk,n−j+1αk

)
(3.61)

where w = (w1, . . . , wn) ∈ [0, 1]n and
∑n

i=1wi = 1.

Each αj , with j = 1, . . . , n, in the above expression is a linear combination of the preced-

ing coefficients α1, . . . , αj−1. If we substitute OWA weights for the preceding coefficients,

we obtain the analytical expression for the coefficients αj , with j = 1, . . . , n, in terms

of the set of OWA weights {wn−j+1, . . . , wn}.

α1 is determined by wn:

α1 =
1

w1,n
wn . (3.62)

α2 is determined by wn−1, wn:

α2 =
1

w2,n−1
[wn−1 − w1,n−1α1]

=
1

w2,n−1

[
wn−1 −

w1,n−1
w1,n

wn

]

=
1

w2,n−1
[wn−1 − wn] (3.63)

where we use the fact that w1,i = 1
n for every i = 1, . . . , n.
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α3 is determined by wn−2, wn−1, wn:

α3 =
1

w3,n−2
[wn−2 − w1,n−2α1 − w2,n−2α2]

=
1

w3,n−2

[
wn−2 −

w1,n−2
w1,n

wn −
w2,n−2
w2,n−1

(wn−1 − wn)

]

=
1

w2,n−2
[wn−2 − 2wn−1 + wn] (3.64)

where we use the fact that w1,i = 1
n for every i = 1, . . . , n and Proposition 3.10 to

simplify the ratio
w2,n−2

w2,n−1
to 2.

α4 is determined by wn−3, wn−2, wn−1, wn:

α4 =
1

w4,n−3
[wn−3 − w1,n−3α1 − w2,n−3α2 − w3,n−3α3]

=
1

w4,n−3

[
wn−2 −

w1,n−3
w1,n

wn −
w2,n−3
w2,n−1

(wn−1 − wn)− w3,n−3
w3,n−2

(wn−2 − 2wn−1 + wn)

]

=
1

w4,n−3
[wn−3 − 3wn−2 + 3wn−1 − wn] (3.65)

where we use the fact that w1,i = 1
n for every i = 1, . . . , n and Proposition 3.10 to

simplify both ratios
w2,n−3

w2,n−1
and

w3,n−3

w3,n−2
to 3.

The above mathematical formulations represent the analytical expressions for the coeffi-

cients α1, α2, α3, and α4. They follow the specific pattern in which each αj , where j =

1, 2, 3, 4, is expressed in terms of OWA weights {wn−j+1, . . . , wn}. We now generalize

this result for all coefficients αj , with j = 1, . . . , n.

Proposition 3.17. Consider an OWA function with the associated weighting vector w =

(w1, . . . , wn) ∈ [0, 1]n such that
∑n

i=1wi = 1. The coefficients αj , with j = 1, . . . , n, of

the binomial decomposition of the OWA function can be written in terms of OWA weights

as follows,

αj =
1

wj,n−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
wn−p (3.66)

where j = 1, . . . , n.

Proof. In order to prove that the formulation (3.66) is the analytical expression for the

coefficients αj , with j = 1, . . . , n, of the binomial decomposition of OWA functions, we

use the principle of strong induction [69].
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1. Base case: Let us prove the base case for j = 1. It follows immediately, by

solving the last equation of the linear system related to wn, that is α1 = 1
w1,n

wn, which

is equivalent to (3.66) in the case of j = 1.

2. Induction hypothesis: For some fixed k ≥ 1, we assume that (3.66) is true for

the coefficients αj , with j = 1, . . . , k (according to the strong induction method [69]).

Therefore the coefficients α1, . . . , αk are the solutions of the equations related to the

OWA weights wn−1, . . . , wn−k+1 of the linear system as follows

α1 =
1

w1,n
wn

α2 =
1

w2,n−1

[(
1

0

)
wn−1 −

(
1

1

)
wn

]

α3 =
1

w3,n−2

[(
2

0

)
wn−2 −

(
2

1

)
wn−1 +

(
2

2

)
wn

]
...

αk =
1

wk,n−k+1

[(
k − 1

0

)
wn−k+1 −

(
k − 1

1

)
wn−k+2 + · · ·+ (−1)k−1

(
k − 1

k − 1

)
wn

]
.

3. Induction:

We need to prove that the expression (3.66) is also true for αk+1

αk+1 =
1

wk+1,n−k

k∑
p=0

(−1)k−p
(

k

k − p

)
wn−p

=
1

wk+1,n−k

[(
k

0

)
wn−k −

(
k

1

)
wn−k+1 + · · ·+ (−1)k

(
k

k

)
wn

]
. (3.67)

According to the linear system (3.56), αk+1 is obtained from α1, . . . , αk,

αk+1 =
1

wk+1,n−k
[wn−k − w1,n−kα1 − w2,n−kα2 − · · · − wk,n−kαk]

=
1

wk+1,n−k

[
wn−k − w1,n−k ·

1

w1,n
wn − w2,n−k ·

1

w2,n−1

[(
1

0

)
wn−1 −

(
1

1

)
wn

]
− · · ·

−wk,n−k ·
1

wk,n−k+1

[(
k − 1

0

)
wn−k+1 −

(
k − 1

1

)
wn−k+2 + · · ·+ (−1)k−1

(
k − 1

k − 1

)
wn

]]
.

The ratio
w1,n−k
w1,n

= 1 =
(
k
0

)
due to w1,n−k = w1,n = 1

n .
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By applying the results of Proposition 3.10, the remaining ratios,
w2,n−k
w2,n−1

,
w3,n−k
w3,n−2

,

. . . ,
wk−1,n−k
wk−1,n−k+2

,
wk,n−k
wk,n−k+1

, are simplified to
(
k
1

)
,
(
k
2

)
, . . . ,

(
k
k−2
)
,
(
k
k−1
)
, respectively. Sub-

stituting all the simplified ratios into the expression of αk+1, we get

αk+1 =
1

wk+1,n−k

[
wn−k −

(
k

0

)
wn −

(
k

1

)[(
1

0

)
wn−1 −

(
1

1

)
wn

]

−
(
k

2

)[(
2

0

)
wn−2 −

(
2

1

)
wn−1 +

(
2

2

)
wn

]
− · · ·

· · · −
(

k

k − 2

)[(
k − 2

0

)
wn−k+2 −

(
k − 2

1

)
wn−k+3 + · · ·+ (−1)k−2

(
k − 2

k − 2

)
wn

]

−
(

k

k − 1

)[(
k − 1

0

)
wn−k+1 −

(
k − 1

1

)
wn−k+2 + · · ·+ (−1)k−1

(
k − 1

k − 1

)
wn

]]
.

In order to further simplify the expression, we group the coefficients, cn, . . . , cn−k,

associated with the OWA weights wn, . . . , wn−k in the expression of αk+1, and obtain

the following results.

- Coefficients of wn−k:

cn−k = 1, which is immediately derived from the expression.

- Coefficients of wn−k+1:

cn−k+1 = −
(
k
k−1
)(
k−1
0

)
.

- Coefficients of wn−k+2:

cn−k+2 = +
(
k
k−1
)(
k−1
1

)
−
(
k
k−2
)(
k−2
0

)
.

- Coefficients of wn−k+3:

cn−k+3 = −
(
k
k−1
)(
k−1
2

)
+
(
k
k−2
)(
k−2
1

)
−
(
k
k−3
)(
k−3
0

)
.

...

- Coefficients of wn−2:

cn−2 = −(−1)k−3
(

k

k − 1

)(
k − 1

k − 3

)
− (−1)k−4

(
k

k − 2

)(
k − 2

k − 4

)

−(−1)k−5
(

k

k − 3

)(
k − 3

k − 5

)
− (−1)k−6

(
k

k − 4

)(
k − 4

k − 6

)
. . .
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. . .− (−1)1
(
k

3

)(
3

1

)
− (−1)0

(
k

2

)(
2

0

)
.

- Coefficients of wn−1:

cn−1 = −(−1)k−2
(

k

k − 1

)(
k − 1

k − 2

)
− (−1)k−3

(
k

k − 2

)(
k − 2

k − 3

)

−(−1)k−4
(

k

k − 3

)(
k − 3

k − 4

)
− (−1)k−5

(
k

k − 4

)(
k − 4

k − 5

)
. . .

. . .− (−1)1
(
k

2

)(
2

1

)
− (−1)0

(
k

1

)(
1

0

)
.

- Coefficients of wn:

cn = −(−1)k−1
(

k

k − 1

)(
k − 1

k − 1

)
− (−1)k−2

(
k

k − 2

)(
k − 2

k − 2

)

−(−1)k−3
(

k

k − 3

)(
k − 3

k − 3

)
− (−1)k−4

(
k

k − 4

)(
k − 4

k − 4

)
. . .

. . .− (−1)2
(
k

2

)(
2

2

)
− (−1)1

(
k

1

)(
1

1

)
− (−1)0

(
k

0

)
.

It can be shown that the coefficients associated with particular OWA weights wn−p,

with p = 0, . . . , k, in the expression of αk+1 are equal to

cn−p =


1, if p = k,

∑k−p−1
i=0 (−1)k−p−i

(
k
i+1

)(
k−i−1
p

)
, otherwise.

(3.68)

The expression of αk+1 can be rewritten as the linear combination of the OWA

weights, {wn−k, . . . , wn} and their associated coefficients as follows,

αk+1 =
1

wk+1,n−k

[
wn−k +

k−1∑
p=0

(
wn−p

k−p−1∑
i=0

(−1)k−p−i
(

k

i+ 1

)(
k − i− 1

p

))]
.(3.69)

The inner summation in (3.69) can be rewritten as

k−p−1∑
i=0

(−1)k−p−i
(

k

i+ 1

)(
k − i− 1

p

)
= (−1)k−p

k−p−1∑
i=0

(−1)−i
k!

(i+ 1)!(k − i− 1)!
· (k − i− 1)!

p!(k − i− p− 1)!
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= (−1)k−p
k!

p!

k−p−1∑
i=0

(−1)−i
1

(i+ 1)!(k − i− p− 1)!

= (−1)k−p
k!

p!(k − p)!

k−p−1∑
i=0

(−1)−i
(k − p)!

(i+ 1)!(k − p− i− 1)!

= (−1)k−p
(

k

k − p

) k−p−1∑
i=0

(−1)−i
(
k − p
i+ 1

)
.

If we substitute n for k− p, the summation
∑k−p−1

i=0 (−1)−i
(
k−p
i+1

)
, with k = 1, . . . , n

and p = 0, . . . , k − 1, can be equivalently written as
∑n−1

i=0 (−1)−i
(
n
i+1

)
, with n ≥ 1.

By applying the results of Lemma 2, we have that
∑k−p−1

i=0 (−1)−i
(
k−p
i+1

)
= 1. There-

fore, we obtain

αk+1 =
1

wk+1,n−k

wn−k +

k−1∑
p=0

wn−p(−1)k−p
(

k

k − p

) (3.70)

which is equivalent to (3.67).

To summarize, we have proved that the formulation (3.66), given by

αj =
1

wj,n−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
wn−p (3.71)

is the analytical expression for the coefficients αj , where j = 1, . . . , n, in terms of OWA

weights.

Let us give some examples of the analytical expression for the coefficients αj , where j =

1, . . . , n, in terms of OWA weights w = (w1, . . . , wn) for dimensions n = 4, 6, 8.

Example 1. In the case n = 4, the analytical expression for the coefficients αj , with j =

1, . . . , n, is given as

αj =
1

wj,4−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
w4−p. (3.72)



Chapter 3. The binomial decomposition of OWA functions 43

We obtain the analytical expression for the coefficients as follows

α1 = 4w4

α2 = 6(w3 − w4)

α3 = 4(w2 − 2w3 + w4)

α4 = 1(w1 − 3w2 + 3w3 − w4)

(3.73)

in which the coefficients αj , with j = 1, . . . , n, are given explicitly as functions of the

set of the OWA weights {wn−j+1, . . . , wn}.

Example 2. In the case n = 6, the analytical expression for the coefficients αj , with j =

1, . . . , n, is given as

αj =
1

wj,6−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
w6−p. (3.74)

We obtain the analytical expression for the coefficients as follows

α1 = 6w6

α2 = 15(w5 − w6)

α3 = 20(w4 − 2w5 + w6)

α4 = 15(w3 − 3w4 + 3w5 − w6)

α5 = 6(w2 − 4w3 + 6w4 − 4w5 + w6)

α6 = 1(w1 − 5w2 + 10w3 − 10w4 + 5w5 − w6)

(3.75)

in which the coefficients αj , with j = 1, . . . , n, are given explicitly as functions of the

set of the OWA weights {wn−j+1, . . . , wn}.

Example 3. In the case n = 8, the analytical expression for the coefficients αj , with j =

1, . . . , n, is given as

αj =
1

wj,8−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
w8−p. (3.76)
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We obtain the analytical expression for the coefficients as follows

α1 = 8w8

α2 = 28(w7 − w8)

α3 = 56(w6 − 2w7 + w8)

α4 = 70(w5 − 3w6 + 3w7 − w8)

α5 = 56(w4 − 4w5 + 6w6 − 4w7 + w8)

α6 = 28(w3 − 5w4 + 10w5 − 10w6 + 5w7 − w8)

α7 = 8(1w2 − 6w3 + 15w4 − 20w5 + 15w6 − 6w7 + w8)

α8 = 1(w1 − 7w2 + 21w3 − 35w4 + 35w5 − 21w6 + 7w7 − w8)

(3.77)

in which the coefficients αj , with j = 1, . . . , n, are given explicitly as functions of the

set of the OWA weights {wn−j+1, . . . , wn}.

3.4 Simplifying the minimax disparity model for determin-

ing OWA weights in large-scale problems

In Sect. 2.3.1 we reviewed methods for determining OWA weights based on the mea-

sures of orness and dispersion. Among these available methods, the disparity proposed

by Wang and Parkan [107] is well-known for determining OWA weights. The usual aca-

demic instances of the minimax disparity model focus on solving problems with small

dimensions (n = 3, 4, 5, 6). However, in applied operational research, optimization prob-

lems are often much more complex and lead to a heavy computational demand when

there are hundreds or thousands of variables. In order to overcome the complexity of

high-dimensional problems, we consider the binomial decomposition framework, with

reference to the k-additive framework, which we described in Sect. 3.2. In the binomial

decomposition framework, the original problem, expressed in terms of OWA weights,

can be reformulated by a new set of coefficients of the binomial decomposition of OWA

functions. We impose the level of complexity of the OWA weight distribution by means

of the k-additivity, thereby leads to a significant reduction in the number of coefficients.

Preliminary experiments show that the solution found for the proposed model can still be

a good approximated solution for the original model, while the computational demand

in high-dimensional problems can be significantly reduced.
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3.4.1 The minimax disparity model for determining OWA weights

In this section, we briefly recall the specific class of OWA functions whose weights are

determined by the minimax disparity methods. In 2005 Wang and Parkan [107] revisited

the maximum entropy method introduced by O’Hagan [92] and proposed the minimax

disparity procedure to determine the OWA weights for the convex optimization problem

min
w

{
max

i∈{1,...,n−1}
|wi − wi+1|

}
(3.78)

s.t. 0 ≤ wi ≤ 1 , i = 1, . . . , n ,
n∑
i=1

wi = 1 ,

orness(w) = η =
1

n− 1

n∑
i=1

(i− 1)wi ,

where η, with 0 ≤ η ≤ 1, stands for the orness of the weighting vector.

The objective function is non-linear due to the absolute difference between two

adjacent weights. In order to overcome this non-linearity, the authors introduced a new

variable called δ = max
i∈{1,...,n−1}

|wi−wi+1| and described the original problem equivalently

as

min
w

δ (3.79)

s.t. 0 ≤ wi ≤ 1 , i = 1, . . . , n ,
n∑
i=1

wi = 1 ,

orness(w) = η =
1

n− 1

n∑
i=1

(i− 1)wi ,

wi − wi+1 − δ ≤ 0 , i = 1, . . . , n− 1 ,

wi − wi+1 + δ ≥ 0 , i = 1, . . . , n− 1 ,

where η, with 0 ≤ η ≤ 1, stands for the orness of the weighting vector.

The formulation (3.79) is easy to solve in practice due to its linearity. Many re-

searchers, therefore, revisited this method and suggested numerous extensions [4, 44, 57,

96, 106]. In particular, Liu [80] proved the equivalence of the solutions of the minimax

disparity model and the minimum variance method suggested by Fuller and Majlender

[54].
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3.4.2 The minimax disparity model under the binomial decomposition

framework

In Sect. 3.4.1, we have briefly reviewed the minimax disparity method for determining

OWA weights, expressed in terms of OWA weights. We now transform the minimax

disparity model (3.79) into a problem in which the weights are substituted by a new set

of coefficients αj , with j = 1, . . . , n,

min
α

δ (3.80)

s.t.

i∑
j=1

(
i−1
j−1
)(

n
j

) αj ≥ 0 i = 1, . . . , n ,

n∑
i=1

αj = 1 ,

Orness(α) = η =

n∑
j=1

n− j
(n− 1)(j + 1)

· αj ,

n−i+1∑
j=1

wjiαj −
n−i∑
j=1

wj,i+1αj − δ ≤ 0 , i = 1, . . . , n− 1,

n−i+1∑
j=1

wjiαj −
n−i∑
j=1

wj,i+1αj + δ ≥ 0 , i = 1, . . . , n− 1 ,

where 0 ≤ η ≤ 1 stands for the orness of the weighting vector. Notice that the first

two constraints correspond to the boundary and monotonicity conditions of the OWA

weighting vector w = (w1, ..., wn) ∈ [0, 1]n, with
∑n

i=1wi = 1. Moreover, the number of

constraints is equal to 3n either in the original model (3.79) or in the proposed model

(3.80).

In Table 3.1 we report the empirical results of our proposed model with full-

dimension coefficients αj , with j = 1, . . . , n, for the case n = 10. The coefficients

αj , with j = 1, . . . , n, for the central orness values 0.3, 0.4, 0.5, 0.6 and 0.7 have high

sparsity. In particular, the sparsity is 90% for orness η = 0.5 and is 80% for or-

ness η = 0.3, 0.4, 0.6, 0.7. This suggests that using a smaller number of coefficients

αj , with j = 1, . . . , n, one can exploit the sparsity of the model and speed up the per-

formance of solvers when the number of criteria in an optimization problems is large. In

the following we develop this positive finding by introducing our proposed approach for

solving the minimax disparity model in large-scale problems.
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3.4.3 Simplifying the minimax disparity model in large-scale problems

In this section, we discuss about the challenges that arise when solving the minimax dis-

parity model in the context of large-scale optimization problems. The empirical results

in the literature are obtained for small dimensions (n = 3, 4, 5, 6). In real-life scenarios,

we usually encounter high-dimensional problems. In this context, the optimization prob-

lems formulated directly in terms of OWA weights require large computational resources.

Our objective is to make the minimax disparity methods for determining OWA weights

more tractable in high-dimensional problems. We, therefore, propose a new approach

to overcome this computational complexity. The empirical results in Table 3.1 suggest

that by using a small k-additivity (k ≤ n), one can exploit the sparsity of the model

and speed up the performance of solvers. In this section, we transform the original

problem, expressed in terms of OWA weights, into a problem in which the weights are

substituted by a new set of coefficients. In this transformed representation, we consider

the k-additivity OWA functions, so as to reduce the dimensionality of the problem.

In Fig. 3.2 the performance of the CPLEX solver is shown, with respect to the

original method and to our proposed method for k = n and k = 2. The graph shows the

average running time (out of 300 runs), including the standard error, for various orness

degrees η = 0.50, 0.45, 0.40, 0.35, 0.30 and dimensions n = 10, 20, 30, 40. The proposed

method with k-additivity equal to n facilitates the solver for some orness degrees. No-

tably, for orness η = 0.5, this method is always faster than the conventional one due

to its high sparsity (90%). For the other degrees of orness, the proposed model with

k-additivity equal to n and the conventional model do not differ significantly in terms

of running time. Even though both models have the same number of constraints and

variables, the constraints of the coefficients αj , with j = 1, . . . , n, related to the mono-

tonicity condition in the model (3.80) are more complex than those in the model (3.79).

As a result, the proposed model with full dimensionality requires more computation

time than the conventional method for some orness values.

However, we note that by applying the proposed model with lower k-additivity

(k < n), the performance improves substantially. The number of variables used in our

model reduces by (1− k
n)%. As shown in Fig. 3.2 the solver spends less time to obtain

the optimal weights with our proposed method with 2-additive case (k = 2). When

the orness value differs significantly from the central orness, for instance η = 0.30, the

model with the 2-additivity is adequate for identifying OWA weights for n = 10 while

the optimization problems associated with dimensions n = 20, 30, 40 have no solution. In

these cases, the 2-additivity or the number of coefficients α1 and α2 is too small to have

all the constraints satisfied [64]. Therefore, a larger number of coefficients α1, . . . , αk is

needed for modeling in dimensions n = 20, 30, 40.
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Table 3.1: The coefficients αj , with j = 1, . . . , n, of our proposed method for n = 10

η 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

α1 10 4.3 2.71 1.98 1.49 1 0.51 0.02 0 0 0
α2 -45 -5.4 -1.93 -0.98 -0.49 0 0.49 0.98 0 0 0
α3 120 0 0 0 0 0 0 0 0 0 0
α4 -210 0 0 0 0 0 0 0 3 0 0
α5 252 12.6 0 0 0 0 0 0 0 0 0
α6 -210 -16.8 0 0 0 0 0 0 -9 0 0
α7 120 2.4 0 0 0 0 0 0 13.71 8.4 0
α8 -45 9 1.29 0 0 0 0 0 -9.64 -13.5 0
α9 10 -6.5 -1.57 0 0 0 0 0 3.43 7.5 0
α10 -1 1.4 0.5 0 0 0 0 0 -0.5 -1.4 1

Experiments show that the proposed approach with the reduced number of variables

can assist decision makers in finding OWA weights faster for some degrees of orness. In

the remaining cases, decision makers can exploit the flexibility of the model and choose

the k-additivity that provides the best trade-off between the computational complexity

of OWA weights and the accuracy of the approximated, and possibly suboptimal, OWA

weights.

As an example, we consider our proposed model with the orness value equal to 0.2.

If the k-additivity increases from 3 to 10, we obtain better objective values, as expected

(see Fig. 3.3). However, it is evident that the k-additivity k = 7 leads to the best

trade-off between the accuracy of the optimal value and the dimensionality reduction of

the optimization problem.
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Figure 3.2: Computation time of the original model (Model 1) and our proposed
model (Model 2) with various degrees of orness for n = 10, 20, 30, 40
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Figure 3.3: The objective value δ corresponding to the k-additivity cases (for the
cases k = 1, 2 there is no solution of the coefficients αj)
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3.5 Discussion and conclusion

In this chapter we investigated the feasible region of the coefficients associated with the

2-additive and 3-additive cases in n dimensions. We found the analytical expression for

the coefficients αj , with j = 1, . . . , n, of the binomial decomposition of OWA functions

in terms of OWA weights. This result improves our understanding of the relationship

between OWA weights and the associated coefficients of the binomial decomposition of

OWA functions.

In the context of k-additivity, this result suggests us a new approach for solving

research problems related to the determination of OWA weights in high dimensions.

We transformed the original problems, expressed in terms of OWA weights, into prob-

lems in which the weights are substituted by a new set of coefficients. We introduced

a new methodology to determine OWA weights in large-scale optimization problems by

constraining the complexity of OWA weight distributions through the k-additivity of

coefficients αj , with j = 1, . . . , n. Empirical results show that a small set of the coeffi-

cients in the binomial decomposition can efficiently model the full-dimensional set of the

OWA weights. The time for solving the optimization problems is significantly reduced by

our proposed model for dimensions n = 20, 30, 40. On one hand, our methodology can

assist decision makers in finding OWA weights faster for some given degrees of orness.

On the other hand, decision makers can exploit the flexibility of the model and choose

k-additivity that can reduce the computation load and at the same time can derive the

best approximated OWA weights.

Our approach has some limitations. The experiments are carried out in dimensions

up to 40, which are relatively large with respect to the ones in the literature. How-

ever, those dimensions are still relatively small to be representative of very large-scale

optimization problems. In addition, no sensitivity analysis has been done, to measures

how a small change of the coefficients in the binomial decomposition obtained from our

model affects the OWA weights. Moreover, our model was tested only on the minimax

disparity model.

We suggest some possible future research directions: 1) the evaluation of our pro-

posed method in higher dimensions for the minimax disparity model; 2) the application

of our method to other existing models for determining OWA weights; 3) the develop-

ment of an algorithm to identify which k-additive level in the set {1, . . . , n} gives the

best trade-off between accuracy and computational complexity according to the specific

applications.
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In this chapter we provided an analytical expression for the coefficient of the bi-

nomial decomposition of OWA functions and suggested a useful approach to solve op-

timization problems for determining OWA weights when the dimension of the OWA

weights is high. In the next chapter we consider the binomial decomposition of OWA

functions for some families of welfare functions, with a particular focus on generalized

Gini, the S-Gini and the Lorenzen welfare functions.



Chapter 4

Welfare functions and their

binomial decomposition

In this chapter we recall a family of welfare functions whose expressions are seen as an

instance of OWA functions. We consider generalized Gini welfare functions and two

parametric families, namely the S-Gini and Lorenzen welfare functions, in the context of

the binomial decomposition framework. We show the analogy between these parametric

families of generalized Gini welfare functions and the binomial welfare functions. We

then derive analytical expressions for the coefficients of the binomial decomposition of

the S-Gini and Lorenzen welfare functions in terms of their respective parameters. The

numerical results show that they follow interesting patterns.

4.1 Background

Efforts to raise global living standards have received considerable attention in recent

decades. In particular, many academics and practitioners have focused on issues such

as how to measure economic growth, how to determine economic welfare in relation

to a particular society, whether the current income distribution is less unequal or more

unequal than in the past, and whether current tax policies help to reduce the wealth gap

between the rich and the poor. To address these concerns, income welfare and inequality

measurement represent important indicators of the level of well-being.

Several income inequality measures have been introduced, such as Gini [56], Bonfer-

onni [17], De Vergottini [37], Theil [102], Atkinson [9], Sen [99], see also [31, 32, 33, 100].

Among these available inequality indices, the Gini inequality index has attracted a great

deal of interest since its computation can be geometrically seen in relation with the

53
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Lorenz curve, see also [42, 55]. The connnection between the Gini index and the con-

cept of social welfare has been analyzed and summarized by Lambert [78]. Other studies

introduced several extensions of the Gini index [24, 31, 39, 43, 112, 113]. Weymark [108]

proposed the generalized Gini inequality indices and the corresponding welfare functions.

In the framework of Atkinson-Kolm-Sen, introduced in [9, 75, 98], the relationship be-

tween welfare functions and the associated absolute inequality indices is expressed by

the Blackorby and Donalson’s correspondence formula [15, 16].

Generalized Gini welfare functions [108] correspond to the S-concave OWA func-

tions [115]. As introduced in Chapter 2, OWA functions are special cases of Choquet

integrals in which the associated capacities are symmetric [50]. Moreover, symmetric

Choquet integrals, i.e. OWA functions, have been studied in the binomial decomposition

framework proposed by Calvo and De Baets [27]. Any OWA function can be formulated

in terms of binomial OWA functions. Bortot and Marques Pereira [21] examined this

framework in the context of generalized Gini welfare functions. Generalized Gini wel-

fare functions can be expressed by two equivalent functional bases, the binomial welfare

functions and the Atkinson-Kolm-Sen associated binomial inequality indices.

In this chapter our objective is to investigate the binomial decomposition of two

parametric families of generalized Gini welfare functions, the S-Gini and Lorenzen wel-

fare functions. We identify the relationship between the respective parameters of these

welfare functions and the associated coefficients of the binomial decomposition frame-

work. Moreover, we numerically compare two parametric welfare functions and the

binomial welfare functions for verifying their similarities [20].

The remainder of this chapter is organized as follows. Section 4.2 reviews the

basic definitions regarding generalized Gini welfare functions and the associated Gini

inequality indices. This section concentrates on generalized Gini welfare functions in the

binomial decomposition framework. In Sect. 4.3, the S-Gini family of welfare functions

is discussed and compared with that of the binomial welfare functions. Moreover, we

derive an analytical expression for the coefficients of the binomial decomposition of S-

Gini welfare functions in terms of their inequality aversion parameter. Similarly, Sect.

4.4 examines the Lorenzen family of welfare functions. Finally, in Sect. 4.5 we present

a summarizing discussion.
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4.2 The binomial decomposition of generalized Gini wel-

fare functions

This section reviews the fundamental definitions regarding welfare functions and their

properties, with a particular focus on the description of generalized Gini welfare func-

tions. In the binomial decomposition framework, generalized Gini welfare functions can

be uniquely expressed in terms of two equivalent functional bases, the binomial welfare

functions and the associated binomial inequality indices.

4.2.1 Generalized Gini welfare function and inequality indices

In this section we present the basic definitions of welfare functions and the associated

inequality indices for the allocation of economic resources in a population. The economic

resource we consider is the income of a population of n ≥ 2 individuals, on the non-

negative income domain D = [0,∞). Points x ,y ∈ Dn denote the income distributions of

two populations X and Y . Their arithmetic means are denoted by x̄ and ȳ, respectively.

In the following we begin by introducing fundamental notions of majorization relations,

income transfers, Schur-convexity and Schur-concavity.

Definition 4.1. Let A : Dn −→ D be a function.

1. A is monotonic if for any x ,y ∈ Dn whenever x ≥ y holds, then A(x ) ≥ A(y).

Moreover, A is strictly monotonic whenever x > y holds, then A(x ) > A(y), for

all x ,y ∈ Dn.

2. A is idempotent if A(x · 1) = x, for all x ∈ D. On the other hand, A is nilpotent if

A(x · 1) = 0, for all x ∈ D.

3. A is symmetric if A(xσ) = A(x ), for any permutation σ on {1, . . . , n} and all

x ∈ Dn.

4. A is invariant for translations if A(x + t · 1) = A(x ), for all t ∈ D and x ∈ Dn.

On the other hand, A is called stable for translations if A(x + t · 1) = A(x ) + t,

for all t ∈ D and x ∈ Dn.

5. A is invariant for dilations if A(t · x ) = A(x ), for all t ∈ D and x ∈ Dn. On the

other hand, A is called stable for dilations or homogeneous if A(t ·x ) = t A(x ), for

all t ∈ D and x ∈ Dn.
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Definition 4.2. Given x ,y ∈ Dn with x̄ = ȳ, according to the theory of majorization

by Marshall and Olkin [86], the majorization relation � on Dn is defined as follows:

x � y if

k∑
i=1

x(i) ≥
k∑
i=1

y(i) k = 1, . . . , n (4.1)

where the case k = n is an equality due to x̄ = ȳ. We denote x ≺ y to express that y

majorizes x if x � y and not y � x . We use the notion x ∼ y to express that x and y

are indifferent if x � y and y � x .

The majorization relation can be interpreted also with reference to the concept of

Lorenz dominance. By x ≺ y we mean that x is Lorenz superior to y . On the other

hand, x ∼ y means that x is Lorenz indifferent to y .

To give an example, we consider an income distribution x ∈ Dn with its arithmetic

mean x̄. As the majorization relation suggests, we derive x̄ · 1 � x from the fact that∑k
i=1 x̄ ≥

∑k
i=1 x(i) for k = 1, . . . , n. Moreover, x majorizes x̄ · 1 if the income in x is

not equally distributed. In such case, x̄ · 1 is Lorenz superior to x .

Definition 4.3. Let x ,y ∈ Dn with x̄ = ȳ be the income distributions. The redis-

tributed income x obtained by transferring an amount of income from the relatively

richer individual yj to the relatively poorer individual yi in the original distribution y ,

where yi ≤ yj for a pair of individuals i, j ∈ {1, . . . , n}, is given as follows

xi = (1− ε) yi + εyj xj = εyi + (1− ε) yj i, j = 1, . . . , n (4.2)

for ε ∈ [0, 1], and xk = yk for k 6= i, j. The Pigou-Dalton principle of transfer says

that a progressive transfer from a richer to a poorer individual without changing their

relative positions reduces the level of inequality. This principle is a fundamental axiom

of inequality measures in the theory of social welfare and it is linked to the concepts of

S-concavity and S-convexity. According to Marshall and Olkin [86], strict S-convexity

implies symmetry and requires that inequality measures decrease under the progressive

transfers. In contrast, strict S-concavity implies symmetry and requires that inequality

measures increase under progressive transfers.

Definition 4.4. Let A : Dn −→ D be a function. The notions of Schur-convexity

(S-convexity) and Schur-concavity (S-concavity) of the function A in relation with the

majorization relation are specified as follows:

1. A is S-convex for all x ,y ∈ Dn if x � y holds, then A(x ) ≤ A(y). Moreover, A is

said to be strict S-convex if x ≺ y holds, then A(x ) < A(y).
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2. A is S-concave for all x ,y ∈ Dn if x � y holds, then A(x ) ≥ A(y). Moreover, A

is said to be strict S-concave if x ≺ y holds, then A(x ) > A(y).

Note that the axioms of S-convexity and S-concavity imply symmetry, since x ∼
xσ ⇒ A(x ) = A(xσ).

Proposition 4.5. Let A,B : Dn −→ D be two OWA functions with the weighting

vectors u = (u1, . . . , un) ∈ [0, 1]n where
∑n

i=1 ui = 1 and v = (v1, . . . , vn) ∈ [0, 1]n where∑n
i=1 vi = 1, respectively. For a given x ∈ Dn, it holds that A(x) ≤ B(x) if and only if

k∑
i=1

ui ≥
k∑
i=1

vi for k = 1, . . . , n (4.3)

where the case k = n is an equality since the sum of their weights is equal to 1.

In the following, we present the properties of S-convexity and S-concavity of OWA

functions with respect to their weighting vectors.

Proposition 4.6. Let A : Dn −→ D be an OWA function associated with a weighting

vector w = (w1, . . . , wn) ∈ [0, 1]n such that
∑n

i=1wi = 1. The following holds

1. A is S-convex if and only if the OWA weights are non-decreasing w1 ≤ . . . ≤ wn.

Moreover, A is strictly S-convex if and only if the weights are increasing w1 <

. . . < wn.

2. A is S-concave if and only if the OWA weights are non-increasing w1 ≥ . . . ≥ wn.

Moreover, A is strictly S-concave if and only if the weights are decreasing w1 >

. . . > wn.

Definition 4.7. An averaging function A : Dn −→ D is a welfare function if it is

continuous and S-concave. The welfare function is said to be strict if it is a strict

averaging function which is strictly S-concave.

According to the basic axioms of averaging functions, the welfare function A is

monotonic and idempotent. The welfare function A is, therefore, non-decreasing on

the domain Dn. In particular, it is monotonically increasing on the diagonal where

x = x · 1, with x ∈ D. Consider any two income distributions, the distribution which

is more equally distributed than the other is said to be Lorenz superior. The welfare

function of the Lorenz superior distribution is not less than the one of the other. In the

case of a strict welfare function, the welfare function of the Lorenz superior distribution

is greater than the one of the other.



Chapter 4. Welfare functions and their binomial decomposition 58

Chisini [35] introduced the concept of Chisini mean which is more general than the

notions of other means, such as the arithmetic mean. The Chisini mean, or the uniform

equivalent income, of a distribution (x1, . . . , xn) with respect to the welfare function A

is the income x̃ that makes two income distributions ethically indifferent in terms of

the welfare functions A(x̃ · 1) = A(x ). Since the welfare function is idempotent, we

have A(x̃ · 1) = x̃ and therefore x̃ = A(x ). According to the majorization relation, the

equally-distributed income (x̄, . . . , x̄) is majorized by any income distribution x ∈ Dn,

hence A(x̄ ·1) ≥ A(x ), or equivalently written as A(x ) ≤ x̄. The arithmetic mean x̄ and

the uniform equivalent income x̃ are, therefore, related by 0 ≤ x̃ ≤ x̄.

In the following, we present the basic definitions of absolute and relative inequality

indices. Kolm [76, 77] introduced the notions of absolute indices and proposed the

transformation between absolute and relative indices. The relative indices are obtained

by dividing their associated absolute indices by the arithmetic mean of the income

distributions.

Definition 4.8. A function G : Dn −→ D is an absolute inequality index if it is contin-

uous, nilpotent, S-convex, and invariant for translations. The absolute inequality index

is said to be strict if it is strictly S-convex.

Definition 4.9. A function GR : Dn −→ D is a relative inequality index if it is contin-

uous, nilpotent, S-convex, and invariant for dilations. The relative inequality index is

said to be strict if it is strictly S-convex.

In the work of Atkinson [9], Kolm [75], and Sen [98], the authors suggested the functional

form expressing the relationship between the relative indices and the welfare functions.

Blackorby and Donalson [16] revisited the absolute inequality indices and proved that

for each absolute index, there exists the associated family of welfare functions. Moreover

the study shows that an inequality index is absolute if and only if the corresponding

welfare function is stable for translations. On the other hand, an inequality index is

relative if and only if the corresponding welfare function is stable for dilations.

Definition 4.10. Given a welfare function A : Dn −→ D which is stable for translations,

the associated Atkinson-Kolm-Sen (AKS) absolute inequality index G : Dn −→ D is

defined as

G(x ) = x̄−A(x ) (4.4)

Definition 4.11. Given a welfare function A : Dn −→ D which is stable for dilations,

the associated Atkinson-Kolm-Sen (AKS) relative inequality index GR : Dn −→ D is

defined as

GR(x ) = 1− A(x )

x̄
(4.5)

for x 6= 0, and GR(0) = 0.
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In the following, we present generalized Gini welfare functions, introduced by Wey-

mark [108], and the associated generalized Gini inequality indices by means of the cor-

respondence formula proposed by Blackorby and Donaldson [16].

Definition 4.12. A generalized Gini welfare function is an OWA function A : Dn −→ D
with an associated non-increasing weighting vector w = (w1, . . . , wn) ∈ [0, 1]n, such that

w1 ≥ · · · ≥ wn ≥ 0 and
∑n

i=1wi = 1, defined as

A(x ) =
n∑
i=1

wi x(i). (4.6)

The associated generalized Gini absolute inequality index is defined as

G(x ) = x̄−A(x ) = −
n∑
i=1

(wi −
1

n
)x(i) . (4.7)

Generalized Gini welfare functions are particular instances of OWA functions with

non-increasing weighting vectors. Larger weights are given to poorer individuals while

smaller weights are given to richer individuals. This behavior is related to the propery

of S-concavity. If two income distributions have the same mean and one of them is more

equally distributed than the other, the non-increasing weighting vector ensures that the

former distribution ranked no worse than the other with respect to generalized Gini

welfare functions. Generalized Gini welfare functions and the associated generalized

Gini absolute inequality indices are stable for translations, as suggested by Blackorby

and Donaldson [16], and stable for dilations, respectively. The weight normalization of

generalized Gini welfare functions implies the sum of the coefficients of the associated

generalized Gini absolute inequality index G(x ) is zero. As a result, the generalized

Gini absolute inequality indices are not OWA functions.

One important instance of the generalized Gini AKS framework is the classical Gini

welfare function and the associated classical Gini absolute inequality indices which are

described in the following.

Definition 4.13. A classical absolute Gini inequality index is a function Gc : Dn −→ D
defined as

Gc(x ) =
1

2n2

n∑
i,j=1

|xi − xj | (4.8)

which can be written equivalently as

Gc(x ) = −
n∑
i=1

n− 2i+ 1

n2
x(i). (4.9)
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The associated classical Gini welfare function is defined as

AcG(x ) = x̄ −Gc(x ) =
n∑
i=1

2(n− i) + 1

n2
x(i). (4.10)

We notice that the sum of the weights of the classical Gini welfare functions is equal to

1 due to
∑n

i=1 2(n− i) + 1 = n2.

4.2.2 The binomial decomposition of generalized Gini welfare func-

tions

This section examines the binomial decomposition of OWA functions in the context

of generalized Gini welfare functions. The binomial decomposition of generalized Gini

welfare functions can be formulated in terms of two equivalent functional forms, the

binomial welfare functions and the associated binomial inequality indices.

Definition 4.14. The binomial welfare functions Cj : Rn −→ R, with j = 1, . . . , n, are

defined as

Cj(x ) =
n∑
i=1

wji x(i) wji =

(
n−i
j−1
)(

n
j

) j = 1, . . . , n (4.11)

where wji, with i, j = 1, . . . , n, are the binomial weights.

We notice that the binomial welfare functions and the binomial OWA functions,

as in (3.39), are the same. The binomial weights satisfy the weight normalization, as

proven in Proposition 3.9. According to the cumulative property of the binomial weights

in Proposition 3.11, we have
∑k

i=1wj−1,i ≤
∑k

i=1wji , where k = 1, . . . , n. Therefore,

the binomial welfare functions Cj , with j = 1, . . . , n, satisfy the inequalities x̄ = C1(x ) ≥
C2(x ) ≥ . . . ≥ Cn(x ) ≥ 0, for any x ∈ Dn, due to Proposition 4.5.

Moreover, C1(x ) corresponds to the arithmetic mean = x̄. The remaining binomial

welfare functions Cj , with j = 2, . . . , n, have the first n − j + 1 weights being positive

and non-linear decreasing and the last j − 1 weights being null in correspondence with

the richest individuals x(n−j+2), . . . , x(n) of the population. This weighting structure

demonstrates the analogous behavior between the binomial welfare functions and the

poverty measures, which progressively focus their measures on the poorest sector of the

population. In addition, the non-increasing weights wji ensure the S-concavity of the

binomial welfare functions due to Proposition 4.6.

Proposition 4.15. A generalized Gini welfare function A : Dn −→ D can be written

uniquely as

A(x) = α1C1(x) + α2C2(x) + . . .+ αnCn(x) (4.12)
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where the coefficients αj, j = 1, . . . , n, are subject to the following conditions,

α1 = 1−
n∑
j=2

αj ≥ 0 (4.13)

n∑
j=2

[
1− n

(
i−1
j−1
)(

n
j

) ]αj ≤ 1 i = 2, . . . , n (4.14)

n∑
j=2

(
n−i
j−2
)(

n
j

) αj ≥ 0 i = 2, . . . , n . (4.15)

The constraints (4.13)-(4.14) correspond to the boundary conditions and mono-

tonicity conditions for the coefficients αj , with j = 1, . . . , n, as they hold for the bino-

mial decomposition of OWA functions (3.41)-(3.43). Generalized Gini welfare functions

are particular instances of OWA functions when their weights are non-increasing. This

weighting structure ensures the S-concavity of the generalized Gini welfare functions.

The coefficients of the binomial decomposition of generalized Gini welfare functions

are, thereby, subject to the S-concavity conditions (4.15). The detailed proof of the

S-concavity condition is provided in Bortot and Marques Pereira [21]. The feasible re-

gion of the coefficients αj , with j = 1, . . . , n, is convex since it is obtained from the

intersection of a set of halfspaces.

Any generalized Gini welfare function as shown in (4.12) can be expressed in terms

of the binomial welfare functions Cj , with j = 1, . . . , n. In the following we consider

the transformation, as suggested by Blackorby and Donaldson [16], see also Bortot and

Marques Pereira [21], from the binomial welfare function to the binomial inequality

index and vice versa. We demonstrate that the original expression of the binomial

decomposition can be formulated in terms of the binomial Gini absolute inequality index.

Definition 4.16. Consider the binomial welfare functions Cj : Dn −→ D, with Cj(x) =∑n
i=1wjix(i) for j = 1, . . . , n. The associated binomial inequality indices Gj : Dn −→ D,

with j = 1, . . . , n, are defined as

Gj(x) = x̄− Cj(x) j = 1, . . . , n (4.16)

which can be written as

Gj(x) = −
n∑
i=1

vjix(i) = −
n∑
i=1

[
wji −

1

n

]
x(i) j = 1, . . . , n (4.17)

where the coefficients vji = wji − 1
n , with i, j = 1, . . . , n, are equal to −1/n when

i+ j > n+ 1, since in such case the binomial weights wji are zero.
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The binomial inequality indices assign the same coefficients −vji to the j−1 richest

individuals in the population. As a result, they are progressively insensitive to income

transfers that take place among the richest individuals. In addition, the coefficients

−vji sum up to zero due to the weight normalization of the binomial weights wji. The

binomial inequality indices Gj , with j = 1, . . . , n, are, therefore, nilpotent and invariant

for translations.

The S-concavity of the binomial welfare functions, as discussed in (4.14), ensures

the S-convexity of the associated binomial inequality indices. As an example, given two

distributions x ,y ∈ Dn having the same mean x̄ = ȳ, we assume that x � y . Due to

the S-concavity of the binomial welfare functions, we have Cj(x ) ≥ Cj(y). Accordingly,

the S-convexity of the binomial inequality indices holds Gj(x ) ≤ Gj(y).

In the following, we give examples of the coefficients −vji ∈ [−(n−1)/n, 1/n], with

i, j = 1, . . . , n, of the binomial inequality indices Gj , with j = 1, . . . , n, for dimensions

n = 2, 3, 4, 5, 6. In these examples, the coefficients −vji, with i, j = 1, . . . , n, are simply

denoted by −v j .

n = 2

− v1 = (0, 0)

− v2 = (−1
2 ,

1
2)

n = 3
− v1 = (0, 0, 0)

− v2 = (−1
3 , 0,

1
3)

− v3 = (−2
3 ,

1
3 ,

1
3)

n = 4
− v1 = (0, 0, 0, 0)

− v2 = (− 3
12 ,−

1
12 ,

1
12 ,

3
12)

− v3 = (−2
4 , 0,

1
4 ,

1
4)

− v4 = (−3
4 ,

1
4 ,

1
4 ,

1
4)

As concerns the S-concavity and S-convexity of the binomial welfare functions and

the associated inequality indices, let us consider a population x ∈ Dn with n ≥ 2

individuals and its unit arithmetic mean x̄ = 1. The family of income distributions of

the population x with respect to various levels of inequality is specified by

x(i) = n
[
fβ

( i
n

)
− fβ

( i− 1

n

)]
i = 1, . . . , n (4.18)
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n = 5
− v1 = (0, 0, 0, 0, 0)

− v2 = (− 2
10 ,−

1
10 , 0,

1
10 ,

2
10)

− v3 = (− 4
10 ,−

1
10 ,

1
10 ,

2
10 ,

2
10)

− v4 = (−3
5 , 0,

1
5 ,

1
5 ,

1
5)

− v5 = (−4
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5)

n = 6
− v1 = (0, 0, 0, 0, 0, 0)

− v2 = (− 5
30 ,−

3
30 ,−

1
30 ,

1
30 ,

3
30 ,

5
30)

− v3 = (−20
60 ,−

8
60 ,

1
60 ,

7
60 ,

10
60 ,

10
60)

− v4 = (−15
30 ,−

3
30 ,

3
30 ,

5
30 ,

5
30 ,

5
30)

− v5 = (−4
6 , 0,

1
6 ,

1
6 ,

1
6 ,

1
6)

− v6 = (−5
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6)

where fβ : [0, 1]→ [0, 1] is the parametric Lorenz curve defined as

fβ(r) = re−β(1−r) r ∈ [0, 1]. (4.19)

Figure 4.1 illustrates the parametric Lorenz curve with respect to some parameter

values β = 0, 1, . . . , 8. The equidistribution line corresponds to the value β = 0 when

all individuals receive the same amount of income. Moreover, the Lorenz curve exhibits

the Lorenz dominance as β increases from 0 to 8. The values of the binomial welfare

functions Cj , with j = 1, . . . , n, in dimensions n = 4, 6, 8 are illustrated in Figs. 4.2 -

4.4. The data show that the dominance relations x̄ = C1(x ) ≥ C2(x ) ≥ . . . ≥ Cn(x ) ≥ 0

hold between the binomial welfare functions in an individual distribution with respect

to the fixed value of the inequality aversion. On the other hand, they highlight the

S-concavity of the binomial welfare functions, expressed as Cj(x ) ≥ Cj(y) where x � y ,

as the inequality parameter increases from 0 to 8.

Similarly, we compute the values of the binomial inequality indices in relation to

various Lorenz curves. The result confirms the relations 0 = G1(x ) ≤ G2(x ) ≤ . . . ≤
Gn(x ) ≤ 1, as expected. Moreover, when the inequality parameter increases from 0 to

8, the binomial inequality indices of the Lorenz superior income distributions (above)

are always equal to or less than those of the Lorenz inferior income distributions (below)

due to the S-convexity of the binomial inequality indices.
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Figure 4.1: Parametric Lorenz curve for parameter values β = 0, 1, . . . , 8
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Figure 4.2: Values of the binomial welfare functions Cj , j = 1, . . . , n with n = 4 for
Lorenz curve parameter β = 0, 1, . . . , 8
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Figure 4.3: Values of the binomial welfare functions Cj , j = 1, . . . , n with n = 6 for
Lorenz curve parameter β = 0, 1, . . . , 8
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Figure 4.4: Values of the binomial welfare functions Cj , j = 1, . . . , n with n = 8 for
Lorenz curve parameter β = 0, 1, . . . , 8
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4.3 The single parameter family of generalized Gini wel-

fare functions

This section focuses on the single parameter family of generalized Gini welfare functions,

called the S-Gini family, in the context of the binomial decomposition framework. We

derive an analytical expression for the coefficients of the binomial decomposition of S-

Gini welfare functions in terms of the inequality aversion parameter. We also analyze

the analogy between the binomial welfare functions and the S-Gini family.

4.3.1 The S-Gini family in the binomial decomposition framework

The S-Gini family of welfare functions has been introduced by Donaldson and Weymark

[39], see also [1, 2, 3, 24, 40, 74, 127].

Definition 4.17. The S-Gini welfare function associated with weigting vector wS(δ)

is an OWA function ASδ : Dn → D defined as

ASδ (x ) =
n∑
i=1

wSi (δ)x(i) wSi (δ) =
(n− i+ 1

n

)δ
−
(n− i

n

)δ
δ ∈ [1,∞) (4.20)

where wSi (δ) are the S-Gini weights and δ is an inequality aversion parameter.

In the context of the binomial decomposition (4.12), one expresses the S-Gini wel-

fare functions ASδ as linear combinations with coefficients α1, . . . , αn of the binomial

welfare functions C1, . . . , Cn.

Proposition 4.18. The S-Gini welfare functions can be written uniquely as

ASδ (x) = α1(δ)C1(x) + α2(δ)C2(x) + . . .+ αn(δ)Cn(x) (4.21)

for all δ ∈ [1,∞). The coefficients αj, j = 1, . . . , n, are subject to the conditions (4.13)

- (4.15).

The binomial decomposition of the S-Gini welfare functions can be written as

n∑
i=1

wSi (δ)x(i) = α1(δ)

n∑
i=1

w1i x(i) + α2(δ)

n∑
i=1

w2i x(i) + · · ·+ αn(δ)

n∑
i=1

wni x(i) (4.22)

for all δ ∈ [1,∞).



Chapter 4. Welfare functions and their binomial decomposition 67

The binomial weights wji =
(n−ij−1)
(nj)

, i, j = 1, . . . , n, have n− j+ 1 positive non-linear

decreasing weights and j − 1 null last weights. As a result, for each value of the S-

Gini parameter δ ∈ [1,∞), we obtain a unique solution α1(δ), . . . , αn(δ) by solving the

following triangle linear system (Proposition 3.12),

wS1 (δ) = w11α1(δ) + w21α2(δ) + · · ·+ wn−1,1αn−1(δ) + wn,1αn(δ)

wS2 (δ) = w12α1(δ) + w22α2(δ) + · · ·+ wn−1,2αn−1(δ)

. . . .

wSn(δ) = w1nα1(δ) .

(4.23)

Since the S-Gini family is composed of OWA functions, the coefficients αj(δ), with

j = 1, . . . , n, take the form

αj(δ) =
1

wj,n−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
wSn−p(δ) (4.24)

as proven in (3.66). Each αj(δ) is explicitly expanded as a function of the set of S-Gini

weights, {wSn−j+1(δ), . . . , w
S
n}, as follows,

wj,n−j+1 · αj(δ) =

0∑
p=j−1

(−1)j−p−1
(

j − 1

j − p− 1

)
wSn−p(δ)

= (−1)0
(
j − 1

0

)
wSn−j+1(δ) + (−1)1

(
j − 1

1

)
wSn−j+2(δ) + . . .+

+ (−1)j−2
(
j − 1

j − 2

)
wSn−1(δ) + (−1)j−1

(
j − 1

j − 1

)
wSn(δ)

=

(
j − 1

0

)
wSn−j+1(δ)−

(
j − 1

1

)
wSn−j+2(δ) + . . .+

+(−1)j−2
(
j − 1

j − 2

)
wSn−1(δ) + (−1)j−1

(
j − 1

j − 1

)
wSn(δ). (4.25)

According to the definition of the S-Gini weights (4.20), we have

wSn−j+1(δ) =
( j
n

)δ
−
(j − 1

n

)δ
wSn−j+2(δ) =

(j − 1

n

)δ
−
(j − 2

n

)δ
...

wSn−1(δ) =
( 2

n

)δ
−
( 1

n

)δ
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wSn(δ) =
( 1

n

)δ
−
( 0

n

)δ
.

By replacing the notations of the S-Gini weights with their values, the coefficients in

(4.25) are equivalently written,

1(
n
j

) · αj(δ) =

(
j − 1

0

)[( j
n

)δ
−
(j − 1

n

)δ]
−
(
j − 1

1

)[(j − 1

n

)δ
−
(j − 2

n

)δ]
(4.26)

+ . . .+ (−1)j−2
(
j − 1

j − 2

)[( 2

n

)δ
−
( 1

n

)δ]
+ (−1)j−1

(
j − 1

j − 1

)[( 1

n

)δ
−
( 0

n

)δ]

for all δ ∈ [1,∞). Notice that there is a common term 1
nδ

on the right-hand side.

We move this term to the left-hand side and group the functions of δth powers in the

following order,

nδ(
n
j

) · αj(δ) =

(
j − 1

0

)
jδ −

[(
j − 1

0

)
+

(
j − 1

1

)]
(j − 1)δ + . . .+

+(−1)j−1

[(
j − 1

j − 2

)
+

(
j − 1

j − 1

)]
1δ + (−1)j−1

(
j − 1

j − 1

)
0δ. (4.27)

By applying Pascal’s rule, we have (
j − 1

0

)
=

(
j

0

)
(
j − 1

0

)
+

(
j − 1

1

)
=

(
j

1

)
(
j − 1

1

)
+

(
j − 1

2

)
=

(
j

2

)
(
j − 1

j − 2

)
+

(
j − 1

j − 1

)
=

(
j

j − 1

)
.

Therefore, we have

nδ(
n
j

) · αj(δ) =

(
j

0

)
jδ −

(
j

1

)
(j − 1)δ +

(
j

2

)
(j − 2)δ − . . .+ (−1)j−1

(
j

j − 1

)
1δ. (4.28)

Finally, the analytical solutions αj(δ) can be rewritten as the sum of δ powers of the set

of integers 1, . . . , j as follows

αj(δ) =

(
n
j

)
nδ

j∑
p=1

(−1)p−1
(

j

p− 1

)
(j − p+ 1)δ (4.29)
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for all δ ∈ [1,∞).

In the following, we graphically illustrate the analytical expressions, as in (4.29), for the

coefficients αj(δ), with j = 1, . . . , n, for the cases n = 4, 6, 8.

Example 4.1. In the case n = 4, the linear system (4.23) corresponds to

wS1 (δ) = w11α1(δ) + w21α2(δ) + w31α3(δ) + w41α4(δ)

wS2 (δ) = w12α1(δ) + w22α2(δ) + w32α3(δ)

wS3 (δ) = w13α1(δ) + w23α2(δ)

wS4 (δ) = w14α1(δ)

(4.30)

and admits the unique solution according to the analytical expression (4.29)

α1(δ) = 4 ·
[
1δ
]
/4δ

α2(δ) = 6 ·
[
2δ − 2 · 1δ

]
/4δ

α3(δ) = 4 ·
[
3δ − 3 · 2δ + 3 · 1δ

]
/4δ

α4(δ) =
[
4δ − 4 · 3δ + 6 · 2δ − 4 · 1δ

]
/4δ

(4.31)

in which the coefficients αj(δ), with j = 1, . . . , 4, are explicitly given as functions of the

parameter δ ∈ [1,∞), as illustrated in Fig. 4.5.

Example 4.2. In the case n = 6, the linear system (4.23) corresponds to



wS1 (δ) = w11α1(δ) + w21α2(δ) + w31α3(δ) + w41α4(δ) + w51α5(δ) + w61α6(δ)

wS2 (δ) = w12α1(δ) + w22α2(δ) + w32α3(δ) + w42α4(δ) + w52α5(δ)

wS3 (δ) = w13α1(δ) + w23α2(δ) + w33α3(δ) + w43α4(δ)

wS4 (δ) = w14α1(δ) + w24α2(δ) + w34α3(δ)

wS5 (δ) = w15α1(δ) + w25α2(δ)

wS6 (δ) = w16α1(δ)

(4.32)

and admits the unique solution according to the analytical expression (4.29)
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(d) α1, ..., α4 with δ ∈ [1, 32].

Figure 4.5: Coefficients of the binomial decomposition for n = 4



α1(δ) = 6 ·
[
1δ
]
/6δ

α2(δ) = 15 ·
[
2δ − 2 · 1δ

]
/6δ

α3(δ) = 20 ·
[
3δ − 3 · 2δ + 3 · 1δ

]
/6δ

α4(δ) = 15 ·
[
4δ − 4 · 3δ + 6 · 2δ − 4 · 1δ

]
/6δ

α5(δ) = 6 ·
[
5δ − 5 · 4δ + 10 · 3δ − 10 · 2δ + 5 · 1δ

]
/6δ

α6(δ) =
[
6δ − 6 · 5δ + 15 · 4δ − 20 · 3δ + 15 · 2δ − 6 · 1δ

]
/6δ

(4.33)

in which the coefficients αj(δ), with j = 1, . . . , 6, are explicitly given as functions of the

parameter δ ∈ [1,∞), as illustrated in Fig. 4.6.

Example 4.3. In the case n = 8, the linear system (4.23) admits the unique solution

according to the analytical expression (4.29)
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(d) α1, ..., α6 with δ ∈ [1, 32].

Figure 4.6: Coefficients of the binomial decomposition for n = 6



α1(δ) = 8 ·
[
1δ
]
/8δ

α2(δ) = 28 ·
[
2δ − 2 · 1δ

]
/8δ

α3(δ) = 56 ·
[
3δ − 3 · 2δ + 3 · 1δ

]
/8δ

α4(δ) = 70 ·
[
4δ − 4 · 3δ + 6 · 2δ − 4 · 1δ

]
/8δ

α5(δ) = 56 ·
[
8δ − 5 · 4δ + 10 · 3δ − 10 · 2δ + 5 · 1δ

]
/8δ

α6(δ) = 28 ·
[
6δ − 6 · 5δ + 15 · 4δ − 20 · 3δ + 15 · 2δ − 6 · 1δ

]
/8δ

α7(δ) = 8 ·
[
7δ − 7 · 6δ + 21 · 5δ − 35 · 4δ + 35 · 3δ − 21 · 2δ + 7 · 1δ

]
/8δ

α8(δ) =
[
8δ − 8 · 7δ + 28 · 6δ − 56 · 5δ + 70 · 4δ − 56 · 3δ + 28 · 2δ − 8 · 1δ

]
/8δ

(4.34)

in which the coefficients αj(δ), with j = 1, . . . , 8, are explicitly given as functions of the

parameter δ ∈ [1,∞), as illustrated in Fig. 4.7.
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(d) α1, ..., α8 with δ ∈ [1, 32].

Figure 4.7: Coefficients of the binomial decomposition for n = 8
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4.3.2 The analogy between the binomial welfare functions and the

parametric S-Gini family

The S-Gini welfare functions, as defined in (4.20), take the form of AS1 (x ) = x̄ = C1(x )

and AS∞(x ) = x(1) = Cn(x ) with respect to the inequality aversion parameter values

δ = 1 and δ = ∞, respectively. The S-Gini welfare function of a distribution x ∈ Dn

is, therefore, bounded in the interval [x(1), x̄], equivalently written as Cn(x ) ≤ AS(x ) ≤
C1(x ). In other words, the S-Gini welfare functions interpolate between the first and

last binomial welfare functions as the inequality aversion parameter increases from δ = 1

to δ =∞.

In the following, we carry out an experiment to identify the parameter values of

the S-Gini welfare functions that can produce the weighting vectors most similar to the

ones of the binomial welfare functions. The degrees of similarity are measured by mean

square differences. Before computing, we first need to normalize the inequality aversion

parameter from the infinite range to the definite one by the following transformation

∆ = 1
( 2

δ + 1

)
+ n

(δ − 1

δ + 1

)
(4.35)

where the normalized inequality aversion parameter ∆ is equal to 1 and n when δ = 1

and δ =∞, respectively.

Figures 4.8 and 4.9 show the normalized parameter ∆ of the S-Gini welfare functions

whose weights are most similar to the ones of the binomial welfare functions Cj associated

with the binomial indices j = 1, . . . , n. The normalized parameter ∆ increases non-

linearly very fast for the values of j = 1, . . . , n. After the rapid changes, the normalized

parameter gradually stabilizes and reaches its upper bound at ∆ = n.
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Figure 4.8: The normalized parameter ∆ (as shown on the vertical axis) of the S-Gini
welfare function whose weight distribution is the closest to the one of each binomial

welfare function Cj , j = 1, . . . , n = 8
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Figure 4.9: As in Fig. 4.8 with n = 16, 32, 64, 128
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4.4 The Lorenzen family of generalized Gini welfare func-

tions

This section reviews the parametric Lorenzen family of generalized Gini welfare func-

tions. We consider two equivalent expressions of this family with respect to the formal

definition and the binomial decomposition framework. We then study the relationship

between the Lorenzen weights and the associated coefficients of the binomial decompo-

sition framework. In particular, we derive an analytical expression for the coefficients

of the binomial decomposition of Lorenzen welfare functions in terms of the Lorenzen

index. We also analyze the analogy between the binomial welfare functions and the

Lorenzen family.

4.4.1 The Lorenzen family in the binomial decomposition framework

The Lorenzen family, proposed by Lorenzen [83], is a parametric family of generalized

Gini welfare functions.

Definition 4.19. The Lorenzen welfare function associated with weigting vector wL(l)

is an OWA function ALl : Dn → D defined as

ALl (x ) =
l∑

i=1

wLi (l)x(i) wLi (l) =
l + n− 2i+ 1

nl
l = 1, . . . , n (4.36)

where wLi (l) are the Lorenzen weights and l is the number of the poorest individuals

that are taken into account in the Lorenzen welfare functions.

The Lorenzen weights wLi (l), with i = 1, . . . , n, can be equivalently written as

wLi (l) =


l+n−2i+1

nl = l+n+1
nl −

2i
nl if i ≤ l

0 otherwise.

(4.37)

For instance, the non-zero Lorenzen weights in dimension n are

wL1 (l) =
l + n+ 1

nl
− 2

nl

wL2 (l) =
l + n+ 1

nl
− 4

nl

wL3 (l) =
l + n+ 1

nl
− 6

nl
...
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wLl (l) =
l + n+ 1

nl
− 2l

nl
. (4.38)

We can prove that the Lorenzen weights have unit sum directly from (4.38) as

follows

l∑
i=1

wLi (l) =

l∑
i=1

l + n+ 1

nl
−

l∑
i=1

2i

nl
(4.39)

The first summation of l times of the constant values l+n+1
nl is reduced to l+n+1

n .

The second summation is equal to 2
nl

∑l
i=1 i = l+1

n . The Lorenzen weights are, therefore,

sum up to 1.

In the context of the binomial decomposition (4.12), each Lorenzen welfare function

ALj can be expressed in terms of the binomial Gini welfare functions C1, . . . , Cn as follows,

ALj (x ) = α1(l)C1(x ) + α2(l)C2(x ) + . . .+ αn(l)Cn(x ) (4.40)

for j = 1, . . . , n, which can be written as

n∑
i=1

wLji(l)x(i) = α1(l)

n∑
i=1

w1ix(i) + α2(l)

n∑
i=1

w2ix(i) + . . .+ αn(l)

n∑
i=1

wnix(i). (4.41)

The binomial weights wji =
(n−ij−1)
(nj)

, i, j = 1, . . . , n, have n− j+ 1 positive non-linear

decreasing weights and j− 1 null last weights. Therefore, for each value of the Lorenzen

index l = 1, . . . , n, we obtain a unique solution α1(l), . . . , αn(l) by solving the triangle

linear system (Proposition 3.12),



wL1 (l) = w11α1(l) + w21α2(l) + · · ·+ wn−1,1αn−1(l) + wn,1αn(l)

wL2 (l) = w12α1(l) + w22α2l(l) + · · ·+ wn−1,2αn−1(l)

. . . .

wLn−1(l) = w1,n−1α1(l) + w2,n−1α2(l)

wLn (l) = w1nα1(l)

(4.42)

Since the Lorenzen family is a particular case of the OWA functions, the coefficients

αj(l), with j, l = 1, . . . , n, have the following analytical expression, similarly to (3.66),

αj(l) =
1

wj,n−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
wLn−p(l). (4.43)



Chapter 4. Welfare functions and their binomial decomposition 77

Each αj(l) is expressed as a function of the set of Lorenzen weights {wLn−j+1(l), . . . ,

wLn (l)} where the Lorenzen weights are defined as (4.37), see also (4.38). The Lorenzen

weights wLi (l) are non-zero when the Lorenzen index i ≤ l for l = 1, . . . , n. The coef-

ficients αj(l) are, therefore, explicitly determined by the set of the non-zero Lorenzen

weights {wLn−j+1, . . . , w
L
l−1, w

L
l }, where l ≥ n− j + 1. The expression of the coefficients

αj(l) can be written shortly as follows

αj(l) =


1

wj,n−j+1

∑j−1
p=n−l(−1)j−p−1

(
j−1
j−p−1

)
wLn−p(l) if l ≥ n− j + 1

0 otherwise.

(4.44)

By substituting the Lorenzen weights (4.37), the above expression can be written

as

αj(l) =


1

wj,n−j+1

∑j−1
p=n−l(−1)j−p−1

(
j−1
j−p−1

) [
l−n+1
nl + 2p

nl

]
if l ≥ n− j + 1

0 otherwise.

(4.45)

In the two equivalent expressions (4.43)-(4.44) of the coefficients αj(l), we observe

some interesting properties of the coefficients αj(l) in correspondence with different

choices of the Lorenzen index l = 1, . . . , n. The detailed proof is presented in Appendix

A, Lemma 4.

(i) αj(l) = 0 where j < n− l + 1 for the Lorenzen index l = 1, . . . , n

(ii) α1(l) = . . . = αn−1(l) = 0 and αn(l) = 1 for the Lorenzen index l = 1

(iii) α1(l) = 1/n, α2(l) = (n − 1)/n, and α3(l) = . . . = αn(l) = 0 for the Lorenzen

index l = n

(iv) α1(l) = 0, α2(l) = 1 and αj(l) = 0, where j = 3, . . . , n, for the Lorenzen index

l = n− 1.

In the following we graphically illustrate the analytical expressions, as in (4.45),

of the coefficients αj(l), with j, l = 1, . . . , n, in the binomial decomposition of Lorenzen

welfare functions for the cases n = 4, 6, 8.
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Example 4.4. In the case n = 4, the linear system (4.42) corresponds to

wL1 (l) = w11α1(l) + w21α2(l) + w31α3(l) + w41α4(l)

wL2 (l) = w12α1(l) + w22α2(l) + w32α3(l)

wL3 (l) = w13α1(l) + w23α2(l)

wL4 (l) = w14α1(l)

(4.46)

and admits the unique solution according to the analytical expression (4.45)

α1(l = 1, . . . , 4) =
(
0, 0, 0, 14

)
α2(l = 1, . . . , 4) =

(
0, 0, 1, 34

)
α3(l = 1, . . . , 4) =

(
0, 32 , 0, 0

)
α4(l = 1, . . . , 4) =

(
1,−1

2 , 0, 0
)

(4.47)

in which the coefficients αj(l), with j = 1, . . . , 4, are explicitly given as functions of the

parameter l = 1, . . . , 4, as illustrated in Fig. 4.10.
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Figure 4.10: α1(l), ..., α(l) with l = 1, ..., 4 for n = 4
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Example 4.5. In the case n = 6, the linear system (4.42) corresponds to

wL1 (l) = w11α1(l) + w21α2(l) + w31α3(l) + w41α4(l) + w51α5(l) + w61α6(l)

wL2 (l) = w12α1(l) + w22α2(l) + w32α3(l) + w42α4(l) + w52α5(l)

wL3 (l) = w13α1(l) + w23α2(l) + w33α3(l) + w43α4(l)

wL4 (l) = w14α1(l) + w24α2(l) + w34α3(l)

wL5 (l) = w15α1(l) + w25α2(l)

wL6 (l) = w16α1(l)

(4.48)

and admits the unique solution according to the analytical expression (4.45)

α1(l = 1, . . . , 6) =
(
0, 0, 0, 0, 0, 16

)
α2(l = 1, . . . , 6) =

(
0, 0, 0, 0, 1, 56

)
α3(l = 1, . . . , 6) =

(
0, 0, 0, 52 , 0, 0

)
α4(l = 1, . . . , 6) =

(
0, 0, 103 ,−

5
2 , 0, 0

)
α5(l = 1, . . . , 6) =

(
0, 52 ,−

10
3 ,

5
4 , 0, 0

)
α6(l = 1, . . . , 6) =

(
1,−3

2 , 1,−
1
4 , 0, 0

)

(4.49)

in which the coefficients αj(l), with j = 1, . . . , 6, are explicitly given as functions of the

parameter l = 1, . . . , 6, as illustrated in Fig. 4.11.
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Figure 4.11: α1(l), ..., α6(l) with l = 1, ..., 6 for n = 6
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Example 4.6. In the case n = 8, the linear system (4.42) admits the unique solution

according to the analytical expression (4.45)

α1(l) =
(
0, 0, 0, 0, 0, 0, 0, 18

)
α2(l) =

(
0, 0, 0, 0, 0, 0, 1, 78

)
α3(l) =

(
0, 0, 0, 0, 0, 72 , 0, 0

)
α4(l) =

(
0, 0, 0, 0, 7,−35

6 , 0, 0
)

α5(l) =
(
0, 0, 0, 354 ,−14, 356 , 0, 0

)
α6(l) =

(
0, 0, 7,−63

4 ,
63
5 ,−

7
2 , 0, 0

)
α7(l) =

(
0, 72 ,−

28
3 ,

21
2 ,−

28
5 ,

7
6 , 0, 0

)
α8(l) =

(
1,−5

2 ,
10
3 ,−

5
2 , 1,−

1
6 , 0, 0

)

(4.50)

in which the coefficients αj(l), with j = 1, . . . , 8, are explicitly given as functions of the

parameter l = 1, . . . , 8, as illustrated in Fig. 4.12.
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Figure 4.12: α1(l), ..., α8(l) with l = 1, ..., 8 for n = 8

4.4.2 The analogy between the binomial welfare functions and the

parametric Lorenzen family

The Lorenzen welfare functions, as defined in (4.36), take the form of AL1 (x ) = x(1) =

Cn(x ) and ALn(x ) = x̄−GC(x ) = AC(x ) with respect to the Lorenzen parameter values

l = 1 and l = n, respectively. The Lorenzen welfare function of a distribution x ∈ Dn

is, therefore, bounded in the interval Cn(x ) ≤ AL(x ) ≤ AC(x ). In other words, the

Lorenzen welfare functions interpolate between the last binomial welfare functions and
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the classical Gini welfare function as the inequality aversion parameter increases from

l = 1 to l = n.

In Fig. 4.13 we illustrate the Lorenzen index l of the Lorenzen welfare functions

whose weights are most similar to the ones of the binomial welfare functions Cj associated

with the binomial indices j = 1, . . . , n. We notice that the Lorenzen index l reduces

non-linearly very fast with respect to the increasing index j = 1, . . . , n. After the rapid

changes, the Lorenzen index gradually stabilizes and reaches its lower bound at l = 1.
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Figure 4.13: The index value l (as shown on the vertical axis) of the Lorenzen welfare
function whose weight distribution is the closest to the one of each binomial OWA

function Cj , j = 1, . . . , n = 8, 16, 32, 64
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4.5 Discussion and conclusion

In this chapter we have discussed the binomial decomposition of OWA functions in the

restricted context of generalized Gini welfare functions, including two parametric families

of welfare functions, namely the S-Gini and Lorenzen families. Our study showed that

the binomial welfare functions behave in analogy with the S-Gini and Lorenzen families.

As the S-Gini inequality aversion parameter δ increases from 1 to infinity, the weights

of the S-Gini welfare functions are more similar to the ones of the binomial welfare

functions C1, . . . , Cn. The S-Gini welfare functions associated with the parameters δ = 1

and δ =∞ correspond to the first and the last binomial welfare functions, respectively.

On the other hand, the Lorenzen welfare functions interpolate between the last binomial

welfare function Cn and the classical Gini welfare function, which combines the first two

binomial welfare functions C1 and C2.

Furthermore, we derived the analytical expressions for the coefficients α1, . . . , αn

in terms of the respective parameters of the S-Gini and Lorenzen families. From a

mathematical point of view, these analytical expressions provide an alternative means

to study the weight distributions of the two parametric families through the distributions

of the associated coefficients in the binomial decomposition framework. Further research

on this direction is, therefore, needed in the future.
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Conclusion

In this thesis we used the binomial decomposition framework to address several research

issues related to OWA functions. We obtained the analytical expression for the coeffi-

cients of the binomial decomposition of OWA functions in terms of OWA weights. We

also applied the binomial decomposition framework to two parametric families of OWA

functions, namely the S-Gini and Lorenzen welfare functions. We studied the analogy

between the binomial OWA functions and these parametric welfare functions. We also

found the analytical formulations expressing the close relationships between the weights

of the parametric welfare functions and the associated coefficients of the binomial decom-

position framework. Further investigation on these relationships might help us to better

understand the behavior of the coefficients of the binomial decomposition framework in

the restricted context of welfare functions.

In addition, we used the binomial decomposition framework in combination with the

concept of k-additivity to control the computational complexity of OWA weights when

solving the minimax disparity model in large-scale optimization problems. Instead of

considering an entire set of OWA weights, we used the limited set of the coefficients to

reduce the dimension up to
(
1− k

n

)
%, where n is the number of variables in the original

problem and k is the level of k-additivity. Our proposed model can be solved faster by

optimizers in an approximated way for some levels of k-additivity and some values of

orness, leading to a significant reduction in running time. Our experiments are carried

out in dimensions up to 40, which are relatively large with respect to the state of the

art in the literature (n = 3, 4, 5, 6). However, those dimensions are still relatively small

if one wants to achieve a very statistically significant reduction in running time. We

suggest to extend our experiments in higher dimensions as future research.

Moreover, our proposed model might have no feasible solution with respect to some

levels of k-additivity for some values of orness, since the number of the first k coefficients

83
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is too small to satisfy a required set of constraints. This suggests us to develop an

algorithm in our future research for identifying which k-additive level provides the best

trade-off between the computational cost and the accuracy of the approximated, and

possibly suboptimal, OWA weights.



Appendix A

In the Appendix we present the detailed proofs of some classical identities used in our

thesis.

Lemma 1. For every n ∈ N and n ≥ 1, the alternating sum of binomial coefficients

Sn =

n∑
i=0

(−1)−i
(
n

i

)
(1)

is equal to 0 (see also p.417 in [95]).

Proof.

According to the binomial theorem for any non-negative integer n, we have

(1 + x)n =

n∑
i=0

(
n

i

)
xi. (2)

By choosing x = −1, the alternating sum Sn of binomial coefficients is equal to zero. �

Lemma 2. For every n ∈ N and n ≥ 1, the summation

Sn−1 =
n−1∑
i=0

(−1)−i
(

n

i+ 1

)
(3)

is equal to 1.

Proof.

Sn−1 − 1 =

n−1∑
i=0

(−1)−i
(

n

i+ 1

)
− 1

=

n−1∑
i=0

(−1)−i
(

n

i+ 1

)
+ (−1)

(
n

0

)
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= (−1)0
(
n

1

)
+ (−1)1

(
n

2

)
+ . . .+ (−1)n−1

(
n

n

)
+ (−1)−1

(
n

0

)

=

n∑
i=0

(−1)i−1
(
n

i

)
. (4)

By applying Lemma 1, we obtain Sn−1 − 1 = 0 which can be rewritten as Sn−1 = 1. �

Lemma 3. For every n ∈ N and n ≥ 2, the summation Sn =
∑n

i=0(−1)i
(
n
i

)
i is equal to

0.

Proof.

We can prove this identity by using the strong induction rule.

1. Base case: Consider n = 2, the statement S2 =
∑2

i=0(−1)i
(
2
i

)
= (−1)1

(
2
1

)
1 +

(−)2
(
2
2

)
2 is equal to 0. Hence Sn holds for n = 2.

2. Hypothesis: Assume that Sn is true for some fixed k, it yields

Sk =
k∑
i=0

(−1)i
(
k

i

)
i. (5)

3. Induction: We need to prove that Sk+1 = 0 also holds where Sk+1 is given as

Sk+1 =

k+1∑
i=0

(−1)i
(
k + 1

i

)
i

=
k+1∑
i=0

(−1)i
(

k

i− 1

)
i+

k+1∑
i=0

(−1)i
(
k

i

)
i. (6)

We have used Pascal’s identity
(
j
j−p
)

=
(
j−1
j−p−1

)
+
(
j−1
j−p
)

in order to split the sum

into two summations. In the second summation, the upper limit when i = k + 1 yields(
k
i

)
= 0, hence it is simplified as

∑k
i=1(−1)i

(
k
i

)
i. According to Lemma 1, this summation

is equal to 0. At the end, the statement Sk+1 is reduced to

Sk+1 =

k+1∑
i=0

(−1)i
(

k

i− 1

)
i. (7)

By substituting j for i− 1, we can align the indices of the binomial coefficient with

the upper and lower limits of the summation as follows

Sk+1 =
k∑
j=0

(−1)j+1

(
k

j

)
(j + 1). (8)
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By splitting the sum into two groups, it can be rewritten as follows

Sk+1 =

k∑
j=0

(−1)j+1

(
k

j

)
+

k∑
j=0

(−1)j+1

(
k

j

)
j. (9)

The first summation is recognized as the classical identity which has been proved

in Lemma 1. The second summation can be written with the lower indice starting from

j = 1 instead of j = 0 since
(
k
j

)
j = 0 when j = 0.

Sk+1 =

k∑
j=1

(−1)j+1

(
k

j

)
j. (10)

Due to the induction hypothesis, the remaining summation is equal to 0. Therefore,

Sk+1 is true for n = k + 1.

In summary, by mathematical induction, for all n ≥ 2 the statement Sn is true. �

Lemma 4. In the following part we prove some interesting properties of the coefficients

αj(l), with j, l = 1, . . . , n, of the binomial decomposition of Lorenzen welfare functions.

(i) αj(l) = 0 where j < n− l + 1 for the Lorenzen index l = 1, . . . , n

(ii) α1(l) = . . . = αn−1(l) = 0 and αn(l) = 1 for the Lorenzen index l = 1

(iii) α1(l) = 1/n, α2(l) = (n − 1)/n, and α3(l) = . . . = αn(l) = 0 for the Lorenzen

index l = n

(iv) α1(l) = 0, α2(l) = 1 and αj(l) = 0, where j = 3, . . . , n, for the Lorenzen index

l = n− 1.

Proof.

(i) αj(l) = 0 where j < n− l + 1 for the Lorenzen index l = 1, . . . , n.

The property (i) is evidently seen from the second conditional expression in (4.45). That

means all αj(l) are equal to 0 for j + l < n+ 1. �

(ii) α1(l) = . . . = αn−1(l) = 0 and αn(l) = 1 for the Lorenzen index l = 1.
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Concerning the analytical expression (4.45), the coefficients αj are non-zero if l ≥ n −
j + 1. By substituting l = 1, we get j ≥ n. Therefore, the coefficients αj are equal to 0

when l = 1 for every j = 1, . . . , n− 1, and the non-zero coefficient αn is expressed as

αn(l = 1) =
1

wn,1
(−1)0

(
n− 1

0

)[
1− n+ 1

n
+

2(n− 1)

n

]
(11)

which follows that αn(l = 1) = 1 due to wn,1 = 1. �

(iii) α1 = 1/n, α2 = (n− 1)/n, and α3 = . . . = αn = 0 for the Lorenzen index l = n.

From the expression (4.45), we have

α1(l = n) =
1

w1,n
(−1)0

(
0

0

)[
n− n+ 1

n · n
+

2 · 0
n · n

]
(12)

which then yields α1(l = n) = 1
n since w1,n = 1

n .

Similarly, α2(l) can be written as

α2(l) =
1

w2,n−1

1∑
p=0

(−1)1−p
(

1

1− p

)[
l − n+ 1

nl
+

2p

nl

]
. (13)

By substituting n for l into the previous formula, we have

α2(l = n) =
1

w2,n−1

[
−
(

1

1

)(
n− n+ 1

n2
+

2 · 0
n2

)
+

(
1

0

)(
n− n+ 1

n2
+

2 · 1)

n2

)]
(14)

It follows that α2(l = n) = n−1
n where we have used that w2,n−1 = 2

n(n−1) .

We now prove that αj(l = n) = 0 for every j = 3, . . . , n. In other words, the

expression (4.45)

αj(l = n) =
1

wj,n−j+1

j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)[
l − n+ 1

nl
+

2p

nl

]
(15)

is equal to 0 for the cases of j = 3, . . . , n when l = n.

Using Lemma 1, the expression l−n+1
nl

∑j−1
p=0(−1)j−p−1

(
j−1
j−p−1

)
is equal to 0. The

summation in (15) is, therefore, reduced to

αj(l = n) =
1

wj,n−j+1

(
2

nl

) j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
p (16)
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where j = 3, . . . , n.

Our hypothesis is to prove the expression (16) is equal to 0 for every j = 3, . . . , n.

To prove this we use the strong induction rule.

1. Base case: Consider the base case for j = 3

α3(l = n) =
1

w3,n−2

(
2

nl

) 2∑
p=0

(−1)2−p
(

2

2− p

)
p

=
1

w3,n−2

(
2

nl

)[(
2

2

)
· 0−

(
2

1

)
· 1 +

(
2

0

)
· 2
]
. (17)

By simplifying common terms in the summation, the coefficient α3(l = n) is reduced to

zero. Hence, the expression (16) is true for j = 3.

2. Hypothesis: Assume that the coefficients αj in (16) are equal to 0 for some fixed

j ≥ 3, that is,

αj(l = n) =
1

wj,n−j+1

(
2

nl

) j−1∑
p=0

(−1)j−p−1
(

j − 1

j − p− 1

)
p. (18)

3. Induction: We need to prove that αj+1(l = n) = 0 is true.

αj+1 =
1

wj+1,n−j

(
2

nl

) j∑
p=0

(−1)j−p
(

j

j − p

)
p

=
1

wj+1,n−j

(
2

nl

)
1

(−1)−1

j∑
p=0

(−1)j−p−1
[(

j − 1

j − p− 1

)
+

(
j − 1

j − p

)]
p. (19)

We have used Pascal’s identity
(
j
j−p
)

=
(
j−1
j−p−1

)
+
(
j−1
j−p
)

in order to split the sum

into two summations. In the first summation, the upper limit p = j yields
(
j−1
j−p−1

)
= 0.

We, therefore, can set the upper limit of the first summation to j − 1. In this way, the

first summation is written shortly as
∑j−1

p=0(−1)j−p−1
(
j−1
j−p−1

)
p, which is proportional to

coefficients αj in (18). As the result of the hypothesis αj = 0 for some fixed j ≥ 3,

we obtain
∑j−1

p=0(−1)j−p−1
(
j−1
j−p−1

)
(n − p) = 0. Therefore, the first summation in the

expression of the coefficients αj+1 is equal to 0 and the remaining is simplified to

αj+1 =
1

wj+1,n−j

(
2

nl

)
1

(−1)−1

j∑
p=0

(−1)j−p−1
(
j − 1

j − p

)
p. (20)
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Since the lower limit p = 0 makes
(
j−1
j−p
)
p = 0, we rewrite the above formula with

the lower limits starting from p = 1 as below

αj+1 =
1

wj+1,n−j

(
−2

nl

) j∑
p=1

(−1)j−p
(
j − 1

j − p

)
p. (21)

By substituting k + 1 for p into the previous expression, we can align the indices

of the binomial coefficient with the upper and lower limits of the summation,

αj+1 =
1

wj+1,n−j

2

nl

j−1∑
k=0

(−1)j−k−1
(

j − 1

j − k − 1

)
(1 + k)

=
1

wj+1,n−j

2

nl

[
j−1∑
k=0

(−1)j−k−1
(

j − 1

j − k − 1

)
+

j−1∑
k=0

(−1)j−k−1
(

j − 1

j − k − 1

)
k

]
.(22)

From Pascal’s rule, it follows that
(
j−1

j−k−1
)

=
(
j−1
k

)
. In this refinement, we notice the

similarity of the first and second summations with Lemma 1 and Lemma 3, respectively,

which have been proved being zero in Appendix A. As the result, we conclude that the

coefficients αj+1 are equal to 0 for the case j + 1.

Hence, by mathematical induction, for each j = 3, . . . , n the coefficients αj are

equal to 0 when l = n. �

(iv) α1 = 0, α2 = 1 and αj = 0, where j = 3, . . . , n, for l = n− 1.

We begin with (4.45) for the choice of l = n − 1, the coefficients αj are expressed

as follows

αj(l = n− 1) =
1

wj,n−j+1
· 2

n(n− 1)

j−1∑
p=1

(−1)j−p−1
(

j − 1

j − p− 1

)
p. (23)

In the case of α1(l = n− 1) in which j = 1 yields n− j + 1 = n > l. Therefore, α1

is equal to 0.

By analogy, we consider α2 given as follow

α2(l) =
1

w2,n−1
· 2

n(n− 1)

1∑
p=1

(−1)1−p
(

1

1− p

)
p. (24)

Since w2,n−1 = 2
n(n−1) , it follows that α2(l = n− 1) = 1.



Appendix A 91

In the following part we aim to prove the coefficients αj(l = n− 1) are equal to 0

for every j = 3, . . . , n. In other words, the coefficients αj , as indicated in (23),

αj(l = n− 1) =
1

wj,n−j+1
· 2

n(n− 1)

j−1∑
p=1

(−1)j−p−1
(

j − 1

j − p− 1

)
p (25)

are equal to 0 for the cases of j = 3, . . . , n when l = n− 1.

1. Base case: Consider the base case for j = 3

α3(l = n− 1) =
1

w3,n−2
· 2

n(n− p)

2∑
p=1

(−1)2−p
(

2

2− p

)
p. (26)

It is evident to obtain that α3(l = n− 1) = 0.

2. Hypothesis: Assume that the coefficients αj(l = n− 1), for j = 3, . . . , n,

αj(l = n− 1) =
1

wj,n−j+1
· 2

n(n− 1)

j−1∑
p=1

(−1)j−p−1
(

j − 1

j − p− 1

)
p (27)

are equal to 0 for some fixed j ≥ 3 .

3. Induction: We need to prove that αj+1(l = n− 1) is equal to 0.

αj+1(l = n− 1) =
1

wj+1,n−j
· 2

n(n− 1)

j∑
p=1

(−1)j−p
(

j

j − p

)
p

=
1

wj+1,n−j
· 2

n(n− 1)

j∑
p=1

(−1)j−p
[(

j − 1

j − p− 1

)
+

(
j − 1

j − p

)]
p. (28)

We have used Pascal’s identity
(
j
j−p
)

=
(
j−1
j−p−1

)
+
(
j−1
j−p
)

in order to split the sum into

two summations. In the first summation, the upper limit p = j yields
(
j−1
j−p−1

)
= 0. We,

therefore, can set the upper limit of the first summation to j − 1. In this way, the first

summation is written shortly as −
∑j−1

p=1(−1)j−p−1
(
j−1
j−p−1

)
(n− p), which is proportional

to the coefficients αj in (27). As the result of the hypothesis αj = 0 for some fixed

j ≥ 3, we obtain
∑j−1

p=1(−1)j−p−1
(
j−1
j−p−1

)
(n− p) = 0. Therefore, the first summation in

the expression of the coefficient αj+1 is equal to 0 and the remaining is simplified to

αj+1 =
1

wj+1,n−j
· 2

n(n− 1)

j∑
p=1

(−1)j−p
(
j − 1

j − p

)
p. (29)
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By substituting k + 1 for p into the previous expression, we can align the indices

of the binomial coefficient with the upper and lower limits of the summation,

αj+1 =
1

wj+1,n−j

(
2

nl

) j−1∑
k=0

(−1)j−k−1
(

j − 1

j − k − 1

)
(1 + k)

=
1

wj+1,n−j

(
2

nl

)[j−1∑
k=0

(−1)j−k−1
(

j − 1

j − k − 1

)
+

j−1∑
k=0

(−1)j−k−1
(

j − 1

j − k − 1

)
k

]
(30)

From the Pascal identify, it follows that
(
j−1

j−k−1
)

=
(
j−1
k

)
. In this refinement, we

notice the similarity of the first and second summations with Lemma 1 and Lemma 3,

respectively. As the result, we conclude that the coefficient αj+1 is equal to 0 for the

case j + 1 when l = n− 1.

Hence, by mathematical induction, the coefficients αj(l = n − 1) = 0 has been

proved for every j = 3, . . . , n. �
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[70] Herrera-Viedma, E., Cabrerizo, F.J., Pérez, I.J., Cobo, M.J., Alonso, S., Herrera,

F.: Applying linguistic OWA operators in consensus models under unbalanced

linguistic information. In: Yager, R.R., Kacprzyk, J., Beliakov, G. (eds.) Recent

Developments in the Ordered Weighted Averaging Operators: Theory and Prac-

tice, Studies in Fuzziness and Soft Computing, vol. 265, pp. 167–186. Springer,

Heidelberg (2011)

[71] Kacprzyk, J., Fedrizzi, M.: ‘Soft’ consensus measures for monitoring real consensus

reaching processes under fuzzy preferences. Control and Cybernetics 15(3-4), 309–

323 (1986)

[72] Kacprzyk, J., Fedrizzi, M.: A ‘soft’ measure of consensus in the setting of partial

(fuzzy) preferences. European Journal of Operational Research 34(3), 316–325

(1988)

[73] Kacprzyk, J., Fedrizzi, M.: A ‘human-consistent’ degree of consensus based on

fuzzy login with linguistic quantifiers. Mathematical Social Sciences 18(3), 275–

290 (1989)

[74] Kakwani, N.: On a class of poverty measures. Econometrica 48(2), 437–446 (1980)

[75] Kolm, S.C.: The optimal production of social justice. In: Margolis, J., Guitton, H.

(eds.) Public Economics, International Economic Association Series, pp. 145–200.

Macmillan, London (1969)

[76] Kolm, S.C.: Unequal inequalities I. Journal of Economic Theory 12(3), 416–442

(1976)

[77] Kolm, S.C.: Unequal inequalities II. Journal of Economic Theory 13(1), 82–111

(1976)

[78] Lambert, P.J.: Evaluating impact effects of tax reforms. Journal of Economic

Surveys 7(3), 205–242 (1993)

[79] Liu, X.: On the properties of equidifferent RIM quantifier with generating function.

International Journal of General Systems 34(5), 579–594 (2005)

[80] Liu, X.: The solution equivalence of minimax disparity and minimum variance

problems for OWA operators. International Journal of Approximate Reasoning

45(1), 68–81 (2007)



Bibliography 100

[81] Liu, X.: A review of the OWA determination methods: Classification and some ex-

tensions. In: Yager, R.R., Kacprzyk, J., Beliakov, G. (eds.) Recent Developments

in the Ordered Weighted Averaging Operators: Theory and Practice, Studies in

Fuzziness and Soft Computing, vol. 265, pp. 49–90. Springer, Heidelberg (2011)

[82] Liu, X., Yu, S.: On the stress function-based OWA determination method with

optimization criteria. IEEE Transactions on Systems, Man, and Cybernetics, Part

B 42(1), 246–257 (2012)

[83] Lorenzen, G.: A Generalized Gini-coefficient. Institut für Statistik und Ökometrie,
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