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Introduction

Long chains of amino acid residues, called proteins, are ubiquitously present in a

living organism. They play fundamental roles to sustain life, e.g. interactions with

other macromolecules (DNA and RNA), catalysis of chemical reactions, molecule

transport and cell signaling [1]. Proteins are formed in the cell by ribosomes, which

expel them in a coil-like conformation, called the unfolded state. In order to fulfill

their biological role, they need to rearrange in a unique three-dimensional confor-

mation, called the native or folded state. Protein folding, the process by which a

protein spontaneously goes from the denatured to the native state [2], is an extraor-

dinarily complex phenomenon: it amounts to a stochastic search of a free energy

minimum over a rugged and multidimensional free energy landscape. As a result of

this complexity, proteins spend most of the folding time thermally oscillating in their

initial reactant state, which is usually separated by high free energy barriers from

the native one. It is not a surprise, then, that a general agreement on the molecular

mechanism of protein folding has yet to be reached [3, 4, 5, 6].

In the last years, molecular dynamics (MD) [7] emerged as the tool of choice to

tackle complex biomolecular problems from a computational perspective. MD con-

sists of all the sets of algorithms and technical knowledge that allows one to integrate

the Newton’s equations of motion for a system of choice. The main reason behind

the success of MD is that it employs empirically derived potentials (the so called

force fields) and that it allows one to simultaneously track the motion of all atoms

in a molecule with femtosecond time resolution. To date, MD provides the only pos-

sible strategy to characterize the dynamics of a macromolecule at the atomic level.

However, the intrinsic complexity of a molecule’s dynamics makes it challenging to

exploit the full potential of MD. During its dynamics, a wide range of characteris-

tic time scales is spanned by the molecule, requiring a very small integration step

(usually 1 fs) to capture the fastest motions. Therefore, if one wanted to simulate

the folding of a protein, one would need to integrate the equations of motion of hun-

dreds of thousands of atoms for a time that is comparable with the typical folding

time, which is usually much longer than milliseconds and might even reach minutes.

This means that there are approximately 15 orders of magnitude of timescale sep-
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aration between the shortest and the longest processes to simulate, not to mention

that one would need to collect an ensemble of folding transitions to characterize the

folding mechanism. The problem of timescale decoupling made the sampling of pro-

teins configuration space virtually impossible, until extended cloud infrastructures

[8] and special purpose supercomputers [9] were designed specifically to overcome

this limitation, at least for a special class of mini-proteins (called fast folders) that

fold with sub-millisecond timescale. These technological advancements were key in

proving that MD simulations were actually able to produce multiple spontaneous

folding and unfolding, and that the features extracted from folding simulations had

a substantial overlap with experimental knowledge [10, 11, 12, 13, 14]. However, the

second timescale still lied far and out of reach and, to the best of our knowledge, no

successful attempt was made to simulate protein folding using MD alone ever since.

On a theoretical standpoint, an important effort was made to make the use of

MD available to the largest possible class of biological systems. Enhanced sampling

methods [15] were result of this endeavor. All of those methods exploit different

levels theory and/or approximations to accelerate the dynamics of the system under

study. To give just a few examples, replica exchange schemes stochastically increase

or decrease the temperature of the system in order to help the system overcome

free energy barriers [16]; path-sampling methods, instead, just focus on the reac-

tive portion of the simulation, thus avoiding the need to simulate uninteresting and

long thermal oscillations in the reactant basin [17, 18]. Enhanced sampling meth-

ods proved to be an extraordinarily powerful tool to study complex conformational

transitions [19, 20]. However, their success was modest when dealing with protein

folding, as their computational cost confined their application to fast folders. The

configurational sampling of medium- and large-sized proteins, the characterization of

their folding pathways and the relevant conformations populated along it remained

unbearable task for computational bimolecular studies.

An important step forward in this direction was made by Ratchet-and-Pawl

molecular dynamics [21, 22] and the related Bias Functional approach [23]. BF

method is a path-sampling strategy that employs a biasing force to direct the sys-

tem towards a given target state, and employs a variational strategy to assess how

much a biased pathway is considered realistic, i.e. how probably the path is gener-

ated by unbiased MD. The bias force amounts for a harmonic and history-dependent

contribution, defined as a function of a predetermined reaction coordinate. Every

time the protein spontaneously progresses along the reaction coordinate, the force

remains latent, while if the protein tries to backtrack towards more unfolded config-

urations the bias force adds up to the physical one to help the molecule advance in

the conformational transition. This method was used to efficiently compute folding
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pathways of proteins that fold in the second timescale or beyond [24, 25] and its

results have been widely tested and validated in recent years, both against unbiased

MD simulations [23] and experiments [24, 26, 27]. Unfortunately, this algorithm

suffers of some notable disadvantages. The first is that it requires a choice of a re-

action coordinate, which is made empirically: A priori, one has no simple way to

understand if a collective variable is able to fully describe the folding process but

still a sub-optimal choice of it might lead to artifacts that are hard to detect. The

second one is hidden in the definition of the bias force: The history-dependence of

this force breaks the microscopic reversibility of the dynamics. Thus, trajectories

computed using the BF method cannot be easily employed to compute folding rates

or to assess the Boltzmann weights of the sampled configurations.

This thesis proposes to provide a unified and systematic strategy to overcome

the second timescale in protein folding, by exploiting qualities and drawbacks of the

Bias Functional Method and proposing new theoretical approaches to overcome its

limitations. The first half of the thesis is dedicated to the development of theoretical

solutions to the problems discussed above: dependence on an a-priori defined col-

lective coordinate and microscopic non-reversibility of the dynamics. In particular,

the first chapter is devoted to the definition of a self-consistent scheme that itera-

tively optimizes the reaction coordinate employed in BF simulations. The iterative

scheme naturally emerges as a mean-field approximation of Langevin dynamics and

provides two new reaction coordinates that are not defined a-priori, but rather are

self-consistently improved. This new strategy goes under the name of Self-Consistent

Path Sampling (SCPS) [28] and displays several advantages with respect to the stan-

dard BF method, as shown through its application on two examples: the Langevin

dynamics of a point in a 2-dimensional potential and the folding dynamics of the

WW-domain of FIP35. In both cases, the results of SCPS are quantitatively consis-

tent with the ones predicted by long MD simulations [10]. Even if SCPS enhances

the reliability of BF simulations, downgraded by this approach to the initial guess

of an optimization process, it only moderately increases the original computational

complexity. Thus, self-consistent path sampling provides a sound alternative to the

standard BF approach.

The second chapter concerns with the problem of recovering kinetic information

from SCPS simulations [29]. This is done by means of Transition Path Theory (TPT)

[30, 31]. In this theory, the reactive process through which a system performs a tran-

sitions between two (or more) states is completely characterized by three stochastic

descriptors: the committor function, the reactive probability density and the reactive

current. The knowledge of the committor function is key to the determination the

other two functions and it is therefore the main ingredient of the whole theory. In
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its original formulation, TPT relies on the ergodic assumption, i.e. on the possibility

of generating very long trajectories which visit both the reactant and product states

many times. On the other hand, rMD trajectories are intrinsically out of equilibrium

events, and correspond to short irreversible transitions. Therefore, first of all, we will

show how to generalize the results of TPT to the case where, instead of an infinitely

long trajectory, one is provided with many short off-equilibrium simulations, e.g.

the results of many runs of an enhanced sampling method. A further analysis of

SCPS will reveal that its collective variables and the committor function are related:

based on this observation, we will show how it is possible to use the results of the

self-consistent procedure to approximate the committor function. Finally, we will

present two possible algorithms, each one with its pros and cons, that exploit the

knowledge of the committor function to exactly sample the transition region of the

conformational reaction. We will test the performances of these combined approaches

on a 2-dimensional system, showing that it provides results that are quantitatively

comparable with TPT ones.

The second part of the manuscript is devoted to applications of the BF method on

two different proteins: Canine milk lysozyme and alpha1-antitrypsin (A1AT). Canine

milk lysozyme, discussed in the third chapter, is a 120 residues protein that folds

within the second timescale. Its folding dynamics has been characterized [32] by

means of circular dichroism (CD), and experimental technique that measures the

differential emission of a protein solution upon circularly polarized light impinging

[33, 34]. These experiments proved the existence of two metastable states of this

protein, one of which differs from the native one just by the formation of some key

tertiary contacts. Because of the chemical properties of the tryptophans present in

the protein chain, the formation of these contacts can be monitored by looking at

variations of the CD spectrum in the near-UV region (240-300 nm). Unfortunately,

the experimental CD signal is an average over an ensemble of molecules and does

not provide any atomic level information: the interpretation of this signal has always

to rely on some a priori knowledge of the folding process. This third chapter will

be devoted to show how it is possible to use the BF method, coupled to quantum

chemical calculations [35, 36, 37], to enhance experimental sensitivity and provide

atomic level description of the different metastable states of the protein We will show

how to this just by assuming the knowledge of the protein’s crystal structure and

the CD spectrum of the metastable configurations along the folding pathway.

Finally, the fourth chapter will be concerned with the study of alpha1-antitrypsin,

a 394 residues protein that belongs to the superfamily of serine protease inhibitors.

The inhibition mechanism of this protein is unique and proceeds through a com-

plex conformational modification, but it is easily hacked by pathological mutations
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[38, 39]. In particular, the so called Z-mutation deeply destabilizes the native state of

the protein, leading to an inevitable misfolding of the chain. In this chapter we will

show that the BF method is sensible to point mutations in a protein chain, thus it can

be used as a tool to study protein misfolding [25]: we will consider many different

point mutations of A1AT, some of which are known to cause pathological conse-

quences while some others are instead known to compensate for the destabilizing

effects of other mutations. The reported results are consistent with the experimental

knowledge and also provide new predictions that can be tested in a wet laboratory.
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Remarks on Notation and Useful

Observables

In this paragraph we want to anticipate some notation that will consistently be used

throughout the whole manuscript and provide the definition of some observables that

will be useful when analyzing protein folding results.

Heaviside Theta Function We will always assume the following convention for

the Heaviside Theta function θ

θ(x) =





1 if x > 0

0 otherwise
(1)

For the alternative convention, assuming θ(0) = 1/2, we will use the symbol θ̃.

Therefore:

θ̃(x) =





1 if x > 0

1/2 if x = 0

0 otherwise

(2)

Notation In the manuscript, we will employ the following notation:

1. x refers to a path. Depending on the situation the path might be in the full

phase space or just in configuration space;

2. x = x(t) refers to a phase space point or a configuration space point, corre-

sponding to the value assumed by the path at time t;

3. xi refers to a 3-dimensional vector, specifying the position of a given atom i.

Thus, for a system composed by N atoms, x = (x1, . . . ,xN ).

Root Mean Square Deviation (RMSD) Given a configuration x and a refer-

ence one y, both of them composed by N atoms with masses mi, the RMSD of x
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with respect to y is calculated by first fitting x to y [40] and then by computing

RMSD =

√∑N
i=1mi||xi − yi||2∑N

i=1mi

(3)

RMSD is used as a measure of distance in configuration space. RMSD values have

been computed either with GROMACS 4.6.5 [41] or with MDTraj [42].

Root Mean Square Fluctuation (RMSF) The RMSF of an atom i with posi-

tion xi with respect to its average position 〈xi〉 is given by

RMSFi =
√
〈(xi − 〈xi〉)2〉 (4)

RMSF is usually used to determine the flexibility of a chain. RMSF values have been

computed using GROMACS 4.6.5 [41].

Radius of Gyration (RG) Given a configuration x composed by N atoms, each

one of mass mi and located at distances ri from the molecule’s center of mass, the

RG is defined as

RG =

(∑N
i=1mir2

i∑N
i=1mi

)
(5)

RG values have been computed using GROMACS 4.6.5 [41].

Fraction of Native Contacts (Q) Given a configuration x, the alpha-carbon

contact map is the matrix defined as

Cαij(x) =
1−

( ||xαi −xαj ||
r0

)6

1−
( ||xαi −xαj ||

r0

)10 (6)

where xαi are the positions of the alpha-carbons in x and r0 = 0.75 nm is a reference

distance that defines a contact. The quantity Q0 =
∑

i>j C
α
ij(xP ), where xP is the

folded configuration, provides a continuous definition of the total number of contacts

in the native protein. The fraction of native contacts is thus defined as

Q(x) =
1

Q0

∑

i>j

Cαij(x) (7)

Q values have been computed adapting MDTraj [42] functions.

Plots and Structure Visualization Plots have been made with Matplotlib [43]

or Gnuplot [44], while structures have been rendered using PyMOL [45] or VMD

[46].

12



Chapter 1

Sampling Rare Transitions

The use of special purpose supercomputers [9], distributed cloud computing facili-

ties [8] and the most widespread enhanced sampling techniques proved that folding

simulations of biologically relevant proteins 1 are still unfeasible for modern com-

putational resources. The next exascale generation of supercomputers is awaited

to mitigate this problem, but millisecond timescale simulations are not expected

to become routine for every scientist soon. The Bias Functional method [23] pro-

vides a valid instrument to approach this problem. This method is based on the so

called ratchet-and-pawl molecular dynamics (rMD) and applies a variational princi-

ple to assess which trajectory, among a set of trial pathways, is the most realistic

one. rMD simulations apply a history-dependent harmonic force to a system only

if it tries to backtrack towards the reactant, while they apply no force at all if the

system spontaneously progresses along a predefined reaction coordinate. It is clear

that if the reaction coordinate employed in an rMD calculation was the exact one, a

sampling scheme like the Bias Functional method would provide the correct folding

mechanism. However, rMD simulations are usually performed along a predetermined

reaction coordinate, related to the fraction of native contacts and not necessarily op-

timal. The variational principle is expected to soften the effects of possible errors

introduced by the sub-optimal choice of the reaction coordinate. This is however not

a definitive answer, as the presence of systematic errors is not easily detected.

In this chapter, we will introduce a novel enhanced sampling approach that is

able to generate folding simulations without relying on a specific choice of reaction

coordinate. Instead, the reaction coordinate will represent the output of a self-

consistent optimization of an initial guess, thus providing further insight into the

reaction of interest. This new scheme is the result of a mean-field approximation

of two auxiliary variables introduced in the path integral representation of Langevin

dynamics. Its computational cost remains modest and affordable to every laboratory
1the average dimension of a human protein is approximately 350 amino acids [47]
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1.1. Breaking the Millisecond Barrier in Protein Folding

having access to a medium- or small-sized clusters.

The chapter is organized as follows. Section 1.1 is devoted to a brief review of

the fast-paced quest to break the millisecond barrier in protein folding simulations,

from year 2000 to our days. We will focus on some of the most common enhanced

sampling algorithms and shortly describe their contributions and results, highlighting

the necessity of new strategies to tackle the problem of folding. Section 1.2 will

focus on the theoretical and technical foundations of the Bias Functional method.

Section 1.3 introduces the new self-consistent strategy: we will prove that the new

algorithm comes from a mean-field approximation of Langevin dynamics and discuss

how to implement it in practice to perform protein folding simulations. Section 1.4

is instead devoted to a first application of this algorithm to a simple 2-dimensional

system, where we will prove the ability of the algorithm to systematically improve

the quality of a poor guess of the reactive pathway. In section 1.5 we will show the

application of the new methodology to the folding of a fast-folding protein, the WW-

domain of FIP35. Direct comparison with unbiased MD simulations will show that

the folding mechanism provided by the self-consistent algorithm is indeed realistic

and reliable. Finally, in section 1.6 we will draw some conclusions and discuss the

work that still has to be done to validate the algorithm.

1.1 Breaking the Millisecond Barrier in Protein Folding

In 2010, the introduction of a dedicated supercomputer called Anton [9] allowed sci-

entists at D. E. Shaw Research to run the first unbiased protein folding simulations

[10]. The work focused on two proteins: the WW-domain of FIP35, a three-stranded

β-sheet, and the villin headpiece C-terminal fragment, a three-helix boundle protein.

Both of them folded in the µs regime, and many spontanous folding and unfold-

ing events were detected. The following year, Lindorff-Larsen and his collaborators

[11] relied again on the supercomputing capabilities of Anton to fold a represen-

tative set of 12 fast-folding proteins, ranging from 10 to 80 residues in length and

from 104 to 2936 µs of total simulation time. Besides the exciting scientific goal

that was reached, these results showed for the first time that hardware and soft-

ware technologies were mature enough to run many ultra-long MD simulations and

reach the millisecond time scale. Moreover, it showed that the existing forece fields

were accurate enough to recognize protein native structures. However, it was just

the tip of the iceberg. Many years before 2010, researchers had already performed

pioneering protein folding simulations based on enhanced sampling techniques. We

call enhanced sampling techniques all the theoretical methodologies and algorithms

that have been designed to accelerate the performances of MD simulations. Several
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Chapter 1. Sampling Rare Transitions

methods, gounded on different levels of accuracy and efficiency, have been developed

to address the long-standing problem of protein folding, and their widespread dif-

fusion through open source MD simulation packages (GROMACS [48], NAMD [49],

OpenMM [50] and Plumed [51] to cite just a few) made their use become routine.

Unfortunately, millisecond time scale simulations are not yet routine, even employing

advanced sampling strategies.

We want to dedicate this section to a brief historical review of the advances in

enhanced sampling from year 2000 to our days. We will just focus on methodologies

for which applications to protein folding have been reported in the literature. For this

reason, many well-known methods (e.g. milestoning [52], finite temperature string

method [18], wighted ensembles [53] and many others) will not be discussed here.

Furthermore, we decided to restrict ourselves to methods that have been applied to

all-atom systems, and we on purpose avoided any discussion about coarse-graining

techniques, which define a wide and important field on their own [54, 55]. More

details about the ideas behind the different methods and further in-depth analyses

can be found in several brilliant reviews, not just on protein folding but on the more

general problem of conformational transitions [56, 57, 58, 59, 60, 20, 61, 62, 15].

Replica Exchange Molecular Dynamics (REMD) In REMD [16], several

replicas of the system are simulated at different temperatures. At regular time in-

tervals, a swap between replicas close in temperature is attempted, according to a

Metropolis criterion. The idea behind this method is to use the temperature as

a parameter to help the system efficiently escape local minima. Given the non-

Hamiltonian, intrinsically stochastic nature of temperature swaps, REMD cannot be

employed to retrieve dynamical information, even though some attempts have been

made to retrieve kinetic data from them [63].

TrpCage miniprotein (20 amino acids) was the first protein whose folding was

tackled using REMD. In particular, Pitera and Swope [64] and Zhou [65, 66] re-

ported successful folding events, respectively, in implicit and explicit solvent. In

the same year, Garcia and Onuchic [67] folded the 46 amino acid fragment of the

fragment B of staphylococcal protein A, while Rao and Caflish [68] showed that

REMD allowed to reach a statistically relevant number of folding events of a three-

stranded β-sheet within the microsecond aggregate simulation time scale. Andrec

and collaborators [69] combined the use of REMD and random walk models to fold

the C-terminal peptide of the B1 domain on protein G. At a later time, Liu and

collaborators [70] proposed a reportedly more efficient REMD scheme (hydropho-

bic aided REMD), which was benchmarked on the folding of 3K(I) α-helix, while

Ding and his colleagues [71] showed that coupling discrete molecular dynamics [72]
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1.1. Breaking the Millisecond Barrier in Protein Folding

with REMD makes it even more efficient. Using the latter, it was possible to fold

six fast-folding proteins composed by 20 to 60 residues. Later studies, conducted

by Pashek and collaborators, focused on the stability diagram of TrpCage [73, 74].

Finally, recent applications of REMD in protein folding regard the benchmarks of

custom force-fields for protein folding, where 17 fast-folding proteins were correctly

folded in implicit [75] and explicit [76] solvent, or the study of the folding of TrpZip2

close to a graphene surface [77].

Metadynamics In metadynamics [78], the exploration of the conformational space

occurs by evolving a set of collective coordinates and depositing, at a given rate,

Gaussian potentials along the trajectory. If the system visits close-by points along

the trajectories, Gaussians start to accumulate filling the potential wells, up to the

point where free energy barriers are overcome and all the relevant configuration

space is explored. The free energy along the given employed collective coordinates is

exactly retrieved, up to fluctuations and an additice constant, from the sum of the

deposited Gaussian potentials. In its well-tempered formulation [79], the parameters

of the Gaussians can be tuned along the simulation to reach a better convergence,

while in its bias-exchange formulation multiple replicas of the system are simulated

along different reaction coordinates, allowing replica swapping at any given time

acoording to a Metropolis criterion [80].

The study of protein folding free energy landscapes with metadynamics was first

attempted by Bussi and collaborators [81], where metadynamics was coupled with

REMD to fold the C-terminal β-hairpin of protein G. The development of the bias-

exchange technique by Piana and Laio [80] allowed to study the folding of TrpCage

in explicit solvent by means of very short (ns) simulations. A similar technique was

also employed the following year by Piana and collaborators [82] to study the effect of

point mutations in the folding pathway of villin headpiece. In later years, Kimanius

and collaborators [83] showed that it was possible to employ SAXS data as collec-

tive coordinates in bias-exchange metadynamics to fold the TrpCage miniprotein.

Particular focus on the characterization of metastable states in protein folding was

given in recent works by Bonetti and collaborators [84] and Singh and colleagues [85],

where they studied, respectively, the folding of 49 residues measles virus X-domain

and the one of the insulin monomer. We also note that the works on prion misfolding

[86] and on the computation of the free energy landscape of an intrinsically disor-

dered protein [87], both employing metadynamics, provide relevant contributions to

protein folding field.
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Umbrella Sampling Similarly to metadynamics, umbrella sampling [88, 89, 90]

requires as an input a set of collective variables that are supposedly able to describe

important motions of the system. Restraint potentials, usually harmonic (umbrellas),

are applied along the given collective variables in order to force the system to sample

relevant regions in the configuration space. Particular care should be payed to provide

a reasonable intersection between umbrellas, which facilitates the reconstruction of

the transition between them, and the extraction of simulation data, that is usually

performed through a weighted histogram analysis method (WHAM) [91].

Most of the applications of umbrella sampling to protein folding date to years

before 2000, but it is still worth mentioning the most relevant ones. Young and

Brooks [92] studied the folding free-energy of an alanine α-helix in explicit solvent

at different chain lengths. Two years later, Sheinerman and Brooks [93] applied

the same strategy to study the folding pathway of the B1 fragment of streptococcal

protein G, using the total number of native contacts as a collective variable. The

subsequent year, Bursulaya and Brooks [94] studied the folding free energy of a 20-

residues three-stranded β-sheet in explicit water, by employing the total number

of contacts and the radius of gyration as collective coordinates. Recently, Meshkin

and Zhou [95], used the fraction of native contacts as a reaction coordinate to fold

TrpCage and the zinc-finger motif (BBA).

Markov State Models-guided Sampling (MSM) Markov State Models (MSMs)

[96, 97, 98, 99, 100] are a statistical framework within which the complex dynamics

of a molecule is reduced to a memory-less (Markovian) transition network. The dy-

namics at MSM level is described using a master equation formalism, which defines

the transition probabilities between microstates. Each microstate is learned from

the input trajectories by applying optimal dimensional reduction techniques, such as

time-lagged independent component analysis (tICA) [101, 102]. The major strength

of MSMs is their ability to integrate several independent simulations: the higher the

number of microstates in the model, the shorter are the trajectories that need to be

simulated to cover the conformational space. Luty and McCammon [103] were the

first ones to realize this: they created a small Markovian model by integrating many

short simulations of a bimolecular system, showing for the first time that MSMs

can be actually used as an enhanced sampling tool. In recent years, this idea has

been widely exploited and converged into the development of the Folding@Home

distributed computing platform [8].

Among the first MSM-driven folding simulations we include the work by Noé

and collaborators [104], where the folding pathway of PinWW domain was studied

by integrating many off-equilibrium simulations using MSMs and transition path
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theory. In the same year, Ensign and Pande [105] simulated the folding of the WW-

domain of FIP35 in implicit solvent, using the Folding@Home distributed computing

facility and Bowman and collaborators [106] interpreted the obtained results using

MSMs. The subsequent year, the Folding@Home facility was employed to simulate

many folding transitions of the NTL9 protein in implicit solvent, a millisecond folder

of 39 amino acids, as reported by Voelz and collaborators [12]. Bowman, Voeltz and

Pande [13] also studied the folding of the 80 residue fragment of the λ-repressor, a

simulation which captures dynamics beyond the millisecond time scale. Two years

later, Voelz and his colleagues [14] published a study on the folding of the acyl-

coenzyme A binding protein, which folds in 10 ms. To date, this is considered the

longest time scale ever reached by unbiased simulations. Finally, in recent years

Weber and collaborators [107] studied the misfolding properties of seven fast-folding

proteins, and how beta-sheet rich configurations in the folding landscape might slow

the folding dynamics of these systems.

Adaptive Sampling Methods Adaptive sampling methods are enhanced sam-

pling techniques that guide the exploration of the conformational space via an on-

the-fly analysis of the results of the simulation. These analyses help understanding

which regions have been undersampled and direct the dynamics towards them. The

main complexity behind these kinds of methods is the choice of an optimal way to

reduce the data dimensionality and/or find lower dimensional embeddings where the

relevant dynamics is happening.

Rao and Caflish [108] exploited this idea by mapping the folding landscape of a

20-residue antiparallel β-sheet on a complex network (a precursor of MSMs), while

Preto and Clementi [109] used diffusion maps [110] (in their locally scaled formulation

[111]) to find an optimal low-dimensional embedding of the dynamics and guide

the sampling of the conformations of an alpha-helix. Also essential dynamics, e.g.

dynamics driven by principal component analysis (PCA) [112], has been used to fold

a protein: in particular, Daidone and collaborators [113] were able to use it to fold

Horse Heart Cytochrome C protein. We note here that MSM-guided dynamics can

be considered an adaptive sampling method.

Accelerated Molecular Dynamics (AMD) AMD [114] is an ehnaced sampling

technique that helps a system escape deep energy minima by locally flattening them.

When the system potential becomes smaller than a threshold, a bias is added to help

the system leave the local well: the shape of the biasing energy and the threshold

energy, thus the overall flattening of the energy landscape, are controlled by the user.

Boltzmann statistics is recovered by means of a reweighting procedure [115, 116].
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AMD was successfully used to study protein folding. In particular, we report

here the two works by Yang and collaborators [117, 118], who were able to fold the

TrpCage and TrpZip2 miniproteins, together with the results of Miao and colleagues

[119], who showed that AMD can be employed to sensibly accelerate the dynamics

and access the folding time scales of the villin headpiece and the WW-domain of

FIP35.

Path-Sampling and Optimization Methods Path-sampling methods focus on

the generation of the reactive portion of a trajectory, in order to avoid the problem

of simulating long thermal oscillations in the reactant and/or in the product of

the conformational reaction. The most famous method that embodies this idea is

transition path sampling (TPS) [17], a Monte Carlo method that, given an initial

guess for path joining the reactant to the product, is able to retrieve the transition

path ensemble of the reaction. TPS revealed to be a useful tool to tackle protein

folding. Bolhuis [120, 121] showed how it was possible to fold the C-terminal β hairpin

of G-B1 protein using TPS, while Evans and Wales [122] reported a performance

increase of the same calculation when performed using discrete path sampling [123].

Two years later, Juraszek and collaboratos [124] used TPS to fold the TrpCage

miniprotein in explicit solvent, and also showed how it was possible to obtain more

accurate results by means of improved versions of TPS [125, 126], namely forward

flux sampling [127] and transition interface sampling [128]. The same year, Chopra

and collaborators [129] studied the folding of a 54-residues polyglutamine chain.

Other path-optimization techniques have been successfull in simulating protein

folding, and it is worth mentioning some more results here. Eastman and collabo-

rators [130] studied the folding of the 36-residues avian pancreatic polypeptide us-

ing a reaction path-annealing algorithm, while recently, Lee and collaborators [131]

designed a new algorithm to increase the computational efficiency of the Onsager-

Machlup action optimization and computed the folding pathway of the 28-residues

FSD-1 protein.

1.2 The Bias Functional Method

Consider a set of N solute particles (e.g. the atoms of a protein), whose positions are

given by x = (x1, . . . ,xN ), immersed in a solvent (e.g. water with a physiological

concentration of salt) whose M atoms are located at y = (y1, . . . ,yM ). The motion

of this system can be modeled as a set of 3(N +M) coupled Langevin equations:

miẍi = −γiẋi −∇iU(x,y) + ηi(t) i = 1, . . . , N

µjÿj = −σjẏj −∇jU(x,y) + ξj(t) j = 1, . . . ,M
(1.1)
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where mi and µj provide, respectively, the solute and solvent atom masses, γi and σj
represent the corresponding friction coefficients. Fi(x,y) = −∇iU(x,y) represents

the force-field and ηi(t) and ξj(t) are white-noise forces satisfying the fluctuation-

dissipation theorem:

〈ηi(t) · ηj(τ)〉 = 6miγikBTδijδ(t− τ) i, j = 1, . . . , N

〈ξl(t) · ξh(τ)〉 = 6µlσlkBTδlhδ(t− τ) l, h = 1, . . . ,M
(1.2)

The conditional probability density for the solute to perform a transition from a

reactant configuration xR = x(0) to a product configuration xP = x(t) in a time

t, where x is the path connecting the two points, can be written as the following

path-integral:

p(xP, t|xR, 0) =
1

Z

∫
dyF

∫
dyI

∫ yF

yI

Dy
∫ xP

xR

Dx e−SOM[x,y]e−βU(xR,yI) (1.3)

In Eq. (1.3), Z represents the system’s partition function, yI and yF are, respectively,

the initial and final configurations of the solvent particles and SOM is the Onsager-

Machlup action (see appendix A for details):

SOM[x, y] ≡ β

4

∫ t

0
dτ

[
N∑

i=1

γ−1
i (miẍi + γiẋi + ∇iU(x,y))2

+

M∑

j=1

σ−1
j

(
µjÿj + σjẏj + ∇jU(x,y)

)2



(1.4)

If one removes the integration over the solute paths in Eq. (1.3), one obtains the

probability density associated to a path x:

P[x] =
1

Z

∫
dyF

∫
dyI

∫ yF

yI

Dy e−SOM[x,y]e−βU(xR,yI) (1.5)

At this point it is useful to recall that the average value of an observable O(x, y)

along the solute path is defined as follows:

〈O(x, y)〉 =

∫
dyF

∫
dyI

∫ yF
yI
Dy O(x, y)e−SOM[x,y]e−βU(xR,yI)

∫
dyF

∫
dyI

∫ yF
yI
Dy e−SOM[x,y]e−βU(xR,yI)

(1.6)

The statistically more relevant paths are the ones which maximize Eq. (1.5), thus

obey:
δP[x]

δx
∼ 0 (1.7)

By explicitly carrying out the functional derivative one obtains an equivalent condi-

tion: 〈
δS[x, y]

δx

〉
∼ 0 (1.8)
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In principle it is possible to obtain reactive pathways consistent with Eq. (1.8)

by functionally optimizing the Onsager-Machlup action or related functionals [62,

131, 132]. However, as discussed in section 1.1, this strategy becomes unfeasible for

systems with biologically relevant size, e.g. proteins. For this reason, in this section

we shall look for a different solution to this problem. In particular, we are going to

recover the so-called Bias Functional Method [23].

Consider a stochastic dynamics in which one introduces a time-dependent bias

force Fbias
i (X, t) that acts exclusively on the solute atoms. In this new dynamics,

the probability associated to the path x becomes

P[x] =
1

Z

∫
dyF

∫
dyI

∫ yF

yI

Dy e−Sbias[x,y]e−βU(xR,yI) (1.9)

where

Sbias[x, y] ≡ β

4

∫ t

0
dτ

[
N∑

i=1

γ−1
i

(
miẍi + γiẋi + ∇iU(x,y)− Fbias

i (x, t)
)2

+
M∑

j=1

σ−1
j

(
µjÿj + σjẏj + ∇jU(x,y)

)2



(1.10)

Of course, the Onsager-Machlup action in Eq. (1.4) is recovered from Eq. (1.10) in

case of vanishing bias force. Notice that the unbiased probability P[x] can be written

as a function of the biased probability Pbias[x], just by multiplying the integrand in

Eq. (1.5) by e−Sbias[x,y]eSbias[x,y]:

P[x] =
〈
e−∆S[x,y]

〉
bias
Pbias[x] (1.11)

where ∆S[x, y] = SOM[x, y] − Sbias[x, y] and 〈·〉bias is the average computed in the

biased theory. Note that ∆S[x, y] does not depend extensively on y anymore, because

the bias force acts only on the solute atoms and the solvent portion of the actions

simplifies away. However, a residual dependence, mediated by the force ∇iU(x,y),

remains and, as we will see in a moment, one can take care of it at the level of a

saddle point approximation.

Using Eq. (1.11) one can recast Eq. (1.7) in the following exact form:

δPbias[x]

δx

〈
e−∆S[x,y]

〉
bias

+

〈
δ

δx
e−∆S[x,y]

〉

bias
Pbias[x] ∼ 0 (1.12)

One can choose now to restrict the search of the paths satisfying Eq. (1.12) among

the paths x̄ generated within the biased dynamics, so that

δPbias[x̄]

δx̄
∼ 0 (1.13)

and the left term in Eq. (1.12) vanishes. Since Pbias[x̄] is non-zero, one obtains
〈
δ

δx̄
e−∆S[x̄,y]

〉

bias
∼ 0 (1.14)
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The result in (1.14) is not exact anymore. Indeed, the search of the optimal

path has been restricted only among the ones computed in the presence of the bias.

Eq. (1.14) can be used to estimate which, among the paths computed in the biased

theory, is the one with the highest probability to be obtained in the unbiased theory.

To do so, it is easy to see that Eq. (1.14) is equivalent to

δ∆S[x̄, y]

δx̄
∼ 0 (1.15)

Expanding Eq. (1.15) one finds

δ

δx̄

N∑

i=1

γ−1
i

∫ t

0
dτ
[
−2Fbias

i (x̄, τ) ·
(
mi ¨̄xi + γi ˙̄xi −∇iU(x̄,y)

)
+
∣∣Fbias

i (x̄, τ)
∣∣2
]
∼ 0

(1.16)

where x̄ = x̄(τ) = (x̄1, . . . , x̄N ) and all the other terms vanish exactly. In order

to simplify Eq. (1.16) even further, one can exploit the saddle point equations of

motion of the solvent atoms in the biased theory, requiring δSbias ∼ 0 [23]:

mi ¨̄xi + γi ˙̄xi + ∇iU(x̄,y) ∼ Fbias
i (x̄, t) (1.17)

Plugging Eq. (1.17) into Eq. (1.16) one finally obtains

δT [x̄]

δx̄
≡ δ

δx̄

N∑

i=1

γ−1
i

∫ t

0
dτ |Fbias

i (x̄, τ)|2 ∼ 0 (1.18)

where T is called the penalty functional. The condition in Eq. (1.18) states that

the biased path which has the highest probability to be realized in the unbiased

dynamics is the one for which the time-averaged squared modulus of the bias force

is smaller. As previously anticipated, the penalty functional is just a function of the

path x̄ and it is not affected by the solvent fluctuations.

The method discussed here proposes to simulate pathways linking a configuration

xR to a configuration xP by employing a time-dependent bias force and variationally

select a posteriori which, among the many simulations started from xR, is the most

realistic one. The variational nature of this approach makes its accuracy critically

dependent on the choice of the model subspace in which the optimal solution is

looked for, i.e. the space of biased pathways. In the following, we shall discuss how

to choose a bias force which is sufficiently good to justify the use of a variational

approximation.

1.2.1 The Ratchet-and-Pawl Force

Suppose we are provided with a good reaction coordinate z(x), which is minimal in

the product state xP and maximal in the reactant state xR. A smart bias force can

be built from z(x) by asking for the following properties. The bias force should [133]:
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Ra
tch

et Pawl

Figure 1.1: Representation of a ratchet-and-pawl system. The green arrow represents the
direction of the allowed pawl rotation, while the red arrow represents the direction of the
rotation forbidden by the action of the ratchet.

1. act in such a way to minimize the reaction coordinate;

2. vanish when the system spontaneously progresses towards the product along

the reaction coordinate;

3. act only when the system tries to backtrack to higher values of the reaction

coordinate.

A force that satisfies points 1. - 3. is given by:

FrMD
i (x, zm) = −krMD

2
∇iz(x)(z(x)− zm(t))θ(z(x)− zm(t)) (1.19)

where krMD is an energy constant (units of kJ/mol), and the reaction coordinate is

assumed to be of the kind

z(x) = ||F (x)− F 0||2 (1.20)

where F (x) is a feature function extracted from the instantaneous value of the path

x(τ) = x, F 0 = F (xP ) is the value of the feature in the product state, || · || is a norm

in the corresponding feature space, and

zm(t) = min
τ∈[0,t]

z(x(τ)) (1.21)

is the smallest value reached by z(x(τ)) up to time t. The force in Eq. (1.19) is

called ratchet-and-pawl force [134, 21], and a dynamics implementing this additional

force is called ratchet-and-pawl molecular dynamics (rMD):

miẍi = −γiẋi −∇iU(x,y) + FrMD
i (x, zm) + ηi(t) i = 1, . . . , N

µjÿj = −σjẏj −∇jU(x,y) + ξj(t) j = 1, . . . ,M
(1.22)

The biasing force in Eq. (1.19) is designed so that no work is done on the system

in order to push it in a given direction, just like in the case of a ratchet-and-pawl

mechanism (see Fig. 1.1), because every time the system spontaneously progresses
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1.2. The Bias Functional Method

along z(x) the force vanishes exactly. This is different from what happens, for

example, in the case of steering and pulling forces, where the biasing force acts

continuously along the whole trajectory. Just like in the case of steering algorithms,

however, the starting and final configurations of the system should be known a-priori

and cannot be computed from rMD.

rMD is completely determined by the choice of a ratchet constant krMD and

the feature function F (x). Thus, one should be careful in selecting the two, as a

sub-optimal choice might generate highly unlikely pathways (see for example the

supplementary material in [21]). The use of a soft biasing scheme, i.e. an harmonic

one like in Eq. (1.19), should help reduce the artifacts introduced by a wrong choice

of the feature (and thus of the reaction coordinate). The choice of the constant

krMD, instead, should be guided by two important considerations. On the one hand,

choosing a very small krMD evidently reduces rMD to conventional MD: In this case,

the dynamics will be less affected by a sub-optimal choice of the reaction coordinate

but will be also less accelerated by the biasing force. On the other hand, provided that

z can represent only an approximation of the exact reaction coordinate, when high

values of the ratchet constant are set, the dynamics will be greatly accelerated but

will also lead to highly unlikely reaction pathways. For this reason, krMD should be

chosen as a compromise between computational performance and physical meaning

of the pathways.

The bias force in Eq. (1.19) has not a form Fbias
i (x, t), which is the one used in

the proof of the variational principle in Eq. (1.18), but rather a form

Fbias
i = Fbias

i (x, ξ(t)) (1.23)

This difference introduces some modifications in the original path integral presented

in Eq. (1.9). Indeed, if the dynamics of the auxiliary field ξ(t) can be expressed as

ξ̇ = f(ξ) (1.24)

then the path probability P [x] in Eq. (1.9) becomes [23, 28]

P[x] =
1

Z

∫
dyF

∫
dyI

∫ yF

yI

Dy
∫
Dξ e−βU(xR,yI)·

· e−Sbias[x,y]δ

(
ξ(τ)−

∫ τ

0
dτ ′f(ξ(τ ′))

)
J [X̄, ξ]

(1.25)

where J [x̄, ξ] is a Jacobian which is introduced to make sure that the statistical weight

of the paths is not affected by the measure Dξ. It can be shown (see appendix B.1

and Ref. [28]) that J [x̄, ξ] = 1 and that Eq. (1.18) holds unchanged also in the case

of the path-integral in Eq. (1.25) [23]. This means that the rMD force can be used

in conjunction with the variational condition in Eq. (1.18), and a possible algorithm

combining the two approaches is the following:
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1. prepare the system in an initial configuration xR;

2. run N rMD simulations starting from xR towards a product configuration xP;

3. apply the variational principle in Eq. (1.18) to the M ≤ N simulations that

reached a configuration xF close to xP, i.e. configurations for which ||xP −
xF|| < ε with || · || a suitable metric and ε an arbitrarily small threshold;

4. among these M simulations, the one which minimizes the penalty function is

called the least biased (LB) trajectory and provides the best variational guess

of the reaction pathway between xR and xP generated via rMD.

Throughout the whole manuscript we will refer to the algorithm 1. - 4. as the Bias

Functional (BF) method. It should be noted that the BF method is not exactly a

variational algorithm, but rather it is inspired from a variational principle. Indeed,

the minimum of the penalty function T is never found: It is approximated starting

from a limited sample of bias trajectories, provided by the N trial rMD pathways.

1.2.2 Application to Protein Folding

Let us specialize now to the case of protein folding simulations. The reactant state of

our system is provided by the unfolded state of the protein, while the product state

is the native configuration of the molecule. As previously discussed, the choice of

the feature function F (x) employed to characterize the protein structure is crucial.

A possible choice is the one proposed by the authors of Ref. [21]

F (x) = Cij(x) =





1−
(
rij
r0

)N
1−
(
rij
r0

)M if rij < rc

N
M if rij = rc

0 otherwise

(1.26)

called the protein’s contact map, where rij = ||xi − xj || is the distance between the

i-th and the j-th protein atom, r0 = 0.75 nm is a reference distance that defines an

atomic contact, rc = 1.2 nm is a cutoff distance and N < M are integers (usually

set to N = 6 and M = 10). The natural norm in this feature space is provided by

the Frobenius norm:

||F (x)− F 0||2 = ||C(x)− C0||2N ≡
1

N
N∑

i<j

(
Cij(x)− C0

ij

)2 (1.27)

where N is a normalization factor, here chosen to be N = 1. This choice of feature

was guided by the fact that a reaction coordinate based on a similar same smooth

representation of the contact map was previously used in order to efficiently sample

the free-energy landscape of the C-Terminal GB1 β-hairpin [135].
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In the case of protein folding, the BF method can be better schematized in the

following way (see also Fig. 1.2):

1. Generation of the unfolded configuration: the experimental structure of the

native state (x-ray crystal or NMR structures) is used as a starting point of a

short (t ≤ 3 ns) high-temperature (T > 700 K) MD simulation. In this way,

all the native contacts are destroyed (Q < 0.1) and the configuration doesn’t

preserve any knowledge of the original three-dimensional native structure. The

final point of the high-temperature run is relaxed at the desired temperature

(usually T = 300 K) and then used as a starting point for the folding simulation;

2. Generation of the folding pathways: given the initial condition, a fixed number

of trial rMD trajectories are simulated at the temperature of interest and for

a fixed amount of time. For each simulation, the rMD force is always defined

employing protein contact maps as features. Some of the trajectories reach the

native state of the protein (the so called productive trajectories), while other

ones are not able to fold in the correct three-dimensional structure within the

simulation time. These last trajectories should not be discarded: they provide

important information on the presence of free energy barriers and, as we will

discuss in great detail in Chapter 4, in particular cases they can be used to

assess the misfolding propensity of a protein;

3. Application of the variational principle: the variational principle in Eq. (1.18)

is finally applied to the ensemble of biased productive pathways in order to

determine the LB trajectory, the one which has the highest probability to be

realized in the absence of the bias.

Points 1. - 3. are then repeated in order to produce several LB trajectories. As

previously discussed, when rMD is employed the initial and final points of the dy-

namics should be known a priori. This means that rMD is not able to predict the

folded state of a protein, but rather its goal is to be able to predict the intermediate

configurations connecting the unfolded to the native state.

The BF algorithm has been widely tested in recent years. In Ref. [23], the

authors used it to simulate the folding of the WW-domain of FIP35 and the Villin

Headpiece Domain, and systematically compared the results against unbiased MD

folding simulations of the same proteins [10, 11]. The comparison highlighted that

the algorithm is capable of reproducing the main features of the folding pathway of

the two proteins and also to correctly predict the order in which the native contacts

form during the folding process. The results of the BF method were also validated

against experimental results: in a recent work [26], the algorithm was successfully
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Figure 1.2: Sketch of the Biasf Functional algorithm applied to protein folding. In the first
step, unfolded configurations are generated by means of high temperature MD simulations
(dashed red lines); in the second step, many trial rMD simulations (solid lines) are started
from the same initial configuration, some of which reach the native state and some of which
do not; in the last step, among all the productive trajectories, the least-biased trajectory
(solid red line) is chosen by means of the variational principle.

applied to characterize on the atomic-level the differences in the folding pathway

between two similar (∼ 60% sequence similarity) proteins, IM7 and IM9. These two

molecules approximately share the same native structure but show, respecitvely, a

3-state and a 2-state folding mechanism. Besides folding, the BF method was also

used to study the latency transition of PAI-1 serpin [27].

The main advantage of the BF method is its extreme efficiency in generating fold-

ing pathways. The folding dynamics of a protein is usually accelerated by several

order of magnitudes by the biasing force. To give just an explicit example, in chapter

4 we study a protein that needs approximately 10 minutes to fold: he BF method

permits to simulate folding pathways of this protein in approximately ∼ 10 ns of

simulation time, for an approximate acceleration of 11 orders of magnitude. This

strong increase in simulation speed, however, comes at a price. The main problem

resides in the fact that the rMD force is history dependent : indeed, the auxiliary field

zm(t) depends on the previous values assumed by the reaction coordinate z(x). The

introduction of a history dependent bias force makes rMD dynamics not microscop-

ically reversible, thus making it virtually impossible to retrieve kinetic observables,

e.g. transition rates, directly from BF results.

A possible way to interpret the content of BF trajectories is to project them onto

some qualitatively relevant collective variables {θi} and define the corresponding
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kinetic free-energy landscape:

Gbias({θi}) = −kBT logPbias({θi}) (1.28)

where Pbias({θi}) is the frequency histogram of the configurations, in the collective

variables space, visited by the simulations. Gbias should not be interpreted as an

equilibrium free energy but can anyhow provide qualitative insight on the existence

of metastable configurations along the folding pathway. Indeed, let us suppose we

believe z(x) to be a resonably good reaction coordinate: if so the protein would visit,

in the correct order, all the metastable states along the folding pathway that would

be visited by an unbiased simulation. This has been proved to hold for different

protein systems [23, 21]. Moreover, since a bias force is acting on the protein, if ki-

netic free energy barriers are present even more so barriers would have been present

in the unbiased free energy landscape. This qualitative argument tells us that Gbias

provides a crude approximation of the true free energy profile, where barriers are sys-

tematically reduced and the metastable states are not correctly Boltzmann-weighted

because of the presence of a history-dependent bias force. However, the reaction co-

ordinate employed rMD calculations is basically arbitrary and even though the one

proposed in Eq. (1.26) proved to perform well on a wide class of proteins (see e.g.

Ref.s [26, 27, 24, 25], where BF results were successfully compared against experi-

ments), it would be better to rely on some coordinate which is not chosen a priori

and that assures an exhaustive sampling of the folding pathway.

The two main theoretical contributions of this manuscript go in the direction of

overcoming the limitations we mentioned here. On the one hand, we will define a

scheme that permits one to self-consistently optimize the rMD reaction coordinate;

on the other hand, we will establish a strong connection between the latter self-

consistent algorithm and transition path theory [30, 31, 136]. This will permit to

manipulate simulation results in order to recover important kinetic quantities and

to consistently describe the protein folding mechanism. These new theoretical tools

make it clear that the BF algorithm should not be considered as an ultimate answer,

but rather as a first approximation that is informative enough to admit a systematic

optimization. In the next section we are going to start from the first aspect, which

is the definition of a novel algorithm to iteratively improve the quality of the rMD

reaction coordinate.
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1.3 Deriving the Biased Dynamics from a Mean-Field

Approximation

In this section we are going to present the basic theory behind the self-consistent

optimization of the rMD reaction coordinate. Briefly, the idea behind it is to recover

a particular form of rMD from a mean-field approximation of the exact Langevin

dynamics. This new rMD dynamics will depend on two forces, biasing along the

so-called path variables [137]. The peculiar feature of the path variables emerging

from this calculation, however, is that they do not depend on a predefined path, but

rather they depend on an average path which is obtained from a previous simulation.

This naturally defines a self-consistent scheme, were the average path is recomputed

at each iteration and it is passed to the next one, until convergence is attained. We

will test this approach on a 2-dimensional toy model and we will finally apply it to

the folding of the WW-domain of FIP35, a benchmark protein previously studied

using unbiased MD simulations [10, 11, 105, 138].

1.3.1 Mean-Field Representation of Langevin Dynamics

Let us introduces two dummy variables sm(τ) and wm(τ) in the conditional proba-

bility in Eq. (1.3):

p(xP, t|xR, 0) =
1

Z

∫
dyF

∫
dyI

∫ yF

yI

Dy
∫ xP

xR

Dx e−SOM[x,y]e−βU(xR,yI)·

·
∫

w̄(0)
Dwm δ

(
wm −

∫ τ

0
dτ ′ ˙̄w(τ ′)θ(wm(τ ′)− w̄(τ ′))

)
·

·
∫

s̄(0)
Dsm δ

(
sm −

∫ τ

0
dτ ′ ˙̄s(τ ′)θ(sm(τ ′)− s̄(τ ′))

)
(1.29)

The dynamics of the two dummy variables is controlled by the one of two additional

time-dependent functions, s̄(τ) and w̄(τ):

ṡm(τ) = ˙̄s(τ)θ(sm(τ)− s̄(τ))

ẇm(τ) = ˙̄w(τ)θ(wm(τ)− w̄(τ))
(1.30)

Eq. (1.30) shows that the dynamics of sm(τ) and wm(τ) remains frozen, respectively,

every time sm(τ) > s̄(τ) and wm(τ) > w̄(τ). Thus, if we employ initial conditions

sm(0) = s̄(0)

wm(0) = w̄(0)
(1.31)

sm(τ) and wm(τ) will represent the minimum values, respectively, of s̄(τ) and w̄(τ)

up to time τ . As previously discussed in section 1.2 and proved in appendix B.1, the

introduction of sm(τ) and wm(τ) in the path integral account for a trivial Jacobian

J [wm, X] = J [sm, X] = 1 (1.32)
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t⌧
<latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit><latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit><latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit><latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit> 0 t⌧

<latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit><latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit><latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit><latexit sha1_base64="gqR8KKeVgKW6wRBT7ZvSzE4GlaU=">AAAB9nicbVC7TsNAEDzzDOEVoKQ5ESFRRTZCgjKChjJI5CElVrS+bJJTzmfrbo2IovwCLVR0iJbfoeBfsI0LSJhqNLOrnZ0gVtKS6346K6tr6xubpa3y9s7u3n7l4LBlo8QIbIpIRaYTgEUlNTZJksJObBDCQGE7mNxkfvsBjZWRvqdpjH4IIy2HUgBlUo8g6Veqbs3NwZeJV5AqK9DoV756g0gkIWoSCqztem5M/gwMSaFwXu4lFmMQExhhN6UaQrT+LM8656eJBYp4jIZLxXMRf2/MILR2GgbpZAg0toteJv7ndRMaXvkzqeOEUIvsEEmF+SErjExLQD6QBokgS45cai7AABEayUGIVEzSVsppH97i98ukdV7z3Jp3d1GtXxfNlNgxO2FnzGOXrM5uWYM1mWBj9sSe2Yvz6Lw6b877z+iKU+wcsT9wPr4BzomSzQ==</latexit>

w̄(⌧)
<latexit sha1_base64="1KplgejSLXoCRJykcsm9C5j1eOw=">AAAB/3icbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnlIsRWtL5twyvnB3RoUWSn4Clqo6BAtn0LBv2CHFJAw1WhmVzs7fqykIdv+tApLyyura8X10sbm1vZOeXevZaJEC2yKSEW644NBJUNskiSFnVgjBL7Ctj+6zP32PWojo/CGxjF6AQxDOZACKJM81wedPkyqLkFy3CtX7Jo9BV8kzoxU2AyNXvnL7UciCTAkocCYrmPH5KWgSQqFk5KbGIxBjGCI3YyGEKDx0mnoCT9KDFDEY9RcKj4V8fdGCoEx48DPJgOgWzPv5eJ/XjehwbmXyjBOCEORHyKpcHrICC2zNpD3pUYiyJMjlyEXoIEIteQgRCYmWT2lrA9n/vtF0jqpOXbNuT6t1C9mzRTZATtkVeawM1ZnV6zBmkywO/bEntmL9Wi9Wm/W+89owZrt7LM/sD6+AWPdlng=</latexit><latexit sha1_base64="1KplgejSLXoCRJykcsm9C5j1eOw=">AAAB/3icbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnlIsRWtL5twyvnB3RoUWSn4Clqo6BAtn0LBv2CHFJAw1WhmVzs7fqykIdv+tApLyyura8X10sbm1vZOeXevZaJEC2yKSEW644NBJUNskiSFnVgjBL7Ctj+6zP32PWojo/CGxjF6AQxDOZACKJM81wedPkyqLkFy3CtX7Jo9BV8kzoxU2AyNXvnL7UciCTAkocCYrmPH5KWgSQqFk5KbGIxBjGCI3YyGEKDx0mnoCT9KDFDEY9RcKj4V8fdGCoEx48DPJgOgWzPv5eJ/XjehwbmXyjBOCEORHyKpcHrICC2zNpD3pUYiyJMjlyEXoIEIteQgRCYmWT2lrA9n/vtF0jqpOXbNuT6t1C9mzRTZATtkVeawM1ZnV6zBmkywO/bEntmL9Wi9Wm/W+89owZrt7LM/sD6+AWPdlng=</latexit><latexit sha1_base64="1KplgejSLXoCRJykcsm9C5j1eOw=">AAAB/3icbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnlIsRWtL5twyvnB3RoUWSn4Clqo6BAtn0LBv2CHFJAw1WhmVzs7fqykIdv+tApLyyura8X10sbm1vZOeXevZaJEC2yKSEW644NBJUNskiSFnVgjBL7Ctj+6zP32PWojo/CGxjF6AQxDOZACKJM81wedPkyqLkFy3CtX7Jo9BV8kzoxU2AyNXvnL7UciCTAkocCYrmPH5KWgSQqFk5KbGIxBjGCI3YyGEKDx0mnoCT9KDFDEY9RcKj4V8fdGCoEx48DPJgOgWzPv5eJ/XjehwbmXyjBOCEORHyKpcHrICC2zNpD3pUYiyJMjlyEXoIEIteQgRCYmWT2lrA9n/vtF0jqpOXbNuT6t1C9mzRTZATtkVeawM1ZnV6zBmkywO/bEntmL9Wi9Wm/W+89owZrt7LM/sD6+AWPdlng=</latexit><latexit sha1_base64="1KplgejSLXoCRJykcsm9C5j1eOw=">AAAB/3icbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnlIsRWtL5twyvnB3RoUWSn4Clqo6BAtn0LBv2CHFJAw1WhmVzs7fqykIdv+tApLyyura8X10sbm1vZOeXevZaJEC2yKSEW644NBJUNskiSFnVgjBL7Ctj+6zP32PWojo/CGxjF6AQxDOZACKJM81wedPkyqLkFy3CtX7Jo9BV8kzoxU2AyNXvnL7UciCTAkocCYrmPH5KWgSQqFk5KbGIxBjGCI3YyGEKDx0mnoCT9KDFDEY9RcKj4V8fdGCoEx48DPJgOgWzPv5eJ/XjehwbmXyjBOCEORHyKpcHrICC2zNpD3pUYiyJMjlyEXoIEIteQgRCYmWT2lrA9n/vtF0jqpOXbNuT6t1C9mzRTZATtkVeawM1ZnV6zBmkywO/bEntmL9Wi9Wm/W+89owZrt7LM/sD6+AWPdlng=</latexit>

wm(⌧)
<latexit sha1_base64="2yQaYGE0gIf+lL3WeO6tGnoBc0E=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESGFJrIREpQRNJRBIg+UWNH6sgmn3NnW3RoUWfkKWqjoEC0fQ8G/4AQXkDDVaGZXOztBrKQl1/10lpZXVtfWCxvFza3tnd3S3n7TRokR2BCRikw7AItKhtggSQrbsUHQgcJWMLqa+q0HNFZG4S2NY/Q1DEM5kAIok+4ee7rSJUhOeqWyW3Vn4IvEy0mZ5aj3Sl/dfiQSjSEJBdZ2PDcmPwVDUiicFLuJxRjECIbYyWgIGq2fzgJP+HFigSIeo+FS8ZmIvzdS0NaOdZBNaqB7O+9Nxf+8TkKDCz+VYZwQhmJ6iKTC2SErjMyaQN6XBolgmhy5DLkAA0RoJAchMjHJqilmfXjz3y+S5mnVc6vezVm5dpk3U2CH7IhVmMfOWY1dszprMME0e2LP7MWZOK/Om/P+M7rk5DsH7A+cj28Im5ST</latexit><latexit sha1_base64="2yQaYGE0gIf+lL3WeO6tGnoBc0E=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESGFJrIREpQRNJRBIg+UWNH6sgmn3NnW3RoUWfkKWqjoEC0fQ8G/4AQXkDDVaGZXOztBrKQl1/10lpZXVtfWCxvFza3tnd3S3n7TRokR2BCRikw7AItKhtggSQrbsUHQgcJWMLqa+q0HNFZG4S2NY/Q1DEM5kAIok+4ee7rSJUhOeqWyW3Vn4IvEy0mZ5aj3Sl/dfiQSjSEJBdZ2PDcmPwVDUiicFLuJxRjECIbYyWgIGq2fzgJP+HFigSIeo+FS8ZmIvzdS0NaOdZBNaqB7O+9Nxf+8TkKDCz+VYZwQhmJ6iKTC2SErjMyaQN6XBolgmhy5DLkAA0RoJAchMjHJqilmfXjz3y+S5mnVc6vezVm5dpk3U2CH7IhVmMfOWY1dszprMME0e2LP7MWZOK/Om/P+M7rk5DsH7A+cj28Im5ST</latexit><latexit sha1_base64="2yQaYGE0gIf+lL3WeO6tGnoBc0E=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESGFJrIREpQRNJRBIg+UWNH6sgmn3NnW3RoUWfkKWqjoEC0fQ8G/4AQXkDDVaGZXOztBrKQl1/10lpZXVtfWCxvFza3tnd3S3n7TRokR2BCRikw7AItKhtggSQrbsUHQgcJWMLqa+q0HNFZG4S2NY/Q1DEM5kAIok+4ee7rSJUhOeqWyW3Vn4IvEy0mZ5aj3Sl/dfiQSjSEJBdZ2PDcmPwVDUiicFLuJxRjECIbYyWgIGq2fzgJP+HFigSIeo+FS8ZmIvzdS0NaOdZBNaqB7O+9Nxf+8TkKDCz+VYZwQhmJ6iKTC2SErjMyaQN6XBolgmhy5DLkAA0RoJAchMjHJqilmfXjz3y+S5mnVc6vezVm5dpk3U2CH7IhVmMfOWY1dszprMME0e2LP7MWZOK/Om/P+M7rk5DsH7A+cj28Im5ST</latexit><latexit sha1_base64="2yQaYGE0gIf+lL3WeO6tGnoBc0E=">AAAB+3icbVC7TsNAEDzzDOEVoKQ5ESGFJrIREpQRNJRBIg+UWNH6sgmn3NnW3RoUWfkKWqjoEC0fQ8G/4AQXkDDVaGZXOztBrKQl1/10lpZXVtfWCxvFza3tnd3S3n7TRokR2BCRikw7AItKhtggSQrbsUHQgcJWMLqa+q0HNFZG4S2NY/Q1DEM5kAIok+4ee7rSJUhOeqWyW3Vn4IvEy0mZ5aj3Sl/dfiQSjSEJBdZ2PDcmPwVDUiicFLuJxRjECIbYyWgIGq2fzgJP+HFigSIeo+FS8ZmIvzdS0NaOdZBNaqB7O+9Nxf+8TkKDCz+VYZwQhmJ6iKTC2SErjMyaQN6XBolgmhy5DLkAA0RoJAchMjHJqilmfXjz3y+S5mnVc6vezVm5dpk3U2CH7IhVmMfOWY1dszprMME0e2LP7MWZOK/Om/P+M7rk5DsH7A+cj28Im5ST</latexit>

(a) (b)

Figure 1.3: Adapted from Ref. [28], with the permission of AIP Publishing. Sketch of the
different dynamics of the auxiliary variables introduced in (a) rMD and (b) in the derivation
of the self consistent algorithm.

so that no modification with respect to the original functional measure in the path

integral is performed.

It is worth specifying that the path integral in Eq. (1.29) remains exact inde-

pendently on the specific functional form of the two functions s̄(τ) and w̄(τ). Let us

then specialize to a specific choice for the additional functions:

s̄(τ) = 1− τ

t

w̄(τ) = w0

(1.33)

Both of them are non-increasing, so for every value of τ ∈ [0, t] we have (see Fig.

1.3)

sm(τ) = s̄(τ)

wm(τ) = w̄(τ)
(1.34)

Notably, the functions in Eq. (1.33) can be obtained via two useful limits:

s̄(τ) = lim
λ→∞

sλ[x, τ ] ≡ 1− 1

t
lim
λ→∞

∫ t
0 dt t

′e−λ||F (τ)−F (t′)||2

∫ t
0 dt

′ e−λ||F (τ)−F (t′)||2

w̄(τ) = lim
λ→∞

wλ[x, τ ] ≡ w0 − lim
λ→∞

1

λ
log

∫ t

0
dt′ e−λ||F (τ)−F (t′)||2

(1.35)

where F is a generic feature describing the system at a given time, F (τ) = F (x(τ)).

To prove Eq. (1.35), let us discretize the interval [0, t] in N slices with step ∆t = t/N .

Calling τ = l∆t the intermediate steps, for sλ we have

sλ[x, l∆t] = 1− 1

N∆t

∑N
k=1 ∆t2 ke−λ||F (l∆t)−F (k∆t)||2

∑N
k=1 ∆t e−λ||F (l∆t)−F (k∆t)||2

= 1− 1

N

∑N
k=1 ke

−λ||F (l∆t)−F (k∆t)||2

∑N
k=1 e

−λ||F (l∆t)−F (k∆t)||2

(1.36)
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For λ→∞, only l = k terms in the sum survive, because

lim
λ→∞

λ||F (l∆t)− F (k∆t)||2 =




∞ if k 6= l

0 if k = l
(1.37)

Thus we have

lim
λ→∞

sλ[x, l∆t] = 1− l

N
= 1− τ

∆t

∆t

t
= 1− τ

t
(1.38)

which is exactly the upper equation in Eq. (1.33). For wλ[X, τ ] the procedure is

almost identical. Let us discretize the integral inside the logarithm to obtain:

wλ[x, τ ] = w0 −
1

λ
log

N∑

k=1

∆te−λ||F (k∆t)−F (l∆t)||2

=

(
w0 −

1

λ
log ∆t

)
− 1

λ
log

N∑

k=1

e−λ||F (k∆t)−F (l∆t)||2
(1.39)

If we use Eq. (1.37) in Eq. (1.39), we are left with

lim
λ→∞

wλ[x, τ ] = w0 − lim
λ→∞

1

λ
log ∆t = w0 (1.40)

which is, again, the expected result reported in Eq. (1.33).

Let us employ Eq. (1.35) to rewrite the conditional probability in Eq. (1.29) as

p(XP, t|XR, 0) = lim
λ→∞

pλ(XP, t|XR, 0)

= lim
λ→∞

1

Z

∫
dyF

∫
dyI

∫ yF

yI

Dy
∫ xP

xR

Dxe−Sλ[x,y,sm,wm]e−βU(xR,yI)·

·
∫

w̄(0)
Dwm δ

(
wm −

∫ τ

0
dτ ′ẇλ(τ ′)θ(wm(τ ′)− wλ(τ ′))

)
·

·
∫

s̄(0)
Dsm δ

(
sm −

∫ τ

0
dτ ′ṡλ(τ ′)θ(sm(τ ′)− sλ(τ ′))

)

(1.41)

One should note that the action in Eq. (1.41) is now explicitly dependent on the

dummy variables through two new force terms:

Sλ[x, y, sm, wm] ≡ β

4

∫ t

0
dτ

[
N∑

i=1

γ−1
i (miẍi + γiẋi + ∇iU(x,y)

− Fsi [x, sm]− Fwi [x,wm])2

+

M∑

j=1

σ−1
j

(
µjÿj + σjẏj + ∇jU(x,y)

)2



(1.42)

The exact functional form of the forces is arbitrary Fsi [x, sm] and Fwi [x,wm], as long

as they exactly vanish in the limit λ→∞. In particular, they can be expressed as

Fαi [x, αm] = ζ[x, αλ]ξ(αλ[x, t]− αm(t)) α = s, w (1.43)
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where

lim
λ→∞

ξ(αλ[x, t]− αm(t)) = 0 α = s, w (1.44)

and ζ[x, αλ, αm] is a generic functional of the path and the dummy variables. Evi-

dently, a possible choice for this forces is provided by a ratchet force:

Fαi [x, αm] = −kα∇αλ[x, t](αλ[x, t]− αm(t))θ(αλ[x, t]− αm(t)) α = s, w (1.45)

where

ζ[x, αλ, αm] = −kα∇αλ[x, t] α = s, w (1.46)

and

lim
λ→∞

ξ(αλ[x, t]− αm(t)) = lim
λ→∞

θ(sλ[x, t]− sm(t))(sλ[X, t]− sm(t))

= lim
λ→∞

θ(wλ[x, t]− wm(t))(wλ[X, t]− wm(t))

= 0 α = s, w

(1.47)

Given the way in which the forces in Eq. (1.43) are defined, the original path integral

in Eq. (1.3) and the one in Eq. (1.41) are exactly equivalent. Let us now introduce a

mean-field approximation: we substitute the values of F (t′) in Eq. (1.35) with their

average values 〈F (t′)〉:

〈F (t′)〉 =

∫
dyF

∫
dyI

∫ yF
yI
Dy
∫ xP
xR
Dx F (x(t′))e−Sλ[x,y]e−βU(xR,yI)

∫
dyF

∫
dyI

∫ yF
yI
Dy
∫ xP
xR
Dx e−Sλ[x,y]e−βU(xR,yI)

(1.48)

so that

sλ[x, τ ]→ sλ(x(τ)) = 1− 1

t

∫ t
0 dt t

′e−λ||F (τ)−〈F (t′)〉||2

∫ t
0 dt

′ e−λ||F (τ)−〈F (t′)〉||2

wλ[x, τ ]→ wλ(x(τ)) = w0 −
1

λ
log

∫ t

0
dt t′e−λ||F (τ)−〈F (t′)〉||2

(1.49)

With this replacement, the two variables stop depending functionally on the path x

and become standard collective coordinates, which means they just depend on tem-

poral realizations of the path x(τ). Owing to the mean-field approximation, even in

the limit λ → ∞ the dynamics is no longer exact, since the forces Fsi and Fwi no

longer vanish. Instead, they define a new type of ratchet-and-pawl dynamics. Now

the rMD force biases along two collective variables which depend on a pre-computed

average path that can be systematically improved, within the mean-field approxima-

tion, through a self-consistent procedure. The two collective variables sλ and wλ are

called path (or tube) variables, and were first introduced in Ref. [137]. A non triv-

ial result of our derivation is that ratchet-like forces (forces that satisfy Eq.s (1.43)

and (1.44)) along these two collective variables emerge naturally from a mean-field
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Figure 1.4: Adapted from Ref. [28], with the permission of AIP Publishing. Geometrical
interpretation of (a) sλ, wλ and (b) σ variables.

approximation of the exact Langevin dynamics. Thus, any other predetermined col-

lective variable employed in rMD calculations is necessarily sub-optimal with respect

to the choice of the path variables. In chapter 2 we will further investigate this point

and we will show that the reason why sλ and wλ have such interesting properties is

hidden behind a deep connection with the committor function.

The systematic error coming from the mean-field approximation can be min-

imized by resorting to the variational principle of the BF approach, Eq. (1.18).

Indeed, among all the productive pathways x̄ computed in presence of the two bias-

ing forces Fsi and Fwi , the one which has the highest probability to be realized in the

absence of the bias is the one which satisfies the following equality:

δ

δx̄

N∑

i=1

γ−1
i

∫ t

0
dτ |Fsi (x̄(τ)) + Fwi (x̄(τ))|2 ∼ 0 (1.50)

1.3.2 Self-Consistent Path Sampling Algorithm

Given the theoretical considerations presented in section (1.3.1), we propose the

following algorithm to sample protein folding pathways, which we shall call Self-

Consistent Path Sampling (SCPS):

1. Generation of the unfolded configuration: the initial configuration xR is gener-

ated in the same way presented in section (1.2.2), point 1.;

2. Generation of the guess average path: given a total simulation time t, run

many independent rMD simulations starting from xR. Isolate the produc-
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tive ones and use them to compute the guess average path in feature space

{〈F (τ)〉}0τ∈[0,t];

3. Iteration: use the set {〈F (τ)〉}0τ∈[0,t] of average features to run a new ensemble

of folding trajectories, now employing Fsi and Fwi as biasing forces and choos-

ing a large value for the parameter λ. From this new ensemble, isolate the

productive trajectories and use them to compute the new set {〈F (τ)〉}1τ∈[0,t].

4. Convergence: point 3. is repeated until, at the n-th iteration, a convergence

criterion is met;

5. Application of the variational principle: the variational principle in Eq. (1.50)

is finally applied to the converged ensemble of productive pathways in order to

determine the least biased trajectory.

Steps 1.-5. are repeated to generate many independent LB trajectories starting

from U different unfolded conformations x1
R, . . . ,x

U
R. Given the results of all these

independent folding calculations, it is possible to define a reaction coordinate σ(x)

that uses the information coming from all the simulations to measure the overall

progress of folding. This can be done by combining the tube variables s1
λ, . . . , s

U
λ

obtained from each least biased trajectory and compute

σ(x) =
1

Nt

U∑

k=1

∫ t
0 dτ τe

−λ||F (x)−〈F (τ ′)〉k||2

∫ t
0 dτ e

−λ||F (x)−〈F (τ ′)〉k||2
(1.51)

where 〈F (τ ′)〉k is the path obtained by averaging the folding trajectories started

in xkR. To better understand the physical meaning behind Eq. (1.51), it is worth

discussing the geometrical interpretation of the sλ(x) and wλ(x) variables. sλ(x)

measures the progress of the folding reaction along the average path in feature space,

while instead wλ(x) measures the distance of x from the average path (see Fig. 1.4

(a)). Thus, σ(x) assigns to each point on a folding path the closest point among the

ones on the U average pathways, as shown in Fig. 1.4.

The algorithm leaves some freedom in the choice of a whole set of parameters

and hyper-parameters: the specific choice of the features F and the norm || · || used
to compute the distance in feature space, the way in which the average path is

computed and the value of λ. The choice of the features used to represent a protein

configuration is in principle arbitrary, but some of them can lead to better folding

performances than others. To give an example, using the full configuration space

as feature space and computing the distances between configurations by means of

their RMSD proved to be an inefficient strategy that didn’t lead to successful folding

events2. A better choice (the same one that we adopted in the original work [28])
2We thank Carlo Camilloni for this observation.
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is to consider contact maps as features and use the Frobenius norm as a distance

between contact maps

||F (x)− 〈F (τ ′)〉k||2 = ||C(x)− 〈C(τ ′)〉k||2||C0||2 (1.52)

where !!C0!!2, the squared norm of the native contact map, is used to normalize

the distance. Once the features have been defined, one should compute the average

path in that space. There is a relevant problem concerning this point: the algorithm

doesn’t scale well with the number of points in the average path3. For this reason,

first the average path has to be computed as the time-average over all the folding

pathways starting from the same initial condition xkR. Then one should define a way

to systematically downsample it in order to feed it to the next iteration. There are

two possible ways to do so: the first one is to select only those points in the path

that separated by a fixed distance d, while the second one (which is the strategy

adopted in the original paper [28]) consists in selecting points in the path that are

equispaced in time. The two approaches show comparable results on a simple 2d-

model (compare the results reported in section 1.4 with the ones reported in Ref.

[29]), but the first one has a nice advantage: in that case, the λ parameter can be

simply defined as

λ =
1

d2
(1.53)

The choice in Eq. (1.53) approximately satisfies the limit λ→∞, required in (1.41),

because the protein feels the dependence on a very small number of points in the

average path at the time. In the second strategy, instead, there is no evident way in

which λ should be defined and indeed in the original paper [28] the choice was made

following an empirical argument. Because the algorithm requires λ to be set in such

a way that λ� 1, one can look at behavior of the function

ξ(t, τ) = exp(−λ||C(x(t))− 〈C(τ)〉||2) (1.54)

as the time t evolves, see how many points in the average path contribute to the

exponential and set λ in such a way to approximately minimize this number for

every t.

In the illustrative application in section 1.4, the average path has been con-

structed by fixing a distance d and selecting only equidistant points in the average

path. Differently, the results in section 1.5 have been obtained by considering points

in the average path which are equidistant in time.
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Figure 1.5: (a,b,c,d,e) Evolution of the GSCPS biased free energy for increasing SCPS
iterations. White dots correspond to the average path obtained from the corresponding
iteration; (f,g,h,i,l) typical trajectories obtained from the corresponding iterations. In all
the pictures, background contour lines represent the potential in Eq. (1.55).
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1.4 Illustrative Application on a 2D Potential

To validate the SCPS alogorithm, it is useful to start from a simple example where

the system’s configuration space is under control and the features of problem can be

thoroughly investigated. We considered as an illustrative example the diffusion of a

particle in a 2D potential provided by

U(x, y) = u0

[
e−(x2+y2) − a0e

−(x2+(y−y0)2) − e−((x−x0)2+y2) − e−((x+x0)2+y2)
]

+ u1

[
x4 + (y − y1)4

]

(1.55)

where x0 = 1, a0 = 3
5 , y0 = 5

3 , u1 = 1
5 and y1 = 1

3 in the appropriate units. This

potential contains three minima, respectrively centered at xR = (xR, yR) = (−1, 0),

xI = (xI , yI) = (0, 1.5) and xP = (xP , yP ) = (1, 0), and can be considered as a

simplified version of the one studied in Ref. [139]. The reactant R and product P

regions are defined, respectively, by the points around xR and xP for which U(x, y) ≤
−2.5kBT . At low temperature, transitions from R to P and vice-versa occur through

a single channel, which is the one passing from the intermediate state around xI .

Thus we chose to study the system at kBT = 0.15.

The goal of this section is the following: we want to provide the SCPS algorithm

a guess average path that contains systematic errors, and see if the iterative scheme

is able to correct for them so to provide a faithful characterization of the R → P

transition.

1.4.1 Generation of the Trial Pathway

As discussed above, we want to define an initial set of pathways that do not fully

capture the nature of the reaction occurring between R and P . To do this, we can

use rMD along an ill-defined reaction coordinate and a strong bias constant. As a

reaction coordinate we used

d(x) = ||x− xP || (1.56)

which measures the instantaneous Euclidean distance of a point x to the product

state, while the ratchet constant was set to kR = 50. The choice of the ratchet

constant ensures that the biasing force is approximately twice as big as the physical

force at any time during the simulation. We integrated the rMD equations of motion

with a time step of dt = 0.02 for a total time of t = 4 × 103dt and we ran 1000

independent simulations starting from xR. All the simulations coverged to the prod-

uct state, measured as d(x) < 0.01, within time t and were thus used to compute
3This is because the heavy computation of the differences at the exponent of Eq. (1.49) has to

be done for every contact map at each time step in the simulation.
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(a) (c)

(b) (d)

sM
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D

Figure 1.6: Biased free energies obtained using steered MD with bias force (a) F1 =

k1∇d(x) and (b) F2 = k2d(x)∇d(x). In both cases, white points represent the correspond-
ing average path; (c,d) typical trajectories obtained, respectively, using the biasing forces in
(a) and (b).
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the guess average path 〈x(τ)〉0τ∈[0,t]. Some technicalities about the calculation of the

average path are in order, and are discussed in detail in appendix B.2. The results

of this calculation are reported in Fig. 1.5 (a) and (f). Fig. (1.5) (a) shows the

distribution of the points sampled by rMD, while Fig. 1.5 (f) reports a typical rMD

trajectory. In spite of the very high biasing force employed in the calculation, rMD

data reproduce at a qualitative level the main features of the transition paths en-

semble. Still, the results in Fig. 1.5 (a) displays evident systematic errors: the data

distribution doesn’t reflect the symmetry of the underlying potential, because of the

strong push towards the product state provided by the biasing force; the existence

of an intermediate state does not emerge because, as clearly highlighted by Fig. 1.5

(b), typical rMD trajectories neglect it; finally, the average path doesn’t intersect

the intermediate state around xI .

A few comments about the guess average pathway are in order here. Even though

〈x(τ)〉0τ∈[0,t] fails to provide several important features of the reaction mechanism, the

rMD average path is good enough to be successfully employed as an initial ingredient

of the SCPS algorithm. This is not true, for example, for pathways obtained from

steered MD (sMD), even if the forces employed in the simulations are comparable in

intensity with the rMD one. This can be seen from Fig. 1.6 (a) and (b), where it

is clear that the steered dynamics is ignoring the correct reaction pathway. Indeed,

typical trajectories (see Fig. 1.6 (c) and (d)) overcome the barrier instead of passing

around it. As a consequence, the first SCPS iteration performed with the steered

average path doesn’t result in any productive transition.

1.4.2 Self-Consistent Iterations

We used the average rMD path 〈x(τ)〉0τ∈[0,t] to run the first self-consistent iteration.

We ran 5000 simulations, biased along sλ and wλ, with a time step dt = 0.02 and for

a total time of t = 4× 104dt. We set ks = kw = 50 and λ = d−2 = 30. Fig. 1.5 (b)

and (g) show the results of this first iteration. The reactive channel is better captured

with respect to the rMD case and the trajectories start to accumulate in the vicinity

of the I state. These features become more evident going on with the iterations.

Eventually, after the third iteration (see Fig. 1.5 (d) and (i)), the reactive channel

is correctly characterized and the average path shows all the desired properties: it is

approximately symmetric and it connects the three basins in the potential. A further

iteration, Fig. 1.5 (e) and (l), does not substantially change the picture.

Being SCPS a self-consistent procedure, one should worry about assessing its

convergence. A possible way to check for convergence is to measure wether the L2-

norm between the n-th iteration’s average path and the one at iteration n + 1 is
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Figure 1.7: Convergence of the average pathway as a function of the number of SCPS
iterations, estimated using Eq. (1.57) with ε = 0.1. ∆i,i+1 in the x-axis refer to the
comparison between iterations i and i+ 1.

smaller than a given threshold ε:

||〈x(τ)〉n − 〈x(τ)〉n+1||2 < ε (1.57)

In this simple example we can set ε = 0.1, and from Fig. (1.10) one can notice that

after the third iteration convergence has been reached. In this method, the choice

of the threshold is rather arbitrary and should be considered as a trade-off between

the computational time that one wants to invest in the simulations and the quality

of the resulting reaction pathway.

1.4.3 Reaction pathway in the sλ - wλ space

For high dimensional systems it is in general not trivial to find a relevant subspace

on which to project the dynamics of the system in order to obtain information on

the existence of metastable states. For this reason, it is interesting to investigate

if the two variables sλ and wλ can provide a reasonable description of the reaction

channel. Of course for such a simple system, projecting the configurations onto the

sλ - wλ space doesn’t amount for a dimensional reduction, but it is still a useful

exercise which could be helpful in understanding more complex situations.

Fig. 1.8 shows the kinetic free energy GSCPS in the sλ - wλ space of the system

for the first and the last SCPS iterations. Three features of the plot immediately

emerge: three basins are always present; the free energy lanscape of the last iteration

is approximately symmetric around sλ = 0.5; the fluctuations along the average

path, governed by wλ, decrease for increasing iterations. The first two features
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(a) (b)

Figure 1.8: Kinetic free energy GSCPS represented in the sλ-wλ space in the case of the
(a) first and (b) fourth SCPS iterations.
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Figure 1.9: (a) Crystal structure of the WW-Domain of FIP35. Hairpin 1 is formed
by the blue and white β-strands, while hairpin 2 is formed by the white and blue ones;
(b) configurations of the WW-Domain of FIP35, obtained from 2 independent 100 µs long
MD simulations [9], projected on the RMSD to native of the two hairpins; (c) schematic
representation of the main folding pathway (red arrow), where hairpin 1 is formed first, and
the sub-dominant pathway (green arrow) where the hairpin 2 is formed at the initial stages
in the simulation.

highlight the fact that sλ and wλ are able to capture the essential properties of

the underlying potential, together with an intriguing similarity with the committor

function (sλ ∼ 0.5 in the correspondence of the intermediate state) which will be

better exploited and deeply explored in chapter 2. The third feature is a robust check

of the algorithm’s stability: the fact that fluctuations around the average path are

decreasing for increasing iterations means that the different self-consistent steps of

the algorithm are able to define an increasingly better average path which, ultimately,

reflects all the relevant information encoded in the potential.
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Figure 1.10: Adapted from Ref. [28], with the permission of AIP Publishing. Convergence
of the SCPS simulations starting from 5 independent initial conditions

1.5 Application to the Folding of WW-Domain of FIP35

The WW-domain of FIP35 (shortly FIP35) is a 35 amino acid protein composed

by two hairpins forming a 3-stranded β-sheet. Its crystal structure is reported in

Fig. 1.9 (a). It is a fast-folding protein, which folds in the timescale of microseconds

[140]. It has been widely studied both in implicit [105] and in explicit solvent [10,

11]. Simulations in both the solvent models agree on the fact that folding of FIP35

proceeds along two main pathways: a dominant one (pathway 1 ), where hairpin

1 is formed first and then the formation of hairpin 2 follows, and a sub-dominant

one (pathway 2 ) where hairpins form in the reversed order (see Fig.s 1.9 (b) and

(c)). Further analyses of the simulations [141] also revealed the existence of an

intermediate state along pathway 1, where the first hairpin is completed and the

second one has yet to be formed.

Because of the wide computational and experimental information about it, this

protein constitutes a perfect benchmark for the SCPS algorithm. Thus, this section

will be devoted to the analysis of the algorithm performance and the comparison of

its results with the ones of standard rMD.

1.5.1 Simulations Setup and Convergence

SCPS simulations of FIP35 have been setup as follows:

1. starting from the energy minimized crystal structure, we generated 5 unfolded

conditions by running 5 independent MD simulations at T = 800 K, each one

lasting 100 ps;

2. for each initial condition, the guess folding pathways have been computed by
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running 20 independent rMD trajectories, employing a ratchet constant kR =

10−4 kJ/mol. Each simulation lasted 500 ps and the temperature was set to

T = 350 K;

3. the points along the average pathway in contact map space 〈C(τ)〉 have been

computed every 7 ps, using only productive trajectories. A trajectory reached

the folded state and was considered productive if the RMSD to native of the last

frame was smaller than 4 Å. The average path obtained in this way was used

to define the path variables in Eq. (1.49). The value of λ was set empirically,

as discussed in section 1.3.2, to λ = 13.5;

4. for each unfolded configuration, we ran 20 SCPS simulations, keeping the same

temperature and simulation length of the guess rMD simulations. The SCPS

force constants were set to ks = 2.5 kJ/mol and kw = 10−4 kJ/mol;

5. we simulated two iterations, repeating steps 3. and 4., for four out of the five

initial conditions, while we simulated three iterations the for the fifth.

All the simulations have been performed using the Amber99fs-ILDN force field [142]

together with the implicit solvent model implemented in Gromacs 4.6.5 [41]. To

thermostat the system, we employed the Bussi algorithm [143]. Finally, we used

Plumed 2.0.2 [51] to implement the collective variables and the bias forces.

The convergence of the iterative algorithm has been assessed by means of the

following heuristic and protein-specific strategy. Let us consider the feature space

spanned by the RMSD to native of hairpin 1 and 2, which, based on the results of

the MD simulations reported in Ref. [9] (see Fig. 1.9), extends from 0 to 1.6 nm

for hairpin 1 and from 0 to 1 nm for hairpin 2. Let us call p(I) the two-dimensional

histogram obtained by binning the folding trajectories, simulated during the I-th

iteration, in the space of hairpin RMSDs: each p
(I)
ij corresponds to the number

of times the folding trajectories assumed the value x = idx and y = jdy, with

dx = 0.8Å , dy = 0.5Å and i, j = 1, . . . , 20. Conventionally, we refer to the rMD

simulations as iteration I = 0. To identify the regions populated by the trajectories

that fold in the I-th iteration, we consider a binary matrix defined as

M
(I)
ij =





1 if p(I)
ij > 0

0 otherwise
(1.58)

which is then normalized to unit norm. To compare different iterations, we compute

D
(
M (I),M (J)

)
=
∣∣∣
∣∣∣M (I) −M (J)

∣∣∣
∣∣∣ (1.59)

and we declare that convergence has been assessed at iteration I if

1− ε ≤
∣∣∣∣M (I) −M (I−1)

∣∣∣∣
∣∣∣∣M (I−1) −M (I−2)

∣∣∣∣ ≤ 1 (1.60)
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where ε = 0.1. Convergence of the results are reported in Fig. 1.10, where it can

be seen that simulations starting from initial conditions 1, 2, 3 and 5 do actually

converge, while the one starting from initial condition 4 doesn’t. This methodology

has of course some limitations. The most evident one is that the binary matrix in Eq.

(1.58) doesn’t distinguish among highly and poorly populated regions, but rather it

just globally focuses on the regions of feature space that are sampled by the folding

simulations. Another possible way to assess convergence would be, for example, to

project the average pathway on some relevant collective coordinates (in this case the

RMSD of the two hairpins, for example) and measure the L2-norm of the distance

between average pathways among the different iterations. Since SCPS simulations

do not simply push the protein forward along the average path but also constraint

the bundle of trajectories within a tube controlled by the variable wλ, we expect

from the convergence of the I-th average path to follow also the convergence of the

corresponding M (I) matrix.

1.5.2 Comparison with MD results

In Fig. 1.11 we report the plots of the RMSD to native of the two hairpins of FIP35

obtained by means of MD simulations (Fig. 1.11 (a)), rMD productive trajectories

(Fig. 1.11 (b)), the first SCPS iteration (Fig. 1.11 (c)) and converged SCPS pro-

ductive trajectories (Fig. 1.11 (d)). At the beginning of this section, we discussed

that the folding of FIP35 takes two possible routes. rMD simulations report however

a different scenario: pathways 1 and 2 are both sub-dominant and an alternative

dominant folding route emerges (pathway 3 ), where the two hairpins form cooper-

atively (see the dashed red box in Fig. 1.11 (a)). These discrepancies are artifacts

introduced by the sub-optimal reaction coordinate used to guide rMD simulations:

indeed, no sign of cooperativity is visible in unbiased MD simulations (see Fig.s 1.9

(b), (c) and 1.11 (a)). We expect SCPS to be able to start from this sub-optimal

set of trajectories and optimize the reaction coordinate in such a way that only the

correct folding pathways are selected.

Fig. 1.11 (c) shows the results of the first SCPS iteration. As it is clear from

the position of the red dashed box in the picture, already after a single iteration

pathway 3 has become sub-dominant. The converged SCPS simulations, reported

in Fig. 1.11 (d), show that pathway 1 is actually captured as the dominant one

(see the dashed purple box), and pathway 2 is still present but less traveled by the

folding simulations. Pathway 3, instead, has completely disappeared at convergence,

showing one more time the ability of SCPS to correct for systematic errors in the

guess rMD simulations.

Fig. 1.12 reports the folding landscape of FIP35 projected on the plane spanned
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Figure 1.11: (a) RMSD to native of the two hairpins of FIP35, obtained from 2 independent
100 µs long MD simulations [10]. The dashed purple box highlights the region where hairpin
2 is formed after the completion of hairpin 1; (b) RMSD to native of the two hairpins of
FIP35, obtained by running rMD simulations started from 5 independent initial conditions.
The dashed red box shows the presence of a folding pathway where the two hairpins fold
cooperatively; (c) RMSD to native of the two hairpins of FIP35, obtained from the first
SCPS iteration. The dashed red box, in the same position as in (b), highlights that the
cooperative folding pathway as become at least sub-dominant; (d) RMSD to native of the
two hairpins of FIP35, obtained from the converged SCPS simulations. The dashed purple
box, in the same position as in (a), displays that the folding pathway where hairpin 2 forms
after hairpin 1 has become the dominant one.
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Figure 1.12: Adapted from Ref. [28], with the permission of AIP Publishing. Plot of the
fraction of native contacts Q against the RMSD to native of FIP35 obtained from (a) MD
simulations and (b) converged SCPS simulations. The red boxes highlight the position of an
intermediate state along the folding pathway. On top of panels (a) and (b) we show some
configurations extracted from the intermediate states.
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Figure 1.13: Adapted from Ref. [28], with the permission of AIP Publishing. Probability
density of the σ variable. Reported protein configurations have been randomly extracted
among the ones populating of the highest peaks in the graph.
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by the RMSD to native of the whole protein and the fraction of native contacts Q. In

panel (a) we report the result obtained from unbiased MD simulations, while in panel

(b) we show the same graph obtained from converged SCPS simulations. In both

cases, the folding processes progresses by populating an intermediate state, which

corresponds to a configuration where only hairpin 1 is formed (see the red boxes in

Fig. 1.12 and the protein configurations therein). The existence of an intermediate

state was first noted in Ref. [141], where unbiased MD simulations of FIP35 [10]

were analyzed using an optimized reaction coordinate. The same metastable state is

visible when plotting the probability distribution P (σ), in Fig. 1.13. This result has

been obtained by histogramming the values of the collective coordinate σ computed

from the converged SCPS trajectories. The plot in Fig. 1.13 should not be interpreted

as an equilibrium probability density, but nonetheless the three main peaks of the

distribution represent three relevant configurations of the FIP35 folding pathway:

the unfolded state (around σ ∼ 0.5), the intermediate state (the small kink around

σ ∼ 0.72) and the native one (a broad peak centered around σ ∼ 0.8).

A further validation of the results of the SCPS algorithm is provided by the

analysis of the order of native contact formation. A way to quantify this concept

is given by path similarity [21, 144]. Abstractly, folding can be considered as a

sequence of steps where native contacts are formed. Therefore, the similarity between

two pathways can be deduced by looking at the temporal order in which all the

native contacts between alpha-carbons are formed during the two folding events.

Quantitatively, given the time of formation of the i-th contact in the k-th trajectory

tik, we build the following tensor:

Mijk = θ̃(tjk − tik) (1.61)

where θ̃ is the Heaviside theta-function in Eq. (2). For each pair of pathways k, k′,

the path similarity s(k, k′) is defined as

s(k, k′) =
1

NC(NC − 1)

∑

i 6=j
δMijk,Mijk′ (1.62)

where NC represents the total number of native contacts and δhl is the Kroneker

delta-function. s(k, k′) is identically 1 if all the native contacts in trajectories k

and k′ are formed exactly at the same time, while it vanishes for pathways with

completely different order of contact formation. In the following, it will be useful to

distinguish between self- and cross-similarity. We will refer to self-similarity when

k, k′ are pathways taken from the same protein variants or same simulation datasets

(e.g. comparing simulations coming from the same SCPS iteration). Differently,

cross-similarity will refer to the case where k and k′ are folding pathways representing

different protein mutations or pertain to different simulation datasets (e.g. comparing
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Figure 1.14: Path self-similarity distribution of MD folding trajectories (purple histogram)
compared to the path cross-similarity between MD and SCPS simulations (green histogram).

rMD with SCPS simulations). In general, this distinction is possible as long as the

number of alpha-carbons is conserved among the two variants, otherwise similarity

in Eq. (1.62) is ill-defined. Supposing we are comparing a set of M simulations with

another set of N simulations, the path (self- or cross-) similarity distribution can be

obtained as

p(s) =
1

NM

∑

k<k′

δs,s(k,k′) (1.63)

It can be proved numerically that the similarity distribution of pseudo-random series

of contact formations is sharply peaked around s ∼ 0.3.

We proceeded as follows: in order to quantify how much the folding pathway

is intrinsically heterogeneous, we computed the self-similarity of the MD folding

simulations of FIP35 (see the purple histogram in Fig. 1.14); secondary, we calculated

the cross-similarity between MD and SCPS trajectories (see the green histogram in

Fig. 1.14). The substantial overlap between the two histograms in Fig. 1.14 indicates

that the differences in the order of contact formation between SCPS and MD lie

within the statistical fluctuations intrinsic to the protein dynamics. The result of

this last analysis, together with all the previous results, confirms that SCPS and MD

simulations predict the same folding mechanism for FIP35.

1.6 Chapter Conclusions

This chapter was dedicated to the problem of sampling rare transitions, with a focus

on protein folding. Among all the possible techniques that were used to tackle this
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complex problem we concentrated on the Bias Functional method [23]. This strategy

is, to our knowledge, the only one that has been employed to study the folding of

proteins whose relaxation timescale exceeds hundreds of milliseconds (see chapters 3,

4 and Ref.s [24, 25]). However, the high efficiency of the method doesn’t come without

a cost. In particular, BF simulations break microscopic reversibility and thus cannot

be employed to recover thermodynamic quantities. Another drawback of this method

is that it employs an a-priori reaction coordinate that guides the protein towards its

native state: it is intended that a sub-optimal choice of the reaction coordinate

would inevitably lead to sub-optimal folding pathways. We showed that this last

problem can be solved by employing a new type of rMD, which uses the results

of the BF method as an initial guess and self-consistently optimizes the reaction

coordinate along which the folding simulation is biased. We obtained this result

using the path-integral description of Langevin dynamics and performing a mean-

field approximation on two additional auxiliary fields. The theoretical formulation

of the problem let us conclude that rMD, when performed along the so-called path

variables, represents a mean-field approximation of the exact Langevin dynamics.

To validate the algorithm, first of all we studied a simple 2-dimensional system.

Despite the simplicity of the example, the ability of SCPS to correct for the existence

of systematic errors in the initial guess emerged clearly from it. The new method

was also tested on the folding of a benchmark protein, the WW-domain of FIP35.

Analyses of the simulations confirmed that the pictures described by SCPS and

unbiased MD simulations are consistent and provide the same folding mechanism for

this protein.

The advantages of using SCPS instead of the BF method come at a relatively

moderate cost. Indeed, each SCPS trajectory is simulated using two biasing forces

that still strongly accelerate the dynamics, so that every simulation is just 2 to 3

times slower with respect to its rMD counterpart. This performance degradation

comes from the fact that many contact map distances have to be computed at each

step, differently from what happened in rMD simulations, where just a single matrix

norm was computed per step. Because the computation of the elements of a matrix

is distributed among many cores, a possible way to increase the efficiency of the

algorithm is by distributing the computation of matrix norms and relying on GPUs

for the calculation of matrix elements. This modification to the code has yet to

be implemented. Moreover, one should take into account that SCPS simulations

have to be ran until convergence is reached. Convergence is usually attained (at

least for small proteins such as FIP35) within 2-3 iterations. Altogether, SCPS

is approximately one order of magnitude slower with respect to rMD. One order

of magnitude increase in the computational time is a relatively small price to pay:
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indeed, rMD simulations usually require 2 to 3 hours on 2 cores for very small proteins

(e.g. < 30 amino acids) and not more than 24 hours on 16-32 cores for medium sized

proteins (e.g. > 350 amino acids), in implicit solvent. Therefore, SCPS proposes

as a good candidate to study large conformational transitions in an efficient way.

There is no theoretical constraint that limits the applications of SCPS to protein

folding, so every process of biological interest for which it is possible to compute

reasonable guess reaction pathway, e.g. allosteric transitions or inward to outward

conformational transitions of membrane proteins, can be systematically optimized

using this self-consistent approach.

Finally, we note that extensive and careful testing is still required. In particular,

it is imperative to put to proof SCPS in the presence of explicit solvent molecules.

A possible way to adequately study the behaviour of this algorithm on a wide class

of proteins would be to consider the dataset of folding simulations presented in Ref.

[11] and systematically replicate the reported results.
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Chapter 2

Transition Path Theory from

Self-Consistent Path Sampling

Chapter 1 was fully devoted to the problem of sampling rare transitions using the BF

method [23] or SCPS [28], its self-consistent counterpart. Computational simulations

of biological processes, however, are a complex puzzle and sampling is just one of its

pieces. In parallel with the refinement of numerical algorithms and computational

shortcuts for sampling, one needs to develop theoretical methods to reduce the vast

amount of data generated by simulations. Of particular interest are, e.g. a robust

characterization of the reaction mechanism of the system of interest and its corre-

sponding kinetic observables. Transition Path Theory (TPT) [30, 31, 139, 145] is a

theoretical framework that permits to achieve these kind of results. On the one hand,

it provides a rigorous identification of the reactive probability density mT (x) and the

reactive current JT (x) and it shows how it is possible to fully characterize a reactive

process by means of these two distributions. On the other hand, TPT introduces

the concept of (backward and forward) committor function q(x) as optimal reaction

coordinate and provides a simple representation of mT (x) and JT (x) as a function

of q(x) and the Boltzmann distribution e−βU(x). At last, TPT is also considered the

natural extension of Transition State Theory [146, 147, 148] to high-dimensional and

rugged energy landscapes.

The main difficulty in applying TPT to every system of interest is the computa-

tion of the committor function. In principle, q is easily estimated from an infinitely

long and ergodic trajectory connecting a reactant state R to a product state P , but

in practice this is rarely, if never, feasible. Among all the numerical schemes that

have been developed to estimate the committor (for some relevant results see Ref.s

[110, 137, 149, 150, 151]), one of the most famous and successful ones is the String

Method (SM). This method comes in two flavors: a zero-temperature one (ZTFM)

[152, 153, 154], which is the most elementary among the two and provides reliable
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results in the limit β → ∞; a finite-temperature one (FTSM) [18, 145, 155, 156],

theoretically more sophisticated but more effective in estimating q when β � ∞.

Both these methods revolve around the introduction of a guess curve (or string) that

connects R to P , and try and optimize this curve until it satisfies certain properties.

In particular, in the finite temperature case, each point of the string (called principal

curve) represents the average position of the system on iso-committor surfaces.

The string method and its derivates [157] are extremely valuable and allowed

researchers to perform actual TPT calculations on several interesting systems, like

for example the conformational activation of Src kinase [158, 159], a conformational

transition of the nitrogen regulatory protein C receiver domain [18, 157, 160], the

hydrophobic collapse of a coarse-grained chain [161], a conformational transition

of myosin VI [162], the ion-dependent conformational dynamics of a transporter

[163] and even to the study of critical nuclei in capillary condensation [164]. Like

many other path-optimization methods [17, 23, 130, 165, 166, 167, 168, 169, 170,

171], however, SM might suffer from the difficulty to converge to a string which

doesn’t depend on the specific choice of the initial guess. This problem might become

particularly severe for long and complex transitions such as protein folding.

On the other hand, in chapter 1 we argued that it is possible to use rMD (in both

its bare [23] and self-consistent [28] formulations) to efficiently compute trajectories

describing complex transitions. For these reasons, in this chapter we propose a

novel algorithm to compute TPT ingredients, q(x), mT (x) and JT (x), by exploiting

the the information embedded in SCPS results. First of all, we prove that SCPS

results can be employed to approximate the forward committor function. Because

the numerical performance of SCPS is comparable with the one of rMD, this method

can provide valuable insight in the study of protein folding. Once the committor

is known, we show how it is possible to capitalize on this knowledge to efficiently

sample the transition path ensemble. We propose two different algorithms to do so:

one bases on a state-to-state generalization of the point-to-point Langevin bridges

[172, 173], and the other based on a novel type of rMD, where the committor is used

as an optimal reaction coordinate. Both these algorithms show positive sides and

shortcomings that need to be carefully taken into account. Finally, the knowledge of

q(x) and mT (x) will be used to derive the transition tubes through the computation

of JT (x) streamlines. This is done by using an algorithm which is well known in

literature [139].

The chapter is structured as follows. In section 2.1 we review some of the basic

concepts and derivations of TPT. Section 2.2 is instead devoted to summarize the

main features behind the string method. In section 2.3 we introduce one of the main

concepts of the chapter: we define a suitable range of timescales, which we refer
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to as the Steady Current Regime, which permits us to approximate the results of

TPT using, instead of an infinitely long and ergodic trajectory, many short and non-

ergodic simulations that last in this time regime. This very technical step is needed

to bridge the gap between the numerical results coming from enhanced sampling

methods (short productive trajectories) and the theoretical requirements between

TPT (infinitely long equilibrium trajectory). Section 2.4 is devoted to the algorithmic

part of this chapter: we propose a method to approximate the committor function by

means of SCPS and we present two algorithms that use this information to sample

the transition path ensemble. In section 2.5 we show how it is possible to apply the

machinery developed in section 2.4 to a simple 2D system, where we obtain promising

results in a reasonably low computational time. Finally, in section 2.6 we will draw

some final conclusions and discuss the advantages, and also the possible difficulties,

to the application of this algorithm to biological systems.

2.1 Recap of Transition Path Theory

Let us suppose we have a generic state space Ω and that we observed an ergodic and

infinitely long trajectory x:

x = {x(t) : −∞ < t < +∞} (2.1)

We also provide the definition of two regions in Ω, called reactant state R and product

state P that satisfy:

P ⊂ Ω R ⊂ Ω P ∩R = ∅ (2.2)

The region ΩT = Ω/(R∪P ) represents the reactive part of the state space, also called

transition region. Trajectory x, being infinitely long and ergodic, will join R and P

an infinite amount of times. Given these ingredients, we want to characterize the

reaction mechanism between R and P . TPT is the theoretical framework designed

to do it, by addressing the following three questions:

1. what does it mean for a trajectory to be reactive?

2. what is the probability density associated to x(t), conditioned to x to be reac-

tive?

3. what is the probability current associated to reactive trajectories?

In this section we are going to see how TPT answers all these three questions,

provided our first assumptions on x. To do this, we will introduce the fundamental

concepts of reactive trajectory, committor function, reactive distribution and reactive

current, and we will closely follow the dissertation presented in [31].
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Figure 2.1: Sketch of an infinitely long trajectory x. The reactive portions of the trajectory
are colored as solid blue lines, while non-reactive parts are represented as dashed grey lines.
The figure also shows the positions of x(t+(t)) and x(t−(t)) associated to an arbitrary point
x(t).

2.1.1 Reactive trajectories

One starts by introducing two auxiliary quantities:

t+(t) = min
t′≥t
{t′ : x(t′) ∈ R ∪ P}

t−(t) = max
t′≤t
{t′ : x(t′) ∈ R ∪ P}

(2.3)

t+(t) provides the smallest time instant after t for which the trajectory was either

located in the reactant or in the product states. Similarly, t−(t) defines the biggest

time interval before t for which the trajectory was, again, in the reactant or in the

product states. The ensemble of reactive trajectories ET or transition path ensemble

is defined as the set of continuous segments of x for which the following properties

hold:

ET ≡
{
x(t) : x(t) ∈ ΩT , x(t−(t)) ∈ R and x(t+(t)) ∈ P

}
(2.4)

This means that a portion of trajectory x is reactive if: (i) it is continuous; (ii) all

its points live in the transition region, x(t) ∈ ΩT ; (iii) the last time it accessed the

transition region, it was by leaving the reactant state, x(t−(t)) ∈ R; the next time it

will leave the transition region, it will be by entering the product state, x(t+(t)) ∈ P .
A pictorial representation of the reactive portions of an infinitely long trajectory x

is given in Fig. 2.1.

Reactive trajectories defined as in Eq. (2.4) possess a clear directionality: only

continuous portions of x that go from R to P are reactive, while those regressing

from P to R are excluded from ET . If the system’s dynamics is microscopically
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reversible1, the ensemble

E∗T ≡
{
x(t∗) : x(t∗) ∈ ΩT , x(t−(t∗)) ∈ P and x(t+(t∗)) ∈ R

}
(2.5)

is also reactive if one considers t∗ = −t. Microscopic reversibility is not a required

assumption in TPT, which is general enough to study systems which evolve with

a non-time reversible dynamics. Nonetheless, in what follows we shall assume that

microscopic reversibility holds, as it sensibly simplifies the interpretation of some

results.

2.1.2 The Committor Function

One of the pivotal concepts of TPT is the committor function q, which is usually con-

sidered to be the optimal reaction coordinate [151, 174]. One distinguishes between

the forward committor function

q+(x) = probability that x(t) reaches P before R, given that x(0) = x (2.6)

and the backward committor function

q−(x) = probability that x(t) reaches R before P , given that x(0) = x (2.7)

Note that since we are assuming time-reversibility, one has

q+(x) = 1− q−(x) (2.8)

so we might as well drop the superscript + and refer to the committor function

as q(x). This notation, unless differently specified, will hold for the rest of this

manuscript.

A crucial property of the committor function is that it satisfies the backward-

Kolmogorov equation (reported and discussed in appendix A):

D(∇2 − β∇U(x) ·∇)q±(x) ≡ H†FPq±(x) = 0 (2.9)

provided that suitable boundary conditions are satisfied. In particular, one equips

q±(x) with absorbing boundary conditions at the boundaries of the reactant ∂R and

the product ∂P . This will make sure that trajectories crossing the boundaries will

be annihilated before entering the states. Conventionally, one provides the following

values of the committor at the boundaries:

q(x)|∂P = 1 q(x)|∂R = 0 (2.10)
1the probability P [x(t)] of observing a trajectory is the same of observing the time-reversed

trajectory P [x(−t)]
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The reason why Eq. (2.9) holds is briefly reviewed in appendix C.1. It should be

noted that when the dynamics is deterministic, both q+(x) and q−(x) are rather

uninformative functions, because, depending on the initial conditions, they are au-

tomatically assigned 0 or 1. For this reason, we shall assume one more time the

dynamics to be stochastic.

In the following sections we will see how to employ the committor function to

define the concepts of reactive distribution and reactive current.

2.1.3 Reactive Probability Density

The ergodicity assumption requires the trajectory x to be ergodic with respect to

some equilibrium probability distribution m(x). This means that the average value

of an observable O along trajectory x can be evaluated either as a time average or

as an ensemble average:

lim
T→∞

1

2T

∫ T

−T
dt O(x(t)) =

∫

Ω
dx m(x)O(x) (2.11)

At this point one can try and answer question 2.: what is the probability distribution

mT (x) associated to a point x = x(t) ∈ ΩT , conditioned to x being reactive? The

trivial guess would be that mT (x) is just provided by the equilibrium distribution

m(x) restricted to the reactive portion, but this is incorrect:

mT (x) 6= m(x)|ΩT∫
ΩT

dx m(x)
(2.12)

Indeed, m(x)|ΩT takes into account non-reactive contributions coming from points

sampled by trajectories that leaveR and re-enterR before reaching P and trajectories

that leave P and re-enter P before reaching R. To correctly identify it, one starts

by defining

hA[x(t)] =





1 if x(t) ∈ A ⊂ Ω

0 otherwise
(2.13)

the characteristic function of set A. One can see that a point x(t) belongs to a

reactive portion of trajectory x if and only if

hΩT [x(t)]hP [x(t+(t))]hR[x(t−(t))] ≡ hT [x(t)] = 1 (2.14)

Eq. (2.14) is equivalent to the definition of ET in Eq. (2.4). Given the ergodicity

assumption, it is possible to write the reactive distribution as the probability density

mT (x) for which

lim
T→∞

∫ T
−T dt O(x(t))hT (x(t))
∫ T
−T dt hT (x(t))

=

∫

ΩT

dx mT (x)O(x) (2.15)
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Similarly, probability density mR(x) for x = x(t) to be reactive at time t is simply

given by

lim
T→∞

1

2T

∫ T

−T
dt O(x(t))hT (x(t)) =

∫

ΩT

dx mR(x)O(x) (2.16)

Definitions in Eq.s (2.15) and (2.16) are rather implicit: one would like to have a

more simple and direct way to express those distributions. Let’s see how one can do

it.

mR(x) is, by definition, the product of the probability density for x to be in

x = x(t) at time t, thus m(x), and the probability PR(x) for that trajectory to be

reactive. The most suitable way to express PR(x) is by resorting to the committor

function. Evidently probability PR(x) can be written as

PR(x)) = q(x)(1− q(x)) (2.17)

Thus

mR(x) = m(x)q(x)(1− q(x)) (2.18)

The reactive distribution is just a normalization factor away from Eq. (2.18). Indeed,

one has that
∫

ΩT

dx q(x)(1− q(x))m(x) = lim
T→∞

1

2T

∫ T

−T
dt hT [x(t)] ≡ Z (2.19)

thus comparing Eq.s (2.15), (2.16) and (2.19) one finally obtains

mT (x) = Z−1m(x)q(x)(1− q(x)) (2.20)

which is the answer to question 2. and one of the main results of TPT [175]. In the

NVT ensemble, Eq. (2.20) becomes

mT (x) =
e−βU(x)

Z
q(x)(1− q(x)) Z =

∫

ΩT

dx e−βU(x)q(x)(1− q(x)) (2.21)

mT (x) provides the first important information about the reaction R → P , be-

cause it allows one to compute the fraction of time spent in a particular region of

the transition space. In particular, calling this region C, one can compute this time

by computing the average of O(x) = hC [x]:

tC =

∫

ΩT

dx hC [x]mT (x) =

∫

C
dx mT (x) (2.22)

In a protein folding setting, this would be useful, i.e. to determine how much time is

spent in a metastable state during the folding process, so while the conformational

transition is still happening and not in equilibrium conditions. Moreover, transition

states of the reaction are simply identified by peaks in mT (x): in this sense, TPT

provides the natural extension of transition state theory [176, 177, 178].
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2.1. Recap of Transition Path Theory

R P

⌦T
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Figure 2.2: Schematic representation of the setting introduced in Eq. (2.23)

2.1.4 Reactive Current

In Ref. [139], it is reported a series of toy models on which the authors apply the

concepts of transition path theory. Looking at those examples, one thing becomes

immediately clear: the reactive distributionmT (x) doesn’t encode all the information

about the reaction mechanism. In particular, for multi-channel reactions mT (x)

doesn’t provide any information about the most probable pathway that connects the

reactant to the product. This information is instead encoded in a 3N -dimensional

vector field called reactive current. Let us consider a surface S enclosing the reactant

state, with border ∂S. dS(x) is the oriented surface element in x, conventionally

directed outwards the surface border (see Fig. 2.2). Exploiting ergodicity, the current

can be implicitly defined as

lim
τ→0+

lim
T→∞

1

2T

∫ T

−T
dt hR[x(t−(t))]hP [x(t+(t))]·

·
(
hS [x(t)]hΩ/S [x(t+ τ)]− hΩ/S [x(t)]hS [x(t+ τ)]

)
=

∫

∂S
dS(x) · JT (x)

(2.23)

It can be proved [31, 136] that, if we assume time-reversibility the reactive current

can be expressed as

JT (x) = DZ−1m(x)∇q(x) (2.24)

Again, in the NVT ensemble m(x) is replaced with the Boltzmann distribution and

one finds

JT (x) = D
e−βU(x)

Z
∇q(x) (2.25)

A first important property that one can notice is that this current is divergence-less:

∇ · JT = D∇ ·
(
∇q(x)

e−βU(x)

Z

)
= D

(∇2q(x)−∇U(x)q(x)
) e−βU(x)

Z
= 0 (2.26)

where in the last equality one uses the fact that the committor function satisfies the

backward-Kolmogorov equation, Eq. (2.9). Using the divergence theorem, one also
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Figure 2.3: Schematic representation of the artificial surface dynamics in Eq. (2.30)

finds that ∫

S
∇ · JT (x)dS =

∫

∂S
dS(x) · JT (x) = 0 (2.27)

which means that is ∂S ⊂ ΩT is a closed surface, the reactive probability flux through

S is zero. If ∂SD, instead, is a dividing surface, i.e. a surface separating Ω in two

disjoint regions, one containing R and one containing P , then the flux is constant

and defines the reaction rate:

k =

∫

∂SD

dSD(x) · JT (x) (2.28)

This is necessary because, by construction, R is the only source and P is the only sink

of reactive trajectories, so every reactive trajectory leaving R eventually reaches P .

We stress the fact that the reactive current is non-vanishing at equilibrium differently

from the Fokker-Planck current (see appendix A).

Of particular interest about JT (x) are its streamlines, which can be used to

determine the so called transition tubes. These tubes are defined as the regions in

ΩT where reactive events occur more likely. A possible algorithm based on JT (x) to

compute them is schematized in Fig. 2.3 and it works as follows. Given an arbitrary

dividing surface ∂S, one can identify a portion ∂A ⊂ ∂S which amounts for a given

percentage p of the total flux:

p

∫

∂S
dS(x) · JT (x) =

∫

∂A
dA(x) · JT (x) p ≤ 1 (2.29)

Each point z ∈ ∂A is then evolved using the artificial dynamics

dz(τ)

dτ
= JT (z(τ)) (2.30)

where τ is an artificial time not to be confused with the physical one. Each point

is evolved forward in time, defining new surfaces ∂A(τ̃) at each time τ = τ̃ , until

it reaches P , and subsequently the same points on ∂A are propagated backwards
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(a) (b)

Figure 2.4: Schematic representation of a potential showing a kinetic trap T . (b) The
transition tube Tp doesn’t feel a net contribution from R → T transitions because (a)
reactive trajectories that reach T have to backtrack to progress towards P .

in time until they reach R. Therefore, forward integration is repeated until time

τF for which z(τF ) ∈ ∂P , while backward integration is carried out for τB, where

z(τB) ∈ ∂R. Note τF and τB are not necessarily similar and that their values may

vary from point to point. Given Eq. (2.28), the flux carried through each surface

∂A(τ̃) is constant. It means that the final tube

Tp =
⋃

τ

∂A(τ) (2.31)

connecting R to P will amount for the p percentage of the total probability flux.

Is t here a set of optimal surfaces which can be used to compute fluxes? Yes there

is, and with no surprises these surfaces are the iso-committo ones. Let us call ∂Sq a

surface for which q(x) = q = const., i.e. an iso-committor surface. On this surface,

∇q(x) = ∇q = 0 in every direction except for the one normal to the surface. For

this reason we have ∇q(x) ‖ dSq(x) ∀x, which translates into the following property:

k =

∫

∂Sq

dSq(x) · JT (x) = D

∫

∂Sq

dx |∇q(x)|e
−βU(x)

Z
≡ D

∫

∂Sq

dx j(x) (2.32)

The interesting thing about Eq. (2.32) is that

j(x) = |∇q(x)|e
−βU(x)

Z
(2.33)

is the probability density associated to the event of passing through ∂Sq for the first

time by hitting x [179].

It is important to stress that reactive trajectories and streamlines of the reactive

current should not be confused. Indeed, the first ones are stochastic while the second

ones result from an artificial and deterministic dynamics that averages out local irrel-

evant features. To given an example, potentials describing high-dimensional systems

can show kinetic traps, i.e. local metastable basins where the reactive trajectories

spend a lot of time going back-and-forth, because the reaction cannot progress by
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passing through them (see Fig. 2.4 (a) for a schematic representation). These pro-

cesses however, do not contribute to the current and its flows (see Fig. 2.4 (b)), but

rather they contribute to the definition of the reactive distribution.

2.2 The String Method

In section 2.1 we presented the committor fuction and discussed its importance in

TPT, being the main ingredient needed to provide a robust statistical description

of reactive pathways. In this section we will instead discuss how it is possible to

compute it and the other related quantities (the reactive distribution and current)

for a system of interest. TPT is based on the assumption that the transition path

ensemble is obtained by suitably cutting segments of an infinitely long trajectory

connecting a state R to a state P . This is impractical to say the least, and one should

find smarter ways to compute TPT ingredients for a given system. An attractive

possibility would be to directly solve Eq. (2.9) to obtain the committor function, but

the high dimensionality of biological systems makes this equation intractable with

e.g. finite element methods.

In this section we will discuss some approximations that can be made to compute

the committor function, which altogether go under the name of String Method (SM)

[18, 145, 152, 153, 154, 155, 156]. The main point is to assume that there exists a

suitable curve that carries most of the reactive probability flux, and instead of solving

Eq. (2.9) one can compute the committor on the curve and use this information to

approximate it in the vicinity of this curve. As we will see, this is much easier than

solving a high-dimensional non-linear differential equation or simulating an infinite

stochastic trajectory.

2.2.1 Minimum Energy Paths and the Zero-Temperature String
Method

Let us suppose we have a curve γ that is obtained by connecting the centers of

the intersections between transition tubes and iso-committor surfaces. Let us also

assume that this curve carries most of the reactive probability flux, i.e. there is a

dominant reaction channel. We parametrize γ by means of a function φ : [0, 1]→ Ω

and a curvilinear coordinate s ∈ [0, 1]:

γ = {φ(s) : s ∈ [0, 1]} (2.34)

We also define an auxiliary function, sγ : Ω → [0, 1] such that sγ(x) identifies the

point on γ which is closer to x ∈ ΩT :

|x− φ(sγ(x))| = min
s∈[0,1]

|x− φ(s)| (2.35)
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We want to approximate the committor function under the assumption that sγ(x)

is a parametrization of the committor q(x) through an unspecified function f :

q(x) = f(sγ(x)) f : [0, 1]→ [0, 1] (2.36)

Function f tells us the exact value of the committor on the curve and approximates

q(x) for x 6∈ γ by computing the value of the committor on the point φ(s) closer to

x. This assumption is valid only in the vicinity of the curve γ, where it guarantees

that iso-sγ are, up to relabeling, iso-q surfaces.

The fact that γ carries most of the reactive probability flux is equivalent to

ask for the points on the curve to maximize j(x), defined in Eq. (2.33), on every

iso-committor function ∂Sq. By using Eq. (2.36) we can re-write Eq. (2.33) as

j(x) =
e−βU(x)

Z
f ′(sγ(x))|∇sγ(x)| (2.37)

and we should ask for j(x) to be maximum for x = φ(s). It is also true that, along

the curve, the gradients of j(x) and sγ(x) are parallel [136]:

∇
(
e−βU(φ(s))|∇sγ(φ(s))|

)
‖∇sγ(φ(s)) (2.38)

Manipulating these equations one finds well-known equation defining a minimum

energy path (MEP)

(∇U)⊥ [φ∗] = 0 (2.39)

where one introduces the operator ⊥ such that

f⊥[φ] = f− (f · n̂γ‖)n̂
γ
‖ (2.40)

with n̂γ‖ the unit vector tangent to γ. Eq. (2.39) tells us that the curve φ∗(s) that

carries the maximum flux is everywhere tangent to the gradient of the potential, i.e.

it is a minimum energy path. One can also prove that function f is given by [136]

f(s) =

∫ s
0 ds

′ eβF (s′)

∫ 1
0 ds

′ eβF (s′)
(2.41)

where F (s) is the free energy along s, which is not known a priori and should be

suitably sampled.

A possible strategy to compute the MEP connecting a given reactant state R to

a product state P is given by the so-called zero-temperature string method [152, 153,

154]. The general idea of the string method is to evolve a guess string (the curve

γ) in such a way that its parametrization is always satisfied and that it eventually

converges to the MEP. The evolution of a string towards the MEP can be compactly

described as

vn = −(∇U)⊥ (2.42)
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where vn is the normal velocity of the curve. Using a suitable parametrization of

the curve, provided by

γ(t) = {φ(t, α) : α ∈ [0, 1]} (2.43)

one can rewrite Eq. (2.42) as

φ̇ = −(∇U)⊥[φ] + λ
φ′

|φ′| (2.44)

where the dot denotes a time derivative, the air quote denotes the derivative with

respect to the arc-length α and λ is a Lagrange multiplier that constraints the curve

length to be constant. Eq. (2.44) can be solved through a two-step procedure: (i) the

curve is evolved by following the potential, φ̇ = −(∇U)⊥[φ]; (ii) the parametrization

is enforced on the evolved curve.

Once the MEP is given, one needs to sample the free-energy in its vicinity to get

the function f(s) in Eq. (2.41), using e.g. Blue Moon sampling [180, 181]. At that

point, the job is done: iso-q surfaces are approximated as iso-s ones and transition

tubes and the reactive distribution are recovered based on this assumption [136].

Besides it simplicity and simple interpretation, MEPs have many disadvantages

[18, 136]. The main issue is that, by definition, the MEP depends on local features

of the potential at a resolution higher than kBT , since the fine details are leveled out

by the dynamics.

A possible way to go beyond the concept of MEP, without losing its conceptual

simplicity, is by replacing the state space Ω with a space spanned by suitable collec-

tive coordinates {θ}. This would average out unimportant features and also account

for some non-local effects. In such a way, one would obtain the so called minimum

free energy path (MFEP) [182] in a similar way to the MEP:

(∇F ({θ}))⊥ [φ∗] = 0 (2.45)

The MFEP φ∗ is everywhere parallel to the gradient of the free-energy landscape.

Again, this is in general not enough, because MFEP is still a local object and might

ignore important features perpendicular to itself. Given these observations, it was

proposed to abandon MEPs and MFEPs and resort to the concept of principal curve

[145, 155, 156], to which we dedicate the next section.

2.2.2 Principal Curves and the Finite Temperature String Method

Let us consider a curve γ in Ω and the set of planes intersecting each point of the

curve so that they are locally normal to the curve (see Fig. 2.5). If the position of

the intersection coincides with the average position of the system along these planes,

the curve is called a principal curve [18, 136, 183]. To put it in a more quantitative
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Figure 2.5: Schematic representation of a principal curve connecting R to P , as defined in
Eq.s (2.46) and (2.47).

fashion, let us go back to Eq. (2.35) where we defined function sγ(x): γ is a principal

curve with respect to the canonical density Z−1e−βU(x) if

φ(s) = 〈x〉sγ(x)=s ∀s ∈ [0, 1] (2.46)

where the average is a canonical average

〈x〉sγ(x)=s =

∫
Ω dx xe−βU(x)δ (sγ(x)− s)∫
Ω dx e

−βU(x)δ (sγ(x)− s) (2.47)

A principal curve does not depend on some local features of the potential or the free

energy along some suitable reaction coordinates, therefore it is a more global concept

than MEP and MFEP. Indeed, the principal curve is defined by an average over the

hypersurfaces defined by sγ(x) = s. Interestingly, the principal curve collapses to the

MEP for β →∞ (that’s why the method to compute MEP is called zero-temperature

string method). Indeed, the expectation value in Eq. (2.47), for β →∞, is dominated

by the point where U(x) is minimum:

lim
β→∞

〈x〉sγ(x)=s = x∗ (2.48)

where

U(x∗) = min
x,sγ(x)=s

U(x) (2.49)

Evidently, Eq. (2.49) is equivalent to ask for

(∇U(x∗))⊥ = 0 (2.50)

which means that for β →∞ the principal curve is equivalent to a MEP.

Conversely, for β <∞ a principal curve can be arbitrarily different from a MEP

and for rugged potentials a MEP might even lose any meaning (see the example on

the rough Müller potential in Ref. [18]). Therefore one needs an evolution of the zero-

temperature string method that allows one to compute the principal curve connecting
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R to P . Given a guess string, this is discretized in N + 1 images, {φα}α=0,...,N . To

each image one associates its corresponding Voronoi cell, defined as the sets Bα ⊂ Ω

containing all the points that are closer to a given φα with respect to any other φβ :

Bα = {x : |x− φα| < |x− φβ| ∀α 6= β} (2.51)

Voronoi cells permit to easily approximate the expectation value in Eq. (2.47) for

s = α/N as [18]:

〈x〉sγ(x)∼ α
N

=

∫
Bα
dx xe−βU(x)

∫
Bα
dx e−βU(x)

(2.52)

In Eq. (2.52), Voroni cells play the role of thickened iso-s hyperplanes, and indeed

the two concepts are related for N →∞ [18]. Eq. (2.52) suggests a simple algorithm

to compute principal curves, which goes under the name of finite-temperature string

method : (i) sample the Voronoi cells by running stochastic trajectories and imposing

reflecting boundary conditions on Bα borders; (ii) update images {φα} positions

and their corresponding cells Bα according to the estimate of 〈x〉sγ(x)∼ α
N

obtained

by sampling; (iii) enforce string parametrization. Since centroids of the Voronoi cells

are optimized on the go, (i)-(iii) have to be iterated until some convergence criterion

is met. At the last iteration, the algorithm returns a set of images {φlast
α } that, once

interpolated, define the principal curve.

One of the big advantages of this method is that the free energy needed to

compute f(s) in Eq. (2.41) is obtained as a byproduct of step (i). Indeed, one can

prove [18] that F (α/N) is related to the probability of finding the system in cell Bα.

2.3 TPT from Non-Ergodic Trajectories

In section 2.1 we briefly reviewed the main concepts of TPT by following the construc-

tive route marked by Ref. [136]. The statistical mechanics framework introduced

by TPT strongly depends on the concept of committor function and thus all the so-

phisticated theoretical machinery becomes inapplicable if there is not practical way

to estimate it. For this reason, in section 2.2 we summarized the main ideas behind

the string method and discussed how it is possible to use it to practically apply TPT

to a given system. We saw that SM avoids the problem of computing an infinitely

long trajectory by converting it into a path-optimization task that doesn’t require to

actually sample the transition path ensemble. An important question still remains

open: is TPT applicable to enhanced path-sampling techniques? In particular, the

strength of such methods is to avoid simulating thermal oscillations in the reactant

and product states by promoting the generation of short, non-ergodic productive

trajectories. If ergodicity is not satisfied, the equivalences in Eq.s (2.11) and (2.23)
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are not valid and thus TPT becomes inapplicable. This problem was faced in Ref.

[104] and was solved by introducing a suitable partition of the configuration space

and building a Markov state model connecting the different regions.

In this section we want to do introduce a different approach that can in principle

be applied to every enhanced sampling technique, without the need to partition the

configuration space. We are going to show that, under specific assumptions, short

and non-ergodic trajectories can be used to recover TPT results, thus allowing one

to use enhanced path-sampling results to approximate q(x), mT (x) and JT (x). This

fact will be our stepping stone for the development of an efficient algorithm, based

on SCPS, to compute the committor function, the reactive probability density and

the reactive current for a given system.

2.3.1 Steady Current Regime

We start from the FP equation, presented in appendix A. In the case of activated

transitions, the spectrum K of the FP operator shows a gap, in the sense that there

exist two contiguous eigenvalues kF , kS ∈ K such that

kS � kF (2.53)

In the following, we will call modes (or frequencies or eigenfrequencies) below the gap

all the eigenvalues ki for which ki ≤ kS . Conversely, modes above the gap will be

those eigenvalues kj for which kj ≥ kF . o(kS) and o(kF ) will provide, respectively,

the typical scale for eigenfrequencies below and above the gap.

Let us prepare our system of interest in the reactant state R at time t = 0, and

let us evolve it by integrating the FP equation. After a time t ∼ k−1
F the system

will relax into the local reactant well and it will distribute with the corresponding

equilibrium distribution restricted to R:

P (x, t ∼ t−1
F ) ≡ ρ0(x) =

e−βU(x)

ZR
hR[x] ZR =

∫

Ω
dx e−βU(x)hR[x] (2.54)

Letting the system evolve for t & k−1
F , the probability current

J(x) = −D(∇ + β∇U(x))P (x, t) (2.55)

will start to flow from R to P . This current will exist until equilibrium is reached,

that is for t & k−1
S , where

P (x, t) = P (x) =
e−βU(x)

Z
(2.56)

and

J(x) = −D(∇ + β∇U(x))
e−βU(x)

Z
= 0 (2.57)
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Timescale t & k−1
S and the limit T → ∞ used in TPT represent the same kinetic

regime, which we previously referred to as ergodic. Now, we want to avoid the

necessity to reach the ergodic limit, and focus instead on the single-barrier crossing

timescales typical of enhanced sampling methods. This is made possible by the fact

that we assumed to have timescale decoupling, which allows us to access a timescale

τ which is simultaneously long enough to ensure local relaxation and short enough

to avoid that equilibration has been attained:

k−1
F � τ � k−1

S (2.58)

For t ∼ τ , the system had time to cross the barrier at most a single time and the

dynamics of the current is frozen in time. To see this, let us expand the current on

the basis of the right eigenstates of the FP equation (see appendix A, Eq. (??))

J(x, t) =
∞∑

n=0

cne
−knt [−D(∇ + β∇U(x))Rn(x)]

≡
∞∑

n=1

cne
−kntJn(x)

(2.59)

where the term n = 0 is evidently equal to zero because of Eq. (2.57). Let us consider

the first dominant terms of the expansion:

J(x, t) = c1e
−k1tJ1(x) + c2e

−k2tJ2(x) + o
(
e−k3t

)
(2.60)

If t ∼ τ is in the SCR, we have

τ � k−1
2 ∼ o(k−1

F )⇒ e−kiτ ∼ 0 ∀i ≥ 2

τ � k−1
1 ∼ o(k−1

S )⇒ e−k1τ ∼ 1
(2.61)

Putting together Eq.s (2.61) and (2.60) we find

J(x, τ) = J(x) ∼ c1J1(x) (2.62)

Eq. (2.62) means that the probability current is steady in time if τ is chosen like in

Eq. (2.58). For this reason, we will refer to the time interval in Eq. (2.58) as the

Steady Current Regime (SCR). In the following sections we are going to use the SCR

to prove that it is possible to approximate the TPT results by employing short, non-

ergodic trajectories, e.g. productive trajectories generated from enhanced sampling

techniques.

2.3.2 Committor Function in the Steady Current Regime

Throughout this chapter we are going to implement the following notation. Let

A ⊂ Ω represent a given state and let ∂A be its surface. We will use the superscript
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(A) to label a generic function f(x) on which we are imposing absorbing boundary

conditions in ∂A:

f (A)(x)
∣∣∣
x∈∂A

= 0 (2.63)

In this subsection we want to show how it is possible to approximate the com-

mittor function on the SCR. Let us start by introducing two Green functions of the

FP equation:
(
∂

∂t
−HFP

)
P (A)(x, t|xi, ti) = δ(x− xi)δ(t− ti) A = R,P (2.64)

The two functions obey the same equation but differ in the choice of the bound-

ary conditions. We can use the two Green functions in Eq. (2.64) to build two

distributions

Q(R)(x, t) =

∫

Ω
dxf hP [xf ]P (R)(xf , tf |x, tf − t)

Q(P )(x, t) =

∫

Ω
dxf hR[xf ]P (P )(xf , tf |x, tf − t)

(2.65)

where we introduced an intermediate time t ∈ [0, tf ] and both t and tf are chosen

in the SCR. It should be noted that the characteristic functions in each integral are

chosen in such a way that Q(A) functions satisfy the imposed boundary conditions

for each xf . The two distributions in Eq. (2.65) are time-independent in the SCR

and they are strictly related to the forward and backward committor functions. To

see why, let us focus on Q(R)(x, t) (the same arguments hold for Q(P )(x, t) as well)

and expand it as an infinite series. One should note that P (R)(xf , tf |x, tf − t) is

solution of the backward-Kolmogorov equation (see appendix A), thus it should be

expanded on the basis of the left-eigenstates of the FP operator [184]:

P (R)(xf , tf |x, tf − t) = eβU(xf )
∞∑

n=0

L(R)
n (x)L(R)

n (xf )e−kn(tf−tf+t)

=
∞∑

n=0

L(R)
n (x)R(R)

n (xf )e−knt
(2.66)

Plugging Eq. (2.66) into Eq. (2.65) we have

Q(R)(x, t) =

∫

Ω
dxf hP [xf ]

∞∑

n=0

L(R)
n (x)R(R)

n (xf )e−knt

=
∞∑

n=0

r(R)
n e−kntL(R)

n (x)

(2.67)

where r(R)
n =

∫
xf hP [xf ]R

(R)
n (xf ). Let us focus on the zeroth component of Eq.

(2.67). Absorbing boundary conditions at ∂R make the first eigenfrequency k0 ∼ kS ,
because every time a trajectory hits the reactant, it gets annihilated by its boundary.
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The corresponding right eigenstate R(R)
0 (x) corresponds to the equilibrium distribu-

tion, but restricted to the product basin because of the boundary conditions:

R
(R)
0 (x) ∼ e−βU(x)

ZP
hP [x] ZP =

∫

Ω
dx e−βU(x)hP [x] (2.68)

The expansion coefficient is thus provided by

r
(R)
0 = Z−1

P

∫
xf h2

P [xf ]e−βU(x) = Z−1
P ZP = 1 (2.69)

where we used the fact that hnA[x] = hA[x] ∀n > 0. For what concerns instead the

lowest left-eigenstate, we notice that the the orthonormality condition
∫
dx R(R)

0 (x)L
(R)
0 (x) = 1 (2.70)

must hold, so L(R)
0 (x) is uniformly equal to one within P and it decreases in the

transition region to eventually vanish at the boundary of R. Finally, if we choose t

in the SCR, we plug Eq. (2.69) into Eq. (2.67) and we recall the limits in Eq. (2.61)

we find that

Q(R)(x, t) ∼ L(R)
0 (x) (2.71)

Similar arguments lead us also to

Q(P )(x, t) ∼ L(P )
0 (x) (2.72)

As a last step of our derivation, we introduce the time-integrals of Q(R) and Q(P ):

q+
SCR(x) =

1

tf − t0

∫ tf

t0

dt Q(R)(x, t)

q−SCR(x) =
1

tf − t0

∫ tf

t0

dt Q(P )(x, t)
(2.73)

where t0 and tf are introduced in such a way that the integration range is limited to

timescales in the SCR, which means that t0 and tf are any times that satisfy

(t0kF )−1 � 1 tfkS � 1 (2.74)

Eq.s (2.71), (2.72), (2.73) and (2.74) let us finally conclude that

q
+/−
SCR(x) ∼ L(R)/(P )

0 (x) (2.75)

which also means that

H†FPq
+/−
SCR(x) ∼ 0 (2.76)

Eq. (2.75) provides the approximation of the committor function in the SCR, thus

it will be our basic ingredient to build the reactive distribution and current in this

same time regime. Indeed, q+/−
SCR(x) is solution of the backward-Kolmogorov equation
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and it also satisfies the same boundary conditions of the usual committor function.

Our approximation is rigorous in the sense that it is controlled by two well-defined

expansion parameters kF and kS . Because of the properties of L(R)/(P )
0 we also find

that

q−SCR(x) = 1− q+
SCR(x) (2.77)

Therefore, we will drop the + superscript and always use the more concise notation

qSCR(x) ≡ q+
SCR(x), unless differently specified.

The statement about the boundary conditions could use some further comments.

There are some evident differences in the way in which boundary conditions are

enforced here with respect to how the committor function is usually defined. When

we were discussing the general definition of the committor function in section 2.1.2,

we imposed absorbing boundary conditions on both the product and the reactant

state, while here q+
SCR is defined by just requiring absorbing boundary conditions on

∂R (the opposite holds for q−SCR.) This choice is potentially dangerous, because in

Q(P )(x), for example, trajectories that enter ∂R and leave it again might provide a

sensible contribution. Fortunately this is not the case, and the proof of this technical

point is left to appendix C.3. We can finally conclude that, up to contributions in

the SCR expansion parameters kF and kS ,

qSCR(x)|x∈∂R ∼ 0 qSCR(x)|x∈∂P ∼ 1 (2.78)

2.3.3 Reactive Probability Density and Current

Let us now discuss how it is possible to retrieve the reactive probability density

defined in Eq. (2.21) in the SCR. Reactive pathways in the SCR perform single

barrier-crossings and sample a density distribution given by

mSCR(x) ≡ 1

tf − t0

∫ tf

t0

dt

∫

Ω
dxi

∫

Ω
dxf hP [xf ]P (R)(xf , tf |x, t)·

· P (P )(x, t|xi, 0)ρ0(xi)hR[xi]
(2.79)

where ρ0(xi) was introduced in Eq. (2.54). Because both P (R) and P (P ) are included

in the integral in Eq. (2.79), we are sure that the only trajectories that contribute in

mSCR(x) are the reactive ones, i.e. trajectories that do not backtrack to the product

state up to corrections of the order of the SCR expansion parameters. We want to

show that Eq. (2.79) can be expressed as

mSCR(x) ∝ e−βU(x)qSCR(x)(1− qSCR(x)) (2.80)

which is the SCR equivalent of Eq. (2.21). To see this, first of all we introduce the

distribution

P (P )(x, t) =

∫

Ω
dxi P (P )(x, t|xi, 0)ρ0(xi)hR[xi] (2.81)
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The detailed balance condition ensures that

P (P )(x, t|xi, 0) = eβU(xi)P (P )(xi, t|x, 0)e−βU(x) (2.82)

Plugging the right-hand side of Eq. (2.82) into Eq. (2.81) we find

P (P )(x, t) = e−βU(x)

∫

Ω
dxi P (P )(x, t|xi, 0)eβU(xi)ρ0(xi)hR[xi]

= e−βU(x)

∫

Ω
dxi P (P )(x, t|xi, 0)eβU(xi) e

−βU(xi)

ZR
h2
R[xi]

=
e−βU(x)

ZR
Q(P )(x, t)

(2.83)

where in the last step we used the definition in Eq. (2.65). Using the result of Eq.

(2.83) in Eq. (2.79) we obtain

mSCR(x) =
1

tf − t0

∫ tf

t0

dt

∫

Ω
dxf hP [xf ]P (R)(xf , tf |x, t)

e−βU(x)

ZR
Q(P )(x, t)

=
e−βU(x)

ZR

[
1

tf − t0

∫ tf

t0

dt Q(R)(x, tf − t)Q(P )(x, t)
] (2.84)

Recalling that Q(R)/(P )(x, τ) ∼ Q(R)/(P )(x) if τ is chosen in the SCR and using the

definition of qSCR(x) in Eq. (2.73), we finally obtain the result in Eq. (2.80), up to

an irrelevant normalization factor.

Similarly to what we did in Eq. (2.79), the reactive current in the SCR can be

readily defined as

JSCR(x) = − D

tf − t0

∫ tf

t0

dt Q(R)(x, tf − t)
(−→∇ −←−∇ + β∇U(x)

)
P (P )(x, t) (2.85)

where the arrows on
−→∇ and

←−∇ indicate, respectively, that the gradient acts on

right and on the left. −←−∇ term is included to account for re-crossing contributions.

Resorting to the same arguments that led us from Eq. (2.79) to Eq. (2.80), we

obtain

JSCR(x) ∝ De−βU(x)∇qSCR(x) (2.86)

which is the realization of the reactive current in the SCR and it is the equivalent

of the TPT result in Eq. (2.25). Again, the normalization factor is practically

irrelevant. The detailed calculation to obtain Eq. (2.86) can be found in appendix

C.2.

2.4 Exploiting qSCR to Sample the Transition Region

Since the results obtained in the SCR correctly approximate the ones of TPT, the

committor function continues to play a pivotal role in our theory. It is fundamental
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at this point to find a computationally efficient way to estimate it, even for complex

and ultra-long conformational transitions like protein folding. In this section, we are

going to show that SCPS is the key to do it. This ie because two main reasons:

The SCR analog of the committor function can be recovered from the knowledge of

sλ(x) and the average path provides a mean-field approximation of a principal curve.

In this sense, SCPS might be considered as an algorithm to approximate principal

curves.

The residual problem of SCPS is that the pathways generated from it do sample

exactly the transition region. Indeed, the best we can get from SCPS is a mean-field

approximation of the transition path ensemble, where the single trajectories are not

endowed with any kinetic meaning. In order to correct for this inaccuracy, in this

section we will present two possible algorithms to sample the transition region that

exploit the knowledge of qSCR coming from SCPS calculations.

The first algorithm takes advantage of the fact that it is possible to exactly

introduce a position-dependent biasing force in the Langevin equation by account-

ing for absorbing boundary conditions. This effective Langevin equation defines a

stochastic process whose stationary distribution is the reactive probability density

mT (x). The formalism is based on a generalization of the concept of Langevin bridges

[172, 173], in a way that will become clearer in the following. The generation of re-

active pathways in high-dimensional and rough energy landscapes might be however

complicated, even with the help of the position dependent bias force. This is because

reactive pathways can sensibly detour from the dominant reaction channels by, e.g.

populating kinetic traps [19, 98].

To solve this problem, we propose a new algorithm that samples instead the

Boltzmann distribution restricted to ΩT by generating trajectories that travel only

forward in qSCR, thus avoiding the problem of detours. The main drawback of this

approach is that such a dynamics is obtained by resorting to a history-dependent

bias force, which breaks microscopic reversibility. In this sense, these new trajectories

cannot be directly interpreted as physical reactive events.

The schemes we are introducing in this section provide a continuum generalization

of the algorithms introduces in Ref.s [19, 98] in the framework of Markov jump

processes.

2.4.1 Relationship Between the Average Path and Principal Curves

The average path defined by SCPS can be visualized as a mean-field approximation

of a principal curve. To see why this is true, let us consider a generic parametrization
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of the average path as a function of an arc-length α:

γ = {φ(α) : α ∈ [0, 1]} φ : [0, 1]→ Ω (2.87)

Let us also define a function s̃γ as

s̃γ(x) = 1− sλ(x) (2.88)

The natural way to parametrize the average path is with respect of time, because

all the trajectories contributing to γ have the same length. We can define α = τ/t

where t is the total length of SCPS simulations. In this way, Eq. (2.88) can be

rewritten as

s̃γ(x) =

∫ 1
0 dα αe

−λ||C(x)−φ(α)||2

∫ 1
0 dα e

−λ||C(x)−φ(α)||2
(2.89)

We recall that Eq. (2.89) is the result of a mean-field approximation (see section

1.3). Before the approximation we had

s̃γ = 1− sλ =
τ

t
= α (2.90)

This means that s̃γ(x) is the mean-field approximation of a function that associates

to each configuration x the value of α corresponding to the point on γ closest to x:

s̃γ : Ω→ [0, 1] (2.91)

This is exactly the definition of function sγ(x), reported in Eq. (1.33). Now, the

SCPS average path is defined as

φ(α) = 〈C(x)〉α ∼ 〈C(x)〉s̃γ(x)=α (2.92)

Eq. (2.92) is the result we were looking for: apart from a mean-field approximation

and provided that α = τ/t parametrization is chosen to represent the curve, the

SCPS average-path is an approximation of a principal curve.

2.4.2 Computing qSCR using SCPS

We discussed in section 2.2.1 that the string method approximates the committor

function under the assumption that sγ(x), in Eq. (2.35), is a re-parametrization of

q(x) through an unknown function f(s). In this section we are going to do the same,

but substituting sγ(x) with s̃γ(x) computed from SCPS. This choice is particularly

convenient because it can be proved that iso-qSCR and iso-s̃ hyperplanes coincide,

up to relabeling, in the vicinity of the average path. This proof is technical and

it is left to appendix C.4. In the following, we will assume that the interpretation

of iso-s hyperplanes as iso-qSCR ones holds throughout the whole transition region:
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Figure 2.6: Schematic representation of the ingredients in Eq. (2.93).

Thus the problem becomes how to recover the values of q(x) given s̃γ(x), i.e. rela-

bel iso-s hyperplanes. To tackle this problem, we recall that qSCR(x) is a solution

of the backward-Kolmogorov equation, provided that suitable absorbing boundary

conditions are imposed. Since ∇s̃γ(x) ‖ ∇qSCR(x) ∀x ∈ ΩT , if x is a point on the

average path the only direction in which the two gradients are non-zero is the one

along the average path itself. For this reason, if we compute the committor on the

N points defining the mean path, {〈x(i)〉}, its discrete values {qi = q(〈x(i)〉)} will
obey a discretized version of the backward-Kolmogorov equation:

1

di+1,i

(
qi+1 − qi
di+1,i

+
qi−1 − qi
di,i−1

)
+

β

di+1,i
(qi+1 − qi)n̂i · 〈−∇Ui〉 ∼ 0 (2.93)

where n̂i is the vector tangent to the average path in qi, 〈−∇Ui〉 is the average force
acting on the i-th frame of the path and di+1,i is the Euclidean distance between

〈x(i + 1)〉 and 〈x(i)〉 (see Fig. 2.6). The discrete set of points {s̃ = s̃γ(〈x(i)〉)}
obtained by computing s̃γ(x) on the points of the average path does not satisfy Eq.

(2.93), because s̃γ(x) 6= qSCR(x). However, {s̃i} can be optimized in such a way to

satisfy the discrete backward-Kolmogorov equation just by looking for the minimum

of the functional

I [{ai}] =

N∑

i=0

[
1

di+1,i

(
ai+1 − ai
ai+1,i

+
ai−1 − ai
di,i−1

)
+

β

di+1,i
(ai+1 − ai)n̂i · 〈−∇Ui〉

]2

(2.94)

The functional in Eq. (2.94) can be initialized with {s̃i} and it attains its minimum

for {ai} = {qi}. The optimization δI = 0 returns a value of q for each iso-s̃ surface,

thus defining a map q(s̃γ) which relabels iso-s̃ hyperplanes.

To summarize, the strategy we propose to compute the committor function is the

following:

1. simulate the reactive process of interest using SCPS algorithm (see section

1.3.2), starting from many different configurations;

2. compute s̃γ(x) function for the points in the average path;
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3. optimize the values of s̃ on the average path by minimizing the functional in

Eq. (2.94);

4. assign to every iso-s̃ hyperplane the corresponding value of q(s̃) obtained from

the minimization;

5. since the committor function is continuous, values of q for points not included

in the average path can be obtained by interpolation.

We stress that this procedure is more general than the computation of the committor

function just in the vicinity of the principal curve. Indeed, s̃γ(x) is computed over

all the region of configuration space that is sampled by SCPS. The fact that, for

a point on the average path, the gradient of the committor function vanishes in

every direction except the one of the average path itself is used just to relabel iso-s̃

hypersurfaces. Of course we expect our estimation of the committor function to be

less precise in the regions that are rarely sampled by SCPS.

As a final remark, it should be noted that s̃γ(x) is defined starting from a single

initial condition. For high-dimensional systems, when entropy plays an important

role, the description of the reaction mechanism coming from many independent sim-

ulations started from the same initial condition might not be sufficient. In this case,

the optimization procedure should be repeated for every set of {s̃i} computed over all

the average pathways resulting from the simulations. In general, average pathways

will sensibly differ from one simulation to another. Hypersurfaces corresponding to

the same value of the committor function can be finally interpolated to better define

iso-q surfaces spanning over the whole accessible configuration space. The required

non-linear interpolation is provided, for example, by the σ(x) function defined in

section 1.3.2.

2.4.3 Conditional Langevin Dynamics

We know that, for timescales in the steady current regime, the reactive probability

distribution mT (x) can be rigorously approximated with its SCR analog mSCR(x).

Here we want to show that it is possible to samplemSCR(x) by means of the following

stochastic equation of motion:

ẋ = D

(
−β∇U(x) + 2

∇qSCR(x)

qSCR(x)

)
+ η(t) (2.95)

Eq. (2.95) is already known in the literature, and it was first derived in Ref.s [185],

while in Ref.s [19, 98] its discrete analog was obtained in the context of Markov

jump processes. In this section we will derive Eq. (2.95) again, in a way that clearly

shows that it can be used to sample mSCR(x). We start by re-writing the reactive
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distribution in the SCR in a convenient way

mSCR(x) =
1

tf − τ0

∫ tf

τ0

dt Q(R)(x, tf − t)
e−βU(x)

ZR
Q(P )(x, t)

=
1

tf − τ0

∫ tf

τ0

dt Q(R)(x, tf − t)P (P )(x, t)

∼ 1

tf − τ0

∫ tf

τ0

dt Q(R)(x, t)P (P )(x, t)

≡ 1

tf − τ0

∫ tf

τ0

dt P(x, t)

(2.96)

where we used the result in Eq. (2.83) and the fact that, in the SCR, Q and P

functions are almost time-independent. Sampling the distribution P(x, t) is identical

to sample mSCR(x) as long as t is chosen in the SCR. One can show (see appendix

C.5) that P(x, t) satisfies the following effective Fokker-Planck equation:

∂P(x, t)
∂t

= D∇ ·
[
∇ + β∇U(x)− 2∇ logQ(R)(x, t)

]
P(x, t) (2.97)

The underlying microscopic dynamics satisfies detailed balance, because, as it is clear

from the derivation in appendix C.5, the non-linear term −2∇ logQ(R)(x, t) comes

just from imposing reflecting boundary conditions at the borders of the product and

the reactant states. Distribution P(x, t) can thus be sampled by an effective Langevin

dynamics of the form

ẋ = D
(
−β∇U(x) + 2∇ logQ(R)(x, t)

)
+ η(t) (2.98)

The dynamics in Eq. (2.98) is known in literature as conditional Langevin dynamics

(CLD). In general, Eq. (2.98) is not straightforward to use because of the implicit

dependence on Q(R)(x, t), and the latter term is usually treated by resorting to some

approximations [172, 173]. However, if the timescale is chosen in the SCR, as pre-

scribed by the integration limits in Eq. (2.96), we know thatQ(R)(x, t) becomes time-

independent and that it provides the SCR representation of the committor function.

Thus, the conditional Langevin dynamics that can be employed to sample mSCR(x)

is precisely the one reported in Eq. (2.95). The position-dependent 2∇ log qSCR(x)

bias entering Eq. (2.95) is optimal, in the sense that conditional Langevin dynam-

ics provides the same transition path ensemble of the original Langevin equation in

the limit in which the committor qSCR(x) is exact. Since the result of the SCPS

calculation is a map q(σ), we can use the chain-rule to rewrite the bias force as

FCLD(x) = 2
∇qSCR(x)

qSCR(x)
= 2q′SCR(σ)

∇σ(x)

qSCR(σ(x))
(2.99)

where∇σ(x) is a by-product of the SCPS calculation and both q′SCR(σ) = dqSCR(σ)/dσ

and qSCR(σ(x)) result from the functional optimization in Eq. (2.94).
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It is clear that, without an a-priori estimation of the committor, Eq. (2.95)

is useless. Although we propose the use of the SCPS estimate of the committor

function, every method that approximates q(x) can be coupled with the conditional

Langevin dynamics in Eq. (2.95) [110, 137, 149, 150, 151]. Just to give an example,

diffusion maps-directed sampling [186] can be easily coupled with the scheme we are

proposing.

It is important to stress at this point that Eq. (2.95) should not be used to

generate infinitely long trajectories. Indeed, in that case one would converge to the

distribution

P̃(x) =
1

N
q2
SCR(x)e−βU(x) (2.100)

with N a suitable normalization factor. P̃(x) 6= mSCR(x) and it has no direct

physical interpretation. The correct way to sample mSCR(x) from Eq. (2.95) is

by implementing the following non-equilibrium process. We start by sampling initial

conditions on the iso-committor hyperplane qSCR(x) = ε, where ε is arbitrarily small.

These points are provided, for example, by the configurations visited by SCPS on the

q = ε iso-committor surface. Starting from those points, we run several trajectories

integrating Eq. (2.95). If, at time tq̄, a trajectory x hits the hyperplane qSCR(x(tq̄)) =

q̄, where q̄ ∼ 1−ε, the trajectory is absorbed by the boundary conditions on ∂P and

thus the calculation is stopped. This non-equilibrium dynamics embeds the correct

absorbing boundary conditions and samples mSCR(x).

2.4.4 Ideal rMD

Let us define a new type of rMD, where instead of z(x) or sλ(x) and wλ(x) we use

the committor function as a collective coordinate. The ratchet force is given by

FirMD(x, t) = kR q′SCR(σ) ∇σ(x) θ
(
qMSCR(t)− qSCR(x)

)
ξ
(
qMSCR(t)− qSCR(x)

)

(2.101)

where

qMSCR(t) = max
τ∈[0,t]

qSCR(x(τ)) (2.102)

and ξ(y) is a non-negative function for every y > 0. The original Langevin dynamics

can be modified to accommodate the bias force in Eq. (2.101):

ẋ = D(−β∇U(x) + FirMD(x, t)) + η(t) (2.103)

We refer to the dynamics in Eq. (2.103) as ideal ratchet-and-pawl molecular dynam-

ics (irMD). Because of the Heaviside-theta function in Eq. (2.101), the functional

form of ξ(y) becomes relevant only when the system backtracks along the commit-

tor function. In the kR → ∞ limit, where backtracking is exactly forbidden, the

functional shape of ξ(y) becomes irrelevant.
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The strength of this method resides in the fact that the mapping between σ and

q is generally non-linear, especially when metastable states are present. Indeed, the

committor function usually increases in a strict monotonic way until it reaches a

metastable state, inside which the committor remains approximately constant. This

behavior results from the fact that points in a basin are kinetically close, thus the

probability to reach the product state does not sensibly vary within a well. The result

of this non-linearity is that the bias force vanishes once an irMD trajectory reaches

a metastable state, allowing for an exhaustive sampling of the state. Intuitively, this

tells us that irMD is suited for sampling the Boltzmann distribution restricted to the

transition region: This is proved in appendix C.6 in a more mathemcatically sound

fashion. irMD defines a non-equilibrium process where short trajectories progress

only forward along the committor function, avoiding the problem of detours present

in the conditional Langevin dynamics (Eq. (2.95)). The price to pay to avoid detours

is, not surprisingly, the loss of microscopic reversibility as a consequence of the

history-dependent bias force in Eq. (2.101). This means that each single trajectory

computed by irMD cannot be separately interpreted as a member of the transition

path ensemble. We note that irMD with ξ(y) = y is a continuum generalization of

the no-detour dynamics introduced in Ref. [19, 98] in the context of discrete Markov

jump processes.

As a final remark, we stress that the reactive probability density can be recovered

from irMD simulations simply by multiplying the resulting distribution with the

reactive factor q(1− q):

e−βU(x)
∣∣∣
ΩT
→ e−βU(x)

∣∣∣
ΩT

q(x)(1−q(x)) = e−βU(x)q(x)(1−q(x)) = mT (x) (2.104)

2.4.5 A Summary Pipeline

Fig. 2.7 summarizes the steps that have to be performed to apply the pipeline

presented in this chapter. First of all, a preliminary simulation is done using bare

rMD, which efficiently generates productive events from a given reactant R to a

given product P . The result of rMD is a set of average configurations {〈x(i)〉Guess}
that provide a first, sub-optimal approximation of the principal curve connecting

R to P . In principle the mean path can be specified by a list of specific features

{〈F (i)〉Guess}: in the original formulation of SCPS in Ref. [28] the features were

provided by contact maps, F = Cjk, while in Ref. [137] the features were RMSDs

computed along a pre-determined path, 〈F (i)〉 = F (i) = RMSD(i). As we discussed

in section 1.3.2 and in the original work [28], contact maps represent a convenient

choice for systems as big as fast-folding proteins, but in principle one is free to use

whatever feature better describes the conformational transition.
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Start

rMDSystem
{hx(i)iGuess}
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Figure 2.7: Schematic representation of the algorithm that allows to recover TPT results
from SCPS simulations.
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2.4. Exploiting qSCR to Sample the Transition Region
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Figure 2.8: Reactive probability densities obtained by means of (a) steered MD, (b) rMD,
(c) SCPS compared to (d) the exact one.

The guess mean-path is used as the input of a SCPS calculation, which, at con-

vergence, provides two important results: a mean-field estimation {〈x(i)〉} of the

principal curve connecting R to P and the values of σ(x) computed on this same

curve, {σ(〈x(i)〉)}. The latter are given as an input to the functional in Eq. (2.94).

Minimization of Eq. (2.94) is a trivial computational task (functional is one-

dimensional) and it returns the relabeling map q(σ). The derivative q′(σ) is readily

obtained from q(σ). At this point, one is finally ready to sample the reactive prob-

ability distribution mT (x). Depending on the complexity of the system and on the

typical timescales of detours, one should decide whether CLD or irMD is better

suited for its problem. CLD is more computationally demanding because of detours,

but trajectories computed with Eq. (2.95) are true reactive trajectories. irMD, in-

stead, capitalizes on the computational efficiency of rMD to sample the Boltzmann

distribution in the transition region. However, each single trajectory does not carry

kinetic meaning because of the presence of a history-dependent biasing force in the

equations of motion.

Once mT (x) or e−βU(x
∣∣
ΩT

are known, they can be fed to the algorithm pre-

sented in section 2.1.4 to finally compute the reactive current. At that point, the

whole kinetic information about the system is reconstructed and the conformational
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Chapter 2. Transition Path Theory from Self-Consistent Path Sampling

transition is fully characterized.

2.5 Illustrative Application on a 2D Potential

To test our algorithm for the calculation of the committor function and sampling of

the transition region, we employ the results on the 2-dimensional potential presented

in section 1.4. In this simple setting, there are two fundamental simplifications: (i)

it is possible to run CLD trajectories without caring about the problem of detours.

In general this is not true a priori and one should carefully consider which method,

among irMD and CLD, is best suited for its application; (ii) the small entropy within

the reactant state avoids the necessity to run trajectories starting from many different

initial configurations. Thus, the reaction mechanism can be fully characterized by

means of s̃γ .

In the following section we will use the mean path {〈x(i)〉} obtained from the last

iteration of the SCPS calculation to compute s̃γ(x), and optimize its values along the

average path to obtain the corresponding committor function q(s̃γ). Then we will

apply the knowledge of the committor function to integrate the CLD, Eq. (2.95),

and irMD, Eq. (2.103), equations of motion. Finally, we will employ the algorithm

discussed in section 2.1.4 to compute the transition tubes and identify the reaction

channel.

In Fig. 2.8 we report the transition regions sampled by (a) sMD, (b) rMD and

(c) SCPS compared with (d) the exact one. The exact result has been computed by

means of the TPT definition in Eq. (2.20), where the committor function has been

estimated using the procedure described in appendix C.7. The other results (sMD,

rMD and SCPS) have been obtained by considering the whole ensemble of trajectories

and selecting only the reactive portions of the simulations. Evidently, sMD fails in

determining the location of the transition region, and populates only the portion

of Ω surrounding a transition state that is never visited by reactive trajectories.

rMD simulations, instead, do a much better job in determining the shape of the

transition region, but present however many defects, as already discussed in section

1.4.1. On the contrary, SCPS provides a reasonable approximation of the exact

transition region. Two main inaccuracies emerge: on the one hand, the peak of the

distribution is slightly shifted to the right with respect to the exact one, possibly as a

residual result of the strong biasing force employed in the rMD guess simulations; on

the other hand, the tails of the distribution are not exhaustively sampled, probably

as a consequence of the bias force acting along the wλ variable, which controls the

width of the tube around the mean path.

Before going on, it is worth discussing the properties of the average pathways
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Figure 2.9: Average pathways obtained from sMD, rMD and the four different iterations of
SCPS, together with the principal curve computed using the FTS method. All the pathways
are superimposed to the level curves of the potential in Eq. (1.55).

obtained from the different simulations strategies we considered in section 1.4. The

average paths computed from sMD, rMD and all the SCPS iterations are reported in

Fig. 2.9, superimposed to the potential level curves. Our results are compared, on the

same picture, with the principal curve obtained from FTS method2. It is clear that

the sMD and the rMD average pathways fail in approximating the principal curve:

this is expected, as none of the two possesses the expected theoretical properties

to do so. SCPS iterations, instead, approximate the finite temperature string with

increasing precision. A well-defined feature of the SCPS average paths becomes

evident from Fig. 2.9: they do not manifest the semi-circular shape of the exact

principal curve, but rather they seem to connect the different states in the potential

with straight lines. This feature comes from the fact that each point is defined as a

time-average. Qualitatively speaking, if a trajectory x is found in R at time t and

another trajectory y is found in I at the same time t, the average 1/2(x(t) + y(t))

will be found on the straight line connecting R to I. For this reason, we expect the

average path to approximate the principal curve by connecting the relevant states in

the potential with straight lines.

2.5.1 Computing the Committor Function

In Fig. 2.10 (a,b,c) we report the s̃γ functions in the region Ω = [−1.5, 1.5] ×
[−0.5, 2.5], computed from, respectively, the sMD, rMD and SCPS average pathways.

2We thank E. Vanden-Eijnden for making available a MATLAB version of the 2-dimensional

FTS method on his website: https://cims.nyu.edu/~eve2/string.htm
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Figure 2.10: (a,b,b) s̃γ computed from the average paths obtained, respectively, by steered
MD, rMD and SCPS; (d,e,f) q(s̃γ) functions resulting from the minimization of I functional
in Eq. (2.94) in the case of, respectively, steered MD, rMD and SCPS; (g) committor
function obtained by applying the map q(s̃γ) in (f) on the s̃γ in (e); (h) exact committor
function.
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These results should be compared with the exact committor, reported in Fig. 2.10

(h) and computed using the prescription in appendix C.7. As expected, sMD results

represent a misleading representation of the reaction coordinate. In particular, it

doesn’t indicate the presence of a potential barrier separating R from P , which,

instead, is present in the exact committor in the form of a sharp bend in the vicinity

of x = (0, 0). rMD, instead, feels the presence of a barrier, but is strongly reduces its

extension. This means that rMD simulations provide a small, but finite, probability

to reach P by passing through the barrier. For what concerns SCPS, it provides

results similar to exact ones: as expected, iso-q and iso-s̃γ curves in the transition

region are approximately parallel. Moreover, both the two functions show the sharp

bend indicating the existence of a potential barrier, with comparable extension along

the y direction. Overall, results reported in Fig. (2.10) (c) and (h) imply that s̃γ(x)

represents a reasonable approximation of the committor function. Nevertheless, some

differences can still be noticed: the most evident one is that iso-s̃γ lines are much

more spaced with respect to iso-q ones, indicating the existence of a non-trivial

mapping connecting the two functions.

The estimation of q(x) from s̃γ(x) is done by minimizing the functional in Eq.

(2.94). The functional was initialized with {s̃iγ = s̃γ(〈x(i)〉)} and was equal to

I[{σi}] ∼ 800. After the minimization, performed using the Sequential Least SQuares

Programming (SLSQP) algorithm [187] implemented in SciPy [188], the functional

dropped to I[{qi}] ∼ 2× 10−4. This indicates that our estimation of the committor

function satisfies the BK equation up to corrections of order o(10−4). The resulting

map q(s̃γ) obtained from the minimization procedure is reported in Fig. 2.10 (f).

Notably, this function shows a plateau corresponding to the location of the inter-

mediate state, associated to q = 0.5. This was expected both as a result of the

symmetry of the problem and also because the committor function should be con-

stant within metastable regions. The SCPS estimate of q, obtained by re-labeling

the iso-s̃γ curves in Fig. (2.10) (c) through the function q(s̃γ) represented Fig. 2.10

(f), is reported in Fig. 2.10 (g). This result is compatible with the exact one in Fig.

(2.10) (h), with a reduced spacing between iso-surfaces with respect to Fig. (2.10)

(f). Sensible differences between the estimated and the exact committor functions

can be seen only in the regions of Ω which are rarely or never sampled by SCPS

trajectories.

It is of particular interest to observe the q(s̃γ) maps obtained by optimizing the

s̃γ values on the sMD and rMD average pathways, reported in Fig. 2.6 (d) and (e).

None of the two maps show the presence of a plateau region in correspondence of

q ∼ 0.5. This is expected, because both sMD and rMD simulations are incapable to

extensively populate the intermediate state, because of the high biasing force exerted
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Figure 2.11: Reactive probability densities obtained by means of (a) CLD and (b) irMD
compared to (c) the exact result. (d) Transition tubes corresponding to the 30 (blue lines),
60 (red lines) and 90% (green lines) of the current flow through iso-committor surfaces.

along an unreliable reaction coordinate. We can thus conclude the following. Let

us suppose that, in a realistic high-dimensional situation, the only way to generate

pathways connectingR to P is to resort to a very high biasing force along a coordinate

whose quality cannot be clearly estimated. In this case, SCPS is able to sensibly

correct for the errors in the original biased dynamics and return an approximation of

a principal curve which can be further optimized to provide a reasonable estimation

of the committor function.

2.5.2 Reactive Probability Density and Transition Tubes

We previously discussed the fact that SCPS provides a mean-field estimate of the

transition probability densitymT (x), which is in reasonable agreement with the exact

result. However, we can exploit the knowledge of qSCR(x) coming from the SCPS

simulations to systematically improve the quality of the results. The way to do this

is to use the algorithms proposed in sections 2.4.3 and 2.4.4, respectively CLD and

irMD. The quality of the estimation of mT (x) by these algorithms is affected only

by possible errors in the knowledge of the committor function.

We ran 1000 independent CLD and irMD simulations, each one t = 4× 103dt/γ

long. In the irMD simulations we employed an elastic constant kR = 50, exactly like
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in the rMD and SCPS simulations, and we set ξ(y) = y in Eq. (2.101). In both

CLD and irMD trajectories were initialized on the iso-q curve q(x) = ε = 0.01 and

then stopped on the surface q(x) = 1 − ε = 0.99. Results in Fig. 2.11 (a) and (b)

show that the mT (x) distributions sampled by CLD and irMD are quantitatively

comparable with the exact one, despite the presence of small errors in the estimation

of the committor function. The latter point can be justified with the fact that the

committor is incorrectly estimated only far from the main reaction channel, where

SCPS simulations do not spend much time.

Finally, to conclude the description of the reactive process, we computed the

transition tubes using the algorithm presented in section 2.1.4. In particular, the in-

tegration of Eq. (2.30) was initialized on the q(x) = 0.5 surface and then propagated

forward and backward in the artificial time parameter τ . Our result in Fig. 2.11

(d) shows the transition tubes corresponding to the 30, 60 and 90% of the current

flow through iso-committor surfaces. The reaction channel is correctly located, but

the bending point of the streamlines is slightly shifted to the right: this might be

induced by small deviations in the committor that propagate in the integration of

the differential equation in Eq. (2.30).

2.6 Chapter Conclusions

The main focus of this chapter was on how to link transition path theory, which

is rigorously defined only in the case of an infinite and ergodic trajectory, with the

practical need to simulate many short out of equilibrium trajectories using enhanced

sampling methods. This was done by exploiting the properties of kinetics in a suitable

time range, which we called steady current regime, in which TPT results can be

approximated with averages performed over short, non-ergodic trajectories. A second

point of great focus of this chapter was the fact that the self-consistent path sampling

method, introduced in chapter 1, can be actually thought as an algorithm that

approximates the principal curve connecting the reactant to the product states. This

fact comes together with the realization of the strong connection between the variable

sλ, defined in section 1.3.1, and the committor function. In particular, the committor

function can be obtained from sλ by minimizing the functional defined in Eq. (2.94)

along the approximate principal curve defined by SCPS.

Next, we discussed how it is possible to capitalize on the knowledge of the com-

mittor function by defining two schemes to sample the reactive probability density.

The first one is a conditional Langevin dynamics that exactly samples the transition

path ensemble but suffers for the existence of possible detours from the main reactive

pathway. The second one is a variation of the original ratchet-and-pawl MD which
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employs the committor function as a reaction coordinate (thus named ideal rMD),

which uses a strong biasing force along q to hinder possible detours but does not

satisfy microscopic reversibility.

The last part of this chapter was dedicated to the illustration and validation of

our algorithm on a simple 2d model. Future applications of this work should then

necessarily focus on more high-dimensional systems, as the usefulness and power of

this method on complex structural transitions still needs to be thoroughly assessed.

A possiblilty would be to validate the results of the algorithm on proteins on which

TPT has already been applied, e.g. PinWW in Ref. [104]. Indeed, while the efficiency

of SCPS on the folding of proteins has already been studied [28], irMD and CLD still

needs to be extensively tested. Finally, the theory presented here can be extended in

its validity by repeating the calculations without assuming the Langevin dynamics

to be overdamped.
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Chapter 3

Enhancing Experimental

Sensitivity with the Bias

Functional Method

Benchamarks of the BF method against both MD and experiments show that, despite

its intrinsic limitations, the algorithm provides sensible results and may be used to

study a wide class of proteins [26, 27, 144]. The same approach might be also

useful in order to support the interpretation of experimental data. Up to now, the

simultaneous use of experimental techniques and computer simulation to achieve

a deep understanding of the folding problems has proved to be quite challenging

[189, 190]. The problems come from both the computational and the experimental

sides.

From a computational perspective, protein simulations can achieve extremely

high spatiotemporal resolutions. However, as we wildely discussed in previous chap-

ters, the computational workload needed to simulate the folding of a protein is ex-

tremely high. It was estimated that molecular dynamics simulations alone, performed

on special purpose supercomputers, are effective in modeling the folding on just the

10% of the Protein Data Bank [191, 192]. These results call for further advance-

ments: better force fields, which are constantly being improved [191, 193, 194, 195],

better described water-protein interactions [196, 197, 195] and faster ways to sample

proteins conformations.

From the experimental side, protein studies have reached a sensible level of re-

liability, but most of the experimental techniques either lack spatial resolution or

can probe with high accuracy only distances between specific residues. Let us dis-

cuss some examples. Hydrogen/deuterium (H/D) exchange detected by mass spec-

troscopy can be used to detect solvent exposed regions in the protein chain [198]
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(a) (b)

Figure 3.1: Representative CD spectra for (a) a α-helix and (b) a three-stranded β-sheet,
computed using Pdb2CD [213].

and small-angle x-ray scattering (SAXS) measures the overall degree of protein com-

pactness [199]. Even though these methods can be applied to kinetically follow the

folding reaction, e.g. SAXS can be combined with the stopped-flow technique [200],

they cannot be used to assess the quality of atomistic simulations as they lack spatial

resolution (surface accessibility and degree of compactness are rather coarse-grained

information) and they cannot be applied to study sub-millisecond transitions [201].

Alternative techniques, that focus on single molecules, have been developed that can

reach much higher temporal and spatial resolutions. Among the wide variety of pos-

sible methodologies [202], a few notable examples are provided by single molecule

Förster Resonance Energy Transfer (FRET) experiments [203] and atomic force mi-

croscopy (AFM) measurements [204]. The former can measure variations in the

distances between two suitably located cromophores with subnanometric precision

and within millisecond timescale [205, 206], while the latter measures the distance

between two residues on which an external stress is applied, again with subnano-

metric resolution [207, 208]. Single molecule techniques represented a fundamental

step forward in experimental biophysics [209, 210], but unfortunately they require

to actively alter the chemical composition of the protein chain, by mutating spe-

cific residues [211] or attaching fluorescent probes [212]. The natural question arises

whether manipulations of the chemical nature of the protein sensibly alter their

dynamics and biological function.

Differently from the experimental strategies we discussed up to now, spectroscopic

methods do not require any chemical modifications of the protein, and circular dichro-

ism (CD) measurements can be easily performed to monitor the type and amount of

secondary structures of an equilibrium ensemble of proteins in solution [33, 34]. CD

spectra come from the differential absorbance of left- and right-circularly polarized

light. In the far-UV region (190-230 nm), CD measurements are dominated by the
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signal coming from secondary structures, and empirical algorithms can be used to

deconvolve the different α and β contributions and estimate their average content

[214, 215, 216]. Time-resolved CD experiments are also possible, and are used to-

gether with the stopped-flow technique to monitor the kinetics of secondary structure

formation [214, 217, 218, 219, 220]. A typical CD spectrum of an α-helix shows a

strong positive peak around λ = 190 nm and a negative doublet in λ = 208 and

220 nm (see Fig. 3.1 (a)), while β-sheets signals are less well defined with usually a

negative peak around λ ∼ 180 nm, a positive band in λ ∼ 195 nm and a negative

peak around λ ∼ 210− 220 nm [221] (see also Fig. 3.1 (b)). However, the insight on

the folding process coming from this analysis is limited, in the sense that it provides

structural information only at the level of secondary structures that, in most of the

cases, are already formed at the initial stages of the conformational reaction.

There is a further spectral region which can be investigated using the CD tech-

nique, which is the so-called near UV (240-300 nm) region. As a matter of fact, CD

in this region is sensitive to the π − π∗ excitations occurring in the side-chains of

aromatic residues (Tyr, Phe, Trp; see appendix D for further details) [222, 223]. It

should be also noted that fingerprints of aromatic couplings start to emerge already

for wavelengths λ < 230 nm, but in those regions the signal is too dominated by

amide electronic transitions in the protein backbone [224]. Near-UV CD signal rep-

resents a highly spatially resolved probe to detect local rearrangements in folding,

which however cannot unequivocally predict three-dimensional rearragements of the

protein without relying on some prior models [220].

In this chapter we are going to to shine new light on experimental CD results

through a novel hybrid and ab-initio algorithm based on the ability of the BF method

to robustly predict folding pathways and on the possibility to compute CD spectra

by means of computational chemistry calculations. This algorithm is ab-initio in the

sense that CD spectra are computed just be employing all-atom calculations. Briefly,

our proposed pipeline is the following: (i) use the BF method to compute the folding

pathway of a protein of interest; (ii) identify, using suitable reaction coordinates, the

metastable states along the folding pathway; (iii) harvest representative conforma-

tions from the metastable basins; (iv) perform quantum chemical calculations based

on an exciton model [35, 36, 37] to compute the near-UV CD spectrum from the

harvested conformations; (v) compare the simulated CD spectra with experimen-

tal results. When near-UV CD spectra are available for a protein of interest, this

novel algorithm will be able to bridge the resolution gap between simulations and

experiments, providing atomic-level structures that can help the interpretation of

experimental data.

We will test our approach on three systems: the canine milk lysozyme, a globular
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protein composed by 129 residues that folds in the time scale of seconds [32]; a

synthetic version of the same protein, where the disulphide bonds, present in the

crystal structure, have been removed; IM7 protein, an α protein composed by 86

residues that folds in the time scale of milliseconds [225]. In particular, the first

system represents a best-case scenario, where we can access CD data of a protein with

many tryptophans, no mutation or chemically altered environment is needed in order

to stabilize its intermediate conformations and it is particularly easy to find reaction

coordinates to determine the presence of metastable basins. The second system,

namely the modified version of the lyszoyme where all the disulphide bonds have been

reduced, is used to assess the sensitivity of our algorithm to chemical modifications

in the protein chain. Finally, IM7 protein represents a worst-case scenario system,

where the CD signal comes from the interaction of a single Trp residue with all

the other aromatic ones, mutations are needed in order to stabilize its intermediate

state and folding progresses along non-trivial reaction coordinates. Remarkably, our

algorithm provides quantitative results for all the above mentioned cases, showing

that near-UV CD signals coupled with enhanced sampling techniques and quantum

chemical calculations are indeed a powerful tool to detect subtle changes in the

tertiary structure of a protein and provide a full, atomic-level picture of its folding

pathway.

The chapter is structured as follows. In section 3.1 we will briefly introduce

the concept of CD spectrum in a theoretical fashion and describe how it is possible

to compute it using the so-called matrix method. In section 3.2 we will first dis-

cuss the experimental knowledge about the canine milk lysozyme, then apply our

pipeline and discuss the corresponding results. Section 3.3 is devoted to the sensitiv-

ity assessment of our pipeline, which is applied to the canine milk lysozyme without

disulphide bonds. Section 3.4 is instead dedicated to the application of our algorithm

to IM7 protein and the corresponding results. Finally, in section 3.5 we will draw our

conclusions about the methodology and discuss some possible further improvements.

3.1 Calculation of CD Spectra

When we let circularly polarized light impinge on a solution of chiral objects, like

proteins, it will show different refractive indices for left- and right-circularly polarized

light [224]. As a consequence, the extinction coefficient ε1 will be different for left-

and right-circularly polarized light, εL 6= εR. This effect is called circular dichroism,

1a coefficient which measures how strongly a chemical species attenuates light at a given wave-

length
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and the CD spectrum is provided by the differential absorbance

∆ε(λ) = εL(λ)− εR(λ) (3.1)

as a function of the probe wavelength λ [226, 227, 228]. The integral

Rij =
hc

32π2NA

∫

∆λij

dλ
∆ε(λ)

λ
(3.2)

where h is the Planck constant, c the speed of light and NA the Avogadro number,

computed over a range of wavelengths ∆λij associated with the electronic transition

i → j between states i and j, is known as the rotational strenght of that transition

[224, 228].

From a theoretical perspective, the rotational strengthR0k of the transition 0→ k

from the ground-state to a generic excited state k is provided by the Rosenfeld

equation [229]:

R0k = Im
[
〈ψ0|µ|ψk〉〈ψk|m|ψ0〉

]
(3.3)

where |ψ0〉 and |ψk〉 represent, respecitvely, the ground- and the k-th excited states,

µ is the electric transition dipole moment

µ = qr (3.4)

where q is the particle charge, r is its position and m is the magnetic transition

dipole moment

m = −iµBr×∇ (3.5)

with µB is the Bohr magneton and i is the imaginary unit. A qualitative interpre-

tation of the CD spectrum comes from the following considerations. While the µ

operator describes a linear charge displacement, the m operator is an angular mo-

mentum and thus characterizes a circulation of charge. The combination of the two

provides a helical displacement of charge, which leads to different interactions with

left- and right-circularly polarized light [224].

From Eqs. (3.2) and (3.3) it is clear that it is possible to use the rotational

strength to compute the CD signal of a protein. However, the main problem comes

from the fact that |ψ0〉 and |ψk〉 cannot be computed ab-initio for molecules as big

as proteins, and one needs to resort to some approximation. Several methods can

be employed to approximate the calculation of these quantities [230], but one of the

the most successful ones is provided by the matrix method [231, 232, 233].

3.1.1 The Matrix Method

Let us assume we can split the protein into M independent regions sensible to the

light probe, which we will call chromophores. The i-th cromophore, in an electronic
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state s, will be described by a state |φis〉. The k-th excited state of the protein

can be thus approximated as a linear combination of multi-cromophore states |ia〉
describing a situation in which cromophore i is in an excited state s = a and all the

other ones are in the ground state s = 0:

|ia〉 = |φ10〉|φ20〉 . . . |φia〉 . . . |φj0〉 . . . |φM0〉 (3.6)

Supposing each cromophore can access n excited states, the protein k-th excited

state can be written as

|ψk〉 =

M∑

i=0

n∑

a=0

ckia|ia〉 (3.7)

The first sum in Eq. (3.7) is over theM cromophores, while the second one is over the

N excited states accessible to each cromophore. The ckia coefficients are unknown and

need to be determined. The protein excited states and their corresponding energies

are solution of the Schrödinger equation:

Ĥ|ψk〉 = Ek|ψk〉 (3.8)

where Ĥ is the Hamiltonian governing the system’s dynamics. This Hamiltonian can

be chosen to be the Frenkel exciton Hamiltonian [234]:

Ĥex =
M∑

i=0

n∑

a=0

Eai |ia〉〈ia|+
M∑

i,j=0

n∑

a,b=0

V ab
ij |ia〉〈jb| (3.9)

where Eai are the excitation energies of the i-th non-interacting chromophore in the

a-th excited state, called site energies, and V ab
ij are the electronic couplings between

two transitions of different chromophores.

Assuming the Hamiltonian in Eq. (3.9), Eq. (3.8) can be solved by diagonaliza-

tion in order to obtain both the energy levels of exciton states Ek and the expansion

coefficients ckia. The rotatory strength of the 0→ k transition can be rewritten as a

function of these ingredients [33, 235]:

R0k = −πE
k

2hc2

∑

i,j,a,b

ckiac
k
jbRij · (µi0a × µj0b) (3.10)

where Rij measures the distance between the centers of the i-th and the j-th cro-

mophores. For all the technical details about, for example, the spectral broadening

of the transition energies or the estimation of the parameters in the Hamiltonian, we

refer the reader to the specialized literature [222, 228, 236, 237].

3.2 Application to the Canine Milk Lysozyme

The first system of interest is the canine milk lysozyme (see Fig. 3.2), a 129 residue

globular protein which has a folding time in the range of seconds [32]. This protein
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Figure 3.2: Crystal structure (PDB entry: 1EL1) of the canine milk lysozyme. Water
molecules and ions have been removed from the original structure. The red-colored region
represents the β-domain, while the blue-colored one represents the α-domain of the protein.
(a) The five protein tryptophans are represented as grey sticks; (b) the four disulphide
bonds in the protein crystal are represented as yellow sticks; (c) the experimental kinetic
CD difference spectrum between I-Second and Native states, adapted from [32].

possesses several attractive features that make it a perfect study case: (i) its folding

timescale is inaccessible to standard MD techniques; (ii) its topology is relatively

simple; (iii) different experiments [238, 32] confirm the existence of a folding inter-

mediate; (iv) its intermediate states have been characterized using the stopped-flow

CD technique [32].

The authors of Ref. [32] performed a kinetic CD measurement of the Escherichia

coli recombinant2 canine milk lysozyme, inducing a refolding reaction by a denat-

urant concentration jump. The resultant kinetics was then followed by rapid CD

measurements, which show the presence of a burst (I-Burst) intermediate, popu-

lated within the dead-time of the stopped flow apparatus (25 ms) and that can be

interpreted as the unfolded state of the protein in absence of denaturant [239], and

a second (I-Second) intermediate state, populated at ∼ 22 s−1 rate. The system

finally reaches the Native state at a rate of ∼ 0.5 s−1. Further interpretation of

the CD data suggests that the I-Burst state has already a significant fraction of

secondary structures formed and that in the transition between the I-Burst and

I-Second the content of secondary structures is further increased. Differently, the

main differences between I-Second and the Native state are due to changes in the

tertiary structures. In particular, the authors suggest that the change in CD spec-

2A host cell in which a gene is copied that encodes a specific protein expresses a so-called

recombinant protein
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trum occurring during the latter transition is caused by the exciton coupling of the

tryptophan residues in the protein (see Fig. 3.2 (a)). This was determined by looking

at the so-called kinetic difference CD spectrum, which is computed as the difference

between the Native and the I-Second CD signals. As shown by the green dotted

curve in Fig. (3.2) (c), the experimental kinetic CD spectrum is a bisignate signal

with a positive peak around ∼ 210 nm and a negative one in ∼ 230 nm. The zero

crossing occurs at 226 nm. It is experimentally well known that both α-helices and

β-sheets provide a negative contribution to the CD spectrum in the region 210−240

nm [221]. For this reason, secondary structures cannot be responsible for a bisignate

couplet in the kinetic CD spectrum with a zero-crossing at 226 nm. This spectral

feature of the kinetic difference CD signal is necessarily due to exciton coupling of

tryptophan residues [32]. In the following section we are going to thoroughly as-

sess these experimental results by adding atomic-level information on the lysozyme

folding pathway.

As a final remark, it has to be noted that the canine milk lysozyme has 4 disul-

phide bonds3 (see Fig. 3.2 (b)) and that refolding experiments has been conducted in

an oxidative environment [32], so that convalent bonds between cysteins are formed

correctly.

3.2.1 Simulation Setup

rMD simulations of the folding of the canine milk lysozyme were set up as follows:

1. a set of 10 independent unfolded configurations was generated by thermally

unfolding the energy-minimized crystal structure of the protein. In particular,

we performed 5 × 105 MD time steps with a time step of dt = 1 fs at a

temperature of 800 K;

2. starting from each unfolded configuration, we ran 20 rMD simulations, employ-

ing a timescale of dt = 1 fs and performing 5× 105 rMD steps at T = 350 K.

The harmonic constant of the bias force was set to krMD = 2.5× 10−4 kJ/mol,

making sure that the bias force was at least two orders of magnitude smaller

than the total physical force at any time.

3. out of each of the 20 rMD simulations, the LB trajectory is selecting by imple-

menting the variational principle in Eq. (1.18).

All simulations (MD and rMD) were ran in GROMACS 4.6.5 [41] using the Amber

ff99SB-ILDN force field [142], the Bussi thermostat [143] and the Generalized Born
3covalent bonds formed between cysteins. In an MD simulations, they play the role of further

topological constraint, just as polypeptide bonds.
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Figure 3.3: Kinetic free energy profile obtained by projecting the whole ensemble of canine
milk lysozyme rMD trajectories onto the RMSD to native and the fraction of native contacts
Q. Low free energy regions reveal the existence of metastable states, respectively identified
as Unfolded, I-Burst, I-Second and Native. Protein structures represent conformations
that have been harvested from the minima, while white markers, when present, represent
their corresponding location on the plot.

implicit description of the solvent model [240, 241]. The collective variable and the

corresponding bias force needed to perform BF calculations were implemented in

Plumed 2.0.2. [51].

For what concerns the setup of the quantum chemical calculations, we advise the

reader to refer to the specialized literature [228, 236, 242, 243, 244, 245, 246, 247, 248]

and to the original paper [24].

3.2.2 The folding pathway

In Fig. 3.3 we show the kinetic free energy landscape GBias(Q,R) obtained by pro-

jecting all the 200 rMD simulations onto the plane spanned by the fraction of native

contacts Q and the RMSD to the native crystal structure R.

Inspection of GBias(Q,R) reveals the existence of four long-lived states along the

folding pathway. To obtain an atomic-level description of these states we should

extract some configurations from the basins. In order to harvest a statistically sig-

nificant number of configurations and do it in a least biased way, we proceeded as
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I-Burst (a) I-Second (b) Native (c)
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Figure 3.4: Putty representation of the protein crystal structure, colored using the B-
factors. B-factors have been computed as b(a) = 8π2MSF(a) [249], where MSF(a) is the
mean square fluctuation of residue a in the (a) I-Burst, (b) I-Second and (c) Native
basin.

follows. In the following, we will refer to this as the harvesting prescription. A

structure x is harvested from a basin if it satisfies the following two criteria:

1. GBias(Q(x), R(x)) < g, where g is a given threshold;

2. x belongs to a LBT.

The first criterion is used to select conformations which are as close as possible to the

local free energy minimum, while the second criterion helps reducing the systematic

error introduced by the bias force.

Harvested configurations of the lysozyme, obtained by using g = 2kBT , are shown

in Fig. 3.3. We refer to the top-left well of the picture as the Unfolded basin, which

is populated by highly denatured states. Configurations in this region are never

sampled by spontaneous folding-unfolding events, but only by high-temperature MD

simulations. In this sense, they provide an approximation of the chemically denatured

states reached during the experiments.

The first metastable state, found approximately in the middle of the P (Q,R)

projection, is highly heterogeneous and occupies a wide region both in RMSD and

in fraction of native contacts. We identify it with the experimental I-Burst state.

Looking at the root mean square fluctuations (RMSF) of the protein residues in this

basin, Fig. 3.4 (a), it is evident that the chain is particularly flexible, especially

around the beta region. This is can be interpreted by the fact that alpha-helices

are already partially formed in this stage, and the residual mobility comes from
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Figure 3.5: Adapted with permission from [24]. Copyright 2018 American Chemical So-
ciety. (a) Plot of Eq. (3.11), where the key tertiary contacts formed during the I-Second
→ Native have been highlighted; (b,c,d) superimposed I-Second (transparent) and crystal
(white) structures, showing as colored regions the locations involved in the formation of the
key tertiary contacts. Colors from (a) have been preserved in (b,c,d) for sake of clarity.

the absence of tertiary packing, which is also confirmed by visual inspection of the

harvested conformations in Fig. 3.3.

The formation of the secondary and tertiary contacts in the alpha domain is

completed in a further metastable state, which can be thought to approximate the

experimental I-Second configuration. Differently, the beta domain preserves a high

mobility, as can be seen from the selected configurations in Fig. 3.3 and the B-factors

represented in Fig. 3.4 (c).

The last basin corresponds, with no surprise, to the protein’s Native state. To

understand what key contacts are formed in the I-Second → Native transition

we can make use of the harvested configurations. In particular, we computed the

difference

CI-S→N
ij = 〈CI-S〉ij − 〈CN〉ij (3.11)

between the average Cα contact map 〈CI-S〉ij of the structures harvested in the

I-Second basin and the one obtained from selected native configurations, 〈CN〉ij .
Matrix in Eq. (3.11) is reported in Fig. 3.5 and shows that the main structural

difference between I-Second and Native states is the tertiary packing between α

and β domains. This conclusion is consistent with the time-resolved CD spectrum

analysis reported in Ref. [32].

3.2.3 The CD signal

Now that the existence of the metastable states is assessed and the main structural

differences have been characterized, we can move to the calculation of the near-UV

CD spectra. We are mainly interested in the CD spectra of the Native and the I-
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Native (b) Native (c)Crystal (a)

Figure 3.6: Simulated CD spectra: (a) crystal structure; (b) convergence of the Native
signal upon inclusion of an increasing number of configurations in the calculation; (c) average
signal computed from all the harvested configurations in the Native basin. In (a) and (c),
black solid lines correspond to the CD spectrum computed considering all and only the
protein tryptophans as cromophoric units; blue solid lines show the spectrum coming from
tryptophans in the the α-domain alone (Trp 28-108-111) and the red solid lines instead
refer to the signal coming from tryptophans the β-domain (Trp 63-64); purple dotted lines
represent the sum of the α and β uncoupled contributions; grey solid lines show the signal
obtained considering all the aromatic contributions.

Second states in order to use them to compute the kinetic CD difference spectrum,

which can be directly compared with the experimental results in Ref. [32]. In order to

do that, we can apply the matrix method, described in section 3.1.1, to the harvested

configurations representing the I-Second andNative states. The cromophoric units

are provided here by the aromatic residues, phenalanine (Phe), tyrosine (Tyr) and

tryptophans (Trp), but, as we will see and coherently with experimental observations

[32], tryptophans alone provide the dominant contribution to the signal.

In Fig. 3.6 (a) we show the CD signal computed from the protein crystal structure

by using only Trps as cromophoric units. The spectrum shows two main features: a

weak positive band around ∼ 290 nm, which is typical of lysozymes [32, 250, 251,

252], and a strong bisignate couplet at shorter wavelengths. This last couplet in

experiments is hidden by an even stronger signal coming from secondary structures.

To understand the difference sources contributing to the shape of the CD signal,

we computed the decoupled spectra coming from the α and β regions of the protein

separately, shown respecitevly as red and blue curves in Fig. 3.6 (a). The difference

between the two is sensible, as they show opposite signs and are shifted relatively

to each other. As it turns out, the sum of the two uncoupled spectra significantly

differs from the fully coupled one (respectively shown as black and dotted lines in
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I-Second (a) I-Second (b)

Figure 3.7: Simulated CD spectra: (a) average signal computed from all the harvested
configurations in the I-Second basin. Black solid lines correspond to the CD spectrum
computed considering all and only the protein tryptophans as cromophoric units; blue solid
lines show the spectrum coming from tryptophans in the the α-domain alone (Trp 28-108-
111) and the red solid lines instead refer to the signal coming from tryptophans the β-domain
(Trp 63-64); purple dotted lines represent the sum of the α and β uncoupled contributions;
grey solid lines show the signal obtained considering all the aromatic contributions; (b)
convergence of the I-Second signal upon inclusion of an increasing number of configurations
in the calculation.

Fig. 3.6 (a)), underlining the importance of the α-β domain coupling in order to

determine the CD spectrum and the sensitivity of the CD signal itself to the specific

arrangement of aromatic residues. Indeed, the introduction of the coupling accounts

for half of the signal intensity in the lysozyme band around ∼ 290 nm.

The CD spectrum computed from the crystal structure alone might not be sta-

tistically significant. Differently from single molecule experiments such a FRET, CD

signals represent ensemble averages over an extremely high number of molecules.

Thus, explicitly introducing structural fluctuations in our calculation is important

to better simulate experimental conditions. In order to do so, we can average the

signal computed from the harvested Native configurations. The number of protein

molecules in a solution used for CD experiments is order of magnitudes bigger than

the number of configurations we harvested from the native basin. Therefore, it is

important to see if our simulated CD spectrum converges by systematically incre-

menting the number of structures used to compute the average. This indeed happens,

as reported in Fig. 3.6 (e).
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Figure 3.8: (a) Adapted with permission from [24]. Copyright 2018 American Chemical
Society. Average pairwise distances between Trp couples in the I-Second state (purple
dots), in the Native state (black dots) and in the crystal (green dots). Colors in the x-
label represent the different regions in the protein where Trps are found: blue labels refer
to residues in the α-domain, while red labels refer instead to amino acids in the β-domain.
Error bars indicate the standard error on the average value; (b) Kinetic free energy lanscape
of the canine milk lysozyme projected on the RMSD to native of the α and β domains. The
red arrow schematically shows the main folding pathway in this plane.

Given the B-factors reported in Fig. 3.4 (c), one would expect to notice impor-

tant differences between the Crystal and the Native signals mainly in the β domain,

which is more subject to structural fluctuations. The results of the quantum chemical

calculations reported in Fig. 3.6 (b) confirm our anticipations. Indeed, the α signal

remains almost unaltered with respect to the Crystal one, while the β one is sup-

pressed by more than a factor 2 as a result of structural disorder affecting coupligns

and orientation Anyway, all the Native signals preserve the same spectral feature

observed in the Crystal spectrum, besides of the lysozyme band around ∼ 290 nm,

which becomes extremely weak, as it is suppressed by the negative contributions

around ∼ 260 nm.

If we explicitly take into account all the aromatic residues in the Crystal and in

the Native CD spectra, we obtain the results reported as a grey line in Fig. 3.6

(c). It is evident that tryptophans provide the main contribution to the signal, and

introducing further couplings with other aromatic residues just slightly increases the

overall signal intensity.

In Fig. 3.7 (a) we report the CD spectrum obtained by averaging the signals

coming from the harvested I-Second structures. Also in this case we took care of

assessing the convergence of the spectrum for an increasing number of configurations,
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Figure 3.9: Kinetic difference CD spectrum, computed as the difference between the Na-
tive and I-Second CD signals compared against the experimental result (green dashed line)
from Ref. [32]. The black solid line represents the signal computed using only tryptophans
as cromophoric units, while the grey solid curve is obtained by the contribution of all the
aromatic residues.

as reported in Fig. 3.7 (b). The part of the spectrum related to the α domain is ap-

proximately unaltered with respect to the Native one, while the signal coming from

the β domain is broadened and reduced in intensity. As a consequence, the overall

signal is sensibly different from the Native one throughout the whole range of con-

sidered wavelengths. Fig. 3.7 (a) also provides an interesting structural information

about the I-Second state: the sum of the spectra of the two separate domains is

basically indistinguishable from the fully coupled one, meaning that in the I-Second

state the domains are decoupled. This fact is in contrast with what happens in the

Native state, but it is coherent with our previous observations about the confor-

mation of the metastable state. A further interpretation of this signal comes from

the distribution of the Trp residues pairwise distances. As reported in Fig. (3.8),

interdomain distances are approximately identical for both Native and I-Second

state, while intradomain distances are much higher in the I-Second case.

The overall picture emerging from our analyses of the BF folding trajectories is

the following: the transition I-Second → Native starts once the α and β domains

are separately formed (secondary structures and tertiary intradomain contacts are

almost fully completed) and occurrs by packing the two foldons through the forma-

tion of specific tertiary contatcs. This is also confirmed by looking at the results in

Fig. 3.8 (b), where we show the kinetic free energy profile obtained by projecting
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0 1 2 3 4 5 6 7 8

Figure 3.10: Kinetic free energy profile GBias(RMSDα,RMSDβ), obtained by projecting
the whole ensemble of rMD trajectories of canine milk lysozyme without disulphide bonds
onto the RMSD to native and the fraction of native contacts Q. Low free energy regions
reveal the existence of metastable states. Protein structures represent conformations that
have been harvested from the minima, while white dots, when present, represent their cor-
responding location on the plot.

all the frames of the rMD simulations onto the plane spanned by the RMSD to na-

tive of the α and β domains, respectively. GBias(RMSDα,RMSDβ) shows that the

formation of the two foldons proceeds in a rather cooperative way, and the Native

state is formed once the β domain packs into the fully native α one.

Finally, to provide a direct comparison with experiments, we computed the kinetic

CD difference spectrum of the protein. At the beginning of this chapter we argued

that secondary structures don’t play a role in the definition of the signal, because

both the β and the α spectra are negative in the region of interest.

For this reason, the CD difference spectrum can be computed by simply taking

the difference between the Native and the I-Second signals, respectively signal in

Fig. (3.6) (c) and Fig. (3.7) (a). The results are reported in Fig. (3.9) (a). In spite

of a small 5 nm blue-shift, the computed signal quantitatively captures the shape

of the experimental one. The remarkable similarity between the experimental and

simulated results shows that the structures visited by the BF method represent a

good approximation of the experimental I-Second state. As reported in Fig. 3.9,

solid grey line, considering all the aromatic residues introduces a small intensity

correction in the region around ∼ 230 nm.
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Figure 3.11: Adapted with permission from [24]. Copyright 2018 American Chemical
Society. For all the harvested configurations, in presence and absence of disulphide bonds:
(a) Average RMSD to native; (b) average fraction of native contacts; (c) average radius
of gyration. (d) Average Cys-Cys distance for reduced disulphide bonds compared to the
average distance between bonded cysteins (∼ 2 Å).

3.3 Sensitivity Assessment

Even though the results in Fig. 3.9 are quite promising, the study of a single pro-

tein doesn’t provide much information about the sensitivity of the method. It is

of fundamental importance to understand whether our ab-initio method is sensible

enough to detect subtle modifications in the chemical composition of the protein. In

order to understand this, we applied our pipeline to a synthetic system: we reduced

the disulphide bonds (Cys30 - Cys115, Cys127 - Cys6, Cys94 - Cys76, Cys65-Cys80)

present in the crystallized protein (see Fig. 3.2 (b)), we generated new initial con-

ditions via high-temperature MD and used them as a starting point for our folding

calculations. Identically to the previous case, we generated an ensemble of 200 rMD

trajectories, which we projected on the plane spanned by the fraction of native con-

tacts and the RMSD to native. The plot of the new kinetic free energy landscape

Gno DB
bias (RMSDα,RMSDβ) is shown in Fig. 3.10. Fig. (3.10) and Fig. (3.3) are
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Figure 3.12: Putty representation of the protein crystal structure, colored using the B-
factors. B-factors have been computed as b(a) = 8π2MSF(a) [249], where MSF(a) is the
mean square fluctuation of residue a in the (a) I-Burst, (b) I-Second and (c) Native basin
in the absence of disulphide bonds.

(b)

0 1 2 3 4

(a)

Figure 3.13: (a) Kinetic free energy landscape of the synthetic version of the canine milk
lysozyme, where the disulphide bonds have been reduced, projected on the RMSD to native
of the α and β domains. The red arrows schematically indicate the main folding pathway
in this plane; (b) Kinetic difference CD spectrum, computed as the difference between the
Native and I-Second CD signals in the absence of disulphide bonds.
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very similar on a qualitative level. Indeed, both of them reveal the existence of four

long-lived states along the folding pathway: an Unfolded one, around Q ∼ 0.1 and

RMSD ∼ 4 nm, a broad region around Q ∼ 0.5 and RMSD ∼ 2 nm (I-Burst),

another intermediate state centered in Q ∼ 0.7 and RMSD ∼ 1 nm (I-Second) and

finally a Native state.

To understand the main difference between the states along the folding pathway in

presence and absence of disulphide bonds we computed the average RMSD to native,

the average radius of gyration, the average fraction of native contacts, the average

Cys-Cys distance and the RMSF and B-factors for all configurations harvested from

the two histograms. Results are summarized in Fig.s 3.11 and 3.12.

Unfolded and I-Burst states obtained in the simulations where disulphide

bonds have been reduced are very different from the ones computed in the pres-

ence of bonded cysteins. Indeed, the lack of five topological constraints allows the

protein to explore much more extended conformations during high temperature MD

simulations. This is also confirmed by the high B-factors reported in Fig. 3.12.

For what concerns the I-Second states, no clear differences emerge at the level of

structural compactness of the two proteins (see Fig. 3.11 (a) and (b)). However,

three main differences are evident by looking at Fig.s 3.11 (c) and (d), Fig. (3.4)

and Fig. 3.12: the couples Cys30-Cys115 and Cys6-Cys127 are always found at a

distance much bigger than 2Å, which is the reference distance for a disulphide bond,

and the α-domain is much more flexible than the β one in the absence of disulphide

bonds. Notably, these two cystein pairs are responsible, in the crystal structure,

for the packing of the C-terminal loop to the main protein body (see Fig. 3.2 (b)).

Furthemore, the fraction of native contacts in the reduced I-Second configuration

is higher with respect to the bonded I-Second, suggesting that the configurations

lacking disulphide bonds are more Native-like.

The absence of the five topological constraints introduces a key difference in the

protein’s folding pathway. While in the presence of disulphde bonds, the protein

formed the α and β foldons almost cooperatively, in the absence of those restraints

the β domain systematically forms before the α one, as it is clear from Fig. 3.13

(a), where we report the kinetic free energy landscape Gno DB
bias (RMSDα,RMSDβ).

This folding pathway is made possible by the absence of the Cys30-Cys115 and

Cys6-Cys127 bonds, which allow for a higher protein flexibility in the C-terminal

region. The three-dimensional structure of the I-Second state is thus dramatically

different with respect to the one in presence of disulphide bonds (compare Fig. 3.3

and 3.10), and this difference is reflected in kinetic CD difference spectrum computed

from the new I-Second and Native states, shown in Fig. (3.13) (b). Coherently

with the analyses we performed, the very low intensity and spectral shape of the
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Figure 3.14: (a) Crystal structure of IM7 protein (PDB code: 1CEI), together with the
standard nomenclature for its secondary structures; (b) Kinetic free energy profile obtained
by projecting the whole ensemble of rMD trajectories of IM7 protein onto the RMSD to
native of helix 1 and the fraction of native contacts Q. Low free energy regions reveal the
existence of metastable states. Protein structures represent conformations that have been
harvested from the minima, while markers dots, when present, represent their corresponding
location on the plot.

simulated kinetic CD difference signal suggest that the I-Second state in absence of

the disulphide-bonds is much more Native-like with respect to the one in presence

of such topological constraints.

To summarize, we can state that our pipeline is sensible to subtle changes in the

chemical modifications of the protein chain that alter its folding pathway. Indeed,

experiments have been conducted in the presence of disulphide bonds [32] and our

ab-initio algorithm confirms that the kinetic CD difference spectrum of a simulation

where the disulphide bonds have been reduced is not coherent with the experimental

result.

3.4 Application to the IM7 Protein

As a last application, we tested our ab-initio strategy on the IM7 protein, a small

four helix bundle belonging to the family of colicin immunity binding proteins of E.

Coli (see Fig. 3.14 (a)). The folding of this protein was studied in Ref. [26] using

the BF method, therefore in this section we will employ the data generated in that

work as an input for our quantum chemical part of the pipeline (for details about

the simulation setup, please refer to the original article [26]). This protein provides

a perfect additional test, as the CD spectrum in the near-UV region does not come
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(a) Native (b) Intermediate (c) Difference

Figure 3.15: CD spectra of IM7 computed as the average over all the harvested (a) Native
and (b) Intermediate configurations. Experimental curves are shown as green (native), red
and blue (intermediates) dotted lines. (c) Kinetic CD difference spectrum computed as
the difference between the Native and the Intermediate signals. In both (b) and (c), two
experimental curves are shown, corresponding to I54A and L53A/I54A.

from the coupling of tryprophans alone, but rather it comes from the interaction of

the only tryptophan in the protein (Trp75) with all the other aromatic residues [253].

The theoretical analysis in Ref. [26] resolved a metastable state in the folding

pathway of IM7, coherently with a wide experimental evidence [253, 254, 255, 256,

257, 258]. From the study it also emerged that the folding of the protein chain can

be followed by observing the degree of nativity of Helix 1 (see Fig. 3.14 (a)). Indeed,

coherently with previous studies [259, 260], Helix 1 should be already completed

in the intermediate state while the rest of the protein is not yet fully native. For

this reason, the intermediate should be visible by looking at the kinetic free energy

landscape along the fraction of native contacts Q and the RMSD to native of Helix

1, reported in Fig. 3.14 (b). It can be clearly seen that, as expected, a metastable

state emerges at RMSDH1 ∼ 0.1 nm and Q ∼ 0.6. Using the harvesting prescription

described in section 3.2.2, we selected from the Intermediate and the Native basins

a number of configurations sufficient to attain convergence of the CD signal.

As reference experimental data, we refer to the work in Ref. [253], where the

folding of IM7 was thoroughly studied by employing CD in both far- and near-UV

regions. Differently from the lysozyme case, however, comparison with experimental

data is not immediate. First of all, the native state of the protein, called IM7∗, is

tagged with a hexa-histidine tag. Secondarily, the intermediate state of IM7 doesn’t

live long enough to be detected by CD experiments. Thus, authors of Ref. [253]

proposed a set of mutations that selectively destabilize the native state in favor

of the intermediate one. In the following, we will postulate that the intermediate
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state obtained from BF simulations describes the experimental intermediate states

attained by Ile54Ala and Leu53Ala/Ile54Ala mutations4.

The experimental near-UV CD spectra are reported in Fig.s 3.15 (a) and (b) using

dotted green and grey curves. Native IM7∗ shows two negative peaks around λ ∼
270 nm and λ ∼ 295 nm, while both the selected intermediates show a substantial

negative absorbance in the 270 − 280 nm wavelength window. Our simulated CD

spectra are reported in Fig.s 3.15 (a) and (b) using solid black lines. CD curves

have been computed by taking into account the contributions from all the aromatic

residues in the protein. Our results for the native state average out the two negative

peaks and produce a single, large negative peak around 280 nm (see Fig. 3.15

(a)). The negative band around λ ∼ 280 nm of the intermediate states is also

predicted by our simulations (see Fig. 3.15 (b)). We stress that, despite the fact

that the two spectra (Native and Intermediate) look very similar, they are actually

sensibly different. This can be clearly seen by looking at the kinetic CD difference

spectrum in Fig. 3.15 (c). Our simulated spectra correctly identify the differences

between the Native and the Intermediate signals, predicting a signal which is almost

quantitatively compatible with the Ile54Ala experimental one. The main difference

between the measured and the computed CD signals resides in a ∼ 10 nm blue-shift,

which could be imputed to the lack of vibronic effects [261] but was nonetheless

similarly present in the case of lysozyme (see Fig. 3.9).

3.5 Chapter Conlusions

Circular dichorism is routinely being used to monitor the level of formation of sec-

ondary structures in a protein. The synergy between CD and stopped-flow appara-

tuses makes it possible to obtain information on the content of α-helices and β-sheets

while the folding process is happening. Unfortunately, CD data alone do not provide

information at atomic-level resolution, but rather a coarse-grained information about

the chain packing. In this chapter we discussed the fact that the CD signal coming

from aromatic residues provides a powerful probe of changes in the protein’s ter-

tiary structure and we showed that the combination of the BF method and quantum

chemical calculations yields an atomic-level interpretation of these modifications.

Our independent analyses of the canine milk lysozyme and IM7 protein confirm the

robustness and the accuracy of the proposed approach. Furthermore, the study of a

synthetic variant of canine milk lysozyme, where all the disulphide bonds have been

4This is a standard notation to describe protein mutations. For example, Ile54Ala (or I54A)

tells that isoleucine 54 has been mutated with an alanine. When two mutations are separated by a

"/" it means that they are both implemented in the same protein.
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reduced, confirms the high sensitivity of the method: even though the same number

of metastable states are detected, the corresponding CD signals do not match the

experimental observations.

Even if we report a quantitative accuracy against experimental results, it is still

worth noticing that the method shows some limitations. The first one comes of course

from the fact that the BF biasing scheme is applied to make the folding calculations

feasible. In particular, the bias force, presented in section 1.2, is determined a-priori

and might lead to systematic errors in the calculation of folding paths. A possibility

would be then to use the self-consistent path sampling algorithm (see section 1.3.2),

which iteratively optimizes the reaction coordinate. In the original paper [28], a

first attempt to fold the canine milk lysozyme with SCPS was proposed, showing

that the computational cost of simulating proteins that fold in the time scale of

seconds is still sustainable with small clusters. A second limitation comes from the

fact that our determination of intermediate states is reaction coordinate dependent.

This fact is clearly highlighted by the differences in the analyses of the canine milk

lysozyme and IM7 protein. Unfortunately, powerful dimensional reduction methods

such as MSMs or tICA cannot be trivially employed on BF data, because one of the

main assumptions of these methods, i.e. microscopic reversibility, is not satisfied.

Approaching to the problem using SCPS would be, once again, a possible solution

to the problem thanks to the relationship between the σ variable and the committor

function established in section 2.4.2. Indeed, the committor function would provide

an optimal reaction coordinate on which to project the data and select configurations

in an unbiased fashion.

A possible development of this methodology would be to couple it with ensemble

refinement methods [190, 262], which would help selecting the best configurations

compatible with experimental data. Therefore, a possible way to modify our ap-

proach would be the following: (i) simulate folding trajectories by means of SCPS;

(ii) use the strategy discussed in section 2.4.5 to relate σ to the committor function;

(iii) detect the existence of metastable states as plateau regions in the q(σ) function;

(iv) employ techniques borrowed from integrative structural biology (e.g. Maxim En-

tropy methods [190, 263, 264]) to select a-posteriori the best protein configurations

compatible with experimental data.

Still, without any further modifications, the method proposed here looks promis-

ing and its application should not be limited to proteins whose folding pathways are

already known. In the future, this kind of analysis could be employed to deal with

protein mutations and design, having the goal of determining the reaction mechanism

and identifying of metastable states along the folding pathway.
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Chapter 4

Case Study: Folding and

Misfolding of α1-Antitrypsin

Serpin (serine protease inhibitor) proteins constitute a superfamily of similar pro-

teins whose biological role is protease1 inhibition [265]. Serpins are widely known

because of their peculiar mechanism of action, in which their reactive center loop

is cleaved by the interaction with the target enzyme and the protein performs a

large conformational transition in order to kinetically trap the target [266]. These

proteins are known to fold to a metastable state, and finally reach their fully native

state only after making a transition to a biologically inhert state (latency transition)

[267]. Despite the advantages of the conformational transition mechanism with re-

spect to the usual competitive mechanism of proteases, serpins suffer from a wide

variety of pathological mutations [38, 39]. These mutations induce protein misfolding

and alter the secreted levels of secreted inhibitors, leading to severe diseases called

serpinopathies [268]. Being able to characterize with atomic detail how mutations

alter folding propensities of protein is a fundamental step in the quest for finding

therapeutical remedies against pathological conditions induced by misfolding.

In this chapter we will focus on α1-antitrypsin (A1AT), a serin protease in-

hibitor whose mutations result in the most common serpinopathies: A1AT deficien-

cies (A1ATD, [269]). A1AT is a 394 residue, single-domain protein composed by 3

beta sheets (from A to C in Fig. 4.1) and 9 helices (from A to I in Fig. 4.1), which sur-

round a β-sheet scaffold. The reactive center loop (RCL in Fig. 4.1) protrudes from

the main protein body and contains a breakable bond mediating A1AT inhibitory

specificity. A1AT is encoded by SERPINA1 gene [269] and it is one of the major

anti-protease molecule in humans. It is secreted in hepatocytes2 and transported

through the circulatory system in lungs, where it regulates the levels of neutrophil

1Enzymes that break peptide bonds in proteins.
2Liver cells
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Figure 4.1: Structure of A1AT (PDB code: 1QLP). Relevant structural elements have
been colored for clarity. Nomenclature of the secondary structure elements has been taken
from [273].

elastase [267]. SERPINA1 is a highly polymorphic gene: more than 150 mutations

have already been described [269]. The most common one is a single nucleotide

mutation that leads to a severely pathological A1AT variant, in which a glutamic

acid is substituted with a lysine (Glu342Lys, Fig. 4.2 (a) and (b)). The resulting

mutated protein is usually called Z-mutant. This mutant is known to fold into non-

native aberrant configurations, and results into the accumulation of A1AT in the

endoplasmatic reticulum of hepatocytes [270], causing cellular damage, like hepa-

tocellular carcinoma, and liver diseases, such as cirrhosis and hapatitis [271, 272].

A further effect of Z-mutant retention in hepatocytes is the lack of A1AT in the

circulating system, which leads to lung structure breakdown (emphysema) due to

aberrant concentration of neutrophil elastase [268].

In spite of the many experimental studies that have been conducted since the

’90s [270, 274, 275, 276, 277, 278], detailed structural information about misfolded

A1AT is still lacking, slowing down the research on possible ways to rescue the

folding process or to increase the propensity of misfolded states to be targeted for

degradation [279, 280, 281]. The reason why it is so difficult to determine the three-

dimensional structure of Z-mutant is its polymerization propensity [270, 282]. To

date, no wide consensus has been reached on the structure of the Z-mutant polymers.

The first polymerization model, model A, suggested that polymers can be created
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V264
K387

Y38

Figure 4.2: (a) Network of interactions formed around Glu342 in the WT protein; (b)
disruption of the interaction network around residue 342 after the Glu342Lys mutation; (c)
network of interactions around residue 264 after Glu264Val mutation. In both (b) and (c),
transparent sticks show the positions of the residues before the mutations.

(a) (b) (c)

Figure 4.3: Adapted by permission from Springer Nature: Macmillan Publisher Limited,
part of Springer Nature, Nature Review Disease Primers [269], Copyright 2016. The three
main polymerization models for Z-mutant: (a) reactive center loop of a protein inserts into
sheet A of another one, mimicking the completion of sheet A after the protein’s inhibitory
transition; (b) the β-hairpin formed by the RCL of a protein links to the sheet s5A of another
one; (c) a flexible linker formed by strands s1C, s4B and s5B inserts in the C-terminal region
of another protein.
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by the linkage between the RCL and β-sheet A [270] (see Fig. 4.3 (a)). Alternative

conformations where also proposed, suggesting either a model, model B, where the

linker is a β-hairpin formed by the RCL and strand 5A (see Fig. 4.3 (b)) or where,

model C, the linker is instead formed by the C-terminal β-hairpin (strands 4B and

5B) and s1C (see Fig. 4.3 (c)). Model A is supported by A1AT chemical denaturation

and refolding experiments [273] and by ion-mobility mass spectroscopy [283], while

model C is supported by SAXS data [284]. Model B is instead more typical of

other serpins, e.g. antithrombin [285] and indeed it was never observed in A1AT

experiments.

Z-mutant has a very high polymer formation rate, which is proportional the

destabilization effect induced on the protein by the mutation [286]. Other species,

with lower rate of polymer formation, thus less toxic, have also been studied. Among

those, the S-mutant (Glu264Val, Fig. 4.2 (a) and (c)) [287] results in a decrease of

circulating A1AT in blood and it is generally recognized as a mildly misfolding variant

[288].

To date, no definitive therapeutical strategy exists for A1ATD, and the only

clinical possibilities to tackle this condition are liver transplant [289] and A1AT aug-

mentation therapy [290]. While the former solves the problem at its core by replacing

all the liver cells in the patient, the latter proved to be effective in slowing down em-

physema progression [290, 291, 292]. The biggest issues with A1AT augmentation

therapy concern the dosage, which to date is still arbitrarily decided [269], and the

fact that it is a lifelong therapy that requires repeated infusions. New approaches are

currently under examination, although none of them has been approved for human

use so far [293, 294, 295]. We briefly summarize here some of the most promising

ones (not in numerical order):

1. SERPINA1 silencing proposes to prevent mutants secretion as a whole by

targeting the corresponding gene, with encouraging pre-clinical results [296].

Preventing all A1AT production, however, would increase lung damage, so this

therapy would need to be integrated with standard augmentation therapy;

2. Mutant degradation in cell can be carried out by enhancing cell autophagy3,

thus alleviating the presence of polymers and reducing liver damage [293, 294,

295]. Tests are still carried out to assess the optimal dose of autophagy-inducing

drugs, with however inconclusive results [269];

3. Inhibition of A1AT polymerization aims at stabilizing functional conform-

ers and reducing the polymerization propensity of A1AT mutants using small
3The process by which the cell can recycle organels. It is usually activated to remove damaged

components in the cytoplasm.
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molecules [297, 298, 299, 300, 301, 302, 303]. However, most the compounds

showed undesired behavior in further tests and it proved very difficult to devise

drugs for animal models [269];

4. Improvement of A1AT folding should be in principle possible by means of

chemical chaperons, and this approach would simultaneously benefit liver and

lungs. However, promising results on animal models [304] came to nothing on

a pilot clinical trial [305].

It is evident at this point that the lack of an atomic-level misfolded structure of

S- and Z-mutants is reducing the probability to find a possible therapeutic strategy

to cure A1ATD. In particular, approaches 3. and 4. would extremely benefit on

the knowledge of these structures. In previous chapters, we widely discussed the

attractive possibility to approach problems like this with molecular dynamics: in

principle, one would be interested in simulating the folding of A1AT and its variants

to assess the differences between the mutated species. However, we also conveyed

that for biological interesting proteins (except a few but relevant exceptions, e.g. Ref.

[306]) this is a hopeless effort, because of the problem of timescale decoupling. Serpins

makes no exception in this case: they are composed by ∼ 400 residues and need tens

of minutes to fold [274, 277, 278]. For this reason, in this last chapter we will rely on

the BF method to study the folding of A1AT and its mutated variants, in the quest

to provide useful atomic-level structures that might be useful for medical research.

The chapter is structured as follows: in section 4.1 we will discuss the details of the

simulation setup; section 4.2 is devoted to the discussion of the results of wild type

(WT, not mutated) A1AT folding; in section 4.3 we will discuss the folding of the two

pathogenic mutations Z and S and we will try and elucidate the reasons behind some

experimental evidences on these two protein variants by simulating the folding of

three suitable rescue mutations, namely Glu/Lys (Lys290Glu/Glu342Lys), Glu/Glu

(Lys290Glu/Glu342Lys) and Ser/Lys (Lys290Ser/Glu342Lys). Particular focus will

be given to the comparison with WT and experimental results; finally in section 4.4

we will draw some general conclusions on A1AT folding.

4.1 Simulation Setup

The reference structure of our BF calculations is the x-ray crystal structure of WT

A1AT [307] (PDB code: 1QLP). To our knowledge, the first 22 residues of all the

published A1AT crystal structures are disordered: for this reason, the sequence we

employed in our simulations starts from Phe23. From now on, the 1QLP structure

with the first 22 residues removed will be referred to as the WT native structure. As
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we anticipated at the beginning of this chapter, this A1AT state is only metastable.

However, the purpose of this chapter is such that no ambiguity between the biological

native state and the state used as a target for the BF simulations should emerge.

All the A1AT mutated variants were generated by means of the mutator function

in VMD [46]. After all the corresponding simulations were already completed, a crys-

tal structure of Z mutation was published (PDB code: 5IO1, [308]), indistinguishable

from the one we obtained by in silico mutation. Indeed, the RMSD between the two

structures is approximately ∼ 0.6Å, while no sensible difference emerges at the level

of contact maps.

For every A1AT species, the starting configurations of each BF simulation were

generated by running 1 ns MD at T = 1600 K with an integration timestep of

dt = 1 fs and subsequently relaxing the conformation corresponding to the last

frame for 10 ns at T = 300 K. This procedure permits us to sample the region of

conformation space corresponding to Q < 0.1, which we identify with the unfolded

state of the protein. From each initial condition, we ran 12 rMD simulations at

T = 300 K, each of them lasting 30 ns with and integration timestep of dt = 1 fs and a

ratchet constant of kR = 0.02 kJ/mol. All the rMD simulations were performed using

the Amber ff99SB-ILDN force field [142], thermostatted using the Bussi algorithm

[143] while solvation effects were taken into account by means of the Generalized

Born implicit solvation model implemented in Gromacs 4.5.2 [41].

Before we proceed and discuss the results of our simulations, we want to add an

important remark. In some BF trajectories, the final state of the simulation displays

spurious strand-crossings that are not present in the crystal structures. This should

not be imputed to protein mutations but rather to the intrinsic ambiguity of the

contact map that doesn’t sensibly change in presence of the cross-over. An example

is reported in appendix E.2.

Finally, we anticipate that, in the incoming sections, protein structures are col-

ored by foldon, where each foldon has been defined a posteriori after the simulations.

4.2 Folding of A1AT WT

We begin our investigation of A1AT by studying the folding pathway of WT. The

complexity of this protein makes it easier to understand the folding process by first

analyzing a typical folding trajectory, Fig. 4.4 (a), and then by looking at the

global folding landscape emerging from all the simulations, Fig. 4.4 (b). Folding

starts by forming local foldons (Fig. 4.4 (a), stage 1) and then progresses through

the formation of interactions between amino acids at the top of strand 5A and 6A

and the ones in the B-C barrell (Fig.4.4 (a), stage 2). In particular, in this stage
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Figure 4.4: (a) Typical successfull WT folding pathway, described by the evolution of its
radius of gyration, Rg, as a function of the fraction of native contacts, Q. The structures
represent snapshots of the folding trajectory; (b) kinetic free energy landscape obtained by
projecting all the WT folding simulations on the plane defined by the fraction of native
contacts Q and the RMSD to native. For each kinetic free energy minimum, an ensem-
ble of representative structures is shown, which was obtained by following the harvesting
prescription described in section 3.2.2.

Glu342 and Thr203 form an hydrogen bond, while Pro289, Met220 and Met221 form

a network of VdW interactions (see Fig. 4.5). At this point, the loop at the top of
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Figure 4.5: Close up of the interactions formed in stage 2 of Fig. 4.4 between (a) Thr203
and Glu342 and (b) Met220, Met221 and Pro289.

strand 3A interacts in a non-native fashion with β-strands 2B and 3B, preventing in

this way the docking of strands that form sheet A and also preventing the correct

positioning of the B-C barrell (Fig. 4.4 (a), stage 3). The rupture of the non-native

contacts finally permits the positioning of B-C barrell and the formation of sheet A

(Fig. 4.4 (a), stage 4). In the last stages of folding, the C-terminal hairpin and the

N-terminal helices are still solvent exposed: folding completes by docking first the

C-terminal hairpin to strands 1B-3B (Fig. 4.4 (a), stage 5) and finally packing the

N-terminal helices to the back of the A strands (Fig. 4.4 (a), stage 6).

Let us focus now on the patterns emerging from the projection of all the folding

trajectories on the fraction of native contacts Q and the RMSD to native (see Fig.

4.4 (b)). The predicted metastable states in Fig. 4.4 (b), identified as low kinetic

free energy regions, are coherent with the inspection of the Rg graph in Fig. 4.4 (a),

and provide a visual representation of the structural heterogeneity inside each state.

The main difference between the representations in Fig. 4.4 (a) and (b) is provided

by state 4 in Fig. 4.4 (b). The transition 4→5 represents a sub-dominant pathway

where the B-C barrel consolidates as a last part of folding. A main prediction

of the BF method is thus that the folding pathway of WT A1AT systematically

progresses by docking foldons, which are formed in the early stages of the simulation,

in a predetermined order. Furthermore, folding progresses along a single dominant

pathway, summarized as follows: (i) formation of local foldons; (ii) development of

non-native interactions between foldons; (iii) completion of sheet A while N- and

C-terminal regions of the protein remain solvent-exposed; (iv) docking of C-terminal

β-hairpin; (v) packing of N-terminal helices.
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Figure 4.6: SASA of Trp194, Trp238 and the Trp194-Tyr244 distance computed along the
WT folding simulations as a function of the fraction of native contacts Q.

4.2.1 Comparison with Experiments

BF results on the folding of WT A1AT qualitatively agree with several experimental

findings. First of all, the docking of C- and N-terminal regions has been studied

through fragment complementation [276], showing that a fragment containing the

C-terminal β-hairpin docks the N-terminal helices fragment only in presence of sheet

s5A. This is coherent with the results of the BF calculation, predicting that the

C-terminus is incorporated into the protein only after the formation of sheet A has

been completed. This is also coherent with kinetic refolding experiments monitored

by hydrogen/deuterium exchange, which concluded that s5A and s4B are among the

last regions to lose solvent exposure [277, 278].

Extensive experimental research has also been carried out to understand why the

folding of A1AT needs to pass through its metastable (biologically active) state before

reaching the native (latent) state [277, 278]. These studies revealed that insertion of

the RCL into sheet A in early stages of folding is prevented. This is the result of two

complementary effects: on the one hand, the B-C barrell forms early during folding

and anchors the RCL into a solvent-exposed configuration; on the other hand the

fast hydrophobic collapse of sheet A hinders the insertion of the RCL between s3A

and s5A. These results agree with our BF simulations, where the B-C barrell and

sheet A form cooperatively, so that the RCL remains solvent exposed throughout the

whole simulation. One has to notice, however, that the insertion of the RCL between

sheets s3A and s5A is by no means expected to happen in our BF simulations, as this
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information is not encoded in the reference contact map C0. Nevertheless, the way

in which BF folding progresses is coherent with experimental observations reported

in Ref.s [277, 278].

Another observable which is suitable to be experimentally monitored is the dis-

tance between cysteins that form disulphide bonds. Unfortunately, A1AT contains

only a single cysteine, but other serpins have been studied (ovalbumin and antithrom-

bin III) that form a disulphide bond once the N-terminal packs to the protein’s main

body. In these experiments [309, 310] it was shown that the N-terminal disulphide

bond forms only after the docking of the C-terminal hairpin. BF simulations thus

provide a testable explanation for these experimental results, predicting that oval-

bumin, antithrombin III and A1AT serpins share the subsequent docking of C- and

N-terminal regions as the last step in their folding pathway.

A1AT contains two tryptophans: Trp238, located in strand B and Trp194 found

in the breach region. Equilibrium unfolding studies of WT show that Trp194 per-

forms two transitions, a native-to-intermediate and an intermediate-to-unfolded one,

while Trp238 displays a single, broad transition [311]. Trp194 fluorescence studies

also reported that WT refolding progresses at least through three phases: a fast col-

lapse (∼ 50 ms), a slower transition (∼ 500 ms) and an ultra-long phase (hundreds

of seconds) [274]. It is known that the two main sources that can alter Trp194 flu-

orescence are solvent accessibility and quenching by Tyr244 [312]. These effects can

be monitored in our BF simulations too, by computing Trp194 and Trp238 solvent

accessible surface areas (SASA) and Tyr244-Trp194 distance. Results are reported

in Fig. (4.6) (a): SASA values have been computed using the Shrake-Rupley algo-

rithm implemented in MDTraj 1.9.0 [313, 42], setting a radius of 0.144 nm and 100

sphere points. Coherently with experimental results, Tyr244-Trp194 distance shows

two transitions: the first one corresponds to the formation of the local foldons (Fig.s

4.4 (a) stage 1, and (b) basin 1) while the second one occurs during the docking of

sheet A to the B-C barrel (Fig.s 4.4 (a) stage 3, and (b) basin 2). Trp238 SASA

shows a globally decreasing behavior, qualitatively consistent with the experimental

evidence of a single broad transition. Instead, Trp194 SASA does not show the three

distinct phases observed in equilibrium unfolding experiments, but rather it performs

a single and rapid drop around Q ∼ 0.55. Looking at Fig. (4.6) one can notice that

Trp194 reaches its native SASA during the sheet A and B-C barrel docking: this

means that our simulations are probably missing some subtle effect around Trp194

in the early stages of folding. It is rather difficult to understand what kind of effect

are we neglecting, but the fact that Tyr244-Trp194 distance is correctly captured

might suggest that the process we are ignoring is indeed subtle and has no global

repercussions on folding.
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S

Figure 4.7: Biased probability densities P (Q) of the fraction of native contacts sampled
by the folding and misfolding BF simulations of the five different A1AT variants. For each
variant, N simulations were available and the histograms were computed using all the frames
of each trajectory. The green distribution, representing WT, is shown as a background in
each graph and dark shaded regions represent the overlap between the histograms.

During the writing of the reference article, Ref. [25], a paper was published

on the folding of A1AT using a Structure Based (Gō) Model [314, 315, 316] (for

applications of Gō models on protein folding see Ref.s [317, 318]). Because of the

fundamental differences between the two implemented models (i.e. on the one hand a

room-temperature all-atom biased simulation and on the other hand a coarse-grained

high-temperature one) it is very difficult to compare the results of the two studies,

which however broadly agree on several conclusions.

4.3 Folding of A1AT Mutants

After discussing the folding of WT, let us focus on the differences emerging between

the folding pathways of WT and its mutations.

4.3.1 Native Contact Probability

As stated at the beginning of this chapter, Z and S mutants of A1AT result in

pathogenic conformations because of their misfolding propensity [270, 288]. To un-

derstand if BF simulations allow us to see any evidence of an increased misfolding

propensity induced by mutations, we considered this simple argument: to a higher

misfolding propensity it must correspond a smaller probability to populate high val-

ues of the fraction of native contacts. With this in mind, we simulated an ensemble
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of trajectories for S and Z and used them to compute the histograms Pvariant(Q),

corresponding to the probability, in the presence of the biasing force, to populate

a given value of the fraction of native contacts Q. Results for WT, Z and S and

are reported in Fig.s 4.7 (a) and (b). The comparison between PWT(Q) and PZ(Q)

immediately reveals that Z mutant is sistematically less able to populate high values

of Q, which is a strong measure of its misfolding propensity and thus its pathological

activity. The statistical significance of this statement can be assessed by performing

a two-sample Kolmogorov-Smirnov test [319], a non-parametric statistical test that

assumes as its null hypothesis that the values of Q obtained from the simulations

of WT and Z are sampled from the same distribution (see details in appendix E.1).

In all our tests, we rejected the null hypothesis with a p-value p < 2 × 10−16, thus

confirming our assumption that PWT(Q) and PZ(Q) are statistically independent.

The reason why Z-mutant shows such inability to populate high values of Q should

be looked for in the nature of the mutation. As reported in Fig. 4.2 (a) and (b), the

substitution of Glu342 with a lysine destroys a robust network of hydrogen-bonds

and electrostatic interactions at the top of sheet A. In section 4.2 we noticed that,

in WT, the formation of sheet A and the B-C barrel occur cooperatively and at the

early stages of the folding pathway. If the breach region cannot be stabilized because

of the lack of the salt-bridge Glu342-Lys290, which is replaced by a Lys342-Lys290

charge repulsion and steric hindrance, then the formation of the B-C barrell incurs

in problems as well (because the non-native interaction between strand 5/6A and

B-C barrell cannot be formed) leading to the final state where β-sheets are poorly

formed and the protein is misfolded. We will go back to this point in section 4.3.2,

when we will discuss the kinetic free energy landscape of Z and the other mutations.

For what concerns the more benign S-mutant instead, we see thath PS(Q) shows

a much more WT-like distribution, and populates high values of Q. This again

correlates very well with experimental results and with the mildly toxic behavior of

S mutation.

It is experimentally well known [320] that misfolding induced by Z mutation can

be rescued by applying another mutation (rescue mutation), Lys290Glu/Glu342Lys

(Glu/Lys). This mutation substitues Lys290 with another Glu thus restoring the

original salt-bridge but in a reversed order. We simulated an esemble of folding

pathways of this mutated variant of A1AT and, consistently with experimental evi-

dence, we obtained a PGlu/Lys(Q) distribution which is WT-like (Fig. 4.7 (c)).

In principle, Glu342Lys mutation produces two separate contributions that hin-

der the correct folding of the chain: an electrostatic one, coming from the breakage

of the Glu342-Lys290 salt-bridge, and a steric one due to the higher side-chain length

of lysine with respect to the one of glutamic acid. A possible way to test the relative
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importance of these two contributions is to leave Glu342 in place and mutate Lys290

with another glutamic acid: Lys290Glu (Glu/Glu). This mutation preserves the

electrostatic repulsion already present in Z-mutant but reduces the steric hindrance

coming from the length of lysine side-chain. Notably, our BF folding simulations

of Glu/Glu predict a PGlu/Glu(Q) that correlates very well with PWT(Q) (Fig. 4.7

(d)). This is coherent with cellular studies reporting a ∼ 20% secretion efficiency

for Z and a ∼ 75% secretion efficiency for Glu/Glu compared with WT one [321].

Glu/Glu can thus be considered as another rescue mutation for Z.

Mutation Glu342Lys/Lys290Ser (Lys/Ser) provides an independent test of this

hypothesis, as it further alleviates steric clashes. Again, BF simulations predicts

Lys/Ser to be again a rescue mutation, because of its distribution PLys/Ser(Q) that

is more native like than Z-like (Fig. 4.7 (e)).

The substitution of a salt-bridge with an electrostatic repulsion has always been

advocated as the reason behind the misfolding propensity of Z-mutant [276]. To our

knowledge, this fact was not thoroughly tested, neither experimentally nor theoret-

ically. Indeed, our results on rescue mutations suggest that electrostatic repulsion

coming from the Lys342-Lys290 interaction does not play a main role in the misfold-

ing of Z-mutant. Rather the key effect comes from the steric hindrance introduced

by the different length between Lys and Glu sidechains. This is a strong but testable

statement that can be experimentally assessed through protein mutagenesis and in-

vitro refolding experiments.

4.3.2 Insight on the Folding Pathways

Further insight on the differences in the reactive mechanism between WT and its

pathological mutations can be obtained by comparing their kinetic free energy land-

scapes. Results are reported in Fig. 4.8 - 4.12.

Z-mutant

As already evident from PZ(Q) shown in Fig. 4.7 (a), Z mutant is systematically

less able than WT to populate highly native conformations. In particular, none of

the Z trajectories reached the fully folded state, but rather they got stuck in states

with Q < 0.8 and RMSD > 1 nm. The most native-like structures reached by Z

trajectories do not correctly form the B sheet, leaving part of it solvent exposed

(Fig. 4.8, basin 5), but the more populated basin 4 suggests that most of the

configurations remain stuck in much more unfolded states (RMSD ∼ 2 nm). Indeed,

structures in basin 4 in Fig. 4.8 show the inability of Z to correcly form sheets A

and B. This suggests that Z trajectories early diverge from WT ones during folding

by hindering the stabilization of β-sheet A.
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Figure 4.8: Kinetic free energy landscape of Z-mutant, together with ensembles of repre-
sentative configurations extracted from the predicted metastable regions.

1 2

3

4

0 1 2 3 4 5 6 7

5

6

Figure 4.9: Kinetic free energy landscape of S-mutant, together with ensembles of repre-
sentative configurations extracted from the predicted metastable regions.
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Figure 4.10: Kinetic free energy landscape of Lys290Ser/Glu342Lys mutant, together with
ensembles of representative configurations extracted from the predicted metastable regions.
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Figure 4.11: Kinetic free energy landscape of Lys290Glu/Glu342Lys mutant, together with
ensembles of representative configurations extracted from the predicted metastable regions.
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Figure 4.12: Kinetic free energy landscape of Lys290Glu mutant, together with ensembles
of representative configurations extracted from the predicted metastable regions.

(a) (b)

Figure 4.13: (a) Lowest energy conformer of Z-mutant, harvested from basin 4 in Fig. 4.8
(b). Color scheme of the protein is chosen to make it easier to compare it with Fig. 4.3; (b)
far-UV circular dichroism spectra of the native state of Z (orange curve), the unfolded states
(green curve) and the average spectrum of the states in basin 4. Shaded regions represent
the standard deviation. All the signals have been obtained using the PDB2CD webserver
[213].
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It is experimentally well known that the polymerization prone state of Z mutant

is partially folded [322, 323]. As we widely discussed at the beginning of this chapter,

the detailed conformational properties of the chain are still reason of debate (see Fig.

4.3 and Ref.s [273, 283, 284, 285]). BF simulations should in principle be able to

provide a potential candidate for the polymerization prone state of Z-mutant. Here

we propose as a model the ensemble of conformations harvested from basin 4 in Fig.

4.8. In Fig. 4.13 (a) we show the lowest energy conformer extracted from that basin,

which shows a partially malformed β-sheet A, an incomplete and un-docked B-C

barrell and solvent exposed C-terminal β hairpin and s1C strand. This conformation

is coherent with the polymerization model C in Fig. 4.3 (c), where the hairpin

formed by s4B and s5B, connected to the protein main body through s1C, is used

as an anchor to dock the adjacent misfolded protein. Because of its polymerization

prone nature, structural information about Z-mutant are very poor, so it difficult to

validate our model against robust data. Nonetheless we can try to understand if our

ensemble of Z misfolded structures is coherent with two experimentally determined

properties: (i) the polimerization-prone structure of Z is not globally unfolded, but

rather partially folded [270]; (ii) its collisional cross-section (CCS), measured by ion

mobility mass spectroscopy [324, 325], is 118 ± 17% higher then the native CCS.

To address the first property, we used an empirical algorithm to predict the far-UV

circular dichorism spectrum [213] of the misfolded Z ensemble: Our results, reported

in Fig. 4.13 (b) show that the CD signal is more typical of folded proteins than

a random coil. We also computed an estimation of the CCS of the misfolded Z

ensemble using IMPACT [325], obtaining a CCS 137 ± 4% higher than the native

one. Both our results are consistent with experimental expectations and we can thus

conclude that BF simulations predicted Z-mutant configurations compatible with

general experimental properties of the misfolded chain.

S-mutant

In evident contrast with the results on Z-mutant, the kinetic free energy landscape

of the mildly pathogenic mutation S is much more WT like (see Fig. 4.9). Notably,

many trajectories are able to reach the fully native structures, as it can be seen from

Fig. 4.9, basin 6. The main difference between S and WT folding pathways can

be found in the docking order of N- and C-termini: in S, N-terminal helices pack

before the docking of the C-terminal β-hairpin. A possible explanation of this fact

resides in the lack of Glu264-Lys387 salt bridge, which is present in WT and it is

destroyed by the Glu256Val mutation (see Fig. 4.2 (c)). In WT, this salt-bridge links

helix G with the C-terminal hairpin, helping to anticipate the docking of the latter

before the packing of N-terminal helices. The absence of Glu264 also breaks the WT
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hydrogen bond with Tyr38 (see Fig. 4.2 (c) and Ref. [288]). The breakage of both

the salt-bridge and the important Glu264-Tyr38 hydrogen bond makes it easier for

the C-terminus to fit the protein also after the N-terminus has already packed.

For what concerns S-mutant misfolding, in our simulations it seems due to a

high barrier separating basin 4 from basin 6. In 4, a failure in correctly positioning

the B-C barrell (see Fig. 4.9) hinders the docking of the C-terminus and partly

sequesters the RCL, reducing its solvent exposure. The reduced SASA of the RCL

would explain the reduced biological activity of S-mutant. Moreover, the interesting

difference with Z-mutant misfolded conformation is that, in basin 4 of S, s1C is

correctly formed and it is not free to move like in the Z conformer in Fig. (4.13) (a).

A possible effect of this is the reduced mobility of the anchor formed by C-terminal

hairpin and thus a reduced polymerization efficiency. Moreover, the barrier limiting

4→6 transition should be high enough to compete with the polymerization process.

All these facts together would provide an atomic level explanation of the observations

that S-mutant: (i) polymerizes (C-terminus is solvent exposed and can be used to

dock an adjacent misfolded protein); (ii) is less efficient in polymerizing than Z (the

anchor is much less mobile); (iii) is less toxic than Z (because part of the secreted

proteins are actually able to reach the folded state) [268, 323].

Unfortunately, experimental information about the misfolding of S-mutant is

very poor, as most of the research is carried out on its more pathogenic relative, Z-

mutant. Therefore, our statement is nothing but an interpretation of our simulation

data. To make our conclusions testable, one could in principle estimate the transition

rate k4→6 by means of the TPT-based algorithm presented in chapter 2, measure

experimentally the rate of polymer formation [269] and compare them.

Rescue mutants

Besides slight differences in the kinetic free energy landscapes, the folding pathways of

Ser/Lys and Glu/Lys and Glu/Glu look very similar to the S one (see, respectively,

Fig.s 4.10, 4.11 and 4.12). In particular, the last steps in folding always involve

the packing of N-terminal helices followed by docking of the C-terminal β-hairpin.

Conversely to S, the reason behind the difference in the order of foldons packing

between rescue mutants and WT is not completely clear. Notable differences with

respect to S folding pathway appear at early stages in the Ser/Lys mutant folding,

where the formation of sheet A and the B-C barrel looks not cooperative, or at very

late stages in folding of Glu/Glu, which never reaches a fully folded state leaving the

C-terminal hairpin solvent exposed, and of Glu/Lys, which either fails in docking the

C-terminus or shows defects in the formation of sheet C. All these results show that,

while rescue mutations are able to dramatically reduce the misfolding propensity
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(a) (b)

Figure 4.14: (A) Distribution of the self-similarity coefficient for all the A1AT variants.
(B) Distribution of the cross-similarity coefficient between WT and the other A1AT mutants,
compared against WT self-similarity. In both figures, the dashed vertical curve represents
the value of self-similarity obtained by a pseudo-random sequence of contact formations.

(b)(a)

Figure 4.15: (a) Heavy atoms contact map of native WT, computed using Eq. (1.26); (b)
difference between the heavy atoms contact maps of WT and Z. In both pictures, the red
box shows the location around Glu342.

of Z, the network of hydrogen bonding and electrostatic interactions mediated by

Glu342 formed at the top of sheet A is key to provide a fully formed native state.

4.3.3 Order of Contact Formation

From the analysis based on the kinetic free energy profiles, it emerges that rescue

mutations are able to lead to highly native configurations. However, Fig.s 4.4, 4.10,

4.11 and 4.12 also show that the original WT folding pathway is not restored after

rescue mutations. Path similarity, introduced in section 1.5.2, can help quantify how

much the folding pathways of the different A1AT variants deviate from the WT one.

The self-similarities of all the A1AT simulated variants are shown in Fig. 4.14

(a), while cross-similarities are reported in Fig. 4.14 (b). Notably, all the self-
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similarities are peaked around s ∼ 0.75: this is a strong indicator that the folding of

all the protein variants progresses along a single, preferential route [144, 23], which

might however be different for the different species. This result is consistent with the

previous kinetic free energy analysis. Cross-similarities, instead, differ significantly.

WT and S pathways are similar pWT(s) ∼ pWT-S(s), while strong differences emerge

between WT and Z and WT and Ser/Lys. A strong similarity between S and WT

folding pathway might result as unexpected because of the different N- and C-termini

docking order, but it is due to the fact that the early stages of the folding pathway

occur in a consistent way, with the cooperative formation of sheet A and the B-C

barrel. Strong differences between WT and Z folding pathways were instead revealed

in advance by the analysis of the kinetic free energy profiles, as well as the differ-

ences between WT and Lys/Ser. Indeed, the former are due to the high misfolding

propensity of Z which disrupts an important contact network at the top of β-sheet

A (see Fig. 4.2 (b)) and prevents the protein chain to reach the native conforma-

tion. The latter, instead, come from the non-cooperative formation of sheet A and

the B-C barrel. The remaining mutations show intermediate cross-similarities, with

pWT-Glu/Glu(s) peaked around s ∼ 0.6 and pWT-Glu/Lys(s) loosely broadened around

the same value.

Some final important comments are in order here. Point mutations do not sig-

nificantly alter the contact map of the WT native state. This is exemplified by Fig.

(4.15), where we show in (a) the WT native contact map and in (b) the difference

between the native WT contact map and the Z native contact map. The red boxes

in both Fig.s 4.15 (a) and (b) enclose the region around Glu342, which is the residue

mutated in Z. As expected, the mutation locally changes the network of interac-

tions around that glutamic acid, but apart from these modifications the two contact

maps are indistinguishable4. This means that the collective variable used to bias the

simulations, given by

z(X) = ||C(X)− C0||2 (4.1)

is substantially identical for every protein variants because C0
WT ' C0

mutants. Thus,

all the differences in the folding pathways emerge as a result of the physical force field

and and seem to be unrelated to the introduction of a non-physical biasing force.

4Some collateral and less intense differences are anyway present, and are mostly due to small

changes induced by the further energy minimization step required after applying the in silico mu-

tation.
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4.4 Chapter Conclusions

In this chapter we focused on the study of folding and misfolding of A1AT, a protein

belonging to the serpin family whose mutations are associated to sever diseases. Our

simulations were based on the BF method described in section 1.2 and provided a

coherent and experimentally reasonable picture of the folding and misfolding of this

protein. In particular, we realized that folding proceeds by the formation of stable

foldons that dock in a predefined order along a main folding pathway. The conforma-

tional change that concludes the folding process is the ordered docking, respectively,

of the C- and N-terminal regions to the main protein body. This is supported by

numerous experimental observations [274, 275, 276, 278, 309, 311, 320, 321], and

the atomically detailed results of our simulations provide further predictions that

can be tested in a wet laboratory. We put particular emphasis in the discussion

of the misfolding propensity of mutation Glu342Lys, called Z-mutant. Coherently

with experimental evidence, our simulations show that Z-mutant folding pathway

deviates very soon from the WT one, leading the protein to a polymerization prone

state. In this configuration, a flexible linker formed by the C-terminal β-hairpin and

strand s1C remains solvent exposed, coherently with one of the models presented

in literature [284]. The all-atom structure extracted from our simulations can be

used in princple to aid the development of therapeutical strategies that focus on the

degradation of mutants in cell [293, 294, 295] or the inhibition of A1AT polymer-

ization [297, 298, 299, 300, 301, 302, 303]. Misfolding of S-mutant, instead, occurs

late along the folding pathway and allows to reach more compact conformations,

consistently with a reduced toxicity compared to Z-mutant [288]. Finally, the study

of rescue mutations allowed us to question the common paradigm under which elec-

trostatic repulsion between Lys290 and Lys342 plays a key role in Z-misfolding [276].

Simulation data suggest instead that the main actor in Z-mutant misfolding is the

steric hindrance introduced by the increased side-chain length of residue 342 in the

Glu342Lys mutation. This is a new prediction of our model and can be validated by

in-vitro studies of the proposed rescue mutations.

Overall, aggregated data show a consistent folding and misfolding picture that

can be systematically assessed through experiments. However, it is worth discussing

some weak points emerging from our analysis. First of all, our folding simulations

are conducted biasing along a pre-determined reaction coordinate, which might be

sub-optimal and might lead to systematic errors in our interpretation of the process.

Because of the dimension and the typical folding time scale of the protein (∼ 400

amino acids and ∼ 10 minutes folding time) it is impossible to validate our results

against bare MD trajectories or replicate them using different enhanced sampling
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techniques (see the discussion in section 1.1). A possibility would be then to use

self-consistent path sampling (see chapter 1 and Ref. [28]) to optimize the reaction

coordinate and obtain even more reliable results. In practice this would be possible

because, in terms of computational workload, each SCPS iteration performs as good

as an rMD simulation. Furthermore, studies performed to date suggest that typically

3-4 iterations may be sufficient to reach convergence. The use of SCPS would also

help in defining an optimal reaction coordinate on which to project the configura-

tions. Indeed, the relationship discussed in section 2.4.2 between σ collective variable

and the committor function would be extremely helpful in elucidating the reaction

mechanism in a quantitative fashion.

A final concern regards the use of an implicit solvation method in our simula-

tions. Even though increasing evidence supports the idea that BF method performs

reasonably good in implicit solvent (see for example chapter 3 and Ref.s [24] and

[26]), it would be important to test the validity of our conclusions by repeating

folding and misfolding simulations in the presence of explicit solvent molecules. In

particular, long range interactions are more carefully taken into account in explicit

solvent models, providing an ideal and conclusive testing ground to assess the role

of electrostatic repulsion in the misfolding of Z-mutant.
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Molecular dynamics has gone a long way since its first application by McCammon,

Gelin and Karplus in 1977 [326]. From there on, an ever increasing amount of

biological systems has been chracterized using molecular simulations, ranging from

proteins [327] to RNA [328]. This resounding growth has been possible thanks to

widespread free and scalable softwares [48, 49, 51, 50] and to the development of

increasingly accurate force fields [191, 193, 194, 195]. Still, the problem of time scale

inaccessibility survives, especially for complex phenomena like protein folding [58].

Indeed, the folding of most of the biologically relevant proteins is still far out of reach

for modern high performance computing facilities. Neither hardware advancements,

such as special purpose supercomputers [9] and de-localized cloud infrastructures [8],

nor intense theoretical studies, culminated in the development of enhanced sampling

techniques [15, 20, 56, 57, 58, 59, 60, 61, 62], were able to provide an ultimate answer

to this problem. Millisecond folding simulations are still not routine for the majority

of the laboratories.

The main goal of this manuscript was to build a framework within which folding

simulations of medium sized proteins become feasible without requiring extended

computational resources. The main ingredient behind this scheme is the Bias Func-

tional (BF) method [23], an enhanced sampling method that proved to be effective

in studying proteins with folding timescales above hundreds of milliseconds. The

manuscript was structured in two main parts: in the first two chapters we proposed

two main theoretical advancements of the BF method, aiming at solving its main

drawbacks [28, 29]; the second two chapters were instead dedicated to the application

of the BF method to two average-sized proteins [24, 25].

In the first chapter we presented the theory behind the BF method, with great

focus on its qualities and drawbacks. In particular, we realized a fundamental lim-

itation of the approach: this algorithm employs a predefined reaction coordinate

to bias the folding dynamics towards the protein’s native state. Given the nature

of the method, a sub-optimal choice of such reaction coordinate might lead to the

computation of highly unlikely reaction pathways. To overcome this limitation, in

this chapter we developed and presented the self-consistent path sampling (SCPS)
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algorithm. The latter does not rely on any specific choice of reaction coordinate, but

rather it iteratively optimizes a guess collective variable within a mean-field approx-

imation. We proved the performance of this algorithm on a 2-dimensional toy model

and on a standard benchmark protein, the WW-domain of FIP35. In both the cases,

we concluded that the performances of SCPS were superior to the ones of rMD and,

most importantly, in accordance with the results of unbiased MD simulations.

The second chapter was devoted instead to the solution of a main problem

shared by the BF method and SCPS. The introduction in the dynamics of a history-

dependent bias force breaks microscopic reversibility, so that nor BF neither SCPS

simulations can be employed to recover kinetic information on the reactive process.

To solve this problem, we proved the existence of a connection between SCPS and

Transition Path Theory (TPT) [30, 31]. This connection was established through two

main steps: the first step required to define a time range (the steady current regime)

within which short and non-ergodic simulations can be employed to approximate

the results of TPT; in the second step we proved that the collective variables of

SCPS are strongly related to the committor function and that the average path

resulting from the converged self-consistent calculation is a mean-field approximation

of a principal curve. Finally, we developed two possible strategies to employ the

committor to sample the transition path ensemble. The whole machinery was tested

on a 2-dimensional toy model, with promising results.

The first two chapters provide the main theoretical contributions of this manuscript.

In particular, the second chapter proposes a general pipeline to start from a crystal

structure of a protein and obtain all the TPT observables corresponding to the fold-

ing process. In principle, this pipeline should be applicable to medium-sized proteins

even with limited computational resources, because all the required simulations are

performed using rMD. Extensive testing is however still needed: in particular, SCPS

has yet to be investigated in the presence of explicit solvent molecules, while the full

pipeline still needs to be applied to the folding of a protein and accurately analyzed.

Future works on this subject will go in the direction of trying and closing this gap

between theory, hopefully providing robust proof of principles.

The second part of the manuscript was dedicated to two applications of the BF

method to medium-sized proteins. The third chapter focused on the possibility to

use the BF method to enhance experimental sensitivity. In particular, we proved that

the synergy of BF folding simulations, quantum chemical calculations and experi-

mental data obtained from near-UV circular dichroism (CD) can help elucidate the

atomic level conformations of the folding intermediates of the canine milk lysozyme

and IM7 protein. In this chapter we developed a scheme to extract relevant con-

formations from the BF simulations and compute the near-UV signal coming from
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these structures using ab-initio quantum chemical methods. Finally, the simulated

signals were compared against the experimental ones to retroactively assess the qual-

ity of the atomic-level configurations. In both the cases, we noticed a quantitative

agreement of the simulated spectra with the experimental ones.

The fourth and final chapter focused on a case study, alpha-1 antitrypsin. This

protein belongs to the family of serin protease inhibitors (serpins), and its inhibitory

mechanism amounts for a complex conformational transition. Its biological function

can be altered by several mutations, some of which lead to protein misfolding and

consequent severe pathologies, e.g. lung emphysema and hepatic cirrhosis. In this

final part of the manuscript we used the BF method to study the folding of the wild

type (WT) protein and two of its most common pathological mutations: Z and S. We

realized that the folding of WT occurs along a main single pathway, where foldons

are formed early in the conformational reaction and then dock in a predefined order.

In particular, one of our main predictions is that the N-terminal group of helices

docks to the main protein body only after the C-terminal β-hairpin has reached its

native conformation. The study of the two mutations revealed to be coherent with

experimental expectations: misfolding of Z-mutant occurs early in the simulations

and all the trajectories get stuck in a highly aberrant conformation; S-mutant, in-

stead, misfolds late and is able to reach more native conformations and misfolds,

coherently with its reduced toxicity with respect to Z. Notably, BF simulations pre-

dict an all-atom conformation of misfolded Z-mutant which is coherent with SAXS

data. Finally, we also studied the so-called rescue mutations of Z, i.e. mutations

expected to restore the folding capability of Z-mutant. The main conclusion of these

studies was that, contrary to previous assumptions, the role of electrostatic repulsion

in Z-mutation is sub-dominant with respect to the steric one.

The last two chapters show two practical examples of the application to realistic

cases of the BF method. In both the studies, comparison with experimental data

has always been the main focus. Our analyses always provided at least qualitative,

sometimes also quantitative, agreement with pre-existent literature on the subjects.

Still, the methodologies presented here need to be further refined: in particular, the

choice of the collective variables employed in the study of the processes of interests

needs to be taken in an unsupervised fashion. In chapters one and two we proposed

a strategy to overcome this limitation: if BF simulations are further optimized using

SCPS, we can use the relationship linking variable s (or σ, in the multidimensional

case) to the committor to define an optimal reaction coordinate on which to project

our data. To this end, preliminary results on FIP35 and on a 2-dimensional model

provided promising results. Extensive testing of these ideas on increasingly complex

systems will be the focus of future works.
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Appendix A

The Fokker-Planck Equation, in a

Nutshell

This appendix is devoted to a brief introduction to the tools on which all the theo-

retical arguments of this manuscript are based.

Let us consider a set ofN particles, whose positions are defined by x = (x1, . . . ,xN )

and corresponding masses given by m1, . . . ,mN . The equations of motion describ-

ing the dynamics of the system in the NVE ensemble are simply provided by the

Newton’s equations:

mir̈i + ∇U(x) = 0 (A.1)

where F (x) = −∇U(x) is the force-field. If one wants to thermostat the dynamics to

a given temperature T , a possible way is to introduce a damping effect proportional

to a friction coefficient γ (for sake of simplicity we will assume that every particle

in the system shares the same friction coefficient: γi = γ ∀i = 1, . . . , N) and a set

of random forces ξi that simulate the effect of the hidden degrees of freedom of an

infinite thermal reservoir. In this way one obtains the so-called Langevin equation:

mir̈i + γṙi + ∇U(x) = ξi(t) (A.2)

The random force ξ should satisfy the fluctuation-dissipation theorem:

〈ξi(t) · ξj(τ)〉 = 6γikBTδijδ(t− τ) i, j = 1, . . . , N ∀t, τ (A.3)

The parameters in Eq. (A.2) naturally define an intrinsic timescale τ = γ−1. If one

is interested in studying systems whose typical dynamics occurs at timescales t� τ ,

then the Langevin equation can be approximated with its overdamped form:

ṙi = −Dβ∇U(x) + ηi(t) (A.4)
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where D = γ−1kBT is the diffusion coefficient, β = (kBT )−1 and ηi = γ−1ξi is a

random velocity. The autocorrelation of the random velocity is obtained as:

〈ηi(t) · ηj(τ)〉 = 6Dδijδ(t− τ) i, j = 1, . . . , N ∀t, τ (A.5)

The points computed by integrating Eq. (A.4) sample a time-dependent distribution

which is solution of the so-called Fokker-Planck equation [184]:

∂

∂t
P (x, t) = −HFPP (x, t) ≡ D

N∑

i=1

∇i · [∇i + β∇iU(x)]P (x, t) (A.6)

where HFP is the Fokker-Planck (FP) operator. One can immediately realize that the

stationary distribution of the Fokker-Planck equation is the Boltzmann distribution:

P (x, t) −−−→
t→∞

P (x) =
1

Z
e−βU(x) Z =

∫
dx e−βU(x) (A.7)

It should be noted that the FP equation can be written in the form of a continuity

equation:
∂

∂t
P (x, t) + ∇ · J(x, t) = 0 (A.8)

where the FP current is given by

J(x, t) = −D [∇ + β∇U(x)]P (x, t) (A.9)

Again, the stationary solution is the Boltzmann distribution. Using this fact, one

can easily see that the FP current vanishes at equilibrium:

J(x, t) −−−→
t→∞

J(x) = 0 (A.10)

The Fokker-Planck operator is not Hermitian, so it admits non-coincident left-

and right-eigenstates:

HFPRn(x) = λnRn(x) Ln(x)HFP = H†FPLn(x) = λnLn(x) (A.11)

where H†FP is the adjoint of the FP operator and right- and left-eigenstates define

the same spectrum. Before going on with the spectral properties of HFP, given its

importance in the framework of stochastic dynamics it is worth mentioning that the

adjoint of the FP operator is also known as the backward Kolmogorov operator :

H†FP = −D(∇2 − β∇U(x)∇) (A.12)

and defines a corresponding backward Kolmogorov equation:

∂

∂t
Q(x, t) = H†FPQ(x, t) = −D(∇2 − β∇U(x)∇)Q(x, t) (A.13)

The spectrum of the FP operator is negative and ordered, in the sense that:

λ0 = 0 > −|λ1| > −|λ2| > −|λ3| > . . . (A.14)
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Appendix A. The Fokker-Planck Equation, in a Nutshell

Right- and left-eigenstates satisfy the following orthonormality condition:
∫
dx Rn(x)Lm(x) = δnm (A.15)

The zero-th eigenstates, corresponding to λ0 = 0, show a peculiar property. In

particular, it is evident that

R0(x) =
1

Z
e−βU(x) (A.16)

thus, for the orthonormality condition in Eq. (A.15) and from the properties of the

stationary distribution described in Eq. (A.7), one has

L0(x) = 1 (A.17)

The spectral properties of the Fokker-Planck operator allow one to express the formal

solution of the FP equation by means of an expansion on the basis of the right-

eigenstates:

P (x, t) =
∞∑

n=0

cnRn(x)e−λnt cn =

∫
dx Ln(x)P (x, 0) (A.18)

Because of the normalization condition, the first coefficient c0 is evidently equal to

1, so the series can be also expressed as

P (x, t) =
e−βU(x)

Z
+
∞∑

n=1

cnRn(x)e−λnt (A.19)

Eq. (A.19) embeds an extremely important interpretation: when starting from a

distribution P (x, 0) different from the equilibrium one, Rn(x) with n > 0 represent

modes that need to be exponentially suppressed in order to actually reach equilib-

rium.

The FP operator can be made Hermitian by means of a non-unitary transforma-

tion [184]:

H ≡ eβ2U(x)HFPe
−β

2
U(x) = −D∇2 +

Dβ2

4

[
(∇U(x))2 − 2

β
∇2U(x)

]
(A.20)

where the probability distribution becomes

ψ(x, t) ≡ e−β2U(x)P (x, t) (A.21)

In this way, the Fokker-Planck equation is transformed into aWick-rotated Schrödinger

equation:

− ∂

∂t
ψ(x, t) = Hψ(x, t) (A.22)

This analogy is particularly useful, because it permits to easily prove that the con-

ditional probability of starting in x0 at time 0 and reaching x at time t in the
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overdamped Langevin dynamics can be expressed as a path-integral. In particular,

we recall that the path-integral representing the Wick-rotated quantum propagator

(or conditional probability) is provided by [329]:

P (x, t|x0, 0) = 〈x|e−Hτ/~|x0〉 = N
∫
Dx(τ) exp

[
−1

~
SE [x(τ)]

]
(A.23)

where N is a normalization factor, Dx(τ) is the path measure, ~ is the reduced

Planck constant and SE [x(τ)] is the Euclidean action

SE [x(τ)] =

∫ τ

0
dt
(m

2
ẋ2 + U(x)

)
≡
∫ τ

0
dt LE(x, ẋ) (A.24)

defined as the time-integral of the Euclidean Lagrangian LE . The introduction of the

effective Hamiltonian in Eq. (A.20) allows one to rewrite the conditional probability

Eq. (A.23) as

P (x, t|x0, 0) = e−
β
2

(U(x)−U(x0))N
∫
Dx(τ) exp

[
−
∫ τ

0
dt

(
ẋ2

4D
+ Veff[x(τ)]

)]

(A.25)

with

Veff =
Dβ2

4

[
(∇U(x))2 − 2

β
∇2U(x)

]
(A.26)

A property similar to Eq. (A.25) can be proved also for the underdamped Langevin

equation in Eq. (A.2). It can be shown [330, 331, 332] that in this case one has

P (x, t|x0, 0) = e−βU(x0)
∫
Dx(τ)−SOM[x] (A.27)

where

SOM[x] =
β

4

N∑

i=1

1

γimi

∫ t

0
dτ (mir̈i + γiṙi + ∇iU(x))2 (A.28)

is the so-called Onsager-Machlup action.

As a last comment on conditional probabilities, we stress that also P (x, t|x0, 0)

satisfies the FP equation, which in this case is known as the forward Kolmogorov

equation [184]:
∂

∂t
P (x, t|x0, 0) = −HFPP (x, t|x0, 0) (A.29)

Instead, if we consider x0 as the variable of P (x, t|x0, 0), the conditional probability

satisfies the backward Kolmogorov equation [184]:

∂

∂t
P (x, t|x0, 0) = −H†FP(x0)P (x, t|x0, 0) (A.30)

where

H†FP(x0) ≡ −D(∇2
x0
− β∇x0U(x0)∇x0) (A.31)
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Appendix B

Appendix to Chapter 1

B.1 The Jacobian J [x̄, ξ] is identical to one

In this section we want to show that the integral

I =

∫
Dξ(t) δ

(
ξ(τ)−

∫ τ

0
dτ ′f(ξ(τ ′))

)
(B.1)

is identical to 1, which is equivalent to say that the Jacobian J [x̄, ξ] introduced in

Eq. (1.25) is also equal to 1. A possible way to prove this statement is by discretizing

the path-integral in Eq. (B.1) in N slices with N →∞:

I = lim
N→∞

[
N∏

i=0

dξ(ti)

]
N∏

k=0

δ

[
ξ(tk)−∆t

k−1∑

l=0

f(ξ(tl))

]

= lim
N→∞

[
N∏

i=0

dξ(ti)

]
δ [ξ(t0)−∆tf(ξ(t0))] ·

δ [ξ(t1)−∆t{f(ξ(t0)) + f(ξ(t1))}] · . . .

= lim
N→∞

[
N∏

i=0

dξ(ti)

]
δ [ξ(t0)−∆tf(ξ(t0))]RN−1(t0, . . . , tN )

(B.2)

where RN−1(t0, . . . , tN ) is the product of all the other N − 1 delta terms. From the

last step in Eq. (B.2) we see that we can easily integrate out the first variable ξ(t0)

and substitute it with ∆tf(ξ(t0)) as required by the Dirac delta. Thus we have

I = lim
N→∞

[
N∏

i=1

dξ(ti)

]
δ [ξ(t1)− 2∆tf(ξ(t0))]RN−2(t1, . . . , tN ) (B.3)

Again, Eq. (B.3) can be used to integrate away ξ(t1). In general, the integral can

be expressed as

I = lim
N→∞

[
N∏

i=α

dξ(ti)

]
δ [ξ(tα)− α∆tf(ξ(t0))]RN−α(tα, . . . , tN ) (B.4)

for every α = 1, . . . , N . The integral expression in Eq. (B.4) can be used to iteratively

integrate out all the ξ(tα) terms up to ξ(tN ), thus closing the proof.
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Figure B.1: Reproduced from Ref. [29], with the permission of AIP Publishing. (a) Sketch
of two trajectories and their reactive component. The one on the top is retained, because
tf > treact, while the bottom one is not; (b) histogram of the reactive times obtained from
the rMD simulations.

B.2 The Average Path

In this appendix we will discuss the strategy adopted to compute the average path

needed for 2-dimensional SCPS simulations. Reactant and the product states are

identified as the ones around xR = (−1, 0) and xP = (1, 0) respectively, for which

the potential is smaller than the threshold U(x,y) = −2.5kBT . The average path

is defined by considering only the reactive part of each simulation: for this reason,

we only retain the portion of the trajectory which lies outside the boundaries of

R and P . On the other hand, the average path requires trajectories that have

the same time-length to be defined. Therefore, we adopted a strategy to define

an optimal duration of the pathways to be averaged over. For each trajectory, we

stored treact = tP − tR, the difference between times at which they enter the product

and exit the reactant, respectively. This quantity represents the time that each

trajectory spent in the reactive region. We computedτ and ∆τ , respectively the

average and the standard deviation of the distribution of reactive times, and fixed

the time window equal to tf = τ + ∆τ. Every trajectory that within a time tf is

not able to connect the reactant to product state is automatically discarded from

the calculation of the average. Finally, from each trajectory we select only a portion

that lasts from t1 = tP − tf−treact
2 to t2 = tR +

tf−treact
2 and average these portions to

obtain the final average path.
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Appendix C

Appendix to Chapter 2

C.1 The committor function satisfies the backward Kol-

mogorov equation

To see why Eq. (2.9) holds (and, wlog we will do this just for the forward case), in

this appendix we introduce an alternative definition of the committor function [333]:

q(x) =

∫ ∞

0
dt

∫

∂P
dS(x′) · J(x′, t|x, 0) (C.1)

where x ∈ ΩT , x′ ∈ ∂P , ∂P is the border of the product state, J(x′, t|x, 0) is

the Fokker-Planck current associated to the conditional probability P (x′, t|x, 0) and

finally dS(x′) is the surface element in x′, conventionally pointing inward the product

state. Even though it is not immediately evident, Eq.s (2.6) and (C.1) define the

same function. Indeed, we see that the integral of the Fokker-Planck current in

Eq. (C.1) provides the crossing rate through the product surface, k∂P (x, t). The

integral
∫∞

0 dt k∂P (x, t) provides the fraction of trajectories, starting at x, that leave

the transition state for the first time by passing through ∂P . The fact that they

are leaving ΩT for the first time comes from the boundary conditions on the states

borders. This is indeed identical to the definition of the forward committor in Eq.

(2.6).

Let us now apply the backward-Kolmogorov operator H†FP(x) to Eq. (C.1):

H†FP(x)q(x) =

∫ ∞

0

∫

∂P
dS(x′) ·H†FP(x)J(x′, t|x, 0)

=

∫ ∞

0
dt

∂

∂t

∫

∂P
dS(x′) · J(x′, t|x, 0)

=

∫

∂P
dS(x′) · J(x′, t|x, 0)

∣∣t=∞
t=0

= 0

(C.2)

where in the first equality we used the definition of the conditional current, in the

second equality the fundamental theorem of calculus and in the last equality we used
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C.2. Reactive Current in the SCR

the fact that at t =∞ all the particles have been removed from the transition region

while at time t = 0 the probability density is exactly localized in x.

C.2 Reactive Current in the SCR

In this appendix we will prove explicitly the equality presented in Eq. (2.86):

JSCR(x) = − D

tf − τ0

∫ tf

τ0

dt Q(R)(x, tf − t)
(−→∇ −←−∇ + β∇U(x)

)
P (P )(x, t)

= − D

tf − τ0

∫ tf

τ0

dt
[
Q(R)(x, tf − t)∇P (P )(x, t)

− P (P )(x, t)∇Q(R)(x, tf − t)

+βQ(R)(x, tf − t)∇U(x)P (P )(x, t)
]

= − D

tf − τ0

∫ tf

τ0

dt

[
Q(R)(x, tf − t)∇

(
e−βU(x)

ZR
Q(P )(x, t)

)

− e−βU(x)

ZR
Q(P )(x, t)∇Q(R)(x, tf − t)

+βQ(R)(x, tf − t)∇U(x)
e−βU(x)

ZR
Q(P )(x, t)

]

= − D

tf − τ0

∫ tf

τ0

dt

[
−β∇U(x)Q(R)(x, tf − t)

e−βU(x)

ZR
Q(P )(x, t)

+Q(R)(x, tf − t)
e−βU(x)

ZR
∇Q(P )(x, t)

− e−βU(x)

ZR
Q(P )(x, t)∇Q(R)(x, tf − t)

+βQ(R)(x, tf − t)∇U(x)
e−βU(x)

ZR
Q(P )(x, t)

]

= − D

tf − τ0

e−βU(x)

ZR

∫ tf

τ0

dt
[
Q(R)(x, tf − t)∇Q(P )(x, t)

−Q(P )(x, t)∇Q(R)(x, tf − t)
]

= −De
−βU(x)

ZR
(qSCR(x)∇(1− qSCR(x))− (1− qSCR(x))∇qSCR(x))

= −De
−βU(x)

ZR
(−qSCR(x)∇qSCR(x)−∇qSCR(x) + qSCR(x)∇qSCR(x))

= D
e−βU(x)

ZR
∇qSCR(x)

which provides the expected result.
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Appendix C. Appendix to Chapter 2

C.3 ∂R crossing contributions in q+
SCR are negligible

In this appendix we want to prove that, even if q+
SCR is defined by imposing absorb-

ing boundary conditions only on ∂P , the contributions to the committor function

coming from trajectories that enter R and escape it are negligible. To do so we

consider two points, separated by a long diffusion distance, xf and x0 and we call

P (xf , tf |x0, 0) the conditional probability to start in x0 at time t = 0 and reach

xf at time t = tf . Let us also consider a generic volume S enclosed by a surface

∂S: P (S)(xf , tf |x0, 0) represents the same conditional probability, but we explicitly

impose absorbing boundary conditions over ∂S on it. Finally, we call G(xf , tf |x0, 0)

the probability density associated to a transition from x0 to xf in time t = tf ,

conditioned to touch ∂S at least once. The three objects are trivially linked by

P (xf , tf |x0, 0) = P (S)(xf , tf |x0, 0) +G(xf , tf |x0, 0) (C.3)

It is also true that P (xf , tf |x0, 0) is equal to the sum between the conditional prob-

ability to perform the transition x0 → xf without passing through ∂S and the

conditional probability to reach a point x′ ∈ ∂S from x0 at time t = t′ and then

reach xf from it in a time t = tf − t′. In general, the number of re-crossing events of

∂S might be arbitrarily large. Using this argument, we can rewrite P (xf , tf |x0, 0)

as

P (xf , tf |x0, 0) = P (S)(xf , tf |x0, 0) +

∫ t

0
dt′
∫

∂S
dx′ G(xf , tf |x′, t′)P (S)(x′, t′|x0, 0)

= P (S)(xf , tf |x0, 0)+

+

∫ t

0
dt′
∫

∂S
dx′

[
P (xf , tf |x′, t′)− P (S)(xf , tf |x′, t′)

]
P (S)(x′, t′|x0, 0)

(C.4)

where in the second equality we used Eq. (C.3). Eq. (C.4) is a Dyson series that

defines P (xf , tf |x0, 0) as an expansion over terms proportional to P (S)(x′, t′|x0, 0).

Now we can use the assumption that x0 and xf are separated by a high diffusion

distance: this means that P (xf , tf |x0, 0)� 1 for every choice of tf in the SCR. For

this reason, P (xf , tf |x0, 0) can be approximated with the lowest order term of the

Dyson series, thus providing

P (xf , tf |x0, 0) ∼ P (S)(xf , tf |x0, 0) (C.5)

If we choose ∂S ≡ ∂R we can use Eq. (C.5) to state that the contributions coming

from trajectories that fluctuate within R and then leave it are suppressed at first

order in the SCR expansion parameters.
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C.4 Iso-σ and iso-qSCR hyperplanes coincide

In this appendix we are going to show that iso-σ and iso-q hypersurfaces are parallel.

To do so, we exploit a path-integral representation of the distributions Q(R) and P (P )

to show that the reactive current in x in the SCR can be expressed as a function

of the average velocity in of the transition paths in x. Let us see how to obtain it.

Following the discussion in Ref. [334], we can re-write the reactive current as

JSCR(x) =
1

tf − t0

∫ tf

t0

dt
1

2

(
〈v(x, t)〉(P ) + 〈v(x, t)〉(R)

)
Q(R)(x, tf − t)P (P )(x, t)

(C.6)

In Eq. (C.6), 〈v(x, t)〉(P ) and 〈v(x, t)〉(R) denote, respectively, the average velocity of

the pathways at point x at time t, and are obtained by resorting to the path-integral

expression of ∇Q(R)(x, tf − t) and ∇P (P )(x, tf ):

〈v(x, t)〉(P ) ≡
∫

Ω dxi ρ(xi)
∫ x
xi Dx ẋ(t) exp

[
−
∫ t

0 dτ (LOM[x] + ΩR[x])
]

∫
Ω dxi ρ(xi)

∫ x
xi Dx exp

[
−
∫ t

0 dτ (LOM[x] + ΩP [x])
] (C.7)

〈v(x, t)〉(R) ≡
∫

Ω dxf hP [xf ]
∫ xf
x Dx ẋ(t) exp

[
−
∫ t

0 dτ (LOM[x] + ΩR[x])
]

∫
Ω dxf hP [xf ]

∫ xf
x Dx exp

[
−
∫ t

0 dτ (LOM[x] + ΩR[x])
] (C.8)

where

LOM[x] =
1

4D
(ẋ + βD∇U(x))2 (C.9)

and ΩA[x] functions are defined as

ΩA[x] =




∞ if x ∈ A ⊂ Ω

0 otherwise
(C.10)

Functions in Eq. (C.10), when A is substituted with R and P , effectively define the

absorbing boundary conditions in the corresponding path-integrals. If the times t0
and tf are chosen within the SCR, the current becomes virtually time-independent

and Eq. (C.6) can be rewritten as

JSCR(x) ∼ 〈v(x)〉mSCR(x) (C.11)

where

〈v(x)〉 =
1

2

(
〈v(x)〉(P ) + 〈v(x)〉(R)

)
(C.12)

If we choose x on the SCPS average path, the reactive current computed in x is

parallel to the time derivative of 〈x〉, i.e. the average position which enters the

definition of sλ(x) and σ(x) (see Eq.s (1.49) and (1.51)). Since Eq. (2.23) prescribes

that the reactive current is parallel to ∇q(x), we can finally conclude that iso-σ and

iso-q hypersurfaces coincide up to re-labeling.
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C.5 Conditional Langevin Dynamics

In this appendix we will prove the equality in Eq. (2.97). In the following, for sake

of notational simplicity we will call Q = Q(R)(x, t), P = P (P )(x, t), U = U(x) and

P = P(x, t):

∂P
∂t

=
∂

∂t
(QP )

= P
∂Q

∂t
+Q

∂P

∂t

= PH†FPQ+QHFPP

= P (∇2 − β∇U∇)Q+Q∇ · (∇ + β∇U)P

= P∇2Q− Pβ∇U∇Q+Q∇2P +Qβ∇U∇P +Qβ∇2UP

= ∇ ·∇(QP )− 2∇Q∇P − 2Pβ∇U∇Q+ Pβ∇U∇Q

+Qβ∇U∇P +Qβ∇2UP

= ∇ · [∇ + β∇U ] (QP )− 2∇Q∇P − 2Pβ∇U∇Q

= ∇ · [∇ + β∇U ] (QP )− 2∇Q∇P − 2Pβ∇2Q

= ∇ · [∇ + β∇U ] (QP )− 2∇ · (P∇Q)

= ∇ · [∇ + β∇U ] (QP )− 2∇ ·
(∇Q

Q
(PQ)

)

= ∇ · [∇ + β∇U − 2∇Q] (QP )

= ∇ · [∇ + β∇U − 2∇ logQ]P

that proves our statement.

C.6 irMD Samples the Boltzmann Distribution Restricted

to the Transition Region

In this appendix we will show that the non-equilibrium process proposed in Eq.

(2.103) can be used to sample the Boltzmann distribution in the transition region.

To do set, let us set ξ(x) = 1 in Eq. (2.101) for the moment. Let us use Eq.

(2.103) to generate many reactive trajectories that are stopped once they overcome

the boundaries of the product state. Let us consider only points x in the transition

region that are far enough from the reactant and the product, so that transitions

from the product to x and transition from x to the product can be neglected. In

this case, the probability density obtained using irMD satisfies a master equation of

the form
∂

∂t
P (x, t) =

∫
dy [T (x|y)P (y, t)− T (y|x)P (x, t)] (C.13)
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where T (y|y) is the transition rate, in the irMD dynamics, between x and y. It can

be expressed as follows:

T (y|x) = T0(y|x)θ(q(y)− q(x)) + TB(y|x)θ(q(x)− q(y)) (C.14)

where T0(y|x) is the transition rate of the unbiased dynamics and TB(y|x) is instead

the one of the dynamics in the presence of the bias. Eq. (C.14) means that every time

the dynamics backtracks along the committor, the rate is provided by the original

Langevin dynamics, while if the dynamics proceeds by increasing the committor the

rate is provided by the biased dynamics. We can associate a Fokker-Planck equation

to the master equation in Eq. (A.6) by computing the corresponding Kramers-Moyal

coefficients [184] (here discussed only in one dimension for sake of simplicity):

a1(x) = lim
∆t→0

1

∆t

∫
dy (y − x)T (y|x)

= lim
∆t→0, x(t)→x

1

∆t
[〈(x(t+ ∆t)− x(t)) θ(q(x(t+ ∆t))− q(x(t))〉0

+ 〈(x(t+ ∆t)− x(t)) θ(q(x(t))− q(x(t+ ∆t))〉B]

(C.15)

a2(x) = lim
∆t→0

1

∆t

∫
dy (y − x)2T (y|x)

= lim
∆t→0, x(t)→x

1

∆t

[〈
(x(t+ ∆t)− x(t))2 θ(q(x(t+ ∆t))− q(x(t))

〉
0

+
〈

(x(t+ ∆t)− x(t))2 θ(q(x(t))− q(x(t+ ∆t))
〉
B

]
(C.16)

〈·〉0 and 〈·〉B denote, respectively, the averages over the occurrences of the random

noise in the unbiased and the biased dynamics. The limits in Eq.s (C.15) and (C.16)

can be computed explicitly:

a1(x) = − D

kBT

(
∇U(x)− kR

2
∇q(x)

)

a2(x) = 2D

(C.17)

so that the corresponding Fokker-Planck equation is given by

∂

∂t
P (x, t) = D∇

(
∇+ βU(x)− kR

2
∇q(x)

)
P (x, t) (C.18)

Eq. (C.18) does not depend on any specific choice of the constant kR. It is easy

to see that the Boltzmann distribution is the stationary distribution of Eq. (C.18):

we stress however that the stationary distribution should not be looked for as the

stationary distribution of an equilibrium process, but rather as the one of a non-

equilibrium process where trajectories are shoot from the border of the reactive

basin and are stopped once they overcome the border of the product one. The

corresponding current is given by

JirMD(x) = −D∇
(
∇+ βU(x)− kR

2
∇q(x)

)
e−βU(x)

Z
=
kR
2
∇q(x)

e−βU(x)

Z
(C.19)
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which is proportional to the one of TPT. Because Eq. (C.18) does not depend on the

choice of kR, we can consider the limit kR →∞. In this case, the specific choice of the

function ξ(x) becomes irrelevant because backtracks along the committor occur with

negligible rates. For this reason, provided that kR is chosen big enough, irMD exactly

samples the Boltzmann distribution restricted to the transition state, irregardless of

the choice of ξ(x).

C.7 Calculation of the committor from unbiased Langevin

dynamics

In this appendix we will show how we computed the reference committor function

appearing in Fig. 2.10. Region Ω = [−1.5, 1.5]× [−0.5, 2.5] was split into 100× 100

bins. From each bin, we sampled 2 × 105 points , each of which were used as

starting points for Langevin dynamics simulations. Langevin dynamics simulations

consisted of 4 × 103dt/γ time steps and were performed using dt = 0.02, γ = 1

and kBT = 0.15. A trajectory was considered productive if, at some point in the

simulation, it reached U(x, y) < −2.5 kBT and
√

(x− xP )2 + (y − yP )2 < 0.02.

Every trajectory meeting this condition before the end of the simulation was stopped.

The value of the committor function in bin (i, j) was computed from these trajectories

as

q(i, j) =
Number of productive trajectories started from (i, j)

Total number of simulations started from (i, j)
(C.20)
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Appendix D

Brief Chemical Vocabulary

π-MO (or simply π-orbital) molecular orbital formed by the overlap between two

adjacent px or py atomic p-orbitals. It shares the same nodal structure of the orig-

inal p-orbitals, with vanishing electron density in the plane connecting the bonded

nuclei. π-orbitals can be bonding or antibonding (called in this case π∗-orbitals).

Antibonding molecular orbitals weaken the bond between two atoms and help in-

creasing the molecule’s energy. They show an additional nodal plane with respect to

the corresponding bonding oribital, located in the region between the bonded nuclei.

Aromaticity describes a cyclic, flat molecule with a ring of resonance bonds. The

peculiar disposition of p-bonds makes the molecule conjugated, meaning that elec-

trons are delocalized among all the bonds, which form two π-orbitals surrounding

the whole molecule (see Fig. D.1 (a)). This makes aromatic molecules particularly

stable and little reactive.

Heterocyclic compound cyclic molecule with at least two different atomic species

forming its ring.

Indole aromatic heterocyclic compound with a bicyclic structure: the first ring is

a benzene and the second one is a pyrrole (see Fig. D.1 (b)).
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Figure D.1: (a) Molecular Orbital structure of benzene; (b) structure of an indole.
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Appendix to Chapter 4

E.1 Kolmogorov-Smirnov test

The statistical significance of the probability distributions Pmutant(Q) discussed in

section 4.3.1 sampled by BF simulations can be assessed by a two-sample Kolmogorov-

Smirnov (KS) test [319]. In this test we compared the values of Q obtained by the

simulations of WT protein and all its corresponding mutations. The null hypothesis

of this test is that the values of Q obtained running BF simulations with different

protein variants are sampled from the same distribution. Because the number of sim-

ulations for each variant are different, before applying the KS test we boostrapped

from each set of Qs a number of points which is equal to half the dimension of the

smallest dataset, i.e. the one containing only 29 trajectories. Moreover, for each

dataset we repeated the bootstrapping procedure ten times and performed the KS

test again. In all the KS tests we performed, the null hypothesis was rejected with

a p-value p < 2 × 10−16. This result allows us to conclude that each Pmutant(Q) is

statistically independent from all the other ones.

E.2 Topological Inconsistencies in Folded Conformers

In this appendix we show an examples of the strand cross-overs discussed in section

4.1. In Fig. E.1, s4C and s3C strands cross in an opposite way with respect to the

crystal structure.
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Figure E.1: From [25]. Non-native topology in the gate region of A1AT. The crystal
structure of A1AT is shown in cyan, while the final result of a BF simulations is shown in
grey.
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