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Abstract

In this thesis, second order optical nonlinearities in silicon waveguides are studied. At
the beginning, the strained silicon platform is investigated in detail. In recent years,
second order nonlinearities have been demonstrated on this platform. However,
the origin of these nonlinearities was not clear. This thesis offers a clear answer
to this question, demonstrating that this nonlinearity does not originate on the
applied strain, but on the presence of trapped charges that induce a static electric
field inside the waveguide. Based on this outcome, a way to induce larger electric
fields in silicon waveguide is studied. Using lateral p-n junctions, strong electric
fields are introduced in the waveguides, demonstrating both electro-optic effects
and second-harmonic generation. These results, together with a detailed modeling
of the system, pave the way through the demonstration of spontaneous parametric
down-conversion in silicon.
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1.1 Nonlinear optics

1.1.1 An historical perspective

Nonlinear optics has a supercentenarian history [1]. It begun in 1875, when the
Scotsman John Kerr discovered the phenomenon that now bears his name. Applying
a strong DC field to a variety of solids and liquids, he observed a slight modification
of their refractive index [2]. A second nonlinear optics milestone was put by the
German physicist Friedrich Pockels in 1890s. He analyzed non-centrosymmetric
crystalline materials and observed a similar effect. However, in his case, the refrac-
tive index varied linearly (and not quadratically) on the applied field [3].
The term nonlinear optics was introduced for the first time by the Sovietic physicist
Sergey Vavilov in 1944. Some year before he had observed a reduction of the
uranium-doped glass absorption for large light intensities. This phenomenon, known
today as saturable absorption, was the first purely optical nonlinear effect ever shown
[4]. A similar effect, the luminescence saturation, enabled the realization of the
Icaroscope, the first practical application of nonlinear optics. It was developed by
the Institute of Optics during the World War II [5]. This device aimed to protect the
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Fig. 1.1: Reproduction of the photographic plate where second harmonic signal was shown
for the first time. The wavelength scale is in units of Å. The big spot represents
the pump beam. The arrow should indicate the second harmonic signal, wrongly
removed by the lithographer of the journal. Reprinted with permission from [9].
Copyright (1961) by the American Physical Society.

U.S. Navy during the bombing attacks by Japanese Air Force, which used to approach
the ships from the sun direction in order to blind of the antiaircraft gunners. The
Icaroscope made use of phosphors, which possess a strong luminescence saturation.
In this way, the sun appeared only 20− 50 times brighter than the surrounding sky,
while for the naked eye it is 104 times brighter [6, 7].
The golden age of nonlinear optics begun immediately after the invention of the
laser by Theodore Maiman in May 1960 [8]. "If the laser was a solution, nonlinear
optics was one of the problems it was seeking", comments Jeff Hecht in [5]. The laser
provided intense, coherent and monochromatic light pulses, driving the disruptive
development shown by nonlinear optics in successive years. The first nonlinear
optics experiment with a laser was performed by Peter Franken at the University
of Michigan in the middle of 1961. A ruby laser beam at the wavelength of 694 nm
was focused on crystalline quartz. The emergent beam was analyzed by a spectro-
graph, showing on a photographic plate the generation of a weak second harmonic
signal at the halved wavelength of 347 nm [9]. For the first time, second-harmonic
generation was shown. This was a disruptive result, despite of the extremely low
conversion efficiency of about 1 part in 108. As recalled by Franken in an interview
in 1985, "the thought that you could have optical harmonics [...] in the 1959, ’60
period [...] was a revolutionary thought". The efficiency was so low that, in the
photographic plate reproduced in the 15 August 1961 issue of Physical Review Letters
[9] and shown in Fig. 1.1, the second harmonic signal is not visible, eliminated by
the lithographer of the journal that confused it with a flaw [5].
Starting from the seminal work of Franken, the study of nonlinear optics exploded.
The successive milestone was put by Joe Giordmaine at the Bell Labs and by the
group of Bob Terhune at the Ford Motor Co. Research Laboratory, who independently
published their works on the same issue of Physical Review Letters in January 1962
[10, 11]. They both worked on potassium dihydrogen phosphate (KDP) crystal,
individuated as a particularly interesting nonlinear material. In their experiments,
pump and second harmonic waves were orthogonally polarized. Exploiting the
birefringence of KDP, they demonstrated extremely high generation efficiency when
the waves propagated along directions ensuring the same refractive index for the
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Fig. 1.2: Nicolaas Bloembergen, one of the scientists who derived the theory of nonlinear
optics, in 1981, the year in which was awarded with the Nobel prize. "Nicolaas
Bloembergen" by "... Vetter (Spaarnestad Photo)", licensed under BY-SA 3.0 nl
(https://creativecommons.org/licenses/by-sa/3.0/nl/deed.en), via Wiki-
media Commons.

pump and the second harmonic wave. This efficiency enhancement was attributed
to the matching between the phases of the pump and of the generated waves. This
technique, called birefringent phase-matching, later on in the years will be flanked
by other phase-matching methods. In light of these results, the inefficiency of the
Franken experiment was understood and ascribed to the lack of the phase-matching.
Stimulated by recent observations, at Harvard Nicolaas Bloembergen started to de-
velop the theory of nonlinear optics, which was published in September 1962 [12].
This work became soon a milestone, and fostered the new discoveries shown in the
successive years. For this motivation, Bloembergen won the Nobel Prize in Physics
in 1981 [5]. In the first 1960s, many phenomena reported today in nonlinear
optics textbooks were demonstrated, among which sum frequency generation [13],
four-wave mixing [14], self focusing [15], self-phase modulation [16], stimulated
Raman scattering [17] and stimulated Brillouin scattering [18].
On the other side of the cold war world, also Soviet institutions started to support
nonlinear optics research. The first nonlinear optics laboratory was established
at the Moscow State University in 1962, and gave rapidly respectable results [5].
Among the others, it is worth noting the first demonstration of an optical parametric
oscillator, independently shown by Alexander Kovrigin in Moscow [19] and by Joe
Giordmaine at the Bell Labs [20], which allowed to generate tunable outputs from
fixed wavelength lasers.
According to Li in [21], the experiments described so far constitute the initial foun-
dation stage of nonlinear optics, and cover the first years of 1960s. In the successive
20 years, nonlinear optics became mature. Many new and more sophisticated effects
were demonstrated, among which optical bistability [22] and optical solitons [23]

1.1 Nonlinear optics 3
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Fig. 1.3: Modern laser pointers, everyday objects enabled by nonlinear optics. "Q-LINE
lasers" by Netweb01, licensed under CC BY-SA 3.0 (https://creativecommons.
org/licenses/by-sa/3.0), from Wikimedia Commons.

Starting from the mid-1980s, the application development stage of nonlinear op-
tics begun. In this perspective, many researchers focused on the development of
efficient and cost effective material platforms. Material science helped this progress,
and made possible processes that before were only conceptually predicted. As an
example, the quasi-phase-matching technique was proposed at first in the early
1960s by Bloembergen in his seminal work [12], but almost 30 years passed before
its first demonstration due to technological limitations in the deposition techniques
[24]. Nowadays, nonlinear optics finds lots of applications in many areas. One of
these is the laser technology. As an example, the Q-switching and the mode-locking
allow to generate ultrashort pulses down to attosecond [25]. Furthermore, frequency
conversion makes fixed wavelength laser sources more flexibile [26]. Widely diffused
are also lasers where the fundamental frequency is doubled or tripled, like in most of
the green laser pointers where neodymium lasers at 1064 nm are doubled to 532 nm
[27]. Nonlinear optics is the key enabling technology for the field of all-optical
signal processing [28]. It deeply penetrated also the optical communications
field, to realize optical amplifiers and modulators, but also to prevent detrimental
effects like phase modulation in long-distance fiber communications [29]. Other
applications have been demonstrated in material processing, like the multiphoton
lithography that allows to synthesize nanometer-scale materials [30].
The aim of this section was to offer an overview of the incredible advances made
by nonlinear optics research in the last 60 years, emphasizing the large variety of
applications that today are possible thanks to nonlinear optics. The list was surely
not exaustive, but this was not the intent of this introduction. For a more detailed
overview, the reader can refer to [27].

4 Chapter 1 Introduction
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Fig. 1.4: Relationship between the polarization P and the applied field E for the case of a
linear medium, quadratic nonlinear medium and cubic nonlinear medium.

1.1.2 Why nonlinear?

The phenomena described so far are said nonlinear because, to describe them, one
has to assume that the material polarization P responds in a nonlinear way to the
applied optical field E. These phenomena occur when the applied electric fields
are strong enough to be comparable with the fields inside atoms and molecules. In
this situation, the fields affect the electronic distribution inside the atoms, and the
material changes its response [1]. If the applied fields are weaker, the electronic
distribution is not affected and the linear optical description works well. This is the
situation of most of the optical processes observed in the everyday life.
In a one-dimensional and linear optical framework, the polarization P and the
applied field E are related by:

P = αE, (1.1)

where α is a proportionality constant. This behavior is sketched in Fig. 1.4. This has
a mechanical analogy in the Hook’s law, where the restoring force is proportional to
the applied displacement. This analogy is at the basis of the Lorentz linear model
of the atom, which treats the atom as a harmonic oscillator and describes well the
linear optical properties in atomic vapors and nonmetallic solids [31].
When the fields start to affect the electronic distribution inside the atom, the material
changes its response. Also this behavior is well described by the Lorentz atomic
model, which shows that additional terms must be added in the relationship between
the polarization vector and the applied field [31]. In this case, the dependence of
the polarization P on the applied field E can be expanded in a Taylor series:

P = αE + βE2 + γE3 + ..., (1.2)

where α, β and γ are again proportionality constants. The phenomena enabled by
the term proportional to E2 are said second-order nonlinear effects, while the ones

1.1 Nonlinear optics 5



proportional to E3 are the so called third-order effects. Higher order effects are also
possible, but they require larger applied fields. In Fig. 1.4 the relationship between
P and E for second- and third-order nonlinearities is sketched. From the figure,
it is clear that for the quadratic case the medium responds differently depending
on the sign of the applied field: the response is larger than the linear case when
E > 0, but it is weaker for E < 0. This does not happen for the cubic case, which
shows a symmetric behavior with respect to the applied field. This suggests that
quadratic nonlineatiries can happen only in materials that are structurally different
while moving in two opposite directions. In other words, only non-centrosymmetric
crystals can possess second order nonlinearities [1]. This explains why, going back
to the historical overview, Friedrich Pockels and Peter Franken measured Pockels
effect and second-harmonic-generation in non-centrosymmetric materials. Both
these effect can be included in the family of second order nonlinearities, and so
they are possible only when crystal centrosymmetry is lacking. On the contrary, Kerr
effect is a third order process, and so John Kerr was able to measure it in liquids.

1.1.3 Nonlinear phenomena

In this section, a complete description of the relationship between the polarization
vector P and the applied field E is proposed. In this way, the main processes enabled
by nonlinear optics will be introduced.
In the linear optical case, the linear polarization vector P0 and the applied field E
are related by [31]:

P0 = ε0χ
(1) ·E = ε0

∑
ij

χ
(1)
ij Eiûj . (1.3)

Here ε0 is the vacuum permittivity, χ(1) is the first order susceptibility tensor (whose
elements are χ(1)

ij ), Ei is the i−th component of the electric field and ûj the unitary
versor. The susceptibility tensor χ(1) is related to the refractive index tensor n
by χ(1)

ij + 1 = n2
ij . When dealing with isotropic or amorphous materials both the

susceptibility tensor and the refractive index can be considered as scalar quantities,
while for crystals they must be generally considered as tensors.
In the general nonlinear optical case, the polarization vector P can be expanded in a
Taylor series:

P = P0 + PNL = P0 + P(2) + P(3) + ..., (1.4)

being PNL the nonlinear polarization vector, while P(2) and P(3) are the second and
third order nonlinear polarization vectors. They are given by [31]:

P(2) = ε0
∑
ijk

χ
(2)
ijkEiEjûk, (1.5a)
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P(3) = ε0
∑
ijkl

χ
(3)
ijklEiEjEkûl, (1.5b)

where χ(2) and χ(3) are the second and the third order susceptibilities. Higher
order nonlinear terms are weaker and weaker, they become important for large field
intensities. In general for both second and third order nonlinearities the empirical
Miller’s rule is valid, stating that the nonlinear strength is proportional to the material
refractive index [31].

Second order nonlinearities. To evaluate the main second order effects, the electric
field in the material must be written as the superposition of two monochromatic
waves1:

E(r, t) = Re
[ 2∑
n=1

Ẽn(r, ωn)e−iωnt
]

=
2∑

n=1

[
En(r, ωn)e−iωnt + c.c.

]
, (1.6)

where ωn is the frequency of the n−th wave, while c.c. stands for "complex conjugate".
From Eq. (1.5a), the second order nonlinear polarization vector can be derived [31]:

P(2)(r, t) = ε0χ
(2) :

[
E2

1(r, ω1)e−i2ω1t + E2
2(r, ω2)e−i2ω2t

]
SHG (1.7a)

+ ε0χ
(2) :

[
2E1(r, ω1)E2(r, ω2)e−i(ω1+ω2)t

]
SFG (1.7b)

+ ε0χ
(2) :

[
2E1(r, ω1)E∗2(r, ω2)e−i(ω1−ω2)t

]
DFG (1.7c)

+ ε0χ
(2) : [E1(r, ω1)E∗1(r, ω1) + E2(r, ω2)E∗2(r, ω2)] OR (1.7d)

+ c.c.

Each line of Eq. (1.7) describes a different nonlinear phenomenon, whose acronym
is used as a label in the equation.
Line (1.7a) describes a term of the nonlinear polarization vector at frequency 2ω1

(resp. 2ω2). This corresponds to Second Harmonic Generation (SHG), when a
photon at frequency 2ω1 (resp. 2ω2) is generated from two photons at frequency ω1

(resp. ω2). This process is schematized in Fig. 1.5. As already introduced, this was
the first nonlinear wavelength conversion process ever observed [9].
The term at line (1.7b) corresponds to Sum Frequency Generation (SFG), while
line (1.7c) is related to Difference Frequency Generation (DFG). As shown in Fig.
1.5, photons are generated (respectively) at frequencies ω1 + ω2 and ω1 − ω2.
The term at line (1.7d) is Optical Rectification (OR), and generates a DC component
of the polarization vector.
If one of the frequencies in Eq. (1.7) is much lower than the other (or is set to
DC), the SFG and DFG terms become a polarization vector oscillating at the high

1Note that in this definition, for simplicity, the term En(r, ωn) is defined as (1/2)Ẽn(r, ωn).
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SECOND ORDER THIRD ORDER

Fig. 1.5: Sketch of the main second- and third-order nonlinear processes.

frequency signal. This determines a material refractive index variation linearly
dependent on the low-frequency wave amplitude. This is the Pockels effect (or
linear electro-optic effect).
All the nonlinear phenomena described so far can be inserted in a classical scenario:
once that a nonlinear perturbation of the polarization vector is introduced, Eq. (1.7)
can be derived. However, there is a second order nonlinear phenomenon that cannot
be derived from Eq. (1.7), namely the Spontaneous Parametric Down Conversion
(SPDC) process. This process can be viewed as the fission of a photon in two photons
with lower frequencies. SPDC is similar to DFG, but it happens without the coupling
to a stimulating weak field because it is stimulated by random vacuum fluctuations.
This process is particularly interesting because it generates couples of photons that
are entangled in momentum, energy and time, and so it has lots of applications in
the field of quantum photonics [32].

Third order nonlinearities. The third order nonlinear polarization vector P(3) can
be derived using thee same procedure used for the second order one. The final result
gives the following expression, where for simplicity all the permutations on the wave
indices are omitted:

P(3)(r, t) = ε0χ
(3)...

[
E3

1(r, ω1)e−i3ω1t
]

THG (1.8a)

+ ε0χ
(3)...

[
3E2

1(r, ω1)E2(r, ω2)e−i(2ω1+ω2)t
]

FWM1 (1.8b)

+ ε0χ
(3)...

[
3E2

1(r, ω1)E∗2(r, ω2)e−i(2ω1−ω2)t
]

FWM2 (1.8c)

+ ε0χ
(3)...

[
6E1(r, ω1)E2(r, ω2)E3(r, ω3)e−i(ω1+ω2+ω3)t

]
FWM3 (1.8d)

+ ε0χ
(3)...

[
6E1(r, ω1)E2(r, ω2)E∗3(r, ω3)e−i(ω1+ω2−ω3)t

]
FWM4 (1.8e)

+ ε0χ
(3)...

[
3 |E1(r, ω1)|2 E1(r, ω1)e−iω1t

]
SPM (1.8f)

+ ε0χ
(3)...

[
6 |E2(r, ω2)|2 E1(r, ω1)e−iω1t

]
XPM (1.8g)

+ c.c.
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The term at line (1.8a) describes Third Harmonic Generation (THG). Similarly to
SHG, here three photons with identical frequencies ω1 sum up to generate a photon
at triple frequency 3ω1. This process is sketched in Fig. 1.5.
The elements at lines (1.8b)-(1.8e) describe stimulated Four Wave Mixing (FWM),
where two pump waves interact with a weak wave, providing an amplification of
the weak wave and the generation of a fourth wave. The generated waves are called
signal (the one at lower frequency) and idler (the one at larger frequency). One of
the FWM processes described by (1.8) is sketched in Fig. 1.5. The word stimulated is
used to distinguish it from spontaneous FWM, a non-classical process that (similarly
to SPDC) is stimulated by vacuum fluctuations. In this case, the signal and the idler
photons are directly generated from the pump beam without the coupling with any
weak signal beam [32].
The term at line (1.8f) describes both Self Phase Modulation (SPM) and Two
Photon Absorption (TPA). SPM is linked to the real part of χ(3), and is responsible
of intensity-dependent perturbations of the refractive index. This is known also as
AC Kerr effect. On the other hand, TPA is related to the imaginary part of χ(3) and
gives intensity-dependent variations of the absorption coefficient. It derives from
the absorption of two photons which sum up to overcome the energy required to
excite an electron from the valence to the conduction band. In this framework, the
material refractive index n can be generally written as [33]:

n = n0 + n2I + i λ4π [α0 + βTPAI] , (1.9)

where n0 is the linear refractive index, α0 is the linear loss coefficient, λ is wave-
length, n2 the Kerr coefficient, βTPA the TPA coefficient and I the field intensity. The
Kerr and TPA coefficients are related to an effective third order nonlinear coefficient
χ

(3)
eff (that accounts for the independent terms of the tensor χ(3)) by the following

expressions [33, 34]:

n2 = 3
4ε0cn2

0
Re
(
χ

(3)
eff

)
βTPA = 3ω

2ε0c2n2
0

Im
(
χ

(3)
eff

)
, (1.10)

where c is the speed of light in vacuum. The Kerr and TPA coefficients are usually
compared by means of the Figure Of Merit FOM = n2/(λβTPA) [33]. Efficient
third order nonlinear materials possess a high FOM, deriving from both a large Kerr
coefficient and a small TPA coefficient.
The term at line (1.8g) describes cross Phase Modulation (XPM), where a signal at
frequency ω2 perturbs the propagation of a signal at frequency ω1.
Consider now the case when the frequency of one wave in Eq. (1.8) is much lower
than the others, or is set to DC (for example ω3 = 0). In this situation, the nonlinear
polarization vector P(3) acquires terms at frequencies 2ω1 and 2ω2. These terms
correspond to a SHG process. However, in this case SHG is enabled by χ(3) through
the application of the DC field. For this reason, this process is called Electric Field
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Induced SHG (EFISH). When ω3 = 0, additional phase-modulation terms appear
in Eq. (1.8). These terms introduce a perturbation of the material refractive index
which is quadratically dependent on the low-frequency wave amplitude. This process
is known as DC Kerr effect and, as already shown, has been the first nonlinear optical
effect ever demonstrated.

Phase-matching. The nonlinear processes where the initial and the final quantum
mechanical states of the system are the same [31] are called parametric. Parametric
processes are described by the real part of the nonlinear susceptibility tensor, while
non-parametric ones are described by the imaginary part. This means that photon
energy conservation always occurs in parametric processes, while in non-parametric
ones energy transfer with the medium can occur. In other words, parametric pro-
cesses are the ones that involve frequency conversion, such as SHG, DFG, SFG, THG
and FWM.
To be efficient, parametric processes require to satisfy the phase-matching condi-
tion, meaning that a given phase mismatch coefficient ∆β must be close to zero.
This is because the conversion efficiency is generally proportional to a coefficient of
the form sinc2 [∆βL/2], where L is the length of the interaction region [31]. The
phase mismatch coefficient is given by a combination of the propagation constants
of the different waves. For example in SHG ∆β = 2βp − βsh, where βp and βsh are
the propagation constants of the pump an of the second harmonic waves. In other
words, satisfying phase-matching requires that contributions generated in different
regions of the nonlinear material add up constructively.
Due to material dispersion, phase-matching condition is hardly automatically satis-
fied and special countermeasures are required. The first phase-matching technique
ever achieved is named birefringent phase-matching. It involves waves propagat-
ing with different polarizations, which feel different refractive indexes due to the
material birefringence and that nullifies the phase-mismatch. This technique is the
one adopted by Giordmaine and Terhune in their seminal experiments published in
1962 [10, 11]. Another similar technique exploits waves propagating in different
modes of integrated waveguides. This technique, that is deeply investigated in this
work, is named intermodal phase-matching [35]. Both the techniques described
so far require the use of waves suitably chosen to achieve ∆β = 0, and thus enter
in the category of the perfect phase-matching techniques. These are distinguished
from Quasi Phase-Matching (QPM) techniques, where phase-matching is intro-
duced making use of spatial modulation of the material nonlinearity. In this case,
if the material nonlinearity varies periodically in the propagation direction of the
pulse with a period Γ, a new phase-mismatch parameter ∆β′ = ∆β − 2π/Γ must
be considered [31]. The most common way to introduce QPM is to artificially
introduce a periodic change of the sign of the nonlinear coefficient of the material
[36]. This technique is commonly named periodic poling. However, also other QPM
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techniques are possible, some of which exploit natural properties of the nonlinear
materials. Among these for example the 4̄ symmetry phase-matching exploits the
natural property of crystals like GaP, GaAs and ZnSe to shown crystallographic
inversions when performing rotations of 90◦ about the 4̄ axis [37].

1.2 Nonlinear optics in integrated devices

1.2.1 Why integrated?

The efficiency of any nonlinear process strongly depends on the applied field intensity.
In bulk optics, larger field intensities can be achieved by a tighter beam focusing.
However, this causes a shortening of the interaction length, which sometimes can
vanish the advantage resulting from the increased field intensity. A different approach
to obtain large field intensities over long distances is to use waveguiding structures,
and this motivated the growth of nonlinear fiber optics [29, 38]. Starting from
early 1970s, many nonlinear phenomena were observed in optical fibers, including
Raman and Brillouin scattering [39, 40], FWM [41, 42] and SPM [43]. In the
1980s more advanced nonlinear processes were studied, including optical solitons
[23], pulse compression [44, 45] and optical switching [46]. Another step forward
was done in the field of optical amplification. To overcome the limitations of rare-
earth doped fibers, which could operate only in limited spectral regions, optical
amplification was demonstrated in undoped fibers, making use of stimulated Raman
scattering and FWM [29, 47, 48].
Another way to increase the nonlinear interaction is to act on the waveguide area,
reducing it below the one of fibers typically used for telecommunications. This
prompted the development of sub-micron waveguides (also referred as nanowires)
[38]. Their development started in the early 2000s, and they have been produced
using a variety of materials such as silica, high refractive index glasses, silicon,
lithium niobate, and many others. The use of sub-micron waveguides does not
influence only the interaction area of the optical field, but it also allows to control
some other properties of the propagating modes. Regarding nonlinear processes,
particularly important is the control of the Group Velocity Dispersion (GVD), which
can be easily engineered in optical waveguides. Moreover, waveguides can also
be used to form optical cavities, known also as microresonators. The use of
cavities allows to increase the field strength, and thus the possibilities for nonlinear
optical applications. Finally, one must also consider that optical waveguides are
the fundamental elements of integrated optical circuits, whose development has
become a hot topic in recent years [49]. Integrating nonlinear waveguides into
integrated optical circuits offers an easy manipulation of the nonlinearly generated
fields, and allows to reproduce in a mm2 scale device the functionalities that are
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typically performed on a laboratory optical bench. As an example, Fig. 1.6 shows
a sketch of the circuit diagram recently reported in [50], where multidimensional
entanglement is studied for dimension up to 15. This device, realized on the
silicon platform, integrates 16 photon pair sources based on spontaneous FWM. The
manipulation of the photon states is achieved thanks to 93 thermo-optical phase-
shifters, 122 beamsplitters and 256 waveguide-crossings, integrating more than 550
photonic components on a single chip. This scenario has interesting implications
for the deeper penetration of nonlinear optics in real life applications, thanks to
the reduced fabrication cost and power consumption that characterizes in general
integrated devices compared to traditional bulk optics [51].

Fig. 1.6: Sketch of an integrated device where multidimensional entanglement is studied
for dimension up to 15. From [50]. Reprinted with permission from AAAS.

1.2.2 Fundamental elements of integrated optics

Waveguides. Optical waveguides are devices engineered to guide light, inhibiting
light propagation along some directions [52]. Different waveguiding platforms have
been demonstrated, each based on a different physical mechanism including total
internal reflection [52], photonic crystals [53] and plasmonic phenomena [54].
Here the most common platform is treated, where light is confined by total internal
reflection in a high refractive index medium (the core) that is surrounded by a
low refractive medium (the cladding). Waveguides with different shapes have been
demonstrated, some of which are sketched in Fig. 1.7. The most common waveguide
is the optical fiber, which has a cylindrical shape and a core formed by doped glass.
In the slab waveguide, the core and the cladding materials extend infinitely in the
plane, and light is confined in only one direction. In the strip waveguide, a strip
of core material is embedded into the cladding, confining light in two directions.
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Fig. 1.7: Cross-section of some of the most common waveguide geometries. (a) Cylindrical
geometry (typical geometry of optical fibers). (b) Slab waveguide. (c) Rectangular
strip waveguide. (d) Rib waveguide.

Light is confined in two directions also in the rib waveguide, consisting of a slab
waveguide superimposed by a strip waveguide. Strip and rib geometries are the
most used in integrated optical circuits.
The optical field E(r, ω) propagating in a waveguide is generally written as E(r, ω) =
e(r⊥, ω)eiβz, where z is the waveguide propagation direction, β the propagation
constant, ω the frequency, r⊥ = (x, y) a vector in the plane orthogonal to z and
e(r⊥, ω) the electric field profile in the plane described by r⊥. The field distribution
e(r⊥, ω) satisfies the Helmoltz equation [52]:(

ω2

c2 n
2(r⊥)−∇2

r⊥

)
e(r⊥, ω) = β2e(r⊥, ω), (1.11)

where n(r⊥) is the refractive index distribution in the (x, y) plane. Equation (1.11)
is an eigenvalue equation with a discrete number of solutions, called modes. Each
mode is labeled by an index m, and is characterized by a field profile em(r⊥, ω) and
by a propagation constant βm. For many geometries (such as the strip rectangular
waveguide) analytic solutions of Eq. (1.11) do not exist, so they must be found
numerically using for example Finite Element Method (FEM) simulations. Due
to diffraction limit, a waveguide supports only a limited number of modes. To
roughly estimate it, consider that light can be confined at sizes > λ0/2n, being λ0

the wavelength in vacuum. So, for a rectangular waveguide with dimensions w × h,
the maximum number of modes is wh(λ0/2n)−2 [55].
Figure 1.8 reports the modal profiles of the lowest order modes supported by a
silicon strip rectangular waveguide with dimensions 1.5 µm× 0.25 µm. They are
calculated using the COMSOL Multiphysics® FEM software [56]. The propagating

|Emax|

|Emin|

TE2 TM1 TM2

1 µm

TE1

Fig. 1.8: Norm of the electric field amplitude of the two lowest order TE and TM modes
of a 1.5 µm× 0.25 µm silicon waveguide with a silica cladding at the wavelength
of 1550 nm. These quantities are obtained from a FEM simulation using refractive
indexes reported in [57, 58].
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modes are distinguished in Transverse Electric (TE), when the electric field is
directed along x direction, and Transverse Magnetic (TM), when the electric field
is directed along y. Each solution is characterized by a number nx (resp. ny) of
nodal points along the x (resp. y) direction, where the field is zero. From now on,
in this work thin waveguides will be considered, such that ny = 0. So, the mode
order can be identified by a single label index ν, defined as ν = nx + 1. In this new
notation, each supported mode can be labeled by an index m, which contains the
mode polarization (TE or TM) and the modal order ν. For example, m = TE1 (resp.
m = TM1) refers to the fundamental TE (resp. TM) mode.
As it is clear from Fig. 1.8, the field profile of the different modal orders have
different extensions. The modal extension is evaluated by the effective area of the
mode, defined as [59]:

Aeff,m =

(∫
A∞
|em(r⊥, ω)|2 dA

)2

∫
A∞
|em(r⊥, ω)|4 dA

, (1.12)

where the integral is taken on the whole transverse plane A∞ described by r⊥. In
nonlinear phenomena, small effective areas are preferred, to provide larger field
intensities. Another feature to consider is the extension of the optical mode outside
the waveguide core, known as evanescent field. A parameter accounting for that is
the confinement factor Γm, which estimates the field fraction confined within the
waveguide core area A0, and is defined as follows [59]:

Γm =
∫
A0
n2(r⊥)e2

m(r⊥, ω)dA∫
A∞

n2(r⊥)e2
m(r⊥, ω)dA . (1.13)

The effective refractive index of the mode m is defined as neff,m = (c/ω)βm.
The effective refractive index is an complex quantity, whose real part is related
to propagation and whose imaginary part is related to absorption. In straight
waveguides, absorption is due both to material absorption and to waveguide defects,
which result from imperfections during the fabrication. Assuming an exponentially
decreasing field intensity of the form exp(−αmz), the attenuation constant αm is
related to the imaginary part of the effective refractive by αm = (2ω/c) Im(neff,m).
The propagation constant βm depends on the frequency. Often it is expanded as
a Taylor series around a central frequency ω0. The first expansion term β1,m is
related to the group velocity of the mode vG,m and to the group index of the mode
nG,m by: vG,m = 1/β1,m = c/nG,m. The second term of the expansion β2,m is the
Group Velocity Dispersion (GVD). The modal effective refractive index dispersion
is said normal when β2,m > 0 and anomalous when β2,m < 0. GVD is of particular
importance for nonlinear optics, especially when dealing with ultrashort pulses.
In fact, GVD controls the pulse broadening and influences the phase-matching
in frequency conversion processes. Moreover, large GVD determines temporal
walkoff, consisting in the lose of the temporal overlap between pulses with different
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frequencies. If the pulses are involved in nonlinear conversion phenomena, temporal
walkoff limits conversion efficiency and modifies the pulse shape. As it has been
already introduced, in small waveguides GVD can be easily tailored by properly
engineering the waveguide dimensions, and this makes integrated waveguides
particularly interesting for nonlinear phenomena [60].

Micro-resonators. Resonators have plenty of applications in the field of nonlinear
optics, due to the strong field enhancement obtained within optical cavities [61].
The simplest optical cavity is the Fabry-Perot interferometer, constituted by a cou-
ple of parallel reflecting mirrors. Despite of its simple geometry, the Fabry-Perot
scheme can be hardly integrated due to the difficulty to realize high quality inte-
grated mirrors. Conversely, in the planar architecture of integrated circuits the use
of microring resonators results particularly favorable [62]. Microring resonators
consist of curved waveguides closed on themselves to form a loop. A microring
resonator works also in the absence of the inner dielectric boundary, as it is con-
firmed by the existence of microdisk and microsphere resonator. Some examples
of the micro-resonators that have been proposed are shown in Fig. 1.9. When

Fig. 1.9: Some examples of the micro-resonators that have been demonstrated. (a) Sil-
ica microsphere. Adapted from [63], CC BY-NC-SA 3.0. (b) Silica microtoroid.
Reprinted by permission from Macmillan Publishers Ltd: Nature Photonics [64],
Copyright 2003. (c) Silicon nitride microring resonator in the all-pass configura-
tion. Reprinted by permission from Macmillan Publishers Ltd: Nature Photonics
[65], Copyright 2010. (d) Silicon microring resonator in the add-drop configura-
tion. Adapted with permission from [66]. Note the size difference between the
different devices, due to the different refractive index of the different material
platforms.

dealing with microdisks or with microrings with large waveguides, the propagating
modes are said Whispering Gallery Modes (WGM), recalling the original discovery
of this kind of structure for sound waves in the whispering gallery of the Saint Paul’s
Cathedral in London. Typically, light is coupled within the resonator by placing
a waveguide (the bus waveguide) close to it. In this way, the evanescent field of
the mode propagating in the bus waveguide feels the resonator, and light coupling
occurs. When only one bus waveguide is present, the micro-resonator is said in the
all-pass configuration. This is the configuration of the resonator presented in Fig.
1.9 (c). Another common configuration is the add-drop configuration, which has a
second coupling waveguide and is equivalent to the Fabry–Perot interferometer [62].
An example is presented in Fig. 1.9 (d).
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A micro-resonator supports only a discrete set of wavelengths that coherently-
reinforce themselves after successive roundtrips and provide high energy storage
inside the cavity. In other words, the supported wavelengths are those that accumu-
late a phase multiple integer of 2π in a complete roundtrip. This sets a resonance
condition, which relates the M−th order resonant wavelength λM to the cavity
length L and to the effective refractive index of the propagating mode neff [67, 68]:

λM = neffL

M
, M ∈ N. (1.14)

The typical transmission spectrum of a micro-resonator in the all-pass configuration
is sketched in Fig. 1.10(a). The spectral distance between adjacent resonances
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Fig. 1.10: Typical transmission spectra of resonators in the all-pass configuration. The
different colors refer to different regimes of the resonator, respectively critical
coupling (black), undercoupling (blue) and overcoupling (green).

is called Free Spectral Range (FSR). It is related to the group index of the cavity
mode nG by [68]:

FSRM = λ2
M

nG(λM )L. (1.15)

The finite linewidth of each resonance is described by the Full Width at Half
Maximum (FWHM) ∆λM , which in turn defines the resonance quality factor QM
as [59]:

QM = λM
∆λM

. (1.16)

The quality factor is related to the attenuation rate in the cavity α by [59]:

QM = 2πc
λM

1
α(λM ) . (1.17)

The attenuation rate in the resonator can be due to intrinsic losses αi (which consist
of material absorption, bending losses, scattering losses, surface absorption) and to
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extrinsic losses αe (due to the coupling to the bus waveguide). From this definition,
intrinsic and extrinsic quality factors are defined:

QM,i = 2πc
λM

1
αi(λM ) QM,e = 2πc

λM

1
αe(λM ) , (1.18)

which are related to the total quality factor by Q−1
M = Q−1

M,i +Q−1
M,e. Comparing the

intrinsic and the extrinsic quality factor allows determining the operating regime
of the resonator. If QM,i/QM,e > 1, coupling losses exceed the intrinsic losses, and
the resonator is in the overcoupling regime. When QM,i/QM,e < 1, the resonator is
in the undercoupling regime. When QM,i = QM,e (and so αi = αe) the resonator
is critically coupled. It can be shown that the resonator operating regime strongly
affects also the resonator spectrum. In Fig. 1.10 the transmission spectra of a
resonator in the all-pass configuration are shown in all the possible regimes. In the
critical coupling regime, the spectrum shows a dip going to zero transmission. In
the overcoupling regime, the resonance is wider and does not go to zero. In the
undercoupling regime, the resonance is narrower and still does not approach zero.

1.2.3 Third order nonlinear integrated platforms

In this section, the most common material platforms investigated to study third
order nonlinear effects are introduced. Third order nonlinearities have been largely
investigated because they are possible in all the materials, even in the centrosym-
metric ones. Table 1.1 shows the nonlinear coefficients of the nonlinear materials
treated in this section. Instead of showing the third order nonlinear susceptibility
χ(3), the Kerr coefficient n2 and the TPA coefficient βTPA are shown, since they are
the values usually reported in literature. The corresponding susceptibilities can be
derived using Eq. (1.10).
When dealing with third order nonlinear optics, an important parameter is the
so-called nonlinear coefficient γ(3)

m , which is defined by [59]:

γ(3)
m = 2π

λ

n2
Aeff,m

. (1.19)

This coefficient considers that a strong nonlinearity can result from both high
material nonlinearity n2 as well as small effective area Aeff,m (and so large modal
confinement).

Optical fibers. Optical fibers are the first integrated structures where nonlinear
optics was studied. The original intent was to reduce nonlinear effects, to limit
pulse degradation in long-distance communications. Afterwards, nonlinear fiber
optics was developed to exploit the high field confinement achievable in integrated
structures. However, the diameters of single-mode optical fibers developed for
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Tab. 1.1: Nonlinear parameters of some platforms used in integrated nonlinear optics
evaluated at wavelengths around 1550 nm.

Material n2 βTPA FOM
[10−20 m2/W] [10−15 m/W]

Silica glass [69] 2.6 Negligible � 1
Silicon Oxynitride [70] 7 Negligible � 1
Silicon Nitride [71] 24 Negligible � 1
Hydex®[69] 13 Negligible � 1
AsS [72] 300 6.2 > 200
GeSbS [73] 93 100 6
Crystalline silicon [72] 600 5× 103 0.8
AlGaAs [72] 1430 4× 103 2.3

telecom applications typically exceed 10 µm, therefore nonlinear interaction requires
very long fibers. To increase the interaction strength, processes able to fabricate low
loss optical fibers with small core diameters have been developed. Nowadays, the
most common fabrication technique consists of heating a standard fiber fixed on
translational stages that stretch it and reduce the fiber diameter down to tens of
nanometers [74].
Nonlinear effects in fibers have been widely investigated in last years. Recent
advances demonstrated THG on a conversion bandwidth exceeding 36 nm in tapered
fibers [75], as well as parametric amplification of more than 25 dB thanks to FWM
[76]. Thanks to the easy tailoring of the GVD, a broad supercontinuum ranging from
780 to 1890 nm was shown [77]. Great results have been obtained also by using
photonic crystal fibers, which introduce more degrees of freedom in the engineering
process and allow to investigate a large variety of phenomena [78].
Hence, optical fibers shows remarkable nonlinear characteristics, on a platform
that possess high flexibility and can be connected with low losses to other optical
fibers. However, as reported in Tab. 1.1, silica glass does not possess such a large
nonlinearity if compared to other nonlinear platforms. Moreover, according to
current fabrication techniques, optical fibers are not suitable for mass production,
and they cannot be easily combined with other optical components in a low footprint
integrated device. All these characteristics make optical fibers of great interest, but
their development is limited to situations where the integration of a high number of
optical components is not required.

High index glasses. Miller’s rule predicts a proportionality between the nonlinear
parameter and the material refractive index. So, high refractive index glasses have
been investigated for the realization of integrated nonlinear optical devices. These
include silicon oxynitride (SiON), silicon nitride (SiN) and a doped glass called
Hydex® [69, 70]. These platforms are compatible with the extremely developed
Complementary Metal–Oxide–Semiconductor (CMOS) infrastructure, the fabrica-
tion process dominating integrated electronics. Therefore, devices based on these
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technology could rapidly enter in the mass production, due to the presence of a
well established infrastructure. As it can be seen from Tab. 1.1, all these platforms
possess a nonlinear refractive index larger than the one of silica glass. Moreover, due
to the larger refractive index contrast between the core and the cladding materials,
a smaller effective area is possible, which in turn determines a larger nonlinear pa-
rameter γ(3). Furthermore, high index glass platforms possess negligible TPA, which
on the contrary compromises the performances of semiconductor material platforms
like silicon. Therefore, even if nonlinearity is not as strong as in semiconductors,
the pump power can be increased at will, without introducing nonlinear losses. For
this reason, these platforms are interesting for integrated nonlinear photonics, and
allowed observing complex nonlinear phenomena like frequency combs at telecom
wavelengths [65, 79].
Another class of glasses showing interesting properties are chalcogenide glasses.
They consist of alloys formed by chalcogen elements (like sulfur, selenium, or tel-
lurium) and by network forming elements (like arsenic, antimony, or germanium).
Chalcogenide glasses show nonlinear refractive indices comparable with the ones of
silicon while keeping low TPA [72, 73]. As it is visible from Tab. 1.1, this determines
an interestingly high FOM. However, chalcogenides are characterized by challenging
fabrication issues incompatible with CMOS technology, and suffer of limited stability
[80]. Therefore, it is difficult to take advantage from this platform for the mass
production of nonlinear integrated circuits.

Semiconductors. Semiconductors like silicon and AlGaAs are the most commonly
investigated nonlinear materials. This is mainly motivated by their large nonlinear
coefficient at telecom wavelengths. Moreover, due to their large refractive index,
they are used to realize high index contrast waveguides, reducing the mode effective
area and so increasing the nonlinear parameter. As an example, in silicon waveguides
nonlinear parameters γ(3) as large as 2× 105 W−1km−1 can be obtained, orders of
magnitude larger than 1 W−1km−1, typically available in single mode optical fibers
[80].
The biggest limitation of these platforms results from multiphoton absorption pro-
cesses, the most common of which is TPA. This process causes a saturation of the
transmitted power and creates free-carriers, which in turn introduce losses by means
of free-carrier absorption [67]. This fact is evidenced by the low FOM shown by
semiconductor platforms. A possibility to prevent this process is to move at larger
wavelengths, where multiphoton processes become negligible. As an example, in
silicon TPA becomes negligible above 2.2 µm, and this is one of the motivations of
the recent interest for mid-infrared silicon photonics [81]. Another technique de-
veloped to prevent free-carrier absorption relies on the embedding of the waveguide
into lateral p-n junction using rib geometries [82]. In this way, by applying a reverse
bias to the junction, it is possible to reduce the carrier density and so the effect of
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free carrier-absorption.
Among the others, silicon proved as the most attractive semiconductor for nonlinear
applications [67]. This is due to both its low cost and the compatibility with CMOS
technology, which allows to realize high quality integrated structures. Nonlinear
silicon photonics showed a rapid development in the last decade. Lots of processes
were demonstrated, which include parametric mixing [35, 83, 84], THG [85], para-
metric amplification [86, 87] and supercontinuum generation [88]. This fostered
the development of many fields, among which integrated quantum photonics can
be recalled. In the field of integrated quantum photonics, spontaneous FWM in
integrated silicon waveguides has been widely used for the generation of quantum
states of light [67, 89].

1.2.4 Second order nonlinear integrated platforms

Research in the field of integrated nonlinear optics has been mainly focused on third
order nonlinear processes, due to the exiguous number of non centrosymmetric
materials where second order nonlinearities are available. However, the use of
second order nonlinearities could give interesting outcomes for different reasons.
On the one hand, being a lower order effect, smaller powers are required to enable
the nonlinear processes. On the other hand, second order nonlinearities can enable
nonlinear processes that have interesting features for plenty of applications. As an
example, consider the generation of entangled photons, a prominent requirement in
quantum photonics. Currently, it is performed in integrated devices using sponta-
neous FWM. However, an extremely difficult task is to separate the entangled photon
pairs from the strong pump peak, since they are spectrally close. By using the second
order process SPDC, entangled photon pairs would be produced very far from the
pump wavelength, simplifying considerably the filtering process.
In this framework, this section shows a brief overview of the integrated platforms
where second order nonlinear processes have been investigated. An overview of the
χ(2) strengths for the main second-order nonlinear materials is shown in Tab 1.2.

Lithium niobate. Lithium niobate (LiNbO3) is called the silicon of photonics, due to
its interesting properties and ease of fabrication that make it the ideal candidate for
plenty of optical applications [92]. The most interesting property is its strong χ(2) co-
efficient, as it is reported in Tab. 1.2. Thanks to it, electro-optic modulators based on
Pockels effect have been realized and can be found on the market. Moreover, lithium
niobate is a ferroelectric crystal, meaning that its crystalline unit cell possesses a
dipole moment. When an intense electric field is applied to the crystal, the structure
of the unit cell is inverted, flipping the dipole orientation and so flipping the sign of
χ(2) [36]. The inversion of the χ(2) sign of can be applied in a periodic way along
the crystal, forming the so called periodic poling. This method is commonly used
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Tab. 1.2: Comparison between the χ(2) strengths of the main second order nonlinear
materials. For simplicity, the value reported in the table is the largest element
of the χ(2) tensor. Refer to each reference to recover the tensor element which
provides the value reported in the table. The reported values have been measured
via SHG experiments, using the pump wavelength λp reported in the third column
of the table, which is close to 1.550 µm. Due to Miller’s rule, even larger values
can be obtained for shorter wavelengths (where the refractive index is larger).

Material
χ(2) λp

[pm/V] [µm]
LiNbO3 [90] 39 1.313
LiTaO3 [90] 21.4 1.313
KTP [90] 22.2 1.313
AlN [91] 4.7 1.550
GaAs [90] 238 1.533
GaP [90] 73.6 1.313

to introduce phase-matching in frequency conversion processes, and thanks to that
efficient generation of entangled photons is possible via SPDC process [93].
The processes described so far can be performed by bulk lithium niobate crystals
that can be found on the market. Recently, great effort has been devoted to the
realization of lithium niobate waveguides to perform efficient nonlinear processes on
an integrated platform. In this framework, the generation and the manipulation of
entangled photons on a reconfigurable lithium niobate circuit has been demonstrated
[92]. The sketch of this device is shown in Fig. 1.11. Photons are generated by
means of an integrated periodically poled waveguide, and reconfigurable manipula-
tion is enabled by integrated electro-optic modulators. However, this circuit is based
on conventional bulky structures, and has dimensions of 50 mm× 5 mm× 0.5 mm.

Fig. 1.11: (a) Sketch of the photonic circuit demonstrated in [92]. (b) Sketch of the whole
chip. (c) Real picture of the chip with the optical fiber connections to inject and
extract light. Reprinted with permission from [92]. Copyright (2014) by the
American Physical Society.

More recently, a lot of effort has been put towards the realization of more compact

1.2 Nonlinear optics in integrated devices 21



structures, based on the deposition of lithium niobate layers of thickness in the
range 200 nm to 600 nm [94]. On the one hand, this allowed to demonstrate high-
performance small-dimension electro-optic modulators: the most recent advances
in this field are reviewed in [95]. On the other hand, the SHG process has been
studied. Conversion processes based on periodic-poling [96] as well as poling-free
mechanisms [97, 98] have been demonstrated. Preliminary results on the generation
of entangled photon pairs by SPDC in these structures have been also very recently
reported [99].
Plenty of nonlinear processes can be enabled in lithium niobate, and this makes it
as one of the most promising material platforms. One of the biggest limitations is
its cost, which makes difficult to really conceive it as the new silicon for integrated
photonics.

Other nonlinear crystals. In bulk optics, also other materials have been investigated
for second order nonlinear processes, like lithium tantalate (LiTaO3) and potassium
titanyl phosphate (KTP). Table 1.2 shows that their nonlinear strength is comparable
with the one of lithium niobate. However, to the best of our knowledge, results on
the integration of these platforms have been never reported so far.

Aluminum nitride. Another interesting material for the realization of integrated sec-
ond order nonlinear devices is aluminum nitride (AlN). SHG has been demonstrated
both in straight waveguides and in resonators [91], measuring a χ(2) of 4.7 pm/V.
More recently, also SPDC has been demonstrated in a microring resonator [100].
The authors demonstrated also the potential of this process as a source of heralded
photons for quantum information, measuring the second-order correlation function
of the down-converted photons. A scheme of the device used in this work is sketched
in Fig. 1.12.

Fig. 1.12: Scheme of the AlN source of photon pairs described in [100]. Infrared photon
pairs are generated in a AlN microring resonator from a visible pump. On a second
chip, photon pairs are split and detected by Superconducting Single-Photon
Detectors (SSPDs). A correlator is used to perform coincicence measurements.
Adapted from [100], CC BY-NC-ND 4.0.
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(Aluminum) gallium arsenide. Another interesting platform for second order non-
linear photonics is gallium arsenide (GaAs) and all its alloys like aluminum-gallium-
arsenide (AlGaAs). Depending on the alloy concentration the nonlinear strength
of these materials can strongly differ. In any case, very large nonlinear coefficients
can be obtained, like it is reported in Tab. 1.2. In this framework, an efficient SHG
process has been recently demonstrated in GaAs waveguides [101]. In this case, an
intermodal phase-matching mechanism has been adopted, studying the conversion
between the fundamental TE mode and the fundamental TM mode.
This platform can admit another phase-matching mechanism, based on the fact that
its crystalline structure possesses the 4̄ symmetry. For materials with this symmetry,
rotations of 90◦ about the 4̄ axis are equivalent to crystallographic inversions. So, in
curved geometries like microresonators, the propagating field feels 4 crystallographic
inversions per round-trip. This method can be used to introduce phase-matching in
frequency conversion processes. Based on this concept, SHG has been demonstrated
in GaAs microdisks [102] as well as in snake-shaped waveguides [103].

Gallium phosphide. Also gallium phosphide (GaP) can be considered for its nonlin-
ear properties, as indicated by the strength of the nonlinear parameter reported in
Tab. 1.2. SHG in an integrated GaP microresonator has been very recently demon-
strated [104]. Since also GaP possesses a 4̄ symmetry, the possibility of realizing
SHG using 4̄ phase-matching techniques has been also proposed [105].

Centrosymmetric materials. The material platforms described in this section pos-
sess a nonzero χ(2) because they have a non-centrosymmetric crystal structure. On
the contrary, in centrosymmetric crystals χ(2) = 0. This is the case of all the material
platforms described in Sec. 1.2.3, and that is why third order nonlinearities have
been mainly studied in that case.
However, many attempts have been done to introduce second order nonlineatiries
also in centrosymmetric materials. Most of these attempts deal with the centrosym-
metry breaking. For example, recent experiments showed SHG in fiber nanowires,
caused by the molecular anisotropy at the glass-air boundary [106].
Some attempts have been done also for the study of second order nonlinearities in
high index glasses. For example, in SiN waveguides the inversion symmetry at the
waveguide boundary has been studied, resulting however in a very limited second
order nonlinear susceptibility [107, 108].
The possibility to introduce second order nonlinearities has been strongly inves-
tigated also in silicon. This mainly deals with the compatibility with the CMOS
technology, which could provide a rapid entrance in the mass production of silicon-
based devices, differently from the other platforms treated in this section. The
mainly investigated approach to introduce χ(2) in silicon considered the application
of straining layers on the top of silicon waveguides, aimed at breaking its centrosym-
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metric crystal structure. This lead to the demonstration of Pockels effect and SHG in
silicon waveguide strained by SiN cladding, opening the research field of strained
silicon photonics [67]. However, some ambiguities in the reported results have
been recently shown, opening a debate in the scientific community on their real
interpretation. The work of this thesis fits within this field. So, this topic will be
introduced in detail in the next section.

1.3 Second order nonlinear silicon photonics

As recalled many times in this chapter, the attractive photonic properties of silicon
lack of an usable χ(2). To overcome this limit, it is required to perturb its cen-
trosymmetric structure. To achieve this goal, many efforts have been done in recent
years. Most of them are based on the use of strain layers deposited on the top
of waveguides, and will be treated in this section. All the studies reported so far
deal with Pockels effect and SHG. So, these effects are treated here separately. This
gives the chance to introduce also the strong debate that recently opened on the
interpretation of the measured effects. The work developed in this thesis really fits
within this topic, and is also introduced in detail in this section.

1.3.1 Pockels effect in silicon waveguides

The pioneers of Pockels effect in silicon. The first study on second order nonlin-
earities in silicon goes back to 2006, when the demonstration of Pockels effect was
claimed for the first time [109]. In this work, the authors investigated a silicon pho-
tonic crystal waveguide with a SiN stressing layer. A Mach-Zehnder interferometer
(MZI) was used to detect the refractive index variation induced by a DC field applied
to one of the two MZI arms. This effect was ascribed to Pockels effect, enabled by
an effective χ(2) ' 15 pm/V introduced by the straining overlayer. A sketch of the
waveguide used in this work is shown in Fig. 1.13(a).
The outcomes resulting from this work were extremely promising for the realization
of silicon-based electro-optic modulators based on Pockels effect. Such a goal was
desirable for many reasons, and offered many advantages if compared to modulation
techniques based on thermo-optic or carrier dispersion effects. These advantages are
mostly based on the fact that a Pockels electro-optic modulator does not involve the
physical movement of carriers. This can enable ultrafast modulation speed beyond
1 GHz, but also a reduced power consumption in the application of the driving
voltage. All these aspects, together with the strong measured χ(2) (not so far from
the value of lithium niobate, see Tab. 1.2), officially opened the strained silicon
photonics research field, and motivated plenty of studies in the following years.
Optimizing the waveguide geometry and the cladding deposition techniques, the
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Fig. 1.13: (a) Sketch of the photonic crystal waveguide used in [109]. Reprinted by permis-
sion from Macmillan Publishers Ltd: Nature [109], Copyright 2006. (b) Sketch of
the strained waveguide used in [110]. Reprinted from [110], CC BY 4.0. (c) χ(2)

strength as a function of the electrical modulation frequency. For high frequency
modulations, the nonlinear strength is below noise. Reproduced from [111].
(d) High frequency electro-optic effect measured on waveguides with different
cristallographic orientations. Reprinted from [110], CC BY 4.0.

various elements of the χ(2) tensor were reported, and a χ(2) ' 190 pm/V was
demonstrated [112, 113]. The spectral dependence of χ(2) was also measured,
showing an increasing behavior with wavelength. A value of χ(2) ' 340 pm/V was
measured at the wavelength of 1.63 µm [114]. Table 1.3 reports an overview of the
different χ(2) values measured from Pockels effect in strained silicon waveguides. A
sketch of the typical waveguides used in these works is shown in Fig. 1.13(b).

Tab. 1.3: Overview of the different χ(2) values measured from Pockels effect in strained
silicon waveguides and reported in literature.

Reference Year χ(2)

[pm/V]
[109] 2006 15
[112] 2011 122
[113] 2013 190
[114] 2014 340
[111] 2015 < 8
[110] 2018 1.8
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Theoretical description of Pockels effect in silicon. Many efforts were devoted to
the derivation of a theoretical model able to describe the measured effects.
In the first work on this topic the authors develop a simple model, which relates χ(2)

to the strain gradient inside the material [115]. This strain gradient determines
a charge redistribution, which in turn induces a net electric field Enet. The model
developed in [115] shows that one can write χ(2) ∼ χ(3)Enet. The authors use
Coulomb’s law to estimate Enet, and with a stress value of 1 GPa they estimate
χ(2) ∼ 0.02 pm/V, much lower than the values reported in the experiments. In a
more recent work the authors confirm that, while this model works properly for
materials with intrinsic χ(2) like GaAs, it underestimates χ(2) in strained silicon
structures [116]. The authors try to clarify this discrepancy, and they attribute it to
the SiN cladding, which possesses a large nonlinear polarizability. Due to this last,
when a strain gradient is applied, the bonds suffer a small reorientation, which can
generate a large χ(2).
Also other theoretical works have been reported. One of these suggests to write the
χ(2) tensor elements as a linear combination of the components of the strain gradient
tensor, using fifteen independent coefficients [117]. However, these coefficient can
not be theoretically derived, but need to be fitted to experimental measurements.
Another model was based on the sp3 bond-orbital theory [118]. In this model, the
relationship between the χ(2) tensor and the strain gradient only depends on two
parameters, which can be theoretically estimated. This model succeeded in the
estimation of the photoelastic effect, but the predicted value of χ(2) varies between
0.1 pm/V and 0.3 pm/V, much smaller than the experimental values reported so far.
Recent studies raised many doubts about the interpretation of the χ(2) measurements
described so far, and, consequently, on the theoretical estimations that are in turn
based on these questionable measurements.

Ambiguities of the reported results. In [119] the authors show that the phase-shift
measured in all the previous experiments could be attributed to the free-carrier
accumulation inside the waveguide. The accumulation is induced by the applied
DC field, but also depends on the surface charged layer present at the waveguide
interface. This charged layer is due to the creation of dangling bonds during the
deposition of the SiN cladding, which determine the presence of a positively charged
layer at the interface between silicon and the SiN cladding.
In order to disentangle Pockels effect from free-carrier induced effects, an AC field
in the GHz range has been applied instead of the usual DC field. In this frequency
range, only the contribution due to χ(2) is expected, since the free-carrier modula-
tion speed limits to hundreds of MHz [111]. The experiment was performed on a
racetrack resonator. As reproduced in Fig. 1.13(c), no evidence of Pockels effect
was shown. The noise level of the measurement allowed to set an upper limit to
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the strain-induced χ(2) at (8 ± 3) pm/V. More recent works offered new proofs
of this interpretation, based on experimental observations that are confirmed by
simulations [120, 121].

Recent advances on Pockels effect in silicon. Very recently, a new contribution in
the field of Pockels effect in strained silicon waveguides has been reported [110].
This shows a high-speed electro-optic measurement, which allows disentangling the
fast nonlinear effect from the slow free carrier dispersion effect. Based on this, the
authors report a strain-induced χ(2) of about 1.8 pm/V. The authors show also a
dependence of the measured effect on the waveguide orientation, and they attribute
this to occurrence of the Pockels effect, whose strength depends on the silicon crystal
direction. Figure 1.13(d) reproduces the high frequency measurement reported in
[110] for two different waveguide orientations. The coefficients connecting strain
gradients to the strain-induced χ(2) are fitted from the experiment according to the
theoretical model proposed in [118]. Even if the order of magnitude is the same,
the coefficients estimated from the experimental fit are at least 2− 3 times larger
than the ones resulting from the ab-initio calculations shown in [118]. Moreover, to
definitely attribute this result to Pockels effect, the occurrence of the DC Kerr effect
should be excluded.
In other works, different methods to induce χ(2) have been proposed. As an example,
in [122] the authors show the surface activation of χ(2) induced by means of an
HBr dry etching process, which is fully compatible with the CMOS technology. The
authors report a χ(2) ∼ 9 pm/V. More recently, another work reported on the
possibility to integrate on silicon barium titanate (BaTiO3, or BTO) [123]. This
ferroelectric material possess a very large nonlinearity, and allowed to measure
Pockels effect with χ(2) ∼ 1800 pm/V.

1.3.2 SHG in silicon waveguides

SHG in strained silicon. Strained silicon waveguides have been also investigated
as a platform to study SHG. In the first report on SHG in strained silicon, a χ(2)

of (40± 30) pm/V has been demonstrated [124]. A SEM image of the waveguide
used in this experiment is shown in Fig. 1.14(a). The experiment was performed
using pump wavelengths above 2 µm in highly multimodal waveguides, without
considering any phase-matching technique. Figure 1.14(b) reproduces the measured
spectrum, showing both the pump and the SH pulses.
However, more recent experiments showed that not only strain can cause the
measured SHG. Like for Pockels effect, also in this case charged defects trapped in
the SiN cladding can contribute. In this case, charges introduce a DC field EDC in
the waveguide. This DC field couples to the pump wave through χ(3), generating
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Fig. 1.14: (a) SEM image of the input facet of the waveguide studied in [124]. (b) Spectrum
showing the pump and the SHG signal, as it is reported in [124]. (c) Skecth
of the device proposed in [125] to exploit EFISH using lateral p-n junctions.
(d) Comparison between the measured SH spectrum and calculations done
using different values of χ(2). Panels (a-b) are reprinted by permission from
Macmillan Publishers Ltd: Nature Materials [124], Copyright 2012. Panels (c-d)
are reprinted by permission from Macmillan Publishers Ltd: Nature Photonics
[125], Copyright 2017.

an effective χ(2)
EFISH = 3χ(3)EDC known as the Electric-Field-Induced SHG (EFISH)

[126]. Both strain and EFISH contribute providing the same final effect. A clear
disentanglement between their respective contributions is still lacking. A complete
knowledge of the contributions of strain and charged defects could offer a milestone
in the future development of this field.
In this thesis, this topic is treated deeply, trying to offer a clear picture on the relative
strength between strain and EFISH.

Field-induced SHG in silicon. EFISH is a nonlinear process with a χ(3) origin, but
its outcome is the same as a bulk χ(2) process. So, this process can be directly
exploited to realize second order nonlinear processes. In strained silicon waveguides,
EFISH is a passive process that originates from the presence of trapped charges
accumulated during SiN deposition. However, waveguides where EFISH is actively
introduced have been also demonstrated.
In [125], the authors proposed to use rib waveguides, inducing the DC field by
lateral p-i-n junctions. The periodic separation of the junctions along the waveguide
propagation direction allowed to introduce a periodically varying DC field, able to
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quasi-phase-match the pump and the generated signals. The sketch of this waveg-
uide is shown in Fig. 1.14(c). Using this approach, a χ(2)

EFISH ∼ 41 pm/V has been
estimated. Even if requiring to actively apply the DC field, this method allows to
introduce a larger effective χ(2) if compared to the strained silicon approach. More-
over, the quasi-phase-matching technique allows to study the conversion between
fundamental optical modes, providing in this way a larger conversion efficiency. The
spectrum of the measured SH signal is shown in Fig. 1.14(d).
Due to these aspects, this method is acquiring more and more interest. As an exam-
ple, in [127] the authors propose to use the same approach to investigate SHG in
silicon microresonators.
Also in this thesis this method is investigated in detail. Compared to [125], additional
waveguide geometries are proposed. Furthermore, the possibility to investigate also
the opposite process (namely, SPDC) is also studied.

1.4 This work

This thesis work was performed within two projects. SIQURO project studied silicon-
based integrated quantum photonic circuits for different applications, ranging from
quantum computing to secure communications [128]. Nemo project investigates
optical frequency combs in quadratic media, with particular attention to the silicon
integrated platform [129]. The manuscript is organized in three parts.
Part I studies the effect of strain on integrated optical structures. The study carried
on in this part aims both at characterizing a device able to introduce mechanical load
in integrated optical structures, as well as at developing a simulation tool able to
describe the effect of strain in integrated structures. In Chapter 2 the experimental
characterization of a set of silicon racetrack resonators in shown. A mechanical load
is applied, and the effect on the resonator transmission spectrum is measured. Then,
in Chapter 3, the effect of the mechanical load is modeled. These simulations take
into account the possible effects that affect the optical properties of the resonator,
mainly the waveguide deformation and the photoelastic effect. Good agreement is
found between the simulation and the experiment, proving that this simulation tool
can be used to model the effect of strain on integrated optical structures.
Part II is dedicated to the study of SHG in strained silicon waveguides. Chapter 4
introduces the theoretical framework of SHG in waveguides. Then, the waveguide
engineering procedure used to design the waveguides is described. The technical
details of the SHG experiment are then described in Chapter 5, showing also the
characterization of the SHG process. The two successive chapters are dedicated to
the study of the origin of this process. Chapter 6 investigates the role of strain on
the measured effect. The SHG process is studied under the effect of an external
mechanical load, and experimental results are interpreted also by the comparison
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with simulations. Chapter 7 studies the effects on SHG of the charges trapped at
the waveguide borders, which introduce a static electric field in the waveguide that
enables the EFISH process. UV treatment is applied to remove these charges, and
the effect on SHG is studied. The complete suppression of the SHG signal after the
UV treatment, together with the independence of the SHG efficiency on the applied
strain, demonstrates the main role of charges on the measured SHG.
The main outcome of the study shown in Part II is that, even if the waveguides are
designed to introduce a mechanical strain that can break the crystal centrosymmetry,
the origin of the measured SHG has to be attributed to charges trapped at the
interface, which introduce a static field within the waveguide. Clearly, this is not the
most efficient way to introduce static fields in the waveguide. In Part III a more effi-
cient way to introduce static fields inside waveguides is studied. The first approach
consists of using silicon rib waveguides with lateral p-n junctions. By polarizing
the junctions, a static field is introduced. In Chapter 8 this kind of geometry is
characterized both theoretically and experimentally by considering silicon racetrack
resonators with lateral junctions, and studying the effect of the junction polarization
on the resonator transmission spectra. Chapter 9 applies this configuration to SHG.
First, SHG theory is adapted to the new waveguide geometry, which also introduces
the periodic poling as a method to satisfy phase-matching. Then, the waveguide en-
gineering procedure is shown. This chapter considers also the possibility to perform
the opposite process, namely the SPDC process. The experimental characterization
of SHG is then shown in Chapter 10. Using a similar approach, Chapter 11 studies
the possibility to perform SHG and SPDC in silicon oxynitride waveguides. In this
case, being silicon oxynitride a dielectric, the static field is applied by means of
metallic pads. This platform, even if less efficient in terms of the nonlinear strength,
can offer advantages for the experimental measurement of these effects.
Finally, Chapter 12 draws conclusions and shows perspectives of this work.
The results described in this work have been obtained thanks to the collaboration
with different people, most of which are or have been part of the NanoScience Labo-
ratory. At the beginning of each chapter, I specify the role of everyone. In general, I
mainly dealt with the design and the modeling of the integrated optical structures
described in this work, as well as with their experimental characterization.
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Part I

Tunable mechanical load in waveguides

In this part, the effect of strain on integrated optical structures is studied. This study
aims both at characterizing a device able to introduce mechanical load in integrated
optical structures, as well as at developing a simulation tool able to describe the
effect of strain in integrated structures.
In Chapter 2 the experimental characterization of a set of silicon racetrack resonators
is shown. A mechanical load is applied, and the effect on the resonator transmission
spectrum is measured.
In Chapter 3, the effect of the mechanical load is modeled. Good agreement is
found between the simulation and the experiment, proving that this simulation tool
can be used to model the effect of strain on integrated optical structures.





2Strain effects on microresonators

2.1 General features . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.1 The experimental setup . . . . . . . . . . . . . . . . . . 34

2.1.2 The structures under test . . . . . . . . . . . . . . . . . . 34

2.2 Basics of the linear theory of elasticity . . . . . . . . . . . . . . . 35

2.3 Macroscopic simulation of the device . . . . . . . . . . . . . . . 38

2.3.1 Description of the model . . . . . . . . . . . . . . . . . . 38

2.3.2 Validation of the model . . . . . . . . . . . . . . . . . . . 39

2.4 Effect of strain on the resonance wavelength . . . . . . . . . . . 39

2.5 Estimation of the waveguide width . . . . . . . . . . . . . . . . . 43

In silicon photonics, the role of strain has been investigated for many applications.
The most recent and attractive one is related to the possibility of transferring silicon
photonic devices to polymeric flexible substrates [130], which offers interesting
features for the realization of complex flexible integrated devices. Silicon-based
strain sensors have been realized on standard Silicon-On-Insulator (SOI) substrates
[131], on polymeric flexible substrates [132] and on silicon oxide membranes [133].
Straining layers have been also deposited to control the photoelastic variation of
the waveguide refractive index, balancing the geometric birefringence and realizing
polarization insensitive devices [134]. More interestingly for the purpose of this
work, straining layers have been used to break the centrosymmetry of silicon,
introducing second order nonlinear optical effects [67].
This chapter analyzes the role of strain in integrated devices. The strain is applied in
a controlled way by using a micrometric screw, which causes the sample to bend.
The experimental setup and the analyzed devices are described in Sec. 2.1. In Sec.
2.2, the basic principles of the linear theory of elasticity are introduced. Section 2.3
shows the macroscopic simulation describing the sample bending. In Sec. 2.4 the
experimental results on the strain-induced resonance shift are presented. Finally, Sec.
2.5 analyzes the waveguide deformation and the actual dimension of the device.
The experiments described in this chapter have been performed together with Miss
A. Chalyan. The samples used in the experiments have been designed by Dr. M.
Borghi and Dr. M. Mancinelli. The samples have been fabricated by Dr. M. Bernard
and Dr. M. Ghulinyan at Fondazione Bruno Kessler.
The experiment described in this chapter is also described in [135].

33



2.1 General features

2.1.1 The experimental setup

The experimental setup used during this work is sketched in Fig. 2.1. The input and
the output channels of the analyzed structures are accessed via edge coupling using
tapered lensed fibers, passing in a polarization stage before entering into the input
waveguide. The sample is mounted on a screw-equipped sample holder, magnified
in Fig. 2.2. The source is a continuous-wave laser, tunable around the wavelength of
1600 nm. The detection is performed using an InGaAs amplified detector coupled
to a multimeter. Using the screw, a displacement is applied to the central point of
the sample along the direction orthogonal to its main plane (z direction), while the
displacement on the sides is inhibited along z, causing the bending of the sample.
The point load generates a 2-D strain field in the sample, whose components are
principally directed along the longest dimension of the chip. A more complete
description of the screw-equipped sample holder can be found in [111].

Laser source

Alignment stage

Photodetector

Sample

Alignment stage

Polarization controller

holder

Fig. 2.1: Sketch of the experimental setup. It is formed by a tunable laser source, a fiber
polarization controller, an input-output alignment stage, a screw-equipped sample
holder and an InGaAs photodetector.

2.1.2 The structures under test

Figure 2.2 shows the top-view of the typical test structure. This was designed to
study the strain-induced electro-optic effect in silicon (see more in [111]). The
device consists of a racetrack resonator in an add-drop filter configuration designed
to work in the Transverse-Magnetic (TM) polarization. It is realized with a 365 nm
UV lithography on a 6’ SOI wafer, whose cross-section is sketched in Fig. 2.3. Over
a 600 µm thick silicon substrate, a 3 µm thick Buried Oxide (BOX) layer forms the
lower cladding. All the resonator waveguides have a 243 nm × 400 nm cross-section,
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Fig. 2.2: Zoom-in picture of the screw-equipped sample holder. On the sample it is depicted
a resonator whose main axis is rotated of an angle α with respect to the y direction.
The resonator dimensions are deliberately out of scale.

guaranteeing the single mode operation at wavelengths around 1600 nm1. On the
waveguide top, a 140 nm thick SiN layer is conformally deposited via Low-Pressure
Chemical Vapor Deposition (LPCVD). A 900 nm thick Plasma-Enhanced Chemical
Vapor Deposition (PECVD) silica layer forms the upper cladding. The resonators
perimeter is 416 µm, with a straight coupling region length of 12.91 µm, a curvature
radius of 15 µm and a 400 nm gap between the resonator and the bus waveguide.
The resonators are fabricated with five different orientations with respect to the
silicon crystallographic axes, expressed by the angle α indicated in Fig. 2.2. For
α = 0◦ the resonator longest dimension is oriented along the [110] crystallographic
direction. The maximum angle is α = 90◦, corresponding to a resonator oriented
along the [110] direction. Other resonators oriented at angles of α = 30◦, 45◦ and
60◦ are present on the sample.

2.2 Basics of the linear theory of elasticity

Consider a material undergoing a small deformation. This deformation can be
described by a displacement vector u, which relates the original position of a point r
with its position r′ after the effect of deformation [117, 136, 137]:

u = r′ − r. (2.1)

1The waveguide height is evaluated from interferometric measurements. Clearly, this value is affected
by fabrication uncertainty. Variations on height and width produce the same outcome, which is
a modification of the mode effective index, and it is not possible to disentangle them. However,
fabrication uncertainties affect mainly the width rather than the height. So, in the following the
waveguide height is always set to its nominal value, considering only variations on the width.
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Fig. 2.3: Off-scale picture of the waveguide cross section with nominal dimensions.

In the linear theory of elasticity, this deformation is described by the symmetric
strain tensor ε, whose elements εij are defined by:

εij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.2)

The volumetric strain εv is defined as the trace of the strain tensor ε. It is often
referred as dilatation, since it can be physically interpreted as the local the relative
variation of volume (∆V/V ). The volumetric strain is an important quantity, because
it is invariant with respect to rotations of the reference system [137].
A deformed material is subject to internal forces, which tend to bring the material
back to its undeformed state. The i−th component of the local force Fi is related to
the stress tensor σ, which is defined by [136]:

Fi =
∑
j

∂σij
∂xj

. (2.3)

The relationship between stress and strain is described by the generalized Hook’s
law, which relates how a material is deformed as a consequence of an applied stress
(and vice versa) [138]:

σ = Cε ε = Sσ, (2.4)

where C and S are called (respectively) stiffness and compliance tensors. In
anisotropic materials, these tensors have in general 34 = 81 elements. However,
the number of elements can be reduced by considering the material symmetries.
In particular, if a a material has at least two orthogonal planes of symmetry, the
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orthotropic representation can be used. In this case, the relationship between stress
and strain can be written as [138]:
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where Ei is the i−th component of the Young’s modulus, νij is the ij−th component
of the Poisson’s ratio and Gij is the ij−th component of the shear modulus.
Regarding silicon, if cartesian coordinates are aligned with the crystal axes [100],
[010] and [001] one can demonstrate that all the Ei, νij and Gij are equal [138].
These quantities are reported in Tab. 2.1. If the cartesian coordinates are directed
along different axes, the stiffness matrix must be properly rotated [138, 139].
In the case of isotropic crystals, all the Ei, νij and Gij are equal [138]. Moreover,
in this case the shear modulus is not independent on the other quantities, and it is
given by G = E/[2(1 + ν)] [140]. Furthermore, as expected, rotations along any
axis do not affect the stiffness matrix. The isotropic materials analyzed in this work
are silicon oxide and silicon nitride, and their elastic parameters are reported in Tab.
2.1.
When affected by deformation, also the refractive index of a material is affected.
This effect is known as photoelastic effect. In the presence of photoelasticity, the
different components of the refractive index can be rewritten as [140]:
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where n0 is the refractive index of the unstrained material. The coefficients C1, C2

and C3 are the so called stress-optic constants, which are related to the mostly used
photoelastic coefficients p11, p12 and p44 by [140]:

C1 = n3
0(p11 − 2νp12)

2E C2 = n3
0[p12 − ν(p11 + p12)]

2E C3 = n3
0p44
2G . (2.7)

Also in this case, for isotropic materials only two coefficients are independent, being
p44 = (p11 − p12)/2 [140]. The coefficients for the different materials analyzed in
this work are reported in Tab. 2.1.
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Tab. 2.1: Material parameters used in this work.

Silicon Silicon Oxide Silicon Nitride

Refractive index n (@ 1600 nm) 3.474 a 1.443 a 1.995 a

Young modulus E (GPa) 130 [138]b 76.7 [141] 255 [142]
Poisson ratio ν 0.28 [138]b 0.186 [141] 0.23 [142]
Shear modulus G (GPa) 79.6 [138]b 32.3 c 118.6 c

Photoelastic coefficient p11 −0.0997 d 0.19 e - f

Photoelastic coefficient p12 0.0107 d 0.27 e - f

Photoelastic coefficient p44 −0.051 g −0.04 h - f

a Measured with ellipsometry technique.
b Referred to the reference system with the axes directions [100], [010], [001]. In [139] and

[138] the method used to derive the stiffness matrix along arbitrarily directed axes is shown.
c Evaluated using G = E/[2(1 + ν)] (valid for isotropic crystals) [140].
d Interpolated from measurements taken at λ =1.15 µm and λ =3.39 µm [140].
e Interpolated from measurements taken at λ =0.633 µm [140] and λ =1.15 µm [141].
f No data in literature. Since SiN forms a thin cladding, no relevant effective index variations

can be obtained varying its photoelastic coefficients. So, the same values as silica are used.
g Evaluated from [140].
h Calculated using the relationship p44 = (p11 − p12)/2, that is valid for isotropic crystals [140].

2.3 Macroscopic simulation of the device

2.3.1 Description of the model

To compare numerical and experimental results, it is necessary to correctly esti-
mate local strains in the structures due to the sample bending. This estimation
is performed with a 3D FEM simulation of the entire sample subjected to a point
load using the Structural Mechanics module of COMSOL Multiphysics® software
[56]. The waveguides, BOX and cladding layers are 200 times thinner than the
600 µm thick silicon substrate, so that the latter is mainly responsible for the overall
mechanical behavior of the whole sample. As a consequence, in order to reduce
the computational burden, the simulation is limited to the silicon substrate. The
simulation boundary conditions are represented in Fig. 2.4. The effect of the screw is
considered as a prescribed displacement along z applied to the center of the sample,
while the two supports are modeled by a fixed line constraint and by a prescribed
zero z displacement line, which prevents the sample being blocked.
Figure 2.4 reports the volumetric strain relative to a mechanical displacement of
150 µm applied by the screw. This strain is larger in the center, while approaching the
boundaries it decreases and vanishes. The use of the volumetric strain is legitimized
by the fact that, from the simulation, it results that the shear components of the stress
tensor are at least one order of magnitude smaller than the principal components.
The elastic parameters of silicon needed for this simulation, as well as the other
material parameters used in this work, are the ones reported in Tab. 2.1.
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Fig. 2.4: On the top: 3D simulation boundary conditions for beam bending. The prescribed
displacement and the fixed constraint on the top represent the supports, while
the arrow describes the screw displacement. On the bottom: volumetric strain
εv superimposed in color scale over the beam deformation evaluated applying a
displacement of 150 µm to the sample center. Displacements are emphasized by a
factor of 10.

2.3.2 Validation of the model

The degree of accuracy of the 3D macroscopic simulation is validated via experimen-
tal measurements. The sample curvature (as a function of the z-displacement) is
experimentally measured as illustrated in Fig. 2.5. Similarly to the method proposed
in [143], a HeNe laser impinges on the sample surface and is reflected on a screen.
Using the micrometer screw, the sample curvature is modified, causing a movement
of the spot position on the screen. The reflected beam is deflected by an angle
δ. By using simple geometric considerations, it can be shown that δ = 2θ, where
θ is the rotation of the normal to the sample surface. The angle δ is determined
as δ ∼ ∆H/L, being ∆H the spot displacement on the screen and L the distance
between the mirror M2 and the screen2.
Figure 2.6 shows the bending angle as a function of the position on the sample
surface for three different applied displacement values. The position x on the sample
surface is referred to the center of the sample. The experimental results and the
simulation show a good agreement, varying both the position on the sample and the
displacement applied by the screw.

2.4 Effect of strain on the resonance wavelength

The output spectrum recorded on the drop port of an analyzed resonator is shown
in Fig. 2.7. The FSR is about 1.5 nm. The quality factor varies from resonator to

2This estimation is approximated because the spot displacement is determined not only by the sample
deflection, but also by the variation of the beam position on mirror M2. This is caused both by the
sample movement ∆z in the z direction, and by the distance z0 between the sample surface and
the mirror M2. Since L = 3.73 m, L � z0 = 0.1 m. Moreover ∆H � ∆z, being ∆H ∼ cm and
∆z < 150 µm. Thus, the approximation δ ∼ ∆H/L is valid.
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Fig. 2.5: Setup used to measure the sample curvature. The black line describes the HeNe
laser path when the sample is undeformed, while the gray path corresponds to the
deformed sample.
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Fig. 2.6: Rotation of the normal to the surface θ as a function of the position on the sample
surface for three different screw displacements ∆z. The experimental data (points)
are compared with simulations (straight lines). Errorbars are smaller than data
symbols. The zero reference position along x direction refers to the central point
of the sample.

resonator in the range 5000 to 10 000 due to fabrication variations.
In Fig. 2.8 the transmission spectra of two resonators with different orientation
angles α are shown as a function of the displacement ∆z applied by the screw in the
sample center. In the case of α = 0◦ the strain induces a blue-shift of the resonance,
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Fig. 2.7: Drop port spectrum of one analyzed resonator.

while it is red-shifted when α = 90◦.

Fig. 2.8: Drop port spectra of two resonators oriented with different angles α. The different
colors refer to measurements taken with different ∆z.

The same fact can be observed from Fig. 2.9, where the resonance wavelength
dependence on ∆z is shown. However, the difference between the two measure-
ments is not only the orientation of the resonator, but also its position on the sample.
As it can be seen from Fig. 2.4, even if the displacement applied by the screw at
the center of the sample is the same, the strain varies considerably in the sample.
Therefore, the local strain level experienced by each resonator can be different. For
this reason, the resonance shift must be normalized with respect to the local strain
acting on each resonator. The local strain is quantified using the 3D FEM simulation
described previously and evaluating the volumetric strain εv at the location of the
resonator. The top axes of Fig. 2.9 show the volumetric strains corresponding to
the displacements ∆z reported on the bottom axes. The slope of the linear fit curve
represents the resonance shift per unit strain. Once this normalization is applied,
comparable results can be found from identically oriented resonators located in
different positions on the sample (for example, −0.39 ± 0.09 pm/microstrain and
−0.32 ± 0.05 pm/microstrain for two identical resonators oriented with α = 0◦

situated at about 4.2 mm and 1.9 mm from the center of the sample).
In Fig. 2.10 the resonance shift per unit strain is analyzed as a function of α. The
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Fig. 2.9: Dependence on ∆z of the resonance wavelength evaluated from a Lorentian fit
of the spectra. The top axes report the corresponding volumetric strain evalu-
ated from the 3D macroscopic simulation. The gray lines are linear fits of the
experimental data.

normalized shift increases monotonically with α, demonstrating that, changing the
resonator orientation, it is possible to tune the resonance shift from negative to
positive values, as well as to design a strain insensitive resonator.

Fig. 2.10: Resonance shift per strain unit for resonators oriented with different angles α.
Errorbars represent 95% confidence bounds resulting from the linear fits.

The difference in the errorbars of the measurements reported in Fig. 2.10 derives
from two reasons. On the one hand, the error made in the determination of the
resonance wavelength is related to the shape of each resonance, that differ from
resonator to resonator due to the quality factor difference and to the Fabry-Perot
interference caused by the bus waveguide facets, which differ from resonator to
resonator. On the other hand, the different errors are determined by the different
location of the resonators on the sample. Resonators located close to the sample
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border feel a smaller strain and a smaller resonance shift compared to the case if they
were located in the center of the sample, determining a larger error in the estimation
of the wavelength shift per unit strain. As an example, resonators oriented with
angles 0◦ and 90◦ are located more closely to the sample border than the other
resonators, and so the errorbar on these measurements is larger.

2.5 Estimation of the waveguide width

The left hand side of Fig. 2.11 shows the wavelength dependence of the group index
ng for one analyzed resonator. The experimental values are evaluated from the
experimental FSR using Eq. (1.15). The group index is evaluated for different strain
levels applied by the screw. The group index variation induced by the applied strain
is below the experimental error level, revealing that in this way it is not possible to
detect any deformation of the waveguide cross section caused by strain. A similar
observation derives from the right hand side of Fig. 2.11, where the experimental
wavelength dependence of the quality factor is reported. Any variation of the quality
factor caused by strain (such as the variation of the gap between the resonator and
the bus waveguide) is below the experimental error.

Fig. 2.11: On the left hand side: wavelength dependence of the resonator group index with
an orientation angle α = 60◦. The experimental value is evaluated from the
FSR, while the simulated result derives from a FEM simulation of a waveguide
with a cross section of 390 nm× 243 nm. On the right hand side: wavelength
dependence of the quality factor of the same resonator.

The comparison between the experimental group index and the simulation can
provide an estimation of the actual dimensions of the analyzed resonator waveguide.
As already remarked, fabrication uncertainties affect mainly the waveguide width
rather than the height. Therefore, the waveguide height is set to its nominal
value of 243 nm (evaluated from interferometric measurements). The group index
dependence on the waveguide width is calculated with a 2D mode solver from the
effective refractive index dispersion, and is shown in red in Fig. 2.12. The blue line
represents the experimental value of the group index, estimated from the data shown
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Fig. 2.12: Comparison between the simulated dependence of the group index on the waveg-
uide width (red) and the experimental value (blue), from which the actual width
of the waveguide is determined (black). The light colors represent the errorbars.

in Fig. 2.11. From the intercept between the experimental and the theoretical group
index the actual waveguide width of the resonator is estimated to be 391 ± 7 nm,
slightly smaller than the nominal value of 400 nm. Any variation of the waveguide
width caused by strain is below the error of this estimation.

Fig. 2.13: Waveguide width evaluated from the experimental group index for the resonators
analyzed in this work.

Figure 2.13 shows the waveguide width evaluated for all the resonators analyzed in
this work, providing a mean width of 384± 2 nm.
All the simulations reported in the next chapter use the mean experimental group
index value (ng = 4.08) and the mean waveguide width (w = 384 nm) determined
here. This has been done essentially for saving computational time, while it would
have been more accurate using the proper waveguide width for each orientation
angle. However, such a small variation of the waveguide geometry does not affect the
final results reported in the next chapter, which are mainly affected by the variation
of the waveguide orientation and so by the variation of the elastic properties of the
material.
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In the previous chapter, the experimental characterization of silicon racetrack res-
onators under the effect of mechanical load has been shown. In this chapter,
extending the study proposed in [131] and [143], the origin of the strain-induced
resonance shift is analyzed. In this framework, the different effects responsible for
the resonance shift are taken into account. The model developed in this chapter
considers both mechanical deformation of the device, which affects the resonator
perimeter and the waveguide cross-section, and the strain-induced refractive index
variation, due to the photoelastic effect.
In Sec. 3.1, the model proposed in [131] is generalized to consider all the effects
that can play a role in the strain-induced resonance wavelength shift. Then, Sec.
3.2 and Sec. 3.3 consider separately the effect of mechanical deformation and the
effect of the strain-induced refractive index variation. Finally all these effects are
put together and compared with the experimental results in Sec. 3.4. In Sec. 3.5 the
main conclusions of this work are given, offering also some interesting perspectives.
The simulation procedure described in this chapter has been performed thanks to
the discussions with Dr. P. Guilleme and Dr. F. Bosia.
The model described in this chapter is also described in [135].
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3.1 Theoretical model

The model proposed in [131] is generalized considering also the role of strain in the
curved ones parts of the resonator. The resonator resonance condition states that:

MλM = 2Lns + 2πRnc, (3.1)

where M is an integer number, λM the M -th resonant wavelength, ns the effective
index of the straight waveguide, L the length of the straight part of the resonator
and R the radius (see Fig. 3.1). nc is the mean effective index in the curved section,
related to the effective index nc(γ) at a generic angle γ on the curve by:

nc = 1
π

∫ π

0
nc(γ) dγ . (3.2)

Dealing with photoelasticity this dependence is important because the refractive
index components in the different directions depend on strain in different directions.

Fig. 3.1: Out of scale model showing the effect of strain on the resonator. The unstrained
resonator shape (in black) is modified by strain into the red shape.

Resonance condition (3.1) can be derived with respect to the volumetric strain εv.
The value of M can be replaced using again Eq. (3.1). Doing this, one must consider
that the effective indices depend both on strain and wavelength. So:

d
dεv

ns(εv, λ) = ∂ns
∂εv

+ ∂ns
∂λ

∂λ

∂εv

d
dεv

nc(εv, λ) = ∂nc
∂εv

+ ∂nc
∂λ

∂λ

∂εv
(3.3)

Strain has two effects on the effective refractive index: on the one hand it modifies
the material refractive index due to the photoelastic effect, on the other hand it
deforms the waveguide cross-section. These contributions are separated as follows:

∂ns
∂εv

= ∂ns
∂εv

∣∣∣∣
ph

+ ∂ns
∂εv

∣∣∣∣
def

∂nc
∂εv

= ∂nc
∂εv

∣∣∣∣
ph

+ ∂nc
∂εv

∣∣∣∣
def
, (3.4)
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where the subscripts "ph" and "def" refer respectively to the photoelastic and to the
deformation contributions. Finally, the following equation is derived:

∂λm
∂εv

= ∂λper
m

∂εv
+ ∂λph

m

∂εv
+ ∂λdef

m

∂εv
, (3.5)

where ∂λper
m /∂εv is the resonance shift due to perimeter variation, ∂λph

m /∂εv is the
resonance shift due to photoelastic refractive index variation and ∂λdef

m /∂εv is the
resonance shift due to waveguide deformation. These quantities are given by:

∂λper
m

∂εv
= λmns

Png

∂P

∂εv
, (3.6a)
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, (3.6b)
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∂εv
= λm
Png

(
2L ∂ns

∂εv

∣∣∣∣
def

+ 2πR ∂nc
∂εv

∣∣∣∣
def

)
. (3.6c)

Here, P = 2L + 2πR is the racetrack resonator perimeter and ng is the straight
waveguide group index. Deriving this, the curved and the straight group indexes
are considered equal, based on the fact that the radii of the resonators analyzed in
this work (R = 15 µm) are much larger than wavelength. For the same reason, also
the curved effective refractive index is considered equal to the one of the straight
waveguide (nc = ns). On the other hand, the applied strain can act differently on
the straight and on the curved waveguides, and therefore ∂ns/∂εv 6= ∂nc/∂εv.

3.2 Contribution of the perimeter variation

Equation (3.6a) shows that the resonance shift induced by the resonator perimeter
variation ∂λper

m /∂εv depends on the effective index ns (evaluated by a 2D FEM mode
solver) and on the perimeter dependence on the local volumetric strain ∂P/∂εv

(calculated from the macroscopic 3D simulation of Sec. 2.3).
The strain felt by each resonator is evaluated from the sample macroscopic simulation.
For a resonator oriented at an angle α, the strain tensor components along the main
resonator axes (εx′x′ and εy′y′) are evaluated from the strain components along
original axes (εxx and εyy) and from the shear strain element (εxy) using [144]:

εx′x′ = εxx cos2 α+ εyy sin2 α+ 2εxy sinα cosα, (3.7a)

εy′y′ = εxx sin2 α+ εyy cos2 α− 2εxy sinα cosα. (3.7b)
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From the sketch of Fig. 3.1, the new length of the resonator straight part L′ is:

L′ = L(1 + εy′y′), (3.8)

while the resonator curve becomes an ellipse whose semi-axes Ra and Rb are:

Ra = R(1 + εy′y′) Rb = R(1 + εx′x′). (3.9)

The new perimeter P ′ of the resonator is then:

P ′ = 2L′ + 2π

√
R2
a +R2

b

2 . (3.10)

Equations (3.8) and (3.9) show that the local volumetric strain is the relevant
parameter to calculate the perimeter variation. As a consequence, the results shown
in the following are independent on the position on the macroscopic simulation
surface since the resonance shift is normalized to the local volumetric strain. This
fact agrees with the experimental observation that the resonance shift per strain unit
does not depend on the location on the sample but only on α.
The top panel of Fig. 3.2 shows the simulated perimeter variation dependence on the
local volumetric strain εv for different α. Increasing strain, perimeter increases. This
effect is maximized when the resonator is oriented along the main axis of the sample
(α = 90◦), where the elongation of the straight part of the resonator is maximum.

Fig. 3.2: On the top: simulated dependence of the resonator perimeter P on the volumetric
strain εV for different α. On the bottom: dependence of the perimeter variation
per strain unit on α. The corresponding resonance shift is shown on the right axis.
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The bottom panel of Fig. 3.2 shows the perimeter variation per unit of volumetric
strain (∂P/∂εv) as a function of α. This quantity is calculated from a linear fit of the
results shown on the top panel of Fig. 3.2. The resonance shift due to the perimeter
variation ∂λper

m /∂εv is calculated from Eq. (3.6a) and is shown on the right axis of
the bottom panel of Fig. 3.2. A positive variation of the volumetric strain εV induces
a resonance red-shift, whose magnitude increases with α.

3.3 Contribution of the refractive index variation

The evaluation of the strain effect on the effective refractive index requires to know
the strain distribution inside the resonator waveguides. Then, the photoelastic matrix
is used to connect the stress map to the refractive index variation map, from which
the new effective refractive index of the propagating mode is calculated. Similarly,
the waveguide deformation is determined from the strain distribution inside the
waveguide, determining then the effective index in the deformed waveguide.

3.3.1 Evaluation of strain inside the waveguide

Since there are three orders of magnitude difference between the size of the waveg-
uide and that of the sample, it is impossible to use the global 3D simulation of Sec.
2.3 to determine the strain distribution inside the waveguide. So, only a limited
area is modeled, constituted by the oxide substrate, the waveguide and the cladding
layers (as it is sketched in Fig. 3.3). Nevertheless, the global strain induced by the
screw is taken from the macroscopic simulation, properly rotated in the xy−plane
using Eq. (3.7) and applied in terms of prescribed displacements at the oxide sub-
strate. The size of the reduced simulation is chosen to avoid unwanted boundary
effects in the waveguide core. Apart from silicon, all the materials are amorphous,
so their elastic properties are orientation independent. On the contrary, for silicon
it is important to consider the crystallographic direction along which the structure
is grown, and its stiffness matrix is accordingly rotated [138, 139]. As an example,
the inset of Fig. 3.3 reports the normal x′ component of the strain tensor in the
waveguide cross-section plane for resonator oriented at α = 0◦ with ∆z = 150 µm.
This method can also be used to evaluate the strain distribution in the resonator
curve. In this case, the strain distribution in the waveguide curve at an angle γ is
evaluated applying a rotation of α+ γ. In principle, the evaluation of this quantity
should consider that the waveguide is curved. However, since the radius of curva-
ture is large (15 µm), the strain distribution in the waveguide is well approximated
without accounting for curvature.
In this framework, one should also take into account the residual stresses introduced
during the deposition of the cladding materials, which must be considered in the
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Fig. 3.3: Simulation domain of the local 3D strain simulation of the waveguide. The inset
reports the color scale strain distribution in the waveguide cross-section in the
simulation domain center, referred to α = 0◦ and ∆z = 150 µm.

simulation as initial stress conditions. However, the interest of this work is devoted
to the study of the strain-induced refractive index variation, which is a differential
quantity related to the strain variation rather than to the absolute strain inside the
waveguide. Therefore, since this model is linear, the presence of residual stresses can
be omitted. To verify the validity of the approximation, all the simulations described
in the following have been performed with and without considering residual stresses,
finding negligible differences in terms of the predicted resonance wavelength shift.

3.3.2 Photoelastic variation of the effective refractive index

Once the stress distribution inside the waveguide cross-section is evaluated as
described in the previous point, the photoelastic matrix can be used to calculate the
strain-induced refractive index variation [140]. It is worth noting that this matrix
also needs to be rotated according to silicon crystallographic directions. Once the
new refractive indexes of all the involved materials are evaluated, the new effective
refractive index is evaluated using a FEM mode solver [141]. While doing this in
the straight part of the resonator is straightforward, in the evaluation of the curved
index nc(γ) one should consider that the cross-section plane in the curve rotates
with an angle described point-by-point by γ. However, as a further approximation, it
is assumed that the effective refractive index varies continuously from the straight
index ns to the effective refractive index evaluated in the halfway point of the curved
section n⊥ (corresponding to the angle γ = 90◦).Thus, nc(γ) is given by:

nc(γ) = ns cos2(γ) + n⊥ sin2(γ), (3.11)

from which the mean index in the curved nc is calculated using Eq. (3.2). Through
this approach, for a given resonator orientation and for a given applied strain, the
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effective refractive index is evaluated in the straight part (ns) and in the halfway
point of the curve (n⊥). The top panel of Fig. 3.4 shows the simulated effective
refractive index variation per strain unit for both ns and nc. Equation (3.6b) allows
then to evaluate the photoelastic contribution to the resonance wavelength shift
∂λph

m /∂εv, that is shown in the bottom panel of Fig. 3.4. This plot shows that the
shift increases with α moving from negative to positive values.

c

Fig. 3.4: On the top: photoelastic variation of the effective refractive index in the straight
and in the curved part of the resonator as a function of the resonator orientation.
On the bottom: photoelastic contribution to the resonance wavelength shift.

3.3.3 Contribution of the waveguide deformation

The deformation-induced effective index variation is evaluated using the same
approach used for photoelastic effect. For the straight part of the resonator, the new
effective index is determined once that the deformed waveguide cross-section is
known. Similarly, once the effective refractive index of the deformed waveguide is
evaluated in the middle of the curve, the index at a generic angle γ of the curve is
calculated using Eq. (3.11). Both in the straight part and in the middle of the curve,
the waveguide deformation is estimated calculating the mean strain values in the
waveguide cross-section (εx′x′ and εzz) from the 3D simulation of the waveguide.
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Assuming that the deformed waveguide maintains its rectangular cross-section, its
new height h′ and width w′ are related to the unstrained parameters h and w by:

h′ = h(1 + εzz) w′ = w(1 + εx′x′). (3.12)

The dependence on the applied volumetric strain of the waveguide height and width
in the straight part of the resonator are shown in Fig. 3.5. First, one notes that the
waveguide width variation is below the typical errorbars of the estimation given
in Sec. 2.5. Moreover, for all the resonator orientations, the waveguide height de-
creases as the volumetric strain increases, showing a larger effect on the resonators
oriented along the main direction of the sample (α = 90◦). On the other hand, an
increase of the volumetric strain causes an increase of the waveguide width, whose
magnitude progressively reduces from α = 0◦ to α = 90◦. Due to this fact, for
the resonator oriented at α = 0◦ the effect of the height reduction is balanced by
the increase of the waveguide width, determining a small effective refractive index
variation. On the contrary, the waveguide of the resonator oriented at α = 90◦ is
mainly influenced by the height reduction and by only a small width increase, thus
displaying a larger effective refractive index variation.

Fig. 3.5: Waveguide width and height in the straight part of the resonator as a function of
the applied strain and for different orientations.

This can be seen in the top panel of Fig. 3.6, showing the effective index variation
caused by waveguide deformation. The bottom panel of Fig. 3.6 shows the defor-
mation contribution to the resonance shift ∂λdef

m /∂εv evaluated using Eq. (3.6c).
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c

Fig. 3.6: On the top: waveguide deformation effect on the effective refractive index in the
straight and in the curved part of the resonator. On the bottom: contribution of
the waveguide deformation to the resonance wavelength shift.

3.4 Comparison with experiments

Figure 3.7 shows, as a function of the resonator orientation, the contributions to
the resonance shift calculated so far: the one from the perimeter variation, the
photoelastic effect and the waveguide deformation. According to Eq. (3.5), the sum
of these terms gives the global shift. Finally, the experimental points from Fig. 2.10
are added. The good agreement legitimizes the approximations of the model.
For small angles, i.e. when the resonator is perpendicular to the direction of the
elongation imposed to the sample, the photoelastic effect is the main contribution.
The contributions related to the mechanical deformation of the device, such as the
one due to the perimeter variation and the one related to the transverse waveguide
deformation, are smaller and balance themselves. On the contrary, for large angles,
the perimeter variation plays the dominant role. Moreover, this contribution is the
one that has the largest variation amplitude with respect to the sample orientation,
roughly twice the ones of the two others.
Varying the orientation angle, the global resonance wavelength shift changes sign,
passing from negative to positive. The angle where the shift approaches 0 is about
34.5◦, where all the contributions balance giving rise to a strain insensitive resonator.
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Fig. 3.7: Resonance shift as a function of the resonator orientation angle. The experimental
data are shown as black dots. The simulated contributions to the resonance shift
of perimeter variation (blue), photoelastic effect (red) and waveguide deformation
(green) add up providing the total simulated resonance shift (black).

3.5 Conclusion and perspectives

In this part, the role of strain on a set of elongated SOI racetrack resonators with
different orientation angles has been analyzed. Using a 3D simulation of the whole
deformed chip, the resonance wavelength shift was normalized to the local strain
value experienced by each resonator. Moreover, a macroscopic simulation is used
to model all the effects causing the resonance wavelength shift. The strain-induced
perimeter variation was considered, as well as the strain-induced variation of the
material refractive index and the deformation of the waveguide cross-section. The
simulated results are in good agreement with the experiment, which vary from
positive to negative values when changing the resonator orientation angle. The pos-
sibility of tuning the resonance shift with the resonator orientation offers interesting
perspectives for strain sensors, since the presence of many resonators with different
orientations on the same sample can provide information on the strain direction.
Moreover, the resonator orientation angle can be tuned to realize strain-insensitive
resonators, offering interesting applications in flexible photonics. An interesting
property is that the applied strain has not a permanent effect: when the strain is
removed, the resonance shifts back to its original position.
Regarding the interests of this thesis, the results of this chapter show that the
simulation procedure provides good agreement with the experiment. Therefore,
in the following chapters, the same tool is used to describe the effect of strain in
waveguides engineered to achieve second order nonlinearities.
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Part II

Second harmonic generation in strained
silicon waveguides

This part is dedicated to the study of SHG in strained silicon waveguides.
Chapter 4 introduces the theoretical framework of SHG in waveguides. Then, the
waveguide engineering procedure used to design the waveguides is described.
The technical details of the SHG experiment are described in Chapter 5, showing
also the characterization of the SHG process.
Chapter 6 investigates the role of strain on the measured effect. The SHG process
is studied under the effect of an external mechanical load, and the experimental
results are interpreted also by the comparison with simulations.
Chapter 7 studies the effects on SHG of the charges trapped at the waveguide
borders, which introduce a static electric field in the waveguide that enables the
EFISH process. UV treatment is applied in order to remove these charges, and the
effect on SHG is studied.





4Modeling SHG in silicon
waveguides

4.1 Theoretical description of SHG in waveguides . . . . . . . . . . . 58

4.1.1 Optical pulses in nonlinear waveguides . . . . . . . . . . 58

4.1.2 SHG and other effects in waveguides . . . . . . . . . . . 59

4.1.3 The SH pulse equation . . . . . . . . . . . . . . . . . . . 60

4.1.4 The pump pulse equation . . . . . . . . . . . . . . . . . 62

4.1.5 The coupled equations . . . . . . . . . . . . . . . . . . . 63

4.1.6 Undepleted pump and continuous wave . . . . . . . . . 63

4.2 Waveguide engineering . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Waveguide cross-section . . . . . . . . . . . . . . . . . . 64

4.2.2 Phase matching through waveguide engineering . . . . . 65

4.2.3 Strength of the modal combinations . . . . . . . . . . . . 69

4.2.4 Quantification of the strain-induced nonlinear strength . 70

4.3 Estimating the generation efficiency . . . . . . . . . . . . . . . . 72

4.3.1 The split-step method . . . . . . . . . . . . . . . . . . . . 72

4.3.2 Propagating optical pulses . . . . . . . . . . . . . . . . . 73

4.3.3 From the experiment to the χ(2) coefficient . . . . . . . . 80

In Sec. 1.3.2, the ambiguities of the previous experiments studying SHG in strained
silicon waveguides have been pointed out. One of these ambiguities was related
to the origin of the measured effect, which could not be unambiguously attributed
to strain. Also other effects could have had a role, like the EFISH process due to
the trapped charges, as well as the generation in the SiN cladding via the evanes-
cent field. The other ambiguity was related to the method used to estimate the
χ(2) coefficient. First, the estimation was performed in highly multimodal waveg-
uides, without taking into account any phase-matching mechanism. Moreover, even
though a pulsed source was used, the estimation of χ(2) was performed considering
a continuous-wave approach. Both these facts could have introduced plenty of errors
in the determination of χ(2).
The first requirement to clarify these points is to possess a reliable method to control
the process and unambiguously determine χ(2). For this purpose, in this chapter an
analytic model to describe the propagation of ultra-short optical pulses in waveg-
uides is proposed. The model is theoretically presented in Sec. 4.1. Based on this,
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waveguides to demonstrate an efficient and controlled SHG process are engineered.
The engineering procedure is described in Sec. 4.2. In Sec. 4.3, a method to solve
numerically the equations proposed by the model is presented. In the end, it is shown
how this model can be used to reconstruct the χ(2) value from the experimental SH
signal.
The model and the simulations described in this chapter benefited from the discus-
sions with Dr. M. Mancinelli, Dr. C. Manganelli, Dr. C. Bonati and Dr. P. Pintus.
Part of the model described here is also described in [67, 145].

4.1 Theoretical description of SHG in waveguides

In this section, a theoretical model to study SHG in waveguides is proposed. First,
a general method to study optical pulses in nonlinear waveguides is introduced.
Then, this method is applied to SHG, taking into account also other nonlinear effects
that affect the pulse propagation. Finally, an analytic solution for SHG efficiency is
derived in a simplified approximation.

4.1.1 Optical pulses in nonlinear waveguides

The aim of this part is to describe the propagation of optical pulses in waveguides.
Consider first the unperturbed waveguide, when only linear optical effects occur.
In this situation, the propagating pulse is described by the electromagnetic field
(E0,H0). Equation (1.4) shows that optical nonlinearities induce a perturbation
δP = PNL 6= 0 of the polarization vector. This determines a modification of the
electromagnetic field, that is altered to (E1,H1). Lorentz’s reciprocity theorem
relates the perturbed and the unperturbed fields via the following relationship [34,
67]:

∂

∂z

∫
A∞

(E∗0 ×H1 + E1 ×H∗0) · ẑ dA = iω

∫
A∞

E∗0 · δP dA . (4.1)

All the integrals are taken on the plane A∞, orthogonal to the field propagation
direction ẑ, while ω is the pulse frequency.
From now on, consider fields linearly polarized in the A∞ plane. Assume also the
unperturbed pulse spectral width ∆ω much smaller than its central frequency ω0

(∆ω � ω0). For near infrared wavelengths ω0 ∼1× 1015 s−1. So, this approximation
is valid for pulse temporal widths� 1 fs. In this situation, the unperturbed fields
can be written as:

E0(r, ω0) = 1
2e(r⊥, ω0)eiβ0z H0(r, ω0) = 1

2h(r⊥, ω0)eiβ0z, (4.2)
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being β0 = β(ω0), r⊥ a vector in the A∞ plane, while e(r⊥, ω0) and h(r⊥, ω0) are
the profiles of the electromagnetic field in the A∞ plane at frequency ω0. With this
notation, the total power P0 carried by the unperturbed electromagnetic field is:

P0 = 1
4

∫
A∞

[e(r⊥, ω0)× h∗(r⊥, ω0) + e∗(r⊥, ω0)× h(r⊥, ω0)] · ẑ dA . (4.3)

On the other hand, a general expression for the perturbed solution is:

E(r, ω) = 1
2u(z, ω)e(r⊥, ω)eiβ(ω)z H(r, ω) = 1

2u(z, ω)h(r⊥, ω)eiβ(ω)z, (4.4)

where it is assumed that the perturbation introduces a modulation of the field
amplitude described by the slowly varying envelope u(z, ω). Assume now that the
field profiles in the A∞ plane are not modified by the perturbation, so:

e(r⊥, ω) ∼ e(r⊥, ω0) h(r⊥, ω) ∼ h(r⊥, ω0). (4.5)

In this case, the optical power carried by the perturbed field is P = P0 |u(z, ω)|2.
Using Eq. (4.2) and Eq. (4.4) in Eq. (4.1), the following equation is derived:

du(z, ω)
dz

+ i(β − β0)u(z, ω) = iω

2P0
e−iβz

∫
A∞

e∗(r⊥, ω0) · δP(r, ω) dA . (4.6)

Concluding, Eq. (4.6) can be used to describe the propagation of optical pulses
in waveguides under the effect of a polarization vector perturbation δP(r, ω). If
multiple pulses propagate in the same waveguide and their spectra do not overlap,
each of them can be described by an independent equation in the form of Eq. (4.6).

4.1.2 SHG and other effects in waveguides

In the case of the SHG, two optical pulses propagate in the optical waveguide: the
pump pulse at frequency ωp and the SH pulse at frequency ωsh = 2ωp. Since the
pump and the SH spectra do not overlap, an independent equation must be written
for each pulse, using the proper δP(r, ω) in Eq. (4.6).
However, not only SHG occurs while the pulses propagate. For example, this
work deals mainly with waveguides made by silicon, which possesses a strong χ(3).
So, third order pulse distortion effects such as SPM and XPM must be considered.
Moreover, fabrication imperfections introduce in the waveguides a linear absorption
term, which determines a perturbation of the polarization vector as well. So, the
polarization vector perturbation can be generally written as:

δP(r, ω) = P(2)(r, ω) + P(3)(r, ω) + PL(r, ω), (4.7)
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being P(2)(r, ω) the polarization vector term due to χ(2), P(3)(r, ω) the polarization
vector term due to χ(3) and PL(r, ω) a linear perturbation of the polarization vector,
due for example to propagation losses.
The equation describing the propagation of the SH pulse is derived in Sec. 4.1.3,
while the equation describing the pump pulse is derived in Sec. 4.1.4. Finally, in Sec.
4.1.5 the results are summarized in a system of coupled equations describing the
propagation of both the pulses. In the following, the subscript p is used to refer to
the pump pulse, while the subscript sh is used to refer to the SH pulse.

4.1.3 The SH pulse equation

In this section, the equation describing the propagation of the SH pulse is derived.
Doing that, the three terms expressed in Eq. (4.7) are considered separately. In the
end, all the terms are grouped in the global equation describing the propagation of
the SH pulse.

Contribution of SHG. According to Eq. (1.7) the term P(2)(r, ωsh) is given by:

P(2)(r, ωsh) = ε0χ
(2) : E2

p(r, ωp)

= ε0
4 χ

(2) : e2(r⊥, ωp)u2
pe

i2βpz.
(4.8)

In the last equation the definition of Eq. (4.4) has been used. Moreover, the spatial
and the spectral dependence of up(z, ω) have been omitted, while βp = β(ωp).
By taking δP = P(2) and replacing it in Eq. (4.6), it is possible to derive the equation
describing the propagation of the SH pulse when only SHG effect is considered:

dush
dz

+ i(βsh − β0,sh)ush = iγ(2)
sh

P0,p√
P0,sh

u2
pe

i∆βz. (4.9)

The coefficient ∆β = (2βp − βsh) is named phase-mismatch, while the nonlinear
coefficient γ(2)

i is defined by:

γ
(2)
i = ωi

nG,p
√
nG,sh√

8A0ε0c3 Γ(2). (4.10)

The coefficient nG,i is the group index of the pulse at frequency ωi and A0 is the
waveguide area. The term Γ(2) is defined by:

Γ(2) =
√
A0
∫

e(r⊥, ωp)χ(2) : e∗(r⊥, ωsh)e(r⊥, ωp) dA(∫
n2(r⊥, ωp) |e(r⊥, ωp)|2 dA

) (∫
n2(r⊥, ωsh) |e(r⊥, ωsh)|2 dA

)1/2 , (4.11)

where all the integrals are taken over all the A∞ plane, while n(r⊥, ωi) is the
refractive index distribution at frequency ωi in the A∞ plane.

60 Chapter 4 Modeling SHG in silicon waveguides



Contribution of third order nonlinearities. The term P(3)(r, ωsh) can be derived
from Eq. (1.8). Consider that, while propagating, the SH pulse feels the effect of
SPM and XPM. However, the pump pulse is often much stronger than the SH pulse.
In this situation, the SPM term can be neglected, considering only the XPM term. In
this case, P(3)(r, ωsh) is given by:

P(3)(r, ωsh) = 6ε0χ
(3)... |Ep(r, ωp)|2 Esh(r, ωsh)

= 3ε0
4 χ(3)... |e(r⊥, ωp)|2 e(r⊥, ωsh) |up|2 usheiβshz.

(4.12)

Considering δP = P(3), Eq. (4.6) becomes:

dush
dz

+ i(βsh − β0,sh)ush = 2iγ(3)
sh,pP0,p |up|2 ush. (4.13)

The coefficient γ(3)
i,j is defined by:

γ
(3)
i,j = 3ωinG,inG,j

4ε0A0c2 Γ(3)
i,j , (4.14)

while Γ(3)
i,j is given by:

Γ(3)
i,j = A0

∫
e∗(r⊥, ωj)χ(3)...e(r⊥, ωi)e∗(r⊥, ωi)e(r⊥, ωj) dA(∫

n2(r⊥, ωi) |e(r⊥, ωi)|2 dA
) (∫

n2(r⊥, ωj) |e(r⊥, ωj)|2 dA
) . (4.15)

Also here all the integrals are taken over all the A∞ plane.

Contribution of losses. The term PL(r, ωsh) describes the linear perturbation of
the polarization vector induced by propagation losses in the waveguide. It is given
by:

PL(r, ωsh) = ε0δχ
(1)Esh(r, ωp)

= ε0
2 δχ

(1)ushe(r⊥, ωsh)eiβshz,
(4.16)

where δχ(1) describes the perturbation of the first order susceptibility due to losses.
Substituting this into Eq. (4.6) it becomes:

dush
dz

+ i(βsh − β0,sh)ush = −αsh2 ush. (4.17)

The term αi is the loss coefficient of the mode at frequency ωi, defined as:

αi = − iωiε0
2P0,i

∫
A∞

δχ(1)(r⊥, ωi) |e∗(r⊥, ωi)|2 dA . (4.18)
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It is related to the spatial distribution δχ(1) inside the waveguide, which, in turn, is
related to the spatial distribution of the absorption coefficient determined by losses1.
However, the loss coefficient inside the waveguide depends mainly on the fabrication
imperfections, which cannot be quantified analytically. So, αi is typically determined
from experimental measurements of the attenuation inside the waveguide.

General equation for the SH pulse. The equation describing the propagation of the
SH pulse is determined by assembling Eq. (4.9), (4.13) and (4.17):

dush
dz

+ i(βsh − β0,sh)ush =

= iγ(2)
sh

P0,p√
P0,sh

u2
pe

i∆βz + 2iγ(3)
sh,pP0,p |up|2 ush −

αsh
2 ush.

(4.19)

4.1.4 The pump pulse equation

This section considers the propagation of the pump pulse. Analogously to the SH
pulse, the three terms expressed in Eq. (4.7) are considered separately. In the end,
all the terms are grouped in the global equation.

Contribution of SHG. According to Eq. (1.7) the term P(2)(r, ωp) is given by:

P(2)(r, ωp) = 2ε0χ
(2) : Esh(r, ωsh)E∗p(r, ωp)

= ε0
4 χ

(2) : e(r⊥, ωsh)e∗(r⊥, ωp)ushu∗pei(βsh−βp)z.
(4.20)

Considering δP = P(2) in Eq. (4.6), the equation describing the propagation of the
pump pulse under the effect of only SHG can be derived:

dup
dz

+ i(βp − β0,p)up = 2iγ(2)
p

√
P0,shushu

∗
pe
−i∆βz. (4.21)

Contribution of third order nonlinearities. The term P(3)(r, ωp) can be derived from
Eq. (1.8). If the pump pulse is much stronger than the SH pulse, the SPM term
dominates over XPM term caused by the SH pulse, and it is given by:

P(3)(r, ωp) = 3ε0χ
(3)... |Ep(r, ωp)|2 Ep(r, ωp)

= 3ε0
8 χ(3)... |e(r⊥, ωp)|2 e(r⊥, ωp) |up|2 upeiβpz.

(4.22)

1According to Eq. (1.9), in presence of losses δχ(1) ' 2n0δn = in0cα0/ωi, where n0 is the linear
refractive index in absence of losses, δn is the refractive index perturbation due to losses and α0 is
the material loss coefficient. Since α0 > 0, it results that also αi > 0. So, according to Eq. (4.17),
the signal is attenuated during propagation in presence of losses.
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Considering δP = P(3), Eq. (4.6) becomes:

dup
dz

+ i(βp − β0,p)up = iγ(3)
p,pP0,p |up|2 up. (4.23)

Contribution of losses. Similarly to the SH pulse, the pump pulse is affected by
propagation losses in the following way:

dup
dz

+ i(βp − β0,p)up = −αp2 up. (4.24)

General equation for the pump pulse. By assembling Eq. (4.21), (4.23) and (4.24),
the equation describing the pump pulse is given by:

dush
dz

+i(βp−β0,p)up = 2iγ(2)∗
p

√
P0,shushu

∗
pe
−i∆βz+iγ(3)

p,pP0,p |up|2 up−
αp
2 up. (4.25)

4.1.5 The coupled equations

Sections 4.1.3 and 4.1.4 show that the pump and the SH pulses propagate in a
waveguide according to Eq. (4.19) and Eq. (4.25). By Fourier-transforming them, a
system of coupled equations describing the spatial and the temporal evolution of the
pump and of the SH amplitudes up(z, t) and ush(z, t) can be derived:

dush
dz

+
∑
m≥1

(i)m−1βsh,m
m!

∂mush
∂tm

=

= iγ(2)
sh

P0,p√
P0,sh

u2
pe

i∆βz + 2iγ(3)
sh,pP0,p |up|2 ush −

αsh
2 ush,

dup
dz

+
∑
m≥1

(i)m−1βp,m
m!

∂mup
∂tm

=

= 2iγ(2)∗
p

√
P0,shushu

∗
pe
−i∆βz + iγ(3)

p,pP0,p |up|2 up −
αp
2 up.

(4.26)

From this formulation, it is clear that the terms on the left hand side of the equations
describe the spatial and the temporal evolution of the pulses. In the meanwhile,
the terms on the right hand side of the equations describe SHG, third order phase-
modulations and losses.

4.1.6 Undepleted pump and continuous wave

Equations (4.26) describe the propagation of optical pulses considering SHG, but
also temporal dispersion, third order nonlinear phase modulations (SPM and XPM)
and losses. This system of equations can be simplified by neglecting third-order
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nonlinearities and the effect of losses. Moreover, in the continuous-wave approxi-
mation the term with time derivatives can be also neglected. In this scenario, the
equation describing the propagation of the SH pulse is simplified as follows:

dush
dz

= iγ(2)
sh

P0,p√
P0,sh

u2
pe

i∆βz. (4.27)

Consider a small generation efficiency. So, the pump power is not affected by the
generation of the SH pulse, and up(z) ∼ const. This condition is often referred as
undepleted pump approximation [31]. Moreover, assume that γ(2)

sh is constant
along z (this is typically valid, except the situation where periodically poling is used
to quasi-phase-match the pump and the SH pulses). In this case, on the right-hand
side of Eq. (4.27) only the exponential term depends on z, and the equation can be
easily integrated over all the waveguide length L. In this case, the total SH power is:

Psh = P0,sh |ush|2 = P 2
p

∣∣∣γ(2)
sh

∣∣∣2 L2sinc2
(∆βL

2

)
. (4.28)

This is the most common way to express the SH power in the continuous-wave and
in the undepleted pump approximations. It shows that the SH power quadratically
depends on both the pump power Pp and the waveguide length L. Moreover, the SH
power depends quadratically on the second order nonlinear coefficient γ(2)

sh . In the
simple situation when SHG is mediated by a single element of the χ(2) tensor, and
if χ(2) is constant in the waveguide cross-section, Eq. (4.10) and Eq. (4.11) show
that γ(2)

sh ∝ χ(2). So, SH power depends quadratically also on χ(2). Equation (4.28)
shows that the SH power depends also on the squared cardinal sine of ∆βL/2. This
term expresses phase-matching. If ∆β = 0, perfect phase-matching is satisfied. As
∆β increases, the generation efficiency lowers. The coherence length Lcoh = π/∆β
describes the length over which the SHG process is still efficient [1].

4.2 Waveguide engineering

This section describes the engineering procedure performed to define the geometry
of the waveguides designed for SHG. Here, the selected waveguide geometry and the
adopted phase-matching mechanism are introduced, providing then a comparison
between the efficiency strength of the selected structures.

4.2.1 Waveguide cross-section

The devices are designed to be fabricated on a 6 ′ SOI wafer, with a 243 nm thick
silicon layer and a 3 µm thick BOX. Such a thin layer is used to minimize the
effective area of the propagating modes, and so to increase the nonlinear interaction
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strength. Moreover, a stressing cladding is expected to introduce a larger strain if the
waveguide is thin2. A 365 nm UV lithography is used to define the waveguides, which
are realized by reactive ion etching in the Bruno Kessler Foundation clean room.
On the waveguide top, a 140 nm thick SiN cladding layer is conformally deposited
via LPCVD. This introduces a tensile stress in the silicon layer, estimated around
1.25 GPa via wafer bow measurement. The height of the SiN layer corresponds to
the maximum value before cracking the wafer. In this way, the achievable stress in
the silicon layer is maximized. The waveguide width varies between the different
devices: it is properly selected to introduce phase-matching. A sketch of a typical
waveguide cross-section is shown in Fig. 4.1.

140 nm
243 nm

w

Air

SiO2

Si

SiN

x

y

Fig. 4.1: Cross section of the waveguides described in this chapter. The width w is indepen-
dently selected for each combination to have intermodal phase-matching.

4.2.2 Phase matching through waveguide engineering

In the SHG process, phase-matching requires that ∆β = 2βp − βsh = 0. Considering
that β = 2πneff/λ and λp = 2λsh, the phase-matching condition becomes [146]:

neff,p = neff,sh. (4.29)

This condition is hard to satisfy between pump and SH signals propagating on the
same modal order because, due to their distant wavelengths, the effective refractive
index dispersion impedes to satisfy it.
The most common technique to overcome this problem is to introduce a periodic

2The waveguide height is evaluated from interferometric measurements of the realized devices.
Clearly, this value can be affected by fabrication uncertainty. However, fabrication uncertainties
affect mainly the waveguide width rather than the height. Variations on height and width both
produce a modification of the mode effective index, and it is not possible to disentangle them.
Therefore, in the following the waveguide height is always set to its nominal value, considering
only width variations.

4.2 Waveguide engineering 65



modulation of the second-order nonlinear coefficient along the waveguide propaga-
tion direction. This technique, known as periodically poling, introduces an additional
term in the phase-mismatch coefficient to achieve quasi-phase-matching. The use of
this techinique in nonlinear crystals like lithium niobate has been already presented
in the introduction of this work. The ferromagnetic properties of lithium niobate
can be exploited to change the χ(2) sign by applying a strong DC field. However,
in this work the physical mechanism providing χ(2) is not clear. It can be due to
strain, EFISH or generation in the SiN cladding, and it is the aim of this work trying
to give an answer to this point. So, since the physical mechanism providing χ(2)

is unknown, it is not possible to investigate a method able to provide a change
in the sign of χ(2). Therefore, the problem is overcomed by using pump and SH
waves propagating on different modal orders. This method is commonly referred as
intermodal phase-matching [35]. Using the intermodal approach, the waveguide
width w is chosen to satisfy the phase-matching condition for a given combination
of pump and SH modes.
The modal combinations analyzed in this work aim at phase-matching pump wave-
lengths above 2.2 µm. This is due to two main reasons. First, at these wavelengths
TPA is negligible, so the pump power in the waveguide can be increased without
enhancing free-carrier-induced losses [81]. Second, pump wavelengths above 2.2 µm
generate SH signals above 1.1 µm, in the transparent spectral region of silicon.
In Fig. 4.2 an example of the waveguide engineering procedure is shown. In red, the
effective refractive index dispersion of the TE1 mode at the pump wavelength λp in
a 1 µm wide waveguide is shown. This value is obtained using the Electromagnetic
Module of the COMSOL Multiphysics® FEM software [56], using refractive index dis-
persion measured with ellipsometry technique for all the materials. As expected, the
effective refractive index decreases with wavelength, since the mode area increases
and becomes less localized in the core. Moreover, also the material refractive index
decreases with wavelength. Figure 4.2 reports also in blue the effective refractive
index dispersion of the TM3 mode at the SH wavelength λsh for the same waveguide
geometry. The pump and the SH dispersion curves cross at λp ∼2378 nm, where
neff,p = neff,sh and phase-matching condition is satisfied. The insets of the figure
show the simulated profiles of the pump and SH mode.
Equation (4.28) shows that the SHG efficiency is proportional to sinc2(∆βL/2). In
Fig. 4.3 the normalized SHG efficiency is evaluated as sinc2(∆βL/2), and is reported
in dB scale as a function of λp. The figure refers to a waveguide length of L = 2 mm,
and to different values of waveguide width w. This result refers again to the conver-
sion between the TE1 pump mode and the TM3 SH mode (TE1-TM3 combination).
The figure shows that the phase-matching wavelength strongly depends on w.
The simulations reported so far refer to the TE1-TM3 combination. This is not the
uniquely investigated combination. However, in all the investigated combinations
the pump wave is on the fundamental TE1 mode. This is due to the fact that, in the
pump spectral range, TM modes are not supported. Moreover, compared to higher
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Fig. 4.2: Effective refractive index dispersion of the TE1 mode at pump wavelengths (in
red) and of the TM3 mode at SH wavelengths (in blue) for a 1 µm wide waveguide.
The profiles of the two modes are shown in the insets.
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Fig. 4.3: Normalized SHG efficiency dependence on the pump wavelength λp. The SHG
efficiency is evaluated as sinc2(∆βL/2) for L = 2 mm. The simulations refer to
the TE1-TM3 combination and to three different w.

order modes, the fundamental mode is the simpler to couple into the waveguide.
In Fig. 4.4 λp is fixed at 2.3 µm (and consequently λsh is fixed at 1.15 µm). In both
the panels, the effective refractive index of the TE1 pump mode is reported in black
against w. As expected, the effective refractive index increases with w, saturating
at the slab waveguide value. The left hand side panel shows also the waveguide
width dependence of the effective refractive index of all the TE modes supported by
the waveguide at SH wavelengths. The three lowest order SH modes show effective
refractive index values always larger than the pump mode. However, starting from
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Tab. 4.1: Waveguide width w where phase-matching is achieved for the main modal combi-
nations, considering λp = 2.3 µm and λsh = 1.15 µm. For each combination, also
the overlap coefficient K is reported.

Combination w [µm] K

TE1-TE4 1.08 ∼ 0
TE1-TE5 1.44 4.3× 10−4

TE1-TE6 1.79 ∼ 0
TE1-TE7 2.13 1.6× 10−4

TE1-TE8 2.46 ∼ 0
TE1-TM3 0.91 3.7× 10−3

TE1-TM4 1.54 ∼ 0
TE1-TM5 2.10 5.7× 10−4

the TE4 mode, the SH and the pump effective refractive indexes cross. This means
that, for that modal combination, phase-matching is satisfied at the crossing w. The
right hand side panel of Fig. 4.4 shows the same quantities referred to the TM SH
modes. In this case, the two lowest order SH modes never cross the pump mode,
while phase-matching is achieved starting from the TM3 mode.
To summarize, Tab. 4.1 shows w values where phase-matching is achieved for the
main modal combinations for λp = 2.3 µm and λsh = 1.15 µm.

1000 1500 2000 2500

w [nm]

2.2

2.4

2.6

2.8

3

3.2

E
ffe

ct
iv

e 
re

fr
ac

tiv
e 

in
xd

ex

SH TE1
2

3

4

5

6

7

8

9

10

1000 1500 2000 2500

w [nm]

2.2

2.4

2.6

2.8

3

3.2

E
ffe

ct
iv

e 
re

fr
ac

tiv
e 

in
xd

ex

SH TM1
2

3

4

5

6

7

8

Pump 
TE1

Pump 
TE1

Fig. 4.4: Left: waveguide width dependence of the effective refractive index of the fun-
damental TE pump mode (black) and of all the SH TE modes (color). Right:
waveguide width dependence of the effective refractive index of the fundamental
TE pump mode (black) and of all the SH TM modes (color). In both the situations,
λp = 2.3 µm and λsh = 1.15 µm.
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4.2.3 Strength of the modal combinations

Equation (4.28) shows that the generation efficiency is proportional to
∣∣∣γ(2)

∣∣∣2. The
definition of γ(2) given in Eq. (4.10) shows that, in turn, the generation efficiency
is proportional to

∣∣∣Γ(2)
∣∣∣2. However, Γ(2) cannot be determined, because it requires

to know the spatial distribution of the unknown tensor χ(2). However, it would be
interesting to define a parameter quantifying the SHG strength independently on
χ(2), accounting only the overlap between the pump and the SH modes.
To this purpose, consider the case of a spatially constant χ(2). Moreover, consider
that only one element of the χ(2) tensor is nonzero. In this case, Γ(2) becomes:

Γ(2) = χ(2)K (4.30)

where the dimensionless parameter K is defined by:

K =
√
A0
∫
ex(r⊥, ωp)e∗k(r⊥, ωsh)ex(r⊥, ωp) dA(∫

n2(r⊥, ωp) |ex(r⊥, ωp)|2 dA
) (∫

n2(r⊥, ωsh) |ek(r⊥, ωsh)|2 dA
)1/2 . (4.31)

This equation considers a TE polarized pump field (directed along x) and a SH field
TE or TM polarized (the electric field is directed along a generic direction k = x, y

depending on the polarization). The coefficient K is related to the overlap between
the pump and the SH modes. For a spatially constant χ(2), the SHG conversion
efficiency is proportional to K. A large K determines a good overlap between the
modes and so a strong conversion efficiency, while a small K means a bad mode
overlap and so a bad conversion efficiency.
The far is χ(2) from being spatially constant, the less is SHG efficiency related
to K. However, it is possible to define (in general) an effective second order
susceptibility χ(2)

eff as follows:

χ
(2)
eff =

∣∣∣∣∣Γ(2)

K

∣∣∣∣∣ . (4.32)

This quantity can be interpreted as the equivalent spatially constant χ(2) that would
have given the same SHG efficiency.
In Tab. 4.1, the K value is reported for each of the analyzed modal combinations.
It can be noted that SHG efficiency is smaller if the SH signals generated on larger
order modes. Moreover, K ∼ 0 when the SH signal is generated on a even parity
mode. This is due to the symmetry of the modes, which nullifies the integral at the
numerator of the definition ofK. So, if χ(2) is spatially constant, modal combinations
with SH signal generated on a even parity mode are not admitted. In principle, this
is not true if χ(2) is not constant. However, Eq. (4.11) shows that in general Γ(2) = 0
if χ(2) is symmetric along the x direction with respect to the center of the waveguide.
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Therefore, SHG is admitted for even parity SH modes only if χ(2) is not symmetric
along the x direction with respect to the center of the waveguide.

4.2.4 Quantification of the strain-induced nonlinear strength

So far, the strength of the modal combinations have been evaluated using the pa-
rameter K, which is related to the overlap between the pump and the SH modes. If
χ(2) is constant within the waveguide, the coefficient Γ(2) can be evaluated from K

using Eq. (4.30). If χ(2) is not constant within the waveguide, one should directly
use the definition of Γ(2) given in Eq. (4.11).
As already mentioned, the real origin of SHG is not clear, and it is the aim of this
thesis trying to understand it. However, suppose for a while that it can be entirely
attributed to strain. How strong would be SHG in this case? So far, no convincing
models showing connections between strain and χ(2) have been reported in liter-
ature, especially for SHG. However, very recently in [110] the authors measured
an electro-optic effect in a strained waveguide, ascribing it to Pockels effect. Using
the theoretical model reported in [118], they fitted the experimental data with
parameters connecting strain gradient and χ(2). Assume now that the parameters
reported in that work can be used also for SHG (indeed, this is not the case, because
the frequencies of the fields involved in the Pockels effect are very different from
the ones involved in SHG). In this case, the χ(2) distribution inside the waveguide
can be estimated using the coefficients reported in [110] and the strain gradient
distribution calculated with a FEM simulation. This can be used in turn to determine
the Γ(2) coefficient and, so, the SHG efficiency.
Doing so, as an example, the conversion between the TE1 pump mode and the TM3
SH mode are considered. The tensor element involved in this conversion process is
χ

(2)
strain,xxy. According to [118], this element is given by:

χ
(2)
strain,xxy(φ) = Γxxy,xxyηxxy(φ) + Γxxy,yyyηyyy(φ), (4.33)

where φ defines the crystallographic axis along which the waveguide is oriented,
ηmnl = dεmn/dxl are the strain gradient components and Γijk,mnl are coefficients
that depend on the semiconductor. In the case of this work, φ = 0◦. So, from [110] it
is possible to derive Γxxy,xxy =−4× 10−16 m2/V and Γxxy,yyy =−5.1× 10−16 m2/V.
These values can then be used to connect the strain gradient map within the waveg-
uide to the strain-induced χ(2)

strain, and, in turn, the coefficient Γ(2) can be evaluated
according to Eq. (4.11).
To do so, one has first to evaluate the strain gradient distribution inside the
waveguide. This is done by using the Structural Mechanics Module of COMSOL
Multiphysics® software [56]. The system is modeled using a 2D simulation do-
main, based on the simulation procedure described in chapter 3. A tensile stress of
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1.25 GPa is included in the SiN cladding as an initial condition. This value corre-
sponds to the one measured by wafer bow in the actual system. Using this simulation,
the strain and the strain gradient components can be evaluated. As an example,
Fig. 4.5 reports on a color map the strain components εxx and εyy, as well as the
strain gradient components ηxxy and ηyyy, which are the components present in Eq.
(4.33). The elastic parameters of the various materials are the same already reported
in chapter 3. The solution refers to a waveguide width w = 900 nm, which should
provide phase-matching between the TE1-TM3 modal combinations.
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Fig. 4.5: Color map representing the strain components εxx and εyy, as well as the strain
gradient components ηxxy and ηyyy, in a 900 nm wide waveguide.

By using these values, the χ(2)
strain,xxy map inside the waveguide is calculated accord-

ing to Eq. (4.33), and it is shown in Fig. 4.6.
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Fig. 4.6: Color map representing the χ(2)
strain,xxy distribution, evaluated according to Eq.

(4.33) in a 900 nm wide waveguide.

The average value of χ(2)
strain,xxy inside the waveguide is 1.75 pm/V. Using this map,

it is possible to evaluate the coefficient Γ(2) according to Eq. (4.11). Considering the
modal combination TE1-TM3, one estimates |Γ(2)| = 0.47 fm/V. Thanks to (4.32),
this corresponds to an effective second order nonlinearity χ(2)

eff = 0.13 pm/V. In
other words, this is the constant χ(2) value that would give the same Γ(2) provided
by the simulated strain gradient distribution and by the model of [110, 118]. Note
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that χ(2)
eff is much weaker than the average χ(2)

strain,xxy, because of the mismatched
overlap with the optical modes determined by Eq. (4.11).

4.3 Estimating the generation efficiency

In the previous section, the methods adopted to engineer the waveguide geometry
to enable SHG through intermodal phase-matching have been shown. In this way,
the proper waveguide width for each modal combination has been calculated,
estimating also the expected efficiency assuming a spatially constant χ(2). All these
parameters are reported in Tab. 4.1. However, to fully describe SHG also dispersive
and third-order nonlinear effects must be considered. In other words, Eq. (4.26)
must be solved. To this purpose, in this section a method to solve Eq, (4.26) is
shown. This allows to individuate some detrimental effects that can occur, which
are used to properly fix some details in the experiments described in the following
chapters. Moreover, the method described here can be used to estimate χ(2) from
the experiment.

4.3.1 The split-step method

To solve Eq. (4.26), the split-step method is used [29]. Using this technique, the
spatial domain z is divided in small segments. The initial condition at z = 0 is given
by the temporal profile of the SH pulse, that is null, and of the pump pulse, that is
described by a Gaussian shape:

up(z = 0, t) ∼ et2/2σ2
t . (4.34)

The quantity σt describes the temporal width of the pulse. It is related to the FWHM
∆t by ∆t = 2

√
2ln2σt. The temporal FWHM is related to the spectral width of the

pulse ∆ω by the time-bandwidth product. For a transform-limited (no frequency
chirp) Gaussian pulse, it is given by [147]:

∆t∆ω = 4ln2. (4.35)

In each spatial domain, the solution resulting from the previous step is used as initial
condition. In each segment, the solution is evaluated with the following steps.

1. Equation (4.26) is solved considering only the temporal dispersion. In other
words, all the terms on the right hand side of the equations are neglected. This
simplified equation is solved in the Fourier domain.
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Tab. 4.2: Parameters used for the simulation described in this section, referred to the
conversion between the TE1 pump mode at λp = 2295 nm and the TM3 SH mode
λsh = λp/2 in a 900 nm wide waveguide.

Parameter Pump TE1 SH TM3
neff 2.363 2.363

β1 [ps/µm] 0.0126 0.0165
β2 [ps2/µm] 4.1× 10−7 −2.2× 10−6

Γ(3)
p,p [µm2/V2] a 2.1× 10−9

Γ(3)
p,sh [µm2/V2] b 1.2× 10−9

a Γ(3)
p,p is evaluated according to Eq. (4.15), using the χ(3)

xxxx(ωp, ωp, ωp, ωp) tensor element evaluated
at 2200 nm (χ(3)

xxxx = 3.4× 10−7 µm2/V2) [81].
b Γ(3)

p,sh is evaluated according to Eq. (4.15). In this case, the χ(3)
xxyy(ωp, ωp, ωsh, ωsh) tensor element

must be considered, recalling that in the range between 1200 nm and 2400 nm χ
(3)
xxyy = χ

(3)
xxxx/2.36

[148]. However, that tensor element is not available in literature. To this purpose, it is taken the
mean value between the values at pump and SH wavelengths (χ(3)

xxxx = 2.5× 10−7 µm2/V2) [81].

2. The first step solutions are used as initial conditions to solve a simplified
version of the Eq. (4.26), which considers only SPM, XPM and losses.

3. Up to now, the two equations in Eq. (4.26) are solved independently. In this
step, they are finally coupled. The solutions resulting from the previous step
are used to solve Eq. (4.26) where only the SHG term is considered.

This iterative procedure is computed till the end of the waveguide. So, at each step
of the iteration, the temporal shape of the pulse is evaluated. Moreover, by taking
the Fourier transform, also the pulse spectrum evolution can be easily determined.

4.3.2 Propagating optical pulses

In the following, Eq. (4.26) is solved using the split step method just described. To
evidence the role of each term of Eq. (4.26), the system is solved taking into account
only some of the effects. Then, a global solution of the equation is finally proposed.
The aim of this study is to characterize the evolution of the pulses in the waveguide,
as well as to determine the best conditions to use in the experiment.
The solution proposed here is evaluated for the TE1-TM3 combination. According to
Tab. 4.1, this solution is the most efficient for a spatially constant χ(2). The solution
refers to a waveguide width w = 900 nm, where phase-matching occurs at a pump
wavelength λp = 2295 nm. The parameters used for this simulation are shown in
Tab. 4.2.
The temporal and the spectral shape of the optical pulse are the ones of the laser
system used to experimentally characterize them, which is described in the next
chapter. This laser system has a peak power of ∼ 17 GW, a temporal width σt ∼
35 fs, and a 1 kHz repetition rate. The laser peak power is too large to directly couple
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it into the waveguide, because it causes a damage of the waveguide input facet. For
this purpose, the peak power must be reduced. This can be done in two ways. The
simplest one is to attenuate it, maintaining the pulse shape. The other possibility is
to re-shape the pulse, enlarging it temporally and so reducing its peak power. So, in
the following different simulations are proposed where the pulse temporal width is
changed. When not differently specified, the peak power is fixed at 5 W. Considering
the typical setup described in the following, this value can prevent facet damage
during coupling.
Since the χ(2) tensor distribution within the waveguide is unknown, in the following
simulation it is assumed for simplicity constant. In this way, according to Eq. (4.30),
Γ(2) = χ(2)K. The value of K is given in Tab. 4.1. Regarding χ(2), when not
differently specified, it is taken as 0.1 pm/V. This is an arbitrary value, that is taken
in order to test the simulation code. As it is specified in the next section, this model
is used then to reconstruct the χ(2) value starting from the experiment. However, this
value is of the same order of magnitude of that estimated in Sec. 4.2.4, evaluated
assuming that χ(2) is due to strain with the coefficients of [110].
In the following, it is often needed to pass from the peak power of a pulse P to its
average power 〈P 〉. In general, this can be done as:

〈P 〉 = r

∫
P |u(t)|2 dt, (4.36)

where r is the pulse repetition rate (here r = 1 kHz), while the integral is taken over
all the pulse duration. This expression is often approximated as:

〈P 〉 = rP∆t, (4.37)

SHG alone. To demonstrate the correct operation of the solution method based
on the split-step method, Eq. (4.26) is solved first by considering only the SHG
terms (so, neglecting time evolution, phase-modulation and losses). While solving
Eq. (4.26), phase-matching is considered satisfied, so ∆β = 0.
Figure 4.7 (a) reports on the left hand side axis the SH average power 〈Psh〉 as a
function of the waveguide length L. The result shows a quadratic dependence on the
waveguide length L. The same quadratic dependence is shown when considering
the peak SH power Psh, reported on the right hand axis of Fig. 4.7(a). This is
in agreement with the expectation resulting from Eq. (4.28). In Fig. 4.7(a) the
SH power is reported for three different pump powers, showing the quadratic
proportionality on the pump power predicted by Eq. (4.28).
When showing a polynomial dependence between two quantities, it is useful to
report them in a log-log scale. For example, Eq. (4.28) shows that Psh = kL2,
being k a proportionality constant. By taking the logarithm, it is possible to write
log(Psh) = 2 log(L) + log(k). Thus, reporting Psh versus L in a log-log scale, a linear
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behavior is expected, with a slope equal to 2. So, the quantities reported in Fig.
4.7(a) are shown in log-log scale in Fig. 4.7(b). All the curves show a slope equal
to 2, reproducing the expected quadratic dependence. Moreover, it can be noted
that a variation in the pump power produces a shift in the plot. Also this fact is
understandable, since a pump power variation is described by a variation of the
proportionality constant k, which corresponds to a shift in the log-log plot.
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Fig. 4.7: (a) Simulated SH average power (left side) and peak SH power (right side) as
a function of the waveguide length. This quantity is reported for three different
pump powers. In the simulation only SHG is considered, neglecting temporal
dispersion, phase-modulation and propagation losses. (b) Same quantity of panel
(a) reported in log-log scale.

Equation (4.28) shows that Psh grows quadratically also with the pump power Pp.
This is well reproduced by the numeric solution proposed here, shown in Fig. 4.8(a)
and referred to a 1 cm long waveguide. The same happens when reporting the
dependence on the second order nonlinear coefficient χ(2), shown in Fig. 4.8(b) and
referred again to a 1 cm long waveguide.
Figure 4.9(a) shows the SH peak power as a function of the waveguide length L for
different temporal extensions of the pulses. In the three simulations, the pump peak
power is kept constant. The plot shows that the SH peak power does not depend
on the pulse temporal duration. This is not surprising. In fact, peak SH power does
not depend on the temporal shape of the pulse and remains constant once the pump
peak power is fixed. On the other hand, Fig. 4.9(b) reports the average SH power as
a function of the waveguide length L for different temporal extensions of the pulses.
The figure shows that, increasing the temporal extension of the pump pulse, the
SH power increases. This is because a temporally longer pump pulse generates a
longer SH pulse with the same peak power, so its average power is larger. Therefore,
given a certain pump peak power, a longer pulse is preferable because it allows to
increase the SH power. Moreover, due to Fourier relation, a temporally longer pulse
has a thinner spectrum. This is preferable, because it can match better the spectral
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Fig. 4.8: (a) Average (left axis) and peak (right axis) SH power as a function of the average
(top axis) and peak (bottom axis) pump power in a 1 cm long waveguide. (b)
SH average power (left axis) and peak SH power (right axis) as a function of
the second order nonlinear coefficient χ(2) in a 1 cm long waveguide. In these
simulations, only SHG is considered.

bandwidth over which the phase-matching condition ∆β ∼ 0 can be considered
valid.
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Fig. 4.9: (a) Simulated SH peak power as a function of the waveguide length for three
temporal widths of the pulse. The pulse peak power is 5 W. In the three cases, the
curves perfectly overlap. (b) SH average power as a function of the waveguide
length in the same situation of panel (a). Here, only SHG is considered.

SHG and temporal dispersion. Here, Eq. (4.26) is numerically solved via split-step
method considering both SHG and time evolution terms. Figure 4.10 shows the
temporal shape of both the pump (dotted curve) and the SH pulses (solid curve) in
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different positions within the waveguide. The three panels refer each to a different
temporal width of the pump pulse (respectively, 0.5 ps, 5 ps and 50 ps). In all the
situations, the pump pulse is centered at time t = 0 at the beginning of the sample.
Looking in other positions of the sample, the pump pulse is present at different
time positions, showing that it is evolving in time. Regarding the SH pulse, it is
not present at the beginning of the waveguide (in fact, at the initial point only the
pump mode is excited). Then, in other positions along the waveguide propagation
direction, the SH pulse appears. However, the temporal shape of the SH pulse is
strongly dependent on the pump pulse shape. For long pump pulses, like the one
referred to σt = 50 ps, the SH pulse grows along the waveguide, maintaining its
Gaussian shape. This is not true for shorter pulses. In these cases, the SH peak power
grows in the first part of the waveguide. Then, it saturates, and the pulse starts to
broaden in time. To this purpose, note the difference in the values of β1 reported
in Tab. 4.2. Since the group velocity vg is given by 1/β1, the SH pulse propagates
more slowly than the pump pulse, so they lose their temporal overlap. Therefore,
the part of SH signal generated close to the end of the waveguide is already out
of the sample when the signal generated at the beginning is still propagating in
the waveguide. This phenomenon is called temporal walkoff, and determines a
distortion of the temporal shape of the SH pulse. The same phenomenon can be
understood by looking at Fig. 4.11(a), where the SH peak pump power is shown
as a function of the sample length for three different time durations. Only for long
pulses the peak power grows quadratically, while it reaches a saturation for shorter
pulses. The shorter the pulse, the stronger the effect of walkoff. This result is of
particular interest if compared with the result of Fig. 4.9, when temporal evolution
was not considered. The same effect can be seen by looking at the average SH power,
shown in Fig. 4.11(b). Also the average power shows a quadratic dependence up to
a certain waveguide length, after which the growth is less than quadratic.

Phase-modulation terms. The contribution of phase-modulation is mainly related
to the spectral distortion of the pulses. Figure 4.12 shows the spectral broadening
of the pump pulse while propagating in the waveguide. The three panels of Fig.
4.12 refer to different temporal widths of the pump pulse, which clearly correspond
to three different spectral widths. The longer the pulse in time, the narrower its
spectrum. The three situations refer to three pulses having different temporal width
but the same peak power. So, when considering the spectrum, the narrower pulse
possesses larger peak power. Figure 4.12 shows that, while evolving, the pump
pulse broadens due to phase-modulation. The figure shows that the effect is stronger
for pulses with a broader spectrum (and so, with a shorter time extension). The
spectral broadening of the pulse is detrimental because of the limited bandwidth
of the phase-matching condition. So, an efficient SHG process requires a spectrally
narrow pulse, which correspond to a long pulse in time.
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The simulations have been performed considering SHG and time evolution terms.
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Fig. 4.11: (a) SH peak power as a function of the waveguide length when both SHG and
temporal evolution are considered. The result refers to three different durations
of the pump pulse. (b) SH average power as a function of the waveguide length.

Global solution. Figure 4.13 shows the evolution of pump and SH pulses in a
waveguide when SHG, time evolution and phase-modulation terms are considered.
The result is similar to the one shown in Fig. 4.10, when no phase-modulation terms
was considered. However, from a comparison between the figures it can be noted
that phase-modulation introduce a further distortion of the pulse shape.
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modulation.

The result changes a lot when also propagation losses are considered. Figure 4.14
shows the same quantity of Fig. 4.13, but it takes into account also losses. For
simplicity, the pump and SH losses are assumed equal and correspond to 8 dB/cm.
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The losses affect the pump pulse, which weakens while propagating in the waveguide.
Also the SH pulse is affected by losses. In fact, on the one hand the SH pulse itself
is weakened. Moreover, due to the weakening of the pump pulse, also the power
generated by means of SHG is reduced. Due to this, after a certain length of the
sample, the SH power reduces. So, in some cases, shorter waveguides provide a
larger conversion efficiency. The shorter the pulse, and the larger is this effect. So,
also for this motivation, temporally longer pulses are preferable.
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Fig. 4.14: Pump (dotted) and SH (solid) temporal profiles in different position along a 1 cm
long waveguide. The three panels refer to different temporal durations of the
pump pulse. The simulation considers SHG, time evolution, phase-modulation
terms and propagation losses of 8 dB/cm for both the pulses.

To underline the effect of propagation losses, Fig. 4.15 shows the peak SH power
(panel a) and the average SH power (panel b) as a function of the waveguide
length for three different values of propagation losses (0.08 dB/cm, 0.8 dB/cm and
8 dB/cm). In this case, the pulse temporal width is 5 ps. It can be noted that
propagation losses strongly affect the SHG efficiency. If propagation losses are below
1 dB/cm, a longer waveguide provides a larger efficiency. However, if losses are
larger, the SH power can be increased by reducing the waveguide length.

4.3.3 From the experiment to the χ(2) coefficient

In previous sections, a method to solve Eq. (4.26) has been introduced. Using this
method, the SH power can be determined once that some parameters are known.
These include the pump power, some waveguide parameters (like the ones reported
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Fig. 4.15: Peak SH power (a) and average SH power (b) as a function of the waveguide
length. The simulation solves all the terms of Eq. (4.26) and considers three
different values of propagation losses.

in Tab. 4.2), the waveguide length, the pulse temporal duration, the propagation
losses, and the second order nonlinear coefficient χ(2).
In the previous sections, a uniform χ(2) distribution within the waveguide has been
assumed. In this situation, according to Eq. (4.30), Γ(2) = χ(2)K. However, this is
not the most general case: if the nonlinear susceptibility is not uniform, χ(2) cannot
be factorized out of the integral which defines Γ(2). So, in general, the SHG efficiency
depends on Γ(2), which encodes in its integral definition the overlap between the
distribution of χ(2) and of the propagating modes.
The coefficient Γ(2) is, in general, complex. However, for a small Γ(2), the SH pulse
does not much affect the pump pulse. Neglecting dispersion and phase-modulation,
the SHG equation in Eq. (4.26) has a simple solution of the form ush ∝ Γ(2). The
quantity measured in the experiment is Psh = P0,sh|ush|2, and so it depends only
on the modulus of Γ(2) and not on its phase. This fact is confirmed by the numeric
solution of Eq. (4.26). So, considering the typical powers of the experiment shown
in the following, |Γ(2)| can be considered an input parameter of the numerical model.

As an example, in Fig. 4.16 the average SH power is reported in a color map as a
function of both the pump average power and the second order nonlinear coefficient
|Γ(2)|. The simulation refers to the TE1-TM3 combination in a 900 nm wide and
5 mm long waveguide, for a pulse duration of 5 ps and assumes propagation losses
of 8 dB/cm for both the pump and the SH pulses. On the right hand side axis of
the plot, it is also reported the coefficient χ(2)

eff which is related to the term |Γ(2)|
according to Eq. (4.32). In the simple situation of a spatially constant χ(2), one has
χ

(2)
eff = χ(2).
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Fig. 4.16: Average SH power as a function of the pump average power and both the second
order nonlinear coefficient |Γ(2)| and χ(2)

eff . The simulation refers to the TE1-TM3
combination in a 900 nm wide and 5 mm long waveguide, with a pulse duration of
of 5 ps and propagation losses of 8 dB/cm for both the pump and the SH pulses.

Fig. 4.17: Second order nonlinear coefficients as a function of the pump average power and
the SH average power. This figure is obtained by inverting the curve of Fig. 4.16.

While performing the experiment, all the parameters used in this model can be
estimated, except |Γ(2)|. Typically, during the experiment one measures the pump
power and the SH power, and wants to estimate the coefficient |Γ(2)| (or, analogously,
χ

(2)
eff ). So, it can be useful to invert the plot shown in Fig. 4.16, reporting the

coefficients |Γ(2)| and χ
(2)
eff as a function of the pump and the SH powers. This is

shown in Fig. 4.17. Fitting this curve, |Γ(2)| and χ(2)
eff can be determined from the

pump and the SH powers. In the experiments shown in the following, the nonlinear
coefficient is estimated in this way.
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This chapter describes the experimental characterization of SHG in strained silicon
waveguides. The waveguides analyzed in this part result from the engineering pro-
cedure described in Sec. 4.2. Section 5.1 offers an introduction to the experimental
setup. Then, in Sec. 5.2 the experimental characterization of the SHG process is
shown. Finally, in Sec. 5.3 the nonlinear coefficient χ(2) providing the detected
signal is estimated.
The experimental setup described in this work was assembled by Mr. A. Marchesini,
Dr. A. Trenti and Dr. M. Mancinelli. The experiments have been realized together
with Miss C. Vecchi, Dr. A. Trenti and Mr. A. Marchesini. The samples have been
fabricated by Dr. M. Ghulinyan at Fondazione Bruno Kessler.
Part of the experiment described here is also described in [145, 146, 149].

5.1 Experimental setup

In this section, the experimental setup used to demonstrate the SHG is described.
The setup is sketched in Fig. 5.1, and is similar to the one described in [146, 150].
It is formed by the four following parts.

1. The source.
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2. The pulse-shaping stage.

3. The coupling stage.

4. The detection stage.
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Fig. 5.1: Experimental setup described in this section.

5.1.1 The source

The source is, in turn, constituted by three stages.
The first stage is a solid-state Ti:sapphire laser (Spectra-Physics Tsunami®). It is
optically pumped by a 4 W laser at a wavelength of 532 nm (Spectra-Physics Millen-
nia®). The Ti:sapphire laser can operate both in the quasi Continuous-Wave (CW)
condition, as well as in mode-locked condition that is achieved using an acousto-optic
modulator. For the purpose of this experiment, the laser operates in the mode-locked
condition at a central wavelength of 800 nm. Its bandwidth is 70 nm, with σt = 35 fs
and a 82 MHz repetition rate. The average power is around 500 mW.
The Ti:sapphire laser is amplified by a regenerative amplifier (Spectra-Physics
Spitfire®). The regenerative amplifier is formed by another Ti:sapphire laser cavity
pumped by a 20 W laser at 527 nm, with a repetition rate of 1 kHz (Spectra-Physics
Empower®). The optical pulses coming from the Tsunami laser are overlapped
with the ones of the regenerative amplifier through a timing control unit. To reduce
the peak power within the cavity, the Tsunami pulse is temporally stretched before
being amplified. Then, at the output of the amplifier, the pulse is compressed. At
the output of the amplifier, an average power above 3 W is measured, with 1 kHz
repetition rate.
The last part of the pump system is a nonlinear stage formed by an optical para-
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metric amplifier (Light Conversion TOPAS-C®). Within this stage, the amplified
beam at 800 nm is split in two arms. One of these arms impinges on a sapphire
plate. It generates a supercontinuum signal in the range from 1.14 µm to 1.6 µm.
The supercontinuum is then mixed in a nonlinear crystal with the other arm of
the amplified beam at 800 nm. Through DFG process, two beams are generated.
The wavelength of these beams can be tuned by changing the orientation angle
of the nonlinear crystal. The first beam (named signal beam) can be tuned in the
range from 1.14 µm to 1.6 µm, while the second beam (the idler beam) is tunable in
the range from 1.6 µm to 2.6 µm. The signal and the idler beams are generated on
linear orthogonal polarizations, which can be separated using a polarizer. Therefore,
considering only the idler, this stage can act as a tunable mid-infrared light source.
In the next sections, the idler beam will be referred as the pump beam.
The spectrum of the pulse emitted by the TOPAS-C®is shown in Fig. 5.2. It is
measured using a Fourier Transform Infrared (FTIR Brucker Vertex-70v®) spectrom-
eter, which is provided by an InSb detector that allows a sensitivity in the range
from 1 µm to 5.5 µm. The spectrum shown in Fig. 5.2 is performed when the OPA
signal is set at 1200 nm, with the corresponding idler centered at 2400 nm. Changing
the OPA settings, the two peaks can be spectrally shifted. The total average power
emitted by the OPA is 〈Pp〉 ∼ 600 mW. Using Eq. (4.37), this corresponds to a peak
power Pp ∼7 GW (considering r =1 kHz and ∆t =82.4 fs, calculated assuming a
Gaussian pulse with σt =35 fs). As already remarked in the previous chapter, a direct
coupling of such a huge power within the waveguide is not possible, because it
determines the input waveguide facet burning. This motivates the necessity of a
pulse shaping-stage, which is described in the next section. Using this additional
stage, the pump pulse is spectrally cut, determining a temporal enlargement of the
pulse width and a reduction of the peak power. Moreover, a reduction of the spectral
width of the pump pulse allows to match better the wavelength range over which
the phase-matching condition is satisfied.

5.1.2 The pulse-shaping stage

The time-bandwidth product shown in Eq. (4.35) indicates that a pulse can be
temporally tailored by shaping its spectrum. The pulse-shaper assembled for this
experiment works in the 4f reflection configuration [151]. First, a diffraction grating
separates the spectral components of the pulse. Then, a cylindrical lens is used
to transform the grating angular dispersion into a spatial dispersion. Tunable slits
modulate the intensity of the various frequency components. A mirror reflects back
the selected frequencies, which are then focused by the lens on the grating and create
again a reshaped collimated beam. On the one hand, this system can be reconfigured
by modifying the aperture of the slits, setting the width of the pulse at the output of
the pulse-shaping stage. On the other hand, an automatic rotation system placed
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Fig. 5.2: Spectrum of the pulse emitted by the TOPAS-C®. The measurement is performed
by a FTIR spectrometer.

below the diffraction grating can be used to tune the central wavelength of the
output pulse.
In Fig. 5.3, a normalized spectrum of the pulse before and after the pulse-shaping
stage is shown. Using this configuration, the pulse spectrum is cut from 253 nm
to 14 nm. A further reduction of the slit aperture allows to tailor the pulse width
to 0.5 nm. Clearly, this shaping mechanism is inherently lossy. However, for the
purposes of this experiment, an additional stage of filters is used to further reduce
the power.
For the purpose of this experiment, it is particularly important to filter out any other
component of the OPA signal pulse. In fact, the pulse-shaper does not transmit only
the selected wavelength, but also its halved wavelength thanks to the second order
diffraction of the grating. This is particularly detrimental in a SHG experiment,
when the SH signal is generated at the halved wavelength of the pump signal. To
this purpose, a polarizer is placed at the output of the OPA system, able to select the
idler beam that is orthogonally polarized with respect to the signal beam. Moreover,
after the pulse-shaping stage, the signal is filtered by a 1500 nm long-wave pass filter
with a > 50 dB extinction ratio.
From now on, the beam exiting the pulse-shaper is named pump pulse.

5.1.3 The coupling stage

The pulse exiting the pulse-shaper is ready for being coupled into the waveguide.
After two mirrors, a collimator couples light into a tapered lensed optical fiber.
This fiber is used to couple light into the waveguide via butt coupling. A second
fiber at the waveguide output collects the transmitted power. Both the fibers are
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Fig. 5.3: Normalized spectra of the idler pulse emitted by the TOPAS-C®before (blue) and
after (green) the pulse-shaper.

mounted on piezoelectric controlled flexure stages. A polarizing stage constituted
by a half waveplate and a quarter waveplate is placed before the collimator. They
allow to select the proper polarization coupled into the waveguide, correcting any
polarization distortion introduced by the coupling fiber. They are properly set by
maximizing the pump signal transmitted by the waveguide, considering that for the
MIR wavelengths used in this experiment the waveguides under analysis support
only the TE polarization. The wavelength of the beam exiting the pulse shaper can
be monitored by performing a scan with the FTIR spectrometer.
Two reasons prevent from a proper alignment of the system using directly the pump
beam. First, the pump average power coming out from the pulse-shaper is below
1 µW, so it is not possible to trace it using standard viewing cards. Moreover, the
NIR-VIS camera (FIND-R-SCOPE-85700®) used for the alignment is not sensitive
to MIR wavelengths, so it is not possible to look at any scattering from the sample
during the alignment. So, a telecom wavelength beam generated by an Amplified
Stimulated Emission (ASE) source is made collinear with the pump pulse. This
auxiliary beam is used for a rough alignment to the waveguide. The collinearity of
the ASE beam with the pump beam guarantees a rough coupling of the pump pulse,
which is then maximized using an extended InGaAs photodiode (Thorlabs FD05D®),
whose responsivity extends in the range 800 nm to 2600 nm.

5.1.4 The detection stage

The pump power transmitted by the waveguide is checked by the extended InGaAs
photodiode. A lock-in amplifier triggered by the pump signal allows to improve the
signal sensitivity, which can be set to about 200 pW.
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The detection of the SHG signal is more challenging. In fact, the simulations reported
in Fig. 4.15 show that the average SHG power is at the fW level for a χ(2) of the
order of 0.1 pm/V. Therefore, a photon counting technique is necessary to detect it.
The detection is performed using an InGaAs Single Photon Avalanche Diode (SPAD
ID-Quantique-ID201®). This detector possesses a detection efficiency in the range
10 % to 25 % at wavelengths around 1150 nm to 1200 nm, where the SH signal is
expected. To reduce the SPAD dark counts, a triggered configuration is used. When
triggered by the pump signal, the detector opens a 2.5 ns detection window. The
SPAD gating time is tuned using a side effect caused by the pump pulse, which
is detected by the SPAD through TPA process. Once that the SPAD gating time is
properly set, the pump signal is filtered out. The filtering is performed by bending
the collecting tapered lensed fiber, exploiting the fact that the fiber does not guide
well the MIR wavelengths. So, bending losses extinguish the pump without affecting
the SH signal, whose wavelength is well guided by the fiber. The average SH power
〈Psh〉 collected by the SPAD is calculated from the counting rate C measured by the
SPAD using the following relationship:

〈Psh〉 = hc

λsh

C − Cdc
DE

, (5.1)

being h the Planck constant, Cdc the dark-count rate and DE the detector detection
efficiency.
When required, the SHG signal can be spectrally analyzed by using a scanning
monochromator. This is realized with a diffraction grating in a double-pass con-
figuration. This monochromator is placed between the collecting fiber and the
detector.

5.2 Characterization of SHG in strained silicon
waveguides

In this section, the experimental characterization of the SHG process in strained
silicon waveguides is shown.

5.2.1 Dependence on the pump wavelength

Figure 5.4 shows the experimental dependence of the SH power on the pump
wavelength λp. The measurement is performed using the technique sketched in the
inset of the figure. The pump wavelength is modified by changing the orientation
angle of the diffraction grating of the pulse-shaper. Simultaneously, the SHG signal
is detected by the SPAD detector. The pump signal is filtered by bending the output
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fiber. The plot in Fig. 5.4 refers to a 1050 nm wide 4 mm long waveguide, that is
expected to phase-match the TE1-TM3 modal combination. The measurement shows
a strong dependence of the SH power on λp, with a clear peak for λp ∼ 2391 nm.
This is a first demonstration of the SHG occurrence, since it is expected that SHG
occurs only for certain wavelengths where phase-matching is satisfied.
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Fig. 5.4: On-chip average SH power as a function of the pump wavelength λp. In the inset,
the technique used to perform this measurement is sketched. The measurement
refers to a 1050 nm wide 4 mm long waveguide.

The value reported in Fig. 5.4, as well as all the results reported in the following,
is the on-chip SH power. It is evaluated from the SH power measured by the
SPAD detector and from an analytic estimation of the coupling efficiency κ, that is
calculated as follows [35]:

κ =
∫
ψk(r⊥, ωsh)e∗k(r⊥, ωsh) dA

∫
ψ∗k(r⊥, ωsh)ek(r⊥, ωsh) dA∫

|ψk(r⊥, ωsh)|2 dA
∫
|ek(r⊥, ωsh)|2 dA

(5.2)

where ek(r⊥, ωsh) is the profile of the optical mode to be coupled in the waveguide
cross-section plane defined by r⊥ at the SH frequency ωsh, and ψk(r⊥, ωsh) indicates
the coupling fiber profile. The label k indicates the polarization of the mode to be
coupled (k = x for TE polarization, k = y for TM polarization). The integrals are
taken over the whole plane defined by r⊥. The field profile of the fiber is experimen-
tally measured by using a laser at SH wavelengths in the tip-to-tip configuration,
detecting the transmitted power as a function of the relative position of the two
fibers. In this way, a Gaussian profile with a 2.55 µm diameter is estimated. On
the other hand, the field profile of the waveguide mode is calculated from FEM
simulations. Using Eq. (5.2), κ = 15.5 dB is estimated for the collection of the TM3
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mode for a waveguide width w = 1 µm. The other mode described in this chapter is
the TM5 mode in a waveguide 2.3 µm wide, where κ = 21.3 dB.

5.2.2 Dependence on the waveguide

Another proof that the measured signal is due to SHG results from the study of the
phase-matching pump wavelength dependence on w. This quantity is shown in Fig.
5.5(a), referring again to the TE1-TM3 modal combination. The measured values
are shown by the colored points in the figure. Blue points refer to measurements
performed on waveguides of one chip, while green points refer to measurements
performed on waveguides of another chip located in a different position on the wafer.
The trend expected by simulations is shown as a straight line. The experimental
trend agrees with simulations, even if it shows an offset. This offset can be attributed
to variations of w in different positions of the wafer. To evidence this fact, Fig.
5.5(a) shows also a gray area. This corresponds to simulations performed assuming
5% variations on w, which is the typical fabrication uncertainty. The fact that the
experimental results fall in the gray area confirms this reasoning. Furthermore,
Fig. 5.5(a) shows also that waveguides belonging to the same chip possess almost
the same shift with respect to simulations. This demonstrates that the waveguide
geometry is uniform on the short-scale distance on the chip.
In Fig. 5.5(b) the same result is shown for larger waveguides (w ∼ 2.3 µm). In
this case, SHG can be attributed to the TE1-TM5 combination. The same reasoning
presented for the previous combination can be extended to this case, showing short-
scale uniformity of the waveguide geometry and good agreement with the trend
predicted by simulations.
The TE1-TM3 and the TE1-TM5 modal combinations are the ones experimentally
demonstrated, and will be also discussed in the following. The other combinations
shown in Tab. 4.1 (e.g. TE1-TM7, TE1-TE5, TE1-TE7) did not show any detectable
SH power in the experiment. The combinations providing generation on even parity
modes (e.g. TE1-TM4, TE1-TM6, TE1-TE4, TE1-TE6) have been not realized because,
as it is reported in Tab. 4.1, they are expected to be totally inefficient for a symmetric
χ(2).

5.2.3 Dependence on the pump power

Theory predicts a quadratic dependence of the SH power on the pump power. This
fact is confirmed experimentally, as it is shown in Fig. 5.6, where the on-chip average
SH power 〈Psh〉 is reported in log-log scale as a function of the average pump power
〈Pp〉. A slope of 1.81 ± 0.12 is determined. This almost matches the value of 2
predicted by theory. The measurement refers to the same waveguide used for the
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Fig. 5.5: Phase-matching pump wavelength dependence on waveguide width w. Panel
(a) refers to the TE1-TM3 combination, while panel (b) refers to the TE1-TM5
combination. The points refer to experimental measurements, and points with
the same color refer to waveguides on the same chip. The straight line shows the
theoretical expectation, while the gray area refers to 5% variations on w.

measurement of Fig. 5.4.
The method used to estimate the on-chip SH power has already been introduced,
based on the overlap integral between the fiber and the waveguide modal profiles.
On the other hand, the on-chip pump power is estimated using an experimental
technique, based on the measurement of the power incident on the waveguide facet
and on the measurement of the in-coupling losses. In-coupling losses are determined
via cut-back method, measuring the power transmitted by waveguides of different
lengths [152]. In the case of the TE1-TM3 combination (w ∼ 1 µm) in-coupling losses
are about 9 dB, while they are about 4 dB in the case of the TE1-TM5 combination
(w ∼ 2.3 µm).

5.2.4 Spectrum of the SH signal

To finally prove the SHG occurrence, the spectrum of the generated signal is mea-
sured. This measurement is performed using the scanning monochromator placed
between the collecting fiber and the SPAD detector. The result of this measurement
is shown in Fig. 5.7. In this case, both the pump wavelength λp and the SHG wave-
length λsh are scanned. The technique used for this measurement is summarized in
the inset of Fig. 5.7. The detected SHG power is centered at λsh ∼ λp/2, offering a
further confirmation of the SHG occurrence.
Figure 5.8 shows the spectra of the SH signals measured on waveguides with differ-
ent w, where the proper pump wavelength is set to provide phase-matching. The
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Fig. 5.6: On-chip SH power as a function of the on-chip pump power. Results are reported
in a log-log plot and are fitted by a straight line, showing a slope of 1.81± 0.12.
The measurement refers to a 1050 nm wide 4 mm long waveguide, referred to the
TE1-TM3 combination.

figure shows that, like for pump wavelength, also the SH wavelength increases with
the waveguide width.

5.3 Estimation of the nonlinear coefficient

In Sec. 4.3.3 a method to estimate the nonlinear coefficients |Γ(2)| and χ(2)
eff from the

experimental measurement has been shown. For each experimental configuration, a
conversion curve like the one sketched in Fig. 4.17 can be calculated. Doing that,
one must use the proper experimental parameters (like the pulse wavelength and
temporal duration), the proper waveguide geometry (length and width) and the
proper modal combination. Using this conversion curve, once that the on-chip pump
and SH power are calculated from the experiment, it is possible to estimate the
corresponding nonlinear coefficients |Γ(2)| and χ(2)

eff .
The model used to calculate the conversion curve uses parameters that come both
from FEM simulations (propagation constants, group indices, modal profiles) and
from experimental measurements (refractive indexes, propagation losses). The
pump loss coefficient is estimated by cut-back method. It is αP ∼ 8 dB/cm for the
TE1-TM3 modal combination (w ∼ 1 µm) and 5 dB/cm for the TE1-TM5 modal
combination (w ∼ 2.3 µm). On the other hand, the SH loss coefficient αsh has not
been experimentally evaluated due to the fact that it propagates on high order
modes. So it has been approximated αsh ∼ αp. Since the waveguides considered
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Fig. 5.7: Spectral analysis of the SH power. This measurement is performed using the
technique sketched on the top. The measurement refers to a 1050 nm wide 4 mm
long waveguide, providing phase-matching on the TE1-TM3 combination.
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Fig. 5.8: Spectral analysis of the SH pulse, once that the proper pump pulse wavelength is
set. The three measurements refer to three different waveguide widths w.
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Tab. 5.1: Estimation of the nonlinear coefficients |Γ(2)| and χ
(2)
eff , evaluated from the ex-

perimental measurements with the method described in Sec. 4.3.3. The error
bars result from statistical analysis and represent one standard deviation. The
coefficients χ(2)

eff are related to |Γ(2)| according to Eq. (4.32).

Combination |Γ(2)| [fm/V] χ
(2)
eff [pm/V]

TE1-TM3 1.7± 0.2 0.46± 0.06
TE1-TM5 0.39± 0.06 0.6± 0.1

here are very short (in the range 2 mm to 6 mm), the role of αsh not crucial.
Table 5.1 shows these values calculated from the experimental measurements, re-
ferred to the TE1-TM3 and to the TE1-TM5 combinations. The results are calculated
from measurements on waveguides of different L and different w. For the TE1-TM3
combination, each value reported in Tab. 5.1 is an average of 64 measurements,
while for the TE1-TM5 combination it refers to 11 measurements.
The results reported in the table show that the combination TE1-TM3 has a |Γ(2)|
value around 4 times larger than the TE1-TM5 combination. This fact is connected
to the experimental observation that, given a certain pump power, the generated SH
signal is much stronger in the TE1-TM3 combination than in the TE1-TM5 combina-
tion. On the other hand, χ(2)

eff values are comparable within the error bars. This is
connected to the fact the TE1-TM3 combination has a stronger K value with respect
to the TE1-TM5 combination, as reported in Tab. 4.1. So, even if the values of |Γ(2)|
are different, the values of χ(2)

eff evaluated according to Eq. (4.32) are comparable.
Recalling that K is related to the mode overlap between the pump and the SH modes
and not to the value of χ(2), it means that the strong difference between the |Γ(2)|
shown by the two combinations has to be ascribed mainly to a difference in the
overlap of the optical modes, and not to a different distribution of χ(2) inside the
waveguide.
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The results presented in the previous chapter offer a proof that SHG can be measured
in a silicon waveguide with a SiN cladding. However, the experiment does not clarify
the origin of this process, which can be generated by strain, charges trapped in the
cladding and generation by the evanescent field overlapping the cladding. In this
section, the role of strain is investigated in detail. Section 6.1 reports the results of a
SHG experiment where an external load is applied to the sample. In Sec. 6.2 these
results are investigated more in detail by modeling the strained waveguide.
The experiments have been realized together with Miss C. Vecchi and Dr. A. Trenti.
Part of the work described in this chapter is also described in [145].

6.1 Effect of external load on SHG

6.1.1 Experimental setup

The SHG experiment described in the previous chapter is replied using a screw-
equipped sample holder like the one sketched in Fig. 6.1 and described in Chapter 2
and in [111, 135]. Using this sample holder the edges of the sample are fixed, while
the screw introduces a vertical displacement ∆H in the center of the sample. This
load, applied orthogonally to the main plane of the sample, bends it and allows to
set a tunable strain inside the waveguide. When no external load is applied, only
the stress introduced by the SiN cladding is present. Wafer bow measurements set
this stress level to 1.25 GPa. Applying the external load, strain can be increased up
to the sample rupture.

95



waveguide

x

z

y

Fig. 6.1: Sketch of the screw-equipped sample holder used in this experiment. By rotating
the screw, a vertical displacement ∆H can be applied in the center of the sample,
while the edges of the sample are fixed.

6.1.2 SHG under the effect of strain

Figure 6.2 shows the dependence of the on-chip SHG power on the pump wavelength
λp for different values of ∆H applied by the screw. The measurement is performed
on a 906 nm wide and 4 mm long waveguide, which shows phase-matching on
the TE1-TM3 modal combination. SHG is observed for all the applied values of
∆H. Moreover, while increasing the strain level, the SHG peak is moved towards
shorter wavelengths, demonstrating a blue-shift of the phase-matching wavelength.
However, the SHG magnitude does not vary significantly with strain.
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Fig. 6.2: On-chip SH power as a function of the pump wavelength λp for different loads
∆H applied by the screw.

To emphasize the shift induced by strain, in Fig. 6.3 the pump phase-matching
wavelength is reported as a function of ∆H. The phase-matching wavelength shifts
linearly, showing a maximum shift of about 3.8 nm for ∆H = 50 µm. The phase-
matching wavelength variation proves that the strain inside the waveguide is actually
varied by the applied load. The shift can be ascribed to a strain-induced effective
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refractive index variation in the waveguide, determined both by the photoelastic
effect and by the waveguide deformation [135]. In fact, if the pump and the
SH modes undergo to effective refractive index changes δnp and δnsh, the phase-
matching condition is changed to np,0 + δnp = nsh,0 + δnsh, being np,0 and nsh,0 the
effective refractive indexes unaffected by strain. If δnp 6= δnsh, the phase-matching
wavelength is changed.
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Fig. 6.3: Pump phase-matching wavelength as a function of the applied load ∆H.

Figure 6.4 reports the dependence of χ(2)
eff on the applied load ∆H. Surprisingly, the

load increase does not affect significantly χ(2)
eff . This fact seems to contradict the

interpretation of strain as the main cause of SHG.

0 10 20 30 40 50

H [ m]

0

0.1

0.2

0.3

0.4

(2
)

ef
f
[p

m
/V

]

Fig. 6.4: Dependence of χ(2)
eff on the applied load ∆H. The error bars are estimated from

repeated measurements. Note that the χ(2)
eff value reported here is lower than the

result of Tab. 5.1. This fact derives from the large variability of χ(2)
eff between the

different samples, considered by the statistical analysis shown in Tab. 5.1.
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6.2 Modeling the effect of strain on SHG

To confirm the interpretation of the strain-induced shift of the phase-matching
wavelength, the system is modeled using a procedure similar to the one described in
Chapter 3 and in [135].

6.2.1 Macroscopic modeling of the sample

Using this procedure, as a first step, the silicon substrate is modeled using a 3D FEM
simulation. The simulation domain used in this part is sketched on the top in Fig.
6.5. The screw introduces a displacement ∆H along the y direction, shown in the
figure by the arrow. On the top, the fixed supports are modeled by a prescribed
displacement and a fixed constraint applied to lines directed along the x direction.
To properly model the screw effect, a crucial parameter is the contact area between
the screw and the sample. Here, good agreement with the experiment is obtained by
using a screw contact diameter of 7 µm. The bottom of Fig. 6.5 reports the result of
a 3D simulation for ∆H = 50 µm. In the figure, displacements are emphasized by a
factor 10. Superimposed to the deformed sample, the volumetric strain εv is shown
in color scale.
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Fig. 6.5: Top: sketch of the 3D FEM simulation modeling the silicon substrate deformed
by the load applied by the screw. The lines on the top of the sample model the
supports, described by a prescribed displacement and a fixed constraint. The
screw displacement is sketched by the arrow on the bottom of the sample. Bottom:
results of the simulation for a load ∆H = 50 µm. Displacements are emphasized
by a factor 10. The color map reproduces the volumetric strain εv superimposed to
the deformed sample.

6.2.2 Effect of strain on phase-matching

The results of the simulation described so far are then used to estimate the strain
inside the waveguide. Doing that, the results of the 3D model are used as prescribed
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displacements in a 2D model of the waveguide cross-section. Using this approach,
the strain distribution inside the waveguide can be evaluated. As an example, Fig.
6.6 shows the strain tensor element εxx inside the waveguide, evaluated for ∆H =
0 µm (left) and ∆H = 50 µm (right). In the situation ∆H = 0 µm, when no load
is applied, the strain inside the waveguide is entirely due to the stress applied by
the SiN cladding. This is introduced as an initial condition in the 2D simulation.
On the contrary, the case ∆H = 50 µm corresponds to the maximum displacement
introduced in the experiment before breaking the sample. Comparing the result at
∆H = 50 µm with the one at ∆H = 0 µm, the average strain inside the waveguide is
increased of about 50%.
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Fig. 6.6: Strain tensor element εxx inside a 906 nm wide waveguide, corresponding to
∆H = 0 µm (left) and to ∆H = 50 µm (right). The 2D simulation is performed
using the results of the 3D model shown in Fig. 6.5 as prescribed displacements.

The results of the simulations reported in Fig. 6.6 are used to determine two
quantities.

1. Given the average strain inside the waveguide along the x and the y directions,
the size of the deformed waveguide is estimated. This is used to evaluate
the effective refractive index variations induced by deformation δnp|def and
δnsh|def . These quantities are shown in Fig. 6.7(a) as a function of the applied
displacement ∆H. They refer to a 906 nm wide waveguide, considering the
TE1 mode for the pump and the TM3 mode for the SH signal. Deformation
causes a positive variation of the effective refractive index for both the modes.

2. Given the strain distribution inside the waveguide, the photoelastic coefficients
are used to compute a map of the photoelastic variation of the refractive index.
This is used in turn to determine the photoelastic-induced effective refractive
index variations δnp|ph and δnsh|ph. These quantities are shown in Fig. 6.7(b)
as a function of ∆H. The photoelastic effective index variation of the two
modes, due to their different polarizations, has opposite sign. Moreover,
comparing this effect with the effect of deformation reported in Fig. 6.7(a), it
results that photoelastic effect is one order of magnitude stronger.
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Fig. 6.7: Effective refractive index variations induced by deformation (a) and by the pho-
toelastic effect (b) as a function of the applied displacement ∆H. The results
are reported for the pump TE1 mode at the wavelength of 2293.8 nm (red lines)
and the SH TM3 mode at the corresponding halved wavelength (blue lines). The
simulations refer to a 906 nm wide waveguide.

Once that the effective refractive index variation induced by deformation and pho-
toelasticity are known, the new pump and SH effective indexes are calculated as:

np = np,0 + δnp = np,0 + δnp|def + δnp|ph,

nsh = nsh,0 + δnsh = nsh,0 + δnsh|def + δnsh|ph.
(6.1)

In Fig. 6.8 the pump and SH effective refractive indices are shown as a function
of pump and SH wavelengths, referred to both the cases ∆H = 0 µm (solid lines,
no strain is applied) and to ∆H = 50 µm (dashed line, maximum strain is applied).
Due to the fact that photoelasticity has a much stronger effect than deformation, the
pump effective index increases, while the SH index lowers. This causes a shift of the
pump phase-matching wavelength of almost 4 nm, comparably with the experiment.
One can note that the phase-matching wavelength shown here is 2293.8 nm at
∆H = 0 µm, slightly different from the value of 2288 nm shown in the experimental
measurement of Fig. 6.2. This fact depends on the local variations of the waveguide
geometry. However, what matters is a comparison between the phase-matching shift
and not its absolute value.

6.2.3 Effect of strain on χ(2)

In [110, 118] a model connecting the strain gradient to the strain-induced second
order nonlinear coefficient χ(2)

strain is proposed. Using this model model, the χ(2)
strain

map in the waveguide has been calculated in Sec. 4.2.4. Here, the same is done in
Fig. 6.9, which reports the distribution of χ(2)

strain,xxy in a 906 nm wide waveguide
in the situations ∆H = 0 µm and ∆H = 50 µm. The average value of χ(2)

strain,xxy is
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Fig. 6.8: Effective refractive index of the pump TE1 mode (blue) and of the SH TM5 mode
(red) as a function of the pump and of the SHG wavelengths. Solid lines refer to
simulations realized with no applied load (∆H = 0 µm), while dashed lines refer
to ∆H = 50 µm. The applied strain determines the phase-matching shift ∆λ.

around 1.75 pm/V in the case ∆H = 0 µm, while it reaches about 2 pm/V in the
situation ∆H = 50 µm, with an increase of about 14%. However, these quantities
cannot be directly compared with the experimental χ(2)

eff . In fact, the generation
efficiency is not directly linked to χ(2)

strain,xxy, but to its overlap with the optical modes.
So, the value of |Γ(2)| is evaluated according to Eq. (4.11) and the χ(2) map of Fig.
6.9. A variation from 0.47 fm/V to 0.72 fm/V is estimated while passing from ∆H =
0 µm to ∆H = 50 µm. This corresponds to a variation of χ(2)

eff from 0.13 pm/V to
0.20 pm/V, with an increase of almost 50%
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Fig. 6.9: Distribution of χ(2)
strain,xxy in a 906 nm wide waveguide, evaluated according to the

model shown in [110, 118] and corresponding to ∆H = 0 µm and ∆H = 50 µm.

This allows concluding that, even if the model shown in [110, 118] predicts a χ(2)
eff

variation of 50%, the experimental SHG efficiency does not change significantly. This
is a first proof that strain is not the main origin of the measured SHG.
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The results shown in the previous chapter demonstrate that strain has a marginal role
in the SHG process. Therefore, SHG is due to other processes, such as the charges
trapped in the SiN cladding, as well as the generation in the cladding through the
evanescent field. In this chapter, the role of trapped charges is analyzed. First, their
origin is recalled in Sec. 7.1. Then, in Sec. 7.2, it is shown how ultraviolet radiation
can annihilate them. In Sec. 7.3 the same treatment is applied to waveguides, in
order to analyze the effect on the SHG process. The experiment shows a complete
suppression of the SHG signal after UV treatment, demonstrating in this way the
crucial role of trapped charges. In Sec. 7.4 the system is modeled, finding good
agreement with the experiment. Finally, Sec. 7.5 shows the main conclusions and
perspectives of this work on SHG in strained waveguides.
The experiments described in this chapter has been realized together with Miss
C. Vecchi and Dr. A. Trenti. The UV exposure of the samples, as well as the C-
V measurements used to estimate the density of the trapped charges, have been
realized by Dr. M. Ghulinyan at Fondazione Bruno Kessler.
Part of the work described in this chapter is also described in [145].
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7.1 The origin of dangling bonds

In the ideal bonding topology of SiN, silicon has four nitrogen atoms as neighbors,
while nitrogen is bounded to three silicon atoms. This situation is sketched on the
left side of Fig. 7.1. However, defects are often formed during the deposition of
the material. They consist of local variations of the atomic network with respect
to the ordered chemical structure of the material. The most important defects in
SiN are the K centers and the N centers, which are also sketched in Fig. 7.1 [153,
154]. The K defect can be considered both as a silicon atom with three bonds or
as a nitrogen atom with four bonds. On the other hand, the N defect consists of a
silicon atom with five bonds or a nitrogen atom with two bonds. The bonds sketched
in white in Fig. 7.1 are commonly referred as dangling bonds.

Ideal bond K defect N defect

Fig. 7.1: Atomic bonding topologies in SiN: ideal topology (left), K center (center) and N
center (right).

The K defect is particularly diffused and important. The K center can exist in three
different charge states. In the positive state of the K center (named K+ center) no
electrons are present in the dangling bond. In the neutral state (named K0 center)
one electron is present in the dangling bond. In the negative state (K− center) two
electrons occupy the dangling bond [155]. The first is the most thermodynamically
favorable defect, and creates a positively charged layer at the interface between
silicon and SiN [136].
The existence of charged defects strongly affects the system studied in this work,
where a SiN cladding is deposited on the top of a silicon waveguide. In fact, the
presence of positively charged defects in the cladding results in a static field EDC
inside the waveguide. This static field adds up to the optical waves that propagate
in the waveguide, and causes the EFISH process. As already introduced in Sec.
1.1.3, EFISH process is described by Eq. (1.8) when (for example) ω3 = 0. In this
case, the nonlinear polarization vector P(3) acquires terms at frequencies 2ω1 and
2ω2, corresponding to a SHG process. Comparing this case with Eq. (1.7), which
describes second order processes, an effective second order nonlinear coefficient
χ

(2)
EFISH can be introduced according to [126]

χ
(2)
EFISH = 3χ(3)EDC . (7.1)
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7.2 Passivation of dangling bonds with UV light

Removing the dangling bonds from the SiN cladding can be useful to understand
the effect of EFISH on the measurements described so far. This can be done by
irradiating the sample with UV light. This process annihilates the positive centers
K+, neutralizing them to the state K0 [155].

7.2.1 C-V measurements to estimate the charge density

The effect of UV irradiation on such a system is preliminarily measured on a simpler
system, constituted by a 140 nm thick SiN layer deposited on the top of 600 µm thick
p-doped silicon substrate. This constitutes a simplified version of the device where
waveguides are defined. In the cross-section of this system, only one interface is
present, specifically the Si/SiN interface that is of interest for this study. On the
contrary, waveguides are defined on a SOI wafer, which possesses a SiO2 layer
between the waveguide level and the substrate. Therefore, in this device three
interfaces are present, among which the two Si/SiO2 interfaces are not interesting
for the purposes of this study. Moreover, the lithographic definition of the waveguides
can introduce problems in the measurement that is going to be presented. In the
simple situation constituted by only two layers, C-V measurements in the MOS
configuration can be used to estimate the areal charge density σ [156].
The left hand side of Fig. 7.2 shows the cross section of the device used for the C-V
measurements. The test structure is contacted by an aluminum back contact and a
787 µm diameter Hg droplet as a gate contact.
The right hand side of Fig. 7.2 shows the typical low-frequency C-V curve measured
in this kind of structures. For simplicity, it is assumed that the metal contact has the
same work function of the semiconductor. It shows three regimes, represented with
three different colors on the plot. These regimes can be described also in terms of
the energy-band diagram shown in Fig. 7.3 [157].

• The accumulation regime results when negative voltages are applied to the
metal in contact with the insulator (V < 0). This causes the bending of the
bands close to the surface between semiconductor and the insulator. In this
device no current flows, so the Fermi level does not change in the semicon-
ductor. Therefore, close to the surface the valence band becomes closer to the
Fermi level. Since the hole density is exponentially dependent on the energy
difference between the valence band and the Fermi level, holes accumulate
close to the interface. In other words, when a negative potential is applied to
the metal in contact with the insulator, positive charges are attracted close to
the interface. This situation is depicted on the left panel of Fig. 7.3.
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• The condition when V = 0 is called the flat-band condition. In this case,
bands become flat and the carrier distribution close to the interface is the same
of the bulk silicon. In the C-V curve, in the flat-band condition the capacitance
Cfb is related to the maximum capacitance in the accumulation regime Cmax
by [156]:

Cfb = Cmax
ε0εsA/LD

Cmax + ε0εsA/LD
, (7.2)

being εs the semiconductor permittivity, A the Hg droplet area and LD the
Debye length of the semiconductor.

• If V > 0, the system approaches the depletion region. In this case, close to
the interface the bands bend downward, and the distance from the Fermi level
of conduction and of the valence bands becomes almost the same. In this case,
sketched in the central panel of Fig. 7.3, holes are depleted.

• If V � 0, the bands are bent more and more. So, close to the interface, the
distance between the Fermi level and the conduction band becomes smaller
than the distance with the valence band. In this is situation, named inversion
region and sketched in the right hand panel of Fig. 7.3, electrons accumulate
close to the interface.

The situation depicted so far refers to the situation where difference between the
metal contact and the semiconductor work functions is zero (φms = 0). In the
general case when φms 6= 0, the flat-band voltage Vfb is equal to φms. This situation
is still different if fixed charges are accumulated at the insulator-semiconductor
interface. If Q is the total accumulated charge, the flat-band voltage becomes [126]

Vfb = φms −
Q

Cmax
. (7.3)

So, the flat-band capacitance Cfb can be estimated using (7.2). Once that it is
known, the flat-band voltage Vfb can be graphically estimated from the measured
C-V curve. Finally, knowing φms and using (7.3), the total accumulated charge Q
can be determined. Assuming a uniform distribution of the accumulated charge, an
areal charge density of σ = Q/A can be determined.

7.2.2 Estimation of the charge density

Figure 7.4 shows the measured C-V curve before and after different UV exposure
times. In the as-deposited structure, a flat-band voltage of around −8 V is shown.
After the UV exposure, the curve is shifted towards larger voltages, saturating at
Vfb ∼ −0.5 V. This quantity corresponds to φms for the situation analyzed in this
work. In terms of charges, an areal charge density of σ ∼ 1.7× 1012 cm−2 can be
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Fig. 7.2: Left: cross section of the device used for the C-V measurements, constituted by
a 140 nm thick SiN layer deposited on the top of a 600 µm thick p-doped silicon
substrate, and contacted by an aluminum back contact and a 787 µm diameter Hg
droplet as a gate contact. Right: typical low frequency C-V curve of the structure
shown on the left and referred to a p-type semiconductor.

V<0 V>0
V>0

EF

EF
EF

EC

Ei
EF
EV

EC

Ei
EF
EV

EC

Ei
EF
EV

DepletionAccumulation Inversion

Fig. 7.3: Band diagrams for metal-insulator-semiconductor structures. The tree panels
refer to the three different regimes: accumulation (left), depletion (center) and
inversion (right).

estimated for the as-deposited situation. After 23 hours of exposure to a 254 nm UV
light, a reduction to σ ∼ 3.1× 109 cm−2 is estimated, due to the neutralization of
the charged K centers.

7.2.3 Effect of charge removal on waveguides

The same UV treatment is applied to the chip where the waveguides are defined. The
UV treatment is expected to reduce propagation losses. In fact, the neutralization of
dangling bonds in the SiN cladding causes a reduction of the carrier concentration
in the silicon waveguide, which in turn reduces the effect of free carrier absorption.
This effect was shown in a strip-loaded waveguide formed by a 27 nm thick silicon
layer patterned by a SiN cladding, demonstrating a loss reduction from 5.1 dB/cm
to 0.9 dB/cm [156]. This loss reduction is confirmed also in the case of this study,
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Fig. 7.4: 10 kHz C-V curves measured before and after different UV exposure times. Figure
adapted with permissions from [156].

passing from 8 dB/cm to 4 dB/cm in a 1 µm wide waveguide at wavelengths around
2300 nm after 23 hours of UV irradiation.

7.3 Effect of charge passivation on second
harmonic generation

The SHG power measured before and after 23 hours of UV exposure are compared in
Fig. 7.5(a). Remarkably, the measurement shows that the SHG signal is completely
suppressed after the UV treatment. This result offers the clearest answer to the
question on the origin of the detected signal, showing that SHG disappears when
dangling bonds are passivated. This indicates that the detected SHG signal has to be
entirely attributed to EFISH. Any other effect that can introduce χ(2) in the material,
such as strain or to the generation in the SiN cladding, is below the sensitivity of the
experiment. The noise level of 0.5 fW allows to set an upper limit of 0.05 pm/V to
the χ(2) due to strain or generation in the cladding.
At this point, it can be interesting to apply again an external load to the sample using
the screw equipped sample holder. This aims to investigate if the strain induced by
the screw is enough to increase the strain-induced χ(2) to have a measurable SHG
power. In Fig. 7.5(b) the SHG power measured after applying a screw displacement
∆H = 25 µm is shown in blue. The measurement shows a SHG peak. This peak
is measured for a pump wavelength that is blue-shifted with respect to the one
measured in the original waveguide. This shift can be attributed to the strain-
induced variation of the effective refractive index, which induces a blue-shift of
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Fig. 7.5: (a) Dependence of the SHG power on the pump wavelength λp before (black)
and after (red) a UV treatment of 23 hours. The measurement is performed on
a 906 nm wide waveguide. (b) Dependence of the SHG power on λp after a UV
treatment of 23 hours (red, the same as panel a), after the UV exposure and
applying a screw displacement ∆H = 25 µm (blue) and after removing the screw
displacement (green).

the peak wavelength as remarked by previous measurements shown in Sec. 6.1.
If this SHG signal is due to strain, it is expected to disappear when the strain is
removed. However, this does not happen, as it is shown by the green curve in Fig.
7.5(b). The SHG peak is shifted back to its original position, as expected since
the strain is removed and so the strain-induced refractive index change vanishes.
However, the SHG magnitude remains the same. Therefore, the peak appeared after
the application of strain cannot be attributed to a strain-induced χ(2). A possible
interpretation of this fact can be the re-activation of some K centers consequently to
the applied load [158]. This fact is confirmed by the experimental observation that
the SHG peak is suppressed by a further exposition to the UV light.

7.4 Modeling the effect of charges on second
harmonic generation

The experiment shown in the previous section demonstrates that, when dangling
bonds are passivated, the SHG signal is suppressed. This offers a clear proof on the
origin of the measured signal. To confirm this hypothesis, the charge-induced electric
field distribution inside the waveguide EDC is estimated using FEM simulations. In
this way, using Eq. (7.1), the distribution of χ(2)

EFISH inside the waveguide can be
determined. Once that this quantity is known, the parameter |Γ(2)| (or, alternatively,
χ

(2)
eff ) can be estimated and compared to the one calculated from the experiment.
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7.4.1 Carrier distribution inside the waveguide

The simulation considers a p-doped silicon with a concentration of 1015 cm−3, as
declared by the SOI wafer supplier. On the top and on the sidewalls of the waveguide,
a positive surface charge density σ ∼ 1.7× 1012 cm−2 is applied, as estimated by
C-V measurements. In the simulation, the extension of the charged defects in the
cladding is neglected, considering a uniform distribution at the interface. Simulations
confirm that this is a good approximation, showing that the electric field distribution
inside the waveguide mostly depends on the total charge in the cladding rather than
on its distribution.
Figure 7.6 reports the distribution of holes (panel a) and electrons (panel b) inside
the waveguide. The simulation refers to a 906 nm wide waveguide. The carrier
population inside the waveguide is inverted with respect to the situation without
charges at the interface, showing a hole concentration below 105 cm−3 and an
electron concentration in the range 1015 cm−3 to 1019 cm−3. This agrees with results
reported for similar geometries, which showed population inversion induced by
charges [156, 158, 159]. As expected, the largest electron concentration extends
close to the cladding interface. On the contrary, holes accumulate close to the
uncharged interface at the bottom.
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Fig. 7.6: Logarithm of hole (a) and electron (b) concentration inside a 906 nm wide waveg-
uide caused by a surface charge density 1.7× 1012 cm−2 applied to the top and to
the lateral interfaces of the waveguide.
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7.4.2 Effect of charges on propagation losses

Figure 7.6 shows the carrier distribution inside the waveguide due to the deposited
charged defects. It is known that free carriers induce absorption in the material
where they are generated. The carrier-induced absorption is described by the well
known semi-empirical equation [160]. Considering the carrier distribution shown
in Fig. 7.6, the distribution of the absorption coefficient can be evaluated and
used in an optical simulation to estimate the propagation losses of the propagating
mode. Considering a TE1 mode at the wavelength of 2.3 µm in a 906 nm wide
waveguide, a loss coefficient of about 4 dB/cm is estimated for a positive surface
charge density σ = 1.7× 1012 cm−2. Using the charge density measured after 23
hours of UV exposure (σ = 3.1× 109 cm−2), the loss coefficient essentially vanish.
The results of these simulation agree with the ones resulting from the experiment,
which showed a loss reduction of 4 dB/cm after the UV treatment (passing from
8 dB/cm to 4 dB/cm). The residual loss coefficient of 4 dB/cm measured in the
experiment after the UV treatment can be ascribed to sidewall roughness, which is
not taken into account by the simulation.

7.4.3 Electric field distribution inside the waveguide

Using the model described previously, also the electric field distribution inside the
waveguide can be estimated. In Fig. 7.7 both the components x and y of EDC are
reported. It is not surprising that the maximum value of EDC is obtained close to
the charged surface, with a rapid decrease while moving through the waveguide.
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Fig. 7.7: Components x (a) and y (b) of the electric field EDC determined by a surface
charge density 1.7× 1012 cm−2 on the top and on the sidewalls of a 906 nm wide
waveguide.
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7.4.4 Charge-induced second order nonlinearities

Once that the distribution of EDC is known, the distribution of χ(2)
EFISH inside the

waveguide can be determined using Eq. (7.1). Doing that, the proper χ(3) coefficient
must be used.
Since the process under analysis relates the pump mode at frequency ωp, the SH mode
at frequency ωsh and the DC field at frequency ω = 0, the tensor χ(3)(ωp, ωp, ωsh, 0)
must be used. However, no estimations of this coefficient are reported in literature.
Thus, as a first approximation, the term χ(3)(ωp, ωp, ωp, ωp) is considered here.

SH signal on the TM mode. In the modal combinations where SHG has been ex-
perimentally evaluated, the pump mode is TE polarized (the electric field is di-
rected along x), while the SH mode is TM polarized (the electric field is along
y). So, the tensor elements that origin SHG are χ

(3)
xxxy (related to EDC,x) and

χ
(3)
xxyy (related to EDC,y). However, in silicon χ

(3)
xxxy = 0 for symmetry [148]. So,

χ
(2)
EFISH = 3χ(3)

xxyyEDC,y.
Considering the spectral range from 1.2 µm to 2.4 µm, the simple emphirical rela-
tionship χ(3)

xxyy = χ
(3)
xxxx/2.36 holds [161]. However, the measurements of χ(3)

xxxx at
pump wavelengths is ambiguous, and values in the range from 0.94× 10−19 m2/V2

to 4.24× 10−19 m2/V2 have been reported [81, 162, 163]. Therefore, an average of
these values is used in this work.
Figure 7.8 shows χ(2)

EFISH = 3χ(3)
xxyyEDC,y in a 906 nm wide waveguide, where phase-

matching is expected between the TE1 and the TM3 modes. The average value of
χ

(2)
EFISH in the waveguide is −0.3 pm/V.
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Fig. 7.8: χ(2)
EFISH distribution in a 906 nm wide waveguide, where phase-matching on the

TE1-TM3 modal combination is expected.

In Fig. 7.9 χ(2)
EFISH is evaluated on a cutline directed in the y direction and passing

through the center of the waveguide, showing a rapid decrease while moving from
the charged to the neutral interface.
Table 7.1 shows the average of the absolute value of χ(2)

EFISH in the waveguide for
the combinations shown in Tab. 4.1. It can be noted that, higher is the modal order
where the SH signal is generated, and larger is the χ(2)

EFISH value. This is due to
the fact that, higher the order where the SH signal is generated, and larger is the
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Fig. 7.9: χ(2)
EFISH value evaluated along the black line reported in Fig. 7.8.

Tab. 7.1: Simulated values of 〈|χ(2)
EFISH|〉, |Γ(2)| and χ(2)

eff for modal combinations where the
SH signal is generated on TM modes.

Combination
w 〈|χ(2)

EFISH|〉 |Γ(2)| χ
(2)
eff

[µm] [pm/V] [fm/V] [pm/V]
TE1-TM3 0.91 0.295 0.982 0.269
TE1-TM4 1.54 0.313 ∼ 0 -
TE1-TM5 2.10 0.322 0.156 0.274

waveguide width. From Fig. 7.7(b) it can be noted that the field EDC,y decreases
close to the corner of the waveguide. Larger is the waveguide and smaller is this
side effect, and so larger is the average value of χ(2)

EFISH inside the waveguide.
Table 7.1 shows also the values of |Γ(2)| for all these modal combinations, evaluated
according to the definition given in Eq. (4.11). The combinations where SH is
generated on the TM3 and on the TM5 modes show a nonzero |Γ(2)| value, while
|Γ(2)| is negligible for the combination where SH is generated on the TM4 mode.
This is due to the symmetry of the χ(2)

EFISH distribution with respect to the waveguide
center while moving along the x direction. According to Eq. (4.32), χ(2)

eff is also
evaluated and shown in the table.
The results predicted by simulations for the TE1-TM3 and for the TE1-TM5 combi-
nations are compared with the experimental results in Tab. 7.2. The error bars on
the simulations result from the uncertainty on literature values. Considering the
simplicity of the model, it can be concluded that the experimental and the simulation
results are in good agreement.

Tab. 7.2: Comparison between the values of |Γ(2)| and χ(2)
eff determined from the experiment

and the values estimated from the simulation. The error bars on the simulations
result from the uncertainty on literature values.

Combination
|Γ(2)| [fm/V] χ

(2)
eff [pm/V]

Experiment Simulation Experiment Simulation
TE1-TM3 1.7± 0.2 1.0± 0.6 0.46± 0.06 0.3± 0.2
TE1-TM5 0.39± 0.06 0.16± 0.10 0.6± 0.1 0.27± 0.15
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SH signal on the TE mode. Analogously to the situation treated before, if the SH
mode is generated on a TE mode, one should write χ(2)

EFISH = 3χ(3)
xxxxEDC,x. Figure

7.10 shows χ(2)
EFISH evaluated in this way in a 1.08 µm wide waveguide, where phase-

matching is expected between the TE1 and the TE4 modes. The χ(2)
EFISH distribution

inside the waveguide along the x direction shows an anti-symmetric behavior with
respect to the center of the waveguide. Therefore, the average value of χ(2)

EFISH inside
the waveguide is negligible. However, evaluating the average of the absolute value
of χ(2)

EFISH, a value of 0.32 pm/V is estimated.
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Fig. 7.10: χ(2)
EFISH distribution in a 1.08 µm wide waveguide, where phase-matching on the

TE1-TM3 modal combination is expected.

In Fig. 7.11 χ(2)
EFISH is evaluated on a cutline directed in the x direction and passing

through the center of the waveguide: the value of χ(2)
EFISH is high close to the lateral

borders of the waveguide, rapidly decreasing while moving through the center of
the waveguide.

Fig. 7.11: χ(2)
EFISH value evaluated along the black line reported in Fig. 7.10.

Table 7.3 shows the average of the absolute value of χ(2)
EFISH in the waveguide for the

combinations shown in Tab. 4.1 that predict SHG on TE modes. It can be noted that,
larger is the waveguide, and smaller is the average value of χ(2)

EFISH. This is due to
the fact that lateral borders have a dominant role, and so increasing the waveguide
width their effect lowers. Table 7.3 reports also the values of |Γ(2)| for these modal
combinations, evaluated according to the definition given in Eq. (4.11). Surprisingly,
it can be noted that |Γ(2)| is negligible for combinations where the SH signal is
generated on odd parity modes (TE5, TE7), while it is strong for combinations where
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Tab. 7.3: Simulated values of 〈|χ(2)
EFISH|〉 and |Γ(2)| for modal combinations where the SH

signal is generated on TE modes.

Combination
w 〈|χ(2)

EFISH|〉 |Γ(2)|
[µm] [pm/V] [fm/V]

TE1-TE4 1.08 0.320 0.357
TE1-TE5 1.44 0.246 ∼ 0
TE1-TE6 1.79 0.202 0.104
TE1-TE7 2.13 0.174 ∼ 0
TE1-TE8 2.46 0.154 0.043

the SH signal is generated on even parity modes (TE4, TE6, TE8). This fact has to
be attributed to the anti-symmetric behavior of the χ(2)

EFISH distribution with respect
to the center of the waveguide along the x direction.
For these modal combination it is nonsense introducing the χ

(2)
eff value. In fact,

according to its definition in Eq. (4.32), χ(2)
eff = |Γ(2)|/K. However, for these

combinations K ∼ 0. This is not absurd, because χ(2)
eff is defined as the equivalent

spatially constant χ(2) that would have given the same SHG efficiency. In this case,
only an infinite spatially constant χ(2) can give the same SHG efficiency, since these
combinations require an anti-symmetric χ(2) distribution to be efficient.

7.5 Conclusions and perspectives

The results shown in this chapter allows to conclude that charges play a crucial role
in the measured SHG phenomenon. The measured second-order nonlinear suscep-
tibility of about 0.5 pm/V can be totally ascribed to the EFISH process, induced by
the charges trapped in the SiN cladding. The strain effect on χ(2) is below the noise
level, setting an upper limit of 0.05 pm/V to the strain-induced nonlinear coefficient.
Interestingly, the upper limit to the measured strain-induced χ(2) is comparable with
the theoretical results of [115, 116]. In these works it was demonstrated that the
deformation of the crystalline lattice, induced by the strain gradient, yields low
values of χ(2). Clearly, the results of this work hold by considering the strain values
introduced by the silicon nitride layer. By applying larger amounts of strain, it is not
possible to exclude that a measurable SHG signal can be obtained.
The outcomes of this work offer interesting perspectives, introducing a paradigmatic
change in the development of these kinds of structures. Till now great effort was
done towards increasing the amount of strain inside the waveguide. However, in
this work it has been evidenced that the strain plays a secondary role, and large
nonlinearities can be obtained by increasing the DC fields inside the waveguide. This
can be done both by maximizing the amount of charges deposited on the waveguide
sides, as well as by realizing thinner waveguides. This clearly has the drawback to
increase the propagation losses, since charges cause the increase of the free carriers
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inside the waveguide. Therefore, a trade-off condition must be found between the
strength of the DC field and the absorption induced by the carriers.
Furthermore, this work shows that SHG efficiency can be controlled by applying UV
irradiation. This offers interesting perspectives for the realization of quasi-phase
matched (poled) waveguides. Applying a proper photolithographic mask and expos-
ing it to UV light, periodically varying χ(2) can be introduced along the waveguide
propagation direction. Setting the proper poling period, the conversion between
fundamental modes can be directly studied, measuring large conversion efficiencies
due to the stronger mode overlap with respect to the intermodal approach.
A recent work already showed the possibility to exploit EFISH in silicon by applying
DC fields via lateral p-n junctions [125]. This method allows to induce larger electric
fields, and so larger values of χ(2)

EFISH. Therefore, in the following this method will
be investigated in detail.
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Part III

Second order nonlinearities in waveguides
with static fields

The outcomes of Part II show that, even in strained waveguides, the measured SHG
is due to static fields within the waveguide caused by trapped charges. This part aims
at studying a more efficient way to introduce static electric fields in waveguides.
The first approach consists of using silicon waveguides with lateral p-n junctions.
This geometry is characterized both theoretically and experimentally in Chapter
8. Considering racetrack resonators, the effect of the junction polarization on the
resonator transmission spectra is studied.
Chapter 9 applies this configuration to the study of SHG. First, SHG theory is
adapted to the new waveguide geometry, which also introduces the periodic poling
as a method to satisfy phase-matching. Then, the waveguide engineering procedure
is shown. This chapter considers also the possibility to perform the opposite process,
namely the SPDC process.
The experimental characterization of SHG is shown in Chapter 10.
Using a similar approach, Chapter 11 studies the possibility to perform SHG and
SPDC in silicon oxynitride waveguides, applying the static field by means of metallic
pads.
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In this work, lateral p-n junctions are used to introduce static fields within waveg-
uides, which in turn enable field-induced second order nonlinearities. In this chapter,
the effect of junctions on the propagation of optical modes is quantified. Doing,
optical microresonators are considered. Laterally to the resonators waveguides,
p-n junctions are formed. As it is introduced in Sec. 8.1, the junctions affect the
resonator features, changing both the material refractive index and the absorption
coefficient. The aim of this chapter is to measure these effects, and to model them
for testing the simulation methods. Section 8.2 describes the engineering procedure
used to design the microresonators. Images of the realized devices are shown in Sec.
8.3. In Sec. 8.4, microresonators are analyzed without applying any bias, in order to
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quantify the effect of doping on the propagating modes. The measured results are
also compared with simulations. In Sec. 8.5 the resonators junctions are biased and
electrically analyzed. Finally, electro-optic measurements are performed in Sec. 8.6,
showing a comparison with the simulations. The chapter is concluded in Sec. 8.7,
where the main results are recovered and interesting perspectives are proposed.
The experiments described in this chapter have been realized with Mr. R. Franchi.
The theoretical model of the resonator has been realized with Mr. S. Biasi. The
samples have been produced by Dr. M. Ghulinyan at Fondazione Bruno Kessler.

8.1 Lateral p-n junctions in microresonators

A sketch of the top view of one of the resonators described in this section is shown
on the left of Fig. 8.1, while on the right the cross-section is shown. By applying the
proper reverse bias to the junction, both the material refractive index as well as its
absorption are affected. These two effects are treated separately in the following.
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Fig. 8.1: Top-view and cross-section of one of the resonators described in this chapter.

8.1.1 Effect on the material refractive index

When a p-n junction is biased, the material refractive index is modified due to both
plasma-dispersion effect and DC Kerr effect [125].
Plasma-dispersion is a linear optical effect caused by the variation of the free-carrier
concentration in the material. If ∆Ne and ∆Nh are the variation of the electron and
of the hole concentration, the material refractive index is modified by [160]:

∆npd = −p∆N q
e − r∆N s

h. (8.1)

The coefficients p, q, r and s characterize each semiconductor, and depend on the
wavelength. For silicon at the wavelength of 1550 nm these quantities are p =
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5.4× 10−22 cm3, q = 1.011, r = 1.53× 10−18 cm3 and s = 0.838 [160].
DC Kerr effect is a third order nonlinear effect. It can be described starting from Eq.
(1.8) and considering ω3 = 0 (one frequency is set to DC). In this case, additional
phase-modulation terms appear in Eq. (1.8). Considering the wave propagating at
frequency ω1, the nonlinear polarization vector takes the form:

P(3)(r, t) = 3ε0χ
(3) [E(r, 0) + E∗(r, 0)]2 E1(r, ω1)e−iω1t + c.c. (8.2)

By introducing EDC = E(r, 0) + c.c. and using P = P0 + P(3), it results that:

P(r, t) = ε0
[
χ(1) + 3χ(3)|EDC |2

]
E1(r, ω1)e−iω1t + c.c. (8.3)

So, DC Kerr effect introduces a susceptibility perturbation ∆χ = 3χ(3)|EDC |2. Since
n2 = χ(1) + 1, the DC Kerr effect results in a index perturbation ∆nk given by:

∆nk = 3χ(3)|EDC |2

2n0
, (8.4)

being n0 the unperturbed refractive index value.
Both DC Kerr effect and plasma dispersion cause a variation of the material refractive
index ∆n = ∆npd + ∆nk. This results in an effective refractive index variation of
the resonator mode ∆neff , which in turn determines a shift ∆λ of the resonance
wavelength. This quantity is related to ∆neff by [120]:

∆λ = %
λ

ng
∆neff , (8.5)

being λ the resonance wavelength, ng the group index of the mode and % the fraction
of the resonator perimeter that undergoes the effective index variation ∆neff (in
the resonators analyzed in this work, the coupling region does not feel the index
variation because the p-n junction is not present).

8.1.2 Effect on the material absorption

The presence of lateral p-n junctions does not affect only the effective refractive index
of the propagating mode, but also its absorption. This can be due both to defects
introduced during the implantation of the dopants, but also to free-carrier-induced
absorption. In fact, the variations ∆Ne and ∆Nh of the electron and of the hole
concentration induce a variation of the absorption coefficient ∆α given by [160]:

∆α = a∆N b
e + c∆Nd

h , (8.6)

where, for silicon at the wavelength of 1550 nm, a = 8.88× 10−21 cm2, b = 1.167,
c = 5.84× 10−20 cm2 and d = 1.109 [160].
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Variations of the material absorption can be measured by analyzing the spectral
features of the resonator. In fact, according to Eq. (1.18), a variation of the resonator
intrinsic losses determines a variation of the intrinsic quality factor. This, in turn,
provides a variation of the resonator transmission spectrum.

8.2 Microresonator engineering

A cross-section of the resonator waveguide is sketched on the right of Fig. 8.1. It
is formed by a 300 nm high slab, while the total height of the waveguide is 490 nm.
The width of the waveguide is w = 550 nm. As it will be discussed later, this value is
chosen to keep the single mode operation around the wavelength of 1550 nm. The
doped regions are realized at a distance d from the waveguide borders. Different
values of d are proposed in the design, respectively 200 nm, 500 nm and 800 nm. The
smaller is d, and the larger is the electric field inside the waveguide for a given
voltage. However, if d is smaller, the mode feels more the doped region, and so
it suffers of larger losses, due both to the abundance of free-carriers in the doped
region, as well as to the defects introduced by ion implantation. The electron
concentration is 1× 1018 cm−3 in the n-doped region, like the hole concentration
in the p-doped region. Silicon inside the waveguide has a residual 1× 1015 cm−3

p-type doping, corresponding to the doping level of the SOI wafer. An oxide cladding
is deposited on the top of the waveguide. Vias are created within oxide to contact
the doped regions with aluminum pads and to polarize the junction.

8.2.1 Single mode waveguides

As already introduced, the width of the resonator waveguide w is 550 nm. This value
is chosen to keep the single mode operation of the waveguide around 1550 nm. To
determine w, the effective refractive index of the guided modes is simulated as a
function of w using the Electro-Magnetic module of the COMSOL Multiphysics®

FEM software [56]. Figure 8.2(a) shows this quantity for the fundamental TE and
TM modes, as well as of the second order TE mode, at the wavelength of 1550 nm.
For large waveguides, the effective refractive indexes of all the modes vary with w.
However, decreasing w, the effective refractive indexes become constant. This is
because, decreasing w, the mode is less and less confined in the rib waveguide. After
a certain point it becomes a slab mode, and thus it does not depend any more on w
and remains constant. Therefore, in the single mode operation only the fundamental
mode shows a dependence on w. In the case of this work, w = 550 nm satisfies this
condition, and it is represented by a black vertical line in Fig. 8.2(a). The same check
can be done by looking at Fig. 8.2(b), where the propagation losses of all the modes
are reported as a function of w. For the slab modes the propagation losses are much
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larger than for the rib modes, due to the fact that the mode is not well confined and
it is absorbed by the boundary conditions used in the simulation. It is important to
stress that, in this case, the losses are calculated without accounting for free-carriers,
which in turn affect losses according to (8.6). Their effect is considered later on in
this chapter. The aim of this study is just calculating the geometric parameters of a
single-mode waveguide.
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Fig. 8.2: Effective refractive index (a) and propagation losses (b) dependence on the waveg-
uide width w for the TE1, TE2 and TM1 modes at the wavelength of 1550 nm. The
vertical black lines refer to the selected single mode waveguide width of 550 nm.

8.2.2 Distance between the waveguide and metal

An important parameter to fix in the design of the structures is the distance between
the waveguide and the metal, to avoid absorption of the optical mode. This requires
to determine properly the height of the oxide cladding, as well as the distance
between the waveguide and the hole used to contact the junctions.
To estimate the correct height of the oxide cladding, the propagation losses are
evaluated as a function of the oxide layer height using a 2D FEM simulation. The
sketch of the simulation domain is shown in the left hand side of Fig. 8.3. On the
right hand side of Fig. 8.3 the result of the simulation are shown. The simulation
refers to the wavelength of 1550 nm and to w = 550 nm. Propagation losses decrease
as the oxide cladding height increases because the metallic layer is moved away from
the waveguide. At a certain point, the propagation losses saturate because of the
boundary conditions of the simulation, which become the main loss source. It should
be stressed that this is not a physical reason. However, in the actual device there are
other sources of loss that are not taken into account in this simulation (such as the
waveguide surface roughness). The vertical black line reported in Fig. 8.3 refers to
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the cladding height selected for the actual device, that is 1.5 µm. Using this cladding
height, the metal-induced propagation losses are kept down to 1× 10−9 dB/cm,
orders of magnitude below the surface roughness losses.

Cladding height

Fig. 8.3: Left: simulation domain used to estimate the proper oxide cladding layer height.
Right: metal-induced propagation losses for the wavelength of 1550 nm for w =
550 nm. The black line refers to the value used for the design.

Another source of loss are lateral metallic contacts, that must be kept far away
from the waveguide. The left side of Fig. 8.4 shows the simulation domain used
to estimate these losses. The results are reported on the right side of the figure.
Also in this case the minimum loss value depends on boundary conditions. For this
reason, a distance larger than 4 µm is used, keeping metal-induced losses below
1× 10−7 dB/cm.

Hole distance

Fig. 8.4: Left: simulation domain used to estimate the distance between the waveguide and
the lateral metal. Right: metal-induced propagation losses for the wavelength of
1550 nm and w = 550 nm. The black line reports the selected value.
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8.2.3 Curvature radius

To estimate the proper resonator waveguide curvature, a 2D axisymmetric mode-
solver is used. Using the wavelength of 1550 nm and w = 550 nm, the simulation
is realized varying the curvature radius R. For each curvature radius, the modal
effective radius Reff is evaluated calculating the following integral:

Reff =
∫
r|E(r)|2dA∫
|E(r)|2dA . (8.7)

The integration is taken on all the domain, r is the distance from the rotation axis
and E(r) the electric field. This quantity takes into account the mean radius where
the propagating field is localized. This quantity must be compared with the actual
radius of the curve. Smaller is the curvature radius, and less the propagating field is
localized into the waveguide. So, the curvature radius R and the effective radius
Reff differ more. To this purpose, in Fig. 8.5 the ratio Reff/R is shown as a function
of R, referred to the waveguide width of 550 nm at a wavelength of 1550 nm. This
quantity is important because it is related to the localization of the optical mode:
less localized it is, and larger are the radiative losses. By taking a curvature radius
of 150 µm, which is sketched by the black vertical in the figure, Reff and R differ by
less than 0.02%. This is the actual value of R used in this work.
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Fig. 8.5: Dependence of the ratio Reff/R on the curvature radius at the wavelength of
1550 nm and w = 550 nm. The black lines shows the selected curvature radius.

8.2.4 Resonator coupling region

In the coupling region, the resonator and the bus waveguides are identical (w =
550 nm), and their separation is 600 nm. Different resonators have been realized,
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each characterized by a different length Ls of the straight part of the coupling
region. Figure 8.6 reports, as a function of Ls, the transmission coefficient t of
the bus waveguide-resonator coupler (it is related to the coupling coefficient κ by
t2 = 1− κ2). The result refers to a wavelength of 1550 nm. This quantity accounts
for the coupling both in the straight part of the resonator coupler, as well as for the
coupling between the bus waveguide and the bent part of the resonator. Doing so,
the waveguide-resonator coupler is divided in different domains, and the coupling
is evaluated separately in each of these domains. This is done evaluating, for each
domain, the even and the odd modes of the coupler system [164]. To achieve the
critical coupling condition, the transmission coefficient t must match the roundtrip
loss coefficient α. Since the latter depends on the quality of the realized resonator, it
cannot be determined before realizing the device. Therefore, different values of Ls
are proposed in the design (namely Ls = 0 µm, 10 µm, 20 µm, 30 µm, 40 µm, 50 µm).

Fig. 8.6: Transmission coefficient t of the bus waveguide-resonator coupler as a function of
the coupling region length Ls. The result refers to a wavelength of 1550 nm.

8.3 The realized devices

The waveguides described in this chapter are defined using a 365 nm UV lithography,
and are realized by reactive ion etching. Figure 8.7 shows an optical image taken
after the definition of the waveguides. Four resonators with different coupling region
lengths are visible, each of which coupled to a bus waveguide. Straight reference
waveguides are also visible.
After the definition of the optical waveguides, doped regions are realized close to
the waveguide borders. Doing so, all the chip is covered, except the regions where
ions are implanted to dope silicon. Figure 8.8 shows an optical image of the chip
before the implantation of p-type ions (top) and n-type ions (bottom).
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Fig. 8.7: Optical image of part of the realized sample taken after the definition of waveg-
uides. Image courtesy of Dr. M. Ghulinyan.

Fig. 8.8: Optical image of the chip before the implantation of p-type ions (top) and n-type
ions (bottom). Image courtesy of Dr. M. Ghulinyan.
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After the ionic implantation, oxide is grown on the top of the waveguide. After this
process, holes are realized in the oxide layer in order to deposit metallic pads which
can contact the doped regions. Figure 8.9 shows an optical image of the chip after
the realization of the contact holes.

Fig. 8.9: Optical image of the chip after the realization of the contact holes. Image courtesy
of Dr. M. Ghulinyan.

Finally, once that all the previous steps are processed, aluminum layers are deposited.
An example of this is shown in Fig. 8.10. A large metallic layer is realized in the
center of the resonator, to contact the n-type doped silicon layer. The p-type silicon
is connected to a large pad, common to all the resonators, realized close to them.

Fig. 8.10: Metallic layers deposited on the top. Image courtesy of Dr. M. Ghulinyan.

8.4 The effect of doping on waveguides

This section aims at quantifying the effect of doping on resonators in terms of losses.
The purpose is to experimentally compare the transmission spectra of resonators
where no doping is present with resonators having lateral p-n junctions, considering
the three proposed configurations (d = 200 nm, 500 nm, 800 nm). Even if no bias
is applied, doping is expected to increase the waveguide losses, due both to the
abundance of free carriers and to the damages introduced by ion implantation. To
extract losses from the resonator transmission spectra, a model to fit them is needed.
This model is derived in Sec. 8.4.1. Then, it is applied to fit the transmission spectra
of resonators without junctions (Sec. 8.4.2) and with lateral junctions (Sec. 8.4.3).
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Finally, in Sec. 8.4.4 a FEM model able to quantify the effect of free-carriers on the
absorption is described, comparing the results with the experiment.

8.4.1 Modeling the system via transfer matrix methods

The system analyzed in this section is formed by a resonator in the all-pass configu-
ration. The transfer matrix of this system Mr is given by [165]:

Mr =
[1−tαeiφ

t−αeiφ 0
0 t−αeiφ

1−αeiφ

]
. (8.8)

Here, t is the transmission coefficient of the bus waveguide-resonator coupler (it is
related to the coupling coefficient κ by t2 = 1 − κ2), while α is the roundtrip loss
coefficient in the resonator (it relates the power coupled into the resonator Pi with
the power after one complete roundtrip Po by Po = |α|2Pi). The coefficient φ = βL

is the phase acquired in a complete roundtrip, being L the resonator length and
β = 2πneff/λ the propagation constant in the resonator waveguide.
However, this is not enough to describe the system analyzed in this work. In fact,
light is coupled in and out from the bus waveguide via butt coupling. Due to the
strong refractive index difference between the silicon waveguide and air, the input
and the output facets are characterized by a strong reflectance. Therefore, the input
and the output facets of the waveguide form a Fabry-Perot cavity, whose transmission
spectrum is superimposed to the one of the resonator. So, also this effect has to be
considered. Therefore, this system can be described like it is sketched in Fig. 8.11.

A B

R

LA LB

t

α

κ

Fig. 8.11: Sketch of the model described here, which considers the coupling facets A and B,
the bus waveguide (divided in sections of length LA and LB) and the resonator.

The transfer matrix of this system is:

M = MF,BML,BMrML,AMF,A, (8.9)

being MF,A and MF,B the transfer matrices of the input and of the output facets,
while ML,A and ML,B are the transfer matrices describing the propagation in the
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bus waveguide between the input facet and the resonator and between the resonator
and the output facet.
The transfer matrices describing the input and of the output facets are [52]:

MF,A = 1
τA

[
1 irA
−irA 1

]
MF,B = 1

τB

[
1 −irB

irB 1

]
(8.10)

being τA and τB the transmission coefficients of the input and of the output facets,
while rA and rB are the reflection coefficients of the same facets. These quantities
are related by r2

A + τ2
A = 1 and r2

B + τ2
B = 1. The matrices MF,A and MF,B have

opposite sign on the anti-diagonal terms because the interfaces are opposite.
The transfer matrices describing the propagation in the bus waveguides are [52]:

ML,A =
[
e−iφA 0

0 eiφA

]
ML,B =

[
e−iφB 0

0 eiφB

]
(8.11)

being φA and φB the phases acquired respectively between the input facet and the
resonator and between the resonator and the output facet. In general, they are
defined as φj = (βj + iαj)Lj , being βj the propagation constant, αj the absorption
coefficient and Lj the waveguide length.
By multiplying the matrices, one gets the system transfer function T [52]:

T =
∣∣∣∣∣ 1
M2,2

∣∣∣∣∣
2

=

∣∣∣∣∣∣ τAτB
1−tαeiφ

t−αeiφ e−i(φA+φB) − rArB t−αeiφ

1−αeiφ ei(φA+φB)

∣∣∣∣∣∣
2

. (8.12)

The experimental spectrum can be thus fitted by a function of the form T .
Compared to this model, some simplifications are introduced. Since the bus waveg-
uide is short (around 2 mm), propagation losses in the bus waveguide are neglected
(αj = 0). Moreover, being the cross-section of the input and of the output waveg-
uides equal, it is introduced r = rA = rB. Moreover, one should consider that the
effective refractive index of both the bus waveguide and the resonator waveguide
modes are wavelength dependent. By Taylor expanding them at the first order
around a wavelength λ0, the propagation constants can be written as:

β(λ) = 2π
λ
neff(λ) ∼ 2π

λ
ng(λ0) + 2π ∂n

∂λ

∣∣∣∣
λ0

. (8.13)

So, the propagation constants have a wavelength dependent term (related to the
group index) and a constant term. Since the propagation constants enter into (8.12)
through periodic functions, from the fit it is possible to uniquely determine the
wavelength-dependent terms (and so the group indices), but not the constant terms.
So, using this simplified model, the fitting parameters are the bus waveguide and the
resonator group indices (ng,r and ng,wg), the input/output waveguide reflectance r,
the coupler transmission t and the resonator roundtrip loss α.

130 Chapter 8 DC Kerr effect and plasma dispersion in silicon racetrack resonators



8.4.2 Characterization of devices without junctions

Figure 8.12 shows the transmission spectra of six different resonators. The measure-
ments have been taken on an undoped wafer, i.e., after defining the waveguides, the
cladding oxide layer is deposited. The transmission spectra are measured by using a
tunable laser source at the input. After a polarizing stage, light is butt-coupled in
the bus waveguide using a tapered lensed fiber. Another lensed fiber collects light at
the output, which is analyzed by an InGaAs detector and by an oscilloscope.

Fig. 8.12: Normalized transmission spectra of six different resonators, each characterized
by Ls varying from 0 µm to 50 µm.

The six panels of Fig. 8.12 refer to six resonators where the length of the coupling
part Ls varies from 0 µm to 50 µm. All the spectra are affected by a strong Fabry-Perot
interference pattern. Some of the transmission spectra show resonance peaks due
to the microresonator. Since the resonance peaks never go to zero, none of the
resonators is in the critical coupling regime. The resonator showing the deepest
resonances is the one with Ls = 0 µm. Increasing Ls, the resonance becomes less
deep. This means that at Ls = 0 µm the resonator is already in the overcoupling
regime. The larger Ls, and the larger is the power coupled into the resonator, and
the worst is the quality factor of the resonator. For Ls = 30 µm, the quality factor is
so bad that resonances are completely hidden under the Fabry-Perot interference.
For larger Ls the coupling region grows so much that it overcomes the length where
coupling is maximum, so the overall coupling is smaller and the resonances appear
again. This means that, even at Ls = 0 µm, the transmission coefficient t is too small
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(or, equivalently, the coupling coefficient κ is too large). So, the coupling in the
bent part of the coupler is too large and overcomes the roundtrip losses. To achieve
critical coupling, one should have used larger gaps in the coupling region.
From now on, the attention of this work is devoted to the resonator Ls = 0 µm,
where resonances are more prominent. This work aims at fitting the spectra using
Eq. (8.12) to derive the most important parameters of the resonator.
First, the group index of the resonator waveguide and of the bus waveguide and
are roughly estimated according to Eq. (1.15) from the measured FSR and knowing
the cavity length L. In the case of the microresonator L = 2(πR+ Ls), while in the
case of the Fabry-Perot cavity the cavity length is twice the bus waveguide length
Lbus = 1.95 mm. To guess the facet reflectance r, the first fit is done on a reference
bus waveguide that is not coupled to any resonator. The fit is performed using Eq.
(8.12) with t = 1. The result of the fit is shown on the top of Fig. 8.13. The same
function is then used to fit the resonator transmission spectrum, using the results of
the previous fit as a starting point. The result of the fit is shown on the bottom of
Fig. 8.13. This fit allows to roughly estimate r, which is then used as a starting point
to fit the total resonator transmission spectrum.
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Fig. 8.13: Preliminary fitting procedures. Fit of the transmission spectrum of a reference
bus waveguide (top) and of a resonator (bottom) with Eq. (8.12) and t = 1 (the
coupling with the resonator is neglected).

Once that the group indexes ng and the facet reflectance r are roughly estimated
from preliminary fits, Eq. (8.12) is used to fit the resonator spectrum. The spectrum
is divided in groups of two resonances each. Each group is fitted according to Eq.
(8.12). The result of the fit is shown in Fig. 8.14. The top panel reports with
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different colors the parts of the spectrum that are fitted separately. The continuous
black line represents the fit function. On the bottom panel a couple of resonances
are fitted, showing that the fit function well reproduces the experimental data.
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Fig. 8.14: On the top, the resonator transmission spectrum is fitted by Eq. (8.13). The
transmission spectrum is divided in groups of two resonances each, represented
by different colors in the figure. Each group is fitted separately. The black line
represents the fit function. On the bottom, part of the fitted spectrum is zoomed.

Once that the fit is performed, the resulting parameters can be investigated. Figure
8.15 reports the value of the reflectance coefficient r as a function of wavelength.
The three panels refer to measurements taken on three different chips. The first two
chips belong to the same wafer, while the third chip belongs to a different wafer.
On the same panel, the different colors represent measurements taken on different
resonators with nominally identical parameters. Each of the scatter points results
from the fit of a couple of resonances, as described previously. The solid lines come
from a quadratic fit of the scatter points. The resulting values show that, as expected,
r does not show any dependence on wavelength. Moreover, Fig. 8.15 shows that
waveguides of wafer 2 have low reflectance values, with large variability between
different waveguides. This agrees with observations done by optical microscope,
which revealed that the cutting procedure resulted in bad and less uniform facets
on wafer 2. On wafer 1 the facet reflectance is larger, demonstrating higher qual-
ity facets. The variability between different structures on the same chip is lower,
demonstrating more uniform cuts.
Figure 8.16 reports the transmission coefficient t. In this case, t decreases with wave-
length, demonstrating that larger the wavelength and larger is the power coupled
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Fig. 8.15: Reflectance coefficient as a function of wavelength on three different chips (three
panels). On the same panel, each color shows measurements taken on different
resonators with nominally identical parameters. Each point comes from the fit of
two resonances, while solid lines are quadratic fits of the scatter points.

into the resonator. This is reasonable, since the larger is the wavelength and the
larger is the mode effective area, and so the strength of coupling with the resonator
waveguide increases. In this case, the values assumed by t are almost similar on
the different resonators, demonstrating geometrical uniformity. Wafer 2 shows a
slightly larger t value if compared to wafer 1, which demonstrates a smaller coupling
coefficient. This can derive from a larger gap between the bus waveguide and the
resonator. The results reported here agree with that of the simulation shown in Fig.
8.6, which was referred to a wavelength of 1550 nm and showed a value of t slightly
below 0.9 in the case Ls = 0 µm. The fit results reported in Fig. 8.16 demonstrate
that, in all the resonators analyzed in this work, t is in the range between 0.8 and
0.9 at the wavelength of 1550 nm.
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Fig. 8.16: Transmission coefficient of the bus waveguide-resonator coupling region as a
function of wavelength on three different chips (three panels). On the same panel,
each color shows measurements taken on different resonators with nominally
identical parameters. Each point comes from the fit of two resonances, while
solid lines are quadratic fits of the scatter points.

Analogously, Fig. 8.17 reports the roundtrip loss α. In this case, α slightly decreases
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with wavelength, showing that larger losses are present for longer wavelengths,
when the mode is less localized in the waveguide. Moreover, the figure shows that
in wafer 2 the waveguides are less lossy than in wafer 1.
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Fig. 8.17: Roundtrip loss coefficient as a function of wavelength on three different chips
(three panels). On the same panel, each color shows measurements taken on
different resonators with nominally identical parameters. Each point comes from
the fit of two resonances, while solid lines are quadratic fits of the scatter points.

It is possible to introduce a propagation loss coefficient L as follows:

L = − 1
L

10 log10 |α|2, (8.14)

being L the resonator waveguide length. This quantity is shown in Fig. 8.18. If
radiative losses are negligible, the coefficient L represents scattering losses due to
surface roughness. From this result it is possible to quantify propagation losses of
wafer 1 at about 4 dB/cm, while in wafer 2 losses are around 3 dB/cm.
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Fig. 8.18: Propagation loss coefficient as a function of wavelength on three different chips
(three panels). On the same panel, each color shows measurements taken on
different resonators with nominally identical parameters. Each point comes from
the fit of two resonances, while solid lines are quadratic fits of the scatter points.
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8.4.3 The effect of doping on microresonators

The results discussed so far are measured on chips realized without doping. Now,
results on resonators with lateral doping are presented.
Four kinds of resonators are analyzed in detail. The first is a reference resonator,
where no doping ions are implanted on the sides of the resonator waveguide. The
other structures are characterized by three values of the distance d between the
doped region and the waveguide borders (200 nm, 500 nm and 800 nm). For each
structure, the transmission spectrum is measured without applying any bias.
The left panel of Fig. 8.19 reports as a function of d the loss coefficient L, evaluated
from the fit of the resonances. The plot reports also the value measured on the
reference spectrum, shown in red and labeled by "R". The error-bars result from
measurements repeated on four nominally identical resonators. Similarly, on the
right panel of Fig. 8.19 the transmission coefficient of the waveguide-resonator
coupler is shown as a function of d. The results of Fig. 8.19 are evaluated at the
wavelength of 1550 nm. These results show that t does not wary with d, while L
strongly increases for small d. This confirms that doped regions increase losses. At
the same time, as expected, doping does not affect the coupling between the bus
waveguide and the resonator.
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Fig. 8.19: Propagation loss coefficient (left) and transmission coefficient of the waveguide-
resonator coupler (right) as a function of d. The error-bars result from mea-
surement repeated on four nominally identical resonators, and are evaluated at
the wavelength of 1550 nm. The reference resonator is shown in red and it is
indicated by the label "R": here no doping is implanted.

8.4.4 Modeling free-carrier absorption

The results presented so far demonstrate that lateral junctions increase the waveg-
uide propagation losses. This can be due to two effects, namely the carrier-induced
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losses and the defects introduced by ion implantation. To clarify this point, FEM
simulations are performed in order to quantify the carrier-induced losses. The result
of the simulation, compared to the experimental value, can provide an estimation of
the losses introduced by damages caused by ion implantation.
The simulation is performed using the Semiconductor Module of the COMSOL
Multiphysics® software [56]. The simulation uses a 1× 1018 cm−3 doping concen-
tration both in the n-side and in the p-side of the junction, while it is 1× 1015 cm−3

p-type doping in the waveguide. The results of Fig. 8.20 report the electron and
hole density distribution inside the waveguide for d = 200 nm, 500 nm and 800 nm.
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Fig. 8.20: Logarithm of the electron and hole density distribution within the considered
structure, referred to d = 200 nm, 500 nm and 800 nm.

Once that the carrier distribution map is known, the distribution of the carrier-
induced absorption coefficient can be evaluated according to Eq. (8.6). The absorp-
tion coefficient map can be used then in a mode analysis FEM simulation, to evaluate
the absorption coefficient of the optical mode propagation inside the waveguide. The
resulting absorption coefficient is reported in Fig. 8.21 as a function of the parameter
d. The propagation loss coefficient decreases as d increases, saturating at 0 dB/cm
for large values of d. This value cannot be directly compared to the experimental
value reported in Fig. 8.19, because in the experiment the absorption coefficient
saturates to a nonzero value, determined by surface scattering of the waveguide. To
this purpose, comparing the simulation with the experiment requires a normalization
of the experimental value. For this reason, the values shown in Fig. 8.19 have been
normalized with respect to the value measured on the reference device "R", and
are superimposed to the simulated value in Fig. 8.21. The experiment and the
simulation show a good agreement, demonstrating that the main source of losses
introduced by the presence of the junctions is the free-carrier absorption. The losses
introduced by defects caused by ion implantation are negligible.
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Fig. 8.21: Absorption coefficient variation introduced by the presence of the lateral p-n
junction, reported as a function of d. The solid line is calculated from a FEM
simulation. The experimental data are the same of Fig. 8.19, normalized over
the value measured on the reference structure "R".

8.5 Electrical characterization of waveguides

Once that the structures have been passively analyzed, they need to be actively
polarized in order to observe the effect on refractive index. Before that, they need
to be electrically characterized to confirm that they work properly also from an
electrical point of view. To this aim, tungsten tips are used to contact the aluminum
electrodes that contact the junctions. Using a DC voltage generator, the junctions
are properly biased. Using an amperometer, the current flowing in the circuit is
monitored. Therefore, I-V curves of the structure under analysis are measured.
Figure 8.22 shows the typical I-V curve measured on the three analyzed structures,
corresponding to the different values of d. When forward biased, the junction shows
the typical exponential behavior. When reversely biased, a small current slightly
above 0.1 µA flows in the diode. This holds until the breakdown, where a large
current starts flowing. The breakdown voltage Vb changes depending on the value of
d: it is about 24 V for d = 200 nm, 40 V for d = 500 nm and 53 V for d = 800 nm. The
fact that Vb changes with d is not surprising. In fact, for the same applied voltage,
the electric field inside the junction is larger if d is smaller. Therefore, the breakdown
field of silicon is reached for smaller values of the applied voltage, and the value of
Vb is smaller.
To confirm the experimental results, the polarized junction is simulated using the
same FEM simulation described in Sec. 8.4.4. Figure 8.23 shows the distribution
inside the structure of the electron and hole density, as well as the x component
of the electric field, referred to different values of the applied reverse bias voltage.
The simulations refer to the case d = 200 nm. The field distribution at V = 0 V
corresponds to the zero-bias field of the junction. When the bias increases, the
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Fig. 8.22: On the left: I-V curves of the different structures analyzed in this work. On the
right: the same quantities are reported by taking the absolute value of the current
and by reporting it in log scale. This emphasizes the value of the leakage current
in the diode when it is reversely polarized.

Tab. 8.1: Experimental and simulated values of the breakdown voltage Vb for the different
values of d.

d nm Experimental Vb [V] Simulated Vb [V]
200 24± 2 24
500 40± 3 37
800 53± 4 47

junction is depleted from the carriers and the electric field inside the waveguide
increases accordingly.
Figure 8.24 shows the electric field inside the waveguide referred to a reverse bias
voltage of 20 V and calculated for the different values of d. As expected, for a given
applied bias the electric field lowers as d increases.
The simulation described here is used to estimate the breakdown voltage Vb. To this
purpose, the simulation is performed as a function of V and for the different d. For
each situation, the maximum value of the electric field inside the waveguide Emax

is evaluated. Emax is reported in Fig. 8.25 as a function of the applied reverse bias
voltage for the different d. The breakdown field Vb can be estimated as the value
of V providing Emax larger than the breakdown field of silicon (40 V/µm) [166].
The simulated results, compared with the experiment, are shown in Tab. 8.1. The
agreement with the experiment ensures that the junction is properly modeled.

8.6 Electro-optic measurements

The final aim of this chapter is quantifying the effect of the applied voltage on the
material refractive index, demonstrating that this determines a shift of the resonance
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Fig. 8.23: Logarithm of the electron and hole density, as well as the electric field distribution
inside the structure for different values of the applied reverse bias voltage. The
simulation refers to the case d = 200 nm.

wavelength. In Sec. 8.6.1, this shift is first quantified by means of simulations. Then,
in Sec. 8.6.2, the simulated results are compared with the experimental values.

8.6.1 Modeling the electro-optic strength

To quantify the strength of the electro-optic effect, simulations performed using the
Semiconductor Module of COMSOL Multiphysics® are used.
Once that the carrier distribution is known, the plasma-dispersion-induced variation
of the material refractive index is estimated according to Eq. (8.1). Once that the
new material refractive index is known, the variation of the effective index of the
mode is quantified using a mode analysis simulation. In Fig. 8.26 the effective index
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Fig. 8.24: Electric field inside the waveguide referred to a reverse bias voltage of 20 V and
calculated for different values of d.

Fig. 8.25: Maximum value of the electric field inside the waveguide as a function of the
applied reverse bias voltage for the different values of d. The black line reports
the breakdown field of silicon, which is about 40 V/µm [166].

variation induced by plasma dispersion is reported in blue as a function of the reverse
bias voltage for d = 200 nm, d = 500 nm and d = 800 nm. On the right-hand axes,
the corresponding shift of the resonance wavelength is shown, calculated according
to Eq. (8.5). Doing so, the experimental group index has been used. Moreover, for
the resonator with Ls = 0 µm, the fraction of the resonator perimeter between p-n
junctions is % = 0.9. Figure 8.26 shows that plasma-dispersion effect is stronger for
small d. In fact, for small d the optical mode feels more the variation of the carrier
distribution, which mostly occurs close to the interface between the intrinsic and the
doped region. For larger d, the carrier variation felt by the optical mode is lower,
and so the shift of the resonance wavelength is smaller.
To estimate the strength of the DC Kerr effect, the same simulation is considered.
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Once that the electric field distribution inside the waveguide is known, the corre-
sponding refractive index variation due to the DC Kerr effect is calculated using
Eq. (8.4). The new refractive index distribution is then used in a mode analysis
simulation to quantify the variation of the effective refractive index of the optical
mode. This quantity, as well as the corresponding resonance wavelength shift, is
shown in red in Fig. 8.26 for the different values of d. In all the situations, DC Kerr
effect is much stronger than plasma-dispersion.
The overall effective index variation is shown in black, considering both the plasma-
dispersion and the DC Kerr effect.
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Fig. 8.26: On the left axes: effective refractive index variation as a function of the applied
reverse bias voltage for d = 200 nm, 500 nm and 800 nm. The blue curve considers
only the plasma dispersion, the red curve only the DC Kerr effect, while the black
line considers both the effects. On the right axes, the corresponding shift of the
resonant wavelength is reported.

The global result for all the values of d is shown in Fig. 8.27. Figure 8.27 shows that
the largest electro-optic effect is expected for the smallest values of d.

8.6.2 Measurement of the electro-optic effect

The electro-optic effect is experimentally quantified by measuring the transmission
spectra of resonators as a function of the reverse bias voltage. Figure 8.28 shows
the transmission spectrum of a resonator considering three different reverse bias
voltages, namely 0 V, 10 V and 20 V. By biasing the junction, the peak is shifted.
To quantify the shift, each resonance is fitted by a Lorentian function. The resonant
wavelength shift is then calculated by taking the difference between the measured
resonant wavelength and the one taken at zero bias. This shift is reported in Fig.
8.29 as a function of the reverse bias voltage for the different d. The errorbars are
obtained from repeated measurements. The experimental results are compared with
the theoretical expectations of Fig. 8.27. The experiment agrees with simulations,
except for d = 200 nm. In this case, the electro-optic shift is larger than the simulated
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Fig. 8.27: Refractive index variation (left hand axis) and the corresponding resonant wave-
length shift (right hand axis) for various d. The thicker lines emphasize the range
of bias voltages that can be achieved before causing the junction breakdown,
evaluated from the experiments described previously.
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Fig. 8.28: Normalized transmission spectrum of a resonator with d = 200 nm measured at
three different reverse bias voltages.

one. This can be due to a difference between the actual d and the designed one,
e.g. because of the diffusion of ions after implantation. The actual value of d can
be quantified by determining which value provides the best agreement with the
experiment. In this case, the best agreement is obtained for d = 136 nm, which is
reported as a dashed line in Fig. 8.27(a). This demonstrates that, in the realized
devices, the value of d is about 64 nm smaller than the designed one. This fact is not
visible in the measurements on devices with d = 500 nm and d = 800 nm. However,
in these structures a variation of 64 nm determines a much smaller relative variation,
which causes electro-optic variations below the experimental error.
To further confirm the model proposed here, Fig. 8.30 reports the variation of the
loss coefficient as a function of the applied voltage. The experimental values are
evaluated using the fitting procedure described previously. On the other hand, the
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Fig. 8.29: Resonant wavelength shift as a function of the reverse bias voltage for the
different d. Experimental results are compared with simulations.

simulated result are calculated using mode analysis simulations, knowing the carrier
distribution inside the waveguide and, consequently, the carrier-induced absorption
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given by Eq. (8.6). All the values reported in Fig. 8.30 are normalized to the result
measured at zero bias. In the cases d = 500 nm and d = 800 nm, any variation of the
absorption coefficient is below the experimental error. This agrees with the little
variations predicted by simulations. For d = 200 nm, the variation of the absorption
coefficient is larger than the one predicted by simulation. However, agreement can
be found if the simulation is performed considering the value d = 136 nm that was
evaluated from the analysis of the resonance wavelength shift. This fact confirms
that the experiment is well reproduced by the simulation.
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Fig. 8.30: Experimental and simulated loss coefficient variation as a function of the applied
voltage. The errorbars on the experimental results come from repeated measure-
ments. All the values are normalized to the result measured at zero bias. For
clarity, the experimental result for d = 800 nm is not reported (it is very similar
to the case d = 500 nm ).

8.7 Perspectives

The results presented in this chapter show that FEM simulations are able to reproduce
the experimental data. In rib waveguides with lateral p-n junctions, the model
quantifies the refractive index variation due to both plasma-dispersion and DC Kerr
effect, as well as the carrier-induced absorption coefficient variation. The model
described here can be then used in the following chapters to quantify the strength of
the field-induced nonlinearities in similar structures.
One of the most important outcomes of this chapter is also the confirmation that,
as demonstrated in [125], rib waveguides with lateral doping induce electro-optic
effects in silicon by means of both plasma-dispersion and DC Kerr effect. The role of
plasma dispersion is, however, of less importance when moving to fast electro-optic
modulation, since its modulation speed is limited by the carrier mobility. On the
other hand, DC Kerr effect is of great interest due to the possibility to achieve fast
electro-optic modulation. For this purpose, it is interesting to compare the electro-
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optic capability of this platform with others. These are mainly based on second order
nonlinearities, which provide a linear electro-optic modulation. So, it is interesting
to estimate the strength of the equivalent second order nonlinear coefficient χ(2)

eq

that would provide an electro-optic modulation of the same strength. To do so, one
should recall that the effective index variation ∆neff caused by an electric field E in
a waveguide characterized by a second-order nonlinear coefficient χ(2) is [120]:

∆neff = χ(2)Eng
2n2

0
, (8.15)

being ng the group index and n0 the material refractive index. Consider for example
Fig. 8.26, where it is shown that an effective index variation as large as 5× 10−5

can be introduced for a reverse bias of 20 V in a waveguide with d = 200 nm. In this
situation, Fig. 8.24 shows that an average electric field of 20 V/µm is present in the
waveguide. Considering that ng ∼ 3.8 and n0 ∼ 3.47, from Eq. (8.15) the equivalent
second order nonlinear coefficient χ(2)

eq is about 16 pm/V. It has to be recalled that
the measured effect is a third order nonlinear effect, and so this estimation has to be
only considered as a method to compare the strength of the measured effect with
that of other platforms. The results show that the strength of the measured effect
is comparable to that of materials with an intrinsic χ(2), such as lithium niobate,
whose χ(2) is 39 pm/V (Tab. 1.2). This result is even much stronger than the most
recent measurements of strain-induced Pockels effect in silicon, which quantified
χ(2) at about 1.8 pm/V [110]. Even larger effects could be obtained by efficiently
engineering the waveguide cross section, by taking for example smaller values of
d or by reducing the waveguide width and its height. For example, in [125] the
waveguide height is much smaller, and the strength of the measured effect is larger
than the one reported in this work. Therefore, the platform presented in this chapter
can provide interesting perspectives in terms of the electro-optic capability.
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The results reported in the previous chapter show that p-n junctions can be used to
generate high electric fields in waveguides. Moreover, these fields are well described
by the simulation procedure based on FEM analysis. Therefore, this method can be
used for waveguides where lateral junctions introduce field-induced second order
nonlinearities. Like in [125], the DC field is applied in a periodic way. In this way the
second order nonlinear coefficient varies periodically and introduces Quasi-Phase-
Matching (QPM). The aim of this chapter is to model the system, and to engineer
the most efficient waveguides enabling this process. The system is optimized to
perform both SHG as well as the opposite process, namely SPDC. The theoretical
framework of this study is introduced in Sec. 9.1. In Sec. 9.2, the waveguide
engineering is introduced. Section 9.3 models the DC field in the system, Finally, in
Sec. 9.4, the field-induced second order nonlinear strength is estimated.
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9.1 Description of nonlinearities in
quasi-phase-matched waveguides

This section theoretically describes SHG and SPDC in periodically poled waveguides.
To avoid confusion, in this chapter the larger wavelength is named fundamental (and
is labeled by f), while the shorter wavelength is named second-harmonic (labeled
by sh). Therefore, SHG involves the conversion between the fundamental pump
wave and the second-harmonic wave, while SPDC determines a conversion between
the second-harmonic pump wave and the fundamental wave.

9.1.1 Second Harmonic Generation

SHG in presence of periodic poling. The propagation of optical pulses in waveg-
uides in presence of SHG is described by Eq. (4.26). However, that formulation
accounts for a constant χ(2) along the propagation direction z. In the case of periodic
poling, χ(2) varies along z. Assume now that χ(2) can be factorized as follows:

χ(2)(r⊥, z) = χ(2)(r⊥)s(z), (9.1)

being χ(2)(r⊥) the second order nonlinear coefficient in the waveguide cross-section
plane, while s(z) is named poling function, and expresses the χ(2) modulation along
z. In this case, it is possible to define the coefficient Γ̃(2) as follows:

Γ̃(2) =
√
A0
∫

e(r⊥, ωf )χ(2)(r⊥) : e∗(r⊥, ωsh)e(r⊥, ωf ) dA(∫
n2(r⊥, ωf ) |e(r⊥, ωf )|2 dA

) (∫
n2(r⊥, ωsh) |e(r⊥, ωsh)|2 dA

)1/2 . (9.2)

According to (4.11), one has that Γ(2) = s(z)Γ̃(2). Analogously, γ̃(2)
i is defined by:

γ̃
(2)
i = ωi

nG,f
√
nG,sh√

8A0ε0c3 Γ̃(2). (9.3)

So, according to Eq. (4.10), γ(2)
i = s(z)γ̃(2)

i . Therefore, Eq. (4.26) becomes:

dush
dz

+
∑
m≥1

(i)m−1βsh,m
m!

∂mush
∂tm

=

= iγ̃(2)
sh s(z)

P0,f√
P0,sh

u2
fe

i∆βz + 2iγ(3)
sh,fP0,f |uf |2 ush −

αsh
2 ush,

duf
dz

+
∑
m≥1

(i)m−1βf,m
m!

∂muf
∂tm

=

= 2iγ̃(2)∗
f s(z)

√
P0,shushu

∗
fe
−i∆βz + iγ(3)

f,fP0,f |uf |2 uf −
αf
2 uf .

(9.4)
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Equation (9.4) is analogue to Eq. (4.26), with the difference that the term s(z) here
is factorized.

Undepleted pump and continuous wave. Similarly to Sec. 4.1.6, the case of un-
depleted pump is considered, so that uf (z) ∼ const. A continuous wave pulse is
assumed, where temporal derivatives can be neglected. Moreover, also third-order
nonlinearities and losses are negligible. So, Eq. (9.4) becomes:

dush
dz

= iγ̃(2)
sh s(z)

P0,f√
P0,sh

u2
fe

i∆βz. (9.5)

This equation can be analytically solved integrating on all the waveguide length L.
In this case, the total SH power can be expressed as:

Psh = P 2
f

∣∣∣γ̃(2)
sh

∣∣∣2 L2S, (9.6)

where the coefficient S is defined as:

S = 1
L2

∣∣∣∣∣
∫ L

0
s(z)ei∆βz

∣∣∣∣∣
2

. (9.7)

This result matches the one reported in [167].

9.1.2 Spontaneous Parametric Down Conversion

Using the same notation used so far, in [167] the power generated by SPDC is
calculated in the continuous wave undepleted pump approximation, and is given by:

PSPDC = Pp
∣∣∣γ̃(2)
sh

∣∣∣2 L2~ωf
τ
, (9.8)

being in this case ωf the generated photons frequency and τ is called the generation
bandwidth time. The generation bandwidth time is given by:

τ = 2π∫ ωsh/2
0 dΩ

[
1−

(
2Ω
ωsh

)2
]
S
, (9.9)

where Ω is the positive detuning from the frequency ωsh/2. In the case of QPM, this
expression can be further simplified by writing:

τ ' 6π
ωsh

1
S

(9.10)

So, also in this case the generation efficiency is proportional to the factor
∣∣∣γ̃(2)
sh

∣∣∣2 S.
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9.1.3 The shape of the poling function

The solution of the integral S shows interesting features of the generated signal in
case of periodically poled structures. In the following, the integral is solved both
analytically and numerically, in many different interesting situations.

Perfect phase-matching. When no periodic poling is applied, s(z) = 1. So, by
solving the integral, S = sinc2 (∆βL/2). In this case, Eq. (9.6) recovers the simple
result of Eq. (4.28). If ∆β ∼ 0, one finds the perfect phase-matching condition.

Quasi-phase-matching with square-wave poling function. Consider now the case
where s(z) is a periodic function of period Λ. Each period is formed by two domains
of length Λ/2. Passing from one domain to the successive, s(z) changes from +1 to
−1, so that its value in the n−th domain can be expressed as (−1)n. If N is the total
number of periods, the integral of Eq. (9.7) can be analytically solved, and gives
[168]:

S = Λ2

4L2 sinc2
(∆βΛ

4

)[ 1− cos(∆βΛN)
1 + cos(∆βΛ/2)

]
, (9.11)

In order to have a non-zero value of this expression, Λ has to be given by:

Λ = m
2π
∆β = 2mLcoh, (9.12)

were Lcoh = π/∆β is the coherence length of the non-linear process [1]. In this
situation the expression for S becomes:

S =

0 m even(
2
πm

)2
m odd

(9.13)

So, using QPM, an efficient process can be achieved by properly setting the poling
period Λ as expressed by Eq. (9.12), and by using an odd m. The most efficient
situation is provided by m = 1, where S = (2/π)2. For larger values of odd m, the
coefficient S scales as (1/m)2.
The same fact can be observed by numerically solving Eq. (9.7). Figure 9.1 shows
the quantity SL2 (which is proportional to the generation efficiency) as a function
of the waveguide length L. For clarity, L is normalized to the coherence length Lcoh.
Results are reported for the perfect phase-matching situation (black) and for the
QPM with different values of m. The dashed lines report the results of the analytic
solution reported in Eq. (9.13). Figure 9.1 shows that, to have an efficient process,
the sign of s(z) has to change after an odd multiple of the coherence length Lcoh.
The results reported so far are valid if the length l+ over which s(z) = +1 is equal
to the length l− over which s(z) = −1. Consider now the situation l+ 6= l−, but still
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Fig. 9.1: Dependence of the quantity SL2 (which is proportional to the generation effi-
ciency) on the waveguide length L. L is normalized to the coherence length Lcoh.
The solid lines are evaluated from the numeric solution of Eq. (9.7), while the
dashed lines refer to the analytic solution reported in Eq. (9.13). The black line
refers to the perfect phase-matching solution, while the colored lines refer to the
QPM case with different values of m. On the top of the figure, the behavior of s(z)
is shown for the different cases of QPM.

holds the condition l+ + l− = Λ. In this case, it is usual to define the duty cycle
D = l+/Λ [169, 170]. This quantity defines the fraction of the poling period Λ over
which s(z) = +1. Figure 9.2 reports the same quantities of Fig. 9.1, but considering
D = 0.25. In this case the generation efficiency is non-zero even for m = 2, in
contrast with the result of Fig. 9.1 referred to D = 0.5. This means that, with the
proper D, the generation efficiency can be non-zero also for even values of m.
To clarify the role of the duty cycle, Figure 9.3 reports S as a function of D. Figure
9.3 shows that, for odd m, the most efficient duty cycle is D = 0.5. On the other
hand, if m is even, efficiency is zero for D = 0.5. However, considering m = 2,
efficient generation is obtained for D = 0.25 (or, equivalently, D = 0.75).

Quasi-phase-matchingwith sinusoidal poling function. Figure 9.4 reports the quan-
tity SL2 as a function of L for a sinusoidal s(z) of period Λ = 2mLcoh. This results
shows that, in this case, the generation is nonzero only for m = 1.

Quasi-phase-matching with arbitrary periodic poling function. The last case is true
only if s(z) is truly sinusoidal. If s(z) is distorted but remains periodic, the process
can be efficient even for m > 1. In this framework, Fig. 9.5 shows the case of a
sinusoidal s(z) with m = 1 and m = 2, as well as for an arbitrary periodic function
with m = 2. This last function provides a non-zero efficiency even if m = 2.
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Fig. 9.2: Dependence of the quantity SL2 (which is proportional to the generation effi-
ciency) on the waveguide length L. The black line refers to the perfect phase-
matching solution, while the colored lines refer to the QPM case with different
values of m and for a duty cycle D = 0.25. On the top of the figure, the behavior
of s(z) is shown for the different values of m.
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Fig. 9.3: Dependence of the coefficient S on the duty cycle D for different values of m.

9.2 Engineering poled waveguides

The waveguides have the same cross-section of the ones sketched in Fig. 8.1. The
waveguide width w is determined to maximize the generation efficiency. The SHG
experiment aims at pumping at wavelengths λf above 2250 nm, generating photons
at halved wavelength λsh. In this way, the SH wave is still guided in silicon, while
the pump wave does not suffer TPA effect. For the SPDC process, the pump and the
generated wavelengths are swapped. Different waveguide widths and poling periods
are proposed, in order to phase-match different wavelengths.
Being the junction placed at the sides of the waveguide, the conversion between
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Fig. 9.4: Dependence of the quantity SL2 on L for a sinusoidal s(z) with different values of
m. The behavior of s(z) is shown on the top.
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Fig. 9.5: Dependence of the quantity SL2 on L for a sinusoidal s(z) with different values of
m = 1 and m = 2, as well as for an arbitrary periodic function with m = 2.

TE polarized modes is enabled. Since the phase mismatch is corrected here by the
use of periodically poling, there is no reason to use high order modes, and thus the
fundamental TE modes are used both for the pump and the generated waves.
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9.2.1 Setting the poling period

Both the SHG and the SPDC processes are performed between the fundamental TE
modes. The poling period Λ must be fixed in order to satisfy Eq. (9.12). In this case,
one can redefine the phase mismatch coefficient ∆β as:

∆β = 2βωf − βωsh + 2πm
Λ . (9.14)

Considering that λf = 2λsh, the phase-matching condition ∆β = 0 is satisfied if the
following condition holds:

Λ = m
λsh

neff,sh − neff,f
. (9.15)

The evaluation of the required poling period is performed using a 2D mode solver.
The poling period dependence on w is shown in Fig. 9.6, considering m = 1. The
calculations are done for a conversion process between λf = 2300 nm and λsh =
1150 nm. Figure 9.6 shows that larger the waveguide and larger is the required Λ.
This can be understood looking at Eq. (9.15) and considering that the larger the
waveguide and the closer are the effective refractive indexes of the two modes.
The choice of w is based on the estimation of the generation efficiency, which is
shown in the following. Once that w is chosen, the proper Λ is evaluated as it is
described in this section.

Fig. 9.6: Dependence of the poling period on the waveguide width. The simulation is
performed for a conversion process between λf = 2300 nm and λsh = 1150 nm.
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9.2.2 Estimating the generation efficiency

The waveguide width w is determined by evaluating a parameter that is proportional
to the generation efficiency for the two processes of interest. Equations (9.6)
and (9.8) show that, for both SHG and SPDC processes, the generated power is
proportional to

∣∣∣γ̃(2)
sh

∣∣∣2. This coefficient clearly depends on the χ(2) distribution inside
the waveguide. In this study, χ(2) is introduced by an external field applied with
lateral junctions. So, the χ(2) inside the waveguide depends on many parameters,
such as the distance of the doped region from the waveguide, but also on w. However,
for simplicity, the dependence of

∣∣∣γ̃(2)
sh

∣∣∣2 on w is evaluated here assuming to introduce
a spatially constant χ(2) with a strength independent on w. In this way, χ(2) can be
factorized out from the coefficient

∣∣∣γ̃(2)
sh

∣∣∣2.

Figure 9.7 reports the dependence of
∣∣∣γ̃(2)
sh

∣∣∣2 on w. This quantity is normalized with
respect to its maximum value. The simulation refers to a conversion process between
λf = 2300 nm and λsh = 1150 nm. The coefficient

∣∣∣γ̃(2)
sh

∣∣∣2 increases with w for small
w, while it decreases for large w. The reason of this comes from the definition of
γ̃

(2)
sh in Eq. (9.3), which shows that it depends on the group indexes of the modes

(that grow with w) and on Γ̃(2) (that decreases with w because the modes are less
localized). Therefore, one can find an optimum value of w to maximize

∣∣∣γ̃(2)
sh

∣∣∣2.

Fig. 9.7: Normalized efficiency of the generation process, evaluated as the factor
∣∣∣γ̃(2)

sh

∣∣∣2,
as a function of the waveguide width w. The simulation refers to a frequency
conversion process between λf = 2300 nm and λsh = 1150 nm.

Figure 9.8 shows on a color map again the normalized
∣∣∣γ̃(2)
sh

∣∣∣2 as a function of w
and λf . This figure shows that, as λf increases, also the value of w providing the
maximum efficiency increases. The white line represents the waveguide width w
that, for each λf , provides the maximum achievable efficiency. The red and the black
lines represent (respectively) waveguide width w that, for each λf , provides the 90%
and the 70% of the maximum efficiency.
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Fig. 9.8: Normalized efficiency of the generation process, evaluated as the factor
∣∣∣γ̃(2)

sh

∣∣∣2, as
a function of the waveguide width w and the wavelength λf .

9.2.3 Coherence length of the process

Figure 9.9 reports the coherence length as a function of λf , referred to the waveguide
providing phase-matching at λf = 2300 nm. The coherence length exceeds 1 cm over
a bandwidth slightly below 2 nm. This means that, for a sample length of 1 cm, λf
can be modified less than 2 nm to maintain an efficient generation.

Fig. 9.9: Coherence length as a function of the pump wavelength. Thevalues of of w and Λ
are selected for having phase-matching at a wavelength λf = 2300 nm.

9.2.4 Realized waveguide geometries

Table 9.1 reports the parameters of the realized waveguides.
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Tab. 9.1: Geometric parameters and corresponding wavelengths for the proposed waveg-

uides. The generation efficiency is calculated from the
∣∣∣γ̃(2)

sh

∣∣∣2 parameter, and is
normalized on the maximum achievable efficiency at that wavelength.

λf [µm] Norm.
efficiency

Waveguide
width w

[µm]

Poling
period Λ

[µm]

Poling
order m

1 2.25 100% 0.794 2.564 1
2 2.3 100% 0.809 2.600 1
3 2.3 90% 1.238 2.897 1
4 2.3 70% 1.878 3.137 1
5 2.3 100% 0.809 5.200 2
6 2.3 100% 0.809 7.800 3
7 2.3 100% 0.809 10.400 4
8 2.35 100% 0.824 2.634 1
9 2.4 100% 0.839 2.667 1

10 2.4 90% 1.285 2.974 1
11 2.4 70% 1.949 3.222 1
12 2.45 100% 0.854 2.698 1
13 2.55 100% 0.885 2.756 1
14 2.6 100% 0.900 2.784 1
15 2.65 100% 0.916 2.811 1
16 3.09 100% 1.066 3.018 1

• The first geometries are selected to work with λf between 2.25 µm and 2.45 µm.
This is the wavelength range available with the laser source described in
chapter 5. For this wavelength range, the corresponding Λ have been selected.
These waveguides are identified by numbers 1, 2, 8, 9 and 12 in Tab. 9.1.

• For the waveguides designed to work at λf = 2.3 µm and λf = 2.4 µm, three
configurations are proposed. The first one maximizes the generation efficiency.
The two additional configurations provide the 90% and the 70% of the maxi-
mum achievable efficiency at that wavelength. These configurations are less
efficient, but use larger waveguides. So, they should be affected by smaller
propagation losses and they should be less affected by fabrication uncertainties.
These waveguides are identified by numbers 2, 3, 4 and 9, 10, 11 in Tab. 9.1.

• For the case λf = 2.3 µm three alternative designs are proposed, where higher
order poling periods are used. These are identified by numbers 5, 6 and 7, and
refer to poling orders m = 2, 3 and 4. As already discussed in Sec. 9.1.3, no
generation is expected on high order poling if s(z) is sinusoidal. If s(z) is a
square-wave function, generation is expected only for odd m. If none of these
is the real situation, generation is expected for all the values of m. So, these
structures can be used to understand the shape of s(z), and so the variation of
the nonlinear coefficient along the waveguide propagation direction.
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• Some configurations are selected to work at longer wavelengths (λf is in the
range between 2.55 µm and 2.65 µm). These combinations are proposed for
the SPDC process. This is motivated by the abundance of laser diodes at
wavelengths around 1.3 µm. These waveguides are identified by numbers 13,
14, 15 in the table.

• The last combination works in the conversion between 1.545 µm and 3.09 µm.
This combination is proposed because of the abundance of sources around
1.545 µm. These waveguide is identified by number 16 in the table.

9.2.5 Tolerance to fabrication uncertainties

Due to the uncertainty of fabrication, it may happen that the realized devices differ
from the design. So, it is important to understand how to manage this situation.
So far, the aim of the design was to find the waveguide geometry providing the
maximum efficiency at a given wavelength. Now, the aim is to find the experimental
conditions that can provide an efficient experiment if the actual geometry differs
from the design. To this purpose, Fig. 9.10 reports the fundamental and the SH
wavelengths that provide phase-matching as a function of both the waveguide width
w and the poling period Λ. The central point of the figure represents the design ge-
ometry (w = 0.824 µm and Λ = 2.634 µm), which provides phase-matching between
λf = 2350 nm and λsh = 1175 nm. This corresponds to the configuration labeled by
number 8 in Tab. 9.1. Figure 9.10 shows that, if w and Λ differ from the design,
the phase-matching moves to different wavelengths. To emphasize this, the black
lines represent a variation of 10 nm on w and Λ. Therefore, both in the SHG and in
the SPDC process, the pump wavelengths can be properly changed to recover an
efficient conversion at wavelengths different from the designed ones.
While in the SHG process the only way to overcome the fabrication error is changing
the pump wavelength, in the SPDC process one can take advantage from an addi-
tional degree of freedom, which is the possibility to have a non-degenerate process.
In fact, in SPDC the pump photon at frequency ωsh can generate two photons at two
different frequencies ωf,1 and ωf,2, which have to satisfy the energy conservation
relationship ωf,1 + ωf,2 = ωsh. In this case, the phase-mismatch coefficient ∆β is:

∆β = βωf,1 + βωf,2 − βωsh + 2πm
Λ . (9.16)

Therefore, even if the realized geometry differs from the design and it cannot provide
SPDC at frequency ωf = ωsh/2, it may occur that two other frequencies ωf,1 and
ωf,2 satisfy phase-matching and provide an efficient conversion.
In this framework, Fig. 9.11 reports |∆β| as a function of the pump wavelength λsh
and of the wavelength of one generated photon λf,1. Once that λsh and λf,1 are
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Fig. 9.10: Fundamental and SH wavelengths that provide phase-matching as a function of
w and Λ. The black point represents the designed geometry, while the black lines
represent variations of 10 nm on w and Λ.

determined, the wavelength λf,2 of the other photon is fixed by energy conservation.
The simulation is performed using the geometry number 8 in Tab. 9.1 (w = 0.824 µm
and Λ = 2.634 µm). When |∆β| = 0, phase-matching is satisfied and the conversion
process is efficient. This condition is satisfied for λsh ∼ 1175 nm and λf ∼ 2350 nm,
which corresponds to the degenerate process used in the design, and shown in Tab.
9.1. This process is indicated by the white lines in the figure. However, Fig. 9.11
shows that phase-matching can be satisfied also by using lower pump wavelengths,
which provide the generation of photons at different wavelengths λf,1 and λf,2.

Fig. 9.11: Color map reporting |∆β| as a function of λsh and λf,1 (λf,2 can be easily
determined by energy conservation). The uses the configuration number 8 in Tab.
9.1. The white lines individuate the degenerate process.

Consider now the red curves shown in Fig. 9.12. These represent the values of λf,1
and λf,2 which provide phase matching as a function of λsh, referred to the same
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geometry of Fig. 9.11. From this plot, one can see the same behavior described
previously. Figure 9.12 represents also in green the same quantities referred to Λ
increased by 10 nm. By keeping the original pump wavelength λsh ∼ 1175 nm, the
SPDC process is still possible, but the generated photons are no more degenerate in
energy (they are generated at about 2750 nm and 2050 nm). On the other hand, the
blue curves of Fig. 9.12 refer to the case of Λ reduced by 10 nm. In this case, SPDC
process is no more possible using λsh ∼ 1175 nm.

Fig. 9.12: Values of λf,1 and λf,2 which provide phase matching as a function of the pump
wavelength λsh in the SPDC process, using the configuration number 8 of Tab.
9.1. The red curve considers the nominal value of Λ, while in the blue (resp.
green) curve the values of Λ are decreased (resp. increased) by 10 nm.

A similar effect happens also if one considers variations of w. However, in this
situation a larger w determines a smaller value of λsh for the degenerate process.
Conversely, a smaller w determines a larger λsh for the degenerate process.
Therefore, by considering non-degenerate conversion, in some situations the SPDC
is still possible by using the designed pump wavelength even if the geometry of the
realized device differs from the design.

9.2.6 Geometry of the junction

Figure 9.13 shows the top view of the waveguides analyzed in this chapter. Two
different configurations of the lateral p-n junctions are proposed.
The configuration shown on the left of Fig. 9.13 is similar to the one used in [125].
It consists of doped regions of width δ, each of which separated from the successive
by a distance ∆ = Λ − δ. In this configuration, one type of doping is realized on
each side of the waveguide. In this way, the DC field inside the waveguide is always
directed in the same direction. This configuration is named simple configuration.
The configuration shown on the right of Fig. 9.13 consists of doped regions of
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alternating type. Each of these regions has a width δ, and successive regions are
separated by ∆, in a way such that 2(δ + ∆) = Λ. This configuration represents the
best choice, because it allows a transition from negative to positive values of the field
inside the waveguide. This configuration is named interdigitated configuration.

d

δ
Δ

Λ

w

Simple configuration

d

δ
Δ

Λ

w

Interdigitated configuration

z

x

Fig. 9.13: Top view sketch of the waveguides analyzed in this work: the simple configuration
(left) and the interdigitated configuration (right). The black color represents the
waveguide, while the green and the yellow bars represent the p-type and the
n-type doped regions. Three values of d are realized (respectively 200 nm, 500 nm
and 800 nm). The parameter δ is 500 nm in all the configurations. The values of
w and Λ are chosen differently for each of the situations described in Tab. 9.1.
Once that Λ is fixed, ∆ is quantified accordingly.

As already discussed in chapter 8, an important parameter that must set properly is
the separation d between the waveguide border and the doped region. The ideal
situation consists of d = 0 nm, because it provides the maximum field inside the
waveguide. However, this makes the waveguide lossy. Therefore, following the pro-
cedure of chapter 8, three values of d are proposed, namely d = 200 nm, d = 500 nm
and d = 800 nm. The first is the best in terms of the DC field amplitude introduced
in the waveguide, but it also affects more the waveguide performance in terms of
losses. The last one affects less the propagating mode, but it also provides a smaller
DC field inside the waveguide.
The size of each doped region, δ, is 500 nm. In this situation, once that Λ is set,
the value of ∆ is determined accordingly. The value δ = 500 nm is a compromise
between a value unaffected by the lithographic resolution (so a large δ), and a large
∆ to avoid breakdown between successive doped regions (so a small δ).
Therefore, for each waveguide, six different configurations are proposed: three repli-
cas of the interdigitated configuration, and three replicas of the simple configuration,
considering respectively d = 200 nm, d = 500 nm and d = 800 nm.
An example of the realized structures (in the simple and in the interdigitated form) is
shown in Fig. 9.14. The different colors represent the six different photolithographic
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processes required to realize them. The first lithographic process is used to define the
rib waveguide, and is shown in black in Fig. 9.14. Then there are two lithographies
required to define the doped regions, represented in green and yellow. The fourth
one is used to deposit a 200 nm high oxide layer on the top of some doped region, in
order to prevent contacting the junction in the wrong place. This level is present
only for the interdigitated situation, and it is sketched in light blue in Fig. 9.14. The
fifth level is used to realize holes in the oxide cladding to contact the junctions with
the metallic pads. Holes are sketched in blue in the Fig. 9.14. The last level, used to
realize the metallic contacts, is reported in red.

Simple configuration

Interdigitated configuration

z

x
2 µm

Fig. 9.14: Top view of the realized structures. On the left, the simple configuration is shown.
The black line is the rib silicon waveguide, the green and the yellow rectangles
are the p-type and the n-type doped regions, the blue part is the hole in the oxide
cladding to access the doped region, while the red corresponds to the metal to
contact the junctions. On the right it is sketched the interdigitated configuration.
The color legend is the same of the other case, but here an additional level is
present, represented in light-blue, corresponding to a 200 nm hide oxide layer
introduced to avoid the metallic strip to contact the wrong junction.

9.3 Modeling the electric field in poled
waveguides

In this section, the DC field inside the waveguide is modeled, with the aim of
estimating the nonlinear strength that can be obtained inside the waveguide.
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9.3.1 Description of the FEM model

To estimate the DC field inside the waveguide, the system is modeled by a 3D
simulation using the semiconductor module of COMSOL Multiphysics® software
[56]. The use of a 3D model is necessary because it allows taking into account the
effect of adjacent junctions. The geometry of the system is reported in Fig. 9.15.
Both the n−type and the p−type doped regions are modeled by a 1× 1018 cm−3

doping concentration, while intrinsic doping is assumed in the rest of the silicon
layer. This is not the real case, because a 1× 1015 cm−3 p−type doping is present in
the real devices. However, introducing this kind of doping gives problems for the
convergence of the 3D simulation. Therefore, simulations are performed assuming
intrinsic doping. As a first order approximation, this simulation models well the
system. For reasons of computational power, the 3D simulations are not as refined
as the 2D ones. So, also for this reason, the simulation works as a first order
approximation.

x

y

z

Fig. 9.15: Geometry of the model used to estimate the DC field inside the waveguide. The
blue domains represent the silicon layer, while the grey part represents the oxide.
On the xy−plane one can see the boundaries between the core of the waveguide
and the lateral doped regions. Along z, the periodicity of the junctions is shown.
The FEM software does not allow to apply periodic conditions, so the simulation
is performed considering a number of periods such that the central regions is not
affected by the introduction of new periods at the boundaries.

9.3.2 Field distribution and nonlinear strength

An example of the results of the model described here is shown in Fig. 9.16. The
figure reports on a color scale the x component of the DC field EDC evaluated in
the middle of a junction. The simulation is performed considering the waveguide
geometry reported in the first line of Tab. 9.1 with d = 200 nm. The left hand side
panel refers to the simple configuration, while the right hand side panel reports
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the case of the interdigitated configuration. Both the simulations refer to a reverse
bias voltage of 20 V. They show similar field distributions. Compared to the simple
situation, the interdigitated geometry shows a larger electric field close to the doped
region, while the field is smaller in the center of the waveguide. This is due to
the presence of adjacent doped region with opposite polarization along z. Figure
9.16 shows also a second color axis, reporting the distribution of the corresponding
field-induced second order nonlinear coefficient χ(2)

EFISH = 3χ(3)
xxxxEDC,x. As already

discussed in chapter 7, literature values for χ(3)
xxxx are ambiguous and range from

0.94× 10−19 m2/V2 to 4.24× 10−19 m2/V2 [81, 162, 163]. Thus, an average value
of χ(3)

xxxx = 2.6× 10−19 m2/V2 is used. Due to the large applied electric fields, χ(2)
EFISH

is larger than the one determined by trapped charges in chapter 7.
Figure 9.17 reports EDC,x and χ

(2)
EFISH in the xz-plane in the middle of the slab

waveguide. The results are evaluated for d = 200 nm and a reverse bias voltage of
20 V. The field distribution, as well as the field-induced nonlinearity, varies along
the waveguide. In the simple situation the electric field varies its strength, but it
keeps always the same sign. As expected, in the interdigitated situation the sign of
the field as well as of χ(2)

EFISH change.
The same can be observed from Fig. 9.18, where EDC,x and χ(2)

EFISH are evaluated
in the middle of the waveguide along the waveguide propagation direction z. In
the interdigitated configuration, χ(2)

EFISH changes sign, while in the simple configu-
ration χ

(2)
EFISH varies but it keeps the same sign. The maximum value reached by

the interdigitated configuration is smaller, due to adjacent junctions with opposite
polarization.
Figure 9.19 reports EDC,x and χ(2)

EFISH in the xz-plane in the middle of the waveg-
uide, comparing d = 200 nm, d = 500 nm and d = 800 nm in the interdigitated
configuration. All the simulations refer to a reverse bias voltage of 20 V. It is not
surprising that, when d becomes larger, χ(2)

EFISH still changes sign. However, the value
assumed in the middle of the waveguide is smaller, due to the larger separation
between the junctions.
Similarly, Fig. 9.20 reports EDC,x and χ(2)

EFISH in the central point of the waveguide

Simple Interdigitated
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Fig. 9.16: Color scale representation of both the x component of the DC field EDC and the
field-induced second order nonlinear coefficient χ(2)

EFISH. The result is evaluated
in the xy−plane in the middle of a junction. It refers to the geometry of the
first line of Tab. 9.1 with d = 200 nm, considering both the simple and the
interdigitated configurations with an applied reverse bias voltage of 20 V.
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Fig. 9.17: Distribution of EDC,x and χ(2)
EFISH in the xz-plane in the middle of the waveguide.

The simulation is performed considering the waveguide geometry reported in the
first line of Tab. 9.1, with d = 200 nm and with an applied reverse bias voltage
of 20 V. The narrow white lines represent the position where the doping begins,
while the thicker ones represent the limits of the rib waveguide. To emphasize
their position, the doped regions are represented using darker colors.

Fig. 9.18: EDC,x and χ(2)
EFISH evaluated in the middle of the waveguide along the waveguide

propagation direction z for the simple and the interdigitated configurations. The
simulations are performed considering the waveguide geometry reported in the
first line of Tab. 9.1 with d = 200 nm and a reverse bias voltage of 20 V.

along the waveguide propagation z for the configurations d = 200 nm, d = 500 nm
and d = 800 nm in the simple and the interdigitated geometry.
All the situations described so far refer to a reverse bias voltage of 20 V. Clearly,
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Fig. 9.19: EDC,x and χ(2)
EFISH in the xz-plane in the middle of the waveguide, considering

d = 200 nm, d = 500 nm and d = 800 nm in the interdigitated configuration. All
the simulations refer to the waveguide geometry reported in the first line of Tab.
9.1, with a reverse bias voltage of 20 V.

by changing the bias voltage the DC field strength changes, and consequently the
value of χ(2)

EFISH is modified. In the top panel of Fig. 9.21 EDC,x and χ
(2)
EFISH are

evaluated in the center of the waveguide along the waveguide propagation direction
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Fig. 9.20: EDC,x and χ(2)
EFISH in center of the waveguide along z for different d and a reverse

bias of 20 V. The simulations refer to the geometry of the first line of Tab. 9.1.

Fig. 9.21: EDC,x and χ
(2)
EFISH in the center of the waveguide along z for d = 200 nm and

different biases. The simulations refer to the geometry at first line of Tab. 9.1.

z. The simulations refer to the simple configuration with d = 200 nm, when reverse
bias voltages of 0 V, 10 V and 20 V are applied. In the bottom panel of Fig. 9.21
the same quantities are shown referred to the interdigitated configuration. In both
the situations if the applied voltage decreases also the strength of χ(2)

EFISH decreases.
Also when no bias voltage is applied (0 V) χ(2)

EFISH is non-zero. This is due to the
presence of the doped regions, which determines the equilibrium condition for a
nonzero potential across the junction (the so called built-in potential). This potential
introduces a non-zero electric field even if the junction is not polarized, which in
turn determines a non-zero χ(2)

EFISH.
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9.3.3 The poling function

The results of these simulations allow to determine the distribution of the nonlinear
coefficient inside the waveguide. To use the theoretical description of Sec. 9.1, one
should verify the possibility of rewriting χ(2)

EFISH as expressed by Eq. (9.1).
Doing that, the interdigitated configuration is considered first. In the top panel
of Fig. 9.22 the quantity EDC,x is evaluated along z in different positions of the
waveguide, sketched in the inset of the same figure. The corresponding χ

(2)
EFISH

is shown on the right axis. The situation refers to a reverse bias of 20 V and d =
200 nm. The blue curve, evaluated in the center of the waveguide, is the same curve
already reported in the previous figures. Moving closer to the waveguide border, the
strength of χ(2)

EFISH becomes larger, as in Fig. 9.16. Moreover, the shape of χ(2)
EFISH

becomes more "squared". On the other hand, moving closer to the top of the rib
waveguide χ(2)

EFISH becomes smaller. At this point, one can normalize each curve
shown in Fig. 9.22 with respect to its maximum value. If the factorization expressed
by Eq. (9.1) can be done, the resulting curve should be the same independently on
the waveguide position where it is evaluated. If this is true, the resulting curve is the
poling function s(z). In the case analyzed here, this is reported in the bottom panel
of Fig. 9.22, referred to the same positions represented on the top side panel. All
the curves show a similar shape: only the ones evaluated close to the border present
slight variations. This confirms that the approximation expressed by Eq. (9.1) is
valid in this case. The curve evaluated in the center of the waveguide is fitted by
a sinusoidal function, shown by the black dashed line in Fig. 9.22. Therefore, in
the interdigitated configuration, the factorization expressed by Eq. (9.1) can be
done. The function χ(2)(r⊥) is given by the spatial distribution of χ(2)

EFISH in the
waveguide cross-section in the middle of the junction (where the nonlinear strength
is maximum), while s(z) is a sinusoidal function with the period of the poling.
Consider now the case of the simple configuration. In the top panel of Fig. 9.23,
the quantities EDC,x and χ(2)

EFISH are evaluated along z in different positions of the
waveguide, sketched in the inset of the figure. The situation refers to a reverse bias
of 20 V and d = 200 nm. Also in this case, on the bottom of Fig. 9.23 the value of
χ

(2)
EFISH is normalized on its maximum. Clearly, in this case the shape of s(z) shows

an offset, due to the fact that χ(2)
EFISH does not change sign every poling period.

Moreover, in this case the shape of s(z) differs strongly depending on the position
where it is evaluated. It is quite well approximated by a sinusoidal function in the
center of the waveguide, as it is shown by the fit represented by the black dashed
line. However, the shape of s(z) strongly differs from the sinusoidal behavior close
to the waveguide border. Due to this reason, in the case of the simple configuration
the factorization expressed by Eq. (9.1) is not generally valid. However, as a first
order approximation, that approximation is considered in this work.
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Fig. 9.22: On the top: EDC,x and χ(2)
EFISH values evaluated along the waveguide propagation

direction z in different positions of the waveguide, sketched with colors in the
inset. The simulation refers to the waveguide geometry reported in the first line
of Tab. 9.1 in the interdigitated configuration with d = 200 nm and a reverse
bias voltage of 20 V. On the bottom: shape of the poling function, evaluated by
normalizing the χ(2)

EFISH distribution on its maximum value. The black dashed
line is a sinusoidal fit of the function in the center of the waveguide.
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Fig. 9.23: On the top: EDC,x and χ(2)
EFISH values evaluated along the waveguide propagation

direction z in different positions of the waveguide, sketched with colors in the
inset. The simulation refers to the waveguide geometry reported in the first line
of Tab. 9.1 in the simple configuration with d = 200 nm and a reverse bias voltage
of 20 V. On the bottom: shape of the poling function, evaluated by normalizing
χ

(2)
EFISH on its maximum value. The black dashed line is a sinusoidal fit of the

function in the center of the waveguide.

9.3.4 The maximum achievable field

The maximum reverse bias voltage that can be applied to the system is limited
by the breakdown field of silicon. Consider for example the results shown in Fig.
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9.24, which reports the distribution of |EDC | in the xz-plane in the middle of
the waveguide, referred to d = 200 nm for both the simple and the interdigitated
configurations. The plot shows that the field between adjacent junctions is strong
in the case of the interdigitated situation, while it is almost zero for the simple
configuration. This is caused by the different polarization of adjacent junctions in
the interdigitated case. The figure shows also that the largest |EDC | is achieved in
both the cases close to the edge of the doped region. This fact can be attributed to
the sharp edge formed by the doped region, which determines a large electric field
close to it.
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Fig. 9.24: Distribution of |EDC | in the xz-plane in the middle of the waveguide, referred
to d = 200 nm for both the simple and the interdigitated configuration. The
simulations refer to the waveguide geometry reported in the first line of Tab. 9.1
with a reverse bias voltage of 20 V.

To quantify the maximum reverse bias voltage that can be applied, the maximum
value of the electric field within the silicon layer is evaluated as a function of the
applied bias. Figure 9.25 reports this value for all the values of d described in this
work, for both the simple and the interdigitated configuration. The maximum |EDC |
increases with the bias. This value is compared with the breakdown field of silicon,
set to 40 V/µm [166]. In this way, it is possible to quantify the maximum bias, which
is represented by the vertical dashed lines in Fig. 9.25. In the case of the simple
configuration, this value increases with d. This is reasonable, because the larger d
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and the larger is the distance between regions with opposite polarization, and so
the smaller is the electric field. On the contrary, in the case of the interdigitated
situation the maximum voltage that can be applied is almost the same. This is due
to the presence of adjacent junctions with opposite polarizations, whose distance ∆
is the same independently on d. For this reason, the maximum value of |EDC | is not
affected by d. Note that the slight difference between the results with different d
reported in Fig. 9.25 can be due to the approximations done in the simulations and
to the assumption of sharp edge dopings. However, in the realized devices the edges
can be less sharp, due to both the lithographic resolution and the diffusion of doping
ions. Therefore, the maximum field that can be obtained in the real devices can be
larger than the one shown here, and the voltage limit calculated in this section can
be considered as a lower bound.
Summarizing, Fig. 9.25 shows that in the simple configuration larger biases can be
applied than in the interdigitated configuration. Moreover, while in the interdigitated
configuration the larger amount of bias voltage is almost independent on d, for the
simple configuration larger voltages can be applied with larger values of d. However,
independently on the required bias voltage, what really matters is the strength of
the nonlinear parameter that can be induced inside the waveguide.
It can be noted that, for all the interdigitated geometries and for the simple geometry
with d = 200 nm, the maximum voltage is below 20 V, which is the value used in most
of the simulations presented so far. However, as already remarked, it is expected
that in the real experiment the actual bias voltage that can be applied is larger than
the one shown here. Moreover, the simulations shown previously were presented
just for remarking the main parameters that act on the field distribution inside
the waveguide. In the following, when SHG and SPDC efficiencies are estimated,
calculations are done using bias voltages below the limits predicted by the simulation
shown in Fig. 9.25.

9.3.5 The maximum nonlinearity

In Sec. 9.3.2, the values of χ(2)
EFISH obtained in the different structures have been

calculated. In Sec. 9.3.4 the maximum bias voltage that can be applied to the
different junctions is evaluated. By combining the results of these sections, it is
possible to estimate the maximum value of χ(2)

EFISH that can be obtained.
On the left hand side axes of Fig. 9.26 it is reported the maximum value of χ(2)

EFISH
evaluated in the center of the waveguide along z. In other words, it consists of the
maximum value of the curves reported in the Fig. 9.20. The maximum χ

(2)
EFISH grows

linearly with the applied reverse bias voltage. The vertical dashed lines represent
the maximum achievable reverse bias voltage, that is obtained from results reported
in the previous section. The results of Fig. 9.26 show that the maximum χ

(2)
EFISH

is smaller for larger values of d. Moreover, the maximum χ
(2)
EFISH is smaller for the
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Fig. 9.25: Maximum value of |EDC | within the silicon layer as a function of the applied
reverse bias voltage for both the simple and the interdigitated configuration and
for all the values of d. The simulations refer to the waveguide geometry reported
in the first line of Tab. 9.1. The black line represents the silicon breakdown
voltage. The vertical dashed lines indicate the reverse bias voltage providing the
maximum |EDC | equal to the breakdown field.

interdigitated configuration than for the simple configuration. However, what really
matters is not the absolute value of χ(2)

EFISH, but the strength of its variation along z,
which enables the QPM mechanism. To this purpose, the amplitude of the χ(2)

EFISH
variation along z in the center of the waveguide (referred as ∆χ(2)

EFISH) is reported on
the right hand-side of the plots of Fig. 9.26. ∆χ(2)

EFISH is evaluated as the difference
between the maximum and the minimum value of χ(2)

EFISH along z in the center of the
waveguide. In the case of the interdigitated configuration, ∆χ(2)

EFISH is clearly 2 times
the maximum value of χ(2)

EFISH. In the case of the simple configuration, ∆χ(2)
EFISH is

not straightforward. Comparing these results, one can note that ∆χ(2)
EFISH decreases

with d. Moreover, one can see that the interdigitated configuration is always more
efficient than the simple one.
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Fig. 9.26: Maximum value of χ(2)
EFISH and ∆χ(2)

EFISH evaluated in the center of the waveguide
along the z direction for both the simple and the interdigitated situations and for
all the d values. The simulations refer to the waveguide geometry reported in the
first line of Tab. 9.1.

9.4 Estimation of the SHG and SPDC efficiency

In the previous section, the strength of χ(2)
EFISH has been evaluated along z. Now,

these results can be used to quantify the conversion efficiencies of both the SHG and
the SPDC process. For simplicity, in this case the distribution of χ(2)

EFISH within the
waveguide cross-section is assumed constant, and equal to the value in the center.
As it is visible from Fig. 9.16, this is not really true. However, this approximation
is done for simplicity, to give a first order approximation of the powers that can
be obtained from such a geometry. Moreover, it is assumed that the factorization
expressed by Eq. (9.1) is valid, and a sinusoidal shape is taken for s(z). Following
the discussions of the previous sections, this is really true only for the interdigitated
configuration. However, this is considered valid also for the simple configuration.
Within this framework, the second order nonlinear coefficient can be factorized out
from the integral of Eq. (9.2). Moreover, the integral of Eq. (9.7) simply results
1/4. By taking a continuous wave pump and by considering the undepleted pump
approximation, the SHG and the SPDC generated powers can be evaluated using
Eq. (9.6) and Eq. (9.8). The main results are shown in Tab. 9.2 and in Tab. 9.3,
referring (respectively) to the cases of an unpolarized junction and to the case of the
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maximum reverse bias voltage. In both the tables, the waveguide length L is 1 cm,
with 1 mW pump power for both the SHG and the SPDC processes. The results refer
to the configuration shown in the first line of Tab. 9.1.

Tab. 9.2: SHG and SPDC power evaluated for the different configurations and referred to
unbiased junctions. The results refer to a 1 cm long waveguide and to a pump
power of 1 mW, for the waveguide geometry of the first line of Tab. 9.1.

Config. Rev. bias
voltage

χ
(2)
EFISH

maximum
∆χ(2)

EFISH Psh PSPDC

[V] [pm/V] [pm/V] [pW] [fW]
i-200 0 0.40 0.79 217 1700
s-200 0 0.44 0.24 20 157
i-500 0 0.17 0.34 40 315
s-500 0 0.26 0.08 2 17
i-800 0 0.08 0.15 8 61
s-800 0 0.18 0.03 0.3 2

Tab. 9.3: SHG and SPDC power evaluated for different junction configurations. The results
refer to the maximum reverse bias voltage that can be applied before reaching
the breakdown field in silicon, which is reported in the second column of the
table. The results refer to a 1 cm long waveguide and to a pump power of 1 mW,
considering the waveguide geometry reported in the first line of Tab. 9.1.

Config. Rev. bias
voltage

χ
(2)
EFISH

maximum
∆χ(2)

EFISH Psh PSPDC

[V] [pm/V] [pm/V] [nW] [pW]
i-200 11.8 4.61 9.22 29.6 231
s-200 16.3 7.78 3.87 5.2 40.8
i-500 12.5 2.10 4.21 6.1 48.3
s-500 21.3 6.27 1.72 1.0 8.1
i-800 12.5 0.93 1.85 1.2 9.3
s-800 25.3 5.46 0.78 0.2 1.7

Table 9.2 shows that a measurable generated signal is possible also for the unbiased
situation, for both SHG and SPDC. Considering the geometry of the system and the
experimental configurations analyzed here, SHG conversion efficiency is almost two
orders of magnitude larger than SPDC. Clearly, the conversion efficiency is lower in
the case of the simple configuration, as well as for large values of d.
A similar trend is visible from Tab. 9.3. In this case, the applied reverse bias is the
one that provides the breakdown field within silicon, as estimated in Sec. 9.3.4. In
both the cases, the conversion efficiency is much stronger for the polarized junction
than for the unbiased one. In fact, as it is shown in Fig. 9.26, the second order
nonlinearity linearly changes with bias. Considering that both the SHG and the
SPDC conversion efficiencies depend quadratically on the second order nonlinearity,
the generated power is expected to grow quadratically with bias.
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This chapter reports on the experimental characterization of SHG in the silicon
waveguides with lateral doping engineered in the previous chapter. The same
experimental setup described in chapter 5 is used. First, in Sec. 10.1, images of
the realized structures are shown. In Sec. 10.2, the lateral junctions are electrically
characterized. Then, in Sec. 10.3, the SHG process is characterized. In Sec. 10.4
the experimental results are compared with simulations. Finally, in Sec. 10.5 the
main results of this chapter are summarized, showing also perspectives for future
developments, aimed both at showing a better characterization of the SHG process
and to perform SPDC measurements.
The experiments described in this chapter have been realized with Mr. R. Franchi.
The samples have been produced by Dr. M. Ghulinyan at Fondazione Bruno Kessler.

10.1 The realized devices

Like the structures of chapter 8, the waveguides described in this chapter are defined
using a 365 nm UV lithography, and are realized by reactive ion etching. Figure 10.1
shows an optical image of the chip before the implantation of n-type ions. The figure
shows different geometries of the waveguide. The one on the left is an interdigitated
waveguide. The one in the middle, refers to an interdigitated waveguide with higher
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order poling. The one on the right shows waveguides in the simple configuration
(n-type doping is present only on one side of the waveguide).

Fig. 10.1: Optical image of the chip before the implantation of n-type ions, showing different
geometries of the waveguide: interdigitated configuration (left), interdigitated
waveguide with higher order poling (center) and simple configuration (right).
Image courtesy of Dr. M. Ghulinyan.

After realizing the doped regions, a 200 nm high oxide layer was deposited on the
top of some doped region, to prevent contacting the junction in the wrong place.
Then, a 1.5 µm thick oxide layer is deposited everywhere. Finally, contact holes
are realized to access the doped regions. Figure 10.2 shows part of the chip after
realizing these holes. The vertical bars visible in some holes are the oxide layers
realized to prevent contact.

Fig. 10.2: Chip after the realization of the contact holes. Image courtesy of Dr. M.
Ghulinyan.

Finally, aluminum layers are deposited. An example of this is shown in Fig. 10.3.

Fig. 10.3: Metallic layers deposited on the top. Image courtesy of Dr. M. Ghulinyan.
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10.2 Electrical characterization

Before dealing with the optical characterization, the waveguides designed to perform
SHG and SPDC are electrically analyzed . To this purpose, I-V curves are measured,
considering both the simple and the interdigitated configurations.
Figure 10.4 shows the I-V curves measured on waveguides in the simple configura-
tion, referred to the three values of d. When inversely polarized, a current in the
range 10 µA to 20 µA flows in the junction. This value is much larger than the one
measured in Sec. 8.5 on racetrack resonators, which was below 1 µA. However, in
this case the size of the junction is much larger, since it corresponds to the waveguide
length (about 17 mm), while in the previous situation it was given by the resonator
perimeter (less than 1 mm).
Figure 10.4 shows also the breakdown region for all the junction geometries. The
breakdown voltage Vb is about 37 V for the junction d = 200 nm, 43 V for d = 500 nm
and 47 V for d = 800 nm. These values are larger than the ones reported in Sec.
9.3.4, which were respectively 16 V, 21 V and 25 V. They were estimated from a
3D simulation of the junction. This approach worked properly in the case of the
resonator with lateral junctions reported in Sec. 8.5. However, in Sec. 9.3.4 it was
already reported that the estimation should have been considered as a lower bound
of Vb. In fact, the maximum electric field causing breakdown was determined by
the sharp edge formed by the doped regions. However, in the realized devices the
edges can be less sharp. Therefore, it is reasonable that the experimental breakdown
voltage Vb is larger than the one estimated in Sec. 9.3.4.
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Fig. 10.4: I-V curves measured on three waveguides in the simple configuration referred to
different d. The measurements are performed on waveguide number 7 of Tab.
9.1.
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Figure 10.5 reports the same measurement of Fig. 10.4, but referred to the interdigi-
tated configuration with d = 200 nm. The two measurements refer to two nominally
identical waveguides realized separately on two different wafers. In the forward
bias, the two devices show a reasonable behavior. However, the structures show a
strange behavior when reversely biased. In fact, a large current flows in the circuit,
even if it is a little bit smaller than in the case of the forward bias. In one of the
two devices, for small reverse bias voltages, it is possible to recognize the plateau
that typically characterizes reversely polarized junctions. However, as soon as the
voltage is increased, also the current increases enormously. This seems to indicate
that, besides the junction, other channels where current can flow are present.
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Fig. 10.5: I-V curves measured on two nominally identical waveguides with d = 200 nm
realized on two different wafers. The measurements refer to the waveguide
number 7 of Tab. 9.1.

10.3 Experimental characterization of SHG

The characterization of SHG is performed using the same setup of chapter 5.

10.3.1 Dependence on the pump wavelength

Figure 10.6 reports the experimental dependence of the average SH power on the
pump wavelength λf . The measurement is performed on a 15.7 mm long waveguide,
whose geometry is identified by number 4 in Tab. 9.1. The waveguide presents
lateral doping in the simple configuration and d = 200 nm, with no applied bias
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voltage. The clear peak present for λf ∼ 2291 nm demonstrates the satisfaction of
the phase-matching.
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Fig. 10.6: On-chip average SH power as a function of the pump wavelength λf . The inset
shows a sketch of the experimental apparatus used to perform this measurement.
The measurement refers to a 15.7 mm long waveguide, whose geometry is iden-
tified by number 4 in Tab. 9.1. The waveguide presents lateral doping in the
simple configuration, d = 200 nm and no applied bias voltage.

10.3.2 Dependence on the pump power

Figure 10.7 reports the on-chip average SH power 〈Psh〉 as a function of the average
pump power 〈Pf 〉 in a log-log scale. The linear fit provides a slope of 1.8 ± 0.2,
which matches the value of 2 predicted by theory. The measurement refers to a
1.68 mm long waveguide, whose geometry is identified by number 1 in Tab. 9.1. The
waveguide is in the simple configuration with d = 200 nm and no applied bias.

10.3.3 Dependence on the waveguide length

SHG theory predicts that, in absence of losses, the generation efficiency should grow
quadratically with the waveguide length L. The model shown in Sec. 4.3, which
describes the propagation of optical pulses in waveguides under the effect of SHG,
shows that the presence of large propagation losses strongly affects this behavior.
In the situation of chapter 5 propagation losses were about 8 dB/cm, providing a
non-trivial dependence of the SHG efficiency on L. Moreover, the presence of such a
large amount of losses prevented to collect detectable signals at the output of long
waveguides. In the experiment shown in this chapter, propagation losses are much
smaller (about 2.4 dB/cm estimated via cut-back method). Therefore, this allows
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Fig. 10.7: On-chip SH power as a function of the on-chip pump power. Results are reported
in a log-log scale and are fitted by a straight line. The measurement is performed
on a 1.68 mm long waveguide in the simple configuration with d = 200 nm, whose
geometry is identified by number 1 in Tab. 9.1, with no applied bias.

testing longer waveguides, enabling to recover the quadratic dependence of the SH
power on L.
Due to the small dynamic range of the SPAD detector, the measurements taken
during this experiment refer often to different pump powers. To compare different
measurements, it is then necessary to normalize them over the pump power. Since
the SH power is expected to grow quadratically with the pump power, it is useful
defining the peak conversion efficiency η and the average conversion efficiency ηav

as:
η = Psh

P 2
f

ηav = 〈Psh〉
〈Pf 〉2

(10.1)

Figure 10.8 reports both η and ηav as a function of L. The measurements are referred
to the waveguide number 1 of Tab. 9.1 in the simple configuration, with d = 200 nm,
without applying any bias voltage. The experimental data are fitted by a quadratic
curve.
A similar result is shown in Fig. 10.9, referred to the same waveguide but to the
interdigitated configuration.
One can note also that SHG process in the interdigitated configuration is more effi-
cient than in the simple configuration. Comparing Fig. 10.9 with Fig. 10.8, almost
one order of magnitude larger efficiency is estimated in the interdigitated configura-
tion than in the simple configuration. This fact is well predicted by the simulations
of chapter 9. In fact, Tab. 9.2 shows that in the interdigitated configuration the
χ

(2)
EFISH amplitude is almost 3 times larger than in the simple configuration for d =

200 nm. Since the SHG efficiency depends quadratically on the χ(2)
EFISH amplitude, it

is reasonable that the in the interdigitated configuration the SHG efficiency is almost
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Fig. 10.8: Conversion efficiencies η and ηav as a function of the waveguide length L, referred
to the waveguide number 1 of Tab. 9.1 in the simple configuration with d =
200 nm, without applying any bias voltage to the junction.

Fig. 10.9: Conversion efficiency η as a function of the waveguide length, referred to the
waveguide number 1 of Tab. 9.1 in the interdigitated configuration with d =
200 nm, without applying any bias voltage to the junction.

one order of magnitude larger than in the simple configuration.
The results of Fig. 10.9 demonstrate that the waveguides work well also in the
interdigitated configuration. Even if the current flowing in the circuit when the
junction is reversely polarized is surprisingly high, the unbiased junctions seems to
be unaffected by this problem.

10.3.4 Dependence on the applied voltage

The measurements reported so far refer to situations where no bias is applied to
the junctions. Therefore, the generation is due to the field induced by the built-in
potential of the junction. However, the generation is expected to increase a lot if
the field within the junction is increased. In particular, the results of simulations
reported in Fig. 9.26 show that the amplitude of the nonlinear coefficient χ(2)

EFISH
varies linearly with the applied reverse bias voltage. Therefore, since the generation
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efficiency grows quadratically with χ
(2)
EFISH, the SH power is expected to grow

quadratically also with the applied reverse bias voltage. Figure 10.10 shows the SH
power as a function of the reverse bias voltage applied to the waveguide number 1
of Tab. 9.1 in the simple configuration with d = 200 nm. The experimental results
are well fitted by a quadratic curve.
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Fig. 10.10: SH power as a function of the applied reverse bias voltage for the waveguide
number 1 of Tab. 9.1 in the simple configuration with d = 200 nm. Errorbars
result from repeated measurements.

A similar result is shown in Fig. 10.11, referred to the interdigitated configuration.
The applied bias voltage is kept below 3.5 V because of the large current flowing
in the system when polarizing it. However, good agreement with a quadratic fit is
shown also in this case. This demonstrates that, when the circuit is polarized, the
p-n junction is reversely biased in the proper way. Therefore, the large current does
not flow through the junction, but on a different channel. This is confirmed also
by the fact that, when biasing the junction, the amount of propagation losses does
not vary significantly. If the current was flowing in the waveguide, this would have
strongly affected the carrier density, and so the propagation losses.

10.4 Comparison between the experiment and
simulations

In this section, the experimental results are compared with the ones resulting from
simulations. First, the comparison is done considering the phase-matching wave-
length. Then, the experimental and the simulated SHG efficiencies are compared.
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Fig. 10.11: SH power as a function of the applied reverse bias voltage for the waveguide
number 1 of Tab. 9.1 in the interdigitated configuration with d = 200 nm.
Errorbars result from repeated measurements.

10.4.1 Phase-matching wavelength

Figure 10.12 reports the experimental phase-matching wavelengths λf,exp as a func-
tion of the phase-matching wavelength predicted by simulations λf,th. The different
points refer to the different waveguide configurations analyzed in this work. The
numbers in the plot indicate the corresponding configuration number shown in Tab.
9.1. The black dashed line represents the ideal value (so, λf,exp = λf,th).
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Fig. 10.12: Experimental phase-matching wavelengths λf,exp as a function of the simulated
phase-matching wavelength λf,th. The different points refer to the different
waveguide configurations analyzed in this work. The numbers indicate the
configuration number shown in Tab. 9.1. The black line represents the ideal
value.

Consider first the configurations number 1, 2 and 8 (red dots). These are the stan-
dard configurations, designed to provide conversion efficiencies at the wavelengths
of 2250 nm, 2300 nm and 2350 nm. Figure 10.12 shows that the experimental phase-
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matching wavelength is shifted of almost 100 nm towards longer wavelengths with
respect to simulations. This can be caused by fabrication inaccuracies. In fact, in Sec.
9.2 it has already been shown that, if the geometry of the realized devices differs
from the design, this causes a shift of the phase-matching wavelength.
Consider now the configurations 3 and 4 (or, analogously, 10 and 11). These waveg-
uides should provide the 90% and the 70% of the maximum achievable efficiency,
but they work on larger waveguides. So, they should be less affected by fabrication
uncertainties. This is confirmed by the experiment, which shows that in these waveg-
uides the phase-matching wavelength is closer to simulation.
Consider now the configurations 2, 5, 6 and 7. In these cases, the waveguide geome-
try is the same, but the poling order m varies. The experimental results show that
the phase-matching wavelength does not change with m. This allows to conclude
that the variability of the phase-matching wavelength does not depend on variations
of the poling period (and so of the poling order), but is mostly due to variations of
the waveguide geometry.
Figure 10.13 reports the simulated phase-matching wavelength as a function of the
waveguide width w and the poling period Λ. The black point shows the geometry
represented by number 8 in Tab. 9.1, which provides phase-matching for a pump
wavelength of 2350 nm. The black lines represent variations of 50 nm on both w

and Λ. The red line represents the value measured experimentally, namely 2455 nm.
The figure shows that the measured value can be ascribed to a reduction of w of
about 50 nm, or to an enlargement of Λ of about 40 nm, or to a combinations of
these effects. Also other effects can cause a similar modification, such as differences
between the actual refractive indexes and the ones used in the simulation, or varia-
tions of both the rib and the slab waveguide height. However, it is not possible to
disentangle variations on height and width since they both cause a modification of
the mode effective index, and so a modification of the phase-matching wavelength.
Since fabrication uncertainties affect mainly the waveguide width rather than the
height, for simplicity height variations have not been considered here.
Figure 10.14 reports the same quantities of Fig. 10.13, referred to the geometries
represented by numbers 2, 3 and 4 in Tab. 9.1. The figure reports the theoretical
results for all the configurations, while the red contour lines show the experimental
values. The theoretical results and the experiment show good agreement, especially
for larger values of w.

10.4.2 SH power

The analytic evaluation of the SHG efficiency requires to solve Eq. (9.4). Like in Sec.
4.3, this can be done by using the split-step method.
The model uses parameters that come both from FEM simulations (propagation
constants, group indices, modal profiles) and from experimental measurements
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Fig. 10.13: Simulated phase-matching wavelength as a function of w and Λ. The black
point represents the nominal geometry (number 8 in Tab. 9.1), while the black
lines represent variations of 50 nm on both w and Λ. The red line corresponds
to the value measured experimentally.

Fig. 10.14: Simulated phase-matching wavelength as a function of w and Λ. The black
points represent the geometries represented by numbers 2, 3 and 4 in Tab. 9.1,
while the black lines represent variations of 50 nm on both w and Λ. The red
lines are the contour lines corresponding to the values measured experimentally.

(refractive indexes, propagation losses). The pump loss coefficient is estimated by
cut-back method, and is about 2.4 dB/cm. For simplicity, the SH loss coefficient is
taken equal to the pump loss coefficient.
The equations (9.4) contain the coefficient γ̃(2)

i . Equation (9.3) shows that γ̃(2)
i is

proportional to Γ̃(2), which is defined by Eq. (9.2). The term at the numerator of the
coefficient Γ̃(2) contains an overlap integral between the optical modes and χ(2)(r⊥),
namely the distribution of the second order nonlinear coefficient in the waveguide
cross-section plane. As already discussed in Sec. 9.3, this quantity is evaluated
starting from a 3D electric FEM simulation of the waveguide. The amplitude of the
modulation of χ(2) in the middle of the waveguide is taken as an approximation of
χ(2)(r⊥). Moreover, the poling function s(z) is taken sinusoidal with the period of
the poling. As already discussed in Sec. 9.3, this is a good approximation in the
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case of the interdigitated situation. To evaluate χ(2), the DC field distribution EDC,x
is first evaluated. Then, χ(2) is evaluated as 3χ(3)

xxxxEDC,x. However, as already
discussed, the values of χ(3)

xxxx reported in literature are ambiguous and show a big
spread, showing values in the range 0.94× 10−19 m2/V2 to 4.24× 10−19 m2/V2 [81,
162, 163]. The calculations performed in chapter 9 consider a mean value of these
quantities. In this case, the simulations are performed taking both these quantities,
in order to find an interval of admitted SHG efficiencies.
Figure 10.15 reports a comparison between the simulated and the experimental
SHG efficiencies as a function of the waveguide length L. The results are referred
to both the simple and the interdigitated configurations. The results are referred
to the waveguide number 1 in Tab. 9.1 with d = 200 nm, without applying any
bias. The solid lines represent the SHG efficiencies evaluated using the upper and
the lower bound of the values of χ(3)

xxxx reported in literature. The results show
that the experimental data follow the same behavior predicted by simulations. The
experimental data and the simulated ones are comparable by taking the smallest
χ

(3)
xxxx value reported in literature.

Fig. 10.15: Comparison between the simulated (solid) and the experimental (scatter) SHG
efficiencies as a function of the waveguide length L, for the waveguide number
1 in Tab. 9.1 with d = 200 nm, without applying any bias voltage to the junction.
The solid lines represent the SHG efficiencies evaluated using the upper and the
lower bound of the values of χ(3)

xxxx reported in literature.

10.5 Conclusions and perspectives

In this chapter, the experimental characterization of SHG in silicon waveguides with
lateral p-n junctions has been shown. The reported results demonstrate the expected
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quadratic behavior with the pump power, with the applied reverse bias voltage and
with the waveguide length. The main experimental outcomes of this chapter are
reported in Tab. 10.1, with the comparison to the results reported in [125]. In
[125], the authors use waveguides in the simple configuration. One can see that the
experimental efficiencies measured in this thesis are smaller than the one reported in
[125]. This discrepancy can be partially attributed to the different waveguide geom-
etry. In particular, in [125] the total waveguide height is 220 nm, while in the case
of this thesis it is 490 nm. This determines a smaller modal confinement and, in turn,
a smaller conversion efficiency. However, this geometric difference is not enough
to justify such a large discrepancy. In [125], the authors model the SHG process
assuming that the poling function varies abruptly along the waveguide propagation
direction, passing from its maximum value (in between the junction) to 0 (when
there is no junction). The 3D FEM simulation shown in this thesis demonstrates that
this is not the case: the transition is not abrupt (it shows a sinusoidal shape) and
the poling function is not 0 where there is no junction. Using a more reasonable
poling function, the simulated conversion efficiencies are much smaller than the
ones experimentally measured in [125]. Moreover, even if they use a poling function
which overestimates the SHG conversion efficiency, in [125] the authors need to
use the largest χ(3) value reported in the literature to reproduce their experimental
data. In the end, using the simulation tool proposed in this thesis, the SHG efficiency
experimentally demonstrated in [125] is too large for being totally attributed to the
EFISH caused by the junctions. On the contrary, by using the smallest χ(3) value
reported in literature, the model reproduces well the experimental data reported in
this thesis. It can be noted that the efficiency improvement from the 0 V to the 20 V
case in both measurements is almost the same (three orders of magnitude).

Tab. 10.1: Main experimental outcomes of this chapter regarding SHG in silicon waveguides
with lateral p-n junctions. Results are comapred to the ones of [125].

Config. L Rev. bias η ∆χ(2)
EFISH

[mm] [V] [W−1] [pm/V]
s-200 4 0 4× 10−7 0.08
s-200 4 20 5× 10−4 2.7
i-200 4 0 4× 10−6 0.28
i-200 4 3 1.6× 10−5 0.56
[125] 1 0 5× 10−4 2.5
[125] 1 21 0.13 41

Table 10.2 reports the main results of chapter 5 on the measurement of SHG in
strained silicon waveguides. In the case of waveguides with lateral p-n junctions,
the SHG efficiency is much larger, even considering the simple configuration and no
applied bias. This has to be attributed to the use of intermodal phase-matching in
the strained waveguides. This determines a small mode overlap and, in the end, a
smaller conversion efficiency. Comparing the χ(2) values, with a 20 V bias voltage
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the poled waveguide in the simple configuration shows a nonlinear coefficient about
5 times larger than the strained silicon waveguide. Using the interdigitated configu-
ration, 3 V are enough to have the same χ(2) value demonstrated in strained silicon.

Tab. 10.2: Main experimental outcomes of results of chapter 5, referred to the measurement
of SHG in strained silicon waveguides. Even if χ(2)

eff is comparable in the two
cases, η is smaller for the combination involving generation on the higher order
mode due to the worst mode overlap with the pump.

Config. L η χ
(2)
eff

[mm] [W−1] [pm/V]
TE1-TM3 4 2× 10−7 0.46± 0.06
TE1-TM5 4 2× 10−8 0.6± 0.1

To characterize better the SHG process in waveguides with lateral p-n junctions, the
possibility of using a continuous-wave pump source should be considered. On the
one hand, this would offer a more stable and simpler experimental setup. On the
other hand, this would provide a narrow linewidth, which would allow to investigate
the SHG bandwidth. Even if a continuous-wave laser would provide a smaller peak
power, the simulation results reported in Tab. 9.2 and 9.3 show that a detectable
signal should be generated. Using a more stable and simple setup will allow also
studying the dependence of the SH signal on the poling order m and on the distance
d between the waveguide and the junction.
In this chapter, SHG has been demonstrated using both the simple and the interdigi-
tated configurations. However, increasing the reverse bias voltage, a large current
flows in the interdigitated waveguide system. This large current flow does not affect
the optical properties of the waveguide, and the SHG intensity varies correctly with
the applied bias. However, to properly demonstrate the potential of this system, the
origin of this large current flow should be understood and possibly limited.
The structures demonstrated in this chapter use a periodic poling of the p-n junctions
to introduce QPM. This determines a large conversion efficiency, because it involves
the conversion between fundamental modes. However, this system has also some
drawbacks. One derives from the use of rectangular doped regions with sharp edges.
The simulations of Sec. 9.3 show that this determines a large electric field close to the
edges, resulting in a smaller breakdown voltage of the system. To prevent this, one
could use continuous doped regions with variable distance. In this way, the applied
DC field varies along the waveguide propagation direction, being smaller where the
distance is larger and larger when the distance is smaller. Another drawback derives
from the fact that, in the QPM approach, the usable nonlinearity is the amplitude
of the χ(2) variation along the waveguide propagation direction. Especially in the
simple configuration, the average χ(2) is large, but its amplitude variation is weaker.
This limits strongly nonlinear conversion. This fact would benefit from the use of an
intermodal approach. In this case, even if the mode overlap determines a smaller
conversion efficiency, one can take advantage of the entire χ(2) strength.
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Finally, other interesting perspectives are offered by the use of microresonators. In
microresonators the nonlinear interaction is increased by the field enhancement
inside these structures. In [127], the authors propose a design of a resonator that
uses a periodic distribution of p-n junctions, and demonstrate that SHG efficiency
can be enhanced from 4 to 50 times with respect to the straight waveguide con-
figuration depending on the microresonator geometry. This approach can have
interesting application for the realization of resonator-based nonlinear processes,
like the frequency comb mediated by χ(2) [171].
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In the previous chapters, lateral p-n junctions have been demonstrated as a technol-
ogy able to introduce second order nonlineatities in silicon. In this chapter, other
structures are proposed to introduce the same effect in waveguides on a CMOS
platform. In this case, waveguides are done not by silicon, but by silicon oxynitride
(SiON) [70]. This material is transparent in the visible. This allows performing
SHG processes using a pump at about 1550 nm, generating the SH signal at about
775 nm. SiON offers also the advantage of being free from two photon absorption,
which typically limits the power coupled in silicon waveguides. However, also two
big drawbacks affect the performances of this material. The first one is the small
third order nonlinear coefficient of SiON, about two orders of magnitude below
than that of silicon [70]. Moreover, since SiON is not a semiconductor, p-n junctions
cannot be used to induce the DC field. Therefore, the DC field is introduced by
metallic pads realized on the top of the waveguide cladding.
Section 11.1 describes the cross section of the waveguides. Section 11.2 describes
the way used to estimate the DC field induced within the waveguide. Then, in Sec.
11.3 the method used to evaluate the poling period is described. Finally, in Sec. 11.4
the conversion efficiencies of both SHG and SPDC are evaluated.

11.1 Waveguide cross-section

The cross-section of the waveguides analyzed in this chapter is shown in Fig. 11.1.
It is formed by a 550 nm-high SiON waveguide, whose cladding is formed by a
950 nm-hide BPSG layer and a 1500 nm-hide layer of oxide PECVD. The waveguide
width w is optimized to optimize the conversion process. On the top of the system,
the metallic layer is formed by TiN. The metallic strips can be disposed to introduce
a DC field EDC in the waveguide along both the x and y directions. So, SHG and
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SPDC processes can be induced considering both TE and TM polarizations.
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Fig. 11.1: Off-scale cross-section of the waveguides described in this chapter.

A first configuration is shown from a top-view perspective on the left side of Fig.
11.2. The green and yellow rectangles represent the metallic strips, while the black
rectangle shows the SiON waveguide. The metallic strips induce a DC field in the
waveguide along the y direction. This configuration is designed to achieve frequency
conversion between TM-polarized modes. On the right side of Fig. 11.2 the other
waveguide configuration is shown. In this case, the metallic strips induce a DC field
in the x direction, and so conversion between TE-polarized modes.
In both configurations, the poling period Λ is determined by optical simulations, as
discussed in the following. The distance between different metallic strips is 700 nm
to match fabrication constraints.

z

x

4 µm

TM configuration TE configuration

Λ
Λ

Fig. 11.2: Top view of the realized waveguides. On the left, it is shown the device realized
to induce a DC field along the y direction, and so to realize frequency conversion
between TM-polarized modes. The green and yellow rectangles represent the
metallic strips, while the black rectangle shows the SiON waveguide. On the
right, it is shown the device realized to induce a DC field along the x direction,
and so frequency conversion between TE-polarized modes.
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11.2 The DC field inside the waveguide

The DC field in the waveguide is evaluated using the Electrostatics module of the
COMSOL Multiphysics® software [56] through a 3D simulation. The simulation
domains used for the two configurations are shown in Fig. 11.3. The simulations
refer to an arbitrary poling period Λ = 5 µm and a waveguide width w = 3 µm. The
simulations are realized using periodic boundary conditions.

x

y

z

TE configurationTM configuration

Fig. 11.3: Simulation domain used to compute the field distribution in the waveguide,
referred to the waveguide designed for the conversion between TM modes (left)
and between TE modes (right). Periodic boundary conditions are applied.

The left side of Fig. 11.4 shows on a color map the y component of the DC field
EDC in the xz− plane in the middle of the waveguide. The simulation refers to the
structure designed to support conversion between TM-polarized modes, when a bias
of 100 V is applied. EDC,y shows a periodic behavior along z, as expected from the
design. A similar result is shown on the right side of Fig. 11.4, which shows the
x component of the DC field EDC in the case of the structure designed to support
conversion between TE polarized modes. Also in this case, the applied bias is 100 V.
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Fig. 11.4: Color map representation of EDC,y (left) and EDC,x (right) in the xz− plane in
the middle of the waveguide. The plots are referred to the structure designed for
conversion between TM (left) and TE (right) polarized modes. In the simulations
Λ = 5 µm and w = 3 µm, while the applied bias is 100 V. The white lines show
the position of the center of the waveguide.

To emphasize this fact, Fig. 11.5 reports EDC,y evaluated in the middle of the
waveguide along z (the black line of Fig. 11.4). The simulation refers to the TM
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configuration with a bias voltage of 100 V. The field has an amplitude of about
3 V/µm. Compared to the results of chapter 9, even if the applied voltage is much
larger, the resulting electric field is smaller. This is due to the distance between the
metallic pads, which is longer than in the case of p-n junctions. The result of Fig. 11.5
is well fitted by a sinusoidal curve. On the right axis of Fig. 11.5, the corresponding
χ

(2)
EFISH is evaluated, using the χ(3) reported in [70]. The corresponding values are

around 0.01 pm/V, much smaller than the ones estimated for silicon p-n junctions
in chapter 9. This is due to both the smaller DC field achieved, but also to the small
χ(3) of SiON, which is 2 orders of magnitude smaller than that of silicon.

Fig. 11.5: EDC,y in the middle of the waveguide along the waveguide propagation direc-
tion z, referred to the TM configuration and to an applied bias of 100 V. The
simulations refers to an arbitrary poling period Λ = 5 µm and a waveguide width
w = 3 µm.

In a similar way, Fig. 11.6 reports the case of the TE configuration. Again, the
simulation considers an applied bias voltage of 100 V. In this case, the field amplitude
is about 2 V/µm, providing a χ(2)

EFISH amplitude below 0.01 pm/V.

11.3 The required poling period

The required poling period Λ can be evaluated using the same approach of Sec. 9.2.1.
Figure 11.7 shows the Λ dependence on the waveguide width w. The calculations
are done for a conversion process between λf = 1550 nm and λsh = 775 nm. Also in
this case, larger is w and larger is the required Λ. Moreover, for the TM combinations
the required Λ is shorter than for the TE combinations.
The conversion efficiency is proportional to the factor

∣∣∣γ̃(2)
sh

∣∣∣2 for both SHG and SPDC

processes. Assume for a while that the χ(2)
EFISH introduced in the waveguide is the

same, independently on w and the corresponding Λ. In this way,
∣∣∣γ̃(2)
sh

∣∣∣2 can be
evaluated based only on optical simulations, and it is reported in normalized units
in Fig. 11.8. The figure shows that the maximum efficiency is reached with two
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Fig. 11.6: EDC,x in the middle of the waveguide along the waveguide propagation direction
z, referred to the TE configuration and an applied bias of 100 V. The simulations
refers to an arbitrary poling period Λ = 5 µm and a waveguide width w = 3 µm.

Fig. 11.7: Poling period dependence on waveguide width. Black line refers to the TE
configuration, while blue line refers to the TM configuration.

different waveguide widths w for the TE and the TM combinations. The poling
period Λ corresponding to these w can be evaluated using the result reported in Fig.
11.7.
So far, the simulation referred to the conversion between λf = 1550 nm and λsh =
775 nm. However, also additional structures have been proposed, aimed at working
between λf = 1500 nm and λsh = 750 nm, as well as between λf = 1600 nm and
λsh = 800 nm. A summary of the selected waveguides is shown in Tab. 11.1.
The situation presented so far is, however, too simplified. The factor

∣∣∣γ̃(2)
sh

∣∣∣2 depends
in fact on the second order nonlinear coefficient, which in turn depends on the DC
field induced inside the waveguide. The electrostatic simulations described in the
previous section can therefore be used to predict the strength of the DC field inside
the waveguide, and the χ(2)

EFISH connected to it. Once that this is known, the factor
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Fig. 11.8: Normalized efficiency of the generation process, evaluated as the factor
∣∣∣γ̃(2)

sh

∣∣∣2.
The simulation refers to a frequency conversion process between λf = 1550 nm
and λsh = 775 nm. Black line refers to TE combinations, while blue line refers
to TM combinations. This factor is evaluated based only on optical simulations,
assuming that the second order nonlinearity introduced in the waveguide is
the same independently on the waveguide width and the corresponding poling
period.

Tab. 11.1: Geometric parameters of the selected waveguides. In this case, calculations are
performed based on only optical simulations, assuming that the same nonlinear
strength can be introduced in the waveguide independently on the waveguide
width and the corresponding poling period.

Pol. λf [nm] Waveguide width
w [µm]

Poling period Λ
[µm]

TE 1500 1 4.571
TE 1550 1 4.723
TE 1600 1 4.876
TM 1500 0.8 4.086
TM 1550 0.8 4.222
TM 1600 0.8 4.358

∣∣∣γ̃(2)
sh

∣∣∣2 can be newly evaluated.
To this purpose, Fig. 11.9 reports the amplitude of both the DC field EDC and
the corresponding χ(2)

EFISH evaluated in the center of the waveguide as a function
of the waveguide width w. The amplitude of EDC and χ

(2)
EFISH are evaluated by

taking their shape along z in the center of the waveguide and by fitting it with
a sinusoidal function. Therefore, the amplitude is considered as one half of the
difference between the maximum and the minimum value assumed along z. Figure
11.9 shows that χ(2)

EFISH increases with w. This is due to the fact that, as w increases,
also the corresponding poling period Λ increases. Consequently, the screening effect
caused by adjacent metallic stripes also reduces.
Therefore, the factor

∣∣∣γ̃(2)
sh

∣∣∣2 can be newly evaluated for each w by considering the
proper DC field that can be introduced inside the waveguide. The corrected version
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Fig. 11.9: Amplitude of the DC field EDC (left hand side axis) and of χ(2)
EFISH (right hand

side axis) evaluated as a function of the waveguide width w. The amplitude
is taken by fitting these quantities in the center of the waveguide along the
waveguide propagation direction z. Black line refers to the TE configuration,
while blue line refers to the TM configuration.

of the
∣∣∣γ̃(2)
sh

∣∣∣2 factor is now reported, as a function of the waveguide width, in Fig.
11.10.

Fig. 11.10: Normalized efficiency of the generation process, evaluated as the factor
∣∣∣γ̃(2)

sh

∣∣∣2
and considering also the strength of the DC field that can be obtained inside the
waveguide. The simulation refers to a frequency conversion process between
λf = 1550 nm and λsh = 775 nm. Black line refers to TE combinations, while
blue line refers to TM combinations.

Comparing the results of Fig. 11.10 with the ones of Fig. 11.8, it is clear that
the optimal configuration changes a lot. The new optimal parameters, evaluated
considering this new method, are shown in Tab. 11.2.
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Tab. 11.2: Geometric parameters of the waveguides selected for being realized. In this case,
the DC field that can be introduced in the waveguide is taken into account in
the evaluation of the most efficient combination.

Pol. λf [nm] Waveguide width
w [µm]

Poling period Λ
[µm]

TE 1500 2.6 6.256
TE 1550 2.6 6.465
TE 1600 2.6 6.673
TM 1500 1.6 4.685
TM 1550 1.6 4.841
TM 1600 1.6 4.997

11.4 Conversion efficiency

In the final design, both the structures belonging to Tab. 11.1 and Tab. 11.2 have
been proposed. The most efficient ones should be those of Tab. 11.2. For some
combinations, the SHG and SPDC conversion efficiencies are finally calculated, and
are reported in Tab. 11.3. For these combinations, a CW pump power of about
10 mW is considered. The waveguide length is set to 16.5 mm, corresponding to the
length of the waveguide actually realized. The applied voltage is 100 V.

Tab. 11.3: Generation efficiency for some of the combinations proposed here. For these
combinations, a CW pump power of about 10 mW and a waveguide length of
16.5 mm are considered. The applied voltage is 100 V.

Pol. λf [nm] Waveguide
width w

[µm]

Poling
period Λ

[µm]

Psh [pW] PSPDC
[fW]

TE 1550 2.6 6.465 358 296
TM 1550 1.6 4.841 225 186

The simulations proposed in this section show that both SHG and SPDC are possible
in SiON waveguides with the proper design. However, the efficiency of the process
described here is much lower than the one shown in chapter 9 and related to the
study of silicon waveguides with lateral junctions. In this case, the simulations
reported in Tab. 11.3 are obtained by considering a CW pump power of 10 mW and
a waveguide length of 16.5 mm, which are values much larger than the ones used
in the simulations of chapter 9. Therefore, even if the experimental configuration
that can be used to measure SHG and SPDC in SiON waveguides is much simpler,
the efficiency is much lower than in the case of silicon waveguides with lateral
doping. This makes this approach less attractive than the one based on the use of
p-n junctions in silicon.
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12Conclusions

In Part I, the effect of strain on integrated optical structures has been studied in
detail. In Chapter 2 the experimental characterization of a set of silicon racetrack
resonators under the effect of an external mechanical load was shown. In Chapter
3, this effect was modeled, accounting for the waveguide deformation and the
photoelastic effect, and showed good agreement with the experiment. Both the
theoretical model and the experiment confirmed that the strain-induced resonance
wavelength shift can vary from positive to negative values when changing the
resonator orientation angle. The possibility of tuning the resonance shift value
by changing the resonator orientation offers interesting applications in the field of
strain sensors, since the presence of many resonators with different orientations
on the same sample can provide information on the strain direction. Moreover,
the resonator orientation angle can be tuned in order to realize strain-insensitive
resonators, offering interesting applications for flexible photonics.

Part II was dedicated to the study of SHG in strained silicon waveguides. Chapter
4 introduced the theoretical framework of SHG in waveguides. The technical details
of the SHG experiment were then described in Chapter 5, estimating a second-order
nonlinear susceptibility of about 0.5 pm/V. Chapter 6 investigated the SHG process
under the effect of an external mechanical load: even if theoretical models predicted
a strain-induced variation of the SHG efficiency of more than 50%, the experimental
efficiency did not vary significantly. Chapter 7 studied the effects on SHG of the
charges trapped at the waveguide edges, which introduce a static electric field in
the waveguide that enables the EFISH process. UV treatment was applied in order
to remove these charges, demonstrating a complete suppression of the SHG signal
and thus highlighting the main role of charges on SHG. The strain effect on χ(2)

was below the noise level, setting an upper limit of 0.05 pm/V to the strain-induced
nonlinear coefficient.

Part III studied more efficient ways to induce static fields inside waveguides. The first
consisted of using silicon rib waveguides with lateral p-n junctions. In this way,
by polarizing the junction, a static field was introduced. In Chapter 8 this kind of
geometry was characterized by considering silicon racetrack resonators with lateral
junctions. An electro-optic effect was measured, relying both on plasma-dispersion
and DC Kerr effect. In Chapter 9 the use of lateral junctions was applied to the study

199



of SHG and SPDC. By using FEM simulations, the nonlinear strength was predicted,
and both the SHG and SPDC efficiencies were estimated. The SHG process was
experimentally characterized in Chapter 10, and was well reporoduced by the model.
Chapter 11 studied the possibility to perform SHG and SPDC in silicon oxynitride
waveguides. This platform is less efficient in terms of the nonlinear strength, but it
can offer interesting experimental advantages.

The first important outcome of my thesis is the clear answer to the debated question
on the origin of SHG in strained silicon waveguides. The complete suppression of
the SHG signal after the UV treatment demonstrates the fundamental role of trapped
charges, and the importance of the EFISH process. This introduces a paradigmatic
change in the development of these kinds of structures. Till now great effort was
done towards increasing the amount of strain inside the waveguide. However, my
work evidences that strain plays a secondary role, and large nonlinearities can be
obtained by increasing the DC fields inside the waveguide. This can be done both
by maximizing the amount of charges deposited on the waveguide edges, as well
as by realizing thinner waveguides. However, this has the drawback to increase the
propagation losses caused by the increase of the free carriers inside the waveguide.
Moreover, applying a proper photolithographic mask and exposing it to UV light,
a periodically varying χ(2) can be introduced along the waveguide propagation
direction, which allows getting SHG between fundamental modes.

My work demonstrates also that SHG can be induced by applying a DC field within
the waveguide via lateral p-n junctions. By properly biasing the junctions, χ(2)

coefficients much larger than the ones measured in the strained silicon waveguides
are demonstrated. By using an interdigitated junction configuration, a χ(2) of the
same order of magnitude of the one measured in strained silicon is estimated even
without bias, due to the built-in potential of the junction. The junctions are arranged
in a periodic way to exploit QPM technique. In this way, the conversion between
fundamental modes is studied. This yields a conversion efficiency much larger than
the one of strained silicon.

In this framework, the use of the waveguide with lateral junctions offers interesting
perspectives for the achievement of the SPDC process. The simulations reported in
Chapter 9 show that a SPDC signal in the pW range could be generated by using
reasonable experimental configurations. This kind of sensitivity could be achieved
by using single photon counting techniques based on up-conversion modules [172]
or on superconducting nanowires [173].

Using the same silicon platform with lateral p-n junctions, electro-optic effects have
been demonstrated in racetrack resonators. The electro-optic capability of this
platform is compared to the ones most commonly used nowadays, which are based
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on second order nonlinearities. Doing so, the strength of the equivalent second order
nonlinear coefficient χ(2)

eq that would have provided an electro-optic modulation of
the same strength is estimated. A value of about 16 pm/V is demonstrated. This
value is comparable with the one of χ(2) materials (such as lithium niobate) and
at least one order of magnitude stronger than the most recent measurements of
strain-induced Pockels effect in silicon [110]. This result demonstrates that lateral
p-n junctions can provide extensive opportunities for fast electro-optic modulation
in silicon.

In conclusion, the silicon platform with lateral p-n junctions offers interesting
perspectives for the integration of both SPDC photon sources as well as fast electro-
optic modulators. This can enable fascinating perspectives in the field of integrated
quantum photonics. In one of the most recent and advanced integrated quantum
photonic experiments, multidimensional entanglement was demonstrated in a silicon
chip [50]. Entangled photon states were generated by means of spontaneous FWM,
and thermo-optic phase-shifters were used to manupulate the generated states.
Using silicon waveguides with lateral p-n junctions, entangled photons could be
generated using SPDC process. This would make tremendously simpler the pump
filtering procedure, since the generated photons are spectrally far away from the
pump signal. Moreover, the use of phase-shifters based on DC Kerr effect would offer
a much faster response than the ones based on thermo-optic effect, whose response
time is in the microsecond timescale [67].
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