
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
ICT International Doctoral School

Learning From Noisy Data Through
Robust Feature Selection, Ensembles And

Simulation-Based Optimization

Andrea Mariello

Advisor

Prof. Roberto Battiti

University of Trento - Italy

March 2019

Alla mia nonna,
la mia guida invisibile.

To my grandmother,
my invisible guide.

Abstract

The presence of noise and uncertainty in real scenarios makes machine
learning a challenging task. Acquisition errors or missing values can lead to
models that do not generalize well on new data. Under-fitting and over-fitting
can occur because of feature redundancy in high-dimensional problems as well
as data scarcity. In these contexts the learning task can show difficulties
in extracting relevant and stable information from noisy features or from
a limited set of samples with high variance. In some extreme cases, the
presence of only aggregated data instead of individual samples prevents the
use of instance-based learning. In these contexts, parametric models can
be learned through simulations to take into account the inherent stochastic
nature of the processes involved. This dissertation includes contributions
to different learning problems characterized by noise and uncertainty. In
particular, we propose i) a novel approach for robust feature selection based
on the neighborhood entropy, ii) an approach based on ensembles for robust
salary prediction in the IT job market, and iii) a parametric simulation-
based approach for dynamic pricing and what-if analyses in hotel revenue
management when only aggregated data are available.

Keywords
Feature selection, Ensembles, Simulation-based optimization, Mutual infor-
mation, Revenue management

Acknowledgments

I would like to express my sincere gratitude to my advisor Prof. Roberto
Battiti, for his support during the PhD. His guidance and experience helped
me in improving my research skills and becoming more autonomous.
I would like to thank also the members of the LION lab (past and present),
in particular Prof. Mauro Brunato, Dr. Tahir Kalaycı and Manuel Dal-
castagnè, for the fruitful discussions throughout my research. I extend my
gratitude also to Prof. José Alberto Hernández of the Carlos III University
of Madrid for the productive collaboration, to the professors of the courses
that I attended during my PhD, and to the administrative staff of the PhD
school for clearing doubts on regulations and procedures.
I would like to thank also Prof. Laetitia Jourdan, Prof. Vladimir Grishagin,
Prof. Ignacio de Miguel, and Prof. Rodolfo Baggio, for their valuable feed-
back and time spent on reviewing this dissertation.
My thanks also goes to my friends in S. Bartolameo residence, at the Uni-
versity of Trento and at the IMDEA Networks Institute, for the wonderful
time spent together. In particular, I would like to thank Ngô Chấn Nam for
the help, support and closeness during my stay in Trento.
A special thanks also to my family, for their continuous and unconditional
love and support during my PhD and in my life in general. Last but not
least, a heartful thanks to Thủy (and her family). She is the light in the
dark that guides me in tough times.

Contents

Abstract i

Acknowledgments iii

Contents v

List of Tables vii

List of Figures ix

Publications originated from this work xi

1 Introduction 1

1.1 Learning from Data . 1
1.2 Learning in the Presence of Noise 3

1.2.1 Effects of Noise on Machine Learning 5
1.2.2 Noise Reduction by Feature Selection 7
1.2.3 Noise Reduction by Ensemble Learning 8
1.2.4 Noise Handling in Imbalanced Data 11

1.3 Proposed Solutions . 12
1.4 Structure of the Thesis . 15

2 Robust Feature Selection 17

2.1 Taxonomy of Feature Selection Methods 18
2.2 Distribution-Independent Filter Methods 19

2.2.1 RELIEF and RELIEFF 20
2.2.2 Feature Selection based on Mutual Information 21

v

2.3 Feature Selection with the Neighborhood Entropy 25
2.4 NEFS Implementation Details 29

2.4.1 Locality-Sensitive Hashing 32
2.5 Experiments and Discussion 36

2.5.1 CPU Time Models . 41

3 Learning with Ensembles 45
3.1 E-Recruitment . 46
3.2 Feature Engineering and Data Cleaning 48
3.3 Models for Salary Range Prediction 51
3.4 Experiments and Discussion 53

3.4.1 Model configuration and selection 54
3.4.2 Model comparison . 56

4 Learning from Aggregated Data 65
4.1 Dynamic Pricing in Hotel Revenue Management 66
4.2 Simulation of a Hotel Booking Scenario 70

4.2.1 Definitions . 70
4.2.2 System overview . 74

4.3 Parametric Models . 76
4.3.1 Simulation of reservation requests 77
4.3.2 Simulation of nights and rooms 80
4.3.3 Simulation of cancellations 82

4.4 Dynamic Pricing and Acceptance Probability 83
4.5 Experiments and Discussion 84

4.5.1 Setup of the experiments 86
4.5.2 Results on arrivals, occupancy and revenue 89

5 Conclusion 93

Bibliography 95

vi

List of Tables

2.1 Datasets used for the tests 38
2.2 Most frequently selected features for the CORRAL dataset. . 40
2.3 Asymptotic time complexities. 43
2.4 CPU Time Linear Models. 44

3.1 Correspondence between education levels and minimum num-
ber of years in the education system for Spain. 50

3.2 Optimal number of features (FS) and model configurations for
all the classifiers (excluding Vote and Vote3). 56

3.3 Optimal configurations for Vote and Vote3 (differences from
Table 3.2 in bold). 57

3.4 Average scores and standard errors for all the classifiers (best
scores in bold). 58

4.1 Hotels used for the tests. 87
4.2 Percentage increase in arrivals, occupancy (as room-nights)

and revenue after optimization. Maximum and minimum val-
ues are in bold. 90

vii

List of Figures

1.1 Example of a 2D dataset with 2 classes (crosses and circles).
The feature x1 can be used to classify samples without the fea-
ture x2, which seems independent of the class and not relevant
for classification. 7

1.2 Example of an ensemble of 5 classifiers. The risk of an incor-
rect prediction is reduced by using majority voting among the
members of the ensemble. 9

1.3 Example application of the Smote over-sampling method and
of the Tomek links data cleaning method to cure noisy im-
balanced datasets. Starting from the original data (a), the
minority class is over-sampled (b), and the Tomek links are
removed (c). The resulting data (d) are more balanced and
with better-defined class clusters. 12

2.1 The Neighborhood Entropy evaluated for the case of high un-
certainty (a) is higher than the value retrieved for the case of
low uncertainty (b). 27

2.2 First 3 iterations of NEFS on 17 two-dimensional points and
k = 5. The first iteration selects the nearest neighbors of
X1. Since Xi, i = 2, . . . , 6 have already been considered, the
second iteration selects the neighbors of X7. In this case X6

is selected again. The third neighborhood is that of X10. . . . 35

ix

2.3 The classification accuracy for the MLP on GAS (a), and for
the RF on SPAMBASE_N (b) and on a small random sample
of SPAMBASE_N (c). 41

2.4 The classification accuracy for the SVM on SEGMENT_N (a)
and on HYPERSPHERES (b). 42

3.1 Box plot of classification accuracy. 59
3.2 Box plot of F1 score. 59
3.3 Precision-Recall curves with corresponding AUCs. 60
3.4 ROC curves with corresponding AUCs. 61

4.1 Dependency graph of the hotel registry and of the models used
by our simulator. 74

4.2 System overview. Reservation requests and cancellations are
interspersed. The state of the hotel after one complete simu-
lation is used by the optimizer to compute the total revenue
and adjust the pricing policy. 75

4.3 Qα(i,BH) for BH = 30 and for different values of α. 79
4.4 Average daily revenue for Hotel 05 and Hotel 07 (one value per

week). 91
4.5 Estimated distributions of increase in revenue after optimiza-

tion for Hotel 05 and Hotel 07. 91

x

Publications originated from this work

The research work presented in this PhD dissertation led to the following
publications:

• A. Mariello and R. Battiti. Feature Selection Based on the Neighbor-
hood Entropy. IEEE Transactions on Neural Networks and Learning
Systems, 2018, doi:10.1109/TNNLS.2018.2830700.

Abstract: In this work we propose a new measure for feature selection
that is related to Mutual Information, called Neighborhood Entropy,
and a novel filter method based on its minimization in a procedure in-
volving approximated nearest-neighbors and locality-sensitive hashing.
Experiments show that the classification accuracy is usually higher than
that of other state-of-the-art algorithms, with the best results obtained
with problems that are highly unbalanced and non-linearly separable.

Related thesis chapter: Chapter 2.

• I. Martín, A. Mariello, R. Battiti, and J. A. Hernández. Salary Pre-
diction in the IT Job Market with Few High-Dimensional Samples: A
Spanish Case Study. International Journal of Computational Intelli-
gence Systems, 11(1):1192–1209, 2018, doi:10.2991/ijcis.11.1.90.

Abstract: The explosion of the Internet has deeply affected the labour
market. Identifying the most rewarded and demanded items in job offers
is key for recruiters and candidates. This work analyses 4000 job offers
from a Spanish IT recruitment portal. We conclude that experience is

xi

more rewarded than education, we identify five profile clusters based
on required skills, and we develop an accurate salary-range classifier by
using heterogeneous voting ensembles.

Related thesis chapter: Chapter 3.

• A. Mariello, M. Dalcastagnè, M. Brunato, and R. Battiti. HotelSimu: a
Parametric Simulator for Hotel Dynamic Pricing. Simulation Modelling
Practice and Theory [under review, 2nd round].

Abstract: In Hotel Revenue Management, an optimal pricing policy
is crucial for maximizing the profit. In this work we propose a hotel
demand simulator, HotelSimu, which generates events by using Monte
Carlo simulations and parametric demand models. These models are
completely defined by a limited number of manager-friendly indicators,
and they cover a large range of demand curve profiles. Our models can
be calibrated by using historical records but at the same time they allow
hotel managers to perform fast what-if and risk analyses on future sce-
narios, even when only aggregated data are available. The applicability
of our models within a simulation-based revenue optimization context
is evaluated in a case study involving 10 hotels in Trento, Italy.

Related thesis chapter: Chapter 4.

Other related work during the PhD led also to the following publication:

• R. Battiti, M. Brunato, and A. Mariello. Reactive Search Optimization:
Learning While Optimizing. Handbook of Metaheuristics. International
Series in Operations Research & Management Science, Springer, Cham,
272:479–511, 2019, doi:10.1007/978-3-319-91086-4_15.

xii

Chapter 1

Introduction

In an era characterized by large volumes and variety of data, one possibility
to extract useful knowledge is represented by machine learning. The idea
that a computer can learn patterns and regularities from raw data without
being explicitly programmed has found applicability to almost every aspect of
our society. Autonomous systems, speech synthesis, sentiment analysis, pre-
dictive maintenance and smart cities are just a few examples of applications
of machine learning that are becoming part of our every-day life. However,
this ubiquitous presence leads also to serious threats related to the reliability
of these approaches in contexts characterized by high uncertainty. In this
Chapter, we introduce the problem of learning in the presence of noise and
some of the most effective solutions proposed in the literature. We also high-
light our contributions related to three scenarios: learning from data with
redundant features, learning from a limited number of samples, and learning
from aggregated data. We conclude with the outline of this dissertation.

1.1 Learning from Data

At the intersection of Statistics, Computer Science and Operations Research,
Machine Learning (ML) addresses the problem of the definition and optimiza-
tion of a computational system from a set of raw data. ML follows a different

1

CHAPTER 1. INTRODUCTION

paradigm with respect to other traditional computational approaches. For
techniques that do not learn from data, an algorithm is implemented as a
sequence of explicitly programmed instructions. ML algorithms instead do
not require the expertise of the practitioner to identify patterns and regular-
ities in a dataset. Once these patterns are learned, they can be used to infer
knowledge on new instances.

Nowadays, almost all new technologies and companies are data-driven and
employ ML approaches. When a social media platform suggests friends ap-
pearing in pictures or a smartphone is unblocked with our eyes, we use ML
for facial recognition. When a virtual assistant (or chatbot) interacts with us
to provide support in choosing the best product or finding directions to reach
our destination, we use ML for natural language processing, speech analy-
sis and speech synthesis. When a document scanner transforms images of
text into editable words, we use ML for optical character recognition (OCR).
When online services suggest the next product to buy or the next movie to
watch according to our preferences, we are the target of ML-based recom-
mendation systems. When we communicate through optical networks, ML
is employed in the characterization and operation of network components as
well as in performance monitoring and estimation of the quality of transmis-
sion [96]. Since ML is a continuously developing field, the number of such
applications is destined to grow.

Nonetheless, ML algorithms can be classified into two main categories: su-
pervised learning and unsupervised learning. In supervised learning a model
is induced from a set of samples expressed as input-output pairs. From
these data a mapping is retrieved from the attributes that characterize the
instances (the input features) to their corresponding target (the output vari-
able). The learning process relies on the available outputs to reduce the error
between the ground truth and the predictions of the model. In particular,
when the model learns to predict a category, class or label, we refer to it as a

2

CHAPTER 1. INTRODUCTION

classification task. When the model is asked to predict a numerical output,
we refer to it as a regression task. In unsupervised learning, the samples do
not have an associated target. In this case the main goal is to learn groups
or clusters of data characterized by common features. Another related class
of problems is semi-supervised learning, where the targets of some samples
are available (usually for a small fraction of the data), while for most of the
samples outputs are not available. In these types of problems, the instances
with unknown targets can be used to improve the predictions made by the
learners trained through supervised techniques. Another category of ML al-
gorithms is also reinforcement learning, where models (or action policies) are
learned, in supervised as well as unsupervised settings, through a dynamic
process of trial and error. Most of the times an agent learns the set of the
best actions to take in response to specific events in order to maximize a final
reward.

The implicit assumption in designing and developing most of the afore-
mentioned ML models is the presence of a noise-free environment. However,
in real-world applications ML algorithms should account for different degrees
of uncertainty, noise, missing information, errors and imbalance, which can
affect the accuracy of the learned models, as reported in the next Section.
In this dissertation we analyze the effect of uncertainty in three different
application domains, with a main focus on classification, regression and re-
inforcement learning.

1.2 Learning in the Presence of Noise

Research on ML algorithms has frequently focused on controlled environ-
ments and noise-free scenarios [95] because learning accurate models in con-
texts characterized by high levels of noise and uncertainty can be a chal-
lenging task. In real scenarios, the presence of acquisition errors as well as

3

CHAPTER 1. INTRODUCTION

the absence of some data can significantly affect the generalization perfor-
mance of the learned models. The training process can also be deceived by
redundant or irrelevant features, by a limited number of samples, or by the
intrinsic stochastic fluctuations of the analyzed phenomena.
Sometimes the sensing phase, in which the algorithm encodes physical events
into machine-interpretable inputs, is not considered explicitly. A frequent hy-
pothesis is the presence of well-defined and already encoded samples that can
be used directly for training a model. As an example, in the game of battle-
ship an ML algorithm can be trained to choose the best next move given the
state of the board. The procedure would probably use the common encoding
of moves as a combination of a letter and a number (e.g. D-2). To limit
the complexity of the problem, the algorithm would probably concentrate on
the reasoning about the game and would avoid considering possible errors in
reading or typing the moves. However, to play a real game, the algorithm
should account for sensing noise explicitly, and it should distinguish between
acceptable and illegal moves. Games are usually characterized by a set of
rules to follow but in other application domains a clear definition of what is
acceptable is not available. As an example, in the context of anomaly detec-
tion, sometimes the definition of anomaly is the result of subjective judgment
because a ground truth is missing.
In contexts where there are no prescribed rules, it is also more difficult to
clearly define and separate the noise, which should lead to data cleansing or
removal, from the concepts of novelty and uncertainty, which are also related
to unexpected or unpredictable variation in data but they are not always
harmful. The robustness to unexpected modifications in the input is even
more important when the ML algorithm is one of the modules of complex
data-driven workflows, where cascade effects can compromise the quality of
the final products. Whenever noise is expected, attention has to be paid also
on the transformations applied to data. As an example, the discretization or

4

CHAPTER 1. INTRODUCTION

quantization of a numerical attribute with a continuous domain can increase
the level of noise. Errors in the original attribute not changing the discrete
value or quantized level vanish and do not affect learning. On the other
hand, small changes close to the quantization-level boundaries can lead to
potentially large qualitative changes in the learned model [108].

1.2.1 Effects of Noise on Machine Learning

Several studies have recently focused on the effects of injected noise on ML
algorithms. For example, in [100] the authors show that the Naïve Bayes
classifier is systematically more robust than decision trees and support vector
machines. Other studies in computer vision show that convolutional neural
networks tend to be very sensitive to noisy, distorted and blurred images
[77, 46]. Classifiers and in particular deep learning models often suffer from
integrity attacks. In [103] a deep neural network is fed with adversarial
samples, which are built by adding to legitimate inputs enough perturbations
to mislead the model, while a human observer would still perform a correct
classification. Experiments show that these adversarial instances lead to a
classification error of ≈ 84%. Even pre-trained and state-of-the-art models
like the Google Cloud Vision API can be seriously affected by noise and
adversarial examples [71]. These results raise also security issues for real-
world application domains, such as banking, healthcare, and autonomous
driving. For example, a face recognition system for online banking can be
deceived into granting access to an intruder with traits similar to the owner
of the account, or an autonomous vehicle can wrongly identify street signals
in rainy weather.

To address these issues, one has to focus on two main approaches:

• robust learning, in which traditional ML algorithms are modified to
explicitly take into account the presence of noise and gracefully degrade

5

CHAPTER 1. INTRODUCTION

their performance as the uncertainty grows;

• noise detection and cleansing, in which a preprocessing step is executed
before the actual learning to identify noisy data and remove or correct
them.

Most of the times these approaches need to be combined. As concerns im-
age processing, complete architectures based on simultaneous de-noising, de-
blurring and classification show promising results [43]. The proposed solu-
tions use filters able to project the input images into the space of natural
images. Natural images are in fact characterized by specific features, such
as high correlation among adjacent pixels, that usually are not preserved in
perturbed inputs. Therefore the effect of noisy and adversarial samples can
be effectively reduced by ad-hoc feature transformations and projections.
Other approaches to make these algorithms more robust include also reg-
ularization and data augmentation [113, 47]. By adding penalties on the
magnitude of the learned parameters or by injecting artificial perturbations
in the dataset, the model can be less prone to overfitting and it can exhibit
better generalization performance.

In the context of decision tree learning, another strategy to reduce over-
fitting is pruning leaves and branches that can originate from noisy data.
Uncertainty and unexpected perturbations usually lead to deeper trees, and
reducing the depth of the model can be an effective technique to avoid mem-
orizing the noise. However, the effort in making an algorithm more robust is
not always beneficial, maybe because the chosen algorithm is inappropriate
for the specific problem at hand. For instance, classical results [54] show that
fully-connected neural networks handle numerical data with noise generally
better than the ID3 decision trees [109]. With a large number of samples
and an artificial additional noise level of 25%, back-propagation leads to an
increase in classification accuracy of ≈ 18% with respect to ID3.

6

CHAPTER 1. INTRODUCTION

x
1

x
2

Figure 1.1: Example of a 2D dataset with 2 classes (crosses and circles). The feature x1
can be used to classify samples without the feature x2, which seems independent of the
class and not relevant for classification.

1.2.2 Noise Reduction by Feature Selection

Despite the fact that noise is usually associated with errors and uncertainty
in the samples, the concept can also be extended to the uncertainty in predic-
tions caused by redundant or irrelevant features. A robust algorithm should
cope with missing or erroneous information as well as with deceptive infor-
mation, which can mislead the training of the model and result in noisy
predictions and poor generalization performance. A 2D example is reported
in Figure 1.1, where one feature is apparently independent from the class and
the other feature is more relevant for classification. It is evident that one of
the features can be considered as noise with respect to the training process.
Several feature selection and feature extraction algorithms have been pro-
posed to reduce the dimension and complexity of the models, and to achieve
better prediction accuracy. However, the performance of traditional algo-
rithms can significantly decrease in the presence of noise. As an example, in
the context of gene selection, the sensitivity to label noise is relatively high
because of the limited number of training samples (usually in the order of
tens) [143, 114]. Only a few errors in the output variable lead to a decrease

7

CHAPTER 1. INTRODUCTION

in the accuracy of feature rankings and of the identification of the most dis-
criminative genes.
One example of a domain-independent approach that implicitly considers
noise and stochastic fluctuations is the χ2 test for stochastic independence
[108]. If the hypothesis of independence of a feature from the output variable
can be rejected by the test with a high confidence level, the feature is selected
for training. The same study also proposes to use the concept of attribute
importance, which is defined as the prediction error resulting from the model
trained without the considered attribute.
Another well-known relevance criterion is the maximization of the mutual
information between the features and the output variable. However, the ac-
curacy of the estimation of mutual information can easily decrease as the level
of noise grows. In [88, 55] a more robust estimation is achieved by defining
an explicit probabilistic model of the output noise. However, such models
are not always available and they do not consider attribute noise explicitly.

1.2.3 Noise Reduction by Ensemble Learning

When the definition of noise models is not an option, an approach to reduce
uncertainty and the effects of noisy samples on the final predictions is given
by group learning or ensembles. The performance of a group or committee
of models is usually better than that of each individual member [44]. The
reason behind this is threefold. From a statistical point of view, an ML
algorithm searches for the best hypothesis on the data within a hypothesis
space. When the search space or dimensionality of the problem are large
with respect to the number of samples, it is possible to learn several models
with comparable performance but associated with different hypotheses. By
aggregating the predictions of a group of models one can reduce the risk of
selecting the wrong hypothesis, as depicted in Figure 1.2. From an opti-
mization point of view, training a model can be seen as the optimization of

8

CHAPTER 1. INTRODUCTION

Classifier 1

Classifier 2

Classifier 5

Classifier 4

Classifier 3New
sample

Individual
predictions

Ensemble
prediction

Figure 1.2: Example of an ensemble of 5 classifiers. The risk of an incorrect prediction is
reduced by using majority voting among the members of the ensemble.

a cost function. If this function is non-convex, in general a unique global
optimum is not available and an optimization algorithm converges to a local
minimum. When multiple local minima are present, the risk of selecting a
sub-optimal one can be reduced by executing several optimization runs with
different starting points. In the context of learning, this is equivalent to
training a group of models. Moreover, group learning can be beneficial in
terms of the representation capability of the model, since it is more difficult
for an individual learner to approximate complex predictor functions like the
ones that can be learned by an ensemble.
Several methods have been proposed to build ensembles, including random-
ization, bagging and boosting [45, 98, 2]. Experiments show that, in situa-
tions with low levels of noise, boosting leads to more accurate results than
randomization and bagging. When the levels of noise are higher, the variance
of the predictions increases. Therefore randomization and bagging, which

9

CHAPTER 1. INTRODUCTION

are variance-reduction techniques, are usually more robust than boosting. In
boosting models, the increase in the weights of instances associated with pre-
diction errors occurs without considering whether the samples have a correct
output or not. Putting more emphasis on noise-free samples whose output is
difficult to predict can lead to a reduction in the model bias. However, try-
ing to learn the features of noisy inputs and outliers can mislead the learning
process.
An alternative approach to bagging and randomization that can lead to ro-
bust ensembles is sub-sampling [140]. The main idea of this method is the
reduction in the number of instances selected in each bootstrap sample. With
lower sampling ratios with respect to standard bagging, the members of the
ensemble are trained on more diversified sample sets and can lead to better
generalization.
Robust ensembles can also be built as a heterogeneous committee, in which
individual members belong to different families of ML models. The final
predictions are the result of the aggregation of individual outputs, usually
after majority voting or averaging. This approach has the potential to lead
to more accurate models because it exploits the distinctive features of each
base learner to possibly recognize and handle different types of noise.

Ensembles can also be used as a noise detection procedure, in which a
sample is marked as noise when there is disagreement between a specified
number of individual members and the ground truth. Similarly to cross-
validation, one can split the dataset to be cleaned in different folds and train
the ensemble on all the folds but one. The learned ensemble is used to
identify noisy instances in the held-out fold, and the same procedure is then
repeated on the other folds. In [29], the authors use an ensemble of three
classifiers (a decision tree, a linear model and a nearest neighbor classifier),
and they partition the dataset into four folds. They also propose two different
strategies for identifying noise: majority filtering and consensus filtering. For

10

CHAPTER 1. INTRODUCTION

the former, they mark an instance as noise when at least two members of
the ensemble misclassify it. For the latter, they identify an instance as noise
only when all the classifiers disagree with the ground truth, thus leading to a
more conservative rule. In [78], a similar approach is used with an ensemble
of 25 heterogeneous models. The authors show that the increased diversity
among the individual learners effectively reduces the risk of false positives.
Other examples of ensembles are presented in [3, 38, 59, 93, 123, 40, 21].

1.2.4 Noise Handling in Imbalanced Data

In addition to ensembles, other interesting approaches for data cleaning in-
clude traditional statistical methods for identifying outliers as well as meth-
ods based on nearest-neighbors smoothing [14] and disagreement among
locally-trained SVMs [111]. However, the previous data cleaning methods
are not always sufficient to enhance the quality of the training set. For in-
stance, in classification tasks it is particularly challenging to handle noise in
case of imbalanced data, when samples belonging to one class significantly
outnumber samples of other classes. This is common in many real scenarios
where one is interested in identifying important but infrequent events, such
as patients affected by a rare disease.

One way to make the learning process more robust is to retrieve more
data. However, this is not always a viable option, and a combination of over-
sampling and data cleaning is needed to properly handle imbalanced data
with class overlapping [16]. In these contexts, the removal of overlapping
samples can lead to better-defined class clusters and to simpler models with
better generalization performance. One of the proposed approaches includes
a first step of over-sampling based on the Smote technique [34], followed
by a data cleaning method based on Tomek links [125]. As depicted in
Figure 1.3, new minority-class instances are sampled by using interpolation.
Then couples of nearest neighbors belonging to different classes are identified

11

CHAPTER 1. INTRODUCTION

(a) (b)

(c) (d)

Figure 1.3: Example application of the Smote over-sampling method and of the Tomek
links data cleaning method to cure noisy imbalanced datasets. Starting from the original
data (a), the minority class is over-sampled (b), and the Tomek links are removed (c).
The resulting data (d) are more balanced and with better-defined class clusters.

and removed to obtain better-defined class clusters.

In this dissertation we focus on the effects of noise and uncertainty in
the contexts of feature selection, ensembles, and learning through stochastic
models, as described in the next Section.

1.3 Proposed Solutions

Among the different application domains in which the effects of noise can
be relevant, we address three main scenarios where proper noise handling or
modeling can be extremely beneficial for learning. In particular, the main
objective of our research is the analysis of uncertainty for problems charac-

12

CHAPTER 1. INTRODUCTION

terized by different volumes of data.

The first research direction is related to noise handling in the case of
feature selection, when the number of samples is sufficient for learning an
accurate model but the dimensionality is too high and some features deceive
the training process.

The second direction is related to contexts characterized by a limited
number of samples that prevents learning accurate models because of poor
data quality. In this case, even when the dimensionality is high, feature
selection techniques are not always beneficial, and a viable option is given by
manual feature engineering and ensemble learning.

The third and last research direction presented in this dissertation is re-
lated to the extreme case when individual samples are absent and traditional
instance-based ML algorithms cannot be used. Under the hypothesis of hav-
ing access only to aggregated data, a possibility to extract useful insights is
given by the definition of parametric and stochastic models. These models
can be used as a baseline or bootstrap sample to infer interesting patterns in
real-world phenomena that are difficult to sense and measure.

In more detail, the main contributions of our research include the fol-
lowing. As concerns the feature selection scenario, we propose a novel and
robust approach based on the maximization of the mutual information be-
tween the features and the output variable. To avoid the errors in evaluating
mutual information in noisy and high-dimensional contexts, we define a new
measure, which we refer to as neighborhood entropy, that is more robust to
noise and class imbalance. Our proposed algorithm selects the features that
minimize this measure, by using a greedy procedure based on approximated
nearest neighbors and locality-sensitive hashing. Experiments show that the
accuracy of models trained with the features selected by our method is usu-
ally higher than that caused by other state-of-the-art algorithms, with the
best results obtained with problems that are highly unbalanced and noisy.

13

CHAPTER 1. INTRODUCTION

For scenarios characterized by high dimensionality and a limited number of
samples, we propose ensemble learning as a solution to handle uncertainty, in-
crease the robustness of predictions, and improve generalization performance.
The effectiveness of our approach is empirically shown in the context of salary
prediction in the IT job market. After a rigorous preprocessing step of raw
data crawled from the web, we evaluate the benefits of using feature selection,
showing that dimensionality reduction does not lead to any advantage with
respect to the use of the complete set of features. For this particular appli-
cation, there is no evidence of redundancy among the features. To increase
the prediction accuracy, we formulate the original regression problem as a
classification problem for the prediction of a salary range. In addition, we
develop and compare several ML models based on linear classifiers, support
vector machines, neural networks, nearest-neighbors models and ensembles
of decision trees like random forests and boosting machines. We also propose
two voting classifiers defined respectively as an ensemble of all the aforemen-
tioned models and as an ensemble of the three best performing models. In
some cases, this results into an ensemble of ensembles. Experiments show
that group learning leads to better accuracy, with the best results achieved
by the voting classifiers.

Last but not least, we analyze the problem of learning a model when
individual sample instances are not available, and one has access only to
aggregated data. There are several real-world scenarios where traditional
instance-based ML is not applicable because historical data are not available
or are difficult to retrieve. For example, in data storage systems, after some
time (years or even hours), the volume of information to be archived is so big
that aggregation is used to reduce resource consumption. In this dissertation,
we focus on hotel revenue management and in particular on dynamic pricing
of hotel reservations. We investigate the case of absence of historical records
about reservations and consequently lack of a ground truth for revenues.

14

CHAPTER 1. INTRODUCTION

Under the hypothesis of known aggregated data like the average number of
reservations and cancellations, we propose a set of parametric and stochastic
models for the simulation of room demand. We use fixed average prices from
10 hotels in Trento, Italy, as a baseline, and then we optimize our pricing
models by using simulation-based black-box optimization. In this case, the
learning process is formulated as an optimization procedure, in which the
evaluation of the objective function corresponds to a set of Monte Carlo
simulations. By following this procedure, one is able to conduct what-if and
risk analyses with respect to different scenarios and pricing policies, only
with aggregated data. In addition, our methodology explicitly defines the
inherent stochasticity of reservation arrivals. Experiments show that the risk
of losses is absent for medium-big hotels and limited for small hotels, with a
maximum loss probability of ≈ 0.03.

1.4 Structure of the Thesis

The structure of the remainder of this dissertation is as follows.
Chapter 2 presents solutions to the problem of learning from data charac-

terized by redundant or irrelevant information. The main focus is on feature
selection for classification, as described in Section 2.1, and in particular on
distribution-independent filter methods, which are introduced in Section 2.2.
In Section 2.3 we propose a new measure that is related to mutual infor-
mation, called neighborhood entropy, and a novel filter method based on
its minimization. The use of approximated nearest-neighbors and locality-
sensitive hashing to speed up the estimation of this measure is described in
Section 2.4. As reported in Section 2.5, experiments show that our tech-
nique can be employed effectively when one can dedicate more CPU time to
achieve better classification accuracy and more robustness to noise and to
class imbalance.

15

CHAPTER 1. INTRODUCTION

Chapter 3 introduces ensemble learning as an effective solution to learn a
more reliable model when the number of samples is limited and the problem
is characterized by a high dimensionality. In Section 3.1 we describe the
application context, which is salary prediction in the IT job market. In
Section 3.2 we illustrate our feature engineering strategy to reduce the effect
of noise as well as to properly encode and standardize categorical features. In
Section 3.3 we define several classification models, including neural networks,
random forests, support vector machines, boosting models and ensembles of
them. As reported in Section 3.4, experiments show that our dimensionality
reduction and data cleansing strategies, coupled with a voting ensemble, lead
to an accuracy of ≈ 84%.

Chapter 4 tackles the problem of learning a model in the extreme case
when individual samples are not available and one has access only to ag-
gregated data. The chosen application domain, which is dynamic pricing
in hotel revenue management, is introduced in Section 4.1. An overview of
the hotel reservation process and of the proposed simulator is given in Sec-
tion 4.2. A detailed description of our solution based on parametric models
of reservations and cancellations is presented in Section 4.3. Implementation
details of the chosen pricing policy and acceptance probability model are then
reported in Section 4.4. Experiments on aggregated data from 10 hotels in
Trento, Italy, show that the adoption of optimized pricing policies based on
our parametric and stochastic models leads to an average revenue increase
of ≈ 19% with respect to policies with fixed prices, and to low risk of losses,
as reported in Section 4.5.

Chapter 5 concludes the dissertation with some final remarks.

16

Chapter 2

Robust Feature Selection

When the dimensionality of the problem is high with respect to the number of
samples, learning an accurate and robust model is a challenging task. Feature
selection is needed to reduce complexity and filter out redundant or irrelevant
features that can be considered as noise and therefore deceive the training
process. In this Chapter, in the context of classification, we propose a new
measure that is related to mutual information, called neighborhood entropy,
and a filter method based on its minimization. Our greedy algorithm is also
based on approximated nearest-neighbors techniques and locality-sensitive
hashing (LSH) to speed up the evaluation of the proposed measure.

Section 2.1 introduces feature selection and the main related algorithms.
Section 2.2 focuses on distribution-independent methods and in particular
on feature selection based on mutual information. Section 2.3 presents our
approach, while Section 2.4 focuses on the use of LSH for finding nearest
neighbors. Section 2.5 reports our experimental results. We show that the
classification accuracy, for models learned on the features selected by our
procedure, is usually higher than that of other state-of-the-art algorithms. At
the expense of more computation time, our approach leads to more robustness
to noise and class imbalance, and to a better order by which the features are
selected, with higher accuracy for fewer features.

17

CHAPTER 2. ROBUST FEATURE SELECTION

2.1 Taxonomy of Feature Selection Methods

When using huge collections of data in classification tasks, one faces the so-
called curse of dimensionality : the number of dimensions can be too high
to get a good classifier in a reasonable time. In this context, dimensionality
reduction can lead to:

• better generalization by using a smaller number of free parameters;

• avoidance of the so-called peaking phenomenon [80], that is, the situa-
tion in which the classification accuracy steadily grows as the number
of features grows until a point is reached when adding new dimensions
to the system makes the classification accuracy stable or even worse;

• better understanding of the learned models, by making them more in-
terpretable by humans [19].

Dimensionality reduction can be achieved by extracting new features (e.g.
through projections [129, 130, 27]) or by selecting a subset of the original
features. In order to select the most relevant features with respect to the
output class, several methods have been proposed. By considering the rela-
tionship between feature selection and classification algorithms, the various
methods can be classified into:

• wrapper methods, which use a model and its performance to rank the
features [82];

• embedded methods, which implicitly select features during the model
training [124, 101, 72, 133];

• filter methods, which rank and select features by using a proxy measure
(relevance score) instead of the classifier error rate.

18

CHAPTER 2. ROBUST FEATURE SELECTION

Filter methods are independent from the classifier and are usually faster than
wrapper methods, so that they can easily scale to very high-dimensional
datasets. The relevance score used by filter methods is computed according
to different criteria, including:

• statistical tests like the t-test [74];

• the Fisher linear discriminant [121];

• the Pearson correlation coefficient [63, 136];

• the class of the nearest neighbors [79, 83];

• the mutual information [18, 30, 49, 126, 27].

The methods based on the correlation coefficient capture linear relationships
between random variables but they cannot deal with non-linear relation-
ships. The methods based on the t-test and the Fisher linear discriminant
require that the features originate from a normal probability distribution.
The mutual information (MI) measures arbitrary dependencies between ran-
dom variables, and it is suitable for assessing the information content of
features in complex classification tasks. Moreover, the MI measure does not
depend on the particular machine learning model or choice of coordinates, as
reported in the next Section.

2.2 Distribution-Independent Filter Methods

Before the detailed description of two algorithms that do not make any as-
sumption about the data distribution, we fix the notation and introduce some
useful definitions.
N represents the number of samples (points or patterns) in a dataset and

D the number of features (or dimensions). The set of samples is represented
as a matrix F of size N × D. A class (category or label) is assigned to

19

CHAPTER 2. ROBUST FEATURE SELECTION

each sample with a value belonging to the set {1, 2, . . . , Nc}. All labels are
collected in a class vector C of size N . The d-th column vector of size N
from F , 1 ≤ d ≤ D, is the feature vector Fd.

We use the simplified notation Pr(x) to indicate the probability of X
being equal to x, that is, Pr(X = x), and Fr(x) to indicate the corresponding
sample estimator.

2.2.1 RELIEF and RELIEFF

RELIEF [79] is a feature selection algorithm for binary or continuous input
data in classification tasks. The only hypothesis made by the algorithm is
that similar samples tend to belong to the same class. This assumption un-
derlies most machine learning techniques, for different measures of similarity.
RELIEF assigns a weight to each feature and initializes the D-dimensional
weight vector W to zero. Then the following procedure is repeated an arbi-
trary number of times:

1. select at random a sample X from F ;

2. find the nearest neighbor that belongs to the same class of X (the near-
hit of X, h(X));

3. find the nearest neighbor that belongs to the class that is different from
the class of X (the near-miss of X, m(X));

4. update the d-th weight in W as follows:

Wd ← Wd − (Xd − hd(X))2 + (Xd −md(X))2.

The weight of a feature increases if the corresponding component of the near-
hit is closer than that of the near-miss and decreases otherwise. When the
procedure ends, one can rank the features according to the weight vector and
select the ones corresponding to the s biggest weights.

20

CHAPTER 2. ROBUST FEATURE SELECTION

An improved version of RELIEF is RELIEFF [83], which is an extension to
multi-class problems that updates the weights with the average contribution
of k near-hits and k near-misses for each of the classes that are different from
the class of the random sample. As concerns the near-misses, it averages the
contribution of each class, weighted with the sample estimator of its prior
probability.

2.2.2 Feature Selection based on Mutual Information

This Section presents some of the most successful approaches based on the
mutual information, which is related to the concepts of entropy and condi-
tional entropy in information theory.

Definition 2.1 (Entropy). Given a classification task, denote by Pr(c), c =

1, ...Nc the prior probabilities for the different classes. The uncertainty in
the classes is measured by the entropy:

H(C) = −
Nc∑
c=1

Pr(c) log Pr(c). (2.1)

Definition 2.2 (Conditional Entropy). Let Dd be the set of all possible
values that the d-th feature can assume, 1 ≤ d ≤ D, and call DC the set
of the different classes. The uncertainty in the classes after knowing the d-th
feature is the conditional entropy, which is defined as follows:

H(C|Fd) = −
∑
f∈Dd

Pr(f)

Nc∑
c=1

Pr(c|f) log Pr(c|f). (2.2)

The conditional entropy is less or equal to the entropy. It is equal if and
only if the feature and the output class are independent random variables.

21

CHAPTER 2. ROBUST FEATURE SELECTION

Definition 2.3 (Mutual Information). The mutual information (MI) be-
tween the class C and a feature Fd is defined as follows:

I(C;Fd) =
∑

c∈DC ,f∈Dd

Pr(c, f) log
Pr(c, f)

Pr(c) Pr(f)
. (2.3)

The mutual information is symmetric in C and Fd, and it can also be seen
as the amount by which the entropy decreases when the feature Fd is known:

I(C;Fd) = H(C)−H(C|Fd). (2.4)

The MI is related to the accuracy of a learning system because of Fano’s
inequality [52].

Theorem 2.1 (Fano’s Inequality). Let the random variables X and Y rep-
resent the input and the output messages of a noisy channel. A receiver
operates a function f(y) which, given the received message y, tries to re-
construct the original input x with x̂ = f(y). Let E be the binary random
variable associated with the event of an error, that is, E = 1 when, given the
channel’s output y, the result of the decoder x̂ is different from the original
input x. Then the following inequality holds:

H(X|Y) ≤ H(E) + Pr(E = 1) log(N − 1), (2.5)

where N is the number of different channel inputs.

According to the so-called Infomax Principle [91], by equating Y to a
feature Fd, X to the class C, and the function operated by the receiver
f(·) to a classifier, then Pr(E = 1) can be seen as the classification error
rate. By (2.5), this probability has a lower bound that is proportional to
the conditional entropy H(C|Fd). Therefore, reducing this quantity, which
corresponds to increasing the MI, is a necessary condition to lowering the
error rate and building an effective classifier. However, this condition is not

22

CHAPTER 2. ROBUST FEATURE SELECTION

sufficient, because one needs a machine learning model capable of extracting
the available information content.

Several strategies have been proposed for selecting features on the basis
of the MI between them and the output variable. The method called Feature
Selection based on the MI and the criterion of Maximum Relevance (MR-
MIFS) [105] computes the value of the MI between the class variable and each
individual feature. Then it selects the features with the highest s values. The
estimation of the probabilities involved in the computation of the pairwise MI
can be done by using histograms as in [18, 30] or Kernel Density Estimators
(KDE) as in [86].

Another procedure for feature selection uses the criterion of minimum re-
dundancy andMaximum Relevance, presented for the first time in the seminal
paper [18]. The algorithm starts by selecting the most relevant feature, ac-
cording to the MI with the class, and then it keeps adding features that are
relevant but not redundant, that is, having a high value of MI with respect
to the class but a low value of MI with respect to each individual feature that
has already been selected. This twofold objective is achieved by maximizing
the following quantity:

I(C;Fd)− β
∑
F ′∈S

I(Fd, F ′), (2.6)

where β is a weight that regulates the trade-off between relevance and redun-
dancy, and S is the set of already-selected features. For β = 0 the algorithm
is equal to MR-MIFS.
A drawback of the previous procedure, which we refer to as mRMR-MIFS,
is that the second term in (2.6) can increase in magnitude with respect to
the first term when the cardinality of S grows [30]. Therefore, it can become
predominant in the choice of the next feature to select. As a consequence, the
algorithm also needs a proper value of the β parameter. In [49] the weight of

23

CHAPTER 2. ROBUST FEATURE SELECTION

redundancy is defined as an adaptive parameter that takes into account the
cardinality of the set S.
Other methods include approaches based on quadratic divergence [126] and
fixed approximated density models [89]. Models derived from Gaussian dis-
tributions are used to maximize upper bounds on the MI with the class,
without the evaluation of the joint behavior of the selected features.
The idea of maximizing relevance and minimizing redundancy has also been
used in methods not based on the MI. A semi-supervised method based on
correlation, called RRPC, has been recently proposed in [136]. The main
difference from mRMR-MIFS is the maximization of the following quantity:

P(CL;FLd)−
1

|S|
∑
F ′∈S

P(Fd, F
′), (2.7)

where P(CL;FLd) is the Pearson correlation coefficient between the class
and a feature, which is computed only on the labeled data, while P(Fd, F

′)

includes also the unlabeled data.

One common trait of the previous methods is the pairwise computation of
the chosen score, either between a feature and the class or between two fea-
tures. They account for relevance and redundancy separately. The technique
proposed in [30] is instead based on a generalization of the MI to multiple
features. The X-MIFS algorithm evaluates the MI between the whole set
of selected features and the class, so as to add only those features that are
relevant when considered together. The main difference of this approach is
that it does not consider two one-dimensional random variables as before (the
class variable C and one feature Fd). It computes the MI between a one-
dimensional random variable (C) and a multidimensional random variable
S = (Fi1, Fi2, . . . , Fim), where 0 < m ≤ D, consisting of m distinct features
from {F1, F2, . . . , FD}. S assumes values in DS = Di1 ×Di2 × · · · ×Dim. To
compute the MI according to (2.3), the sum has to be taken over all possible

24

CHAPTER 2. ROBUST FEATURE SELECTION

values in DS . The probability distributions for the computation of the MI as
in (2.3) are evaluated by using histograms and the relative frequencies of each
single value in DS . However, X-MIFS requires a large amount of memory to
store the frequencies for all the values in DS . As an example, with binary
features the number of these values is equal to 2|S|.

Another possibility for a fast evaluation of the MI by using a certain level
of approximation and an index with a smaller memory footprint is given in
[84]. The MI between two continuous variables is estimated after making
the hypothesis that, for a given point, the distribution in its neighborhood
(within a sufficiently small radius) remains constant. The authors propose
two estimators based on the approximated k-nearest neighbors retrieved from
the space identified by the two variables. These estimators can be also used
to compute the MI between multiple variables, but they cannot be used for
classification, when one needs the MI between a feature (numerical or not)
and a categorical class, since there is no concept of distance among categories.
As described in the next Section, under the hypothesis of numerical features,
we propose a technique for evaluating an MI-related measure with the same
idea of approximated neighborhoods. However, the search for the nearest
neighbors is performed only on the features, thus making our method suitable
for classification.

2.3 Feature Selection with the Neighborhood Entropy

Our proposed algorithm starts by selecting features through a greedy pro-
cedure that maximizes the MI, as in X-MIFS. To maximize (2.4), which is
equivalent to (2.3), the first term in the equation (the class entropy) can
be omitted because it is constant. One is left with the minimization of the
conditional entropy H(C|Fd), 1 ≤ d ≤ D. A reasonable assumption for a
successful classifier is that similar points should belong to the same class, with

25

CHAPTER 2. ROBUST FEATURE SELECTION

the exception of those points that are on the class boundary. If this assump-
tion holds true for a specific feature, then the uncertainty in determining the
class (the conditional entropy) should be very small and the learning process
can benefit from considering that feature. On the contrary, when for a spe-
cific feature the class entropy is very high, the classification accuracy cannot
improve by considering that feature (sometimes it can even get worse).
A toy example is illustrated in Figure 2.1, with 100 points drawn from a
uniform distribution defined on the unit square [0, 1] × [0, 1] and with only
2 classes. In Figure 2.1a each class is randomly assigned to one half of the
points. In Figure 2.1b all the points with both of the coordinates that are
greater than 0.5 belong to one class, and all the remaining points belong to
the other class. In the first case the conditional class entropy is maximum
and equal to the class entropy (log 2), and the features (X and Y) cannot
be used effectively for the classification. In the second case, the separation
surface is completely defined by the two features, which are then relevant for
the classification since their conditional entropy is minimum.
A possible strategy for evaluating the class entropy for a specific feature
without estimating probability distributions is the following: one considers
the class values of the samples in the neighborhood of a point, computes the
class entropy only for those points and then takes the average over all the
points in the dataset. In the case of very high entropy (as in Figure 2.1a),
the average uncertainty computed in this way remains very close to the theo-
retical value of log 2. In the second case (Figure 2.1b), for most of the points
there is no uncertainty in their neighborhood and the average conditional
class entropy is very close to 0. Therefore, one can use the conditional class
entropy evaluated on the neighborhoods of the points as a relevance score for
selecting the most informative features. Even in the situation of non-uniform
distributions, the previous observations remain valid if one considers neigh-
borhoods with a fixed number of neighbors instead of a fixed radius.

26

CHAPTER 2. ROBUST FEATURE SELECTION

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

(a)

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y
(b)

Figure 2.1: The Neighborhood Entropy evaluated for the case of high uncertainty (a) is
higher than the value retrieved for the case of low uncertainty (b).

After the previous motivations, we define the concept of Neighborhood
Entropy as follows.

Definition 2.4 (Neighborhood Entropy). Given a classification task as de-
fined in Section 2.2 and a multidimensional random variable S, N (X; k) is
the set of a point X, which is an instance of S, and its k-nearest neighbors.
Then the relative frequency of a class c ∈ DC within N (X; k) is:

fk(c,X) = Fr(c|N (X; k)) =
∑

Y ∈N (X;k)

n(C = c,S = Y)

|N (X; k)|
,

with n(·) counting the occurrences of an event.
The k-Neighborhood Entropy (NE) of the class variable C with respect to S
is then defined as follows:

NEk(C;S) = − 1

N

N∑
i=1

∑
c∈DC

fk(c,X i) · log(fk(c,X i)), (2.8)

where X i represents the i-th instance of S.

27

CHAPTER 2. ROBUST FEATURE SELECTION

Algorithm 1 NEFS: feature selection based on the Neighborhood Entropy (2.8).
1: function NEFS(F ,C,k,s)
2: S ← ∅
3: R ← {F1, F2, . . . , FD}
4: repeat
5: find F ∗ that minimizes NEk(C;S ∪ {F}),∀F ∈ R
6: R ← R \ {F ∗}
7: S ← S ∪ {F ∗}
8: until |S| = s
9: return S

Our k has an effect similar to the bandwidth of a kernel density estimator.
Choosing a large k corresponds to using wider kernels for approximating the
distribution at a point.
In addition, the minimization of the NE is equivalent to the maximization of
the MI as in (2.3) or (2.4), since one can approximate the conditional entropy
in (2.2) with the following:

EN (S;k)[H(C|S)] ≈ 1

N

N∑
i=1

H(C|N (X i; k)) = NEk(C;S).

The distinctive feature of the NE with respect to the MI is that the former
allows selecting features by maximizing the MI with no need to estimate
the feature probability distributions directly. Instead it employs an adaptive
estimator of the class uncertainty by focusing only on the class values in a
neighborhood of a point.
Our proposed strategy, called NEFS, is reported in Algorithm 1. It is based
on a greedy procedure similar to the one used by X-MIFS: at each iteration
the algorithm selects the feature that minimizes the NE of the output variable
with respect to the union of that feature with the already-selected subset.
The main difference is in the cost of evaluating the NE (CNE), which is related
to the specific implementation of the nearest neighbor algorithm. If i is the

28

CHAPTER 2. ROBUST FEATURE SELECTION

number of already-selected features at the iteration i + 1, the CPU time
complexity of NEFS for selecting s features can be expressed as follows:

CNEFS = CNE
s−1∑
i=0

D − i = O(CNE Ds). (2.9)

The next Section describes some of the most efficient techniques for nearest
neighbors search, with particular focus on Locality-Sensitive Hashing (LSH).
In our implementation, we use LSH, since it is the fastest when one can
tolerate a certain level of approximation.

2.4 NEFS Implementation Details

The evaluation of the NE as in (2.8) requires searching for the k-nearest
neighbors for each point in the dataset, by using distances computed on
spaces of varying dimensions. Before delving into some of the solutions to
speed up search queries, let us define the different problems related to search-
ing for nearest neighbors.
Let F be a set of N points defined on a spaceM of D dimensions, with a
distance function dist :M×M 7→ R+

0 .

Definition 2.5 (k-Nearest Neighbors problem (k-NN)). Given any point
Q ∈ M, find the points P1, P2, . . . , Pk ∈ F that have the smallest, the
second-smallest, . . . , the k-th smallest distances to Q, respectively.

Definition 2.6 (ε-approximated k-Nearest Neighbors problem (εk-NN)).
Given any point Q ∈ M and an approximation factor ε > 0, find a set of
points P1, P2, . . . , Pk ∈ F such that dist(Pi, Q) ≤ (1 + ε)dist(P ∗i , Q), i =

1, 2, . . . , k, with P ∗i being the i-th true nearest neighbor of Q.

Since we are interested in contexts characterized by high dimensionality,
and at the same time by enough samples to learn a robust classifier, we

29

CHAPTER 2. ROBUST FEATURE SELECTION

assume to have a dataset with D < N < eD. This corresponds to having
more samples than features, with a very loose upper bound that can hardly be
reached in real non-trivial feature selection problems (all the datasets used for
the experiments except one fall into this category). Under this hypothesis,
computing distances for each point is O(DN). If a min-heap is used for
sorting, building the heap with the N distances and then retrieving the k
smallest is O(N + k logN). It is also required that k < N (usually k � N).
Since D > logN , the asymptotic complexity of the algorithm that solves
the k-NN problem is dominated by the term relative to the computation
of distances O(DN). However, NEFS needs to find the nearest neighbors
of each individual point in the dataset to estimate the NE. Consequently,
another kind of problems needs to be solved.

Definition 2.7 (All k-Nearest Neighbors problem (A-k-NN)). For each point
Q ∈ F , find its k-nearest neighbors P1, P2, . . . , Pk ∈ F \ {Q}.

Definition 2.8 (All ε-approximated k-Nearest Neighbors problem (A-εk-NN)).
Given an approximation factor ε > 0, for each point Q ∈ F , find its ε-
approximated k-nearest neighbors P1, P2, . . . , Pk ∈ F \ {Q}.

If one solves an instance of the k-NN problem for each point in the dataset,
the A-k-NN problem can be solved in O(DN 2) time. Other algorithms solve
the same problem, with a fixed D, in O(N logN) time by recursively build-
ing a tree of neighboring boxes [39, 127]. However, when the number of
dimensions is not fixed, these techniques have a worst-case running time of
O((cD)DN logN), for a dimension-independent constant c.

In our context, which is characterized by noise and uncertainty, one aims
at solving the A-εk-NN problem, so as to reduce the query time by tolerating
a certain level of approximation. Intuitively, retrieving approximated neigh-
bors corresponds to possibly using a larger radius for the neighborhood of a
point. Depending on the level of noise, if k is sufficiently small, the retrieved

30

CHAPTER 2. ROBUST FEATURE SELECTION

points can still be good indicators of the class entropy near the query point.
In some cases, it would be convenient to revert to some approximated tech-
niques that solve the A-εk-NN problem in O(DNα) time, with α ≈ 1.
This is achieved by building an index that groups samples in their approx-
imated neighborhoods, before the actual evaluation of distances. When
searching for neighbors, the index should help in discarding most of the
samples in approximately constant time. Then distances are computed on
the remaining candidate samples. Several indexing methods have been pro-
posed for the NN search, including Locality-Sensitive Hashing (LSH) [58].
A hash table is built with the samples in a dataset by using hash functions
that ensure, with some probability, that points that are closer to each other
collide into the same bucket, while distant points fall into different buckets.
Candidate neighbors correspond to the points of the bucket associated with
the query point, and the nearest neighbors are searched among them.
Another possibility is to partition the space into regular grids, which work
better with uniformly distributed data. Other methods are instead based on
clustering to dynamically adapt to the dataset distribution [99]. However,
the building time of those indexes grows significantly compared to LSH (de-
scribed in the next Section), because a clustering algorithm has to be run
and convergence can be hard to reach. Other space-partitioning schemes are
based on k-dimensional (or kd) trees [115, 10]. kd trees have been shown to
speed up the exact NN search in low-dimensional spaces but they can be as
inefficient as an exhaustive search in case of high-dimensional spaces [99].
Our algorithm is implemented together with the LSH method, since it is the
fastest and provides guarantees on the accuracy of the results, as reported in
the next Section.

31

CHAPTER 2. ROBUST FEATURE SELECTION

2.4.1 Locality-Sensitive Hashing

Let us start by fixing the notation and by introducing the main concepts
about LSH, as described in the original paper [58].
Let dist be a distance function between elements of a set F of N points
defined in a metric space M of D dimensions, and for any point P ∈ F
let B(P ; r) denote the set of points that are within a distance r from P ,
according to dist.

Definition 2.9 (Locality-Sensitive Hash functions). A family H of hash
functions h(·) is called (r1, r2, p1, p2)-sensitive for dist, with r1 < r2 and
p1 > p2, if for any couple of points P,Q ∈ F :

• if P ∈ B(Q; r1) then PrH(h(Q) = h(P)) ≥ p1;

• if P /∈ B(Q; r2) then PrH(h(Q) = h(P)) ≤ p2.

In NEFS, we implement LSH by using a family of data-independent locality-
sensitive hash functions that are suitable for Euclidean spaces and are pro-
posed in [41].
These hash functions are defined as follows:

h(v) =

⌊
a · v + b

w

⌋
, (2.10)

where w is a positive integer, b is randomly drawn from [0, w] and a ∈ RD

is drawn from a Cauchy distribution, in case of a procedure using l1-norm
distances, or from a Gaussian distribution, in case of l2-norm distances. Since
the guarantees provided by LSH hash functions do not change when one
uses the l1-norm instead of the l2-norm, and one is interested only in an
approximated neighborhood, we opted for the l1-norm distance, which is
slightly faster to compute. This can reduce the running time significantly,
since one of the most frequent operations of the procedure is the evaluation
of a distance.

32

CHAPTER 2. ROBUST FEATURE SELECTION

In the standard implementation of our technique, a new LSH index is built
each time the NE between a set of features and the class is evaluated. This
is done O(Ds) times as reported in (2.9). However, L new hash functions
are generated only once for each iteration of the loop in Algorithm 1, that is,
when the cardinality of the set of selected features changes. For each iteration
i = 1, 2, . . . , s the procedure generates L new hash functions. For each
function, it generates the scalar b and the vector a ∈ Ri. This translates into
the generation of a number of coefficients equal to

∑s
i=1 (i+ 1)L = O(Ls2).

The actual index construction is done every time a new feature is considered.
In this case, each iteration requires hashing each point in the dataset L times
by using (2.10). The total number of iterations for building the indexes is∑s−1

i=0 D − i as in (2.9). Since, for i = 0, 1, . . . , s − 1, applying (2.10) is
O(2i+3) and the number of hashed values isNL, the total cost of the building
step is O

(
NL

∑s−1
i=0 (D − i)(2i+ 3)

)
= O(NLDs2). Once the index has

been built, the nearest neighbors for each point in the dataset are retrieved
by using the hash values of the points to find the promising candidates in
each of the L hash tables. Then the standard nearest neighbor search is
performed on the list of candidate points to find the k-nearest neighbors
among them. As reported in [58], the time for one query on D-dimensional
points is O(DN 1/(1+ε)).
If i + 1 represents the number of features on which each index is built for
i = 0, 1, . . . , s−1, retrieving the neighbors for one point is O((i+1)N 1/(1+ε)).
Therefore the total cost for solving the A-εk-NN problem for estimating the
NE for all the subsets of features is

O

(
s−1∑
i=0

(D − i)N(i+ 1)N 1/(1+ε)

)
= O(N (2+ε)/(1+ε)Ds2).

Consequently, if α = (2 + ε)/(1 + ε), the computational complexity of NEFS

33

CHAPTER 2. ROBUST FEATURE SELECTION

can be expressed as follows:

CNEFS = O(Ls2 +NLDs2 +NαDs2) = O(Ds2Nα). (2.11)

The last equality holds because, according to the equations in [58], L ≈
N 1/(1+ε), given a high probability of collision for neighbors (e.g. 0.9) and a
low probability of collision for distant points.

To reduce the time for the NN queries, our procedure evaluates the NE on
the neighborhoods of samples not already visited within the neighborhood
of another sample, as illustrated in Figure 2.2. The average is then taken
only on the visited points. This corresponds to a reduction in the number
of estimators from N to roughly N/k. Consequently, the running time of
NEFS decreases proportionally to k. The decrease is not equal to k times
because the index is still built with all the points in the dataset to exploit
as much information content as possible. It is interesting noting that this
strategy is similar to the random selection of points in RELIEFF, with the
main difference being that the choice of points is not random but guided by
the points themselves.

We developed two implementations of NEFS. The first version builds an
LSH index each time the NE is evaluated, by using only the current subset
of features involved in the NE computation. This strategy has the potential
of being very robust to noise because the different indexes can dynamically
adapt to the different sub-spaces involved in the NE computation. However,
building several indexes can result in more computation time. The second
version, which we refer to as Single-indexed NEFS (SNEFS), builds the LSH
index only once on the D-dimensional space identified by all the features.
When the NE on a subset of features is evaluated, at first the procedure
retrieves the neighbors of a point in the full-dimensional space. Then a search
is done for the nearest neighbors among the candidates, after they have been
projected onto the reduced space. This idea originates from the fact that

34

CHAPTER 2. ROBUST FEATURE SELECTION

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

X1

X2
X3

X4
X5

X6

X7
X8

X9

X10
X11

X12

X13

X14

X15 X16
X17

Figure 2.2: First 3 iterations of NEFS on 17 two-dimensional points and k = 5. The first
iteration selects the nearest neighbors of X1. Since Xi, i = 2, . . . , 6 have already been
considered, the second iteration selects the neighbors of X7. In this case X6 is selected
again. The third neighborhood is that of X10.

neighbors in D dimensions are also neighbors in s dimensions, with s < D,
and one does not need the exact neighbors as well as all the neighbors for
estimating the class entropy near each point. A further code optimization
reduces also the time spent for querying the index. While the NN search
on the projected candidates has to be done whenever the subset of features
changes, the (full-dimensional) candidate neighbors for each point in the
dataset do not change and can be retrieved only once. If each candidate
point is projected onto i+1 features for i = 0, 1, . . . , s−1, the NN search for
one point is still O((i+1)N 1/(1+ε)), with a total cost for solving the A-εk-NN
problems equal to O(NαDs2). Accordingly, the complexity of the modified
procedure is:

CSNEFS = O(LD +NLD +NαDs2) = O(Ds2Nα). (2.12)

This modification usually gives better results in terms of classification accu-

35

CHAPTER 2. ROBUST FEATURE SELECTION

racy and, even though the asymptotic complexity remains equal to that of
NEFS, it makes the actual running time reduce significantly, as shown in the
next Section.

2.5 Experiments and Discussion

In this Section, we compare our proposed approach, with the two different
implementations NEFS and SNEFS, to other state-of-the-art filter methods.
In particular, we analyze RELIEFF, X-MIFS, RRPC and mRMR-MIFS. The
results are related to the classification accuracy of models learned by using
the features selected by the different algorithms. For a fair comparison, we
use the RRPC method in its original semi-supervised version (RRPC_SS),
with 80% of (artificially) unlabeled data, as well as in a completely super-
vised version (RRPC_S). As concerns mRMR-MIFS, we fix β = 1

|S| to be
consistent with the choice made by RRPC in (2.7). For each algorithm and
dataset, we train and evaluate:

• a Random Forest (RF) of 20 trees, with bootstrap and the Information
Gain split criterion;

• a Support Vector Machine (SVM) with a Radial Basis Function (RBF)
kernel;

• a k-Nearest Neighbors classifier (kNN) with k = 4;

• a Multi-Layer Perceptron (MLP) with one hidden layer of 20 neurons,
the tanh activation function and early stopping.

For training and validating the previous models, we used the implementation
provided by the Python library scikit-learn[104]. The method used for the
optimization of MLP weights is stochastic gradient descent (SGD), with an
adaptive learning rate to reduce convergence time. The technique provided

36

CHAPTER 2. ROBUST FEATURE SELECTION

by the library is similar to the bold driver method [17], with the addition
of early stopping (ES) to avoid overfitting. At each iteration, 20% of the
training set associated with one fold of cross validation is kept apart as an
ES-validation set. Starting from an initial value of 1, the learning rate is kept
constant as long as the training loss keeps decreasing. Each time two consec-
utive epochs fail to decrease the training loss or to increase the classification
accuracy on the ES-validation set by a tolerance value, the current learning
rate is divided by 5. We fix the number of iterations for early stopping to
100 and the tolerance value for improvement in the validation score to 10−8.
The tests were conducted on a 64-bit 8-core machine with a CPU frequency
of 2.3 GHz and a total of 4 GB of RAM. Only a sequential implementation
of all the algorithms was tested. In particular, we developed our own code
for NEFS, SNEFS, RELIEFF, RRPC and mRMR-MIFS, while we used the
original implementation of X-MIFS developed by the authors in [30].
The GAS benchmark is taken directly from the UCI Machine Learning Repos-
itory [90]. Two other datasets (SPAMBASE_N and SEGMENT_N) are
modified versions of the same datasets in [90], taken from the KEEL dataset
repository [6]. The modified versions add a 20% noise level to the features
according to the schema proposed in [146].
We also use the CORRAL synthetic dataset [76], which includes 6 features
(A0, A1, B0, B1, I and C). The class is defined by (A0 ∧ A1) ∨ (B0 ∧ B1).
I is randomly generated, and C is highly correlated with the class, with 25%
of error rate. Moreover, another dataset (HYPERSPHERES) was generated
to test the algorithms against highly unbalanced binary classes, defined by
non-linear relationships with a small subset of features (7 among 100). We
generated 100-dimensional samples normally distributed (with zero mean
and unit variance) in the space [−10, 10]100. A class 1 was then assigned to

37

CHAPTER 2. ROBUST FEATURE SELECTION

Table 2.1: Datasets used for the tests

Name N D Nc

CORRAL 128 6 2

GAS 13910 128 6

HYPERSPHERES 5000 100 2

SEGMENT_N 2310 19 7

SPAMBASE_N 4597 57 2

samples satisfying at least one of the following:

((X2
6 +X2

20 +X2
53 +X2

22 +X2
87) ≤ 100) ∨

(((X10 − 8)2 + (X44 + 3)2 + (X53 − 5)2) ≤ 25),

where Xi is the value of the i-th feature of the sample X. With this choice of
parameters and features, among 5000 generated samples we obtained nearly
1000 belonging to class 1, which is represented by the union of points in
two hyperspheres (5D and 3D) with non-empty intersection. In this way
we are able to assess the behavior of the feature selection techniques in the
case of (known) complex dependencies between the features and the class,
within a very noisy context. For each dataset, we removed the samples with
missing values and we transformed categorical variables into one-hot encoded
variables. The final number of samples, features and classes for each dataset
are reported in Table 2.1.

For the tests on the HYPERSPHERES dataset, the classifiers are trained
on 7 features, 4 for CORRAL, while for the other datasets 10 features are
used. In this way one can see the ability of the algorithms in selecting the
best features as soon as possible, independently from the highest level of
accuracy that they can reach with a customized threshold. In each case all
the classifiers are validated by using a 10-fold cross validation. The number

38

CHAPTER 2. ROBUST FEATURE SELECTION

of neighbors k was fixed to 4 to obtain a more precise approximation of
the probability distributions, and the number of iterations of RELIEFF was
set to N/k to make it comparable to our technique, after the description in
Section 2.4.1. For each dataset and feature subset we assess the statistical
significance of the results by using the Friedman test [56]. In the following,
our findings are expressed in terms of averages and standard errors and,
unless otherwise noted, they are statistically significant with a significance
level α = 0.01.

In the comparison with CORRAL, the algorithms do not present sta-
tistically significant differences in the average accuracy because of the very
limited set of samples. However, the techniques based on the nearest neigh-
bors (NEFS, SNEFS and RELIEFF) are able to select the 4 most relevant
features most of the times, while the others tend to select the less relevant
feature C as the first one, as reported in Table 2.2.

In the case of GAS, the convergence rate is usually higher for SNEFS.
As an example, for the MLP there is an increase in accuracy of 5.4% with
respect to X-MIFS with 4 features, as illustrated in Figure 2.3a.

In the case of spam detection, the best classification accuracy (≈0.85) is
reached by the RF trained on the features selected by NEFS and SNEFS,
as reported in Figure 2.3b. This accounts for approximately a 3.7% in-
crease with respect to RELIEFF, 14.9% compared to X-MIFS, and 25%

for RRPC and mRMR-MIFS. Our techniques have better results even with
one or two features. We also compare the algorithms on random subsets of
SPAMBASE_N, to show the robustness to data scarcity of our NN-based
estimators. As expected, the estimation error is higher for all the compared
algorithms and the classification accuracy is slightly lower. This is due to
the reduced amount of samples, which leads to higher variance and general-
ization error. However, our techniques still lead to generally better results,
as reported in Figure 2.3c for N = D.

39

CHAPTER 2. ROBUST FEATURE SELECTION

Table 2.2: Most frequently selected features for the CORRAL dataset.

Method
Rank

1st 2nd 3rd 4th

X-MIFS C A1 B1 B0

RELIEFF B0 B1 A1 A0

SNEFS B0 B1 A1 A0

NEFS B0 A1 B1 A0

RRPC_S C B0 B1 A1

RRPC_SS C B1 A1 A0

mRMR C B0 B1 A1

For SEGMENT_N, in Figure 2.4a it is evident that NEFS and RELIEFF
are not as robust as with spam detection, especially with fewer features.
SNEFS instead leads to better generalization and less overfitting, because it
limits the construction of the index to the set of all the features.

In the case of HYPERSPHERES, none of the algorithms is able to select
all the 7 features used to generate the class, as shown in Figure 2.4b. However,
SNEFS and NEFS reach significantly higher values of accuracy, since they
are able to select 5 or 6 of the features needed in most cases. RELIEFF and
RRPC are clearly the worst, since they are not able to go further than 1 or 2
relevant features. It is also worth noting that the third feature selected by X-
MIFS and mRMR-MIFS corresponds most of the times to the 53rd feature
in the dataset, which is at the intersection between the two hyperspheres.
This explains why X-MIFS and mRMR-MIFS are slightly better than the
others with the first 3 features. However, the effect of the 93 noisy features
becomes evident with more than 3 selected features and those methods lead
to a classification accuracy up to 12.3% less than NEFS.

40

CHAPTER 2. ROBUST FEATURE SELECTION

(a) (b)

(c)

Figure 2.3: The classification accuracy for the MLP on GAS (a), and for the RF on
SPAMBASE_N (b) and on a small random sample of SPAMBASE_N (c).

2.5.1 CPU Time Models

In this Section, we compare the algorithms in terms of the CPU time. We re-
call the complexity analysis of Section 2.4 to extend it to RELIEFF, X-MIFS
and RRPC. When considering the asymptotic cost models of the different al-
gorithms, we explicitly indicate the dependency on the number of selected

41

CHAPTER 2. ROBUST FEATURE SELECTION

(a) (b)

Figure 2.4: The classification accuracy for the SVM on SEGMENT_N (a) and on HY-
PERSPHERES (b).

features s (whenever possible), since most of the experiments used s� D.

In [83], the authors show that the cost of RELIEFF for T iterations is:

CRELIEFF = O(DNT). (2.13)

As concerns X-MIFS, the algorithm follows the same greedy procedure
of NEFS. The main difference is the evaluation of the MI instead of the
NE. The computation of the MI uses a modified version of (2.3), in which
the probability distribution functions are replaced by the estimators based
on multi-dimensional histograms. The implementation of the authors also
includes the binarization of the features, so |DS | = 2|S|. For each subset,
X-MIFS estimates the joint and marginal probability distributions through
a linear traversal on all the points. The summation in (2.3) is also linear in
2|S|Nc. Therefore, the worst-case time complexity of X-MIFS for selecting s

42

CHAPTER 2. ROBUST FEATURE SELECTION

Table 2.3: Asymptotic time complexities.

NEFS/SNEFS RELIEFF X-MIFS RRPC_S/mRMR-MIFS

O(DNαs2) O(DNT) O(DNs2) O(DNs2)

features is:

CX-MIFS = O

(
s−1∑
i=0

(D − i)[N(i+ 1) + 2i+1Nc]

)
. (2.14)

By using appropriate data structures to exploit the sparsity of the bins, and
under the same hypotheses made in Section 2.4, the time spent on the traver-
sal of the histograms can be reduced significantly, and the cost of X-MIFS
becomes O(Ds2N).
As concerns RRPC, the correlation can be computed in linear time with
respect to the number of samples. The worst case is the supervised sce-
nario, in which the cost of computing the correlation is always O(N). At
each iteration, one needs O(|S|) operations to compute (2.7) and update the
maximum. The complexity is then:

CRRPC_S = O

(
s−1∑
i=0

(D − i)iN

)
= O(Ds2N). (2.15)

By using similar arguments, it can also be shown that the complexity of
mRMR-MIFS is equal to that of RRPC. The asymptotic costs of all the
algorithms are summarized in Table 2.3.

As concerns the scalability of the different implementations, in Table 2.4
we report the least-square linear models of the running time with respect to
the size of the dataset DN . We recall that s is fixed to 10, T to N/4 and ε
to 15. It is evident that X-MIFS is the fastest. This can be explained if one
considers that X-MIFS is applied on binary features and the current imple-
mentation is very efficient and uses bitwise operators. RELIEFF, RRPC and

43

CHAPTER 2. ROBUST FEATURE SELECTION

Table 2.4: CPU Time Linear Models.

Method Coefficient Intercept

X-MIFS 4.8× 10−7 −0.144

RELIEFF 1.14× 10−6 1.21

SNEFS 1.02× 10−5 16.6

NEFS 2.61× 10−4 257

RRPC_S 3.8× 10−6 −0.521

RRPC_SS 3.2× 10−6 −0.489

mRMR-MIFS 1.57× 10−6 −0.152

mRMR-MIFS are also fast. NEFS is the slowest because of the cost paid for
the construction of multiple indexes as well as the high frequency of nearest
neighbors searches. RELIEFF instead updates the entire weights vector for
each iteration, thus reducing the number of searches for the nearest neigh-
bors. SNEFS is slower than most of the other methods but significantly faster
than NEFS. Therefore, when robustness to noise and to class imbalance is a
key requirement, SNEFS is a valid choice because it tends to provide better
results in a reasonable amount of time.

44

Chapter 3

Learning with Ensembles

In contexts characterized by high dimensionality and data scarcity, feature
selection is not always sufficient to learn accurate models. In particular,
filter methods requiring large datasets for the correct estimation of relevance
scores are usually not effective with a limited number of samples, because
they can suffer from higher levels of noise and uncertainty. In this context,
a possible approach to learn robust models is group or ensemble learning.
In this Chapter, we focus on a case study, related to salary prediction in
the IT job market, to show that ensembles represent a valid alternative to
dimensionality reduction when the latter is not beneficial because of data
scarcity or noise.

Section 3.1 introduces the application domain and some related work. Sec-
tion 3.2 describes the followed procedure for collecting data as well as our
feature engineering and data cleaning processes. Section 3.3 defines the clas-
sification models used for salary range prediction, including linear models,
neural networks, random forests, boosting machines and voting ensembles.
Section 3.4 reports the results of the model comparison in terms of classi-
fication accuracy, precision, recall and Area Under the ROC curve (AUC).
Experiments show that additional feature selection does not lead to any sig-
nificant advantage with respect to our initial feature engineering and data

45

CHAPTER 3. LEARNING WITH ENSEMBLES

cleansing strategies. In addition, we empirically prove that robust classifiers
can be built by using voting ensembles, which lead to an accuracy of ≈ 84%.

3.1 E-Recruitment

Accurate recruitment of employees is a key element in the business strategy
of every company because of its impact on productivity and competitiveness.
Nowadays recruitment processes have evolved into complex tasks, which in-
volve rigorous evaluations and interviews of candidates, with very high com-
mitment requirements for both the companies and the candidates. Internet
and web technologies can significantly help companies and job seekers in find-
ing the best possible match, therefore e-recruitment has become an essential
element of all hiring strategies. Several web portals have been developed,
such as CareerBuilder, Monster and Tecnoempleo, and social networks for
professionals like LinkedIn are becoming increasingly popular.
The impact of e-recruitment on the industry is a very active topic of research
and has been addressed by several studies [68, 122, 85, 94, 33, 15]. Recently,
a framework for candidate ranking and résumé summarization has been pro-
posed to improve screening performance [116]. Other applications include a
tool for candidate evaluation that adapts to the feedback received [51], an
approach to automatically evaluate a CV [50], and a scoring system to filter
candidates and reduce the workload of recruiters [112].
Several systems have also been proposed to recommend jobs to candidates
according to a profile obtained by using clustering techniques [7, 69, 67, 4,
70, 117]. In [128], a model is proposed for detecting talent and updating
the knowledge taxonomy of a company to help recruiters search for the pro-
fessional profiles the company lacks. A hybrid approach is presented in [8],
where job offers are grouped by using supervised machine learning combined
with expert labeling. ML algorithms have also been employed to predict

46

CHAPTER 3. LEARNING WITH ENSEMBLES

the urgent need of a specific skill [1]. Focus has been put also on systems
and databases enriched by data mined from web portals and social networks
[75, 36]. Expert retrieval systems have been built from user profile informa-
tion coupled with user behavior inside different social networks [28] as well
as with location-based data and connections to potential candidates [142].

Most of the works that focus on the extraction of insights from e-recruitment
portals retrieve the information associated with each job post as text and then
they represent each sample as a vector of word/keyword frequencies. As a
consequence, these vectors are often characterized by a very high number of
dimensions (in the order of thousands). Therefore, it is necessary to collect
huge amounts of job posts to be able to train a model effectively. However,
for websites with a limited target audience, such as portals developed for
a specific geographic area or job sector, there are relatively few job posts.
Among these, only a small percentage has an explicit indication of the of-
fered salary. Therefore, learning an accurate model for salary prediction can
be a challenging task.

In this Chapter we present a case study on salary prediction based on
data collected from an e-recruitment website specifically designed for IT jobs
in Spain, called Tecnoempleo1. The website contains a large collection of
job offers, containing many machine-readable fields which are not common
in other similar sites, such as the requested skills. However, only a small
portion of posts include the offered salary. As a result, our collected dataset,
which covers a period of 5 months, includes ≈ 4000 job posts, which are
represented as vectors of ≈ 2000 features. In the next Sections, we describe
our approach for dimensionality reduction and data cleaning, and we propose
techniques based on voting ensembles for the prediction of salary ranges.
Experiments suggest that our model can be effectively employed by an e-
recruitment website to provide an automatic categorization of job posts by

1http://www.tecnoempleo.com (last access: March 2019)

47

CHAPTER 3. LEARNING WITH ENSEMBLES

salary range, even when the real offered salary is missing, or be used as a
building block in a job recommender system.

3.2 Feature Engineering and Data Cleaning

The dataset under study includes 3970 job posts. Samples were collected
by using a Python-based web crawler2, which was run on a daily basis from
December 2015 to April 2016. The raw data collected by using the crawler
cannot be used directly without an accurate preprocessing phase to remove
the sources of noise and normalize the remaining data. In addition, one
also has to decide how the missing values should be treated. In this case,
samples with missing values were removed because in most cases they cannot
be substituted by any default value. Duplicates were also removed because
they do not provide useful information for model training.

Unstructured information, such as the title of the job post as well as the
textual description of the requested profile and the offered position, can be
useful for extracting relevant features by employing text-mining algorithms
like TF/IDF. However, in our specific application, we noted that textual
descriptions are not always available or present errors and high variability.
To simplify preprocessing and reduce the complexity of the learned models,
we do not use unstructured data, since an extensive set of structured features
is already available after web scraping.

Among the technology keywords that describe each post, we also noticed
that some of them refer to tags consisting only of numbers, which probably
describe the versions of the software required by the companies. However,
these numbers, without technology names, are clearly not useful for salary
prediction. Therefore, we remove them from the dataset to reduce dimen-
sionality and possible sources of noise and uncertainty.

2See BeautifulSoup library, available at http://www.crummy.com/software/BeautifulSoup/ last ac-
cess: March 2019

48

CHAPTER 3. LEARNING WITH ENSEMBLES

Since most of the keywords are manually introduced by users, it is also
essential to unify the data format by merging semantically equivalent words,
their different translations (e.g. in English or Spanish) and typographic er-
rors. For example, keywords like administracion, adm, administrativo, ad-
ministration should appear in the dataset as a unique binary feature: ad-
ministration. Part of this process might be automated by using dictionaries,
but it becomes more difficult for error correction. A way to improve the
categorization of the different job posts on the web portal is to give the user
the possibility to choose only from a predefined set of keywords. In this way
one also prevents the sparsity characterizing our dataset.

In our experiments, we do not consider all the keywords that appear less
than 10 times (corresponding to 0.25% of the total number of job posts). This
results in the removal of hundreds of features that can be considered as noise
because they do not provide enough information content. We also remove
posts for jobs not located in Spain, which can be the result of erroneous
posting by automated services outside the geographical region of interest.

By removing missing values, noisy features and unstructured data, it was
possible to reduce the number of features to ≈ 200 from ≈ 2000 in the raw
dataset as collected by the crawler. This result would be difficult to achieve
by using domain-agnostic feature selection.

An important role in the feature preprocessing has also been given to
the translation of categorical features into numerical features. The feature
describing the dedication (full-time, part-time or autonomous work) is trans-
formed into the maximum number of week hours: 40 for full-time jobs and 20

for part-time and autonomous jobs. Autonomous jobs are considered equiva-
lent to part-time jobs because most of the times they refer to limited periods
of time. The feature that describes the incentives offered by a company is
substituted by a binary feature that indicates the presence or absence of in-
centives. The minimum education level (described by words) is converted to

49

CHAPTER 3. LEARNING WITH ENSEMBLES

Table 3.1: Correspondence between education levels and minimum number of years in the
education system for Spain.

Education level Min. years in education

School 10

High School 12

Professional formation (PF) 12

Higher PF 14

Junior Engineer 15

Graduate (Bologne) 15

short Degree 15

Engineer 17

Degree 17

Msc. (Bologne) 17

PhD 20

the minimum number of education years according to the Spanish education
system. All the levels that do not fall in the main categories as listed on the
website are assigned the same number of years of compulsory education (10
years, age 16). For the other values, see Table 3.1.

For each of the 488 companies that posted a job offer, we retrieve the
approximate number of employees. This is used as an indicator of the com-
pany size, which can be related to the number and frequency of job posts.
For most of them we retrieve the information from their public social pro-
files (e.g. LinkedIn). In case this information is not publicly available, the
information is completed with the median value of workers in the rest of the
companies. The textual representation of working experience is translated
into the average number of years. For example, 2years is substituted by 2,
while 3-5years by 4. We describe the type of contract by using 3 mutually-
exclusive binary features (represented with the so-called one-hot encoding),

50

CHAPTER 3. LEARNING WITH ENSEMBLES

which indicate whether a job post is related to a permanent, temporary or
other type of position (e.g. a hourly service). We also introduce the per
capita gross product in the geographic region of each company. This is rea-
sonable if one considers that the highest salaries are usually clustered around
the most important economic centers.

We also rescale all features to the interval [0, 1] by normalization on the
range given by the maximum and minimum values of each feature.

The main focus in this Chapter is on the prediction of salary ranges,
because this can result in a better categorization of the job posts and thus
an easier navigation for the end-users. This is also motivated by the specific
case study we are addressing, that is, predicting the salary associated with
a job post, when the number of posts with an explicit indication of salary is
low. In this context, the prediction of discrete ranges should be more accurate
than the prediction of the actual salary, which is a continuous number. To
accomplish this, we translate the original dataset suitable for regression into
a dataset useful for classification. Each job post is assigned to one of four
classes, which represent salaries in the low, medium-low, medium-high and
high ranges. These ranges are decided according to the values of the first,
second and third quartiles (also known as Q1, Q2, and Q3).

3.3 Models for Salary Range Prediction

After formulating the prediction problem as a classification task, we compare
different models for finding the classifier that best explains the data in a job
recruiting scenario characterized by high level of noise, high dimensionality
and a limited set of samples. We consider several solutions based on:

• Linear models (LM);

• Logistic regression (LR);

51

CHAPTER 3. LEARNING WITH ENSEMBLES

• K-nearest neighbors (KNN);

• Multi-layer perceptrons (MLP);

• Support vector machines (SVM);

• Random forests (RF);

• Adaptive boosting with decision trees (AB);

• Ensembles of the previous models.

LM, LR, KNN, MLP and SVM represent some of the most effective (indi-
vidual) models based on numerical data, as confirmed by recent applications
[48, 110, 32, 5, 106, 144, 135, 145]. However, in our real-world scenario,
which is characterized by high dimensionality and uncertainty, there could
be no clear winner among several individual classifiers. Combining two or
more models into a committee or an ensemble can be beneficial with respect
to the classification performance of the overall system and its robustness to
noise. Consequently, we also evaluate the performance of random forests
(RF), which employ a set of decision trees trained on random subsets of the
original data, and boosting algorithms, in particular the well-known Adap-
tive Boosting algorithm (AdaBoost or AB), which is iteratively built upon
one simple model that is progressively improved (or boosted) by penalizing
samples misclassified in the previous iteration. Recent applications of RF
and AB suggest that they can lead to more accurate models, especially in
the presence of high levels of noise [107, 66, 118, 102].
As described in Chapter 1, other approaches for ensemble learning are possi-
ble such as voting classifiers. In this case a committee of heterogeneous weak
models is trained so as to have several independent predictions of the class
of a sample. The final decision on the output variable is then the result of
a majority vote among the members of the committee. In our work we use

52

CHAPTER 3. LEARNING WITH ENSEMBLES

two variants of a voting classifier: one that includes all the other classifiers
that we compare in the tests (Vote), and one that includes only the top-3
best performing models (Vote3). In this way, we also evaluate the effect of
choosing large or small committees on the accuracy of the final classifier.
Having larger ensembles does not always lead to superior results, especially
when individual members are treated equally, and learners that are not able
to extract the information content in a specific scenario have the same weight
of the other learners in the ensemble. When the number of bad learners is
high, the uncertainty in the final predictions can increase.

3.4 Experiments and Discussion

We use the implementation that is provided by the Python library scikit-
learn [104]. In particular, we employ several pipelines consisting of 3 main
stages:

1. Data normalization to the interval [0, 1];

2. Feature selection;

3. Classification according to one specific model characterized by the best
configuration of parameters as retrieved by applying a previous step of
grid search.

To perform the feature selection, we use the X-MIFS algorithm [30], in its
original implementation developed by the authors, and the novel approach
presented in Chapter 2. We consider these automatic feature selection meth-
ods to test for the existence of a subset of features that can improve the
accuracy but would be difficult to extract during the manual preprocessing.
Experiments show that in our application context, characterized by high di-
mensionality and data scarcity, an additional step of feature selection does

53

CHAPTER 3. LEARNING WITH ENSEMBLES

not give any advantage with respect to the steps of data cleaning and data
augmentation described in Section 3.2.

3.4.1 Model configuration and selection

As concerns the (generalized) linear models (GLM), we compare a support
vector machine with a linear kernel and LR. The LR models are trained with
`1 and `2 regularization with 10 different weights chosen uniformly in the
range [10−3, 103]. The same regularization scheme is also employed for the
SVM, with a maximum number of iterations fixed to 5000 and a convergence
tolerance of 10−3.

For the KNN models, we compare exact algorithms (i.e. with no approx-
imated technique) based on the Manhattan `1-norm distance as well as the
Euclidean `2-norm distance. We use two strategies to assign a class to a
sample: one that assigns a uniform weight to each neighbour and one that
weights the contribution of a neighbour according to the inverse of its dis-
tance from the sample so as to give more importance to the closest points.
k varied within the set {1, 2, 4, 8, 16, 32}.

The method used for the optimization of the MLP weights is stochastic
gradient descent (SGD). To reduce convergence time an adaptive learning
rate is used, with the addition of early stopping to avoid overfitting. Starting
from an initial value of 1, the learning rate is kept constant as long as the
training loss keeps decreasing. Each time two consecutive epochs fail to
decrease the training loss or to increase the classification accuracy on the
validation set by a tolerance value (10−3), the current learning rate is divided
by 5. The training stops after a maximum number of epochs (5000) or when
the classification accuracy on the validation set does not increase after 50
epochs. The network used for the tests is shallow, with only one hidden layer
of neurons and with the tanh activation function. We compare different
models with a number of neurons varying in the set {1, 2, 4, 8, 16, 32} and

54

CHAPTER 3. LEARNING WITH ENSEMBLES

with 10 `2-regularization weights equally spaced in the interval [10−3, 103].

As concerns (non-linear) SVMs, we evaluate models based on radial ba-
sis function as well as sigmoid kernels, with a kernel coefficient varying in
[10−3, 103] and 10 different penalty parameters of the error term taken from
the interval [10−3, 103]. Even in this case the maximum number of iterations
is fixed to 5000 with a tolerance for the stopping criterion equal to 10−3.

Experiments include also RF classifiers trained by using the bootstrap
technique. Each tree is trained by using either the Gini impurity criterion
or the Information Gain criterion. The number of trees varied in the set
{1, 2, 4, 8, 16, 32}.

The same criteria and number of trees are also employed in the case of the
AB classifier. For Vote and Vote3 we use the average predicted probabilities
(soft voting) to predict the classes.

For each configuration of the different models, we also investigate the effect
of selecting 10 or 20 features (as opposed to considering all the features) by
using X-MIFS or NEFS.

In order to select the best configuration for each model, we perform a grid
search on 90% of the data by using a 3-fold cross validation and by selecting
the configuration with the best average classification accuracy. In Table 3.2
we report the optimal parameters for the different classifiers (excluding the
voting classifiers). The use of feature selection (with NEFS as well as X-
MIFS) is not beneficial. This empirically proves that our customized feature
preprocessing already removes (almost) all the possible sources of noise and
redundancy through the procedure described in Section 3.2.

As concerns Vote and Vote3, we do not consider the best configurations of
the models individually but we train all the models from scratch and validate
the voting classifiers independently from what are the best configurations for
GLM, KNN etc. The reason behind this is that the performance of a voting
ensemble does not always improve as the performance of the voting members

55

CHAPTER 3. LEARNING WITH ENSEMBLES

Table 3.2: Optimal number of features (FS) and model configurations for all the classifiers
(excluding Vote and Vote3).

Pipeline FS Model hyper-parameters

GLM all model: LR, regularization: `2, reg. weight: 0.009

KNN all distance: `1-norm, k: 8, neighbor weight: distance inverse

MLP all hidden layer size: 8, reg. weight: 0.001

SVM all kernel: RBF, kernel coeff.: 111, reg. weight: 0.009

RF all split criterion: Gini, # of trees: 32

AB all split criterion: Gini, # of trees: 32

improves. Sometimes weakening one member to decrease its importance in
the vote can be beneficial for the final decision. In other cases the difference
between two configurations for a single classifier is so negligible that the final
vote is not affected at all. This is confirmed by our experiments, with Vote
and Vote3 obtaining better accuracy with configurations that are different
from those in Table 3.2. The optimal hyper-parameters for the voting clas-
sifiers are reported in Table 3.3. Each model resulting from the grid search
is then trained and evaluated on the entire dataset by using 10-fold cross
validation.

3.4.2 Model comparison

The scores used for comparing the different algorithms include:

• the classification accuracy, which is the percentage of correctly classified
samples;

• the precision, which is defined, for one specific class, as the fraction of
true positives among the samples predicted to belong to that class (true
and false positives);

• the recall, which is defined, for one specific class, as the fraction of true

56

CHAPTER 3. LEARNING WITH ENSEMBLES

Table 3.3: Optimal configurations for Vote and Vote3 (differences from Table 3.2 in bold).

Vote

Model Hyper-parameters

GLM model: LR, regularization: `2, reg. weight: 0.0045

KNN distance: `1-norm, k: 16, neighbor weight: distance inverse

MLP hidden layer size: 8, reg. weight: 0.001

SVM kernel: RBF, kernel coeff.: 111, reg. weight: 0.009

RF split criterion: Gini, # of trees: 32

AB split criterion: Gini, # of trees: 32

Vote3

Model Hyper-parameters

KNN distance: `1-norm, k: 16, neighbor weight: distance inverse

RF split criterion: InfoGain, # of trees: 32

AB split criterion: Gini, # of trees: 32

positives among the samples belonging to that class (true positives and
false negatives);

• the F1 score, which is the harmonic mean of precision and recall;

• the area under the precision-recall curve (AUC-PR) built for different
thresholds of the probability of the positive class;

• the area under the ROC curve (AUC-ROC) that shows the true pos-
itive rate against the false positive rate for different thresholds of the
probability of the positive class.

For all the class-specific scores, we compute the average on all the classes
in order to obtain a scalar value for each model. Table 3.4 summarizes the
results for all the classifiers in terms of average accuracy, F1 score, AUC-PR
and AUC-ROC, with the indication of the corresponding standard errors.

57

CHAPTER 3. LEARNING WITH ENSEMBLES

Table 3.4: Average scores and standard errors for all the classifiers (best scores in bold).

Accuracy F1 score AUC-PR AUC-ROC

LR 0.586± 0.0077 0.569± 0.0085 0.603± 0.0075 0.806± 0.0051

kNN 0.792± 0.0067 0.792± 0.0066 0.891± 0.0055 0.938± 0.0034

MLP 0.591± 0.0150 0.552± 0.0230 0.659± 0.0110 0.831± 0.0077

SVM 0.663± 0.0066 0.669± 0.0076 0.881± 0.0062 0.930± 0.0049

AB 0.836 ± 0.0069 0.837 ± 0.0068 0.883± 0.0060 0.936± 0.0036

RF 0.840 ± 0.0076 0.838 ± 0.0081 0.905± 0.0055 0.949± 0.0028

Vote 0.844 ± 0.0028 0.843 ± 0.0028 0.917 ± 0.0036 0.960± 0.0018

Vote3 0.837 ± 0.0073 0.837 ± 0.0073 0.923 ± 0.0034 0.963 ± 0.0017

Furthermore, Figures 3.1-3.4 provide box plots as well as PR and ROC curves.
The classifiers based on ensembles of decision trees (AB and RF) as well as
those based on voting ensembles (Vote and Vote3) achieve the best accuracy.
Their average accuracy is ≈ 0.84, with the voting classifiers that lead to a
slightly better median accuracy (≈ 0.841 for Vote and ≈ 0.85 for Vote3).

It is also evident that Vote is the most robust. This confirms that in our
context a larger committee tends to reduce the variance of the final deci-
sions, while a smaller ensemble based on the best learners leads to higher
uncertainty. KNN achieves an average accuracy of ≈ 0.79 and sometimes is
comparable to AB or RF. All the remaining models (LR, MLP and SVM)
behave significantly worse. For LR, this can be explained by the evident non-
linearity of the problem, while for MLP and SVM the scarcity of the data
probably represents the biggest obstacle. In the case of the MLP, the best
configuration selected 8 neurons and not bigger values such as 16 or 32, thus
suggesting that the size of the network is not relevant for the classification.
The limited set of samples and the categorical nature of most of the features
make the MLP and SVM models ineffective.

58

CHAPTER 3. LEARNING WITH ENSEMBLES

LR kNN MLP SVM AB RF Vote Vote3
0.5

0.6

0.7

0.8

0.9

1.0
Ac

cu
ra

cy

Figure 3.1: Box plot of classification accuracy.

LR kNN MLP SVM AB RF Vote Vote3

0.5

0.6

0.7

0.8

0.9

1.0

F 1
 s

co
re

Figure 3.2: Box plot of F1 score.

59

CHAPTER 3. LEARNING WITH ENSEMBLES

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Precision-Recall curves

LR
kNN
MLP
SVM
AB
RF
Vote
Vote3

LR kNN MLP SVM AB RF Vote Vote3

0.6

0.7

0.8

0.9

1.0

AU
C-

PR

Figure 3.3: Precision-Recall curves with corresponding AUCs.

60

CHAPTER 3. LEARNING WITH ENSEMBLES

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curves

LR
kNN
MLP
SVM
AB
RF
Vote
Vote3

LR kNN MLP SVM AB RF Vote Vote3

0.80

0.85

0.90

0.95

1.00

AU
C-

RO
C

Figure 3.4: ROC curves with corresponding AUCs.

61

CHAPTER 3. LEARNING WITH ENSEMBLES

This explains also why the classifiers that can easily deal with categori-
cal features as those based on decision trees (AB and RF) behave generally
better. These findings are also confirmed by comparing the models on the
F1 score, which accounts for the precision and the recall measures simulta-
neously. The best average score (≈ 0.843) is achieved by Vote, with RF the
second-best (≈ 0.838). The worst results belong to the MLP, which is also
the model with the largest variance.

The previous scores describe the performance of each model in recognizing
all the classes. In order to get more insight into the capabilities of each
classifier, the experiments that led to the results reported in Figures 3.3 and
3.4 focus on a slightly different setting. The same configurations used in the
previous tests are employed in a one-vs-rest scenario, in which we compute
the precision, recall, true positive rate and false positive rate in the context
of a binary classification. For each class, we set to 1 all the members of
that class and set to zero all the remaining samples. We repeat this for
all the classes and at the end we average the results obtained. This new
setting is interesting because it can describe the behavior of the classifiers
with unbalanced classes. It is possible that a model that achieves poor results
in the original context is actually better in recognizing one specific class as
opposed to all the others.

The best performing models of the previous set of tests continue to achieve
the best results also in the new context. However, the SVM performance im-
proves significantly and now is comparable to KNN, AB, RF, Vote and Vote3.
This is due to the simplification induced by the new scenario, which is prob-
ably characterized by a separating surface that is easier to learn. However,
this surface is still non-linear, as it is evident by looking at the poor per-
formance of the LR. The MLP continues to perform poorly even in the new
simplified scenario, thus suggesting that the model is not able to extract
useful information from the data because of the limited amount of samples.

62

CHAPTER 3. LEARNING WITH ENSEMBLES

Perhaps deeper architectures are necessary to find more informative features
but these models will probably be affected by the scarcity of the data even
more. Vote and Vote3 consistently lead to superior results, thus showing
that, in contexts characterized by high dimensionality, uncertainty and lim-
ited samples, ensemble learning can effectively reduce the variance of the
final predictions and lead to more robust models.

63

CHAPTER 3. LEARNING WITH ENSEMBLES

64

Chapter 4

Learning from Aggregated Data

In the extreme case when one has no access to individual samples, traditional
instance-based ML algorithms cannot be used, including the feature selec-
tion and ensemble methods presented in the previous Chapters. However, we
conjecture that, under the hypothesis of having access at least to aggregated
data, the extraction of useful insights and guidelines is still possible by simu-
lating parametric and stochastic models based on the available information.
Especially for real-world phenomena that are difficult to sense and measure,
the level of uncertainty can be very high and tend to infinity when no sample
is available. Nonetheless, in real scenarios one can exploit expert knowledge
to build models that can be used as a baseline or bootstrap sample to infer
interesting patterns. This resembles Bayesian inference, which allows one to
learn models that incorporate the prior knowledge about a problem.

To support our claim, in this Chapter we present a case study in hotel
revenue management, and in particular we address the problem of finding
an optimal pricing policy for hotel rooms to maximize revenue. Section 4.1
introduces the application domain, with a brief overview of some state-of-the-
art solutions for dynamic pricing in hotel revenue management. Section 4.2
describes in more detail the hotel reservation process and our proposed simu-
lator of room demand. Section 4.3 focuses on the definition of our parametric

65

CHAPTER 4. LEARNING FROM AGGREGATED DATA

and stochastic models of reservations and cancellations, while Section 4.4 de-
scribes the chosen pricing policy and acceptance probability model employed
in our experiments. Section 4.5 reports our results on aggregated data from
10 hotels in Trento, Italy. Experiments show that our simulator leads to
results statistically consistent to the aggregated data used as input. In ad-
dition, we show that the adoption of optimized pricing policies based on our
parametric and stochastic models leads to an average revenue increase of
≈ 19% with respect to policies with fixed prices, and to low or absent risk of
losses for small and medium/big hotels, respectively.

4.1 Dynamic Pricing in Hotel Revenue Management

Information Technology drastically changed how people plan and manage
travels. The Internet revolutionized the way travelers can get information
about trips and hotels. Tools such as search engines, online travel agencies
or price comparison websites are now used for travel planning by people of
different generations [134]. As a consequence, potential tourists can take
decisions which are much more informed than before, and companies need to
be competitive in order to survive. In fact, many organizations in the travel
and tourism industries use IT to propose products online, thus reducing
commissions that would be given to intermediaries [31]. Proposing the right
price to potential customers is a very important aspect, with a direct impact
on the revenue of companies. In particular, promising results have been
achieved for airline ticket reservations [134]. However, other processes like
hotel reservations or car rentals have not been studied extensively. Most of
the research on hotel revenue management has focused on the transfer into
the hospitality realm of the techniques used for airlines, and frequently only
general results on dynamic network management have been shown [23].

Despite some evident similarities, hotel reservations present significant dif-

66

CHAPTER 4. LEARNING FROM AGGREGATED DATA

ferences from airline reservations. In the case of a flight ticket, the customer
can book a direct flight or multiple connecting flights. When one flight is
canceled, usually the remaining connections in the ticket are also canceled.
In the case of hotels, a similar situation can happen when a customer books
rooms in different hotels for consecutive stays, but this is not a common use
case, especially if we consider that recently the number of nights in hotel
reservations has been decreasing as an effect of economic instability. An-
other major difference between airline tickets and hotel reservations is the
duration of the service offered to the customer. For a flight, the duration is
not decided by the passenger but by the airline company together with other
governance institutions. For a hotel room, the length of stay is chosen by
the customer, which is free either to adapt to the hotel room availability in
case the original request cannot be satisfied or to search for another hotel.
In particular, finding alternative hotels is often easier than finding a differ-
ent airline covering the same connection. The differences between the two
domains explain the different approaches in the literature and the increasing
attention in developing customized solutions for the specific problems related
to hotel revenue management.

Within the hospitality realm, research on revenue management (RM) has
considered diverse possibilities for optimizing revenue, from marketing to
price control. Optimization problems related to RM are usually expressed
following two main approaches [120]: capacity control [25, 13, 87, 62] and
dynamic pricing [20, 11].
In capacity control, the decision variable is the number of offered rooms (in-
cluding service levels). In contrast, in dynamic pricing the decision variable
is price. Recent works mainly focus on dynamic pricing, to propose differ-
ent price offers for a limited set of products with fixed capacities. In this
Chapter, we address the problem of learning patterns and guidelines for the
maximization of revenue based on dynamic pricing. We focus on this process

67

CHAPTER 4. LEARNING FROM AGGREGATED DATA

because of its similarity to what happens on online booking platforms, where
the same room can be sold at different prices according to factors like the
length of stay, the time to arrival, the season and the occupancy level.
Dynamic pricing problems have been solved using various strategies [73, 42],
including rule-based frameworks [37], linear programming [92], integer and
dynamic programming [23].
The demand is considered to be deterministic [81] or stochastic [23]. More-
over, many techniques adopt the simplifying assumption that the demand is
independent from the chosen policy. More complex scenarios, where demand
can be influenced by other factors (e.g. price), are more difficult to handle
and closed-form solutions are rarely available [24]. In addition, if sold rooms
become available again before they are consumed by the customer (e.g. via
stochastic cancellations), the dimension of the optimization problem grows
exponentially and approaches like dynamic programming are effective only
in specific cases [97]. A possible solution to mitigate the complexity of the
model is given by approaches based on approximated dynamic programming
[23, 141]. To reduce the computational cost, a linear relaxation of the original
problem is considered. However, such approximated models are not flexible
enough to include stochastic cancellations interspersed with reservations.

If problems related to hotel RM scenarios are computationally too com-
plex to be solved exactly, the approximate maximization of revenue can be
achieved by using simulation-based optimization [22, 53]. In this way, the
analytical model can be substituted with a simulator of many inter-related
processes like reservations, cancellations, no-shows and walk-in customers.
To define simulators of complex systems like a hotel booking system, an ef-
fective technique is Monte Carlo simulation [119]. Generated events such
as reservations and cancellations lead to a distribution of possible revenues.
The expected value of that distribution is then considered as the variable to
be maximized.

68

CHAPTER 4. LEARNING FROM AGGREGATED DATA

In [138, 20], a Monte Carlo approach is employed to simulate the demand.
New reservations are forecast according to the distribution learned from his-
tory and by means of additive/multiplicative pick-up [139] or exponential
smoothing [57, 9]. A similar approach can be used also with other forecast-
ing models, such as regression or moving average models [131].
In [20], the effect of the price on the demand is also considered: lower and
higher prices are associated with higher and lower acceptance probabilities,
respectively. The pricing policy is modeled by a set of multipliers which can
increase or decrease the price of a simulated reservation with respect to the
average price learned from data. The parameters of the pricing model are
optimized by using CMA-ES [64, 65].

However, the aforementioned Monte Carlo method is based on historical
records, and it does not provide a simple way for the user to run what-if
analyses. In real scenarios, it is very common that the distributions charac-
terizing the demand change in response to mutated environment conditions.
For example, it is highly probable that the pricing policy of a hotel should
change when massive events like concerts, exhibitions or sport events happen
nearby. The hotel manager would benefit from an automated system that
exploits historical data whenever possible, and at the same time allows to
readily inject new valuable information as soon as it becomes available in
order to test different scenarios.
Another limitation of [138, 20] is that cancellations are modeled as a set
of events that are independent from reservation requests. In fact, cancella-
tions are realized before the generation of new reservations. Consequently,
the state of the hotel registry (e.g. the room availability) does not change
dynamically after each event. The first-generated reservation would see an
availability higher than the one that would be provided if all events are in-
terspersed, as in a real booking scenario. Moreover, one cannot simulate the
case of a customer booking a room and then canceling later during the same

69

CHAPTER 4. LEARNING FROM AGGREGATED DATA

day (or even immediately after).

We propose a system that simulates the hotel booking process by consid-
ering interspersed reservations and cancellations, and that defines arrivals us-
ing parametric and stochastic models that do not require individual historical
records but only aggregated data. Our approach exploits expert knowledge
and previous research results to develop models able to describe different real-
istic scenarios. We allow straightforward what-if analyses, while taking into
account the inherent stochastic fluctuations of the processes involved. These
models are then trained by using simulation-based optimization, as described
in the next Section, to provide useful insights and statistically powerful guid-
ance when historical data are not available or difficult to retrieve.

4.2 Simulation of a Hotel Booking Scenario

In hotel revenue management, it can be difficult to model all the inter-related
processes that are present in a real scenario. Therefore, most research has
focused on simplified and more tractable views of the world. If one is not
bound to use models that provide an exact solution as with the traditional
dynamic programming approach, more realistic and fine-grained models can
be defined by using simulation-based optimization. In this Section, we de-
fine the main concepts related to hotel reservations, and then we provide an
overview of our simulator and a description of the simulation-based optimiza-
tion procedure that we use for learning.

4.2.1 Definitions

Let us now fix the notation and define the main concepts, before the general
description of the system in Section 4.2.2.

70

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Definition 4.1. A reservation request (RR) is an event characterized by the
following features:

• the reservation day (RRres), which is the day the request occurs;

• the arrival day (RRarr), which is the day the customer arrives at the
hotel;

• the length of stay (RRlos), which is the number of nights reserved;

• the size (RRsize), which is the number of rooms reserved.

Definition 4.2. A reservation offer (RO) is an admissible reservation re-
quest (for which there is room availability) characterized by the price (ROprice)
proposed by the hotel.

ROprice depends on several factors, including the features of RR, the time
a request arrives, the presence of extra services or the price proposed by
competitors.

Definition 4.3. An accepted reservation or simply reservation (R) is a reser-
vation offer accepted by the customer.

An accepted reservation is registered on the hotel registry, thus effectively
changing the room availability.

Definition 4.4. The acceptance probability of a reservation offer (Praccept(RO))
is the probability that a customer accepts RO and the proposed price, and
therefore is equal to the probability that RO is registered on the book.

Definition 4.5. The state of the hotel S(t) is defined as the state of the
booking registry at time t, which corresponds to the historical records up to
t (when available) as well as the set of reservations (for future arrival days)
that appear in the registry at time t.

71

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Before introducing formally the concept of booking horizon, we need to
define the concepts of distance between two days and of time-to-arrival.

Definition 4.6. Given two days identified by i, j ∈ {0, 1, 2, . . . }, the number
of days between i and j, or their distance, is:

d(i, j) = d(j, i) = |i− j| ≥ 0.

Definition 4.7. Given a reservation R, the time-to-arrival of R is:

RTTA = d(Rres, Rarr).

A similar definition is also valid for reservation requests and offers.
RTTA = 0 can represent two possible events. One is the event of a customer
that books one or more rooms for one or more nights starting from the night
of the same day of the reservation. The other is the event of a customer
that arrives at the hotel with no reservation and asks for one or more rooms.
In the literature, the customer associated with the second event is usually
called a walk-in user. In this Chapter, we do not distinguish the customers
associated with the previous events, and we refer to them as walk-in users.

Definition 4.8. The booking horizon (BH) is the maximum time-to-arrival
allowed by the hotel.

To properly model a hotel booking scenario, it is essential to include the
management of cancellations, which are defined as follows.

Definition 4.9. A cancellation (C) is an event characterized by the following
features:

• the cancellation day (Cday), which is the day the event occurs;

• the reservation (Cres), which is the reservation on the book that is can-
celed by the customer.

72

CHAPTER 4. LEARNING FROM AGGREGATED DATA

When a reservation is canceled, it is removed from the hotel registry, and
the associated rooms can be booked by other customers.

Definition 4.10. The cancellation probability, t days before arrival of a reser-
vation R (Prcancel(R, t)), is the probability that the customer associated with
R cancels it exactly t days before arrival, with t ∈ [0, RTTA].

According to the previous definition, the probability that R is canceled
within its lifetime is

Prcancel(R) =
∑

t∈[0,RTTA]

Prcancel(R, t). (4.1)

Our simulator also allows one to consider opening and closing periods, and
to simulate reservations accordingly.

Definition 4.11. The reservation requests horizon (RH) is the set of all the
reservation days to be simulated. It corresponds to the values that each Rres

can assume during the simulation.

Definition 4.12. The arrivals horizon (AH) is the set of all possible arrival
days. It corresponds to the values that each Rarr can assume during the
simulation.

Definition 4.13. The optimization horizon (OH) is the set of arrival days
for which there is the need of an optimal dynamic pricing policy to maximize
revenue.

Most hotel managers are interested in maximizing the total profit and
not the revenue. In our experiments, we do not consider costs (fixed and
variable), and therefore we maximize only the revenue. The simulator can
be extended to include costs, but this is out of the scope of this Chapter,
which focuses on methods to learn useful patterns from aggregated data and
to reduce the high level of uncertainty in the stochastic phenomena involved.

73

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Event
arrivals
model

Dynamic
pricing
model

Acceptance
probability

model

Hotel
registry

reservation
request

reservation
offer

accepted
reservationcancellation

state

Figure 4.1: Dependency graph of the hotel registry and of the models used by our simu-
lator.

AH represents the opening period of the hotel, and reservation requests that
include days outside its bounds are rejected. RH and AH can overlap (entirely
or partly) or be disjoint. OH is instead required to be a subset or to be
equal to AH. The total revenue that drives the optimization procedure is
evaluated on OH only. This leads to an increase in complexity but also to
more flexibility, since one is able to simulate and compare different scenarios,
including different opening periods and booking horizons.
The main models and components defined above are illustrated in Figure 4.1.

4.2.2 System overview

Differently from most traditional ML approaches based on a static dataset,
we develop several components that simulate the hotel booking process, as
described in the previous Section, and that generate data and optimize the
pricing policy dynamically.
As depicted in Figure 4.2, our system includes:

• an event generator, which simulates reservation requests created by the
customers as well as cancellations;

74

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Event
generator

Dynamic
pricing
model

Acceptance
probability

model

cancell.

reserv.
request

Optimizertotal revenue

optimized pricing policy

reserv.
offer

Hotel
registry

accepted
reserv.

current state

Ti
m
e

Figure 4.2: System overview. Reservation requests and cancellations are interspersed.
The state of the hotel after one complete simulation is used by the optimizer to compute
the total revenue and adjust the pricing policy.

• a registry, which stores the information about the state of the hotel, in
particular accepted reservations and room availability;

• a dynamic pricing model, which proposes an offer for each reservation
request;

• an acceptance probability model, which simulates the stochastic process
by which customers accept or discard reservation offers;

• an optimizer, which searches for the optimal pricing policy to maximize
revenue.

The event generator can also be preceded by a forecasting module. The mod-
els of future events can be learned from historical data by using techniques
like the pick-up or exponential smoothing. However, we do not consider fore-
casting explicitly. Results do not change if we assume that the parameters
of our models have already been predicted by a forecasting model.

In our implementation, for each simulated reservation day r ∈ RH, a
random sequence of Cr cancellations andRr reservation requests is generated.

75

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Each reservation request is associated with an arrival day a ∈ AH following
or coinciding to r (a � r). Each cancellation is instead associated with a
specific registered reservation.
The proposal of a price depends on a reservation request and on the state
of the hotel at the moment the event occurs. Since reservation requests
and cancellations are interspersed, our procedure covers also the case of a
customer reserving a room and, later on the same day, deciding to cancel it,
maybe because of an error or because a better offer has been found.

Once a price has been proposed to the customer, a reservation is accepted
according to the acceptance probability model. Then it is registered into
the hotel registry and, if a cancellation does not occur until the end of the
simulation, it is considered in the evaluation of the total revenue to be passed
to the optimizer. As concerns the optimization, one objective function eval-
uation corresponds to the average total revenue of several simulation runs,
with respect to the reservations recorded in the registry within the OH.

4.3 Parametric Models

One of the few examples of simulation-based approaches for hotel reservation
dynamic pricing is the simulator in [138], which does not make any assump-
tion on the distribution of reservation requests and cancellations. Reservation
and cancellation models are learned completely from data. The hotel man-
ager can only provide information about seasonality, in terms of duration
and average prices. Since we are interested in defining models that can be
effectively used by hotel managers even when historical data are not avail-
able or difficult to retrieve, we propose a parametric approach, by which the
knowledge of domain experts can be exploited by using only a limited set
of synthetic indicators. While it is almost impossible for the hotel manager
to provide the entire reservation model without reverting to automated so-

76

CHAPTER 4. LEARNING FROM AGGREGATED DATA

lutions relying on history, it is a more viable option to ask for a synthetic
indicator like the average number of reservation requests arriving in a certain
period. Interviewed hotel managers confirmed that they often have access to
aggregated information that can be exploited to maximize revenue.
In the following Sections, we propose a set of parametric models that can
be used starting from the expected number of reservations and cancellations,
expected length of stay and number of rooms. In addition, the proposed
models are flexible enough to cover several, and sometimes very different,
scenarios.

4.3.1 Simulation of reservation requests

Let Ra
r , r ∈ RH, a ∈ AH, be the number of reservation requests generated

on day r that are associated with arrival day a. The total number of requests
generated within RH and associated with one arrival day is given by:

Ra =
∑
r∈RH
r�a

Ra
r , (4.2)

where � describes the relation precedes or coincides to.
The expected total number of reservation requests associated with one arrival
day can be seen as the result of several independent processes, which occur
on each simulated day within the BH of an arrival day:

E[Ra] = Λ(a) =
BH∑
i=0

λ(i, a), (4.3)

where λ(i, a) is the expected number of reservation requests occurring i days
before the arrival day a.
If historical data are available, one can estimate directly λ(i, a) for each i

and a.

77

CHAPTER 4. LEARNING FROM AGGREGATED DATA

In our context, we define each λ(i, a) by the following parametric model:

λα(i, a) = Λ(a)×Qα(i,BH)

= Λ(a)×
((

BH + 1− i
BH + 1

)α
−
(
BH− i
BH + 1

)α)
, (4.4)

with i = 0, 1, . . . ,BH, a ∈ AH, and for any parameter α > 0.
The expression of Qα(i,BH) is similar to that of the RIM quantifiers pro-
posed in [137], after reflection and translation. To the best of our knowledge,
this is the first time that a modified version of the RIM quantifiers, which
are frequently used in decision making, is applied to simulation models for
maximizing revenue.
We use Qα(i,BH) because:

• they define a function with discrete domain and continuous values;

• they sum up to 1:
BH∑
i=0

Qα(i,BH) = 1,

for any α > 0 and therefore can represent a discrete probability distri-
bution or a normalized curve;

• they can model different reservation scenarios through α, from a con-
stant curve (α = 1) to increasing and decreasing curves, as reported in
Figure 4.3;

• they provide a simple way of finding α from the ratio of walk-in users
with respect to the total number of reservations, that is, Qα(0,BH).

We assume that the reservation requests follow a non-homogeneous Poisson
process with an expected value given by our parametric model:

Ra ∼ Poisson(Λ(a)). (4.5)

78

CHAPTER 4. LEARNING FROM AGGREGATED DATA

0 5 10 15 20 25 30
Days before arrival

0.00

0.02

0.04

0.06

0.08

0.10

0.12
No

rm
al

ize
d

re
se

rv
at

io
ns

= 0.6
= 0.8
= 1
= 1.5
= 2
= 3

Figure 4.3: Qα(i,BH) for BH = 30 and for different values of α.

Therefore, reservation requests are generated for each simulated day accord-
ing to the following model:{

Ra
r ∼ Poisson(λα(i, a)) if i ≤ BH,

Ra
r = 0 otherwise.

(4.6)

Poisson processes are usually chosen to model arrival processes [61] and, in
our context, they can represent the arrival of reservation requests with a
minimum set of parameters. In [138], a binomial distribution is used, with
additional constraints on the variance of samples in order to set the success
probability and the number of trials. However, a binomial distribution con-
verges to a Poisson distribution when the number of trials (e.g. customers
generating requests) grows. Removing the limit on the pool of customers
that can generate new reservations makes the model more realistic, since the
number of possible customers is usually unbounded and independent from
the capacity of the hotel.

79

CHAPTER 4. LEARNING FROM AGGREGATED DATA

For the estimation of Λ(a), we assume that it is possible to estimate the
expected number of reservation requests for a specific arrival day that are
accepted by the customers and not canceled (Ra

accept). Similarly, we assume
that one has access to the expected number of reservation requests for a spe-
cific arrival day that are accepted by the customers and canceled (Ra

cancel).
Ra

accept can be approximated by the expected number of arrivals, whileRa
cancel

can be seen as the expected number of cancellations. Both of these quanti-
ties can be estimated easily by exploiting the experience of the hotel manager.
Our simulator includes also a model of the acceptance probability Praccept(RO).
A model of probabilities (possibly one for each admissible input) can be es-
timated from data retrieved by an online booking platform, where one can
keep track of users that search for a room and decide to finalize the reser-
vation or leave the website. One can also estimate the expected acceptance
probability E[Praccept(RO)] as the expected fraction of reservation requests
that are finalized by the users after the search.

Therefore, the expected total number of reservation requests (accepted or
rejected) associated with one arrival day can be estimated as follows:

E[Ra] = Λ(a) ≈
Ra

accept +Ra
cancel

E[Praccept(RO)]
. (4.7)

4.3.2 Simulation of nights and rooms

Let nightsa be the expected number of nights for a reservation associated
with an arrival day a. Analogously, roomsa is the expected number of rooms.
max-nightsa and max-roomsa represent the limits imposed by the hotel man-
ager. Since each reservation request includes at least one night and one room,
we model the discrete probability distribution of the number of additional

80

CHAPTER 4. LEARNING FROM AGGREGATED DATA

nights/rooms as follows:

Pr(X − 1 = k) =

∫ k+1
max(X)

k
max(X)

(1− x)
max(X)

avg(X)−0.5−2

B(1, max(X)
avg(X)−0.5 − 1)

dx, (4.8)

where X is the number of nights/rooms, X − 1 is the number of additional
nights/rooms, max(X) is either max-nightsa or max-roomsa, and avg(X) is
either nightsa or roomsa. k = 0, 1, . . . ,max(X)− 1, and B(α, β) is the Beta
function with parameters α and β.
The previously defined distribution is a discrete analogue of a (continuous)
Beta distribution with α = 1 and β = max(X)

avg(X)−0.5−1. The value of α is chosen
so as to have a distribution with an exponential-decay profile, which is similar
to the distribution seen in [138]. β is chosen so as to have an expected value
approximately equal to avg(X)−1. This is achieved by imposing the equality
of the expected value of the (continuous) Beta distribution, which is α

α+β , to
the expected number of additional nights/rooms rescaled to [0, 1], which is
avg(X)−0.5
max(X) . We consider a correction of 0.5 (found by numerical experimenta-

tion) to account for the discretization error and to position rescaled expected
values in the middle of the discretization interval. Experiments show that the
maximum error between the expected values and the empirical averages of
the discrete analogue with max(X) = 5 is at most 0.33, for expected values
equal to 0, 0.1, 0.2, . . . ,max(X)− 1.
Even though modeling the length of stay or the number of rooms as Bernoulli
or Poisson processes provides a simpler and exact way of imposing the ex-
pected value, it is not applicable to our context, which cannot be reduced to
a coin toss or to an arrival process. In the literature, the Beta distribution is
often used to model unknown probability distributions, with shapes that can
be controlled by the parameters α and β. By building a discrete analogue
of a Beta distribution, we can exploit its macroscopic features to obtain a
realistic model of the variable of interest. A similar model can be defined

81

CHAPTER 4. LEARNING FROM AGGREGATED DATA

also for group reservations, which usually follow a different distribution from
that of the length of stay of normal reservations. This can be easily achieved
by considering a different value for avg(X).
By following (4.8), an instance of the random variable X, which is either
RRlos or RRsize, is generated as follows:

X = 1 + bY ×max(X)c, (4.9)

where Y ∼ Beta(1, max(X)
avg(X)−0.5 − 1).

4.3.3 Simulation of cancellations

Under the same assumptions of Section 4.3.1, and by analogy to (4.1), the
probability that a reservation is canceled during its lifetime can be seen as
the summation of the probabilities that a reservation is canceled exactly on
a specific day within its lifetime:

Prcancel(R) = Ω(a) =

RTTA∑
i=0

ω(i, a), (4.10)

where ω(i, a) is the probability that R is canceled exactly i days before the
arrival day a, with i within its lifetime.

By analogy to (4.4), we define each ω(i, a) by the following parametric
model:

ωα(i, a) = Ω(a)×Qα(i, RTTA)

= Ω(a)×
((

RTTA + 1− i
RTTA + 1

)α
−
(
RTTA − i
RTTA + 1

)α)
, (4.11)

with i = 0, 1, . . . , RTTA, a = Rarr, and for any parameter α > 0.

In this context one can also find α from the fraction of cancellations that

82

CHAPTER 4. LEARNING FROM AGGREGATED DATA

occur on the last day (Qα(0, RTTA)), which includes the so-called no-shows.

As concerns Ω(a), it can be estimated as follows:

Ω(a) ≈ Ra
cancel

Ra
cancel +Ra

accept
, (4.12)

with an arrival day a = Rarr.
Different stochastic cancellation scenarios can be simulated by changing ωα(i, a)

through Ω(a) and α.

4.4 Dynamic Pricing and Acceptance Probability

As concerns the pricing policy, we use the model proposed in [20], which
is based on a set of multipliers that lead to an increase or decrease in the
average price according to the features of a reservation request. This model
has already been validated on historical data and has led to promising results.

In addition, we assume that ROprice corresponds to the unit price for 1
room and 1 night. The unit price proposed to the customer is then computed
as follows:

ROprice = pricea · ξ(RRTTA, RRlos, RRsize, S,∆, η), (4.13)

where pricea is the expected unit price for customers arriving on day a, and
ξ(·) is a function of the reservation request features and of the hotel registry,
with average value equal to 1. This function smoothly adjusts the price
within the interval [(1−∆)pricea, (1 + ∆)pricea], with a slope proportional
to η:

ξ(RRTTA, RRlos, RRsize, S,∆, η) = ξ(t, l, s, S,∆, η) = (4.14)

= (1−∆) + 2∆ · Φ(η · (MT (t)ML(l)MS(s)MC(S)− 1)).

83

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Φ(·) is the cumulative distribution function of the standard normal distri-
bution, and MT (·), ML(·), MS(·) and MC(·) are functions (or multipliers)
of the time-to-arrival, the length of stay, the number of rooms and the re-
maining hotel capacity at the moment the reservation request is generated,
respectively. All the multipliers are defined so as they have an average value
equal to 1.

The effect on the room demand of changing the unit price is modeled by
the acceptance probability, which we define similarly to [138]. When the
proposed price is equal to the average price of reservations with the same
arrival day, the acceptance probability is set to 0.5, to model the absence
of any preference about accepting or rejecting the reservation. With prices
fixed to the average values, the expected number of accepted reservations
is equal to half of the total number of reservation requests. The expected
percentage of accepted reservations increases when the price decreases and
decreases otherwise.
This phenomenon, also called price elasticity, is modeled by the following
function:

Praccept(RO) = 1− Φ(ρ · (ROprice − pricea)), (4.15)

where Φ(·) is the cumulative distribution function of the standard normal
distribution, and ρ is a parameter that controls the slope of the function and
allows one to consider different price elasticity scenarios.

4.5 Experiments and Discussion

In the following experiments, we validate our parametric models on aggre-
gated data for a set of hotels with different capacities and average prices.
Room demand and customer flows are known to be influenced by the en-
tire set of attractions, events, policies, food operators, travel agencies and
hospitality businesses that characterize a tourism destination. To study the

84

CHAPTER 4. LEARNING FROM AGGREGATED DATA

effects of events or competitors on demand and price, network science can be
used to analyze static and dynamic properties of all the actors involved [12].
However, since our main focus is on learning from aggregated data and not
on tourism management, for simplicity we consider each hotel as a singleton
independent from the context of its geographical region. We also assume that
there is only one category of rooms. Even though this assumption is strict,
the inclusion of the details of each room would require the definition of more
complex choice models that are out of the scope of this Chapter.
The reservations are not tied to specific rooms. As an example, if a cus-
tomer books 1 room for 2 days, the reservation is proposed to the customer
for acceptance if for each single day there is at least 1 room available. This
includes also the case of different physical rooms for different days for the
same customer/reservation. Moreover, our simulations include walk-in users
as well as those customers booking a room on the same day of arrival (e.g.
in the morning for the night).

We do not have access to revenue records from the hotels and a direct
comparison of our simulated revenue to the ground truth is not possible.
However, under the hypotheses of the previous Sections, it can be shown that
the total revenue is a deterministic function of the features of the reservations
registered on the book and not canceled. Therefore, the goodness of our
models can be evaluated by looking at their ability to generate events leading
to aggregated indicators similar to those used as input, when no optimization
is performed. Since our models lead to statistically consistent results, they
can be effectively used as a baseline or bootstrap sample from which the
search for an optimized pricing policy can start, as shown in the following
Sections.

85

CHAPTER 4. LEARNING FROM AGGREGATED DATA

4.5.1 Setup of the experiments

We consider a monotonically decreasing reservation curve with 40% of the
customers treated as walk-in users, similarly to the reservation models es-
timated from historical data in [138]. The goodness of this model is also
confirmed by data collected by the Italian Institute of Statistics (Istat) on
the features of trips1, which show that approximately 40% of the interviewed
people travel without booking. As a consequence, it is reasonable to assume
that the remaining 60% of the reservations is monotonically distributed in
the BH in a decreasing fashion as moving away from the walk-in day. We
also assume that the maximum number of cancellations occurs on the last
day, and we fix this number to 40% of the total number of cancellations. This
number can be different in presence of cancellation fees, which can reduce late
cancellations. However, as shown in [35], the booking behavior of customers,
in presence of lenient cancellation policies, does not significantly differ from
the strategies adopted when there is no cancellation policy. Moreover, the
inclusion of non-lenient policies with high fees can lead to a reduction of
cancellations and no-shows, with a possible increase in revenue. Since we are
interested in the applicability of our approach to worst-case scenarios for the
hotel manager, we do not consider cancellation fees.
BH is fixed to 180 days, the maximum number of nights for one reservation
to 10, and the maximum number of rooms to 4.
As concerns the parameters of the multipliers, we set T0 = 30 and C0 = L0 =

G0 = 1.6. All the remaining parameters are instead optimized by the system
in order to maximize the total revenue. For a more detailed description of
the parameters see [20].
η is fixed to 3, while ∆ is fixed to 0.6, so as to propose prices with a maximum
increase/decrease of 60% with respect to pricea.

1http://dati.istat.it/?lang=en; section: Communication, culture, trips/Trips/Trips and their charac-
teristics; last access: March, 2019

86

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Table 4.1: Hotels used for the tests.

Hotel ID Stars Rooms Average price (e)

01 3 52 120.00

02 2 34 69.50

03 4 136 290.00

04 4 46 153.33

05 3 113 136.67

06 3 37 74.00

07 1 9 39.00

08 4 22 216.50

09 2 14 66.50

10 3 19 82.67

In the experiments, ρ is chosen so that Praccept(RO) ≈ 1 when there is a
discount of at least 50% and Praccept(RO) ≈ 0 when the price increases of at
least 50%. In this way we are able to simulate a realistic scenario, in which
the ranges of acceptable prices for customers and hotel managers differ. In
our case, customers can accept maximum variations of ±50%, while hotel
managers allow maximum variations of proposed prices of ±60% (through ∆

in (4.13)).

We empirically show the applicability of our methodology to 10 hotels
in Trento, Italy. In order to simulate multiple scenarios, we selected (and
anonymized) representative hotels from the official open data of the Province
of Trento2, with different capacities, stars and average prices, as reported in
Table 4.1. The information related to the average arrivals and the average
number of nights per reservation is taken from the Statistics Institute of the
Province of Trento (Ispat)3. Only monthly data up to 2016 are available.

2http://dati.trentino.it/dataset/esercizi-alberghieri (last access: March, 2019).
3http://www.statistica.provincia.tn.it, section “Annuari del Turismo" (last access: March, 2019).

87

CHAPTER 4. LEARNING FROM AGGREGATED DATA

No information is available about the average number of rooms per reserva-
tion, so we assumed it to be equal to 1 to make it irrelevant for the optimiza-
tion. We disaggregated data on arrivals and mapped them onto each hotel
according to their capacity, under the assumption that bigger hotels usually
register more arrivals than smaller hotels. Since we do not have access to
the complete history of each hotel, we assume that the data of 2016 are valid
also in the following years.
In the experiments RH starts on July 1st, 2017, and ends on December 31st,
2018. AH starts on July 1st, 2017, and ends on January 31st, 2019. OH
starts on January 1st, 2018, and ends on December 31st, 2018. To avoid bias
given by strict truncation, we maximize the total revenue in one year, after
a transient period of 6 months and for customers arriving up to one month
later than the end of the year of interest.
For the optimization, we use an efficient implementation of CMA-ES4, with
a step size of 0.5 (for an optimal exploration-exploitation balance) and a
budget of 300 iterations (for a maximum estimated optimization time of 5/6
hours). Each iteration retrieves the total revenue as the average on 20 sim-
ulation runs, all with the same parameter configuration, for a total of 6000
simulations within one optimization run. For each hotel, the optimization
process is repeated 10 times.
To improve the efficiency and effectiveness of optimization, if one consid-
ers variable costs and profit, a possible approach is given by multi-objective
optimization to take into account the revenue generated by arrivals as well
as the costs associated with occupancy. Recent examples of multi-objective
optimization heuristics are presented in [26]. Another approach is given by
nested optimization schemes [60]. These techniques can lead to improved
efficiency by reducing our multidimensional problem, which depends on dif-
ferent dimensions like the time to arrival and the length of stay, to a family

4Code available at http://beniz.github.io/libcmaes (last access: March, 2019).

88

CHAPTER 4. LEARNING FROM AGGREGATED DATA

of one-dimensional subproblems. However, the comparison of different opti-
mization methods is out of the scope of this Chapter, which focuses mainly
on the challenge of learning parametric models through simulations on ag-
gregated data. We selected CMA-ES because it is one of the state-of-the-art
algorithms for black-box optimization and in particular it is the technique
used by [20], from which we developed our pricing model.

4.5.2 Results on arrivals, occupancy and revenue

For each hotel, we used a one-sample t-test for testing the equivalence be-
tween the average total number of arrivals used as input and the same indica-
tor produced by simulations with non-optimized prices. With a significance
level α = 0.01 and a total of 200 runs for each hotel, the equivalence of input
and output is empirically proved, with a computed statistical power of 1 for
all the hotels. Therefore, we can assume that the implementation of our mod-
els is correct and unbiased. This allows one to consider different relationships
between the same set of inputs and outputs, with stochastic functions that
can better represent realistic scenarios characterized by uncertainty.

Independently from the specific hotel and scenario, optimized pricing poli-
cies based on our parametric models always lead to statistically significant
improvements. In Table 4.2 we report the results on customer arrivals, oc-
cupancy and revenue as the percentage increase led by the optimized pricing
model with respect to the configuration with the multipliers equal to 1.
In our context, a unit of occupancy corresponds to the so-called room-night,
which is a room occupied for one night. Results are expressed in terms of
averages and standard errors, and they are statistically significant accord-
ing to the two-tailed unequal variances t-test [132], with a significance level
α = 0.01.

Results are promising for all the hotels, with a minimum of 12.8% in-
crease in revenue, 37.7% in occupancy and 38.2% in arrivals. The maximum

89

CHAPTER 4. LEARNING FROM AGGREGATED DATA

Table 4.2: Percentage increase in arrivals, occupancy (as room-nights) and revenue after
optimization. Maximum and minimum values are in bold.

Hotel ID Arrivals Occupancy Revenue

01 48.2±0.5 47.6±0.6 18.4±0.6

02 50.6±0.6 50.6±0.7 20.4±0.7

03 51.6±0.3 52.6±0.3 21.6±0.3

04 44.0±0.5 44.2±0.6 17.8±0.6

05 55.5±0.3 55.2±0.4 23.1±0.4

06 46.9±0.6 45.8±0.6 17.8±0.6

07 38.2±1.1 37.7±1.3 12.8±1.2

08 43.2±0.7 42.0±0.8 18.0±0.8

09 42.0±0.9 41.8±1.0 17.7±1.0

10 41.8±0.8 40.5±0.9 17.3±0.9

increase in revenue is reached for Hotel 05, with a value of 23.1%. The mini-
mum values are reached for small hotels, where the limited number of rooms
leads to fewer arrivals and then relatively low revenues. In this context, there
is also more variability, since the hotel can become full with few reservations,
thus leading to the rejection of more requests.

Experiments suggest that higher revenues can be obtained for medium and
big hotels, where the system exploits the capacity of the hotel to increase the
number of arrivals. The time series of the average daily revenue during the
year of interest for the best and worst scenarios are reported in Figure 4.4.
For Hotel 05, it is evident that the time series produced by the optimized

model is significantly higher than that produced without optimization. In
this case, there is less chance of having a loss in revenue because of an op-

90

CHAPTER 4. LEARNING FROM AGGREGATED DATA

50 100 150 200 250 300 350
Day Of Year

4000

6000

8000

10000

12000

Av
er

ag
e D

ail
y R

ev
en

ue
 (

)

Hotel 05
without optimization
with optimization

50 100 150 200 250 300 350
Day Of Year

100

120

140

160

180

200

220

240

260

Av
er

ag
e D

ail
y R

ev
en

ue
 (

)

Hotel 07
without optimization
with optimization

Figure 4.4: Average daily revenue for Hotel 05 and Hotel 07 (one value per week).

0 5 10 15 20 25 30 35
% Increase in Revenue (X)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

D
en

si
ty

 (
f X

)

Hotel 05

5 0 5 10 15 20 25 30
% Increase in Revenue (X)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
en

si
ty

 (
f X

)

Hotel 07

Figure 4.5: Estimated distributions of increase in revenue after optimization for Hotel 05
and Hotel 07.

91

CHAPTER 4. LEARNING FROM AGGREGATED DATA

timistic configuration found during the optimization process. For Hotel 07,
the two time series are not significantly different because of the higher un-
certainty caused by the small dimension of the hotel. This leads to higher
risk and to the possibility of having a loss, even though this can happen with
a relatively low probability (≈ 0.03), as it is evident from the distribution of
the increase in revenue in Figure 4.5. These results are in accordance with
the expected behavior of non-homogeneous Poisson distributions, whose co-
efficient of variation decreases as the expected value increases. In the context
of hotel demand, this property implies that for small hotels, which can ac-
commodate a limited number of guests and therefore are characterized by
less arrivals, the coefficient of variation is higher than that of large hotels.
As a consequence, the increased variability for small hotels leads to higher
risk of losses, as empirically shown by our results.

Independently from the numerical values, the case study and the exper-
iments reported in this Chapter support our claim that learning, in the ex-
treme case when one has no access to individual samples, is still possible.
However, there is the need of having access to the knowledge of domain ex-
perts or previous research results, for example in the form of aggregated data.
In addition, it is crucial to develop robust techniques that take into account
the high level of uncertainty of the modeled phenomena in order to define
risk-averse methodologies based on Monte Carlo simulations and statistical
significance and power.

92

Chapter 5

Conclusion

In this dissertation we focused on the effects of noise and uncertainty on
machine learning. We briefly reviewed some state-of-the-art solutions to build
robust algorithms as well as to detect and reduce noise before the actual
learning phase. We then addressed the problems arising in three contexts
characterized by different volumes of samples.

When the number of samples is large enough to learn an accurate model,
high dimensionality, feature redundancy and feature irrelevance can still de-
ceive the training and lead to poor generalization performance. In this con-
text, we proposed a novel approach for feature selection based on the mini-
mization of the neighborhood entropy, which is inversely proportional to the
mutual information between the features and the output variable. We devel-
oped an algorithm robust to noise and to class imbalance by using a greedy
procedure based on approximated nearest neighbors and locality-sensitive
hashing. Experimental results showed that our technique usually leads to
better classification accuracy, at the expense of more computation time. In
addition, our method tends to select features with a better order, leading
to a better classification accuracy for fewer features, even in the presence of
high levels of noise and class imbalance. Possible future research directions
include a comparison between our filter method and embedded methods like

93

CHAPTER 5. CONCLUSION

autoencoders, as well as the study and implementation of techniques able to
reduce the CPU time.

As concerns problems characterized by data scarcity and high dimension-
ality, we showed that feature selection is not always beneficial for learning. In
the context of salary prediction in the IT job market, we empirically demon-
strated that ad-hoc feature engineering and ensemble learning are effective
solutions to handle the uncertainty caused by the limited number of samples.
We compared several models including logistic regression, nearest-neighbors
classifiers, neural networks, support vector machines, random forests, boost-
ing machines and majority-vote ensembles based on all or part of them.
Experiments showed that our heterogeneous ensembles lead to superior re-
sults in terms of accuracy, precision and recall. As future work, it would
be interesting to study stacked heterogeneous ensembles including embedded
feature selection methods.

Lastly, we studied the extreme case when individual samples are not avail-
able and only aggregated data are accessible. In this situation, traditional
instance-based learning is not possible. Our solution, in the context of dy-
namic pricing for hotel revenue management, includes the definition of para-
metric and stochastic models, and the formulation of learning as a simulation-
based black-box optimization problem. Useful insights can be retrieved by
analyzing different scenarios through a limited set of meaningful parameters.
Experiments on real aggregated data showed that, even with no access to
individual historical records, our proposed methodology effectively handles
the inherent stochasticity of room demand and allows hotel managers to con-
duct rigorous risk analysis. Future work will focus on the extension of our
parametric models to include multiple categories of customers and rooms as
well as the effects of competitors on demand and price.

94

Bibliography

[1] Y. Abbound, A. Boyer, and A. Brun. Predict the emergence: Application to competencies
in job offers. In Tools with Artificial Intelligence (ICTAI), 2015 IEEE 27th International
Conference on, pages 612–619, Nov 2015.

[2] J. Abellán and A. R. Masegosa. Bagging decision trees on data sets with classification noise.
In International Symposium on Foundations of Information and Knowledge Systems, pages
248–265. Springer, 2010.

[3] A. O. Akyuz, M. Uysal, B. A. Bulbul, and M. O. Uysal. Ensemble approach for time series
analysis in demand forecasting: Ensemble learning. In INnovations in Intelligent SysTems
and Applications (INISTA), 2017 IEEE International Conference on, pages 7–12. IEEE,
2017.

[4] S. T. Al-Otaibi and M. Ykhlef. A survey of job recommender systems. International
Journal of the Physical Sciences, 7(29):5127–5142, 2012.

[5] A. Alarcón-Paredes, G. A. Alonso, E. Cabrera, and R. Cuevas-Valencia. Simultaneous
gene selection and weighting in nearest neighbor classifier for gene expression data. In
International Conference on Bioinformatics and Biomedical Engineering, pages 372–381.
Springer, 2017.

[6] J. Alcalá, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez, and F. Herrera.
Keel data-mining software tool: Data set repository, integration of algorithms and experi-
mental analysis framework. J. Multiple-Valued Logic Soft Comput., 17(2-3):255–287, 2010.
http://sci2s.ugr.es/keel/datasets.php [accessed Jan. 2018].

[7] N. Almalis, G. Tsihrintzis, and N. Karagiannis. Research and Development in Intelligent
Systems XXXII: Incorporating Applications and Innovations in Intelligent Systems XXIII,
chapter A New Content-Based Recommendation Algorithm for Job Recruiting, pages 393–
398. Springer International Publishing, Cham, 2015.

[8] F. Amato, R. Boselli, M. Cesarini, F. Mercorio, M. Mezzanzanica, V. Moscato, F. Persia,
and A. Picariello. Challenge: Processing web texts for classifying job offers. In Semantic
Computing (ICSC), 2015 IEEE International Conference on, pages 460–463, Feb 2015.

[9] R. R. Andrawis and A. F. Atiya. A new Bayesian formulation for Holt’s exponential
smoothing. Journal of Forecasting, 28(3):218–234, 2009.

[10] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching fixed dimensions. J. ACM, 45(6):891–923, 1998.

[11] H. A. Aziz, M. Saleh, M. H. Rasmy, and H. Elshishiny. Dynamic room pricing model for
hotel revenue management systems. Egyptian Informatics Journal, 12(3):177–183, 2011.

[12] R. Baggio. Network science and tourism–the state of the art. Tourism Review, 72(1):120–
131, 2017.

[13] T. K. Baker and D. A. Collier. A comparative revenue analysis of hotel yield management
heuristics. Decision Sciences, 30(1):239–263, 1999.

[14] R. Barandela and E. Gasca. Decontamination of training samples for supervised pattern
recognition methods. In Joint IAPR International Workshops on Statistical Techniques

95

BIBLIOGRAPHY

in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR),
pages 621–630. Springer, 2000.

[15] L. Barber. E-recruitment Developments. Institute for Employment Studies, 2006.
[16] G. E. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods

for balancing machine learning training data. ACM SIGKDD explorations newsletter,
6(1):20–29, 2004.

[17] R. Battiti. Accelerated backpropagation learning: Two optimization methods. Complex
systems, 3(4):331–342, 1989.

[18] R. Battiti. Using the mutual information for selecting features in supervised neural net
learning. IEEE Trans. Neural Netw., 5(4):537–550, 1994.

[19] R. Battiti and M. Brunato. The LION way. Machine Learning plus Intelligent Optimiza-
tion. LIONlab, University of Trento, Italy, December 2017.

[20] A. E.-M. Bayoumi, M. Saleh, A. F. Atiya, and H. A. Aziz. Dynamic pricing for hotel
revenue management using price multipliers. Journal of Revenue and Pricing Management,
12(3):271–285, 2013.

[21] J. Beemer, K. Spoon, L. He, J. Fan, and R. A. Levine. Ensemble learning for estimat-
ing individualized treatment effects in student success studies. International Journal of
Artificial Intelligence in Education, pages 1–21, 2017.

[22] D. Bertsimas and S. De Boer. Simulation-based booking limits for airline revenue manage-
ment. Operations Research, 53(1):90–106, 2005.

[23] D. Bertsimas and I. Popescu. Revenue management in a dynamic network environment.
Transportation science, 37(3):257–277, 2003.

[24] G. Bitran and R. Caldentey. An overview of pricing models for revenue management.
Manufacturing & Service Operations Management, 5(3):203–229, 2003.

[25] G. R. Bitran and S. V. Mondschein. An application of yield management to the hotel
industry considering multiple day stays. Operations research, 43(3):427–443, 1995.

[26] A. Blot, M.-É. Kessaci, and L. Jourdan. Survey and unification of local search techniques
in metaheuristics for multi-objective combinatorial optimisation. Journal of Heuristics,
24(6):853–877, Dec 2018.

[27] D. Bouzas, N. Arvanitopoulos, and A. Tefas. Graph embedded nonparametric mutual
information for supervised dimensionality reduction. IEEE Trans. Neural Netw. Learn.
Syst., 26(5):951–963, 2015.

[28] A. Bozzon, M. Brambilla, S. Ceri, M. Silvestri, and G. Vesci. Choosing the right crowd:
expert finding in social networks. In Proceedings of the 16th International Conference on
Extending Database Technology, pages 637–648. ACM, 2013.

[29] C. E. Brodley and M. A. Friedl. Identifying mislabeled training data. Journal of artificial
intelligence research, 11:131–167, 1999.

[30] M. Brunato and R. Battiti. X-mifs: Exact mutual information for feature selection. In
Proc. Intl. Joint Conf. on Neural Netw., pages 3469–3476, 2016.

[31] D. Buhalis and R. Law. Progress in information technology and tourism management:
20 years on and 10 years after the internet – the state of etourism research. Tourism
management, 29(4):609–623, 2008.

[32] F. Bulut and M. F. Amasyali. Locally adaptive k parameter selection for nearest neighbor
classifier: one nearest cluster. Pattern Analysis and Applications, 20(2):415–425, 2017.

[33] R. Campos, M. Arrazola, and J. de Hevia. Online job search in the spanish labor market.
Telecommunications Policy, 38(11):1095 – 1116, 2014.

96

BIBLIOGRAPHY

[34] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

[35] C.-C. Chen, Z. Schwartz, and P. Vargas. The search for the best deal: How hotel cancella-
tion policies affect the search and booking decisions of deal-seeking customers. International
Journal of Hospitality Management, 30(1):129–135, 2011.

[36] C.-F. Chien and L.-F. Chen. Data mining to improve personnel selection and enhance
human capital: A case study in high-technology industry. Expert Systems with Applications,
34(1):280 – 290, 2008.

[37] T. Y. Choi and V. Cho. Towards a knowledge discovery framework for yield management in
the Hong Kong hotel industry. International Journal of Hospitality Management, 19(1):17–
31, 2000.

[38] A. K. Chowdhury, D. Tjondronegoro, V. Chandran, and S. G. Trost. Ensemble methods
for classification of physical activities from wrist accelerometry. Medicine and science in
sports and exercise, 49(9):1965, 2017.

[39] K. L. Clarkson. Fast algorithms for the all nearest neighbors problem. In IEEE Symp. on
Foundations of Computer Science, pages 226–232, 1983.

[40] S. Corchs, E. Fersini, and F. Gasparini. Ensemble learning on visual and textual data
for social image emotion classification. International Journal of Machine Learning and
Cybernetics, pages 1–14, 2017.

[41] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Proc. 20th annual symposium on Computational geom-
etry, pages 253–262. ACM, 2004.

[42] B. Denizci Guillet and I. Mohammed. Revenue management research in hospitality and
tourism: A critical review of current literature and suggestions for future research. Inter-
national Journal of Contemporary Hospitality Management, 27(4):526–560, 2015.

[43] S. Diamond, V. Sitzmann, S. Boyd, G. Wetzstein, and F. Heide. Dirty pixels: Optimizing
image classification architectures for raw sensor data. arXiv preprint arXiv:1701.06487,
2017.

[44] T. G. Dietterich. Ensemble methods in machine learning. In International workshop on
multiple classifier systems, pages 1–15. Springer, 2000.

[45] T. G. Dietterich. An experimental comparison of three methods for constructing ensembles
of decision trees: Bagging, boosting, and randomization. Machine learning, 40(2):139–157,
2000.

[46] S. Dodge and L. Karam. Understanding how image quality affects deep neural networks.
In Quality of Multimedia Experience (QoMEX), 2016 Eighth International Conference on,
pages 1–6. IEEE, 2016.

[47] S. Dodge and L. Karam. Quality resilient deep neural networks. arXiv preprint
arXiv:1703.08119, 2017.

[48] M. Ekström, P.-A. Esseen, B. Westerlund, A. Grafström, B. Jonsson, and G. Ståhl. Lo-
gistic regression for clustered data from environmental monitoring programs. Ecological
Informatics, 2017.

[49] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada. Normalized mutual information
feature selection. IEEE Trans. Neural Netw., 20(2):189–201, 2009.

[50] E. Faliagka, K. Ramantas, A. K. Tsakalidis, M. Viennas, E. Kafeza, and G. Tzimas. An
integrated e-recruitment system for cv ranking based on ahp. In WEBIST, pages 147–150,
2011.

[51] E. Faliagka, A. Tsakalidis, and G. Tzimas. An integrated e-recruitment system for auto-
mated personality mining and applicant ranking. Internet Research, 22(5):551–568, 2012.

[52] R. Fano and D. Hawkins. Transmission of information. Am. J. Phys., 29(11):793–794,

97

BIBLIOGRAPHY

1961.
[53] G. Figueira and B. Almada-Lobo. Hybrid simulation–optimization methods: A taxonomy

and discussion. Simulation Modelling Practice and Theory, 46:118–134, 2014.
[54] D. H. Fisher and K. B. McKusick. An empirical comparison of id3 and back-propagation.

In IJCAI, pages 788–793, 1989.
[55] B. Frénay, G. Doquire, and M. Verleysen. Estimating mutual information for feature

selection in the presence of label noise. Computational Statistics & Data Analysis, 71:832–
848, 2014.

[56] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. J. Am. Stat. Assoc., 32(200):675–701, 1937.

[57] E. S. Gardner Jr. Exponential smoothing: The state of the art—part ii. International
journal of forecasting, 22(4):637–666, 2006.

[58] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing.
Proc. 25th VLDB Conf., 1999.

[59] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet. A survey on ensemble learning
for data stream classification. ACM Computing Surveys (CSUR), 50(2):23, 2017.

[60] V. Grishagin, R. Israfilov, and Y. Sergeyev. Convergence conditions and numerical compar-
ison of global optimization methods based on dimensionality reduction schemes. Applied
Mathematics and Computation, 318:270–280, 2018.

[61] P. Grube, F. Núñez, and A. Cipriano. An event-driven simulator for multi-line metro
systems and its application to Santiago de Chile metropolitan rail network. Simulation
Modelling Practice and Theory, 19(1):393–405, 2011.

[62] J. Guadix, P. Cortés, L. Onieva, and J. Muñuzuri. Technology revenue management system
for customer groups in hotels. Journal of Business Research, 63(5):519–527, 2010.

[63] M. A. Hall and L. A. Smith. Feature subset selection: a correlation based filter approach. In
Proc. Intl. Conf. Neural Inform. Processing Intell. Inform. Syst., pages 855–858. Springer,
1997.

[64] N. Hansen. The CMA evolution strategy: a comparing review. In Towards a new evolu-
tionary computation, pages 75–102. Springer, 2006.

[65] N. Hansen. Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed.
In Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, pages 2389–2396. ACM, 2009.

[66] S. Hariharan, S. Tirodkar, A. Porwal, A. Bhattacharya, and A. Joly. Random forest-based
prospectivity modelling of greenfield terrains using sparse deposit data: An example from
the tanami region, western australia. Natural Resources Research, pages 1–19, 2017.

[67] B. Heap, A. Krzywicki, W. Wobcke, M. Bain, and P. Compton. PRICAI 2014: Trends in
Artificial Intelligence: 13th Pacific Rim International Conference on Artificial Intelligence,
Gold Coast, QLD, Australia, December 1-5, 2014. Proceedings, chapter Combining Career
Progression and Profile Matching in a Job Recommender System, pages 396–408. Springer
International Publishing, Cham, 2014.

[68] A. B. Holm. E-recruitment: Towards an ubiquitous recruitment process and candidate
relationship management. German Journal of Human Resource Management, 26(3):241–
259, 2012.

[69] W. Hong, S. Zheng, H. Wang, and J. Shi. A job recommender system based on user
clustering. Journal of Computers, 8(8):1960–1967, 2013.

[70] J. J. Horton. The effects of algorithmic labor market recommendations: Evidence from a
field experiment. Available at SSRN 2346486, 2015.

[71] H. Hosseini, B. Xiao, and R. Poovendran. Google’s cloud vision api is not robust to noise. In

98

BIBLIOGRAPHY

Machine Learning and Applications (ICMLA), 2017 16th IEEE International Conference
on, pages 101–105. IEEE, 2017.

[72] C. Hou, F. Nie, X. Li, D. Yi, and Y. Wu. Joint embedding learning and sparse regression: A
framework for unsupervised feature selection. IEEE Trans. Cybern., 44(6):793–804, 2014.

[73] S. Ivanov. Hotel revenue management: From theory to practice. Zangador, 2014.
[74] P. Jafari and F. Azuaje. An assessment of recently published gene expression data analyses:

reporting experimental design and statistical factors. BMC Med. Inform. Decis. Mak.,
6(1):27, 2006.

[75] H. Jantan, A. R. Hamdan, and Z. A. Othman. Knowledge discovery techniques for talent
forecasting in human resource application. World Academy of Science, Engineering and
Technology, 50:775–783, 2009.

[76] G. H. John, R. Kohavi, K. Pfleger, et al. Irrelevant features and the subset selection
problem. In Machine learning: Proc. of the 11th Intl. Conf., pages 121–129, 1994.

[77] S. Karahan, M. K. Yildirum, K. Kirtac, F. S. Rende, G. Butun, and H. K. Ekenel. How
image degradations affect deep cnn-based face recognition? In Biometrics Special Interest
Group (BIOSIG), 2016 International Conference of the, pages 1–5. IEEE, 2016.

[78] T. M. Khoshgoftaar, S. Zhong, and V. Joshi. Enhancing software quality estimation using
ensemble-classifier based noise filtering. Intelligent Data Analysis, 9(1):3–27, 2005.

[79] K. Kira and L. A. Rendell. A practical approach to feature selection. In Proc. 9th Intl.
Workshop on Machine learning, pages 249–256, 1992.

[80] J. Kittler. Feature selection and extraction. Handbook of pattern recognition and image
processing, pages 59–83, 1986.

[81] A. J. Kleywegt. An optimal control problem of dynamic pricing. School of Industrial and
Systems Engineering, Georgia Institute of Technology (2001), 2001.

[82] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artif. Intell., 97(1):273–
324, 1997.

[83] I. Kononenko, E. Šimec, and M. Robnik-Šikonja. Overcoming the myopia of inductive
learning algorithms with relieff. Appl. Intell., 7(1):39–55, 1997.

[84] A. Kraskov, H. Stögbauer, and P. Grassberger. Estimating mutual information. Physical
Review E, 69(6), 2004.

[85] P. Kuhn and H. Mansour. Is internet job search still ineffective? The Economic Journal,
124(581):1213–1233, 2014.

[86] N. Kwak and C.-H. Choi. Input feature selection by mutual information based on parzen
window. IEEE Trans. Pattern Anal. Mach. Intell., 24(12):1667–1671, 2002.

[87] K.-K. Lai and W.-L. Ng. A stochastic approach to hotel revenue optimization. Computers
& Operations Research, 32(5):1059–1072, 2005.

[88] N. D. Lawrence and B. Schölkopf. Estimating a kernel fisher discriminant in the presence
of label noise. In ICML, volume 1, pages 306–313. Citeseer, 2001.

[89] L. Lefakis and F. Fleuret. Jointly informative feature selection. In AISTATS, pages 567–
575, 2014.

[90] M. Lichman. UCI machine learning repository, 2013.
[91] R. Linsker. Self-organization in a perceptual network. Computer, 21(3):105–117, 1988.
[92] S. Liu, K. K. Lai, and S. Wang. Booking models for hotel revenue management considering

multiple-day stays. 2:78–91, 02 2008.
[93] Y. Liu, C. Jiang, and H. Zhao. Using contextual features and multi-view ensemble learning

in product defect identification from online discussion forums. Decision Support Systems,

99

BIBLIOGRAPHY

2017.
[94] C. Mang. Online job search and matching quality. Technical report, Ifo Working Paper,

2012.
[95] G. Mani. Some approaches to handle noise in concept learning. International journal of

man-machine studies, 36(2):167–181, 1992.
[96] J. Mata, I. de Miguel, R. J. Duran, N. Merayo, S. K. Singh, A. Jukan, and M. Chamania.

Artificial intelligence (ai) methods in optical networks: A comprehensive survey. Optical
Switching and Networking, 2018.

[97] J. I. McGill and G. J. Van Ryzin. Revenue management: Research overview and prospects.
Transportation science, 33(2):233–256, 1999.

[98] P. Melville, N. Shah, L. Mihalkova, and R. J. Mooney. Experiments on ensembles with
missing and noisy data. In International Workshop on Multiple Classifier Systems, pages
293–302. Springer, 2004.

[99] M. Muja and D. G. Lowe. Scalable nearest neighbor algorithms for high dimensional data.
IEEE Trans. Pattern Anal. Mach. Intell., 36(11):2227–2240, 2014.

[100] D. F. Nettleton, A. Orriols-Puig, and A. Fornells. A study of the effect of different types
of noise on the precision of supervised learning techniques. Artificial intelligence review,
33(4):275–306, 2010.

[101] F. Nie, H. Huang, X. Cai, and C. H. Ding. Efficient and robust feature selection via
joint l2,1-norms minimization. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, Adv. Neural Inf. Process. Syst. 23, pages 1813–1821. Curran
Associates, Inc., 2010.

[102] S. Palaniappan, T. Rajinikanth, and A. Govardhan. Spatial data analysis using various
tree classifiers ensembled with adaboost approach. In Emerging Trends in Electrical, Com-
munications and Information Technologies: Proceedings of ICECIT-2015, pages 165–174.
Springer, 2017.

[103] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami. Practical
black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 506–519. ACM, 2017.

[104] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. J.
Mach. Learn. Res., 12(Oct):2825–2830, 2011. http://scikit-learn.org.

[105] H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach.
Intell., 27(8):1226–1238, 2005.

[106] B. T. Pham, D. T. Bui, H. R. Pourghasemi, P. Indra, and M. Dholakia. Landslide sus-
ceptibility assesssment in the uttarakhand area (india) using gis: a comparison study of
prediction capability of naïve bayes, multilayer perceptron neural networks, and functional
trees methods. Theoretical and Applied Climatology, 128(1-2):255–273, 2017.

[107] F. Provost, C. Hibert, and J.-P. Malet. Automatic classification of endogenous landslide
seismicity using the random forest supervised classifier. Geophysical Research Letters,
44(1):113–120, 2017.

[108] J. R. Quinlan. The effect of noise on concept learning. Machine learning: An artificial
intelligence approach, 2:149–166, 1986.

[109] J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.
[110] R. Schlögel, I. Marchesini, M. Alvioli, P. Reichenbach, M. Rossi, and J.-P. Malet. Opti-

mizing landslide susceptibility zonation: Effects of dem spatial resolution and slope unit
delineation on logistic regression models. Geomorphology, 2017.

100

http://scikit-learn.org

BIBLIOGRAPHY

[111] N. Segata, E. Blanzieri, S. J. Delany, and P. Cunningham. Noise reduction for instance-
based learning with a local maximal margin approach. Journal of Intelligent Information
Systems, 35(2):301–331, 2010.

[112] V. Senthil Kumaran and A. Sankar. Towards an automated system for intelligent screening
of candidates for recruitment using ontology mapping (expert). International Journal of
Metadata, Semantics and Ontologies, 8(1):56–64, 2013.

[113] U. Shaham, Y. Yamada, and S. Negahban. Understanding adversarial training: Increasing
local stability of supervised models through robust optimization. Neurocomputing, 2018.

[114] A. A. Shanab, T. M. Khoshgoftaar, and R. Wald. Robustness of threshold-based feature
rankers with data sampling on noisy and imbalanced data. In FLAIRS Conference, 2012.

[115] C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image descriptor matching. In
CVPR IEEE Conf., pages 1–8, 2008.

[116] A. Singh, C. Rose, K. Visweswariah, V. Chenthamarakshan, and N. Kambhatla. Prospect:
A system for screening candidates for recruitment. In Proceedings of the 19th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM ’10, pages 659–668,
New York, NY, USA, 2010. ACM.

[117] N. Sivaram and K. Ramar. Applicability of clustering and classification algorithms for
recruitment data mining. International Journal of Computer Applications, 4(5):23–28,
2010.

[118] M. Sprenger, S. Schemm, R. Oechslin, and J. Jenkner. Nowcasting foehn wind events using
the adaboost machine learning algorithm. Weather and Forecasting, 32(3):1079–1099, 2017.

[119] D. Stefanovic, N. Stefanovic, and B. Radenkovic. Supply network modelling and simulation
methodology. Simulation Modelling Practice and Theory, 17(4):743–766, 2009.

[120] K. T. Talluri and G. J. Van Ryzin. The theory and practice of revenue management,
volume 68. Springer Science & Business Media, 2006.

[121] H. Tao, C. Hou, F. Nie, Y. Jiao, and D. Yi. Effective discriminative feature selection with
nontrivial solution. IEEE Trans. Neural Netw. Learn. Syst., 27(4):796–808, 2016.

[122] L. F. Thompson, P. W. Braddy, and K. L. Wuensch. E-recruitment and the benefits
of organizational web appeal. Computers in Human Behavior, 24(5):2384 – 2398, 2008.
Including the Special Issue: Internet Empowerment.

[123] J. Tian, M. H. Azarian, M. Pecht, G. Niu, and C. Li. An ensemble learning-based fault
diagnosis method for rotating machinery. In Prognostics and System Health Management
Conference (PHM-Harbin), 2017, pages 1–6. IEEE, 2017.

[124] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B
Stat. Methodol., 58(1):267–288, 1996.

[125] I. Tomek. Two modifications of cnn. IEEE Transactions on Systems, Man and Cybernetics,
SMC-6(11):769–772, 1976.

[126] K. Torkkola. Feature extraction by non-parametric mutual information maximization. J.
Mach. Learn. Res., 3(3):1415–1438, 2003.

[127] P. M. Vaidya. An o(nlogn) algorithm for the all-nearest-neighbors problem. Disc. Comp.
Geom., 4(2):101–115, 1989.

[128] K. R. Varshney, V. Chenthamarakshan, S. W. Fancher, J. Wang, D. Fang, and A. Mo-
jsilović. Predicting employee expertise for talent management in the enterprise. In Pro-
ceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’14, pages 1729–1738, New York, NY, USA, 2014. ACM.

[129] R. Wang, F. Nie, R. Hong, X. Chang, X. Yang, and W. Yu. Fast and orthogonal lo-
cality preserving projections for dimensionality reduction. IEEE Trans. Image Process.,
26(10):5019–5030, 2017.

101

BIBLIOGRAPHY

[130] R. Wang, F. Nie, X. Yang, F. Gao, and M. Yao. Robust 2DPCA with non-greedy l1-norm
maximization for image analysis. IEEE Trans. Cybern., 45(5):1108–1112, 2015.

[131] L. R. Weatherford and S. E. Kimes. A comparison of forecasting methods for hotel revenue
management. International journal of forecasting, 19(3):401–415, 2003.

[132] B. L. Welch. The generalization of student’s problem when several different population
variances are involved. Biometrika, 34(1/2):28–35, 1947.

[133] S. Xiang, F. Nie, G. Meng, C. Pan, and C. Zhang. Discriminative least squares regression
for multiclass classification and feature selection. IEEE Trans. Neural Netw., 23(11):1738–
1754, 2012.

[134] Z. Xiang, V. P. Magnini, and D. R. Fesenmaier. Information technology and consumer
behavior in travel and tourism: Insights from travel planning using the internet. Journal
of Retailing and Consumer Services, 22:244–249, 2015.

[135] J. Xu, X. Liu, Z. Huo, C. Deng, F. Nie, and H. Huang. Multi-class support vector ma-
chine via maximizing multi-class margins. In The 26th International Joint Conference on
Artificial Intelligence (IJCAI 2017), 2017.

[136] J. Xu, B. Tang, H. He, and H. Man. Semisupervised feature selection based on relevance
and redundancy criteria. IEEE Trans. Neural Netw. Learn. Syst., 28(9):1974–1984, 2017.

[137] R. R. Yager. Quantifier guided aggregation using OWA operators. International Journal
of Intelligent Systems, 11(1):49–73, 1996.

[138] A. Zakhary, A. F. Atiya, H. El-Shishiny, and N. E. Gayar. Forecasting hotel arrivals and
occupancy using Monte Carlo simulation. Journal of Revenue and Pricing Management,
10(4):344–366, 2011.

[139] A. Zakhary, N. El Gayar, and A. F. Atiya. A comparative study of the pickup method
and its variations using a simulated hotel reservation data. ICGST international journal
on artificial intelligence and machine learning, 8:15–21, 2008.

[140] F. Zaman and H. Hirose. Effect of subsampling rate on subbagging and related ensembles
of stable classifiers. In International Conference on Pattern Recognition and Machine
Intelligence, pages 44–49. Springer, 2009.

[141] D. Zhang and L. Weatherford. Dynamic pricing for network revenue management: A
new approach and application in the hotel industry. INFORMS Journal on Computing,
29(1):18–35, 2016.

[142] J. Zhang, J. Tang, and J. Li. Expert finding in a social network. In Advances in Databases:
Concepts, Systems and Applications, pages 1066–1069. Springer, 2007.

[143] W. Zhang, R. Rekaya, and K. Bertrand. A method for predicting disease subtypes in
presence of misclassification among training samples using gene expression: application to
human breast cancer. Bioinformatics, 22(3):317–325, 2005.

[144] Y. Zhang, Y. Sun, P. Phillips, G. Liu, X. Zhou, and S. Wang. A multilayer perceptron
based smart pathological brain detection system by fractional fourier entropy. Journal of
medical systems, 40(7):173, 2016.

[145] Y. Zhou, W. Su, L. Ding, H. Luo, and P. E. Love. Predicting safety risks in deep foundation
pits in subway infrastructure projects: Support vector machine approach. Journal of
Computing in Civil Engineering, 31(5):04017052, 2017.

[146] X. Zhu, X. Wu, and Y. Yang. Error detection and impact-sensitive instance ranking in
noisy datasets. In AAAI, pages 378–384, 2004.

102

	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Publications originated from this work
	Introduction
	Learning from Data
	Learning in the Presence of Noise
	Effects of Noise on Machine Learning
	Noise Reduction by Feature Selection
	Noise Reduction by Ensemble Learning
	Noise Handling in Imbalanced Data

	Proposed Solutions
	Structure of the Thesis

	Robust Feature Selection
	Taxonomy of Feature Selection Methods
	Distribution-Independent Filter Methods
	RELIEF and RELIEFF
	Feature Selection based on Mutual Information

	Feature Selection with the Neighborhood Entropy
	NEFS Implementation Details
	Locality-Sensitive Hashing

	Experiments and Discussion
	CPU Time Models

	Learning with Ensembles
	E-Recruitment
	Feature Engineering and Data Cleaning
	Models for Salary Range Prediction
	Experiments and Discussion
	Model configuration and selection
	Model comparison

	Learning from Aggregated Data
	Dynamic Pricing in Hotel Revenue Management
	Simulation of a Hotel Booking Scenario
	Definitions
	System overview

	Parametric Models
	Simulation of reservation requests
	Simulation of nights and rooms
	Simulation of cancellations

	Dynamic Pricing and Acceptance Probability
	Experiments and Discussion
	Setup of the experiments
	Results on arrivals, occupancy and revenue

	Conclusion
	Bibliography

