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Abstract

Human metabolism, an essential and highly organized process, which is required to run and

maintain cellular processes and to respond to shifts in external and internal conditions, can be de-

scribed as a complex and interconnected network of metabolic pathways. Computational systems

biology provides a suitable framework to study the mechanisms and interactions of this network

and to address questions that are difficult to reproduce in vitro or in vivo. This dissertation

contributes to the development of computational strategies which help to investigate aspects of

human metabolism and metabolic-related disorders.

In the first part, we introduce mathematical models of folate-mediated one-carbon metabolism

in the cytoplasm and subsequently in the nucleus. A hybrid-stochastic framework is applied to

investigate the behavior and stability of the complete metabolic network in response to genetic and

nutritional factors. We analyse the effect of a common polymorphism of MTHFR, B12 and folate

deficiency, as well as the role of the 5-formyltetrahydrofolate futile cycle on network dynamics.

Furthermore, we study the impact of multienzyme complex formation and substrate channelling,

which are key aspects related to nuclear folate-mediated one-carbon metabolism. Model simula-

tions of the nuclear model highlight the importance of these two factors for normal functioning of

the network and further identify folate status and enzyme levels as important influence factors for

network dynamics.

In the second part, we focus on metabolic syndrome, a highly prevalent cluster of metabolic

disorders. We develop a computational workflow based on network analysis to characterise under-

lying molecular mechanisms of the disorder and to explore possible novel therapeutic strategies by

means of drug repurposing. To this end, genetic data, text mining results, drug expression profiles

and drug target information are integrated in the setting of tissue-specific background networks

and a proximity score based on topological distance and functional similarity measurements is

defined to identify potential new therapeutic applications of already approved drugs. A filtering

and prioritization analysis allow us to identify ibrutinib, an inhibitor of bruton tyrosine kinase, as

the most promising repurposing candidate.
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Preface

Systems biology has emerged as a powerful tool for studying complex biological systems at multi-

ple scales from cell to organism level using a holistic perspective [131;192]. In contrast to approaches

based on the concept of reductionism, which center around the study of individual, isolated com-

ponents of a biological process, systems biology aims at understanding the organism as a whole

and considers the single components and their interactions collectively [61;69]. Indeed, while under-

standing the functionality of single biological entities is still of great importance, obtaining a broad

view of the interactions between them is of particular importance because it allows to elucidate

underlying structures and dynamics [65;130].

A common way to represent biological processes in systems biology is given by networks,

i.e. graphs in which nodes correspond to different biological entities such as genes, proteins and

metabolites, and edges between them represent their interactions. Once the network structure has

been defined, different analysis methods from other research areas may be applied to characterize

and study the biological functions of the system at hand [284]. The static analysis of large-scale

biological networks is based on the collation, integration, visualization and topological exploration

of data sets spanning diverse layers of the physiology of interest or different stages of disease

pathogenesis [69;284]. On the other hand, dynamic analysis of the system is provided by applying

quantitative mathematical modeling and simulations, which allows to investigate adaptive changes

in the molecular network in response to internal or external stimuli [183;192;203;284]. In this thesis

we explore these two strategies and utilize them to study different aspects of human metabolism.

Human metabolism is defined by the totality of all life-sustaining physical or biochemical

reactions occurring in the organism [191]. Two categories of reactions enable the organism to

function: catabolic reactions break down complex compounds (e.g. carbohydrates, lipids, proteins,

and nucleic acids) to obtain energy or macromolecule building blocks, while anabolic reactions

synthesize new molecules from simpler and smaller entities [6]. This highly organized process is

essential for organisms to run and maintain cellular processes, replicate and repair DNA, eliminate

nitrogenous wastes, as well as to respond to shifting environmental conditions [6]. Regulation of

these metabolic processes according to the cell’s immediate demands and overall function is crucial

to maintain a functioning system [182;191]. Based on the metabolites involved, biochemical reactions

can be grouped in metabolic pathways, e.g. glycolysis is the set of reactions that transform

glucose into biochemical energy. In consequence, we can understand metabolism as a complex and

interconnected network of pathways, which must be monitored and coordinated at any given time.

Internal or external impairments or disruptions of the metabolic process introduced, e.g., by

abnormal chemical reactions, nutritional deficiencies, genetic anomalies or organ-level diseases

may cause dysfunction of these pathways and may lead to metabolic disorders [72]. The underlying
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mechanisms and interactions of metabolic networks need still to be fully elucidated. Therefore,

systems biology may play an important role in analyzing and understanding these complex pro-

cesses.

This dissertation contributes to the development of computational frameworks, that help to

investigate aspects of human metabolism and metabolic-related disorders. Part I (comprising

Chapters 1 to 4) of this thesis presents a systems biology approach based on mathematical mod-

elling to study the folate-mediated one-carbon metabolism, an important component of human

metabolism connected to DNA replication. In Part II (consisting of Chapter 5) a network-based

approach to study the underlying mechanisms of metabolic-related disorders and drug effects in a

drug repurposing manner is introduced. This method is applied to metabolic syndrome, a highly

prevelant cluster of metabolic disturbances.

Chapter 1 introduces a mathematical model of folate-mediated one-carbon metabolism (FOCM)

in the cytoplasm. A hybrid-stochastic framework is applied to investigate the behavior and

stability of this metabolic network in response to folate deficiency and the C667T polymor-

phism, a commen genetic variant of methylenetetrahydrofolate reductase (MTHFR), which

has been associated with neural tube defects. The results indicate that de novo dTMP syn-

thesis in the cytosol does not occur at rates sufficient for genome replication, and highlight

therefore the need of nuclear FOCM to prevent impairment of dTMP synthesis, an aspect

studied in Chapter 4. The content of this chapter has been published [168].

Chapter 2 is dedicated to the question of how vitamin B12 deficiency influences FOCM model

dynamics with a special focus on de novo dTMP synthesis. For this purpose, deterministic

simulations of the mathematical model introduced in Chapter 1 were used. The resulting

simulations indicate that de novo dTMP synthesis is considerably more affected by vitamin

B12 deficiency than either purine synthesis or homocysteine remethylation. The content of

this chapter will be part of [194].

Chapter 3 provides an extension of the mathematical model presented in the preceding chapters.

The main focus of this chapter is to study the effect of the 5fTHF futile cycle on overall

network dynamics and stability. Model simulations indicate that the inclusion of the 5fTHF

futile cycle stabilizes FOCM network in all considered scenarios regarding the MTHFR

C667T polymorphism and folate deficiency. Furthermore, the model outcome shows that

MTHFS plays a crucial role in preventing 5fTHF accumulation in mammalian cells, sup-

porting experimental observations that Mthfs is an essential gene in mice. The content of

this chapter has been published [169].

Chapter 4 is dedicated to the modeling efforts with respect to nuclear FOCM. Here the cytoplas-

mic model introduced in Chapter 3 is expanded to include the folate-dependent biochemical

reactions occurring in the nuclear compartment. The primary focus of this study is to assess

the effect of compartmentalization, enzymatic complex formation and substrate channelling

on overall network dynamics and dTMP synthesis. The simulation results show that ac-

counting for the kinetic effects of enzyme complex formation and substrate channelling is

important to meet adequate dTMP synthesis rates.
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Chapter 5 introduces a systems biology approach based on network analysis that integrates ge-

nomic data, text mining results and drug expression profiles to identify potential new ther-

apeutic applications of approved drugs. A score that evaluates the similarity between drug

and disease is defined by combining biological knowledge about gene functions and topo-

logical information derived from the network. This workflow has been applied to metabolic

syndrome and allowed the identification of ibrutinib, an inhibitor of Bruton tyrosine ki-

nase, as a candidate drug for the pharmacological treatment of obesity-related inflammation

characterizing the disease. The content of this chapter has been submitted [170].
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Introduction

In this dissertation, two computational systems biology strategies are introduced and utilized

to study different aspects of human metabolism. The first method is based on mathematical

modelling, which is applied to explore the dynamics of the folate-mediated one-carbon metabolism.

Furthermore, a network-based approach to investigate the biological mechanisms of metabolic

syndrome and to identify drug effects in a drug repurposing manner is presented. In the following,

a short introduction to these topics is provided, starting with an overview of the folate-mediated

one-carbon metabolism and a summary of previous mathematical models of this biological network.

In the second part, an introduction to metabolic syndrome and the concept of drug repurposing

is provided.

Folate-mediated one-carbon metabolism

Folate is an essential vitamin B, which occurs in diverse, but interconvertible chemical forms

depending on the oxidative state of the one-carbon unit they carry. This family of enzymatic co-

factors functions as one-carbon donors in a cellular network of biochemical reactions, by accepting

and passing one-carbon units through enzymatic reactions, which compose the so-called folate-

mediated one-carbon metabolism (FOCM). FOCM functions in the cellular compartments of the

cytoplasm, mitochondria and nucleus and plays a crucial role for cell division, DNA repair and

replication.

In the cytoplasm FOCM interconnects de novo purine synthesis, de novo thymidylate synthe-

sis and the remethylation of homocysteine catalyzed by the B12–dependent enzyme methionine

synthase1. The primary functions of mitochondrial FOCM are to generate formate for the cy-

toplasm, to synthesize glycine from serine, to maintain mitochondrial dTMP synthesis, and to

generate fMET-tRNA for mitochondrial protein synthesis initiation [11;227]. Recent biological ev-

idence has demonstrated that FOCM mediated de novo dTMP biosynthesis also occurs in the

nuclear compartment during S-phase or in response to DNA damage [12;13;42]. Nuclear dTMP

synthesis enzymes form a multienzymatic complex at the replication fork, which may allow for

substrate channelling between the active sites of the enzymes2 [158].

In addition to its interconvertible chemical forms, folate derivatives also contain a polyglu-

tamate peptide chain of varying length. Compared to the monoglutamate forms of folate, fo-

late polyglutamates are the active form of folate cofactors in cells and have much higher affin-

1Folate is required to synthesis S-adenosyl methionine, a methyl donor used in hundreds of cellular reactions to
promote methylation of DNA, histones, lipids, and neurotransmitters [227]

2Substrate channelling allows the direct transfer of co-factors between active sites of enzymes in the absence of
diffusion.
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ity for the respective folate-dependent enzymes and help to maintain intracellular folate lev-

els [112;225;230;243;245].

Perturbations of the FOCM network can occur due to genetic or environmental/nutritional

factors like folate deficiency, genetic polymorphisms in folate-dependent enzymes or vitamin defi-

ciencies (i.e. vitamin B6 or B12 deficiency). In particular, impaired FOCM is associated to severe

health conditions and pathologies including neural tube defects (NTD) [25;175], certain types of

cancer [29;31;204;292], and neurodegenerative diseases [134;219]. Several countries including the USA,

Canada and Australia have established mandatory food fortification programs with folic acid, the

synthesis form of folate to decrease the risk of folate-dependent NTDs and other pathologies. Even

though these programmes seem to be sucessful [51], the causual pathways and underlying mecha-

nisms have yet to be established. In addition to the associations to the physiological outcomes

listed above, folate dependent enzymes are targeted by chemotherapeutic agents in cancer treat-

ment, e.g. antifolate drugs like methotrexate (inhibitor of DHFR) [38] and 5-fluorouracil (inhibitior

of TYMS) [152].

Mathematical Models of the folate-mediated one-carbon metabolism

Due to the key importance of FOCM, several mathematical models of FOCM have been introduced

to address a wide range of questions including the effect of gene polymorphism and nutritional

status of several vitamins on model outputs. Depending on the underlying research question,

different aspects of the FOCM network are included and highlighted in the models. Mathematical

models give a good framework to study FOCM, as the multiple interconnected reactions form a

complex system that can not easily addressed by in vivo/vitro experiments as its complexity is

increased by cellular compartmentalization and the role of genetic and environmental influence

factors.

Starting from the 1970s, early models of FOCM have been developed [108;119;120;174;229;247]. The

main focus of these studies was to quantify steady-state concentrations of folates and to predict

how anti-cancer drugs like methotrexate and 5-fluorouracil affect the rates of de novo purine and

thymidylate biosynthesis. In addition, similar models have been constructed to simulate and

investigate the homocysteine remethylation cycle in liver [163;205;214]. These models considered

FOCM reactions as occurring in a common cellular compartment, and described the reactions in

terms of Michaelis-Menten kinetics.

More recent modeling efforts do not only include enhancements of FOCM modeling by inte-

grating other pathways such as glutathione metabolism and polyamine synthesis, or by studying

the influence of indirect effects beyond FOCM [185;215], but also investigate key regulative effects,

long-range allosteric interactions, compartmentalization as well as genetic and environmental in-

fluence factors [185;187;188;212–215;261]

The published reaction-based models describe the continuous flux of metabolite concentrations in

terms of ordinary differential equations (ODEs) with time as an independent variable. Sensitivity

analysis is used to summarize the effects on metabolite concentrations and reaction velocities in

response to changes in input variables or enzyme activities.

The initial work of Nijhout and Reed considers the folate cycle [187] and the methionine cycle [214]

independently and standard biochemical kinetics were implemented to investigate key regulative
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aspects like the influence of the methyl trap hypothesis induced by vitamin B12 deficiency, the

inhibition of DHFR as used in cancer chemotherapy and enzyme or substrate deficiencies. By

combining the two models a mathematical model of FOCM in the cytoplasm has been introduced

and used to study a common polymorphism of MTHFR, as well as the effect of folate status,

betaine, homocysteine and vitamin B12 on model dynamics [213]. In addition, simulations of this

extended setting have been considered to investigate the effect of known and potential genetic

polymorphisms of FOCM enzymes on biomarkers of cancer risk [261]. The same authors further

extended the cytoplasmic FOCM model by including long-range allosteric interactions between

the folate and methylation cycle [186] and by exploring mitochondrial compartimentalization of

FOCM [188]. The in silico simulations of these last models matched experimental results regarding

the variation in serine, glycine and SHMT expression and gave a better insight in the interplay

between cytosol and mitochondria. The inclusion of glutathione metabolism and external in-

/output from blood further extended this model and allowed to highlight the exchange with other

cells to simulate, e.g., the metabolic profiles of Down syndrome and autism [215]. The effect of

vitamin B6 deficiency was considered in a further extension of the model [185]. A novelty of this

publication is the direct modeling of the tight binding between 5mTHF and SHMT, for which

the latter has been described as a model variable. This allowed to test the effect of different

SHMT levels on model dynamics. More recently, a study on the regulatory properties of S-

adenosylmethionine over long-range interactions and the binding of 5mTHF to GNMT considering

only the cytosolic compartment was published [212]. The model predictions matched experimental

results and provided further understanding of the underlying biological pathways.

Current mathematical models of FOCM have some limitations. First, these models are limited

by adopting kinetic parameters determined using folate monoglutamate substrates, even if polyg-

lutamate forms are crucial to keep folate in the cell [243]. Second, they are built upon data collected

from different species and different tissues. Since the expression of folate-dependent enzymes and

the regulation of their activity are known to vary across tissues and species this limits the inter-

pretation of the results [227]. Third, the models do not incorporate 5fTHF, an intracellular storage

form of folate, the role of which has not yet been fully understood. Fourth, so far published models

focused only on the cytoplasmic and mitochondrial FOCM, excluding the nuclear compartment,

which is important for de novo dTMP synthesis [158]. In Part I of this dissertation we will address

these limitations.

Metabolic Syndrome

Metabolic Syndrome (MetSyn) is a common metabolic-related disorder defined as a complex clus-

ter of co-occurring traits that increase the risk of cardiovascular diseases (CVD) and Type 2 Di-

abetes (T2D). Over the past decades the syndrome was known under alternative terms including

Reaven syndrome, syndrome X, dysmetabolic syndrome X, CHAOS, plurimetabolic syndrome,

the deadly quartet and insulin resistance syndrome [222]. Even though these terms came along

with slightly varying definitions with respect to the relevant components and clinical criteria of

the syndrome3, they all describe a complex interplay of a number of similar risk factors such as

3 Since 1998 several international organisations published statements on the clinical definition of MetSyn,
among these are the World Health Organisation (WHO) [4], the European Group for the Study of Insulin resistance
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hyperglycaemia, insulin resistance, obesity, dyslipidemia, hypertension and further components

like chronic proinflammatory or pro-thrombotic states.

Following the commonly used definition of the joint interim statement from 2009 [3], the pres-

ence of three of the following five metabolic abnormalities qualify a patient for MetSyn: abdominal

obesity, hyperglycaemia, hypertension, elevated levels of triglycerides and low levels of high-density

lipoprotein (HDL) cholesterol. This definition highlights the equal interplay of the key features

rather than centering MetSyn around one obligatory component [122].

As a direct consequence of the definitions of MetSyn, statistics on the prevalence of MetSyn dif-

fer depending on the selected clinical criteria and study cohort (based on age, sex, socio-economic

status and ethnic background) [68;222]. However, a common observation of these studies is the

increasing incidence of MetSyn in all western societies over the last decades [122]. A recently pub-

lished analysis of the data from the National Health and Nutrition Examination Survey (NHANES)

showed that among US adults the prevalence of MetSyn increased even up to 34.2% in 2012 [173].

These high numbers, and the fact that the underlying mechanisms of the complex metabolic

dysregulation forming MetSyn are still not fully understood, implicate the need of further inves-

tigations. Especially with the elevated risk of developing T2D and CVDs – studies suggest a

up to 5-times increased risk for MetSyn patients to develop T2D and a 2-times increased risk for

CVDs, [122] – there is a rising need to develop new and efficient prevention and treatment strategies.

Because MetSyn is a complex, multifactorial disorder with genetic and environmental risk

factors, and in view of the fact that the underlying etiology of MetSyn has only partially been

elucidated, prevention strategies are complex. Initial treatment strategies always include a change

in lifestyle based on physical activity and a balanced diet; while the consecutive step includes drug

management, normally carried out as polydrug therapy according to the individual risk factors at

hand [102]. However many patients are not able to fully reverse existing metabolic risk factors with

lifestyle modification, and as risk factors worsen with advancing age, there is an increased need

for efficacious and multi-functional drugs to manage particular risk factors [102].

Drug Repurposing

Drug repurposing (or repositioning) is the process of assigning a new indication to a previously

approved drug. To name just two examples, methotrexate, an anti-folate drug originally used as

chemotherapeutic agent, was later successfully approved for the treatment of rheumatoid arthri-

tis [274]. Another example is the diabetes drug metformin, which is currently under investigation

for novel applications as anti-cancer drug [39].

The benefits of drug repurposing arise from potential time, cost and risk reduction as approved

drugs have already been optimized for safety and efficacy [19]. On average 10 to 15 years pass by

until a drug is approved and introduced to the market, costing millions of dollars [263]. A recent

(EGIR) [22], the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATPIII) [73], the
American Association of Clinical Endocrinologists (AACE) [70] and the International Diabetes Federation (IDF) [5].
In 2009 a joint statement from the IDF, American Heart Association/National Heart, Lung and Blood Institute
AHA/NHLBI, the World Heart Federation (WHF), the international Atherosclerosis Society, and the International
Association for the Study of Obesity was published including a harmonized definition of MetSyn [3]. The dissimi-
larities of these definitions arise from the clinical criteria to manifest the included factors and from the emphasis on
obligatory components like insulin-resistense or obesity. See [115;122;167;222] for a more detailed overview and the
clinical criteria suggested in the single definitions.
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study even estimated the overall costs above 1.3 billion dollar per drug [63;263]. When following a

repurposing approach, the time-consuming and expensive trial phase for the novel application of

the drug can often be abridged. Consequently, “approximately 50% of the cost may be reduced

to get a drug approved for a new indication” [178].

In the past, one of the main sources for detecting repurposing candidates has been through

serendipity, e.g., by observing side effects or by examining clinical or epidemological data related

to a specific drug [146]. However, in consequence of the growing amount of available data for phar-

macological processes and disease pathophysiology more systematic analysis approaches based on

computational methods can be developed. Computational methods offer a meaningful framework

to strategically investigate potential new treatment possibilities and accelerate therefore the drug

development process. The methodologies used for these approaches include machine learning al-

gorithms, modeling strategies, network analysis, text-mining or semantic inference [146]. Mining

different data sources like genomic, transcriptomic, phenotypic or clinical data can provide a useful

opportunity to identify potential new therapeutic uses by searching e.g. for similarities between

drugs or disease profiles [114;176;231;232;290]. In addition also the identification of reversed/inversely

correlated profiles of drugs and diseases may lead to a positive outcome [41]. Approaches based on

network analysis successfully investigated new indications for existing drugs [44;104;153], predicted

new potential anticancer treatments [46;267] and identified new promising targets [71;117;145].
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Part I

Folate-Mediated One-Carbon

Metabolism
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Chapter 1

A hybrid stochastic model of

folate-mediated one-carbon metabolism:

Effect of the common C677T MTHFR

variant on de novo thymidylate

biosynthesis

Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic

pathways, including those required for the de novo synthesis of dTMP and purine nucleotides

and for remethylation of homocysteine to methionine. Mouse models of folate-responsive

neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis

through changes in SHMT expression is causative in folate-responsive NTDs. In this chapter

we present a hybrid computational model comprised of ordinary differential equations and

stochastic simulation. We investigate whether the de novo dTMP synthesis pathway is sen-

sitive to perturbations in FOCM that are known to be associated with human NTDs. This

computational model shows that de novo dTMP synthesis is highly sensitive to the common

MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater

in folate deficiency. Computational simulations indicate that the MTHFR C677T polymor-

phism increases the stochastic behavior of the FOCM network, with the greatest instability

observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore,

we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for

DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP

synthesis results in uracil misincorporation into DNA.

1.1 Introduction

Perturbations in folate-mediated one-carbon metabolism (FOCM) are associated with numerous

pathologies including neural tube defects (NTDs) [25], stroke [285], colorectal and other types of can-

cer [31;204;292]. Furthermore, enzymes in FOCM have been successful targets for the development

of antineoplastic pharmaceutical agents including methotrexate and 5-flurouracil [265]. FOCM
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1.1. Introduction

Figure 1.1: The reaction-based specification of the model according to the notation introduced
in [94]. Rectangles identify model variables, non-boxed substrates are model constants, green cir-
cles identify enzymes, dark blue arcs identify matter transformation, and light blue arcs identify
regulatory events (dotted lines indicate activations and solid lines indicate inhibitions). The pur-
ple boxes indicate reactions and variables associated with the folate cycle and the homocysteine
remethylation cycle, respectively.

in the cytoplasm is composed of three interconnected biosynthetic pathways, which include de

novo thymidylate (dTMP) synthesis, de novo purine synthesis and homocysteine remethylation

to methionine (Figure 1.1). The FOCM network is sensitive to nutritional status for several vita-

mins that serve as enzyme cofactors (folate, riboflavin, vitamin B6 and vitamin B12) and genetic

factors (coding and expression variants in folate-dependent enzymes) that can alter network out-

puts, including DNA synthesis, DNA repair and chromatin methylation [66;85;238]. Understanding

the molecular basis of disease etiology has been limited by the ability to ascribe specific FOCM

pathways and their biomarkers to clinical outcomes, because the pathways of FOCM are tightly

interconnected [238]. FOCM complexity is manifest by: (a) competition among the pathways for

a limiting pool of folate cofactors [110], (b) long-range and indirect regulatory processes, (c) for-

mation of multi-enzyme complexes, (d) cellular compartmentalization, (e) interactions with other

metabolic pathways, (f) nutritional status (g) penetrant genetic variants [85;227]. Mathematical

models have been developed to assess this complexity and gain an understanding of the cause-

and-effect relationships that regulate FOCM functioning in health and disease. The overall goal is

to provide an understanding of function of the entire system in silico that can be used to accelerate

discovery and guide the design of biological experimentation.

Here we present a hybrid stochastic model for simulating the FOCM dynamics where state-of-

the art deterministic simulation (based on ODEs) has been coupled with exact stochastic simula-

tion to assess metabolite variabilities in the FOCM network at steady state.

The deterministic approach used in isolation can only provide a rough estimate of FOCM model

dynamics, because the deterministic approach is limited when enzyme substrates, such as folate

cofactors, are present in the cells at low micromolar concentrations, and because reactions within
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1.1. Introduction

the network occur randomly at discrete time points. FOCM is expected to exhibit variability (i.e.

stochasticity) in its behavior [93]. Capturing system stochasticity is essential when substrate con-

centrations are low and limiting, but requires consideration of molecules as discrete entities, rather

than describing concentrations as continuous variables through ODEs [90]. Simulation strategies

that combine both deterministic and stochastic approaches can give a more accurate and more

detailed understanding of FOCM network functioning and stability. In contrast to approaches

based solely on deterministic simulation, these studies can be used to assess the contributions of

factors such as genetic variation and nutritional status on the stochastic behavior of individual

pathways within the network, thereby aiding in establishing which system inputs (i.e. nutrition)

and outputs (i.e. biomarkers) are most closely associated with human health outcomes.

Dysregulation of the partitioning of one-carbon units in the form of 5,10-methylenetetrahydro-

folate (CH2F) cofactors between the de novo dTMP biosynthesis and homocysteine remethy-

lation pathways is believed to underlie FOCM-associated pathologies including NTDs (Figure

1.1). A common variant of MTHFR, the C677T polymorphism, has been associated with numer-

ous pathologies including birth defects, cancer, cardiovascular events, and other pathologies [226].

MTHFR catalyzes the FADH-dependent, irreversible conversion of CH2F to 5mTHF, which com-

mits folate cofactors away from dTMP synthesis and towards homocysteine remethylation in the

cytosol (Figure 1.1). The variant results from an alanine to valine substitution in the protein that

decreases MTHFR activity by decreasing its affinity for the FADH cofactor. Such substitution

affects enzyme stability and hence the partitioning of folates between dTMP synthesis and ho-

mocysteine remethylation [47;207]. Decreased MTHFR activity resulting from the polymorphism

decreases 5mTHF synthesis, leading to impaired homocysteine remethylation and elevated serum

homocysteine [226]. The 677T variant is also associated with a redistribution of cellular folate co-

factors; 5mTHF is the predominate form of folate in red blood cells in MTHFR 677CC carriers,

whereas 10fTHF is the predominate form of folate in MTHFR 677TT carriers [21;58;89]. 10fTHF

is less chemically stable than 5mTHF, and the MTHFR 677TT variant is associated with lower

folate status [244] and higher folate requirement [234]. Recent studies suggest that the contribution

of the MTHFR variant to NTD risk is due to its impact on cellular folate status, rather than im-

paired homocysteine remethylation [257]. Likewise, mouse models of NTDs indicate that impaired

dTMP synthesis, and not homocysteine remethylation, cause folate- responsive NTDs [23;24;162].

Reed et al. investigated the consequences of the MTHFR C677T polymorphism, assuming 70%

enzyme activity for heterozygote and 30% enzyme activity for homozygote, in comparison to CC

homozygotes (which was set to 100% activity) using parameters for folate monoglutamates, which

are not the physiological form of folate cofactors in cells. Under these conditions, the variant

allele decreased concentrations of 5mTHF and SAM and increased the concentrations of homocys-

teine, SAH, and rates of dTMP and purine biosynthesis [213]. The effect on the redistribution of

folate cofactors towards 10fTHF that is associated with the 677T variant, or its impact on other

pathways within the network, was not reported [213].

Here, we studied the partitioning of CH2F, a cofactor for both homocysteine remethylation and

de novo dTMP biosynthesis [78;80;282], and the effects of known genetic and nutritional variables

that impact movement of CH2F through the network.

Existing models are limited by adopting kinetic parameters determined from the use of fo-

late monoglutamate substrates [185;215]. Folate polyglutamates are the functional form of folate
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cofactors in cells and have much higher affinity for their respective FOCM enzymes than the cor-

responding monoglutamate forms of folate [112;225]. Therefore, we updated the parameters in the

deterministic model to include the physiologically- relevant polyglutamate forms of folate cofactors

and demonstrate that it faithfully recapitulates existing data in the literature. The decisions for

selecting individual enzyme kinetic parameters for this model were driven by: 1) available data for

physiologically relevant polyglutamate forms of the folate cofactors derived from characterization

of mammalian enzymes, and 2) data from human models, specifically L1210 cells, because of the

richness and quality of the data used to derive kinetic parameters. Given the high conservation of

folate enzymes among mammals, our model could be applied to mammalian systems in general,

even though we are not proposing a completely homogeneous model with respect to species.

We were able to identify key nodes in the network of Figure 1.1 that exhibit high degrees of

stochastic behavior, including the influence of nutrient status and genetic variation on stochastic-

ity through simulations. We explored the impact of the MTHFR C677T polymorphism and its

interaction with folate status on partitioning of CH2F within the network, including its impact on

de novo dTMP biosynthesis to understand the etiology of NTDs. The results of the computational

model provide evidence that the rates of de novo dTMP synthesis as currently modeled in the

cytosol are insufficient to support DNA synthesis in S-phase in mammals, accounting for uracil

misincorporation into DNA that occurs in folate deficiency and in mouse models of NTDs.

1.2 Materials and Methods

1.2.1 Description of the Model and Simulation Techniques

The model was constructed as a closed system using the subset of reactions that describe the

FOCM pathways and homocysteine remethylation in cytoplasm [215] (Figure 1.1). For the simu-

lation, we employed a hybrid stochastic approach using deterministic simulation to compute the

initial phase of the dynamics until a model steady state was reached, and then we assessed the

stability of the achieved steady state by relying on the concept of total propensities arising from

exact stochastic simulation. We adopted a hybrid approach, rather than one entirely based on

exact stochastic simulation [161], because of the intensive computational effort introduced by the

stiffness of the system during the simulation.

The deterministic simulation was based on ODEs, where reactions were described in terms of

Michaelis-Menten equations consistent with the original model of Reed [215] and computed using

the MATLAB integrator ode15s, whereas parameter estimates were derived from literature or

calculated by nonlinear least squares optimization. The kinetic constants were obtained from

folate polyglutamate cofactors and their interaction with enzymes purified from L1210 cells where

possible and otherwise from other mammalian tissue.

The set of ODEs was further translated into a stochastic reaction-based model and a hybrid

simulation approach was employed to quantify the level of stochasticity in the considered FOCM

steady states. According to the seminal work of Gillespie [90], exact stochastic simulation allows

simulating each reaction event explicitely when it’s most likely to occur. In each step of the

simulation algorithm a propensity function aj(x) for each modeled reaction Rj is calculated, where

x is the current state of the system which provides the abundances of all modeled species at the

10
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considered time. The propensity value of a reaction aj(x) has a direct link to the probability of

its execution: reactions with higher propensities are more likely to be fired in the near future. To

evaluate when the next reaction event will occur, the total sum of propensities a0(x) =
∑

j aj(x)

is computed, because this quantity is linked to the number of reaction events occurring in the next

time unit. Indeed, with increasing total propensity the number of reaction events per unit of time

also increases. In Table 1.8, the total propensities for four considered steady states are provided; to

apply exact stochastic simulation we would need to generate up to 1015− 1016 reaction events per

unit of time. To circumvent this problem of stiffness, we relied on the concept of total propensity

to evaluate the stability of the steady state, by assuming that a steady state is more stable than

another, when it exhibits a lower total propensity a0(x). This means that on average this steady

state leads to a lower number of reaction events that can perturb its equilibrium.

1.2.2 Technical description of the ODE model

In order to be consistent with previous literature [185;187;212–215;261], the model has been initially

defined as a set of ordinary differential equations (ODEs) as introduced below and then translated

into a stochastic model as explained in the following. The model can be considered as an extension

of the previously published model [213] and a comparison to this model is provided in Section 1.2.4.

The model consists of twelve variables:

• the different forms of folate: THF, 10fTHF, CHF, CH2F, DHF, and 5mTHF;

• the enzyme SHMT;

• the complex 5mTHF: SHMT formed by binding of 5mTHF to SHMT;

• the metabolites MET, HCY, SAM and SAH.

The other substrates (NADPH, NADP, dUMP, Serine, Glycine, GAR, AICAR, betaine and for-

mate) are approximated to be constant over time in agreement with previous modeling litera-

ture [213]. In terms of reaction description, constant reactants are indicated above the arrow next

to the enzyme:

S1
enzyme,S2−−−−−−→ P

Due to the biological description of FOCM, our model can be divided into two connected mod-

ules, as indicated in Figure 1.1. The first one specifies the reactions linking the different forms

of folate; we further refer to this module as the folate cycle. The second module is the homocys-

teine remethylation cycle, including the four metabolites HCY, MET, SAM and SAH and the six

reactions associated with these. The connection between those two parts is formed by the biochem-

ical reaction catalyzed by methionine synthase (MTR), which regenerates MET from HCY using

5mTHF as the donor of one methyl group. Following [213], most of the enzymatic reactions consid-

ered in the model have been translated in the set of ODEs by means of Michaelis-Menten kinetics,

which consider one or two different substrates S1 and S2. The formula of the Michaelis-Menten

kinetics with one substrate S is:

v(S) =
Vmax · S
Km + S

,
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where Vmax indicates the maximum rate of the considered reaction and Km is the Michaelis-

Menten constant that specifies the concentration of the associated substrate for which the rate is

half-maximum. In the same way, the formula can be extended to consider two substrates:

v(S1,S2) =
Vmax · S1 · S2

(Km1 + S)(Km2 + S2)
,

where Km1
and Km2

are the Michaelis-Menten constants for the two substrates.

For a clear and unique description of the model, each reaction and each velocity is labeled with

the name of the enzyme catalyzing it. For example, RDHFR and vDHFR define the reaction and

the velocity of the transformation of DHF to THF, catalyzed by dihydrofolate reductase (DHFR).

All variable initial concentrations, constant values, and parameter estimates for the folate cycle

and homocysteine remethylation used in the model are listed in Appendix A.1 (Tables A.1, A.2,

A.3, and A.4). All concentrations are expressed in µm, while time is expressed in hours.

For the sake of simplicity, hereafter we will present the mathematical model by focusing on

reactions and their corresponding kinetic formulas. The differential equations of the model can

then be derived by summing these formulas according to reaction stoichiometry. In fact, each

arrow from the model visualization in Figure 1.1 connected to one variable corresponds to one

term in the sum of the associated differential equation. For example, if we consider DHF we see

that this variable is connected to one outgoing and one incoming arrow (promoted by DHFR and

TYMS, respectively). Therefore, the corresponding differential equation is:

d[DHF]

dt
= vTYMS(CH2F,dUMP)− vDHFR(DHF,NADPH)

where vTYMS and vDHFR will be defined in the following.

The folate cycle

The majority of the reactions in the folate cycle are unidirectional with a time-variant and a

constant reactant, like RDHFR:

RDHFR : DHF
DHFR,NADPH−−−−−−−−−−→ THF

vDHFR([DHF],NADPH) =
Vmax · [DHF] ·NADPH

(KDHF + [DHF]) · (KNADPH + NADPH)
,

where squared brackets indicate the variable concentrations.

The same translation can be applied also to the following reactions:

RTYMS : CH2F
TYMS,dUMP−−−−−−−−−→ DHF

RAICARFT : 10fTHF
AICARFT,AICAR−−−−−−−−−−−−→ THF,

RPGT : 10fTHF
PGT,GAR−−−−−−−→ THF,

RFTS : THF
FTS,formate−−−−−−−−→ 10fTHF,

RMTHFR : CH2F
MTHFR,NADPH−−−−−−−−−−−→ 5mTHF

12
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The only reaction with two non-constant substrates in the folate-cycle is the one catalyzed by

methionine synthesis:

RMTR : HCY + 5mTHF
MTR−−−→ THF + MET

vMTR([HCY], [5mTHF]) =
Vmax · [DHF] · [5mTHF]

(KHCY + [HCY]) · (K5mTHF + [5mTHF])
.

The Vmax estimate of this reaction is the only one that has not been directly taken from literature,

but rather optimized in the range 0.024 - 500 µm/h from literature [164;215] to obtain the trends

discussed above.

The next subset of reactions of the folate cycle contains the three bidirectional reactions

RMTCH, RMTD and RSHMT. RMTCH links 10fTHF and CHF as a bidirectional reaction with

one substrate:

RMTCH : 10fTHF
MTCH←−−−→ CHF

vMTCH([10fTHF], [CHF]) =
Vmax,10fTHF · [10fTHF]

K10fTHF + [10fTHF]
− Vmax,CHF · [CHF]

KCHF + [CHF]
.

The subsequent reaction RMTD is a bidirectional reaction with two substrates:

RMTD : CHF
MTD,NADPH−−−−−−−−−→←−−−−−−−−−
MTD,NADP

CH2F

vMTD([CHF],NADPH, [CH2F],NADP) =
Vmax,CHF · [CHF] ·NADPH

(KCHF + [CHF]) · (KNADPH + NADPH)

− Vmax,CH2F · [CH2F] ·NADP

(KCH2F + [CH2F]) · (KNADP + NADP)
.

A slight change in terms of Michaelis-Menten kinetics can be found in the glycine and serine

dependent reaction between THF and CH2F. As this reaction is catalyzed by the time-dependent

enzyme SHMT, its change of concentration has to be taken into account [185]. Therefore, we used

here the turnover number kcat, which describes the conversion of the Enzyme-Substrate complex

to the product, where

Vmax = kcat · [SHMT].

The reaction is then defined in the following way:

RSHMT : THF
SHMT,Serine−−−−−−−−→←−−−−−−−−−

SHMT,Glycine
CH2F

vSHMT([THF],Serine, [CH2F],Glycine) =
kcat,THF · [SHMT] · [THF] · Serine

(KTHF + [THF]) · (KSerine + Serine)

− kcat,CH2F · [SHMT] · [CH2F] ·Glycine

(KCH2F + [CH2F]) · (KGlycine + Glycine)
.

The concentration of active SHMT enzyme changes over time because in the model we consider

the tight binding of 5mTHF to SHMT [185]. The corresponding reactions are modeled by mass
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action kinetics with rates kbinding and kunbinding
[239]:

SHMT + 5mTHF

kbinding−−−−−→←−−−−−−
kunbinding

SHMT : 5mTHF

vbinding = kbinding · [5mTHF] · [SHMT]

vunbinding = kunbinding · [SHMT : 5mTHF].

Homocysteine Remethylation

The reactions responsible for homocysteine remethylation involve BHMT, DNMT, GNMT, MAT-

I, MAT-III and SAHH. These reactions are entirely taken from literature [215].

A bidirectional Michaelis-Menten function is used to model the conversion between HCY and

SAH.

RSAHH : HCY
SAHH←−−−→ SAH

vSAHH([HCY], [SAH]) =
Vmax,HCY · [HCY]

KHCY + [HCY]
− Vmax,SAH · [SAH]

KSAH + [SAH])
.

The betaine-dependent reaction of remethylation of HCY is presented as a two substrate

Michaelis-Menten equation with an additional inhibition term dependent on SAM and SAH:

RBHMT : HCY
BHMT,Betaine−−−−−−−−−→ MET

vBHMT([HCY],Betaine) =
Vmax · [HCY] · Betaine

(KHCY + [HCY]) · (KBetaine + Betaine)

· e−0.0021([SAM]+[SAH]) · e0.0021·102.6.

For the conversion of MET to SAM, two reactions which are regulated by MAT-I and MAT-

III, respectively, are considered. The first one is a first-order Michaelis-Menten function with a

nonlinear inhibition term dependent on SAM. RMAT−III was fitted to a Hill equation, including

also an activation term by SAM:

RMAT−I : MET
MAT−I−−−−−→ SAM

vMAT−I([MET]) =
Vmax · [MET]

KMET + [MET]
· (0.23 + 0.8e−0.0026[SAM])

RMAT−III : MET
MAT−III−−−−−−→ SAM

vMAT−III([MET]) =
Vmax · [MET]1.21

KMET + [MET]1.21
·
(

1 +
7.2 · [SAM]2

K2
a + [SAM]2

)
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Two methyltransferases DNMT and GNMT are included in our model; both are affected by

the inhibition of SAH:

RDNMT : SAM
DNMT−−−−→ SAH

vDNMT([SAM]) =
Vmax · [SAM]

KSAM · (1 + [SAH]
Ki

) + [SAM]

RGNMT : SAM
GNMT−−−−→ SAH

vGNMT([SAM],Glycine) =
Vmax · [MET] ·Glycine

(KSAM + [SAM]) · (KGlycine + Glycine)
· 1

1 + [SAH]
Ki

1.2.3 Stochastic specification of the model

In addition to the ODE specification, the model has been translated to a stochastic reaction based

formulation. This was achieved by scaling all metabolite and enzyme concentrations, as well as

Michaelis-Menten constants, to number of molecules instead of concentrations. If we consider, for

example, the concentration [THF ] = 0.12 µm, the corresponding number of molecules #THF is

#THF = [THF] ·NA ·Kvol · kcyt ·VL1210

= 0.12 µm · 6.022 · 1023
1

mol
· 10−6

m

µm
· 0.75 · 0.63 · 10−12L

= 34145,

where NA = 6.022 · 1023 1
mol is the Avogadro constant, VL1210 = 0.63 · 10−12 L is the average cell

volume of the L1210 cell line [1] and kvol = 10−6 m
µm , kcyt = 0.75 are two scaling factors. The

first is used to transform the concentration from µm to m; the second is introduced because

only the reactions occurring in cytoplasm have been considered, referring to 75% of the total cell

volume [155].

After the translation of concentrations and Michaelis-Menten constants to number of molecules,

the propensities aj(x) for all reactions Rj were calculated. For the reactions formulated in terms

of Michaelis-Menten or Hill kinetics, the propensities are computed by the same functions (see

preceding sections) where parameters are expressed in terms of number of molecules, e.g. the

propensity for the reaction catalyzed by DHFR is

aDHFR(#DHF,#NADPH) =
Vmax

# ·#DHF ·#NADPH

(K#
DHF + #DHF)(K#

NADPH + #NADPH)
,

where K#
DHF , K#

NADPH and Vmax
# indicate the transformed Michaelis-Menten kinetic parameters.

In the case of the two mass-action reactions modeling the binding/unbinding of 5mTHF and SHMT

the propensities are:

abinding(#5mTHF,#SHMT) = kbinding/VL1210 ·#5mTHF ·#SHMT,

aunbinding(#5mTHF : SHMT) = kunbinding ·#5mTHF : SHMT.
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Finally,

a0(x) =
∑

Rj

aj(x)

gives the sum of all propensities in the current state x.

1.2.4 Comparison with literature

The first mathematical models of FOCM were developed in the 1970s and 1980s [119;174;229] mainly

focusing on the effect of anticancer drugs on the network. Starting from these first attempts, new

models were introduced in literature to update/extend our understanding of the network based

on new experimental evidence (refer to the Introduction or [189] for more details).

The folate and homocysteine remethylation cycles considered in our model have been ini-

tially modeled separately [187;214] and have later been merged in a single model [213]. The lat-

ter has been further extended by the same authors to study different aspects of FOCM (e.g.

the interplay between mitochondrial and cytoplasmic FOCM or the inclusion of the glutathione

metabolism) [185;212;215;261]. Following the same approach, the model herein proposed can be con-

sidered as another extension of this previously published model [213]. In the following, this model

will be used as reference for the comparison with literature.

The model presented herein constitutes an update with respect to [213] according to two main

aspects. The first and most important one relates to a more physiologically relevant selection

of parameter estimates in modeling the folate cycle. The main improvement of our model with

respect to literature is the selection of parameter estimates used in modeling the folate cycle. Pa-

rameter estimates were chosen according to two criteria. First, a homogeneous set of parameters

was identified by referring, when possible, to L1210 cells. We chose this cell line because of the

richness of the data available in for quantifying enzyme levels of enzymes and for their kinetic char-

acterization of the enzyme using polyglutamate substrates in this cell line. The second criterion

relates to the length of the glutamate chain attached to the folate. In previous models most of the

parameters are estimated using the affinity of the enzymes for monoglutamates. However, polyg-

lutamate forms are the physiologically relevant cofactors. They play a crucial role to sequester

folates in the cell given their higher affinity with the enzymes if compared to monoglutamates [243].

Therefore, our preference was to select data from polyglutamate-derived coefficients. Detail on

considered cell lines and length of glutamate chain are listed in Appendix A, Table A.3.

The second improvement to the structure of model equations, which have been modified to add

new reactions and to update other reactions by including new biochemical interactions as described

below. Figure 1.2 displays a point-to-point comparison between the structure of our model and

the one in [213]. All modifications have been highlighted by coloring the corresponding part of

the network (the green color identifies unmodified reactions, orange indicates updates/novelties,

black indicates not included parts). In the following we will provide a detailed list of all the

modifications.

1. Our model includes two new terms to highlight take into account that, according to [196], the

rate of reaction RMTD depends also on NADPH and NADP as second substrates.
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Figure 1.2: A point-to-point comparison between the herein proposed model and the one in [213].
Rectangles indicate variables of the model; enzymes are indicated in oval frames attached to the
corresponding reaction represented by arcs; non-boxed substrates/products are model constants.
Based on the model structure used in [213] the figure displays the applied modifications using
different colors. Green colored reactions as well as green framed variables and enzymes indicate
the adopted parts of the model. Orange colored reactions as well as orange framed variables and
enzymes indicate parts of the network which have been modified or added. Black arcs and black
framed variables and enzymes indicate parts of the network we did not consider. The comparison
considers the structure of model equations, while parameter estimates have been updated with
respect to [213]. The figure has been adapted from [213].

2. We further included the bidirectional reaction modeling the binding/unbinding of 5mTHF

and SHMT [189;239] to study the effect of the MTHFR polymorphism on the availability of

unbound SHMT. This update also affected on the definition of the reaction RSHMT, which

has been updated to consider SHMT as model variable rather than a constant.

3. We also tried to build a parsimonious model in order to reduce the problem of overfitting

of the system dynamics as much as possible. In particular, a closed model was built rather

than considering external input/output pathways (see MET and cystathionine in Figure 1.2).

Moreover,and the number of non-enzymatic reactions was reduced because of a high degree

of uncertainty regarding their physiological significance (see the non-enzymatic reaction NE

in Figure 1.2).

4. The inhibition of MTHFR by SAM initially proposed in [213] could not be integrated in

our model, because it has been modeled by a nonlinear term whose parameters have been

estimated under conditions that do not apply to our modeling scenario. In fact, the esti-

mation of this term was based on the external methionine input (included in [213], but not

in our closed model, see previous point) and on some kinetic parameters which differ by an

order of magnitude with respect to estimates herein considered. Moreover, following [213],
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the inhibition should only act when SAH < SAM, but this is not a common case in our

simulations.

5. Finally, we decided not to include the reaction between 10fTHF and THF promoted by the

enzyme FTD, because we observed that the strong inhibition of FTD by 10fTHF discussed

in [127] makes the effect of this reaction in the considered steady states negligible.

1.2.5 Model validation

To validate the FOCM model, in silico experiments were performed to determine if the model could

recapitulate empirical data generated in MCF-7 cells by Herbig et al. [110] focusing on the effect of

glycine on FOCM (Table 1.1). Glycine is important because, as a second substrate, it has a direct

influence on the reaction catalyzed by the enzymes GNMT as well as on the reversible reaction

transforming CH2F to THF catalyzed by the enzyme SHMT. The purpose is to understand how the

steady state of FOCM is affected by altering intracellular glycine concentrations. This was achieved

by running several model simulations starting from different glycine concentrations and comparing

the corresponding steady states with empirical data from Herbig et al. [110]. This study examined

the effect of exogenous glycine at concentrations from 0 to 10 mm on the relative distribution

of folate one-carbon forms as well as S-adenosylmethionine (SAM) and S-adenosylhomocysteine

(SAH) levels. In summary, the empirical data revealed that as glycine concentrations increase

intracellular 10fTHF levels increase at the expense of 5mTHF levels that decrease. Furthermore,

as glycine concentrations increase SAM levels are depleted and SAH levels rise. These changes

were interpreted by the effects of glycine concentration driving the reversible SHMT reaction in

the direction of serine synthesis [110].

We simulated the effect of glycine on folate distribution, SAM, and SAH concentrations using

the computational model for values of glycine ranging from 0 to 10 mm (Table 1.1). The trends

obtained by the model simulations were in agreement with the literature, confirming the coherence

between model outcomes and empirical data. We observed only one exception related to the total

% of 5mTHF at 10 mm glycine. This discrepancy could be mainly due to two reasons: (1) 10 mm

glycine is an extreme and non-physiological intracellular glycine concentration that could cause

pharmacological effects, (2) the large magnitude of the experimental error in the Herbig et al.

study at this glycine concentration.
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Table 1.1: Steady states levels for five different values of glycine (folate cycle in % of total folate
and the homocysteine remethylation cycle in µm). Where possible, a trend arrow is provided on
the right to show the experimental outcome observed in [110]. All the trends are consistent with
literature (green arrows) except for the total % of 5mTHF in the glycine range 5-10 mm (red
arrow).

Glycine THF 10fTHF CHF CH2F DHF 5mTHF

free bound total

0 mM 0.19 36.17 7.25 2.17 0.04 10.31 48.87 54.18

1 mM 0.24 38.25 7.55 2.02 0.04 8.78 42.90 51.68

2 mM 0.74 39.37 7.70 1.91 0.04 7.97 42.26 50.23

5 mM 1.86 40.80 7.78 1.71 0.03 6.71 41.01 47.73

10 mM 5.32 40.40 7.71 1.52 0.03 5.56 39.48 45.04

Glycine HCY MET SAM SAH

0 mM 2.72 30.58 99.99 17.23

1 mM 3.44 42.09 54.44 50.55

2 mM 3.48 42.48 50.96 53.60

5 mM 3.52 42.83 46.49 57.67

10 mM 3.57 43.04 42.40 61.51

19



1.3. Results

1.3 Results

1.3.1 The effect of folate status and the MTHFR polymorphism on

pathways affecting NTD risk

In the current model, MTHFR activity was decreased to model the effect of the MTHFR C677T

polymorphism. In addition, a two-fold increase in MTHFR activity was modeled to examine

whether there was a dose-response relationship between MTHFR activity and various readouts

of the network. This model shows that 5mTHF levels decrease as MTHFR activity decreases,

reflecting the effects of the MTHFR C677T polymorphism (Table 1.2). The current model also

recapitulates the biological observation that decreased MTHFR activity results in accumulation

of 10fTHF and THF (Table 1.2). Inclusion of 10fTHF in the folate distribution is a strength of

the current model in that it allows for estimation of the effect that perturbations to the system

have on accumulation of this unstable form of folate, which likely accounts for the decreased folate

status linked to NTDs in carriers of the polymorphism [244;257].

Table 1.2: Steady state distribution of folate (in percentage of total folate) for different levels
of MTHFR activity (ranging from 2x to 0.3x of wild type). CC, CT and TT refer to the C677T
polymorphism.

THF 10fTHF CHF CH2F DHF 5mTHF

free bound total

MTHFR × 2 0.25 14.43 2.86 0.79 0.01 33.45 48.20 81.65

MTHFR × 1 (CC) 0.70 39.24 7.69 1.93 0.04 8.07 42.34 50.42

MTHFR × 0.7 (CT) 1.59 48.76 9.45 2.18 0.04 3.37 34.61 37.98

MTHFR × 0.5 3.13 54.53 10.51 2.32 0.04 1.86 27.60 29.46

MTHFR × 0.3 (TT) 8.12 58.72 11.26 2.40 0.04 0.90 18.56 19.46

SAM and SAH levels vary markedly with changes in MTHFR activity (SAM levels decrease

and SAH levels increase by more than 50% when comparing the “CC” model to the “TT” model),

with a SAM/SAH ratio around one being achieved in CC homozygotes compared to 0.24 in TT

homozygotes (Table 1.3). Although methylation potential, otherwise known as the SAM/SAH

ratio, changes markedly with varying MTHFR activity, homocysteine concentrations appear rela-

tively insensitive to changes in MTHFR in this model (Table 1.3), inconsistent with known effects

of the MTHFR TT genotype in elevating serum homocysteine levels [149]. However, in this model

the lack of elevation in homocysteine due to the MTHFR C677T polymorphism reflects that the

model represents a closed system leading to intracellular conversion of cellular homocysteine to

SAH as opposed to export of homocysteine into the circulation (Table 1.3).

The activity of each enzyme in the FOCM network as predicted by the current model indicates

that accumulation of 10fTHF resulting from decreased MTHFR activity is due to two factors: (1)

an increased flux through the 10fTHF synthetase activity leading to increased synthesis (FTS),

and (2) an increased flux through the cyclohydrolase/dehydrogenase activity of MTHFD1 which

converts CH2F to CHF to 10fTHF (MTCH, MTD activities, respectively, Table 1.4). Interest-

ingly, the accumulation of 10fTHF does only mildly affect the flux through the enzymes that use

10fTHF as a co-factor for de novo purine synthesis (PGT, AICART; Table 1.4). This is consistent
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Table 1.3: Steady state concentrations of model variables (in µm) for different levels of MTHFR
activity (ranging from 2x to 0.3x of wild type). CC, CT and TT refer to the C667T polymorphism.

THF 10fTHF CHF CH2F DHF 5mTHF

free bound total

MTHFR × 2 0.04 2.58 0.51 0.14 0.00 5.97 8.60 14.57

MTHFR × 1 (CC) 0.12 7.00 1.37 0.34 0.01 1.44 7.56 9.00

MTHFR × 0.7 (CT) 0.28 8.70 1.69 0.39 0.01 0.60 6.18 6.78

MTHFR × 0.5 0.56 9.73 1.88 0.41 0.01 0.33 4.93 5.26

MTHFR × 0.3 (TT) 1.45 10.48 2.01 0.43 0.01 0.16 3.31 3.47

SHMT HCY MET SAM SAH

MTHFR × 2 0.40 3.10 37.99 78.41 31.01

MTHFR × 1 (CC) 1.44 3.47 42.44 51.34 53.26

MTHFR × 0.7 (CT) 2.82 3.67 43.00 34.87 68.98

MTHFR × 0.5 4.07 3.78 42.59 26.72 77.42

MTHFR × 0.3 (TT) 5.69 3.89 41.87 20.47 84.29

with empirical experimental findings that increasing cellular levels of 10-formytetrahydrofolate

dehydrogenase, which consumes 10fTHF, do not affect de novo purine synthesis [15]. Flux through

the de novo dTMP synthesis pathway increases with decreasing MTHFR activity, consistent with

empirical studies indicating these two pathways compete for CH2F (Table 1.4 , columns DHFR,

TYMS and SHMT) [259]. These findings are in agreement with empirical data showing that the

TT polymorphism results in an increase in CH2F available for dTMP synthesis as indicated by

isotope tracer studies in humans [207].

5mTHF binds to and is a potent inhibitor of SHMT and glycine N-methyltransferase (GNMT).

Decreased MTHFR activity, which lowers cellular 5mTHF levels (Table 1.3), increases the flux

through the SHMT-catalyzed reaction in the direction of serine catabolism to glycine (Table 1.4).

Methionine synthase (MTR) flux is highly sensitive to MTHFR genotype reflecting its dependence

on availability of its substrate 5mTHF that is generated by MTHFR (Table 1.4).

The MTHFR C677T variant affects both CH2F partitioning (between homocysteine remethy-

lation and dTMP biosynthesis) and intracellular folate concentrations; the 677T variant lowers

intracellular folate levels. Therefore, the impact of this variant on FOCM was modeled at two

different levels of folate (folate replete conditions, 18 µm and low-folate conditions, 9 µm) (Table

1.5,1.6, and 1.7) to understand how the variants function within the FOCM network as a func-

tion of folate cofactor availability. The results demonstrate that the changes in the percentage

of 5mTHF (as well as other major one-carbon forms of folate) are more pronounced in the TT

genotype than in the CC genotype when cellular folate levels are decreased (Table 1.5). The per-

centage of 5mTHF in CC homozygous does not change in the folate replete and deficiency states,

whereas the accumulation of 5mTHF in TT homozygotes differs between the deficient and replete

states (Table 1.5).

Fluxes through FOCM pathways are affected by both the MTHFR C677T polymorphism and

folate levels. The most sensitive pathways to folate deficiency are the MTCH and MTD activities

of MTHFD1, MTHFR, MTR, DNMT, DHFR, and TYMS (Table 1.7, row showing absolute flux
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1.3. Results

Table 1.5: Steady state distribution of folate (in percentage of total folate) for replete (18 µm) and
low (9 µm) levels of total folate and for the CC and TT case of the C667T MTHFR polymorphism.

THF 10fTHF CHF CH2F DHF 5mTHF

free bound total

low folate
CC 1.27 38.48 7.46 1.65 0.03 4.98 46.13 51.11

TT 4.24 49.75 9.45 1.68 0.03 0.93 33.91 34.84

replete folate
CC 0.70 39.24 7.69 1.93 0.04 8.07 42.34 50.42

TT 8.12 58.72 11.26 2.40 0.04 0.90 18.56 19.46

Table 1.6: Steady state concentrations of model variables (in µm) for replete (18 µm) and low (9
µm) levels of total folate and for the CC and TT case of the C667T MTHFR polymorphism.

THF 10fTHF CHF CH2F DHF 5mTHF

free bound total

low folate
CC 0.11 3.43 0.67 0.15 0.00 0.44 4.12 4.56

TT 0.38 4.44 0.84 0.15 0.00 0.08 3.03 3.11

replete folate
CC 0.12 7.00 1.37 0.34 0.01 1.44 7.56 9.00

TT 1.45 10.48 2.01 0.43 0.01 0.16 3.31 3.47

SHMT HCY MET SAM SAH

low folate
CC 2.55 3.73 42.84 30.34 73.61

TT 10.00 3.95 41.35 17.43 87.79

replete folate
CC 1.44 3.47 42.44 51.34 53.26

TT 5.69 3.89 41.87 20.47 84.29

differences between folate levels). Flux through the dTMP synthesis pathway (DHFR and TYMS)

is highly sensitive to folate status for both the MTHFR CC and TT genotypes (Table 1.7), with

the TT homozygotes being the most sensitive. Flux through GNMT was also highly sensitive to

folate status in the CC homozygotes, whereas GNMT flux in TT homozygotes was insensitive to

folate status (Table 1.7). Similar but less pronounced effects were seen for flux through SHMT

(Table 1.7).

To understand if MTHFR genotype affects the stability of the FOCM network at steady state,

the deterministic simulation was coupled with stochastic simulation using a hybrid simulation

strategy (see Materials and Methods). Model steady states were obtained under four different

conditions that differed by MTHFR 677 genotype (CC and TT case) and intracellular folate

levels (replete and low). Interestingly, the most stable steady state (the one with lowest total

sum of reaction propensities a0(x), see Methods for details), was the CC case with folate replete

concentrations, consistent with numerous epidemiological studies associating the MTHFR C677T

genotype with folate-related pathologies (Table 1.8) [258]. The enzyme that exhibited the greatest

level of stochasticity in response to folate levels and/or the MTHFR C677T polymorphism was

SHMT1 (Appendix A.1, Table A.5).
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1.3. Results

Table 1.8: Total propensities obtained in four steady state conditions according to MTHFR
polymorphism (CC and TT case) and total concentration of available folate (replete, 18 µm; low,
9 µm). To help comparisons, the differences between CC and TT (in % of CC) and between replete
and low total folate (in % of replete folate) are indicated. A steady state that is less stable (or
more noisy) than another one has higher total propensity.

a0(x) replete folate low folate Difference
(% of replete folate)

CC 1.61 · 1015 2.10 · 1015 30.62

TT 8.59 · 1015 1.10 · 1016 18.03

Difference
(% of CC)

435.15 383.59

1.3.2 The molecular basis of uracil misincorporation into DNA

Mouse models implicate SHMT and impaired de novo dTMP synthesis in NTD risk. Impaired

de novo dTMP synthesis causes an increase in dUMP, which when converted to dUTP causes

uracil misincorporation into DNA because DNA polymerases do not distinguish between dTTP

and dUTP [29]. The dTMP biosynthesis pathway enzymes (MTHFD1, SHMT, TYMS, and DHFR)

are present in both the cytosol and recently have been found to function in the nucleus. In the

nucleus, they comprise a multi-enzyme complex at sites of DNA synthesis that may be critical to

limit rates of uracil misincorporation into DNA, but regulatory mechanisms remain unknown [158].

These enzymes are modified by the Small Ubiquitin-like MOdifier (SUMO) protein at the G1/S

boundary, which permits their nuclear translocation during S-phase of the cell cycle [13]. One

study showed that when nuclear translocation of this complex is impaired in a mouse model

over-expressing SHMT1, rates of uracil misincorporation into DNA increased several fold [158].

In this model, SHMT protein levels were elevated several fold in the liver, yet its localization

was restricted to the cytoplasm and nuclear SHMT levels were depleted compared to wild-type

mice [158]. Furthermore, nuclei isolated from SHMT overexpressing mice exhibited lower rates of de

novo dTMP synthesis compared to nuclei isolated from wild-type mice [158]. This suggests that de

novo dTMP synthesis occurs when the enzymes are present in the multi-enzyme complex within

the nucleus in mammals. However, no definitive experiment has been performed that identifies

the relative contribution of nuclear and cytosolic dTMP synthesis to overall dTMP synthesis.

Interestingly, S. cerevesiae do not import the dTMP synthesis pathway into the nucleus [202].

To determine if nuclear import of the de novo dTMP pathway was required to meet cellular

demands for dTTP during DNA replication, rates of dTMP synthesis were modeled for mammalian

cells using standard Michaelis-Menten kinetics (Table 1.9, Table 1.4). Based on the number of

A-T base pairs in the human genome and an 8-hour S-phase in embryonic stem cells (S-phase in

L1210 cells is also 6-10 h [179;287]), the rate of dTMP synthesis required for faithful cell replication

is 7.8 µm/min (Table 1.9, Appendix A, Section A.2) [26;221]. In the current model, which does

not account for SHMT1/TYMS/DHFR/MTHFD1 nuclear localization nor complex formation,

cytosolic dTMP synthesis rates are 4.4 µm/min (Table 1.4, DHFR and TYMS flux, 263.4 µm/h,

assuming MTHFR 677CC genotype). This computational deficit between dTMP requirements

and dTMP synthesis rates suggests that dTMP synthesis as currently modeled in the cytosol

25



1.4. Discussion

Table 1.9: Cellular capacity for de novo dTMP synthesis in mammals and yeast at S-phase.

Human S. cerevesiae

Genome size 3.0 · 109 bp 1.2 · 107 bp

% AT 59 % 61.5 %

T bases needed for replication 1.77 · 109 molecules 7.5 · 106 molecules

Length of cell cycle 24 h 2.5 h

Length of S-phase 8 h 0.83 h

Cell volume 8 · 10−13 L (ES cell) 5 · 10−14 L

dTMP synthesis rate required to replicate
genome

7.8 µm/min 0.5 µm/min

Measured dTMP synthesis rate (model out-
comes)

4.4 µm/min 1.8 µm/min

Ratio of dTMP production relative to dTMP
required for replication

0.6 3.6

where the enzymes are not present in a complex cannot meet cellular needs. Nuclear localization

and complex formation of the de novo dTMP synthesis complex seem to be unique to mammalian

cells. In S. cerevesiae, TYMS is not SUMOylated and localizes to the nuclear periphery [202]. The

measured rate of dTMP synthesis in S. cerevesiae is 1.8 µm/min [100] (Table 1.9). The rate of

dTMP synthesis required to replicate the S. Cerevesiae genome over the course of an S-phase

(less than one hour [30;100]) is 0.5 µm/min, indicating that yeast synthesize dTMP at a rate that is

more than 3-fold greater than necessary for adequate dTMP synthesis (Appendix A, Section A.2).

Furthermore, in response to DNA damage, yeast increase dNTP concentrations 6-8 fold [37] and E.

coli increase dNTP concentrations 1.8-3.7 fold [92], but dNTP concentrations do not increase after

DNA damage in mammals [105;184].

1.4 Discussion

Understanding the dynamics of FOCM and its responsiveness to both genetic and environmental

perturbations is the key to understanding the etiology of folate-related pathologies. Computational

models and related simulations permit an identification of the most sensitive reactions within the

network that exhibit the greatest degree of stochastic behavior leading to variability in network

outputs. Furthermore, computational models allow an understanding of how both genetics and

environmental factors can enhance or repress stochastic behavior at defined locations within the

network, accelerating the development of diagnostics to identify those at risk for folate-related

pathologies as well as lead to the development of targeted nutritional interventions for disease

prevention.

The Shmt1 knockout mouse model (Shmt1+/-, Shmt1-/- embryos) exhibits impaired de novo

dTMP synthesis in the absence of perturbations of homocysteine remethylation. It also recapitu-

lates risk for NTDs in humans. Specifically, the mouse model exhibits folate-responsive NTDs that

occur with minimal perturbation in FOCM, and exhibit low and variable penetrance [24;162]. In

fact, most if not all, folate-related pathologies whose etiology involves interactions among genetic

risk variants and nutrient exposures also exhibit low and/or variable clinical presentation. Under-
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standing the stochastic behavior of the various reactions within FOCM that results in increased

variability in FOCM network outputs is essential to understand which enzymes in the network

contribute to folate-related pathologies.

Existing FOCM models rely on the limited quantity of kinetic data present in the literature,

and the performance of the model will be dependent upon the kinetic parameters chosen to include

in the model. Much of the available kinetic data for FOCM enzymes present in the literature was

collected using the commercially available monoglutamate folate substrates, with few studies using

the physiologically relevant polyglutamate forms of the cofactor. In the cell, newly transported

monoglutamate folates are converted to folate polyglutamates, containing 3 to 7 polyglutamate

moieties, though the action of folylpolyglutamate synthetase [243]. The polyglutamate chain (N=3

glutamate and higher) increases the affinity of folate cofactors for many folate-dependent enzymes

by one to two orders of magnitude [112;225]. Models that include kinetic parameters derived from

the use of folate monoglutamates can limit model reliability. Here we established a hierarchy of

criteria to select a more homogeneous set of kinetic parameters (i.e. Km and Vmax) by referring,

when possible, to L1210 cells because of the richness and quality of the data used to derive

kinetic parameters. Furthermore, our preference was to select kinetic coefficients generated using

folate polyglutamate cofactors and purified proteins from animal models closest to humans, as

the variability in kinetic parameters among mammals is much less than the differences observed

between folate monoglutamate and polyglutamate cofactor substrates.

The current model was validated by demonstrating that it recapitulates empirical observations

regarding the impact of intracellular glycine on behavior of the FOCM network (Table 1.1). The

validated model was then used to understand how the MTHFR C677T polymorphism, a known

genetic risk factors for NTDs in humans, affects FOCM. This model shows that the lower lev-

els of 5mTHF associated with the MTHFR 677T variant are accompanied by elevated levels of

10fTHF, which has been observed in animal models and in humans [21;58;89](Table 1.2). The model

also indicates that 10fTHF accumulates in TT homozygotes as a result of increased flux through

both the synthetase activity of MTHFD1 (FTS activity, Table 1.4), but also due to increased flux

through MTHFD1 activity in the direction converting CH2F to 10fTHF (Table 1.4). Therefore,

the model accurately predicts perturbations in FOCM that have been observed in human clini-

cal and epidemiological studies. A recent study suggested that the risk of the MTHFR C677T

polymorphism for NTDs was due to its known effect on lowering intracellular folate concentra-

tions, rather than its role in providing 5mTHF for homocysteine remethylation [257]. This model

demonstrates that the MTHFR C677T polymorphism elevates levels of 10fTHF, which is known

to be a chemically unstable form of folate that is susceptible to oxidative degradation, providing

a mechanism by which the MTHFR C677T polymorphism depletes intracellular folate levels. Im-

portantly, the model reported here demonstrates that the de novo dTMP biosynthesis enzymes

are the most sensitive to low intracellular folate concentrations, with both DHFR and TYMS ac-

tivities being repressed by 63% (Table 1.7). This finding is consistent with the finding that mouse

models with impaired de novo dTMP biosynthesis are susceptible to NTDs in folate deficiency [24].

The hybrid stochastic simulation also reveals that both folate deficiency and the MTHFR C677T

polymorphism create overall instability in the network (Table 1.8), consistent with a vast body

of literature demonstrating an association of both folate deficiency and the MTHFR C677T poly-

morphism with various pathologies [226;244]. Interestingly, SHMT exhibits the greatest increase in
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stochastic behavior as a result of the MTHFR C677T polymorphism (Appendix A.1, Table A.5);

the SHMT enzyme is the only FOCM enzyme that when disrupted results in folate-responsive

NTDs [23].

The primary findings of this study are that the FOCM network is destabilized as a result of

folate deficiency and the MTHFR C677T polymorphism, and that SHMT is the most sensitive

enzyme within the network to this network instability. This finding nicely connects the MTHFR

genetic variant, a known risk factor for human NTDs, and SHMT, the only folate enzyme whose

disruption results in folate-responsive NTDs in mice. Furthermore, this model predicts that de

novo dTMP synthesis rates in mammals are about half of what is required to meet DNA replication

demands for dTMP (Table 1.9). Although mammals contain two pathways for dTMP synthesis,

the folate-dependent de novo dTMP synthesis pathway described here and a salvage pathway

catalyzed by thymidine kinase 1, the salvage pathway activity is insufficient to meet cellular

needs based on observations that folate deficiency results in elevated uracil accumulation in DNA.

In mammalian cells, the de novo dTMP synthesis enzymes form a multi-enzyme complex that

interacts with DNA replication enzymes [13]. The discrepancy between de novo dTMP synthesis

rates required to replicate the genome and the rate of dTMP synthesis currently predicted by the

model indicates that the model should be extended to include multi-enzyme complex formation

and substrate channelling in the nucleus to model more accurately determinants of FOCM and

dTMP synthesis. The inclusion of the dTMP multi-enzyme metabolic complex in the model is

expected to limit substrate diffusion and increase the rate of dTMP synthesis.
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Chapter 2

Effects of vitamin B12 deficiency on de

novo dTMP synthesis

Folic acid intake in the periconceptional period reduces neural tube defect (NTD) occurrence

by up to 70%, but not all NTDs are folate-responsive and thus further risk factors need to be

identified. Observational studies demonstrate an association between maternal vitamin B12

status and NTD risk in both folate-fortified and non-fortified populations. Vitamin B12 is an

essential co-factor of the folate-dependent enzyme methionine synthase. In this chapter we

present a in silico study to explore the effect of vitamin B12 deficiency on the FOCM network

in the cytoplasm. Simulations of the model introduced in Chapter 1 suggest that vitamin B12

deficiency leads to an accumulation of 5mTHF, which in turn disrupts the network functioning.

Furthermore, model simulations indicate that de novo dTMP synthesis is considerably more

sensitive to vitamin B12 deficiency than de novo purine synthesis.

2.1 Introduction

The connection between neural tube defects (NTDs), a class of severe malformations of the cen-

tral nervous system occurring during early embryogenesis and leading to substantial mortatil-

ity, morbidity and long-term disability [28], and genes involved in the folate-mediated one-carbon

metabolism as well as folate status is well recognized [8;99;172]. Indeed, folic acid supplementa-

tion at the beginning of pregnancy can decrease risk of NTDs and reduce the prevelence of these

disorders [54;175]. However, not all NTDs are folate-responsive [111], and thus it is of interest to

study which nutrition and environmental factors potentially play a role in the development and

consequently in the treatment of NTDs.

The folate-mediated one-carbon metabolism (FOCM) network is sensitive to nutritional status

of several vitamins that serve as essential enzyme cofactors, among which vitamin B12 (cobalamin)

can be found. Vitamin B12 functions as a cofactor for the folate-dependent enzyme methionine

synthase (MTR), which catalyses the conversion of homocysteine (HCY) to methionine(MET)

and thereby regenerates THF for nucleotide synthesis (see Figure 2.1). Vitamin B12 is necassary

for the maintanance of the normal function of the central nervous system. Diseases associated

with B12 deficiency are reversible megaloblastic anemia, bone marrow failure, and demyelinating

neurologic disease, while malabsorption following autoimmune gastritis is the most common cause
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Figure 2.1: The reaction-based specification of the model according to the notation introduced
in [94]. Rectangles identify model variables, non-boxed substrates are model constants, green cir-
cles identify enzymes, dark blue arcs identify matter transformation, and light blue arcs identify
regulatory events (dotted lines indicate activations and solid lines indicate inhibitions). The purple
box indicates the vitamin B12 dependend reaction catalyzed by MTR.

of vitamin B12 deficiency [236]. Various studies suggest that the maternal vitamin B12 status is also

associated with the risk of NTD development [75;101;103;129;171;209;248;254;276;291]. Indeed, deficient

vitamin B12 levels lead to impaired MTR activity, which in turn shifts the distribution of one-

carbon folate forms towards 5-methylTHF (5mTHF) within the cell. [166;230;236]. Consequently,

rates of de novo dTMP synthesis decrease and methylation reactions are impaired [166;230;236].

Evidence from epidemiologic and animal studies suggest a relation between folate-responsive NTDs

and impaired dTMP biosynthesis [23;24;67;162].

To test the impact of vitamin B12 status on FOCM network dynamics with particular focus on

dTMP production and to study propable underlying causative relations, the mathematical model

introduced in Chapter 1 was used to run in silico experiments.

2.2 Materials and Methods

The mathematical model presented in Chapter 1 representing FOCM in the cytoplasm as depicted

in Figures 1.1 and 2.1 was simulated to compare steady states and reaction velocities of the

standard scenario and vitamin B12 deficient scenarios. The standard condition has been simulated

by considering the model initial values and parameter estimates as described before (Appendix

A.1, Tables A.1, A.2, A.3, and A.4). As vitamin B12 is an essential cofactor of methionine synthesis

(MTR), we simulated vitamin B12 deficiency by decreasing MTR activity in a stepwise manner

from the standard Vmax value of 30 µm/h to 10% of Vmax (3 µm/h). Two scenarios with MTR

overexpression were also included, by considering the 2-fold and 5-fold increase of the standard
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enzyme activity (60 and 150 µm/h). The effects of MTR activity on TYMS activity, and 5mTHF,

methionine and homocysteine levels were simulated in the absence of BHMT expression, since

BHMT is not present in most cells. All model simulations have been computed by implementing

the mathematical model in MATLAB and by using the numerical ODE solver ode15s.

2.3 Results

To explore the effect of vitamin B12 deficiency on FOCM network dynamics, MTR activity was de-

creased step-wise and model outputs were compared across the selected scenarios. With decreasing

MTR activity, the distribution of folate shifts towards the free and bound form of 5mTHF, reduc-

ing thereby the availability of other one-carbon substituted folate forms (Figure 2.2a, Appendix B,

Tables B.2 and B.1). The formation of the so-called “5mTHF folate trap” [166;230;236] decreases the

availability of nonmethylated functional folate substrates for FOCM enzymes other than MTR.

Consequentially, in the state of increased 5mTHF levels, the fluxes through the reactions cat-

alyzed by the trifunctional enzyme MTHFD1 (FTS, MTCH, MTD), and MTHFR (Figure 2.2b,

Appendix B, Table B.3) are decreased, as well as the de novo dTMP synthesis activity (TYMS and

DHFR, Figure 2.2c, Appendix B, Table B.3) and de novo purine synthesis activity (GART and

AICART, Figure 2.2c, Appendix B, Table B.3). Interestingly, de novo dTMP synthesis was con-

siderably more sensitive to vitamin B12 deficiency than was de novo purine synthesis, consistent

with previous findings [193].

5mTHF is a tight-binding inhibitor of SHMT [239] and with decreased MTR activity the amount

of 5mTHF binding to SHMT increased sharply (Figure 2.2d), resulting in decreased flux through

SHMT (Figure 2.2d, Appendix B, Table B.3). The effects on SHMT were most pronounced at

MTR activity levels in the direct surrounding of the standard Vmax (30 µm).

MET and HCY levels, as well as SAHH activity stayed relatively unaffected by vitamin B12

deficiency/reduced MTR activity (Figure 2.2e and f). This model also includes the vitamin B12

-independent conversion of HCY to MET, which is vatalyzed by betaine-homocysteine methyl-

transferase (BHMT). Inclusion of BHMT in the model and the fact that most intracellular HCY

is converted to SAH may account for the lack of increase in HCY concentrations as a result of

vitamin B12 deficiency in the model. It is also worth noting that free HCY is actively exported out

of cells into the blood. SAM and SAH levels display a trade-off effect throughout the simulations

(Figure 2.2f). A possible explanation for this behaviour is the decreased flux through GNMT

(catalysing the transformation of SAM to SAH) caused by increased levels of 5mTHF, which is

an inhibitor of GNMT. Like for SHMT, changes in SAM and SAH levels were most pronounced

around the standard Vmax of MTR (30 µm).

Because most cells do not express BHMT, the simulation was repeated without BHMT activity.

As anticipated, HCY and MET are more sensitive to MTR activity in the absence of BHMT (Figure

2.3, Appendix B, Table B.5). Importantly, TYMS activity, which is a proxy for dTMP synthesis,

is more sensitive to MTR activity than 5mTHF levels (Figure 2.3, Appendix B, Tables B.4 and

B.6), indicating that the inverse relationship between MTR and TYMS activity cannot be fully

accounted for by the accumulation of 5mTHF, but that additional aspects of network dynamics

are also operative.
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2.4. Discussion

Figure 2.3: Effect of MTR activity on a) model variables and b) flux through TYMS for the
model without BHMT activity. The provided values are computed by considering the model
steady states by varying the Vmax of MTR from 3 µm/h to 150 µm/h and are expressed in terms
of percentage of the maximal availability/activity over the considered Vmax range. The vertical
gray line indicates the standard Vmax condition (30 µm/h); values lower than this threshold can
be considered as scenarios with vitamin B12 deficiency.

2.4 Discussion

There is a need to identify additional risk factors for NTDs, as folic acid has not reduced the

birth prevalence of NTDs in North America below an incidence of 7.5/10,000 in the post folic

acid fortification era [28]. Maternal vitamin B12 deficiency has emerged as a candidate risk factor

given its participation in folate metabolism as well as the findings from cross-sectional studies that

demonstrate association between maternal deficiency and NTD risk [75;87;101;103;129;171;209;276;291].

Simulating vitamin B12 deficiency in the mathematical model of FOCM presented in Chapter 1

suggests that even relatively minor, physiologically relevant decreases in MTR activity resulting

from vitamin B12 deficiency impact one-carbon distribution and flux through FOCM. With de-

creasing MTR activity, folate accumulates as 5mTHF derivative, which cannot be reintroduced

to the folate pool via the MTHFR-catalyzed reaction, because this reaction is irreversible under

physiological conditions [230]. The model further demonstrated that in metabolic systems, where

BHMT is expressed, binding of 5mTHF to SHMT and inhibition of SHMT activity as well as de

novo dTMP synthesis are considerably more affected by vitamin B12 deficiency than either de

novo purine synthesis or homocysteine remethylation (Figure 2.2).
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Chapter 3

An extended mathematical model of

folate-mediated one-carbon metabolism:

The role of the 5-formyltetrahydrofolate

futile cycle

In folate-mediated one-carbon metabolism (FOCM), 5-formyltetrahydrofolate (5fTHF), a one-

carbon substituted tetrahydrofolate (THF) vitamer, acts as an intracellular storage form of

folate and as an inhibitor of the folate-dependent enzymes phosphoribosylaminoimidazole-

carboxamide formyltransferase (AICARFT) and serine hydroxymethyltransferase (SHMT).

Cellular levels of 5fTHF are regulated by a futile cycle comprising the enzymes SHMT and

5,10-methenyltetrahydrofolate synthetase (MTHFS). MTHFS is an essential gene in mice;

however, the roles of both 5fTHF and MTHFS in mammalian FOCM remain to be fully

elucidated. We present an extension of the hybrid-stochastic model of FOCM introduced

in Chapter 1 by including the 5fTHF futile-cycle to explore its effect on the FOCM net-

work. Simulations of this extended model indicate that MTHFS plays an essential role in

preventing 5fTHF accumulation, which consequently averts inhibition of all other reactions in

the metabolic network. Moreover, in silico experiments show that 10-formylTHF inhibition

of MTHFS is critical for regulating purine synthesis. Model simulations also provide evi-

dence that 5-methylTHF (and not 5fTHF) is the predominant physiological binder/inhibitor

of SHMT. Finally, the model simulations indicate that the 5fTHF futile cycle dampens the

stochastic noise in FOCM that results from both folate deficiency and a common variant in

the methylenetetrahydrofolate reductase (MTHFR) gene.

3.1 Introduction

In the folate-mediated one-carbon metabolism (FOCM) tetrahydrofolates (THF) carry and chem-

ically activate one-carbon moieties for biosynthetic reactions including de novo purine synthesis,

de novo thymidylate (dTMP) synthesis, and remethylation of homocysteine to methionine [243].

There are five one-carbon substituted THF derivatives in vivo, and these derivatives carry

one-carbon units at one of three oxidation levels ranging from formate to methanol, with each
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substituted folate serving in unique one-carbon transfer reactions. 10-formylTHF (10fTHF), 5-

formylTHF (5fTHF), and 5,10-methenylTHF (CHF) carry one-carbon units at the oxidation state

of formate. The formyl group of 10fTHF, the folate co-factor used by phosphoribosylaminoim-

idazolecarboxamide formyltransferase (AICARFT) and phosphoribosylglycinamide formyltrans-

ferase (PGT), is incorporated into the #2 and #8 carbons of the purine ring. 10fTHF is formed

from THF and ATP by the synthetase activity of the trifunctional enzyme methylenetetrahy-

drofolate dehydrogenase 1 (MTHFD1). 5fTHF is not used as a cofactor for folate-dependent

biosynthetic reactions, rather it is thought to be an intracellular storage form of folate in dormant

cells [239]. 5fTHF is regulated through a futile cycle catalyzed by serine hydroxymethyltransferase

(SHMT) and methenyltetrahydrofolate synthetase (MTHFS). 5fTHF is generated from CHF in

an irreversible reaction catalyzed by SHMT. 5fTHF is re-introduced to the folate cofactor pool

by MTHFS, which converts 5fTHF to CHF in an irreversible, ATP-dependent reaction. CHF is

not used directly as a co-factor for biosynthetic reactions. It is formed both enzymatically from

MTHFS and the cyclohydrolase activity of MTHFD1 and non-enzymatically from both 5fTHF

and 10fTHF [241].

MTHFS is an essential gene in mice [76], but its role in mammalian FOCM remains to be

fully elucidated. Increased MTHFS expression in cultured cells shifts the distribution of folate

cofactors toward 10fTHF at the expense of 5methylTHF (5mTHF) and also leads to increased

rates of folate catabolism [16], presumably by shifting the folate distribution in favor of THF

accumulation of more chemically unstable forms of folate. 10fTHF binds tightly to to and inhibits

MTHFS in vitro [82;83], and increased MTHFS expression in cultured cells leads to increased rates

of de novo purine biosynthesis [83]. MTHFS expression in cultured cells also decreases efficacy

of anti-folate chemotherapeutic agents designed to target de novo purine synthesis [77]. MTHFS

physically interacts with the “purinosome”, a multi-enzyme complex that forms under purine-

deficient conditions and consists of the six enzymes required for de novo purine synthesis. It has

been suggested that MTHFS serves to channel 10fTHF cofactors to the purinosome [76].

The SHMT- and MTHFS-catalyzed “futile cycle” may serve regulatory functions by controlling

5fTHF concentrations. The primary metabolic function of SHMT is to reversibly interconvert

serine and THF to glycine and 5,10-methyleneTHF (CH2F). 5fTHF is a feedback inhibitor of

SHMT, and also binds to and inhibits AICARFT [27;91], but the purpose of the 5fTHF futile cycle

in regulating SHMT and FOCM remains unresolved. This is due in part because 5mTHF, which

is more abundant than 5fTHF, also serves as a potent inhibitor of SHMT.

The hybrid stochastic model of FOCM introduced in Chapter 1 showed that decreased 5mTHF

binding to SHMT, as a result of an overall decrease in 5mTHF levels resulting from a methylenete-

trahydrofolate reductase (MTHFR) polymorphism, led to increased flux through the reversible

reactions catalyzed by SHMT and MTHFD1 (Chapter 1). The common MTHFR C677T poly-

morphism is known to lower total cellular MTHFR activity, leading to decreased 5mTHF pro-

duction and altered one-carbon distribution [21;58;89;250]. Decreased 5mTHF levels also increase

total reaction propensities, indicating a loss in overall FOCM network stability as a result of this

common polymorphism. Here, we extended this hybrid stochastic model of FOCM to include the

5fTHF futile cycle according to Figure 3.1 in an effort to better understand: 1) the role of MTHFS

and the 5fTHF futile cycle in FOCM, and 2) the relative contributions of 5fTHF and 5mTHF to

SHMT activity and overall network stability.
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Figure 3.1: The reaction-based specification of the extended model according to the notation
introduced in [94]. Rectangles identify model variables, non-boxed substrates are model constants,
green circles identify enzymes, dark blue arcs identify matter transformation, and light blue arcs
identify regulatory events (dotted lines indicate activations and solid lines indicate inhibitions).

3.2 Materials and Methods

3.2.1 Description of the model

The model presented in this paper is an extension of the mathematical model of FOCM introdced in

Chapter 1. The model provides a description of FOCM in the cytoplasm including its regulation

of key biological processes related to de novo dTMP synthesis, de novo purine synthesis and

remethylation of homocysteine to methionine. With respect to the initial model, the model herein

has been extended to include the folate form 5fTHF as well as the enzyme MTHFS and the

relevant reactions involving these two molecules, according to the reaction network provided in

Figure 3.1. The model is composed of 14 variables and 20 (reversible and irreversible) reactions,

most of which have been parametrized by means of Michaelis-Menten kinetics with one or two

substrates. Whenever possible, physiologically relevant forms of folate polyglutamate cofactors

have been considered to derive kinetic coefficients, according to the modeling approach used in

the original model.

MTHFS and 5fTHF have been included in the model using the following five reactions. In

agreement with the FOCM modeling literature, ATP and ADP are not explicitly represented in

reaction stoichiometry since they are assumed to be constantly present at their physiological level.

1. Formation of 5fTHF catalyzed by MTHFS (Michaelis-Menten kinetics with one sub-
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strate)

RMTHFS : 5fTHF
MTHFS−−−−−→ CHF

vMTHFS([5fTHF]) =
kcat ·MTHFS · [5fTHF]

(K5fTHF · (1 + [10fTHF]
Ki,10fTHF

) + [5fTHF])

The inhibition by 10fTHF has been encoded in the inhibition constant.

2. Transformation of 5fTHF to CHF catalyzed by SHMT (Michaelis-Menten kinetics

with one substrate)

RSHMT : CHF
SHMT−−−−→ 5fTHF

vSHMT([CHF]) =
kcat · SHMT · [CHF]

KCHF + CHF

3. Tight binding of 5fTHF and SHMT (mass-action kinetics)

SHMT + 5mTHF
kbinding−−−−−→ SHMT : 5mTHF

vbinding = kbinding · [5mTHF] · [SHMT]

4. Unbinding of 5fTHF: SHMT (mass-action kinetics)

SHMT : 5mTHF
kunbinding−−−−−−→ SHMT + 5mTHF

vunbinding = kunbinding · [SHMT : 5mTHF]

5. AICARFT mediated 10fTHF transformation to THF (Michaelis-Menten kinetics

with two substrates)

RAICARFT : 10fTHF
AICARFT,AICAR−−−−−−−−−−−−→ THF

vAICARFT([10fTHF],AICAR) =
Vmax · [10fTHF] ·AICAR

(K10fTHF + [10fTHF]) · (KAICAR + AICAR)
· 1

1 + [5fTHF]
Ki,5fTHF

This reaction was already included in the initial model, but its rate formula has been ex-

tended to account for the inhibition by 5fTHF.

Regarding model initial values, the starting availability of 5fTHF has been set to 5% of total

cytosolic folate, according to [91]. Furthermore, the initial value of SHMT has been refined with

respect to the value provided in the original model to account for the fact that only two of the

four enzyme sites are presumed to be active [250]. Because the additional components included

in the model affect the behavior of the network, some of the reaction kinetics have been refined

with respect to those previously provided to take into account the increased amount of information

included in the extended network. All refined parameter estimates are listed in Appendix C, Table

C.1.
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3.2.2 Description of the simulation approach and computational

environment

For the simulation of the model we followed the approach presented in Chapter 1 and we employed

a hybrid-stochastic approach, for which the initial model and the extensions described above have

first been translated to a set of ODEs and implemented in MATLAB. The initial part of the

dynamics until reaching a model steady state was computed using deterministic simulation by

means of the numerical ODE solver ode15s. By exploiting the hybrid stochastic framework, we

then coupled the ODE-based model description with a stochastic reaction-based one following the

same approach developed for the first version of the mathematical model introduced in Chapter

1. To assess the level of stochasticity of model steady states, we relied on the concept of total

propensity, which is used to determine the next reaction event in stochastic simulation [90]. In more

detail, the stochastic simulation algorithm computes a propensity function aj(x) for each model

reaction Rj , where x is the current state of the system. The total propensity is then calculated as

a0(x) =
∑

j aj(x) and used to assess when the next reaction event will occur as is proportional to

the number of reaction events occurring per unit of time.

3.2.3 In silico experiments

In the following a short techniqual description of the considered scenarios is provided.

The role of MTHFS

The influence of the addition of MTHFS on the FOCM network was studied by comparing steady

states and reaction velocities of the standard scenario based on the parameters presented in Ap-

pendix C, Table C.1 with the following four scenarios: a) MTHFS activity scaled down to 50% of

the standard case (0.04 µm), b) no availability of MTHFS (0 µm), c) no availability of MTHFS

plus turning off of the reaction, d) no inhibition of MTHFS by 10fTHF.

Effect of glycine and MTHFS activity on 5mTHF binding to SHMT

Because 5fTHF inhibits SHMT activity, the interplay of glycine and MTHFS and their effect on

steady state concentrations of 5mTHF (free, bound to SHMT and total) were compared for high

and low levels of MTHFS (10% of standard activity and 5-fold increase in standard activity) as a

function of glycine (considered levels: 1000 µm, 1850 µm, 2000 µm, 5000 µm and 10000 µm). These

simulations were repeated for the case in which the binding of 5mTHF and SHMT was blocked,

increasing therefore the availability of 5mTHF for other reactions.

Sensitivity analysis on MTHFS

The effect of MTHFS levels on the binding of 5fTHF and 5mTHF to SHMT was studied by

comparing their steady state concentrations at different levels of MTHFS. Enzyme deficiency

was simulated by decreasing MTHFS availability stepwise (90% to 10% of the standard activity,

corresponding to 0.072 µm and 0.008 µm) whereas the 2-fold and 5-fold increase of the standard

activity was considered in overexpression scenarios (corresponding to 0.16 µm and 0.4 µm).
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Quantification of network stability

In the steady state comparisons herein presented, we exploited the concept of total propensity

for comparing the level of stochasticity of the considered steady states as reported in section

3.2.2. The idea behind this approach is the following: intuitively, a steady state with lower total

propensity can be interpreted as more stable because on average it will have a lower number

of reaction events per unit of time that can perturb its equilibrium. We applied this intuition

to compare different scenarios and assess the stability of the corresponding steady states. In

particular, we investigated the effect of the common C677T MTHFR polymorphism, which reduces

the enzymatic activity of MTHFR, and the effect of folate deficiency, to test the impact of these

factors on the FOCM network with or without the 5fTHF futile cycle. Following Chapter 1,

MTHFR activity was decreased to 30% of standard activity to model the effect of the MTHFR

C677T polymorphism. We further considered two levels of folate availability: replete folate status

(standard model parametrization) and low folate status (folate availability reduced to 50%). The

resulting four scenarios were repeated for the standard parametrization of the model and for the

one without the 5fTHF cycle (no availability of MTHFS and 5fTHF, and no activity of the SHMT-

catalyzed reaction: CHF→ 5fTHF). In all cases we used deterministic simulation to compute the

steady states of the scenarios of interest and we then calculated the reaction propensities and the

total propensities according to stochastic simulation.

3.3 Results

3.3.1 The role of MTHFS

The influence of the 5fTHF futile cycle, including the MTHFS-catalyzed synthesis of CHF from

5fTHF and the reverse reaction catalyzed by SHMT, on the FOCM network was studied by

comparing steady states and reaction velocities of this updated model, which is described by the

parameters presented in Table Appendix C, C.1. The outputs of the following four conditions

were compared to describe the effects of the 5fTHF futile cycle: a) inclusion of the enzymatic

reactions comprising the futile cycle (MTHFS and SHMT), b) MTHFS activity scaled down to

50% of the standard condition, c) no MTHFS activity or d) no activity of either MTHFS or its

SHMT-catalyzed counterpart reaction RSHMT : CHF→ 5fTHF (elimination of the futile cycle).

In this model that includes the 5fTHF futile cycle, reducing MTHFS activity by 50% leads to

increased 5fTHF levels, which come at the expense of 5mTHF levels, through 5mTHF remains

the predominant form of intracellular folate under both conditions (Table 3.1 and 3.2, compare

conditions A and B). Levels of other one-carbon substituted folate forms remain unchanged as

a result of decreased MTHFS activity (Tables 3.1 and 3.2). 5fTHF is a known inhibitor of the

folate-dependent enzymes AICARFT and SHMT [27]. We confirm that 5fTHF accumulation re-

sulting of decreased MTHFS activity decreases the flux through the AICARFT-catalyzed reaction

(Table 3.4). Flux through the other folate-dependent de novo purine synthesis enzyme, PGT,

remains mostly unchanged when MTHFS activity is reduced by 50% (Table 3.4), which is also

not unexpected because 5fTHF is not known to inhibit PGT. Overall, these results are consistent

with the empirical observation that “cells with 50% reduced Mthfs expression have reduced de

novo purine synthesis” [76]. Furthermore, the model also supports the empirical observation that
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de novo dTMP synthesis is not affected in cells with reduced Mthfs expression, as flux through

TYMS and DHFR is not affected by reduced MTHFS activity (Table 3.4) [76]. The 50% reduction

in MTHFS activity moderately decreases fluxes through SHMT-catalyzed reactions (Table 3.3),

and does not affect flux through the enzymes of the homocysteine remethylation cycle (Table 3.4).

The model also shows that MTHFS activity is necessary to prevent accumulation of cellular

folate as 5fTHF. When FOCM was modeled without MTHFS activity, the distribution of folate

shifted such that all the folate accumulated as 5fTHF (Table 3.1 and 3.2, comparing conditions A

and C), leaving no folate co-factors available for de novo dTMP, purine synthesis (Table 3.4) or

homocysteine remethylation (Table 3.3). Therefore, the model supports the experimental observa-

tion that Mthfs is an essential gene in mice [76] and suggests that MTHFS expression is necessary

to prevent accumulation of 5fTHF and subsequent inhibition of FOCM.

If in addition to the deletion of MTHFS activity, the SHMT-catalyzed conversion of CHF to

5fTHF is also turned off thereby effectively modeling the absence of the 5fTHF futile cycle, the

lethal pooling of folate as 5fTHF is prevented (Table 3.1 and 3.2, compare C to D). In addition,

because there is no 5fTHF formed in the absence of the futile cycle, the steady state distribution of

all remaining one-carbon substituted forms increases (Table 3.2, compare A to D). This does not

appreciably affect the flux through other FOCM enzymes (MTHFD1, MTHFR, PGT, dihydro-

folate reductase (DHFR), thymidylate synthase (TYMS), methionine synthase (MTR)) (Tables

3.3 and 3.4, compare A and D) or homocysteine remethylation enzymes (Table 3.4, compare A

and D). As expected, the decrease in 5fTHF levels increases flux through AICARFT (Table 3.4,

compare A and D) and SHMT (Table 3.3, compare A and D) due to loss of inhibition by 5fTHF.

The model shows that for the latter, the increase in 5mTHF levels is compensating for the loss of

5fTHF inhibition. Indeed, the amount of SHMT bound by 5mTHF increases from 81% to 92% of

total SHMT (Tables 3.1, compare A and D).

SAM and S-adenosylhomocysteine (SAH) levels are not affected by a 50% reduction in MTHFS

activity (Table 3.1, compare conditions A and B). However, elimination of MTHFS activity causes

SAM levels to decrease by more than 80% and SAH increases by almost 3-fold with respect to the

standard condition. The SAM/SAH ratio, which is around 2.3 in the standard case, becomes 0.15

without MTHFS activity (Table 3.1, compare A and C). Even if 5mTHF is not available in scenario

C, because of pooling all cofactors as 5fTHF, the remethylation cycle is active because the model

includes the betaine-homocysteine transferase (BHMT)-catalyzed conversion of homocysteine to

methionine. This reaction is folate-independent and is not directly affected by 5mTHF levels.

3.3.2 The role of 10fTHF inhibition of MTHFS

10fTHF is a tight-binding inhibitor of MTHFS [83] creating a mechanism for feedback inhibition of

MTHFS such that 5fTHF levels are mobilized when 10fTHF levels are depleted. To understand

the role of 10fTHF inhibition of MTHFS, the 10fTHF inhibition term was removed from the model

(Tables 3.1, 3.2, 3.3, and 3.4, scenario E). Without inhibition of MTHFS by 10fTHF, increased

MTHFS activity leads to depletion of 5fTHF (Tables 3.1 and 3.2). Interestingly, the steady-

state distribution of folate forms and enzyme fluxes were nearly identical to those resulting from

removal of the whole 5fTHF futile cycle (Tables 3.1, 3.2, 3.3, and 3.4, compare D and E). These

data suggest that 10fTHF inhibition of MTHFS is necessary to maintain 5fTHF levels, which in
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Table 3.1: Steady state concentrations of model variables (in µm) for different scenarios with
respect to MTHFS and SHMT activity.

THF 10fTHF CHF CH2F DHF 5mTHF

free bound

Standard MTHFS and

regular SHMT activity

(Condition A) 0.051 7.075 1.407 0.398 0.007 5.217 3.644

0.5x MTHFS and

regular SHMT activity

(Condition B) 0.047 6.984 1.390 0.394 0.007 4.972 3.249

0x MTHFS and

regular SHMT activity

(Condition C) 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0x MTHFS and

SHMT: CHF→5fTHF

activity turned off

(Condition D) 0.058 7.014 1.394 0.391 0.007 4.828 4.156

Standard MTHFS and

regular SHMT activity

without MTHFS

inhibition by 10fTHF

(Condition E) 0.056 7.180 1.428 0.403 0.007 5.517 4.194

5fTHF SHMT HCY MET SAM SAH

free bound free

Standard MTHFS and

regular SHMT activity

(Condition A) 0.413 0.577 0.279 3.206 38.116 76.071 33.127

0.5x MTHFS and

regular SHMT activity

(Condition B) 0.757 0.989 0.261 3.218 38.294 75.278 33.729

0x MTHFS and

regular SHMT activity

(Condition C) 14.351 4.438 0.062 4.039 40.573 14.010 91.898

0x MTHFS and

SHMT: CHF→5fTHF

activity turned off

(Condition D) 0.000 0.000 0.344 3.226 38.402 74.790 34.102

Standard MTHFS and

regular SHMT activity

without MTHFS

inhibition by 10fTHF

(Condition E) 0.001 0.001 0.304 3.191 37.908 76.973 32.447
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3.3. Results

Table 3.3: Steady state fluxes of the reactions catalyzed by the enzymes FTS, MTCH, MTD, MTHFR, MTR, SHMT
and the (un-)binding of 5mTHF/5fTHF and SHMT (in µm/h) for different scenarios with respect to MTHFS and SHMT
activity.Reactions are indicated by the enzyme, which catalyzes them. For bidirectional reactions the direction is indicated
behind the enzyme name (Enzyme: Substrate → Product).

FTS MTCH MTD MTHFR MTR

10fTHF
→ CHF

CHF →
10fTHF

CHF →
CH2F

CH2F
→CHF

Standard MTHFS and

regular SHMT activity

(Condition A) 14281.6 761957.5 758886.0 91831.0 88759.5 23.0 23.0

0.5x MTHFS and

regular SHMT activity

(Condition B) 13563.0 754720.3 751813.8 90886.3 87979.8 22.9 22.9

0x MTHFS and

regular SHMT activity

(Condition C) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0x MTHFS and

SHMT: CHF→5fTHF

activity turned off

(Condition D) 15638.3 757127.9 753509.5 91112.6 87494.2 22.9 22.9

Standard MTHFS and

regular SHMT activity

without MTHFS

inhibition by 10fTHF

(Condition E) 15326.6 770328.6 767040.0 92922.5 89634.0 23.1 23.1

SHMT SHMT & 5mTHF SHMT & 5fTHF

CH2F
→THF

THF
→CH2F

CHF →
5fTHF

binding unbinding binding unbinding

Standard MTHFS and

regular SHMT activity

(Condition A) 3191.9 445.0 1.9 7214.3 7214.3 83.1 83.1

0.5x MTHFS and

regular SHMT activity

(Condition B) 2976.3 391.5 1.7 6433.6 6433.6 142.5 142.5

0x MTHFS and

regular SHMT activity

(Condition C) 0.0 0.0 0.0 0.0 0.0 639.1 639.1

0x MTHFS and

SHMT: CHF→5fTHF

activity turned off

(Condition D) 3910.8 612.2 0.0 8228.4 8228.4 0.0 0.0

Standard MTHFS and

regular SHMT activity

without MTHFS

inhibition by 10fTHF

(Condition E) 3488.1 527.6 2.1 8305.0 8305.0 0.2 0.2
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Table 3.4: Steady state fluxes of the reactions catalyzed by the enzymes MTHFS, PGT,
AICARFT, DHFR, TYMS, BHMT, SAHH, MAT-I, MAT-III, GNMT, DNMT (in µm/h) for
different scenarios with respect to MTHFS and SHMT activity.Reactions are indicated by the
enzyme, which catalyzes them. For bidirectional reactions the direction is indicated behind the
enzyme name (Enzyme: Substrate → Product).

MTHFS PGT AICARFT DHFR TYMS BHMT

Standard MTHFS and

regular SHMT activity

(Condition A) 1.9 5274.9 5935.2 301.7 301.7 149.7

0.5x MTHFS and

regular SHMT activity

(Condition B) 1.7 5267.2 5389.3 298.7 298.7 150.2

0x MTHFS and

regular SHMT activity

(Condition C) 0.0 0.0 0.0 0.0 0.0 180.1

0x MTHFS and

SHMT: CHF→5fTHF

activity turned off

(Condition D) 0.0 5269.8 6750.2 296.9 296.9 150.5

Standard MTHFS and

regular SHMT activity

without MTHFS

inhibition by 10fTHF

(Condition E) 2.1 5283.7 6754.4 304.9 304.9 149.1

SAHH MAT-I MAT-III GNMT DNMT

SAH
→HCY

HCY
→SAH

Standard MTHFS and

regular SHMT activity

(Condition A) 267.5 94.8 111.0 61.7 134.9 123.8

0.5x MTHFS and

regular SHMT activity

(Condition B) 268.3 95.2 111.5 61.7 140.7 122.7

0x MTHFS and

regular SHMT activity

(Condition C) 298.9 118.8 129.5 50.6 945.6 23.5

0x MTHFS and

SHMT: CHF→5fTHF

activity turned off

(Condition D) 268.8 95.4 111.7 61.7 144.4 122.1

Standard MTHFS and

regular SHMT activity

without MTHFS

inhibition by 10fTHF

(Condition E) 266.6 94.4 110.5 61.7 128.3 125.0
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Figure 3.2: The effect of glycine on the availability of 5mTHF considering low and high levels
of MTHFS. a) With the binding of 5mTHF and SHMT and b) Without the binding of 5mTHF
and SHMT.

turn controls de novo purine synthesis by inhibiting AICARFT, as shown in cultured cells [27].

3.3.3 Effect of glycine and MTHFS activity on 5mTHF binding to SHMT

The SHMT-catalyzed interconversion of serine and glycine is reversible in vitro and in vivo, and

increasing intracellular glycine concentrations has been shown to drive this reaction toward serine

synthesis, which consumes CH2F otherwise available for dTMP or SAM synthesis [110]. CH2F

exists at a branch point in FOCM and can be used for either synthesis of 5mTHF (through

MTHFR) for SAM synthesis or for de novo synthesis of dTMP (through TYMS). Glycine has

also been shown in vivo [110] and in silico (Chapter 1) to decrease 5mTHF levels. The relative

contributions of 5fTHF and 5mTHF to regulating SHMT activity in response to changes in glycine

concentration have not been determined. The interplay of glycine and MTHFS and their respective

effects on 5mTHF levels was studied by comparing model steady-state concentrations of 5mTHF

(free, bound to SHMT, and total) for high and low levels of MTHFS (10% of standard activity

and 5-fold increase in standard activity) as a function of glycine concentration (considered levels:

1000 µm, 1850 µm, 2000 µm, 5000 µm and 10000 µm). These simulations were repeated for the

case in which the binding of 5mTHF and SHMT was blocked, increasing therefore the availability

of 5mTHF for other reactions.

When running the in silico experiment of FOCM, increasing MTHFS activity increased 5mTHF

levels by making more folate available for conversion to 5mTHF, but it did not influence the effect
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that glycine has on 5mTHF levels (Figure 3.2a). In this scenario, SHMT is inhibited by both

5fTHF and 5mTHF. Conversely, this is not the case when the binding of 5mTHF to SHMT is

removed from the model (Figure 3.2b). In this case, 5mTHF levels become responsive to increasing

glycine concentration and this decrease in 5mTHF is more pronounced with higher MTHFS activity

(Figure 3.2b). This is consistent with the observation that a 50% reduction in MTHFS activity

and concomitant 2-fold increase in 5fTHF levels (Table 3.2) do not affect flux through SHMT-

catalyzed reactions (Table 3.3). In other words, intracellular 5fTHF is a meaningful inhibitor of

SHMT activity (even when driven by increasing glycine concentrations) but only when 5mTHF

levels are low, suggesting that 5mTHF is the predominant intracellular inhibitor of SHMT activity.

3.3.4 Model sensitivity analysis to unravel the effect of MTHFS activity on

FOCM dynamics

Both 5mTHF and 5fTHF bind to SHMT and reduce levels of the free, active form of SHMT. The

effect of MTHFS activity on the availability of 5fTHF, and the binding of 5fTHF and 5mTHF to

SHMT was studied by comparing model steady-state concentrations of 5fTHF- and 5mTHF-bound

SHMT at different levels of MTHFS activity. MTHFS deficiency was simulated by decreasing

MTHFS availability stepwise from 90% to 10% of the standard activity whereas the 2-fold and

5-fold increase of the standard activity was considered in overexpression.

As MTHFS activity increases over a 50-fold range, 5fTHF levels decrease to less than 5%

of the initial concentration (Appendix C, Table C.2). Furthermore, 5mTHF and THF levels

increase by about 2-fold with increasing MTHFS activity, and the concentration/distribution of

other folate forms is unchanged (Appendix C, Tables C.2 and C.3). Due to the relatively modest

changes in levels of one-carbon substituted folates, flux through most FOCM enzymes remains

unchanged as a result of elevated MTHFS activity (Appendix C, Table C.4). Increasing MTHFS

activity decreases the amount of 5fTHF that is available to bind and inhibit AICARFT and SHMT

(Figure 3.3, Appendix C, Tables C.4 and C.5). As expected, flux through both AICARFT and

SHMT increases up to 2-fold as a result of decreased 5fTHF caused by elevated MTHFS activity

(Appendix C, Tables C.4 and C.5). These data are consistent with observations in mammalian

cells that MTHFS expression levels regulate de novo purine synthesis [76;77;83].

Both 5mTHF and 5fTHF are tight-binding inhibitors of SHMT, and interpreting inhibition of

SHMT in this scenario where MTHFS activity is increased is complicated by the fact that 5fTHF

and 5mTHF levels are affected in opposing directions (5mTHF increases and 5fTHF decreases).

However, comparing binding of 5mTHF and 5fTHF as a function of MTHFS activity reveals

that there is almost always more 5mTHF than 5fTHF bound to SHMT (Figure 3.3). 5fTHF

binding to, and inhibition of, SHMT becomes predominant only at very high intracellular 5fTHF

concentrations, as would result from an almost 90% reduction in MTHFS activity (Figure 3.3).

Taken together, these data suggest that 5mTHF is the predominant physiological inhibitor of

SHMT and are consistent with the observation that 5fTHF is a meaningful inhibitor of SHMT

only when binding of 5mTHF to SHMT is not considered in the model (Figure 3.2)).
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Figure 3.3: Sensitivity analysis: effect of MTHFS on 5fTHF and 5mTHF bound to SHMT.

3.3.5 Quantification of network stability

To understand the effect of the 5fTHF futile cycle on the stability of the FOCM network at

steady state, we used the hybrid stochastic framework as described in Section 3.2.3. Model steady

states were computed both with and without the 5fTHF futile cycle by considering four scenarios

regarding two MTHFR genotype (CC, and TT) and two folate levels (replete and low folate), both

of which are known to destabilize FOCM.

Interestingly, the addition of the 5fTHF futile cycle reduces the stochastic noise (indicated as

lower total reaction propensities) throughout all considered conditions (Table 3.5, row 1 vs. row

2). Furthermore, the model suggests that the futile cycle mitigates the destabilizing effect that

low folate has on the network for the MTHFR CC genotype (Table 3.5, CC columns). Overall,

the SHMT-catalyzed reactions exhibited the greatest stochasticity in response to the absence of

5fTHF futile cycle, the MTHFR C677T polymorphism, and and/or low folate levels (Appendix

C, Tables C.7, C.8, and C.9). In addition, AICARFT stochasticity also decreased in response to

the addition of the futile cycle (Appendix C, Table C.7).

Table 3.5: Total propensities obtained in eight steady state conditions according to MTHFR
polymorphism (CC and TT), folate status (replete, 19 uM; low, 9 uM) and presence of the 5fTHF
futile cycle (FOCM network with and without futile cycle). Total propensities can be interpreted
as a measure of stability when two steady states are compared since they provide an estimate of
how many reactions events occur per unit of time. The steady state with lower total propensity
can be consider more stable than the other.

a0 replete folate low folate

CC TT CC TT

with 5fTHF futile cycle 2.95 · 1014 5.74 · 1014 7.55 · 1014 9.56 · 1014

without 5fTHF futile cycle 3.67 · 1014 4.21 · 1015 1.24 · 1015 3.71 · 1015
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3.4 Discussion

Folate deficiency and/or genetic and environmental factors that impair FOCM are not only associ-

ated with development of pathology but often affect the function of the entire network, which makes

it difficult to identify causal pathways associated with these pathologies [79;227]. Computational

models advance our understanding of these complex interactions and the effects of perturbations

on network function as a whole [227]. In this chapter, we focused on the role of the 5fTHF futile

cycle on the FOCM network function and stability.

The 5fTHF futile cycle was shown to be critical to maintain the stability of the FOCM network,

which is a novel finding. In Chapter 1, the initial model of FOCM identified both folate deficiency

and the common MTHFR C677T polymorphism (a known human NTD risk factor through its

effects on lowering folate levels [257]) as a source of network instability. The major source of the

instability resulted from decreased 5mTHF levels leading to increasing flux through SHMT. Here

we observed that inclusion of the 5fTHF futile cycle stabilized the FOCM network by introducing

5fTHF inhibition of both SHMT and AICARFT. This stabilization effect of the futile cycle was

apparent both when folate deficiency and the MTHFR C677T polymorphism were introduced into

the model (Table 3.5).

The metabolic roles of 5fTHF and MTHFS in mammalian FOCM have not been fully elu-

cidated. 5fTHF does not serve as an enzyme cofactor, rather it acts as an inhibitor of folate-

dependent enzymes AICARFT [27] and SHMT [239]. 5fTHF accumulates in seeds and spores which

do not contain MTHFS activity, where 5fTHF is hypothesized to serve as a stable storage form

of folate [135]. Conversely, 5fTHF is not known to accumulate in mammalian cells. Mthfs is an

essential gene in mice [76], though this is not the case in some prokaryotes nor in Arabidopsis [96].

Humans with inborn errors of metabolism in MTHFS exhibit accumulation of 5fTHF in cultured

fibroblasts and low cerebrospinal fluid (CSF) folate levels with accompanying neurological seque-

lae [220], which are common to many cerebral folate deficiency disorders [242].

Here, the updated model of mammalian FOCM indicates that MTHFS is essential in mam-

malian cells by preventing the pooling of cellular folate as 5fTHF (Tables 3.1 and 3.2). This

depletion of folate cofactors forms induced by lack of MTHFS activity drives steady-state flux

of all FOCM enzymes to zero (Tables 3.3 and 3.4). The model also shows that MTHFS is only

necessary to prevent 5fTHF pooling when the 5fTHF synthesis activity of SHMT is included in the

model (Tables 3.1 and 3.2), because when this activity is omitted, there is no 5fTHF formed. It is

also worth noting that relatively low levels (only 10% of the standard modeled concentration) of

MTHFS enzymatic activity are required to prevent this lethal 5fTHF pooling (Appendic C, Table

C.3). 5fTHF and MTHFS levels affect de novo purine biosynthesis in cultured cells, although

the relative contribution of MTHFS and 5fTHF to the regulation of de novo purine synthesis is

unknown. The #2 and #8 carbons of the purine ring are formed through de novo purine synthesis

in reactions catalyzed by the enzymes AICARFT and GARFT, respectively, and by the cofactor

10fTHF (Figure 3.1).

10fTHF tightly binds to and inhibits MTHFS [83], and increased MTHFS expression increases

10fTHF levels in cultured cells [27]. 5fTHF also affects de novo purine synthesis through its inhibi-

tion of AICARFT [27]. Increased MTHFS expression increased rates of de novo purine synthesis [83]

and caused resistance to antifolates that specifically target de novo purine synthesis [77]. The po-
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tential mechanisms underlying this observation were suggested to be either: 1) decreased 5fTHF

levels and thereby less inhibition of AICARFT, and/or 2) the effect of MTHFS increasing cellular

10fTHF levels. When the 10fTHF inhibition of MTHFS term was removed from the model, folate

cofactor distribution (Table 3.2) and steady-state reaction fluxes of almost all FOCM-dependent

enzymes (Tables 3.3 and 3.4) were nearly identical to what was observed when the futile cycle

was removed from the model. This indicates that 10fTHF inhibition of MTHFS is critical for

controlling MTHFS activity and thereby maintaining cellular 5fTHF levels that limit AICARFT

activity. It is worth noting that MTHFS has been shown to co-localize with the multi-enzyme

de novo purine synthesis complex known as the “purinosome” [76]. Purinosomes form when mam-

malian cells are exposed to purine-deficient culture medium to increase rates of de novo purine

synthesis [9;76], leading to the hypothesis that MTHFS delivers or “channels” 10fTHF to the purine

synthesis enzymes. This physical interaction adds another layer of regulation among MTHFS ac-

tivity, 10fTHF, and de novo purine synthesis, but the computation model does not yet account

for these interactions.

The relative contribution of intracellular 5fTHF and 5mTHF in regulating SHMT, a key enzyme

whose deficiency causes folate-responsive NTD risk in mice, has not been investigated to date. Both

5fTHF and 5mTHF tightly bind and inhibit SHMT [27], and SHMT activity is sensitive to 5mTHF

accumulation, as has been demonstrated in silico and in cultured cells [110]. Comparing binding

of both 5fTHF and 5mTHF to SHMT as a function of MTHFS activity indicates that 5mTHF is

the predominant binder of SHMT (Figure 3.3). 5fTHF binding to SHMT becomes predominant

only at high levels of intracellular 5fTHF induced by a 90% reduction in MTHFS activity. In

other words, 5mTHF (and not 5fTHF) serves as the physiological inhibitor/regulator of SHMT.

De novo purine biosynthesis is the primary pathway influenced by the 5fTHF futile cycle.

In summary, experimental investigation of the role of the 5fTHF futile cycle has been limited

due to the embryonic lethality that occurs in MTHFS knock-out mice. Inclusion of the 5fTHF

futile cycle in the in silico model has provided new insights into the metabolic functioning of

FOCM, by allowing us to investigate conditions that are difficult to reproduce in vitro or in vivo.

The model confirms that loss of MTHFS activity results in accumulation of folate as 5fTHF as

occurs in seeds and spores, and replicates observations that the futile cycle impairs de novo purine

biosynthesis. Importantly, the model provides new mechanistic evidence that the role of MTHFS

in accelerating rates of de novo purine biosynthesis can be accounted for by its role in lowering

5fTHF levels and alleviating AICARFT inhibition. The model also indicates that the 5fTHF futile

cycle plays an important role in limiting the increased stochastic behavior of SHMT1 introduced

by the MTHFR C677T polymorphism and folate deficiency. Importantly, the updated model has

identified a potential role of the 5fTHF futile cycle in the etiology of folic acid-responsive NTDs,

as the SHMT1 knock-out mouse is the only folic acid-responsive mouse model of NTDs resulting

from disruption of a folate-dependent enzyme [24;79].
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Chapter 4

An extended mathematical model of

folate-mediated one-carbon metabolism:

Nuclear compartmentalization

In the preceding chapters a mathematical model and an extension of the initial model of folate-

mediated one-carbon metabolism in the cytoplasm has been introduced. In silico simulations

could successfully link genetic variants and nutritional factors to folate-related pathologies.

Recent experimental evidence indicates that de novo dTMP synthesis must also occur in

the nuclear compartment at sites of the replication machinery of the cell to prevent uracil

misincorporation into DNA. Moreover, simulations of the initial model introduced in Chapter

1 indicate that de novo dTMP synthesis rates in the cytoplasm are insufficient to support DNA

synthesis during S-phase (Table 1.9). In this chapter we present an additional extension of

the cytoplasmic model presented in Chapter 3, which includes the folate-dependent reactions

located in the nucleus. A key aspect of nuclear folate-mediated one-carbon metabolism is

the formation of a multienzyme complex, which may allow for folate channelling between the

active sites of the involved enzymes. In the model presented in this chapter nuclear complex

formation and substrate channelling are taken into account and computational simulations

highlight their importance for normal functioning of the network. In silico experiments also

provide insight into the contribution of cytoplasmic and nuclear dTMP synthesis to overall

dTMP synthesis. Moreover, model simulations provide evidence that the network is most

sensitive to expression levels of TYMS and DHFR, while also folate partitioning between the

cytoplasm and the nucleus plays an important role for dTMP activity.

4.1 Introduction

Folate-mediated one-carbon metabolism (FOCM) is required for the de novo synthesis of three

of the four DNA bases and the remethylation of methionine (MET) to homocysteine (HCY). In

the interconnected network folate serves as one-carbon carrier and donor for biochemical reactions

associated to the anabolic pathways. FOCM plays an essential role for genome stability and

methylation [282], and disruption of the network can be caused by genetic and/or nutritional factors,

like genetic variants of the relevant enzymes or folate and vitamin deficiency. Impairment of FOCM
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is associated with the pathogenesis of neural tube defects [175], neurodegenerative diseases [134] and

cancer [7;29;48;128;199].

In the cytoplasm FOCM is required for the de novo nucleotide biosynthesis of purines and

thymidylate, as well as for homocysteine remethylation to methionine, catalyzed by the vitamin

B12 dependent enzyme methionine synthase (MTR). Recent studies demonstrate that FOCM also

occurs in the nucleus at the site of DNA synthesis [12;13;42], where the de novo dTMP synthesis

pathway functions through the four enzymes serine hydroxymethyltransferase (SHMT), dihydrofo-

late reductase (DHFR), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), and thymidylate

synthase (TYMS). The required co-factor for dTMP synthesis, 5,10-methyleneTHF (CH2F), is in-

dependently generated by SHMT and MTHFD1 using serine or formate as one carbon source

respectively. TYMS utilizes CH2F as folate co-factor to catalyze the conversion of dUMP to

dTMP and dihydrofolate (DHF). DHFR reduces DHF to THF in a NADPH-dependent reaction.

A fraction of the enzymes involved in dTMP synthesis translocate to the nuclear compartment

during S-phase of the cell cycle or in response to DNA damage after undergoing post-translational

modification by the small ubiquitin like modifier (SUMO) protein. [12–14;78;282]. Nuclear enzymes

involved in dTMP synthesis pathway form a multienzyme complex, which is associated with nuclear

lamina and with the replication and epigenetic machinery [13]. Experimental observations show

that SHMT acts as essential scaffold protein that anchors the multienzyme complex to nuclear

lamina [13;81]. Formation of the nuclear enzyme complex appears to be essential for the functioning

of de novo dTMP synthesis, as previous studies have demonstrated that dTMP synthesis activity

in isolated nuclei is reduced following sonication [13]. Furthermore, nuclear metabolic complex

formation may allow for channelling of folate polyglutamate cofactors among enzyme active sites,

limiting substrate diffusion and accelerating enzymatic reaction rates. Interestingly, the formation

of a multienzyme complex and resulting substrate channelling seems to be unique to mammalian

cells [49]. Folate deficiency, anti-folate treatment or impaired assembly of the multienzyme complex

responsible for nuclear dTMP synthesis can lead to depressed dTMP biosynthesis activity and

consequently to elevated uracil incorporation in DNA [29;158;193]. During DNA replication, either

dTTP or dUTP can be used to match an adenin nucleotide base on the template strand and

uracil misincorporation into DNA will increase when thymidylate becomes limiting [49]. Therefore,

adequate intracellular concentrations of folate and proper assembly of the dTMP synthesis pathway

are important for genome stability.

Our hybrid stochastic model of cytoplasmic FOCM could successfully link genetic predisposing

factors and nutritional status to folate-dependent pathodologies (Chapter 1, 2, and 3). We have

shown that low levels of folate, vitamin B12 and the common C677T MTHFR polymorphism affect

cytoplasmic de novo dTMP synthesis (Chapters 1, and 2), whereas impairment of the 5fTHF futile

cycle introduced by decreased MTHFS activity is mainly associated to loss in purine synthesis

activity (Chapter 3). The simulations also indicate that de novo dTMP synthesis rates in the

cytoplasm are insufficient to support DNA synthesis during S-phase (Chapter 1). Here, we extend

the mathematical model of FOCM introduced in Chapter 3 by including its compartmentalization

to the nucleus and by accounting for the kinetic effects of multienzyme complex formation. In

silico experiments with the multi-compartmental model allow to better understand the impact of

enzyme complex formation and substrate channelling on overall network outcomes with a special

focus on de novo dTMP synthesis activity. Furthermore, sensitivity analysis for model enzymes
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Figure 4.1: The reaction-based specification of the model including the cytoplasmic and nuclear
compartment according to the notation introduced in [94]. Orange rectangles identify model vari-
ables, non-boxed substrates are model constants, green circles identify enzymes, dark blue arcs
identify matter transformation, and light blue arcs identify regulatory events (dotted lines indicate
activations and solid lines indicate inhibitions).

and variables is carried out to investigate their individual contribution on FOCM functioning.

4.2 Materials and Methods

4.2.1 Description of the model

The results presented in the following are based on an extension of the mathematical model of

FOCM in the cytoplasm introduced in Chapter 3. This model provides a description of FOCM in

the cytoplasm including its regulation of key biological processes related to de novo dTMP synthe-

sis, de novo purine synthesis and remethylation of homocysteine to methionine. With respect to

the initial model, the model herein employed has been extended to include the folate-mediated re-

actions occurring in the nuclear compartment, according to the graphical representation provided

in Figure 4.1. The model consists of 36 reversible and irreversible reactions, most of which have
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been parametrized by means of Michaelis-Menten kinetics with one or two substrates following

Chapter 1 and 3. The parameter estimates for the folate cycle can be found in Appendix D, Table

D.1, while the parameter estimates for the reactions related to the remethylation of methionine

were unchanged with respect to Chapter 1 and are listed in Appendix A, Table A.4. Whenever

possible, physiologically relevant forms of folate polyglutamate cofactors have been considered,

in agreement with the cytoplasmic model. In the following we describe the technical procedure

we applied to update the cytoplasmic model presented in the preceding sections by inlcuding the

nuclear compartment.

Updating the cytoplasm

The cytoplasmic model introduced in Chapter 3 was extended to account for the fact that enzymes

which translocate to the nucleus – SHMT, MTHFD1 (trifunctional enzyme encoded as FTS, MTD

and MTCH), DHFR, TYMS and MTHFS – have been considered as variables that can change

in time (some of them were encoded in the Michaelis-Menten constants in the previous model).

Due to this, the Michaelis-Menten kinetics of the reactions catalyzed by the enzymes MTHFD1,

DHFR and TYMS were updated to consider the turnover number and the enzyme concentration

in place of the Vmax value, considering the relation Vmax = kcat · [Enzyme].

Adding the nucleus

The inclusion of the nuclear compartment and its interplay with the cytosol is the main novelty

of the model herein presented. The nucleus has been modeled to account for the folate-dependent

reactions catalyzed by the enzymes MTHFD1, SHMT, DHFR, TYMS and MTHFS and consists of

17 variables and 16 (reversible and irreversible) reactions, as indicated in Figure 4.1. The nuclear

stoichiometry and regulation of these reactions have been inherited from their counterparts in the

cytoplasm, while model parameters have been derived as explained in the following. Furthermore,

the model has been developed to account for observations that the four enzymes MTHFD1, SHMT,

DHFR and TYMS form a multi-enzyme complex when they translocate to the nucleus [13]. This

complex has the structure 1: TYMS, 1: DHFR, 1: MTHFD1, 2: SHMT and allows for substrate

channelling, which was modeled as explained in the following.

Translocation to the nucleus

The translocation of enzymes and metabolites to the nucleus has been modeled by an abstract

function representing the SUMO-dependent nuclear import process according to experimental re-

sults, e.g. [12]. The function derives the enzyme and folate availability in the nucleus by subtracting

a given percentage of each folate form or enzyme from the steady state of the model restricted to

the cytoplasm. In particular, the function follows the rules/steps described below.

1. Nuclear kinetic parameter estimates. The parameter estimates have been adapted

from the values considered for the cytoplasm by scaling them according to the volume of the

nucleus (Appendix D, Table D.1).
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2. Nuclear constant substrates. The constant substrates (serine, glycine, formate, NADPH,

NADP, and dUMP) were modeled at the same constant levels in both compartments (Ap-

pendix A, Table A.2).

3. Nuclear folate forms. Folate has been distributed between the two compartments by

assuming that 10% of the total cytosolic folate mass is present in the nucleus, according

to [12]. The initial nuclear folate distribution has been calculated by assigning 10% and

35% of total nuclear folate to 5mTHF and 5fTHF, respectively, according to [193]. The

remaining 55% of nuclear folate have been assigned to THF, 10fTHF, CHF, CH2F and DHF

by preserving the same proportions of their steady state distribution in the cytosol. The

remaining 90% of total folate mass is redistributed in the cytoplasm according to its steady

state distribution.

4. Nuclear enzymes. The availability of MTHFS in the nucleus has been estimated to pre-

serve 35% of nuclear folate being 5fTHF at steady state according to [193], resulting in a

concentration of 0.0039 µm (Table 4.1). The enzymes MTHFD1, SHMT, DHFR and TYMS

have been translocated to the nucleus by assuming that all enzymes are in a complex of the

structure 1:TYMS, 1:DHFR, 1:MTHFD1, 2:SHMT. Among the enzymes forming the com-

plex, TYMS was the least abundant and therefore the availability of the complex has been

based on a given percentage of TYMS availability in the cytoplasm. In particular, 75% of

cytosolic TYMS was assumed to be translocated to the nucleus. An equal amount of DHFR

and MTHFD1 has been translocated to the nucleus, whereas twice the amount of SHMT

was imported to maintain stoichiometry (Table 4.1).

Table 4.1: Concentration of nuclear enzymes (in µm) before and after their translocation to the
nuclear compartment. The values provided for the nucleus reflect the enzyme availability in their
free form and after the multienzymatic complex formation.

Enzyme Cytoplasm Nulcues

before their after their free form after complex

translocation translocation formation

MTHFS 0.080 0.080 0.0039 0.0039

DHFR 0.617 0.335 1.202 -

MTHFD1 9.000 8.719 1.202 -

SHMT 4.500 3.937 2.404 -

TYMS 0.375 0.094 1.202 -

Complex - - - 1.202

Reactions catalyzed by the enzymatic complex

The reactions catalyzed by the multi-enzyme complex are modeled considering replicates of the

reactions catalyzed by the single, free enzymes. Since the enzyme complex allows for substrate

channelling [227;243], the regulation of the reactions included in the channelling have been multi-

plied by an “acceleration” or scaling factor to enhance the reaction rates.
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Figure 4.2: Schematic representation of the channelling reaction volume.

To derive the scaling factor, two approaches were considered:

1. Approach based on literature. According to the experimental evidence reported in [20]

and [148], we considered a 20-fold scaling factor for the enzyme channelling, which refer

empirical data reporting on the channelling of folates within the TYMS-DHFR bifunctional

enzyme. Due to the lack of other available experimental data for the other enzymes SHMT

and MTHFD1 forming the complete channelling network, this approach is based on the

assumption that a similar scaling factor would also apply to the remaining enzymes.

2. Approach based on the quantification of the channelling reaction volume. As an

alternative approach to the one described above, we derived the scaling factor based on the

estimation of the reaction volume of the multi-enzyme complex. We interpret the channelling

as a set of reactions working in close proximity in a smaller spherical reaction volume. A

rough estimation of the volume diameter can be given by the length of the reaction chain that

includes all the involved enzymes and substrates (Figure 4.2). The length of the reaction

chain has been derived by summing up the diameters of all molecules, which have been

approximated as spheres (Table 4.2). The diameter of each sphere representing a molecule

has been computed by deriving the volume of the molecule according to the following formula

V olume = MW · PSV,

where MW indicates the corresponding molecular weight (Table 4.2) and PSV indicates the

average protein partial specific volume (0.72 cm3/g in all cases, according to [107]). Once the

total volume of the channelling including all complexes in the nucleus has been estimated,

the final scaling factor has been computed by the ratio of the nuclear volume and the volume

of the multi-enzyme complex. These calculations resulted in a scaling factor of 25 (see Tables

4.2 and 4.3).

Binding of 5fTHF and 5mTHF to SHMT within the enzymatic complex

The model has been developed according to the evidence that SHMT binds 5mTHF and 5fTHF

when in the complex. Therefore, the model considered six different complex forms according to

the binding state of the two SHMT monomers included in the complex (not shown in Figure 4.1,
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Table 4.2: Diameters for the molecules involved in the channelling. The structure of the molecules
has been approximated as sphere and its volume has beend calculated by considering the molecular
weight (MW) and the average protein partial specifiv volume (PSV = 0.72 cm3/g).

Enzyme MW Volume radius diameter

(g/mol) (L) (dm) (dm)

MTHFD1 102000 2.45·10−19 3.88·10−8 7.76·10−8

SHMT 53000 2.54·10−19 3.93·10−8 7.86·10−8

TYMS 36000 8.64·10−23 2.74·10−8 5.48·10−8

DHFR 21000 5.04·10−23 2.29·10−8 4.58·10−7

Substrates & MW Volume radius diameter

Products (g/mol) (L) (dm) (dm)

THF 445.43 5.35·10−25 5.03·10−9 1.01·10−8

10fTHF 473.44 5.68·10−25 5.14·10−9 1.03·10−8

CHF 582.53 6.99·10−25 5.51·10−9 1.10·10−8

CH2F 457.43 5.49·10−25 5.08·10−9 1.02·10−8

DHF 443.42 5.32·10−25 5.03·10−9 1.01·10−8

dUMP 308.18 3.70·10−25 4.45·10−9 8.91·10−9

dTMP 322.21 3.87·10−25 4.52·10−9 9.04·10−9

NADPH 833.35 1.00·10−24 6.20·10−9 1.24·10−8

NADP+ 744.42 8.93·10−25 5.97·10−9 1.19·10−8

Formate 46.02 5.52·10−26 2.36·10−9 4.72·10−9

Serine 105.09 1.26·10−25 3.11·10−9 6.22·10−9

Glycine 75.07 9.01·10−26 2.78·10−9 5.56·10−9

Table 4.3: Calculation of the channelling speed-up factor. The diameter of the channelling sphere
is estimated by the length of the reaction chain including all enzymes and substrates (diameter
of involved enzymes, substrates and products, and diameter total). The standard equation for
the volume of a sphere (V = 4

3r
3π) is used to calculate the volume for one complex. The total

channelling volume results from the multiplication of the number of complexes in the nucleus
(Tabel 4.1).

Diameter of involved enzymes (dm) 3.36·10−7

Diameter of involved substrates and products (dm) 1.35·10−7

Diameter total (dm) 4.70·10−7

Volume of the reaction chain for one complex (L) 5.45·10−20

Number of complexes in the nucleus 1.59·105

Volume of the reaction chain for all complexes in the nucleus (L) 8.68·10−15

Volume nucleus (L) 2.20·10−13

Scaling factor

= Volume nuclues/Volume of the reaction chain for all complexes in the nucleus 25
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Figure 4.3: The six states of the nuclear enzymatic complex with respect to the binding of SHMT
with 5mTHF and 5fTHF. Green cycles identify the enzymes of the complex, while orange rectangle
boxes refer to the model variables 5mTHF and 5fTHF. The arrows between the complexes indicate
the possibility to evolve from one state to the other.

where a generic enzyme complex has been included to simplify the network). According to Figure

4.3 the six complex configurations are: 1) both SHMT monomers are unliganded, 2) one SHMT

is bound to 5mTHF, while the other is unliganded, 3) one SHMT is bound to 5fTHF, while the

other is unliganded, 4) one SHMT monomer is bound to 5mTHF, while the other is bound to

5fTHF, 5) both SHMT monomers are bound to 5mTHF and 6) both SHMT monomers are bound

to 5fTHF.

4.2.2 Description of the computational environment and simulation

procedure

The mathematical model has been defined as a set of ODEs implemented as a MATLAB function.

All model simulations have been computed with the numerical ODE solver ode15s.

All simulations for each scenario of interest were carried out considering the following steps: 1)

the cytoplasmic compartment was simulated until reaching steady state. 2) The translocation

was carried out and initial settings for the cytoplasm and nuclear compartment were updated

according to the rules described above, and 3) the complete model including the cytoplasm and

the nucleus was simulated until reaching steady state.
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4.2.3 In silico experiments

In the following a short technical description of the considered simulation scenarios is provided.

If not indicated differently, we used the 25x scaling factor to produce the in silico experiments.

Required dTMP molecules for cell replication

Based on the assumption that 59% of the human genome consists AT base pairs [17], the number

of dTMP molecules needed for the replication of the human genome can be computed as

0.59 · 3 · 109 = 1.77 · 109.

Model-derived production of dTMP molecules for cell replication

The predicted number of produced dTMP molecules has been derived by model simulation con-

sidering the final steady state of the system. The total number of dTMPs is given by the sum of

the molecules produced in the cytosol and in the nucleus. For each one of the two compartments,

the following formula has been used:

#T = vTYMS · kvol · Sl ·NA · V ol,

where vTYMS indicates the flux of the reaction catalyzed by TYMS in the corresponding com-

partment (cytoplasm or nucleus), kvol = 10−6 m
µm indicates a scaling factor used used to transform

the concentration from µm to m, Sl = 8h is the length of the S-phase, NA = 6.022 · 1023 is the

Avogadro constant and V ol is the volume of the respective compartment (Table D.1).

The role of enzymatic complex formation for sufficient dTMP production

The equation introduced above for estimating the total production of dTMP molecules has been

computed for four different simulation scenarios to test the contribution of nuclear enzymatic

complex formation and the effect of the substrate channelling on acceleration of the pathway.

In particular, the following four scenarios have been considered: 1) restriction to the cytoplasmic

model 2) entire network, without multi-enzyme complex formation (all nuclear enzymes are in free

from), 3) entire network, with multi-enzyme complex formation and 20-fold substrate channelling

acceleration (literature-based approach) and 4) entire network, with complex formation and 25-fold

substrate channelling acceleration (volume-based approach).

The effect of folate partitioning on dTMP production

The impact of folate partitioning between the two compartments was studied by varying the

percentgae of folate being translocated to the nuclear compartment. Starting from the standard

scenario, in which 10% of cytoplasmic folate is translocated to the nucleus, the ratio of nuclear

folate was increased up to 60% (considering the levels of 20%, 30%, 40% and 50%). De novo

dTMP activity was measured for all the scenarios and expressed as number of predicted Ts, as

well as percentage of dTMP synthesis rates required for genome replication. We further assessed

with which folate partitioning the model would predict a sufficient dTMP activity for genome

relication.
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The role of nuclear MTHFS

The influence of the addition of MTHFS in the nuclear compartment was studied by comparing

model steady states and the dTMP production in three different scenarios: 1) standard case with

complex formation and 25-fold substrate channelling acceleration, 2) scenario 1, without MTHFS

in the nucleus and 3) scenario 2 without the nuclear reaction RSHMT : CHF→ 10fTHF.

Sensitivity analysis of model enzymes

To study the impact of model enzymes on the network output variables a sensitivity analysis was

carried out. The perturbation of the enzymes was calculated by a multiplicative scaling factor

with the levels 0.25, 0.5, 1, 2 and 4. For each considered enzyme concentration we simulated the

system to identify the steady state values of the following variables of interest: purine synthesis

(measured as fluxes through PGT and AICARFT), thymidylate synthesis (measured as total

dTMP production, and fluxes through TYMS in the cytoplasm and nucleus), and methionine

synthesis (measured as flux through MTR). The influence of an enzyme on an output variable was

measured by the coefficient of variation (CV):

CV =
sd

mean
· 100%,

where a high value identifies those enzymes with a high influence on the output variable.

The contribution of NADPH and NADP to network dynamics

The contribution of NADPH and NADP to FOCM dynamics was studied by comparing model

steady states of different scenarios corresponding, respectively, to sum variation and ratio variation

of these two molecules. In the model NADPH and NADP are considered to be constant over time

(NADPH: 58µm, NADP: 18µm for both the cytoplasm and nucleus). To assess the role of NADPH

and NADP two in silico experiments were carried out. First, to understand the influence of the

overall availability of NADPH and NADP, four scenarios with respect to the sum of NADPH

and NADP were considered, while their ratio stayed fixed as NADPH:NADP = 70:30. Their

overall availability was varied by means of a scaling factor with the levels of 0.5, 1, 1.5, and 2,

corresponding to concentrations levels of 38µm, 76µm, 114µm, and 152µm, respectively (Table

4.4). Second, the impact of the partitioning of NADPH and NADP was assessed by considering a

step-wise change in the ratio NADPH/NADP, while the overall availability of the two substrates

remained constant (76 µm). This resulted in eleven scenarios indicated in Table 4.5.
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Table 4.4: The scenarios considered to measure the effect of the overall availability of NADPH
and NADP for a fixed ratio of the two variables NADPH/NADP = 70:30. The sum of NADPH
and NADP was varied according to the scaling factors: 0.5x, 1x, 1.5x, and 2x.

Scaling factor NADPH+NADP NADPH NADP

(µm) (% of sum) (µm) (% of sum) (µm)

0.5x 38 70 26.6 30 11.4

1x 76 70 53.2 30 22.8

1.5x 114 70 79.8 30 34.2

2x 152 70 106.4 30 45.6

Table 4.5: The scenarios considered to measure the effect of the partitioning of NADPH and
NADP, while their overall sum stayed fixed at 76µm. NADPH and NADP are presented as
percentage of their sum, as well as the responding concentration used for model simulations in the
cytoplasm and nucleus.

Scenario NADPH NADP

(% of sum) (µm) (% of sum) (µm)

1 0 0.0 100 76.0

2 10 7.6 90 68.4

3 20 15.2 80 60.8

4 30 22.8 70 53.2

5 40 30.4 60 45.6

6 50 38.0 50 38.0

7 60 45.6 40 30.4

8 70 53.2 30 22.8

9 80 60.8 20 15.2

10 90 68.4 10 7.6

11 100 76.0 0 0.0

The contribution of glycine and serine to network dynamics

The contribution of serine and glycine to FOCM dynamics was studied following the same approach

as for NADPH and NADP described in the previous paragraph. For this model steady states of

different scenarios corresponding, respectively, to sum variation and ratio variation of glycine and

serine were compared. In the model serine and glycine are considered to be constant over time

(serine: 468µm, glycine: 1850µm for both the cytoplasm and nucleus). To assess the role of glycine

and serine two in silico experiments were carried out. First, to understand the influence of the

overall availability of glycine and serine, four scenarios with respect to the sum of serine and

glycine were considered, while their ratio stayed fixed as glycine:serine = 80:20. Their overall

availability was varied by means of a scaling factor with the levels 0.001, 0.1, 0.5, 1, 1.5, 2,

5, and 10, corresponding to concentration levels of 23.2µm, 231.8µm, 1159µm, 2318µm, 3477µm,

11590µm, and 23180µm, respectively (Table 4.6). Second, the impact of the partitioning of glycine

and serine was assessed by considering a step-wise change in the ratio glycine/serine, while the

overall availability of the two substrates remained constant (2318 µm). This resulted in eleven

scenarios indicated in Table 4.7.
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Table 4.6: The scenarios considered to measure the effect of the overall availability of glycine
and serine for a fixed ratio of the two variables glycine/serine = 80:20. The sum of glycine and
serine was varied according to the scaling factors: 0.01x, 0.1x, 0.5x, 1x, 1.5x, 2x, 5x, and 10x.

Scaling factor Serine+Glycine Serine Glycine

(µm) (% of sum) (µm) (% of sum) (µm)

0.01x 23.2 20 4.6 80 18.5

0.1x 231.8 20 46.4 80 185.4

0.5x 1159.0 20 231.8 80 927.2

1x 2318.0 20 463.6 80 1854.4

1.5x 3477.0 20 695.4 80 2781.6

2x 4636.0 20 927.2 80 3708.8

5x 11590.0 20 2318.0 80 9272.0

10x 23180.0 20 4636.0 80 18544.0

Table 4.7: The scenarios considered to measure the effect of the partitioning of glycine and serine,
while their overall sum stayed fixed at 2318µm. Glycine and serine are presented as percentage of
their sum, as well as the responding concentration used for model simulations in the cytoplasm
and nucleus.

Scenario Serine Glycine

(% of sum) (µm) (% of sum) (µm)

1 0 0.0 100 2318.0

2 10 231.8 90 2086.2

3 20 463.3 80 1854.4

4 30 695.4 70 1622.6

5 40 927.2 60 1390.8

6 50 1159.0 50 1159.0

7 60 1390.8 40 927.2

8 70 1622.6 30 695.4

9 80 1854.4 20 463.6

10 90 2086.2 10 231.8

11 100 2318.0 0 0.0

4.3 Results

4.3.1 The role of the enzymatic complex formation for sufficient dTMP

production

To test the impact of the inclusion of the nuclear compartment and the contribution of nuclear

enzymatic complex formation along with substrate channelling on de novo dTMP synthesis, model

steady states have been compared across different experiments. In particular, the four following

scenarios have been considered: 1) restriction to the cytoplasmic model 2) entire network, without

multi-enzyme complex formation 3) entire network, with multi-enzyme complex formation and

20-fold substrate channelling acceleration (literature-based approach) and 4) entire network, with

complex formation and 25-fold substrate channelling acceleration (volume-based approach).
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The model considering only the cytoplasm leads to a dTMP production rate which produces

77% of required dTMP synthesis for genome replication (Table 4.8). However, based on the exper-

imental evidence that the de novo dTMP pathway must localize to the nucleus to prevent uracil

accumulation in DNA [158], this scenario can be considered as an artificial, fragmentary one. When

considering the in silico experiments for the complete model including the translocation to the

nucleus but not the multienzyme complex formation, cytoplasmic dTMP rates decrease by more

than 75% as a response of the decreasing enzyme and substrate availability in the compartment

(Table 4.8). Nuclear dTMP synthesis rates cannot compensate for this decline and only 21% of

needed dTMP is manifactured (Table 4.8), indicating the lack of an important aspect.

Indeed, when metabolic channelling and multienzyme complex formation is considered, the

nuclear dTMP synthesis pathway displays an enhanced activity and the number of produced Ts

increases up to 25-fold (Table 4.8, row 3 and 4). While the model with the channelling accelaration

factor of 20-fold predicts a dTMP rate which covers 72% of required Ts, the model with the

scaling factor based on the volume of the sphere (25-fold) captures 85.5% of required synthesis,

thus excelling the results of the model restricted to the cytoplasm.

Our observations indicate that dTMP synthesis functions mostly in the nucleus and when the

respective enzymes SHMT, TYMS, DHFR and MTHFD1 form a multienzyme complex. Account-

ing for the kinetic effects of nuclear multienzyme complex formation on de novo dTMP synthesis

is therefore essential to support genome stability.

The gap between predicted (85%) and required dTMP activity can be explained by two con-

siderations: 1) The nuclear FOCM network is quite sensitive to folate availability and only a slight

increase in nuclear folate levels rises de novo dTMP synthesis levels remarkly (section 4.3.2, Table

4.9). 2) Besides the de novo dTMP synthesis also the salvage pathway – catalyzed by TK1 –

recovers dTMP from thymidine and contributes to the overall needed dTMP activity. However,

this process is not yet included in the model.

Table 4.8: Predicted number of produced T during S-phase (8 hours) for the cytoplasm and
nuclear compartment, as well as the ratio of required activity for human genome replication (1.77
·109) for different scenarios with respect to the compartmentalization, nuclear enzymatic complex
formation and substrate channelling.

Number of produced T in 8h % of required T

cytoplasm nucleus total

only cytoplasm 1.366·109 – – 77.2

cytoplasm and nucleus

without complex formation 0.328·109 0.047·109 0.376·109 21.2

cytoplasm and nucleus

with complex formation

20x scaling factor 0.328·109 0.948·109 1.2768·109 72.1

cytoplasm and nucleus

with complex formation

25x scaling factor 0.328·109 1.1858·109 1.5138·109 85.5
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4.3.2 The effect of folate partitioning on dTMP production

To assess the effect of folate partitioning between the two compartments on de novo dTMP syn-

thesis, we evaluated seven scenarios. In particular, the percentage of folate translocated to the

nuclear compartment was step-wise increased from 10 % (standard scenario) to 60%.

While cytoplasmic dTMP production rates decrease moderately in response to declining folate

availability in the respective compartment, nuclear dTMP synthesis increases notably (Table 4.9);

throughout the considered partitioning range the cytoplasmic proportion for dTMP synthesis

diminishes by 60%, whereas nuclear production rate increases almost 10-fold.

We further assessed which folate partitioning allows to meet dTMP synthesis rates sufficient

for genome replication. Interestingly, already the translocation of 11.6%, which is only 1.6% more

than in the standard scenario, of cellular folate to the nucleus increases the flux through nuclear

TYMS enough to meet adequate levels of dTMP synthesis. These results show that the network

exhibits high sensitivity with respect to nuclear folate levels and further indicate the importance

of the nuclear dTMP pathway as main contributor of thymidylate synthesis.

Table 4.9: Predicted number of produced Ts during S-phase (8 hours) and the ratio of required
dTMP synthesis for human genome replication (1.77·109) in response to the partitioning of folate
between the nuclear and cytosol compartments.

Partitioning of folate Number of Ts produced in 8h % of required T

nucleus/cytoplasm cytoplasm nucleus total cytoplasm nucleus total

(%)

10/90 3.28·108 1.19·109 1.51·109 18.54 66.96 85.50

11.6/88.4 3.24·108 1.45·109 1.78·109 18.33 82.05 100.38

20/80 3.02·108 3.02·109 3.32·109 17.06 170.48 187.54

30/70 2.68·108 5.01·109 5.28·109 15.14 283.29 298.43

40/60 2.27·108 7.01·109 7.24·109 12.83 396.17 409.00

50/50 1.81·108 8.97·109 9.15·109 10.24 506.52 516.76

60/40 1.33·108 1.09·1010 1.10·1010 7.54 613.59 621.13

4.3.3 The role of nuclear MTHFS activity

To study the impact of nuclear MTHFS activity model steady states and the dTMP production

rates for three different scenarios were compared. In particular, we analyzed the following scenar-

ios: 1) standard model with normal MTHFS activity; 2) no nuclear MTHFS availability and 3) no

nuclear MTHFS availability and SHMT : CHF → 5fTHF activity turned off. The role of 5fTHF

is not yet elucidated. It does not serve as a cofactor in folate-dependent biosynthetic reactions,

but rather has been proposed to serve as an intracellular storage form of folate [239], and as an

inhibitor of the folate dependent enzymes SHMT and AICARFT [27;91]. The model demonstrates

that nuclear MTHFS activity is necassary to prevent the accumulation of nuclear folate as 5fTHF.

This result is consistent with the observations made for cytoplasmic MTHFS activity presented

in Chapter 3. When the nuclear compartment was modeled without MTHFS availability, nuclear

folate pools irrevocably as 5fTHF (90% of total nuclear folate, Table 4.10), while the remaining

10% of nuclear folate is 5mTHF (the stoichiometry of the network implies no nuclear MTR nor
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MTHFR activity, therefore initial 5mTHF levels remain unchanged at the predefined availability

of 10% throughout all simulation scenarios (Figure 4.1). As a consequence no folate co-factors are

available for nuclear dTMP synthesis and the overall production rate decrease to 18.5% of required

TYMS activity (Table 4.10). The lethal pooling of nuclear folate as 5fTHF can be prevented, if

in addition to the deletion of nuclear MTHFS activity the SHMT-catalyzed conversion of CHF to

5fTHF is also turned off.

Table 4.10: Predicted number of produced Ts during S-phase (8 hours), the ratio of required
dTMP synthesis, and 5fTHF levels (as percentage of toal nuclear folate) for different scenarios
with respect to nuclear MTHFS and SHMT activity.

Number of produced Ts in 8h % of re- % of nuclear

cytoplasm nucleus total quired T 5fTHF

Standard model 0.328·109 1.185·109 1.513·109 85.5 35.3

No nuclear MTHFS 0.328·109 0 0.328·109 18.5 90.0

No nuclear MTHFS and

SHMT: CHF → 5fTHF

activity turned off 0.328·109 1.190·109 1.518·109 85.8 35.0

4.3.4 Sensitivity analysis of model enzymes

We performed various computational experiments to summarize the effect of model enzymes on

the biosynthetic reactions involved in FOCM. For each enzyme, five simulations were carried out to

perturb the enzme availability according to a multiplicative scaling factor, and the impact of this

variation was measured across the simulations by means of the coefficient of variation as presented

in Section 4.2. A summary of the results, indicating the impact of each enzyme on network output

variables of interest, is presented in Figure 4.4. The model predictions for all executed simulations

are in Appendix D, Table D.4.

The steady state activity of purine synthesis depends highly on the magnitude of the two

enzymes AICARFT and PGT, which is not unexpected, since AICARFT and PGT are the enzymes

catalyzing the reactions of interest. Interestingly, this behaviour cannot be observed for the flux

through MTR: here TYMS and DHFR are the enzymes with the highest impact, while MTR

is the enzyme with the third highest influence. Indeed, TYMS and DHFR exhibit high values

of variation for all model output variables of interest, including the relevant fluxes for purine

synthesis, methionine synthase and thymidylate synthesis (Figure 4.4A). Changing TYMS levels

affects the variables of interest in a linear way with the most pronounced effect in the scenario

in which TYMS is upregulated by a 4-fold scaling factor (Appendix D, Table D.4). On the other

hand, the high values of variation of DHFR is solely a consequence of the most extreme scenario

considering the downregulation of DHFR by a factor of 0.25, while for the remaining DHFR levels,

no variation in the variables of interest can be observed (Appendix D, Table D.4). The two extreme

scenarios, 0.25×DHFR and 4×TYMS respectively, lead to an accumulation of DHF, which in turn

leaves no folate co-factors available for de novo dTMP synthesis, purine synthesis or methionine

synthase (Appendix D, Table D.4). These shifts in the steady state distribution of folate lead to
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A B

Figure 4.4: The impact of model enzymes on network output variables of interest (purine synthe-
sis: flux through PGT and AICARFT, methionine synthesis: flux through MTR and thymidylate
synthesis: total dTMP synthesis by means of predicted number of Ts and fluxes through TYMS
in the cytoplasm and nucleus). A) Coefficient of variation across enzyme levels for each enzyme-
output combination. Colors encode the ranking of these values: red identifies the smallest CV
relating to the enzyme with the least influence on the output variable, whereas green identifies the
highest changes. B) Ranking of the enzyme influence on the output variables. For each variable
of interest the enzymes are listed according to their influence on this variable, starting from the
one with the highest influence. Colors refer to the values in subfigure A.

the high variation levels (Appendix D, Table D.4, compare e.g. the results for MTR with DHFR

and TYMS).

Nuclear dTMP synthesis remains quite stable throughout all considered scenarios (Appendix

D, Table D.4 and Figure 4.4); only changes in TYMS, DHFR or MTHFS activity affect the

nuclear nucleotide synthesis. While the impact of TYMS levels on dTMP production is obvious,

the simulations suggest that 5fTHF accumulation as a result of decreasing MTHFS levels lead in

turn to a modest decrease of dTMP synthesis, because less folate co-factor is available (Section

4.3.3, Table 4.10). DHFR levels influence dTMP synthesis only in the restricting scenario, when

DHFR levels are downregulated by the factor of 0.25 (Appendix D, Table D.4). In this scenario

DHFR becomes the limiting enzyme in the cytoplasm and drives the translocation of the enzymes

forming the nuclear complex. This reduces the availability of enzymatic complexes by 50% and in

turn nuclear dTMP synthesis declines.

The effect of the enzymes of the remethylation pathway (MAT-I, MAT-III, GNMT, DNMT,

BHMT, and SAHH) on network pathways is negligible (Figure 4.4). Indeed, only BHMT and

SAHH slightly influence cytoplasmic dTMP activity due to diminishing HCY levels as response

to downregulated SAHH levels and upregulated BHMT levels. In turn less flux goes through the

MTR reaction allowing to accumulate 5mTHF levels, which on the other hand leaves less folate

available as co-factor for cytoplasmic dTMP synthesis.

Overall the model suggests that there is substantial robustness in the FOCM network towards

smaller enzymatic variation and identifies DHFR and TYMS as the main driving players for

network dynamics.
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4.3.5 The contribution of NADPH and NADP to network dynamics

To study the effect of changes in NADPH and NADP availability on FOCM dynamics, model

steady states of different scenarios corresponding to sum and ratio variation of NADPH and

NADP were considered, as described in Section 4.2.3.

Increasing overall availability of NADPH and NADP, while considering a fixed ratio (NADPH

= 70%, NADP = 30%), leads to a shift in the steady state distribution of cytoplasmic folate with

an accumulation of folate as 5mTHF (Appendix D, Table D.5). This comes at the expense of

the remaining folate co-factors, including 5fTHF and 10fTHF, with the exception of THF, which

decreases only moderately (Figure 4.5a). 10fTHF is the substrate of the purine synthesis reactions

catalyzed by AICARFT and PGT. The simulations indicate that flux through the PGT-catalyzed

reaction declines as response to the lack of substrate, whereas the flux through the second purine-

relevant enzyme AICARFT exhibits the opposing behavior (Figure 4.5b). A possible explanation

for this is the depletion of 5fTHF levels, following the increase of NADPH+NADP (Figure 4.5a).

5fTHF is a known inhibitor of AICARFT [27] and therefore lower concentration levels increase the

flux through the AICARFT-catalyzed reaction (Figure 4.5b). These data suggest that the 5fTHF

futile cycle and its link to purine synthesis could play an important role in controlling purine

synthesis and in compensating for/preventing major damage due to downregulations of 10fTHF.

Even though 5fTHF depletion is reducing the amount of SHMT bound to 5fTHF, fluxes through

SHMT-catalyzed reactions do not increase (Figure 4.5c and d). This is a consequence of increasing

5mTHF levels, which compensate for the loss of SHMT inhibition by 5fTHF by increasing the ratio

of SHMT bound to 5mTHF from 16% to 94% of overall SHMT (Figure 4.5a,c and d, Appendix

D, Table D.5).

The activity of de novo thymidylate synthesis depends on the substrate CH2F of the reaction

catalyzed by TYMS. When NADPH and NADP levels are increasing, cytoplasmic CH2F levels

decrease as response to accumulation of folate as 5mTHF and therefore cytoplasmic dTMP activity

declines by more than 50% throughout the considered scenarios (Figure 4.5b, Table 4.11). However,

nuclear CH2F levels increase alongside NADPH and NADP levels, because nuclear absense of

MTHFR is averting 5mTHF accumulation in this compartment and because the flux through

MTD (CHF → CH2F ) accelerates (Figure 4.5e and f). Consequently, more folate cofactor is

available for nuclear de novo dTMP production (Table 4.11, Figure 4.5e). The model suggests that

the overall activity of dTMP synthesis is quite robust towards increases in NADPH and NADP,

because nuclear productivity inceases to balance the decline in cytoplasmic TYMS activity (Table

4.11, rows 2 to 4). Lower disposability of NADPH and NADP affects total dTMP synthesis and

simulations suggest that the ratio of required Ts reduces from around 80% to 70% (Table 4.11,

rows 1 and 2).

Furthermore, we carried out a second set of in silico experiments, in which overall availabil-

ity of NADPH and NADP has been considered constant and the ratio of NADPH and NADP

has been varied according to Table 4.5. The model shows that NADPH is required to prevent

impairment of dTMP synthesis: while nuclear dTMP activity enhances with increasing NADPH

availability, cytoplasmic dTMP activity doesn’t show a linear trend and reaches it’s maximum

with a NADPH:NADP ratio of 60:40 (Table 4.12). Moreover, for all considered scenarios nuclear

dTMP synthesis remains the main contributor to overall dTMP activity. The depletion of NADPH
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Figure 4.5: Effect of NADPH and NADP availability on model variables and fluxes. The provided
values are computed by considering model steady states achieved by varying the total availability
of NADPH+NADP from 38µm to 152 µm, according to Table 4.4. The results are expressed in
terms of percentage of the maximal acitivity/availability over the considered range. Panel a) to
d) display the results for cytoplasmic variables and fluxes, while panel e) and f) display those for
the nuclear compartment. Reactions are indicated by the catalyzing enzyme, and for bidirectional
reactions the direction is indicated behind the enzyme name: Enzyme (Substrate).

levels leads to an interconvertible pooling of folate as DHF and consequently stops dTMP syn-

thesis (Table 4.12, Scenario 1). On the other hand, depletion of NADP increases nuclear dTMP

synthesis notably (Table 4.12, Scenarios 1 and 11). This is a consequence of the accumulation of

CH2F due to the loss of RMTD : CH2F→ CHF activity.

4.3.6 The contribution of gylcine and serine to network dynamics

To study the effect of changes in serine and glycine availability on FOCM dynamics, model steady

states of different scenarios corresponding to sum and ratio variation were compared, as described

in Section 4.2.
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Table 4.11: Steady state activity of dTMP synthesis in response to the variation in cytoplasmic
and nuclear overall availability of NADPH and NADP. The sum of NADPH and NADP was step-
wise increased considering a scaling factor with the levels 0.5x, 1x, 2x and 4x, while the ratio
NADPH:NADP stayed constant at 70:30. dTMP activity was measured in terms of steady state
flux through the model reactions catalyzed by TYMS, the predicted number of produced Ts during
S-phase (8h) and the ratio of required dTMP synthesis for human genome replication (1.77·109)

NADPH+ vTYMS (µm/h) Number of produced Ts % of required Ts

NADP

cyto- nucleus cyto- nucleus total cyto- nucleus total

plasm plasm plasm

0.5x 83.3 815.1 3.77·108 8.64·108 1.24·109 21.31 48.81 70.12

1x 76.8 1030.7 3.48·108 1.09·109 1.44·109 19.65 61.72 81.37

1.5x 51.4 1144.6 2.33·108 1.21·109 1.45·109 13.15 68.54 81.69

2x 39.1 1216.0 1.77·108 1.29·109 1.47·109 10.00 72.81 82.82

Table 4.12: Steady state activity of dTMP synthesis in response to the variation in partitioning of
NADPH and NADP. The partitioning of NADPH and NADP was modeled by step-wise increasing
the percentage of NADPH from 0% to 100% (Scenario 1 to 11, Table 4.5), while overall availability
of NADPH and NADP stayed fixed at 76µm. dTMP activity was measured in terms of steady
state flux through the model reactions catalyzed by TYMS, the predicted number of produced
Ts during S-phase (8h) and the ratio of required dTMP synthesis for human genome replication
(1.77·109)

Scenario vTYMS (µm/h) Number of produced Ts % of required Ts

cyto- nucleus cyto- nucleus total cyto- nucleus total

plasm plasm plasm

1 0.0 0.0 0.00 0.00 0.00 0.00 0.00 0.00

2 41.8 242.7 1.89·108 2.57·108 4.47·108 10.69 14.53 25.23

3 60.1 427.5 2.72·108 4.53·108 7.25·108 15.38 25.60 40.98

4 70.2 575.5 3.18·108 6.10·108 9.28·108 17.96 34.46 52.42

5 76.2 699.8 3.45·108 7.42·108 1.09·109 19.50 41.90 61.40

6 79.5 810.4 3.60·108 8.59·108 1.22·109 20.34 48.53 68.87

7 80.2 916.4 3.63·108 9.71·108 1.33·109 20.52 54.87 75.39

8 76.8 1030.7 3.48·108 1.09·109 1.44·109 19.65 61.72 81.37

9 69.6 1181.2 3.15·108 1.25·109 1.57·109 17.81 70.73 88.54

10 62.1 1472.7 2.81·108 1.56·109 1.84·109 15.89 88.18 104.07

11 57.5 3445.2 2.60·108 3.65·109 3.91·109 14.71 206.30 221.01

71



4.3. Results

Changing the overall availability of serine and glycine doesn’t show significant effects on both

cytoplasmic folate-dependent biosynthetic pathways (Figure 4.6a, AICARFT, PGT, and TYMS).

Cytoplasmic dTMP activity remains mostly unaffected throughout the considered scenarios, be-

cause of quite constant steady state levels of CH2F (Figure 4.6b, Table 4.6). The main effect

of changing serine+glycine can be observed in the model dynamics of SHMT-catalyzed reactions

(Figure 4.6c and d). Not unexpectedly, flux through the glycine/serine-dependent bidirectional re-

action RSHMT : THF↔ CH2F increases with increasing availability of glycine and serine (Figure

4.6c).

For nuclear FOCM the model suggests a more pronounced trend as a consequence to changes in

glycine and serine levels. Interestingly, a reduction (and not an augmentation) of overall availability

of serine and glycine by 50% leads to a dTMP activity sufficient for the requirements of genome

replication (Table 4.13). Indeed, increasing serine and glycine availability leads to an increase of

nuclear THF concentration, while CH2F decreases notably (Figure 4.6e and f). In turn, this affects

nuclear dTMP activity and the flux through TYMS decreases by 40% of initial activity (Figure

4.6f, Table 4.6). Consequently, the percentage of produced Ts required for genome replication

decreases from 123% to 57% (Table 4.13).

Furthermore, we carried out a second set of in silico experiments, in which overall availability

of serine and glycine has been considered constant and the ratio of serine and glyince has been

varied according to Table 4.7. Simulations suggest that also varying the ratio of Glycine and

Serine does not have a big effect on model outcomes related to cytoplasmic nucleotide synthesis

(Table 4.14). Nuclear dTMP activity benefits from increasing serine availability and we observe

a 2-fold increase of the flux through TYMS (Table 4.14). Consequently, overall dTMP activity

increases and already at scenario 6 (glycine:serine = 50:50) we can observe dTMP rates sufficient

for genome replication requirements.

Overall, the model suggests that nuclear FOCM is responsive to changes in serine and glycine

availability, whereas cytoplasmic FOCM remains mostly unaffected. A possible explanation for

this could be the substrate channelling, which occurs only in the nuclear compartment, and which

leads to increased fluxes which in turn exhibit a higher sensitivity to changes of serine and glycine.
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Figure 4.6: Effect of glycine and serine availability on model variables and fluxes. The provided
values are computed by considering model steady states achieved by varying the total availability
of glycine+serine from 23µm to 23180 µm, according to Table 4.6. They are expressed in terms of
percentage of the maximal acitivity/availability over the considered range. Panel a) to d) display
the results for cytoplasmic variables and fluxes, while panel e) and f) display those for the nuclear
compartment. Reactions are indicated by the catalyzing enzyme, and for bidirectional reactions
the direction is indicated behind the enzyme name: Enzyme (Substrate).
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Table 4.13: Steady state activity of dTMP synthesis in response to the variation in cytoplasmic
and nuclear overall availability of glycine and serine. The sum of glycine and serine was step-wise
increased considering a scaling factor with the levels 0.01x, 0.1x, 0.5x, 1x, 1.5x, 2x and 5x, and
10x while the ratio glycine:serine stayed constant at 80:20. dTMP activity was measured in terms
of steady state flux through the model reactions catalyzed by TYMS, the predicted number of
produced Ts during S-phase (8h) and the ratio of required dTMP synthesis for human genome
replication (1.77·109)

glycine+ vTYMS (µm/h) Number of produced Ts % of required Ts

serine

cyto- nucleus cyto- nucleus total cyto- nucleus total

plasm plasm plasm

0.01x 73.0 1747.2 3.31·108 1.85·109 2.18·109 18.68 104.62 123.30

0.1x 73.2 1637.3 3.31·108 1.74·109 2.07·109 18.73 98.04 116.77

0.5x 72.8 1320.9 3.30·108 1.40·109 1.73·109 18.63 79.10 97.72

1x 72.5 1116.6 3.28·108 1.18·109 1.51·109 18.55 66.86 85.41

1.5x 72.2 999.4 3.27·108 1.06·109 1.39·109 18.47 59.84 78.32

2x 72.0 923.4 3.26·108 9.79·108 1.30·109 18.42 55.29 73.71

5x 71.4 738.0 3.23·108 7.82·108 1.11·109 18.27 44.19 62.46

10x 71.1 652.9 3.22·108 6.92·108 1.01·109 18.19 39.10 57.29

Table 4.14: Steady state activity of dTMP synthesis in response to the variation in partitioning
of glycine and serine. The partitioning of glycine and serine was modeled by step-wise increasing
the percentage of serine from 0% to 100% (Scenario 1 to 11, Table 4.7, while overall availability
of glycine and serine stayed fixed at 2318µm. dTMP activity was measured in terms of steady
state flux through the model reactions catalyzed by TYMS, the predicted number of produced
Ts during S-phase (8h) and the ratio of required dTMP synthesis for human genome replication
(1.77·109)

Scenario vTYMS (µm/h) Number of produced Ts % of required Ts

cyto- nucleus cyto- nucleus total cyto- nucleus total

plasm plasm plasm

1 72.1 921.6 3.27·108 9.77·108 1.30·109 18.45 55.19 73.63

2 72.3 1025.3 3.27·108 1.09·109 1.41·109 18.50 61.39 79.89

3 72.5 1116.6 3.28·108 1.18·109 1.51·109 18.55 66.86 85.41

4 72.6 1200.8 3.29·108 1.27·109 1.60·109 18.57 71.90 90.48

5 72.7 1281.5 3.29·108 1.36·109 1.69·109 18.60 76.74 95.34

6 72.8 1361.2 3.30·108 1.44·109 1.77·109 18.63 81.51 100.13

7 73.0 1442.0 3.31·108 1.53·109 1.86·109 18.68 86.35 105.02

8 73.1 1525.7 3.31·108 1.62·109 1.95·109 18.70 91.36 110.06

9 73.2 1613.9 3.31·108 1.71·109 2.04·109 18.73 96.64 115.37

10 73.4 1708.4 3.32·108 1.81·109 2.14·109 18.78 102.30 121.08

11 73.0 1811.0 3.31·108 1.92·109 2.25·109 18.68 108.44 127.12
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4.4 Discussion

In the preceding chapters we focused on cytoplasmic FOCM and simulations of our mathematical

model contributed to the understanding of FOCM dynamics and its responsiveness to both ge-

netic and environmental perturbations in this compartment. Recent experimental studies indicate

that folate-dependent dTMP biosynthesis must also occur in the nucleus to limit genome instabil-

ity [13;158]. An observation we could affirm with the initial model introduced in Chapter 1, where

simulation results indicate that de novo dTMP synthesis rates in the cytoplasm are insufficient

to support DNA synthesis during S-phase. Therefore, we extended our cytoplasmic FOCM model

by building a multi-compartmental model that includes nuclear folate metabolism. A key aspect

of the proposed model is that the enzymes constituting the de novo dTMP synthesis (SHMT,

TYMS, DHFR, and MTHFD1) form a multi-enzyme complex in the nucleus [13]. These enzymes

undergo SUMOylation during the G1/S phase, which leads to their nuclear import [13;84;282]. In

the model, the translocation of matter to the nuclear compartment is encoded in functions and

based on assumptions drawn from experimental data. A valuable extension would be to model

the SUMOylation process and the following translocation expliclitly. However, for this purpose,

more biological knowledge about this process has to be established.

The complex formation is proposed to accelerate the enzymatic reactions through folate sub-

strate channelling (transfer of co-factors from the active site of an enzyme to another in the

absence of diffusion), a process which, to the best of our knowledge, has not yet been modeled in

FOCM literature. Experimental evidence indicates that de novo dTMP synthesis is effective only

when the enzymes are present in the multi-enzyme complex within the nucleus and is therefore

important to prevent uracil misincorporation into DNA and genome instability [158].

Mathematical models provide a feasible framework to study this aspect and in silico sim-

ulations enable rapid testing of assumptions related to this and other critical factors. Indeed,

by including nuclear FOCM in the model we investigated factors that modify dTMP synthesis,

including the effect of multienzyme complex formation, substrate channelling, nuclear MTHFS

availability, enzyme expression levels, folate partitioning between the cytosol and nucleus, as well

as availability of glycine, serine, NADPH and NADP.

We observed that modeling dTMP synthesis in the nucleus must include the occurrence of mul-

tienzyme complex formation and substrate channelling of folate substrates among the enzymes:

only when these two aspects were taken into account, adequate levels of dTMP synthesis activity

were reached. Model simulations of the standard scenario predicted that de novo dTMP synthe-

sis may produce up to 85% of needed T. This portion can be increased when enhanced nuclear

folate levels are considered, emphasizing the influence of folate partitioning between the two com-

partments on overall functionality of dTMP synthesis. Notably, already a very small increase

of nuclear folate availability (from 10% to 11.6% of total folate) is sufficient to meet adequate

levels of dTMP synthesis. The observed “gap” between de novo dTMP synthesis rates and T

needs for replication can be explained by yet another aspect. There exist two distinct pathways

for thymidine nucleotide synthesis and besides the de novo dTMP synthesis also a salvage path-

way recovers thymidine nucleotides. The salvage pathway, which could be included in a possible

extension of the proposed model, involves the conversion of thymidine to dTMP, and occurs in

the cytoplasm/nucleus catalyzed by TK1 and in the mitochondria by TK2 [201]. Salvage pathway
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synthesis of dTTP is not sufficient to sustain nuclear or mitochondrial DNA replication [293] and

therefore requires folate-dependent de novo dTMP synthesis to maintain genomic integrity during

cell division [85]. Presumably, most dTTP required for DNA replication is synthesized from dUMP

by the de novo dTMP biosynthesis pathway [293], matching our predicted contribution of de novo

dTMP synthesis around 85%.

An open question, which still needs definitive experiments, is related to the identification of

the relative contribution of nuclear and cytosolic dTMP synthesis to overall dTMP synthesis. Our

model clearly highlights the role of nuclear dTMP synthesis and predicts that during S-phase

around 79% of overall Ts are synthesized in the nucleus. A possible explanation for this high con-

tribution is given by the fact that the complex formation and substrate channelling are occurring

solely in the nucleus. Without these two features, cytoplasmic de novo dTMP synthesis remains

the main contributor to overall dTMP synthesis activity. Moreover, nuclear translocation uncou-

ples de novo dTMP synthesis from de novo purine biosynthesis and homocysteine remethylation

in the cytoplasm, thereby erasing competition for folate cofactors [142].

In Chapter 1, model simulations predicted that cytoplasmic de novo dTMP synthesis produces

only 60% of required Ts and is therfore not sufficient for genome replication. In the extended

model, we could observe that the inclusion of the nuclear compartment reduces the cytoplasmic

contribution to overall dTMP synthesis even further by predicting that around 20% of required

Ts are produced in this compartment. This highlights the importance of nuclear dTMP synthesis

to prevent uracil misincorporation during DNA replication or repair.

The simulation results provide a computational indication that the translocation to the nuclear

compartment is essential to prevent uracil incorporation in DNA by protecting biosynthesis from

variability in the network, introduced e.g. by lack/increase of NADPH, NADP levels.

In summary, inclusion of the nuclear compartment in the mathematical model has provided

new insights into the functioning of the FOCM network. The model confirms that accounting for

the kinetic effects of nuclear multienzyme complex formation and substrate channelling is essential

for the functioning of de novo dTMP synthesis. In silico simulations also indicate that the nuclear

compartment plays an important role for regular cell replication and DNA repair.
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Chapter 5

Metabolic syndrome: identification of

deregulated pathways and drug effects by

network analysis.

Metabolic syndrome is a pathological condition characterized by obesity, hyperglycemia, hy-

pertension, elevated levels of triglycerides and low levels of high-density lipoprotein cholesterol

that increase the risk of cardiovascular diseases and type 2 diabetes. Even though numer-

ous predisposing genetic risk factors have been identified for each component, the biological

mechanisms underlying this complex phenotype are not fully elucidated. In this chapter we

introduce a systems biology approach based on network analysis, integrating drug-related

and metabolic-syndrome genes. Tissue-specific regulatory networks were constructed to in-

vestigate the biological processes deregulated in the disorder and subsequently identify new

candidate treatments in a drug-repurposing manner. To this end, a proximity score describing

the interaction between drugs and pathways was defined by combining topological and func-

tional similarities. Our results highlight a prominent role of the immune system in metabolic

syndrome and suggest a potential use of the BTK inhibitor ibrutinib as novel pharmacological

treatment.

5.1 Introduction

Metabolic Syndrome (MetSyn) is a highly prevalent pathological condition defined by a com-

plex clustering of comorbidities that increases the risk of cardiovascular diseases and type 2 dia-

betes mellitus. The risk factors commonly associated with MetSyn are abdominal obesity, hyper-

glycemia, hypertension, elevated levels of triglycerides and low levels of high-density lipoprotein

(HDL) cholesterol. According to the criteria proposed by the main organizations involved in the

study of MetSyn, this clinical condition can be diagnosed when three of these five metabolic abnor-

malities are present simultaneously [3]. Additional components such as chronic pro-inflammatory

and pro-thrombotic states have been repeatedly implicated in MetSyn [5], highlighting the presence

of numerous contributing risk factors.

While lifestyle changes are highly effective in an early phase of this metabolic disorder, pharma-

cological treatments are frequently required to control it in more advanced stages [102]. Currently,
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the pharmacological interventions are mostly directed towards the single MetSyn components

separately, raising the problem of polypharmacy [102]. Moreover, although an altered function of

adipocytes is recognized as a pivotal driver of the observed metabolic dysregulation [18], most of

the drugs approved for obesity act on the central nervous system while the pathways active in the

unhealthy adipose tissue are less explored [121;137;235].

The increasing prevalence of MetSyn worldwide and the limited understanding of the patho-

physiological mechanisms of MetSyn give rise to the need to study the underlying biological path-

ways and to develop more efficacious treatment strategies

An effective strategy to reduce time and cost of drug development is drug repurposing (or repo-

sitioning), which identifies new therapeutic applications of already approved drugs. For example,

galantamine, an approved drug for Alzheimer’s disease, was recently suggested as a candidate for

MetSyn therapy [50]. The growing availability of high-resolution data allows researchers to establish

new computational approaches to systematically investigate drug repurposing candidates [146;206].

For example, signature-based methods based on the Connectivity Map (CMap) [139;140] and LINCS

data [249] allow to identify promising candidates by comparing the transcriptomic profiles of drugs

and diseases [45;114;176;231;232;290]. Usually, algorithms based on this approach don’t consider the

interactions among the molecular components composing the expression profiles.

Network-based analysis is a method of choice to study in silico the complexity of biological sys-

tems and to evaluate the interactions among the different players involved, while serving as a pow-

erful tool to link pharmacological and disease data [59]. Recent systems biology approaches based on

network analysis successfully investigated new indications for existing drugs [44;104;153], predicted

new potential anticancer treatments [46;267] and identified new promising targets [71;117;145].

In this chapter we present a systems biology approach based on network integration of ge-

nomic data, text mining results, drug expression profiles and drug target information to identify

the underlying molecular mechanisms of MetSyn and to explore possible novel therapeutic strate-

gies. This method identifies potential new therapeutic applications of already approved drugs

using a proximity score, which integrates a network-based distance and a functional similarity

measurement.

5.2 Results

5.2.1 Computational framework overview

To obtain a systems pharmacology view of MetSyn, we devised a network-based approach that

identifies functional disease modules and connects them with drug targets and drug-perturbed

genes. The analytical workflow consists of three interconnected parts as shown in Figure 5.1.

The list of trait-associated genes was established starting from the results of published genome-

wide association studies (GWAS) and from additional literature related to metabolic syndrome

(Figure 5.1, step 1). Interconnections among disease genes were derived from existing biological

networks. In particular, tissue-specific integrated networks for adipose tissue, liver and skeletal

muscle were constructed by merging the HIPPIE protein-protein interaction (PPI) network [2] and

the recently published Regulatory Circuits transcriptional regulatory network [160] (Figure 5.1, step

2). Mapping the gene set to the networks allowed us to identify tissue-specific trait-related modules
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Figure 5.1: Schematic illustration of the computational framework. Step 1) MetSyn-related
genes are identified by combining GWAS results and literature findings followed by a filtering
step based on gene-set enrichment analysis. Step 2) Tissue-specific networks are constructed by
integrating transcriptional regulatory networks from [160] and PPI networks from HIPPIE db [2].
Step 3) Drug information is retrieved from DrugBank [281] and LINCS database [249]. Step 4a) and
b) Tissue-specific MetSyn and drug modules are established using network analysis. Step 5) To
measure drug effects, a proximity score between drug and MetSyn modules is computed on the
basis of network distance and semantic similarity.

(hereafter called MetSyn modules), for which pathway enrichment analysis provided insight into

the associated biological processes (Figure 5.1, step 4a). The impact of existing drugs on MetSyn

was studied by mapping drug targets and drug modulated genes on the networks in order to build

drug modules (Figure 5.1, step 3 and 4b). Both drugs approved for MetSyn-related conditions

and for other diseases were included in the study. This allowed us to gain insight into existing

treatments and, at the same time, identify candidates for drug repositioning. To investigate

the relationship between drug modules and MetSyn modules, we defined a proximity score that

combines network-based distance with semantic similarity (Figure 5.1, step 5). A drug obtains a

high score if its module is close to the MetSyn module and if the genes in the drug module and

the genes in the MetSyn module have a similar biological function. A comparison of our approach

with previously published network-based methods for drug repurposing can be found in Appendix

E, Section E.1.

5.2.2 Identification of genes associated with MetSyn

A widely used approach to identify genetic variants associated with common traits and diseases

is the use of GWAS that over the past ten years have been applied to hundreds of phenotypes.

The increasing availability of GWAS summary data permits the development of methodologies

aiming at understanding the biology of phenotypes of interest starting from association results [266].
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Thus, we devised a multi-step procedure to identify genes associated with MetSyn starting from

the results of GWAS of relevant traits. Since the genetic variants identified by GWAS do not

directly yield specific gene targets or molecular mechanisms, our workflow includes a pathway

enrichment step to identify the altered biological functions. Moreover, given the incompleteness

of the currently available GWAS data in explaining the heritability of traits, an external source

of information (i.e. literature-derived knowledge) was included in the study. Working along this

line, to generate a list of MetSyn-related genes, we combined 3 different data sources. First, we

queried the GWAS catalog for studies related to metabolic syndrome and retrieved those SNPs

reaching genome-wide significance (p-value < 5 · 10−8).

Despite being located mainly in introns (Appendix E, Figure E.3a), the identified susceptibility

variants showed a regulatory potential since they are enriched in SNPs located in genomic regions

of epigenetic chromatin marks when compared with non-selected genome-wide common SNPs

(Appendix E, Figure E.3b–d). To assign the association signal to a gene, we retrieved the genes

located in the genomic region of the tagging SNP.

Second, we included the genes derived from summary statistics of 15 GWAS focused on MetSyn-

related traits (Appendix E, Table E.6). Finally, the GWAS-derived genes were combined with a

set of genes derived from a text mining analysis performed on PubMed abstracts searching MetSyn

related terms co-occurring with gene names, as described in Section 5.4.

Given the heterogeneity of the data sources (GWAS catalog: top-scoring trait-associated

SNPs and related genes, GWAS summary statistics: gene-level scores and text mining: genes

co-occurring with MetSyn-terms) we devised a custom approach to combine and filter them. We

performed a gene-set enrichment analysis of the GWAS genes selecting gene ontology biologi-

cal processes and pathway databases available in EnrichR [136] to obtain pathway-level biological

knowledge and we selected the genes belonging to at least one significant pathway (Appendix E,

Table E.10). In total, we were able to identify 630 genes associated with MetSyn (Figure 5.2a,

Appendix E, Table E.11, Figure E.4).

Interestingly, we identified pathway categories such as sugar metabolism, lipid metabolism

and fat storage as significantly enriched (Figure 5.2b). This annotation supports the relevance

of the selected genes, as they match the pathophysiological components of MetSyn, including

hyperglycemia and dyslipidemia.

5.2.3 Tissue-specific disease modules

According to the pathological phenotypes associated with MetSyn, adipose, liver and skeletal

muscle were selected as trait-relevant tissues and the corresponding tissue-specific background

networks were generated by combining regulatory networks and PPI networks as described in

Section 5.4 and displayed in Figure 5.3a. The tissue-specific regulatory networks were directly ob-

tained from regulatory circuits [160], a resource that provides transcription factor–gene interactions

inferred from the FANTOM5 data [151]. On the other hand, the tissue-specific PPI networks were

created from HIPPIE interactions [2;224] by restricting to proteins expressed in the relevant tissue

based on GTEx data [34;252].

The resulting network for adipose tissue contains 886 nodes and 9152 edges, the network for

liver tissue 1544 nodes and 15846 edges, and the network for skeletal muscle tissue 1106 nodes and
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Figure 5.2: Identification of MetSyn-related genes. a) Venn diagram showing the overlap among
MetSyn genes identified using GWAS catalog, GWAS summary statistics and text mining. b)
Pathway enrichment map showing shared gene content among the pathways enriched in MetSyn
genes. Each node corresponds to a pathway and edges between pathways indicate the presence
of shared genes. Colors identify the membership to communities, detected using random walk
clustering algorithm.

10555 edges. In total, these networks included 220 MetSyn genes, of which 81 were shared among

the three networks (Figure 5.3b). The liver tissue has the highest number of MetSyn genes not

present in the other networks (Figure 5.3b).

To identify trait relevant network subparts, we tested network modules for their overrepre-

sentation in MetSyn genes. For both the liver and muscle network, three significant trait-related

modules could be identified, whereas we found two significant modules for the adipose tissue. Reac-

tome [74] pathway enrichment analysis of these network modules further allowed linking biological

functions to the tissue-specific MetSyn modules.

For example, in the adipose tissue network, the most significantly enriched pathways of module

1 are related to cellular responses to external stimuli and immune function (Cellular responses to

heat stress: adjusted p-value 9.65 · 10−7; immune system: adjusted p-value 9.65 · 10−7). Instead,

pathways related to metabolism regulation resulted enriched in module 2 (PPARA activates gene

expression: adjusted p-value 1.25·10−11; regulation of lipid metabolism by Peroxisome proliferator-

activated receptor alpha (PPARalpha): adjusted p-value 1.82 · 10−11). The list of all significant

pathways for the 3 tissue-specific networks can be found in Appendix E, Table E.12.

An overview of the module-related biological functions in all networks was obtained using

the Top Level Pathways from the Reactome database [74] (Figure 5.4). Overall, the resulting

pathways show an overlap across tissues, highlighting the overrepresentation of genes involved in

signal transduction and gene expression. Moreover, our results suggest that the immune system

plays a considerable role for MetSyn; across all three networks a module with a high number of

immune-related genes and pathways was detected (Figure 5.4 and Appendix E, Table E.12), in

agreement with previous reports [10;195]. The contribution of the different data sources (GWAS vs.

text mining, PPI vs. regulatory networks) to the identification of MetSyn modules is described in

Appendix E, Section E.2.
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Figure 5.3: Network construction and disease module identification. a) Tissue-specific networks
were constructed by integrating transcriptional regulatory networks consisting of interactions be-
tween transcription factors and genes (blue nodes) and PPI networks including interactions among
proteins (turquoise nodes). For each tissue, the integrated network was built starting from the
high-evidence associations from the regulatory network and extended with high-score interactions
from the PPI network. b) Venn diagram of shared MetSyn genes among the three tissue-specific
networks.

5.2.4 Drug Repurposing

To identify drugs potentially affecting MetSyn pathways, we selected approved drugs from Drug-

Bank [280] which have a target in at least one of the three networks (Appendix E, Figure E.5). The

interplay of MetSyn modules and 183 drugs was evaluated by computing the proximity score as

shown in Figure 5.5 and described in Section 5.4. The score is based on topological properties of

the network and functional similarity of the proteins. The contribution of these two components

is described in Appendix E, Section E.2. Drugs with a significant score point toward a possible

disease indication or drug side effect. For the adipose network, this analysis resulted in a list of

28 significant drugs, for the liver network 31 significant drugs were identified, while for the muscle

network the analysis resulted in 50 significant drugs (Appendix E, Tables E.13, E.14, E.15).

To test the effectiveness of our approach, we checked if drugs with known indication for adi-

posity, which has a key role in leading the metabolic disturbances associated with MetSyn, were

identified by our scoring system [18]. Bezafibrate, clofibrate, fenofibrate, gemfibrozil, mifepristone,

pioglitazone were used for the evaluation process and 3 of them (pioglitazone, mifepristone and

fenofibrate) were significance considering a threshold of 95 %. After lowering the significance

threshold to 85%, all six drugs were significant (Appendix E, Section E.3.

After having obtained the preliminary list of significant predictions, we performed a filtering

and prioritization analysis to identify the most promising repurposing candidates (Appendix E,

Figure E.6. First, to exclude drugs with undesirable side effects, we evaluated information about

contraindications from the DrugCentral platform [262] (Appendix E, Table E.16). For the adipose

results we excluded 7 drugs, while for liver and muscle 12 and 24 drugs were excluded, restricting

the list of repurposing candidates to 21, 19, and 26 drugs, respectively (Appendix E, Tables E.13,
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E.14, E.15, column “SE”). Second, we filtered those drugs by focusing on their targets that were

investigated using data from the OpenTargets platform [133]. For the adipose results, among the

targets of the 21 drugs without known MetSyn-related side effects, 10 (AR, EGFR, HDAC6,

IKBKB, NR3C1, PGR, PPARA, PPARG, RXRG, and VDR) have already been investigated for

therapeutic interventions related to MetSyn and therefore we excluded them from further analyses

(Figure 5.6). For liver and muscle, 6 (NR3C1, NR3C2, PPARA, PPARD, PPARG, RXRG)

and 8 targets (ADRB2, AR, EGFR, ESR1, IKBKB, NR3C1, PPARA, RXRG) were removed,

respectively (Appendix E, Figures E.7 and E.8, Tables E.13, E.14, E.15, column “OT”).

After this filtering procedure, we identified the following drugs as having a potential novel ther-

apeutic application for MetSyn: adapalene, afatinib, alitretinoin, belinostat, bosutinib, crizotinib,

dequalinium, doconexent, erlotinib, ibrutinib, lapatinib, nintedanib, panobinostat, rucaparib, rux-

olitinib, tamibarotene, tofacitinib (Table 5.1).

A final prioritization step was then carried out to evaluate if the tissue expression of the

targets was concordant with the disease manifestations. Among the 18 targets of the drugs, only

bruton tyrosine kinase (BTK), the target of Ibrutinib, and nuclear receptor subfamily 1 group I

member 2 (NR1I2), the target of erlotinib, showed a tissue-specific expression relevant for MetSyn.

According to the Human Protein Atlas [260], GTEx [252] and FANTOM5 [151] databases, BTK gene

expression is consistently enhanced in immune-related tissues, and NR1I2 expression is enriched in

liver, while the other targets did not show any relevant tissue-specificity (Appendix E, Tables E.7,

E.8, and E.9). NR1I2 is a nuclear receptor that regulates hepatic detoxification, and is involved

in glucose and lipid metabolism. Recent studies indicate that an activation of the protein could

contribute to the development of MetSyn and diabetes [106]. Since erlotinib is an agonist of NR1I2,

we concluded that the significance of the proximity score in the liver network could be explained

by this finding.

On the other hand, the BTK inhibitor ibrutinib is currently FDA-approved for the treatment

of B cell cancers and the chronic graft-versus-host disease while ongoing clinical trials evaluate the

use of BTK inhibitors in autoimmune diseases [52].

Given the important role of inflammation in the alteration of adipose tissue biology in obese

patients, we investigated the relationship between BTK and the immune system in obesity using

public datasets. According to ImmGen mouse RNAseq data [109], the immune cell populations

expressing high levels of Bruton tyrosine kinase transcripts are B cells and myeloid lineage cells

such as neutrophils and macrophages (Appendix E, Figure E.9). Interestingly, gene expression

analysis of macrophages derived from adipose tissue of obese type II diabetic subjects [33] showed

higher BTK expression as compared to macrophages of obese non diabetic subjects (t-test p-value

0.026) (Figure 5.7a). Expression data from a mouse model deficient in GRP120 [223], a receptor for

long-chain free fatty acids involved in nutrient sensing and body weight regulation, showed higher

Btk expression in white adipose tissues when fed with a high fat diet (HFD) compared with

normal diet (Figure 5.7b). Accordingly, the estimated composition of the infiltrating immune cells

in adipose tissue of HFD-fed GPR120-mutated mouse, computed with CIBERSORT [181], revealed

a clear increase in macrophages (Figure 5.7d).

Since the macrophage-related inflammation in obese diabetic mice has been associated with

inflammasome-dependent IL-1ß production, we also evaluated the levels of Btk mRNA in inflamm-

asome-compromised mouse models [253]. In white adipose tissue from HFD-fed Caspase-1 null
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Figure 5.5: Illustration of the score calculation to evaluate the drug-disease interplay. The
score combines network distances and functional similarity between proteins in the drug module
(green nodes) and proteins in the disease module (orange nodes). The network score assesses the
shortest path lengths connecting each protein of the drug module to the nearest protein in the
disease module (dark gray edges) while the semantic similarity measure evaluates the functional
similarity between the modules. To test the score significance, the distance between drug and
disease modules is compared to a reference distribution of scores computed with drug modules
randomly chosen from the network.

mouse, Bruton tyrosine kinase expression was lower as compared to wild type mice fed with the

same diet (Figure 5.7c).

In addition, mice lacking the inflammasome adaptor protein ASC did not show a reduction in

Btk expression. This is in agreement with the observations made by Stienstra et al., where the

presence of macrophage infiltration in adipose tissue of ASC null mice was observed by immuno-

histochemistry [237]. In human samples, we observed the same pattern, although the differences

are less pronounced (Appendix E, Figure E.10).

5.3 Discussion

The computational pipeline proposed in this Chapter depicts a systems biology approach to study

the biological processes involved in MetSyn and to determine potential new pharmaceutical treat-

ments in a drug repurposing manner. Given their high interconnectivity and the multifactorial

aetiology, metabolic disorders related to MetSyn are particularly suited to a system-level analysis

that integrates multiple data types [156]. Furthermore, the identification of new drug therapies

is highly valuable to counteract serious complications, such as cardiovascular disease, that often

follow MetSyn.

Although in this study we focused on MetSyn, the proposed method can be applied to other

diseases. The only requirement is a list of disease genes that can be derived from many sources
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Table 5.1: List of the drugs identified as possible repurposing candidates. For each drug, the
DrugBank ID and name, the selected target to build the drug module, its action, the calculated
score and the associated MetSyn module are listed.

Drug ID Drug Name Action Target Score Module Network

DB00210 Adapalene agonist RARG 1.6618 2 Adipose

RXRB 1.6925 2 Adipose

DB00523 Alitretinoin agonist RARG 1.6661 2 Adipose

DB04209 Dequalinium antagonist, inhibitor XIAP 1.7909 1 Adipose

DB03756 Doconexent activator RXRA 1.7103 2 Adipose

RXRB 1.6660 2 Adipose

DB09053 Ibrutinib inhibitor BTK 1.6147 1 Adipose

DB12332 Rucaparib antagonist PARP1 1.6678 2 Adipose

DB08877 Ruxolitinib inhibitor JAK1 1.7721 1 Adipose

DB04942 Tamibarotene agonist RARA 1.7222 2 Adipose

DB00210 Adapalene agonist RXRB 1,6871 2 Liver

DB03756 Doconexent activator RXRA 1,7047 2 Liver

RXRA 1,4948 3 Liver

RXRB 1,6819 2 Liver

RXRB 1,5372 3 Liver

DB00530 Erlotinib agonist NR1I2 1,6684 2 Liver

DB09079 Nintedanib inhibitor FGFR3 1,4473 2 Liver

DB04942 Tamibarotene agonist RARA 1,6667 2 Liver

DB00210 Adapalene agonist RXRB 1,6759 2 Muscle

RARG 1,6676 2 Muscle

DB08916 Afatinib inhibitor ERBB2 1,6765 3 Muscle

DB00523 Alitretinoin agonist RARG 1,7756 1 Muscle

RARG 1,6643 2 Muscle

RXRB 1,662 2 Muscle

RARA 1,681 2 Muscle

DB05015 Belinostat inhibitor HDAC1 1,754 1 Muscle

HDAC2 1,7615 1 Muscle

HDAC4 1,8027 1 Muscle

DB06616 Bosutinib inhibitor ABL1 1,609 3 Muscle

DB08865 Crizotinib inhibitor MET 1,7883 1 Muscle

DB03756 Doconexent activator RXRA 1,7134 2 Muscle

DB01259 Lapatinib antagonist ERBB2 1,8184 1 Muscle

DB06603 Panobinostat inhibitor HDAC3 1,611 2 Muscle

DB08877 Ruxolitinib inhibitor JAK1 1,6745 3 Muscle

JAK2 1,714 3 Muscle

DB04942 Tamibarotene agonist RARA 1,6708 2 Muscle

DB08895 Tofacitinib antagonist JAK1 1,71 3 Muscle

inhibitor JAK2 1,692 3 Muscle
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Figure 5.6: Association between the drug targets in the adipose network and MetSyn-related
traits based on the scores provided by OpenTargets [133]. a) Heatmap of total association score
and b) heatmap of association score based on ChEMBL information about drugs approved for
marketing by FDA or under evaluation in clinical trials.

(e.g. from GWAS results or gene/protein expression profiles). Even in the case of Mendelian

diseases, for which repurposing is an important opportunity to identify treatment strategies [62;95],

the pipeline can be applied using information about affected pathways as input. Moreover, the

network can be adapted for the specific requirements of the study. For example, if a disease-specific

gene regulatory network is available, this can replace the GTEx-derived, tissue-specific networks

selected here. On the other hand, the method can also provide useful insights for a specific drug

of interest once network modules for various diseases are defined.

Our workflow relies on the integration of disease and drug data through network-based analysis,

which has been shown as a promising methodology for drug repurposing [44;46;71;104;117;145;153;267].

To identify MetSyn genes, we exploited GWAS and text mining results. The use of genetic evi-

dences has been demonstrated as a powerful resource to support drug discovery, both for pointing

out disease-related pathways and for the identification of new drug targets [33]. Indeed, the targets

of many drugs approved before the GWAS era are located in GWAS risk loci, thus supporting

further exploration of this data [180;223]. Moreover, the integration of GWAS results with literature

findings allowed us to take into account the knowledge derived from additional sources, such as

functional studies, and thus to have a more comprehensive view of the pathways involved.

The tissue-specific integrated networks were generated by merging a protein-protein interaction

network and a transcriptional regulatory network. While the first describes known associations

between proteins, such as the formation of protein complexes or kinase-substrate interactions,

regulatory networks are fundamental to keep into account the regulation exerted by transcription

factors on gene expression. This is of particular importance when studying complex traits, because

the regulation of gene expression in a tissue-specific manner is a key element in determining the
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Figure 5.7: BTK expression in public datasets. a) Boxplots showing BTK gene expression
in macrophages of diabetic and non-diabetic subjects. b) Barcharts showing the average gene
expression level of Btk in adipose tissue for wild type and GPR120 KO mice fed with normal diet
(ND) or high fat diet (HFD). c) Barcharts showing the average gene expression level of Btk in
adipose tissue for wild-type, Caspase 1 null and ASC1 null mice. d) Estimated relative fraction
of different immune cells in adipose tissue calculated via Cibersort for wild type and GPR120 KO
mice fed with normal diet (ND) or high fat diet (HFD) in adipose tissue. In a)-c), statistical
significance is denoted as follows: ns: not significant (p > 0.05), * : 0.01 < p ≤ 0.05, ** :
0.01 ≤ p < 0.001.

pathological phenotype [88;253]. Moreover, it has been shown that several GWAS traits show higher

connectivity in regulatory networks than in other types of networks [160], further supporting our

choice of including regulatory interactions in the background network.

A key point of the performed network analysis has been the definition of a proximity score that

attempts to efficiently connect drug modules and MetSyn modules. In addition to the network-

based distance between MetSyn and drug genes, our scoring system takes into account the sim-

ilarity of biological gene functions. This approach increases the ability to identify potentially

effective new therapeutic strategies because it adds direct biological knowledge to the topological

information derived from the network.

The results obtained from the analysis of the adipose network remark the key role exerted by

inflammation in obesity and suggest the adoption of anti-inflammatory therapies. This is in agree-

ment with a growing body of literature supporting the use of anti-inflammatory agents to treat the

chronic low-grade inflammation accompanying metabolic-related pathological conditions [126;216].
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In particular, our results suggest Ibrutinib as the most promising drug repurposing candidate.

ibrutinib is a small molecule that inhibits BTK, a protein well-known for its essential role in B

cell development and maturation [270]. It has been FDA-approved for the treatment of mantle cell

lymphoma, chronic lymphocytic leukemia, Waldenström’s Macroglobulinemia and chronic graft

versus host disease [147]. Moreover, BTK inhibitors are under investigation for the treatment of

autoimmune diseases, such as multiple sclerosis (ClinicalTrials.gov Identifier: NCT02975349) and

rheumatoid arthritis (ClinicalTrials.gov Identifier: NCT03233230) and showed promising effects

in type 1 diabetes [124]. In addition to B cells, BTK is also expressed by macrophages, known key

players in the development of the obesity-related chronic inflammation and insulin resistance. At

the molecular level, BTK is involved in the regulation of macrophage Toll-like receptor-mediated

immune response [97;150] and is essential for the activation of the NLRP3 inflammasome and IL-1ß

production [118]. Importantly, NLRP3 activity has been linked to obesity and insulin resistance

both in human and mouse studies [217]. In addition to macrophages, B cells themselves have been

implicated in adipose tissue inflammation and insulin resistance [277;278], providing additional sup-

port for BTK involvement in obesity-related inflammation. However, experimental studies are

needed to investigate the effect of BTK inhibitors such as ibrutinib, in obesity and the possible

benefits for patients with metabolic syndrome.

Overall, this work describes an innovative methodology based on the integration of genetic

and expression data with previous biological knowledge, which enables the identification of drug

repurposing candidates for complex diseases. The application of the pipeline to MetSyn let us to

identify the inhibition of BTK by ibrutinib as a promising repurposing strategy.

5.4 Materials and Methods

5.4.1 List of genes associated with MetSyn

To establish a list of genes associated with MetSyn, we used three different sources: GWAS catalog,

GWAS summary statistics and text mining.

Data-mining of the GWAS catalog

Results of published genome-wide association studies were obtained from the NHGRI-EBI GWAS

catalog (Ensembl release version E93, downloaded on October, 8 2018) [157;275]. MetSyn-related

traits were manually selected among all those available and the results were filtered for SNPs with

an association p-value < 5 · 10−08. The extracted SNPs were mapped to official gene symbols

based on their genomic location. All genes located in the genomic interval were considered. As

reference genes, we used the RefSeq genes, downloaded from the UCSC genome browser [125] using

the table browser tool (human genome assembly: Dec 2013/HG38, downloaded on October, 11

2018 from: http://genome.ucsc.edu/index.html). Genes not assigned to chromosomes 1 to

22 were removed and the different transcriptional variants of one gene (isoforms) were merged

by considering the minimal starting and the maximal ending position as new range of the gene.

Moreover, the gene region was extended 110 kb upstream and 40 kb downstream of the tran-

script boundaries, following the approach used by MAGENTA [228]. The mapping procedure was

executed with the R package GenomicRanges [143].
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SNP functional annotation

The SNPs obtained from the GWAS catalog were annotated for their position within genes using

the R package VariantAnnotation [190] and TxDb.Hsapiens.UCSC.hg19.knownGene [36] as annota-

tion object. To evaluate the enrichment of the GWAS SNPs in regulatory regions, we used the

chromatin state annotations from the NIH Roadmap Epigenomics project [218]. Specifically, the

18-state models for adipose nuclei (E063), liver (E066) and skeletal muscle female (E108) were

downloaded from https://egg2.wustl.edu/roadmap/web_portal/ and the overlap of the GWAS

SNP locations with regulatory regions was computed using the R package GenomicRanges [143].

For comparison, we downloaded the full set of HapMap CEU SNPs from the UCSC website

(http://genome.ucsc.edu/) using Table Browser and annotated them in the same way we did

for the GWAS SNPs. Fisher’s exact test was used to compare GWAS SNPs and HapMap SNPs.

GWAS summary statistics

A further resource for genetic factors associated with MetSyn is provided by GWAS summary

statistics. Previously published results obtained by applying the PASCAL tool [141] were used. 15

GWASs connected to metabolic components were chosen (Appendix E, Table E.6) and genes with

a p-value below the threshold of 5 · 10−8 were selected.

Text mining

Additional MetSyn genes were identified using text mining of PubMed abstracts. The following

MeSH terms were identified as being relevant to metabolic syndrome and its primary symptoms:

metabolic syndrome x, hyperglycemia, insulin resistance, hyperinsulinism, glucose intolerance, hy-

pertension, obesity, abdominal, hypertriglyceridemia, hypercholesterolemia, waist circumference,

waist-hip ratio. The search was limited using the tags [Majr:NoExp], to restrict to articles hav-

ing major focus on the searched MeSH terms (and no automatic inclusion of child terms of the

searched term), and english[language] to restrict the search to English abstracts.

In addition, we complemented the MeSH search with a keyword search using the PubMed

[TIAB] tag. The following search terms were used: metabolic syndrome, hyperglycem*, insulin

resistan*, hyperinsulin*, glucose intoleran*, hypertension, abdominal obesity, central obesity, hy-

pertriglyceridemia, high triglycerides, hypercholesterolemia, high cholesterol, waist circumference,

waist-hip ratio, waist-to-hip ratio. To limit the results to the most relevant articles, the keyword

search results were filtered as follows. First, we removed those articles already annotated with

MeSH terms, because either the major topic of the article was not considered MetSyn related by

the MeSH reviewers, or the articles were already captured by our MeSH search. The remaining

articles were further reduced to those waiting for MeSH annotation according to the MedlineCita-

tion Status in PubMed (In-Data-Review, In-Process, Publisher), to cover the recent literature not

yet included in the MeSH indexing. Before performing the gene tagging, we removed those articles

already present in our GWAS catalog results. The genes mentioned in the titles and abstracts

of the selected articles of both search strategies were annotated using the PubTator gene anno-

tation [271–273], and filtered for human genes using the R package org.Hs.eg.db [35]. PubMed was

accessed on October, 24 2018 and PubTator annotation was downloaded on October, 25 2018.
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Filtering and combining the data-driven and text mining approach

The approach we followed is based on genomic regions and thus includes also genes that are not

causative risk factors for metabolic syndrome. Furthermore, the possibility of including false-

positive results from the text mining approach cannot be discarded. To deal with these two

limitations, gene set enrichment analysis for the genes identified by the data-driven approach was

carried out and genes were prioritized based on their biological function. The enrichment analysis

was performed using the enrichr tool [40;136], accessed through the RESTful API on October 12,

2018. We selected the following databases: GO biological processes, KEGG, WikiPathways, Re-

actome, Biocarta, Humancyc, NCI-Nature, and Panther. The analysis resulted in 47 significant

gene sets (BH adj. pvalue < 0.05).

5.4.2 Constructing tissue-specific background networks

Integrated tissue-specific networks were constructed by combining two types of networks: tran-

scriptional regulatory networks composed of interactions between transcription factors and the

regulated genes, and human protein-protein interaction networks. We consider adipose tissue,

liver tissue and skeletal muscle tissue as the three tissues mostly affected by MetSyn.

Regulatory networks were downloaded from http://regulatorycircuits.org/download.

html as presented in [160]. These tissue-specific gene regulatory networks were inferred by combin-

ing transcription factor sequence motifs with activity data for promoters and enhancers from the

FANTOM5 project [160]. Among the available individual networks, adipose tissue adult, liver adult

and skeletal muscle adult were selected. Based on the activity scores edge weights in the range of

[0, 2] are provided. To filter for interactions with high evidence scores we choose a cut-off value for

these edge weights of 0.4. This value is based on the considerations, that a) a threshold over 0.5

resulted in networks without/with only few nodes, b) a threshold beneath 0.1 rises the possibility

of false positives steadily as the distribution of edge weights is highly skewed, and c) the threshold

of 0.4 is the maximal value which secures that at least 25% of the TFs and PRs of the resulting

network are also expressed in the tissue-specific corresponding network from HIPPIE as additional

source for further protein-protein interactions.

Protein-protein interactions (PPI) were obtained from HIPPIE (v2.0) [2;224]. HIPPIE is a

comprehensive database combining protein interactions from different sources. Furthermore, a

confidence score for each interaction is provided. This score ranges in [0, 1] and reflects the

reliability of the interaction based on the number and quality of the experimental technique, the

number of studies the interaction is mentioned in and the number of non-human organisms in

which the interaction was reproduced. To include only the most reliable interactions, the cut-off

value of 0.73 was chosen considering that the curators of HIPPIE refer to this value for high

evidence interactions. Following [2], tissue-specific PPIs were created using tissue expression RNA-

Seq data from GTEx, while a gene was considered tissue-relevant if it showed an RPKM ≥ 1 in

the given tissue. To generate the adipose tissue network we combined the data obtained from

subcutaneous and visceral adipose tissue.

After this preprocessing analysis, the regulatory circuits were extended with high evidence

interactions from the respective tissue-specific PPI. Relations for nodes in the gene regulatory

networks as well as their first neighbors were included during this process.
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5.4.3 Drug data

To evaluate the drug effect on MetSyn we combined drug target information and drug expression

profiles.

Target information

Information about drugs, their indication, their stage of development (e.g. approved, experimental,

withdrawn) and their target was obtained from the public database DrugBank [280] (version 5.1.1,

release date: 2018-07-03, download date September, 11 2018). Drugs were retained if they were

annotated to have a target gene and if they had an approved status. We further restricted our

analysis to pharmacological active drug-target interactions. All target proteins were mapped and

annotated using Entrez IDs and official gene symbols. In total, we obtained 3814 drug-target

interactions for 1482 distinct drugs and 705 distinct targets (Appendix E, Figure E.5).

Drug expression profiles

The identified drug-target relations were extended by including knowledge about the gene ex-

pression profile related to the drug, obtained from the Library of Integrated Cellular Signatures

(LINCS) [249], which provides gene expression profiles obtained by analyzing cellular responses

(cellular signatures) across different cell-lines in response to a range of perturbations, including

also single drug perturbations. We accessed the data using the RESTful API https://clue.io/

in October 2018 and for each drug the 100 most up- and down-regulated genes were retrieved,

relying on high quality signatures (is gold = 1). If for a certain drug more than one signature was

available, we selected the one with the highest signature strength parameter (distil ss).

5.4.4 Network-based MetSyn modules

Trait-relevant network modules were detected using the walktrap algorithm [200] (implemented in

the R package igraph [53]) in combination with an overrepresentation test. The walktrap algorithm

identifies network communities based on the concept that random walks of a short length tend to

stay in the same network area (identified as module). The algorithm was run using the default

parameters. The enrichment in MetSyn genes was tested using Fisher’s exact test (p-value ≤
0.05). The communities significantly enriched in MetSyn genes were tested for their biological

functionality using pathway enrichment analysis (R package reactomePA [289]).

5.4.5 Network-based drug modules

Network-based drug modules were generated by mapping drug profiles to the networks and con-

necting the mapped proteins. Starting from the drug target, the list of signature proteins was

filtered to extract those having a medium to high semantic similarity with the target protein using

the R package GoSemSim [288] (Wang method, cut-off value 0.5). The network-based drug module

was then formed by the drug target, the selected subset of drug signature proteins and the shortest

paths connecting them.
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5.4.6 Proximity score

To quantify the interplay between a drug profile and a MetSyn module a proximity score was

defined. This score combines the network-based distance between a drug- and a MetSyn-module,

and the semantic similarity of the two modules. The network-based distance was calculated using

the closest distance introduced in [104], where it has been shown to outperform other distance

measurements. This measurement represents the average shortest path length between the drug

module genes and their nearest disease proteins in the network [104]:

dc =
1

|T |
∑

t∈T
min
s∈S

d(s, t),

where T is the drug module, S the disease module and d(s, t) the shortest distance between two

nodes s and t. Normalizing this measurement with the diameter of the network and considering

the linear transformation 1 − dc,norm defines a score in [0,1]. To include knowledge about the

biological function of the drug and disease proteins their GO annotation restricted to biological

processes was used to calculate a similarity score in [0,1]. Wang’s method [269] combined with the

Best-Match Average strategy was used as implemented in the R package GoSemSim [288]. Summing

the two above measurements led to our final score in [0,2].

To assess the significance of the results, a reference score distribution corresponding to the

expected scores for random sets of drug proteins was created. The construction of the random

module follows the strategy to build drug modules described above by selecting first a target

protein falling in the same degree bin as the original target, and by then selecting signature genes

keeping the internal distances of the original module. Finally, we use the shortest paths between

the target and signature genes to construct the random module. A drug resulting in a score higher

than 95% of the reference distribution scores was considered significant.

5.4.7 Filtering and prioritization of candidate repurposing drugs

We retrieved data about the targets of the repurposing candidates using the Open Targets Plat-

form [133] REST API (accessed November, 2018) to extract known associations between the target

genes and a list of traits identified to be associated to MetSyn. Targets with at least one associa-

tion score ≥ 0.2 were excluded from further considerations, because this indicates that the target

has already been under investigation for therapeutic interventions related to MetSyn Furthermore,

we extracted the known side effects of the candidate drugs using the DrugCentral platform [262],

accessed via http://drugcentral.org in November 2018, and excluded those drugs with un-

wanted contraindications associated to MetSyn. A final prioritization step was carried out based

on the tissue expression of the drug targets accessed using Human Protein Atlas [260], GTEx [252],

and Fantom5 [151].

5.4.8 BTK gene expression analysis and immune cell component estimation

The mouse and human expression datasets described in this study are publicly available from

NCBI GEO (https://www.ncbi.nlm.nih.gov/geo/) and EMBL-EBI ArrayExpress (https://

www.ebi.ac.uk/arrayexpress/). From NCBI GEO we downloaded the Series matrix files of the
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following datasets: GSE54350 [56], GSE32095 [116], GSE25205 [237], and GSE27951 [123], while the

processed data of the E-MTAB-54 [64] dataset was downloaded from EMBL-EBI ArrayExpress.

The selected datasets were annotated using the R Bioconductor annotation packages corre-

sponding to the microarray platform used in the respective study or the annotation file provided

by NCBI and ArrayExpress. The probe signals were summarized at gene level considering the me-

dian. T-test was used to compare the mean of BTK transcript levels between different subgroups.

To estimate the abundances of immune cells in adipose tissue we used the online version of

Cibersort [181](accessed via https://cibersort.stanford.edu/), run with default parameters.

Cibersort is software based on a deconvolution algorithm that estimates the abundances of im-

mune cells from gene-expression data on the basis of previous knowledge about immune cell gene

expression (immune signature). For the human datasets, we used the immune signature provided

by Cibersort that contains 22 immune cell types, while for the mouse datasets, we used the im-

mune signature provided in [43] consisting of 25 immune cell types. For visualization purposes, the

mouse immune cells were grouped in seven main classes: Granulocytes (Mast Cells, Neutrophil

Cells, Eosinophil Cells), B cells (B Cells Memory, B Cells Naive, Plasma Cells), T cells (T Cells

CD8 Actived, T Cells CD8 Naive, T Cells CD8 Memory, T Cells CD4 Memory, T Cells CD4 Naive,

T Cells CD4 Follicular, Th1 Cells, Th17 Cells, Th2 Cells, GammaDelta T Cells), Macrophages

(M0 Macrophage, M1 Macrophage, M2 Macrophage), Monocytes (Monocyte), Natural Killer cells

(NK Resting, NK Actived), and Dendritic cells (DC Actived, DC Immature).
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Conclusion

In this dissertation we applied computational systems biology methods to human metabolism,

focusing on the folate-mediated one-carbon metabolism and metabolic syndrome. Our results

highlight that computational methods provide a useful framework to gain biological insights by

complementing experimental studies with computational evidence. In the following, further de-

velopments, possible extensions and potential limitations are discussed.

Folate-mediated one-carbon metabolism

The folate-mediated one-carbon metabolism is central for cell division, DNA repair and homeosta-

sis because folate chemically activates, oxidates, and supplies one-carbon units for the synthesis

of nucleotides and for remethylation of homocysteine. Impairment of FOCM, which disrupts cell

replication and obstructs DNA repair, is associated with neural tube defects, cancer and other

neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Understanding the dy-

namics of FOCM and its responsiveness to both genetic and environmental perturbations is key

to understanding the etiology of folate-related pathologies.

Mathematical models provide an excellent framework to obtain a thorough understanding not

only of the individual molecules forming a biological system but also of their interactions, and help

to identify underlying pathways and causative molecular mechanisms. The mathematical models

of FOCM presented in Part I of this dissertation allowed us to develop a more comprehensive

picture of the network and helped to identify how disruptions of the process may affect the overall

behaviour of the system. Deterministic and stochastic simulation strategies were combined to

systematically explore the effect of perturbations on model dynamics, quantified in terms of model

steady states, and to assess their stochastic stability. In silico experiments of the model describing

FOCM in the cytoplasm (Chapter 1 and Chapter 2) highlight the role of the common C677T

MTHFR polymorphism, folate availability, as well as vitamin B12 disposability for the normal

functioning of the network. The model connected disruptions of these three factors, quantified

through sensitivity analysis, to impairments of de novo dTMP synthesis and to the pathological

outcomes of NTDs. In addition, extending the inital model as presented in Chapter 3, allowed us

to highlight the importance of 5fTHF and MTHFS to prevent network impairment by regulating

purine synthesis.

Exploiting a hybrid-stochastic simulation approach allowed us to link both the MTHFR poly-

morphism and low levels of folate to a loss in overall network stability, while the presence of the

5fTHF futile cycle increased the stochastic stability. This observation highlights the advantage of

simulation approach we conducted, as FOCM is expected to exhibit variability (i.e., stochasticity)
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in its behavior [93], which can only be identified using a stochastic or hybrid-stochastic approach.

In addition to the aformentioned, our main contribution to the study of FOCM lies in the

extension of the model with the nuclear compartment. By including ad-hoc functions to model

the localization of folate and folate-dependent enzymes to the nucleus and by accounting for

the kinetic effects of multienzyme complex formation and substrate channelling we explored the

relative contribution of nuclear and cytosolic dTMP synthesis to overall dTMP synthesis. We

quantified the effect of each enzyme in the pathway through sensitivity analysis, identifying the

main regulatory reactions of the compartmentalized system.

However, the general limitations of mathematical models also apply to our hybrid-stochastic

model of FOCM. Mathematical models are abstractions of the reality and are therefore necessarily

incomplete by definition. In our specific scenario, the accuracy of model predictions could be

improved by the inclusion of the mitochondrial FOCM-related reactions, the thymidylate salvage

pathway or the addition of connected pathways. The functions encoding the translocation of

matter to the nuclear compartment are based on assumptions drawn from experimental data, a

particular worthwhile addition to the model would be the extension of these functions to model

the SUMOylation process and the following translocation expliclitly. However, for this purpose,

more biological knowledge about this process has to be established, as mathematical models are

always restricted by the availability of experimental data and by the biological understanding of

the system.

Metabolic Syndrome

Metabolic Syndrome (MetSyn), defined as the conincidence of multiple metabolic alterations lead-

ing to an increased risk of cardiovascular diseases and diabetes, is becoming increasingly prevalent

in almost all countries. The mechanisms playing an etiologic role in the development of MetSyn

are still elusive and therefore the description and interpretation of the underlying pathophysiol-

ogy is essential to develop efficacious treatments. Standard treatment strategies are focused on

lifestyle changes to manage excessive adipose tissue accumulation, normalize metabolic aberrances

and reduce cardiovascular risk. However, responses to the lifestyle modifications alone are often

not satisfying and an intensification of the treatment including drug management is necessary as

the disease progresses.

In this dissertation, we presented a computational systems biology approach to identify biologi-

cal processes involved in MetSyn and to detect potential new pharmaceutical treatments by means

of drug repurposing. Adopting a methodology based on systems biology enabled us to explore the

biological question more systematically by refraining from the single gene perspective. The deci-

sive aspect of this study lies in the efficient integration of different experimental resources, which

allowed us to improve data completeness and to accomplish a comprehensive view of the disease

pathogenic mechanisms. For this purpose, we combined a) genetic evidence derived from GWAS

with literature findings to establish a list of disorder-related genes, b) tissue-specific protein-protein

interactions with transcriptional regulatory networks to build a background network, and c) drug

target information with drug-modulated expression data to describe the drug’s pharmacological

effect. The prediction of potential drug - disease interactions was based on a proximity score, which

relies on topological characteristics of the network and functional similarities between genes. We
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further addressed the issue of identifying the most promising candidate among the results by in-

cluding a filtering and prioritization analysis. This step is crucial to identify a limited and feasible

number of drug candidates for the subsequent experimental validation.

Our main result, which has been obtained from the analysis of the adipose network, identified

the key role exerted by inflammation in obesity and suggested the adoption of anti-inflammatory

therapies. In particular, our results pointed out ibrutinib, an inhibitor of bruton tyrosine kinase

(BTK), as the most promising candidate for drug repurposing.

While computational methods for drug repurposing can provide feasible and reliable results,

there is no doubt that further experimental studies are crucial for the successful investigation of

the identified drug candidates. This means that the next important step will be to perform in

vitro and in vivo studies to experimentally validate our findings by exploring the immunological

steps affected by BTK in obesity and by studying the effect of ibrutinib in metabolic inflammation

and metabolic syndrome.

The proposed methodology was developed and introduced on the example of MetSyn, but

can be applied to other diseases as well. The only requirement is a list of disease genes that

can be derived from many sources (e.g. from GWAS results or gene/protein expression profiles).

Furthermore, our method can provide useful insights for a specific drug of interest once network

modules for various diseases have been defined.

A possible extension of our strategy could be the inclusion of drugs for which the mechanism

of action is yet unknown, e.g. new compounds or neutraceuticals. Currently, the method assesses

the therapeutic effect of a drug by building a network module centered around the drug target.

Pharmaceutical compounds without available data on the mechanism of action could be included

by detecting the respective network module solely using gene expression profiles (derived e.g. from

RNA-Seq experiments). The drug module could be identified either by connecting the altered

genes in the background network using shortest paths or by detecting network clusters enriched in

drug-modulated genes, following the strategy used for the detection of disease modules. Moreover,

the addition of further data relevant for the disease of interest could lead to an extension of the

proposed methodology and improve the final prediction.
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Appendix A

Additional material for Chapter 1

A.1 Supplementary Tables

Table A.1: Initial concentrations of the twelve model variables.

Substrate/Enzyme µM Reference

THF 4.61 [215]

10fTHF 3.41 [215]

CHF 0.28 [215]

CH2H 0.51 [215]

DHF 0.039 [215]

5mTHF free 4.5 [215]

5mTHF:SHMT 4.5 [215]

SHMT free 4.5 [215]

HCY 1.12 [215]

MET 49.2 [215]

SAM 81.1 [215]

SAH 19.1 [215]

Table A.2: Concentrations of the constant substrates included in the model.

Constant Substrate µM Cell line Reference

NADPH 58.0 L1210 [229]

NADP+ 18.0 L1210 [229]

dUMP 20.0 L1210 [229]

Serine 468.0 L1210 [229]

Glycine 1850.0 L1210 [229]

GAR 10.0 L1210 [229]

AICAR 2.1 L1210 [229]

Formate 200.0 L1210 [229]

Betaine 50.0 – [215]
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A.1. Supplementary Tables

Table A.3: Model parameter estimates for the folate cycle grouped by reactions. All concen-

trations are expressed in µm, while time is expressed in hours. For each value the reference cell

line and the length of the glutamate chain of the associated folate are indicated when available in

literature.

Parameter Metabolite Value Length of Cell line Reference

glutamate chain

RAICARFT : 10fTHF→ THF

Vmax 63350 MCF-7 [174]

Km 10fTHF 0.3 4-6 Human leukemia [255]

Km AICAR 16.8 Human purH [211]

RDHFR : DHF→ THF

Vmax 22200 L1210 [229]

Km DHF 0.5 L1210 [229]

Km NADPH 4.3 L1210 [229]

RFTS : THF→ 10fTHF

Vmax 45900 6 L1210 [247]

Km THF 0.1 5 L1210 [247]

Km formate 16 5 L1210 [247]

RMTCH : CHF→ 10fTHF

Vmax 2916000 5 L1210 [247]

Km CHF 4 5 L1210 [247]

RMTCH : 10fTHF→ CHF

Vmax 2916000 5 L1201 [247]

Km 10fTHF 20 L1210 [247]

RMTD : CHF→ CH2F

Vmax 594000 5/6 L1210 [247]

Km CHF 6.3 Human DC301 [196]

Km NADPH 10.5 Human DC301 [196]

RMTD : CH2F→ CHF

Vmax 594000 5/6 L1210 [247]

Km CH2F 2 5 L1210 [247]

Km NADP+ 2 5 L1201 [247]

RMTHFR : CH2F→ 5mTHF

Vmax 120 5 Pig liver [165]

Km CH2F 0.26 5 Pig liver [165]

Km NADPH 125 5 Pig liver [165]

to continue on next page . . .
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A.1. Supplementary Tables

Table A.3 continued

Parameter Metabolite Value Length of Cell line Reference

glutamate chain

RMTR : 5mTHF + HCY → THF + MET

Vmax 30 Estimated in the

range 0.024 [164] -

50 [215] µM/h

Km 5mTHF 0.5 6 Pig liver [164]

Km HCY 0.1 [213]

RPGT : 10fTHF→ THF

Vmax 6600 [213]

Km 10fTHF 0.9 human [159]

Km GAR 1.1 human [159]

RSHMT : THF→ CH2F

Km Serine 600 5 L1210 [247]

Km THF 0.2 5/6 L1210 [247]

kcat 18000 5/6 L1210 [247]

RSHMT : CH2F→ THF

Km Glycine 3000 L1210 [247]

Km CH2F 0.2 L1210 [247]

kcat 45000 4 Rabbit liver [246]

RTYMS : CH2F→ DHF

Vmax 4200 L1210 [229]

Km CH2F 4.3 1 Human colon [208]

Km dUMP 3.6 1 Human colon [208]

(un-)binding of 5mTHF and SHMT

kunbinding 1980 3 Rabbit liver [239]

kbinding 7200 3 Rabbit liver [239]
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A.1. Supplementary Tables

Table A.4: Model parameter estimates for the homocysteine remethylation cycle grouped by
reactions. All concentrations are expressed in µm, while time is expressed in hours.

Parameter Metabolite Value Reference

RBHMT : HCY →MET

Vmax 2160 [215]

Km HCY 12 [215]

Km Betaine 100 [215]

RDNMT : SAM→ SAH

Vmax 180 [215]

Km SAM 1.4 [215]

Ki Inhibition by SAH 1.4 [215]

RGNMT : SAM→ SAH

Vmax 245 [215]

Km SAM 32 [215]

Km Glycine 130 [215]

Ki Inhibition by SAH 18 [215]

RMAT−I : MET→ SAM

Vmax 260 [215]

Km MET 41 [215]

RMAT−III : MET→ SAM

Vmax 220 [215]

Km MET 300 [215]

Ka Activation by SAM 360 [215]

RSAHH : SAH→ HCY

Vmax 320 [215]

Km SAH 6.5 [215]

RSAHH : HCY → SAH

Vmax 4530 [215]

Km HCY 150 [215]
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A.2. Calculations of dTMP synthesis capacity in mammals and yeast

A.2 Calculations of dTMP synthesis capacity in mammals and yeast

The capacity of mammalian cells and yeast cells to synthesize sufficient levels of dTMP for DNA

replication during S-phase was calculated using results from the model and other values from the

literature, as discussed in the preceding sections (see also Table 1.9). Detailed calculations are

listed in the following.

Rate of dTMP synthesis based on the computational model (Table 1.4, CC case)

263.4
µm
h

= 4.38
µm
min

dTMP synthesis required for replication

Based on 59% of bp in human genome being AT [17]

3 · 109 bp · 0.59 = 1.77 · 109 T molecules = 2.94 · 10−15 mol T

are required. Assuming furthermore 8 hour replication time in human ES cells or L1210 cells,

3.67 · 10−16
mol

h
= 1.02 · 10−19

mol

s

synthesis is required. Assuming ES cell volume of 800 µm3 = 8·10−13 L the rate of dTMP synthesis

required for faithful cell replication is

1.02 · 10−19 mol
s

8 · 10−13 L
= 1.28 · 10−7

m

s
= 0.13

µm
s

= 7.8
µm
min

Rate of dTMP synthesis in S. cerevisiae based on [100]

dTMP production as measured by 3H-thymidine incorporation.

44.8 µU TS activity

108 haploid cells
=

44.8pmol
min

5 · 107diploid cell
= 8.96 · 10−7

pmol
min

diploid cell

dTMP synthesis required for replication in S. cerevisiae

By considering the diploid genome with 61.5% AT base pairs

12, 156, 677 bp · 0.615 = 7.5 · 106 T molecules

are required. We assume 150 minute generation time [100]

7.5 · 106

150

T molecules
min

diploid cell
· 1

6.02 · 1023
mol

molecules
= 8.3 · 10−20

mol
min

diploid cell
= 8.3 · 10−8

pmol
min

diploid cell

If we assume that S-phase is 1/3 of cell cycle (50 min), then

8.3 · 10−8
pmol
min

diploid cell
· 3 = 2.5 · 10−7

pmol
min

diploid cell

is needed to replicate the genome.
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Appendix B

Additional material for Chapter 2

Table B.1: Steady state distribution of folate (in percentage of total folate) for different levels of
MTR activity (ranging from 3 µm/hto 150 µm/h).The results for the standard MRT activity (30
µm/h) are highlighted in light gray.

Vmax of THF 10fTHF CHF CH2F DHF 5mTHF

MTR (µm/h) free bound total

3 0.09 2.03 0.40 0.11 0.00 48.50 48.87 97.37

6 0.14 4.41 0.88 0.25 0.00 45.55 48.77 94.33

9 0.18 7.20 1.43 0.40 0.01 42.13 48.64 90.78

12 0.22 10.52 2.09 0.58 0.01 38.12 48.46 86.58

15 0.25 14.48 2.87 0.80 0.02 33.39 48.20 81.59

18 0.29 19.17 3.80 1.04 0.02 27.89 47.78 75.67

21 0.34 24.58 4.86 1.32 0.03 21.78 47.09 68.87

24 0.42 30.23 5.97 1.58 0.03 15.82 45.95 61.77

27 0.54 35.27 6.94 1.79 0.03 11.13 44.29 55.43

30 0.70 39.24 7.69 1.92 0.04 8.07 42.34 50.42

60 3.13 54.51 10.50 2.32 0.04 1.87 27.63 29.50

150 15.00 58.02 11.10 2.32 0.04 0.53 12.97 13.50
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Table B.2: Steady state concentrations of model variables (in µm) for different levels of MTR
activity (ranging from 3 µm/hto 150 µm/h). The results for the standard MRT activity (30 µm/h)
are highlighted in light gray.

Vmax of THF 10fTHF CHF CH2F DHF 5mTHF

MTR (µm/h) free bound total

3 0.02 0.36 0.07 0.02 0.00 8.66 8.72 17.38

6 0.03 0.79 0.16 0.04 0.00 8.13 8.71 16.84

9 0.03 1.29 0.26 0.07 0.00 7.52 8.68 16.20

12 0.04 1.88 0.37 0.10 0.00 6.80 8.65 15.45

15 0.05 2.58 0.51 0.14 0.00 5.96 8.60 14.56

18 0.05 3.42 0.68 0.19 0.00 4.98 8.53 13.51

21 0.06 4.39 0.87 0.24 0.01 3.89 8.41 12.29

24 0.08 5.40 1.07 0.28 0.01 2.82 8.20 11.03

27 0.10 6.30 1.24 0.32 0.01 1.99 7.91 9.89

30 0.13 7.00 1.37 0.34 0.01 1.44 7.56 9.00

60 0.56 9.73 1.88 0.41 0.01 0.33 4.93 5.27

150 2.68 10.36 1.98 0.41 0.01 0.10 2.32 2.41

Vmax of SHMT HCY MET SAM SAH

MTR (µm/h) free

3 0.28 3.49 34.27 81.89 30.87

6 0.29 3.45 34.73 81.33 31.02

9 0.32 3.41 35.25 80.52 31.35

12 0.35 3.38 35.85 79.33 31.96

15 0.40 3.36 36.58 77.58 33.01

18 0.47 3.35 37.50 74.90 34.77

21 0.60 3.36 38.68 70.79 37.70

24 0.80 3.39 40.07 64.89 42.77

27 1.09 3.44 41.41 57.91 47.77

30 1.44 3.48 42.44 51.34 53.26

60 4.07 3.58 44.59 27.03 75.32

150 6.68 3.62 44.68 18.30 83.93
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Table B.3: Steady state fluxes of all model reactions (in µm/h) for different levels of MTR activity
(ranging from 3 µm/hto 150 µm/h). Reactions are indicated by the enzyme, which catalyzes them.

Vmax FTS MTCH MTD MTHFR MTR

MTR
(µm/h)

10fTHF
→ CHF

CHF →
10fTHF

CHF →
CH2F

CH2F
→CHF

3 5847.5 51775.1 51478.3 5674.0 5377.2 2.8 2.8

6 8558.4 110304.2 109613.3 12170.8 11479.9 5.5 5.5

9 10358.2 176142.4 174989.1 19592.4 18439.1 8.2 8.2

12 11790.9 250284.1 248582.0 28096.8 26394.6 10.9 10.9

15 13103.0 333619.4 331232.9 37842.8 35456.3 13.4 13.4

18 14482.1 426086.1 422783.6 48886.9 45584.4 15.9 15.9

21 16142.4 524546.8 519926.5 60901.8 56281.4 18.1 18.1

24 18301.7 619536.7 612999.0 72710.1 66172.4 19.8 19.8

27 20917.1 698125.7 689129.5 82592.9 73596.7 21.0 21.0

30 23582.5 756270.1 744706.2 89938.7 78374.9 21.7 21.7

60 36044.3 954342.8 930569.4 115345.6 91572.2 23.3 23.3

150 40970.8 995200.6 966541.4 120418.2 91759.0 23.4 23.4

Vmax SHMT SHMT & 5mTHF DHFR TYMS PGT AICARFT

MTR
(µm/h)

CH2F
→THF

THF
→CH2F

binding unbinding

3 438.7 161.5 17271.3 17271.3 16.7 16.7 1704.0 3846.8

6 909.5 260.0 17237.0 17237.0 36.0 36.0 2772.5 5095.0

9 1434.5 347.5 17191.4 17191.3 58.2 58.2 3497.7 5707.3

12 2051.5 444.2 17127.7 17127.7 84.0 84.0 4019.5 6069.3

15 2829.8 570.6 17034.1 17034.0 113.8 113.8 4409.9 6306.6

18 3902.0 763.3 16887.0 16887.0 147.9 147.9 4707.9 6471.6

21 5517.0 1099.4 16642.8 16642.8 184.7 184.7 4933.7 6588.3

24 8027.0 1728.6 16238.6 16238.6 219.4 219.4 5095.9 6668.1

27 11545.6 2816.5 15654.0 15654.0 246.0 246.0 5202.2 6718.7

30 15646.6 4367.7 14964.5 14964.5 263.4 263.4 5268.8 6749.8

60 47065.2 23627.3 9764.4 9764.4 312.2 312.2 5442.5 6828.4

150 77378.2 49055.3 4586.7 4586.7 312.9 312.9 5470.8 6840.8

Vmax BHMT GNMT DNMT SAHH MAT-I MAT-III

MTR
(µm/h)

SAH →
HCY

HCY →
SAH

3 158.7 85.0 129.1 264.3 102.9 103.8 57.7

6 157.4 90.1 128.7 264.6 101.7 104.6 58.2

9 156.2 96.8 128.0 265.0 100.6 105.6 58.8

12 155.3 106.1 126.7 265.9 99.8 106.8 59.3

15 154.8 119.7 124.7 267.4 99.2 108.4 59.8

18 154.8 140.5 121.4 269.6 98.9 110.4 60.3

21 155.6 174.0 116.0 272.9 99.3 113.0 60.6

24 157.2 226.5 107.7 277.3 100.2 116.4 60.6

27 159.3 296.6 97.3 281.7 101.5 120.0 60.3

30 161.0 370.9 87.2 285.2 102.6 123.0 59.6

60 165.6 726.7 46.9 294.6 105.6 132.2 56.8

150 166.9 887.1 31.8 297.0 106.7 134.6 55.7
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Table B.4: Steady state distribution of folate (in percentage of total folate) for different levels
of MTR activity (ranging from 3 µm/h to 150 µm/h) for the model without BHMT activity.The
results for the standard MRT activity (30 µm/h) are highlighted in light gray.

Vmax of THF 10fTHF CHF CH2F DHF 5mTHF

MTR (µm/h) free bound total

3 0.09 2.07 0.41 0.12 0.00 48.44 48.87 97.31

6 0.09 2.07 0.41 0.12 0.00 48.44 48.87 97.31

9 0.18 7.38 1.47 0.41 0.01 41.91 48.64 90.55

12 0.22 10.81 2.15 0.60 0.01 37.77 48.45 86.22

15 0.25 14.91 2.96 0.82 0.02 32.88 48.17 81.04

18 0.30 19.79 3.92 1.08 0.02 27.18 47.72 74.90

21 0.35 25.36 5.02 1.36 0.03 20.93 46.97 67.89

24 0.44 31.07 6.13 1.62 0.03 14.99 45.72 60.72

27 0.57 36.02 7.08 1.82 0.03 10.51 43.98 54.48

30 0.73 39.86 7.80 1.94 0.04 7.65 41.97 49.62

60 3.24 54.75 10.55 2.32 0.04 1.82 27.29 29.11

150 15.3 57.96 11.09 2.32 0.04 0.52 12.77 13.29
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Table B.5: Steady state concentrations of model variables (in µm) for different levels of MTR
activity (ranging from 3 µm/h to 150 µm/h) for the model without BHMT activity. The results
for the standard MRT activity (30 µm/h) are highlighted in light gray.

Vmax of THF 10fTHF CHF CH2F DHF 5mTHF

MTR (µm/h) free bound total

3 0.02 0.37 0.07 0.02 0.00 8.65 8.72 17.37

6 0.03 0.80 0.16 0.04 0.00 8.11 8.70 16.81

9 0.03 1.32 0.26 0.07 0.00 7.48 8.68 16.16

12 0.04 1.93 0.38 0.11 0.00 6.74 8.65 15.39

15 0.05 2.66 0.53 0.15 0.00 5.87 8.60 14.47

18 0.05 3.53 0.70 0.19 0.00 4.85 8.52 13.37

21 0.06 4.53 0.90 0.24 0.00 3.74 8.38 12.12

24 0.08 5.55 1.09 0.29 0.01 2.68 8.16 10.84

27 0.10 6.43 1.26 0.32 0.01 1.88 7.85 9.72

30 0.13 7.12 1.39 0.35 0.01 1.37 7.49 8.86

60 0.58 9.77 1.88 0.41 0.01 0.32 4.87 5.19

150 2.73 10.34 1.98 0.41 0.01 0.09 2.28 2.37

Vmax of SHMT HCY MET SAM SAH

MTR (µm/h) free

3 0.28 10.74 0.40 1.65 137.72

6 0.30 10.63 0.79 3.27 135.83

9 0.32 10.52 1.19 4.82 134.00

12 0.35 10.41 1.58 6.25 132.29

15 0.40 10.30 1.96 7.48 130.78

18 0.48 10.20 2.33 8.38 129.61

21 0.62 10.12 2.65 8.72 129.03

24 0.84 10.06 2.90 8.36 129.21

27 1.15 10.02 3.06 7.49 129.95

30 1.51 10.00 3.15 6.58 130.80

60 4.13 9.95 3.37 3.46 133.73

150 6.72 9.96 3.36 2.38 134.82
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Table B.6: Steady state fluxes of all model reactions (in µm/h) for different levels of MTR activity
(ranging from 3 µm/h to 150 µm/h) for the model without BHMT activity.

Vmax FTS MTCH MTD MTHFR MTR

MTR
(µm/h)

10fTHF
→ CHF

CHF →
10fTHF

CHF →
CH2F

CH2F
→CHF

3 5915.6 52835.1 52531.4 5790.8 5487.2 2.8 2.8

6 8640.0 112722.5 112014.9 12441.3 11733.7 5.6 5.6

9 10449.9 180275.2 179092.2 20062.3 18879.4 8.4 8.4

12 11896.8 256548.3 254797.7 28822.5 27071.9 11.1 11.1

15 13234.1 342430.7 339965.6 38884.9 36419.7 13.7 13.7

18 14660.5 437620.7 434186.3 50281.2 46846.9 16.2 16.2

21 16406.3 538119.5 533274.2 62577.1 57731.8 18.3 18.3

24 18682.8 632985.9 626096.4 74395.8 67506.2 20.0 20.0

27 21378.8 709363.3 699925.5 84011.1 74573.2 21.1 21.1

30 24051.0 765162.0 753143.3 91063.7 79045.1 21.7 21.7

60 36226.3 956974.3 933021.6 115689.7 91737.0 23.4 23.4

150 40998.6 994097.0 965409.0 120257.7 91569.7 23.3 23.3

Vmax SHMT SHMT & 5mTHF DHFR TYMS PGT AICARFT

MTR
(µm/h)

CH2F
→THF

THF
→CH2F

binding unbinding

3 447.4 163.7 17270.7 17270.7 17.1 17.1 1729.2 3882.8

6 928.7 263.5 17235.5 17235.5 36.8 36.8 2805.9 5126.5

9 1467.8 352.8 17188.2 17188.2 59.6 59.6 3533.2 5733.7

12 2106.1 452.8 17121.6 17121.6 86.2 86.2 4054.6 6091.7

15 2920.4 586.0 17022.3 17022.3 117.0 117.0 4443.2 6325.8

18 4059.6 793.6 16864.2 16864.2 152.2 152.2 4738.4 6487.8

21 5801.5 1164.3 16598.0 16598.0 189.7 189.7 4959.7 6601.3

24 8509.0 1863.7 16159.3 16159.3 224.2 224.2 5115.7 6677.6

27 12217.5 3050.3 15541.3 15541.3 249.6 249.6 5215.8 6725.1

30 16426.4 4695.2 14833.2 14833.2 265.8 265.8 5278.3 6754.1

60 47813.7 24197.2 9642.1 9642.1 312.8 312.8 5444.4 6829.2

150 77744.4 49391.9 4513.3 4513.3 312.2 312.2 5470.1 6840.5

Vmax BHMT GNMT DNMT SAHH MAT-I MAT-III

MTR
(µm/h)

SAH →
HCY

HCY →
SAH

3 0.0 6.0 2.1 305.6 302.8 2.6 0.2

6 0.0 12.0 4.2 305.4 299.8 5.0 0.6

9 0.0 18.2 6.2 305.2 296.8 7.5 0.9

12 0.0 25.1 8.0 305.0 293.9 9.8 1.3

15 0.0 33.2 9.6 304.8 291.2 12.0 1.6

18 0.0 43.5 10.8 304.7 288.6 14.1 2.0

21 0.0 57.2 11.3 304.7 286.3 16.0 2.4

24 0.0 74.6 10.8 304.7 284.7 17.4 2.6

27 0.0 92.9 9.7 304.8 283.7 18.3 2.8

30 0.0 108.4 8.5 304.9 283.1 18.8 2.9

60 0.0 157.9 4.5 305.2 281.8 20.2 3.2

150 0.0 170.7 3.1 305.3 281.9 20.2 3.1
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Appendix C

Additional material for Chapter 3

Table C.1: Model parameter estimates (concentrations are expressed in µm, time is expressed
in hours). Parameter estimated not included in the table have been set to the values provided in
Tables A.3 and A.4.

Parameter Metabolite Value Length of Cell line Reference
glutamate

chain

RMTHFS : 5fTHF→ CHF

MTHFS 0.08 Estimated to preserve 5fTHF
being 5% of total folate [91]

kcat 5400 [83]

Km 5fTHF 0.2 3 [83]∗

Ki) 10fTHF 0.015 3 [83]∗

RSHMT : CHF→ 5fTHF

kcat 198 [240]

Km CHF 40 4 [240]

(un-)binding of 5fTHF and SHMT

KD 0.2 Rabbit liver [239]

kunbinding 144 3 Rabbit liver [239]

kbinding 720 3 Rabbit liver kbinding = kunbinding/KD

RAICARFT : 10fTHF→ THF

Ki 5fTHF 3 5 MCF-7 [27]

(un-)binding of 5mTHF and SHMT

KD 0.4 Rabbit liver [239]

kunbinding 1980 3 Rabbit liver [239]

kbinding 4950 3 Rabbit liver kbinding = kunbinding/KD

RMTR : 5mTHF + HCY → THF + MET

Vmax 26 Estimated in the range
0.024 [164] -50 [215] µm/h

∗The reference value was halved, because the measurements were made with racemic folates, only half of which
are physiological substrates.
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Table C.2: Steady state concentrations of model variables (in µm) for different levels of MTHFS
(ranging from 0.008 µmto 0.4 µm). The results for the standard MTHFS concentration (0.08 µm)
are highlighted in light grey.

MTHFS THF 10fTHF CHF CH2F DHF 5mTHF

free bound

0.008 0.036 6.477 1.290 0.369 0.007 3.812 1.864

0.016 0.041 6.762 1.346 0.383 0.007 4.421 2.508

0.024 0.043 6.878 1.369 0.389 0.007 4.700 2.862

0.032 0.045 6.943 1.381 0.392 0.007 4.864 3.089

0.040 0.047 6.984 1.390 0.394 0.007 4.972 3.249

0.048 0.048 7.013 1.395 0.395 0.007 5.049 3.368

0.056 0.049 7.034 1.399 0.396 0.007 5.107 3.460

0.064 0.050 7.051 1.403 0.397 0.007 5.152 3.534

0.072 0.050 7.064 1.405 0.398 0.007 5.188 3.594

0.080 0.051 7.075 1.407 0.398 0.007 5.217 3.644

0.160 0.053 7.125 1.417 0.400 0.007 5.359 3.893

0.400 0.055 7.158 1.423 0.402 0.007 5.452 4.067

MTHFS 5fTHF SHMT HCY MET SAM SAH

free bound free

0.008 2.495 2.440 0.196 3.287 39.263 70.648 37.322

0.016 1.556 1.765 0.227 3.249 38.727 73.282 35.261

0.024 1.146 1.395 0.244 3.233 38.502 74.335 34.450

0.032 0.910 1.157 0.254 3.224 38.376 74.912 34.009

0.040 0.757 0.989 0.261 3.218 38.294 75.278 33.729

0.048 0.648 0.865 0.267 3.214 38.237 75.533 33.535

0.056 0.567 0.769 0.271 3.211 38.195 75.721 33.393

0.064 0.504 0.692 0.274 3.209 38.163 75.865 33.284

0.072 0.454 0.629 0.277 3.207 38.137 75.979 33.197

0.080 0.413 0.577 0.279 3.206 38.116 76.071 33.127

0.160 0.217 0.316 0.291 3.199 38.016 76.506 32.799

0.400 0.090 0.134 0.298 3.194 37.952 76.783 32.590
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Table C.3: Steady state distribution of folate (in percentage of total folate) for different levels of
MTHFS (ranging from 0.008 µmto 0.4 µm). The results for the standard MTHFS concentration
(0.08 µm) are highlighted in light grey.

MTHFS THF 10fTHF CHF CH2F DHF 5mTHF 5fTHF

free bound total free bound total

0.008 0.19 34.47 6.87 1.96 0.04 20.29 9.92 30.21 13.28 12.99 26.26

0.016 0.22 35.99 7.16 2.04 0.04 23.53 13.35 36.87 8.28 9.40 17.68

0.024 0.23 36.61 7.29 2.07 0.04 25.02 15.23 40.25 6.10 7.42 13.52

0.032 0.24 36.95 7.35 2.09 0.04 25.89 16.44 42.33 4.85 6.16 11.00

0.040 0.25 37.17 7.40 2.10 0.04 26.46 17.29 43.75 4.03 5.27 9.29

0.048 0.26 37.32 7.43 2.10 0.04 26.87 17.93 44.80 3.45 4.60 8.05

0.056 0.26 37.44 7.45 2.11 0.04 27.18 18.42 45.59 3.02 4.09 7.11

0.064 0.26 37.53 7.46 2.11 0.04 27.42 18.81 46.23 2.68 3.68 6.37

0.072 0.27 37.60 7.48 2.12 0.04 27.61 19.13 46.74 2.42 3.35 5.77

0.080 0.27 37.65 7.49 2.12 0.04 27.77 19.39 47.16 2.20 3.07 5.27

0.160 0.28 37.92 7.54 2.13 0.04 28.52 20.72 49.24 1.16 1.68 2.84

0.400 0.29 38.10 7.58 2.14 0.04 29.02 21.65 50.66 0.48 0.71 1.19
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Table C.4: Steady state fluxes of model reactions catalyzed by the enzymes FTS, MTCH, MTD,
MTHFR, SHMT and the (un-)binding of SHMT and 5mTHF/5fTHF (in µm/h) for different
levels of MTHFS (ranging from 0.008 µm to 0.4 µm). Reactions are indicated by the enzyme,
which catalyzes them. For bidirectional reactions the direction is indicated behind the enzyme
name (Enzyme: Substrate → Product). The results for the standard MTHFS concentration (0.08
µm) are highlighted in light grey.

FTS MTCH MTD MTHFR MTR

10fTHF
→ CHF

CHF →
10fTHF

CHF →
CH2F

CH2F
→CHF

0.008 11141.5 713316.8 711068.9 85479.3 83231.4 22.3 22.3

0.016 12257.1 736798.2 734226.5 88544.9 85973.3 22.7 22.7

0.024 12874.6 746211.2 743475.4 89774.8 87039.0 22.8 22.8

0.032 13277.1 751402.1 748565.0 90452.9 87615.8 22.9 22.9

0.040 13563.0 754720.3 751813.9 90886.3 87979.8 22.9 22.9

0.048 13777.5 757034.3 754077.1 91188.4 88231.3 22.9 22.9

0.056 13944.8 758743.9 755748.1 91411.6 88415.8 23.0 23.0

0.064 14079.1 760060.3 757033.9 91583.4 88557.1 23.0 23.0

0.072 14189.4 761106.1 758055.0 91719.9 88668.8 23.0 23.0

0.080 14281.6 761957.5 758886.0 91831.0 88759.5 23.0 23.0

0.160 14749.0 765971.0 762799.2 92354.5 89182.6 23.1 23.1

0.400 15080.7 768546.7 765306.9 92690.3 89450.5 23.1 23.1

SHMT SHMT & 5mTHF SHMT & 5fTHF

CH2F
→THF

THF
→CH2F

CHF
→5fTHF

binding un-
binding

binding un-
binding

0.008 2177.2 232.8 1.2 3691.5 3691.5 351.4 351.4

0.016 2559.3 301.6 1.5 4965.2 4965.2 254.2 254.2

0.024 2760.6 342.9 1.6 5665.9 5665.9 200.9 200.9

0.032 2887.8 371.0 1.7 6116.9 6116.9 166.6 166.6

0.040 2976.3 391.5 1.7 6433.6 6433.6 142.5 142.5

0.048 3041.7 407.2 1.8 6669.1 6669.1 124.6 124.6

0.056 3092.0 419.6 1.8 6851.3 6851.3 110.7 110.7

0.064 3132.1 429.6 1.8 6996.7 6996.7 99.6 99.6

0.072 3164.7 438.0 1.9 7115.4 7115.4 90.6 90.6

0.080 3191.9 445.0 1.9 7214.3 7214.3 83.1 83.1

0.160 3326.8 481.3 2.0 7709.0 7709.0 45.5 45.5

0.400 3420.2 507.7 2.0 8053.3 8053.3 19.3 19.3
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Table C.5: Steady state fluxes of model reactions catalyzed by the enzymes PGT, AICARFT,
TYMS, DHFR, MTHFS, BHMT, GNMT, DNMT, SAHH, MAT-I and MAT-III (in µm/h) for dif-
ferent levels of MTHFS (ranging from 0.008 µm to 0.4 µm). Reactions are indicated by the enzyme,
which catalyzes them. For bidirectional reactions the direction is indicated behind the enzyme
name (Enzyme: Substrate → Product). The results for the standard MTHFS concentration (0.08
µm) are highlighted in light grey.

PGT AICARFT DHFR TYMS MTHFS BHMT

0.008 5220.5 3673.1 281.2 281.2 1.2 153.1

0.016 5247.5 4437.9 291.3 291.3 1.5 151.5

0.024 5258.0 4880.9 295.2 295.2 1.6 150.8

0.032 5263.6 5176.4 297.4 297.4 1.7 150.5

0.040 5267.2 5389.3 298.7 298.7 1.7 150.2

0.048 5269.7 5550.7 299.7 299.7 1.8 150.1

0.056 5271.5 5677.5 300.4 300.4 1.8 149.9

0.064 5272.9 5779.9 300.9 300.9 1.8 149.8

0.072 5274.0 5864.3 301.3 301.3 1.9 149.8

0.080 5274.9 5935.2 301.7 301.7 1.9 149.7

0.160 5279.1 6298.0 303.2 303.2 2.0 149.4

0.400 5281.8 6559.0 304.2 304.2 2.0 149.2

GNMT DNMT SAHH MAT-I MAT-III

SAH →
HCY

HCY →
SAH

0.008 177.0 116.3 272.5 97.1 113.9 61.5

0.016 155.9 120.0 270.2 96.0 112.6 61.6

0.024 147.8 121.4 269.2 95.6 112.0 61.6

0.032 143.5 122.2 268.7 95.3 111.7 61.7

0.040 140.7 122.7 268.3 95.2 111.5 61.7

0.048 138.8 123.1 268.0 95.0 111.3 61.7

0.056 137.4 123.3 267.9 95.0 111.2 61.7

0.064 136.4 123.5 267.7 94.9 111.2 61.7

0.072 135.5 123.7 267.6 94.8 111.1 61.7

0.080 134.9 123.8 267.5 94.8 111.0 61.7

0.160 131.7 124.4 267.1 94.6 110.8 61.7

0.400 129.7 124.8 266.8 94.5 110.6 61.7
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Appendix D

Additional material for Chapter 4

Table D.1: Parameter estimates for the extended model including cytoplasmic and nuclear

FOCM grouped by reactions. All concentrations are expressed in µm, while time is expressed in

hours. The parameter estimates have been calculated by scaling the respective cytoplasmic values

to the nuclear volume. The estimates for the reactions forming the remethylation of homocysteine

cycle are listed in Appendix A, Table A.4

Parameter Metabolite Value Cell line Reference

cytoplasm nucleus

Volume 9.4 ·1013 2.2 ·1013 HeLa [86]

RAICARFT : 10fTHF→ THF

Vmax 63350 MCF-7 [174]

Km 10fTHF 0.3 Human leukemia [255]

Km AICAR 16.8 Human purH [211]

Ki 5fTHF 3 [27]

RDHFR : DHF→ THF

kcat 36000 36000 Human [268]

Km DHF 0.5 2.14 L1210 [229]

Km NADPH 4.3 18.37 L1210 [229]

RFTS : THF→ 10fTHF

kcat 5100 5100 L1210 [247]

Km THF 0.1 0.43 L1210 [247]

Km formate 16 68.36 L1210 [247]

RMTCH : CHF→ 10fTHF

kcat 324000 324000 L1210 [247]

Km CHF 4 17.09 L1210 [247]

RMTCH : 10fTHF→ CHF

to continue on next page . . .
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Table D.1 continued

Parameter Metabolite Value Cell line Reference

cytoplasm nucleus

kcat 324000 324000 L1210 [247]

Km 10fTHF 20 85.45 L1210 [247]

RMTD : CHF→ CH2F

kcat 66000 66000 L1210 [247]

Km CHF 6.3 26.92 Human DC301 [196]

Km NADPH 10.5 44.86 Human DC301 [196]

RMTD : CH2F→ CHF

kcat 66000 66000 L1210 [247]

Km CH2F 2 8.55 L1210 [247]

Km NADP+ 2 8.55 L1201 [247]

RMTHFR : CH2F→ 5mTHF

Vmax 120 Pig liver [164]

Km CH2F 0.26 Pig liver [164]

Km NADPH 125 Pig liver [164]

RMTHFS : 5fTHF→ CHF

kcat 5400 5400 [83]

Km 5fTHF 0.2 0.85 [83]

Ki 10fTHF 0.015 0.64 [83]

RMTR : 5mTHF + HCY → THF + MET

Vmax 26 Estimated in the

range 0.024 [164] -

50 [215] µM/h

Km 5mTHF 0.5 Pig liver [164]

Km HCY 0.1 [213]

RPGT : 10fTHF→ THF

Vmax 6600 [213]

Km 10fTHF 0.9 human [159]

Km GAR 1.1 human [159]

RSHMT : THF→ CH2F

kcat 18000 18000 L1210 [247]

Km Serine 600 2563.6 L1210 [247]

Km THF 0.2 0.85 L1210 [247]

RSHMT : CH2F→ THF

to continue on next page . . .
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Table D.1 continued

Parameter Metabolite Value Cell line Reference

cytoplasm nucleus

kcat 45000 45000 Rabbit liver [246]

Km Glycine 3000 12818 L1210 [247]

Km CH2F 0.2 0.85 L1210 [247]

RSHMT : CHF→ 5fTHF

kcat 198 198 [240]

Km CHF 40 170.9 [240]

RTYMS : CH2F→ DHF

kcat 11196 11196 Human [154]

Km CH2F 4.3 18.37 Human colon [208]

Km dUMP 3.6 15.38 Human colon [208]

(un-)binding of 5mTHF and SHMT

kunbinding 1980 1980 Rabbit liver [239]

kD 0.4 1.71 Rabbit liver [239]

kbinding 4950 1158 Rabbit liver kbinding =
kunbinding

KD

(un-)binding of 5fTHF and SHMT

kunbinding 144 144 Rabbit liver [239]

kD 0.2 0.85 Rabbit liver [239]

kbinding 720 169 Rabbit liver kbinding =
kunbinding

KD
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Table D.2: Steady state concentration (in µm) and steady state distribution of folate (in per-
centage of total folate per compartment) of the cytoplasm and nucleus.

cytoplasm nucleus

uM % uM %

THF 0.052 0.31 0.045 0.57

10fTHF 6.765 40.01 3.544 44.15

CHF 1.346 7.96 0.688 8.57

CH2F 0.381 2.25 0.109 1.35

DHF 0.003 0.02 0.003 0.04

5mTHF free 4.324 25.57 0.549 6.84

5mTHF bound 3.096 18.31 0.254 3.16

5mTHF total 7.420 43.88 0.803 10.00

5fTHF free 0.388 2.29 1.475 18.37

5fTHF bound 0.555 3.28 1.361 16.96

5fTHF total 0.943 5.58 2.836 35.33

SHMT 0.286

HCY 3.255

MET 38.808

SAM 72.899

SAH 35.559
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Table D.3: Steady state fluxes for all model reactions (in µm/h).

cytoplasm nucleus

FTS 14069.6 10980.7

MTCH (10fTHF → CHF) 713991.6 387726.9

MTCH (CHF → 10fTHF) 711138.2 376746.2

MTD (CHF → CH2F) 85758.9 27868.4

MTD (CH2F → CHF) 82905.5 16887.7

DHFR 72.5 1118.3

TYMS 72.5 1118.3

SHMT (CH2F → THF) 3223.8 12630.2

SHMT (THF → CH2F) 465.5 2767.7

SHMT (CHF → 5fTHF) 1.8 0.6

MTHFS 1.8 0.6

MTHFR 22.6

MTR 22.6

PGT 5247.8

AICARFT 5968.4

BHMT 151.7

MAT I 112.8

MAT III 61.6

GNMT 158.9

DNMT 119.4

SAHH SAH 270.5

SAHH HCY 96.2

5mTHF:SHMT (unbinding) 6129.4

5mTHF:SHMT (binding) 6129.4

5fTHF:SHMT (unbinding) 80.0

5fTHF:SHMT (binding) 80.0
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Table D.4: The impact of variation in model enzymes activity on network output variables.

Enzyme levels were modified according to a scaling factor (0.5x, 1x, 2x, and 4x) and for each

enzyme the resulting model predictions for the flux through the enzymes AIACRFT, PGT, MTR,

TYMS as well as the total number of produced Ts is provided. The variation across scenarios was

assessed using the coefficient of variation (CV).

vAICARFT vPGT vMTR #T total vTYMS

cytoplasm nucleus

AICARFT

0.25x 1491.5 5249.3 22.6 1.51·109 72.5 1118.2

0.5x 2983.5 5248.8 22.6 1.51·109 72.5 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 11943.1 5245.2 22.6 1.51·109 72.5 1118.2

4x 23901.3 5235.8 22.6 1.51·109 72.1 1118.2

CV (%) 98.43 0.11 0.09 0.05 0.21 0.00

BHMT

0.25x 5913.7 5264.1 22.8 1.52·109 74.2 1118.2

0.5x 5929.6 5259.5 22.8 1.52·109 73.7 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 6050.6 5218.9 22.2 1.50·109 69.6 1118.2

4x 6186.3 5152.1 21.3 1.47·109 63.7 1118.3

CV (%) 1.86 0.88 2.82 1.30 6.10 0.00

DHFR

0.25x 0.0 0.0 0.0 0.77·109 0.0 726.5

0.5x 5966.7 5246.9 22.6 1.51·109 72.4 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5968.5 5247.8 22.6 1.51·109 72.5 1118.3

4x 5968.5 5247.8 22.6 1.51·109 72.5 1118.2

CV (%) 55.90 55.90 55.90 24.36 55.90 16.85

DNMT

0.25x 5997.9 5238.1 22.5 1.51·109 71.5 1118.2

0.5x 5982.3 5243.3 22.5 1.51·109 72.0 1118.3

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5961.6 5249.9 22.6 1.51·109 72.7 1118.3

4x 5959.1 5250.7 22.7 1.51·109 72.8 1118.2

CV (%) 0.27 0.1 0.33 0.16 0.73 0.00

to continue on next page . . .
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Table D.4 continued

vAICARFT vPGT vMTR #T total vTY MS

cytoplasm nucleus

GNMT

0.25x 5978.2 5244.7 22.6 1.51·109 72.2 1118.3

0.5x 5973.4 5246.2 22.6 1.51·109 72.3 1118.3

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5964.1 5249.1 22.6 1.51·109 72.6 1118.3

4x 5961.0 5250.1 22.6 1.51·109 72.7 1118.3

CV (%) 0.12 0.04 0.14 0.07 0.31 0.00

MAT-I

0.25x 6003.5 5236.2 22.4 1.51·109 71.3 1118.3

0.5x 5980.2 5244.0 22.6 1.51·109 72.1 1118.3

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5963.4 5249.4 22.6 1.51·109 72.6 1118.3

4x 5961.1 5250.1 22.6 1.51·109 72.7 1118.3

CV (%) 0.29 0.11 0.35 0.17 0.80 0.00

MAT-III

0.25x 5977.7 5244.8 22.6 1.51·109 72.2 1118.3

0.5x 5973.0 5246.3 22.6 1.51·109 72.3 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5965.0 5248.9 22.6 1.51·109 72.6 1118.3

4x 5962.8 5249.6 22.6 1.51·109 72.7 1118.3

CV (%) 0.10 0.04 0.12 0.06 0.27 0.00

MTHFD1

0.25x 5831.6 4150.1 13.3 1.31·109 28.2 1118.2

0.5x 5928.8 5255.6 22.5 1.51·109 71.4 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5994.8 5239.4 22.7 1.52·109 73.0 1118.2

4x 6008.8 5234.5 22.7 1.52·109 73.3 1118.3

CV (%) 1.2 9.74 19.99 6.11 31.2 0

MTHFR

0.25x 4749.5 5432.2 6.3 1.62·109 96.1 1118.2

0.5x 4860.4 5422.3 12.6 1.61·109 94.6 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

to continue on next page . . .
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Table D.4 continued

vAICARFT vPGT vMTR #T total vTY MS

cytoplasm nucleus

2x 6113.6 4151.5 24.0 1.29·109 24.2 1118.2

4x 5196.7 2886.8 24.2 1.23·109 10.0 1118.2

CV (%) 11.71 23.96 44.96 12.49 67.43 0.00

MTHFS

0.25x 4801.0 5222.5 22.3 1.26·109 70.3 886.8

0.5x 5458.6 5238.4 22.5 1.40·109 71.7 1012.8

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 6309.5 5253.0 22.7 1.60·109 72.9 1200.5

4x 6512.7 5255.8 22.7 1.67·109 73.2 1261.0

CV (%) 11.89 0.26 0.73 11.00 1.64 13.64

MTR

0.25x 5200.0 2890.6 6.1 1.23·109 10.1 1118.2

0.5x 6115.6 4155.1 12.0 1.29·109 24.2 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 4860.9 5422.3 25.2 1.61·109 94.5 1118.2

4x 4749.7 5432.2 25.4 1.62·109 96.1 1118.3

CV (%) 11.71 23.92 47.85 12.47 67.35 0.00

PGT

0.25x 5966.4 1312.3 22.6 1.51·109 72.5 1118.2

0.5x 5967.1 2624.4 22.6 1.51·109 72.5 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5971.2 10491.1 22.6 1.51·109 72.5 1118.3

4x 5975.4 20953.5 22.6 1.51·109 72.3 1118.2

CV (%) 0.06 98.28 0.06 0.03 0.13 0.00

SAHH

0.25x 6169.5 5162.4 21.4 1.48·109 64.5 1118.2

0.5x 6031.3 5226.3 22.3 1.50·109 70.3 1118.3

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5943.6 5255.4 22.7 1.52·109 73.3 1118.3

4x 5934.6 5258.1 22.8 1.52·109 73.5 1118.2

CV (%) 1.62 0.76 2.43 1.12 5.27 0

SHMT

to continue on next page . . .

150



Table D.4 continued

vAICARFT vPGT vMTR #T total vTY MS

cytoplasm nucleus

0.25x 6658.1 5287.2 23.6 1.55·109 79.7 1118.3

0.5x 6439.4 5277.7 23.3 1.54·109 77.8 1118.2

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 5283.1 5098.1 19.7 1.43·109 54.2 1118.2

4x 5232.0 4170.1 8.8 1.26·109 16.0 1118.2

CV (%) 11.01 9.55 31.68 8.27 44.31 0.00

TYMS

0.25x 5884.2 5239.1 22.4 0.47·109 17.8 365.6

0.5x 5912.0 5242.1 22.5 0.88·109 35.8 674.1

1x 5968.4 5247.8 22.6 1.51·109 72.5 1118.3

2x 6082.4 5257.2 22.8 2.26·109 147.8 1497.0

4x 0.0 0.0 0.0 1.61·109 0.0 1516.2

CV (%) 55.92 55.90 55.91 51.48 106.81 49.07

151



Table D.5: Steady state concentrations of model variables (in µm) for different levels of
NADPH+NADP (ranging from 0.5x to 2x of the standard concentration of 76 µm).

cytoplasm

NADPH+ THF 10fTHF CHF CH2F DHF 5mTHF 5fTHF

NADP free bound free bound

0.5x 0.058 9.334 1.852 0.444 0.004 0.551 0.648 1.200 2.820

1x 0.054 7.567 1.504 0.406 0.003 3.209 2.669 0.562 0.935

1.5x 0.046 4.643 0.925 0.264 0.002 7.164 3.605 0.130 0.131

2x 0.043 3.398 0.677 0.198 0.002 8.767 3.718 0.059 0.050

SHMT HCY MET SAM SAH

0.5x 0.470 3.725 42.631 33.416 70.748

1x 0.333 3.331 39.863 67.433 39.893

1.5x 0.201 3.125 36.945 80.901 29.549

2x 0.170 3.075 36.224 83.612 27.610

nucleus

NADPH+ THF 10fTHF CHF CH2F DHF 5mTHF 5fTHF

NADP free bound free bound

0.5x 0.033 3.558 0.696 0.079 0.003 0.550 0.252 1.489 1.476

1x 0.042 3.548 0.690 0.100 0.003 0.550 0.253 1.479 1.472

1.5x 0.047 3.543 0.687 0.111 0.003 0.549 0.253 1.473 1.470

2x 0.049 3.540 0.685 0.118 0.003 0.549 0.253 1.470 1.470
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Table D.6: Steady state concentrations of model variables (in µm) for different levels of
glycine+serine (ranging from 0.01x to 10x of the standard concentration of 2318 µm).

cytoplasm

glycine+ THF 10fTHF CHF CH2F DHF 5mTHF 5fTHF

serine free bound free bound

0.01x 0.038 6.523 1.304 0.384 0.003 4.647 3.187 0.347 0.476

0.1x 0.040 6.584 1.315 0.385 0.003 4.565 3.164 0.357 0.496

0.5x 0.046 6.688 1.333 0.383 0.003 4.427 3.126 0.375 0.529

1x 0.052 6.765 1.346 0.381 0.003 4.324 3.095 0.388 0.555

1.5x 0.056 6.817 1.354 0.380 0.003 4.254 3.074 0.397 0.574

2x 0.059 6.855 1.360 0.379 0.003 4.204 3.059 0.404 0.587

5x 0.069 6.959 1.377 0.375 0.003 4.064 3.014 0.423 0.627

10x 0.074 7.012 1.386 0.374 0.003 3.991 2.989 0.433 0.648

SHMT HCY MET SAM SAH

0.01x 0.274 2.851 32.379 95.210 20.081

0.1x 0.277 3.131 36.709 81.414 29.265

0.5x 0.282 3.234 38.454 74.467 34.365

1x 0.286 3.255 38.809 72.893 35.563

1.5x 0.289 3.264 38.962 72.190 36.105

2x 0.291 3.270 39.052 71.763 36.435

5x 0.297 3.283 39.262 70.749 37.226

10x 0.300 3.289 39.357 70.281 37.593

nucleus

glycine+ THF 10fTHF CHF CH2F DHF 5mTHF 5fTHF

serine free bound free bound

0.01x 0.007 3.505 0.697 0.170 0.005 0.549 0.253 1.478 1.363

0.1x 0.014 3.512 0.696 0.160 0.004 0.549 0.253 1.477 1.363

0.5x 0.032 3.532 0.691 0.129 0.003 0.549 0.253 1.476 1.363

1x 0.046 3.544 0.688 0.109 0.003 0.549 0.253 1.475 1.363

1.5x 0.053 3.551 0.686 0.097 0.003 0.549 0.253 1.474 1.361

2x 0.059 3.555 0.685 0.090 0.002 0.549 0.253 1.473 1.361

5x 0.072 3.566 0.682 0.072 0.002 0.549 0.253 1.472 1.361

10x 0.078 3.570 0.680 0.063 0.002 0.549 0.253 1.471 1.361

153



Appendix E

Additional material for Chapter 5

E.1 Comparison with related work

In recent years, numerous computational drug repurposing methods have been developed. In

particular, network-based in silico repositioning strategies have received great attention given the

suitability of network data structures to represent biological data in an efficient way. The most

commonly adopted network-based computational strategies have been described in recent review

articles [153;283].

The available methods can be categorized according to the type of input data they require as

well as the type of network used and the computational strategy applied to identify repurposing

drug candidates.

With regard to the input data, common strategies are based on gene/protein expression profiles

of drugs and diseases, disease symptoms, chemical structures of drugs, reported drug side effects,

known drug targets, known drug indications, and/or clinical data related to the drug of interest

(from clinical trials and electronic health records) [206].

To describe the interactions among the players of interest, different types of networks can

be considered. Protein-protein interaction networks, gene regulatory networks and metabolic net-

works are commonly used to represent the interactions among the molecular players that constitute

a biological system (protein-protein, transcription factor-gene, and metabolite-metabolite interac-

tions). For example, a recent study by Cheng and collaborators identified new drug repurposing

candidates for cardiovascular disease mapping both disease genes and drug targets on a protein-

protein interaction network [44]. The transcriptomic profiles of drugs and diseases can also be

analyzed using network-based approaches. For example, the drug-gene signatures from Connec-

tivity Map have been integrated with genes frequently mutated in cancer to identify new drugable

targets and anticancer indications for existing drugs [46]. In addition, also information present in

genome-scale metabolic models have been successfully integrated in a network-based setting to

identify drug targets for the treatment of metabolic disorders [144;145]. Heterogeneous networks

constituted by different types of nodes, such as drugs, targets or diseases, can be generated. The

analysis of these kinds of networks is commonly used for the prediction of new drug-target inter-

actions [153]. In this case networks with at least two distinct types of nodes are constructed on the

basis of known associations and different algorithms are used to predict new interactions.

The prediction of new drug applications or drug-disease associations can be based solely on the
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E.1. Comparison with related work

network characteristics or exploit other sources of information such as drug structure similarity,

target similarity, disease similarity [283].

Inspired by these network-based repurposing studies, we developed a new computational strat-

egy that tries to combine different input data, background networks and similarity measures in

an innovative framework. The background network was built by integrating protein-protein and

transcription factor-gene interactions; the latter was demonstrated as particularly suitable to clus-

ter GWAS derived disease genes. A further strength of our study is the tissue-specificity of the

generated networks, as it was extensively demonstrated that gene function is frequently related to

the tissue and disease considered [32;55;98;132;138;279].

To obtain a detailed description of the disease pathways, we integrated genetic information

derived from GWAS with literature-derived knowledge. GWAS data has already been exploited

for computational repurposing [223]. However, to address the problem of distinguishing causal genes

from genes located in the same genomic region but not involved in the disease predisposition, we

performed a preliminary filtering step based on pathway enrichment analysis, similarly to previous

GWAS prioritization studies [60;141;198;210;228]. Moreover, the GWAS results were complemented

with literature that captures also non-GWAS findings, such as the results of functional studies.

For the drugs, we combined gene expression profiles with information about the drug target.

The network-based setting allowed us integrating this two distinct information using a novel strat-

egy to identify drug modules. Indeed, the module detection is based on the idea that the gene

expression perturbation observed in the drug signature profiles is a cascade starting with the drug-

target binding. Moreover, the regulatory-network component of our background network supports

this reasoning because it describes the transcriptional regulation exerted by transcription factors.

Another aspect that separates our strategy from previously published methods is the com-

bined use of topological network information and semantic similarities to identify repurposing

candidates. The two approaches have been used separately by others to identify new disease-drug

interactions [104;251]. While the idea to combine network characteristics and functional similarities

has already been applied for the detection of network modules [264], the integration of semantic sim-

ilarities and topological properties between network modules has not yet been applied to identify

novel disease-drug relations.
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E.2 Contribution of the different data sources to the final predictions

In the pipeline we developed, several data sources are integrated by means of network analysis.

Tissue-specific networks, generated by merging protein-protein interaction networks (PPI) and

transcriptional regulatory networks (RegNet), provided the scaffold of the analysis. GWAS re-

sults and text mining results were combined to detect disease relevant network modules (MetSyn

modules). Gene set enrichment analysis of GWAS genes identified significant pathways that were

the basis for filtering both the GWAS and text mining genes. Specifically, only genes that are part

of at least one significant pathway were selected for subsequent analyses. The identification of

drug repurposing candidates was based on the definition of a proximity score that connects drug

modules and MetSyn modules combining network-based distance and functional similarity. In the

following section, the contribution of the individual system components to the final prediction will

be described (GWAS vs. text mining, PPI vs. regulatory network, network-based distance vs.

GO functional similarity).

GWAS vs. text mining

With our workflow that combines genes derived from GWAS and text mining results, two MetSyn

modules were identified in the adipose network, and three MetSyn modules were detected for liver

and muscle. If we consider only the genes derived from GWAS results (286 genes, Appendix E,

Table E.11), one out of two MetSyn module in the adipose network, one out of three MetSyn

module in the muscle network, and three out of three MetSyn modules in the liver network can be

detected. On the other hand, taking into account only genes derived from text mining results (546

genes, Appendix E, Table E.11), leads to the detection of two out of two MetSyn module in the

adipose network, three out of three MetSyn modules in the muscle network, and two out of three

MetSyn modules in the liver network. However, the final selection of text mining derived genes is

guided by the GWAS results through pathway analysis and thus the comparison of the individual

contribution of text mining and GWAS is not straightforward and should be interpreted in the

context of the entire methodological framework. Overall, we can observe that the addition of

text mining genes allows a more detailed disease characterisation. For example, the inflammation-

related MetSyn module in the adipose network would not have been identified if the analysis

had been limited to the genes derived solely from GWAS. Moreover, the source (GWAS and text

mining) of the MetSyn genes included in the modules was evaluated and is summarised in Table

E.1. Overall, the text mining genes play a major role for the disease enrichment analysis. In all

except two cases (Liver Modules 1 and 3), text mining genes accounted for the significance of the

modules.

PPI vs. regulatory network

To evaluate the contribution of the protein-protein and regulatory network interactions, we first

evaluated the composition of the complete networks (Table E.2) and afterwards the composition of

the MetSyn modules for both edge and node source (Tables E.3 and E.4). Overall, we can conclude

that the edges and nodes derived from the PPI networks contribute more to the overall network

structure. On the level of MetSyn modules, only one module (Liver Module 1) is solely constructed
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Table E.1: Contribution of GWAS vs. text mining results to the MetSyn modules.

Network Module Module size Number of disease genes

Total GWAS Text GWAS &

mining text mining

Adipose 1 122 23 0 19 4

2 51 19 1 10 8

Liver 1 17 8 3 1 4

2 49 21 0 10 11

3 20 6 3 1 2

Muscle 1 299 39 2 31 6

2 50 17 1 9 7

3 26 7 0 5 2

based on edges and nodes from the regulatory network. This relatively small module is related to

the modification of chemicals (Reactome pathway: Phase II - Conjugation of compounds).

Table E.2: Contribution of regulatory and protein-protein interactions (RegNet vs. PPI) to the
final networks.

Network Number of edges Number of nodes

Total RegNet PPI Total RegNet PPI RegNet and PPI

Adipose 9152 255 8900 886 124 661 101

Liver 15846 1520 14326 1544 395 983 166

Muscle 10555 603 9952 1106 232 741 133

Table E.3: Contribution of regulatory and protein-protein interactions (network edges) to the
edges of the MetSyn modules.

Network Module Number of edges

Total RegNet PPI

Adipose 1 872 0 872

2 324 0 324

Liver 1 29 29 0

2 220 8 212

3 238 0 238

Muscle 1 3512 2 3510

2 248 0 248

3 202 0 202

network-based distance vs. GO functional similarity

Finally, we evaluated the contribution of the closest network distance and the GO similarity to the

final significant results by testing how many of the significant results remain significant if only the

topological aspect or the semantic similarity was considered. With the integrated proximity score,
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Table E.4: Contribution of regulatory and protein-protein interactions (network nodes) to the
nodes of the MetSyn modules.

Network Module Number of nodes

Total RegNet PPI RegNet & PPI

Adipose 1 122 0 119 3

2 51 0 44 7

Liver 1 17 17 0 0

2 49 3 37 9

3 20 0 19 1

Muscle 1 299 0 265 34

2 50 0 38 12

3 26 0 25 1

we identified 28, 31 and 50 significant drugs in the adipose, liver and muscle network, respectively.

Overall, for all MetSyn modules the number of significant results increases using the integrated

score (Figure E.1a). The evaluation of the relative contribution of the two aspects showed that

the GO similarity score alone identified more significant drugs than the topological score alone

(Figure E.1b). The only module for which the topological score has a greater impact is Module 2

in the muscle network (Figure E.1).
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Figure E.1: Contribution of the topological score and the functional similarity to the final
significant results. a) Number of significant drugs detected considering only the topological score,
only the similarity score, or the integrated score. b) Relative contribution of the two components
of the integrated score to the final predictions. The blue bar indicates drugs only significant when
the integrated score was applied.
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E.3 Evaluation of score effectiveness

To test the effectiveness of our approach in identifying drugs affecting MetSyn-pathways, we looked

at drugs already approved for MetSyn-related traits. We identified them by parsing the indications

provided by DrugBank [280] (version 5.1.1) and filtering for the following search-terms:

obesity, hyperglycemia, glycemicontrol, dyslipid(a)emia, high cholesterol, high triglyceride,

hyperlipid(a)emia, hypertension, high blood pressure, NIDDM, cholesterol-lowering, antilipemic,

statins, lipid-lowering, hypercholesterolemia, and diabetes.

For the diabetes search-term, a further refinement was carried out limiting the results to those

referring to type 2 diabetes. Moreover, for the adipose tissue, the resulting list was trimmed to

those drugs affecting adipose tissue and those for which we were able to generate a drug module

in the adipose network (dependent on availability of drug target and signature) (Table E.5).

Based on the information provided in DrugBank [280] and ChEMBL [57], six of the resulting

ten drugs have an obvious impact on adiposity (bezafibrate, clofibrate, fenofibrate, gemfibrozil,

mifepristone, and pioglitazone), while four drugs (atorvastatin, glipizide, lovastatin and repaglin-

ide) did not have a direct connection to adiposity. However, for Atrovastatin and Lovastatin

recent publications suggest their impact also on adiposity [177;197;286]. The two sulfonylureas drugs

Glipizide and Repaglinide were also kept because of a described effect on adipose tissue via the

inhibition of lipolysis [233;256]. For this reason we executed two analyses, one with all the 6 top

MetSyn drugs (Analysis A: bezafibrate, clofibrate, fenofibrate, gemfibrozil, mifepristone, and pi-

oglitazone), and an additional one including all ten MetSyn drugs (Analysis B: bezafibrate, clofi-

brate, fenofibrate, gemfibrozil, mifepristone, pioglitazone, atorvastatin, glipizide, lovastatin and

repaglinide).

To evaluate the effectiveness of our scoring system, we tested how many MetSyn drugs our

method could identify at different significance thresholds (Figure E.2).

With our selected significance threshold of 95% we are able to detect half of the MetSyn drugs in

both Analysis (Analysis A: pioglitazone, mifepristone, and fenofibrate; Analysis B: pioglitazone,

mifepristone, fenofibrate, glipizide and lovastatin). This still holds for the threshold of 99% for

Analysis A, while for Analysis B the ratio of detected MetSyn drugs decreases because Glipizide

and Lovastatin are no longer significant. Lowering the threshold to 85% we could identify all six

top MetSyn drugs, while Atorvastatin and Repaglinide are only identified at a threshold level of

75% and 50%, respectively.
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Figure E.3: Functional annotation of SNPs from GWAS catalog. a) Functional annotation of
the SNPs extracted from GWAS catalog. SNPs were categorized in one or more of the indicated
categories according to their genomic location. The location of the analyzed gene elements was
retrieved from the University of California Santa Cruz (UCSC) Known Genes dataset [113]. b)-d)
Annotation of SNPs according to their position relative to regulatory regions. The positions of
MetSyn-related GWAS SNP and the 18-chromatin-state annotation of a) adipose tissue, b) liver
tissue and c) skeletal muscle tissue obtained from the NIH Roadmap Epigenomics project [218]

were overlapped to evaluate the regulatory potential of the identified SNPs. The full set SNP
of HapMap SNPs was analyzed in the same way for comparison. Fisher exact test was used to
test the over-/underrepresentation of GWAS SNPs in regulatory regions. Statistical significance
is denoted as follows: ns: not significant ( p > 0.05), * : .01 < p ≤ 0.05, ** : 0.01 < p ≤ 0.001,
*** : p < 0.001.
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Figure E.4: Overview of MetSyn genes identification. For each of the three resources (GWAS
catalog, GWAS summary statistics and text mining) the number of genes and their intersection
is shown.
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Figure E.5: Overview of drug selection. The drugs available in DrugBank version 5.1.1 were
filtered according to the following steps: We kept 1) drugs having human as the organisms for
which the drug is most effective and whose target(s) could be mapped to official gene symbol(s). 2)
approved drugs. 3) targets with a pharmacological active status. 4) targets that could be mapped
to at least one of our background networks. 5) drugs for which a drug signature could be retrieved
from LINCS. After the proximity score calculation, we identified the drugs with a significant score
(step 6). For step 5 and 6, venn diagrams indicate the overlap of selected drugs across the three
networks.
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Figure E.6: Overview of the filtering and prioritization of the significant results. The drugs with
a significant score were filtered according to the following steps: 1) drugs with a contraindication
related to MetSyn were excluded, 2) drugs with a target that is already under investigation
for therapeutic interventions related to MetSyn were excluded, 3) the remaining results were
filtered according to the tissue specific expression of the targets. Only the targets of drug-targets
interactions with a tissue-specific expression in agreement with MetSyn pathophysiology were kept.
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Supplementary Figure 3: Association between the identified active drug targets in the liver 
network and traits selected to be relevant for MetSyn-related traits based on the association 
scores provided in by the OpenTargets platform10.; a) Heatmap of total association score and b) 
heatmap of association score based on ChEMBL information about drugs approved for 
marketing by FDA or under evaluation in clinical trials.
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Figure E.7: Association between the identified drug targets in the liver network and traits
selected to be relevant for MetSyn-related traits based on the association scores provided in by the
OpenTargets platform [133].; a) Heatmap of total association score and b) heatmap of association
score based on ChEMBL information about drugs approved for marketing by FDA or under
evaluation in clinical trials.
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Supplementary Figure 4: Association between the identified active drug targets in the muscle 
network and traits selected to be relevant for MetSyn-related traits based on the association 
scores provided in by the OpenTargets platform10.; a) Heatmap of total association score and b) 
heatmap of association score based on ChEMBL information about drugs approved for 
marketing by FDA or under evaluation in clinical trials.
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Figure E.8: Association between the identified drug targets in the muscle network and traits
selected to be relevant for MetSyn-related traits based on the association scores provided in by the
OpenTargets platform [133].; a) Heatmap of total association score and b) heatmap of association
score based on ChEMBL information about drugs approved for marketing by FDA or under
evaluation in clinical trials.
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Figure E.9: Btk expression in immune related cell from ImmGen database. The bar chart shows
Btk levels in derived from RNASeq experiments performed by ImmGen [109].
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Figure E.10: BTK expression profiles and macrophages enrichment in human adipose tissue. a)
BTK expression profiles obtained from the dataset E-MTAB-54 [64] in abdominal adipose tissue of
obese and normal subjects. b) Estimation of macrophages enrichment obtained from the dataset
E-MTAB-54 [64] in abdominal adipose tissue of obese and normal subjects using CIBERSORT [181].
c) BTK expression profile obtained from the dataset GSE27951 [123] comparing overweight subjects
with normal glucose tolerance, impaired glucose tolerance and diabetes mellitus. d) Estimation of
macrophages enrichment obtained from the dataset GSE27951 [123] comparing overweight subjects
with normal glucose tolerance, impaired glucose tolerance and diabetes mellitus using CIBER-
SORT [181]. In a)-d), statistical significance is denoted as follows: ns: not significant (p > 0.05), *
: 0.01 < p ≤ 0.05, ** : 0.01 ≤ p < 0.001, ***: p ≤ 0.001.
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E.5 Supplementary Tables

Table E.6: The 15 selected studies used as resource for GWAS summary statistics, obtained
from the results of Marbach et al. applying the PASCAL tool [141] (downloaded from http:

//regulatorycircuits.org/download.html)

Trait File Pmid

Coronary artery disease 23 coronary artery disease.txt 21378990

Blood pressure (systolic) 22 blood pressure systolic.txt 21909115

HDL cholesterol 18 hdl cholesterol.txt 20686565

LDL cholesterol 19 ldl cholesterol.txt 20686565

Total cholesterol 20 total cholesterol.txt 20686565

Triglycerides 21 triglycerides.txt 20686565

Type 2 diabetes 26 type 2 diabetes.txt 22885922

Insulin secretion (CIR) 29 insulin secretion.txt 24699409

Glucose tolerance 27 2hr glucose.txt 22885924

Fasting glucose 24 fasting glucose.txt 22885924

Fasting insulin (BMI-adj.) 32 fasting insulin.txt 22885924

Glycated hemoglobin 25 glycated hemoglobin.txt 20858683

Beta-cell function 31 beta-cell function.txt 20081858

Insulin resistance 30 insulin resistance.txt 20081858

Fasting proinsulin 28 fasting proinsulin.txt 21873549

Table E.7: Tissue expression for the filtered significant targets in the adipose network.

Drug Target Tissue specificity

Human Protein Atlas GTEx FANTOM5

BTK tissue enhanced tissue enhanced tissue enhanced

(tonsil, lymph node) (spleen) (appendix, spleen, tonsil)

JAK1 expressed in all expressed in all expressed in all

PARP1 expressed in all expressed in all expressed in all

RARA expressed in all expressed in all expressed in all

RARG tissue enhanced expressed in all expressed in all

(skin)

RXRA mixed expressed in all expressed in all

RXRB mixed expressed in all expressed in all

XIAP expressed in all expressed in all expressed in all

172

http://regulatorycircuits.org/download.html)
http://regulatorycircuits.org/download.html)


E.5. Supplementary Tables

Table E.8: Tissue expression for the filtered significant targets in the liver network.

Drug Target Tissue specificity

Human Protein Atlas GTEx FANTOM5

FGFR3 tissue enriched tissue enhanced tissue enhanced

(skin) (skin) (caudate, hippocampus)

NR1I2 group enriched group enriched tissue enhanced

(colon, duodenum, (colon, liver, small intestine) (colon, small intestine)

gallbladder, liver,

rectum, small intestine)

RARA expressed in all expressed in all expressed in all

RXRA mixed expressed in all expressed in all

RXRB mixed expressed in all expressed in all

Table E.9: Tissue expression for the filtered significant targets in the muscle network.

Drug Target Tissue specificity

Human Protein Atlas GTEx FANTOM5

ABL1 expressed in all expressed in all expressed in all

ERBB2 expressed in all expressed in all expressed in all

HDAC1 expressed in all expressed in all expressed in all

HDAC2 expressed in all expressed in all expressed in all

HDAC3 expressed in all expressed in all expressed in all

HDAC4 mixed expressed in all expressed in all

JAK1 expressed in all expressed in all expressed in all

JAK2 mixed expressed in all expressed in all

MET expressed in all mixed expressed in all

RARA expressed in all expressed in all expressed in all

RARG tissue enhanced expressed in all expressed in all

(skin)

RXRA mixed expressed in all expressed in all

RXRB mixed expressed in all expressed in all
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Table E.10: Pathways and GO categories identified as enriched in MetSyn genes.

NAME ID OVER- PVAL ADJ. DATABASE MODULE

LAP PVAL NAME

carbohydrate homeostasis GO:0033500 34/64 4.47·10−10 6.86·10−7 GO (BP) Sugar metabolism

glucose homeostasis GO:0042593 37/75 1.21·10−9 1.39·10−6 GO (BP) Sugar metabolism

regulation of insulin secretion GO:0050796 34/99 1.20·10−4 2.75·10−2 GO (BP) Sugar metabolism

regulation of peptide hormone secretion GO:0090276 27/74 1.88·10−4 3.93·10−2 GO (BP) Sugar metabolism

Type II diabetes mellitus hsa04930 19/48 5.06·10−4 3.70·10−2 KEGG Sugar metabolism

Type II diabetes mellitus WP1584 12/22 1.55·10−4 9.31·10−3 WikiPathways Sugar metabolism

acylglycerol homeostasis GO:0055090 20/23 1.98·10−12 9.13·10−9 GO (BP) Lipid metabolism

cholesterol efflux GO:0033344 14/24 1.56·10−5 5.12·10−3 GO (BP) Lipid metabolism

cholesterol homeostasis GO:0042632 27/59 1.38·10−6 6.33·10−4 GO (BP) Lipid metabolism

cholesterol transport GO:0030301 25/45 2.75·10−8 2.11·10−5 GO (BP) Lipid metabolism

chylomicron remnant clearance GO:0034382 7/8 4.85·10−5 1.31·10−2 GO (BP) Lipid metabolism

Chylomicron-mediated lipid transport R-HSA-174800 13/17 3.17·10−7 2.22·10−4 Reactome Lipid metabolism

Composition of Lipid Particles WP3601 8/9 1.00·10−5 1.40·10−3 WikiPathways Lipid metabolism

Estrogen Receptor Pathway WP2881 8/13 7.05·10−4 2.68·10−2 WikiPathways Lipid metabolism

high-density lipoprotein particle remodeling GO:0034375 13/18 9.46·10−7 5.45·10−4 GO (BP) Lipid metabolism

LDL-mediated lipid transport R-HSA-171052 6/6 3.92·10−5 1.10·10−2 Reactome Lipid metabolism

Lipid digestion, mobilization, and transport R-HSA-73923 28/71 2.87·10−5 1.10·10−2 Reactome Lipid metabolism

lipid homeostasis GO:0055088 21/50 9.60·10−5 2.33·10−2 GO (BP) Lipid metabolism

Lipoprotein metabolism R-HSA-174824 21/34 2.79·10−8 3.91·10−5 Reactome Lipid metabolism

negative regulation of lipid metabolic

process

GO:0045833 11/20 2.67·10−4 4.56·10−2 GO (BP) Lipid metabolism

positive regulation of lipid biosynthetic

process

GO:0046889 14/29 2.43·10−4 4.35·10−2 GO (BP) Lipid metabolism

positive regulation of lipid metabolic

process

GO:0045834 12/22 1.55·10−4 3.41·10−2 GO (BP) Lipid metabolism

PPAR signaling pathway hsa03320 26/69 1.34·10−4 2.55·10−2 KEGG Lipid metabolism

regulation of lipoprotein lipase activity GO:0051004 16/21 1.38·10−8 1.27·10−5 GO (BP) Lipid metabolism

reverse cholesterol transport GO:0043691 13/18 9.46·10−7 5.45·10−4 GO (BP) Lipid metabolism

secondary alcohol metabolic process GO:1902652 15/32 2.21·10−4 4.24·10−2 GO (BP) Lipid metabolism

Statin Pathway WP430 23/31 2.07·10−11 8.69·10−9 WikiPathways Lipid metabolism

sterol homeostasis GO:0055092 27/59 1.38·10−6 6.33·10−4 GO (BP) Lipid metabolism

sterol metabolic process GO:0016125 25/60 2.52·10−5 7.75·10−3 GO (BP) Lipid metabolism

triglyceride homeostasis GO:0070328 22/29 2.72·10−11 6.26·10−8 GO (BP) Lipid metabolism

triglyceride-rich lipoprotein particle

remodeling

GO:0034370 11/14 1.74·10−6 7.24·10−4 GO (BP) Lipid metabolism

very-low-density lipoprotein particle GO:0034361 11/16 1.44·10−5 5.75·10−3 GO (CC) Lipid metabolism

very-low-density lipoprotein particle

remodeling

GO:0034372 9/10 2.05·10−6 7.24·10−4 GO (BP) Lipid metabolism

Adipocytokine signaling pathway hsa04920 26/70 1.76·10−4 2.55·10−2 KEGG Fat Storage

Adipogenesis WP236 42/130 1.01·10−4 7.08·10−3 WikiPathways Fat Storage

negative regulation of lipid storage GO:0010888 10/17 2.45·10−4 4.35·10−2 GO (BP) Fat Storage

negative regulation of macrophage derived

foam cell differentiation

GO:0010745 9/14 1.99·10−4 3.99·10−2 GO (BP) Fat Storage

Transcriptional regulation of white

adipocyte differentiation

R-HSA-381340 29/79 9.74·10−5 1.95·10−2 Reactome Fat Storage

Arylamine metabolism WP694 6/6 3.92·10−5 3.29·10−3 WikiPathways Chemical

Modifications

Chemical carcinogenesis hsa05204 28/82 5.11·10−4 3.70·10−2 KEGG Chemical

Modifications

Ethanol oxidation R-HSA-71384 9/12 3.14·10−5 1.10·10−2 Reactome Chemical

Modifications

Fatty Acid Omega Oxidation WP206 9/16 7.96·10−4 2.78·10−2 WikiPathways Chemical

Modifications

flavonoid glucuronidation GO:0052696 9/10 2.05·10−6 7.24·10−4 GO (BP) Chemical

Modifications

xenobiotic glucuronidation GO:0052697 9/12 3.14·10−5 9.02·10−3 GO (BP) Chemical

Modifications

Peptide hormone metabolism R-HSA-2980736 30/81 6.14·10−5 1.43·10−2 Reactome

renal system development GO:0072001 24/60 8.01·10−5 2.05·10−2 GO (BP)

Wnt Signaling Pathway WP428 25/67 2.14·10−4 1.12·10−2 WikiPathways
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Table E.11: Final list of genes identified associated with MetSyn (MetSyn genes). MetSyn genes

are identified by the official gene symbol and entrezid. The source indicates how the genes were

identified (TM = Text Mining, GC = GWAS catalog, GS = GWAS summary statistics).

GENE GENE SOURCE GENE GENE SOURCE GENE GENE SOURCE

SYMBOL ID SYMBOL ID SYMBOL ID

A2M 2 TM FFAR1 2864 TM ORMDL3 94103 GS

ABCA1 19 GC,GS,TM FFAR2 2867 TM OSBPL8 114882 TM

ABCB4 5244 TM FFAR3 2865 TM OSM 5008 TM

ABCC8 6833 GC,GS,TM FFAR4 338557 TM P4HB 5034 TM

ABCG1 9619 TM FGA 2243 TM PARK7 11315 TM

ABCG2 9429 TM FGB 2244 TM PAX2 5076 GC

ABCG5 64240 GC,GS,TM FGFR4 2264 GC,TM PAX6 5080 GC,TM

ABCG8 64241 GC,GS,TM FGG 2266 TM PAX8 7849 GC

ABHD5 51099 TM FITM2 128486 GC,TM PCK1 5105 GC,TM

ACAA1 30 TM FOSL1 8061 TM PCK2 5106 TM

ACACB 32 TM FOXA2 3170 GC,GS,TM PCSK1 5122 GC,GS,TM

ACE 1636 GC,TM FOXC2 2303 TM PCSK2 5126 TM

ACE2 59272 TM FOXO1 2308 TM PCSK5 5125 GC,TM

ACHE 43 GC,TM FRAT1 10023 GC PCSK9 255738 GC,GS,TM

ACOX1 51 GC,TM FRZB 2487 TM PDE3B 5140 GC,TM

ACOX2 8309 GC FURIN 5045 GC,TM PDIA2 64714 GC,TM

ACSBG1 23205 TM FZD1 8321 TM PDK2 5164 TM

ACSL1 2180 GC,TM FZD2 2535 TM PDK4 5166 GC,TM

ACSL3 2181 TM FZD5 7855 GC PDX1 3651 GC,GS,TM

ACSL4 2182 TM FZD8 8325 TM PER2 8864 GC,TM

ACSL5 51703 GC,TM FZD9 8326 GC,GS PHKA2 5256 TM

ACSM1 116285 TM G6PC 2538 TM PIK3CA 5290 TM

ACSM2A 123876 GC G6PC2 57818 GC,GS,TM PIK3CB 5291 TM

ACSM3 6296 TM GADD45A 1647 TM PIK3CD 5293 TM

ACSS2 55902 GC,TM GATA2 2624 TM PIK3CG 5294 GC,TM

ADCY5 111 GC,GS,TM GATA3 2625 TM PIK3R1 5295 TM

ADH1A 124 GC,TM GATA4 2626 GC,TM PIK3R2 5296 TM

ADH1B 125 GC,TM GCG 2641 TM PIK3R3 8503 GC

ADH1C 126 GC,TM GCGR 2642 TM PIK3R5 23533 TM

ADH4 127 GC,TM GCK 2645 GC,GS,TM PKD1 5310 TM

ADH5 128 GC GCKR 2646 GC,GS,TM PKHD1 5314 GC,TM

ADH6 130 GC GDF10 2662 TM PKM 5315 TM

ADH7 131 GC GH1 2688 GC,TM PLA2G10 8399 TM

ADIPOQ 9370 GC,TM GHRL 51738 TM PLA2G7 7941 GC,TM

ADIPOR1 51094 TM GIP 2695 GC,TM PLAU 5328 TM

ADIPOR2 79602 TM GIPR 2696 GC,GS,TM PLIN1 5346 TM

ADRA1B 147 TM GK 2710 TM PLIN2 123 TM

ADRA2A 150 TM GLI2 2736 TM PLIN5 440503 TM

ADRA2C 152 TM GLP1R 2740 GC,TM PLTP 5360 GC,GS,TM

AGPAT2 10555 TM GLUD1 2746 TM PNLIP 5406 TM

AGRP 181 GC,TM GNAT3 346562 TM PNLIPRP1 5407 GC

AGT 183 GC,TM GNB3 2784 TM PNLIPRP2 5408 GC

AGTR1 185 TM GPAM 57678 GC,GS,TM PNPLA2 57104 TM

AHR 196 TM GPER1 2852 GC,TM PNPLA3 80339 GC,TM

AKR1C2 1646 TM GPIHBP1 338328 TM PNPLA4 8228 TM

AKT1 207 GC,TM GPLD1 2822 TM PNPLA5 150379 TM

AKT2 208 GC,TM GPR119 139760 TM POMC 5443 GC,TM

AKT3 10000 TM GRP 2922 GC,TM PPARA 5465 GC,TM

ALB 213 TM GSK3B 2932 GC,TM PPARD 5467 TM

ALDH1A3 220 TM GSTA1 2938 TM PPARG 5468 GC,GS,TM

ALDH1B1 219 TM GSTK1 373156 TM PPARGC1A 10891 TM

ALDH2 217 GC,GS,TM GSTM1 2944 GC,TM PPP1CA 5499 TM

AMN 81693 GC GSTM2 2946 GC,TM PPP1CB 5500 TM

ANGPTL3 27329 GC,GS,TM GSTM3 2947 TM PPP1CC 5501 TM

ANGPTL4 51129 GC,TM GSTM4 2948 GC,TM PPP2R5E 5529 GC

ANGPTL8 55908 GC,TM GSTM5 2949 GC,TM PPP3CB 5532 TM

ANPEP 290 GC,TM GSTO1 9446 TM PRKAA1 5562 TM
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APOA1 335 GC,GS,TM GSTP1 2950 TM PRKAA2 5563 TM

APOA2 336 TM GSTT1 2952 TM PRKAB1 5564 TM

APOA4 337 GC,GS,TM GTF3A 2971 GC PRKAG1 5571 GC

APOA5 116519 GC,GS,TM GZMH 2999 TM PRKAG2 51422 TM

APOB 338 GC,GS,TM HAS2 3037 TM PRKAG3 53632 GC

APOC1 341 GC,GS,TM HCAR2 338442 GC,TM PRKCA 5578 GC,TM

APOC2 344 GC,GS,TM HDAC3 8841 TM PRKCB 5579 TM

APOC3 345 GC,GS,TM HECTD4 283450 GC,GS,TM PRKCD 5580 GC,TM

APOC4 346 GC,GS,TM HFE 3077 GC,TM PRKCE 5581 TM

APOD 347 TM HIF1A 3091 TM PRKCQ 5588 TM

APOE 348 GC,GS,TM HK1 3098 GC,GS,TM PRKCZ 5590 GC,TM

APOF 319 GC,TM HK2 3099 TM PRKD1 5587 TM

APOH 350 GC,TM HKDC1 80201 GC,TM PRKN 5071 GC

APOL1 8542 TM HMGA1 3159 GC,TM PRLR 5618 TM

APOM 55937 GC,TM HMGCR 3156 GC,GS,TM PROX1 5629 GC,TM

AQP7 364 TM HMGCS2 3158 GC,TM PSMD9 5715 TM

ARL3 403 GC HNF1A 6927 GC,GS,TM PTCH1 5727 GC,TM

ARNT 405 GC,TM HNF1B 6928 GC,GS,TM PTGIS 5740 TM

ARNTL 406 GC,TM HNF4A 3172 GC,TM PTGS2 5743 TM

ATP6AP2 10159 TM HPGDS 27306 TM PTPN11 5781 GC,GS,TM

AXIN1 8312 GC,TM HSD11B1 3290 TM PTPN2 5771 GC,TM

BAD 572 TM HSD17B13 345275 GC,TM PYGO1 26108 TM

BAG6 7917 GC,TM HSPG2 3339 TM RAC1 5879 GC,TM

BCHE 590 TM HTR2C 3358 TM RAP1A 5906 TM

BLK 640 GC,TM IFNG 3458 TM RAPGEF4 11069 GC

BMP2 650 TM IGF1 3479 GC,TM RARA 5914 GC,TM

BMP4 652 TM IGF2 3481 GC,TM RB1 5925 TM

BMP8A 353500 GC,GS IKBKB 3551 TM RBL2 5934 GC,TM

BSCL2 26580 GC,TM IKBKG 8517 TM RELA 5970 GC,TM

C1QTNF3 114899 TM IL18 3606 TM REN 5972 TM

CACNA1A 773 TM IL1B 3553 TM RETN 56729 TM

CACNA1C 775 TM IL4 3565 TM RFX6 222546 GC,TM

CACNA1D 776 GC,TM IL6 3569 GC,TM RHOA 387 TM

CACNA1E 777 TM IL6ST 3572 TM RORA 6095 GC,TM

CACNA2D2 9254 GC,TM ILK 3611 TM RPS6 6194 TM

CAMKK2 10645 GC,TM INHBB 3625 TM RXRA 6256 TM

CAPN10 11132 TM INHBC 3626 GC,GS RXRB 6257 GC

CARM1 10498 GS INHBE 83729 GC,GS,TM RXRG 6258 TM

CARTPT 9607 TM INPP5K 51763 GC RYK 6259 GC

CAV1 857 TM INS 3630 GC,TM SALL1 6299 GC

CAV3 859 TM INS-IGF2 723961 GC SAR1B 51128 GC

CBR1 873 TM INSIG1 3638 TM SCARB1 949 GC,GS,TM

CCL5 6352 TM INSR 3643 GC,TM SCD 6319 GC,TM

CCND1 595 TM IRS1 3667 GC,TM SCP2 6342 TM

CCND2 894 GC,TM IRS2 8660 TM SDC1 6382 GC

CCND3 896 TM IRS4 8471 TM SEC11A 23478 GC

CD36 948 GC,TM ISL1 3670 TM SELENOS 55829 TM

CDK4 1019 TM ITGAV 3685 TM SELENOT 51714 TM

CDK8 1024 GC ITGB3 3690 GC,TM SERAC1 84947 GC

CDKN1A 1026 TM ITPR2 3709 GC SERPINE1 5054 TM

CDX2 1045 GC,GS,TM ITPR3 3710 TM SFRP4 6424 TM

CEACAM1 634 TM JAK2 3717 TM SHH 6469 TM

CEBPA 1050 GC,TM JUN 3725 TM SIRT1 23411 TM

CEBPB 1051 TM KCNB1 3745 TM SIRT4 23409 TM

CEBPD 1052 TM KCNJ11 3767 GC,GS,TM SIX1 6495 TM

CEL 1056 TM KCTD11 147040 GC SIX2 10736 GC

CELF1 10658 GC,GS,TM KIF5A 3798 GC SLC25A4 291 TM

CETP 1071 GC,GS,TM KLF15 28999 TM SLC25A5 292 TM

CFD 1675 TM KLF5 688 TM SLC25A6 293 TM

CGA 1081 TM KLF6 1316 TM SLC27A1 376497 TM

CH25H 9023 TM KREMEN1 83999 GC,TM SLC27A2 11001 TM

CHD7 55636 TM LCAT 3931 GC,GS,TM SLC27A4 10999 GC,TM

CHUK 1147 TM LDLR 3949 GC,GS,TM SLC27A5 10998 TM

CIDEA 1149 TM LDLRAP1 26119 GC,TM SLC27A6 28965 TM

CLN8 2055 GC,TM LEP 3952 GC,TM SLC2A1 6513 TM

CLOCK 9575 TM LEPR 3953 GC,TM SLC2A2 6514 GC,GS,TM

CLU 1191 TM LIF 3976 TM SLC2A4 6517 GC,TM
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CMA1 1215 GC,TM LIPC 3990 GC,GS,TM SLC30A7 148867 TM

CNTFR 1271 TM LIPE 3991 TM SLC30A8 169026 GC,GS,TM

CPB1 1360 TM LIPF 8513 TM SLC8B1 80024 GC

CPB2 1361 TM LIPG 9388 GC,GS,TM SMAD3 4088 GC,TM

CPE 1363 GC LIPI 149998 TM SMO 6608 TM

CPN1 1369 TM LIPN 643418 TM SNAP25 6616 TM

CPT1A 1374 GC,TM LMF1 64788 TM SOAT1 6646 TM

CPT1B 1375 TM LMNA 4000 TM SOAT2 8435 GC

CPT1C 126129 TM LPA 4018 GC,GS,TM SOCS1 8651 TM

CPT2 1376 TM LPIN1 23175 TM SOCS2 8835 TM

CREB1 1385 TM LPIN3 64900 GS SOCS3 9021 GC,TM

CREBBP 1387 TM LPL 4023 GC,GS,TM SORBS1 10580 TM

CRHBP 1393 TM LRP1 4035 GS,TM SORT1 6272 GC,GS,TM

CRP 1401 GC,TM LRP4 4038 GS SOX17 64321 TM

CRTC2 200186 TM LRP5 4041 TM SP1 6667 TM

CRY1 1407 TM LRP6 4040 TM SPCS1 28972 GC

CRY2 1408 GC,GS,TM MAFA 389692 TM SQLE 6713 TM

CSNK1E 1454 GC,TM MALL 7851 TM SREBF1 6720 GC,TM

CTDNEP1 23399 GC MAPK1 5594 TM SREBF2 6721 TM

CTNNB1 1499 TM MAPK10 5602 TM SSTR5 6755 TM

CTSD 1509 TM MAPK3 5595 TM STARD3 10948 GC,GS,TM

CTSG 1511 TM MAPK8 5599 TM STAT1 6772 TM

CTSZ 1522 GC MAPK9 5601 TM STAT2 6773 GC,TM

CYP11A1 1583 TM MARCKS 4082 TM STAT3 6774 TM

CYP11B1 1584 GC,TM MBNL1 4154 TM STAT5A 6776 TM

CYP11B2 1585 GC,TM MCU 90550 GC,TM STAT6 6778 TM

CYP17A1 1586 GC,GS,TM MED1 5469 GS,TM STK11 6794 TM

CYP19A1 1588 TM MED11 400569 GC STX1A 6804 GC,TM

CYP1A1 1543 GS,TM MED16 10025 TM STXBP4 252983 TM

CYP1A2 1544 GC,GS,TM MED17 9440 GC SULF1 23213 TM

CYP1B1 1545 TM MED22 6837 GC,GS SULF2 55959 TM

CYP21A2 1589 GC,GS,TM MED28 80306 TM SULT1A1 6817 GC,TM

CYP26A1 1592 GC MED30 90390 GC SULT1A2 6799 GC

CYP26C1 340665 GC MED7 9443 GC SULT1A3 6818 GC,TM

CYP27A1 1593 GC,TM MED9 55090 GC SULT1A4 445329 GC

CYP2A6 1548 TM MEF2A 4205 TM SULT2A1 6822 TM

CYP2C19 1557 TM MEF2C 4208 GC SURF1 6834 GC,GS

CYP2C8 1558 TM MGLL 11343 TM SYT7 9066 GC

CYP2C9 1559 TM MIF 4282 TM TBL1XR1 79718 TM

CYP2D6 1565 TM MIR33A 407039 TM TBX18 9096 TM

CYP2E1 1571 TM MIR33B 693120 GC,TM TCF21 6943 GS,TM

CYP3A4 1576 TM MIXL1 83881 TM TCF7L2 6934 GC,GS,TM

CYP3A5 1577 TM MLXIPL 51085 GC,GS,TM TFAP2A 7020 TM

CYP46A1 10858 TM MME 4311 GC,TM TFAP2B 7021 GC,TM

CYP4A11 1579 TM MMP1 4312 TM TFR2 7036 TM

CYP4V2 285440 GC MSMO1 6307 GC TGFB1 7040 TM

CYP51A1 1595 TM MSR1 4481 TM TGFB2 7042 GC,TM

CYP7A1 1581 GC,GS,TM MTNR1B 4544 GC,GS,TM TGFBR1 7046 TM

CYP8B1 1582 TM MTOR 2475 TM THADA 63892 GC,GS,TM

DBI 1622 TM MTTP 4547 TM TNF 7124 GC,GS,TM

DDIT3 1649 GC,TM MVK 4598 GC,GS TNFRSF1A 7132 TM

DGAT1 8694 TM MYC 4609 TM TNFRSF1B 7133 TM

DGAT2 84649 GC,TM MYO5A 4644 TM TRADD 8717 GC,GS,TM

DHCR7 1717 TM NAMPT 10135 TM TRAF2 7186 TM

DLK1 8788 TM NAT1 9 TM TRH 7200 TM

DPP4 1803 TM NAT2 10 GC,GS,TM TRIB3 57761 TM

DVL1 1855 TM NCOA1 8648 GC,TM TWIST1 7291 TM

DVL2 1856 GC,TM NCOA3 8202 TM UBC 7316 GC,GS,TM

DVL3 1857 TM NCOA6 23054 GC UCP1 7350 TM

E2F1 1869 TM NCOR1 9611 TM UGT1A1 54658 GC,TM

E2F4 1874 GC,GS,TM NCOR2 9612 GC,TM UGT1A10 54575 GC

EBF1 1879 GC,TM NDN 4692 TM UGT1A3 54659 GC

EBP 10682 TM NEUROD1 4760 TM UGT1A4 54657 GC

EEF1A2 1917 TM NFKB1 4790 TM UGT1A5 54579 GC

EGR2 1959 GC NFKBIA 4792 GC,TM UGT1A6 54578 GC

EHD1 10938 TM NFKBIB 4793 TM UGT1A7 54577 GC

EHHADH 1962 TM NGFR 4804 TM UGT1A8 54576 GC
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ENPEP 2028 GC,TM NOV 4856 GC UGT1A9 54600 GC

EP300 2033 TM NPC1 4864 GC,TM USF1 7391 TM

EPAS1 2034 TM NPC1L1 29881 GC,GS,TM VAMP2 6844 TM

EPHX1 2052 TM NPY 4852 TM VDR 7421 TM

EPHX2 2053 TM NR0B2 8431 GC,TM VEGFA 7422 GC,TM

ESR1 2099 TM NR1D1 9572 TM WFS1 7466 GC,GS,TM

EXOC2 55770 TM NR1D2 9975 TM WNT1 7471 GC,TM

EXOC6 54536 GC NR1H2 7376 TM WNT10A 80326 GC

F2 2147 GC,GS,TM NR1H3 10062 GC,GS,TM WNT10B 7480 GC,TM

FABP1 2168 TM NR1H4 9971 TM WNT2 7472 GC

FABP2 2169 TM NR1I2 8856 GC,TM WNT2B 7482 GC

FABP3 2170 TM NR1I3 9970 TM WNT3 7473 TM

FABP4 2167 TM NR2F2 7026 TM WNT3A 89780 GC,TM

FABP5 2171 TM NR3C1 2908 TM WNT4 54361 GC

FABP6 2172 GC,TM NRIP1 8204 TM WNT5A 7474 TM

FADS2 9415 GC,GS,TM NUCKS1 64710 GC WNT6 7475 GC

FAS 355 TM NUP93 9688 GC,GS WT1 7490 TM

FBXW2 26190 GC OAS1 4938 GC XBP1 7494 TM

FDFT1 2222 TM OLR1 4973 TM ZMPSTE24 10269 TM
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Table E.12: Tissue-specific pathways for each MetSyn module.

ID NAME PVAL ADJ. TOP LEVEL NETWORK

PVAL PATHWAY MODULE

Adipose Network

R-HSA-3371556 Cellular response to heat stress 3.32·10−9 9.65·10−7 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-168256 Immune System 6.52·10−9 9.65·10−7 Immune System Adipose Mod 1

R-HSA-3371453 Regulation of HSF1-mediated heat shock response 2.72·10−8 2.69·10−6 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-2262752 Cellular responses to stress 1.65·10−7 1.22·10−5 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-8953897 Cellular responses to external stimuli 2.39·10−7 1.42·10−5 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-168249 Innate Immune System 2.93·10−7 1.45·10−5 Immune System Adipose Mod 1

R-HSA-422475 Axon guidance 3.61·10−7 1.53·10−5 Developmental Biology Adipose Mod 1

R-HSA-73887 Death Receptor Signalling 9.44·10−7 3.49·10−5 Signal Transduction Adipose Mod 1

R-HSA-1280215 Cytokine Signaling in Immune system 1.15·10−6 3.77·10−5 Immune System Adipose Mod 1

R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 1.36·10−6 4.02·10−5 Immune System Adipose Mod 1

R-HSA-449147 Signaling by Interleukins 1.60·10−6 4.31·10−5 Immune System Adipose Mod 1

R-HSA-166166 MyD88-independent TLR4 cascade 2.22·10−6 5.06·10−5 Immune System Adipose Mod 1

R-HSA-937061 TRIF(TICAM1)-mediated TLR4 signaling 2.22·10−6 5.06·10−5 Immune System Adipose Mod 1

R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 8.63·10−6 1.83·10−4 Immune System Adipose Mod 1

R-HSA-448424 Interleukin-17 signaling 1.22·10−5 2.26·10−4 Immune System Adipose Mod 1

R-HSA-450294 MAP kinase activation 1.22·10−5 2.26·10−4 Immune System Adipose Mod 1

R-HSA-168898 Toll-like Receptor Cascades 1.31·10−5 2.28·10−4 Immune System Adipose Mod 1

R-HSA-162582 Signal Transduction 2.07·10−5 3.41·10−4 Signal Transduction Adipose Mod 1

R-HSA-373760 L1CAM interactions 2.28·10−5 3.55·10−4 Developmental Biology Adipose Mod 1

R-HSA-76002 Platelet activation, signaling and aggregation 2.94·10−5 4.07·10−4 Hemostasis Adipose Mod 1

R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 3.38·10−5 4.07·10−4 Signal Transduction Adipose Mod 1

R-HSA-168254 Influenza Infection 3.94·10−5 4.07·10−4 Disease Adipose Mod 1

R-HSA-168255 Influenza Life Cycle 3.94·10−5 4.07·10−4 Disease Adipose Mod 1

R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-975138 TRAF6 mediated induction of NFkB and MAP

kinases upon TLR7/8 or 9 activation

4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-975155 MyD88 dependent cascade initiated on endosome 4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-975871 MyD88 cascade initiated on plasma membrane 4.12·10−5 4.07·10−4 Immune System Adipose Mod 1

R-HSA-168643 Nucleotide-binding domain, leucine rich repeat

containing receptor (NLR) signaling pathways

6.57·10−5 6.27·10−4 Immune System Adipose Mod 1

R-HSA-5653656 Vesicle-mediated transport 7.64·10−5 7.07·10−4 Vesicle-mediated

transport

Adipose Mod 1

R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma

membrane

1.36·10−4 1.12·10−3 Immune System Adipose Mod 1

R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 1.36·10−4 1.12·10−3 Immune System Adipose Mod 1

R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 1.36·10−4 1.12·10−3 Immune System Adipose Mod 1

R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 1.36·10−4 1.12·10−3 Immune System Adipose Mod 1

R-HSA-446652 Interleukin-1 family signaling 1.47·10−4 1.18·10−3 Immune System Adipose Mod 1

R-HSA-194138 Signaling by VEGF 2.07·10−4 1.57·10−3 Signal Transduction Adipose Mod 1

R-HSA-4420097 VEGFA-VEGFR2 Pathway 2.07·10−4 1.57·10−3 Signal Transduction Adipose Mod 1

R-HSA-109581 Apoptosis 2.35·10−4 1.70·10−3 Programmed Cell Death Adipose Mod 1

R-HSA-5357801 Programmed Cell Death 2.35·10−4 1.70·10−3 Programmed Cell Death Adipose Mod 1

R-HSA-3371497 HSP90 chaperone cycle for steroid hormone

receptors (SHR)

2.93·10−4 2.07·10−3 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-109606 Intrinsic Pathway for Apoptosis 3.76·10−4 2.47·10−3 Programmed Cell Death Adipose Mod 1

R-HSA-6804757 Regulation of TP53 Degradation 3.76·10−4 2.47·10−3 Gene expression

(Transcription)

Adipose Mod 1

R-HSA-6806003 Regulation of TP53 Expression and Degradation 3.76·10−4 2.47·10−3 Gene expression

(Transcription)

Adipose Mod 1

R-HSA-1640170 Cell Cycle 4.28·10−4 2.75·10−3 Cell Cycle Adipose Mod 1

R-HSA-199991 Membrane Trafficking 4.50·10−4 2.84·10−3 Vesicle-mediated

transport

Adipose Mod 1

R-HSA-5621481 C-type lectin receptors (CLRs) 5.49·10−4 3.39·10−3 Immune System Adipose Mod 1

R-HSA-5693532 DNA Double-Strand Break Repair 6.93·10−4 4.19·10−3 DNA Repair Adipose Mod 1
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R-HSA-5607764 CLEC7A (Dectin-1) signaling 8.60·10−4 4.99·10−3 Immune System Adipose Mod 1

R-HSA-8951664 Neddylation 8.60·10−4 4.99·10−3 Metabolism of proteins Adipose Mod 1

R-HSA-983169 Class I MHC mediated antigen processing &

presentation

1.24·10−3 7.07·10−3 Immune System Adipose Mod 1

R-HSA-109582 Hemostasis 1.41·10−3 7.53·10−3 Hemostasis Adipose Mod 1

R-HSA-112315 Transmission across Chemical Synapses 1.42·10−3 7.53·10−3 Neuronal System Adipose Mod 1

R-HSA-416476 G alpha (q) signalling events 1.42·10−3 7.53·10−3 Signal Transduction Adipose Mod 1

R-HSA-8856828 Clathrin-mediated endocytosis 1.42·10−3 7.53·10−3 Vesicle-mediated

transport

Adipose Mod 1

R-HSA-9020702 Interleukin-1 signaling 1.64·10−3 8.50·10−3 Immune System Adipose Mod 1

R-HSA-69278 Cell Cycle, Mitotic 1.77·10−3 9.05·10−3 Cell Cycle Adipose Mod 1

R-HSA-112316 Neuronal System 2.65·10−3 1.33·10−2 Neuronal System Adipose Mod 1

R-HSA-5693567 HDR through Homologous Recombination (HRR) or

Single Strand Annealing (SSA)

3.11·10−3 1.53·10−2 DNA Repair Adipose Mod 1

R-HSA-168928 DDX58/IFIH1-mediated induction of

interferon-alpha/beta

3.82·10−3 1.82·10−2 Immune System Adipose Mod 1

R-HSA-376176 Signaling by ROBO receptors 3.82·10−3 1.82·10−2 Developmental Biology Adipose Mod 1

R-HSA-372790 Signaling by GPCR 3.95·10−3 1.83·10−2 Signal Transduction Adipose Mod 1

R-HSA-388396 GPCR downstream signalling 3.95·10−3 1.83·10−2 Signal Transduction Adipose Mod 1

R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 4.10·10−3 1.84·10−2 Immune System Adipose Mod 1

R-HSA-69620 Cell Cycle Checkpoints 4.10·10−3 1.84·10−2 Cell Cycle Adipose Mod 1

R-HSA-1643685 Disease 4.21·10−3 1.86·10−2 Disease Adipose Mod 1

R-HSA-1227986 Signaling by ERBB2 4.54·10−3 1.97·10−2 Signal Transduction Adipose Mod 1

R-HSA-2219528 PI3K/AKT Signaling in Cancer 4.66·10−3 1.97·10−2 Disease Adipose Mod 1

R-HSA-5693538 Homology Directed Repair 4.66·10−3 1.97·10−2 DNA Repair Adipose Mod 1

R-HSA-5663202 Diseases of signal transduction 4.96·10−3 1.99·10−2 Disease Adipose Mod 1

R-HSA-111885 Opioid Signalling 5.10·10−3 1.99·10−2 Signal Transduction Adipose Mod 1

R-HSA-2565942 Regulation of PLK1 Activity at G2/M Transition 5.10·10−3 1.99·10−2 Cell Cycle Adipose Mod 1

R-HSA-69563 p53-Dependent G1 DNA Damage Response 5.10·10−3 1.99·10−2 Cell Cycle Adipose Mod 1

R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 5.10·10−3 1.99·10−2 Cell Cycle Adipose Mod 1

R-HSA-69615 G1/S DNA Damage Checkpoints 5.10·10−3 1.99·10−2 Cell Cycle Adipose Mod 1

R-HSA-8878166 Transcriptional regulation by RUNX2 5.25·10−3 2.02·10−2 Gene expression

(Transcription)

Adipose Mod 1

R-HSA-5693607 Processing of DNA double-strand break ends 5.89·10−3 2.24·10−2 DNA Repair Adipose Mod 1

R-HSA-193704 p75 NTR receptor-mediated signalling 7.31·10−3 2.64·10−2 Signal Transduction Adipose Mod 1

R-HSA-2871837 FCERI mediated NF-kB activation 7.31·10−3 2.64·10−2 Immune System Adipose Mod 1

R-HSA-69473 G2/M DNA damage checkpoint 7.31·10−3 2.64·10−2 Cell Cycle Adipose Mod 1

R-HSA-73894 DNA Repair 7.36·10−3 2.64·10−2 DNA Repair Adipose Mod 1

R-HSA-1280218 Adaptive Immune System 7.41·10−3 2.64·10−2 Immune System Adipose Mod 1

R-HSA-2559583 Cellular Senescence 8.52·10−3 2.98·10−2 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 8.77·10−3 2.98·10−2 Cell Cycle Adipose Mod 1

R-HSA-450531 Regulation of mRNA stability by proteins that bind

AU-rich elements

8.77·10−3 2.98·10−2 Metabolism of RNA Adipose Mod 1

R-HSA-453276 Regulation of mitotic cell cycle 8.77·10−3 2.98·10−2 Cell Cycle Adipose Mod 1

R-HSA-9006925 Intracellular signaling by second messengers 9.14·10−3 3.07·10−2 Signal Transduction Adipose Mod 1

R-HSA-69275 G2/M Transition 9.78·10−3 3.25·10−2 Cell Cycle Adipose Mod 1

R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 1.12·10−2 3.63·10−2 Immune System Adipose Mod 1

R-HSA-418594 G alpha (i) signalling events 1.12·10−2 3.63·10−2 Signal Transduction Adipose Mod 1

R-HSA-2559580 Oxidative Stress Induced Senescence 1.25·10−2 3.97·10−2 Cellular responses to

external stimuli

Adipose Mod 1

R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP

kinases

1.25·10−2 3.97·10−2 Immune System Adipose Mod 1

R-HSA-453274 Mitotic G2-G2/M phases 1.30·10−2 4.10·10−2 Cell Cycle Adipose Mod 1

R-HSA-6804756 Regulation of TP53 Activity through

Phosphorylation

1.63·10−2 4.97·10−2 Gene expression

(Transcription)

Adipose Mod 1

R-HSA-202403 TCR signaling 1.63·10−2 4.97·10−2 Immune System Adipose Mod 1

R-HSA-202424 Downstream TCR signaling 1.63·10−2 4.97·10−2 Immune System Adipose Mod 1

R-HSA-1989781 PPARA activates gene expression 1.07·10−13 1.25·10−11 Metabolism Adipose Mod 2

R-HSA-400206 Regulation of lipid metabolism by Peroxisome

proliferator-activated receptor alpha (PPARalpha)

3.13·10−13 1.82·10−11 Metabolism Adipose Mod 2

R-HSA-556833 Metabolism of lipids 5.16·10−12 1.99·10−10 Metabolism Adipose Mod 2

R-HSA-383280 Nuclear Receptor transcription pathway 1.43·10−11 4.16·10−10 Gene expression

(Transcription)

Adipose Mod 2

R-HSA-1430728 Metabolism 9.28·10−8 2.15·10−6 Metabolism Adipose Mod 2

R-HSA-381340 Transcriptional regulation of white adipocyte

differentiation

4.53·10−7 8.75·10−6 Developmental Biology Adipose Mod 2
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R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian gene

expression

4.57·10−6 6.92·10−5 Circadian Clock Adipose Mod 2

R-HSA-400253 Circadian Clock 4.77·10−6 6.92·10−5 Circadian Clock Adipose Mod 2

R-HSA-9006931 Signaling by Nuclear Receptors 3.20·10−5 4.12·10−4 Signal Transduction Adipose Mod 2

R-HSA-2990846 SUMOylation 6.64·10−5 7.01·10−4 Metabolism of proteins Adipose Mod 2

R-HSA-3108232 SUMO E3 ligases SUMOylate target proteins 6.64·10−5 7.01·10−4 Metabolism of proteins Adipose Mod 2

R-HSA-3108232 SUMO E3 ligases SUMOylate target proteins 6.64·10−5 7.01·10−4 Metabolism of proteins Adipose Mod 2

R-HSA-4090294 SUMOylation of intracellular receptors 9.37·10−5 9.06·10−4 NA Adipose Mod 2

R-HSA-212436 Generic Transcription Pathway 5.69·10−4 4.82·10−3 Gene expression

(Transcription)

Adipose Mod 2

R-HSA-1368082 RORA activates gene expression 5.82·10−4 4.82·10−3 Circadian Clock Adipose Mod 2

R-HSA-73857 RNA Polymerase II Transcription 1.23·10−3 9.53·10−3 Gene expression

(Transcription)

Adipose Mod 2

R-HSA-2151201 Transcriptional activation of mitochondrial

biogenesis

1.57·10−3 1.14·10−2 Organelle biogenesis and

maintenance

Adipose Mod 2

R-HSA-74160 Gene expression (Transcription) 2.63·10−3 1.70·10−2 Gene expression

(Transcription)

Adipose Mod 2

R-HSA-1592230 Mitochondrial biogenesis 2.64·10−3 1.70·10−2 Organelle biogenesis and

maintenance

Adipose Mod 2

R-HSA-8957322 Metabolism of steroids 3.35·10−3 2.04·10−2 Metabolism Adipose Mod 2

R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 3.53·10−3 2.05·10−2 Metabolism Adipose Mod 2

R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP

(SREBF)

4.65·10−3 2.57·10−2 Metabolism Adipose Mod 2

R-HSA-5617472 Activation of anterior HOX genes in hindbrain

development during early embryogenesis

5.17·10−3 2.61·10−2 Developmental Biology Adipose Mod 2

R-HSA-5619507 Activation of HOX genes during differentiation 5.17·10−3 2.61·10−2 Developmental Biology Adipose Mod 2

Liver Network

R-HSA-156580 Phase II - Conjugation of compounds 2.00·10−4 8.99·10−3 Metabolism Liver Mod 1

R-HSA-1989781 PPARA activates gene expression 1.10·10−12 6.72·10−11 Metabolism Liver Mod 2

R-HSA-383280 Nuclear Receptor transcription pathway 1.16·10−12 6.72·10−11 Gene expression

(Transcription)

Liver Mod 2

R-HSA-400206 Regulation of lipid metabolism by Peroxisome

proliferator-activated receptor alpha (PPARalpha)

1.99·10−12 7.70·10−11 Metabolism Liver Mod 2

R-HSA-400253 Circadian Clock 2.37·10−11 6.86·10−10 Circadian Clock Liver Mod 2

R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian gene

expression

9.61·10−11 2.23·10−9 Circadian Clock Liver Mod 2

R-HSA-556833 Metabolism of lipids 2.12·10−9 4.11·10−8 Metabolism Liver Mod 2

R-HSA-556833 Metabolism of lipids 2.12·10−9 4.11·10−8 Metabolism Liver Mod 2

R-HSA-4090294 SUMOylation of intracellular receptors 2.17·10−8 3.60·10−7 Liver Mod 2

R-HSA-1368082 RORA activates gene expression 1.19·10−7 1.73·10−6 Circadian Clock Liver Mod 2

R-HSA-3108232 SUMO E3 ligases SUMOylate target proteins 3.20·10−6 4.13·10−5 Metabolism of proteins Liver Mod 2

R-HSA-2990846 SUMOylation 3.72·10−6 4.32·10−5 Metabolism of proteins Liver Mod 2

R-HSA-2151201 Transcriptional activation of mitochondrial

biogenesis

1.74·10−5 1.84·10−4 Organelle biogenesis and

maintenance

Liver Mod 2

R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 3.20·10−5 3.09·10−4 Metabolism Liver Mod 2

R-HSA-381340 Transcriptional regulation of white adipocyte

differentiation

4.00·10−5 3.57·10−4 Developmental Biology Liver Mod 2

R-HSA-1430728 Metabolism 6.10·10−5 5.05·10−4 Metabolism Liver Mod 2

R-HSA-1592230 Mitochondrial biogenesis 8.59·10−5 6.64·10−4 Organelle biogenesis and

maintenance

Liver Mod 2

R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP

(SREBF)

1.14·10−4 8.28·10−4 Metabolism Liver Mod 2

R-HSA-211945 Phase I - Functionalization of compounds 1.50·10−4 1.02·10−3 Metabolism Liver Mod 2

R-HSA-1852241 Organelle biogenesis and maintenance 4.30·10−4 2.77·10−3 Organelle biogenesis and

maintenance

Liver Mod 2

R-HSA-211897 Cytochrome P450 - arranged by substrate type 5.46·10−4 3.33·10−3 Metabolism Liver Mod 2

R-HSA-211859 Biological oxidations 1.03·10−3 5.99·10−3 Metabolism Liver Mod 2

R-HSA-8957322 Metabolism of steroids 2.29·10−3 1.26·10−2 Metabolism Liver Mod 2

R-HSA-194068 Bile acid and bile salt metabolism 9.42·10−3 4.97·10−2 Metabolism Liver Mod 2

R-HSA-381340 Transcriptional regulation of white adipocyte

differentiation

1.16·10−27 5.82·10−26 Developmental Biology Liver Mod 3

R-HSA-1989781 PPARA activates gene expression 1.44·10−24 3.59·10−23 Metabolism Liver Mod 3

R-HSA-400206 Regulation of lipid metabolism by Peroxisome

proliferator-activated receptor alpha (PPARalpha)

2.84·10−24 4.74·10−23 Metabolism Liver Mod 3

R-HSA-556833 Metabolism of lipids 1.28·10−18 1.60·10−17 Metabolism Liver Mod 3

R-HSA-1266738 Developmental Biology 9.24·10−13 9.24·10−12 Developmental Biology Liver Mod 3

R-HSA-1430728 Metabolism 4.39·10−12 3.66·10−11 Metabolism Liver Mod 3
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R-HSA-212436 Generic Transcription Pathway 5.97·10−10 4.27·10−9 Gene expression

(Transcription)

Liver Mod 3

R-HSA-73857 RNA Polymerase II Transcription 1.05·10−9 6.59·10−9 Gene expression

(Transcription)

Liver Mod 3

R-HSA-74160 Gene expression (Transcription) 5.82·10−9 3.23·10−8 Gene expression

(Transcription)

Liver Mod 3

R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in

Cancer

4.80·10−3 1.71·10−2 Disease Liver Mod 3

R-HSA-2644603 Signaling by NOTCH1 in Cancer 4.80·10−3 1.71·10−2 Disease Liver Mod 3

R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain

Mutants

4.80·10−3 1.71·10−2 Disease Liver Mod 3

R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants

in Cancer

4.80·10−3 1.71·10−2 Disease Liver Mod 3

R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST

Domain Mutants

4.80·10−3 1.71·10−2 Disease Liver Mod 3

R-HSA-2122947 NOTCH1 Intracellular Domain Regulates

Transcription

5.50·10−3 1.83·10−2 Signal Transduction Liver Mod 3

R-HSA-1980143 Signaling by NOTCH1 7.94·10−3 2.48·10−2 Signal Transduction Liver Mod 3

Muscle Network

R-HSA-2990846 SUMOylation 1.92·10−9 3.45·10−7 Metabolism of proteins Muscle Mod 1

R-HSA-3108232 SUMO E3 ligases SUMOylate target proteins 1.92·10−9 3.45·10−7 Metabolism of proteins Muscle Mod 1

R-HSA-2559583 Cellular Senescence 3.78·10−9 4.54·10−7 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-6807070 PTEN Regulation 2.57·10−8 2.32·10−6 Signal Transduction Muscle Mod 1

R-HSA-3214815 HDACs deacetylate histones 4.87·10−8 2.92·10−6 Chromatin organization Muscle Mod 1

R-HSA-3232118 SUMOylation of transcription factors 4.87·10−8 2.92·10−6 Metabolism of proteins Muscle Mod 1

R-HSA-8943724 Regulation of PTEN gene transcription 8.78·10−8 4.51·10−6 Signal Transduction Muscle Mod 1

R-HSA-392499 Metabolism of proteins 1.98·10−7 8.91·10−6 Metabolism of proteins Muscle Mod 1

R-HSA-3247509 Chromatin modifying enzymes 5.10·10−7 1.84·10−5 Chromatin organization Muscle Mod 1

R-HSA-4839726 Chromatin organization 5.10·10−7 1.84·10−5 Chromatin organization Muscle Mod 1

R-HSA-5693532 DNA Double-Strand Break Repair 2.66·10−6 8.70·10−5 DNA Repair Muscle Mod 1

R-HSA-2408522 Selenoamino acid metabolism 5.29·10−6 1.47·10−4 Metabolism Muscle Mod 1

R-HSA-4551638 SUMOylation of chromatin organization proteins 5.29·10−6 1.47·10−4 Metabolism of proteins Muscle Mod 1

R-HSA-2262752 Cellular responses to stress 8.40·10−6 2.16·10−4 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-8939243 RUNX1 interacts with co-factors whose precise effect

on RUNX1 targets is not known

9.17·10−6 2.20·10−4 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-597592 Post-translational protein modification 1.11·10−5 2.50·10−4 Metabolism of proteins Muscle Mod 1

R-HSA-3899300 SUMOylation of transcription cofactors 1.80·10−5 3.13·10−4 Metabolism of proteins Muscle Mod 1

R-HSA-168164 Toll Like Receptor 3 (TLR3) Cascade 1.90·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-166058 MyD88:MAL(TIRAP) cascade initiated on plasma

membrane

2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-168138 Toll Like Receptor 9 (TLR9) Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-168142 Toll Like Receptor 10 (TLR10) Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-168176 Toll Like Receptor 5 (TLR5) Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-168179 Toll Like Receptor TLR1:TLR2 Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-168181 Toll Like Receptor 7/8 (TLR7/8) Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-168188 Toll Like Receptor TLR6:TLR2 Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-181438 Toll Like Receptor 2 (TLR2) Cascade 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-975138 TRAF6 mediated induction of NFkB and MAP

kinases upon TLR7/8 or 9 activation

2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-975155 MyD88 dependent cascade initiated on endosome 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-975871 MyD88 cascade initiated on plasma membrane 2.53·10−5 3.13·10−4 Immune System Muscle Mod 1

R-HSA-3108214 SUMOylation of DNA damage response and repair

proteins

2.70·10−5 3.13·10−4 Metabolism of proteins Muscle Mod 1

R-HSA-5693607 Processing of DNA double-strand break ends 2.70·10−5 3.13·10−4 DNA Repair Muscle Mod 1

R-HSA-166166 MyD88-independent TLR4 cascade 3.54·10−5 3.77·10−4 Immune System Muscle Mod 1

R-HSA-937061 TRIF(TICAM1)-mediated TLR4 signaling 3.54·10−5 3.77·10−4 Immune System Muscle Mod 1

R-HSA-5693567 HDR through Homologous Recombination (HRR) or

Single Strand Annealing (SSA)

3.56·10−5 3.77·10−4 DNA Repair Muscle Mod 1

R-HSA-1257604 PIP3 activates AKT signaling 3.95·10−5 4.06·10−4 Signal Transduction Muscle Mod 1

R-HSA-5693538 Homology Directed Repair 4.15·10−5 4.15·10−4 DNA Repair Muscle Mod 1

R-HSA-71291 Metabolism of amino acids and derivatives 4.47·10−5 4.35·10−4 Metabolism Muscle Mod 1

R-HSA-1280215 Cytokine Signaling in Immune system 5.05·10−5 4.77·10−4 Immune System Muscle Mod 1

R-HSA-8878171 Transcriptional regulation by RUNX1 5.16·10−5 4.77·10−4 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-166016 Toll Like Receptor 4 (TLR4) Cascade 6.33·10−5 5.70·10−4 Immune System Muscle Mod 1
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R-HSA-2559582 Senescence-Associated Secretory Phenotype (SASP) 9.81·10−5 8.62·10−4 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-168898 Toll-like Receptor Cascades 1.10·10−4 9.40·10−4 Immune System Muscle Mod 1

R-HSA-1834949 Cytosolic sensors of pathogen-associated DNA 1.15·10−4 9.59·10−4 Immune System Muscle Mod 1

R-HSA-9006925 Intracellular signaling by second messengers 1.39·10−4 1.14·10−3 Signal Transduction Muscle Mod 1

R-HSA-2559586 DNA Damage/Telomere Stress Induced Senescence 1.56·10−4 1.25·10−3 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-69563 p53-Dependent G1 DNA Damage Response 2.24·10−4 1.68·10−3 Cell Cycle Muscle Mod 1

R-HSA-69580 p53-Dependent G1/S DNA damage checkpoint 2.24·10−4 1.68·10−3 Cell Cycle Muscle Mod 1

R-HSA-69615 G1/S DNA Damage Checkpoints 2.24·10−4 1.68·10−3 Cell Cycle Muscle Mod 1

R-HSA-449147 Signaling by Interleukins 2.62·10−4 1.93·10−3 Immune System Muscle Mod 1

R-HSA-2122947 NOTCH1 Intracellular Domain Regulates

Transcription

2.77·10−4 1.96·10−3 Signal Transduction Muscle Mod 1

R-HSA-2559580 Oxidative Stress Induced Senescence 2.77·10−4 1.96·10−3 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-8953897 Cellular responses to external stimuli 2.84·10−4 1.97·10−3 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-2173793 Transcriptional activity of SMAD2/SMAD3:SMAD4

heterotrimer

5.42·10−4 3.51·10−3 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-1640170 Cell Cycle 6.07·10−4 3.51·10−3 Cell Cycle Muscle Mod 1

R-HSA-6791226 Major pathway of rRNA processing in the nucleolus

and cytosol

6.28·10−4 3.51·10−3 Metabolism of RNA Muscle Mod 1

R-HSA-6804758 Regulation of TP53 Activity through Acetylation 6.28·10−4 3.51·10−3 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-72312 rRNA processing 6.28·10−4 3.51·10−3 Metabolism of RNA Muscle Mod 1

R-HSA-8868773 rRNA processing in the nucleus and cytosol 6.28·10−4 3.51·10−3 Metabolism of RNA Muscle Mod 1

R-HSA-8868773 rRNA processing in the nucleus and cytosol 6.28·10−4 3.51·10−3 Metabolism of RNA Muscle Mod 1

R-HSA-9022692 Regulation of MECP2 expression and activity 6.28·10−4 3.51·10−3 NA Muscle Mod 1

R-HSA-448424 Interleukin-17 signaling 6.52·10−4 3.51·10−3 Immune System Muscle Mod 1

R-HSA-450294 MAP kinase activation 6.52·10−4 3.51·10−3 Immune System Muscle Mod 1

R-HSA-2644602 Signaling by NOTCH1 PEST Domain Mutants in

Cancer

6.63·10−4 3.51·10−3 Disease Muscle Mod 1

R-HSA-2644603 Signaling by NOTCH1 in Cancer 6.63·10−4 3.51·10−3 Disease Muscle Mod 1

R-HSA-2644606 Constitutive Signaling by NOTCH1 PEST Domain

Mutants

6.63·10−4 3.51·10−3 Disease Muscle Mod 1

R-HSA-2894858 Signaling by NOTCH1 HD+PEST Domain Mutants

in Cancer

6.63·10−4 3.51·10−3 Disease Muscle Mod 1

R-HSA-2894862 Constitutive Signaling by NOTCH1 HD+PEST

Domain Mutants

6.63·10−4 3.51·10−3 Disease Muscle Mod 1

R-HSA-450282 MAPK targets/ Nuclear events mediated by MAP

kinases

6.63·10−4 3.51·10−3 Immune System Muscle Mod 1

R-HSA-72766 Translation 6.63·10−4 3.51·10−3 Metabolism of proteins Muscle Mod 1

R-HSA-73894 DNA Repair 7.23·10−4 3.77·10−3 DNA Repair Muscle Mod 1

R-HSA-157118 Signaling by NOTCH 7.38·10−4 3.80·10−3 Signal Transduction Muscle Mod 1

R-HSA-5689880 Ub-specific processing proteases 1.28·10−3 6.47·10−3 Metabolism of proteins Muscle Mod 1

R-HSA-5688426 Deubiquitination 1.65·10−3 8.26·10−3 Metabolism of proteins Muscle Mod 1

R-HSA-1606322 ZBP1(DAI) mediated induction of type I IFNs 1.73·10−3 8.31·10−3 Immune System Muscle Mod 1

R-HSA-5693571 Nonhomologous End-Joining (NHEJ) 1.73·10−3 8.31·10−3 DNA Repair Muscle Mod 1

R-HSA-69541 Stabilization of p53 1.73·10−3 8.31·10−3 Cell Cycle Muscle Mod 1

R-HSA-2173795 Downregulation of SMAD2/3:SMAD4 transcriptional

activity

1.84·10−3 8.50·10−3 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-5607761 Dectin-1 mediated noncanonical NF-kB signaling 1.84·10−3 8.50·10−3 Immune System Muscle Mod 1

R-HSA-69239 Synthesis of DNA 1.84·10−3 8.50·10−3 DNA Replication Muscle Mod 1

R-HSA-69481 G2/M Checkpoints 2.25·10−3 1.03·10−2 Cell Cycle Muscle Mod 1

R-HSA-212436 Generic Transcription Pathway 2.28·10−3 1.03·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-69620 Cell Cycle Checkpoints 2.45·10−3 1.09·10−2 Cell Cycle Muscle Mod 1

R-HSA-170834 Signaling by TGF-beta Receptor Complex 2.73·10−3 1.20·10−2 Signal Transduction Muscle Mod 1

R-HSA-5633007 Regulation of TP53 Activity 2.77·10−3 1.20·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-8878159 Transcriptional regulation by RUNX3 3.64·10−3 1.54·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-9006936 Signaling by TGF-beta family members 3.64·10−3 1.54·10−2 Signal Transduction Muscle Mod 1

R-HSA-1980143 Signaling by NOTCH1 3.93·10−3 1.65·10−2 Signal Transduction Muscle Mod 1

R-HSA-3214841 PKMTs methylate histone lysines 3.98·10−3 1.65·10−2 Chromatin organization Muscle Mod 1

R-HSA-3214858 RMTs methylate histone arginines 4.39·10−3 1.79·10−2 Chromatin organization Muscle Mod 1

R-HSA-446652 Interleukin-1 family signaling 4.42·10−3 1.79·10−2 Immune System Muscle Mod 1

R-HSA-5668541 TNFR2 non-canonical NF-kB pathway 4.67·10−3 1.81·10−2 Immune System Muscle Mod 1

183



E.5. Supplementary Tables

R-HSA-5676590 NIK–¿noncanonical NF-kB signaling 4.67·10−3 1.81·10−2 Immune System Muscle Mod 1

R-HSA-5693565 Recruitment and ATM-mediated phosphorylation of

repair and signaling proteins at DNA double strand

breaks

4.67·10−3 1.81·10−2 DNA Repair Muscle Mod 1

R-HSA-5693606 DNA Double Strand Break Response 4.67·10−3 1.81·10−2 DNA Repair Muscle Mod 1

R-HSA-162909 Host Interactions of HIV factors 6.62·10−3 2.48·10−2 Disease Muscle Mod 1

R-HSA-168928 DDX58/IFIH1-mediated induction of

interferon-alpha/beta

6.62·10−3 2.48·10−2 Immune System Muscle Mod 1

R-HSA-9010553 Regulation of expression of SLITs and ROBOs 6.62·10−3 2.48·10−2 Developmental Biology Muscle Mod 1

R-HSA-3700989 Transcriptional Regulation by TP53 7.41·10−3 2.75·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-1169091 Activation of NF-kappaB in B cells 7.78·10−3 2.86·10−2 Immune System Muscle Mod 1

R-HSA-9020702 Interleukin-1 signaling 7.89·10−3 2.87·10−2 Immune System Muscle Mod 1

R-HSA-73857 RNA Polymerase II Transcription 8.97·10−3 3.23·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-74160 Gene expression (Transcription) 1.03·10−2 3.66·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-212165 Epigenetic regulation of gene expression 1.04·10−2 3.66·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-174143 APC/C-mediated degradation of cell cycle proteins 1.15·10−2 3.90·10−2 Cell Cycle Muscle Mod 1

R-HSA-176408 Regulation of APC/C activators between G1/S and

early anaphase

1.15·10−2 3.90·10−2 Cell Cycle Muscle Mod 1

R-HSA-453276 Regulation of mitotic cell cycle 1.15·10−2 3.90·10−2 Cell Cycle Muscle Mod 1

R-HSA-69052 Switching of origins to a post-replicative state 1.15·10−2 3.90·10−2 DNA Replication Muscle Mod 1

R-HSA-168249 Innate Immune System 1.26·10−2 4.23·10−2 Immune System Muscle Mod 1

R-HSA-69242 S Phase 1.27·10−2 4.23·10−2 Cell Cycle Muscle Mod 1

R-HSA-1234174 Regulation of Hypoxia-inducible Factor (HIF) by

oxygen

1.39·10−2 4.50·10−2 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-2173796 SMAD2/SMAD3:SMAD4 heterotrimer regulates

transcription

1.39·10−2 4.50·10−2 Gene expression

(Transcription)

Muscle Mod 1

R-HSA-2262749 Cellular response to hypoxia 1.39·10−2 4.50·10−2 Cellular responses to

external stimuli

Muscle Mod 1

R-HSA-383280 Nuclear Receptor transcription pathway 9.78·10−13 1.10·10−10 Gene expression

(Transcription)

Muscle Mod 2

R-HSA-1989781 PPARA activates gene expression 7.28·10−11 4.11·10−9 Metabolism Muscle Mod 2

R-HSA-400206 Regulation of lipid metabolism by Peroxisome

proliferator-activated receptor alpha (PPARalpha)

1.61·10−10 6.07·10−9 Metabolism Muscle Mod 2

R-HSA-1368108 BMAL1:CLOCK,NPAS2 activates circadian gene

expression

3.79·10−9 1.07·10−7 Circadian Clock Muscle Mod 2

R-HSA-400253 Circadian Clock 1.30·10−8 2.95·10−7 Circadian Clock Muscle Mod 2

R-HSA-556833 Metabolism of lipids 1.67·10−8 3.15·10−7 Metabolism Muscle Mod 2

R-HSA-1368082 RORA activates gene expression 1.41·10−6 2.28·10−5 Circadian Clock Muscle Mod 2

R-HSA-1368082 RORA activates gene expression 1.41·10−6 2.28·10−5 Circadian Clock Muscle Mod 2

R-HSA-4090294 SUMOylation of intracellular receptors 3.58·10−6 5.06·10−5 NA Muscle Mod 2

R-HSA-2990846 SUMOylation 9.96·10−6 1.13·10−4 Metabolism of proteins Muscle Mod 2

R-HSA-3108232 SUMO E3 ligases SUMOylate target proteins 9.96·10−6 1.13·10−4 Metabolism of proteins Muscle Mod 2

R-HSA-1430728 Metabolism 1.48·10−5 1.52·10−4 Metabolism Muscle Mod 2

R-HSA-2151201 Transcriptional activation of mitochondrial

biogenesis

2.66·10−5 2.50·10−4 Organelle biogenesis and

maintenance

Muscle Mod 2

R-HSA-381340 Transcriptional regulation of white adipocyte

differentiation

5.55·10−5 4.83·10−4 Developmental Biology Muscle Mod 2

R-HSA-9006931 Signaling by Nuclear Receptors 7.67·10−5 6.19·10−4 Signal Transduction Muscle Mod 2

R-HSA-1592230 Mitochondrial biogenesis 8.90·10−5 6.71·10−4 Organelle biogenesis and

maintenance

Muscle Mod 2

R-HSA-2426168 Activation of gene expression by SREBF (SREBP) 1.69·10−4 1.19·10−3 Metabolism Muscle Mod 2

R-HSA-1655829 Regulation of cholesterol biosynthesis by SREBP

(SREBF)

2.43·10−4 1.61·10−3 Metabolism Muscle Mod 2

R-HSA-8957322 Metabolism of steroids 8.22·10−4 5.16·10−3 Metabolism Muscle Mod 2

R-HSA-1852241 Organelle biogenesis and maintenance 1.04·10−3 6.21·10−3 Organelle biogenesis and

maintenance

Muscle Mod 2

R-HSA-212436 Generic Transcription Pathway 1.91·10−3 1.08·10−2 Gene expression

(Transcription)

Muscle Mod 2

R-HSA-73857 RNA Polymerase II Transcription 3.93·10−3 2.12·10−2 Gene expression

(Transcription)

Muscle Mod 2

R-HSA-512988 Interleukin-3, Interleukin-5 and GM-CSF signaling 8.78·10−15 1.08·10−12 Immune System Muscle Mod 3

R-HSA-9006934 Signaling by Receptor Tyrosine Kinases 3.46·10−14 2.13·10−12 Signal Transduction Muscle Mod 3

R-HSA-6806834 Signaling by MET 5.23·10−12 2.15·10−10 Signal Transduction Muscle Mod 3

R-HSA-451927 Interleukin-2 family signaling 1.33·10−11 3.27·10−10 Immune System Muscle Mod 3
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R-HSA-451927 Interleukin-2 family signaling 1.33·10−11 3.27·10−10 Immune System Muscle Mod 3

R-HSA-9006335 Signaling by Erythropoietin 1.33·10−11 3.27·10−10 NA Muscle Mod 3

R-HSA-5684996 MAPK1/MAPK3 signaling 2.65·10−11 5.42·10−10 Signal Transduction Muscle Mod 3

R-HSA-5683057 MAPK family signaling cascades 6.26·10−10 1.10·10−8 Signal Transduction Muscle Mod 3

R-HSA-1433557 Signaling by SCF-KIT 8.20·10−10 1.26·10−8 Signal Transduction Muscle Mod 3

R-HSA-1280215 Cytokine Signaling in Immune system 3.45·10−9 4.53·10−8 Immune System Muscle Mod 3

R-HSA-186763 Downstream signal transduction 4.05·10−9 4.53·10−8 Signal Transduction Muscle Mod 3

R-HSA-186797 Signaling by PDGF 4.05·10−9 4.53·10−8 Signal Transduction Muscle Mod 3

R-HSA-449147 Signaling by Interleukins 2.86·10−8 2.93·10−7 Immune System Muscle Mod 3

R-HSA-168256 Immune System 8.24·10−8 7.60·10−7 Immune System Muscle Mod 3

R-HSA-162582 Signal Transduction 8.65·10−8 7.60·10−7 Signal Transduction Muscle Mod 3

R-HSA-177929 Signaling by EGFR 1.06·10−7 8.66·10−7 Signal Transduction Muscle Mod 3

R-HSA-2404192 Signaling by Type 1 Insulin-like Growth Factor 1

Receptor (IGF1R)

2.27·10−7 1.65·10−6 Signal Transduction Muscle Mod 3

R-HSA-2428924 IGF1R signaling cascade 2.27·10−7 1.65·10−6 Signal Transduction Muscle Mod 3

R-HSA-76002 Platelet activation, signaling and aggregation 6.43·10−7 4.39·10−6 Hemostasis Muscle Mod 3

R-HSA-74751 Insulin receptor signalling cascade 8.10·10−7 4.98·10−6 Signal Transduction Muscle Mod 3

R-HSA-74752 Signaling by Insulin receptor 8.10·10−7 4.98·10−6 Signal Transduction Muscle Mod 3

R-HSA-5673001 RAF/MAP kinase cascade 1.02·10−6 5.96·10−6 Signal Transduction Muscle Mod 3

R-HSA-109582 Hemostasis 1.78·10−6 9.97·10−6 Hemostasis Muscle Mod 3

R-HSA-2428928 IRS-related events triggered by IGF1R 4.84·10−6 2.59·10−5 Signal Transduction Muscle Mod 3

R-HSA-2219530 Constitutive Signaling by Aberrant PI3K in Cancer 8.68·10−6 4.45·10−5 Disease Muscle Mod 3

R-HSA-5654741 Signaling by FGFR3 1.46·10−5 6.89·10−5 Signal Transduction Muscle Mod 3

R-HSA-5655302 Signaling by FGFR1 in disease 1.46·10−5 6.89·10−5 Disease Muscle Mod 3

R-HSA-5654743 Signaling by FGFR4 2.32·10−5 1.06·10−4 Signal Transduction Muscle Mod 3

R-HSA-5663202 Diseases of signal transduction 3.49·10−5 1.45·10−4 Disease Muscle Mod 3

R-HSA-5654736 Signaling by FGFR1 3.53·10−5 1.45·10−4 Signal Transduction Muscle Mod 3

R-HSA-877300 Interferon gamma signaling 3.53·10−5 1.45·10−4 Immune System Muscle Mod 3

R-HSA-422475 Axon guidance 4.92·10−5 1.93·10−4 Developmental Biology Muscle Mod 3

R-HSA-913531 Interferon Signaling 5.03·10−5 1.93·10−4 Immune System Muscle Mod 3

R-HSA-1227986 Signaling by ERBB2 5.18·10−5 1.93·10−4 Signal Transduction Muscle Mod 3

R-HSA-1236394 Signaling by ERBB4 7.37·10−5 2.67·10−4 Signal Transduction Muscle Mod 3

R-HSA-1226099 Signaling by FGFR in disease 1.02·10−4 3.59·10−4 Disease Muscle Mod 3

R-HSA-6811558 PI5P, PP2A and IER3 Regulate PI3K/AKT

Signaling

1.38·10−4 4.73·10−4 Signal Transduction Muscle Mod 3

R-HSA-909733 Interferon alpha/beta signaling 1.47·10−4 4.89·10−4 Immune System Muscle Mod 3

R-HSA-166520 Signaling by NTRKs 1.59·10−4 5.16·10−4 Signal Transduction Muscle Mod 3

R-HSA-1500931 Cell-Cell communication 2.26·10−4 6.95·10−4 Cell-Cell communication Muscle Mod 3

R-HSA-388841 Costimulation by the CD28 family 2.26·10−4 6.95·10−4 Immune System Muscle Mod 3

R-HSA-199418 Negative regulation of the PI3K/AKT network 2.40·10−4 7.02·10−4 Signal Transduction Muscle Mod 3

R-HSA-5654738 Signaling by FGFR2 2.40·10−4 7.02·10−4 Signal Transduction Muscle Mod 3

R-HSA-190236 Signaling by FGFR 3.08·10−4 8.81·10−4 Signal Transduction Muscle Mod 3

R-HSA-187687 Signalling to ERKs 3.32·10−4 9.28·10−4 Signal Transduction Muscle Mod 3

R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 6.03·10−4 1.65·10−3 Immune System Muscle Mod 3

R-HSA-447115 Interleukin-12 family signaling 6.43·10−4 1.72·10−3 Immune System Muscle Mod 3

R-HSA-2219528 PI3K/AKT Signaling in Cancer 7.37·10−4 1.93·10−3 Disease Muscle Mod 3

R-HSA-187037 Signaling by NTRK1 (TRKA) 8.93·10−4 2.29·10−3 Signal Transduction Muscle Mod 3

R-HSA-5655253 Signaling by FGFR2 in disease 3.96·10−3 9.73·10−3 Disease Muscle Mod 3

R-HSA-9020591 Interleukin-12 signaling 3.96·10−3 9.73·10−3 Immune System Muscle Mod 3

R-HSA-2029480 Fcgamma receptor (FCGR) dependent phagocytosis 5.16·10−3 1.22·10−2 Immune System Muscle Mod 3

R-HSA-2871796 FCERI mediated MAPK activation 5.16·10−3 1.22·10−2 Immune System Muscle Mod 3

R-HSA-375165 NCAM signaling for neurite out-growth 6.57·10−3 1.50·10−2 Developmental Biology Muscle Mod 3

R-HSA-416476 G alpha (q) signalling events 6.57·10−3 1.50·10−2 Signal Transduction Muscle Mod 3

R-HSA-1643685 Disease 6.78·10−3 1.52·10−2 Disease Muscle Mod 3

R-HSA-194138 Signaling by VEGF 2.26·10−2 4.88·10−2 Signal Transduction Muscle Mod 3

R-HSA-4420097 VEGFA-VEGFR2 Pathway 2.26·10−2 4.88·10−2 Signal Transduction Muscle Mod 3

R-HSA-2454202 Fc epsilon receptor (FCERI) signaling 2.34·10−2 4.97·10−2 Immune System Muscle Mod 3
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Table E.13: Repurposing candidates obtained from the analysis of the adipose network. The

columns SE indicates if the drug has an undesired side effect related to MetSyn (DrugCentral

platform [262]), while the column OT indicates if the target has been/is under investigation for

theurapeutic interventions related to MetSyn (OpenTargets platform [133])

DRUG DRUG TARGET ACTION SCORE MODULE SE OT

ID NAME

DB00459 Acitretin RARA agonist 1.678 Adipose Mod 2 1 0

DB00459 Acitretin RXRA agonist 1.721 Adipose Mod 2 1 0

DB00459 Acitretin RXRB agonist 1.673 Adipose Mod 2 1 0

DB00459 Acitretin RXRG agonist 1.652 Adipose Mod 2 1 1

DB00210 Adapalene RARG agonist 1.662 Adipose Mod 2 0 0

DB00210 Adapalene RXRB agonist 1.692 Adipose Mod 2 0 0

DB00210 Adapalene RXRG agonist 1.680 Adipose Mod 2 0 1

DB00523 Alitretinoin RARG agonist 1.666 Adipose Mod 2 0 0

DB00523 Alitretinoin RXRG agonist 1.704 Adipose Mod 2 0 1

DB00995 Auranofin IKBKB inhibitor 1.797 Adipose Mod 1 NA 1

DB00136 Calcitriol VDR antagonist 1.666 Adipose Mod 2 0 1

DB04209 Dequalinium XIAP antagonist, 1.791 Adipose Mod 1 NA 0

inhibitor

DB03756 Doconexent RXRA activator 1.710 Adipose Mod 2 NA 0

DB03756 Doconexent RXRB activator 1.666 Adipose Mod 2 NA 0

DB03756 Doconexent PPARA ligand 1.716 Adipose Mod 2 NA 1

DB03756 Doconexent PPARG ligand 1.709 Adipose Mod 2 NA 1

DB03756 Doconexent RXRG activator 1.665 Adipose Mod 2 NA 1

DB00530 Erlotinib EGFR anotagonist 1.802 Adipose Mod 1 0 1

DB01039 Fenofibrate PPARA agonist 1.741 Adipose Mod 2 0 1

DB00317 Gefitinib EGFR antagonist 1.668 Adipose Mod 1 0 1

DB09053 Ibrutinib BTK inhibition 1.615 Adipose Mod 1 0 0

DB00451 Levothyroxine THRA agonist 1.667 Adipose Mod 2 1 1

DB00279 Liothyronine THRA agonist 1.687 Adipose Mod 2 1 1

DB00279 Liothyronine THRB agonist 1.706 Adipose Mod 2 1 1

DB00253 Medrysone NR3C1 agonist 1.659 Adipose Mod 2 NA 1

DB00244 Mesalazine PPARG agonist 1.722 Adipose Mod 2 0 1

DB00834 Mifepristone NR3C1 antagonist 1.708 Adipose Mod 2 0 1

DB00834 Mifepristone PGR antagonist 1.714 Adipose Mod 2 0 1

DB11828 Neratinib EGFR inhibitor 1.811 Adipose Mod 1 NA 1

DB04868 Nilotinib ABL1 inhibitor 1.726 Adipose Mod 1 1 0
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DB00665 Nilutamide AR antagonist 1.664 Adipose Mod 1 0 1

DB06603 Panobinostat HDAC6 inhibitor 1.508 Adipose Mod 1 NA 1

DB01132 Pioglitazone PPARG agonist 1.698 Adipose Mod 2 0 1

DB00396 Progesterone ESR1 agonist 1.639 Adipose Mod 2 1 1

DB12332 Rucaparib PARP1 antagonist 1.668 Adipose Mod 2 NA 0

DB08877 Ruxolitinib JAK1 inhibitor 1.772 Adipose Mod 1 NA 0

DB00795 Sulfasalazine PPARG agonist 1.684 Adipose Mod 2 0 1

DB04942 Tamibarotene RARA agonist 1.722 Adipose Mod 2 NA 0

DB00755 Tretinoin RARG agonist 1.695 Adipose Mod 2 1 0

DB00755 Tretinoin RXRB agonist 1.668 Adipose Mod 2 1 0

DB00755 Tretinoin RXRG agonist 1.656 Adipose Mod 2 1 1

DB02546 Vorinostat HDAC3 inhibitor 1.671 Adipose Mod 2 1 0
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Table E.14: Repurposing candidates obtained from the analysis of the liver network.The columns

SE indicates if the drug has an undesired side effect related to MetSyn (DrugCentral platform [262]),

while the column OT indicates if the target has been/is under investigation for theurapeutic

interventions related to MetSyn (OpenTargets platform [133])

DRUG DRUG TARGET ACTION SCORE MODULE SE OT

ID NAME

DB00459 Acitretin RXRA agonist 1.671 Liver Mod 2 1 0

DB00459 Acitretin RARG agonist 1.407 Liver Mod 3 1 0

DB00210 Adapalene RXRB agonist 1.687 Liver Mod 2 0 0

DB00523 Alitretinoin RXRG agonist 1.390 Liver Mod 3 0 1

DB01014 Balsalazide PPARG agonist 1.642 Liver Mod 2 0 1

DB01393 Bezafibrate PPARD agonist 1.299 Liver Mod 1 0 1

DB01393 Bezafibrate PPARG agonist 1.636 Liver Mod 2 0 1

DB01128 Bicalutamide AR antagonist 1.314 Liver Mod 1 1 1

DB00636 Clofibrate PPARA agonist 1.655 Liver Mod 2 NA 1

DB03756 Doconexent PPARA ligand 1.325 Liver Mod 1 NA 1

DB03756 Doconexent PPARA ligand 1.739 Liver Mod 2 NA 1

DB03756 Doconexent PPARG ligand 1.668 Liver Mod 2 NA 1

DB03756 Doconexent RXRA activator 1.705 Liver Mod 2 NA 0

DB03756 Doconexent RXRA activator 1.495 Liver Mod 3 NA 0

DB03756 Doconexent PPARG ligand 1.486 Liver Mod 3 NA 1

DB03756 Doconexent RXRB activator 1.682 Liver Mod 2 NA 0

DB03756 Doconexent RXRB activator 1.537 Liver Mod 3 NA 0

DB00530 Erlotinib NR1I2 agonist 1.668 Liver Mod 2 0 0

DB00783 Estradiol ESR1 agonist 1.679 Liver Mod 2 1 1

DB00655 Estrone ESR1 agonist 1.671 Liver Mod 2 1 1

DB01039 Fenofibrate PPARA agonist 1.681 Liver Mod 2 0 1

DB01039 Fenofibrate PPARA agonist 1.614 Liver Mod 3 0 1

DB00687 Fludrocortisone NR3C2 agonist 1.647 Liver Mod 2 NA 1

DB00324 Fluorometholone NR3C1 agonist 1.288 Liver Mod 1 1 1

DB01241 Gemfibrozil PPARA agonist 1.694 Liver Mod 2 0 1

DB00159 Icosapent PPARG agonist 1.312 Liver Mod 1 NA 1

DB00159 Icosapent PPARG agonist 1.596 Liver Mod 2 NA 1

DB00451 Levothyroxine THRB agonist 1.300 Liver Mod 1 1 1

DB00451 Levothyroxine THRA agonist 1.623 Liver Mod 2 1 1

DB00451 Levothyroxine THRB agonist 1.633 Liver Mod 2 1 1

DB00451 Levothyroxine THRA agonist 1.430 Liver Mod 3 1 1
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DB00451 Levothyroxine THRB agonist 1.542 Liver Mod 3 1 1

DB00279 Liothyronine THRA agonist 1.658 Liver Mod 2 1 1

DB00279 Liothyronine THRB agonist 1.696 Liver Mod 2 1 1

DB00279 Liothyronine THRA agonist 1.435 Liver Mod 3 1 1

DB00253 Medrysone NR3C1 agonist 1.634 Liver Mod 2 NA 1

DB00244 Mesalazine PPARG agonist 1.330 Liver Mod 1 0 1

DB00244 Mesalazine PPARG agonist 1.686 Liver Mod 2 0 1

DB00244 Mesalazine PPARG agonist 1.512 Liver Mod 3 0 1

DB00834 Mifepristone NR3C1 antagonist 1.645 Liver Mod 2 0 1

DB00834 Mifepristone NR3C1 antagonist 1.459 Liver Mod 3 0 1

DB09079 Nintedanib FGFR3 inhibitor 1.447 Liver Mod 2 NA 0

DB01132 Pioglitazone PPARG agonist 1.312 Liver Mod 1 0 1

DB01132 Pioglitazone PPARG agonist 1.619 Liver Mod 2 0 1

DB00481 Raloxifene ESR1 agonist 1.649 Liver Mod 2 1 1

DB00421 Spironolactone NR3C2 antagonist 1.644 Liver Mod 2 1 1

DB00421 Spironolactone NR3C2 antagonist 1.476 Liver Mod 3 1 1

DB00795 Sulfasalazine PPARG agonist 1.672 Liver Mod 2 0 1

DB04942 Tamibarotene RARA agonist 1.667 Liver Mod 2 NA 0

DB00966 Telmisartan PPARG partial 1.478 Liver Mod 3 1 1

agonist

DB06287 Temsirolimus MTOR inhibitor 1.581 Liver Mod 2 1 0

DB00374 Treprostinil PPARD agonist 1.321 Liver Mod 1 0 1

DB00755 Tretinoin RARG agonist 1.658 Liver Mod 2 1 0

DB00755 Tretinoin RARG agonist 1.430 Liver Mod 3 1 0
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Table E.15: Repurposing candidates obtained from the analysis of the muscle network.The

columns SE indicates if the drug has an undesired side effect related to MetSyn (DrugCentral

platform [262]), while the column OT indicates if the target has been/is under investigation for

theurapeutic interventions related to MetSyn (OpenTargets platform [133])

DRUG DRUG TARGET ACTION SCORE MODULE SE OT

ID NAME

DB00459 Acitretin RARA agonist 1.814 Muscle Mod 1 1 0

DB00459 Acitretin RARA agonist 1.686 Muscle Mod 2 1 0

DB00459 Acitretin RXRA agonist 1.718 Muscle Mod 2 1 0

DB00459 Acitretin RXRG agonist 1.658 Muscle Mod 2 1 1

DB00210 Adapalene RXRG agonist 1.826 Muscle Mod 1 0 1

DB00210 Adapalene RXRG agonist 1.682 Muscle Mod 2 0 1

DB00210 Adapalene RXRB agonist 1.676 Muscle Mod 2 0 0

DB00210 Adapalene RARG agonist 1.668 Muscle Mod 2 0 0

DB08916 Afatinib ERBB2 inhibitor 1.595 Muscle Mod 3 NA 1

DB00523 Alitretinoin RARG agonist 1.776 Muscle Mod 1 0 0

DB00523 Alitretinoin RXRG agonist 1.836 Muscle Mod 1 0 1

DB00523 Alitretinoin RARG agonist 1.664 Muscle Mod 2 0 0

DB00523 Alitretinoin RXRG agonist 1.676 Muscle Mod 2 0 1

DB00523 Alitretinoin RXRB agonist 1.662 Muscle Mod 2 0 0

DB00523 Alitretinoin RARA agonist 1.681 Muscle Mod 2 0 0

DB00288 Amcinonide NR3C1 agonist 1.737 Muscle Mod 1 1 1

DB00995 Auranofin IKBKB inhibitor 1.682 Muscle Mod 3 NA 1

DB05015 Belinostat HDAC1 inhibitor 1.754 Muscle Mod 1 NA 0

DB05015 Belinostat HDAC2 inhibitor 1.761 Muscle Mod 1 NA 0

DB05015 Belinostat HDAC4 inhibitor 1.803 Muscle Mod 1 NA 0

DB06616 Bosutinib ABL1 inhibitor 1.609 Muscle Mod 3 NA 0

DB01222 Budesonide NR3C1 antagonist 1.649 Muscle Mod 2 1 1

DB00636 Clofibrate PPARA agonist 1.804 Muscle Mod 1 NA 1

DB00636 Clofibrate PPARA agonist 1.658 Muscle Mod 2 NA 1

DB08865 Crizotinib MET inhibitor 1.788 Muscle Mod 1 NA 0

DB01406 Danazol ESR1 agonist 1.698 Muscle Mod 3 1 1

DB03756 Doconexent PPARA ligand 1.688 Muscle Mod 2 NA 1

DB03756 Doconexent RXRA activator 1.713 Muscle Mod 2 NA 0

DB03756 Doconexent RXRG activator 1.675 Muscle Mod 2 NA 1

DB08899 Enzalutamide AR inhibitor 1.708 Muscle Mod 1 NA 1

DB08899 Enzalutamide AR inhibitor 1.674 Muscle Mod 2 NA 1
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DB00530 Erlotinib EGFR antagonist 1.714 Muscle Mod 3 0 1

DB00783 Estradiol ESR1 agonist 1.825 Muscle Mod 1 1 1

DB01590 Everolimus MTOR inhibitor 1.798 Muscle Mod 1 1 0

DB01039 Fenofibrate PPARA agonist 1.717 Muscle Mod 2 0 1

DB01288 Fenoterol ADRB2 agonist 1.631 Muscle Mod 3 NA 1

DB00180 Flunisolide NR3C1 agonist 1.797 Muscle Mod 1 0 1

DB00180 Flunisolide NR3C1 agonist 1.610 Muscle Mod 3 0 1

DB00499 Flutamide AR antagonist 1.636 Muscle Mod 2 0 1

DB00947 Fulvestrant ESR1 antagonist 1.811 Muscle Mod 1 0 1

DB00317 Gefitinib EGFR antagonist 1.627 Muscle Mod 3 0 1

DB01241 Gemfibrozil PPARA agonist 1.647 Muscle Mod 2 0 1

DB01259 Lapatinib ERBB2 antagonist 1.818 Muscle Mod 1 0 0

DB01259 Lapatinib EGFR antagonist 1.642 Muscle Mod 3 0 1

DB00451 Levothyroxine THRA agonist 1.653 Muscle Mod 2 1 1

DB00279 Liothyronine THRA agonist 1.667 Muscle Mod 2 1 1

DB00253 Medrysone NR3C1 agonist 1.730 Muscle Mod 1 NA 1

DB00253 Medrysone NR3C1 agonist 1.632 Muscle Mod 2 NA 1

DB01357 Mestranol ESR1 agonist 1.652 Muscle Mod 3 1 1

DB00834 Mifepristone NR3C1 antagonist 1.637 Muscle Mod 2 0 1

DB11828 Neratinib EGFR inhibitor 1.676 Muscle Mod 3 NA 1

DB04868 Nilotinib ABL1 inhibitor 1.661 Muscle Mod 3 1 0

DB00621 Oxandrolone AR agonist 1.815 Muscle Mod 1 1 1

DB06412 Oxymetholone AR agonist, 1.800 Muscle Mod 1 1 1

activator

DB06603 Panobinostat HDAC3 inhibitor 1.611 Muscle Mod 2 NA 0

DB00860 Prednisolone NR3C1 agonist 1.629 Muscle Mod 3 1 1

DB00635 Prednisone NR3C1 agonist 1.594 Muscle Mod 3 1 1

DB00481 Raloxifene ESR2 agonist 1.620 Muscle Mod 2 1 1

DB00867 Ritodrine ADRB2 agonist 1.599 Muscle Mod 3 1 1

DB08877 Ruxolitinib JAK2 inhibitor 1.714 Muscle Mod 3 NA 0

DB08877 Ruxolitinib JAK1 inhibitor 1.674 Muscle Mod 3 NA 0

DB01001 Salbutamol ADRB2 agonist 1.599 Muscle Mod 3 1 1

DB04942 Tamibarotene RARA agonist 1.671 Muscle Mod 2 NA 0

DB00966 Telmisartan PPARG partial agonist 1.733 Muscle Mod 2 1 1

DB06287 Temsirolimus MTOR inhibitor 1.693 Muscle Mod 1 1 0

DB06287 Temsirolimus MTOR inhibitor 1.613 Muscle Mod 3 1 0

DB00624 Testosterone AR agonist 1.793 Muscle Mod 1 1 1

DB00277 Theophylline HDAC2 activator 1.721 Muscle Mod 1 1 0

DB00373 Timolol ADRB2 antagonist 1.619 Muscle Mod 3 1 1
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DB08895 Tofacitinib JAK2 antagonist, 1.692 Muscle Mod 3 NA 0

inhibitor

DB08895 Tofacitinib JAK1 inhibitor 1.710 Muscle Mod 3 NA 0

DB00755 Tretinoin RARG agonist 1.665 Muscle Mod 2 1 0

DB00755 Tretinoin RXRG agonist 1.702 Muscle Mod 2 1 1

DB02546 Vorinostat HDAC1 inhibitor 1.793 Muscle Mod 1 1 0

192



E.5. Supplementary Tables

Table E.16: Side effects of the repurposing candidate drugs extracted from DrugCentral platform.

DRUG NAME SIDE EFFECTS (SNOMED) METSYN

RELATED

Acitretin Acute nephropathy (58574008), Acute pancreatitis (197456007), Alcoholism (7200002), Benign intracranial

hypertension (68267002), Breastfeeding (mother) (413712001), Cardiovascular event risk (395112001),

Depressive disorder (35489007), Diabetes mellitus (73211009), Drug-induced hepatitis (235876009), Hepatic

failure (59927004), Hypercholesterolemia (13644009), Hypertriglyceridemia (302870006), Hypertrophy of bone

(203514008), Hypoalphalipoproteinemia (190785000), Liver function tests abnormal (166603001), Night

blindness (65194006), Obesity (414916001), Pregnancy, function (289908002), Premature epiphyseal closure

(89493005), Psychiatric Disturbance (NA), Visual impairment (397540003)

1

Adapalene Erythroderma (399992009), Inflammatory dermatosis (703938007), Photosensitivity (90128006) 0

Alitretinoin Breastfeeding (mother) (413712001), Mycosis fungoides (118618005), Pregnancy, function (289908002) 0

Amcinonide Atrophoderma (399979006), Bilateral cataracts (95722004), Diabetes mellitus type 1 (46635009), Diabetes

mellitus type 2 (44054006), Glaucoma (23986001), Peripheral vascular disease (400047006), Tuberculosis of

skin (66986005)

1

Balsalazide Kidney disease (90708001), Pyloric obstruction (244815007) 0

Bezafibrate End stage renal disease (46177005) 0

Bicalutamide Anemia (271737000), Diabetes mellitus (73211009), Disease of liver (235856003), Drug-induced hepatitis

(235876009), Hyperglycemia (80394007), Interstitial pneumonia (64667001), Liver function tests abnormal

(166603001), Pregnancy, function (289908002)

1

Budesonide Acute tuberculosis (25629007), Adrenal cortical hypofunction (386584007), Anastomosis of intestine

(235407009), Arginase deficiency (23501004), Arginosuccinate Lyase Deficiency (NA), Avascular necrosis of

bone (397758007), Bacterial infectious disease (87628006), Bilateral cataracts (95722004), Cerebral malaria

(53622003), Cerebral trauma (275382005), Chronic heart failure (48447003), Cirrhosis of liver (19943007),

Citrullinemia (398680004), Congenital hyperammonemia, type I (62522004), Diabetes mellitus (73211009),

Disease caused by parasite (17322007), Disease of liver (235856003), Disorder of muscle (129565002),

Diverticulitis of gastrointestinal tract (271366000), Edema (267038008), Epistaxis (12441001), Exposure to

varicella (444453009), Gastritis (4556007), Glaucoma (23986001), Herpes simplex (88594005),

Hypercholesterolemia (13644009), Hypercortisolism (47270006), Hyperglycemia (80394007), Hypertensive

disorder (38341003), Hypokalemia (43339004), Hypopituitarism (74728003), Hypothyroidism (40930008),

Immunosuppression (38013005), Inactive tuberculosis (11999007), Infection by Strongyloides (1214006),

Infectious disease (40733004), Measles (14189004), Muscle atrophy (88092000), Mycosis (3218000), Nasal

Candidiasis (NA), Nasal Septal Ulcers (NA), Nasal Trauma (NA), Ocular hypertension (4210003), Open-angle

glaucoma (84494001), Operation on nose (88733004), Ophthalmic herpes simplex (186542001), Ornithine

Carbamyltransferase Deficiency (NA), Oropharyngeal Candidiasis (NA), Osteopenia (312894000),

Osteoporosis (64859006), Pathological fracture (268029009), Peptic ulcer (13200003), Perforation of nasal

septum (80142000), Psychotic disorder (69322001), Pulmonary tuberculosis (154283005), Seizure disorder

(128613002), Traumatic rupture of tendon (415749005), Tuberculosis (56717001), Uncontrolled Bacterial

Infections (NA), Untreated Fungal Infection (NA), Varicella-zoster virus infection (309465005), Viral disease

(34014006)

1

Calcitriol Arteriosclerosis obliterans (361133006), Hypercalcemia (66931009), Hypercalcemia associated with Sarcoidosis

(NA), Hyperphosphatemia (20165001), Hypervitaminosis D (27712000), Kidney disease (90708001), Kidney

stone (95570007), Sarcoidosis (31541009)

0

Danazol Angina pectoris (194828000), Breastfeeding (mother) (413712001), Carcinoma of female breast (447782002),

Chronic heart failure (48447003), Disease of liver (235856003), Epilepsy (84757009), Intermenstrual bleeding -

irregular (64996003), Kidney disease (90708001), Migraine (37796009), Mixed hyperlipidemia (267434003),

Porphyria (418470004), Pregnancy, function (289908002), Thromboembolic disorder (371039008)

1

Erlotinib Adult respiratory distress syndrome (67782005), Bleeding (131148009), Blood coagulation disorder

(64779008), Breastfeeding (mother) (413712001), Cerebrovascular accident (230690007), Corneal ulcer

(91514001), Dehydration (34095006), Disease of liver (235856003), Fibrosis of lung (51615001),

Gastrointestinal perforation (51875005), Hemolytic anemia (61261009), Hepatorenal syndrome (51292008),

Hyperbilirubinemia (14783006), Hypokalemia (43339004), Interstitial lung disease (233703007), Interstitial

pneumonia (64667001), Kidney disease (90708001), Liver function tests abnormal (166603001), Malignant

neoplasm of liver (93870000), Myocardial infarction (22298006), Myocardial ischemia (414795007),

Obstructive Bronchiolitis (NA), Pregnancy, function (289908002), Smokes tobacco daily (449868002),

Thrombocytopenic disorder (302215000), Thrombotic thrombocytopenic purpura (78129009)

0
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Estradiol Acute nephropathy (58574008), Acute Thromboembolic Stroke (NA), Adrenal cortical hypofunction

(386584007), Alcoholism (7200002), Angina pectoris (194828000), Anorexia nervosa (56882008), Asthma

(195967001), Bed-ridden (160685001), Benign Hepatic Cell Adenoma (NA), Benign mammary dysplasia

(57993004), Benign prostatic hyperplasia (266569009), Body fluid retention (43498006), Breast Carcinoma in

Males (NA), Breast lump (89164003), Breastfeeding (mother) (413712001), Carcinoma of female breast

(447782002), Cardiovascular event risk (395112001), Cerebrovascular accident (230690007), Cerebrovascular

disease (62914000), Chloasma (36209000), Cholestasis of pregnancy (235888006), Chorea (271700006),

Chronic heart failure (48447003), Chronic lung disease (413839001), Deep venous thrombosis (128053003),

Dementia (52448006), Depressive disorder (35489007), Diabetes mellitus (73211009), Diabetes with Vascular

Disease Complication (NA), Diplopia (24982008), Disease of liver (235856003), Disorder of cardiovascular

system (49601007), Disorder of coronary artery (414024009), Disorder of gallbladder (39621005), Edema

(267038008), Endometrial carcinoma (254878006), Endometriosis (129103003), Epilepsy (84757009), Estrogen

receptor positive tumor (416053008), Family history of malignant neoplasm of breast (429740004),

Fibroadenosis of breast (23260002), Functional visual loss (313165001), Gynecomastia (4754008), Heart

disease (56265001), Heart failure (84114007), Heart valve disorder (368009), Hepatic failure (59927004),

Hepatic porphyria (55056006), Humoral hypercalcemia of malignancy (47709007), Hypercalcemia (66931009),

Hypercholesterolemia (13644009), Hyperglycemia (80394007), Hyperkalemia (14140009), Hyperlipidemia

(55822004), Hyperlipoproteinemia (3744001), Hypertensive disorder (38341003), Hypertensive urgency

(443482000), Hypertriglyceridemia (302870006), Hypocalcemia (5291005), Hypothyroidism (40930008),

Intermenstrual bleeding - irregular (64996003), Jaundice (18165001), Kidney disease (90708001), Liver

function tests abnormal (166603001), Major Surgery with Prolonged Post-Operative Immobilization (NA),

Malignant neoplasm of liver (93870000), Malignant tumor of cervix (363354003), Malignant tumor of ovary

(363443007), Mammography abnormal (168750009), Metabolic syndrome X (237602007), Migraine (37796009),

Myocardial infarction (22298006), Neoplasm of female genital organ (126907002), Neoplasm of prostate

(126906006), Non-Q wave myocardial infarction (314207007), Nonspecific Abnormal Papanicolaou Smear of

Cervix (NA), Obesity (414916001), Obstructive hyperbilirubinemia (59848001), Optic disc edema

(423341008), Osteopenia (312894000), Osteoporosis (64859006), Porphyria (418470004), Pregnancy, function

(289908002), Pulmonary thromboembolism (233935004), Resistance to activated protein C due to Factor V

Leiden (421527008), Retinal hemorrhage (28998008), Seizure disorder (128613002), Sleep apnea (73430006),

Smokes tobacco daily (449868002), Systemic lupus erythematosus (55464009), Thromboembolic disorder

(371039008), Thrombophilia (234467004), Thrombophlebitis (64156001), Thrombosis of retinal vein

(46085004), Toxic shock syndrome (18504008), Uterine leiomyoma (95315005), Weight gain finding (8943002),

Worsening Headache Disorder (NA)

1

Estrone Angina pectoris (194828000), Asthma (195967001), Benign mammary dysplasia (57993004), Body fluid

retention (43498006), Breast lump (89164003), Carcinoma of female breast (447782002), Cardiovascular event

risk (395112001), Cerebrovascular accident (230690007), Chloasma (36209000), Cholestasis of pregnancy

(235888006), Chorea (271700006), Deep venous thrombosis (128053003), Dementia (52448006), Depressive

disorder (35489007), Diabetes mellitus (73211009), Disease of liver (235856003), Disorder of coronary artery

(414024009), Disorder of gallbladder (39621005), Endometrial carcinoma (254878006), Endometriosis

(129103003), Epilepsy (84757009), Estrogen receptor positive tumor (416053008), Extrapyramidal disease

(76349003), Family history of malignant neoplasm of breast (429740004), Functional visual loss (313165001),

Heart valve disorder (368009), Hepatic failure (59927004), Hepatic porphyria (55056006), Humoral

hypercalcemia of malignancy (47709007), Hypercholesterolemia (13644009), Hyperglycemia (80394007),

Hyperlipidemia (55822004), Hyperlipoproteinemia (3744001), Hypertensive disorder (38341003), Hypertensive

urgency (443482000), Hypertriglyceridemia (302870006), Hypocalcemia (5291005), Hypothyroidism

(40930008), Intermenstrual bleeding - irregular (64996003), Liver function tests abnormal (166603001), Major

Surgery with Prolonged Post-Operative Immobilization (NA), Malignant neoplasm of liver (93870000),

Malignant tumor of cervix (363354003), Malignant tumor of ovary (363443007), Mammography abnormal

(168750009), Migraine (37796009), Myocardial infarction (22298006), Nonspecific Abnormal Papanicolaou

Smear of Cervix (NA), Obesity (414916001), Obstructive hyperbilirubinemia (59848001), Porphyria

(418470004), Pregnancy, function (289908002), Pulmonary thromboembolism (233935004), Smokes tobacco

daily (449868002), Systemic lupus erythematosus (55464009), Thromboembolic disorder (371039008),

Thrombophilia (234467004), Thrombophlebitis (64156001), Thrombosis of retinal vein (46085004), Uterine

leiomyoma (95315005)

1

Everolimus Acute infectious disease (63171007), Acute nephropathy (58574008), Anemia (271737000), Ascites

(389026000), BK Polyomavirus Reactivation Nephropathy (NA), Breastfeeding (mother) (413712001),

Diabetes mellitus (73211009), Disease of liver (235856003), Edema (267038008), Hemolytic uremic syndrome

(111407006), Hepatic failure (59927004), Hypercholesterolemia (13644009), Hyperglycemia (80394007),

Hyperlipidemia (55822004), Hypertriglyceridemia (302870006), Impaired wound healing (271618001),

Interstitial pneumonia (64667001), Kidney disease (90708001), Leukopenia (84828003), Malignant lymphoma

(118600007), Neutropenic disorder (303011007), Pericardial effusion (373945007), Pleural Effusions (NA),

Pregnancy, function (289908002), Primary malignant neoplasm (372087000), Proteinuria (29738008),

Stomatitis (61170000), Thrombocytopenic disorder (302215000), Thrombosis of renal artery (95579008),

Thrombotic thrombocytopenic purpura (78129009)

1

Fenofibrate Acute nephropathy (58574008), Acute pancreatitis (197456007), Agranulocytosis (17182001), Anemia

(271737000), Breastfeeding (mother) (413712001), Calculus in biliary tract (266474003), Disease of liver

(235856003), Disorder of gallbladder (39621005), Disorder of muscle (129565002), Hepatic failure (59927004),

Impaired renal function disorder (197663003), Leukopenia (84828003), Liver function tests abnormal

(166603001), Myositis (26889001), Primary biliary cirrhosis (31712002), Rhabdomyolysis (240131006),

Thrombocytopenic disorder (302215000), Thromboembolic disorder (371039008)

0
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Flunisolide Acute tuberculosis (25629007), Adrenal cortical hypofunction (386584007), Bacterial infectious disease

(87628006), Bilateral cataracts (95722004), Disease caused by parasite (17322007), Disease of liver

(235856003), Epistaxis (12441001), Exposure to varicella (444453009), Glaucoma (23986001), Inactive

tuberculosis (11999007), Measles (14189004), Mycosis (3218000), Nasal Candidiasis (NA), Nasal Septal Ulcers

(NA), Nasal Trauma (NA), Operation on nose (88733004), Ophthalmic herpes simplex (186542001),

Oropharyngeal Candidiasis (NA), Perforation of nasal septum (80142000), Uncontrolled Bacterial Infections

(NA), Untreated Fungal Infection (NA), Varicella-zoster virus infection (309465005)

0

Fluorometholone Anemia due to enzyme deficiency (111577008), Bacterial infection of eye (128984004), Deficiency of

glucose-6-phosphate dehydrogenase (124134002), Diabetes mellitus (73211009), Eye infection (128351009),

Fungal infection of eye (31194008), Herpes simplex dendritic keratitis (29943008), Herpes simplex keratitis

(9389005), Krukenberg spindle (85430004), Ocular hypertension (4210003), Open-angle glaucoma (84494001),

Porphyria (418470004), Severe myopia (34187009), Tuberculosis of eye (49107007), Vaccinia keratitis

(397552005), Viral eye infection (312132001)

1

Flutamide Anemia due to enzyme deficiency (111577008), Breastfeeding (mother) (413712001), Deficiency of

cytochrome-b¿5¡ reductase (124184009), Deficiency of glucose-6-phosphate dehydrogenase (124134002),

Disease of liver (235856003), Hepatic failure (59927004), Hyperbilirubinemia (14783006), Methemoglobinemia

(38959009), Pregnancy, function (289908002)

0

Fulvestrant Blood coagulation disorder (64779008), Breastfeeding (mother) (413712001), Disease of liver (235856003),

Pregnancy, function (289908002), Thrombocytopenic disorder (302215000)

0

Gefitinib Acute nephropathy (58574008), Breastfeeding (mother) (413712001), Disease of liver (235856003), Fibrosis of

lung (51615001), Interstitial pneumonia (64667001), Non-small cell lung cancer, negative for epidermal growth

factor receptor expression (427038005), Pregnancy, function (289908002)

0

Gemfibrozil Acute nephropathy (58574008), Anemia (271737000), Breastfeeding (mother) (413712001), Calculus in biliary

tract (266474003), Disease of liver (235856003), Disorder of gallbladder (39621005), Impaired renal function

disorder (197663003), Leukopenia (84828003), Primary biliary cirrhosis (31712002), Thrombocytopenic

disorder (302215000)

0

Ibrutinib Pregnancy, function (289908002) 0

Lapatinib Breastfeeding (mother) (413712001), Congenital long QT syndrome (442917000), Drug-induced hepatitis

(235876009), Hepatic failure (59927004), Hypokalemia (43339004), Hypomagnesemia (190855004), Interstitial

pneumonia (64667001), Left heart failure (85232009), Liver function tests abnormal (166603001), Pregnancy,

function (289908002), Prolonged QT interval (111975006), Severe diarrhea (409587002), Torsades de pointes

(31722008)

0

Levothyroxine Angina pectoris (194828000), Conduction disorder of the heart (44808001), Diabetes mellitus (73211009),

Disorder of cardiovascular system (49601007), Disorder of coronary artery (414024009), Hypertensive disorder

(38341003), Hyperthyroidism (34486009), Hypopituitarism (74728003), Myocardial infarction (22298006),

Osteopenia (312894000), Osteoporosis (64859006), Primary adrenocortical insufficiency (373662000),

Thyrotoxic crisis (29028009)

1

Liothyronine Angina pectoris (194828000), Conduction disorder of the heart (44808001), Diabetes mellitus (73211009),

Disorder of cardiovascular system (49601007), Disorder of coronary artery (414024009), Hypertensive disorder

(38341003), Hyperthyroidism (34486009), Hypopituitarism (74728003), Myocardial infarction (22298006),

Osteopenia (312894000), Osteoporosis (64859006), Primary adrenocortical insufficiency (373662000),

Thyrotoxic crisis (29028009)

1

Mesalazine Anemia (271737000), Disease of liver (235856003), Interstitial nephritis (28689008), Kidney disease

(90708001), Minimal change disease (44785005), Neutropenic disorder (303011007), Pyloric obstruction

(244815007)

0

Mestranol Angina pectoris (194828000), Benign mammary dysplasia (57993004), Body fluid retention (43498006),

Carcinoma of female breast (447782002), Cardiovascular event risk (395112001), Cerebrovascular accident

(230690007), Cholestasis of pregnancy (235888006), Deep venous thrombosis (128053003), Depressive disorder

(35489007), Diabetes mellitus (73211009), Disease of liver (235856003), Disorder of coronary artery

(414024009), Disorder of gallbladder (39621005), Endometrial carcinoma (254878006), Estrogen receptor

positive tumor (416053008), Heart valve disorder (368009), Hypercholesterolemia (13644009), Hyperglycemia

(80394007), Hyperlipidemia (55822004), Hypertensive disorder (38341003), Hypertensive urgency (443482000),

Hypertriglyceridemia (302870006), Intermenstrual bleeding - irregular (64996003), Liver function tests

abnormal (166603001), Major Surgery with Prolonged Post-Operative Immobilization (NA), Malignant

neoplasm of liver (93870000), Malignant tumor of cervix (363354003), Migraine (37796009), Myocardial

infarction (22298006), Nonspecific Abnormal Papanicolaou Smear of Cervix (NA), Obesity (414916001),

Obstructive hyperbilirubinemia (59848001), Porphyria (418470004), Pregnancy, function (289908002),

Pulmonary thromboembolism (233935004), Smokes tobacco daily (449868002), Thromboembolic disorder

(371039008), Thrombophlebitis (64156001), Thrombosis of retinal vein (46085004)

1

Mifepristone Acute intermittent porphyria (234422006), Adrenal cortical hypofunction (386584007), Bacterial infectious

disease (87628006), Blood coagulation disorder (64779008), Ectopic pregnancy (34801009), Erythropoietic

protoporphyria (51022005), Hepatic porphyria (55056006), Incomplete miscarriage (156072005),

Intermenstrual bleeding - irregular (64996003), Leukocytosis (111583006), Miscarriage with sepsis (67465009),

Porphyria cutanea tarda (61860000), Postabortal Hemorrhage (NA), Severe adrenal insufficiency (24867002),

Uterine Adnexal Mass (NA), Variegate porphyria (58275005)

0
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Nilotinib Anemia (271737000), Breastfeeding (mother) (413712001), Congenital long QT syndrome (442917000),

Diabetes mellitus (73211009), Disease of liver (235856003), Elevated Serum Lipase (NA), Gastrectomy

(53442002), Hyperbilirubinemia (14783006), Hypercholesterolemia (13644009), Hyperglycemia (80394007),

Hyperkalemia (14140009), Hypertensive disorder (38341003), Hypocalcemia (5291005), Hypokalemia

(43339004), Hypomagnesemia (190855004), Hyponatremia (89627008), Hypophosphatemia (4996001), Liver

function tests abnormal (166603001), Neutropenic disorder (303011007), Pancreatitis (75694006), Pregnancy,

function (289908002), Prolonged QT interval (111975006), Thrombocytopenic disorder (302215000), Torsades

de pointes (31722008)

1

Nilutamide Decreased respiratory function (80954004), Disorder of lung (19829001), Hepatic failure (59927004),

Incomplete Testicular Development (NA), Interstitial pneumonia (64667001)

0

Oxandrolone Arteriosclerotic vascular disease (72092001), Benign prostatic hyperplasia (266569009), Blood coagulation

disorder (64779008), Breast Carcinoma in Males (NA), Breastfeeding (mother) (413712001), Cholestatic

hepatitis (95556007), Disease of liver (235856003), Disorder of coronary artery (414024009), Edema

(267038008), Heart failure (84114007), Hypercalcemia (66931009), Hypercholesterolemia (13644009),

Hypoalphalipoproteinemia (190785000), Kidney disease (90708001), Neoplasm of liver (126851005), Neoplasm

of prostate (126906006), Nephrotic syndrome (52254009), Peliosis hepatis (58008004), Pregnancy, function

(289908002)

1

Oxymetholone Arteriosclerotic vascular disease (72092001), Benign prostatic hyperplasia (266569009), Blood coagulation

disorder (64779008), Breast Carcinoma in Males (NA), Breastfeeding (mother) (413712001), Carcinoma of

female breast (447782002), Chronic heart failure (48447003), Diabetes mellitus (73211009), Disease of liver

(235856003), Disorder of coronary artery (414024009), Edema (267038008), Heart disease (56265001), Hepatic

failure (59927004), Humoral hypercalcemia of malignancy (47709007), Hypercholesterolemia (13644009),

Hypoalphalipoproteinemia (190785000), Kidney disease (90708001), Liver function tests abnormal

(166603001), Neoplasm of prostate (126906006), Nephrotic syndrome (52254009), Peliosis hepatis (58008004),

Pregnancy, function (289908002)

1

Pioglitazone Acute vomiting (23971007), Adrenal cortical hypofunction (386584007), Alcohol intoxication (25702006),

Alcoholism (7200002), Asthenia (13791008), Autonomic dysreflexia (129618003), Body fluid retention

(43498006), Breastfeeding (mother) (413712001), Cardiogenic shock (89138009), Chronic heart failure

(48447003), Cobalamin deficiency (190634004), Decompensated cardiac failure (195111005), Dehydration

(34095006), Disease of liver (235856003), Edema (267038008), Fever (386661006), Fever greater than 100.4

Fahrenheit (4.26e+08), Fracture of bone (125605004), Glucose-6-phosphate dehydrogenase deficiency anemia

(62403005), Hemolytic anemia (61261009), Hepatic porphyria (55056006), Hypoglycemic disorder

(237630007), Hypopituitarism (74728003), Infectious disease (40733004), Ketoacidosis (56051008), Kidney

disease (90708001), Lactic acidosis (91273001), Liver function tests abnormal (166603001), Macular retinal

edema (37231002), Malignant tumor of urinary bladder (399326009), Metabolic acidosis (59455009),

Myocardial infarction (22298006), Primary adrenocortical insufficiency (373662000), Radiography with IV

Iodinated Contrast Agent (NA), Sepsis syndrome (238150007), Severe diarrhea (409587002), Severe

Hypoxemia (NA), Shock (27942005), Surgical procedure (387713003), Traumatic injury (417746004)

0

Prednisolone Anastomosis of intestine (235407009), Anemia due to enzyme deficiency (111577008), Arginase deficiency

(23501004), Arginosuccinate Lyase Deficiency (NA), Atrophoderma (399979006), Avascular necrosis of bone

(397758007), Bacterial infection of eye (128984004), Bilateral cataracts (95722004), Cerebral malaria

(53622003), Cerebral trauma (275382005), Chronic heart failure (48447003), Cirrhosis of liver (19943007),

Citrullinemia (398680004), Congenital hyperammonemia, type I (62522004), Deficiency of glucose-6-phosphate

dehydrogenase (124134002), Diabetes mellitus (73211009), Disorder of muscle (129565002), Diverticulitis of

gastrointestinal tract (271366000), Edema (267038008), Exposure to varicella (444453009), Eye infection

(128351009), Fungal infection of eye (31194008), Gastritis (4556007), Herpes simplex (88594005), Herpes

simplex dendritic keratitis (29943008), Herpes simplex keratitis (9389005), Hypercholesterolemia (13644009),

Hyperglycemia (80394007), Hypertensive disorder (38341003), Hypokalemia (43339004), Hypopituitarism

(74728003), Hypothyroidism (40930008), Immunosuppression (38013005), Inactive tuberculosis (11999007),

Infection by Strongyloides (1214006), Infectious disease (40733004), Injury of eye region (282752000),

Krukenberg spindle (85430004), Measles (14189004), Muscle atrophy (88092000), Mycosis (3218000), Ocular

hypertension (4210003), Open-angle glaucoma (84494001), Ophthalmic herpes simplex (186542001), Ornithine

Carbamyltransferase Deficiency (NA), Osteopenia (312894000), Osteoporosis (64859006), Pathological

fracture (268029009), Peptic ulcer (13200003), Porphyria (418470004), Pregnancy, function (289908002),

Psychotic disorder (69322001), Seizure disorder (128613002), Severe myopia (34187009), Skin striae

(201066002), Telangiectasia disorder (247479008), Traumatic rupture of tendon (415749005), Tuberculosis

(56717001), Tuberculosis of eye (49107007), Vaccinia keratitis (397552005), Varicella-zoster virus infection

(309465005), Viral eye infection (312132001)

1

Prednisone Anastomosis of intestine (235407009), Arginase deficiency (23501004), Arginosuccinate Lyase Deficiency

(NA), Avascular necrosis of bone (397758007), Bilateral cataracts (95722004), Cerebral malaria (53622003),

Cerebral trauma (275382005), Chronic heart failure (48447003), Cirrhosis of liver (19943007), Citrullinemia

(398680004), Congenital hyperammonemia, type I (62522004), Diabetes mellitus (73211009), Disorder of

muscle (129565002), Diverticulitis of gastrointestinal tract (271366000), Edema (267038008), Exposure to

varicella (444453009), Gastritis (4556007), Herpes simplex (88594005), Hypercholesterolemia (13644009),

Hyperglycemia (80394007), Hypertensive disorder (38341003), Hypokalemia (43339004), Hypopituitarism

(74728003), Hypothyroidism (40930008), Immunosuppression (38013005), Inactive tuberculosis (11999007),

Infection by Strongyloides (1214006), Infectious disease (40733004), Measles (14189004), Muscle atrophy

(88092000), Mycosis (3218000), Open-angle glaucoma (84494001), Ophthalmic herpes simplex (186542001),

Ornithine Carbamyltransferase Deficiency (NA), Osteopenia (312894000), Osteoporosis (64859006),

Pathological fracture (268029009), Peptic ulcer (13200003), Pregnancy, function (289908002), Psychotic

disorder (69322001), Seizure disorder (128613002), Traumatic rupture of tendon (415749005), Tuberculosis

(56717001), Varicella-zoster virus infection (309465005)

1
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Progesterone Alcoholism (7200002), Anorexia nervosa (56882008), Asthma (195967001), Bed-ridden (160685001), Body

fluid retention (43498006), Breast lump (89164003), Carcinoma of female breast (447782002), Cardiovascular

event risk (395112001), Cerebrovascular accident (230690007), Cerebrovascular disease (62914000), Chloasma

(36209000), Chorea (271700006), Chronic heart failure (48447003), Deep venous thrombosis (128053003),

Dementia (52448006), Depressive disorder (35489007), Diabetes mellitus (73211009), Diplopia (24982008),

Disease of liver (235856003), Disorder of coronary artery (414024009), Disorder of gallbladder (39621005),

Ectopic pregnancy (34801009), Epilepsy (84757009), Estrogen receptor positive tumor (416053008), Family

history of malignant neoplasm of breast (429740004), Fibroadenosis of breast (23260002), Functional visual

loss (313165001), Hepatic failure (59927004), Hepatic porphyria (55056006), Humoral hypercalcemia of

malignancy (47709007), Hypercholesterolemia (13644009), Hyperglycemia (80394007), Hyperlipidemia

(55822004), Hyperlipoproteinemia (3744001), Hypertensive disorder (38341003), Hypertensive urgency

(443482000), Hypertriglyceridemia (302870006), Hypocalcemia (5291005), Hypothyroidism (40930008),

Impaired glucose tolerance (9414007), Incomplete miscarriage (156072005), Intermenstrual bleeding - irregular

(64996003), Jaundice (18165001), Kidney disease (90708001), Malignant neoplasm of liver (93870000),

Malignant tumor of ovary (363443007), Mammography abnormal (168750009), Migraine (37796009), Mild

pre-eclampsia (41114007), Myocardial infarction (22298006), Neoplasm of liver (126851005), Obesity

(414916001), Optic disc edema (423341008), Osteopenia (312894000), Osteoporosis (64859006), Porphyria

(418470004), Predisposition to Thrombosis (NA), Pregnancy, function (289908002), Pulmonary

thromboembolism (233935004), Retinal hemorrhage (28998008), Seizure disorder (128613002), Smokes

tobacco daily (449868002), Systemic lupus erythematosus (55464009), Thromboembolic disorder (371039008),

Thrombophilia (234467004), Thrombophlebitis (64156001), Thrombosis of retinal vein (46085004), Uterine

leiomyoma (95315005), Weight gain finding (8943002)

1

Raloxifene Atrial fibrillation (49436004), Breastfeeding (mother) (413712001), Cardiovascular event risk (395112001),

Cerebrovascular accident (230690007), Chronic heart failure (48447003), Deep venous thrombosis

(128053003), Disease of liver (235856003), Disorder of coronary artery (414024009), Hypertensive disorder

(38341003), Hypertriglyceridemia (302870006), Impaired renal function disorder (197663003), Lupus

anticoagulant disorder (19267009), Pregnancy, function (289908002), Pulmonary thromboembolism

(233935004), Smokes tobacco daily (449868002), Thrombophilia (234467004), Thrombophlebitis (64156001),

Thrombosis of retinal vein (46085004), Transient ischemic attack (266257000)

1

Ritodrine Antepartum hemorrhage (34842007), Chorioamnionitis (11612004), Conduction disorder of the heart

(44808001), Dehydration (34095006), Eclampsia in pregnancy (198992004), Fetal death (276507005),

Gestational diabetes mellitus (11687002), Hypertensive disorder (38341003), Hypertensive urgency

(443482000), Hyperthyroidism (34486009), Hypovolemia (28560003), Migraine (37796009), Mild pre-eclampsia

(41114007), Pulmonary hypertension (70995007), Severe pre-eclampsia (46764007)

1

Salbutamol Angle-closure glaucoma (392291006), Benign prostatic hyperplasia (266569009), Bladder outflow obstruction

(236645006), Chronic myocardial ischemia (413844008), Conduction disorder of the heart (44808001),

Congenital long QT syndrome (442917000), Diabetes mellitus (73211009), Hypertensive disorder (38341003),

Hyperthyroidism (34486009), Hypokalemia (43339004), Ketoacidosis (56051008), Metabolic acidosis

(59455009), Myocardial ischemia (414795007), Ocular hypertension (4210003), Paradoxical bronchospasm

(102578005), Prolonged QT interval (111975006), Retention of urine (267064002), Seizure disorder

(128613002)

1

Spironolactone Acute nephropathy (58574008), Acute pancreatitis (197456007), Anuria (2472002), Azotemia (445009001),

Dehydration (34095006), Diabetes mellitus (73211009), Gout (90560007), Hepatic coma (72836002),

Hypercalcemia (66931009), Hypercholesterolemia (13644009), Hyperkalemia (14140009), Hyperparathyroidism

(66999008), Hyperuricemia (35885006), Hypochloremic alkalosis (70134007), Hypokalemia (43339004),

Hypomagnesemia (190855004), Hyponatremia (89627008), Hypovolemia (28560003), Kidney disease

(90708001), Metabolic acidosis, normal anion gap, acidifying salts (18104000), Neonatal hyperbilirubinemia

(281610001), Secondary angle-closure glaucoma (21571006), Sympathectomy (57071006), Systemic lupus

erythematosus (55464009)

1

Sulfasalazine Anemia due to enzyme deficiency (111577008), Aplastic anemia (306058006), Asthma (195967001), Deficiency

of glucose-6-phosphate dehydrogenase (124134002), Disease of liver (235856003), Gastrointestinal obstruction

(126765001), Kidney disease (90708001), Neutropenic disorder (303011007), Porphyria (418470004), Slow

acetylator due to N-acetyltransferase enzyme variant (425079005), Urinary tract obstruction (7163005)

0

Telmisartan Acute pancreatitis (197456007), Anuria (2472002), Azotemia (445009001), Chronic idiopathic constipation

(82934008), Dehydration (34095006), Diabetes mellitus (73211009), Disease of liver (235856003), Gout

(90560007), Hepatic coma (72836002), Hepatic failure (59927004), Hypercalcemia (66931009),

Hypercholesterolemia (13644009), Hyperkalemia (14140009), Hyperparathyroidism (66999008), Hyperuricemia

(35885006), Hypochloremic alkalosis (70134007), Hypokalemia (43339004), Hypomagnesemia (190855004),

Hyponatremia (89627008), Hypovolemia (28560003), Kidney disease (90708001), Low blood pressure

(45007003), Neonatal hyperbilirubinemia (281610001), Obstruction of bile duct (30144000), Pregnancy,

function (289908002), Renal artery stenosis (302233006), Secondary angle-closure glaucoma (21571006),

Severe Aortic Valve Stenosis (NA), Sympathectomy (57071006), Systemic lupus erythematosus (55464009)

1

Temsirolimus Acute infectious disease (63171007), Breastfeeding (mother) (413712001), Cerebrovascular accident

(230690007), Diabetes mellitus (73211009), Disease of liver (235856003), Gastrointestinal perforation

(51875005), Hyperbilirubinemia (14783006), Hyperglycemia (80394007), Hyperlipidemia (55822004), Impaired

wound healing (271618001), Interstitial pneumonia (64667001), Kidney disease (90708001), Malignant

neoplasm of brain (428061005), Perioperative care (133897009), Pregnancy, function (289908002), Secondary

malignant neoplasm of cerebrum (94248000), Surgical procedure (387713003)

1
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Testosterone Arteriosclerotic vascular disease (72092001), Asthma (195967001), Benign prostatic hyperplasia (266569009),

Body fluid retention (43498006), Breast Carcinoma in Males (NA), Breast lump (89164003), Breastfeeding

(mother) (413712001), Carcinoma of female breast (447782002), Cardiovascular event risk (395112001),

Cerebrovascular accident (230690007), Chloasma (36209000), Chorea (271700006), Chronic heart failure

(48447003), Chronic lung disease (413839001), Deep venous thrombosis (128053003), Dementia (52448006),

Diabetes mellitus (73211009), Disease of liver (235856003), Disorder of coronary artery (414024009), Disorder

of gallbladder (39621005), Edema (267038008), Endometrial carcinoma (254878006), Endometriosis

(129103003), Epilepsy (84757009), Estrogen receptor positive tumor (416053008), Family history of malignant

neoplasm of breast (429740004), Functional visual loss (313165001), Gynecomastia (4754008), Heart disease

(56265001), Heart failure (84114007), Hepatic porphyria (55056006), Humoral hypercalcemia of malignancy

(47709007), Hypercalcemia (66931009), Hypercholesterolemia (13644009), Hyperlipoproteinemia (3744001),

Hypertensive disorder (38341003), Hypertensive urgency (443482000), Hypertriglyceridemia (302870006),

Hypocalcemia (5291005), Hypothyroidism (40930008), Intermenstrual bleeding - irregular (64996003), Kidney

disease (90708001), Magnetic resonance imaging (113091000), Malignant tumor of ovary (363443007),

Mammography abnormal (168750009), Migraine (37796009), Myocardial infarction (22298006), Neoplasm of

liver (126851005), Neoplasm of prostate (126906006), Obesity (414916001), Pregnancy, function (289908002),

Pulmonary thromboembolism (233935004), Sleep apnea (73430006), Smokes tobacco daily (449868002),

Systemic lupus erythematosus (55464009), Thromboembolic disorder (371039008), Thrombophilia

(234467004), Thrombophlebitis (64156001), Thrombosis of retinal vein (46085004), Uterine leiomyoma

(95315005)

1

Theophylline Acute hepatitis (37871000), Acute tuberculosis (25629007), Alcoholism (7200002), Anemia (271737000),

Angina pectoris (194828000), Angle-closure glaucoma (392291006), Benign prostatic hyperplasia (266569009),

Bladder outflow obstruction (236645006), Breastfeeding (mother) (413712001), Chronic heart failure

(48447003), Chronic idiopathic constipation (82934008), Chronic myocardial ischemia (413844008),

Conduction disorder of the heart (44808001), Continuous fever (271751000), Cor pulmonale (83291003),

Coronary arteriosclerosis (53741008), Cystic fibrosis (190905008), Depressive disorder (35489007), Dermatitis

herpetiformis (111196000), Diabetes mellitus (73211009), Disease of liver (235856003), Disorder of

cardiovascular system (49601007), Disorder of coronary artery (414024009), Dyspnea (267036007), Goiter

(3716002), Hashimoto thyroiditis (21983002), Hepatic coma (72836002), Hepatic encephalopathy (13920009),

Hepatic failure (59927004), Hyperammonemia (9360008), Hyperkalemia (14140009), Hypertensive disorder

(38341003), Hypertensive urgency (443482000), Hyperthyroidism (34486009), Hypocomplementemic urticarial

vasculitis (239945009), Hypothyroidism (40930008), Kidney disease (90708001), Multiple organ failure

(57653000), Myocardial infarction (22298006), Myocardial ischemia (414795007), Neutropenic disorder

(303011007), Open-angle glaucoma (84494001), Peptic ulcer (13200003), Poisoning by phenobarbital

(64921004), Porphyria (418470004), Pregnancy, function (289908002), Psychotic disorder (69322001),

Pulmonary edema (19242006), Retention of urine (267064002), Seizure disorder (128613002), Sepsis syndrome

(238150007), Severe Hypoxemia (NA), Shock (27942005), Sleep apnea (73430006), Smokes tobacco daily

(449868002), Smoking cessation assistance (384742004), Substance abuse (66214007), Suicidal thoughts

(6471006), Tachyarrhythmia (6285003), Theophylline Toxicity (NA), Third trimester pregnancy (41587001),

Thrombocytopenic disorder (302215000)

1

Timolol Acute cerebrovascular insufficiency (29322000), Acute disease of cardiovascular system (128487001), Acute

nephropathy (58574008), Acute pancreatitis (197456007), Anaphylaxis (39579001), Anuria (2472002),

Azotemia (445009001), Bronchospasm (4386001), Cardiogenic shock (89138009), Cerebrovascular disease

(62914000), Complete atrioventricular block (27885002), Decompensated cardiac failure (195111005),

Dehydration (34095006), Depressive disorder (35489007), Diabetes mellitus (73211009), Disease of liver

(235856003), General anesthesia (50697003), Gout (90560007), Hepatic coma (72836002), Hypercalcemia

(66931009), Hypercholesterolemia (13644009), Hyperparathyroidism (66999008), Hyperthyroidism (34486009),

Hyperuricemia (35885006), Hypochloremic alkalosis (70134007), Hypoglycemic disorder (237630007),

Hypokalemia (43339004), Hypomagnesemia (190855004), Hyponatremia (89627008), Hypovolemia (28560003),

Kidney disease (90708001), Myasthenia gravis (91637004), Neonatal hyperbilirubinemia (281610001),

Orthostatic hypotension (28651003), Partial atrioventricular block (195039008), Pregnancy, function

(289908002), Pulmonary emphysema (87433001), Raynaud’s phenomenon (266261006), Right ventricular

failure (367363000), Secondary angle-closure glaucoma (21571006), Severe chronic obstructive pulmonary

disease (313299006), Sinus bradycardia (49710005), Sympathectomy (57071006), Systemic lupus

erythematosus (55464009), Thromboangiitis obliterans (52403007)

1

Treprostinil Blood coagulation disorder (64779008), Disease of liver (235856003), Disorder of lung (19829001), Kidney

disease (90708001), Low blood pressure (45007003)

0
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Tretinoin Acute pancreatitis (197456007), Adrenal cortical hypofunction (386584007), Agranulocytosis (17182001),

Alcoholism (7200002), Anorexia nervosa (56882008), Atopic dermatitis (24079001), Atrophoderma

(399979006), Benign intracranial hypertension (68267002), Bleeding (131148009), Breastfeeding (mother)

(413712001), Congenital neutropenia (89655007), Corneal opacity (64634000), Crohn’s disease (34000006),

Denuded skin (418242004), Depressive disorder (35489007), Diabetes mellitus (73211009), Disease of liver

(235856003), Disorder of bone (76069003), Disorder of cardiovascular system (49601007), Dyspnea

(267036007), Eczema (43116000), Edema (267038008), Fever (386661006), Hearing loss (15188001),

Hypercholesterolemia (13644009), Hypertriglyceridemia (302870006), Inflammatory bowel disease (24526004),

Inflammatory disease of liver (128241005), Keratoconjunctivitis sicca (302896008), Kidney disease (90708001),

Leukocytosis (111583006), Liver function tests abnormal (166603001), Mycosis fungoides (118618005),

Myocardial infarction (22298006), Neutropenic disorder (303011007), Obesity (414916001), Osteomalacia

(4598005), Osteoporosis (64859006), Pericardial effusion (373945007), Peripheral vascular disease (400047006),

Pleural Effusions (NA), Predisposition To Hypertriglyceridemia (NA), Pregnancy, function (289908002),

Pseudomembranous enterocolitis (397683000), Psychotic disorder (69322001), Pulmonary Infiltrates (NA),

Rectal hemorrhage (12063002), Retinoic acid syndrome (450887006), Severe diarrhea (409587002), Suicidal

thoughts (6471006), Sunburn (23346002), Telangiectasia disorder (247479008), Tinnitus (60862001),

Ulcerative colitis (64766004), Venous thrombosis (111293003), Vitiligo (56727007)

1

Vorinostat Anemia (271737000), Breastfeeding (mother) (413712001), Congenital long QT syndrome (442917000), Deep

venous thrombosis (128053003), Dehydration (34095006), Diabetes mellitus (73211009), Diarrhea (62315008),

Disease of liver (235856003), Hyperglycemia (80394007), Hypocalcemia (5291005), Hypokalemia (43339004),

Hypomagnesemia (190855004), Pregnancy, function (289908002), Prolonged QT interval (111975006),

Pulmonary thromboembolism (233935004), Thrombocytopenic disorder (302215000), Thromboembolic

disorder (371039008), Vomiting (422400008)

1
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