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Abstract
A shear band of �nite length, formed inside a ductile material at a cer-
tain stage of a continued homogeneous strain, provides a dynamic per-
turbation to an incident wave �eld, which strongly in�uences the dy-
namics of the material and a�ects its path to failure. The investigation
of this perturbation is presented for a ductile metal, with reference to
the incremental mechanics of a material obeying the J2-deformation the-
ory of plasticity (a special form of prestressed, elastic, anisotropic, and
incompressible solid). The treatment originates from the derivation of
integral representations relating the incremental mechanical �elds at ev-
ery point of the medium to the incremental displacement jump across
the shear band faces, generated by an impinging wave. The boundary
integral equations (under the plane strain assumption) are numerically
approached through a collocation technique, which takes account of the
singularity at the shear band tips and permits the analysis of an incident
wave impinging on a shear band.
It is shown that the presence of the shear band induces a resonance, visi-
ble in the incremental displacement �eld and in the stress intensity factor
at the shear band tips, which promotes shear band growth. Moreover,
the waves scattered by the shear band are shown to generate a �ne tex-
ture of vibrations, parallel to the shear band line and propagating at a
long distance from it, but leaving a sort of conical shadow zone, which
emanates from the tips of the shear band.
Moreover, the approach is generalised to study the interaction of multi-
ple shear bands showing that it may lead to resonance and corresponding
growth of shear bands, but also to their annihilation. At the same time,
multiple scattering may bring about focusing or, conversely, shielding
from waves. Due to the di�culties inherent to the experimental anal-
ysis of time-harmonic dynamics of shear bands, the proposed mechani-
cal model represents the only practical possibility of analyzing the �ne
micromechanisms governing material collapse and discloses the complex
interplay between dynamics and shear band growth or arrest.
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1 Introduction

When a ductile material is subject to severe strain, failure is preluded
by the emergence of shear bands which initially nucleate in a small area,
but quickly extend rectilinearly and accumulate damage, until they de-
generate into fractures. Nucleation and growth of shear bands and their
interactions in ductile materials are concurrent causes of failure, a com-
plex process which is strongly a�ected by dynamics and far from being
completely understood. Therefore, research on shear bands yields a fun-
damental understanding of the intimate rules of failure, so that it may
be important in the design of new materials with superior mechanical
performances.

The aim of the present thesis is to investigate dynamic perturbations
in the stress/deformation �elds of an incident wave, induced by multiple
shear bands interaction, formed inside a ductile metal, at a certain stage
of a continued strain.

The incremental constitutive equations used to describe nonlinear ma-
terials are brie�y introduced in Chapter 2 together with the condition for
their positive de�niteness, ellipticity, and regime classi�cation, in the spe-
cial cases of the J2-deformation theory of plasticity and Mooney-Rivlin
material.

The shear band model is introduced in Chapter 3, together with the
boundary conditions that allow to obtain the boundary integral equation
presented in Chapter 4 and based on the time-harmonic Green's functions
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Chapter 1. Introduction

for the incremental nonlinear elasticity. In order to give a numerical
solution to the shear band problem, a Boundary Element Method with
an ad hoc collocation technique is formulated.

The case pertaining to an isolated shear band in in�nite incompress-
ible nonlinear elastic material is reported in Chapter 5. Displacements,
Stress Intensity Factors, and deviatoric strain �elds are presented for the
cases of a time-harmonic transverse shear wave that travels orthogonal to
the shear band, and with generic inclination with respect to it. Results
show that wave propagation induces a resonance e�ect of the shear band,
promoting its growth, and show that the scattered �eld of a shear band
is composed by a family of plane waves parallel to the band, Figure 1.1.
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Figure 1.1: Scattered (left) and total (right) incremental deviatoric strain
�eld is reported as produced by an incident shear wave travelling parallel to the
shear band of length 2 l (β = θ, with β direction of the wave propagation and θ
inclination of the shear band) with wave number Ω l/c1 = 1 (denoting with Ω
the circular frequency and c1 the wave speed).

The dynamic interaction of multiple shear bands is introduced in
Chapter 6, where the appropriate numerical technique used to solve the
problem is described in detail. Four di�erent con�gurations of shear
bands are considered in Chapter 7: parallel and aligned shear bands, two
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Chapter 1. Introduction

shear bands in a V-shaped con�guration and four shear bands in a squared
con�guration. Results show that di�erent geometries of shear bands can
lead to opposite e�ects, of focusing or shielding from waves (Figure 1.2),
and in some cases promote resonance e�ects or the annihilation of the
shear band.
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Figure 1.2: Examples of wave focusing (upper part) and shielding (lower
part) generated by two parallel shear bands. Scattered (left) and total (right)
incremental deviatoric strain �eld is reported as produced by an incident shear
wave travelling parallel to the shear bands (β = θ) with wave number Ω l/c1 = 1.
.
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2 The incremental constitutive

equations for incompressible plane

strain

In this Chapter, the set of equations that characterise the problem of the
incremental nonlinear elasticity upon which the present thesis is focussed,
is brie�y illustrated. The analysis of strain localizations, in the form
of shear bands, can be only analyzed by the using of the incremental
elasticity due to the large strains involved.

To this purpose, the Biot problem [10] has been chosen, in which an
in�nite medium is homogeneously and biaxially deformed within the ellip-
tic range. The current con�guration is plane strain and characterized by
two in-plane stretches. The incremental response of this incompressible
solid is linear and governed by the two Biot moduli, which are functions
of the in-plane stretches.

2.1 The incremental constitutive equation

Biot has provided a general procedure for deriving the incremental re-
sponse of an elastic incompressible material, starting from the consti-
tutive equation expressed in terms of the Cauchy stresses σ and the

5



Chapter 2. The incremental constitutive equations for incompressible

plane strain

Cauchy-Green left tensor B = FFT , as

σ = −qI + β0B + β1B
−1, (2.1)

in which q is function of the hydrostatic pressure p̂ = trσ/3 with the
relation

q = −p̂+
1

3
β0I1 +

1

6
β1

(
I2

1 − I2

)
, I1 = trB, I2 = trB2, (2.2)

and β0 and β1 are generic functions of the two invariants (I1, I2) of B

β0 = β0(I1, I2), β1 = β1(I1, I2). (2.3)

The constitutive equation (2.1) implies the coaxiality between tensors B
and σ, so that they share a principal reference system where

diagB = (λ2
1, λ

2
2, λ

2
3), diagσ = (σ1, σ2, σ3), (2.4)

in which σi are the principal stresses and λi > 0 are the principal stretches
that satisfy the incompressibility constraint

λ1λ2λ3 = 1. (2.5)

Consequently, terms β0 and β1 of equation (2.1) can be determined in
the principal Eulerian reference system as follows

β0 =
1

λ2
1 − λ2

2

[
(σ1 − σ3)λ2

1

λ2
1 − λ3

3

− (σ2 − σ3)λ2
2

λ2
2 − λ2

3

]
(2.6)

and

β1 =
1

λ2
1 − λ2

2

[
σ1 − σ3

λ2
1 − λ3

3

− σ2 − σ3

λ2
2 − λ2

3

]
(2.7)

Biot [10] has shown that the most general incremental response of
a hyperelastic incompressible material deformed in plane strain can be
characterized in terms of the Zaremba-Jaumann derivative of the Cauchy

stress
∇
σ,

∇
σ= σ̇ −Wσ + σW, (2.8)

6



2.1. The incremental constitutive equation

(where W is the incremental rotation tensor and σ̇ is the increment of
Cauchy stress) as

∇
σ11 −

∇
σ22= 2µ∗ (D11 −D22) ,

∇
σ12= 2µD12, (2.9)

where, in an updated Lagrangean description (in which the current state
is used as reference), Dij are the in-plane components of the Eulerian
strain increment tensor D, which has to satisfy the incompressibility
constraint trD = 0, and µ and µ∗ are two incremental shear moduli,
respectively parallel and inclined at 45◦ with respect to the x1−axis [4],
and they can be expressed as functions of the principal stretches

µ =
λ2

1 + λ2
2

2

(
β0 −

β1

λ2
1λ

2
2

)
. (2.10)

and

µ∗ =
λ2

1 + λ2
2

2
β0 +

λ2
1 − λ2

2

4

(
λ2

1

∂β0

∂λ1
− λ2

2

∂β0

∂λ2

)
− 1

λ2
1λ

2
2

[
λ2

1 + λ2
2

2
β1 +

λ2
1 − λ2

2

4

(
λ2

1

∂β1

∂λ1
− λ2

2

∂β1

∂λ2

)]
(2.11)

In terms of the unsymmetric nominal stress increment ṫ, related to
the Zaremba-Jaumann derivative of the Cauchy stress as

ṫ =
∇
σ −σW −Dσ, (2.12)

the constitutive equations (2.8), together with the incompressibility con-
straint, can be rewritten as

ṫij = Kijklvl,k + ṗδij , vi,i = 0, (2.13)

where, vi is the incremental displacement, ṗ is the incremental hydrostatic
stress and δij is the Kronecker delta (indices range between 1 and 2, a
comma denotes partial di�erentiation). The fourth-order tensor Kijkl of
the instantaneous moduli, posseses the major symmetry Kijkl = Kklij

7



Chapter 2. The incremental constitutive equations for incompressible

plane strain

(but not the two minor symmetries), and is de�ned in components as

K1111 = µ∗ −
σ

2
− p, K1122 = −µ∗, K1112 = K1121 = 0,

K2211 = −µ∗, K2222 = µ∗ +
σ

2
− p, K2212 = K2221 = 0,

K1212 = µ+
σ

2
, K1221 = K2112 = µ− p, K2121 = µ− σ

2
,

(2.14)
where the prestress parameters σ and p are the in-plane deviatoric and
mean stresses, functions of the principal Cauchy stresses, respectively, as

σ = σ1 − σ2, p =
σ1 + σ2

2
, (2.15)

so that, the components of equation (2.13) in the explicit form are

ṫ11 =
(

2µ∗ −
σ

2
− p
)
v1,1 + ṗ,

ṫ12 = (µ− p)v1,2 +
(
µ+

σ

2

)
v2,1,

ṫ21 = (µ− p)v2,1 +
(
µ− σ

2

)
v1,2,

ṫ22 =
(

2µ∗ +
σ

2
− p
)
v1,1 + ṗ.

(2.16)

Introducing the dimensionless measure of the deviatoric pre-stress k
and the dimensionless parameter quantifying the amount of orthotropy
ξ, de�ned as

k =
σ

2µ
, ξ =

µ∗
µ
, (2.17)

the components (2.16) can be rewritten as

ṫ11 = (2µ∗ − p) v1,1 + π̇,

ṫ12 = (µ− p)v1,2 + (µ+ µk) v2,1,

ṫ21 = (µ− p)v2,1 + (µ− µk) v1,2,

ṫ22 = − (2µ∗ − p) v1,1 + π̇,

(2.18)

8



2.2. Local uniqueness and stability criteria for Biot plane strain and

incompressibility elasticity

where π̇ is the in-plane hydrostatic nominal stress increment de�ned as

π̇ =
ṫ11 + ṫ22

2
= ṗ− σ̇1 − σ̇2

2
v1,1. (2.19)

The constitutive equations (2.13)�(2.14) are representative of a broad
class of material behaviours, including all possible elastic incompress-
ible materials which are orthotropic with respect to the current principal
stress directions.

2.2 Local uniqueness and stability criteria for Biot

plane strain and incompressibility elasticity

Positive de�niteness of K

The uniqueness of the solution is given by the positive de�niteness of K
that, for all velocity gradient and under the incompressibility constraint,
can be written as

vj,iKijklvl,k > 0 (2.20)

which can be developed and written in the form

(K1111 − 2K1122 + K2222)v2
1,1

+ K2121v
2
1,2 + 2K1221v1,2v2,1 + K1212v

2
2,1 > 0, (2.21)

and corresponds to the Hill and Hutchinson exclusion condition. Since
all components of the velocity gradients of equation (2.21) are free pa-
rameters, the conditions to hold are

K1111 − 2K1122 + K2222 > 0, K1212 > 0, K1212K2121 −K2
1221 > 0,

(2.22)
which, using the de�nition of the fourth-order tensor K (2.14), reduce to

0 < σ1 + σ2 < 4µ∗
σ2

1 + σ2
2

σ1 + σ2
< 2µ. (2.23)

9



Chapter 2. The incremental constitutive equations for incompressible

plane strain

So that, for a positive prestress (k > 0) every incremental bifurcation
is excluded (for µ > 0), and can be summarize in a dimensionless form
as

0 < p/µ < 2ξ,
k2 + (p/µ)2

2 p/µ
< 1. (2.24)

Strong ellipticity and ellipticity

Strain localization is explained in terms of ellipticity loss and it could
lead to shear band formation. Considering the elastic fourth-order ten-
sor, strong ellipticity corresponds to the positive de�niteness of its eigen-
values, while ellipticity corresponds to the non vanishing of the same
eigenvalues.
Introducing n and g, two unit vectors orthogonal to each other, with
components

n = {cos γ, sin γ}, −g = {− sin γ, cos γ}, (2.25)

in which γ is the angle between n and the x1 axis, the strong ellipticity
condition is expressed as

gj niKijkl nk gl > 0, (2.26)

or in an expanded form

K1212 cos4 γ + K2121 sin4 γ

+ (K1111 − 2K1122 − 2K1221 + K2222) cos2 γ sin2 γ > 0 (2.27)

that holds for every γ, and with the de�nition of K (2.14), can be rewrit-
ten as

µ sin4 γ
[
(1 + k) cot4 γ + 2(2ξ − 1) cot2 γ + 1− k

]
> 0, (2.28)

which is equivalent to the following three inequalities:

µ > 0, k2 < 1, 2ξ > 1−
√

1− k2. (2.29)

10



2.3. The regime classi�cation

Then assuming µ > 0 the ellipticity and strong ellipticity criteria are
equivalent. The inclination γ of the normal vector of the shear band
(introduced in the next Chapter), is obtained from equation (2.28) at the
ellipticity loss.

Surface bifurcation

Let us consider an elastic half-space de�ned in the region x2 ≤ 0, and
homogeneously pre-stressed; the surface instability [4, 42] occurs in the
elliptic regime when the following relation is satis�ed

4ξ − 2p/µ =
(p/µ)2 − 2p/µ+ k2

√
1− k2

. (2.30)

The surface instability can be considered a local instability criterion, and
is always possible in a nonlinear elastic pre-stressed half space before loss
of ellipticity. In the special case, when surface instability occurs at the
elliptic boundary, this means that it occurs simultaneously with a shear
band formation.

2.3 The regime classi�cation

Let us now consider the superimposition of incremental deformations,
at an arbitrary stage of a homogeneous, plane deformation of an in�-
nite medium, by application of a time-harmonic incremental body force
ḟj . While the current state of stress trivially satis�es equilibrium, the
equations of the incremental motion are

ṫij,i + ḟjδ(x) = ρ
∂2vj
∂t2

, (2.31)

where ρ is the mass density, δ(x) is the Dirac delta function, and t de-
notes the time. For time-harmonic motion with circular frequency Ω, and
incremental displacement �eld
vi(x) exp(−iΩt) , equations (2.31) with the substitution of equation (2.13)

11



Chapter 2. The incremental constitutive equations for incompressible

plane strain

becomes

(2µ∗ − µ) v1,11 +
(
µ− σ

2

)
v1,22 + ḟ1δ(x) = −π̇,1 − ρΩ2 v1, (2.32)

(2µ∗ − µ) v2,22 +
(
µ+

σ

2

)
v2,11 + ḟ2δ(x) = −π̇,2 − ρΩ2 v2. (2.33)

The incremental displacement �eld can be derived from a stream func-
tion ψ(x) exp(−iΩt), introduced as

v1 = ψ,2, v2 = −ψ,1. (2.34)

A di�erentiation of the two equations (2.32) and (2.33) with respect to
x2 and x1, respectively, and subtracting the results, yields the di�erential
equation

(1 + k)ψ,1111 + 2 (2ξ − 1)ψ,1122 + (1− k)ψ,2222 +
ḟ1,2

µ
− ḟ2,1

µ
+

+
ρ

µ
Ω2 (ψ,11 + ψ,22) = 0. (2.35)

Localization of deformation is usually identi�ed with the condition of loss
of ellipticity of the equations governing incremental equilibrium, and for
this reason all the results of the present thesis are restricted to the elliptic
regime. The principal part of the di�erential equation (2.35) is the same
as in the quasi-static case and its homogeneous associated equation is

(1 + k)ψ,1111 + 2 (2ξ − 1)ψ,1122 + (1− k)ψ,2222 = 0, (2.36)

and dividing by µψ,2222, assumes the form

µψ,2222

[
(1 + k)

ψ,1111

ψ,2222
+ 2 (2ξ − 1)

ψ,1122

ψ,2222
+ (1− k)

]
= 0. (2.37)

Assuming that the solution has the following structure:

ψ(x1, x2) = A expiω·x (2.38)

12



2.3. The regime classi�cation

where A ∈ R, ω ∈ C2 and x ∈ R2, and substituting its derivatives in
equation (2.37), we obtain:

µω4
2

[
(1 + k)

ω4
1

ω4
2

+ 2(2ξ − 1)
ω2

1

ω2
2

+ 1− k
]

= 0, (2.39)

which is strongly related to the inequality (2.28). Equation (2.39) admits:

• four real solutions ω1/ω2, in the hyperbolic regime (denoted by H);

• two real solutions ω1/ω2, in the parabolic regime (denoted by P);

• no real solutions ω1/ω2, in the elliptic regime (denoted by E).

The elliptic regime may be further sub-divided into elliptic complex (EC)
and elliptic imaginary (EI) regimes. In particular, equation (2.39) admits:

• two conjugate pairs of complex solutions in the elliptic complex
regime (EC), with domain expressed as

k2 < 1 and 1−
√

1− k2 < 2ξ < 1 +
√

1− k2 (2.40)

• four purely imaginary solutions (in conjugate pairs) in the elliptic
imaginary regime (EI) with domain expressed as

k2 < 1 and 2ξ < 1 +
√

1− k2. (2.41)

Introducing the roots ω2
1/ω

2
2 of equation (2.39)

(1 +k)
ω4

1

ω4
2

+ 2(2ξ−1)
ω2

1

ω2
2

+ 1−k = (1 +k)

[
ω2

1

ω2
2

− γ1

] [
ω2

1

ω2
2

− γ2

]
, (2.42)

where

γ1

γ2

}
=

1− 2µ∗/µ±
√

∆

1 + k
, with ∆ = k2 − 4

µ∗
µ

+ 4

(
µ∗
µ

)2

. (2.43)

it is possible to conclude that:
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Chapter 2. The incremental constitutive equations for incompressible

plane strain

• γ1, γ2 are a conjugate pair in the (EC) regime, with ∆>0,

• γ1, γ2 are both real and negative in the (EI) regime, with ∆<0

The regime classi�cation, with the superposition of the Hill criterion ex-
clusion and the surface instability, is reported in Figure 2.1 for a J2-
deformation theory of plasticity with hardening exponent N = 0.4.

EC

0-0.5-1 10.8750.5

0.5

1

EI

P P

H H

Surface

instability

Mooney-Rivlin

Hill exclusion

Figure 2.1: Regime classi�cations: in light blue the EC regime, in grey the
EI regime, in pink the H regime and in purple the P regime. In continuous red
line the J2-deformation theory path with N = 0.4. In blue the Hill exclusion
condition (with p/µ = 0.59k in order to approach the EC/H boundary with the
J2-deformation theory path with N = 0.4) and in green the surface instability.

2.4 Mooney-Rivlin material

The Mooney-Rivlin material is de�ned by the strain energy density func-
tion

W (λi) =
µ1

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)
− µ2

2

(
λ−2

1 + λ−2
2 + λ−2

3 − 3
)

(2.44)

in which µ1 and µ2 are the two constant moduli. The di�erence

µ0 = µ1 − µ2 > 0 (2.45)
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2.4. Mooney-Rivlin material

represents the shear modulus in the original unstressed state, which has
to be strictly positive.
With reference to equation (2.1) the two functions β0 and β1 are constant
and are

β0 = µ1, β1 = µ2, (2.46)

and then equation (2.1) can be written as

σ = −πI + µ1B + µ2B
−1. (2.47)

The two incremental shear moduli µ and µ∗, respectively parallel and
inclined at 45◦ with respect to the x1−axis, are expressed as

µ = µ∗ =
µ0

2
(λ2

1 + λ2
2). (2.48)

If an in�nitesimal shear deformation of amplitude γ, parallel to axes e1

and e2, and with direction inclined of π/4 with respect to e1, is applied
to an unloaded solid, the shear stress evaluated from equation (2.47) is

σ12 = γ(µ1 − µ2) = γµ0. (2.49)

Substituting the stretches for the incompressible deformation λ1 = λ2 =
λ and λ3 = 1/λ2

1 into the strain energy density function, equation (2.44)
becomes

W (λ) =
µ1

2

(
2λ6 − 3λ4 + 1

λ4

)
− µ2

2

(
λ8 − 3λ4 + 2λ2

λ4

)
(2.50)

and gives the conclusion that for λ→ 0 the strain energy W has the sign
of µ1, whereas for λ→∞ the strain energy W has the sign of −µ2. This
leads to the result that µ1 ≥ 0 and µ2 ≤ 0 if we want the strain energy
W to be de�nite positive.

The regime classi�cation introduced in Section 2.2 can be evaluated
under the uniaxial strain condition, using the coe�cients

0 < k = p/µ < 1, ξ = 1, (2.51)
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Chapter 2. The incremental constitutive equations for incompressible

plane strain

that satisfy conditions (2.24). De�ning the logarithmic strain as

εi = log λi, (2.52)

the loss of ellipticity corresponds to k = 1 and then to a corresponding
logarithmic strain ε1 = 1.32. The special case for which the prestress
k = 0 corresponds to the isotropic condition.

2.5 The J2�deformation theory of plasticity

In this thesis attention is focused on the behaviour of ductile metals,
which can be represented through the J2-deformation theory of plasticity,
whose constitutive equations (Hutchinson and Neale, 1979) in plane strain
reduce to

σ1 − σ2 = K

(
2√
3

)N+1

|ε1|N−1ε1, (2.53)

where K is a sti�ness parameter, N ∈ (0, 1] a hardening exponent and
ε1 = −ε2 are the logarithmic strains, related to the principal stretches
λ1 = 1/λ2 via ε1 = log λ1 = −ε2 = − log λ2. The incremental moduli µ
and µ∗, de�ning equation (2.13), can be written as

µ =
1

3
Es (ε1 − ε2) coth (ε1 − ε2), µ∗ =

1

9

Es
ε2
e

[
3(ε1 + ε2)2 +N(ε1 − ε2)2

]
,

(2.54)
where Es is the secant modulus to the e�ective-stress/e�ective-strain
curve, given by

Es = K

(
2√
3

)N−1

|ε1|N−1. (2.55)

Note that the out-of-plane stress increment can be calculated from
the expression

∇
σ33= trσ̇/3 = ṗ. (2.56)
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2.5. The J2�deformation theory of plasticity

The regime classi�cation introduced in Section 2.2 can be evaluated in
terms of a J2-deformation theory of plasticity using the coe�cients

ξ =
N

2ε1 coth(2ε1)
, k =

1

coth(2ε1)
(2.57)

that satisfy conditions (2.24). The loss of ellipticity corresponds to the
equation

N = εE1 tanh εE1 , (2.58)

where εE1 is the logarithmic strain for the loss of ellipticity.
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3 The shear band model

Modelling of a shear band as a slip plane embedded in a highly prestressed
material and perturbed by a mode II incremental strain, reveals that a
highly inhomogeneous and strongly focussed stress state is created in the
proximity of the shear band and aligned parallel to it. This evidence,
together with the fact that the incremental energy release rate blows
up when the stress state approaches the condition for ellipticity loss,
may explain the rectilinear growth of shear bands (documented in several
experiments, [24, 30, 65, 66]) and the reason why they are a preferred
mode of failure for ductile materials [9, 13, 44, 49, 53].

The aim of the present thesis is to investigate dynamic perturbations
in the stress/deformation �elds of an incident wave, induced by a shear
band of �nite length, formed inside a ductile metal, at a certain stage of
a continued strain. The shear band is modelled as possessing null thick-
ness and thus behaving as a discontinuity surface, an assumption which
is motivated by the experimental observation [50, 59, 69] that thicknesses
in metals are on the order of micrometres, while lengths can reach mil-
limeters, so that a thickness-to-length ratio of order 10−3 is considered
to be negligible.
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Chapter 3. The shear band model

3.1 The boundary conditions

A shear band of �nite length 2l is a very thin layer of material subject
to intense shear, emerging inside a ductile material at a certain stage of
a uniform deformation path with a well-de�ned inclination θ0, measured
from the σ1�principal axis of stress.

The shear band is characterized by a high compliance to shear par-
allel to it, so that it can be modelled by assuming that the incremental
nominal traction tangential to the shear band vanishes, while the normal
nominal traction and the normal component of the incremental displace-
ment remain continuous. Introducing the jump operator [[ ]] as

[[g]] = g+ − g−, (3.1)

[where g+ and g− denote the limits approached by the �eld g(x) at the
discontinuity surface] and two reference systems, namely, x1−x2 aligned
parallel to the orthotropy axes of the material and x̂1−x̂2 aligned parallel
to the shear band, Fig. 3.1, the conditions holding along the shear band
are the following.

• Null incremental nominal shearing tractions:

t̂21(x̂1, 0
±) = 0, ∀|x̂1| < l. (3.2)

• Continuity of the incremental nominal traction orthogonal to the
shear band:

[[t̂22(x̂1, 0)]] = 0, ∀|x̂1| < l. (3.3)

• Continuity of the incremental displacement component orthogonal
to the shear band:

[[v̂2(x̂1, 0)]] = 0, ∀|x̂1| < l. (3.4)

The above equations show that the shear band is modelled as a (null-
thickness) discontinuity surface, which is more general than a crack (be-
cause a shear band can carry a �nite compressive tractions across its
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3.1. The boundary conditions

faces), but may represent a dislocation [2, 67, 68]; in metals the null-
thickness assumption is strongly motivated by the experimental observa-
tion [50, 59, 69] that a shear band thickness-to-length ratio is of the order
10−3 since lengths of shear bands can reach millimetres, while their thick-
ness is con�ned to only a few micrometres. In the absence of prestress,
the shear band model reduces to a weak surface whose faces can freely
slide and at the same time are constrained to remain in contact, but when
a prestress is present, the shear band model di�ers from that of a slid-
ing planar surface [5]. The prescriptions (3.2)�(3.4) have been directly
borrowed from those de�ning the onset of a shear band in a material [4].

1

2

2

1

x1

x2
x1
b

x2
b

l

l

ss

s

s

b

q0

p

d

x1

p

Figure 3.1: A plane shear wave (sketched as a moving deck of cards) is im-
pinging a shear band of �nite-length (2l) in a prestressed, orthotropic material.
The shear band (aligned parallel to the x̂1�axis) is inclined at an angle ϑ0 (posi-
tive when anticlockwise) with respect to the orthotropy axes x1 and x2 (aligned
parallel to the prestress state); the wave is inclined at an angle β with respect
to the x1-axis.
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Chapter 3. The shear band model

The analysis of the shear band will be restricted to a tensile prestress
and the value of the normalized in-plane mean stress, p/µ, will be selected
in such a way that the Hill exclusion condition (2.24) is satis�ed, so that
spurious bifurcations will not a�ect the dynamics near the shear band,
which is analysed as follows.

3.2 The shear band inclination

The inclination γ of the normal vector of the shear band, can be computed
from the inequality (2.28), and it is expressed in terms of the shear band
inclination with the relation

γ = θ0 + π/2. (3.5)

For the two di�erent boundaries at the ellipticity loss, the inclination θ0

results:

• at the EC/H boundary the following relation holds true

k = sign(k)2
√
ξ(1− ξ), (3.6)

so that, the normal vector of the shear band is inclined at an angle
γ, where

tan2 γ =
1 + sign(k)2

√
ξ(1− ξ)

1− 2ξ
. (3.7)

Therefore two shear band are possible with inclinations

θ0 = ±arccot

√
1 + 2 sign(k)

√
ξ(1− ξ)

1− 2ξ
. (3.8)

In the particular case of a J2-deformation theory of plasticity with
hardening exponent N = 0.4, the inclination of the shear band is
θ0 = 26.7

• at the EI/P boundary where the condition for positive prestress is

k = 1, ξ = 1, (3.9)
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3.3. Non-linear elastic waves

that leads to
γ =

π

2
, (3.10)

so only one shear band can emerge horizontally (θ0 = 0).

3.3 Non-linear elastic waves

Assuming a time-harmonic motion of circular frequency Ω, a wave charac-
terized by an incremental displacement �eld vinc(x)e−iΩt travels through
the medium and is incident upon the shear band. Then, a scattered in-
cremental displacement �eld vsc(x)e−iΩt is generated by the interaction
of the incident wave with the shear band such that the total incremental
displacement �eld v(x)e−iΩt is represented as the sum

v = vinc + vsc. (3.11)

The scattered �eld vsc must satisfy the radiation condition at in�n-
ity and the conditions of energy boundedness near the shear band edge.
Outside of the shear band, the incremental displacement �eld satis�es
the equations of motion, which written in terms of the stream function
ψ reduces to equation (2.35) with null body force.

The incident wave �eld is represented by an incremental, time-harmonic
plane wave propagating with phase speed c in a direction de�ned by the
unit propagation vector p [43] and having the form

vinc = Adei
Ω
c

(x · p−ct), (3.12)

where A is the amplitude, d is the direction of motion and c the wave
speed. Since the wave (3.12) propagates in an incompressible material,
isochoricity implies

d · p = 0, (3.13)

so that the incident wave is transverse, with the motion orthogonal to the
propagation direction. A substitution of equation (3.12) into equation
(2.35), written with ḟ1,2 = ḟ2,1 = 0, and use of equation (3.13) yields the
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Chapter 3. The shear band model

following expression for the wave speed

c2 =
µ

ρ

[
(1 + k)p4

1 + 2 (2ξ − 1) p2
1p

2
2 + (1− k)p4

2

]
, (3.14)

which, setting p1 = cosβ and p2 = sinβ and

c1 =
√
µ(1 + k)/ρ, (3.15)

provides

c(β) = c1 sin2 β
√

(cot2 β − γ1) (cot2 β − γ2). (3.16)

Note that in the limits β → 0 and β → π, c tends to c1, which represents
the speed of a wave traveling in the direction of the x1�axis.

p/ +q2
ib

p/ -q2
i

p/20 p
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1.0

0.0
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e1=0.01 e1=0.99

N=0.40

N=0.25
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0.5

1.0

0.0
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Figure 3.2: Dimensionless wave speed as function of the direction of propaga-
tion of the wave, for three di�erent hardening exponent of the J2-deformation
theory of plasticity (N = 0.25, N = 0.4, N = 0.8): on the left for a level of
prestrain tending to zero, and on the right for a level of prestrain on the elliptic
boundary.

The dimensionless wave speed of equation (3.16) is reported in Figure
3.2 as a function of the direction of propagation of the wave.

Results are reported for three di�erent hardening exponent of the J2-
deformation theory of plasticity (N = 0.25, N = 0.4, N = 0.8), and for
the higher (right) and lower (left) prestrain ε1. It is shown that a lower
level of prestrain corresponds to a smoother function of the wave speed;
at the opposite, for higher prestrain equation (3.16) presents corners in
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3.3. Non-linear elastic waves

correspondence of the inclination of the normal vector of the shear band.
This means that when the wave travels orthogonal to the shear band,
the wavelength and the wave speed tend to zero in correspondence of
the elliptic boundary, because material instability occurs, and for this
purpose, the numerical analysis of the shear band problem exactly on the
elliptic boundary is impossible. The only possibility is to assume being
an in�nitesimal before the boundary, and in fact, all the results presented
in the thesis has been analysed assuming to have a prestrain ε1 = 0.99 εE1 .
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4 The numerical method

Dynamic e�ects play an important role on shear band growth and related
failure development, most of the analyses conducted so far were limited
to quasi-static conditions, while numerical simulations addressing the dy-
namics of shear bands are scarce (and referred to high strain-rate loading
[12, 20, 32, 34, 33, 42, 39, 63, 70]). The incremental behaviour of a pre-
stressed, elastic, anisotropic and incompressible material, containing a
�nite-length shear band of negligible thickness, is analyzed in the dy-
namic regime. To this purpose, integral representations are derived (un-
der the plane strain condition and assuming ellipticity and homogeneity
of the material properties), relating the incremental �elds at every point
of the medium to the incremental displacement jump across the shear
band faces, which originates from an impinging wave.

The integral equations are numerically solved with an ad hoc devel-
oped collocation method, which allows for the treatment of the singular-
ities present at the tips of the shear bands and provides a basis for the
analysis of dynamic disturbances propagating in a solid near the boundary
of ellipticity loss. The collocation technique was previously used for crack
problems [14, 16, 21, 38, 56, 57, 60], not for shear bands, and presents
several advantages when compared with �nite element methods (see for
instance [12, 33, 39]), the main ones being: (i.) only the boundary of the
shear band is discretized; (ii.) an in�nite medium can be easily evaluated;
(iii.) the radiation damping condition is automatically satis�ed, avoiding
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Chapter 4. The numerical method

spurious wave re�ection at �ctitious boundaries.

4.1 The time-harmonic Green's function for in-

cremental nonlinear elasticity

The in�nite body Green's functions can be found by solving equation
(2.35) when the body force is given by the Dirac delta function δ(x),
i.e. ḟjδ(x). Introducing a plane wave expansion for the incremental
displacement vgi of the Green's state

vgi (x) = − 1

4π2

∮
|ω=1|

ṽgi (ω · x)dω, (4.1)

where ω is a unit vector with components

ω1 = cos(α+ θ), ω2 = sin(α+ θ) (4.2)

q

a

w

x
1

x
2

x

Figure 4.1: Reference system, vectors ω,x and angles θ and α.

with reference to Figure 4.1, the following representation can be obtained
from equation (2.35) in the transformed domain

ṽgi (ω · x) =
(δ1iω2 − δ2iω1)(δ1gω2 − δ2gω1)

L(ω)
[Ci(η | ω · x |) cos (η ω · x)+

+Si(η ω · x) sin (η ω · x)− iπ
2

cos (η ω · x)],

(4.3)
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4.2. The boundary integral equation

where Ci and Si are the cosine integral and sine integral functions, re-
spectively, and

L(ω) = µ(1 + k)ω4
2

(
ω2

1

ω2
2

− γ1

)(
ω2

1

ω2
2

− γ2

)
> 0, (4.4)

with

η = Ω

√
ρ

L(ω)
. (4.5)

The gradient of the incremental displacement (4.1) can be written as

vgi,k(x) = − 1

4π2

∮
|ω|=1

ṽgi,k(ω · x)dω (4.6)

where

ṽgi,k(ω · x) = ωk
δig − ωiωg
L(ω)

[
1

ω · x − ηΞ(ηω · x)

]
(4.7)

and
Ξ(α) = sin(α)Ci(|α|)− cos(α)Si(α)− iπ

2
sin(α). (4.8)

The plane wave expansion of (2.35) has been developed in [6] and [7]. Fi-
nally the Green's function for incremental nominal stresses can be derived
from the constitutive equations (2.13) as

ṫg11 = (2µ∗ − p) vg1,1 + π̇g, ṫg12 = (µ− p) vg1,2 + (µ+ µk) vg2,1,

ṫg21 = (µ− p) vg2,1 + (µ− µk) vg1,2, ṫg22 = − (2µ∗ − p) vg1,1 + π̇g.

(4.9)

4.2 The boundary integral equation

The scattered �eld vsc satis�es the extension of the Betti identity pro-
vided in [7, 15]

vscg (y) =

∫
∂B

(
ṫijniv

g
j (x,y)− ṫgij(x,y)nivj

)
dlx, (4.10)
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where ∂B represents the boundary of the shear band, which is made up
of two straight lines of length 2l, with external unit normals of opposite
sign, so that equation (4.10) can be specialized for a shear band to

vscg (y) = −
∫ l

−l

(
[[ṫij ]]niv

g
j (x̂1,y)− ṫgij(x̂1,y)ni[[vj ]]

)
dx̂1. (4.11)

Because the incremental traction is continuous across the shear band,
equations (3.2)�(3.3), the following boundary integral equation is ob-
tained

vscg (y) =

∫ l

−l
ṫgij(x̂1,y)ni[[vj ]] dx̂1, (4.12)

which provides the incremental displacement at every point in the body
as function of the jump of the incremental displacement [[vj ]] across the
shear band.

The gradient of the incremental displacement can be evaluated from
the integral equation (4.12) as

vscg,k(y) = −
∫ l

−l
ṫgij,k(x̂1,y)ni[[vj ]] dx̂1, (4.13)

so that from the constitutive equations (2.13) the incremental stress can
be written as

ṫsclm(y) = −Klmkg

∫ l

−l
ṫgij,k(x̂1,y)ni[[vj ]] dx̂1 + ṗ(y)δlm, (4.14)

where the incremental in-plane mean stress ṗ, for the moment unknown,
can be determined from the following boundary integral equation [8]

ṗ(y) = −
∫
∂B
ṫig ni ṗ

g(x− y) dlx +

∫
∂B
ni vj Kijkg ṗ

g
,k(x− y) dlx

−
∫
∂B

vi ni

[(
4µµ∗ − 4µ2

∗ + µσ − 2µ∗σ −
σ2

2

)
v1

1,11(x− y)

−σ
(
µ+

σ

2

)
v2

2,11(x− y) + ρΩ2W (x− y)
]
dlx,

(4.15)
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4.2. The boundary integral equation

where ṗg is the incremental in-plane mean stress of the Green's state

ṗg = π̇g − σ

2
vg1,1, (4.16)

in which

π̇g =
ωg(2µ∗ − µ)(1− ω2

g) + (µ− (δ2g − δ1g)
σ
2 )ω2

g

L(ω)

[
1

ω · x − ηΞ(ηω · x)

]
+ ωgηΞ(ηω · x) (4.17)

and
W̃ =

[
4 (µ− µ∗)ω2

2 − σ
]
ṽ2

2(ω · x) + log |ω · x|. (4.18)

Introducing for ∂B the straight boundary of the shear band, x̂1 ∈ [−l, l],
equation (4.15) becomes

ṗ(y) = −
∫
∂B

[[ṫig]]ni ṗ
g(x− y) dlx +

∫
∂B
ni [[vj ]]Kijkg ṗ

g
,k(x− y) dlx

−
∫
∂B

[[vi]]ni

[(
4µµ∗ − 4µ2

∗ + µσ − 2µ∗σ −
σ2

2

)
v1

1,11(x− y)

−σ
(
µ+

σ

2

)
v2

2,11(x− y) + ρΩ2W (x− y)
]
dlx,

(4.19)
which, considering the continuity of incremental tractions, equations (3.2)�
(3.3), and the continuity of the normal component of the incremental
displacement across the shear band (3.4) reduces to

ṗ(y) =

∫ l

−l
ni [[vj ]]Kijkg ṗ

g
,k(x̂1,y) dx̂1. (4.20)

In order to determine the incremental displacement jump [[vj ]], un-
known in equation (4.12), the point y is assumed to approach the shear
band boundary. Denoting with s the unit vector tangent to the shear
band, the boundary conditions at the shear band become

n · ṫ(sc)s = −n · ṫ(inc)s, (4.21)
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so that equation (4.13) can be rewritten as

t̂
(inc)
21 (y) = nlsmKlmkg

∫ l

−l
ṫgij,k(x̂1,y)ni[[vj ]] dx̂1. (4.22)

Equation (4.22) represents the boundary integral formulation for the dy-
namics of a shear band interacting with an impinging wave. The kernel
of the integral equation (4.22) is hypersingular of order r−2 as r → 0,
being r the distance between �eld point x and source point y

r = |x− y| =
√

(x1 − y1)2 − (x2 − y2)2. (4.23)

Note that the integral on right-hand side of equation (4.22) is speci�ed
in the �nite-part Hadamard sense.

The solution for an inclined shear band in an in�nite medium can be
expressed in the inclined reference system sketched in Fig. 3.1.

The components of the vector of incremental displacements v in the
reference system x1�x2, can be expressed in the local reference system
x̂1�x̂2 as

v = Qv̂, [Q] =

[
cosϑ − sinϑ
sinϑ cosϑ

]
, (4.24)

so that, due to the boundary conditions (3.4),

[[vj ]] = Qj1[[v̂1]] = sj [[v̂1]], (4.25)

equation (4.22) can be given the �nal form

t̂
(inc)
21 (y) = nlsmKlmkg

∫ l

−l
ṫgij,k(x̂1,y)nisj [[v̂1]] dx̂1, (4.26)

showing that the dynamics of a shear band is governed by a linear integral
equation in the unknown jump of tangential incremental displacement
across the shear band faces, [[v̂1]]. It is worth noting that the gradient
of the Green incremental stress tensor, constituting the kernel of the

boundary integral equation, turns out to be the sum of a static part ṫ
g(st)
ij,k

and a dynamic part ṫ
g(dyn)
ij,k , whose expressions are given in Appendix B,
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leading to

t̂
(inc)
21 (y) = nlsmKlmkg

∫ l

−l

(
ṫ
g(st)
ij,k (x̂1,y) + ṫ

g(dyn)
ij,k (x̂1,y)

)
nisj [[v̂1]] dx̂1.

(4.27)

4.3 Discretization and numerical procedure

The treatment of the boundary integral equation (4.27) requires the de-
velopment of an ad hoc numerical procedure, which needs the implemen-
tation of a special strategy to enforce the singular behaviour at the band
tips, similar to that developed for cracks in [56, 57].

Since both �eld and source points x and y lie on the x̂1�axis, equation
(4.26) can be rewritten as

t̂
(inc)
21 (ŷ) = nlsmKlmkg

∫ l

−l
ṫgij,k(x̂, ŷ)nisj [[v̂]](x̂) dx̂, (4.28)

where the index `1' has been dropped, so that x̂, ŷ and [[v̂]] replace re-
spectively x̂1 , ŷ1 and [[v̂1]].

The shear band segment is divided into Q intervals [x̂(q), x̂(q+1)] (q =
0, . . . , Q−1; x̂(0) = −l, ; x̂(Q) = l) and a linear variation of the incremental
displacement jump [[v̂]] is assumed within each interval, with the exception
of the two intervals situated at the shear band tips, where a square root
variation of the incremental displacement jump [[v̂]] is adopted:

[[v̂]](x̂(q) + ζ∆q) = [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ (q = 1, . . . , Q− 2), (4.29)

[[v̂]](x̂(q) + ζ∆q) = [[v̂]](q+1)

√
ζ (q = 0), (4.30)

[[v̂]](x̂(q) + ζ∆q) = [[v̂]](q)
√

1− ζ (q = Q− 1), (4.31)

where ∆q = |x̂(q+1) − x̂(q)|, ζ ∈ [0, 1] and [[v̂]](q)(q = 1, . . . , Q − 1) is
the nodal value of the incremental displacement jump (Figure 4.2). The
square root variation is adopted to take into account the singularity at
the shear band tip, as is usual for the crack tip problem [45, 56, 57, 60].

33



Chapter 4. The numerical method
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Figure 4.2: The shear band line is divided in Q-intervals. Within each interval
a linear variation of the incremental displacement jump is assumed, with the
exception of the two intervals at the shear band tips.

For a more compact form of the following equations, let us de�ne

K̃lmkgij = nlsmKlmkgnisj (4.32)

When ŷ = x̂(p) (p = 1, . . . , Q − 1) is assumed to be the source point,
the relevant integral equation becomes

t̂
(inc)
21 (x̂(p)) = K̃lmkgij∆0

∫ 1

0
ṫgij,k(x̂(0) + ζ∆0, x̂(p)) [[v̂]](1)

√
ζ dζ

+ K̃lmkgij

p−2∑
q=1

∆q

∫ 1

0
ṫgij,k(x̂(q) + ζ∆q, x̂(p))( [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ ) dζ

+ K̃lmkgij

p∑
q=p−1

∆q

∫ 1

0
ṫgij,k(x̂(q) + ζ∆q, x̂(p))( [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ ) dζ

+ K̃lmkgij

Q−2∑
q=p+1

∆q

∫ 1

0
ṫgij,k(x̂(q) + ζ∆q, x̂(p))( [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ ) dζ

+ K̃lmkgij∆Q−1

∫ 1

0
ṫgij,k(x̂(Q−1) + ζ∆Q−1, x̂(p)) [[v̂]](Q−1)

√
1− ζ dζ.

(4.33)
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4.3. Discretization and numerical procedure

In equation (4.33), the integrals which are singular for x̂(q) + ζ∆q → x̂(p)

are relevant to the static kernel ṫ
g(st)
12 and can be rearranged as

p∑
q=p−1

∆q

∫ 1

0
ṫ
g(st)
ij,k (x̂(q) + ζ∆q, x̂(p))( [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ ) dζ

= ∆p−1

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−1) + ζ∆p−1, x̂(p))[[v̂]](p)ζ dζ

+∆p

∫ 1

0
ṫ
g(st)
ij,k (x̂(p) + ζ∆p, x̂(p))[[v̂]](p)(1− ζ) dζ

+∆p−1

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−1) + ζ∆p−1, x̂(p))[[v̂]](p−1)(1− ζ) dζ

+∆p

∫ 1

0
ṫ
g(st)
ij,k (x̂(p) + ζ∆p, x̂(p))[[v̂]](p+1)ζ dζ,

(4.34)

so that, by means of a change of variable, the integrals can be evaluated
as

p∑
q=p−1

∆q

∫ 1

0
ṫ
g(st)
ij,k (x̂(q) + ζ∆q, x̂(p))( [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ ) dζ

=

∫ ∆p

−∆p−1

ṫ
g(st)
ij,k (rer) [[v̂]](p) dr −

(
1

∆p−1
+

1

∆p

)∫ ∆p

−∆p−1

ṫ
g(st)
ij,k (rer) [[v̂]](p) r dr

− 1

∆p−1

∫ 0

−∆p−1

ṫ
g(st)
ij,k (rer) [[v̂]](p−1) r dr +

1

∆p

∫ ∆p

0
ṫ
g(st)
ij,k (rer) [[v̂]](p+1) r dr,

(4.35)
with er = r/r. The non-null �nite parts of the above integrals can be
calculated as∫ ∆p

−∆p−1

ṫ
g(st)
ij,k (rer) [[v̂]](p) dr = T gijk(θ)

(
− 1

∆p−1
− 1

∆p

)
[[v̂]](p),

− 1

∆p−1

∫ 0

−∆p−1

ṫ
g(st)
ij,k (rer) [[v̂]](p−1) r dr = T gijk(θ)

log ∆p−1

∆p−1
[[v̂]](p−1),

1

∆p

∫ ∆p

0
ṫ
g(st)
ij,k (rer) [[v̂]](p+1) r dr = T gijk(θ)

log ∆p

∆p
[[v̂]](p+1)

(4.36)
and the function T gijk(θ) is explicitly provided in Appendix A.
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Chapter 4. The numerical method

In the particular cases when ŷ = x̂(p) is assumed to be the source
point and p = 1 or p = Q− 1, equation (??) has to be rewritten as

t̂
(inc)
21 (x̂(p)) = K̃lmkgij∆0

∫ 1

0
ṫgij,k(x̂(0) + ζ∆0, x̂(p)) [[v̂]](1)

√
ζ dζ

+ K̃lmkgij∆1

∫ 1

0
ṫgij,k(x̂(1) + ζ∆1, x̂(p))( [[v̂]](1)(1− ζ) + [[v̂]](2)ζ ) dζ

+ K̃lmkgij

Q−3∑
q=2

∆q

∫ 1

0
ṫgij,k(x̂(q) + ζ∆q, x̂(p))( [[v̂]](q)(1− ζ) + [[v̂]](q+1)ζ ) dζ

+K̃lmkgij∆Q−2

∫ 1

0
ṫgij,k(x̂(Q−2)+ζ∆Q−2, x̂(p))( [[v̂]](Q−2)(1−ζ)+[[v̂]](Q−1)ζ ) dζ

+ K̃lmkgij∆Q−1

∫ 1

0
ṫgij,k(x̂(Q−1) + ζ∆Q−1, x̂(p)) [[v̂]](Q−1)

√
1− ζ dζ.

(4.37)

When p = 1, the �nite parts of singular integrals can be evaluated as

∆0

∫ 1

0
ṫ
g(st)
ij,k (x̂(0) + ζ∆0, x̂(p)) [[v̂]](1)

√
ζ dζ

+ ∆1

∫ 1

0
ṫ
g(st)
ij,k (x̂(1) + ζ∆1, x̂(p)) [[v̂]](1)(1− ζ) dζ

= T gijk(θ)

(
− 9

8∆0
− ln ∆0

2∆0
− 1

∆1
− ln ∆1

∆1

)
[[v̂]](1), (4.38)

while, when p = Q − 1, the �nite parts of the singular integrals can be
evaluated as

∆Q−2

∫ 1

0
ṫ
g(st)
ij,k (x̂(Q−2) + ζ∆Q−2, x̂(p)) [[v̂]](Q−1)ζ dζ

+ ∆Q−1

∫ 1

0
ṫ
g(st)
ij,k (x̂(Q−1) + ζ∆Q−1, x̂(p)) [[v̂]](Q−1)

√
1− ζ dζ

= T gijk(θ)

(
− 9

8∆Q−1
−

ln ∆Q−1

2∆Q−1
− 1

∆Q−2
−

ln ∆Q−2

∆Q−2

)
[[v̂]](Q−1). (4.39)
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4.4. Validation of the numerical procedure

Hence, using a collocation method, thus assuming p = 1, . . . , Q − 1, a
system of Q− 1 algebraic equations is obtained which can be written in
matrix form as follows {

t̂
(inc)
21

}
= [C] {[[v̂]]} , (4.40)

with C the matrix of the coe�cients.
The nominal shear traction t̂

(inc)
21 generated by a shear wave impinging

the shear band can be obtained using equations (2.34) and (2.13) into
equation (3.12), thus yielding

ˆ̇t
(inc)
21 (x) = τ0 e

iΩ
c

(p·x−ct)[(n2
1(η − 1)− (1− k)n2

2) cos2 θ0

+ (n2
2(η − 1) + (1 + k)n2

1) sin2 θ0

+ n1n2(η − 2ξ) sin 2θ0

]
.

(4.41)

where τ0 = iAµΩ/c is the maximum shear stress acting at the shear wave
front in the quasi-static limit, Ω→ 0. For a wave traveling orthogonally
to the shear band, equation (4.41) reduces to a positive quantity, at least
until strong ellipticity holds true.

4.4 Validation of the numerical procedure

A shear band is discretized with Q = 100 line elements and numerically
analyzed when inside a ductile metal whose behaviour is described by
the J2-deformation theory of plasticity. A validation of the developed
numerical technique can be obtained, in the limit Ω → 0, by compar-
ing with the analytic solution for the static case provided by Bigoni and
Dal Corso [9]. This validation is provided in Figure 4.3, where the mod-
ulus of the displacement jump [[v̂1]] (divided by the semi-length of the
shear band) is plotted along the shear band line x̂1. The validation
turns out to be excellent, as the analytic solution is superimposed to
the numerical solutions, for di�erent values of the hardening exponent
N (0.25, 0.4, 0.5), at respective levels of prestrain close to the elliptic
boundary (ε1 = 0.522, ε1 = 0.667, ε1 = 0.771).
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Chapter 4. The numerical method

The convergence of the numerical solution to the static -analytical-
solution (developed in [9]) is shown in Figure 4.4, where the (percent)
error in the incremental displacement jump [[v̂]]q, evaluated at the middle
of the shear band, x̂1/l = 0, is reported as a function of the number of
the collocation points Q.
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1̂

10

20

30

0

Anal ticy
BEM

N=0.4

N=0.5
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[[ [[

Figure 4.3: The quasi-static behaviour of a shear band loaded with a remote
shear (obtained numerically in the limit Ω→ 0) is compared with an available
analytical solution for di�erent hardening exponents N and prestrains near the
elliptic border. Modulus of dimensionless displacement jump along the shear
band line, x̂1/l, for the J2-deformation theory of plasticity and three hardening
exponents N (0.25, 0.4, 0.5).

Two di�erent sets of shape functions are considered, namely, linear
shape functions for the whole shear band in one case (circular spots),
while in the other case square-root shape functions are used only in the
element at the shear band tip (square spots). It can be seen that in the
middle of the shear band for Q = 100 the error is about 1% for both
shape function sets.
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4.4. Validation of the numerical procedure

v
(q
)

^ [[

[[

E
rr

o
r 

%
 o

f 

Number of discretization Q 

0
0 100 200 500400300

4

8

10

2

6

N=0.4

Figure 4.4: Percent error in the incremental displacement jump [[v̂]]q for di�er-
ent numbers of collocation points Q (10, 20, 50, 100, 200, 500), and for two sets
of shape functions (N = 0.4 has been considered). The errors are evaluated at
the middle of the shear band, x̂1/l = 0, note that the circular and square spots
are practically superimposed for Q>200.

With Q = 100 elements and the selected shape functions, the com-
puting time necessary to �nd the displacement jump across the shear
band ranges between 15 and 20 minutes running the software Mathemat-
ica 11.2 in a computer AMD Opteron cluster Stimulus (available at the
`Instability Lab' of the University of Trento).
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5 Results for an isolated shear

band

In this Chapter results pertaining to an isolated shear band are reported
for two di�erent constitutive equations: for a J2-deformation theory of
plasticity with hardening exponent N = 0.4, and for a Mooney-Rivlin
material.

5.1 Results for the J2-deformation theory of plas-

ticity

A shear band is discretized with Q = 100 line elements and numerically
analyzed when inside a ductile metal whose behaviour is described by the
J2-deformation theory of plasticity. The incremental moduli are provided
by equations (2.54) and the hardening exponent is assumed to beN = 0.4,
so that ellipticity is lost at the critical value of the logarithmic strain
ε1 ≈ 0.678. Results are presented below.

5.1.1 Wave propagation normal to the shear band

The direction of the wave propagation is now considered to be orthogonal
to the shear band faces, so that the whole front of the band is uniformly
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Chapter 5. Results for an isolated shear band

loaded. The numerical solution of the linear system (4.40) allows to com-
pute the longitudinal displacement jump across the shear band, [[v̂1]].
The dynamic shape of the displacement jump along the shear band line
is reported in Figure 5.1, referred to a prestrain ε1 = 0.667, close to
the boundary of ellipticity loss. This �gure shows that, near the reso-
nance frequency, the displacement jump along the shear band assumes
the quasi-static shape, but at high frequency displays a markedly dif-
ferent behaviour [37], namely, it decades in amplitude and displays an
oscillation (see the pink curve referred to Ωl/c1 = 6).
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Figure 5.1: Modulus of dimensionless displacement jump along the shear band
line, x̂1/l, for the J2-deformation theory of plasticity: di�erent wavenumber are
considered with N = 0.4 and prestrain ε1 = 0.667.

The variation with the wavenumber, Ωl/c1, (of the modulus) of the
displacement jump [[v̂1]] (normalized with respect to the quasi-static value

[[v̂
(st)
1 ]]) is shown in Figure 5.2 for several values of prestrain, ranging from

0 to ε1 = 0.667. In this �gure the maxima of the curves represent reso-
nance condition (the displacement grows, but does not blow-up to in�nity,
due to the radiation damping, properly accounted for in the numerical
solution), so that it is clear that an increase in the prestrain leads to an
ampli�cation factor which grows from 20%, occurring at null prestrain,
to 41%, occurring at a prestrain close to the border of ellipticity loss.
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5.1. Results for the J2-deformation theory of plasticity

Results not reported for brevity show that a decrease in the hardening
exponent N shifts the resonance towards higher frequencies.
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Figure 5.2: Modulus of dimensionless displacement jump in the middle of the
shear band (x̂1 = 0) is plotted as a function of the dimensionless frequency for
di�erent values of prestrain and for the J2-deformation theory of plasticity with
N = 0.4 and limit prestrain ε1 = 0.667 at the EC/H boundary. Note that a
resonance frequency is visible (the peak of the curves) and that this resonance
becomes more evident at increasing prestrain, when it approaches the elliptic
boundary.

The stress concentration at the shear band tips can be investigated
using the Stress Intensity Factor (SIF) and because only incremental
shear stresses are acting on the band, a Mode II SIF is adopted, which is
de�ned as

KII = lim
x̂1→l+

ˆ̇t21(x̂1, x̂2 = 0)
√

2π(x̂1 − l) (5.1)

which in the quasi-static case becomes

Kst
II = ˆ̇t∞21

√
π l. (5.2)
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Chapter 5. Results for an isolated shear band

The SIF is also de�ned as a function of the displacement jump in the
form [3, 18]

KII =
µ
√

2π

4(1− ν)

[[v̂]](1)√
∆0

, (5.3)

where [[v̂]](1) is the displacement jump evaluated at the �rst inner node
from the tip of the shear band. Figure 5.3 reports the SIF, KII , nor-

malized through the quasi-static condition K
(st)
II , as a function of the

wavenumber.
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Figure 5.3: Modulus of dimensionless mode II Stress Intensity Factor at the
shear band tip as a function of the wavenumber; a comparison with the analyt-
ical solution of Chen and Sih [17], with null prestrain in the isotropic case with
µ = µ∗.

It has to be noted that Chen and Sih [17] developed an analytical
solution for the SIF pertinent to a crack impinged by an incident shear
wave in a linear elastic and isotropic body. This solution can be used
to validate the developed numerical procedure, as reported in Figure 5.3,
relative to a null prestrain. Here the absolute value of the SIF (normalized
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5.1. Results for the J2-deformation theory of plasticity

with respect to the quasi-static limit) is reported as a function of the
wavenumber. The validation turns out to be satisfactory because, for the
tested angles β of the wave propagation, the discrepancy is within 8%.
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Figure 5.4: Modulus of dimensionless mode II Stress Intensity Factor at the
shear band tip as a function of the wavenumber for di�erent levels of prestrain
for a J2-deformation theory with N = 0.4.

The dimensionless SIF for the shear band tips at di�erent levels of
prestrain is reported in Figure 5.4 as a function of the dimensionless fre-
quency. In the quasi-static limit and for a null prestrain the SIF correctly
tends to 1, while, when the elliptic boundary is approached, the SIF blows
up, reaching a value approximately 15 times the quasi-static value for a
prestrain ε1 = 0.66, whereas at the elliptic border it grows to in�nity,
coherently with the quasi-static behaviour, [9]. This is once more the
evidence of a resonance condition, with an increase of 41% of the SIF
with respect to the quasi-static case. It is important to remark that both
evidences presented in Fig. 5.2 and 5.4 show that the presence of a shear
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Chapter 5. Results for an isolated shear band

band produces a resonance, evidenced through a substantial growth in
the jump of displacement across the shear band and in the stress intensity
factor at the shear band tip.

5.1.2 Wave propagation inclined or parallel to the shear

band

A wave obliquely impinging a shear band is now considered, with p · n
di�erent from both 0 and 1. The shear traction can be derived from
equation (4.41) and is composed of a real symmetric part and an imagi-
nary skew-symmetric part. Therefore, the traction is non-symmetric with
respect to the x̂2-axis.

This can be noted in Figure 5.5, where, as in Figure 5.1, the dimen-
sionless displacement jump is reported along the shear band line as a
function of the dimensionless frequency, for various inclinations of the
wave propagation vector. When the wave propagation is inclined at an
angle β belonging to the interval (−π/2 + θ0, π/2 + θ0), the maximum
value of the displacement jump shifts towards the right tip of the band.

Due to the fact that the wave is now inclined with respect to the
shear band, the stress intensity factors at the tips of the shear band are
di�erent [62], see Figure 5.6, where the dimensionless SIF for the two
tips (one denoted by `+' and the other by `−') are reported as functions
of the dimensionless frequency. It can be observed that the higher the
displacement jump, the higher is the SIF, moreover a wave orthogonal to
the shear band produces the largest value of the SIF and therefore the
maximum resonance.
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5.1.3 Incremental strain �elds

The modulus of the incremental strain �eld (which is deviatoric, because
of incompressibility) de�ned as (vi,jvi,j + vi,jvj,i) /2, can be computed
by using the gradient of the incremental displacement, equation (4.13),
in the constitutive equations (2.13). In the following the modulus of
the incremental strain �eld is computed by using the real part of the
gradient of incremental displacement, so that the phase shift related to
the imaginary part is not considered. The modulus of the incremental
strain �eld, computed at a prestrain level of ε1 = 0.667 (i.e. close to
the elliptic boundary) is reported in Figure 5.7, in terms of scattered
wave �eld (on the left) and in terms of total wave �eld (on the right).
Two incident waves with wavenumber Ωl/c1 = 1 are considered, one
orthogonal to the shear band (with inclination β = θ0 + π/2) and the
other aligned parallel to the x1−axis (with inclination β = 0). These
inclinations of propagation represent the directions along which the wave
velocity c assumes the minimum and maximum values respectively, see
equation (3.16).

It is worth noting that the wavenumber Ωl/c1 = 1 used for the com-
putations corresponds to a wavelength in the direction orthogonal to the
shear band, 2πlc/c1, which is approximately 1/6 of the shear band length,
thus much greater than the shear band thickness.

It can be noted that for both wave inclinations, the scattered �eld
turns out to be a family of plane waves parallel to the shear band. The
e�ect of this scattered �eld on the total strain �eld is to produce a �ne
texture of parallel vibrations, which superimposes on the impinging wave
�eld. The texture shows a narrow conical shadow zone emanating from
the shear band tips, where the scattered �eld is strongly attenuated and
tends to disappear. This e�ect becomes more visible in the case of β = 0,
because incident and scattered waves propagate in di�erent directions,
rather than in the case of wave travels orthogonal to the band. In
the case of an incident wave with wavenumber Ωl/c1 = 1, propagat-
ing in the direction parallel to the shear band, Figure 5.8 represents the
scattered and total strain �elds for three increasing levels of prestrain
(ε1 = 0.43, ε1 = 0.55, ε1 = 0.66). Starting from the lowest level of pre-
strain, the unperturbed conical zone is already visible, but this zone tends
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Figure 5.7: Scattered (left) and total (right) incremental strain �eld produced
by a wave incident to a shear band (in a J2-deformation theory of plasticity
material with N = 0.4) orthogonally to it (β = θ0 + π/2) or aligned parallel to
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is ε1 = 0.667, close to the elliptic boundary.

to become narrower when the elliptic boundary is approached.
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Figure 5.8: Scattered (left) and total (right) incremental strain �eld produced
by a wave impinging parallel to a shear band, β = θ0, (in a J2-deformation
theory of plasticity material with N = 0.4). Various levels of prestrain ε1 =
0.43, ε1 = 0.55, ε1 = 0.66 are reported with wavenumber Ωl/c1 = 1.
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Chapter 5. Results for an isolated shear band

The shadow zone is analyzed near the elliptic boundary as a func-
tion of the frequency, in particular, the upper left quarter of the map of
the incremental strain �eld is reported in Figure 5.9 for two frequencies
(Ωl/c1 = π/5,Ωl/c1 = π/2). This plot reveals that the shadow zone
becomes more visible at frequencies higher than the value corresponding
to resonance.
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Figure 5.9: Incremental strain �eld near a shear band (in a J2-deformation
theory of plasticity material with N = 0.4) produced by a wave impinging
parallel to the shear band, β = θ0 and waveleght Ωl/c1 = π/5 (upper part) and
Ωl/c1 = π/2 (lower part).
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5.2 Results for a Mooney-Rivlin material

A shear band in a Mooney-Rivlin material, emerges and grows parallel to
the σ1-principal axis, with a null inclination, θ0 = 0. In order to approach
the elliptic/parabolic boundary, the limit of the prestress k → 1 (which
formally corresponds to in�nite stretch) is considered, and for which the
ellipticity is lost for a logarithmic strain of ε1 ≈ 1.32.
Due to the inclination θ0 = 0, the integral equation (4.26) simpli�es to

t̂
(inc)
21 (y) =

∫ l

−l

[
(µ− p)ṫ221,1(x̂1,y) +

(
µ− σ

2

)
ṫ121,2(x̂1,y)

]
[[v̂1]] dx̂1.

(5.4)
Results pertaining to the Mooney-Rivlin material are close to ones shown
for the J2-deformation theory of plasticity, so only the main results are
going to be proposed.
The variation with the wavenumber, Ωl/c1, (of the modulus) of the dis-
placement jump [[v̂1]] (normalized with respect to the quasi-static value

[[v̂
(st)
1 ]]) is shown in Figure 5.10 for several values of prestrain, ranging

from 0 to ε1 = 0.99. In this �gure the maxima of the curves represent the
resonance condition, so an increase in the prestrain leads to an ampli�-
cation factor which grows from 20%, occurring at null prestrain, to 41%,
occurring at a prestrain close to the border of ellipticity loss as shown
before for the J2-deformation theory of plasticity.
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Figure 5.10: Modulus of dimensionless displacement jump in the middle of
the shear band (x̂1 = 0) is plotted as a function of the dimensionless frequency
for di�erent values of prestrain and for the Mooney-Rivlin material and limit
prestrain ε1 = 1.32 at the EI/P boundary. Note that a resonance frequency is
visible (the peak of the curves) and that this resonance becomes more evident
at increasing prestrain, when it approaches the elliptic boundary.

Figure 5.11 shows the scattered (left part) and total (right part) in-
cremental deviatoric strain �elds, for a shear band in a Mooney-Rivlin
material at prestress k = 0.99, near the elliptic boundary. An incident
wave is considered travelling parallel to the shear band (β = 0), with
wavenumber Ωl/c1 = 1. The emergence of plane waves, parallel to the
shear band, can be noted and the formation of a conical shadow zone is
visible, which can be compared with the experimental results on wave
propagation in a rectangular aluminium block containing a crack pre-
stressed through compressive forces orthogonal to the crack faces [11]
(their �gure 8).
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Figure 5.11: Scattered (left part) and total (right part) incremental strain
�eld produced by a wave impinging parallel to a shear band, β = θ0 = 0, in
a Mooney-Rivlin material. A wavenumber Ωl/c1 = 1 and a prestress k = 0.99
(near the elliptic/parabolic boundary) have been considered.

It is remarked that experimental results on time-harmonic vibration of
shear bands are not available in the literature. However, a close scrutiny
of experiments on dynamic propagation of shear bands induced by an im-
pact loading reveals that waves propagate in the material with the shear
band inclination ([33], their �gures 4, 5, 6, and 8), a feature also observed
in our simulations (Figures 5.8 and 5.9). Moreover, results relative to
wave propagation in highly orthotropic materials exhibit shadow zones
similar to those visible in Figure 5.9 ([58], their �gure 3). Finally, experi-
ments on wave propagation in an aluminium solid containing a crack with
attritive faces, which are prestressed in compression, ([11], their �gure 8)
can be compared with results pertinent to a Mooney-Rivlin material. In
both cases waves parallel to the discontinuity line are evidenced.
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6 Multiple shear bands interaction

Interaction between shear bands has been documented so far only for
quasi-static deformation processes [20, 25, 28], where it has been shown
that di�erent shear band geometries emerge as related to load conditions
and material properties of the samples and that parallel [35], aligned, and
converging shear bands [51] are frequently observed. In dynamics, results
are restricted to high strain-rate loading, where numerical simulations
[12, 33, 42] and experiments involving impact on prenotched plates [24,
70, 36] have been presented. In this context, experiments on metallic
glass [55] show the development of a complex texture of multiple shear
bands, with complex interactions.

Direct experimental investigation on the �ne development of shear
bands in a material and their e�ect on the stress �eld during time-
harmonic vibrations remains practically impossible, so that mechanical
modelling represents the only possibility to shed light on a complex phe-
nomenon, whose comprehension is a key point for the engineering of ma-
terials with enhanced mechanical properties.

A plane-strain model of multiple shear bands, arranged in di�erent
con�gurations, commonly observed in materials and involving two or four
shear bands, is introduced, to investigate the dynamical interplay between
shear bands and their possible progression or stagnation. Reference is
made to low to medium carbon steels, stressed until near the verge of a
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Chapter 6. Multiple shear bands interaction

plastic instability and subject to incoming harmonic waves of small am-
plitude. The material is modelled following the J2-deformation theory
of plasticity[4], the shear bands are idealized as discontinuity surfaces
[9], and their dynamic interaction is described through an ad hoc inte-
gral equation formulation, presented together with the relevant numerical
method.
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Figure 6.1: Waves (inclined at the angle β) impinging on di�erent con�gu-
rations of shear bands (of equal length 2l) in a prestressed metal material: (a)
parallel, (b) aligned, (c) converging, and (d) involving 4 shear bands.

Since shear bands can emerge and propagate with a de�nite inclina-
tion θ0, three commonly observed [35, 51] con�gurations of shear bands
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6.1. Boundary integral equation and numerical solution

embedded in the material are analyzed, namely, (a) parallel, (b) aligned
and (c) converging geometries, arranged as shown in Figure 6.1.

6.1 Boundary integral equation and numerical

solution

The boundary integral equation governing the dynamics of a shear band
was previously presented in Chapter 4. In the case of multiple shear
bands, labelled A,B, ..., Z, in order to account for the reciprocal interac-
tion, the equation (4.26) has to be generalized to the following system of
integral equations

t̂
(inc)
21 (yA) = nAl s

A
mKlmkg

( ∫ l

−l
ṫgij,k(x̂

A
1 ,y

A)nAi s
A
j [[v̂A1 ]] dx̂A1

+

∫ l

−l
ṫgij,k(x̂

B
1 ,y

A)nBi s
B
j [[v̂B1 ]] dx̂B1

+ · · ·+
∫ l

−l
ṫgij,k(x̂

Z
1 ,y

A)nZi s
Z
j [[v̂Z1 ]] dx̂Z1

)
,

t̂
(inc)
21 (yB) = nBl s

B
mKlmkg

( ∫ l

−l
ṫgij,k(x̂

A
1 ,y

B)nAi s
A
j [[v̂A1 ]] dx̂A1

+

∫ l

−l
ṫgij,k(x̂

B
1 ,y

B)nBi s
B
j [[v̂B1 ]] dx̂B1

+ · · ·+
∫ l

−l
ṫgij,k(x̂

Z
1 ,y

B)nZi s
Z
j [[v̂Z1 ]] dx̂Z1

)
,

. . .

t̂
(inc)
21 (yZ) = nZl s

Z
mKlmkg

( ∫ l

−l
ṫgij,k(x̂

A
1 ,y

Z)nAi s
A
j [[v̂A1 ]] dx̂A1

+

∫ l

−l
ṫgij,k(x̂

B
1 ,y

Z)nBi s
B
j [[v̂B1 ]] dx̂B1

+ · · ·+
∫ l

−l
ṫgij,k(x̂

Z
1 ,y

Z)nZi s
Z
j [[v̂Z1 ]] dx̂Z1

)
,

where the generic source point yZ is located on the surface of the shear
band Z.
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Chapter 6. Multiple shear bands interaction

Since the kernel ṫgij,k of the integral equation is hypersingular of order r
−2

as r → 0, and the distance r is de�ned:

• by a �eld point x and source point y, both on the same shear band,
the hypersingular integrals are considered in the Hadamard �nite
part sense as shown in Section 4.3;

• by a �eld point x that belongs to a shear band and source point y
that belongs to a di�erent shear band, the integral becomes hyper-
singular when the two shear band are very close. In this particular
case, the problem becomes strongly mesh dependent because the
linear and square root shape functions introduced before, are not
su�ciently stronger to annihilate the singularity on their own.

In order to analyse the interaction of multiple shear bands, without ma-
nipulating the hypersingular integrals when the two shear bands are very
close, and realize a more general numerical tool, a higher order shape
function is needed. For this purpose, in order to describe the square-root
singularity[57], two di�erent kinds of shape function have been adopted:
quadratic function for the elements interior to the shear band and square-
root function (the so called `quarter-point elements'[18, 56]) at the shear
band tips. For the numerical solution, each shear band has been sub-
divided into a number Q of elements. Using a collocation method, the
integral equation system (6.1), can be transformed into the following al-
gebraic system

t̂
(inc)A

21

t̂
(inc)B

21

. . .

t̂
(inc)Z

21

 =


CAA CAB . . . CAZ

CBA CBB . . . CBZ

. . . . . . . . . . . .
CZA CZB . . . CZZ




[[v̂A]]
[[v̂B]]
. . .
[[v̂Z ]]

 , (6.1)

where t̂
(inc)n

21 is the known nodal value of the incident traction on the
n-th shear band, [[v̂n]] is the unknown nodal value of the displacement
jump across the n-th shear band, and C is the coe�cient matrix with
out-of-diagonal sub-matrices, collecting the contributions of the dynamic
interaction between the shear bands. A validation of the collocation
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6.2. Discretization and numerical procedure

method, with reference to other numerical and analytical solutions, is
reported below.

6.2 Discretization and numerical procedure

The treatment of the boundary integral equation (4.27) requires the de-
velopment of an ad hoc numerical procedure, which needs the implemen-
tation of a special strategy to enforce the singular behaviour at the band
tips, similar to that developed for cracks in [56, 57].

As previously mentioned, the integral equation (4.24) can be numer-
ically solved by using a collocation technique with two di�erent kinds of
shape functions: quadratic for the elements inside the shear band and
quarter-point at the tips, Figure 6.2. The quarter-point element is a
quadratic element with the mid-node moved at the quarter of the lenght
of the element from the tip [56], so that the shape functions describe the
square root singularity present at the shear band tips, as is usual for the
crack tip problem [45, 57, 60].
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Figure 6.2: Subdivision of the shear band line in Q-elements. Within each el-
ements a quadratic variation of the incremental displacement jump is assumed,
with the exception of the two elements at the shear band tips where the incre-
mental displacement jump assume a quarter point variation.
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Chapter 6. Multiple shear bands interaction

The quadratic shape functions are

φ1 = 1− 3 ζ + 2 ζ2, (6.2)

φ2 = 4 ζ − 4 ζ2, (6.3)

φ3 = 2 ζ2 − ζ, (6.4)

while the shape functions for the quarter point element become

ϕ1 = 4
√
ζ − 4 ζ, (6.5)

ϕ2 = 2 ζ −
√
ζ. (6.6)

The square root variation is adopted to take into account the singularity
at the shear band tip, as the previous discretization with the linear and
square root element for the isolated shear band. For simplicity the length
∆q of all the elements in the discretization has been taken equal for each
element and called ∆l, in order to have a more compact form for the
following equations.

When ŷ = x̂(p) (p = 1, . . . , Q − 1) is assumed to be the source point,
the relevant integral equation becomes
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6.2. Discretization and numerical procedure

t̂
(inc)
21 (x̂(p)) = nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(0) + ζ∆l, x̂(p))

[
[[v̂]](1)(4

√
ζ

−4ζ) + [[v̂]](2)(−
√
ζ + 2ζ)

]
dζ

+ nlsmKlmkgnisj

p−4∑
q=1

∆l

∫ 1

0
ṫgij,k(x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj

p∑
q=p−2

∆l

∫ 1

0
ṫgij,k(x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj

Q−2∑
q=p+2

∆l

∫ 1

0
ṫgij,k(x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(Q−2) + ζ∆l, x̂(p))

[
[[v̂]](Q−2)(4

√
1− ζ

+4(ζ − 1)) + [[v̂]](Q−1)(−
√

1− ζ − 2(ζ − 1))
]
dζ.

(6.7)

In equation (6.7), the integrals which are singular for x̂(q) + ζ∆l →
x̂(p) are relevant to the static kernel ṫ

g(st)
12 and, when the source point

x̂(p) coincides with the external node of the quadratic element, can be
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rearranged as

p∑
q=p−2

∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

= ∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−2) + ζ∆l, x̂(p))[[v̂]](p−2)(1− 3ζ + 2ζ2) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−2) + ζ∆l, x̂(p))[[v̂]](p−1)(4ζ − 4ζ2) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−2) + ζ∆l, x̂(p))[[v̂]](p)(2ζ

2 − ζ) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p) + ζ∆l, x̂(p))[[v̂]](p)(1− 3ζ + 2ζ2) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p) + ζ∆l, x̂(p))[[v̂]](p+1)(4ζ − 4ζ2) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p) + ζ∆l, x̂(p))[[v̂]](p+2)((2ζ

2 − ζ) dζ,

(6.8)
so that, by means of a change of variable, the integrals can be evaluated
as

p∑
q=p−2

∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

=

∫ 0

−∆l

ṫ
g(st)
ij,k (rer) [[v̂]](p−2)

(
r

∆l
+

2r2

∆2
l

)
dr

+

∫ 0

−∆l

ṫ
g(st)
ij,k (rer) [[v̂]](p−1)

(
− 4r

∆l
− 4r2

∆2
l

)
dr

+

∫ ∆l

−∆l

ṫ
g(st)
ij,k (rer) [[v̂]](p)

(
1− 3r

∆l
+

2r2

∆2
l

)
dr

+

∫ ∆l

0
ṫ
g(st)
ij,k (rer) [[v̂]](p+1)

(
4r

∆l
− 4r2

∆2
l

)
dr

+

∫ ∆l

0
ṫ
g(st)
ij,k (rer) [[v̂]](p+2)

(
− r

∆l
+

2r2

∆2
l

)
dr,

(6.9)
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with er = r/r. The non-null �nite parts of the above integrals can be
calculated as∫ 0

−∆l

ṫ
g(st)
ij,k (rer)

(
r

∆l
+

2r2

∆2
l

)
dr = T gijk(θ)

(
1− 3 log(∆l)

∆l

)
,∫ 0

−∆l

ṫ
g(st)
ij,k (rer)

(
− 4r

∆l
− 4r2

∆2
l

)
dr = T gijk(θ)

(
−1 + log(∆l)

∆l

)
,∫ ∆l

−∆l

ṫ
g(st)
ij,k (rer)

(
1− 3r

∆l
+

2r2

∆2
l

)
dr = −T gijk(θ)

2

∆l
,∫ ∆l

0
ṫ
g(st)
ij,k (rer)

(
4r

∆l
− 4r2

∆2
l

)
dr = T gijk(θ)

(
−1 + log(∆l)

∆l

)
,∫ ∆l

0
ṫ
g(st)
ij,k (rer)

(
− r

∆l
+

2r2

∆2
l

)
dr = T gijk(θ)

(
1− 3 log(∆l)

∆l

)
,

(6.10)
and the function T gijk(θ) is explicitly provided in Appendix A.

In the particular cases when ŷ = x̂(p) is assumed to be the source
point and x̂(p) coincides with the inner node of the quadratic element,
the singular integrals in equation (6.7) can be rearranged as

p−1∑
q=p−1

∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

= ∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−1) + ζ∆l, x̂(p))[[v̂]](p−1)(1− 3ζ + 2ζ2) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−1) + ζ∆l, x̂(p))[[v̂]](p)(4ζ − 4ζ2) dζ

+∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−1) + ζ∆l, x̂(p))[[v̂]](p+1)(2ζ

2 − ζ) dζ,

(6.11)
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so that, by means of a change of variable, the integrals can be evaluated
as

∆l

∫ 1

0
ṫ
g(st)
ij,k (x̂(p−1) + ζ∆l, x̂(p))

[
[[v̂]](p−1)(1− 3ζ + 2ζ2))

+[[v̂]](p)(4ζ − 4ζ2) + [[v̂]](p+1)(2ζ
2 − ζ)

]
dζ

=

∫ ∆l/2

−∆l/2
ṫ
g(st)
ij,k (rer) [[v̂]](p−1)

(
− r

∆l
+

2r2

∆2
l

)
dr

+

∫ ∆l/2

−∆l/2
ṫ
g(st)
ij,k (rer) [[v̂]](p)

(
1− 4r2

∆2
l

)
dr

+

∫ ∆l/2

−∆l/2
ṫ
g(st)
ij,k (rer) [[v̂]](p+1)

(
2r2

∆2
l

)
dr

= T gijk(θ)
2

∆l

[
[[v̂]](p−1) − 4[[v̂]](p) + [[v̂]](p+1)

]
(6.12)

with er = r/r.
In the particular cases when ŷ = x̂(p) is assumed to be the source

point and p = 1 or p = Q− 1, equation (6.7) has to be rewritten as

t̂
(inc)
21 (x̂(p)) = nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(0) + ζ∆l, x̂(p))

[
[[v̂]](1)(4

√
ζ

−4ζ) + [[v̂]](2)(−
√
ζ + 2ζ)

]
dζ

+ nlsmKlmkgnisj

Q−4∑
q=2

∆l

∫ 1

0
ṫgij,k(x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(Q−2) + ζ∆l, x̂(p))

[
[[v̂]](Q−2)(4

√
1− ζ

+4(ζ − 1)) + [[v̂]](Q−1)(−
√

1− ζ − 2(ζ − 1))
]
dζ.

(6.13)
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When p = 1, the �nite parts of singular integrals can be evaluated as

∆l

∫ 1

0
ṫgij,k(x̂(0) + ζ∆l, x̂(p))

[
[[v̂]](1)(4

√
ζ − 4ζ) + [[v̂]](2)(−

√
ζ + 2ζ)

]
dζ

= T gijk(θ)

[
− 28

3∆l
[[v̂]](1) −

(
1

∆l
+

ln 3

∆l

)
[[v̂]](2)

]
, (6.14)

while, when p = Q − 1, the �nite parts of the singular integrals can be
evaluated as

∆l

∫ 1

0
ṫgij,k(x̂(Q−2) + ζ∆l, x̂(p))

[
[[v̂]](Q−2)(4

√
1− ζ + 4(ζ − 1))

+[[v̂]](Q−1)(−
√

1− ζ − 2(ζ − 1))
]
dζ

= T gijk(θ)

[
− 28

3∆l
[[v̂]](Q−1) −

(
1

∆l
+

ln 3

∆l

)
[[v̂]](Q−2)

]
. (6.15)

In the last particular case when ŷ = x̂(p) is assumed to be the source
point and p = 2 or p = Q− 2, the relevant integral equation becomes
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t̂
(inc)
21 (x̂(p)) = nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(0) + ζ∆l, x̂(p))

[
[[v̂]](1)(4

√
ζ

−4ζ) + [[v̂]](2)(−
√
ζ + 2ζ)

]
dζ

+ nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(2) + ζ∆l, x̂(p))

[
[[v̂]](2)(1− 3ζ + 2ζ2))

+[[v̂]](3)(4ζ − 4ζ2) + [[v̂]](4)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj

Q−4∑
q=4

∆l

∫ 1

0
ṫgij,k(x̂(q) + ζ∆l, x̂(p))

[
[[v̂]](q)(1− 3ζ + 2ζ2))

+[[v̂]](q+1)(4ζ − 4ζ2) + [[v̂]](q+2)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(Q−4) + ζ∆l, x̂(p))

[
[[v̂]](Q−4)(1− 3ζ + 2ζ2))

+[[v̂]](Q−3)(4ζ − 4ζ2) + [[v̂]](Q−2)(2ζ
2 − ζ)

]
dζ

+ nlsmKlmkgnisj∆l

∫ 1

0
ṫgij,k(x̂(Q−2) + ζ∆l, x̂(p))

[
[[v̂]](Q−2)(4

√
1− ζ

+4(ζ − 1)) + [[v̂]](Q−1)(−
√

1− ζ − 2(ζ − 1))
]
dζ.

(6.16)

When p = 2, the �nite parts of singular integrals can be evaluated as

∆l

∫ 1

0
ṫgij,k(x̂(0) + ζ∆l, x̂(p))

[
[[v̂]](1)(4

√
ζ − 4ζ) + [[v̂]](2)(−

√
ζ + 2ζ)

]
dζ

+ ∆l

∫ 1

0
ṫgij,k(x̂(2) + ζ∆l, x̂(p))

[
[[v̂]](2)(1− 3ζ + 2ζ2) + [[v̂]](3)(4ζ − 4ζ2)

+[[v̂]](4)(2ζ
2 − ζ)

]
dζ =

= T gijk(θ)

[(
− 1

2∆l
+

2 ln ∆l

∆l

)
[[v̂]](1) +

(
1

8∆l
− 9 ln ∆l

2∆l

)
[[v̂]](2)

+

(
− 4

∆l
+

4 ln ∆l

∆l

)
[[v̂]](3) +

(
2

∆l
− ln ∆l

∆l

)
[[v̂]](4)

]
. (6.17)
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with er = r/r.

6.3 Validation of the numerical procedure

A validation of the numerical approach, is pursued through an analysis of
a shear band present in an isotropic material at null prestress, that can
be compared with a crack loaded in Mode II. Figure 6.3 shows the results
of the normalized SIF function of the wavenumber, for three di�erent
inclinations of the wave propagation vector (0, π/6, π/3). The solution
obtained with quadratic and quarter point elements (Q+QP, circle spots)
is compared with an available analytical solution [17] (solid lines), and the
previous discretization based on linear and square root shape functions
(L+SR, diamond spots).
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Figure 6.3: Comparison of the modulus of the normalized mode II Stress
Intensity Factor at the shear band tip (for an isotropic material at null pre-
stress) as a function of the wavenumber, with the analytical solution of Chen
and Sih[17] and the numerical solution based on linear and square root shape
functions.
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Chapter 6. Multiple shear bands interaction

With a discretization of 100 elements the errors related to the analyt-
ical solution are about 8% for the mixed BEM with L + SR and about
0.2% for the collocation technique with Q+QP .
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7 Results for multiple shear bands

interaction

Results reported in the following are limited for simplicity to the harden-
ing exponent N = 0.4, representative of a medium carbon steel, and to
a level of prestress close to the elliptic boundary (k =0.87 and ξ=0.26,
parameters corresponding to the inclination θ ≈ ± 26◦), so that some
shear bands are expected to be already formed. Time-harmonic incident
shear waves of circular frequency Ω have been adopted, as for the case of
the isolated shear band.

7.1 Parallel shear bands

In the case of two equal and parallel shear bands (Figure 6.1(a)), two di-
rections of propagation for the impinging waves with wavenumber Ω l/c1 =
1 (c1 is the propagation velocity in the direction of x1-axis) are consid-
ered: one aligned orthogonal (β = θ + π/2) and the other parallel to the
shear bands (β = θ). The wavenumber considered corresponds to ones
in which resonance condition occurs for the isolated shear band. The
ratio between the static and dynamic Mode II Stress Intensity Factor at
the tip of the shear band is reported in Figure 7.1 as a function of the
dimensionless distance d/l between the two shear bands, denoting with
+ and − the right and left tips respectively. At the tips A−, A+ and
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Chapter 7. Results for multiple shear bands interaction

B−, B+ the values of the SIF oscillate about the value pertinent to an
isolated shear band. Note that the SIF assumes the same value

• at the tip pairs A−, A+ and B−, B+ for wave propagation orthog-
onal to the shear bands;

• at the tip pairs A−, B− and A+, B+ for wave propagation parallel
to the shear bands.

For both wave propagation directions, the SIFs grow when the dis-
tance between the two shear bands decreases. The peaks of the SIFs
denote resonance, which is much more pronounced than in the case of an
isolated shear band (reported in Figure 7.1 for comparison with Figure
5.2). Therefore, two shear bands provide an ampli�cation to resonance,
thus promoting shear band growth.

For the shear band geometry (a), the (modulus of the) incremental
deviatoric strain is plotted in Figure 7.2, when a wave is travelling parallel
to the shear band ensemble. The two cases reported in the �gure di�er
only in the distance between the shear bands. In the upper and lower
parts of Figure 7.2, the distance is d = 2.5λπ/2+θ and d = 4λπ/2+θ,
respectively, with λα being the wavelength in the propagation direction
singled out by angle α. The scattered �eld is reported on the left, while
the total �eld in the centre. The graphs on the right side are cross-sections
of the scattered deviatoric strain along x̂2-axis, cut at shear band centre.
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Figure 7.1: Resonance, as induced by two parallel shear bands (much more
pronounced than in the case of an isolated shear band, also reported in the
�gure), is revealed by the peaks of the dimensionless stress intensity factor, re-
ported as a function of the distance d between the shear bands for a wavenumber
Ω l/c1 = 1: (a) direction of the wave propagation orthogonal to the shear bands
β = θ + π/2, (b) direction of the wave propagation parallel to the shear bands
β = θ. The SIF of one isolated shear band is also reported. The right and left
tips are labelled with + and − respectively.

Overall, Figure 7.2 shows that the ratio between the shear band dis-
tance and the wavelength of the impinging wave may determine focusing
(which promotes shear band nucleation, see the upper part of the �gure)
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7.1. Parallel shear bands

or shielding (which leaves the material inside the shear bands unstressed,
see the lower part of the �gure) of the mechanical disturbance in the re-
gion enclosed within the shear bands.
The explanation of this behaviour is given by the analysis of the single
contribution of each shear band in the de�nition of the modulus of the
deviatoric strain �eld, expressed in the form

dev ε =

√
v2

1,1 + v2
2,2 − 2v1,1v2,2 + 2v1,2v2,1

4
. (7.1)

Considering equation (3.11) in which the total displacement �eld is given
by the superimposition of the incident and the scattered �elds, the same
thing is valid for the gradient of the displacement �eld. Thus, using the
integral equation (4.13), the gradient of the scattered �eld for a couple
of shear bands can be evaluated with the equation

vscg,k(y) = −
∫ lA

−lA
ṫgij,k(x̂

A
1 ,y)nAi [[vAj ]] dx̂A1︸ ︷︷ ︸

ContributionA

−
∫ lB

−lB
ṫgij,k(x̂

B
1 ,y)nBi [[vBj ]] dx̂B1︸ ︷︷ ︸

ContributionB

,

(7.2)
which sums the two contributions of the shear bands A and B. Figure
7.3 shows both contributions A and B of the gradient of the displacement
v1,2 for the previous cases presented in Figure 7.2, and it is possible to
conclude that:

• when the distance between the shear bands is equal to an entire
number and a half the wavelength (i.e. 2.5λπ/2+θ in the picture),
contributions A and B are in phase inside the shear bands and in
anti-phase outside, where the scattered gradient of the displacement
v1,2 goes to vanish;

• when the distance between the shear bands is equal to an entire
number the wavelength (i.e. 4λπ/2+θ in the picture), contribution
A and B are in phase outside the shear bands and in anti-phase

inside them, where the scattered gradient of the displacement v1,2

goes to vanish.
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Figure 7.3: Examples of wave focusing (upper part) and shielding (lower part)
generated by two parallel shear bands. Scattered incremental deviatoric strain
�eld is reported as produced by an incident shear wave travelling parallel to the
shear bands (β = θ) with wave number Ω l/c1 = 1. The graphs on the right side
are cross-sections of maps on the gradient of the displacement �eld v1,2, cut at
the centre of the shear bands.

Similar results for the SIF can be found in fracture mechanics, for
the dynamics of parallel cracks. In particular, increasing values of the
SIF at decreasing crack distance [19, 23, 21, 47] and focussing of the
displacement �eld between the cracks[54] have been found.
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7.2. Aligned shear bands

7.2 Aligned shear bands

Two aligned shear bands of equal length 2l, at a distance d, are analyzed
(Figure 6.1(b)) for an impinging wave with wavenumber Ω l/c1 = 1. The
normalized SIF at the tips of the shear bands is evaluated as a function
of the dimensionless distance d/l, for an incident wave with direction
of propagation orthogonal to the shear bands (β = θ + π/2), Figure
7.4. When the two shear bands are distant, the SIFs tend to the value
pertinent to one isolated shear band, but the SIF at the inner tips (A+B−)
strongly blows up when the distance between the two shear bands tends
to vanish. This e�ect promotes the coalescence of the two shear bands.
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Figure 7.4: Coalescence of two aligned shear bands is demonstrated by the
dimensionless SIF reported as a function of the distance d for a wave travelling
orthogonal to the shear bands and wavenumber Ω l/c1 = 1.

For a wave travelling orthogonal to two aligned shear bands, the pro-
�le of the displacement jump across the shear band surfaces is reported
in Figure 7.5, for d = 2l(1 + 1/100) ≈ 2l, together with the pro�le per-
tinent to an isolated shear band of length 2l and 4l. The pro�les of the
two aligned shear bands are non-symmetric and, in a sense, they seem
to `attract each other'. However, the two pro�les are very di�erent, so
that two shear bands are not equivalent to an isolated shear band with a
length equal to the sum of the two lengths.
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Figure 7.5: The strong di�erence between two aligned shear bands of length
2l close to each other, and one isolated shear band, either of length 4l or 2l
(both reported as dashed lines) is visible from the pro�le of the displacement
jump along the shear band surfaces.

The modulus of the total deviatoric strain �eld is reported for two
aligned shear bands in Figure 7.6 (a) and (b), for a wave travelling parallel
to them (β = θ), for the case with d = λθ/2 and for the case with
d = λθ respectively. These �gures show a sort of `overall' elimination or
intensi�cation, meaning that the scattered �eld is everywhere annihilated
in case (a) or ampli�ed in case (b). Therefore, a system of two shear bands
produces a mechanical disturbance which may or may not (depending on
the ratio d/λ) propagate in a material far beyond the location of the
shear bands.
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Figure 7.6: (a) Annihilation of the stress �eld is revealed by the modulus
of the incremental deviatoric strain �eld produced by an incident shear wave
travelling parallel to the shear bands (β = θ) with wave number Ω l/c1 = 1 and
distance d = λθ/2; (b) Ampli�cation of the stress �eld is determined under the
same condition as for (a), but assuming d = λθ. Note that the maps on the left
represent the scattered �eld, while the total �elds are reported on the right.

7.3 Converging shear bands

Two shear bands, disposed in a conical geometry, inclined at ±θ and
located at a minimal distance d = l/10 (Figure 6.1(c)), are analyzed in
Figure 7.7 and 7.8, for Ω l/c1 = 1. The dimensionless SIF is reported in
the lower part of Figure 7.7, as a function of the propagation direction
β of the impinging wave, that generates the nominal shear stress t21

reported in the upper part of the �gure. The picture shows that when
the wave travels orthogonal to one of the two shear bands (β = π/2−θ or
β = π/2+θ), the relevant shear band tip is loaded with a maximum value
of the shear stress, while the other shear band tip results quite unloaded
because is subjected to a minimum value of shear stress, hence the SIF
reaches a maximum or minimum values when the wave travels orthogonal
to one or the other shear band respectively.
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Figure 7.7: Loading and simultaneous unloading of two converging shear band
tips is revealed by the dimensionless Mode II SIF, reported at the closest tips of
both shear bands, as function of the propagation direction β of the impinging
wave. The three inclination β highlighted with (a), (b), (c), correspond to the
cases analyzed in Figure 7.8.

In Figure 7.8 the modulus of the scattered and total deviatoric strain
�elds are analysed for the three directions of propagation of the wave β,
referred to the cases (a), (b), (c) labelled in Figure 7.7. The e�ect in
which the shear band results unloaded (minimum shear stress and SIF),
corresponds to its annihilation, and it becomes clearly visible in parts (b)
and (c) of the Figure 7.8, where one shear band (marked with a dashed
white line) `disappears', while at the same time the other is `reinforced'.
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Figure 7.8: (a) A �ne texture of secondary planar waves is evidenced by the
modulus of the deviatoric incremental strain �eld produced by an impinging
wave propagating horizontally β = 0; (b) Annihilation of one shear band and
reinforcement of the other is produced in the same conditions as for part (a),
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that the maps on the left represent the scattered �eld, while the total �elds are
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the same label of Figure 7.7.

This is due to the fact that the scattered �eld of the annihilated shear
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band is so small that doesn't in�uence the contribution of the other shear
band. When the impinging wave is horizontal, the two shear bands behave
in the same way and produce a �ne texture of `secondary' planar waves
inclined at the critical directions for shear band formation, as is shown
in Figure 7.8 (a).

7.4 Four shear bands

A system of four shear bands is considered as sketched in Figure 6.1 (d),
impinged by a horizontally propagating wave with Ω l/c1 = 1. Results
in terms of maps of the (modulus of the) deviatoric strain are reported
in Figure 7.9 for the scattered (left) and total (right) �elds at a distance
d = 8λπ/2+θ (upper part) and d = 8.5λπ/2+θ (lower part).
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7.4. Four shear bands

The case reported in the upper part of the �gure provides an example
of focusing of the signal, while shielding is evidenced in the case reported
in the lower part. In the upper case, the stress intensi�es, while in the
lower case an `island of stress relief' is created.
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8 Conclusions

The dynamic e�ects induced by a shear band formed in a material strained
close to the failure of ellipticity can be analysed through the development
of ad hoc boundary integral equations and collocation techniques. Re-
sults show that the shear band produces a complex dynamic interaction
with impinging waves generating resonance at a certain frequency. This
resonance promotes shear band development, as can be revealed by the
variation with frequency of the stress intensity factor at the shear band
tips. Moreover, the vibration pattern generated near the shear band
shows a �ne development of plane waves and the formation of a narrow
zone of low incremental strain emerging from the shear band edges and
propagating with a conical shape.

The analysis can be extended to investigate the complex interactions
between multiple shear bands during wave propagation, leading in some
cases to resonance (which promotes shear band growth and coalescence),
but in other cases to annihilation (which produces shear band arrest).
Furthermore, di�erent geometries can lead to opposite e�ects, of focus-
ing or shielding from waves, so that in the former case nucleation of a
new shear band is promoted, while in the latter the material remains
`untouched' by the wave �eld.

It is worth noting that the results obtained in the present thesis can be
generalized in several ways. In particular: (i.) three-dimensional prob-
lems can be analysed in which the shear band can assume a complex
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Chapter 8. Conclusions

form, for instance penny-shaped, conical or curved; (ii.) materials with
di�erent constitutive equations and even materials di�erent from metals,
for instance granular matter, can be considered; (iii.) transient dynamics
may be studied. In all these cases, the boundary integral equations devel-
oped in the thesis are either still valid or require minimal modi�cations,
so that only the Green's function has to be determined, a di�culty which
can be attacked with the methods shown in [1, 48, 64].
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A The particular case of two

parallel cracks

Let now consider a Mooney-Rivlin material in the limit case in which
the prestress is null (k = 0), so that the isotropic condition is reached.
As mentioned in Chapter 3, in the absence of prestress the shear band
model reduces to a weak surface whose faces can freely slide, so that
in the isotropic condition, the solution presented for the shear band,
corresponds to the same solution of an horizontal fracture subjected to
a Mode II shear loading. In fact since a fracture has null incremental
nominal traction orthogonal to the surfaces, boundary condition (3.3) is
always valid.

Two parallel cracks of length 2l and distance d, both parallel to the
horizontal principal axes x1 in an in�nite incompressible and isotropic
material, are now considered. The present Chapter wants to analyse
the dynamic regime and the resonance condition of two parallel cracks.
Results will be compared to those of a rectangular block with dimensions
2l and d (equal to the length of the cracks and the distance between
them), subjected to pure shear loading.
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Appendix A. The particular case of two parallel cracks

A.1 The Green's function for linear elasticity

The isotropic condition corresponds in the elliptic regimes to null pre-
stress (k = 0) and parameter of anisotropy ξ = 1. With these assump-
tions, 2-D Green's function for linear elasticity in the time harmonic
domain can be used to evaluate the problem, and it can be derived in the
same way as for the Green's function for nonlinear elasticity presented in
Chapter 2. The �nal expression of the Green's function is de�ned as

vgi (x,Ω) =
1

8π2

∫
|ω|=1

2∑
m=1

Pmgi
ρ c2

m

Φ(km |ω · x|) dω, (A.1.1)

with
Φ(ξ) = i π eξ − 2 [cos(ξ)Ci(ξ) + sin(ξ)Si(ξ)] , (A.1.2)

in which km = Ω/cm is the wavenumber and cm is the wavespeed in the
direction m de�ned as

c1 =

√
µ

ρ
, c2 =

√
λ+ 2µ

ρ
. (A.1.3)

The expressions of the Lamè constants λ and µ are

λ =
ν

(1− 2ν)(1 + ν)
, µ =

1

2(1 + ν)
, (A.1.4)

in which ν is the Poisson's ratio, and they characterise the elastic con-
stants of the fourth-order tensor C with the relation

Cijpk = λδijδpq + µ(δipδjq + δiqδjp). (A.1.5)

Moreover, the term Pmgi in equation (A.1.1) is de�ned as

Pmgi = EilEjl, (A.1.6)
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A.2. The resonance of a rectangular block under pure shear loading

where the column of tensor E are the eigenvectors of the tensor Γip(ω),
which is expressed as a function of the elastic coe�cients with the relation

Γip(ω) = Cijpkωjωq. (A.1.7)

As for the previous case of nonlinear elasticity, the 2-D Green's functions
can be split into a regular and singular parts as

vgi (x,Ω) = vgi
R

(x,Ω) + vgi
S

(x), (A.1.8)

with the regular part vgi
R

(x,Ω) de�ned as

vgi
R

(x,Ω) =
1

8π2

∫
|ω|=1

2∑
m=1

Pmgi
ρ c2

m

ΦR(km, |ω · x|) dω, (A.1.9)

with

ΦR(km, |ω · x|) = Φ(km|ω · x|) + 2 log(|ω · x|), (A.1.10)

and the singular part vgi
S

(x) as

vgi
S

(x) = − 1

4π2

∫
|ω|=1

2∑
m=1

Γ−1
ip (ω) log(|ω · x|) dω. (A.1.11)

The 2-D Green's function (A.1.1) has been used in the boundary
integral equation (4.28), and the results are reported in the chapter.

A.2 The resonance of a rectangular block under

pure shear loading

A rectangular, incompressible and isotropic elastic block of dimensions
2l × d under pure shear loading, whose principal directions are aligned
parallel to the edges of the block, is considered.

Referring to Figure A.1, the boundary conditions are:
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Figure A.1: A rectangular, incompressible and isotropic elastic block under
pure shear loading.

• null horizontal incremental tractions and vertical incremental dis-
placement:

ṫ11 = 0, v2 = 0 (A.2.12)

along the vertical edges at x1 = −l and x1 = l;

• prescribed time-harmonic shear tractions and null vertical displace-
ment:

ṫ21 = τei k x2e−iω t, v2 = 0 (A.2.13)

along the horizontal edges at x2 = 0 and x2 = −d, with k the
wavenumber.

Considering the nominal incremental stress �eld described in Chapter 2,
and assuming a solution in the form

v1(x1, x2) = ṽ1e
iΩ t, v2(x1, x2) = 0, (A.2.14)

and with substitution in the equations of motion (2.31), with null incre-
mental body forces fj = 0, leads to the non-trivial equation

d2ṽ1

dx2
2

= −ω
2

c2
L

ṽ1. (A.2.15)

where cL is the propagation velocity of a transverse plane wave travelling
parallel to x2-axis.
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A.3. The resonance of two parallel cracks

By solving the di�erential equation (A.2.15) and imposing the boundary
conditions (A.2.12) and (A.2.13), the solution of the problem is

v1(x1, x2) = −
cL

(
cos
(
ω
cL
d
)
− e

(
i ω
cL
d
))

ω sin
(
ω
cL
d
) cos

(
ω

cL
x2

)
+
cL
ω

sin

(
ω

cL
x2

)
(A.2.16)

for which the eigenfrequencies of the elastic block are

Ω = nπ
cL
d

n = 1, 2, 3... (A.2.17)

A.3 The resonance of two parallel cracks

Two parallel cracks of length 2l and distance d, parallel to the horizontal
principal axes x1 in an in�nite incompressible and isotropic material, are
now considered. Three di�erent cases of distances between the cracks
have been evaluated: d = l, l/2, l/4, and for each distance d the results
obtained are compared to those of the elastic block that have the same
length d.

x2

x1

d

ll

ll

x1

b

p

ll

d

Figure A.2: Two parallel cracks (left) of length 2 l and distance d. The ma-
terial between the two parallel cracks is sketched as a rectangular block (right)
under pure shear loading.
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Figure A.3: Normalized Mode II Stress Intensity Factor of two parallel
cracks as a function of the wavenumber for three di�erent cases of distances
d = l, l/2, l/4 between the cracks. Comparison of the eigenfrequencis of the
elastic block (with length d equal to the distance between the cracks), with the
peaks of the SIFs that show the resonance of the cracks.

The variation with the wavenumber, Ωl/c1, of the modulus of the
normalized Mode II Stress Intensity Factor KII/K

st
II for the two parallel

cracks, is shown in Figure A.3 for the three di�erent distances between
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A.3. The resonance of two parallel cracks

the crack d = l, l/2, l/4, and the results obtained are compared to those of
the elastic block under pure shear loading found in the previous section,
with the same distance/length d.
In this �gure the peaks of the curves represent resonance condition, so
that it is clear that a decrease in the distance leads to an higher ampli�ca-
tion factor. For each solid curve of the Figure, many di�erent resonance
peaks are visible for high frequencies (Ωl/c1 > 2). In particular, the
comparison of the results with the eigenfrequencies of the elastic block
studied in the previous sections (dashed lines in Figure A.3), leads to the
conclusion that two parallel cracks reach resonance condition for quite the
same frequencies of a solid block with dimensions d equal to the distance
between the two cracks. The lower is the distance d, the lower is the error
between the eigenfrequency and the resonance of the cracks, and then it
means that the surfaces of the cracks behave as free surfaces.
This is due to the fact that for higher distance d the lateral material
corresponds to a constraint of the rectangular area between the cracks.
The results obtained can be compared to those of a single crack near a
free surface, in which a strong correlation between its resonance and the
natural frequencies of a Timoshenko plate (plane-strain case) was found
[31]. In particular, for values of d/l small (≈ 0.2) the clamped plate
and the simply supported plate appeared to provide an upper and lower
bound, respectively, of the frequency.

A.3.1 Deviatoric strain �elds

For the three previous cases of distances d = l, l/2, l/4 between the two
parallel cracks, the deviatoric strain �eld is analysed, and for all the
following �gures the scattered deviatoric strain �eld is reported on the
left, while the total deviatoric strain �eld is reported on the right.

Considering the �rst case with distance d = 0.25 l between the cracks,
Figure A.4 shows in the upper part the deviatoric �elds for a frequency a
bit before the resonance condition (Ω < ΩR1), and in the lower part for
the frequency corresponding to the �rst resonance condition of the cracks
(Ω = ΩR1) (the �rst peak of the curves for high frequencies Ωl/c1 > 2
of Figure A.3). It is shown that the two scattered �elds are more similar
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Figure A.4: Scattered (left) and total (right) deviatoric strain �elds for two
parallel cracks of length 2 l and distance d = 0.25 l, and for a frequency before
the resonance (Ω < ΩR1) and in resonance condition (Ω = ΩR1).

and composed of a family of plane waves propagating orthogonal to the
cracks, whereas, the total deviatoric strain �elds are completely di�erent.
In fact, for the case before the resonance condition (Ω < ΩR1), the total
�eld is predominant respect to the scattered �eld that generates only a
very low perturbation of the total �eld. At the opposite, in the case of
resonance (Ω = ΩR1) the scattered �eld is dominant, and creates a sort
of focussing of the waves for a width equal to the length of the cracks, so
that the incident �eld is strongly perturbed by the scattered �eld.
The same e�ects can be seen for the other cases of d = 0.5 l in Fig-
ure A.5, in which the deviatoric strain �elds are reported for the two
resonance conditions ΩR1,ΩR2 and for the two frequencies before each
resonance Ω < ΩR1 and ΩR1 < Ω < ΩR2. Moreover, results for d = l
are reported in Figure A.6 and A.7 in which four resonance conditions
ΩR1,ΩR2,ΩR3,ΩR4 and four frequencies before each resonance are shown.
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B Regularization of the traction of

the Green's function

The gradient of the nominal stress tensor ṫgij,k is obtained by the plane
wave expansion as

ṫgij,k = − 1

4π2

∫
ω
t̃gij,k(ω) dω, (B.0.1)

and it can be decomposed into a static and a dynamic contribution as

t̃gij,k(ω) = t̃
g(st)
ij,k (ω) + t̃

g(dyn)
ij,k (ω), (B.0.2)

which are de�ned as

t̃
g(st)
ij,k (ω) = −

F̃ gijk(ω)

(ω · x)2
, (B.0.3)

t̃
g(dyn)
ij,k (ω) =

[
ωgωkδij − F̃ gijk(ω)

]
η2Ξ′(ηω · x), (B.0.4)
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where a prime denotes di�erentiation with respect to ω · x and

F̃ gijk(ω) = Kijhlωkωh
δlg − ωlωg
L(ω)

+

(
ωg(2µ∗ − µ)(1− ω2

g)

L(ω)
+

+
(µ− (δ2g − δ1g))

σ
2ω

2
g

L(ω)
− σ

2
ωk
ω1ω

2
2

L(ω)

)
δij . (B.0.5)

By specifying the unit vector ω as

ω1 = cos(α+ θ), ω2 = sin(α+ θ), (B.0.6)

the static contribution (B.0.3) is strongly singular in both the variables α
and r, so that, to evaluate the plane wave expansion (B.0.1), the quantity

t̃
g(st)
ij,k is regularized as follows

t̃
g(st)
ij,k (ω) =

T̃ gijk (α, θ)

r2
, (B.0.7)

where

T̃ gijk = − 1

cos2 α

[
F̃ gijk(α+ θ)−

(
F̃ gijk(α+ θ)

)
α=π/2

−
(
α− π

2

)(
F̃ gijk(α+ θ)

)′
α=π/2

]
, (B.0.8)

in which the prime denotes di�erentiation with respect to α.

100



List of Figures

1.1 Scattered (left) and total (right) incremental deviatoric strain

�eld is reported as produced by an incident shear wave travelling

parallel to the shear band of length 2 l (β = θ, with β direction

of the wave propagation and θ inclination of the shear band)

with wave number Ω l/c1 = 1 (denoting with Ω the circular

frequency and c1 the wave speed). . . . . . . . . . . . . . . . 2
1.2 Examples of wave focusing (upper part) and shielding (lower

part) generated by two parallel shear bands. Scattered (left)

and total (right) incremental deviatoric strain �eld is reported

as produced by an incident shear wave travelling parallel to the

shear bands (β = θ) with wave number Ω l/c1 = 1. . . . . . . . 3

2.1 Regime classi�cations: in light blue the EC regime, in grey the

EI regime, in pink the H regime and in purple the P regime. In

continuous red line the J2-deformation theory path with N =

0.4. In blue the Hill exclusion condition (with p/µ = 0.59k in

order to approach the EC/H boundary with the J2-deformation

theory path with N = 0.4) and in green the surface instability. 14

101



List of Figures

3.1 A plane shear wave (sketched as a moving deck of cards) is

impinging a shear band of �nite-length (2l) in a prestressed,

orthotropic material. The shear band (aligned parallel to the

x̂1�axis) is inclined at an angle ϑ0 (positive when anticlockwise)

with respect to the orthotropy axes x1 and x2 (aligned parallel

to the prestress state); the wave is inclined at an angle β with

respect to the x1-axis. . . . . . . . . . . . . . . . . . . . . . 21
3.2 Dimensionless wave speed as function of the direction of propa-

gation of the wave, for three di�erent hardening exponent of the

J2-deformation theory of plasticity (N = 0.25, N = 0.4, N =

0.8): on the left for a level of prestrain tending to zero, and on

the right for a level of prestrain on the elliptic boundary. . . . 24

4.1 Reference system, vectors ω,x and angles θ and α. . . . . . . 28
4.2 The shear band line is divided in Q-intervals. Within each in-

terval a linear variation of the incremental displacement jump

is assumed, with the exception of the two intervals at the shear

band tips. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 The quasi-static behaviour of a shear band loaded with a remote

shear (obtained numerically in the limit Ω → 0) is compared

with an available analytical solution for di�erent hardening ex-

ponents N and prestrains near the elliptic border. Modulus

of dimensionless displacement jump along the shear band line,

x̂1/l, for the J2-deformation theory of plasticity and three hard-

ening exponents N (0.25, 0.4, 0.5). . . . . . . . . . . . . . . . 38
4.4 Percent error in the incremental displacement jump [[v̂]]q for dif-

ferent numbers of collocation points Q (10, 20, 50, 100, 200, 500),

and for two sets of shape functions (N = 0.4 has been consid-

ered). The errors are evaluated at the middle of the shear band,

x̂1/l = 0, note that the circular and square spots are practically

superimposed for Q>200. . . . . . . . . . . . . . . . . . . . 39

5.1 Modulus of dimensionless displacement jump along the shear

band line, x̂1/l, for the J2-deformation theory of plasticity: dif-

ferent wavenumber are considered with N = 0.4 and prestrain

ε1 = 0.667. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

102



List of Figures

5.2 Modulus of dimensionless displacement jump in the middle of

the shear band (x̂1 = 0) is plotted as a function of the dimen-

sionless frequency for di�erent values of prestrain and for the

J2-deformation theory of plasticity with N = 0.4 and limit pre-

strain ε1 = 0.667 at the EC/H boundary. Note that a resonance

frequency is visible (the peak of the curves) and that this res-

onance becomes more evident at increasing prestrain, when it

approaches the elliptic boundary. . . . . . . . . . . . . . . . . 43
5.3 Modulus of dimensionless mode II Stress Intensity Factor at the

shear band tip as a function of the wavenumber; a comparison

with the analytical solution of Chen and Sih [17], with null

prestrain in the isotropic case with µ = µ∗. . . . . . . . . . . 44
5.4 Modulus of dimensionless mode II Stress Intensity Factor at

the shear band tip as a function of the wavenumber for di�erent

levels of prestrain for a J2-deformation theory with N = 0.4. . 45
5.5 Modulus of dimensionless displacement jumps (for a J2-deformation

theory of plasticity material with N = 0.4) along the shear band

line, x̂1/l, at various wavenumber. For each wavenumber, four

di�erent inclinations β of the wave propagation are considered

(0, θ0, π/2, π/2 + θ0). . . . . . . . . . . . . . . . . . . . . . 47
5.6 SIF at the left `−' and right `+' tips of a shear band (in a

J2-deformation theory of plasticity material with N = 0.4), for

di�erent inclinations β of the wave propagation (0, θ0, π/2, π/2+

θ0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.7 Scattered (left) and total (right) incremental strain �eld pro-

duced by a wave incident to a shear band (in a J2-deformation

theory of plasticity material with N = 0.4) orthogonally to it

(β = θ0 + π/2) or aligned parallel to the x1−axis (β = 0). The

wavenumber is Ωl/c1 = 1 and the level of prestrain is ε1 = 0.667,

close to the elliptic boundary. . . . . . . . . . . . . . . . . . 50
5.8 Scattered (left) and total (right) incremental strain �eld pro-

duced by a wave impinging parallel to a shear band, β = θ0, (in

a J2-deformation theory of plasticity material with N = 0.4).

Various levels of prestrain ε1 = 0.43, ε1 = 0.55, ε1 = 0.66 are

reported with wavenumber Ωl/c1 = 1. . . . . . . . . . . . . . 51

103



List of Figures

5.9 Incremental strain �eld near a shear band (in a J2-deformation

theory of plasticity material with N = 0.4) produced by a wave

impinging parallel to the shear band, β = θ0 and waveleght

Ωl/c1 = π/5 (upper part) and Ωl/c1 = π/2 (lower part). . . . . 52
5.10 Modulus of dimensionless displacement jump in the middle of

the shear band (x̂1 = 0) is plotted as a function of the dimen-

sionless frequency for di�erent values of prestrain and for the

Mooney-Rivlin material and limit prestrain ε1 = 1.32 at the

EI/P boundary. Note that a resonance frequency is visible (the

peak of the curves) and that this resonance becomes more ev-

ident at increasing prestrain, when it approaches the elliptic

boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.11 Scattered (left part) and total (right part) incremental strain

�eld produced by a wave impinging parallel to a shear band, β =

θ0 = 0, in a Mooney-Rivlin material. A wavenumber Ωl/c1 = 1

and a prestress k = 0.99 (near the elliptic/parabolic boundary)

have been considered. . . . . . . . . . . . . . . . . . . . . . 55

6.1 Waves (inclined at the angle β) impinging on di�erent con�g-

urations of shear bands (of equal length 2l) in a prestressed

metal material: (a) parallel, (b) aligned, (c) converging, and

(d) involving 4 shear bands. . . . . . . . . . . . . . . . . . . 58
6.2 Subdivision of the shear band line in Q-elements. Within each

elements a quadratic variation of the incremental displacement

jump is assumed, with the exception of the two elements at

the shear band tips where the incremental displacement jump

assume a quarter point variation. . . . . . . . . . . . . . . . 61
6.3 Comparison of the modulus of the normalized mode II Stress

Intensity Factor at the shear band tip (for an isotropic material

at null prestress) as a function of the wavenumber, with the an-

alytical solution of Chen and Sih[17] and the numerical solution

based on linear and square root shape functions. . . . . . . . . 69

104



List of Figures

7.1 Resonance, as induced by two parallel shear bands (much more

pronounced than in the case of an isolated shear band, also re-

ported in the �gure), is revealed by the peaks of the dimension-

less stress intensity factor, reported as a function of the distance

d between the shear bands for a wavenumber Ω l/c1 = 1: (a)

direction of the wave propagation orthogonal to the shear bands

β = θ + π/2, (b) direction of the wave propagation parallel to

the shear bands β = θ. The SIF of one isolated shear band is

also reported. The right and left tips are labelled with + and

− respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Examples of wave focusing (upper part) and shielding (lower

part) generated by two parallel shear bands. Scattered (left)

and total (centre) incremental deviatoric strain �eld is reported

as produced by an incident shear wave travelling parallel to the

shear bands (β = θ) with wave number Ω l/c1 = 1. The graphs

on the right side are cross-sections of maps on the left side, cut

at the centre of the shear bands. . . . . . . . . . . . . . . . . 74
7.3 Examples of wave focusing (upper part) and shielding (lower

part) generated by two parallel shear bands. Scattered incre-

mental deviatoric strain �eld is reported as produced by an in-

cident shear wave travelling parallel to the shear bands (β = θ)

with wave number Ω l/c1 = 1. The graphs on the right side are

cross-sections of maps on the gradient of the displacement �eld

v1,2, cut at the centre of the shear bands. . . . . . . . . . . . 76
7.4 Coalescence of two aligned shear bands is demonstrated by the

dimensionless SIF reported as a function of the distance d for a

wave travelling orthogonal to the shear bands and wavenumber

Ω l/c1 = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 The strong di�erence between two aligned shear bands of length

2l close to each other, and one isolated shear band, either of

length 4l or 2l (both reported as dashed lines) is visible from

the pro�le of the displacement jump along the shear band surfaces. 78

105



List of Figures

7.6 (a) Annihilation of the stress �eld is revealed by the modulus of

the incremental deviatoric strain �eld produced by an incident

shear wave travelling parallel to the shear bands (β = θ) with

wave number Ω l/c1 = 1 and distance d = λθ/2; (b) Ampli�ca-

tion of the stress �eld is determined under the same condition

as for (a), but assuming d = λθ. Note that the maps on the left

represent the scattered �eld, while the total �elds are reported

on the right. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.7 Loading and simultaneous unloading of two converging shear

band tips is revealed by the dimensionless Mode II SIF, re-

ported at the closest tips of both shear bands, as function of

the propagation direction β of the impinging wave. The three

inclination β highlighted with (a), (b), (c), correspond to the

cases analyzed in Figure 7.8. . . . . . . . . . . . . . . . . . 80
7.8 (a) A �ne texture of secondary planar waves is evidenced by

the modulus of the deviatoric incremental strain �eld produced

by an impinging wave propagating horizontally β = 0; (b) An-

nihilation of one shear band and reinforcement of the other is

produced in the same conditions as for part (a), but assuming

β = π/2 − θ; (c) A switch is produced from the annihilated to

the reinforced shear band with respect to part (b), assuming

now β = π/2 + θ. Note that the maps on the left represent the

scattered �eld, while the total �elds are reported on the right.

The three inclination of (a), (b), (c) are referred to to the same

label of Figure 7.7. . . . . . . . . . . . . . . . . . . . . . . 81
7.9 Examples of creation of an `island' of focusing (upper part) and

shielding (lower part) produced by a system of four shear bands

subjected to horizontally (β = 0) impinging waves. Scattered

(left) and total (right) incremental deviatoric strain �eld are

reported, for wave number Ω l/c1 = 1: in the upper part, a

characteristic shear band distance d = 8λπ/2+θ is selected, while

d = 8.5λπ/2+θ is selected for the lower part. . . . . . . . . . . 82

A.1 A rectangular, incompressible and isotropic elastic block under

pure shear loading. . . . . . . . . . . . . . . . . . . . . . . 90

106



List of Figures

A.2 Two parallel cracks (left) of length 2 l and distance d. The mate-

rial between the two parallel cracks is sketched as a rectangular

block (right) under pure shear loading. . . . . . . . . . . . . 91
A.3 Normalized Mode II Stress Intensity Factor of two parallel cracks

as a function of the wavenumber for three di�erent cases of dis-

tances d = l, l/2, l/4 between the cracks. Comparison of the

eigenfrequencis of the elastic block (with length d equal to the

distance between the cracks), with the peaks of the SIFs that

show the resonance of the cracks. . . . . . . . . . . . . . . . 92
A.4 Scattered (left) and total (right) deviatoric strain �elds for two

parallel cracks of length 2 l and distance d = 0.25 l, and for a

frequency before the resonance (Ω < ΩR1) and in resonance

condition (Ω = ΩR1). . . . . . . . . . . . . . . . . . . . . . 94
A.5 Scattered (left) and total (right) deviatoric strain �elds for two

parallel cracks of length 2 l and distance d = 0.5 l, and for two

cases of frequency before the n-th resonance (Ω < ΩRn) and in

resonance condition (Ω = ΩRn), with n = 1, 2. . . . . . . . . 95
A.6 Scattered (left) and total (right) deviatoric strain �elds for two

parallel cracks of length 2 l and distance d = l, and for two

cases of frequency before the n-th resonance (Ω < ΩRn) and in

resonance condition (Ω = ΩRn), with n = 1, 2. . . . . . . . . 96
A.7 Scattered (left) and total (right) deviatoric strain �elds for two

parallel cracks of length 2 l and distance d = l, and for two

cases of frequency before the n-th resonance (Ω < ΩRn) and in

resonance condition (Ω = ΩRn), with n = 3, 4. . . . . . . . . 97

107





Bibliography

[1] Argani, L., Bigoni, D., Capuani, D., Movchan, N.V. (2014) Cones
of localized shear strain in incompressible elasticity with prestress:
Green's function and integral representations. Proc. R. Soc. A 470,
20140423.

[2] L. Argani, D. Bigoni, G. Mishuris Dislocations and inclusions in
prestressed metals. Proc. R. Soc. A A, 2013, 469, 2154 20120752.

[3] Barraa, L.P.S., Telles, J.C.F. (1999) A hyper-singular numerical
Green's function generation for BEM applied to dynamic SIF prob-
lems. Engineering Analysis with Boundary Elements 23, 77-87.

[4] Bigoni, D. (2012) Nonlinear Solid Mechanics Bifurcation Theory
and Material Instability. Cambridge University Press.

[5] Bigoni, D., Bordignon, N., Piccolroaz, A., Stupliewickz, S. (2017)
Bifurcation of elastic solids with sliding interfaces. Proc. R. Soc.
A In press.

[6] Bigoni, D., Capuani, D. (2002) Green's function for incremental
nonlinear elasticity: shear bands and boundary integral formula-
tion. J. Mech. Phys. Solids 50, 471-500.

109



BIBLIOGRAPHY

[7] Bigoni, D., Capuani, D. (2005) Time-harmonic Green's function
and boundary integral formulation for incremental nonlinear elas-
ticity: dynamics of wave patterns and shear bands. J. Mech. Phys.
Solids 53, 1163-1187.

[8] Bigoni, D., Capuani, D., Bonetti, P. and Colli, S. (2007) A novel
boundary element approach to time-harmonic dynamics of incre-
mental nonlinear elasticity: The role of pre-stress on structural vi-
brations and dynamic shear banding. Comput. Meth. Appl. Mech.
Engrg. 196, 4222-4249.

[9] Bigoni, D., Dal Corso, F. (2008) The unrestrainable growth of a
shear band in a prestressed material. Proc. R. Soc. A 464, 2365-
2390.

[10] Biot, M.A. (1965)Mechanics of incremental deformations. J. Wiley
and Sons, New York.

[11] Blanloeuil, P., Rose, L.R.F., Guinto, J.A., Veidt, M., Wang, C.H.
(2016) Closed crack imaging using time reversal method based on
fundamental and second harmonic scattering. Wave Motion 66, 156-
176.

[12] Bonnet-Lebouvier, A.S., Molinari, A., Lipinski, P., (2002) Analysis
of the dynamic propagation of adiabatic shear bands. Int. J. Solids
Structures 39, 4249-4269.

[13] Bordignon, N., Piccolroaz, A., Dal Corso, F., Bigoni, D. (2015)
Strain localization and shear banding in ductile materials. Frontiers
in Materials, 2, 1-13.

[14] Brun, M., Capuani, D., Bigoni, D. (2003) A boundary element
technique for incremental, non-linear elasticity Part I: Formulation.
Comput. Meth. Appl. Mech. Engrg. 192, 2461-2479.

[15] Capuani, D., Bigoni, D., Brun, M. (2005) Integral representations
at the boundary for Stokes �ow and related symmetric Galerkin
formulation. Arch. Mech. 57, 363-385.

110



BIBLIOGRAPHY

[16] Capuani, D., Willis, J.R. (1997) Wave propagation in elastic media
with cracks. Part I: transient nonlinear response of a single crack.
Eur. J. Mech. A/Solids, vol. 16, 377-408.

[17] Chen, E.P., Sih, G.C. (1977) Scattering waves about stationary and
moving cracks. Mechanics of fracture:Elastodynamic crack prob-

lems, pp. 119-212. Noordho�, Leyden.

[18] Chirino, F., Abascal, R. (1998) Dynamic and static analysis of
cracks using the hypersingular formulation of the boundary element
method. Int. J. Num. Meth. Engng. 43, 365-388.

[19] Dineva, P, Gross, D. & Rangelov, T. Dynamic interaction of cracks
in piezoelectric and anisotropic solids: a non-hypersingular BIEM
approach. Theoret. Appl. Mech. 35, 73-91 (2008).

[20] Dolinski, M., Merzer, M., Rittel, D. (2015) Analytical formulation
of a criterion for adiabatic shear failure. Int. J. Impact Eng. 85,
20-26.

[21] Garcia-Sanchez, F., Saez, A., Dominguez, J. (2006) Two-
dimensional time-harmonic BEM for cracked anisotropic solids. En-
gineering Analysis with Boundary Elements 30, 88-99.

[22] Giarola, D., Capuani, D. & Bigoni, D. The dynamics of a shear
band. J. Mech. Phys. Solids 112, 472-490 (2018).

[23] Gross, D. & Zhang, C.H. Di�raction of SH waves by a system of
cracks: Solution by an integral equation method. Int. J. Solids

Structures 24, 41-49 (1986).

[24] Guduru, P.R., Rosakis, A.J., Ravichandran, G. (2001) Dynamic
shear bands: an investigation using high speed optical and infrared
diagnostic Mech. Materials 33, 371-402.

[25] He, J., et al. Local microstructure evolution at shear bands in metal-
lic glasses with nanoscale phase separation. Scienti�c Reports 6,
25832 (2016).

111



BIBLIOGRAPHY

[26] Hill, R. (1958) A general theory of uniqueness and stability in
elastic-plastic solids. J. Mech. Phys. Solids 6, 236-249.

[27] Hill, R., Hutchinson, J.W. (1975) Bifurcation phenomena in the
plane tension test. J. Mech. Phys. Solids 23, 239-264.

[28] Hsieh, T.H., Kinloch, A.J., Masania, K., Taylor, A.C. & Sprenger,
S. The mechanisms and mechanics of the toughening of epoxy poly-
mers modi�ed with silica nanoparticles. Polymer 51, 6284-6294
(2010).

[29] Hutchinson, J.W., Neale, K.W. (1979) Finite strain J2-deformation
theory. In Proc. IUTAM Symp. on Finite Elasticity (eds D. E. Carl-
son and R. T. Shield), pp. 237-247. The Hague, The Netherlands:
Martinus Nijho�.

[30] Kaltho�, J.F. (2000) Modes of dynamic shear failure in solids. Int.
J. Frac. 101, 1-31.

[31] Keer, L.M., Lin, W., Achenbach, J.D. (1984) Resonance e�ects for
a crack near a free surface. J. Appl. Mech. 51, 65-70.

[32] Kudryashov, N.A., Ryabov, P.N., Zakharchenko, A.S. (2015) Self-
organization of adiabatic shear bands in OFHC copper and HY-100
steel. J. Mech. Phys. Solids 76, 180-192.

[33] Li, S., Liu, W.K., Qian, D., Guduru, P.R., Rosakis, A.J., (2001)
Dynamic shear band propagation and micro- structure of adiabatic
shear band. Comput. Methods Appl. Mech. Eng. 191, 73-92.

[34] Li, S., Liu, W.K., Rosakis, A.J., Belytschko, T. Hao, W. (2002)
Mesh-free Galerkin simulations of dynamic shear band propagation
and failure mode transition. Int. J. Solids Structures 39, 1213-1240.

[35] Li, W., Gao, Y. & Bei, H. Instability Analysis and Free Volume
Simulations of Shear Band Directions and Arrangements in Notched
Metallic Glasses. Scienti�c Reports 6, 34878 (2016).

[36] Ma, M., Vijayan, K., hiltner, A. & Baer, E. Shear yielding modes
of polycarbonate J. Mat. Sci. 24, 2687-2696(1989).

112



BIBLIOGRAPHY

[37] Mal, A.K. (1970) Interaction of elastic waves with a Gri�th crack.
Int. J. Eng. Sci. 8, 763-776.

[38] Manolis, G.D., Dineva, P. S., Rangelov, T. V. (2004) Wave scat-
tering by cracks in inhomogeneous continua using BIEM. Int. J.
Solids Structures 41, 3905-3927.

[39] Medyanik, S.N., Liu, W.K., Li, S., (2007) On criteria for dynamic
adiabatic shear band propagation J. Mech. Phys. Solids 55, 1439-
1461

[40] Merodio, J., Ogden, R.W. (2005) On tensile instabilities and el-
lipticity loss in �ber-reinforced incompressible non-linearly elastic
solids Mech. Res. Comm. 32, 290-299.

[41] Morin, D., Hopperstad, O.S., Benallal, A. (2017) On the description
of ductile fracture in metals by the strain localization theory. Int.
J. Frac. https://doi.org/10.1007/s10704-017-0236-9.

[42] Needleman, A. (1989) Dynamic Shear Band Development in Plane
Strain J. Appl. Mech. 56 1-9.

[43] Ogden, R., Singh, B. (2011) Propagation of waves in an incom-
pressible transversely isotropic elastic solid with initial stress: Biot
revisited. J. Mech. Materials Struct. 6, 453-477.

[44] Palmer, A.C., Rice, J.R. (1973) The growth of slip surfaces in the
progressive failure of overconsolidated clay. Proc. R. Soc. A 332,
527-548.

[45] Paulino, G.H., Gray, L.J. (1998) Crack Tip Interpolation, Revis-
ited. SIAM Journal on Applied Mathematics. 58, 428-455.

[46] Petryk, H., Kursa, M. (2013) The energy criterion for deformation
banding in ductile single crystals. J. Mech. Phys. Solids 61, 1854-
1875.

[47] Phan, A.V. Dynamic stress intensity factor analysis of the inter-
action between multiple impact-loaded cracks in in�nite domains.
AIMS Mat. Sci. 3(4): 1683-1695 (2016).

113



BIBLIOGRAPHY

[48] Piccolroaz, A., Bigoni, D., Willis, J.R. (2006) A dynamical inter-
pretation of �utter instability in a continuous medium. J. Mech.
Phys. Solids 54, 2391-2417.

[49] Puzrin, A.M. and Germanovich, L.N. (2005) The growth of shear
bands in the catastrophic failure of soils. Proc. R. Soc. A 461,
1199-1228.

[50] Qu, R.T, Wang, S.G., Wang, X.D., Liu, Z.Q., Zhang, Z.F. (2017)
Revealing the shear band cracking mechanism in metallic glass by
X-ray tomography. Scripta Materialia 133, 24-28.

[51] Qu, R.T., Liu, Z.Q., Wang, G. & Zhang, Z.F. Progressive shear
band propagation in metallic glasses under compression. Acta Ma-

terialia 91, 19-33 (2015).

[52] Radi, E., Bigoni, D., Capuani, D. (2002) E�ects of prestress on
crack-tip �elds in elastic, incompressible solids. Int. J. Solids Struc-
tures 39, 3971-3996.

[53] Rice, J.R. (1973) The initiation and growth of shear bands. In Plas-
ticity and Soil Mechanics (ed. A. C. Palmer), p. 263. Cambridge,
UK: Cambridge University Engineering Department.

[54] Rojas-Diaz, R., Garcia-Sanchez & F. Saez, A. Dynamic crack inter-
actions in magnetoelectroelastic composite materials. Int. J. Frac.

157, 119-130 (2009).

[55] Ruan, H.H., Zhang, L.C. & Lu, J. A new constitutive model for
shear banding instability in metallic glass. Int. J. Solids Structures

, 48(21), 3112�3127 (2011).

[56] Salvadori, A. (2002) Analytical integrations in 2D BEM elasticity.
Comput. Meth. Appl. Mech. Engrg. 53, 1695-1719.

[57] Salvadori, A. , Gray, L.J. (2007) Analytical integrations and SIFs
computation in 2D fracture mechanics. Comput. Meth. Appl.
Mech. Engrg. 70, 445-495.

114



BIBLIOGRAPHY

[58] Shen, Y., Cesnik, C.E.S. (2018) Local interaction simulation ap-
proach for e�cient modeling of linear and nonlinear ultrasonic
guided wave active sensing of complex structures. Journal of Non-
destructive Evaluation, Diagnostics and Prognostics of Engineering
Systems 1, 011008-1.

[59] Song, S.X., Nieh, T.G. (2011) Direct measurements of shear band
propagation in metallic glasses - An overview. Intermetallics 19,
1968-1977.

[60] Tan, A., Hirose, S., Zhang, Ch. (2005) A time-domain collocation-
Galerkin BEM for transient dynamic crack analysis in anisotropic
solids. Engineering Analysis with Boundary Elements 29, 1025-
1038.

[61] Tekoglu, C., Hutchinson, J.W., Pardoen, T. (2015) On localization
and void coalescence as a precursor to ductile fracture. Phil. Trans.
R. Soc. A 373, 20140121.

[62] Van der Hijden, J.H.M.T., Neerho�, F.L. (1984) Scattering of Elas-
tic Waves by a Plane Crack of Finite Width. J. Appl. Mech. 51,
646.

[63] Vaz-Romero, A., Rotbaum, Y., Rodriguez-Martinez, J.A., Rittel,
D. (2016) Necking evolution in dynamically stretched bars: New
experimental and computational insights. J. Mech. Phys. Solids
91, 216-239.

[64] Willis, J.R. (1991) Inclusions and cracks in constrained anisotropic
media. In: Wu, J.J., Ting, T.C.T., Barnett, D.M. (Eds.), Modern
Theory of Anisotropic Elasticity and Applications. SIAM, Philadel-
phia, pp. 87-102.

[65] Xu, Y., Zhang, J., Bai, Y., Meyers, M.A. (2008) Shear localization
in dynamic deformation: Microstructural evolution. Metallurgical
and Materials Transactions A: Physical Metallurgy and Materials

Science 39, 811-843.

115



BIBLIOGRAPHY

[66] Yang, B., Morrison, M.L., Liaw, P.K., Buchanan, R.A., Wang, G.,
Liu, C.T., Denda, M. (2005) Dynamic evolution of nanoscale shear
bands in a bulk-metallic glass. Applied Phisics Letters 86, 141904.

[67] Zhang, X. (2015) Field Dislocation Mechanics with Applications
in Atomic, Mesoscopic and Tectonic Scale Problems. PhD Thesis,
Carnegie Mellon University.

[68] Zhang, X., Acharya, A., Walkington, N.J., Bielak, J. (2015) A single
theory for some quasi-static, supersonic, atomic, and tectonic scale
applications of dislocations. J. Mech. Phys. Solids 84, 145-195.

[69] Zhang, Y., Greer, A.L. (2006) Thickness of shear bands in metallic
glasses. Applied Physics Letters 89, 071907.

[70] Zhou, M., Rosakis, A.J., Ravichandran, G. (1996) Dynamically
propagating shear bands in impact-loaded prenotched plates. II-
Numerical simulations. J. Mech. Phys. Solids 44, 1007-1032.

116




	Abstract
	Acknowledgements
	List of pubblications
	Introduction
	The incremental constitutive equations for incompressible plane strain
	The incremental constitutive equation
	Local uniqueness and stability criteria for Biot plane strain and incompressibility elasticity
	The regime classification
	Mooney-Rivlin material
	The J2–deformation theory of plasticity

	The shear band model
	The boundary conditions
	The shear band inclination
	Non-linear elastic waves 

	The numerical method
	The time-harmonic Green's function for incremental nonlinear elasticity
	The boundary integral equation
	Discretization and numerical procedure
	Validation of the numerical procedure

	Results for an isolated shear band
	Results for the J2-deformation theory of plasticity
	Wave propagation normal to the shear band
	Wave propagation inclined or parallel to the shear band
	Incremental strain fields

	Results for a Mooney-Rivlin material

	Multiple shear bands interaction
	Boundary integral equation and numerical solution
	Discretization and numerical procedure
	Validation of the numerical procedure

	Results for multiple shear bands interaction
	Parallel shear bands
	Aligned shear bands
	Converging shear bands
	Four shear bands

	Conclusions
	The particular case of two parallel cracks
	The Green's function for linear elasticity
	The resonance of a rectangular block under pure shear loading
	The resonance of two parallel cracks
	Deviatoric strain fields


	Regularization of the traction of the Green's function
	List of Figures
	Bibliography



