
Curriculum 3. Modelling and Simulation

Daniel Kempen

Thermomechanical modelling of 
powder compaction and sintering

Doctoral School in Civil, Environmental and
Mechanical Engineering

20
19

 -
 D

o
ct

o
ra

l t
h

es
is



University of Trento

Thermomechanical modelling of powder
compaction and sintering

Author:
Daniel Kempen

Supervisors:
prof. Andrea Piccolroaz

prof. Davide Bigoni



Except where otherwise noted, contents on this book are licensed under a Creative 
Common Attribution - Non Commercial - No Derivatives 
4.0 International License 

University of Trento
Doctoral School in Civil, Environmental and Mechanical Engineering
http://web.unitn.it/en/dicam
Via Mesiano 77, I-38123 Trento
Tel. +39 0461 282670 / 2611 - dicamphd@unitn.it



Acknowledgements

I would like to express my gratitude to prof. Andrea Piccolroaz
for giving me the chance to participate in this research project.
I would like to thank him for his support and help while simul-
taneously leaving me the freedom to pursue my research.
I would like to thank prof. Davide Bigoni for his help, for encour-
aging me and for the many suggestions that added substantial
value to my research. I am very grateful that they gave me the
opportunity to pursue a PhD in Italy at the University of Trento.

I am also indebted to Claudio Ricci from Sacmi (Imola) for
his great help with the experiments that we performed in the
R&D laboratories of Sacmi. I would also like to thank Dr. Si-
mone Sprio, from CNR-Istec (Faenza), who was so kind to help
me with the specimen preparation for the experiments with ce-
ramic cylinders. Many thanks to Dr. Séverine Romero Baivier
from Vesuvius, who hosted me for my secondment in Belgium
and gave me the possibility to perform the triaxial tests at the
laboratory of Vesuvius.
I want to thank prof. Rebecca Brannon from the University of
Utah, who helped me discussing some of the numerical problems
of this work.

I want to also thank my fellow doctoral students from the
Marie Curie “Cermat2” for the good times we had during the
meetups and conferences that we attended together: Gennaro Vi-
tucci, Domenico Tallarico , Nikolai Gorbushin, Shwetank Pandey,
Mojtaba Biglar. And of course a special thanks goes to my col-
legue in Trento Scot Swan (also from Cermat2) with whom I had
many useful discussions around programming and material mod-
eling.

The project was financed by the FP7-PEOPLE-2013-ITNMarie

iv



Curie ITN transfer of knowledge program (PITN-GA-2013-606878-
CERMAT2). I am very grateful for this financial support as with-
out it, I would not have had the great opportunity to pursue my
PhD in Italy, visit conferences or Summer/Winter schools.

v



Published Material
The content of this thesis is, in parts, published in:

D. Kempen, A. Piccolroaz, D. Bigoni. “Thermomechanical mod-
elling of ceramic pressing and subsequent sintering“ In:Journal of
Mechanical Sciences (submitted)

D. Kempen, A. Piccolroaz, D. Bigoni. “Thermomechanical mod-
elling of powder compaction and ceramic sintering“ Proceedings
of the workshop for young ceramists, 2018, ISBN: 978-88-7586-
599-3

vi



CONTENTS

Contents

1 Introduction 10
1.1 Sintering . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Modelling of ceramic production processes . . . . 11

2 Continuum Mechanics 14
2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Deformation Gradient . . . . . . . . . . . 14
2.1.2 Differential Volume Element . . . . . . . . 15
2.1.3 Differential surface element . . . . . . . . 16

2.2 Strain Measures . . . . . . . . . . . . . . . . . . . 17
2.2.1 Polar decomposition and stretches . . . . . 17
2.2.2 Eigenvalue Problem . . . . . . . . . . . . . 17
2.2.3 Spectral Decomposition . . . . . . . . . . 18
2.2.4 One-dimensional strain measures . . . . . 18
2.2.5 Three-dimensional strains . . . . . . . . . 20

2.3 Stress measures . . . . . . . . . . . . . . . . . . . 21
2.3.1 Cauchy stress tensor . . . . . . . . . . . . 22
2.3.2 Nominal stress . . . . . . . . . . . . . . . 22
2.3.3 Kirchhoff stress . . . . . . . . . . . . . . . 23

2.4 Work-conjugate pairs . . . . . . . . . . . . . . . . 23

3 Thermoinelastic model for the sintering of ceram-
ics 25
3.1 Effective stress for sintering and dissipation . . . 29
3.2 Helmholtz free energy for porosity variation . . . 29

4 Visco-Plasticity 31
4.1 Yield Function . . . . . . . . . . . . . . . . . . . 31

5 Alumina Experiments 33
5.1 Uniaxial compression tests . . . . . . . . . . . . . 33
5.2 Triaxial tests . . . . . . . . . . . . . . . . . . . . 40
5.3 Conclusion of the preliminary experimental study 45

1



CONTENTS

6 Micromechanics for the evolution of yield 46
6.1 Plane strain upper bound for the determination of

the compaction curve . . . . . . . . . . . . . . . . 46
6.2 Cohesive strength under tension . . . . . . . . . . 55
6.3 Strength under shear for the determination of pa-

rameter M . . . . . . . . . . . . . . . . . . . . . . 56
6.3.1 Simplified Contact Area . . . . . . . . . . 56
6.3.2 Three dimensional upper and lower bounds

for circular contacts . . . . . . . . . . . . . 58

7 Influence of Temperature 64
7.1 Temperature evolution . . . . . . . . . . . . . . . 64
7.2 Temperature effect on the yield surface . . . . . . 65
7.3 Grain growth . . . . . . . . . . . . . . . . . . . . 66
7.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . 66

8 Implementation and Validation 68
8.1 List of equations . . . . . . . . . . . . . . . . . . 68
8.2 Implementation of the numerical model . . . . . . 70
8.3 Calibration . . . . . . . . . . . . . . . . . . . . . 74

8.3.1 Calibration of the viscosity parameters . . 74
8.3.2 Calibration of the yield function parameters 75

8.4 Material parameters used for the examples . . . . 78
8.5 Experimental validation . . . . . . . . . . . . . . 80
8.6 Simulation of the forming and sintering of the ce-

ramic plate with different densities . . . . . . . . 83
8.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 89

References 90

2



LIST OF TABLES

List of Tables
1 Material values used for the simulations . . . . . . 79

3



LIST OF FIGURES

List of Figures

1 Transformation of an infinitesimal line element dx
from the reference configuration (left) into the cur-
rent configuration (right). . . . . . . . . . . . . . 15

2 Various strain measures plotted against principal
stretch. . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The machine setup for the pre study. A Mess-
physik Midi 10 Universal Testing Machine. . . . . 34

4 The results of the pre study which shows the steep
increase of stiffness and yield strength for the be-
ginning of sintering. Both graphs show the same
results, the upper one shows the overall results in
one plot, the lower graph shows an extract in big-
ger detail. . . . . . . . . . . . . . . . . . . . . . . 35

5 The cylindrical specimen for the study. The height
is about 58mm and the width about 30mm. . . . 36

6 The stress strain curves for all the performed tests
on the specimen that were unsintered.. . . . . . . 37

7 The stress strain curves for all the performed tests
on the specimen that were sintered at 1100 Degress
Celsius . . . . . . . . . . . . . . . . . . . . . . . . 38

8 The stress strain curves for all the performed tests
on the specimen that were sintered at 1150 Degress
Celsius . . . . . . . . . . . . . . . . . . . . . . . . 39

9 The machine setup for the triaxial Tests. An In-
stron 600DX Universal Testing Machine coupled
with a Hoek Triaxial Cell (600bar) . . . . . . . . 41

10 The results of the performed experiments. Each
point depicts the ultimate limit of the test, while
the error bars show the variation within the same
type of test. . . . . . . . . . . . . . . . . . . . . . 42

4



LIST OF FIGURES

11 The results of the performed experiments. Each
point depicts the elastic limit of the test, while the
error bars show the variation within the same type
of test. As can be seen just a few percent increase
in density increases the strength dramatically. . . 43

12 The results of the performed experiments. The
curves display the fit of the Bigoni-Piccolroaz yield
surface through the experimental values. The fit-
ting has been done with a least-squares type of fit
using Mathematica 11. . . . . . . . . . . . . . . . 44

13 Assuming that the granules behave as rigid-perfectly-
plastic materials, the isostatic compaction curve
can be calculated using the upper bound tech-
nique of limit analysis. A representative volume
element of an idealized 2D granular arrangement
is shown in the figure at various stages of the com-
paction. As the borders of the RVE are displaced
with the velocities vb, the RVE shrinks. A sec-
tion view of the assumed collapse mechanism for a
fourth part of the circular particle, is reported in
the lower line, where the dashed lines sketch the
particle boundaries subject to a displacement rate. 48

14 The FEMmodel of the particle. An initially spher-
ical particle is pressed into a cubic shape by three
analytical contact surfaces (shown as translucent
red surfaces) that move towards the center of the
cell, with imposed displacements. Incompressible
hybrid elements are used together with neo-Hookean
material model for the elastic part, while the plas-
tic behavior is modelled with von-Mises perfect
plasticity. . . . . . . . . . . . . . . . . . . . . . . 52

5



LIST OF FIGURES

15 Comparison between the analytical results obtained
with a two-dimensional application of the upper
bound theorem of limit analysis and a three-dimensional
FE simulation of the unit cell shown in Figure 14. 53

16 Comparison of the Gurson ([26]) and Helle/Fleck
([18, 28]) models with the upper bound analytical
solution, eq. (93), and the three-dimensional FE
simulation of the unit cell shown in Figure 14. . 54

17 An eight part of the symmetric simplified particle
shape . . . . . . . . . . . . . . . . . . . . . . . . . 57

18 An eight part of the symmetric simplified particle
shape, assuming a spherical particle with the tops
cut off, leaving circular contact surfaces. . . . . . 58

19 The internal structure of the collapse mechanism
sketched. . . . . . . . . . . . . . . . . . . . . . . 61

20 The internal structure of the collapse mechanism
is shown. The part that is nod under compres-
sion, but moves by rigid body sliding mechanism
is made transparent. The left one is the modified
collapse mechanism, whereas the right side shows
the junction of three perfect cylinders, which was
the originally assumed mechanism. . . . . . . . . 62

21 The plot shows the upper and lower bound for the
3D model with circular contact surfaces in com-
parison with an FEM simulation and the model of
Fleck/Helle [18, 28]. . . . . . . . . . . . . . . . . . 63

22 Activation energies and the viscosity constants have
been determined with repeated numerical simula-
tions of a dilatometer test, until a good fit has been
found (illustrated in the figure) with experiments. 76

6



LIST OF FIGURES

23 The BP yield surface evolution with respect to the
relative density, for a porcellain stoneware ceramic
(aluminum silicate spray dried powder). The pa-
rameters defining the yield surface are αbp = 1,
m = 4.38,γbp = 0, βbp = 0, σm =150MPa . . . . . 77

24 Upper part: The green body, with zones of differ-
ent height and therefore density, used for sintering
and density measurements. The green was formed
with a tool, which was manufactured with three
different heights. Lower part: sketch of the mold
used to form the green body (not true to scale). . 81

25 Sintering is obtained moving the green through
a continuous oven (Sacmi Forni S.pA. EUP 130)
across different temperature zones, so that the time-
temperature curve shown above is applied. . . . . 82

26 For density measurements an X-Ray scanner from
the Sacmi CONTINUA+ line was used, shown in
the photo. . . . . . . . . . . . . . . . . . . . . . . 82

27 The mesh of the modelled powder in its inital state
before (without mesh) and after pressing, after it is
released from the mold the mold (with mesh). Just
one half the piece was simulated, due to symmetry.
The figure is scaled by 200% in height direction,
to make the contour change more visible. . . . . . 83

28 Density and thickness variation of the green, mea-
sured by an X-ray scan, and compared to the model
prediction through numerical simulation . . . . . 84

29 Density and thickness variation of the ceramic piece
after firing at 1100◦ measured by an X-ray scan,
and compared to the model prediction through nu-
merical simulation . . . . . . . . . . . . . . . . . 85

7



LIST OF FIGURES

30 Density and thickness variation of the ceramic piece
after firing at 1150◦ (bottom) measured by an X-
ray scan, and compared to the model prediction
through numerical simulation . . . . . . . . . . . 85

31 Density and thickness variation of the ceramic piece
after firing at 1200◦ (bottom) measured by an X-
ray scan, and compared to the model prediction
through numerical simulation . . . . . . . . . . . 86

32 The geometry and the density distribution of the
ceramic piece after a simulated process of com-
paction and firing at 1200 ◦ (only one fourth of
the piece was simulated - the result was mirrored
along the two symmetry axis). . . . . . . . . . . . 87

33 The simulation of the formed and fired ceramic
piece (on the left) compared to a photo of the real
ceramic piece, sintered at 1200◦C (on the right,
with the contour marked in blue). The qualitative
trend of the distortion of the boundary is well re-
produced by the simulation, which also correctly
captures also the pronounced shrinkage at the mid-
dle of the ceramic piece. . . . . . . . . . . . . . . 88

8



Abstract
An elastic-visco-plastic thermomechanical model for cold forming
of ceramic powders and subsequent sintering is introduced and
based on micromechanical modelling of the compaction process
of granulates. Micromechanics is shown to yield an upper-bound
estimate to the compaction curve of a granular material, which
compares well with other models and finite element simulations.
The parameters of the thermomechanical model are determined
on the basis of available data and dilatometer experiments. Fi-
nally, after computer implementation, validation of the model is
performed with a specially designed ceramic piece showing zones
of different density. The mechanical model is found to accurately
describe forming and sintering of stoneware ceramics and can
therefore be used to analyze and optimize industrial processes
involving compaction of powders and subsequent firing of the
greens.



1 Introduction

1.1 Sintering

Sintering is a thermal process that is used to bond particles to-
gether, so that they form a solid. This technique is used since
at least 8000 years [35] to form bodies from clay and has under-
gone enormous development since then [24]. One of the main
advantages of sintering is that the powder can be easily put into
shape, and then through firing the strength of the body increases
dramatically. Thus, it is possible to create a body from a high
strength material with rather complex geometries. If one had
to cut, lathe, mill or drill the shape out of solid cube of this
material, much more effort would be required. A main disadvan-
tage of sintering has to do with the very same effect. The body
is initially a powder compact, with lots of void space between
the particles. During the sintering the particles grow together to
form a compact of a higher density, but this means also, that the
body shrinks in dimension. Due to the shrink the final geometry
is not the same as the initial geometry of the powder compact.
It is not easy to predict the shrink beforehand. If the resultant
body is supposed to have certain dimensions, it is not straight-
forward to tell the dimensions of the powder compact. There are
certain strategies to obtain a sintered part in the desired dimen-
sion. One possibility is to machine the part after sintering. This
is the most commonly used method for precision parts as of now.
But a substantial amount of work is required. Also this process
goes hand-in-hand with wear of tooling etc., as sintered bodies
are often made from very hard materials. It would be thus very
desirable to be able to predict the final shape already in advance.
This is called net-shape manufacturing. However, as true net-
shape production is not yet possible one speaks most of the time
of near-net-shape manufacturing.
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1.2 Modelling of ceramic production processes

1.2 Modelling of ceramic production processes

The production of ceramic pieces is based on technologies involv-
ing a massive waste of energy and materials∗, so that environmen-
tal preservation imposes a rationalization of industrial processes
to reduce pollution. The optimization of the production process
is directly linked to the modelling of the mechanical behavior of
powders and binders used during compaction, in the simulation
of cold compaction and subsequent sintering, and in the design
of mechanical characteristics of the final pieces.

Sintering is the common method for completing the process
of ceramic production and involves heating of the green bodies,
obtained in the preceding compaction stage, to obtain the re-
quired density and strength of the final products. Understanding
and modelling the mechanisms involved in the sintering process
is therefore crucial to ensure high quality and reproducibility of
ceramic materials.

In the last 50 years, there have been significant developments
in the theory of sintering but only in the 1980s the use of contin-
uum mechanics was introduced, to predict the stresses and strain
that can develop during the process. A comprehensive review of
the models for sintering proposed in the last 25 years can be found
in [25]. In recent years, meso-scale models have been developed
using multi particle Finite Element (MPFEM) approaches [49]
or discrete element approaches [59]. These models are useful in
the understanding of micro or mesomechanical effects, but due to
the limited particle number it is difficult to model whole complex

∗ Grinding of the raw material requires mills with a power up to 1 MW,
drying and increasing of the temperature of the slip involves up to 500 KW
of electrical power and 15 Gcal/h of thermal power. The 80% of the thermal
capacity is lost at the chimney and powder is spread in the environment.
The forming of the ceramic powders is a huge waste of energy, since only
the 5% of the energy is transmitted to the final piece from the presses (up
to 250 KW of installed power). Finally, drying and sintering requires large
burners consuming up to 10 Gcal/h.
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1.2 Modelling of ceramic production processes

shaped parts, so that continuum models, such as those developed
in [1, 16, 46], play a central role.

Often sintering was studied with reference to isothermal con-
ditions [38, 46], but during the firing the body is subject to non-
isothermal loadings, especially for high heating rates and larger
parts, so that the modelling of this situation is an objective of
the present thesis.

Before sintering, a green body is obtained through powder
compaction and, depending on the geometry and the compaction
method, the pressed green body shows usually significant differ-
ences of local density throughout the part [56]. Therefore, powder
pressing has a strong influence on sintering, which depends on the
(relative) density of the green.

Therefore a continuum model that can predict the density
distribution after the pressing step and the subsequent sintering
would be important for industrial applications. In this research
direction, while cold compaction has been often addressed [13, 17,
18, 39, 48, 52], the combination of pressing and sintering has been
scarcely investigated. In particular, two different models, one for
powder pressing and another for sintering have been proposed
[38], while thermomechanical models for hot-isostatic pressing
of metal powders were developed using a pressure-sensitive and
temperature dependent yield function [20, 41].

The objective of the present thesis is to propose a thermo-
mechanical, elastic-visco-plastic model to simulate cold powder
compaction and subsequent non-isothermal solid state sintering.
The model is grounded on the thermomechanical framework de-
veloped by Simo and Miehe [43, 55] and on the additive decompo-
sition of elastic and plastic logarithmic strains [43, 53]. Moreover,
the BP yield function [7] is used to simulate both compaction
and firing, so that these two process steps become more closely
integrated. With reference to an aluminum silicate spray dried
powder (used for the industrial production of ceramic tiles), the
model is calibrated against ad-hoc performed experiments and

12



1.2 Modelling of ceramic production processes

implemented (through an UMAT routine) in a finite element code
(Abaqus). Finally, validation against an experiment performed
on a large ceramic piece (in which density variations were inten-
tionally introduced) shows that the model provides an accurate
prediction of the entire process of forming and sintering. The
model remains therefore available for the design and optimiza-
tion of ceramic pieces.

13



2 Continuum Mechanics

2.1 Kinematics

For the study of kinematics, we consider a body that has a refer-
ence configuration B0 and a deformed (or current) configuration
B. A single material point within the body in the reference con-
figuration is denoted by x, whereas a material point in the current
configuration is denoted by y. For simplicity we always assume
a cartesian coordinate system. Treatments of the topic of curvi-
linear cartesian systems can be found e.g in [33]. The motion of
the body can be described by a transformation ϕ.

y = ϕ(x) (1)

2.1.1 Deformation Gradient

The deformation gradient F is defined as the gradient of the
transformation ϕ (see [6, 14, 15]) :

F = ∇ϕ(x) = ∇ (x+ u(x)) = I +∇u(x). (2)

It gives a relationship between a material fiber in the current
configuration and in the deformed configuration

dy = F dx. (3)

Relationship 3 can be derived (following [10]) by considering the
line element dx in the deforming solid as pictured in Figure 1.
The undeformed configuration B0 is shown on the left and the
deformed configuration B on the right. The infinitesimally small
line element dy can be expressed as:

dy = x+ dx+ u(x+ dx)− (x+ u(x)) (4)

We can expand u(x+ dx) as a Taylor series:

u(x+ dx) = u(x) +
∂u

∂x
dx+O(x2), (5)

14



2.1 Kinematics

Figure 1: Transformation of an infinitesimal line element dx from
the reference configuration (left) into the current configuration
(right).

and upon insertion of eq.(5) into eq.(4) we gain:

dy = x+ dx+ u(x) +
∂u

∂x
dx+O(x2)− (x+ u(x))

= dx+
∂u

∂x
dx+O(x2) = (I +

∂u

∂x
)dx+O(x2).

(6)

After insertion of eq.(2) into eq.(6) it yields:

dy = F dx+O(x2). (7)

Finally, for infinitesimally small pieces, we can neglect higher
order terms and as a result we gain eq.(3).

2.1.2 Differential Volume Element

If we imagine a parallelepiped volume element in the reference
configuration at point x that has three base vector da, db and
dc, then we can express its volume as:

dV0 = (da× db) · dc. (8)

15



2.1 Kinematics

In the current configuration each of the base vectors is mapped
according to eq. (3). It follows that the volume of the mapped
volume element can be expressed by:

dV = (F da× F db) · F dc. (9)

The ratio of the two volumes in current and reference configura-
tion is equal to the determinant of the deformation gradient (see
[14, 33]):

dV

dV0

=
(F da× F db) · F dc

(da× db) · dc
= detF (10)

The determinant of the deformation gradient is therefore a mea-
sure for volume change of the body and as such an important
quantity for many constitutive models. It is usually denoted by:

J = detF . (11)

2.1.3 Differential surface element

We imagine a differential surface element, that is defined by two
vectors v0 and w0, and by the unit normal vector n0 that is
orthogonal to v0 and w0. Then for the area A0 we can state

dA0n0 = v0 ×w0. (12)

For the area of the transformed surface element in the current
configuration B and taking into account eq. (3) we can state:

dAn = Fv0 × Fw0, (13)

where n is the unit normal vector of the current configuration. It
is possible to factor out F using some algebra (see [6]), to obtain:

Fv0 × Fw0 = (detF )F−T (v0 ×w0). (14)

Finally by taking into consideration eq.(11) and inserting eq.(12)
and eq.(13) into eq.(14), we obtain Nanson’s rule of area trans-
formation (for more on this see e.g. [6, 14, 45])

dAn = JF−Tn0dA0. (15)

16



2.2 Strain Measures

2.2 Strain Measures

2.2.1 Polar decomposition and stretches

According to the spectral decomposition theorem [33] it is possi-
ble to decompose a tensor (with positive determinant), e.g. the
deformation gradient, into an orthogonal tensor R and a sym-
metric, positive definite tensor:

F = RU = V R. (16)

The orthogonal tensor R is called rotation tensor whereas U and
V are called right and left stretch tensors.

2.2.2 Eigenvalue Problem

The eigenvalues λ of a tensor A are defined as the solutions of:

Aa = λa, ∀a 6= 0. (17)

By mapping the eigenvalue problem of eq. (17) several times by
A, we obtain:

Aka = λka, k = 1, 2, ... (18)

This leads to the spectral mapping theorem (more on this can be
found in [33]), that allows us to define for the polynomial function
g(A) =

∑m
k=0 akA

k (using 18):

g(A)a =
m∑
k=0

akA
ka =

m∑
k=0

akλ
ka = g(λ)a, (19)

so that g(λ) =
∑m

k=0 akλ
k is the eigenvalue of g(A).

17



2.2 Strain Measures

2.2.3 Spectral Decomposition

The spectral decomposition of a second order tensor A is given
by (see [33]):

A =
s∑
i=1

λi

ri∑
k=1

a
(k)
i ⊗ b

(k)
i =

s∑
i=1

λiPi, (20)

where Pi is called eigenprojection tensor, and is generally com-
plex. The vectors a and b are eigenvectors.The spectral repre-
sentation (the right hand side of eq. 20) is often used to calculate
tensor powers:

exp(A) =
s∑
i=1

exp(λi)Pi, (21)

which is well-suited for finite-strain plasticity algorithms [5, 14].
The sum of the eigenprojection tensors over all three dimensions
gives unity (see [33]):

3∑
i=1

Pi = I (22)

2.2.4 One-dimensional strain measures

The length variation in the reference configuration dL can be
given by [4]:

dL =
√
dx · dx (23)

and the length variation dl in the current configuration can be
given by:

dl =
√
dy · dy. (24)

The length ratio or also called stretch for a one-dimensional prob-
lem can be given by:

λ =
dl

dL
=

√
dy · dy√
dx · dx

. (25)

18



2.2 Strain Measures

The strain measure for the small-strain theory is given by:

dl − dL
dL

= λ− 1, (26)

where the case of no deformation corresponds to a strain measure
of zero. It is possible to think of other types of strain measures.
However, it is desirable that the strain measure remains zero at
zero deformation and is compatible with the small-strain theory.
We imagine a strain measure ε as a function of the stretch λ:

ε = f(λ). (27)

A Taylor expansion of eq.(27) around λ = 1 gives:

f(λ) = f(1)+
df

dλ
(1)(λ−1)+

1

2

d2f

dλ2
(1)(λ−1)2+O((λ−1)3) (28)

If we think of a small-strain case, the terms of higher order would
vanish, so we want our strain measure to be equal to the first-
order term (λ−1), for small-strains. Also, it should rise monoton-
ically, with increasing strain and be zero for unstrained (λ = 1)
states, so it should respect the following conditions:

f(1) = 0;
df

dλ
(1) = 1;

df

dλ
> 0 ∀λ > 0. (29)

There are unlimited solutions to the problem and many different
types of strain measures are used in continuum mechanics. Some
of the more popular ones are:

Nominal Strain: f(λ) = λ− 1

Green’s strain: f(λ) =
1

2
(λ2 − 1)

Logarithmic Strain: f(λ) = ln(λ),

(30)

which are plotted in Figure 2, for comparison. The logarithmic
strain is popular for computational plasticty and many commer-
cial FEM solvers, e.g. Abaqus use it for large-strain plasticity.
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2.2 Strain Measures
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Figure 2: Various strain measures plotted against principal
stretch.

2.2.5 Three-dimensional strains

For the three dimensional case, the solutions of chapter 2.2.4 can
be generalized using the concept of the spectral decomposition
from chapter 2.2.3. As a tensor can be expressed as the product
of its eigenvalues times the projection tensors it is possible to
write a strain measure ε as:

ε =
3∑
i=1

λiPi =
3∑
i=1

λiai ⊗ bi, (31)

If we restrict ourselfs to orthonormal bases (which is the case
for carthesian coordinate systems), the eigenvectors become the
principal direction of the coordinate system. For a system in the
current configuration we denote the eigenvectors by Ni and for
the reference configuration by ni. For the same choice of f(λ)
we can now define a famly of strains in the current configuration
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2.3 Stress measures

(denoted by E)

E(0) =
3∑
i=1

ln(λi)Ni ⊗Ni. Logarithmic/Hencky strain

E(1) =
3∑
i=1

(λi − 1)Ni ⊗Ni. Biot/Nominal strain

E(2) =
3∑
i=1

1

2
(λ2

i − 1)Ni ⊗Ni Green-Lagrange strain,

(32)

where the upper index in parenthesis is just and index and not
an exponent. It is not always convenient to calculate the strains
with the above formulas, as the calculation of the eigenvalues is
required. Instead, the strains are often times calculated by using
the deformation gradient, or the stretch tensors (see eq. (16)).
Using the definition of the right stretch tensor ([45]):

U =
3∑
i=1

λiNi ⊗Ni (33)

and eq.(22) one can express the strain measure from eq. (32) as:

E(0) = ln(U) Logarithmic/Hencky strain

E(1) = U − I Biot/Nominal strain

E(2) =
1

2
(U 2 − I) Green-Lagrange strain,

(34)

2.3 Stress measures

For nonlinear problems, such as finite-strain plasticity, various
stress measures can be defined. In the following the most impor-
tant ones for problems in plasticity are considered.
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2.3 Stress measures

2.3.1 Cauchy stress tensor

If a surface load with resultant force ∆F acts on a limited surface
∆S of a body, with unit outward normal n, the so-called traction
vector t is defined as the limit of force over area [34]:

tn = lim
∆S→0

∆F

∆S
. (35)

The so-called Cauchy stress tensor (denoted by σc) is defined as
a second-order tensor that maps the stress components linearly
onto the Cauchy stress vector:

tn = σc · n. (36)

the Cauchy stress tensor is often called true stress and is a mea-
sure for stress in the current configuration.

2.3.2 Nominal stress

If a uniaxial force F is applied to a body, with a constant cross
section A0 (e.g. a cylinder), the nominal stress is given by:

P =
F

A0

, (37)

which is the stress with respect to the reference configuration.
The stress in the current configuration, called Cauchy stress is
given by:

σc =
F

A
. (38)

To generalize the concept of the nominal stress to three-dimensional
stress states we can use Nanson’s formula (eq. (15)) multiply
both sides with the Cauchy stress vector σTc · n and obtain:

tdA = σTc · ndA = σTc JF
−Tn0dA0. (39)

By comparing the equation one realizes that the factor σTc JF−T
on the right maps the Cauchy stress in the current configuration
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2.4 Work-conjugate pairs

to the reference configuration. This factor is called first Piola-
Kirchhoff stress and denoted by P :

P = JσTc F
−T , (40)

whereas its transpose P T is the nominal stress for three-dimensional
problems:

P T = JF−1 · σc. (41)

2.3.3 Kirchhoff stress

The Kirchhoff stress K is defined by:

K = Jσc. (42)

The Kirchhoff stress is very similar to the Cauchy stress, the dif-
ference being that it is scaled by the determinant of the Jacobian
J . This is why it is also called the weighted Cauchy stress.

2.4 Work-conjugate pairs

For the solution of problems of continuum mechanics over com-
plex domains, the finite element method is a popular tool. The
finite element method is used to solve the weak integral form.
The theorem of virtual power is the weak form of the cauchy
equation of motion and is the central equation for the solution
of continuum mechanics problems. The equation includes an in-
tegral of the “stress-power” over the domain. The stress power
or also called internal energy rate is the amount of energy that
is transmitted to a unit volume element in terms of strain and
stress [5]. It is possible to select different measure of stress and
strains, but one needs to consider that the weak form of the
integral is only valid, if the product of stress and strain gives
indeed the stress-power. Pairs of strain and stresses that yield
the stress-power for all possible paths of infinitesimal (virtual-)
work are called work conjugate (the concept was introduced for
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2.4 Work-conjugate pairs

continuum mechanics by R. Hill [29]). The stress power, over an
infinitesimal volume element dv in current configuration and dV
in reference configuration is given by:∫

Pt

σc : D(v) dv =

∫
P0

(Jσc) : D(v) dV, (43)

whereD is the Eulerian strain rate, P0 being a generic part of the
body in the reference configuration and Pt the corresponding part
in the current configuration. So the definition of work-conjugate
stress and strain pairs is, that their scalar product is equal to
σc : D(v). Work-conjugate are the strains and stresses of the
Seth-Hill family (more information on this can be found in [45]).

For the development of numerical plasticty models, which is
the underlying aim of this thesis’ research topic, usually the log-
arithmic strain measure is preferred. The work-conjugate to the
logarithmic strain is the Kirchhoff stress, but only if the material
is isotropic [29]. It is of importance as most simulation software
(e.g. Abaqus) uses this measure for its internal calculations.
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3 Thermoinelastic model for the sinter-
ing of ceramics

With the purpose of introducing a model for sintering of green
ceramics, the large deformation of a thermo-elastic-visco-plastic
solid is considered, described by the deformation gradient F , the
right and left Cauchy-Green tensors

C = F TF , B = FF T , (44)

(where the superscript T denotes the transpose) and the corre-
sponding Lagrangian and Eulerian logarithmic strains

ε =
1

2
logC, G(0) =

1

2
logB. (45)

A key assumption is the additive decomposition of logarithmic
strain into an elastic (subscript ‘e’) and a visco-plastic (subscript
‘p’) component proposed by Miehe et al. [43] and Sansour and
Wagner [53] as

ε = εe + εp. (46)

The Helmholtz free-energy ψ(εe, T, ρ̂) is introduced as a func-
tion of (i.) the elastic part of the logarithmic strain, (ii.) the
temperature T , and (iii.) the inelastic relative density of the
material ρ̂, which is the only internal variable introduced in the
treatment, defined as

ρ̂ =
ρ0

ρfd
e− tr εp , (47)

and representing a dimensionless measure of the mass density
upon unloading. In Eq. (47) ρ0 is the initial value of the mass
density ρ, and ρfd the value corresponding to the fully dense
material, which contains no pores.

Definition (47) may be better appreciated by writing the rate
of mass conservation

ρ̇

ρ
= − tr ε̇, (48)

25



which can be integrated in time to provide the expression

log
ρ

ρ0

= − tr ε. (49)

From eq. (49) the rate of mass density can be calculated to
be

ρ̇

ρfd
= [−ρ̂ tr ε̇e + (ρ̂)·] e− tr εe , (50)

where
(ρ̂)· = −ρ̂ tr ε̇p, (51)

an equation which will become useful later.
Note also that the mass density is related to the porosity f

(the ratio between the volume of the voids and the total volume
of a sample) of the material through the equation

ρ

ρfd
= 1− f. (52)

Eq. (52) can be understood considering the deformation gradient
Ffd and its determinant Jfd needed to bring the current volume
element V to the volume of the fully dense material Vfd. In this
deformation, the volume and the density transform according to
the well-known rules Vfd = JfdV and ρ = Jfdρfd, respectively, so
that eq. (52) is obtained, because by definition f = 1− Vfd/V .

The so-called elastoplastic coupling (in which the plastic strain
influences the elastic stiffness, [2, 21, 57]) is not introduced in the
model and the elastic part of the deformation (not particularly
important during sintering) will be eventually treated with the
standard linear isotropic thermoelastic law [15]. Therefore, the
stress σ, work-conjugate in the Hill sense to the Lagrangian log-
arithmic strain, the thermodynamical force R associated to the
internal variable ρ̂, and the entropy η can be expressed as

σ = ρ
∂ψ(εe, T, ρ̂)

∂εe
, R = −ρ∂ψ(εe, T, ρ̂)

∂ρ̂
, η = −∂ψ(εe, T, ρ̂)

∂T
.

(53)
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For simplicity, an additive form of the Helmholtz free energy
is assumed, sum of the elastic and the purely thermal energies,
plus a ‘pore energy’

ψ(εe, T, ρ̂) = ψe(εe, T ) + ψT (T ) + ψpore(ρ̂), (54)

where

ψT (T ) = −chT log
T

T0

+ ch(T − T0)− η0(T − T0) + ψ0, (55)

in which T0 is the absolute temperature corresponding to the
unstressed material when ε = 0; moreover, η0 and ψ0 are the
values of entropy η and free energy at T = T0 and ε = 0; finally

ch = −T ∂
2ψ(εe, T, ρ̂)

∂T 2
, (56)

is the specific heat at constant values of strain and internal vari-
ables.

The density, together with the (visco-)plastic strain εp are in-
ternal variables of the system. The external variables are the total
strain ε and the temperature T . To follow the theory of thermo-
dynamics of irreversible processes, the Clausius-Duhem dissipa-
tion inequality has to be fulfilled at all times [15, 42], namely

− ρ
(
ψ̇ + ηṪ

)
+ σ · ε̇− 1

T
q · ∇T ≥ 0. (57)

The rate in time of the Helmholtz free energy ψ, eq. (54), can be
expressed in terms of its state variables:

ψ̇ =
∂ψe
∂εe

ε̇e +
∂ψT
∂T

Ṫ +
∂ψpore
∂ρ̂

(ρ̂)·. (58)

The additive decomposition of the strain into an elastic and a
(visco-)plastic part, eq.(46), can be inserted into eq.(58) and the
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result substituted into eq.(57) to yield

−
(
ρ
∂ψT
∂T

+ ρη

)
Ṫ − 1

T
q · ∇T︸ ︷︷ ︸

thermal dissipation

+

(
−ρ∂ψe

∂εe
+ σ

)
· ε̇e︸ ︷︷ ︸

elastic dissipation

+

(
ρ ρ̂

∂ψpore
∂ρ̂

I + σ

)
· ε̇p︸ ︷︷ ︸

(visco−)plastic dissipation

≥ 0.

(59)

Setting the thermal dissipation to be independent of Ṫ yields
equation (53)3, while imposing the vanishing of the elastic dissi-
pation for every ε̇e in eq. (59) provides equation (53)1, so that
using the following simple expression for the potential (borrowed
from the linear theory) of the elastic part of the free energy den-
sity,

ρψe =
1

2
λ (tr εe)

2 + µεe · εe −Kb α0 (T − T0) tr εe, (60)

the stress is given by the usual isotropic thermoelastic relation

σ = C[εe]−Kbα0 (T − T0) I, (61)

where Kb is the elastic bulk modulus, α0 is the thermal expan-
sion coefficient, T0 a reference temperature, and the fourth-order
elasticity tensor C is

C = λ I ⊗ I + 2µS, (62)

in which S is the fourth-order symmetrizer and λ and µ are the
Lamé elastic moduli.

Eq. (62) represents a strong assumption, which is justified
in the present context, because the elastic strain and rotation
are usually small during thermoplastic pressing and sintering of
ceramics.

As a conclusion, the dissipation inequality eq. (59) reduces
to

− 1

T
q · ∇T +

(
ρ ρ̂

∂ψpore
∂ρ̂

I + σ

)
· ε̇p ≥ 0. (63)
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3.1 Effective stress for sintering and dissipation

3.1 Effective stress for sintering and dissipa-
tion

An inspection of eq. (63) and consideration of eq. (53)2 reveals
that the thermodynamic dual force to the plastic strain rate is
not the stress, but an effective stress defined as [20, 41]

σ̂ = σ − σsI, (64)

where
σs = ρ̂R = −ρ̂ρ∂ψ

∂ρ̂
(65)

is the so-called ‘sintering stress’ (also known as ‘Laplace pressure’
[22]). Eventually, the dissipation inequality, eq. (63), can be
rewritten as

− 1

T
q · ∇T + σ̂ · ε̇p ≥ 0, (66)

which highlights the fact that the inequality is always a-priori
satisfied, when the Fourier law of heat conduction is assumed

q = −k∇T, (67)

(in which k > 0 is the thermal conductivity), together with the
normality rule for ε̇p and convexity of the yield function, both in
the σ̂-space.

3.2 Helmholtz free energy for porosity varia-
tion

Following [41], the Helmholtz free energy related to the porosity,
ψpore, can be assumed to be a linear function of the surface tension
γs relative to the area of the pore Apore(ρ̂) as follows

ψpore =
γsApore(ρ̂)

ρV
=
γsApore(ρ̂)

ρfdVsolid
. (68)
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3.2 Helmholtz free energy for porosity variation

Assuming spherical pores of radius r in a cubic unit cell, it follows
that Apore = 4πr2 and assuming incompressibility of the solid
phase of volume Vsolid, r can be expressed as

r =

(
Vsolid

3(1− ρ̂)

4πρ̂

)1/3

, (69)

so that the pore potential, eq. (68), becomes

ψpore =
γs

ρfdV
1/3
solid

4π

(
3(1− ρ̂)

4πρ̂

)2/3

. (70)

Finally, a derivative of eq. (70) with respect to ρ̂ yields the
sintering stress as

σs =
8π

3

(
3

4π

) 2
3

︸ ︷︷ ︸
≈3.224

γs

V
1/3
solid

(
ρ̂

1− ρ̂

)1/3

, (71)

where V 1/3
solid can be regarded as a length scale, equal to the particle

diameter.
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4 Visco-Plasticity
The existence of a yield function is assumed. This function de-
pends on the effective stress σ̂, which is the thermodynamic dual
of the plastic strain rate, and on the internal variable ρ̂

F = F(σ̂, ρ̂, T ). (72)

The associative flow rule is assumed [15, 40] involving the non-
negative plastic multiplier λ̇

ε̇p = λ̇Q, (73)

where the unit yield function gradient is

Q =
∂F(σ̂,ρ̂,T )

∂σ̂∥∥∥∂F(σ̂,ρ̂,T )
∂σ̂

∥∥∥ . (74)

For rate-dependent problems the coefficient λ̇ can be replaced
with an overstress function, as described in [47]. A possible choice
for the overstress function is the yield function divided by the
viscosity (ηv). The expression for the strain rate becomes:

ε̇p =
1

ηv
〈F〉Q. (75)

4.1 Yield Function

The Bigoni-Piccolroaz yield function [7] is defined by seven pa-
rameters and displays the necessary flexibility to describe a wide
range of material behaviors and, in particular, can excellently
fit the material behavior during the different states of sintering.
The material undergoes a large variety of states from the begin-
ning as a fluid-like powder, to the intermediate state as a plastic
body, up to the end state as a brittle solid. This is why the large
flexibility of the function is needed to describe the full range of
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4.1 Yield Function

the process. Therefore, the sintering process can be simulated
from the beginning, when the material is in a granular form, and
then during the firing up to the finished ceramic piece. The yield
function is described by

F(σ,M, pc, c, αbp,Θc, γbp, βbp) = F (p,M, pc, c, αbp)+q g(Θc, γbp, βbp),
(76)

where

p = − trσ/3 q =

√
3

2
dev(σ) · dev(σ) (77)

(dev denotes the deviator part) and

F (p,M, pc, c, αbp) = −Mpc

√
[Φbp − (Φbp)m][2(1− αbp)Φbp + αbp],

Φbp =
p+ c

pc + c
,

g(Θc, βbp, γbp) = cos

[
βbp

π

6
− 1

3
cos−1(γbpcos(3Θc))

]
,

(78)
in which the Lode angle Θc is defined as

Θc =
1

3
cos−1

(
9 tr(devσ)3

2 q3

)
. (79)

Parameters αbp and m can be used to adjust the yield func-
tion to materials with internal friction. Parameters βbp and γbp
determine the shape of the yield surface in the deviatoric plane,
so that for both simplicity and lack of experimental data they
are set to be zero, which means that Lode angle dependence is
excluded (note that for triaxial compression the Lode angle Θc is
equal to π/3, while it is zero for triaxial extension). The cohesion
c is the hydrostatic yield strength in extension whereas pc is the
yield strength in hydrostatic compression.
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5 Alumina Experiments

5.1 Uniaxial compression tests

A pilot experimental study was performed to study the yield
points of partially sintered ceramics.
In order to model the plastic behavior of the material it is es-
sential to know the point at which the the material plastically
deforms, the yield stress.
For this study, cylindrical specimen were pressed, to a density of
about 60 % with a pressure of 60MPa.
These specimens were sintered at different isothermal tempera-
tures for one hour.
A higher sintering temperature results in a denser compact and
so the specimen have different relative densities.
The sintered specimen were tested with a universal testing ma-
chine under uniaxial compression. The setup is shown in figure
3. The testing was performed on a machine from Messphysik, in
the solid mechanics laboratory of the University of Trento.
It was found that the strength increase is very steep for the be-
ginning of the sintering at which the relative density changes just
slightly.
Thus, it can be assumed that other factors than just the density
determine the strength.
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5.1 Uniaxial compression tests

Figure 3: The machine setup for the pre study. A Messphysik
Midi 10 Universal Testing Machine.
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5.1 Uniaxial compression tests
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Figure 4: The results of the pre study which shows the steep
increase of stiffness and yield strength for the beginning of sin-
tering. Both graphs show the same results, the upper one shows
the overall results in one plot, the lower graph shows an extract
in bigger detail.
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5.1 Uniaxial compression tests

Figure 5: The cylindrical specimen for the study. The height is
about 58mm and the width about 30mm.
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5.1 Uniaxial compression tests
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Figure 6: The stress strain curves for all the performed tests on
the specimen that were unsintered..
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5.1 Uniaxial compression tests
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Figure 7: The stress strain curves for all the performed tests on
the specimen that were sintered at 1100 Degress Celsius
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5.1 Uniaxial compression tests
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Figure 8: The stress strain curves for all the performed tests on
the specimen that were sintered at 1150 Degress Celsius
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5.2 Triaxial tests

5.2 Triaxial tests

For the triaxial Tests, the specimen were manufactured in the
same way as for the pre study. The specimen were subjected to
two different sintering temperatures and one comparative study
was performed on the green bodies. The bodies were heated
up with 3◦C/min and then held at isothermal temperature of
1100◦C and 115◦C for one hour.

The test results are depicted in figures 10-12. From the fit-
ted curves it can be seen, that we can achieve a fairly good fit
by changing only the parameters M , pc and c, which assumes
isotropy.
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5.2 Triaxial tests

Figure 9: The machine setup for the triaxial Tests. An Instron
600DX Universal Testing Machine coupled with a Hoek Triaxial
Cell (600bar)
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5.2 Triaxial tests
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Figure 10: The results of the performed experiments. Each point
depicts the ultimate limit of the test, while the error bars show
the variation within the same type of test.
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5.2 Triaxial tests
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Figure 11: The results of the performed experiments. Each point
depicts the elastic limit of the test, while the error bars show the
variation within the same type of test. As can be seen just a few
percent increase in density increases the strength dramatically.
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5.2 Triaxial tests
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Figure 12: The results of the performed experiments. The curves
display the fit of the Bigoni-Piccolroaz yield surface through the
experimental values. The fitting has been done with a least-
squares type of fit using Mathematica 11.

44



5.3 Conclusion of the preliminary experimental study

5.3 Conclusion of the preliminary experimen-
tal study

The experiments with alumina material have shown, that in gen-
eral, it is possible to fit the Bigoni-Piccolroaz yield function to
experimentally obtained values for ceramic material (see Figure
12). However, the range of densities that can be considered is
very small. The main reason is that with standard triaxial test
machines, the applicable confining pressures are too low. An-
other problem is that triaxial tests with standard apparatus can-
not be conducted at high temperatures, becasue the pressures
are applied with hydraulic oil, which is flammable. It is therefore
necessary, to apply other means. In the next chapter, a microme-
chanical model is introduced to circumvent the need for triaxial
experimental values.
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6 Micromechanics for the evolution of
yield

To model the compaction behavior of a green body during the
sintering process, the following micromechanic assumptions are
introduced, which allows for the determination of the hardening
parameters pc, c, and M (dictating the shape of the yield func-
tion), as functions of the internal variable ρ̂. It should be noted
that the determination of the evolution of parameter pc with the
inelastic density ρ̂ is equivalent to the determination of the theo-
retical compaction curve for a granulate material. This material
is assumed to consist of elastic perfectly plastic particles, ideal-
ized as cylinders in a two-dimensional approximation and obeying
the Tresca yield criterion, that are equal in size and ordered in
a centered cubic geometry, a disposition maintained fixed during
sintering. The results of the two-dimensional approach is then
tested against numerical simulations for a cubic disposition of
perfectly-plastic spherical particles, obeying the von Mises cri-
terion. The particles thus yield all simultaneously. In oder to
predict the collapse load for this ensemble of particles it is then
possible to use a limit analysis technique (see [11]).

6.1 Plane strain upper bound for the determi-
nation of the compaction curve

A plane strain problem is considered, so that the particles are
assumed in the form of circular cylinders, a geometry which may
seem unrealistic, but has been proven to yield quite reasonable
results [2, 18]. Employing the upper bound theorem [11], a col-
lapse mechanism has to be assumed, which, even if it does not
correspond to reality, provides a simple evaluation of the dis-
sipation that occurs within the body. Because the problem is
reduced to two-dimensions, the particles are treated as planar
figures, initially circular and later deforming and developing con-
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6.1 Plane strain upper bound for the determination of the
compaction curve

tacts through lines.
A collapse kinematics is assumed, in which rigid parts are sub-

ject to a pure rigid-body translation, while deformable parts are
subject to a pure compressive strain, so that the latter (denoted
by |ε| in Figure 13) are located on the surface of the particle in
contact with the neighboring particles and the former are local-
ized at the circular corners. The plastic mechanism has two axes
of symmetry (vertical and horizontal) so that only a quarter of
the particle is sketched and the two deformational parts suffer
the same strain and dissipate the same power.

The plastic dissipation is generated by the strain rate pro-
duced under uniaxial stress in two equally deforming blocks (de-
noted by |ε| in Figure 13) and their sliding against a square rigid
block located at the center of the particle and other two rigid
block with the shape of a quarter of circle.

For an equibiaxial (vertical and horizontal) compression load
P , which simulates mechanical compaction, the ‘external’ rate of
energy dissipation Ẇ can be written as

Ẇ = 2Pvb, (80)

where vb is the velocity of the boundary in contact with the neigh-
boring particles.

The rate of internal power (denoted by D) is the sum of three
dissipation sources, Dcomp, Dslb, and Dtr, all related to the defor-
mation of the blocks denoted with with the label |ε| in Figure 13.
These blocks are subject to a linear velocity field preserving in-
compressibility, so that, assuming a x1-x2 reference system, with
x2 parallel to vb

v1 =
vl
a
x1, v2 =

vb
h
x2, (81)

where incompressibility requires vba = −vlh. Therefore, the three
sources of dissipation rate can be calculated as follows.

• Internal dissipation due to the strain rate of the rectangular

47



6.1 Plane strain upper bound for the determination of the
compaction curve

|ε|
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vb
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a h
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a hh=R0

|ε|

a

Figure 13: Assuming that the granules behave as rigid-perfectly-
plastic materials, the isostatic compaction curve can be calcu-
lated using the upper bound technique of limit analysis. A rep-
resentative volume element of an idealized 2D granular arrange-
ment is shown in the figure at various stages of the compaction.
As the borders of the RVE are displaced with the velocities vb,
the RVE shrinks. A section view of the assumed collapse mecha-
nism for a fourth part of the circular particle, is reported in the
lower line, where the dashed lines sketch the particle boundaries
subject to a displacement rate.
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6.1 Plane strain upper bound for the determination of the
compaction curve

blocks |ε|
Dcomp = 4kvba, (82)

where k is the limit yield under shear (equal to 1/2 of the
limit stress under uniaxial stress).

• Dissipation due to the sliding of the blocks |ε| against the
rigid square block at the center of the particle and against
the quarter of circle rigid element

Dslb = 2k

(∫ a

0

vl s ds+

∫ h

0

vb s ds

)
= vlak + vbhk. (83)

• Dissipation due to rigid translation of the quarter of circle
rigid element with sliding against one of the blocks |ε|

Dtr = 2vlhk, (84)

so that the internal expended power can be written as

D = kvb
(
6a+ a2/h+ h

)
. (85)

Eventually the limit load P can be expressed as a function of
the current geometry as

P = k

(
3a+

1

2

a2

h
+

1

2
h

)
, (86)

corresponding to the limit pressure that the particle characterized
by the dimensions a and h can sustain.

The width of the compressed part a and its height h can be ex-
pressed as functions of the relative density and the current radius
R of the unit cell, so that, keeping into account incompressibility,
the following expression is found

ρ̂ =
A0

AUC
=

2ha+ a2 + 1
4
πh2

R2

=
2h(R− h) + (R− a)2 + 1

4
πh2

R2
,

(87)
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compaction curve

where AUC denotes the area of the unit cell containing the particle
of area A0. An expression for R can also be found using the
incompressibility, and thus the fact that the initial area of the
two-dimensional particle remains constant:

ρ̂ =
1
4
πR2

0

R2
, ⇒ R =

R0

2

√
π

ρ̂
. (88)

Equation (87) can be solved for h, so that using eq. (88) yields

h =

√
πR2

0(1− ρ̂)

ρ̂(4− π)
(89)

and therefore the contact length a results as

a = R− h. (90)

The hydrostatic yield stress pc is given by the force per unit
length P divided by R, so that the following representation of
the compaction curve is obtained:

pc = k

√
π
(
−8 + (12 + π − 16ρ̂)

√
ρ̂−1
π−4

+ 8ρ̂
)

8ρ̂(ρ̂− 1)
(91)

Eq. (91) describing the compaction curve of a granular material
is depicted in Figure 15.

Formally, Eq. (91) merely represents an upper bounds calcu-
lated for a plane strain situation, which may be believed to be far
from reality, so that an assessment of the compaction curve is pro-
vided through comparison to a Finite Element simulation involv-
ing a three-dimensional distribution of spherical particles. The
simulation was performed with initially perfectly-plastic spheri-
cal particles, ordered in a simple cubic geometry. Initially the
contact is through a point, but due to the deformation the con-
tact boundary becomes circular. This periodic particle arrange-
ment can be modelled using only an eighths of a sphere, due to
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6.1 Plane strain upper bound for the determination of the
compaction curve

symmetry. A FEM model was built in Abaqus 6.13, where dis-
placement was imposed through analytical rigid body elements,
sketched as colored planes in Figure 14, where a unit cell contain-
ing a deformed particle is shown. The material obeys von Mises
plasticity, together with a neo-Hookean description for the elastic
part, with high stiffness of 100000MPa, to approximate the rigid-
plastic limit. It can be seen that for lower densities (about 0.8
and less) the solution of the limit analysis is remarkably different
from the numerical solution of the 3D problem, which is a direct
consequence of the fact that the initial density for the 2D prob-
lem is different than that pertinent to the 3D arrangement. In
fact the relative density in plane strain is about 78%, while this
density decreases to about 52%, when all particles are spherical.
Moreover, the density of a typical ceramic powder (as that later
used for experiments, section 8.5) has an initial density of about
38%. A very simple way for correcting the discrepancy between
the plane strain upper buond estimate and the values typical of
ceramic powders is to introduce a correction factor ζ multiplying
h, so that the initial value of pc becomes correct even for initial
densities of 38% and therefore

hmod = ζ R0

√
π(1− ρ̂)

ρ̂(4− π)
, (92)

where ζ = 2.7 will provide the best fit to the material considered
in the experiments. A substitution of eq. (92) into eq. (80) yields
an analytical expression the compaction behaviour

pc(ρ̂, σm) = σm
−530 + (619 + 25π − 719ρ̂)

√
ρ̂−1
π−4

+ 530ρ̂

210
√

3(ρ̂− 1)
. (93)

where σm = k
√

3 is the uniaxial stress for yielding. Note that
eq. (93) provides an analytical description for the compaction
curve of a granulate, which will be referred as the ‘modified limit
analysis solution’.
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Figure 14: The FEM model of the particle. An initially spherical
particle is pressed into a cubic shape by three analytical contact
surfaces (shown as translucent red surfaces) that move towards
the center of the cell, with imposed displacements. Incompress-
ible hybrid elements are used together with neo-Hookean material
model for the elastic part, while the plastic behavior is modelled
with von-Mises perfect plasticity.
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Figure 15: Comparison between the analytical results obtained
with a two-dimensional application of the upper bound theorem
of limit analysis and a three-dimensional FE simulation of the
unit cell shown in Figure 14.

53



6.1 Plane strain upper bound for the determination of the
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Figure 16: Comparison of the Gurson ([26]) and Helle/Fleck ([18,
28]) models with the upper bound analytical solution, eq. (93),
and the three-dimensional FE simulation of the unit cell shown
in Figure 14.
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6.2 Cohesive strength under tension

A comparison is presented in Figure 16 of the Gurson [26]
and Helle/Fleck [18, 28] models with the previously-described
FE simulation of a three-dimensional unit cell (see Fig. 14). The
modified limit analysis solution for the 2D model is also included
and it can be noted that this solution lies below the curves corre-
sponding to the Gurson and Helle/Fleck models, at high porosity.
It needs to be mentioned that the Gurson model was originally
developed for materials with high porosity, where there is a nice
comparison with the modified upper bound solution and the nu-
merical simulation, whereas the model presented by Helle [28]
(and used also by Fleck [18]) was intended for cases of low porosi-
ties, where, again, a good fit is found with the modified upper
bound and the numerical simulation.

6.2 Cohesive strength under tension

The values for pc (under compressive load) have been determined
as a function of the relative density. The cohesion strength c can
be evaluated as a function of the internal variable ρ̂ from the
following simple micromechanical model. Simulations performed
with the unit cell sketched in a deformed state in Fig. 14 show
that the contact area between initially spherical grains in a cubic
geometry is a complex function of the applied pressure, so that
an initially circular contact area evolves towards a square contact
shape. Therefore, the estimation of the contact areas between
grains in a real powder distribution is awkward. Nevertheless,
following [28], the following approximation for the contact area
Ac between grains is

Ac =
4π

12

ρ̂− ρ̂0

1− ρ̂0

, (94)

so that the stress needed to produce yielding under hydrostatic
tension (which is the definition of the cohesion c) is given by the
elementary formula

c = σmAc, (95)
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6.3 Strength under shear for the determination of parameter M

where σm is the yielding stress in uniaxial tension of the grains.

6.3 Strength under shear for the determination
of parameter M

Using again relation (94), the parameter M can be expressed as
a function of the internal variable ρ̂. In particular, it is assumed
that at failure under pure shear (p = 0 so that σ = devσ) the
deviatoric component of the stress tensor becomes, according to
the von Mises criterion, σm

3
Ac, so that the stress invariant q at

failure (denoted by qs) reduces to σmAc. Assuming additionally
β = γ = 0 one can resolve the main equation of the BP yield
function eq. (78) to obtain an expression for the parameter M :

M =

√
3σmAc

pc 2
√

[ c
pc+c
− ( c

pc+c
)m][2(1− αbp)( c

pc+c
) + αbp]

. (96)

6.3.1 Simplified Contact Area

The real particle shape during compression is relatively complex.
It can be simplified by assuming a particle that is symmetric with
respect to the three principal planes, and has quadratic contact
surfaces, as shown in Figure 17. Due to the symmetry it is enough
to regard an eight of the particle, and we denote the height of
the bounding box with R, the side length of the contact surface
with a. The contact surface Ac is then simply:

Ac = a2. (97)

The side length a is a function of the relative density. The func-
tion can be found by assuming incompressibility of the particle,
then the volume of the particle Vp is constant while the relative
density is given by the Volume of the particle divided by the
volume of the unit cell:

ρrel =
Vp
R3
. (98)
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Figure 17: An eight part of the symmetric simplified particle
shape

The volume of the particle is constant and equal to π
6
R3

0 but can
also be expressed as:

Vp = a3 + 3ha2 +
3

4
πha+

1

8

4

3
πh3 =

π

6
R3

0, (99)

where h is given by:
h = R− a. (100)

It is now possible to solve eq. (99) for a. This can be inserted
into eq. (97) to yield an expression for the contact area.

57



6.3 Strength under shear for the determination of parameter M

Figure 18: An eight part of the symmetric simplified particle
shape, assuming a spherical particle with the tops cut off, leaving
circular contact surfaces.

6.3.2 Three dimensional upper and lower bounds for
circular contacts

Assuming a simplified particle shape as shown in Figure 18, it
is possible to derive upper bounds for a three-dimensional struc-
ture. As we assume incompressibility the volume of the particle
is constant for the whole process. The density can be given at
any moment by dividing the volume of the particle through the
volume of the bounding box:

ρrel =
1

8

( 4
3
πR3

R0

h2
p

)
, (101)

with RR0 being the initial radius of the particle. It is assumed
that the particles are initially perfectly spherical thus the initial
relative density is ρrel = π/6. As the particle will be compacted
more and more, the contact surfaces come closer to each other
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6.3 Strength under shear for the determination of parameter M

and will touch, when Ra is equal to hp. At this point the relative
density is ρrel = 5π

16
≈ 0.981.

To compute the upper bound for this span of densities, a col-
lapse mechanism has to be assumed. The mechanism consists of
cylindrical bodies that are compressed.This process creates dis-
sipaption in a number of ways. The pure compression denoted
by Dpc. The contact surfaces move to the center of the parti-
cle at collapse. Due to the incompressibility of the material, the
cylinder shrinks in height but grows in radius. Due to this the
material outside of the cylinders is pushed away. It is assumed
that this part of the particle remains rigid and thus creates dissi-
pation through sliding along its surfaces. Each of the cylinders is
loaded with the maximum unidirectional tension possible, which
is 2k for the Tresca criterion. In the middle of the particle the
cylinders intersect and create a part that is under hydrostatic
tension. This intersection can be described by a Steinmetz body.
Hydrostatic loading does not create any dissipation. Therefore,
each cylinder just dissipaptes energy for its volume outside of
the hydrostatic field. As the geometry is very difficult, at this
point we assume a simplified geometry, where the cylinders are
at which the dissipating volume of each cylinder is assumed to
be πR2

a

4
h.

D = Dsg +Dcz +Dsbc +Dsbt +Dcr = 3PV0 (102)

Dsg = 3k

∫
vE

r

Ra

dA = 3k

∫ Ra

0

∫ π/2

0

vE
r

Ra

dφdr, (103)

where vE is the velocity of the cylindrical surface in radial direc-
tion.

vE =
V0Ra

2a
, (104)

insertion of eq. (104) into eq. (103) yields

Dsg = 3k
πR3

aV0

4h
(105)
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6.3 Strength under shear for the determination of parameter M

The Dissipation Dcz is due to the compression of the cylindrical
parts and is given by 2k times the volume times the dissipation
rate:

Dcz = 3 · 2k πR
2
a

4
h

1V0

2h
=

3

4
kπR2

aV0. (106)

The compressed cylinders slide with their bottom surface over the
hydrostatic cube in the middle of the particle. The dissipation
for this mechanism is denoted Dsbc and given by the the mean of
the velocity over the surface times the surface multiplied with k
(the shear strength):

Dsbc = 3 · k 2πRah

4

1V 0

2
= 3k

πRahV0

4
. (107)

Additionally the material outside of the compressed regions is
assumed to translate as a rigid body away from the center in
the direction of {1, 1, 1}. It thus produces a sliding dissipaption
between the cylinders and the rigid body which is denoted by
Dsbt:

Dsbt = 3 · k 2πRah

4
vE = 3 · k πR

2
aV0

4
. (108)

The last part of the dissipation is created by a separation of
surfaces between the rigid body part and the surface of the hy-
drostatic cube in the middle of the particle the dissipation Dcr is
given by the separation velocity times the surface times k:

Dcr = 3 · k
(
R2
a −

3

4
πR2

a

)
VE = 3kR3

a

(
1− 3

4
π

)
V0

2h
. (109)

Inserting everything in eq. (102) yields

P = k

(
πR3

a

4h
+

1

2
πR2

a +
1

4
πRah+

1

2h
R3
a(1−

1

4
π)

)
(110)

This equation can be solved for P by inserting eq. (98) - (100).
But the solution includes a complicated relationship that cannot
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6.3 Strength under shear for the determination of parameter M

Figure 19: The internal structure of the collapse mechanism
sketched.

be solved explicitely in a straight-forward way. The solution can
be calculated easily by using a a computational software, such as
Mathematica, and the result is shown in Figure 21. For the rest
of this work, the formula derived by the 2D method will be used,
as it is a relatively easy explicit formula that can be implemented
easily into an FEM code.
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Figure 20: The internal structure of the collapse mechanism is
shown. The part that is nod under compression, but moves by
rigid body sliding mechanism is made transparent. The left one
is the modified collapse mechanism, whereas the right side shows
the junction of three perfect cylinders, which was the originally
assumed mechanism.
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Figure 21: The plot shows the upper and lower bound for the 3D
model with circular contact surfaces in comparison with an FEM
simulation and the model of Fleck/Helle [18, 28].
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7 Influence of Temperature
The consolidation process of a ceramic body is activated at high
temperatures, where the material exhibits a strong thermal soft-
ening. Also, the viscosity changes drastically with temperature,
so that viscoplastic processes occur at much higher velocities at
high temperatures.

7.1 Temperature evolution

In the framework proposed by Simo and Miehe [55], the tempera-
ture evolution is governed by the Fourier law of heat conduction,
together with a maximum dissipation postulate. In the absence
of internal heat sources, the first law of thermodynamics is

Ṫ =
1

ρch

(
div (k∇T ) +H +Dmech

)
, (111)

where ch is the specific heat at constant values of strain and
internal variables, eq. (56), k the thermal conductivity, eq. (67),
Dmech is the mechanical dissipation power,

Dmech = σ · ε̇p +R(ρ̂)· = σ̂ · ε̇p, (112)

and H is the non-dissipative elastic-plastic heating

H = T

[
∂2ψ

∂T∂εe
· ε̇e +

∂2ψ

∂T∂ρ̂
(ρ̂)·
]
. (113)

The first term inside the parenthesis describes the piezocaloric
effect. The second part is a coupling term between the tempera-
ture and the internal variable (relative density). It is common for
plasticity models [55] to replace the mechanical dissipation term
with

Dmech = X σ̂ · ε̇, (114)

where X is sometimes called Quinney-Taylor coefficient and lies
between 0.85 and 0.95. This factor was introduced as it was found
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7.2 Temperature effect on the yield surface

in experiments [58] that the heating associated with the plastic
flow is roughly 0.9 times the rate of plastic working. If the plastic
strain becomes very large, the Quinney-Taylor factor approach-
ing unity, so that eq. (114) reduces to eq. (112). However, the
mechanical dissipation plays only a negligible role in high temper-
ature applications. In the case of ceramic sintering, a substantial
amount of heat is transferred to the system from outside (for in-
stance, the ceramics is left 30 min in the oven at about 1200◦
C), whereas the plastic deformation of the body occurs at a rela-
tively slow pace. This heat transfer is far larger than the heating
introduced by the piezocaloric effect or the plastic heating. It is
therefore reasonable to neglect these terms (the mechanical dissi-
pation and the non-dissipative elastoplastic heating) and assume
X = 0, which leads to a system where temperature evolution is
uncoupled from plastic flow. Then, eq. (111) reduces to:

Ṫ =
1

ρch
div (k∇T ). (115)

7.2 Temperature effect on the yield surface

At high temperature, a significant thermal softening effect occurs,
which is modelled through a variation of the parameter pc, which
is assumed to follow the rule

pc(ρ̂, σm, T ) = fT (T ) pc(ρ̂, σm), (116)

with fT (T ) being a function steadily decreasing with tempera-
ture, defined as equal to one at the reference temperature. For
high temperatures, over about 800◦C and slow deformation rates,
the material exhibits creep as dominant deformation mechanism
[3, 27], and its strength is assumed to be negligible at this tem-
perature, so that

fT (T ) =

〈
1− T

TC1

〉b1
+ CT , (117)
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where the Macaulay bracket has been used and TC1 = 800◦C and
CT = 0.0001 and b1 = 0.9.

7.3 Grain growth

The sintering process is usually accompanied by grain coarsening
[51]. As grain coarsening has some effect on the process kinetics
it should be considered. The grain growth occurring during sin-
tering is assumed to follow an exponential law that models the
evolution of the average grain size, as described in [59] and [30],
namely

Ṙ =
γbMgc

4R
, Mgc = Mgc0 exp

(
−Qgc

RgT

)
, (118)

where the constant Mgc0 is taken from [59] to be 2.25m2s/kg
and the activation energy for grain coarsening Qgc is similar to
the viscous activation energy. The value for the grain boundary
energy γb is taken from the same source and is equal to 1.10J/m2

. The values of the activation energies, to be used for the model,
can be obtained by fitting them to experimental results. The
procedure is described in section 8.3.1.

7.4 Viscosity

The shrinkage of the ceramics under thermal load during sintering
is essentially a time-dependent process, so that the previously de-
veloped time-independent model has to be enhanced to describe
rate-dependent effects, thus introducing viscosity. There are sev-
eral possibilities to introduce viscous behavior, for instance using
the Coble [12] or the Nabarro-Herring [50] creep model. Olevsky
[46] introduces a model based on a dissipation potential that can
be derived from a strain energy function, the viscous models pro-
posed by [8, 50] are found to yield a better fit to experiments
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7.4 Viscosity

performed in [60, 61]. The viscosity ηv depends on the tempera-
ture, density and grain size and is assumed to be multiplicative
as

ηv = ηv1 · ηv2(R) · ηv3(T ), (119)

where ηv1 is a constant and ηv2 and ηv3 are respectively func-
tions of the radius R of the particles and of the temperature. In
particular, introducing the initial radius R0 of the particles, the
function ηv2 is assumed in the form

ηv2(R) =

(
R

R0

)w
, (120)

where the exponent w is equal to 3 for an assumed mechanism of
grain boundary diffusion, while it is equal to 2 for lattice diffusion
[50]. Finally the temperature dependence in the law (119) follows
an Arrhenius type law (compare with [60]):

ηv3(T ) = e
QE
RgT , (121)

where QE is the activation energy for the viscosity and Rg the
universal gas constant (8.314 J/(molK)).

In conclusion, the complete function governing the viscosity
is

ηv = ηv1

(
R

R0

)w
e

QE
RgT . (122)

The values of the constants were fitted against a sintering curve
obtained from one dilatometric test, which is described in section
8.3.1.
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8 Implementation and Validation

A model for the sintering process was developed within the scope
of the previous chapter. It is the aim of this study to apply the
model and implement it as a numerical simulation. This way it
can be validated and subsequently used for the simulation and
optimization of sintering processes.

8.1 List of equations

Over the course of the previous chapters, a variety of equations
were used. An overview of the equations needed to implement
the model as a numerical solution is shown here:

ε = εe + εp

ε̇ = ε̇el + ε̇p

σ = C : εel −Kbα0 (T − T0) I

σs = −3.224
γs
L

(
ρ̂

1− ρ̂

) 1
3

σ̂ = σ + σsI

ε̇vp =
1

ηv
〈F(σ̂, ρ̂)〉

∂F(σ̂,ρ̂)
∂σ∥∥∥∂F(σ̂,ρ̂)
∂σ

∥∥∥
ηv = ηv1(

R

R0

)w · e
QE
RgT

Ṙ =
γbMgc

4R
,

Mgc = Mgc0 exp
(
−Qgc

RgT

)

(123)
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8.1 List of equations

pc(ρ̂, σm) = fT (T )σm
(−530 + (619 + 25π − 719ρ̂)

√
ρ̂−1
π−4

+ 530ρ̂)

210
√

3(ρ̂− 1)

M =

√
3σmAc

2

1

pc
√

[ c
pc+c
− ( c

pc+c
)m][2(1− αbp)( c

pc+c
) + αbp]

fT (T ) =


(

1− T
TC1

)b1
if T < TC1

CT if T > TC1,

Ṫ =
1

ρc

(
div (λcgrad)T +H−Dmech)

)
,with

F(σ,M, pc, c) = F (p,M, pc, c) + q g(Θc, γ, β),

p = −1

3
trσ

q =

√
3

2
dev(σ) : dev(σ)

F (p,M, pc, c) = −Mpc

√
[Φbp − (Φbp)m][2(1− αbp)Φbp + αbp],

Φbp =
p+ c

pc + c
,

g(Θc) = cos

[
βbp

π

6
− 1

3
cos−1(γbpcos(3Θc))

]
.

(124)
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8.2 Implementation of the numerical model

The material model developed in the previous Sections was im-
plemented in Abaqus 6.13 (Dassault Systèmes SIMULIA Corp.,
Johnston (RI), USA) through a UMAT created with AceGen [36].
The main equation that is solved over the whole domain is eq.
(59). The Finite Element is used to solve it (for more information
see e.g. [5, 14, 32, 55]. For a finite element solution a weak form
of this equation is solved numerically. An implicit scheme was
used for the yield function, as explained in [57]. The viscoplastic
deformation is evaluated using a return-mapping algorithm (as
described in [14, 54, 55]), which was implemented taking advan-
tage of the Automatic Differentiation technique [37, 57], to obtain
the derivatives (first and second) needed in the algorithm. A con-
sistent tangent matrix for the local Newton method for plasticity
was obtained (as described in [14, 43]), without explicitly cal-
culating cumbersome derivatives. The viscosity is implemented
using a Perzyna [47] type approach, as described in Section 4.
As the model uses logarithmic strains, and finite deformation,
the ‘Nlgeom’ option of Abaqus was used, which provides loga-
rithmic strains as the input for the user material routine and
uses finite deformation kinematics. The calibration of the yield
function, using nominal stress, is described in section 8.3. For
the solution of the global scheme, a separated Newton algorithm
was used, in which the coupling terms of the global jacobian ma-
trix (the entries that are a result of differentiation with respect
to both displacement and temperature) are set to zero (see e.g.
[44, 55]). This can be justified because the problem is weakly
coupled 7.1, and computational cost is strongly reduced. The
Newton technique was modified using a line search method, to
improve convergence. Note that the general accuracy of the solu-
tion is not changed by using the separated solution scheme, while
only the rate of convergence is slightly affected.

For the thermal part of the situation (see Chapter 7.1) the
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8.2 Implementation of the numerical model

temperature evolution model that is implemented in Abaqus suf-
fices, as it based on the equations. The mechanical model is not
implemented in Abaqus and thus needs to be implemented as a
UMAT. The following algorithm was implemented:

The experimental setup described in Section 8.5 was modelled
in Abaqus, where the mold and the stamp are modelled as analyt-
ical rigid bodies and the displacement is imposed on the stamp.
To model the furnace environment, the temperature curve is im-
posed on the boundaries of the green body, obtained in a first
step through modelling of cold powder compaction.
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8.2 Implementation of the numerical model

1. given: logarithmic strains εn and plastic strains from
previous step εnp at time tn:
εn+1
p =εnp

2. calculate elastic strain:

εn+1
e = εn+1 − εn+1

p

3. calculate stress-strain relationships:

σ = ρ
∂ψ(εe, T, ρ̂)

∂εe
σ̂ = σ + σsI

4. check if plastic step:
IF: F(σ̂,M, pc, c) <= 0:EXIT
ELSE: calculate residual Vector R:
initialize: k=0;

R(k) =

{
ε
n+1(k)
p − εnp − ∆t

ηv
〈F(σ̂, ρ̂)〉 P

ρ̂n+1(k) − ρ̂n + ρ̂n∆t
ηv
〈F(σ̂, ρ̂)〉 P

}

with P =
∂F(σ̂,ρ̂)
∂σ∥∥∥∂F(σ̂,ρ̂)
∂σ

∥∥∥
5. IF |R| <= 10−9

THEN: set εn+1
p = ε

n+1(k)
p ; ρ̂n+1 = ρ̂n+1(k)

EXIT;
ELSE: use Newton’s method to find a solution

Box 1: Viscoplastic return mapping as implemented in Umat.
72



8.2 Implementation of the numerical model

1. initialize: i = 0;
initialize: Vector of unknowns h(0) = {εn+1(0)

p , ρ̂n+1(0)}

2. Calculate the increment for the vector of unknowns

∆hi = −
(
∂R

∂h

)
R(hi)

3. Calculate the new vector of unknowns

hi+1 = hi + ∆hi

4. Check for convergence
IF: |∆hi| ≤ 10−9 Then: EXIT
Else:
Return to Step 2

Box 2: Algorithm for local Newton’s method.
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8.3 Calibration

8.3 Calibration

Experiments have been performed to calibrate and subsequently
validate the material model. In particular, the calibration of the
viscosity parameters of the model has been conducted with a
dilatometric test, while the yield function parameters have been
evaluated on the basis of available experiments [9]. Finally, vali-
dation of the model performance is performed through a compar-
ison between model predictions and the shrinking of a specially
designed ceramic piece, measured during sintering.

8.3.1 Calibration of the viscosity parameters

The sintering curve can be obtained using a dilatometer, a stan-
dard equipment in laboratories dealing with ceramics. Using a
special dilatometer, a method has been proposed for experimen-
tally determining the viscosities and activation energies for pure
alumina [60, 61], thouugh a long series of experiments. Instead
of this complex procedure, the viscosity parameters of the pro-
posed model have been estimated through a comparison between
the results from dilatometer tests and numerical simulations in
which only a single element has been used. The temperature
was assigned as a constraint on all nodes, following the temper-
ature curve of the dilatometer. This procedure can be justified
because of the very small dimensions of the specimen, which does
not possess a large thermal capacity. The values for the viscos-
ity constant ηv1 and for the activation energies QE and Qgc were
found by running simulations with different values and iterat-
ing towards an optimal fit. This simplified approach was chosen
because experimental values for the activation energies of tradi-
tional ceramics are not available. It was assumed that the activa-
tion energies for grain coarsening and viscosity are equal, an as-
sumption based on the fact that these values have been found very
similar on ceramic materials (but different from that addressed
in the present study [60]). Experimental data for mechanical
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properties are rare, as their determination is not straightforward
[23] and often not of interest for the involved industries. How-
ever, a yield strength ranging between 125 MPa and 250 MPa
is provided in [19], so that σm = 150 MPa has been assumed.
Aluminum silicate spray dried powder (Sacmi I20087) was used,
with a theoretical density (when containing no pores) of about
2.375 g/cm3. To obtain the sintering curve from the powder, a
dilatometer (TAinstruments DIL-831) was used at a heating rate
of 30◦C per minute, equal to the heating rate employed in in-
dustrial furnaces. Data in Figure 22 have been plotted after the
strain due to thermal expansion was subtracted, to yield a graph
that is corrected for thermal expansion, which was measured in
a previous trial, with a completely sintered piece. The best fit
was found for the viscosity constant ηv1 = 1 · 10−8 MPa · s and
activation energies QE = Qgc=340 kJ/mol.

8.3.2 Calibration of the yield function parameters

The Bigoni Piccolroaz yield function, eq. (76), requires the de-
termination of seven parameters. Using the previously developed
micromechanical model, the number of unknown material con-
stants can be reduced to four. During powder compaction and
sintering, in most of the cases the body is under a compressive
load. Therefore, the lode angle-dependence is of a minor impor-
tance and is therefore neglected, so that parameters βbp and γbp
are set to zero. The parameters αbp and M determine the shape
in the p-q plane. The value for m = 4.38 has been deduced from
[9], while αbp is chosen to be equal to the unit, as in the simple
case of the modified Cam-Clay model [7]. The size of the yield
surface in the pq- plane is determined by pc, c and M , which are
functions of the relative density. The yield surface evolves as the
density grows. The evolution is shown in Figure 23.
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Figure 22: Activation energies and the viscosity constants
have been determined with repeated numerical simulations of a
dilatometer test, until a good fit has been found (illustrated in
the figure) with experiments.
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Figure 23: The BP yield surface evolution with respect to the
relative density, for a porcellain stoneware ceramic (aluminum
silicate spray dried powder). The parameters defining the yield
surface are αbp = 1, m = 4.38,γbp = 0, βbp = 0, σm =150MPa
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8.4 Material parameters used for the examples

In summary, the values of the material parameters which were
identified for the presented model are listed in Table 1.
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Material Parameters Values
R0: Initial particle radius 11.24 10−6m
γs: Surface energy 1.10 J/m2

L: Constant for the porous
addition to the free energy 2R0

QE: Viscous activation energy 354 kJ/mol
Mgc0: Grain boundary mobility
coefficient 2.25 m2s/kg
Qgc: Grain boundary mobility
activation
Energy 354 kJ/mol
E: Young’s modulus 5000 MPa
X : Taylor Quinney Coefficient 0.0
σm: Compressive strength
of the fully dense material 150MPa
w: Material constant
for the viscosity law 2 (lattice diffusion)
Rg: Gas constant 8.314 J/(molK)
TC1: Temperature constant
for thermal softening law 800◦C
TC2: Constant for
thermal softening law 0.0001
b1: Constant for thermal
softening law 0.9
ρ0: inital density 0.38
ηv1: viscosity constant 10−8 MPa ·s
m: BP Parameter 4.38
β: BP Parameter 0
γ: BP Parameter 0
α: BP Parameter 1
µ: Coulomb friction coefficient
for die/stamp 0.4

Table 1: Material values used for the simulations
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8.5 Experimental validation

Validation of the model has been obtained by referring to the
sintering of a special green piece, namely, a profiled tile. It is
possible to introduce some complexity to a floor tile by using a
special tool with varying heights (as sketched in Figure 24), thus
obtaining a green with zones of different height and therefore
density. Before sintering, this profiled geometry has to be pressed
from powder, using a tool that was manufactured for this specific
purpose (Fig. 24). The dimension before pressing was 330mm ×
125mm, with an initial uniform thickness of 22mm. The profiled
tile was pressed with a symmetric tool, to avoid lateral loads
during stamping, as sketched in Figure 24.

Twenty of the profiled tiles were formed and their density mea-
sured in the Laboratory of Sacmi international group for manu-
facturing machines and complete plants for the Ceramics, Pack-
aging, Food industries and Automation (located at Imola, Italy).
All the ceramic pieces were found to be so closely similar in the
density distributions, that it was decided to fire only 6 greens.
Three groups of two greens were fired respectively at tempera-
tures of 1100◦C, 1150◦C and 1200◦C, by adopting the heating
cycle shown in Figure 25.

The density variation before and after sintering was measured
using the purpose-made X-ray Line Scanner (of the Sacmi Con-
tinua+ line, manufactured by Microtec Srl, Bressanone, Italy)
at the Sacmi laboratory. While the thickness changes abruptly,
creating a tile with three rather distinct heights (about 9.8mm,
10.2mm and 10.7mm), the density varies less abruptly, as can be
seen in Figure 28a. The density distribution measured on the
pair of tiles subject to the same treatment was found so similar
that the experimental data were almost superimposed and only
one experiment for each pair is reported below.

80



8.5 Experimental validation

Figure 24: Upper part: The green body, with zones of differ-
ent height and therefore density, used for sintering and density
measurements. The green was formed with a tool, which was
manufactured with three different heights. Lower part: sketch of
the mold used to form the green body (not true to scale).
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Figure 25: Sintering is obtained moving the green through a con-
tinuous oven (Sacmi Forni S.pA. EUP 130) across different tem-
perature zones, so that the time-temperature curve shown above
is applied.

Figure 26: For density measurements an X-Ray scanner from the
Sacmi CONTINUA+ line was used, shown in the photo.
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8.6 Simulation of the forming and sintering of
the ceramic plate with different densities

The stamp and mold for powder forming were modelled as rigid
bodies in contact with Coulomb friction (coefficient equal to 0.4).
The powder was initally considered of uniform height (22mm)
and homogeneous relative density (0.38), as in the experimental
setup. The stamp is then displaced by ∆H = 12.6 mm, pressing
the body in the desired shape. Powder pressing is usually mod-
elled as a rate-independent process [48], so that for the powder
pressing part of the simulation, the viscosity was set to a constant
and low value, to come close to the limit of rate-independent
plasticity. For the sintering the viscosity description reported in
section 7.4 was used and the temperature curve of the oven was
prescribed on the boundaries of the ceramic body. The simulated
geometry is shown in Figure 27, where the undeformed and de-
formed meshes are reported. The figure clearly shows the large

Figure 27: The mesh of the modelled powder in its inital state
before (without mesh) and after pressing, after it is released from
the mold the mold (with mesh). Just one half the piece was
simulated, due to symmetry. The figure is scaled by 200% in
height direction, to make the contour change more visible.

strain suffered by the powder during compaction and the pres-
ence of a modest spring back effect, which is limited because of
the flat geometry of the sample. The springback works in such a
way, that the tile increases in height, after release but decreases
a little in width.
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(a) Density variation
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(b) Thickness variation

Figure 28: Density and thickness variation of the green, measured
by an X-ray scan, and compared to the model prediction through
numerical simulation

Measurements of density and thickness are shown and com-
pared to the simulation results in Figs. 28 and 31.

These figures prove the validity of the model, which is capable
of reproducing the entire compaction and sintering process of a
ceramic granulate with an excellent precision, so that the percent
errors (reported in the lower parts of the graphs) are below 4%
at maximum and for most of the part below 2% .

The distortion and the density distribution simulated in the
ceramic piece after the entire process of compaction and sintering
is shown in Figure 32, demonstrating the strong effect of sintering
on the deformation of the tile. Finally, a photograph of the sin-
tered tile is shown in Figure 33 with superimposed the deformed
mesh obtained after the simulated compaction and sintering pro-
cess. Both Figs. 32 and 33 again demonstrate the excellent
predictive capabilities of the mechanical model.
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(a) Density variation
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(b) Thickness variation

Figure 29: Density and thickness variation of the ceramic piece
after firing at 1100◦ measured by an X-ray scan, and compared
to the model prediction through numerical simulation
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Figure 30: Density and thickness variation of the ceramic piece
after firing at 1150◦ (bottom) measured by an X-ray scan, and
compared to the model prediction through numerical simulation
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(a) Density variation
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(b) Thickness variation

Figure 31: Density and thickness variation of the ceramic piece
after firing at 1200◦ (bottom) measured by an X-ray scan, and
compared to the model prediction through numerical simulation
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Figure 32: The geometry and the density distribution of the ce-
ramic piece after a simulated process of compaction and firing at
1200 ◦ (only one fourth of the piece was simulated - the result
was mirrored along the two symmetry axis).
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8.6 Simulation of the forming and sintering of the ceramic
plate with different densities

Figure 33: The simulation of the formed and fired ceramic piece
(on the left) compared to a photo of the real ceramic piece, sin-
tered at 1200◦C (on the right, with the contour marked in blue).
The qualitative trend of the distortion of the boundary is well
reproduced by the simulation, which also correctly captures also
the pronounced shrinkage at the middle of the ceramic piece.
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8.7 Conclusion

8.7 Conclusion

It has been shown that a thermomechanical model can be formu-
lated, implemented and calibrated to provide a computational
tool for the simulation of the entire process of ceramic produc-
tion, starting from the cold pressing of a granulate and ending
with the subsequent non-isothermal firing and sintering.

Compared with the results of ad hoc performed experiments,
the model predictions provide an accurate description of the den-
sity distribution and the shape distortion suffered by the piece
during the production process.

Although the developed model is based on several simplifica-
tive assumptions and the lack of experimental data (inherent to
the extreme conditions to which a ceramic piece is exposed) has
precluded a fine calibration of model parameter, it is believed
that the presented results show that mechanical modelling is a
valuable alternative to the empirical processes still often in use
in the ceramic industry.
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An elastic-visco-plastic thermomechanical model for cold forming of ceramic powders 
and subsequent sintering is introduced and based on micromechanical modelling 
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