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Introduction

The buckling of axially-compressed thin-walled cylinders is one of the most
famous problems in mechanics and probably represents the most fascinating
question in bifurcation theory after the Euler rod. Early calculations go back
to Lorenz (1908), Timoshenko (1910), Southwell (1914), and von Mises (1914).
Flügge (1932) obtained the currently available solution (through the introduction
of hypotheses on the material behaviour and approximations on the thickness
of the cylinder wall), which has been commented on and developed in detail in
several important works (Flügge 1981; Donnell 1934; von Kármán and Tsien
1941; Wilkes 1955; see also the review by Simitses 1986).

Although the solution to this buckling problem was already known before
World War Two, the strong imperfection-sensitivity of the mechanical system,
discovered by Koiter (1945) and explaining the discrepancy between measured
and predicted critical loads, has created a strong research focus, which also
involves the akin structural response of thin spherical shells and still continues
to attract attention (selected references are Calladine 1988; Calladine 2001;
Tsien 2012; Elishakoff 2014; Jiménez et al. 2017).

It is well-known that the solution provided by Flügge is based on two main
approximations, namely, (i.) that incremental constitutive equations are used,
which relate the Oldroyd increment of the Kirchhoff stress to the incremental
Eulerian strain, so that these do not follow from a finite strain formulation of a
hyperelastic material and (ii.) on the smallness of the thickness of the cylinder
wall, so that often statements are motivated invoking that ‘plane stress’ prevails.
It would be therefore important for both ‘theoretical and practical reasons’ to
derive the Flügge formulation from a three-dimensional finite elasticity context,
including the calculations of the bifurcation loads and the determination of the
famous formula for buckling of a ‘mid-long’ cylindrical shell.
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Theoretically, a derivation of the bifurcation stress for an axially compressed
thin-walled cylinder from the laws of nonlinear elastic deformations would
allow to rigorously confirm the validity of the theory developed by Flügge and
considered the reference in the field. From a ‘practical point of view’, imagine
the calculation of the buckling of a cylindrical shell made up of an Ogden or a
neo-Hookean compressible elastic material (Levinson and Burgess 1971; Ogden
1972b), or the bifurcation analysis of an artery obeying the Holzapfel et al.
(2000) constitutive law. Currently, these calculations can only be done trying
to reduce (which is not always possible) the nonlinear elastic constitutive laws
to a small-strain version based on Lamé constants λ and µ and after this use of
the Flügge formulation.

In this direction, to the author’s knowledge, the only available work is that by
Ciarlet and Paumier (1986), who used asymptotic expansion techniques, assum-
ing a small thickness of the cylinder wall, to derive the equilibrium equations of
a nonlinear elastic shell. They obtained equilibrium equations equivalent to the
Marguerre-von Kármán equations and showed that the displacement field is of
the Kirchhoff-Love type, with stresses displaying polynomial variations with
respect to the cylinder thickness.
The present work addresses the rigorous derivation of the Flügge treatment

of the buckling of a thin cylinder. A brief introduction of continuum mechanics
is offered in Ch. 1, while Ch. 2 offers an overview of the main elements of
incremental hyperelasticity. The incremental equilibrium equations in terms of
generalized stresses are rigorously derived in Ch. 3 in terms of mean quantities
(holding true regardless of the thickness of the cylinder), through a general-
ization of the approach introduced by Biot (1965) for rectangular plates. The
incremental kinematics is postulated in Ch. 4 through a novel deduction from
the deformation of a two-dimensional surface, thus generalizing an approach
introduced to derive the incremental kinematics of a plate. The nonlinear
elastic constitutive equations proposed by Pence and Gou (2015), describing a
nearly incompressible neo-Hookean material, are used in a rigorous way. While
the employed kinematics coincides with that used by Flügge, the incremental
equilibrium and constitutive equations derived in this work are different from
those given by Flügge, but are shown to reduce to the latter by invoking the
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smallness of the cylinder wall.
The equations derived for the incremental deformation of prestressed thin

cylindrical shells are general and can be used for different purposes. The study of
the bifurcation problem of a thin-walled circular cylinder subject to compressive
load is offered in Ch. 6. When compared, the bifurcation landscape obtained
from the formulation developed in this work and that given by Flügge are
numerically shown to coincide and be consistent with results obtained by a
fully three-dimensional theory of nonlinear elasticity (Ch. 8). In Ch. 7 the
formula for the axial buckling stress of a ‘mid-long’ cylindrical shell made of a
nearly incompressible neo-Hookean material and of a Mooney-Rivlin material
are rigorously obtained from the presented formulation.
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1 Elements of continuum
mechanics

1.1 Introduction and notation

A brief review of the theory of continuum mechanics is presented in this
chapter. The interested reader may refer to the monographs of Truesdell and
Toupin (1960), Green and Zerna (1963), Gurtin (1981), Ciarlet (1988), Basar
and Weichert (2000), Holzapfel (2000), Liu (2002), Truesdell and Noll (2004),
Antman (2005), and Bigoni (2012).
Throughout the thesis, the notation defined in Gurtin (1981) will be used.

The Euclidean point space and its associated vector space are denoted by
E and V, respectively. Vectors will be denoted by boldface minuscule letters
(a, b, . . . ), second-order tensors, i.e. linear transformations from V into itself,
by boldface majuscule letters (A, B, . . . ) and fourth-order tensors, i.e. linear
mappings from Lin into Lin, by a blackboard letter (A, B, . . . ). Lin is the
set of second-order tensors, Sym and Skw its symmetric and skew-symmetric
restrictions respectively, and Orth the set of the orthogonal second-order tensors.
A tensor S belongs to Sym if S⊺ = S, where S⊺ denotes the transpose of

S, and to Skw if S⊺ = −S. Tensors that satisfy the orthogonality condition
Q⊺ Q = Q Q⊺ = I, build the subset Orth of Lin, where I is the identity tensor,
defined by I v = v for every vector v ∈ V. Einstein summation convention over
any repeated index will be used; in particular, Latin indices can take three
different values (e.g. 1, 2, 3 or r, θ, z), while Greek indices can take two different
values (e.g. 1, 2 or θ, z).

In the following, several products are defined by means of the generic vectors
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u, v, w ∈ V and tensors A, B, C ∈ Lin. The inner product between vectors
will be denoted by v ⋅u, whilst the inner product between tensors by A ⋅B
or, equivalently by A ∶ B. If a Cartesian coordinate frame consisting of an
orthonormal basis {ei} = {e1,e2,e3} is defined, then u ⋅v = ui vi and A ⋅B =
Aij Bij, where ui = ei ⋅u and Aij = ei ⋅ (A ej) are the Cartesian components
of v and A respectively. The product of two tensors, AB, is defined as
the composition A ○ B such that (AB)u = A(Bu) for every vector u ∈ Lin;
the product between n identical tensors A will be represented by An. The
dyadic product among vectors is defined as (u⊗ v)w = (v ⋅w)u while among
tensors as (A ⊗ B)C = (B ⋅C)A. Furthermore: (A ⊠ B)C = ACB⊺ and
(A⊗B)C = A(C +C⊺)B⊺/2. In particular, the latter product specializes into
the fourth order symmetrizer S if A = B = I.

The trace operator acting on a second-order tensor A is defined as tr (A) = Aii,
and it is usually referred to as the first invariant denoted by the symbol I1(A).
Furthermore, the inner product of two second-order tensors relates to the trace
operator as A ∶ B = tr (A B⊺). The determinant of a tensor A is defined as the
determinant of its associated matrix representation and is independent of the
coordinate system chosen to express its coefficients; the determinant is also
called the third invariant and denoted by the symbol I3(A). For the sake
of completeness, the ‘second’ invariant of a generic second-order tensor A is
defined as

I2(A) = (I1(A)2 − I1(A2))/2 .

The divergence of a vector is defined as

div u = tr (grad u) , (1.1)

while, for any constant vector u, the divergence of a second-order tensor A
reads

div (A) ⋅u = div (A⊺u) . (1.2)

The operator grad is the gradient, see §1.2.

6



1 Elements of continuum mechanics

1.2 Kinematics

A continuum body B is considered, which occupies a connected, open subset of
the Euclidean space E . Such a region at the time t is called a configuration of
the body and will be denoted by Bt. Let B0 be a fixed reference configuration of
the body at a certain time t0. Hence, the motion of the body is a vector-valued
function χ defined as

χ ∶ B0 × I → E , (X, t)↦ x = χ(X, t) , (1.3)

where I is a time interval and vectors X and x represents material points of B0

and Bt. Such a function transforms material point belonging to the reference
configurationB0 into spatial points belonging to the actual configurationBt. The
inverse motion, denoted with χ−1 is the unique mapping such that X = χ(x, t).
To satisfy the existence of such a function, it is required that χ is bijective
and of class C2. The function χ, for a fixed times, defines what is called the
deformation of the body under investigation from its reference configuration B0

into the current configuration Bt. Conversely, for a fixed material point X, the
motion describes the trajectory followed by the chosen material point.
Problems in continuum mechanics can be tackled either in the Lagrangian

(also material) formulation or in the Eulerian (also spatial) formulation. The
first is characterized by the use of the pair (X, t) as independent variables,
whilst the latter by the use of the pair (x, t) as independent variables. The
transformation from one approach to the other can be done by means of the
function χ and its inverse χ−1. For example, denoting with fm a material field,
and with fs a spatial field, the following relations between the two formulations
can be established

fs(x, t) = fm(χ−1(x, t), t) and fm(X, t) = fs(χ(X, t), t) . (1.4)

The evolution in time of some field f can be described by means of the so-
called material time derivative, i.e. the time derivative performed holding the
material point X fixed. Usually, operators referring to the material formulation
are denoted with capital letters, such that the definition of the material time

7



Rossetto - Buckling of thin-walled cylinders from 3D nonlinear elasticity

derivative reads
Df

Dt
= ∂f

∂t
∣
X
= ∂fm

∂t
(X, t) . (1.5)

It is common practice to equivalently refer to the material time derivative of a
field f also with the notation ḟ . The spatial time derivative of a spatial field fs

is simply ∂fs/∂t holding the spatial point x fixed.
Under velocity and acceleration the first and second time derivative of the

motion are understood, namely

ẋ(X, t) = ∂χ(X, t)
∂t

, and ẍ(X, t) = ∂
2χ(X, t)
∂t2

. (1.6)

The material and spatial description of the above fields are related through the
motion χ as

ẋ(X, t) = v(x, t) , and ẍ(X, t) = a(x, t) . (1.7)

The derivation of relations (1.7), is offered in what follows. To calculate the
material time derivative of a spatial field fs, the following steps have to be taken.
Firstly, the spatial field has to be expressed as a function of the material point
X

fs(x, t) = fs(χ(X, t), t) , (1.8)

and then the material time derivative can be computed using the chain rule as

ḟs =
∂fs(x, t)

∂t
+ ∂fs

∂x
⋅

∂χ(X, t)
∂t

∣
X=χ−1(x,t)

=
∂fs(x,t)

∂t
+ grad (fs) ⋅v(x, t) ,

(1.9)

where ‘grad ’ is the spatial gradient and v is the spatial velocity field (1.7)1.
The acceleration then reads

am(X, t) = D
2χ

Dt2
(X, t) = as(x, t) , (1.10)

Throughout the thesis, the subscripts m or s will be dropped. When necessary,
explicit reference to the independent variables of the specific problem will be
made.
The introduction of two orthonormal bases, namely {Ei} for the reference

configuration B0 and {ei} for the current configuration Bt, where i = 1,2,3,
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1 Elements of continuum mechanics

allows for the component-wise representation of vectors and tensors. For
example, the vector position of the material point X can be represented as

X −O0 =Xi Ei , (1.11)

where O0 is the (arbitrary) origin of the coordinate system in the reference
configuration. The same applies to the current configuration.

The deformation gradient is introduced as the linear mapping that transforms
elements from the reference configuration B0 into the actual configuration Bt

F(X) = Grad χ(X) . (1.12)

From its definition, it is clear that the deformation gradient is a two-point
tensor, a feature that becomes evident by observing its components:

F = Fij ei ⊗Ej , Fij =
∂χi(X, t)
∂Xj

. (1.13)

To avoid non-physical effects, e.g. annihilation of fibers, it is required that the
determinant of the deformation gradient det (F) ≡ J > 0, i.e. the mapping F has
to be non-singular, hence invertible, allowing for the definition of the gradient
of the inverse motion as

F−1(x, t) = grad χ−1(x, t) . (1.14)

Because F ∈ Lin+, it can be uniquely decomposed according to the so-called
polar decomposition, that splits the amount of rotation (R) and the amount of
stretch (U or V) induced during the deformation

F = R U = V R , (1.15)

where R ∈ Orth+ is a proper orthogonal tensor (rotation), whilst U and V are
called the right and left stretch tensors, defined as follows

U =
√

F⊺ F , V =
√

F F⊺ . (1.16)

From their definition it is clear that both tensors are symmetric and positive-
definite, i.e. they belong to Sym+. Furthermore, their spectral representations
read

U =
3
∑
i=1
λi ui ⊗ ui , V =

3
∑
i=1
λi vi ⊗ vi , (1.17)

9
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where λi are the eigenvalues of U and V and are usually referred to as principal
stretches of the deformation, ui and vi the Lagrangian and Eulerian principal
axes, respectively. Note that the Lagrangian and Eulerian principal axes are
related through vi = R ui. Furthermore, from Eq. (1.15)

V = R U R⊺ . (1.18)

Hence, the right and left stretch tensors share the same eigenvalues, whilst their
eigenvectors are rotated through the tensor R. Therefore, the set of invariants
I1, I2, I3 is the same for the pairs {U,V} and {C,B}. Another interesting
relation following from (1.15) is

J ≡ det F = det U = det V = λ1 λ2 λ3 . (1.19)

A deformation is called isochoric, i.e. volume-preserving, if J = 1.
The right and left Cauchy-Green deformation tensors are introduced as

C = F⊺ F = U2 , B = F F⊺ = V2 , (1.20)

respectively. Both tensors are positive definite and their spectral representations
are

C =
3
∑
i=1
λ2
i ui ⊗ ui , B =

3
∑
i=1
λ2
i vi ⊗ vi . (1.21)

Furthermore, B = R C R⊺.

1.3 Stress
Let df be the vector representing the contact force that acts on an infinitesimal
surface element da characterized by the unit vector n in the current configu-
ration Bt. The traction vector t is defined as the limit of the ratio df/da as
the infinitesimal surface tends to vanish. Cauchy’s theorem states that the
dependence between the traction vector and the unit normal to the current
surface element is linear. Hence, a second-order tensor field T can be defined,
namely the Cauchy stress, independent of n such that

t(x,n) = T(x)n , (1.22)

10



1 Elements of continuum mechanics

where the dependence on time was neglected. Defining b as the body forces
per unit volume in the current configuration and r the position vector of the
considered spatial point x, the Euler axioms define the equilibrium conditions
(translational and rotational) of a generic part P of the continuum body in its
current configuration Bt

∫
P

b dv + ∫
∂P

t da = 0 ,

∫
P

r × b dv + ∫
∂P

r × t da = 0 .
(1.23)

Eq. (1.23) are automatically satisfied if a Cauchy stress tensor T exists such that:
i) it is a symmetric tensor field, T⊺ = T, and it satisfies the local equilibrium
condition

div T + b = 0 , (1.24)

Usually, the current configuration is unknown, so that the equilibrium condition
(1.24) is conveniently rewritten in terms of material quantities. The current
contact force df is transformed by means of the Nanson’s formula as

df = t da = S N dA. (1.25)

where the definition of the first Piola-Kirchhoff stress tensor was introduced

S = K F−⊺ , (1.26)

and K = JT is the Kirchhoff stress tensor. The local equilibrium condition
(1.24) in the reference configuration B0 reads

Div S + b0 = 0 , (1.27)

where b0 is the vector representing the body forces per unit volume in the
reference configuration.

1.4 Constitutive equations for isotropic elastic
materials

From a mechanical point of view, a mechanical problem is described by Cauchy’s
first law of motion (1.24) and the mass conservation, i.e. by a set of ten unknowns

11
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(six stress components due to the symmetry of T and the three components
of the position vector x). However, only four scalar equations are available.
Further conditions, namely the constitutive laws, are introduced to make such
a problem solvable. Constitutive relations usually satisfies three principles: i)
they should be invariant under changes of observer; ii) the stress in a body is
determined by the history of the motion of that body (so-called principle of
determinism for the stress); iii) the stress at a point depends on the history if
the motion in the neighborhood of the same point (so-called principle of local
action). In the following, a brief introduction to the class of isotropic materials
is given, followed by its subset of elastic and finally hyperelastic materials.
A material is called Cauchy elastic if the state of stress in the current

configuration B depends only on the state of the (current) deformation

T(x, t) = T̂(F(X, t),X) . (1.28)

To satisfy the principle of invariance under changes of observer, Eq. (1.28) must
also satisfy

T∗ = T̂(F∗) , (1.29)

where T∗ = Q T̂ ∗ (F)Q⊺ and F∗ = Q F, Q being an arbitrary proper rotation.
Therefore the following relation has to hold true

T̂(Q F) = Q T̂(F)Q⊺ . (1.30)

Let B be the current configuration of a body which deforms according to the
deformation tensor F. As a thought experiment, if the same body experienced
a rotation Q and only after the deformation F, its total gradient of deformation
would be F Q. A material is called isotropic if its response is invariant to any
rotation

T̂(F) = T̂(F Q) , ∀Q ∈ Orth+ , (1.31)

for at least one reference configuration. By means of the polar decomposition,
setting with Q = R⊺, it follows

T̂(F) = T̂(F R⊺) = T̂(V RR⊺) = T(B) . (1.32)

12



1 Elements of continuum mechanics

Since B is symmetric, use can be made of the representation theorem for
isotropic functions (Truesdell and Noll 2004; Wang 1970; Zheng 1994), yielding,
for the case of the isotropic response function T

T = β0 I + β1 B + β−1 B−1 , (1.33)

where the coefficients βi are functions of the three invariants of the left Cauchy-
Green deformation tensor B. In case of incompressibility, i.e. no change in
volume is allowed during the deformation and therefore I3(B) = 1, Eq. (1.33)
becomes (Truesdell and Noll 2004)

T = −π I + β1 B + β−1 B−1 . (1.34)

1.5 Hyperelastic materials

A material is classified as hyperelastic (or equivalently Green elastic) if there
exists a strain energy density function W that depends on some strain measure
E(m) such that the work-conjugate stress measure of the latter, T(m), is obtained
by means of

T(m) = ∂W (E(m))
∂E(m)

. (1.35)

The quantities T(m) and E(m) are work-related stress and strain measures
such that K ⋅D = T(m)

⋅ Ė(m), where K = J T is the Kirchhoff stress and
D = sym (grad u). This general definition implies that the stress power, written
with respect to the Lagrangian formulation, can be expressed by means of an
exact differential of a scalar function W of the strain measure E(m)

∫
P0

S ⋅ Ḟ dV = ∫
P0

T(m)
⋅ Ė(m) dV = ∫

P0

∂W

∂E(m)
⋅ Ė(m) dV = d

dt ∫P0
W dV . (1.36)

Furthermore, the first Piola-Kirchhoff stress tensor can be obtained by conve-
niently rewriting the strain energy function W as a function of F, W̃ (F), to
yield

S = ∂W̃ (F)
∂F

. (1.37)

13
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1.5.1 Compressible hyperelastic materials

The strain energy function chosen for the compressible material investigated
in the present work is assumed in the form proposed by Pence and Gou (2015,
their eq. (2.11)) for a nearly incompressible neo-Hookean material

W = µ/2 [I1(B) − 3 − ln (I3(B))]+

+1/2 (κ − 2/3µ) (
√
I3(B) − 1)

2
,

(1.38)

where I1(B) = tr B, I3(B) = det B, while µ and κ are the shear and bulk
moduli of the material in the reference configuration, related to the equivalents
of the Young modulus E and the Poisson’s ratio ν through µ = E/(2 (1 + ν))
and κ = E/(3 (1 − 2ν)). Equation (1.38) describes a nearly incompressible neo-
Hookean strain energy which, as a variant of the model used by Liu and Bertoldi
(2015) and proposed by Rivlin and Thomas (1951), satisfies the stress-free
condition of the undeformed state, Eq. (1.39)1, and the consistency condition
with the classical linearized elasticity theory, Eqs. (1.39)2 and (1.39)3 (Horgan
and Saccomandi 2004)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

W ,1 + 2W ,2 +W ,3 = 0 ,
W ,1 +W ,2 = −(W ,2 +W ,3) = µ/2 ,
W ,11 + 4W ,12 + 4W ,22 + 2W ,13 + 4W ,23 +W ,33 = κ/4 + µ/3 ,

(1.39)

where W ,i = ∂W /∂Ii(I1 = I2 = 3,I3 = 1). Therefore, the expression for the
Kirchhoff stress becomes

K = µ (B − I) + J (κ − 2/3µ)(J − 1) I . (1.40)

The first Piola-Kirchhoff can be calculated as S = K F−⊺.

1.5.2 Incompressible hyperelastic materials

In this section, the relations governing the behavior of some classes of incom-
pressible materials are presented. A material is called incompressible if each and

14



1 Elements of continuum mechanics

every motion of its material particles is isochoric. Hence, the internal constraint
that has to be taken into account in the constitutive law is

det F = 1 . (1.41)

Condition (1.41) enters the constitutive law by means of a Lagrange multiplier
π, such that the stress-deformation relation can be expressed as (Gurtin 1981)

T = −π I + β1 B + β−1 B−1 , (1.42)

where β1 and β−1 are the so-called response coefficients and are functions either
of the two invariants I1 = tr B, I2 = tr B2 or, equivalently, of the principal
stretches λi. It is worth highlighting the fact that the response coefficient
cannot take arbitrary values, but are subject to empirical inequalities on the
basis of experimental evidence (Truesdell and Noll 2004)

β1 > 0 , β−1 ≤ 0 . (1.43)

Furthermore, it is interesting to note that the coefficient βi can be explicitly
determined once the current state of stress and deformation is known. To obtain
this minor proof, it is sufficient to express (1.42) with respect to the Eulerian
principal axes, yielding the following relations

Tii = −π + β1 λi + β−1 λ
−1
i , i = 1,2,3 , (1.44)

no sum over i. Hence, taking the difference of the first (i = 1) and the second
(i = 2) equation with the third (i = 3) allows for the elimination of the unknown
Lagrange multiplier π, leading to

⎧⎪⎪⎨⎪⎪⎩

T11 − T33 = β1(λ2
1 − λ2

3) − β−1(λ−2
1 − λ−2

3 ) ,
T22 − T33 = β−1(λ2

2 − λ2
3) − β−1(λ−2

2 − λ−2
3 ) .

(1.45)

Solving (1.45) for the coefficients β1 and β−1 yields

β1 =
1

λ2
1 − λ2

2
[ λ2

1
λ2

1 − λ2
3
(T11 − T33) −

λ2
2

λ2
2 − λ2

3
(T22 − T33)] ,

β−1 =
1

λ2
1 − λ2

2
[ 1
λ2

1 − λ2
3
(T11 − T33) −

1
λ2

2 − λ2
3
(T22 − T33)] ,

(1.46)

under the incompressibility constraint λ3 = f(λ−1
1 , λ

−1
2 ), equivalent to det F = 1.
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1.5.3 Some strain energy functions for incompressbile
materials

In this section, two classes of strain energy functions for isotropic hyperlelastic
solids are presented, namely the class of functions (Ogden 1972a) and the finite
strain generalization of the J2-deformation theory of plasticity (Hutchinson and
Neale 1978).
The family of strain energy functions proposed by Ogden (1972a) is

W (λ1, λ2, λ3) =
M

∑
s=1

[βs
γs

(λγs

1 + λγs

2 + λγs

3 − 3)] , (1.47)

and its results were shown to be in agreement with the experimental data offered
in Treloar (1944) for the case of simple tension, pure shear and equibiaxial
tension (Treloar 2009). For consistency with the linearized elasticity it is
required that

2µ = β1

M

∑
s=1

[βs
β1
γs] , (1.48)

where µ = E/3 is the conventional shear modulus and E is the Young modulus.
The above relation may be manipulated as

β1 = 2µ(
M

∑
s=1

[βs
β1
γs])

−1

, (1.49)

and used to express the constitutive law (1.42) as

T + π I = 2µ(
M

∑
s=1

[βs
β1
γs])

−1 M

∑
s=1

[βs
β1

Bγs/2] , (1.50)

where the left Green-Lagrange strain tensor is expressed in its spectral repre-
sentation (1.21).
For later use (cp. §2.3), in what follows, the constitutive law of the class

of Ogden materials (1.50) is further manipulated under the hypothesis of
axisymmetric pre-buckling state, where the load is assumed to act in the
direction of the axis of revolution only. The only nonzero stress component of
the Cauchy stress is Tzz, such that

T = Tzz G , G = ez ⊗ ez , (1.51)
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and condition Trr = Tθθ = 0 allows for the determination of the Lagrange
multiplier π

π = 2µ(
M

∑
s=1

[βs
β1
γs])

−1 M

∑
s=1

[βs
β1
λ
−γs/2
z ] . (1.52)

Hence

Tzz = 2µ(
M

∑
s=1

[βs
β1
γs])

−1 M

∑
s=1

[βs
β1
λ
−γs/2
z (λ3γs/2

z − 1)] . (1.53)

As a particular case of the Ogden material, the Mooney-Rivlin material model
(Mooney 1940; Rivlin 1948) can be recovered setting M = 2, γ1 = 2, γ2 = −2
in Eq. (1.47). Note that the coefficients βi are assumed to be constant, thus
independent of the amount of stretch described by the quantities λi. Under the
hypothesis (1.51), the first response coefficient reads β1 = µ/(1 − β), so that

TMR = µ (1 − β)−1 [λ−1
z (λ3

z − 1) + β λz (λ−3
z − 1)] G , (1.54)

where µ = E/3 is the shear modulus, β = β−1/β1 is the ratio between the two
constant response coefficients and G = ez ⊗ ez. For swollen sulfur-vulcanized nat-
ural rubber, Treloar (2009) found very good agreements with the experimental
dataset (Treloar 1948) by setting β = −1/10.

The neo-Hookean material model is recovered by settingM = 2, γ1 = 2, γ2 = −2
in Eq. (1.47). Hence β1 = µ, β−1 = 0 and the Cauchy stress relates to the axial
stretch under the hypothesis (1.51) as

TnH = µλ−1
z (λ3

z − 1)G , G = ez ⊗ ez , (1.55)

where µ = E/3 is the shear modulus.
The second class of incompressible materials considered in what follows is

the so-called J2-deformation theory of plasticity (Hutchinson and Neale 1980;
Hutchinson and Tvergaard 1980; Neale 1981). The constitutive law can be
expressed by

Tii = −π +
2
3 Es εii , no sum over i, i = 1,2,3 , (1.56)

where π = vol T is the Lagrange multiplier characterizing the incompressibility
constraint, vol T being the volumetric part of T defined as vol T = tr T/3.
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Es =K εN−1
e is the secant modulus, εii = logλi are the logarithmic strains, K is

a positive constitutive parameter, N ∈ ]0,1] is the strain hardening exponent
and εe is the effective strain defined as

εe =
√

2
3 (ε2

1 + ε2
2 + ε2

3) . (1.57)

Therefore, the strain energy function WJ2 can be expressed as

WJ2 =
K

N + 1 ε
N+1
e , ε1 + ε2 + ε3 = 0 , (1.58)

and the Cauchy stress for a J2-deformation theory material reads

TJ2 + π I = 2
3 Kε

N−1
e

3
∑
i=1

[log (λi)vi ⊗ vi] . (1.59)

From Eq. (1.59), it can be immediately seen that the tangent stiffness ap-
proaches infinity in the vicinity of the unloaded state and, therefore, the stress
response is discontinuous. Consequently, the isotropy that characterizes the
unloaded state is immediately lost, discontinuously, whenever a loading path is
prescribed starting from the unloaded configuration.
Specializing the above theory to the case of axisymmetric deformations is

necessary for the problem tackled in Ch. 6.1. By identifying λ1 with the stretch
aligned with the axis of symmetry, say λz, and due to the incompressibility
constraint (1.41), one obtains λr = λθ =

√
λz. Hence the effective strain εe reads

εe = ∣logλz ∣ , (1.60)

and the expression for the Cauchy stress reads

TJ2 + π I = 1
3 K ∣logλz ∣N−1 log (λz)(−I + 3 G) , (1.61)

where G = ez ⊗ ez, being ez the unit vector aligned with the z-axis, i.e. the
axis of symmetry. Next, the expressions for the response coefficients βi are
specialized to the axisymmetric case for J2-deformation theory too. Noting that

Tii − T33 =
2
3 K εN−1

e log (λi/λ3) , (1.62)
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and
lim
λ2→λ3

[ λ2
2

λ2
2 − λ2

3
(T22 − T33)] =

1
3 Kε

N−1
e , (1.63)

the response coefficients for the axisymmetric case read

β1 =K εN−1
e

λz
λ3
z − 1 ( λ3

z

λ3
z − 1 logλz −

1
3) ,

β−1 =K εN−1
e

λ2
z

λ3
z − 1 ( 1

λ3
z − 1 logλz −

1
3) .

(1.64)

Moreover, if the only load acting on the system is prescribed along the axis of
symmetry, from the fact that the only non-zero component of the Cauchy stress
is Tzz, it follows

π = 1
3 Kε

N−1
e logλz , (1.65)

and, therefore
Tzz =K ∣logλz ∣N−1 logλz . (1.66)
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2 Incremental constitutive
equations for isotropic,
hyperelastic materials

The following sections give a brief overview of the fundamental equations
governing the mechanics of incremental deformations superimposed on a given
state of strain for isotropic, hyperelastic materials.

2.1 Incremental elastic constitutive equations
The increment in the generic Eulerian stress measure, say ∆T(m) is calculated
as a Taylor series expansion of the consitutive law (1.28) conveniently expressed
as a function of the generic strain measure E(m)

T(m) = T̂(m)(E(m)) , (2.1)

such that, for a small increment in the strain measure ∆E(m), the increment
reads

∆T(m) ∝ ∂ T̂(m)

∂E(m)
∶ ∆E(m) . (2.2)

Furthermore, assuming that the stress increment is state-dependent only,
Eq. (2.2) can be equivalently obtained taking the material time derivative
of the constitutive relation (2.1), such that

Ṫ(m) = E ∶ Ė(m) , (2.3)

where the fourth-order tensor E is the so-called elastic tensor defined as

E = ∂ T̂(m)

∂E(m)
, or E = ∂

2W (E(m))
∂2E(m)

, (2.4)
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if a strain energy function (1.35) exists, i.e. for a hyperelastic material. It is
common practice (e.g. Hutchinson and Tvergaard 1980; Marsden and Hughes
1983; Christoffersen 1991; Bigoni and Gei 2001; Bower 2010) to express the
incremental constitutive relations by means of incremental objective stress
quantities such as the Oldroyd (1950) and Jaumann (1905) increments, defined
as

K̊ = K̇ −LK −KL⊺ ,
▿

K = K̇ −WK +KW , (2.5)

where W = (L −L⊺)/2 is the skew-symmetric part of L. Note that the above
definitions hold true also for the Cauchy stress.

As an example, the calculation of the incremental constitutive relation between
the second Piola-Kirchhoff stress tensor T(2) and the Green-Lagrange strain
tensor is offered in what follows. The increment Ṫ(2) = (T(2))⋅ reads

Ṫ(2) = (F−1 K F−⊺)⋅ , (2.6)

and recalling that (F−1)⋅ = −F−1 L, Eq. (2.6) transforms to

Ṫ(2) = −F−1 L K F−⊺ +F−1 K̇ F−⊺ −F−1 K L⊺ F−⊺ . (2.7)

Solving Eq. (2.7) for K̇ yields

K̇ = F Ṫ(2) F⊺ +L K +K L⊺ . (2.8)

Eq. (2.8) significantly simplifies if the Oldroyd rate of the Kirchhoff stress (2.5)1

is used, yielding
K̊ = F Ṫ(2) F⊺ . (2.9)

Analogously, the material time derivative of the Green-Lagrange strain tensor
reads

Ė(2) = F⊺ D F , (2.10)

such that the incremental constitutive law (2.4) can be manipulated to yield

K̊ = F (∂T(2)

∂E(2)
∶ (F⊺ D F)) F⊺ . (2.11)

By means of the products defined in Ch. 1, Eq. (2.11) transforms into

K̊ = H ∶ D , where H = F ⊠F ○ ∂T(2)

∂E(2)
○ (F ⊠F)⊺ . (2.12)
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2 Incremental constitutive equations for isotropic, hyperelastic materials

For a hyperelastic material, the fourth-order incremental constitutive tensor H
in (2.12)2 can be derived directly from the strain energy density function W as

H = F ⊠F ○ ∂
2W (E(2))
∂E(2) ∂E(2)

○ (F ⊠F)⊺ . (2.13)

2.2 Relative Lagrangian description
The results of §2.1 were obtained assuming that the constitutive law (2.1), in
general nonlinear, is always known for each state of deformation. In doing
this, the increment is calculated starting from a reference configuration B0 that
continuously evolves with the deformation and at each step is identified with
the current configuration B. However, in practical problems, the constitutive
relation between stress and strain measures is usually known for particular
configurations only, where the system shows peculiar properties: for example
the body is unstressed, or isotropic. Such configurations are denoted with B◻.
Hence, the relations of §2.1 need further manipulations so that it is possible to
express the increment of a stress measure at a specific strain level based on the
knowledge of the constitutive law in the ‘special’ configuration B◻.

The strategy to tackle the problem consists of three key-steps (Bigoni 2012).
Firstly, three different configurations B◻, B0 and B are introduced, see Fig. 2.1.
The motion of a material point x◻ ∈ B◻ into its transformed x0 ∈ B0 is described
by means of the vector-valued mapping χ⋆, assumed to be independent from the
time-parameter t, whereas the motion of a material point x0 into B is described
by the time-dependent vector-valued function χ. Consequently:

x = χ (χ⋆(x◻), t) . (2.14)

Hence, the deformation gradients for each motion can be defined as

F = ∂χ

∂x0
, F⋆ =

∂χ⋆

∂x◻
, (2.15)

whereas their composition yields F◻ = F F⋆. Note that F⋆ is time-independent.
The constitutive law is introduced in the special configuration B◻ and is

expressed by means of the second Piola-Kirchhoff stress tensor reads, under the
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*

Fig. 2.1: Definition of the different configurations involved in the computation of the
incremental constitutive relations in the relative Lagrangian description.

notation introduced so far

T(2)
◻ = J◻ F−1

◻ T F−⊺

◻ . (2.16)

Next, the material time derivative of T(2)
◻ , Ṫ(2)

◻ , can formally be computed as

Ṫ(2)
◻ = (J◻ F−1

◻ T F−⊺

◻ )⋅ . (2.17)

However, the final expression of (2.17) is obtained after a third step is performed,
namely the two configurations B0 and B are taken to coincide, i.e. the limit
F→ I is calculated. The following intermediate results are obtained

J̇◻ =
∂ det (F◻)
∂F◻

∶ ∂F◻

∂t
= J◻ tr D , (F−1

◻ )⋅ = −F−1
◻ L ,

such that
Ṫ(2)
◻ = J◻ F−1

◻ (Ṫ + (tr D)T −LT −TL⊺)F−⊺

◻ . (2.18)
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2 Incremental constitutive equations for isotropic, hyperelastic materials

Rearranging the above relation to obtain Ṫ as a function of Ṫ(2)
◻ allows to

express the Jaumann derivative of the Cauchy stress as follows
▿

T = 1
J◻

F◻ Ṫ(2)
◻ F⊺

◻ − (tr D)T +D T +T D , (2.19)

or, equivalently
▿

T = H ∶ D + (−T⊗ I + I ⊠T +T ⊠ I) ∶ D , (2.20)

where, for a hyperelastic material (2.4)2, the fourth-order incremental elasticity
tensor H (2.13) reads

H = 1
J◻

(F◻ ⊠F◻)
∂2W

∂E(2)
◻ ∂E(2)

◻

(F◻ ⊠F◻)
⊺
. (2.21)

The same incremental relation can be expressed in a more compact way using
the definition of the Oldroyd derivative of the Kirchhoff stress, which leads to

K̊ = H ∶ D , (2.22)

where D = (L +L⊺)/2 is the rate of strain.

2.3 Stress increments for compressible
hyperelasticity

In this section, reference is made to a hyperelastic, isotropic material, for which
the Oldroyd increment of the Kirchhoff stress can be expressed through a strain
energy density W defined in the reference configuration by means of Eq. (2.22).
Inserting the definition (1.38) for the strain energy function into Eq. (2.22)

yields the following form for the elastic fourth-order tensor H defined in (2.13)

H = (κ − 2/3µ)(2J◻ − 1) I⊗ I (F−1
◻ ⊠F⊺

◻)+
+2 [µ/J◻ − (κ − 2/3µ)(J◻ − 1)] S .

Hence, it is an easy task to derive the Oldroyd increment of the Kirchhoff
stress (1.40), which reads as

K̊ = (κ − 2/3µ)(2J◻ − 1) tr (F−1
◻ D F◻) I+

+2 [µ/J◻ − (κ − 2/3µ)(J◻ − 1)]D .
(2.23)
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The increment of the first Piola-Kirchhoff stress tensor can be calculated by
means of Eq. (3.5).

2.4 Stress increments for incompressible
hyperelasticity

In the following, an overview is given of the derivation of incremental constitutive
relations for incompressible materials. The equations are then specialized to
the case of the Mooney-Rivlin material model and the J2-deformation theory
material model.
Formally, the increment of Eq. (1.42) is calculated as

Ṫ = −π̇ I + β1 Ḃ + β−1 (B−1)⋅ + β̇1 B + β̇−1 B−1 , (2.24)

where
Ḃ = L B +B L⊺ , and (B−1)⋅ = −(B−1 L +L⊺ B−1) . (2.25)

Since the response coefficients β̇i are functions of the invariants I1, I2, their
increments can be calculated as

β̇i =
∂βi
∂I1
İ1 +

∂βi
∂I2
İ2 , (2.26)

and noting that tr (D B) = tr (B D) and that tr (W B) = 0, the following results
are obtained

İ1 = 2 B ∶ D , and İ2 = 2 B2 ∶ D . (2.27)

Hence, the final form of the increments of the response coefficient reads

β̇i = 2 ∂βi
∂I1

B ∶ D + 4 ∂βi
∂I2

B2 ∶ D . (2.28)

The above calculations were performed assuming that the coefficients βi were
functions of the (non-standard) invariants I1 and I2. However, as mentioned in
§1.4, such coefficient can also be expressed by means of the principal stretches
λi; under this hypothesis:

β̇i =
∂βi
∂λ1

λ̇1 +
∂βi
∂λ2

λ̇2 .
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2 Incremental constitutive equations for isotropic, hyperelastic materials

The expressions for the increments λ̇i can be obtained by means of the spectral
representation of the left Cauchy-Green deformation tensor B (1.21)2

Ḃ =
3
∑
i=1

[2λi λ̇i bi ⊗ bi + λ2
i ḃi ⊗ bi + λ2

i bi ⊗ ḃi] , (2.29)

where bi are the principal directions of B. To further manipulate Eq. (2.29),
the following double contraction between Ḃ and the dyad b1 ⊗ b1 is calculated

Ḃ ∶ b1 ⊗ b1 = 2λ1λ̇1 , (2.30)

showing that the increment of the principal stretch λi can be expressed as

λ̇i =
1

2λi
Ḃ ∶ bi ⊗ bi , (2.31)

no sum over i, i = 1, 2. Noting that Ḃ ∶ bi ⊗ bi = Ḃii and using (2.25)1, the final
expression for the increment of the principal stretches is obtained

λ̇i = λiDii , (2.32)

no sum over i, i = 1,2. Therefore Eq. (2.28) reads

β̇i = ( ∂βi
∂λ1

λ1 b1 ⊗ b1 +
∂βi
∂λ2

λ2 b2 ⊗ b2) ∶ D , i = 1, −1 . (2.33)

The use of (2.33) into Eq. (2.24) yields

Ṫ = −π̇ I + β1 (LB +BL⊺) − β−1 (B−1L +L⊺B−1) +

+ (∂β1

∂λ1
λ1 b1 ⊗ b1 +

∂β1

∂λ2
λ2 b2 ⊗ b2) ∶ D B+

+ (∂β−1

∂λ1
λ1 b1 ⊗ b1 +

∂β−1

∂λ2
λ2 b2 ⊗ b2) ∶ D B−1 .

(2.34)

As done for Eq. (2.8) in §2.1, the use of the Oldroyd or Jaumann rates yields
the following equivalent expressions for the incremental constitutive law for the
class of incompressible isotropic materials

T̊ = −π̇ I +O ∶ D and
▿

T = −π̇ I + J ∶ D , (2.35)
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where O (J) represents the fourth-order incremental elastic tensor relating the
Oldroyd (Jaumann) rate of the Cauchy stress with the strain rate D

O = ∂β1

∂λ1
λ1 B⊗ b1 ⊗ b1 +

∂β1

∂λ2
λ2 B⊗ b2 ⊗ b2 +

+ ∂β−1

∂λ1
λ1 B−1 ⊗ b1 ⊗ b1 +

∂β−1

∂λ2
λ2 B−1 ⊗ b2 ⊗ b2 +

+ 2π I ⊠ I − 2β−1 (B−1 ⊠ I⊺ + I ⊠B−⊺) ,

(2.36)

and
J = ∂β1

∂λ1
λ1 B⊗ b1 ⊗ b1 +

∂β1

∂λ2
λ2 B⊗ b2 ⊗ b2 +

+ ∂β−1

∂λ1
λ1 B−1 ⊗ b1 ⊗ b1 +

∂β−1

∂λ2
λ2 B−1 ⊗ b2 ⊗ b2 +

+ β1 (I ⊠B⊺ +B ⊠ I⊺) − β−1 (I ⊠B−⊺ +B−1 ⊠ I⊺) .

(2.37)

For the particular case of axisymmetric geometry and deformation, say about
the z-axis, the problem is governed by the axial stretch only, denoted by λz
and identified with the stretch λ1. Due to incompressibility and axisymmetry
the explicit dependance on the amount of stretch in the axial direction can be
written as λ2 = λ3 = λ−1/2

z . Under such hypothesis, the response coefficients too
are functions of λz only, βi = βi(λz), and the following relations hold true

B = λz−1 (I + (λ3
z − 1)G) , β̇i =

∂βi
∂λz

λz G ∶ D , (2.38)

where G = ez ⊗ ez. Therefore, Eqs. (2.36) and (2.37) simplify as

O = 2(π − 2β−1λz) I ⊠ I + 2β−1
λ3
z − 1
λ2
z

(G ⊠ I + I ⊠G)+

+ (∂β1

∂λz
+ ∂β−1

∂λz
λ2
z) I⊗G + λ

3
z − 1
λz

(∂β1

∂λz
λz −

∂β−1

∂λz
)G⊗G ,

(2.39)

and

J = 2( 1
λz
β1 − β−1λz) I ⊠ I + λ

3
z − 1
λz

(β1 +
1
λz
β−1) (G ⊠ I + I ⊠G)+

+ (∂β1

∂λz
+ ∂β−1

∂λz
λ2
z) I⊗G + λ

3
z − 1
λz

(∂β1

∂λz
λz −

∂β−1

∂λz
)G⊗G ,

(2.40)

respectively.
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As an example, we specialize the incremental constitutive tensor (2.36) for
the Mooney-Rivlin material model under the axisymmetric hypothesis in the
pre-buckling state

T̊ + π̇I = 2πD − 2β1 β (B−1D +D B−1)

= 2µ
1 − β [2 D − β (B−1D +DB−1)] ,

(2.41)

where β = β−1/β1.
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3 Incremental field equations in
terms of generalized stresses

The incremental equilibrium equations are derived, which govern the buckling
of a cylindrical shell of current length l, external radius re and internal radius
ri. The cylinder, whose thickness is denoted by t = re − ri, is not assumed
to be thin for the moment; therefore all results presented in this Section are
rigorous in terms of mean values of the incremental field quantities. The adopted
geometrical descriptors are the ‘mid-surface’ of the shell, defined through the
mid-radius a = (re + ri)/2 and the so-called ‘reduced radius’ r = r − a, being r
the radial coordinate.
Neglecting body forces, the incremental equilibrium of a pre-stressed solid

can be expressed by means of the increment of the first Piola-Kirchhoff stress
tensor S, as

Div Ṡ = 0 , (3.1)

In a polar coordinate system {er,eθ,ez}, Eq. (3.1) becomes
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ṡrr − Ṡθθ + Ṡrθ,θ + (a + r) (Ṡrz,z + Ṡrr,r) = 0 ,
Ṡrθ + Ṡθr + Ṡθθ,θ + (a + r) (Ṡθz,z + Ṡθr,r) = 0 ,
Ṡzr + Ṡzθ,θ + (a + r) (Ṡzz,z + Ṡzr,r) = 0.

(3.2)

Finally, the cylindrical shell is subject to traction-free surface boundary condi-
tions on its lateral surface, so that

Ṡir(r = ±t/2) = 0 , i = r, θ, z. (3.3)

As S = KF−⊺, Ṡ and K̇ are related through

Ṡ = (K̇ −KL⊺)F−⊺ , (3.4)
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where L = grad v is the gradient of the incremental displacement field, v. In a
relative Lagrangean description, briefly described in §2.2, equation (3.4) becomes

Ṡ = (div v)T + Ṫ −KL⊺ . (3.5)

The (undeformed, stress-free) reference configuration may be described by
means of the cylindrical coordinates (r0, θ0, z0), where the z0-axis is aligned
with the axis of revolution of the shell.

Before bifurcation, the shell is assumed to undergo a homogeneous, axisym-
metric compression in the longitudinal direction z, so that a uniaxial stress field
is generated, which can be written as

K =Kzz G , G = ez ⊗ ez . (3.6)

The current configuration (r, θ, z) is fully described by means of the principal
stretches {λr, λθ, λz}

r = λr r0, θ = λθ θ0, z = λz z0 ,

with λr = λθ in case of axial symmetry. Therefore, the deformation gradient
and the left Cauchy-Green deformation tensor read

F = diag{λr; λθ; λz} and B = FF⊺ = diag{λ2
r;λ2

θ;λ2
z} , (3.7)

respectively.
Inserting the applied uniaxial stress in Eq. (3.6) into Eq. (3.5), the following

relations between the components of the incremental first Piola-Kirchhoff stress
Ṡ are derived:

Ṡθr = Ṡrθ , Ṡzr = Ṡrz − vr,zKzz , Ṡzθ = Ṡθz − vθ,zKzz . (3.8)

The role played by the assumed pre-buckling state is twofold and depends
on the constitutive law analyzed. For the nearly incompressible neo-Hookean
material (1.38), such an assumption enforces the equality between the radial
and circumferential stretches λθ = λr and it requires that Krr = Kθθ = 0. The
latter condition reads

µ (λ2
r − 1) + (κ − 2/3µ)λ2

r λz (λ2
r λz − 1) = 0 , (3.9)
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3 Incremental field equations in terms of generalized stresses

and solving Eq. (3.9) in terms of the radial stretch λr yields

λr = [2 (λz + 1)ν + δ − 1
4ν λ2

z

]
1/2

, (3.10)

where
δ =

√
1 − 4ν(λz − 1) [λz(3ν − 2) + ν − 1] . (3.11)

The use of Eq. (3.10) substantially simplifies Eqs. (1.40), so that its only non-zero
components read as

Szz = −
E (2ν (−2λ4

z + λz + 1) + δ − 1)
8λ3

z ν (ν + 1) , (3.12)

and Kzz = λz Szz.
Note that Flügge has used a constitutive equation as (2.23), but with F◻ = I

and J◻ = 1, namely

K̊ = (κ − 2/3µ) (tr D) I + 2µD. (3.13)

3.1 Exact formulation

3.1.1 Generalized stresses

In the shell theory, it is a common practice to introduce the so-called generalized
stresses, namely, the stress resultants defined per unit length acting on the
mid-surface of the shell. For a cylinder of current (constant) wall thickness
t = λr t0, four averages are introduced, namely, the longitudinal and radial
averages for resultant forces defined as

⋆
n ⋅ θ = ∫

t/2

−t/2

⋆

[stress]
⋅ θ dr ,

⋆
n ⋅ z = ∫

t/2

−t/2

⋆

[stress]
⋅ z (1 + r/a) dr ,

(3.14)

and for resultant moments, namely
⋆
m ⋅ θ = −∫

t/2

−t/2

⋆

[stress]
⋅ θ r dr ,

⋆
m ⋅ z = −∫

t/2

−t/2

⋆

[stress]
⋅ z (1 + r/a) r dr ,

(3.15)
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where the subscript ⋅ stands for r, θ, or z in turn, the superimposed ‘⋆’
identifies a suitable increment and [stress] a generic Eulerian stress measure,
whose average resultant force and moment are n and m, respectively. The minus
signs in the above definitions are introduced such that to a positive resultant
moment corresponds a tensile stress distribution on the inner surface of the
cylinder. Note that the term 1 + r/a arises from the integration over a circular
sector. In particular, the following generalized normal stresses play a role in
what follows

nzz : normal longitudinal force;
nzθ : longitudinal shear force;
nθθ : normal hoop force;
nθz : circumferential shear force;
nrθ : transverse shear force;
nrz : transverse shear force;

whereas for the generalized moments, the following quantities are introduced

mzz : longitudinal bending moment;
mzθ : longitudinal twisting moment;
mθθ : hoop moment;
mθz : circumferential twisting moment.

3.1.2 Incremental equilibrium equations in the referential
description

Let us focus on Eq. (3.2)2 and perform a through-thickness integration, after a
multiplication by the reduced radius r; this yields

∫
t/2

−t/2
(Ṡrθ + Ṡθr) r dr + ∫

t/2

−t/2
Ṡθθ,θ r dr+

+ a∫
t/2

−t/2
(Ṡθz,z + Ṡθr,r) (1 + r/a) r dr = 0 ,

(3.16)

where the generalized moments ṁθθ and ṁθz defined according to Eq. (3.15)
can be easily recognized. The term

∫
t/2

−t/2
Ṡθr,r (1 + r/a) r dr
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3 Incremental field equations in terms of generalized stresses

can be transformed through an integration by parts as

−a ∫
t/2

−t/2
Ṡθr (1 + 2 r/a) dr + a [Ṡθr r (1 + r/a)]∣

t/2

−t/2
,

so that, exploiting Eq. (3.8)1, Eq. (3.16) becomes

ṁθθ,θ + a ṁθz,z − a ṅrθ − a [Ṡθr r (1 + r/a)]∣
t/2

−t/2
= 0 . (3.17)

The procedure leading to equation (3.17) can be repeated to yield the other
rotational equilibrium equation

a ṁzz,z + ṁzθ,θ − a ṅrz − P a/t∫
t/2

−t/2
vr,z (1 + r/a) dr+

+ a [Ṡzr r (1 + r/a)]∣
t/2

−t/2
= 0 .

(3.18)

From a mechanical point of view, Eqs. (3.17) and (3.18) correspond to the
moment equilibrium about the θ- and z-axis, respectively.

The three translational equilibrium equations for the generalized stresses can
be obtained performing a through-thickness integration in a similar vein, with
no need to premultiply Eqs. (3.2) by r, leading to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ṅzz,z + ṅzθ,θ + a [Ṡzr (1 + r/a)]∣
t/2

−t/2
= 0 ,

ṅθθ,θ + a ṅθz,z + ṅrθ + a [Ṡθr (1 + r/a)]∣
t/2

−t/2
= 0 ,

ṅrθ,θ + a ṅrz,z − ṅθθ + a [Ṡrr (1 + r/a)]∣
t/2

−t/2
= 0 .

(3.19)

Imposing the traction-free surface boundary conditions (3.3) on Eqs. (3.19)
and (3.18), the translational and rotational equilibrium equations are finally
obtained

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ṅzz,z + ṅzθ,θ = 0 ,
ṅθθ,θ + a ṅθz,z + ṅrθ = 0 ,
ṅrθ,θ + a ṅrz,z − ṅθθ = 0 ,
ṁθθ,θ + a ṁθz,z + a ṅrθ = 0 ,

a ṁzz,z + ṁzθ,θ + a ṅrz − P a/t∫
t/2

−t/2
vr,z (1 + r/a) dr = 0 ,

(3.20)
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where P is the load per unit length along the mid circular surface, P =Kzz t.
A substitution of Eq. (3.20)4 and Eq. (3.20)5 into Eq. (3.20)2 and Eq. (3.20)3

allows the elimination of the transverse shear forces, so that the following
equations are found

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ṅzz,z + ṅzθ,θ = 0 ,
a ṅθθ,θ + a2 ṅθz,z − ṁθθ,θ − a ṁθz,z = 0 ,

ṁθθ,θθ + a ṁθz,zθ + a2 ṁzz,zz + a ṁzθ,θz +

− P a2/t∫
t/2

−t/2
vr,zz (1 + r/a) dr = 0 ,

,

(3.21)

where the calculation rules for the transverse shear forces are

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ṅrθ = −ṁθθ,θ/a − ṁθz,z ,

ṅrz = −ṁzz,z − ṁzθ,θ/a + P /t∫
t/2

−t/2
vr,z (1 + r/a) dr .

(3.22)

Note that all derived equations, and in particular Eqs. (3.21), are exact, i.e. no
approximations were introduced so far.

3.1.3 Spatial formulation in terms of Oldroyd increment

The incremental equilibrium equations Eqs. (3.21) can be equivalently expressed
by means of a new set of generalized stresses defined by means of the Oldroyd
derivative of the Kirchhoff stress defined by means of (2.5)1

K̊ = Ṡ −LK . (3.23)

A new set of generalized stresses is obtained from the specialization of the
generic definitions given in Eqs. (3.14) and (3.15), employing now the Oldroyd
rate of the Kirchhoff stress.

Hence, the traction-free boundary condition (3.3) transforms in terms of the
Oldroyd increment of the Kirchhoff stress as

K̊ir(r = ±t/2) = 0 , i = r, θ, z . (3.24)
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3 Incremental field equations in terms of generalized stresses

Using the symmetry of K̊, Eqs. (3.21) become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 n̊zz,z + a n̊zθ,θ + P a2/t∫
t/2

−t/2
vz,zz (1 + r/a) dr = 0 ,

a n̊θθ,θ + a2 n̊θz,z − m̊θθ,θ − a m̊θz,z +

+ P a2/t∫
t/2

−t/2
vθ,zz (1 + r/a)2 dr = 0 ,

m̊θθ,θθ + a m̊θz,θz + a2 m̊zz,zz + a m̊zθ,zθ + a n̊θθ +

− P a2/t∫
t/2

−t/2
(vθ,θzz

r

a
+ vz,zzzr + vr,zz) (1 + r

a
) dr = 0 .

(3.25)

3.2 Rotational equilibrium about the r-axis
A sixth incremental equilibrium equation, namely the rotational equilibrium
about the r-axis, can be obtained from a through thickness integration of
Eq. (3.8)3 after multiplication by (1 + r/a)

∫
t/2

−t/2
Ṡθz (1 + r/a) dr = ∫

t/2

−t/2
Ṡzθ (1 + r/a) dr+

+ ∫
t/2

−t/2
Kzz vθ,z (1 + r/a) dr .

(3.26)

The definitions of the generalized stresses according to (3.14) lead to the
referential expression

a ṅθz − a ṅzθ + ṁzθ = P a/t ∫
t/2

−t/2
vθ,z (1 + r/a) dr , (3.27)

which can be rewritten in a spatial formulation in terms of Oldroyd derivative
as

a n̊θz − a n̊zθ + m̊zθ = 0 . (3.28)

3.3 The Flügge approximation
Equations (3.25) are exact and will be used in the following. However, these
equations do not coincide with the corresponding equations provided by Flügge
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(1981), which can be recovered as an approximation of Eqs. (3.25) as follows. If
a Taylor series approximation is introduced for small thickness t of the cylinder
wall

1
t ∫

t/2

−t/2
vi (1 + r

a
)

2
dr = 1

t ∫
t/2

−t/2
vi (1 + r

a
) dr +O((t/a)2) ,

1
t ∫

t/2

−t/2
vi
r

a
(1 + r

a
) dr = O((t/a)2) ,

(3.29)

the equations given in Flügge (1981) are recovered

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 n̊zz,z + a n̊zθ,θ + P a2/t ∫
t/2

−t/2
vz,zz (1 + r/a) dr = 0 ,

a n̊θθ,θ + a2 n̊θz,z − m̊θθ,θ − a m̊θz,z +

+ P a2/t ∫
t/2

−t/2
vθ,zz (1 + r/a) dr = 0 ,

m̊θθ,θθ + a m̊θz,θz + a2 m̊zz,zz + a m̊zθ,zθ + a n̊θθ +

− P a2/t ∫
t/2

−t/2
vr,zz (1 + r/a) dr = 0 .

(3.30)

In addition to the above equations, Flügge adds Eq. (3.28) as a sixth equation.
Note that Flügge never explicitly mentions the Oldroyd increment nor the
Kirchhoff stress.

3.4 The plane stress approximation

When the wall of the cylinder is sufficiently thin, the plane stress assumption is
introduced, so that the increment in the radial stress is usually assumed to be
negligible. In the following we assume that this hypothesis holds true not only
for the ground state, but also when bifurcation occurs, so that

Ṡrr(r, θ, z) = 0 , r ∈ [−t/2; t/2] . (3.31)

Assumption (3.31) affects significantly the constitutive relations of the mate-
rial models considered in the present work. More precisely, it serves as condition
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3 Incremental field equations in terms of generalized stresses

to: i) link the radial stretch λr with the longitudinal stretch λz for the com-
pressible material described by Eq. (1.38); ii) determine the incompressibility
constraint π for the incompressible material models described by Eq. (1.42).
Starting with the compressible material (1.38), since Ṡrr = K̊rr, condition

(3.31) may be expressed in terms of Drr, using the increment in the first Piola-
Kirchhoff stress obtained through Eq. (2.23), yielding

Drr = −
(Dθθ +Dzz) (3κ − 2µ)(2λzν + ξ) ξ

2λzν [(3κ − 2µ)(2λz ν + ξ) + 24λz µν]
, (3.32)

where ξ = δ + 2ν − 1. Hence, substituting Eq. (3.32) back into the definition of
K̊ (2.22) yields the following expression for the out-of-diagonal components:

K̊αβ =
2µ
λz
Dαβ, {α,β} = {r, θ, z}, α ≠ β . (3.33)

For the class of incompressible materials, due to incompressibility, the com-
ponents of the symmetric part of the velocity gradient D are already linked by
condition tr (D) = 0, or, equivalently

Drr = −(Dθθ +Dzz) . (3.34)

Therefore, it is condition (3.31) that allows for the elimination of the incremental
Lagrange multiplier π̇ yielding

π̇nH = (2µDrr)/λz ,

for the neo-Hookean material model,

π̇MR = (2µ (−1 + βλ2
z)Drr/((−1 + β)λz) ,

for the Mooney-Rivlin material model, and

π̇J2 =Dzz
∂β1

∂λz
+ 2Drrβ1

λz
− 2Drr β−1λz +Dzz

∂β−1

∂λz
λ2
z (3.35)

for the J2-deformation theory material model, respectively.
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4 Kinematics of incremental
deformation for a prestressed
shell

4.1 A premise on the plane strain kinematics of
bending

As a premise to the introduction of the incremental kinematics of the thin-
walled cylinder, the Euler-Bernoulli kinematics of a beam, subject to small
displacement gradients, is briefly derived, with the usual assumptions, see for
instance (Love 1906).
The kinematics of the beam is chiefly described by the displacement ū(x01)

of its axis, which is assumed to behave as the Euler’s elastica, governing the
kinematics of an extensible line. Employing this theory, the unit vector n,
normal (counterclockwise rotated by π/2 with respect to the tangent) to the
deformed line at the coordinate x01, which singles out a point of the same line
in the straight reference configuration is (Bigoni 2012; Bigoni 2019)

n(x01) =
1√

(1 + u′1)2 + u′22
(−u′2 e1 + (1 + u′1)e2) . (4.1)

To introduce the thickness of a beam, the following displacement field is
postulated (see Fig. 4.1)

u(x01, x02) = u(x01) + x02 n(x01) − x02 e2 , (4.2)
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Fig. 4.1: The kinematics of plane strain bending of a beam under the hypothesis of
small displacement gradient

where x02 ∈ [−t/2,+t/2] and u(x01) represents now the displacement of the
beam’s centroid, with unit normal n(x01) given by Eq. (4.1). Component-wise
the displacement field (4.2) reads as

u1(x01, x02) = u1 − x02
u′2√

(1 + u′1)2 + u′22
,

u2(x01, x02) = u2 + x02
1 + u′1 −

√
(1 + u′1)2 + u′22

√
(1 + u′1)2 + u′22

,

(4.3)

so that where if the quantities (u′2)
2 and (u′1)2 and u′2u

′
1 are assumed to be

negligible compared to the unity, the linearized kinematics of beams is recovered

u1(x01, x02) ≈ u1 − u′2 x02, u2(x01) ≈ u2 . (4.4)

4.2 The kinematics of the shell

The kinematics of a prestressed shell is introduced as an extension of the above-
introduced rules for the beam, in other words, following the usual assumptions,
discussed, among many others, by Love (1906), Flügge (1932), Podio-Guidugli
(1989), Steigmann and Ogden (2014), and Geymonat et al. (2007). In particular,
in a polar coordinate system, the undeformed and deformed shell geometry
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4 Kinematics of incremental deformation for a prestressed shell

is expressed respectively as (Malvern 1969; Ogden 1984; Chapelle and Bathe
2011)

x0 = aer + z ez , x = (a + vr)er + vθ eθ + (z + vz)ez , (4.5)

where a is the radius of the undeformed cylindrical surface, vr, vθ and vz are
its displacement components. Note that unit vectors er and eθ are functions of
the angular coordinate θ.
The unit normal to the deformed surface is defined as

n = x,θ × x,z
∣x,θ × x,z ∣

, (4.6)

where
x,θ = a [vr,θ − vθ

a
er + (1 + vr + vθ,θ

a
) eθ +

vz,θ
a

ez] ,

x,z = vr,z er + vθ,z eθ + (1 + vz,z)ez .
(4.7)

The vectors defined in (4.7) are parallel to the vectors

x̂,θ =
(vr,θ − vθ)/a

1 + (vr + vθ,θ)/a
er + eθ +

vz,θ/a
1 + (vr + vθ,θ)/a

ez ,

x̂,z =
vr,z

1 + vz,z
er +

vθ,z
1 + vz,z

eθ + ez ,
(4.8)

which, to the leading-order in the components of the incremental displacement
gradient, are approximated by

x̃,θ =
(vr,θ − vθ)

a
er + eθ +

vz,θ
a

ez, x̃,z = vr,z er + vθ,z eθ + ez. (4.9)

Note that equations (4.8) are approximated to (4.9), because the gradient of
incremental displacement is assumed to be small. The parallelism (to the
leading order) of vectors (4.9) with x̂,θ and x̂,z can be proven by taking the
cross product. Hence, the leading order approximation of the unit normal to
the deformed cylindrical surface follows from x̃,θ × x̃,z as

n = er +
vθ − vr,θ

a
eθ − vr,z ez . (4.10)

From the knowledge of the unit normal (4.10) and analogously to the beam
theory approach, Eq. (4.2), the kinematics of a cylindrical shell can be assumed
as (Chapelle and Bathe 2011)

v(r, θ, z) = v(θ, z) + rn − r er , (4.11)
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where v = v(r = 0, θ, z).
Based on the above simplified kinematics, the gradient of incremental dis-

placements for the deformed shell is

∇v =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 (vr,θ − vθ)/a vr,z

vθ − vr,θ
a

1
a + r (vr −

r

a
vr,θθ + (1 + r

a
) vθ,θ) (1 + r

a
) vθ,z −

r

a
vr,θz

−vr,z
1

a + r (vz,θ − r vr,θz) vz,z − r vr,zz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

so that the components of the Eulerian incremental strain D follow

Drr =Drθ =Drz = 0 ,

Dθθ =
1

a + r (vr + (1 + r/a) vθ,θ) −
r

a (a + r) vr,θθ , Dzz = vz,z − r vr,zz ,

Dθz =
a

2 (a + r) [(1 + r
a
)

2
vθ,z +

vz,θ
a

− r
a
(1 + r

a
) vr,θz] .

(4.12)

An use of the constitutive equations (3.33) yields the non-zero components
of K̊, obtained under the hypotheses (3.10) and (3.32)

K̊θz = E∗Dθz/λz , K̊θθ = E∗ (ζ1Dθθ + ζ2Dzz) /γ ,

K̊zz = E∗ (ζ2Dθθ + ζ1Dzz) /γ ,
(4.13)

where
E∗ = E/(1 + ν) ,

δ = (4λ2
z ν (2 − 3ν) + 4λz ν (2ν − 1) + (1 − 2ν)2)1/2

,

γ = 2λ2
z ν [λz(3ν − 2) − 2ν + 1] ,

ζ1 = 4λ2
z ν(3ν − 2) + 4λz ν(1 − 2ν) − (2ν − 1)(δ + 2ν − 1) ,

ζ2 = 2λ2
z ν(3ν − 2) + 2λz ν(1 − 2ν) − (2ν − 1)(δ + 2ν − 1) .

Similar reasoning are applied to the other material models considered in this
work.
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5 Summary of the equations
governing the incremental
deformation of an
axially-stretched, thin-walled
cylinder

The results obtained so far are briefly summarized in this chapter. It has been
shown how to derive generalized (incremental) equilibrium equations starting
from the local (incremental) equilibrium conditions. This method applies also
to finite equilibrium equations: for example, in a Cartesian coordinate systems,
the equilibrium equations for a beam can be recovered (for a similar approach
see Janečka et al. 2016). Once the generalized stresses are defined either in
terms of the increment of the first Piola-Kirchhoff stress tensor or by means
of another suitable stress increment, the next step consists in the choice of a
strain energy function to relate (incremental) stresses and (incremental) strains:
the procedure shown in the previous chapter has been applied to different
hyperelastic materials and as such can be defined as material-independent. To
reduce the complexity of the problem, a suitable kinematics was chosen in order
to express the rates of deformation at each material point as functions of their
corresponding projections onto the mid-surface of the continuum. The plane
stress approximations was then assumed to be valid as the shell thickness was
assumed to be thin.
Next, the final form of the incremental equilibrium equations for the nearly
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incompressible neo-Hookean material (1.38) is offered, as a result of the above
described steps

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12ν τ ζ3 vr,z − a2 (p̃z + ζ6) τ 3 vr,zzz + 6 (ζ5 + 1) ζ4 vr,θθz +
+ 12a (p̃z + ζ6) τ vz,zz + 6 (ζ4 + τ)(ζ5 + 1) vz,θθ/a+
+ 6 ((3 ζ3 − 2)ν + 1) τ vθ,θz = 0 ,

24 ζ7 vr,θ/a + a (1 − ν)(4 p̃z + (5 ζ3 − 6)ν + 3) τ 2 vr,θzz +
+ 12 (1 − ν)((3 ζ3 − 2)ν + 1) vz,θz +
+ 3a (2 p̃z − ν + 1)((ζ3 − 2)ν + 1) (τ 2 + 4) vθ,zz +
+ 24 ζ7 vθ,θθ/a = 0 ,

24 (ζ4 + τ) ζ6 vr/a − 24a p̃z τ vr,zz +
+ 2a3 (p̃z + ζ6) τ 3 vr,zzzz + 48 ζ4 ζ6 vr,θθ/a+
+ a ((2p̃z + (7 ζ3 − 6)ν + 3)τ 3 + 12 ζ4 ζ5) vr,θθzz +
+ 24 ζ4 ζ6 vr,θθθθ/a + 24 ζ3 ν τ vz,z +
− 2a2 (p̃z + ζ6) τ 3 vz,zzz + 12 ζ4 ζ5 vz,θθz + 24 τ ζ6 vθ,θ/a+
− a (4 p̃z + (5 ζ3 − 6)ν + 3) τ 3 vθ,θzz = 0 ,

(5.1)

where
ζ3 = λ2

r λz , ζ4 = ln(2 + τ
2 − τ ) − τ , ζ5 = (−2 + ζ3)ν ,

ζ6 = 2ν(ζ3 − 1) + 1 , ζ7 = (1 − ν) ζ6 , p̃z = ζ3 pz ,

and λr satisfies condition (3.10).
Similar equations can be written for the neo-Hookean, Mooney-Rivlin and

J2-deformation theory material model too.
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6 Bifurcation of an
axially-compressed, thin-walled
cylinder

The equations summarized in Ch. 5 allow one to solve various problems involving
axially prestressed circular cylinders. For instance, the solution for the bending
of a long cylindrical shell by a load uniformely distributed along a circular section
(§115 of Timoshenko and Woinowsky-Krieger 1959). Here the equations are
used to solve for the bifurcation of an axially-compressed, thin-walled cylinder.

6.1 Ansatz for the velocity field at bifurcation
Introducing the longitudinal wave-number η =mπa/l, where a is the shell mid-
radius, l is the shell length and m is the number of half-waves in the longitudinal
direction, the following ansatz is assumed for the velocity field at bifurcation

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

vr(θ, z) = c1 cos (nθ) cos (η z/a) ,
vθ(θ, z) = c2 sin (nθ) cos (η z/a) ,
vz(θ, z) = c3 cos (nθ) sin (η z/a) ,

(6.1)

where n is the number of full-waves along the circumferential direction. We
highlight that each component of the velocity field is assumed to be con-
stant throughout the shell thickness. The final form of the three incremental
equilibrium equations (3.25) can be obtained by substituting Eq. (6.1) into
the kinematics (4.12) and then into the constitutive relations (4.13). Defini-
tions (3.14) and (3.15) are then used to calculate the generalized stress forces
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and moments. Eventually, the bifurcation problem assumes the standard form

M ⋅c = 0 , (6.2)

where the matrix M depends on the wave numbers n and η, on the ratio
τ = t/a, on λz, the axial stretch and on the dimensionless axial load pz = P /D,
where D = Et/(1 − ν2) is the shell extensional rigidity. The latter quantity
may vary depending on the assumed material model: for the incompressible
neo-Hookean and the Mooney-Rivlin materials, D = 4/(3E t), i.e. the limit of
the shell axial rigidity for the case ν = 1/2, whilst for the J2-deformation theory
material D =K t, where K is the constitutive parameter of the model. Finally,
c = {c1, c2, c3} is the vector of the bifurcation mode amplitudes.
The ansatz is such that the incremental displacement field automatically

satisfies the boundary conditions of null incremental moments at the ends
z = 0 and z = l. These boundary conditions also correspond to the free sliding
conditions against a smooth rigid constraint, standard in incremental bifurcation
of elastic solids (Hill and Hutchinson 1975). Bifurcation occurs when determinant
of the coefficient matrix vanishes

det M = 0 , (6.3)

a relation defining the critical stretch λz (and from this also the dimensionless
load pz) for bifurcation as a function of the wave numbers n and η, and the
geometrical parameter τ .

6.2 Bifurcation diagrams
We start by illustrating some results for the nearly incompressible neo-Hookean
material. Fig. 6.1 shows an example of a buckling diagram obtained for ν = 0.3
and re/ri = 1.05. The critical axial stretch is plotted against the longitudinal
wave-number η for different values of the circumferential wave-number n. The
dashed lines represent modes at high axial stress that cannot spontaneously be
reached by the system. Critical modes are represented by the continuous lines.
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Fig. 6.1: Critical stretch λz for bifurcation of an axially compressed thin-walled
cylinder, as a function of the longitudinal wave-number η, for different values of
the circumferential wave number n. Nearly incompressible neo-Hookean material
(ν = 0.3), re/ri = 1.05. Continuous lines: intersecting critical modes used to build
the buckling envelope; dashed lines: higher load modes. The mode with n = 1
corresponds to the Euler mode.

As expected, for very slender cylinders, i.e. for small values of η, the mode with
n = 1 corresponding to Euler buckling becomes dominant.
The lower envelopes of the dimensionless buckling load of the intersecting

modes is shown in figure Fig. 6.2 for different ratios re/ri. The bilogarithmic plot
shows the existence of three different behaviours. On the right side of the plot,
i.e. for very slender cylinders, the Euler’s buckling load is clearly approached:
a deeper investigation on this issue is offered in §7.2. On the left side of the
plot, the critical load of a plate provided by Flügge (1973) and Timoshenko and
Gere (1961) as

pz,plate = kπ2 (ma

l
)

2
, (6.4)

where k = E t3/(12 (1−ν2)), has been used in Fig. 6.2. The figure shows that the
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plate theory (6.4) provides a nice approximation to the critical loads in a range at
large η. In particular, the gray region represents the intersection points between
the plate buckling load and the solution to the shell buckling problem, a region
where the plate approximation prevails; it is noted that the thinner is the shell,
the wider is the range for which the plate approximation is valid. A third regime
can be recognized in Fig. 6.2, namely, the intermediate region where the buckling
load is constant and independent of both the circumferential wave-number n
and the longitudinal wave-number η. The geometrical parameters characterizing
this region identify the so-called ‘mid-long’ cylinders and will be analyzed in
§7.1. The presented solution refers to the equations (5.1) introduced in the
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Fig. 6.2: Lower envelopes of the dimensionless critical load pz for the buckling of
a cylindrical thin-walled cylinder, as functions of the longitudinal wave-number η
for different ratios re/ri. Nearly incompressible neo-Hookean material (ν = 0.3).
Dashed lines: asymptotic buckling load for ‘mid-long’ shells, plates, Euler’s column.
The small numbers represents the circumferential number n.

previous chapter. The same bifurcation problem can be solved using Flügge’s
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6 Bifurcation of an axially-compressed, thin-walled cylinder

equations presented in §3.3 in combination to the incremental constitutive law
(3.13) (cp. Flügge 1973) and a comparison between the two (not reported) shows
that the results are practically coincident.
The accuracy of the method so far presented can be assessed through a

comparison with the 3D full-field solution available for the incompressible
materials (Bigoni and Gei 2001). However, for the Pence and Gou constitutive
model (1.38) an ad-hoc full-field solution will be presented in Ch. 8.

Diagrams similar to Fig. 6.2 can be obtained for the Mooney-Rivlin material
and for the J2-deformation theory material too. For the case of incompressible
materials, the accuracy of the reduced model solution proposed in the present
work is validated by superimposing the results on the 3D full field solution
offered in Bigoni and Gei (2001). Their results refer to the bucking of a coated
cylinder subjected to axial compression. The 3D solution shown in the next
figures has been calculated for the case in which the rigidity of the core tends
to vanish, i.e. the coating can be interpreted as a hollow shell made of an
incompressible hyperelastic material. Fig. 6.3 shows the upper envelope of
the critical logarithmic strain λz as a function of the wave-number η for a
Mooney-Rivlin material characterized by a constitutive parameter β = −0.1. For
very thin cylinders (re/ri = 1.01), the difference between the 2D and the 3D
solution cannot be seen. Furthermore, the diagram clearly shows that for very
thin shells, except when the slenderness approaches infinity, the critical stretch
remains almost constant and independent of the circumferential wave-number
n, Such behavior will be investigated in a more systematic way in §7.1. As
the thickness increases, the difference in the critical stretch becomes bigger.
Interestingly enough, though, for very slender shells, i.e. for very small values
of η, mode 1 (Euler buckling) and mode 2 are practically superimposed to
the 3D full-field solution. Similar results with the same peculiarities can be
obtained for any value of the constitutive parameter β.The particular case for
β = 0 corresponding to the case of an incompressible neo-Hookean material
yields similar results and, therefore, the corresponding buckling diagram is not
reported here.

Fig. 6.4 pertains to the other incompressible material analyzed in this work,
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Fig. 6.3: Upper envelopes of the critical logarithmic strain λz as functions of the
longitudinal wave-number η for different ratios re/ri. Comparison between 3D
solution and the proposed reduced model solution for different. Mooney-Rivlin
material, β = −0.1. The circled numbers corresponds to the circumferential wave-
number n.

namely the J2-deformation theory material. Similar features as for the Mooney-
Rivlin material can be seen: again, for very thin cylinders, the reduced and
full-field solutions are indistinguishable. Interestingly enough, the reduced
model is also able to catch bifurcation in tension, as shown in Fig. 6.5. As
visible from the diagram, the 2D solution behaves as if the critical stretch
obtained by means of the reduced model was unaffected by the ratio between
outer and inner radius, i.e. from the shell-thickness. On the contrary, the critical
stretch of the full-field solution increases as the the shell becomes thicker.

Fig. 6.6 shows a selection of eigenmodes arising at buckling for different values
of circumferential wave-number n and different values of longitudinal half-waves
m. The second column offers a 3D view of the eigenmode, the third column
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Fig. 6.4: Upper envelopes of the critical logarithmic strain λz as functions of the
longitudinal wave-number η for different ratios re/ri. Comparison between 3D
solution and the proposed reduced model solution for different. J2-deformation
theory material, N = 0.1, compression. The circled numbers corresponds to the
circumferential wave-number n.

reports 2D sections of the deformed shell and the fourth column a 2D section
of the undeformed and deformed geometry. The color map helps visualizing the
peculiar ‘bulges’ of a buckled shell.
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material, N = 0.1, tension. The circled numbers corresponds to the circumferential
wave-number n.
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Fig. 6.6: Example of buckling eigenmodes. Nearly incompressible neo-Hookean
material (ν = 0.3), re/ri = 1.05.
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7 Asymptotic analyses for mid
long, infinitely long, and
infinitesimally short cylinders

Three important limit cases are analyzed in this Section, namely, the case of
‘mid-long’, infinitely long, and infinitesimally short cylindrical shells. Here the
famous formula for mid-long cylinders obtained by Flügge and also the buckling
of a cylindrical Euler beam are rigorously derived from the finite elasticity
solution developed in the present work. The limit solution for the rectangular
plate is obtained only numerically.

7.1 Buckling load of a ‘mid-long’ shell

Flügge noticed from bifurcation diagrams similar to those reported in Fig. 6.2
that the lower envelopes display a range of buckling load almost independent
of the values of both wave-numbers n and η. This portion of the bifurcation
diagram can be approximated by a straight line, with an error decreasing when
the shell-thickness decreases, so that Flügge (1973) derived the formula

pz,Flügge =
√

1 − ν2

3 τ0 , (7.1)

where τ0 = (t/a)0, which approximates the critical load of ‘mid-long’ shells, made
up of a linear elastic isotropic material. Now the same formula is rigorously
obtained from the theory of finite elasticity so far implemented applied to the
nearly incompressible neo-Hookean material model (1.38).
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A Taylor-series expansion of Eq. (6.3) for n = 0 about τ = 0 up to the order
4 and an expansion about λz = 1, truncated at the linear term, are performed.
The expansions lead to an approximate expression for the determinant (6.3)

d(τ, ν, τ, η, λz) = c2 τ
2 + c4 τ

4 +O(τ 5) , (7.2)

where d = det (M) and

c2 = −576 ζ3 (−1 + ν2 + (λz − 1) (−3 − 4ν + 25ν2 +

−16ν3 + η2(−1 + ν2))) +O(λ2
z) ,

c4 = −48 ζ3 (−4 − η4 + 2η2ν + 3ν2 + (λz − 1)(2η4 (−2 − 2ν + 9ν2)+

−3η2(1 − 4ν + 3ν2 + 6ν3) − 4(3 + 4ν − 23ν2 + 12ν3)))+

+O(λ2
z) ,

ζ3 = η4 (2ν2 − 3ν + 1)3 .

Eq. (7.2) can be explicitly solved in λz as a function of the wave-number η and
the other parameters ν and τ yielding

λz = ζ14/ζ15 , (7.3)

where

ζ14 = 12(−2 + η2(−1 + ν2) − 4ν (1 − 6ν + 4ν2))+

+(−8 + ν(−16 + (89 − 48ν)ν) + η4 (−3 + 2ν(−2 + 9ν))+

−η2 (3 + ν (−10 + 9ν (1 + 2ν)))) τ 2 ,

ζ15 = 12(−3 + ν (−4 + (25 − 16ν)ν) + η2 (−1 + ν2))+

+(2η4 (−2 + ν (−2 + 9ν)) − 3 η2(1 + ν (−4 + 3ν + 6ν2))+

−4(3 + ν (4 + ν (−23 + 12ν)))) τ 2 .

The asymptotic buckling load of a ‘mid-long’ shell can be calculated by minimiz-
ing (7.3) with respect to the variable η. To do this, the first derivative of (7.3)
is calculated with respect to η and set equal to zero, which leads to 5 solutions:
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7 Asymptotic analyses for mid long, infinitely long, and infinitesimally short cylinders

one is trivial, two are purely imaginary conjugated roots and two are real and
of opposite sign. From the latter pair, the following positive real root is selected

η = (2 ζ17 +
√
ζ18

2 ζ16
)

1/2

, (7.4)

where

ζ16 = 12 (1 − ν2) τ 2 − (18ν3 − 17ν2 + 4ν − 3) τ 4 ,

ζ17 = 12 (1 + 3ν2 − 20ν3 + 18ν4) τ 2 + (4 + 8ν2 − 60ν3 + 54ν4) τ 4 ,

ζ18 = 4 (4 τ 4 (2 (3 + τ 2) + ν2 (18 + 3 (4 + τ 2)ν(−10 + 9ν) + 4 τ 2))2 +

+ζ16 (24 (3 + τ 2)ν τ 2 + 54 (4 + τ 2)ν5 τ 2 + 4ν3 τ 2(60 + 19 τ 2)+

+ν2 (288 − 84 τ 2 − 59 τ 4) − 12 (12 + 7 τ 2 + τ 4)+

−3ν4(48 + 104 τ 2 + 23 τ 4))) .

A substitution of equation (7.4) into equation (7.3) yields the asymptotic
dimensionless buckling load

pz = pz(ν, τ, n = 0, η = η, λz = λz(η))

for a ‘mid-long’ shell (positive if compressive)

pz =
√

1 − ν2

3 τ − ν (10ν3 + 23ν2 − 49ν + 22)
6 (1 − ν2) τ 2 +O(τ 3) . (7.5)

To the leading order in τ , Eq. (7.5) obtained for the nearly incompressible
neo-Hookean material model (1.38), provides Eq. (7.1), which is now rigorously
determined.

The same method has been applied to the other constitutive models, yielding

pz,nH = τ2 (7.6)

for the incompressible neo-Hookean material model. This result is consistent
with Eq. (7.5) in the limit for ν that tends to 1/2. For the case of the Mooney-
Rivlin material, the following result is obtained

pz,MR = τ2 (1 − 1 + β
1 − β τ) , (7.7)
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which shows the dependence of the dimensionless critical load also on the
constitutive parameter β. For β = 0, the asymptotic critical load (7.6) for the
neo-Hookean material is recovered.

For the J2-deformation theory material, no explicit formula for the buckling
of a ‘mid-long’ shell was found.

7.2 Infinitely long cylinders, the Euler buckling
The Euler buckling load of a thin cylindrical shell is obtained in this Section
using perturbative techniques (Dingle 1973; Golubitsky and Schaeffer 1985;
Simmonds and Mann 1998; Kokotović et al. 1999; Hunter 2004; Holmes 2013;
Shchepakina et al. 2014), in the limits of large bifurcation wavelength, 1/η ≈ 0,
and small thickness of the shell, t/a ≈ 0.

For a hollow cylinder made up of a linear elastic isotropic material (Young’s
modulus E), the Euler buckling load is

Nz,Euler = EJ
π2

l0
2 , (7.8)

where J = π(R4
e −R4

i )/4 is the moment of area of the cross section area about
an axis and l0 is the shell height, so that, denoting with the suffix ‘0’ quantities
referred to the undeformed geometry, Re = a0 + t0/2, Ri = a0 − t0/2 and A0 =
π(R2

e −R2
i ) = 2π a2

0 τ0 the following expression for (7.8) is obtained

Nz,Euler = EA0
π2

4 α2
0 (2 + τ

2
0
2 ) , (7.9)

where α0 = a0/l0 is the stubbiness ratio and τ0 = t0/a0, both quantities referred
to the undeformed configuration.
Referring now to the theory given in the present work, the Euler buckling

mode corresponds to n = 1 and to slender cylinders, when the wave-number η
tends to vanish. Since (7.9) is expressed in terms of the underformed geometry,
all the quantities in (6.3) are transformed to be referred to the undeformed
configuration,

τ = t

a
= λr t0
λr a0

= τ0 , η = πa
l
= π λr

λz
α0 ,
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7 Asymptotic analyses for mid long, infinitely long, and infinitesimally short cylinders

and the circumferential wave-number is assumed equal to the unity, m = 1. The
bifurcation condition det (M) becomes a function of ν, τ0, α0, and λz, so that
α0 is identified as the small parameter related to the shell-stubbiness, while
the asymptotic analysis is developed about λz = 1. An asymptotic expansion of
λ(α0) is sought in the power series form (Goriely et al. 2008)

λz(α0) = 1 +
M

∑
k=1

λ
(k)
z αk0 +O(αM0 ) . (7.10)

It is worth recalling that the condition {λz, α0} = {1,0} corresponds to the
critical load of an infinite slender shell, that buckles at vanishing load. A
substitution of Eq. (7.10) into (6.3) and an expansion of d(λz, α0) = det (M) in
a Taylor series yields

d(λz, α0) =
N

∑
k=1
d(k)αk0 +O(αN0 ) (7.11)

To satisfy the buckling condition d(α0) = 0 and due to the arbitrariness of the
perturbation parameter, each coefficient d(k) corresponding to the k-th order
of α0 must vanish, a condition yielding a system of linear equations for the
unknown coefficients λ(k)z . As noticed by Goriely et al. (2008), it is found in
solving the linear system of equations that the first two are identically satisfied
and λ(k)z = 0 for each odd value of k. Hence, an expression for λz(α0) can be
generated at least of order 2 in the parameter α0 by assuming n = 5. In this
way, λ(1)z = λ(3)z = 0 is obtained, so that

λ
(2)
z = −π

2

2 (1 + (3 − 2ν2)
12 (1 − ν2) τ

2
0 ) .

Therefore, the asymptotic expansion (7.10), up to third order of the critical
stretch λz becomes

λz ≈ 1 − π
2

2 (1 + (3 − 2ν2)
12 (1 − ν2) τ

2
0 ) α2

0 . (7.12)

Eq. (7.12) provides

Nz = −EA0
π2

4 α2
0 (2 + τ

2
0
2

3 − 2ν2

3(1 − ν2)) +O(τ 4
0 ) (7.13)
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for the critical load of the shell, asymptotically derived from the finite elasticity
solution.

At this point, a comparison between equation (7.9) and (7.13) (note that in
the former equation the load is positive when compressive and in the latter
when tensile) shows coincidence when ν = 0 or when the term τ 2

0 is neglected.
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8 Bifurcation of a thick cylinder

The fully three-dimensional solution for the bifurcation of a thick cylinder made
up of the hyperelastic material (1.38) is derived in this Section following Chau
(1995) (see also Chau (1993), Chau (1995), and Chau and Choi (1998)). The
main idea of this approach is to uncouple the three equations of incremental
equilibrium for the linearized bifurcation problem through the introduction of
two velocity potentials, namely Φ and Ψ. Chau (1995) developed his discussion
to a general class of materials, whose incremental constitutive law is expressed
by a relation between the Jaumann derivative of the Cauchy stress and the
symmetric part of the Eulerian incremental strain:

▿

T = Ṡ − (tr D)T +T D −W T ,

having the following structure

▿

T rr = C11Drr +C12Dθθ +C13Dzz ,
▿

T θθ = C12Drr +C11Dθθ +C13Dzz ,
▿

T zz = C31 (Drr +Dθθ) +C33Dzz ,

(8.1)

for the diagonal components and

▿

T rθ =
▿

T θr = (C11 −C12)Drθ ,
▿

Tαz =
▿

T zα = 2C44Dαz (α = r, θ) ,
(8.2)

63



Rossetto - Buckling of thin-walled cylinders from 3D nonlinear elasticity

for the out-of-diagonal components. For a material with constitutive equa-
tion (2.22), it can be checked that the coefficients Cij have the form

C11 = κ (2λ2
r λz − 1) + µ3 (−4λ2

r λz + 3λ−1
z (λ−2

r + 1) + 2 ) ,

C12 = C13 = κλ2
r λz +

µ

3λz
(−2λ2

r λ
2
z + 3(λ−2

r − 1)) ,

C44 =
κ

2
(λ2

r λz − 1) + µ6 (3λ−1
z (1 + λ−2

r λ2
z) + 2 (1 − λ2

r λz) ) ,

C31 = C13 + µλ−1
z (1 − λ−2

r λ2
z) ,

C33 = κ (2λ2
r λz − 1) + 1

3µ
(3λ−2

r λ
−1
z (λ2

z + 1) − 4λ2
r λz + 2) .

(8.3)

Note that the coefficients (8.3) depend on the amount of stretch λr and λz in
the prebifurcation state, and on the material parameters κ and µ. On the basis
of the incremental equilibrium equations (3.1), the following velocity potentials
are introduced

vr = Φ,rz +Ψ,θ/r , vθ = Φ,θz/r −Ψ,r ,

vz = −
C11

C13 +C44(1 − s)
∇1Φ − C44 (1 + s)

C13 +C44 (1 − s)
Φ,zz ,

(8.4)

where
∇1( ⋅ ) = r−1(r ( ⋅ ),r),r + r−2( ⋅ ),θθ , and s = (2C44)−1

Tzz, (8.5)

so that the incremental equilibrium equations (3.1) can be rewritten as
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(∇1 − ν1
2 ∂

∂z2)(∇1 − ν2
2 ∂

∂z2)Φ = 0 ,

(∇1 + ν3
2 ∂

∂z2)Ψ = 0 ,
(8.6)

where ν1 and ν2 are the roots of the characteristic equation

Aν4 +B ν2 +C = 0 , (8.7)

and
ν2

3 = 2C44(C11 −C12)−1(1 + s) . (8.8)

The coefficients A, B and C are defined as

A = C11C44 (1 − s) ,
B = C11C33 −C13C31 −C44 (2C13 + (1 + s) (C31 −C13)) ,

C = C33C44 (1 + s) .
(8.9)
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Depending on the the nature of the roots ν1, ν2, a regime classification can
be introduced. For the purposes of the present study, only diffuse bifurcation
modes are investigated, hence failure of ellipticity will not be considered. The
elliptic regime, to which the following calculations are referred, is described by
the condition (Chau 1995): B2 − 4AC > 0, AC > 0, B > 0. Fig. 8.1 shows the
dependency of the stretch level λz at which ellipticity is lost on the Poisson’s
ratio ν.
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Fig. 8.1: The EI region as a function of the Poisson’s ratio ν.

The following ansatz for the bifurcated velocity field is introduced:

Φ(r, θ, z) = φ(r) sin (η z) cos (nθ) ,
Ψ(r, θ, z) = ψ(r) cos (η z) sin (nθ) ,

(8.10)

where the symbols n and η have the same meaning as in eqs. (6.1). Note
that by means of the specific choice of the velocity potentials (8.10), the
boundary conditions listed in Eq. (3.3) are automatically satisfied. Substitution
of eqs. (8.10) into eqs. (8.6) yields

⎧⎪⎪⎨⎪⎪⎩

(∇2 + η2 ν2
1) (∇2 + η2 ν2

2))φ = 0 ,
(∇2 − η2 ν2

3)ψ = 0 ,
(8.11)
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where
∇2( ⋅ ) = r−1( ⋅ ),r + ( ⋅ ),rr − n2 r−2( ⋅ ) . (8.12)

The solutions to eqs. (8.11) are

φ(r) = b1H
(1)
n (η ν1 r) + b2H

(1)
n (η ν2 r)+

+ b3H
(2)
n (η ν1 r) + b4H

(2)
n (η ν2 r) ,

ψ(r) = a1 In(η ν3 r) + a2Kn(η ν3 r) ,
(8.13)

where H(1)n and H(2)n are the Hankel functions of order n, In and Kn are the
modified Bessel functions of order n and the coefficients ai and bi are complex.
The resulting velocity field reads

vr(r, θ, z) = (η φ,r + nψ/r) cos (nθ) cos (η z) ,
vθ(r, θ, z) = − (nη φ/r + ψ,r) sin (nθ) cos (η z) ,

vz =
C11 (n2 φ − r φ,r − φ,rr) /r2 + η2(C44 + Tzz/2)φ

(C13 +C44) − Tzz
cos (nθ) sin (η z) .

(8.14)

The components of the rate of the first Piola-Kirchhoff stress tensor involved in
the definition of the boundary conditions (3.3) read

Ṡrr = (C13 η fz +C12 (fr + nfθ)/r +C11 fr,r) cos (nθ) cos (η z) ,
Ṡθr = (C12 −C11)(nfr + fθ − r fθ,r) (2 r)−1 sin (nθ) cos (η z) ,

Ṡzr = (C44 − Tzz/2)(fz,r − η fr) cos (nθ) sin (η z) ,
(8.15)

where

fr(r) = (nψ + η r φ,r)/r ,
fθ(r) = −(nη φ + r ψ,r)/r ,

fz(r) =
C11 (n2 φ − r2 φ,rr − φ,r) /r2 + η2 (C44 + Tzz/2)φ

(C13 +C44 − Tzz/2)
.

(8.16)

Enforcing the boundary conditions (3.3), namely, the null-traction condition
on both the inner and the outer surface of the pre-stressed cylinder, yields an
eigenvalue problem in the form

M c = 0 , where c⊺ = {a1, a2, b1, b2, b3, b4} , (8.17)
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for which non-trivial solutions are found only if det M = 0. It can be shown
that the latter condition only involves the material parameter ν, the ratio
between the outer and inner radius re/ri, the circumferential wave-number n,
the longitudinal wave-number η, and the amount of pre-bifurcation axial stretch
λz. For a given set of parameters ν, re/ri, n and η, the critical axial stretch at
which bifurcation occurs can be found numerically.

The accuracy of the approximated method presented in this work is compared
in Fig. 8.2 with the just obtained three-dimensional solution. It is noticed from
Fig. 8.2 that there is a poor convergence of the three-dimensional solution
to the bifurcation load when the thickness ratio τ is becoming small. This is
the reason why an approximate solution such as that given by Flügge or that
presented in this work are useful.
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Fig. 8.2: Bifurcation axial stretch of a thin cylinder: comparison between the three-
dimensional (continuous line) and approximated (dashed line) solution.
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Conclusions

The buckling of thin cylindrical shell under axial compression has been in-
vestigated. In the first part of the thesis, the setup of a general framework
that allows for the derivation of incremental equilibrium equations in terms of
generalized stresses starting from the local incremental equilibrium condition
has been presented. The results obtained are rigorous and don’t introduce any
approximations in the model. The second part of the thesis has been focused
to a novel derivation of the incremental kinematics of a thin shell, namely the
calculation of the deformed normal unit vector of a two-dimensional surface later
used in the kinematical assumption. The incremental equilibrium equations
for a nearly incompressible neo-Hookean material (Pence and Gou 2015) have
been derived. The same method applies also to incompressible materials such
as neo-Hookean, Mooney-Rivlin and J2-deformation theory materials. The set
of equations have been used to solve the buckling problem, showing that the
reduced model developed in this work offers accurate results compared to the
corresponding 3D full-field solutions as the shell thickness decreases. The 2D
solution allows also for the onset of buckling in tension for the J2 material.
Furthermore, a 3D full-field solution for the particular strain-energy function
chosen for the compressible material model has been developed to check the
validity of the 2D solution. However, the poor numerical convergence of the
3D solution when the slenderness of the shell increases needs to be further
investigated. Finally, the Euler buckling for a slender column as well as the
dimensionless critical load of a ‘mid-long’ were recovered. For the latter, a new
expression for the dimensionless buckling load of a cylindrical shell made of a
Mooney-Rivlin material has been derived.
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