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Abstract 

 

For decades, works in psychology of thinking and decision making have been reporting 

suboptimal performance and systematic departures from the axioms of probability theory 

in people’s probability judgments. In these first works, poor performance was often 

attributed to people making normatively wrong intuitions because of their limited cognitive 

resources and lack of statistical skills. Over the last years, studies that considered various 

Bayesian models of inductive reasoning but also other high and lower-level cognitive 

processes provided a more optimistic picture by showing that, despite departing from the 

normative benchmark, people’s reasoning skills lead to adaptive and sound performance in 

everyday life. Different explanatory accounts for this suboptimal but sound reasoning have 

been proposed, some being more compelling than others. The present thesis is aimed at 

exploring one of these accounts that is based on confirmation relations and suggests that 

human inductive ability might rely more on estimating evidential impact than posterior 

probability. So far, this account has been applied to classical probabilistic reasoning errors, 

linguistic and psycholinguistic phenomena and probabilistic inferences with verbal stimuli. 

In this study, we tried to see whether the implicit estimation of confirmation relations can 

affect probability judgments also when the link between evidence and hypotheses is 

operationalized as the arbitrary association between visual features in briefly presented 

figures. First, we expected participants to consider confirmed hypotheses more probable 

than corresponding (in terms of posterior probability) disconfirmed ones; second, we 

expected them to choose the more likely option (i.e. the normatively correct one) more often 

when it was confirmed by the evidence provided than when it was disconfirmed. Four 

computer-based experiments were conducted using the same methodology. Experimental 

stimuli consisted of inductive arguments concerning 40 sets of figures composed of two 

features with two possible values each. By varying the probabilistic association between the 

two values of the features, sets were generated to have, for each possible combination of the 

two features, two arguments with the same posteriors and opposite impacts. In each trial, 

participants first looked at a set of figures. One of these figures was then randomly drawn. 

Participants were informed about the value of one feature of the drawn figure (e.g., that it 

was a “circle”) and had to guess the value of the other feature (“white” vs. “black”). 
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Throughout the four experiments, we used three different combinations of features: color 

and shape (exp.1: black/white; exp 2: light/dark grey), pattern and shape (exp 3) and type 

and orientation of line (exp 4). 

In all four experiments, participants systematically chose the confirmed alternative over the 

equally probable, but disconfirmed one, and chose the normatively incorrect (i.e. less likely) 

alternative more often when it was confirmed (vs. disconfirmed) by the evidence provided. 

These results provided a first empirical evidence of the effect of confirmation relations on 

probability judgment with perceptual stimuli, but also highlighted a significant influence of 

the experimental material itself on choice patterns. In fact, in experiments 1 to 3 the obtained 

results showed that color (or pattern) was a more compelling evidence than shape in 

determining participants’ choices. The combination of line curvature and orientation used in 

experiment 4 proved to be the more balanced among those employed in the present 

research. Only in this last experiment, indeed, the type of evidence did not affect the choice 

for the confirmed alternative, nor the amount of errors. The results we found supported our 

experimental claims showing that confirmation relations can affect probability judgments 

even in absence of any semantic element, but also suggested the existence of a mutual 

influence between perceptual features and probability judgments. Our experimental results 

have theoretical as well as applied implications. On a theoretical level, they extend the results 

coming from works involving verbal and linguistic material to perceptual stimuli with no 

semantic background. Additionally, they show that high-level relations, which are 

completely unknown to the subject, affect the way people perceive relations within a visual 

set of perceptual items. This might have interesting and noteworthy implications for studies 

on visual cognition, and, on a broader level, contingency learning and stereotypical 

judgments. 
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Chapter 1: Introduction 

 

This work is aimed at investigating whether and how confirmation relations affect 

probabilistic inferences with perceptual material. Evidence of the effect of confirmation 

relations on probability judgments has already been found in the literature (Paperno et al., 

2014; Tentori, Chater and Crupi, 2016) in works involving verbal stimuli and linguistic 

corpora. However, no evidence of this effect on probabilistic reasoning with perceptual 

material has been found so far. In order to tackle this issue, the present work involves 

concepts and experimental methodologies coming from epistemology, psychology and 

psychophysics. In Chapter 2, I will introduce and compare contributions from epistemology 

and psychology to the understanding of probabilistic reasoning; the first part will discuss 

psychological approaches to probability judgment and the second one will present 

confirmation measures and their role in Bayesian epistemology. In the last section of this 

chapter, I will present works aimed at comparing directly these two concepts. In Chapter 3, 

I will discuss an issue that I believe would benefit from a multidisciplinary investigation 

involving philosophy, psychology and psychophysics: the Bayesian brain hypothesis. In 

Chapter 4, I will present four behavioral experiments aimed at testing the hypotheses we 

derived from the literature discussed, and finally, in Chapter 5, I will consider our 

experimental results in light of the existing literature and discuss the strengths and 

limitations of the present study, as well as further developments and theoretical or practical 

implications for other research domains. 
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1.1 Theoretical background 

When exploring the surrounding environment, people generate hypotheses and 

collect information to test them. This process involves deductive as well as inductive 

reasoning: people extract hypotheses and rules through induction, then they combine 

inductive inferences and deduction to create anticipations on the environment based on 

these rules (see Cherubini, 2005). Deductive reasoning can be defined as that type of 

reasoning which, given true premises, yields conclusions that are necessarily true. Both 

inductive and deductive reasoning increase knowledge and provide new information, but 

new empirical knowledge is only acquired by means of inductive reasoning, which goes 

beyond the information given to draw novel conclusions. Such conclusions are probable but 

not logically implied in the already existing evidence: this new knowledge, then, is uncertain. 

In light of this, the main goal of a theory of inductive reasoning would be to define when some 

inference is strong or not, for example assigning a certain value to it. 

Any inductive inference concerns the relation between two conceptually related but 

dissociable elements: the hypothesis of interest (h) and the available evidence (e) (Tentori, 

Chater, & Crupi, 2016). When evaluating an inductive argument, one can focus on the 

hypothesis and ask how probable it is in light of the evidence; this is the posterior probability 

of h given e and Bayes rule represents its normative benchmark. One can also choose to focus 

on the evidence and ask how much the evidence e increases/decreases the belief in h; this is 

the impact, or degree of confirmation, of e over h and, in the Bayesian framework, it is 

quantified by confirmation measures. In the epistemological literature, confirmation 

measures are also referred to as measures of evidential support and in this work I will use 

the two terms interchangeably. Evidential support is a relative notion measuring the change 
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in someone’s belief; posterior probability, on the other hand, represents its absolute 

counterpart. These two elements are usually associated in everyday life: if the probability of 

a certain hypothesis h is high given a piece of evidence e, conversely it is also likely that the 

evidential impact of e on the probability of h will be high. However, they can be disentangled: 

in experimental settings, it is possible to construct inferential arguments composed of a 

hypothesis h and an evidence e where the probability of the hypothesis is high in light of the 

evidence, but the latter disconfirms the former, or vice versa. According to some recent 

explanatory accounts of reasoning biases (e.g. Crupi, Fitelson, & Tentori, 2008), this was the 

case in Kahneman and Tversky’s first investigations of probabilistic reasoning (Kahneman 

& Tversky, 1982, Tversky & Kahneman, 1974). These first experiments involved 

probabilistic scenarios in which the probability-driven hypothesis, considered the 

normatively correct one, and the confirmation-driven one would always diverge; as just 

argued, this is unlikely in most everyday situations. Tversky & Kahneman’s (1974) 

explanation for their findings was that people are poor statistical reasoners and that their 

intuitions are normatively wrong. More precisely, they claimed that when making judgments 

under uncertainty, people employ heuristics principles, “which reduce the complex tasks of 

assessing probabilities and predicting values to simpler judgmental operations” (Tversky & 

Kahneman, 1974). However, these experimental findings are counterbalanced by evidence 

of sound probabilistic reasoning in more naturalistic settings suggesting that maybe there is 

some element in the experimental task affecting reasoning performances. Tentori, Chater 

and Crupi (2016)’s confirmation-based account suggested that participants’ performance in 

inferential tasks is apparently suboptimal because it is driven by confirmation relations that 

make it depart from the normative benchmark. This crucial distinction between probability 
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and impact judgment has been discussed only recently; in the past, in psychology and 

cognitive science, literature has mainly focused on the assessment of posterior probability, 

giving much less attention to the estimation of evidential impact except for some recent 

experimental works (Crupi et al., 2008; Tentori et al., 2016; Tentori, Crupi, & Russo, 2013).  
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Chapter 2: Psychological and philosophical approaches to probabilistic reasoning 

 

2.1. Probabilistic reasoning: psychological approach 

In psychology, experimental investigation of inductive reasoning mainly focused on 

posterior probability. Posterior probability measures the probability of a given hypothesis in 

light of some information and it can be estimated by means of Bayes rule, which is a “formula 

that allows us to compute change in belief in a set of hypotheses, H, as a result of 

encountering some information, D (data)” (Manktelow, 2012). One possible formulation of 

the rule in formal terms is the following (ivi): 

 

𝑝(𝐻|𝐷) =
𝑝(𝐷|𝐻)𝑥 𝑝(𝐻)

𝑝(𝐷)
. 

The prior knowledge that hypothesis H is true is combined with the likelihood of the 

evidence to derive an estimate of the posterior probability that hypothesis H is true given 

the evidence D; to perform normatively correct judgments, people must know all these 

values and be able to combine them in the right way. For years, literature on probabilistic 

reasoning has shown that people are not capable of optimal probabilistic reasoning in 

experimental setting (Kahneman & Tversky, 1973, 1982, Tversky & Kahneman, 1974) and 

that they are subjected to so-called reasoning biases. However, there is a discrepancy 

between these classical studies and more recent research reporting sound probabilistic 

performance with naturalistic material (see Domurat et al., 2015; Griffiths, Kemp, & 

Tenenbaum, 2008; Griffiths & Tenenbaum, 2006; Kemp & Tenenbaum, 2009; Zhao, Shah, & 

Osherson, 2009). 
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2.1.1 Recent accounts of probabilistic reasoning 

In standard treatments of probability, the conditional probability of a hypothesis 

given an evidence Pr(H|D) is defined as the ratio of Pr(A⋂B) to Pr(B) (Zhao et al., 2009). 

However, in everyday life, some of the estimates that Bayes theorem requires might be 

unavailable, or the computations it entails could be too complicated to perform, leading to 

apparently suboptimal performance. Despite this, people’s probabilistic reasoning usually 

leads to optimal and sound behavior. Literature on probabilistic reasoning described and 

discussed several models of apparent suboptimality which still lead to sound inference, each 

entailing different computations and notions. To understand whether the mind implicitly 

computes conditional probability by means of the normatively correct equation, Zhao, Shah, 

& Osherson (2009) investigated the provenance of judgments of conditional probability and 

provided evidence for non-normative reasoning. Their work involved three behavioral 

experiments aimed at understanding whether estimates of Pr(A|B) (conditional probability) 

come from an implicit calculation of Pr(A⋂B)/Pr(B), which would be the normative 

benchmark, or they derive from other, simpler computations. Experiments 1 and 2 employed 

the same stimuli: in these experiments, participants were shown a number of sets of 

geometric shapes on a computer screen; each set was composed of a certain number of 

triangles, circles and squares in blue, red and green. In Experiment 1, after seeing each set of 

stimuli, participants had to answer questions about prior and conditional probabilities in the 

set, both presented as probability questions and as frequency questions. These questions 

probed Pr(B), Pr(A⋂B) and Pr(A|B). Experiment 2 involved the same experimental sets and 

questions, as well as an additional question that queried Pr(¬A⋂B). Experiment 3 was 

implemented on Amazon Mechanical Turk, involved scenarios describing future events and 
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the four queries introduced in Experiments 1 and 2 (Pr(B), Pr(A⋂B), Pr(A|B), and 

Pr(¬A⋂B). Each participant was invited to supply his personal probability for each of the 

statements they were shown. The first experiment showed that conditional probability does 

not come from the normatively correct rule, while Experiment 2 suggested an equation that 

more accurately described it. Finally, Experiment 3 evaluated the same hypotheses tested in 

Experiments 1 and 2 in the context of subjective estimates of future events. Overall, then, the 

three studies showed that probability judgments do not originate from mental computations 

entailed by the standard definition of posterior probability involving Bayes rule and 

provided an alternative account of the computations people perform when asked to estimate 

conditional probability. The relevance of this study for our goals is twofold. First, it suggests 

that standard computations of probability do not account for actual judgments of conditional 

probability; second, the experimental task involves perceptual material (i.e. bidimensional 

grids of figures defined by color and shape), which deviates from usual stimuli involved in 

thinking and reasoning experiments (inductive arguments in verbal form) and does not 

provide any kind of semantic information.  

An alternative explanation for suboptimal reasoning entailed linear additive instead 

of multiplicative integration of priors and evidence. Juslin, Nilsson, & Winman (2009) 

suggested that ‘normative’ probability judgments are not a necessary requisite for rational 

decisions and that violations of probability theory do not imply suboptimal decision making 

(i.e. cognitive biases like conjunction error or base rate neglect). They carried out 5  

simulations focused, respectively, on the extent to which estimates generated by a model 

implementing weighted linear additive integration and a model combining noisy 

probabilities by applying the conjunction rule of probability theory correspond with true 
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conjunctive probabilities (Study 1), on exploring if the results from Simulation Study 1 held 

also with a more general conceptualization of the random error in the judgment process 

(Study 2), on understanding whether good prediction of the criterion with suboptimal 

weights is also possible with linear additive weighting of probabilities (Study 3), on testing 

how well four models describe decisions based on conjunctive probabilities (Study 4) and 

on whether Bayes’ theorem is a better tool for using noisy probabilities to estimate a true 

posterior probability than linear additive integration (Study 5). Taken together, the studies 

showed that reasoning based on approximate rather than exact knowledge of probabilities 

and linear additive integration rather than multiplicative represent satisfying solutions in 

everyday life and they can be as accurate as estimates based on probability theory. The 

authors discussed the reported results suggesting that people could be more prone to using 

weighted additive rather than multiplicative integration of information, which can lead to 

reasoning biases. This finding shows that despite the lack of possibility or incentive to align 

to probability rules in everyday life, people’s reasoning might be still efficient thanks to 

linear additive integration. However, this strategy deviates from the normative benchmark, 

i.e., probability theory, therefore is normatively suboptimal.  

In a more recent work involving a novel estimation task, Acerbi, Vijayakumar, & 

Wolpert (2014) investigated how people combine sensory information with statistics 

collected from prior experience to yield more or less optimal behavior and, more precisely, 

how priors affect Bayesian computations with explicitly provided probabilistic information. 

To do so, a behavioral estimation task was used to probe the sources of suboptimality in 

probabilistic inference; given a probabilistic cue about its location, participants had to locate 

a specific, unknown target from a set of potential ones. Information consisted of a visual 
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representation of the a priori probability distribution of targets for that trial and a noisy cue 

about the actual target position. A model-free analysis was performed on participants’ 

performance and showed that it was suboptimal; next, a model with a factorial approach was 

applied to the data. This model consisted of the combination of four basic factors: decision 

making, cue-estimation sensory noise, noisy estimation of the prior, and lapse. The results 

showed that participants’ performance was qualitatively in line with Bayesian rules, 

although suboptimal; this suboptimality was relatively independent from the priors and 

level of noise in the cue but strongly affected by the class of distribution (i.e. the specific 

shape of the prior). Subjects’ performance, then, was driven by a combination of (noisy) 

estimation of the parameters of the priors and noisy posteriors and would not align with 

models of stochastic behavior like probability matching or sample-averaging.  

By means of two behavioral experiments and an analytical study, Domurat et al. 

(2015) provided further evidence for suboptimal but satisfactory probabilistic reasoning in 

everyday life. They investigated how often people’s probability estimates conform to Bayes 

rule when natural sampling is involved and showed that using Bayes’ rule is not necessary 

to make choices that satisfy it. Experiments 1 and 2 involved 16 computer tasks, composed 

of a learning stage and a choice stage. During the learning stage, participants could gather 

information about the environment and develop hypotheses about probabilistic 

relationship. Three kinds of information could be learned through natural sampling: prior 

occurrences, likelihood ratios and Bayesian estimates (conditional probabilities). Then, 

participants would have to use this information in the following phase to carry out choices 

conforming to Bayes rule. While experiment 1 relied on computer-based tasks, experiment 

2 also collected participants’ verbal protocols. Finally, study 3 exclusively relied on computer 
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simulations. The goal of this final experiment was to investigate how often strategies causing 

fallacious responses (representativeness, evidence-only, pre-Bayesian) lead to the same 

response as Bayes rule. This experiment involved computer simulations of the probabilistic 

scenarios from studies 1 and 2; all combinations of the information that could be gathered 

(priors, likelihoods) were generated, in order to explore whether no Bayesian-strategies 

could provide results as good as the normative ones. The authors analyzed the simulated 

strategies with regard to (1) different frequencies expressing decision-makers’ natural 

sampling experiences and (2) different base rates, arbitrarily defined as rare [P(H) ≤ 0.25], 

frequent [P(H) ≥ 0.75], and medium [0.25 < P(H) < 0.75]. The analysis of these simulated 

scenarios showed that representativeness and evidence-only strategies lead to choices in 

line with Bayes rule if base rates are high and the natural sampling size is low. This means 

that, under specific circumstances and elementary situations, even heuristic strategies can 

handle probabilistic tasks effectively (as already pointed out by Tversky & Kahneman, 

1974). Overall, this paper showed that Bayesian inference could be unnecessary in making 

correct choices in elementary situations through natural sampling.  

Evidence supporting the efficacy of an overall ‘suboptimal’ strategy also came from 

Laquitaine & Gardner (2018), who tested whether Bayesian processes can explain people’s 

behavior in a motion direction estimation and a spatial orientation tasks. Several different 

models were proposed to describe human behavior and compared to the Basic Bayesian one, 

involving optimal integration between priors and sensory likelihoods. The results showed 

that one of the alternative models, the Switching observer, described subjects’ estimates 

better than the Basic Bayesian observer, indeed providing the best description. The 

Switching observer model represents priors and likelihood like the Bayesian observer, but 
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instead of multiplying the two distributions, it switches between estimates chosen from the 

prior distribution and from sensory likelihood (hence its name), providing bimodal estimate 

distributions as a result. Finally, Sanborn & Chater (2016) provided an explanation for non-

normative computations based on sampling processes. They addressed the dissociation 

between good reasoning in everyday life and poor performance in probabilistic 

experimental tasks suggesting that people are not ‘ideal Bayesian reasoners’ but they are 

Bayesian samplers working with a local sense of relative posterior probabilities and not with 

explicit Bayesian calculations. According to the authors, some phenomena observable in the 

human behavior, such as reasoning fallacies, stochasticity and autocorrelation, represent 

‘traces’ of this sampling process. 

 

2.2 Confirmation measures and their role in Bayesian epistemology 

Works from psychology, decision making and behavioral economics highlighted and 

discussed the relevant role of posterior probability in decision making under uncertainty; on 

the other hand, when assessing the soundness of inductive arguments or the value of 

information, evidential impact is a crucial notion. In the psychological literature, the first 

notion was always given more attention than the latter, which, on the other hand, was a 

central concept for philosophers and epistemologists. In the epistemological literature, 

‘confirmation’ defines the support that a certain piece of evidence provides towards a 

hypothesis. Thus, confirmation theory is “the study of the logic by which scientific 

hypotheses may be confirmed or disconfirmed (or supported or refuted) by evidence” 

(Hawthorne, 2011). In Eells & Fitelson ’s (2002) words, “Measures of evidential support […] 

are supposed to quantify the degree to which a piece of evidence E provides, intuitively 
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speaking, “evidence for or against” or “support for or against” a hypothesis H – in an 

incremental as opposed to a final or absolute way” . Contemporary epistemology found in 

the Bayesian approach to probability a fitting candidate for uncertainty assessment, as it 

allows to mathematically quantify the degree of confirmation (or degree of belief) that a 

piece of evidence e provides for a hypothesis H in terms of mathematical probabilities 

(Hartmann & Sprenger, 2010).  In this approach, indeed, confirmation is defined by the 

relationship between the conditional probability of a hypothesis h towards an evidence and 

prior probability of h.  Estimation of confirmatory power is crucial in an inductive reasoning 

framework: after Carnap’s formalization of ‘confirmation’ (Carnap, 1950), a large number of 

alternative measures of confirmation have been proposed and discussed in the 

epistemological literature (for a review of the different confirmation measures see Crupi, 

Tentori, & Gonzalez, 2007; Eells & Fitelson, 2002; Fitelson, 1999; Good, 1984; Tentori, Crupi, 

Bonini, & Osherson, 2007). 

2.2.1. Psychology of inductive reasoning 

One exception to this lack of interest for evidential impact in psychological research 

is the investigation of categorical induction. Categorical induction is the process allowing 

people to “arrive at a statement of their confidence that a conclusion category has a predicate 

after being told that one or more premise categories do” (Sloman & Lagnado, 2005). In this 

context, being able to estimate the strength or soundness of an argument is crucial. In the 

last twenty years, several explanatory accounts for inductive reasoning have been proposed. 

Heit (1998) provided a first Bayesian analysis of inductive reasoning showing how Bayes 

Theorem can be applied to evaluating an inductive argument; here, Bayesian analysis would 

rely on three assumptions to explain basic phenomena in inductive reasoning like similarity, 
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typicality, and diversity effects as well as phenomena related to meaningful properties. This 

work addressed basic phenomena in inductive reasoning such as similarity, typicality and 

diversity effects. Heit’s (1998) model was further discussed and empirically tested by 

Sanjana & Tenenbaum (2003), who described a Bayesian model of the probability of 

generalization which they tested on three data sets. They compared the relative ranking of 

the strengths of all arguments predicted by three theoretical models and provided by human 

participants and found that the Bayesian model showed a based rational foundation and 

quantitative advantage over the best similarity-models. A further formalization of induction 

as a form of Bayesian statistical inference over structured probabilistic models of the world 

was proposed by Tenenbaum, Griffiths, & Kemp (2006), who discussed inductive learning 

and reasoning in computational terms focusing on generalization, property induction and 

causal inference. To conclude, a review by Hayes et al. (2010) highlighted two relevant 

directions in research on induction. First, they point out the increasing attention that more 

articulated formal models are gaining, thanks to their explanatory power; second, they 

acknowledge that induction researchers are striving to examine the links between induction 

and other cognitive processes, thus turning their attention to a broader range of phenomena. 

Overall, these works showed that probabilistic reasoning in everyday life is 

characterized by strategies that are normatively suboptimal but work well in a ‘less than 

ideal’ context. In the literature, different explanatory accounts of suboptimality have been 

proposed; some seem more compelling and provide more detailed explanations than others 

do. 
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2.2.2. Confirmation measures and surprisals 

After almost exclusively focusing on the investigation of posterior probability for 

decades, in recent years psychologists have started to empirically test confirmation 

measures and compare them to probability judgments, moving the abovementioned 

theoretical investigation to a more empirical level. For example, Tentori, Crupi, Bonini, & 

Osherson (2007) described alternative measures of confirmation, discussed their normative 

appeal and compared their adequacy as description of confirmation judgments in a 

probabilistic context. After outlining some properties of these measures, the authors carried 

out an experimental test to compare their adequacy with respect to different formal criteria. 

For the experimental test, they set up an urn and ball task derived from early experiments in 

probability judgments to identify which of the confirmation measures corresponded most 

closely to evidential impact judgments provided by the participants. The results obtained 

showed that only one confirmation measure among those considered could satisfy necessary 

conditions on normative adequacy but warned about needing further research to 

understand its descriptive adequacy. Interestingly, the authors noted that people proved 

able to distinguish between posteriors and degrees of confirmation and suggested that 

evidential impact might be psychologically prior to probability. This hypothesis was then 

applied to conjunction fallacy (Crupi et al., 2008) and tested empirically on corpora-based 

predictions (Paperno, Marelli, Tentori, & Baroni, 2014) and inductive arguments (Tentori et 

al., 2016).  We believe that also other works provided confirmation-based explanations for 

apparently suboptimal reasoning, labelling them in other ways. Itti & Baldi (2009) 

investigated how Bayesian surprise attracts attention by means of eye movements; to test 

their hypothesis, the authors recorded eye movements of experimental subjects while they 
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watched a series of videoclips portraying dynamic natural scenes. While watching, 

participants were instructed to “follow the stimuli’s main actors and actions, so that their 

gaze shifts reflected an active search for nonspecific information of subjective interest” (Itti 

& Baldi, 2009). By means of eye tracking data, the authors collected information on saliency, 

dynamic and surprise which allowed them to formalize a Bayesian definition of surprise “as 

the distance between the posterior and prior distributions of beliefs over models” (Itti & 

Baldi, 2009) based on two crucial concepts: uncertainty and relativeness. In light of these 

two features, a consistent definition of surprise must involve probabilities to cope with 

uncertainty, and prior and posterior distributions to reflect subjective expectations. The 

authors refer to “units of surprise” to quantify the variation between a prior probability and 

a conditional probability and for which, they believe, a quantitative measurement does not 

exist. However, in light of their definition of surprise we can consider it as a measure of 

distance and an intrinsically relative, comparative concept and relate it to confirmation. This 

idea of surprise was reprised by Prime & Shultz (2011) to explain the discrepancy between 

experimental failures and optimality in everyday life in probabilistic reasoning. However, in 

this other context, surprisal represents a mathematically defined concept taken from 

information theory that, according to the authors, captures people’s intuitions about 

probability better than probability itself. In a behavioral experiment implemented on 

SurveyMonkey, the authors manipulated information (probability vs. frequency) and 

question format (probability vs. surprisal) to explore how different presentation modalities 

would affect participants’ judgments. To do so, they elaborated four versions of Bayesian 

problems each giving and asking different information (probabilities vs frequencies). 

Participants were asked to read each problem and make a posterior judgment for each of 
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them without making calculations but using their intuitive judgments instead. The results 

showed that people conform to Bayesian predictions by using both prior and likelihood 

information to update posteriors but deviate from Bayes rule when given frequency 

information and asked to provide answers in surprisals. In this case, they would use 

likelihood information but ignored prior probabilities. Overall, the effect of priors was much 

smaller than the effect of likelihoods when both were used; this tendency has already been 

described in the literature (Bar-Hillel, 1980). Overall, the authors noted that “people are 

more comfortable with judging their own surprise than with estimating probabilities even 

though “surprisals are not much used in psychological research, despite widespread 

psychological interest in manipulating and measuring surprise” (Prime & Shultz, 2011). 

According to the authors, then, surprisals are more intuitive and immediate than 

probabilities but at the same time they are scarcely used in psychological research; based on 

these two features, it is possible to draw a comparison between them and confirmation 

measures. 

2.2.3. Probability and reasoning biases 

Classic research in probabilistic reasoning, like the works from Kahneman & Tversky 

(Kahneman & Tversky, 1973, 1982; Tversky & Kahneman, 1974, 1981), argued that human 

reasoners’ probability judgments systematically diverge from the normative benchmark and 

that people use suboptimal and biased strategies. In fact, a large part of the psychological 

literature on the topic has focused on describing and discussing a set of phenomena, so called 

reasoning biases, which were interpreted as suboptimal strategies of probabilistic 

reasoning. In an influential work, Tversky & Kahneman (1974) suggested that “people rely 

on a limited number of heuristic principles by which they reduce the complex tasks of 
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assessing likelihoods and predicting values to simpler judgmental operations”. They 

described four heuristics that are commonly employed to assess likelihoods and predict 

values (representativeness, availability, adjustment and anchoring), presented systematic 

biases to which these heuristics lead and discussed applied and theoretical implications. The 

authors ascribed heuristic judgments to limited cognitive resources and distinguished them 

from emotional and motivational factors affecting judgment. As already pointed out, the task 

environment of these early works contrasted with real life settings as it was often 

characterized by a deliberate dissociation between probability and confirmation.  

During the years, several explanations for suboptimal reasoning have been proposed 

and discussed. Some of them relied on pragmatic issues and some others on cognitive 

heuristics; for the goals of the present research, I will focus on the information theoretic 

account proposed by Crupi and Tentori (Crupi et al., 2007; Crupi et al., 2008; Tentori, Chater 

and Crupi, 2016) which implies that evidential impact plays a crucial role in probabilistic 

inference. 

 

2.3. Confirmation relations as possible explanations for reasoning biases 

Evidential impact has been used to explain and contextualize some phenomena that 

classical experiments on probabilistic reasoning mentioned above tended to label as biases. 

One relevant example is conjunction fallacy, defined as the tendency “to regard a conjunctive 

event as more probable than one of its components, contrary to the conjunction rule of 

probability theory” (Kahneman and Tversky, 1973, 1982) caused by reliance on the 

representativeness heuristic. Some recent works presented the conjunction fallacy as an 

impact-driven probabilistic judgment conflicting with the normative benchmarks that 
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classical works on probabilistic reasoning relied on. In a theoretical note aimed at discussing 

fallacious probability judgments entailed by this phenomenon, Crupi et al. (2008) provided 

an explanatory account based on the suggestion that these fallacious judgments are guided 

by sound assessment of confirmation relations (see Sides, Osherson, Bonini, & Viale, 2002). 

After describing the relationship between confirmation and probability in inductive logic 

and in the psychology of induction, the authors compared their confirmation-theoretic 

explanatory account to other relevant alternatives. From a theoretical point of view, the 

authors suggest that in reasoning biases like the conjunction fallacy, the notion of 

confirmation could overcome that of probability. Additionally, intuitive assessments of 

confirmation can be elicited directly and people can distinguish between probability and 

confirmation, as suggested in a more empirical work (Tentori et al., 2007). This 

confirmation-theoretic account was further investigated in a following study (Tentori et al., 

2013) involving four experiments sharing the same basic procedure but with different 

elicitation procedures for confirmation and probability judgments, different experimental 

designs, classes of problems and content. The results of all four experiments supported the 

information-theoretic account and showed that “the perceived degree of confirmation […] 

performed better than its perceived probability as a predictor of the occurrence and 

prevalence of the conjunction fallacy” (p.247). Moreover, when probability and confirmation 

were disentangled, the latter systematically prevailed as a determinant of the conjunction 

fallacy, indicating that inductive confirmation holds a crucial role in this phenomenon and 

further corroborating the confirmation-based explanation. Additionally, the authors pointed 

out that the results presented in this work could not be explained by alternative accounts 

like the ones discussed before. As mentioned before, some of these accounts seem more 
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compelling and provide more detailed explanations than others do. In the next paragraph, I 

will present further evidence in line with the confirmation-based one proposed by Tentori 

et al. (2016). This same approach will also represent the theoretical basis for my 

experimental investigation of how confirmation and probability affect perceptual 

probabilistic inferences. 

 

2.4. Combining evidential impact and probability judgments in psychological research 

Classic works on probabilistic reasoning seemed to show that people did not perform 

well in experimental settings, whereas they had no problem with reasoning tasks in real life. 

Additionally, people seem to perform better in perceptuo-motor tasks than in cognitive 

decisions; for example, Jarvstad, Hahn, Warren, & Rushton (2014) addressed the issue 

suggesting that this dissociation might be due to several noise sources. By means of two 

experiments involving a perceptuo-motor task, the authors discovered that optimality was 

task dependent and thus statements about optimality should be more cautious. These two 

experiments involved an implicit as well as an explicit motor choice task and showed that 

participants’ perceptuo-motor choices might deviate from optimality in two ways. First, they 

appear to prioritize speed over precision in the speed-accuracy trade-off; second, their 

precision criteria are less strict when aiming for larger targets. 

Another explanatory account is the abovementioned confirmation-based one. In the 

last few years, some papers tried to compare directly confirmation and probability 

judgments to test which of the two is more accurate, coherent, and stable in time and 

therefore more likely to be the basis for probabilistic inference. I will focus on two relevant 
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works, the first coming from a linguistics background and working with corpus-based data 

and the other one from a psychological background and involving real life arguments. 

Paperno et al. (2014) demonstrated that confirmation affects human judgments on 

word co-occurrence likelihood. The aim of this work was to test whether corpus-based 

estimations are predictive of human intuitions on word probabilities. Three experiments 

involving different material but with a common experimental paradigm and procedure were 

ran. In all three of them, participants were asked to perform a forced choice between two 

candidate target words in the context of another word. Participants were asked to be as 

accurate as possible and to provide confidence ratings. Experimental stimuli were based on 

word co-occurrence data from a large text collection. Experiment 1 represented the first 

investigation of the effects of the confirmation between words on their perceived 

probability, comparing target pairs with equal conditional probabilities. Under these 

conditions, if participants’ probability judgments were only driven by conditional 

probability, the choice rate for either target was expected to be at chance level. On the 

contrary, if confirmation relations affected probability judgments, participants’ choice 

should be influenced by the evidential impact of context on target. Experiment 2 aimed at 

extending Experiment 1’s investigation to a more general setting in which the two targets 

were not matched with respect to the conditional probability of the target in light of the 

context. To investigate whether and how confirmation values could affect likelihood 

judgment with targets whose posterior probabilities differed, Experiment 2 involved a 

random sample of items from the corpus where probability and confirmation varied freely, 

and used both variables as predictors in a regression analysis on participants’ choices. 

Experiment 3 aimed at testing the effects described above under more controlled conditions. 
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In all three experiments, the authors found that confirmation consistently affected human 

judgments on word co-occurrence likelihood. The theoretical contributions of this work are 

manifold. First, it illustrated the usefulness of linguistic corpora as a source of probability 

and confirmation values implicit in language data; second, it contributed to the study of word 

association in linguistics; finally, it provided further evidence that speakers are sensitive to 

very subtle statistical patterns present in corpora.  

The crucial role of confirmation relations in probability judgments was further 

explored with different experimental stimuli by Tentori, Chater and Crupi (2016) aimed at 

comparing the reliability of impact versus probability judgments in inductive inference. The 

goal of this study was to investigate whether impact judgments are more consistent and 

stable in time than probability estimates and to compare the reliability of impact versus 

probability judgments. To test this hypothesis, a paper and pencil experiment was carried 

out. Before the main experiment, a preliminary study was conducted to obtain response 

frequencies for real word arguments in order to derive objective probabilities and impact 

values to judge in the main experiment. Impact values were computed according to three 

different measures: probability ratio, likelihood ratio and relative distance. In a second 

phase, objective probabilities and impact values were used to generate 56 arguments by 

combining two complementary pieces of evidence with 28 hypotheses. Two pieces of 

evidence were used for each hypothesis to have an identical number of arguments with 

positive and negative impact. The proper task for each participant consisted in reading all 

the 56 arguments and judging the probability of the hypothesis in light of the evidence given 

and the impact of the evidence on the hypothesis. These judgments were repeated twice by 

every subject with an interval of around 7 days to obtain a time-consistency measure. The 
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results showed that impact judgments were more consistent in time than probability 

judgments, independently from the measure considered. Impact judgments were also more 

correlated with objective probabilities computed from the preliminary survey than it was 

posterior probability. In general, these results suggest that impact judgments are more 

accurate and stable in time than posterior probability: they might be a more primitive type 

of judgment and might be the basis of probabilistic inference. These results align with older, 

theoretical works on confirmation measures discussed above showing that people are 

sensitive to the distinction between confirmation and probability. 

 

2.5. Probabilities in perception and psychophysics 

2.5.1. Statistical regularities in visual perception 

The two abovementioned works by Paperno et al. (2014) and Tentori et al. (2016) 

investigated the effect of confirmation relations with verbal and linguistic material; as 

mentioned in the introduction, the goal of the present work is to understand whether and 

how confirmation relations affect probabilistic inferences even when perceptual (e.g. visual) 

material is at issue. Literature on visual perception often showed how it relies a lot on the 

identification and encoding of statistical features of the scene and how people can extract 

statistical measures over a variety of visual properties (Allan, Hannah, Crump, & Siegel, 

2008; Ariely, 2001; Hannah, Crump, Allan, & Siegel, 2009; Yang, Tokita, & Ishiguchi, 2018; 

Zhao, Ngo, Mckendrick, & Turk-browne, 2011). Examples of this ability appear in works on 

ensemble statistics perception, exploring how the visual system naturally represents sets of 

similar items using summary statistics. In a review of works on summary statistical 

perception, Haberman & Whitney (2012) presented a variety of domains in which people 
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are able to integrate or ensemble-code low level feature information, like position, size, 

orientation, or shadow. Ariely (2001) investigated the idea of set representation and 

explored whether the visual system creates a specific representation for a set of similar 

objects or it just encodes the sum of the representations of the individual items. To answer 

this question, two novel tasks were employed: member discrimination and mean 

identification. The first task measured knowledge about the sizes of individual spots in a set, 

whereas the second one measured sensitivity to the mean size of a set. In member-

identification experiments, participants appeared to be unable to distinguish test spots that 

were in the set from those that were not and their performance was only marginally better 

than chance: in this task, observers did not seem to be able to make accurate judgments 

regarding parts of a set. In mean-discrimination experiments, on the other hand, participants 

reported much more accurate performances. Overall, then, the results of the mean 

discrimination experiments were characterized by a high level of accuracy, whereas 

member-identification tasks were not. Ariely (2001) provided an explanation for these 

results based on set representation, suggesting that the representation of a set is something 

more than a composition of its single parts and that people can extract statistical properties 

of a display. This set representation proposal was further explored by Corbett & Oriet (2011) 

in four behavioral experiments, involving the two tasks introduced by Ariely (2001) in 

combination with a RSVP (rapid serial visual presentation) paradigm. Overall, the results 

showed that explicit encoding of individual items is not necessary to build a mean 

representation of a set, further corroborating the statistical averaging hypothesis. Human 

participants, indeed, proved to be able to extract a representation of the mean size of a set of 

perceptual stimuli, but performed poorly when asked to determine whether a certain item 
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was a member of this set. Taken together, these two results suggest that the visual system 

represents the overall statistical properties of sets of objects. Statistical representations, in 

turn, allow to perceive statistical regularities, which spontaneously guide and attract 

attention (Zhao, Al-Aidroos, & Turk-Browne, 2013) and reduce perceived numerosity by 

means of grouping mechanisms (Zhao & Yu, 2016).  

The works from Ariely (2001) and Corbett and Oriet (2011) involved items 

characterized by one-dimensional features; multidimensional items, instead, are common in 

studies on visual statistical learning. Despite sharing their conceptual foundations (visual 

statistical processing), statistical summary perception and statistical learning are different 

processes: statistical summary perception involves the extraction of summary statistics over 

sets of objects; statistical learning, instead, involves the extraction of relationships among 

individual objects over repeated experience (Zhao et al., 2011). As I will describe in the next 

paragraph, these relationships have been conceptualized in different ways; I propose that 

confirmation relations could be one of them. 

2.5.2. Parallels between contingency and confirmation relations 

Confirmation and contingency relations seem to present several parallels and 

similarities from a formal and operational point of view; in light of this, an interesting 

hypothesis could be that the notion of confirmation relation can inform works on 

contingency judgments and help explain their results.  

Contingency judgment tasks have been present in the literature since the eighties 

(Allan, 1980; Allan & Jenkins, 1983; Allan et al., 2008; Baker, Berbrier, & Vallee-tourangeau, 

1989; Shanks, 1985); however, a crucial turning point is represented by the so-called 

streamed-trial paradigm which was first used by Crump, Hannah, Allan, & Hord (2007). They 
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ran a behavioral experiment involving two types of judgments in a within-subject design: 

contingency and frequency ratings, related to sets of perceptual stimuli. This work 

established a novel procedure for measuring contingency judgments and replicated two 

central findings in contingency judgment literature: the dependence of contingency 

judgments on ∆P and on outcome density. ∆P represents a common measure for contingency 

and it is defined by the difference between the probability of an outcome given the cue and 

the probability of the same outcome in absence of the cue: 𝑃(𝑂|𝐶) − 𝑃(𝑂|¬𝐶) . This equation 

is formally equivalent to confirmation measure n (Nozick, 1981): 𝑛(𝑒, 𝐻) = Pr(𝑒|𝐻) −

𝑃𝑟(𝑒|¬𝐻). In light of this equivalence, the parallel between confirmation and contingency 

measures already suggested represents a viable interpretation. Consequently, one could 

interpret the works on contingency judgments in terms of people assessing confirmation 

relations. Allan, Hannah, Crump, & Siegel (2008) further tested the streamed-trial paradigm 

in a series of four experiments, again investigating contingency assessment. In the four 

experiments, participants were asked to categorize the contingency between two items as 

either weak or strong, thus making a binary choice. Overall, these four experiments showed 

that parameters such as contingency sign, outcome density and payoffs affected decision 

criteria but not sensitivity to contingency and, more generally, that the streamed-trial task 

represented a viable methodology for contingency assessment. While discussing the results, 

the authors raise an interesting point: given that “psychophysics is the study of the 

relationship between physical events and our internal experience of these physical events” 

(Allan & Siegel, 2002), contingency judgments should represent a central research topic for 

psychophysics but this does not appear to be the case. Finally, Hannah et al. (2009) used the 

same streamed-trial procedure but modified it to investigate cue-interaction effect, which 
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arises from pairing multiple cues with a common outcome: in this situation, people behave 

as if these cues interacted with each other instead of treating them independently. Once 

again, contingency was presented and computed in terms of ∆P measure. By means of three 

behavioral experiments involving geometric forms and more meaningful images implying 

some background knowledge, the authors were able to show that the streamed-trial 

procedure can be extended to the study of cue-interaction and that it can be used with 

different experimental materials. The works mentioned so far do not provide Bayesian 

explanatory accounts; McKenzie & Mikkelsen (2007), instead, proposed a Bayesian view of 

covariation assessment to explain two phenomena frequently found in covariation 

judgment: overestimating the weight of joint presence and underestimating the weight of 

joint absence and influence of prior beliefs on the variables’ relationship judgment. Both 

phenomena represent departures from the normative model, but they are consistent with a 

Bayesian interpretation of the task. The authors presented the results of two behavioral 

experiments aimed at understanding whether the abovementioned phenomena appear in 

empirical judgments. These experiments revealed an inversion in the “cell A bias” (i.e. 

overestimating the weight of joint presence) when participants are led to believe that 

absence (instead of presence) is rare: cell D (joint absence) is then considered the most 

informative, in line with a Bayesian approach. While sensitivity to prior beliefs is a sign that 

people assess covariation in a “Bayes-like” way, sensitivity to rarity provides evidence for 

sensitivity to likelihoods and, consequently, one could infer, to confirmation relations. These 

results suggest that people take an inferential approach to covariation tasks instead of a 

descriptive one. That is, they try to assess the likelihood that there is a relationship between 

the variables involved. Because of this, they will tend to focus on instances of joint presence 
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(cell A) and discard those of joint absence (Cell D). In a descriptive approach, instead, people 

would only focus on the four cell values without assuming any other external knowledge and 

considering all cells equally informative. In such a scenario, “cell A bias” would represent a 

deviation from the norm; however, in the inferential one preference for joint presence and 

the influence of prior probability generate from normative processes. Taken together, the 

results of both experiments provide empirical evidence for an inferential approach to 

covariation tasks providing further evidence for sound, despite not normative, inferences: 

“taking into account real-world conditions, combined with normative principles that make 

sense under these conditions, can help explain why people behave as they do” (McKenzie & 

Mikkelsen, 2007). Finally, Leshinskaya and Thompson-Schill (2018) found that participants 

in a statistical learning task involving perceptual stimuli are sensitive to not only the 

conditional probability between two events, but also the uniqueness of that relation. Once 

again, ∆P was used as measure of association; to test whether learners were sensitive to 

uniqueness in a visual statistical learning (VSL) task, the authors manipulated the 

uniqueness of a strongly predictive event pair in event sequences composed of animated 

events. To do so, they created low ∆P and high ∆P sequences. In the first case, they increased 

the conditional probability of the effect by having it follow two other events and itself more 

often than in the high ∆P sequence. Thus, the two conditions differed in terms of how 

uniquely the cause, rather than other events, predicted the effect. A first behavioral 

experiment carried out on Amazon Mechanical Turk involved a cover task in which 

participants were asked to identify the “common” versus “rare” version of each event type 

and showed that participants reported a weaker representation of the cause-effect 

relationship in the low ∆P condition; conversely, the high ∆P condition allowed participants 
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to notice the predictive pattern. A second experiment was carried out to test the possibility 

that participants’ performance could be affected by having only two alternative causes or 

many alternative causes for a frequent effect and showed that the amount and entity of 

alternative causes did not affect learning of the effect-cause relation. The key finding was 

that participants in a statistical learning task were sensitive to not only the conditional 

probability between two events, but also the uniqueness of that relation: uniqueness, then, 

could represent a crucial element also in associative learning and causal reasoning. 

Additionally, the authors found that the computation of such uniqueness happened 

incidentally and automatically, making it “the way we register the naturally occurring 

statistics of our observed world” (Leshinskaya and Thompson-Schill, 2018). Similarly, as 

proposed by Tentori et al. (2016), the perception of confirmation relations is also automatic 

and spontaneous. 

Overall, these works showed parallels between the notion of contingency judgment 

and that of confirmation relations at a theoretical and empirical level. Thus, I propose that 

they represent analogous concepts in two different literatures and theoretical frameworks. 

That is, when performing contingency judgment tasks with streamed-trial or other 

procedures, people could base their answers on confirmation relations. It is also possible to 

draw a parallel between these studies and those reporting optimal probabilistic reasoning 

with apparently suboptimal computations, the common point being confirmation relations.   
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Chapter 3: The cognition-perception boundary:  Bayesian brain hypothesis 

 

Investigation of posterior probability and evidential impact has consequences and 

implications for a variety of topics which go beyond thinking and judgment specifically. In 

the last twenty years, probabilistic models of cognitive processes have gotten more and more 

popular and Bayesian probability theory has provided valuable contributions to different 

theoretical and empirical lines of research and scientific disciplines because it provides a 

theoretical framework for dealing with reasoning under uncertainty. A recent and 

widespread hypothesis is that of the so-called Bayesian brain (Knill & Pouget, 2004; Sanborn 

& Chater, 2016; Seriès & Seitz, 2013). According to this hypothesis, the brain represents 

sensory information in the form of probability distributions (Knill & Pouget, 2004) and “can 

be conceptualized as a probability machine that constantly makes predictions about the 

world and then updates them based on what it receives from the senses” (De Ridder, 

Vanneste, & Freeman, 2014). The Bayesian brain hypothesis has been applied to several low 

and high level processes like visual perception (Mamassian, Landy and Maloney, 2002), 

multisensory perception (Beierholm, Quartz and Shams, 2009), sensorimotor control 

(Körding & Wolpert, 2006), inductive learning (Tenenbaum et al., 2006). At a general level, 

it is well known in psychology, psychophysics and neuroscience that the nervous system of 

humans and animals developed to be sensitive to the statistical properties of the 

environment. Additionally, there is extensive evidence (e.g. see Beck et al., 2008; Chan, Niv, 

and Norman, 2016; Spratling, 2016; Vossel et al., 2015; and Wei and Stocker, 2012) in 

cognitive neuroscience and biology showing how probabilistic updating provides an almost 

perfect descriptive model for basic neural processes like vision and other kinds of perception 

by framing them in terms of probabilistic inferences over underlying probability 



37 
 

distributions. Some computations are easier to frame in probabilistic terms than others: 

standard Bayesian models describe lower level processes more accurately than higher level 

ones. Indeed, plenty of such models have been proposed and tested in the last years for 

mechanisms like visual perception, attention and search, multisensory perception, 

perceptual decision making. 

In light of the evidence coming from neuroscience and visual perception, there seems 

to be a discrepancy between normative benchmarks and people’s reasoning performances; 

additionally, “People are Bayesians who fail to solve simple Bayesian word problems” 

(Sirota, Vallée-tourangeau, & Vallée-tourangeau, 2015). In other terms, people lack the 

ability to introspect about cognitive operations that are otherwise carried out in an optimal 

way in everyday life (Chater, Tenenbaum, & Yuille, 2006). This dissociation is reflected in 

two different approaches to the study of probabilistic reasoning involving different 

paradigms and apparently reaching different, if not opposite, conclusions. The first approach 

(Kahneman & Tversky, 1973) showed that people fail in simple Bayesian reasoning tasks, 

whereas a much more recent one (Griffiths & Tenenbaum, 2006; Sanborn & Chater, 2016; 

Tenenbaum et al., 2006) reported sound Bayesian reasoning in a variety of tasks. One work 

following this second approach (Griffiths & Tenenbaum, 2006) examined human cognition 

in more realistic context than laboratory studies and found that everyday cognitive 

judgments follow optimal statistical principles and align with the ‘real’ statistics in the world. 

This work discussed a behavioral experiment comparing ideal Bayesian analyses with the 

judgments of a large sample of participants, examining whether people’s predictions were 

sensitive to the distributions of different quantities that arise in everyday contexts and 

whether they corresponded to optimal statistical inference in different settings. In the 
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experiment, participants were asked to make predictions about five different phenomena 

(movie grosses, poem lengths, life spans, reigns of pharaohs, and lengths of marriages). Each 

prediction was based on one of five possible values, varied randomly between subjects. In 

each case, participants read several sentences establishing context and then were asked to 

give their predictions. People’s judgments appeared to be close to the predictions coming 

from the Bayesian model across different settings, suggesting that people might be capable 

of considering prior distributions and update them in light of real world statistics.  

 

3.2. Bayesian updating in perception and cognition 

As discussed in the previous paragraph, plenty of studies focused on Bayesian 

reasoning with perceptual (e.g. visual) material as Bayesian inference is particularly suitable 

to model visual perception in terms of unconscious inference. Moreover, representing 

knowledge in terms of probability distributions is particularly suitable for low and high-level 

tasks involving uncertainty. Körding & Wolpert (2006) reviewed studies investigating the 

mechanisms involved in decision problems and action selection tasks, showed that human 

behavior aligns with Bayesian decision theory predictions and concluded that Bayesian 

decision theory represents a coherent framework for decisions involved in sensorimotor 

tasks. This framework can be applied to visual perception: Moreno-bote, Knill, & Pouget 

(2011) investigated whether visual percepts originate from Bayesian sampling, that is, 

sampling from probability distributions over image interpretations and showed that visual 

dominance in bistable perception behaves as a probability, supporting the idea of Bayesian 

sampling over a probability distribution. Bistable perception leads people to experience 

spontaneously perceptual alternation between two compelling interpretation of one single 
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stimulus and represents one clear example of the interpretive nature of vision (Meng & Tong, 

2004). As to more complex processes, Feldman (2014) reviewed Bayesian models of 

perceptual organization, first introducing the topic of Bayesian inference and then 

illustrating its application to perceptual organization problems. For our goals, the crucial 

part of this work is the definition of perception as unconscious inference, which explains why 

Bayesian inference has been proposed as a solution to this problem. Bayesian inference, 

indeed, deals with the notion of conditional probability (which we have defined above) in 

situations of uncertainty; thus, it represents an optimal candidate to model the central 

problem of perception which is to estimate physical world based on perceptual data. 

Rescorla (2015) provided a similar explanatory account and discussed the explanatory 

power and usefulness of mental representation in Bayesian perceptual models. If perception 

is framed as unconscious inference, expectations are a crucial element as they can be 

considered as prior beliefs in the inferential process (Seriès & Seitz, 2013). This idea is 

particularly relevant for the present work as it aims at drawing a parallel between inferential 

reasoning with verbal stimuli and visual perception. In their discussion of object perception 

as Bayesian inference, Kersten, Mamassian, & Yuille (2004) ‘motivated’ the Bayesian 

framework by once again framing perception as ‘unconscious inference’ in which one of the 

central goals is to make sense of ambiguity. In light of this conceptual framework, supporting 

psychophysical evidence and neural implications of the Bayesian approach to object 

perception are then discussed. Overall, the evidence provided in the paper suggests that the 

Bayesian framework is a fruitful scheme for studying object perception and presents several 

advantages, as it allows to explicitly model uncertainty, define ideal observers (and 

performance), and develop quantitative theories at the information processing level, and it 
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applies to different areas such as language, speech, concepts and reasoning. A review by 

Seriès and Seitz (2013) discussed recent studies on motion perception in light of the 

perceptual Bayesian reasoning framework. The authors discussed how expectations can be 

described as probabilistic priors in a Bayesian updating framework and proposed two 

different types of effect on perception: expectations can modulate perceptual performance 

or they can alter the content of perception (i.e. the perceptual appearance of sensory inputs). 

In another review of Bayesian models of cognition, Chater, Oaksford, Hahn, & Heit (2010) 

describe perception as a ‘prototypical’ example of Bayesian inference because it aims at 

assigning probabilities to each possible interpretation of a percept, based on prior 

knowledge and sensory input. The Bayesian approach to perception is consistent with the 

idea that perception is “analysis by synthesis” (see also Yuille and Kersten, 2006); this means 

that the interpretation of perceptual data is the result of a combination of bottom up and top 

down processes. The idea of integration of priors and likelihood appears in the explanation 

of several different perceptual mechanisms as well as some other higher level ones. As 

Pouget and colleagues (2013) pointed out, “real-life problems are almost always far too 

complicated to allow for optimal behavior” and, as to visual perception, “natural images are 

both complex and objectively ambiguous” (Yuille & Kersten, 2006). In these cases, the brain 

might use heuristics or approximations: this is what makes behavior often suboptimal; other 

sources of suboptimality lie in the coding of sensory information and combination of sensory, 

perceptual and cognitive factors (Knill & Pouget, 2004). To deal with uncertainty, the brain 

models sensory data as conditional probability functions over a set of unknown variables.  

The idea of suboptimal inference appeared not only in decision making to explain cognitive 

biases, but also when describing perceptual decision making. According to Beck et al. (2012), 
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suboptimal inference plays a relevant role in behavioral variability together with noise, 

especially when dealing with complex tasks. In these cases, the brain exploits computational 

shortcuts; therefore, most of behavioral variability comes from suboptimal inference due to 

these shortcuts. As to visual perception, it must be noted that the visual system treats 

perceptual sets with items varying along one dimension or more dimensions (i.e. 

conjunction of features). With stimuli varying along only one dimension (size, orientation) 

the overall statistics that can be computed are average, standard error and such, as described 

in the previous chapter. If stimuli represent the conjunction of two features, the computable 

overall statistics also include assessing relations between the two features across the set of 

objects. In Utochkin, Khvostov and Stakina (2018)’s words, “The variety of conjunctions as a 

function of their constituent feature statistics can be described in terms of inter-feature 

correlation. The correlation (or any other concordance measure) is an effective way to 

estimate how likely certain features in one dimension go with certain features in another 

dimension” (p.179). This idea of inter-feature correlation resonates a lot with the definition 

of visual statistical learning as “extraction of relationships among individual objects over 

repeated experience” outlined in the previous chapter; however, while the former seems to 

involve individual features, the latter explicitly mentions inter-object relations. Regardless 

of the level at which they work, both notions represent some kind of association between 

two items; given this assumption, a parallel can be drawn between inter-feature correlation 

and confirmation relations. 
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3.3. Criticism 

Even though the Bayesian approach seems to provide a useful theoretical framework 

for the investigation of high and low level cognitive processes, some have raised critiques 

and observations about it as well as some doubts on its application to cognitive processes. In 

a review, Hahn (2014) distinguished three sets of criticism, by Jones and Love (2011), 

Elqayam and Evans (2011) and Bowers and Davis (2012a). These critiques focused on the 

unclear psychological implications of the model, its excessive flexibility with parameters and 

consequent unfalsifiability and its weak neuroscientific evidence. Jones & Love (2011) 

compared Bayesian approach to other psychological theories like behaviorism and 

evolutionary psychology, criticizing their use of optimality assumption. According to this 

work, explanatory status and theoretical contributions of Bayesian models of cognition can 

be easily brought back to already existing theories. The authors do not deny the importance 

and theoretical interest of Bayesian approach, but they warn against what they call ‘Bayesian 

fundamentalism’. With this term, they referred to some research track whose primary goal 

is to “has been to demonstrate that human behavior in some task is rational with respect to 

a particular choice of Bayesian model” and which “strictly adheres to the tenet that human 

behavior can be explained through rational analysis […] without recourse to process, 

representation, resource limitations, or physiological or developmental data” (Jones & Love, 

2011). Elaqayam & Evans (2011), instead, focused their criticism on normativism, “defined 

as the idea that human thinking reflects a normative system against which it should be 

measured and judged” and showed how this approach can lead to biased inference and does 

not represent a significant improvement to already existing computational level-analysis. 

Finally, Bowers & Davis (2012b) in their reply to Griffiths, Chater, Norris and Pouget (2012) 
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criticized the large use of optimality claims by Bayesian researchers and raised three main 

arguments. First, they showed that the empirical evidence for Bayesian theories in 

psychology is weak; second, that this evidence is even weaker in neuroscience and finally 

they discussed the general Bayesian approach in cognitive science. According to Hahn 

(2014), these critiques are placed at the wrong level of generality: despite being motivated 

by specific models, the criticizing papers were misdirected as general critiques of a whole 

paradigm. Despite these criticisms, the Bayesian brain hypothesis still represents a very 

popular and widespread interpretation of lower and higher level cognitive processes. 

As already mentioned, the two concepts of posterior probability and evidential 

impact are intrinsically related, and one implies the other: therefore, investigating whether 

and how they interact in perceptual probabilistic judgments would be useful and desirable 

and it could potentially cast light on some noteworthy phenomena, which goes beyond pure 

reasoning issues. At a more applied level, jointly understanding these two notions would be 

crucial for better understanding lower level processes (e.g. visual perception and search). 

 

3.4. Experimental questions 

As already mentioned, the hypothesis that the present  thesis was aimed to test is that 

confirmation relations represent a viable explanatory account for apparently suboptimal 

probabilistic reasoning, both with verbal material (Tentori, Chater and Crupi, 2016) and 

perceptual stimuli. This experimental question is explicitly based on the confirmation-based 

model proposed by Tentori et al. (2016) but, at the same time, it can also inform the Bayesian 

brain Hypothesis. Indeed, if the brain “can be conceptualized as a probability machine that 

constantly makes predictions about the world and then updates them based on what it 
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receives from the senses” (De Ridder et al., 2014) then instances of suboptimality could stem 

from humans using confirmation as a proxy for probability in their prediction-making 

process. 

In light of the relevant role of impact on probability judgements, there are still open 

questions regarding the exploration of how people judge the posterior probability of a 

hypothesis Pr(h|e) and the impact of new evidence on such hypothesis Imp(h,e) in inductive 

inferences. For example, if we found that confirmation relations affect probability judgments 

even when perceptual material is at issue then it would mean that this relation also holds 

when no semantic content and no background knowledge is involved. The studies on 

contingency judgment cited in Chapter 2 already provide some evidence for confirmation-

driven computations: in these works, in fact, people’s judgments would often depend on ∆P, 

which is a confirmation measure itself. Most studies on contingency judgment do not adopt 

a completely abstract and blank experimental backstory, but they often involve some 

fictitious scenario (see Chapman & Robbins, 1990; Exp.2 in Hannah et al., 2009; Mandel & 

Lehman, 1998; and Vadillo, Miller & Matute, 2005). Because of this, it is possible to speculate 

that semantic background knowledge could still be involved. Additionally, to the best of my 

knowledge, none of these works has tried to empirically disentangle contingency and 

probability relations in order to explore whether one notion is more compelling than the 

other in driving judgments. To sum up, the theoretical background and empirical evidence 

discussed so far showed that confirmation relations affect probability judgments with verbal 

stimuli and word association judgments with linguistic corpora; the present dissertation 

aims at extending these results to a different context involving abstract, symbolic material. 

If we found significant effects even when perceptual stimuli are at issue, this would mean 
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that the effect is transversal to at least three different experimental materials and is present 

even when background, semantic information is not available. With respect to the Bayesian 

models discussed above, this would mean that instead of turning to ‘heuristic’ shortcuts, 

people are indeed using Bayesian strategies (one could say that they ‘are Bayesian’), but 

their focus is on confirmation relations instead of probability ‘absolute’ values.  

3.4.1 Hypothesis 

We operationalized the abovementioned experimental question in two hypotheses: a 

general one and a more in-depth one. In light of the first hypothesis, we expect participants 

to consider confirmed hypotheses more probable than corresponding (in terms of posterior 

probability) disconfirmed ones. If this were the case, it would mean that keeping all 

conditions constant, participants are influenced by confirmation relations despite being 

asked to perform a perceptual probabilistic task. As to the second hypothesis, we expect 

participants to choose the more likely option (i.e. the normatively correct one) more often 

when it is confirmed by the evidence provided than when it is disconfirmed. If this were the 

case, it would mean that in spite of being unaware of the conflict between impact-driven and 

normatively correct option, participants are affected by it when performing the task. 

Additionally, we also expect participants to be driven by confirmation relations when a 

normatively correct answer is absent. Finally, we expect different posterior probability 

levels to differently affect people’s performance in the experimental task. 

3.4.2 Strategy 

To answer our experimental question and test the abovementioned hypotheses we 

ran four behavioral, computer-based experiments. They all shared the same underlying 
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hypothesis and experimental paradigm but each of them involved different perceptual 

features to explore a potential generalizability of the effect. 
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Chapter 4: Experimental studies 

Four behavioral computer-based experiments were conducted using the same 

methodology. All experimental stimuli were controlled using MATLAB and the Psychophysics 

toolbox (Brainard, 1997; Pelli, 1997).  

4.1 Experiment 1 

4.1.1. Introduction 

As discussed in the theoretical introduction, the few empirical works presenting a 

direct comparison between confirmation and probability estimates mostly involved verbal 

material and linguistic corpora. This kind of experimental material could raise issues related 

to the effect of previous information or semantic content on participants’ performance; 

therefore, in order to minimize any background knowledge effect, we chose simple, 

perceptual features like color and shape. This first experiment represents a first exploration 

of whether and how evidential impact affects probability judgments when low-level features 

are at issue. 

4.1.2. Method 

Participants 

Participants were 40 students of the University of Trento (25% men, mean age= 24, 

SD= 2.8). The study was approved by the ethics committee of the University of Trento, and 

informed consent was obtained for all participants. The sample size was calculated with 

G*Power (Version 3.1.5.1 Institut für Experimentelle Psychologie, Düsseldorf, Germany) 

assuming an effect size of 0.55, a α of 0.05, and a power of 0.8 (1–β). To determine the effect 

size, we chose to slightly overestimate the average effect size found in psychology (d= 0.4) 
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in light of the high effect sizes (average d = 1.65) reported in a previous study by Tentori et 

al. (2016). The minimal sample size computed by this method was 28, therefore we aimed 

at recruiting at least 30 participants for experiment. However, in Experiment 1 we chose to 

recruit a much larger number as it represented a first exploration of the issue and were not 

sure that the task would be easily understandable by all participants. Having obtained 

satisfying performance from participants in Experiment 1, we kept a minimum of 30 

participants in the following ones. 

Material and Procedure 

Experimental stimuli consisted of inductive arguments concerning 40 sets of figures 

that had two features (e.g., a geometric shape and a color) with two possible values each 

(e.g., triangle or circle and white or black). The kinds of figures, their number, and their 

presentation time varied across experiments. Figures 3 to 6 in the appendix report all the 40 

sets used in Experiment 1 as an example. As shown in Figure 2, features could be just 

displayed and/or verbally described, since for some of them, as pattern (Exp 3) line 

orientation or curvature (Exp 4), it was not possible to find an intuitive graphic 

representation that was uninformative about the levels of the other feature. By varying the 

probabilistic association between the two values of the features, we orthogonally 

manipulated posterior probability [three levels: .5-.5, .55-.45, and .6-.4] and impact [two 

levels: positive vs. negative]. A detailed description of experimental sets is provided in Figure 

1. Sets were generated in order to have, for each possible combination of the two features, 

two arguments with the same posteriors and opposite impacts (i.e., equal in absolute 

strength but different in sign). This means that each value of the two features counted as 

evidence in 10 sets, and it was positively associated (in 5 sets, set “b” in Figure 1) and 
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negatively associated (in 5 sets, set “c” in Figure 1) to the same level of the other feature, 

while keeping the posterior probability constant. As shown in Figure 2, in each trial, 

participants were first presented with a set of figures that had two features with two possible 

values each (i.e., white or black color and circular or triangular shape in Exp. 1, striped or 

dotted pattern and circular or triangular shape in Exp. 2, for examples, see 1a and 2a, 

respectively). At the end of the presentation time, a figure was drawn from the set and the 

value of one of its features was revealed (i.e., “black” in 1b). In light of this evidence, 

participants had to report their expectation about the value of the other feature of the figure 

by selecting one of the two icons at the bottom of the screen (which counted as alternative 

hypotheses, i.e., “circle” vs. “triangle” in 1b). Participants were instructed to be as fast and 

accurate as possible and had 30 seconds to submit their answer. No immediate feedback on 

the accuracy of their responses was provided. Once the response was provided, the selected 

alternative appeared in the center of the screen for 1.5 seconds, and participants were 

prompted to press the spacebar to proceed with the next trial.  Each set of figures was 

presented twice, for a total of 80 trials, with a 30 seconds break after every 20 trials. The 

experimental trials were preceded by four training trials. The presentation order of the trials 

was fully randomized. Participants were tested individually. At the end of the task, 

participants earned €0.15 for each correct answer. It is important to underline that the 

presentation modality is always above awareness level; this is relevant because, as 

demonstrated by Tapia, Breitmeyer, and Shooner (2010), among others, stimuli are 

processed at an individual-feature level at the nonconoscious level, but at a whole-object 

level while at the conscious level. By presenting all visual scenes for 3 to 4 seconds, we aimed 
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at minimizing the probability that subjects would perceive only one of the two features 

composing each item. 

 

Figure 1: examples of experimental sets. In each contingency table, rows represent the two possible evidences and 
columns represent the two hypotheses. Pr: posterior probability; L: evidential impact, according to L confirmation measure 
(Kemeny & Oppenheim, 1952). In set a, the two hypotheses (white and black) have the same posterior probability in light 
of the evidence “triangle”; thus, there is no normatively correct answer. However, evidence “triangle” provides positive 
support for hypothesis “black” and negative support for hypothesis “white”. In set b, the posterior probability of hypothesis 
“white” in light of evidence “triangle” is higher than that of hypothesis “black”. However, evidence ”triangle” provides 
positive support for hypothesis “black” and negative support for hypothesis “white”.  In this set, then, the evidence provided 
disconfirms the more likely alternative. In set c, the posterior probability of hypothesis “black” in light of evidence “triangle” 
is higher than that of hypothesis white, and evidence ”triangle” provides positive support for hypothesis “black” and 
negative support for hypothesis “white”. In this set, the evidence provided also confirms the more likely alternative. 
For a complete list of the experimental sets involved in Experiment 1, see Appendix. Experiment 2 involved the same sets 
but white was replaced with “light gray” and black with “dark gray”. In Experiments 3 and 4, we halved the number of 
figures in each set but probability and impact values were not changed. 
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Figure 2: visual description of the experimental task. Participants were seated in a dimly illuminated room 60 cm 
from the monitor (1920x1080 resolution, 100 Hz). The generation and presentation of the stimuli was controlled by using 
Matlab and Psychtoolbox-3 (Brainard, 1997; Pelli, 1997). All the items of a given set were inscribed in a 2.6° by 2.6° square. 
Rectangles 1a to 1c and 2a to 2c exemplify experiments 1 and 3 respectively. The structure of experiment 2 was analogous 
to that of experiment 1 and experiment 4 was analogous to experiment 3. Features could be just displayed and/or verbally 
described, since for some of them, as pattern (exp 3) line orientation or curvature (exp 4), it was not possible to find an 
intuitive graphic representation that was uninformative about the levels of the other feature. 

4.1.3. Data analysis 

The same analytical strategy was employed for the four experiments. First, for each 

participant, we computed the proportion of choices for the confirmed alternative out of the 

total number of trials. In order to investigate if this proportion was higher than chance, we 

performed a one-sample t-test (against .5). Second, only for trials in which posterior 
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probability differed from .5 (that is, trials in which there is a normatively correct response), 

we compared the proportions of errors for confirmed versus disconfirmed alternatives. 

More specifically, for each participant, we computed the proportions of choices for the less 

likely alternative out of the total amount of trials in which the evidence confirmed the more 

likely hypothesis and out of the total amount of trials in which the evidence disconfirmed the 

more likely hypothesis. These two proportions were then compared using a paired sample 

t-test. Third, a GEE regression analysis was used to model the effect of posterior probability 

and type of evidence (i.e., the feature provided as evidence) on choices for the confirmed 

alternative. Both factors were included in the analysis as categorical independent variables. 

Fourth, a GEE regression analysis was carried out to ascertain the effect of impact direction, 

posterior probability, and type of evidence on errors. All three factors were included in the 

analysis as categorical independent variables. When needed, we compared the number of 

choices for the confirmed alternative (or of errors) within specific sub-classes of stimuli 

using post-hoc pairwise comparisons with Bonferroni correction of the p values. These four 

analyses were repeated also for consistent trials that is only for trials in which the participant 

provided the same answer to the same two sets of figures. Data analysis was conducted using 

SPSS statistical analysis software (version 21). 

 

 

 

 



53 
 

4.1.4. Results 

Table 1. Mean proportions of choice for the confirmed alternative in Experiment 1 

Posterior 

Probability 

 All trials 
Consistent  

trials 

Evidence Prop. Prop. % 

0.5-0.5 Shape    

 Triangle .52 .56 65 

 Circle .48 .44 44 

 Color    

 Black .57 .69 44 

 White .69 .81 66 

0.55-0.45 Shape    

 Triangle .52 .58 64 

 Circle .41 .28 45 

 Color    

 Black .68 .72 69 

 White .74 .89 57 

0.6-0.4 Shape    

 Triangle .48 .49 67 

 Circle .32 .15 50 

 Color    

 Black .74 .83 68 

 White .71 .72 77 

Overall   .57 .60 61 

 

“Prop.” stands for the mean proportion of choices for the confirmed alternative across participants in all trials (column “All 

trials”) or consistent trials only (column “Consistent trials”). These proportions have been computed by averaging the 

proportion of choices for the confirmed option provided by each participant in each subclass of stimuli. “%” stands for the 

percentage of consistent trials out of the total amounts of trials in each subclass of stimuli 
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Table 2. Mean proportions of errors in Experiment 1 

Posterior  

Probability 
 Evidence 

All trials  Consistent trials 

Disconfirmed Confirmed  Disconfirmed  Confirmed 

Prop. Prop.  Prop. %  Prop. % 

0.55-0.45  Shape         

  Triangle .38 .33  .34 61  .28 66  

  Circle .37 .56  .20 42  .62 47  

  Color         

  Black .61 .24  .61 66   .17 72  

  White .71 .23  .90 54   .8 61  

0.6-0.4  Shape         

  Triangle .27 .31  .20 70   .19 65  

  Circle .28 .64  .14 59   .85 41  

  Color         

  Black .67 .19  .71 69   .4 67  

  White .57 .14  .55 71   .7 84  

Overall    .48 .33  .46 62   .27 63  

 

“Prop.” stands for the mean proportion of errors across participants in trials in which the more likely hypothesis was 

disconfirmed (column “Disconfirmed”) or confirmed (column “Confirmed”) by the evidence, when all trials (column “All 

trials”) or only consistent trials (column “Consistent trials”) are considered. These proportions have been computed by 

averaging the proportion of errors made by each participant in each subclass of stimuli. “%” stands for the percentage of 

consistent trials out of the total amounts of trials in which the more likely hypothesis was disconfirmed (column 

“Disconfirmed”) or confirmed (column “Confirmed”) by the evidence in each subclass of stimuli. 

 
Table 1 and 2 report the percentage of choices for the confirmed alternative (Table1 

1) and the percentage of errors (Table 2), in each of the sub-classes of stimuli. The one 

sample t-test revealed that the proportion of choices for the confirmed alternative out of the 

total number of trials (M = .57, SD = .14) was significantly higher than chance level [t(39) = 

3.34, p = .002]. Coherently with this result, the paired sample t-test revealed that the 

proportion of errors out of the total number of trials was greater when impact and posterior 

probability were dissociated, that is when the more likely hypothesis was disconfirmed 

rather than confirmed by the evidence [M = .48, SD = .15, and M = .33, SD = .15, respectively, 

t(39) = 3.54, p = .001]. The results of the GEE regression analysis on choices for the 

confirmed alternative showed that the type of evidence was a significant predictor [χ2(1) = 
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49.49, p < .001] while posterior probability was not [χ2(2) = 2.10, p = .350]. More 

specifically, across various posteriors levels, participants showed an increase of choices for 

the confirmed alternative when the type of evidence provided was color rather than shape 

(M = .69, SE = .027, and M = .46, SE = .027; post-hoc test: p < .001). The GEE also showed a 

significant interaction between type of evidence and posterior probability [χ2(2) = 16.39, p 

< .001]. As shown in Table 2, the frequency of choices for the confirmed alternative tended 

to increase consistently with the increase of the posterior probability of the more likely 

hypothesis. However, when the evidence concerned the shape of the figure such tendency 

was significantly reversed. Participants showed a lower number of choices for the confirmed 

alternative with .60-.40 posterior (M = .40, SE = .025) rather than with .55-.45 (M = .47, SE 

= .03) and .50-.50 (M = .50, SE = .036) posteriors (post-hoc tests: p =.035, and p = .002, 

respectively). 

The GEE regression analysis on errors showed that impact direction and posterior 

probability were both significant factors [χ2(1) = 12.21, p < .001, and χ2(1) = 9.22, p = .002,  

respectively], while type of evidence was not (p = .837). As expected, participants showed a 

decrease of errors when the evidence confirmed rather than disconfirmed the more likely 

hypothesis (M = .32, SE = .025, and M  = .48, SE = .026, respectively; post-hoc test: p < .001), 

and with .60-.40 posteriors rather than with .55-.45 posteriors (M  = .37, SE = .017, and M 

= .42, SE =.013, respectively; post-hoc test: p < .001). Significant interaction effects were 

obtained between impact direction and type of evidence [χ2(1) = 62.43, p < .001], and 

among all three factors [χ2(1) = 5.89, p = .015]. Across posterior probability levels, when 

the type of evidence was shape, the frequency of errors was slightly greater when the 

evidence confirmed rather than disconfirmed the more likely hypothesis (M = .46, SE = .031, 
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and M = .33, SE = .031, respectively; post-hoc test: p = .046). Such a difference, however, 

was significant only with .6-.4 posteriors (M = .48, SE = .033, and M = .28, SE = .034, 

respectively; post-hoc test: p = .001). 

Table 3.  Regression coefficients for the GEE regression on the proportion of choices for the 
confirmed alternative (all trials) in Experiment 1 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,538 ,1395 ,264 ,811 ,000 

posterior= 0.6-0.41 ,440 ,1573 ,131 ,748 ,005 

posterior= 0.55-0.451 ,362 ,1445 ,079 ,646 ,012 

type_of_evidence2 -,525 ,1813 -,880 -,170 ,004 
1 reference category: 0.5-0.5 
2reference category: color 

 

Table 4.  Regression coefficients for the GEE regression on the proportion of errors (all 
trials) in Experiment 1 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,647 ,1564 ,340 ,953 ,000 

posterior 3 -,162 ,1747 -,505 ,180 ,353 

type_of_evidence2 -1,144 ,2213 -1,578 -,710 ,000 

impact_direction4 -1,830 ,2945 -2,408 -1,253 ,000 
2reference category: color 
3reference category: 0.55-0.45 
4reference category: negative 

 
A very similar pattern of results was obtained when only consistent trials were 

considered. The proportion of choices for the confirmed alternative (M = .60, SD = .21) was 

significantly higher than chance level [t(39) = 3.02, p = .004], and the proportion of errors 

was greater when the more likely hypothesis was disconfirmed by the evidence than when 

it was confirmed [M = .46, SD = .26, and M = .27, SD = .24, respectively, t(39)= 2.93, p = 

.006]. Type of evidence resulted a significant factor [χ2(1) = 50.34, p < .001] in predicting 

choices for the confirmed alternative, while posterior probability did not [χ2(2) = 5.08, p = 

.079]. Again, the interaction effect between the two factors was significant [χ2(2) = 8.67, p = 
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.013]. The GEE analysis on errors reported significant effects of posterior probability [χ2(1) 

= 6.53, p = .011] and impact direction [χ2(1) = 10.45, p < .001], but not of type of evidence, 

(p = .813). The only significant interaction effect proved to be the one between impact 

direction and type of evidence [χ2(1) = 67.81, p < .001]. 

Table 5. Regression coefficients for the GEE regression on the proportion of choices for the 
confirmed alternative (consistent trials) in Experiment 1 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,039 ,3065 ,438 1,640 ,001 

posterior= 0.6-0.41 ,419 ,2904 -,150 ,988 ,149 

posterior= 0.55-0.451 ,565 ,2882 ,000 1,130 ,050 

type_of_evidence2 -1,016 ,3672 -1,736 -,296 ,006 
1 reference category: 0.5-0.5 
2reference category: color 

 

Table 6.  Regression coefficients for the GEE regression on the proportion of errors 
(consistent trials) in Experiment 1 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,155 ,2718 ,622 1,688 ,000 

posterior3 -,448 ,2559 -,950 ,053 ,080 

type_of_evidence2 -2,175 ,4090 -2,976 -1,373 ,000 

impact_direction4 -3,321 ,5348 -4,370 -2,273 ,000 
2reference category: color 
3reference category: 0.55-0.45 
4reference category: negative 

 

4.1.5. Discussion 

In line with our hypothesis, participants systematically chose the confirmed 

alternative over the equally probable, but disconfirmed one, and chose the normatively 

incorrect (i.e. less likely) alternative more often when it was confirmed (vs. disconfirmed) 

by the evidence provided. However, the type of evidence being tested appeared to affect 

choice patterns significantly and interacted with the relative posterior probabilities and 
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impact direction. That is, participants’ choice patterns appeared to be affected by impact 

relations only when the more salient feature (in this case, color) was provided as evidence. 

 These results provided a first empirical evidence of the effect of confirmation 

relations on probability judgment with perceptual stimuli, but also highlighted a significant 

influence of the experimental material itself on choice patterns. In fact, in line with empirical 

findings that indicate a privileged role of color in visual search (Wolfe & Horowitz, 2004, 

2017) as well as in modulating attentional capture (Adamo, Wozny, Pratt, & Ferber, 2010), 

the obtained results showed that color was a more compelling evidence than shape in 

determining participants’ choices. 

 

4.2. Experiment 2 

4.2.1. Introduction 

Having found that the task was easily understandable by all participants, we reduced 

the sample size. Additionally, having noticed that color represented a more compelling 

evidence than shape, we still used it as one of the two crucial features of each item, but in an 

attempt to make it less salient than before we used two shades of gray (dark and light) 

instead of black and white. Lastly, we added a thick, bright green rim to each item to make 

its shape more salient. The purpose was to force participants to also pay attention to the 

shape of each item. 

4.2.2. Method 
 

Participants 
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Participants were 30 students of the University of Trento (33% men, mean age= 22, 

SD = 2.8). The study was approved by the ethics committee of the University of Trento, and 

informed consent was obtained for all participants. 

Material and Procedure 

 The experimental procedure was analogous to that described in Experiment 1, with 

the changes mentioned in the introduction: each item presented in the visual sets 

represented the conjunction of shape (triangle/circle) and color (dark/light gray). 

4.2.3. Data analysis 

The analytical strategy was analogous to that described in Experiment 1.  

4.2.4. Results 

 

Table 7. Mean proportions of choice for the confirmed alternative in Experiment 2 

Posterior 

Probability 

 All trials 
Consistent  

trials 

Evidence Prop. Prop. % 

0.5-0.5 Shape  
  

 Triangle .47 .46 58 
 Circle .44 .38 60 
 Color    
 Dark .71 .79 62 
 Light .70 .78 72 
0.55-0.45 Shape    

 Triangle .45 .44 58 
 Circle .39 .31 59 
 Color    
 Dark .75 .87 65 
 Light .67 .78 65 
0.6-0.4 Shape    

 Triangle .38 .31 68 
 Circle .37 .30 65 
 Color    
 Dark .74 .86 68 
 Light .71 .78 69 

Overall  
 

.56 .60 64 

 

“Prop.” stands for the mean proportion of choices for the confirmed alternative across participants in all trials (column “All 
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trials”) or consistent trials only (column “Consistent trials”). These proportions have been computed by averaging the 

proportion of choices for the confirmed option provided by each participant in each subclass of stimuli. “%” stands for the 

percentage of consistent trials out of the total amounts of trials in each subclass of stimuli. 

Table 8. Mean proportions of errors in Experiment 2 

Posterior  

Probability 
 Evidence 

All trials  Consistent trials 

Disconfirmed Confirmed  Disconfirmed  
Confirme

d 

Prop. Prop.  Prop. %  Prop. % 

0.55-0.45  Shape         
  Triangle .37 .47  .32 63  .43 53 
  Circle .27 .50  .15 70  .48 50 

  Color         

  Dark .73 .23  .90 60  .15 70 
  Light .69 .35  .79 65  .27 67 

0.6-0.4  Shape      
   

  Triangle .19 .43  .7 75  .38 60 
  Circle .17 .43  .3 73  .36 57 

  Color         

  Dark .70 .22  .81 70  .11 65 
  Light .68 .24  .74 67  .15 72 

Overall    .47 .36  .48 68  .29 62 

 

“Prop.” stands for the mean proportion of errors across participants in trials in which the more likely hypothesis was 

disconfirmed (column “Disconfirmed”) or confirmed (column “Confirmed”) by the evidence, when all trials (column “All 

trials”) or only consistent trials (column “Consistent trials”) are considered. These proportions have been computed by 

averaging the proportion of errors made by each participant in each subclass of stimuli. “%” stands for the percentage of 

consistent trials out of the total amounts of trials in which the more likely hypothesis was disconfirmed (column 

“Disconfirmed”) or confirmed (column “Confirmed”) by the evidence in each subclass of stimuli. 

Table 7 reports the percentages of choice for the confirmed alternative within all trial 

categories out of both the total amount of trials and consistent trials only. When all trials 

were considered, the one-sample t-test showed that the proportion of confirmed choices was 

significantly higher than chance level [M = .56, SD = .16; t(29) = 2.25, p = .032]. Coherently, 

the paired samples t-test on the proportion of errors showed that this proportion was higher 

when the more probable hypothesis was disconfirmed by the evidence provided than in the 

other condition confirmed [M = .47, SD = .15, and M = .36, SD = .20], but this difference was 

not statistically significant, t(29) = 1.90, p = .067. The GEE regression analysis on choices 
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for the confirmed alternatives did not report a significant effect of posterior probability 

[χ2(2) = 1.58, p = .454] but a strong effect of the type of evidence provided [χ2(1) = 55.68, 

p < .001]. In fact, confirmed alternatives were chosen significantly more often when the 

evidence provided was color rather than shape (M = .71, SE = .038, and M = .42, SD = .028, 

respectively; post-hoc test: p < .001). The interaction between the two variables affected 

significantly the proportion of confirmed choices, χ2(2) = 9.05, p = .01]. The GEE analysis on 

the proportion of errors reported a significant effect of posterior probability [χ2(1) = 12.74, 

p < .001] and type of evidence [χ2(2) = 27.21, p < .001]. In fact, errors were less frequent 

with .6-.4 (vs .55-.45) posteriors and when shape was the evidence provided, rather than 

color. The direction of impact did not affect the proportion of errors significantly [p = .109] 

but its interaction with type of evidence did, [χ2(1) = 69.21, p < .001]. Consequently, when 

the evidence provided was shape, impact direction did not affect the proportion of errors, 

whereas when it was color, errors were more frequent when the evidence disconfirmed the 

more likely hypothesis, rather than confirm it (M = .70, SE = .042, and M = .26, SE = .042, 

respectively; post-hoc test: p < .001). Other two-way interactions effects were not found [all 

ps > .05] but the three way interaction between impact direction, posterior probability and 

type of evidence was significant, χ2(1) = 4.52, p = .034. Across posterior probability levels, 

when the type of evidence was shape, the frequency of errors was greater when the evidence 

confirmed rather than disconfirmed the more likely hypothesis (M = .46, SE = .034, and M  

= .24, SE = .029, respectively; post-hoc test: p = .001). Such a difference, however, was 

significant only with .6-.4 posteriors (confirming evidence: M = .43, SE = .040; disconfirming 

evidence: M = .18, SE = .023, post-hoc test: p < .001). 
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Table 9.  Regression coefficients for the GEE regression on the proportion of choices for the 
confirmed alternative (all trials) in Experiment 2 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,867 ,1929 ,489 1,245 ,000 

posterior=0.6/0.41 ,102 ,1312 -,155 ,359 ,436 

posterior=0.55/0.451 ,030 ,1309 -,226 ,287 ,818 

type_of_evidence -1,034 ,2053 -1,437 -,632 ,000 
1 reference category: .50-.50 
2reference category: color 

 

Table 10.  Regression coefficients for the GEE regression on the proportion of errors (all 
trials) in Experiment 2 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,908 ,2077 ,500 1,315 ,000 

posterior1 -,138 ,1727 -,477 ,200 ,423 

type_of_evidence2 -1,677 ,2753 -2,216 -1,137 ,000 

impact_direction3 -1,795 ,4055 -2,590 -1,000 ,000 
1 reference category: .50-.50 
2reference category: color 
3reference category: negative 
 

When only consistent trials were considered, the proportion of choices for the 

confirmed alternative was still significantly higher than chance level M = .59, SD = .21; t(29) 

= 2.25, p = .032]. Unlike when considering all trials, in this case the proportion of errors 

when the more probable hypothesis was disconfirmed by the evidence provided was 

significantly higher than in the other condition [M = .48, SD = .19, and M = .29, SD = .29, 

t(29) = 2.34, p = .026]. The GEE analysis on the proportion of choices for the confirmed 

alternative reported the same results as with all trials: posterior probability did not affect 

choice patterns, p = .482, but type of evidence did, χ2(1) = 44.50, p < .001. Indeed, across 

posterior probability levels, participants chose the confirmed alternative more frequently 

when the evidence provided was color (M = .82, SE = .051) rather than shape (M = .36, SE 
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= .045; post-hoc test: p < .001). The two factors did not interact significantly, p = .077. A 

GEE analysis on the effect of posterior probability, type of evidence and impact direction on 

the proportion of errors reported main effects for posterior probability and type of evidence 

[χ2(1) = 12.92, p < .001 and χ2(1) = 27.31, p <. 001, respectively] but not for impact 

direction, p = .144. As with all trials, the two- way interaction between impact direction and 

type of evidence was the only statistically significant one [χ2(1) = 45.91, p = .001]. When the 

evidence provided was shape, impact direction did not affect the proportion of errors, 

whereas when it was color, errors were more frequent when the evidence disconfirmed the 

more likely hypothesis, rather than confirm it (M = .81, SE = .061, and M = .15, SE = .051, 

respectively; post-hoc test: p < .001). Other two-way interactions effects were not found [all 

ps > .05], but the three way interaction between impact direction, posterior probability and 

type of evidence was marginally significant, χ2(1) = 4.13, p = .042. 

Table 11.  Regression coefficients for the GEE regression on the proportion of choices for 
the confirmed alternative (consistent trials) in Experiment 2 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,451 ,3540 ,757 2,145 ,000 

posterior=0.6/0.41 ,130 ,2312 -,323 ,583 ,575 

posterior=0.55/0.451 ,077 ,2611 -,435 ,588 ,769 

type_of_evidence2 -1,739 ,3538 -2,432 -1,045 ,000 
1 reference category: .50-.50 
2reference category: color 
 

Table 12.  Regression coefficients for the GEE regression on the proportion of errors 
(consistent trials) in Experiment 2 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,658 ,4650 ,747 2,570 ,000 

posterior=0.6/0.41 -,460 ,3462 -1,138 ,219 ,184 

type_of_evidence2 -2,895 ,5300 -3,934 -1,856 ,000 

Impact direction3 -3,075 ,8107 -4,664 -1,486 ,000 
1 reference category: .50-.50 
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2reference category: color 
3reference category: negative 

4.2.5. Discussion 

As in the previous experiment, choice patterns generally align with our experimental 

hypotheses but also reveal a strong effect of the feature being provided as evidence. Indeed, 

once again, the type of evidence affected the proportion of choices for the confirmed 

alternative as well as the proportion of errors, and it interacted significantly with the relative 

posterior probability for the two hypotheses and with impact direction. Overall, these results 

seem to support our hypothesis but at the same time are affected by the type of evidence 

provided even more than in the previous experiment: instead of helping participants focus 

not only on the color of all items but on their shape as well, these new features seemed to 

make color even more salient. Moreover, error patterns for those sets where shape was the 

evidence almost seemed to suggest that participants were not following any particular 

strategy when answering to those trials. 

 

4.3. Experiment 3 

4.3.1. Introduction 

The results of Experiments 1 and 2 suggest that individuals’ probability judgments 

are influenced by evidential impact also when perceptual stimuli are at issue. In order to 

avoid the asymmetry between the two perceptual features observed in both of them, we 

tried to balance the saliency of type of evidence by replacing color with pattern (i.e., lines vs. 

dots). Moreover, to simplify the perceptual task, we halved the number of figures included 
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in each set and incremented the presentation time of each trial. 

4.3.2. Method 
 

Participants 

 Participants were 32 students of the University of Trento (31% men, mean age= 20.4, 

SD = 2.2). The study was approved by the ethics committee of the University of Trento, and 

informed consent was obtained for all participants. 

Material and Procedure 

 The procedure was analogous to that described in Experiment 1, with the changes 

mentioned in the Introduction; each item presented in the visual sets represented the 

conjunction of shape (triangle/circle) and pattern (lines vs dots). 

4.3.3. Data analysis 

The analytical strategy was analogous to that described in Experiment 1.  

4.3.4. Results 

Table 13. Mean proportions of choice for the confirmed alternative in Experiment 3 

Posterior 
Probability 

 
All  

trials 
Consistent  

trials 

Evidence Prop. Prop. % 

0.5-0.5 Shape    
 Triangle .50 .52 56 
 Circle .42 .37 56 

 Pattern    
 Lines .66 .76 61 
 Dots .69 .86 59 

0.55-0.45 Shape    
 Triangle .48 .49 61 
 Circle .54 .59 53 

 Pattern    
 Lines .61 .78 50 
 Dots .70 .53 69 
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0.6-0.4 Shape    
 Triangle .49 .47 70 
 Circle .50 .48 69 

 Pattern    
 Lines .68 .79 66 
 Dots .66 .75 66 

Overall   .58 .61 62 

 

“Prop.” stands for the mean proportion of choices for the confirmed alternative across participants in all trials (column “All 

trials”) or consistent trials only (column “Consistent trials”). These proportions have been computed by averaging the 

proportion of choices for the confirmed option provided by each participant in each subclass of stimuli. “%” stands for the 

percentage of consistent trials out of the total amounts of trials in each subclass of stimuli 

 

Table 14. Mean proportions of errors in Experiment 3 

Posterior  

Probability 
 Evidence 

All trials  Consistent trials 

Disconfirmed Confirmed  Disconfirmed  Confirmed 

Prop. Prop.  Prop. %  Prop. % 

0.55-0.45  Shape         

  Triangle .35 .38  .26 61   .26 61  

  Circle .44 .37  .39 48   .25 58  

  Pattern         

  Lines .59 .34  .69 45   .16 55  

  Dots .73 .29  .83 70   .17 67  

0.6-0.4  Shape         

  Triangle .31 .34  .24 66   .30 73  

  Circle .28 .28  .21 78   .10 59  

  Pattern         

  Lines .62 .24  .72 59   .14 73  

  Dots .62 .26  .69 58   .17 73  

Overall    .49 .31  .49 61   .20 65  

 

“Prop.” stands for the mean proportion of errors across participants in trials in which the more likely hypothesis was 

disconfirmed (column “Disconfirmed”) or confirmed (column “Confirmed”) by the evidence, when all trials (column “All 

trials”) or only consistent trials (column “Consistent trials”) are considered. These proportions have been computed by 

averaging the proportion of errors made by each participant in each subclass of stimuli. “%” stands for the percentage of 

consistent trials out of the total amounts of trials in which the more likely hypothesis was disconfirmed (column 

“Disconfirmed”) or confirmed (column “Confirmed”) by the evidence in each subclass of stimuli. 

 
When all trials were considered, the one-sample t-test showed that the proportion of 

choices for the confirmed alternative (M = .58, SD = .16) was significantly higher than 

chance level [t(31) = 2.69, p = .011]. The proportion of errors when the evidence 
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disconfirmed the most likely hypothesis was significantly greater than when the evidence 

confirmed it [M = .49, SD = .18, and M = .31, SD = .18, respectively, t(31) = 3.28, p = .003]. 

The GEE regression analysis on choices for the confirmed alternative showed a strong effect 

of type of evidence [χ2(1) = 50.29, p < .001], but no significant effect of posterior probability 

[χ2(2) = .44, p = .802], and no interaction between type of evidence and probability [χ2(2) 

= 3.18, p = .204]. Across posterior probability levels, participants chose the confirmed 

alternative more frequently when the evidence provided was pattern (M = .67, SE = .027) 

rather than shape (M = .49, SE = .020; post-hoc test: p <. 001). The GEE regression analysis 

on errors showed a significant effect of impact direction [χ2(1) = 22.63, p < .001], posterior 

probability [χ2(1) = 8.01, p = .005], and type of evidence [χ2(1) = 18.10, p < .001]. 

Coherently with the results of Experiment 1, errors were less frequent when the evidence 

provided confirmed (vs. disconfirmed) the more likely hypothesis and with .6-.4 (vs. .55-.45) 

posterior. However, across posterior probability levels and regardless of impact direction, 

errors were more frequent when the type of evidence provided was pattern rather than 

shape (M = .45, SE = .023 and M = .34, SE = .019, respectively; post-hoc test: p < .001). A 

significant interaction effect between impact direction and type of evidence was also 

reported [χ2(1) = 80.67, p < .001]. When the evidence provided was pattern, the frequency 

of errors was greater when impact and posterior probability were dissociated (vs 

associated), (M = .64, SE = .023 and M = .28, SE = .032, respectively; post-hoc test: p < .001), 

while such a difference was not observed when the evidence provided was shape, (p = .916). 
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Table 15.  Regression coefficients for the GEE regression on the proportion of choices for 
the confirmed alternative (all trials) in Experiment 3 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,734 ,1689 ,403 1,065 ,000 

posterior= .60-.401 -,027 ,1463 -,313 ,260 ,856 

 posterior= .55-.451 -,088 ,1175 -,318 ,143 ,455 

type_of_evidence2 -,891 ,1720 -1,228 -,554 ,000 
1 reference category: .50-.50 
2reference category: pattern 
 

Table 16.  Regression coefficients for the GEE regression on the proportion of errors (all 
trials) in Experiment 3 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,647 ,1039 ,443 ,850 ,000 

posterior1 -,152 ,1873 -,519 ,215 ,416 

type_of_evidence2 -1,059 ,1563 -1,365 -,752 ,000 

impact_direction3 -1,435 ,1774 -1,783 -1,087 ,000 
1 reference category: .50-.50 
2reference category: pattern 
3reference category: negative 
 

As in Experiments 1 and 2, when the analyses included only consistent trials, results strictly 

resembled those obtained when all trials were considered. The overall proportion of choices 

for the confirmed alternative (M = .61, SD =.21) was higher than chance level [t(31) = 2.91 

p = .007], and the proportion of errors was greater when the evidence disconfirmed (vs. 

confirmed) the more likely hypothesis [M = .48, SD = .25, and M = .20, SD = .24, respectively, 

t(31) = 4.17, p < .001]. Type of evidence significantly predicted choices for the confirmed 

alternatives [χ2(1) = 16.83, p < .001] whereas posterior probability [χ2(2) = .47, p = .792] 

and the interaction between type of evidence and posterior probability [χ2(2) = 3.39, p = 

.184] did not. Finally, the GEE regression analysis on errors revealed that impact direction 

[χ2(1) = 7.92, p = .005], posterior probability [χ2(1) = 5.02, p = .025], and type of evidence 

[χ2(1) = 8.87, p = .003] were all significant predictors; the only significant interaction effect 
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was between impact direction and type of evidence [χ2(1) = 26.81, p < .001]. 

Table 17.  Regression coefficients for the GEE regression on the proportion of choices for 
the confirmed alternative (consistent trials) in Experiment 3 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,338 ,4371 ,482 2,195 ,002 

posterior= .60-.401 -,200 ,2633 -,716 ,316 ,448 

 posterior= .55-.451 -,168 ,1909 -,542 ,206 ,378 

type_of_evidence2 -1,618 ,4177 -2,436 -,799 ,000 
1 reference category: .50-.50 
2reference category: pattern 

Table 18.  Regression coefficients for the GEE regression on the proportion of errors 
(consistent trials) in Experiment 3 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,210 ,3768 ,471 1,948 ,001 

posterior1 -,331 ,3251 -,968 ,307 ,309 

type_of_evidence2 -1,990 ,3481 -2,672 -1,308 ,000 

impact_direction3 -2,645 ,7069 -4,030 -1,259 ,000 
1 reference category: .50-.50 
2reference category: pattern 
3reference category: negative 
 

4.3.5. Discussion 

Despite replacing color with another feature, we still found an effect of the feature 

being provided as evidence. However, type of evidence did not interact significantly with 

posterior probability in predicting the choice for the confirmed alternative, but it interacted 

with impact direction in predicting the proportion of errors. As in Experiments 1 and 2, 

results showed that confirmed alternatives were chosen more frequently than disconfirmed 

(but equally probable) alternatives, and that evidential impact affected the choice of the 

normatively correct alternative. Unfortunately, however, the results concerning the choices 

for confirmed alternative reported again a strong effect of the type of evidence (pattern vs. 
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shape). 

 

4.4. Experiment 4 

4.4.1. Introduction 

The replacement of color with pattern aimed at eliminating the asymmetry observed 

between the two types of evidence employed in Experiments 1 and 2 was unsuccessful, and 

the results of Experiment 3 showed that also pattern was a more compelling evidence than 

shape in determining participants’ judgments. To the end of contrasting such asymmetry, in 

Experiment 4, we employed sets of figures that were characterized by the combination of 

two different features: line curvature (i.e., wavy vs. straight) and line orientation (i.e., 

horizontal vs. vertical). These two have been suggested as the simplest line features by 

Treisman and Gormican (1988), and relevant visual search attributes by Wolfe and Horowitz 

(2017). As in Experiment 2, for each trial, a set of either 23 or 24 figures (i.e., wavy vertical 

lines, wavy horizontal lines, straight vertical lines, and straight horizontal lines) was 

presented for 4,000 ms.  

4.4.2. Method 

Participants 

Participants were 32 students of the University of Trento (16% men, mean age= 22.4, 

SD= 3). The study was approved by the ethics committee of the University of Trento, and 

informed consent was obtained for all participants. 

Material and procedure 

The procedure was analogous to that described in the previous experiments, with the 

changes mentioned in the Introduction. Each item of a visual set was composed of lines with 
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different orientation (vertical vs horizontal) and different curvature (wavy vs straight). 

4.3.3. Data analysis 

The analytical strategy was analogous to that described in Experiment 1.  

4.4.4. Results 

Table 19. Mean proportions of choice for the confirmed alternative in Experiment 4. 

Posterior 

Probability 

 
All  

trials 

Consistent  

trials 

Evidence Prop. Prop. % 

0.5-0.5 Orientation    

 Horizontal .64 .82 47 

 Vertical .65 .73 55 

 Curvature    

 Wavy .53 .60 53 

 Straight .63 .77 58 

0.55-0.45 Orientation    

 Horizontal .66 .73 63 

 Vertical .63 .71 59 

 Curvature    

 Wavy .63 .73 58 

 Straight .59 .59 63 

0.6-0.4 Orientation    

 Horizontal .60 .65 66 

 Vertical .68 .77 73 

 Curvature    

 Wavy .62 .69 63 

 Straight .62 .65 66 

Overall   .62 .70 62 

 

 

 

 

“Prop.” stands for the mean proportion of choices for the confirmed alternative across participants in all trials (column “All 

trials”) or consistent trials only (column “Consistent trials”). These proportions have been computed by averaging the 

proportion of choices for the confirmed option provided by each participant in each subclass of stimuli. “%” stands for the 

percentage of consistent trials out of the total amounts of trials in each subclass of stimuli 
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Table 20. Mean proportions of errors in Experiment 4 

Posterior  

Probability 
 Evidence 

All trials  Consistent trials 

Disconfirmed Confirmed  Disconfirmed  Confirmed 

Prop. Prop.  Prop. %  Prop. % 

0.55-0.45  Orientation         

  Horizontal .62 .29  .67 64   .17 61  

  Vertical .55 .29  .61 58   .16 61  

  Curvature         

  Wavy .60 .34  .67 48   .26 67  

  Straight .55 .38  .55 70   .29 55  

0.6-0.4  Orientation         

  Horizontal .44 .24  .41 61   .15 70  

  Vertical .53 .16  .45 66   .8 80  

  Curvature         

  Wavy .49 .24  .52 58   .14 67  

  Straight .46 .22  .44 64   .7 69  

Overall    .53 .27  .53 61   17 66  

 

“Prop.” stands for the mean proportion of errors across participants in trials in which the more likely hypothesis was 

disconfirmed (column “Disconfirmed”) or confirmed (column “Confirmed”) by the evidence, when all trials (column “All 

trials”) or only consistent trials (column “Consistent trials”) are considered. These proportions have been computed by 

averaging the proportion of errors made by each participant in each subclass of stimuli. “%” stands for the percentage of 

consistent trials out of the total amounts of trials in which the more likely hypothesis was disconfirmed (column 

“Disconfirmed”) or confirmed (column “Confirmed”) by the evidence in each subclass of stimuli.  

 

 As in the three previous experiments, the proportion of choices for the confirmed 

alternative (M = .62, SD = .14) was significantly higher than chance level [t(31) = 4.98, p < 

.001], and the proportion of errors was greater when the most likely hypothesis was 

disconfirmed (vs. confirmed) by the evidence [M = .53, SD = .18, and M = .27, SD = .14, 

respectively, t(31) = 5.23, p < .001].  The GEE regression analysis showed that neither 

posterior probability nor type of evidence significantly predicted choices for the confirmed 

alternative [χ2(2) = .78, p = .676, and χ2(1) = 1.79, p =.180, respectively]. The interaction 

between the two factors was also not significant [χ2(2) = .77, p = .679]. The GEE regression 

performed on errors revealed that both impact direction and posterior probability were 

significant predictors [χ2(1) = 26.36, p < .001, and χ2(1) = 28.34, p < .001, respectively], 
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while type of evidence was not [χ2(1) = .83, p = .362]. Errors were less frequent when the 

evidence provided confirmed (vs. disconfirmed) the most likely hypothesis (M = .27, SE = 

.024 and M = .53, SE = .031, respectively; post-hoc test: p < .001) and with .6-.4 (vs. .55-.45) 

posterior (M = .34, SE = .017 and M = .45, SE = .017, respectively; post-hoc test: p < .001). 

No significant interaction effect was obtained among any of the three considered factors (all 

ps > .05). 

Table 21.  Regression coefficients for the GEE regression on the proportion of choices for 
the confirmed alternative (all trials) in Experiment 4 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,595 ,1387 ,323 ,867 ,000 

posterior= .60-.401 -,009 ,1492 -,301 ,284 ,954 

posterior= .55-.451 ,017 ,1609 -,298 ,332 ,915 

type_of_evidence2 -,264 ,1592 -,576 ,048 ,097 
1 reference category: .50-.50 
2reference category: orientation 
 

Table 22.  Regression coefficients for the GEE regression on the proportion of errors (all 
trials) in Experiment 4 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,347 ,1870 -,019 ,714 ,063 

Posterior1 -,394 ,1991 -,784 -,004 ,048 

type_of_evidence2 -,032 ,2657 -,553 ,489 ,904 

impact_direction3 -1,247 ,3232 -1,881 -,614 ,000 
1 reference category: .50-.50 
2reference category: orientation 
3reference category: negative 
 

When only consistent trials were included in the analyses, results followed a similar 

pattern. The proportion of choices for the confirmed alternative (M = .70, SD = .23) was 

significantly higher than chance level [t(31) = 4.98, p < .001], and the proportion of errors 

was significantly greater when the evidence disconfirmed (vs. confirmed) the most likely 

hypothesis [M = .53, SD = .24, and M = .17, SD = .19, respectively, t(31) = 5.33, p < .001]. 
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The GEE regression analysis on choices for the confirmed alternative did not reveal any 

significant effect of posterior probability and type of evidence [χ2(2) = .46, p = .794, and 

χ2(1) = 2.41, p = .121, respectively], and no interaction between them, [χ2(2) = 2.33, p = 

.312]. Once again, the GEE regression analysis on errors showed that both impact direction 

and posterior probability were significant predictors [χ2(1) = 27.09, p < .001, and χ2(1) = 

18.72, p < .001, respectively], while type of evidence was not [χ2(1) = .40, p = .528]. No 

significant interaction effects were obtained among any of the factors considered [all ps > 

.05]. 

Table 21.  Regression coefficients for the GEE regression on the proportion of choices for 
the confirmed alternative (consistent trials) in Experiment 4 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) 1,293 ,3375 ,631 1,954 ,000 

posterior= .60-.401 -,416 ,3037 -1,011 ,179 ,171 

posterior= .55-.451 -,228 ,3525 -,919 ,463 ,518 

type_of_evidence2 -,683 ,3343 -1,338 -,028 ,041 
1 reference category: .50-.50 
2reference category: orientation 

 

Table 22.  Regression coefficients for the GEE regression on the proportion of errors 
(consistent trials) in Experiment 4 

Parameter B Std. Error 95% Wald Confidence Interval Sig. 

Lower Upper 

(Intercept) ,580 ,3172 -,042 1,201 ,068 

Posterior1 -,654 ,3304 -1,301 -,006 ,048 

type_of_evidence2 -,041 ,4662 -,955 ,873 ,930 

impact_direction3 -2,285 ,5861 -3,433 -1,136 ,000 
1 reference category: .50-.50 
2reference category: orientation 
3reference category: negative 

 

4.4.5. Discussion 

In line with our hypotheses, participants chose the confirmed alternative over the 

disconfirmed one across posterior probability levels and types of evidence. The proportion 
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of errors was significantly higher when impact and posterior probability were dissociated, 

across posterior probability levels and types of evidence. The combination of line curvature 

and orientation proved to be the more balanced among those employed in the present 

research. Only in this last experiment, indeed, the type of evidence did not affect the choice 

for the confirmed alternative, nor the amount of errors and no interaction effects between 

the independent variables were found. When the two perceptual features at issue are 

balanced, relative posterior probability of the two hypotheses does not interact with the type 

of evidence being provided when having to choose the confirmed alternative. Similarly, 

impact direction did affect the proportion of errors in participants’ choices regardless of the 

relative posterior probability of the two hypotheses and of the type of evidence being tested. 
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Chapter 5: General discussion, further directions and conclusions 

 

The goal of this work was to investigate whether confirmation relations affect 

probability judgments even when abstract, perceptual material is involved. To test this 

hypothesis, we ran four behavioral experiments in which we used the same paradigm and 

manipulated perceptual features. Overall, the results we found supported our experimental 

claims, showing that probability judgments are affected by evidential impact even when 

perceptual stimuli are at issue. However, if the perceptual features involved were 

characterized by different salience levels, this asymmetry affected probability judgments, as 

shown in Experiments 1 to 3. When the evidence provided was the more salient feature, 

participants’ choices aligned with our hypotheses: confirmed alternative was chosen over 

the disconfirmed one, and the proportion of errors was significantly higher when probability 

and impact diverged. On the other hand, when the less salient feature was given as evidence, 

participants were virtually insensitive to variations in impact and probability: their choice 

for the confirmed alternative across posterior probability levels would generally not deviate 

from chance level. Insensitivity to impact and probability differences also affected the 

percentages of errors: with the less salient feature as evidence, in fact, the percentage of 

errors did not differ in the two levels of the confirmation/probability relation. In Experiment 

4, the two perceptual features composing each figure seemed to be more balanced; in this 

last case, choice patterns were not affected by the feature provided as evidence, nor by the 

relative posterior probability of the two hypotheses, as in Experiments 1 to 3. In the last 

experiment, in fact, participants chose the confirmed alternative over the disconfirmed one 

regardless of the posterior probability of the two hypotheses and of the type of evidence 

provided. Consequently, percentages of errors were significantly higher when the more 
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probable hypothesis was disconfirmed rather than confirmed. This difference was consistent 

across posterior probability levels as well as types of evidence.  

In addition to supporting our hypotheses, these results suggest the existence of an 

influence from confirmation relations between perceptual features on probability 

judgments, which is relevant because it shows that confirmation relations are capable of 

affecting probability judgments even in absence of any semantic element. In fact, past works 

on confirmation relations involved material with semantic background: it is possible that it 

is easier to think about confirmation relations and process them when they involve concrete 

features that can be easily represented, whereas confirmation relations between abstract, 

geometrical features appear much more arbitrary and hard to process. Another downside of 

abstract features, as suggested by our results, is that they strongly affected participants’ 

responses in three out of four experiments. In fact, when the more salient feature (color vs. 

shape, pattern vs shape) was provided as evidence, participants were able to correctly 

choose the confirmed alternative between two options; on the other hand, when the less 

salient feature appeared as evidence, people appeared to be insensitive to the confirmation 

relations pointing to one or the other alternative. A possible explanation for this finding is 

that people focus on the more salient of the two features composing each item and organize 

the visual set in smaller subsets based on it. Therefore, when this feature is given as evidence, 

people have a clear idea of the conditional probabilities it entails. On the other hand, when 

the less salient feature is given as evidence, people’s choices for the confirmed alternative 

will not differ from chance level and they also will not be affected by the evidence confirming 

or disconfirming the normatively correct alternative when asked to choose the more 

probable one. 
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 Moreover, despite not reporting any significant effect of participants’ gender on 

choice pattern, the samples of all four experiments are unbalanced with respect to gender: 

this could represent one possible limitation of the study. 

Our experimental results can have alternative explanations which fall outside the 

confirmation-driven framework. As to Experiments 1 and 2, the asymmetry in salience 

between shape and color of each item could have affected choice patterns regardless of the 

statistical structure of each set; that is, the more salient feature could have captured 

participant’s attention and driven their choices, regardless of the other one. To try solving 

this issue, in Experiment 3 we removed the feature ‘color’ and replaced it with ‘pattern’. Yet 

again, even with this new visual set we obtained, shape was overlooked in favor of pattern. 

The explanation we propose for such asymmetry is analogous to the one involving color: the 

more salient feature overcame the less salient one in driving participants’ choices because it 

would allow people to form subsets of the visual set, as mentioned above. Another 

alternative account could rely mostly, or exclusively, on the visual features of the item(s) 

which appeared in the center of the visual set. For example: if participants saw a white circle 

in the center of the screen, they could focus their attention on this item and perceive a 

stronger relation between the two features than the actual one and this judgment would then 

affect the choice in the experimental task. We randomized the position of all the items of a 

set on the screen to minimize the probability of incurring in such a position-driven salience 

effect, but this is still a possible explanation for participants’ choices. However, we believed 

that this effect would disappear when averaging throughout the entire sample. 

Our experimental results have theoretical as well as applied implications. On a 

theoretical level, they extend results coming from works involving verbal and linguistic 
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material (Paperno et al., 2014; Tentori, Chater & Crupi, 2016) to perceptual stimuli with no 

semantic background and provide further evidence for the effect of impact relations on 

probability judgments. Additionally, they show that high-level relations, which are 

completely unknown to the subject, affect the way people perceive relations within a visual 

set of perceptual, two-dimensional items. This last result might have interesting and 

noteworthy implications for psychophysical studies on visual cognition and contingency 

learning because it shows how non-perceptual relations between items might affect those 

perceptual processes on which visual cognition and search are based on. Finally, the 

asymmetry we found in choice patterns in experiments 1 to 3 reflects evidence coming from 

visual perception and search studies (Wolfe & Horowitz, 2004, 2017), revealing how color 

and shape are not equally salient. To understand this asymmetry, a more in-depth discussion 

of color and shape effects in visual perception is due.  

 

5.1 Color, shape and other features in visual search 

Visual attention can be driven to different extent by different perceptual features: 

Treisman & Gormican (1988) reviewed works involving different perceptual features, like 

color, line length, curvature, orientation, and arrangements, and used search latencies to 

infer which features are coded automatically in early vision. Kaptein, Theeuwes, & van der 

Heijden (1995) ran four experiments to investigate to what extent subjects are capable of 

selectively limiting search to a subset of elements based on color. The results showed that 

when subjects were searching for a target defined as a conjunction of color and orientation, 

response latencies on target-present trials depended only on the number of elements in the 

non-target color, indicating that only the subset of elements in the target color was searched. 
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Color based subsets, then, seem to have a crucial role in guiding visual attention. The 

importance of color in the deployment of visual attention is further discussed in a more 

recent work (Adamo et al., 2010) aimed at comparing the relative efficacy of shape and color 

in modulating attentional capture. The results provided evidence of attentional capture by 

both color and shape, but the magnitude of the effect was significantly larger for color than 

for shape. These two features, then, might be associated with different levels within the 

visual processing hierarchy and sets defined by color may be applied more effectively than 

those defined by shape: on a concrete level, this meant that in the experiment participants 

were more likely to orient attention to an irrelevant shape cue than to an irrelevant color 

cue. An additional evidence of the relevance of color in visual search can be found in several 

works by Wolfe (Wolfe & Horowitz, 2004, 2017) aimed at investigating what attributes guide 

the deployment of attention in visual search. These studies suggested that some features are 

more powerful than others in leading visual attention or, in other terms, that there are some 

attributes that undoubtedly guide the deployment of attention, like color or orientation, and 

some others for which there is no such strong support, like color change or semantic 

category. 

Color and shape can also prime visual perception to different extent: Breitmeyer, 

Ogmen and Chen (2004) performed a psychophysical and neurophysiological investigation 

of the types and levels of unconscious processing in color and form perception: the joint 

results from psychophysical and neurophysiological analyses showed that color priming 

happens earlier than shape priming. A series of experiments focused on both color and form 

indicated that choice reaction times for both color and shape are affected by priming in a 

metacontrast masking paradigm. According to the authors, these results indicate that color 
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and form priming occur at different levels in the visual processing stream; color priming 

depends on a stimulus-dependent response coming from early cortical levels, whereas form 

priming occurs at later levels. An additional experimental work from the same author 

(Breitmeyer, Ro, & Singhal, 2004) provided further proof of an early unconscious color 

priming effect occurring at early levels of processing. This second research involved two 

behavioral, computer-based experiments aimed at exploring unconscious priming effect of 

differently colored stimuli. This asymmetry between color and shape priming could be 

extremely relevant for experiments where shape and color are the two critical dimensions. 

 

5.2. Further steps 

Several further steps could help to better understand the conditions under which 

confirmation and probability interact. One could involve presentation modality: given the 

large number of items presented in each visual set, subitizing was not an option; however, 

one could argue that with a simultaneous presentation, people might be susceptible to 

perceptual grouping and item locations (we obviously randomized object locations in our 

experiments). Sequential presentation could represent a viable option to control for these 

issues: all the items of a same set could be shown sequentially instead of making up a visual 

set. This different modality is not without critical points either: showing items in a sequence 

might give rise to some primacy or recency effects. Ideally, the two modalities could 

counterbalance each other’s flaws.  

The studies we presented demonstrated that, even when performing probabilistic 

inferences, people are affected by impact relations in their judgments. It would be interesting 

to explore how people perceive and conceptualize confirmation relations when explicitly 
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asked about them, that is, what they would base their judgments on when the focus is on 

confirmation. This would allow to test whether and how people process and assess 

confirmation relations when explicitly asked to do so, instead of inferring their strategy from 

their behavior in a probability judgment task. The evidence collected so far in the 

psychological literature showed that probability estimates depend on confirmation 

relations; evidence that impact relations do not depend on probabilities would further 

support the confirmation-theoretic account. To explore choice patterns in impact judgment 

tasks, it is crucial to conceptualize confirmation relations so that people can understand and 

subsequently assess them. When semantic content is available, the relation between 

hypothesis and evidence is transparent and easy to conceptualize, but it gets much more 

blurry and arbitrary in presence of perceptual stimuli with no intrinsic meaning and link. In 

fact, very good performance at estimating impact relations does not necessarily entail that 

people would find it as easy to conceptualize them. This is particularly difficult when abstract 

stimuli are at issue: while it is relatively easy to think of how two real-life concepts are 

associated to each other and to grasp the difference between confirmation and probability 

relations between them (as in Tentori et al., 2016), this difference is much less intuitive when 

abstract, geometric shapes are involved and their relations are purely arbitrary and not 

based on any background knowledge. Moreover, confirmation relations are relative, not 

absolute judgments: they capture the relation between two variables and the (positive or 

negative) change in someone’s belief. Therefore, to investigate them in a direct way one 

would need a reference point to depart from after assessing the impact of the evidence; such 

an operationalization, though, would defy the whole idea of confirmation being a more 

primitive notion than probability. From a purely theoretical point of view, other concepts 
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like contingency or association measures could be considered as proxies for this notion, as 

already discussed in Chapter 2. An experimental question focused on confirmation instead 

of probability judgments would allow to understand whether the former is psychologically 

prior to the latter, as proposed by Tentori, Crupi, Bonini & Osherson (2007). If this were the 

case, confirmation relations, and not probability ones, might be the basis of probabilistic 

inference.  

In Chapter 3, I described the so-called Bayesian brain hypothesis and its implications 

for high- and low-level cognitive processes. Two central claims of this chapter were that the 

brain represents sensory information probabilistically and that it is a Bayesian sampler 

working with a local sense of probability. Our results suggest that confirmation relations 

might play a crucial role in this suboptimal but effective reasoning process. 

As a side note, our results could inform the debate focused on cognitive penetrability. 

Cognitive penetration “describes the influence of higher level cognitive factors on perceptual 

experience” (Vetter & Newen, 2014) and implies that high-level (in our case, confirmation) 

relations affect the perception of some other high-level (probability) relations between low-

level (perceptual) features. We could think of our experimental results as a very particular 

instance of cognitive penetrability where the high-level (confirmation) relations could 

‘penetrate’ the elaboration of the perceptual, low-level material. 

More and less recent experimental works showed distinct brain loci for deductive 

versus probabilistic reasoning (Osherson et al., 1998) and for priors versus likelihoods 

encoding (Vilares et al., 2012; Wiener, Michaelis, & Thompson, 2016). More precisely, 

neuroimaging studies showed that, in perceptual and cognitive decision-making tasks, priors 

and likelihoods are encoded separately, and so are priors and likelihood related- uncertainty. 



84 
 

For example, Ting, Yu, Maloney, & Wu (2015) were able to identify priors and likelihoods as 

distinct sources of information in value-based decision making, and localize prior-likelihood 

integration in the brain. Similarly, Ma & Jazayeri (2014) found differential representations 

of prior and likelihood uncertainty in the human brain, meaning that humans can take both 

types of uncertainty into account in their computations. Further investigations could explore 

whether probability estimates and confirmation judgments are also encoded in different 

brain areas, that is, whether a conceptual dissociation between the two notions is associated 

to a spatial and/or functional separation. More specifically: neuroimaging techniques could 

explore whether activation patterns in probabilistic inferences resemble more those 

associated to priors and likelihoods encoding or whether they are characterized by a whole 

different pattern. If the first instance were true, it would provide evidence for probability-

driven inferences; otherwise, it would further support the confirmation-driven account. 

In this work, we demonstrated that confirmation relations affect probability 

judgments even when abstract stimuli with no semantic content are at issue. If people are 

sensitive to arbitrary confirmation relations, it is possible to hypothesize that they are even 

more sensitive to impact relations between semantically charged concepts, as, indeed, 

demonstrated by empirical works we discussed in Chapter 2. In the same chapter, we 

discussed one possible consequence of the sensitivity to confirmation relations, that is 

conjunction fallacy. This fallacy was found and demonstrated in controlled, experimental 

settings but can nonetheless affect probabilistic judgments in social settings leading, for 

example, to stereotypical judgment. Similar to reasoning fallacies and heuristics, stereotypes 

provide a way to make sense of the complexity in the surrounding environment. Under most 

circumstances, they help us behave (i.e. think, take decisions, interact) in an adaptive and 
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sound manner, but in some situations, they can lead to suboptimal judgment and behavior. 

Social psychologists proposed several explanations for stereotypes, mostly focused on 

motivational factors: people engage in stereotyped judgments to make sense of the social 

environment, protect their self (self-serving bias) and their social identity (social identity 

threat). Some other explanations relate to cognitive factors: Kutzner & Fiedler (2017) 

proposed an explanatory account for stereotypes based on pseudocontingencies between 

events or features. These pseudocontingencies lead people to assume correlations between 

attributes based solely on differences between base rates. The authors defined stereotypes 

as “subjectively expected statistical contingencies between attributes and social groups” 

which, then, could be quantified by ΔP. Environmental factors, such as rarity, proximity, 

group categorization make pseudocontingencies and illusory correlations easier to draw. In 

this thesis, I showed that probability judgment is affected by confirmation relations and 

proposed a parallel between confirmation and contingency relations. In stereotypical 

judgments, people learn to associate personality traits and social categories on the basis of 

their experience; this association is not based on probabilistic assumptions, but on the 

observation that belonging to a given social group seems to ‘confirm’ the presence of a 

certain personal trait. Despite allowing quick and effortless social judgments, stereotypical 

relations do not necessarily represent the environment in a truthful and accurate way. 

Similarly, confirmation relations often represent an efficient and easily retrieved tool for 

probability estimates despite representing a deviation from the normative benchmark. If, as 

proposed by Kutzner & Fiedler (2017), stereotypes are based on pseudocontingencies 

between events or features, then it is possible to hypothesize that confirmation-driven 

judgments could be at the core of stereotypical associations. 
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Appendix: experimental sets used in Experiment 1.  

Figure 3. Sets 1 to 10. Evidence: shape (triangle); hypothesis: color. 

 

1 2

white black priors Pr(W|triangle)= 0.50 L(W, triangle)= -0.33 white black priors Pr(W|triangle)= 0.50 L(W, triangle)= 0.33

triangle 12 12 24 0.50 triangle 12 12 24 0.50

circle 20 4 24 0.50 Pr(B|triangle)= 0.50 L(B, triangle) = 0.33 circle 4 20 24 0.50 Pr(B|triangle)= 0.50 L(B, triangle) = -0.33

32 16 48 16 32 48

priors 0.667 0.333 priors 0.333 0.667

3 4

white black priors Pr(W|triangle)= 0.55 L(W, triangle)= -0.40 white black priors Pr(W|triangle)= 0.55 L(W, triangle)= 0.38

triangle 12 10 22 0.48 triangle 12 10 22 0.48

circle 22 2 24 0.52 Pr(B|triangle)= 0.45 L(B, triangle) = 0.40 circle 4 20 24 0.52 Pr(B|triangle)= 0.45 L(B, triangle) = -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

5 6

black white priors Pr(B|triangle)= 0.55 L(B, triangle) = -0.40 black white priors Pr(B|triangle)= 0.55 L(B, triangle) = 0.38

triangle 12 10 22 0.48 triangle 12 10 22 0.48

circle 22 2 24 0.52 Pr(W|triangle)= 0.45 L(W, triangle)= 0.40 circle 4 20 24 0.52 Pr(W|triangle)= 0.45 L(W, triangle)= -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

7 8

white black priors Pr(W|triangle)= 0.60 L(W, triangle)= -0.41 white black priors Pr(W|triangle)= 0.60 L(W, triangle)= 0.40

triangle 12 8 20 0.43 triangle 12 8 20 0.43

circle 24 2 26 0.57 Pr(B|triangle)= 0.40 L(B, triangle) = 0.41 circle 6 20 26 0.57 Pr(B|triangle)= 0.40 L(B, triangle) = -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609

9 10

black white priors Pr(B|triangle)= 0.60 L(B, triangle) = -0.41 black white priors Pr(B|triangle)= 0.60 L(B, triangle) = 0.40

triangle 12 8 20 0.43 triangle 12 8 20 0.43

circle 24 2 26 0.57 Pr(W|triangle)= 0.40 L(W, triangle)= 0.41 circle 6 20 26 0.57 Pr(W|triangle)= 0.40 L(W, triangle)= -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609
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Figure 4. Sets 11 to 20. Evidence: shape (circle); hypothesis: color 

   

11 12

white black priors Pr(W|circle)= 0.50 L(W, circle)= -0.33 white black priors Pr(W|circle)= 0.50 L(W, circle)= 0.33

circle 12 12 24 0.50 circle 12 12 24 0.50

triangle 20 4 24 0.50 Pr(B|circle)= 0.50 L(B, circle) = 0.33 triangle 4 20 24 0.50 Pr(B|circle)= 0.50 L(B, circle) = -0.33

32 16 48 16 32 48

priors 0.667 0.333 priors 0.333 0.667

13 14

white black priors Pr(W|circle)= 0.55 L(W, circle)= -0.40 white black priors Pr(W|circle)= 0.55 L(W, circle)= 0.38

circle 12 10 22 0.48 circle 12 10 22 0.48

triangle 22 2 24 0.52 Pr(B|circle)= 0.45 L(B, circle) = 0.40 triangle 4 20 24 0.52 Pr(B|circle)= 0.45 L(B, circle) = -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

15 16

black white priors Pr(B|circle)= 0.55 L(B, circle) = -0.40 black white priors Pr(B|circle)= 0.55 L(B, circle) = 0.38

circle 12 10 22 0.48 circle 12 10 22 0.48

triangle 22 2 24 0.52 Pr(W|circle)= 0.45 L(W, circle)= 0.40 triangle 4 20 24 0.52 Pr(W|circle)= 0.45 L(W, circle)= -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

17 18

white black priors Pr(W|circle)= 0.60 L(W, circle)= -0.41 white black priors Pr(W|circle)= 0.60 L(W, circle)= 0.40

circle 12 8 20 0.43 circle 12 8 20 0.43

triangle 24 2 26 0.57 Pr(B|circle)= 0.40 L(B, circle) = 0.41 triangle 6 20 26 0.57 Pr(B|circle)= 0.40 L(B, circle) = -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609

19 20

black white priors Pr(B|circle)= 0.60 L(B, circle) = -0.41 black white priors Pr(B|circle)= 0.60 L(B, circle) = 0.40

circle 12 8 20 0.43 circle 12 8 20 0.43

triangle 24 2 26 0.57 Pr(W|circle)= 0.40 L(W, circle)= 0.41 triangle 6 20 26 0.57 Pr(W|circle)= 0.40 L(W, circle)= -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609
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Figure 5. Sets 21 to 30. Evidence: color (black); hypothesis: shape 

   

21 22

triangle circle priors Pr(T|black)= 0.50 L(T, black)= -0.33 triangle circle priors Pr(T|black)= 0.50 L(T, black)= 0.33

black 12 12 24 0.50 black 12 12 24 0.50

white 20 4 24 0.50 Pr(C|black)= 0.50 L(C, black) = 0.33 white 4 20 24 0.50 Pr(C|black)= 0.50 L(C, black) = -0.33

32 16 48 16 32 48

priors 0.667 0.333 priors 0.333 0.667

23 24

triangle circle priors Pr(T|black)= 0.55 L(T, black)= -0.40 triangle circle priors Pr(T|black)= 0.55 L(T, black)= 0.38

black 12 10 22 0.48 black 12 10 22 0.48

white 22 2 24 0.52 Pr(C|black)= 0.45 L(C, black) = 0.40 white 4 20 24 0.52 Pr(C|black)= 0.45 L(C, black) = -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

25 26

circle triangle priors Pr(C|black)= 0.55 L(C, black) = -0.40 circle triangle priors Pr(C|black)= 0.55 L(C, black) = 0.38

black 12 10 22 0.48 black 12 10 22 0.48

white 22 2 24 0.52 Pr(T|black)= 0.45 L(T, black)= 0.40 white 4 20 24 0.52 Pr(T|black)= 0.45 L(T, black)= -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

27 28

triangle circle priors Pr(T|black)= 0.60 L(T, black)= -0.41 triangle circle priors Pr(T|black)= 0.60 L(T, black)= 0.40

black 12 8 20 0.43 black 12 8 20 0.43

white 24 2 26 0.57 Pr(C|black)= 0.40 L(C, black) = 0.41 white 6 20 26 0.57 Pr(C|black)= 0.40 L(C, black) = -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609

29 30

circle triangle priors Pr(C|black)= 0.60 L(C, black) = -0.41 circle triangle priors Pr(C|black)= 0.60 L(C, black) = 0.40

black 12 8 20 0.43 black 12 8 20 0.43

white 24 2 26 0.57 Pr(T|black)= 0.40 L(T, black)= 0.41 white 6 20 26 0.57 Pr(T|black)= 0.40 L(T, black)= -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609
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Figure 6. Sets 31 to 40. Evidence: color (white); hypothesis: shape 

31 32

triangle circle priors Pr(T|white)= 0.50 L(T, white)= -0.33 triangle circle priors Pr(T|white)= 0.50 L(T, white)= 0.33

white 12 12 24 0.50 white 12 12 24 0.50

black 20 4 24 0.50 Pr(C|white)= 0.50 L(C, white) = 0.33 black 4 20 24 0.50 Pr(C|white)= 0.50 L(C, white) = -0.33

32 16 48 16 32 48

priors 0.667 0.333 priors 0.333 0.667

33 34

triangle circle priors Pr(T|white)= 0.55 L(T, white)= -0.40 triangle circle priors Pr(T|white)= 0.55 L(T, white)= 0.38

white 12 10 22 0.48 white 12 10 22 0.48

black 22 2 24 0.52 Pr(C|white)= 0.45 L(C, white) = 0.40 black 4 20 24 0.52 Pr(C|white)= 0.45 L(C, white) = -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

35 36

circle triangle priors Pr(C|white)= 0.55 L(C, white) = -0.40 circle triangle priors Pr(C|white)= 0.55 L(C, white) = 0.38

white 12 10 22 0.48 white 12 10 22 0.48

black 22 2 24 0.52 Pr(T|white)= 0.45 L(T, white)= 0.40 black 4 20 24 0.52 Pr(T|white)= 0.45 L(T, white)= -0.38

34 12 46 16 30 46

priors 0.739 0.261 priors 0.348 0.652

37 38

triangle circle priors Pr(T|white)= 0.60 L(T, white)= -0.41 triangle circle priors Pr(T|white)= 0.60 L(T, white)= 0.40

white 12 8 20 0.43 white 12 8 20 0.43

black 24 2 26 0.57 Pr(C|white)= 0.40 L(C, white) = 0.41 black 6 20 26 0.57 Pr(C|white)= 0.40 L(C, white) = -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609

39 40

circle triangle priors Pr(C|white)= 0.60 L(C, white) = -0.41 circle triangle priors Pr(C|white)= 0.60 L(C, white) = 0.40

white 12 8 20 0.43 white 12 8 20 0.43

black 24 2 26 0.57 Pr(T|white)= 0.40 L(T, white)= 0.41 black 6 20 26 0.57 Pr(T|white)= 0.40 L(T, white)= -0.40

36 10 46 18 28 46

priors 0.783 0.217 priors 0.391 0.609
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