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1
I N T R O D U C T I O N

The spread of infectious diseases in human populations has always represented one

of the major threats to human existence [6, 117, 79, 110]. In fact, dealing with com-

municable diseases remains one of the greatest challenges for public health systems

across the globe [160, 120, 109, 81].

To tackle this challenge, the study of infectious diseases evolved in a very interdisci-

plinary field, driven by the necessity of simultaneously considering the wide variety

of factors that are involved [17]. Disciplines such as classical epidemiology, mathe-

matics, biology, and social science converge their focuses to shed light on the com-

plex dynamics underlying the spread of the infections [74].

Several different factors, such as the pathogen’s biology, the nature of the disease

vectors, and the chances of interactions between species, heavily shape the emer-

gence and diffusion of infectious diseases [6, 82, 40, 94]. As long as humans are con-

cerned, the spreading and unfolding of infections can be deeply affected by human

behavior and human choices, as well as by the structural and dynamical characteris-

tics of our society [46, 98, 59, 57, 155, 161]. On one hand, human behavior and human

choices imply that individuals are not passive agents but they may react in response

to a perceived risk or threat [121, 122, 119, 80, 45]. On the other hand, since individ-

uals are part of the society, social norms and social dynamics guide and influence

human interactions [74, 8, 87, 130].

Mathematical models are among the most powerful tools to deal with such com-

plexity, capable to quantitatively characterize the emergence of infection and to pre-

dict the development and evolution of the outbreak. Their effectiveness benefits from

the technological revolution and the increasing dialogues with different research fields.

Classical mathematical models of infectious diseases consider all the individuals in-

side the population as identical and with a static behavior over time [6]. This assump-

tion is related to the fact that, in the past decades, data on individual’s behaviors

were difficult to obtain and usually demanded a significant effort in their collection

and analysis. Information extracted through traditional means (e.g. surveys and inter-

views) are not usually continuous over time and they are not able to precisely assess

behavioral changes, even when collected for a sufficiently long time interval.

The digital revolution, that we are experiencing nowadays, delivers an unprece-

dented quantity of high frequency human behavioral data [131]. This paves the way

to new opportunities in modeling infectious diseases dynamics and allows to unravel

hidden patterns and describe society as a whole [87, 156, 116, 87]. For the first time,

9



10 I N T R O D U C T I O N

we have the possibility to include individual and spatially fine grained behavioral pat-

terns in the models. Such data driven models are capable of detecting the major de-

terminants in the spread of an epidemic, to asses a possible change in the behavior in

response to a threat and to suggest effective policies that help to prevent the spread

of diseases [156].

Two relevant aspects involving the dynamics of infectious diseases associated with

human behaviors can be distinguished:

i) Behavioral changes in response to pandemic threats;

ii) Impact of the interactions between groups, i.e. social dynamics of the population

that might boost and sustain the spread of the infections.

1.1 H U M A N B E H AV I O R I N R E S P O N S E T O PA N D E M I C S

As previously mentioned, behavioral response triggered by epidemic threats can play

a key role in shaping the transmission dynamics of infectious diseases. Risk percep-

tion may affect the acceptability of public health policies as well as induce adaptive

behavioral changes to reduce the individual risk of infection [46, 59, 45, 98, 123, 145,

141].

Many examples of adaptive responses to a pandemic are documented in the litera-

ture [71, 112, 121, 168]. For instance, during the Severe Acute Respiratory Syndrome

(SARS) epidemic in 2003, individuals protected themselves by wearing masks, avoid-

ing public transportation and improving personal hygiene measures. Similar adap-

tive behavior led by increasing social distance was reported and investigated also for

pandemic flu of the 1918 and for the H1N1 2009 pandemic [23, 121, 92, 145]. Remark-

ably, these spontaneous reactive behavioral changes might represent a significant

protective factor during the initial stage of the epidemic by slowing down the expo-

nential growth of the infections and increasing the chances of a successfully contain-

ment of the disease [128, 37].

From a different perspective, behavioral changes can be driven by the adoption

of containment policies implemented by the governments to prevent widespread

diseases [47, 48, 170, 27, 9]. When outbreaks occur, policy makers must implement

strategies aiming to interrupt the transmission chain of the infections. During the

West Africa Ebola outbreak in 2014, several control measures were adopted [115, 157,

107]. These included social distancing interventions, such as school closures, annul-

ment of mass gathering events, quarantine of individuals exposed to the disease,

safe burials, and borders restrictions. Efforts towards adopting public health measure

were rewarding, at least to limit the epidemic strength. However, a number of studies

have evidenced that restrictive measures can have severe economic and social impli-



1.2 S O C I A L D Y N A M I C S A N D S P R E A D O F I N F E C T I O U S D I S E A S E S 11

cations, being detrimental for the country experiencing the outbreak [127, 99, 118,

135, 20]. Ineffective communications between policy makers and citizens may jeop-

ardize the efficacy of the measures and reduce their acceptance, triggering negative

dynamics and amplifying social distress. Conversely, community participation coor-

dinated by health care systems are associated with successful outcomes in reducing

the burden of disease [2, 44, 4].

It is a matter of fact that behavioral changes in the populations depend on the

risk perception and individual’s awareness about the imminence of a health threat.

As such, understanding the role played by the awareness and its associated drivers

represents a crucial aspect to model the dynamics of behavioral changes in the pop-

ulation. In particular, higher risk perception driven by the awareness fosters reactive

responses of both individuals and government, in order to take precautionary actions.

Moreover, local spread of awareness in the community experiencing the epidemic

can control the diffusion of the disease [58, 56] and can be exploited in order to con-

tain and mitigate the outbreak [70, 93].

Media communications increase the individuals’ awareness and coordinate coop-

erations between policy makers and citizens [159]. In fact, many examples evidenced

that risk perception does not mimic the disease prevalence because of several dis-

tortion factors, such as the misrepresentation of the health threat by news media or

peer personal opinions [98, 59, 155, 57, 55, 143, 145]. This fact poses a challenge in

the inclusion of awareness in operational forecasting frameworks.

The concept of individuals’ awareness is usually nested in mathematical models

of individuals behavioral response. In particular, a lot of works couple the awareness

with the prevalence of infections inside a population [59, 155]. Because of the afore-

mentioned distortion factors, this approach might not be effective. One of the main

problems is that the role played by media drivers and peer influence in the building

of awareness lacks a quantitative characterization, mostly because data describing

the information level of an individual during the outbreaks are difficult to obtain by

traditional means. Thus, considerable effort is needed to understand the different

drivers of information about health threats to include awareness directly in the epi-

demic models to ultimately design optimized information campaign and increase

the efficacy of both spontaneous behavioral changes and mitigation policies.

1.2 S O C I A L D Y N A M I C S A N D S P R E A D O F I N F E C T I O U S D I S E A S E S

Human-to-human transmissions of an infectious disease are led by social factors

that guide the contacts between individuals [46, 74, 15, 132, 8]. Investigating the so-

cial dynamics in the population, such as the heterogeneity of contacts and the struc-

ture of social groups, reinforce reliable predictions of the future evolution of an epi-
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demic [161]. As an example of the primary role of heterogeneity of contacts in the

population, one can consider a few individuals with high degrees of contact who in-

fect the majority of the populations. In opposition of considering all the individuals

as identical, the role of super-spreaders is crucial in studying the dynamics of the in-

fections, as widely documented in the literature [95, 60, 169, 85]. An other aspect is

the composition and social interactions between groups. A typical human behavior

that people exhibit is homophily [102]. This refers to the tendency of people to cluster

together in groups that share common characteristics, such as age, belief, ethnicity

etc. When considering an epidemic that diffuses across the homophylic clusters, the

knowledge of the community structure and dynamics represents a relevant tool to

model the spread of an infectious disease. Models that account for these types of char-

acteristics can both evaluate the contribution of each group and, in turn, identify the

adequate strategies in the struggle against the disease [77, 75, 113, 72, 7]. Accordingly,

assumptions of well mixed population might mask the role of groups in originating

outbreaks and potentially sustaining the epidemics. A case in point is represented by

the measles outbreak in the Amish communities of US in 2014 [61, 62]. The Amish

are characterized by sub-optimal coverage level for the most basic vaccines, mostly

due to their rejection of modern technologies and medicine. In fact, vaccination is

not forbidden by the Amish religion, but personal beliefs shared among the commu-

nities result in low participation in the preventive health care system of the country

and in a critical level of vaccines. This critical behavior results in immunity gaps and

it is one of the factors associated with the re-emergence of measles in the United

States, with hundreds of cases inside the Amish communities.

Social dynamics and group structures are not a static characteristic of the popu-

lation. Disruptive events such as economic or political crises can rapidly alter the

group composition and interactions in the system. In particular, such events can lead

to massive migrations which heavily affect the social structure both of origin and ar-

rival countries [50, 153]. From 2010 to 2017 global migrations have increased of al-

most 50%, going from 173 to 258 million people leaving their countries, with a trend

that is expected to grow in the future [3]. This poses a challenge for infectious dis-

eases modelers in forecasting and capturing the evolution of demographic changes

and interactions in the populations [3, 173].

In particular, many developed countries, that experience the arrivals of migration

flows, often perceive refugees as a threat to their economic and health system [31].

This happens despite the documented evidences that hosting counties benefit from

immigration: refugees are typically younger and healthier than the local population

and they can actively contribute to the economic growth [3]. However, this biased

perception on migrants might ignite mechanism of segregation that is detrimental

for both populations and potentially boosts, rather than hamper, the spreading of
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infectious diseases. That is why understanding migration flows and their impact on

society is of great importance to help and guide public health preventive measures.

1.3 H U M A N B E H AV I O R A N D E P I D E M I C S P R E A D I N G I N T H E D I G I TA L E R A

It is a matter of fact that we live in a connected world. Everyday people generate,

share, and acquire a huge amount of information thanks to technological progress.

As a consequence of the ubiquity of mobile devices, we are now facing an explosive

growth of digital traces left behind by individuals [131]. Data are stored, computed

and analyzed to extract prevalent patterns capturing a broad spectrum of human be-

haviors [87]. Undoubtedly, the digital age has opened the path to new opportunities

for researchers, giving the chance to access phenomena and measures once invisible.

Remarkably, this represents a great opportunity for developing countries that usually

lack of official statistics and infrastructures to collect it [21].

For example, in 2015 Blumenstock and colleagues combined different sources of data,

i.e. a small set of data collected from surveys and data on the mobile activity of 1.5

Million of customers, to build a high resolution map of poverty of the districts of

Rwanda [22]. The strength of Blumenstock’s work was the capability of giving a snap-

shot of the wealth of the country ten times faster and fifty times cheaper than re-

quired by the classical Demographic Health Survey.

Thanks to the increasing penetration rate of mobile phones, mobile data repre-

sent an increasing opportunity to assess behavioral and mobility pattern and comple-

ment traditional resources, such as surveys and interviews [131, 19, 21]. Information

about mobile communications is usually collected for billing purposes by telecom-

munication companies and stored in form of Call Detailed Record (CDR). Each CDR

usually contains metadata about the caller and callee and information about the

location and time of the call; frequently also demographic information about the

costumer are included. These data have been extensively used to build realistic fine

grained models of human mobility [14, 10, 12, 66]. Such human mobility models can

be used to map the mobility flows between geographical areas at different scales and

to improve modeling of spatial spreading of infectious diseases[10, 11, 104, 9, 163, 78,

93].

On a different but related note, data on social media and online platforms are used

to asses the risk perception on a health threat and also to forecast the evolution of

an epidemic. For example, textual information about the tweets on Zika and Ebola

outbreaks helped to measure the level of anxiety in the populations related to the

fear of the epidemics [55, 143, 150]. Specifically, tweets associated with negative emo-

tions were higher compared with those associated with recurrent outbreak such as

seasonal influenza. Quantifying human perceptions on public emergence can be cru-
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cial to avoid misperception about a pandemic and, in turn, design optimized aware-

ness campaigns [84]. Additionally, data obtained from the number of Google searches

and the visits to a Wikipedia page can produce a timely and accurate assessment of

the trend of the epidemic [134, 133, 101]. This original and valuable approaches can

be coupled to existing sentinel surveillance to have real time nowcasting of the epi-

demics [133, 63, 88]. What so far exposed represents only a few examples of the great

potential that the digital revolution has and dealing with this kind of data will be a

great aid for the future of infectious disease modeling.

1.4 O U T L I N E O F T H I S T H E S I S

This dissertation argues about two different aspects of human behavior involving the

dynamics of infectious diseases, as discussed in the previous sections. The first one

deals with the development and analysis of epidemiological models aiming at bet-

ter understanding the spread of awareness in human populations during epidemic

threats. The second one consists of a data driven computational model to assess the

potential risk of experiencing measles re-emergence in Turkey as a consequence of

the great concentration in the country of Syrian refugees not adequately immunized

against measles.

One of the most original aspects of this dissertation is represented by the usage of

innovative digital data made recently available. These include data obtained from the

use of mobile phones to infer human mobility patterns among refugees, and digital

records on the individual use of the Internet coupled with mechanistic transmission

model to assess the drivers of awareness about new epidemic threats.

In chapter 2 we propose a framework able to disentangle and characterize the con-

tribution of the two drivers in the building of awareness of individuals about infec-

tious diseases. In particular, the modeling approach is tested for several major recent

epidemics, such as Ebola and Zika, by accurately fitting a proxy of the level of aware-

ness in the population; i.e. the time series of Wikipedia page views related to the dis-

ease originating the epidemic. Obtained results consistently suggest that both word

of mouth and media communications represent crucial drivers of the dynamics of

individual’ concern about the considered epidemics. The proposed analysis repre-

sents the first attempt to identify the major determinants of the spread of awareness,

grounding a modeling approach on the availability of digital data on individual use

of the Internet

In chapter 3 We assess the potential risk of experiencing measles re-emergence in

Turkey as a consequence of the great concentration in the country of Syrian refugees.

In particular, Turkey hosts almost 3.5M refugees and has to face a humanitarian emer-
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gency of unprecedented levels. We use mobile phone data to map the mobility pat-

terns of both Turkish and Syrian refugees, and use these patterns to build data-driven

computational models for quantifying the risk of epidemics spreading for measles,

a disease having a satisfactory immunization coverage in Turkey but not in Syria,

due to the recent civil war, while accounting for hypothetical policies to integrate

the refugees with the Turkish population. Our results provide quantitative evidence

that policies to enhance social integration between refugees and the hosting popu-

lation would reduce the transmission potential of measles, preventing the onset of

widespread large epidemics in the country. Our results suggest that social segrega-

tion does not inhibit but rather boosts potential outbreaks of measles to a greater

extent in Syrian refugees but also in Turkish citizens, although to a lesser extent.

In chapter 4 presents a summary and discussion of the main results of the disserta-

tion





2
D I S E N TA N G L I N G S O C I A L C O N TA G I O N A N D M E D I A D R I V E R S I N

T H E E M E R G E N C E O F H E A LT H T H R E AT S AWA R E N E S S

2.1 I N T R O D U C T I O N

In recent years, thanks to the increasing abundance of (near) real-time, high-quality

data on populations, human mobility patterns, and pathogens’ biology, the use of

data-driven computational models for the study of epidemic outbreak response has

gained considerable traction in the public health community [136]. In this context,

predictive epidemic modeling is emerging as an inter-disciplinary field that has been

recently used to support responses to recent outbreaks such as the 2009 H1N1 pan-

demic, the 2014 West Africa Ebola outbreak, the Zika epidemic in the Americas in

2016, and the Highly Pathogenic Avian influenza A(H7N9) in 2014 and 2015.

In view of the huge potential of predictive modeling, we must also be aware of the

challenge inherent to the real-time modeling of the feedback loop between the dis-

ease progression and the response of social systems. Recent examples (Ebola, MERS,

etc. [157, 125]) have shown that the spreading of infectious diseases strongly depends

on the social adaptive behavior that characterizes the reaction of the population to

the awareness and the perceived risk in the face of the epidemic [157, 125, 46]. In

other words, the predictive power of mathematical and computational models heav-

ily relies on our understanding of the population awareness to the disease and the

ensuing behavioral changes such as social distancing, travel limitations, etc. [145, 48,

33, 121].

Several mathematical and computational models of the feedback mechanisms be-

tween diseases spreading and the effects due to the awareness of the epidemic in

the population has been put forward in the modeling community [121, 58, 119, 123,

150, 45]. In particular, two main mechanisms have been invoked in the spreading of

awareness and fear of epidemics: i) the massive flow of news from mass media that

possibly acts as an exogenous force on the global population [150, 55, 146]; and ii)

the social contagion due to the word of mouth and peer influence [121, 58, 119, 123].

However, little is known about the relative contribution of the two mechanisms in

shaping the spread of information in the population [86, 150, 139], and to what ex-

tent individuals’ response is affected by mechanisms of social reinforcement [28]. As

a matter of fact, the richness of models and mathematical approaches, has not yet

17
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been transferred to any operational forecasting framework; mostly due to the lack of

a quantitative data-driven characterization of the different mechanisms affecting the

spreading of the awareness in the population [150, 42].

Here, we propose a modeling framework able to disentangle the contribution due

to media drivers and the social contagion in the awareness building of infectious dis-

eases. The developed model assumes that individuals become aware of an epidemic

either by means of media communications on different stories related to the ongo-

ing epidemic (through newspapers, websites, broadcasts, etc.) or as a consequence

of conversations with other individuals. We test our modeling approach for several

major recent epidemics by accurately fitting a proxy of the level of awareness in the

population; i.e. the time series of Wikipedia page views [51, 52] related to the disease

originating the epidemic. The underlying assumption here is that among the individ-

uals that develop awareness, a fraction them initiate an information seeking behavior

using Wikipedia to address this need. More precisely, we fit the proxy signal by using

a non-linear time dependent mechanistic model explicitly accounting for the com-

bination of temporal changes in the media volume, as recorded in the Google News

platform [68] and treated as an exogenous factor of the system, and an endogenous

contagion process driven by risk perception and spontaneous social interactions be-

tween individuals. The proposed non-linear model is able to measure the effect of

the endogenous progression of awareness in the population and quantify its contri-

bution relative to the news and the media drivers. We perform a thorough informa-

tion theoretical model selection analysis [24] showing that the proposed model out-

performs supervised machine learning approaches based only on the news volume,

and non-linear models accounting only for the endogenous social contagion compo-

nent. Our approach outperforms the other considered models also in out-of-sample

predictive tests. Interestingly, the mechanistic modeling proposed here allows the es-

timate of specific parameters such as the doubling time and transmissibility of the

awareness through the different routes of information considered. Thus, this work

has the potential to open the path to the inclusion of the diffusion of awareness in a

wide range of biological and social contagion models, allowing the measurement of

specific parameters of social contagion and the design of optimized awareness cam-

paigns.

2.2 R E S U LT S A N D D I S C U S S I O N

We consider as a proxy of the awareness of major infectious disease epidemics the

time series of Wikipedia page views for several health threats in the US and Italy. In

particular, the 2014 Ebola Outbreak in West Africa [157, 65] and the spread of Zika

virus in the Americas during 2015 [172] are considered illustrative case studies to in-
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vestigate the impact of Public Health Emergencies of International Concerns on the

individuals’ awareness in both US and Italian populations. Meningitis in Italy and In-

fluenza in US between 2016 and 2017 are considered in order to investigate, respec-

tively, the effect of local and persisting epidemiological threats [55, 147].
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  1. First case in Nigeria
  2. First US citizens infected in
      West Africa
  3. Liberia announces the closure of
      borders, schools and the quarantine
      of the worst-affected communities
  4. First medical evacuation to US
  5. Second medical evacuation to US
  6. WHO declaration
  7. First case imported in Texas
  8. First domestic case in EU
  9. Texas case dies
10. First US domestic case
11. Second US domestic case
12. Second US imported case

Figure 1: Proxies of health threat awareness and media attention for the illustrative case

of Ebola epidemic. A) Red line represents the daily number of page views on

Wikipedia articles related to Ebola infection during 2014 from the English version

of Wikipedia [51]. Grey line represents the daily number of news released on Ebola

in the US, as obtained from the Google News platform [68]. Dotted lines indicate no-

ticeable events associated with the West Africa Ebola epidemic. B) As A) but for the

Italian version of Wikipedia and news released in Italy. C) Comparison of two differ-

ent proxies of media attention to the Ebola epidemic. Grey line represents the daily

number of news released on Ebola in the US, as obtained from the Google News

platform [68]. Blue line indicates the number of Ebola related videos per day, from

Fox News and MSNBC [150].

The level of media attention to the spreading of an infectious disease is certainly

contributing to the population awareness of the disease. This can be readily observed

by comparing the time series of the Wikipedia accesses and the volume of news on

the epidemic measured from the Google News platform, a quantitative proxy of the

media attention over time. As shown in Fig. 1 for the exemplary cases of the 2014

Ebola, the Wikipedia accesses and news volume time series have an extremely good

correlation when no or negligible time lag is considered between the two signals (see

the Appendix for a detailed analysis). A closer inspection to the curves however shows

that, generally, the awareness tends to increase and decrease at a faster rate before

and after the peak of the news cycle, respectively. For instance, in the US, after a

huge volume of Wikipedia accesses and news about Ebola during week 42 of 2014,

Wikipedia page views dropped by 64% in the following week, while media coverage
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decreased by 22% only, remaining significantly high up to mid-November. Similar

temporal patterns were observed when comparing news coverage on Zika and in-

dividuals’ online behavior in US (see Appendix), Guatemala and Brazil [143]. These

features are the fingerprint of acceleration and saturation phenomena that can be as-

cribed to endogenous word of mouth processes. Here, as word of mouth processes we

can consider all personal communications among individuals, including both real-

world and on-line contacts.

In our model, we assume that the overall strength of media coverage in a given day

is proportional to the overall amount of news in that day, which include the contribu-

tion of both more and less relevant communications. In support of such assumption,

it is worth noting that major peaks in the Google News time series associated with

Ebola follows the occurrence of some relevant events for the two considered coun-

tries, as the detection and death of the first Ebola case within the US borders, and

the first transmission recorded in EU (Fig. 1 A,B). In order to test the representative-

ness and appropriateness of Google News data to model the media attention over

time, we compared the temporal dynamics of the number of Ebola related videos per

day from Fox News and MSNBC [150] with the corresponding Google News signal

(Fig. 1 C). We found that the two signals are strongly correlated (Pearson correlation

coefficient 0.92 p-value < 0.001) therefore suggesting that Google News represents a

good proxy of the variation in strength of media coverage over time.

In order to model mechanistically the awareness spreading in the population we

use a SIRS transmission mechanism [6]. In the transmission model susceptible indi-

viduals (S) represent people unconcerned or unaware about an epidemic threat that

can get informed (I) either through the word of mouth, as a consequence of a social

contagion based on peer-to-peer individual interactions with informed individuals

(I), or directly from the media (M). Potential development of immunity (R) against

the exposure to new information and possible mechanism of immunity waning is

fully considered with the SIRS model. The model is calibrated by assuming that at

each time stamp t a fraction k of individuals becoming aware of the disease seeks fur-

ther information on Wikipedia, which is a proxy of awareness acquired through other

means. At each time stamp the model keeps track of all the newly become aware in-

dividuals INew
t ; i.e. the number of individual transitions S → I . The Wikipedia page

views (Wt ) at time t is then given by the following relation

Wt = kINew
t +W0 ,

where W0 represents the number of Wikipedia page views in absence of media atten-

tion. The number of individuals INew
t who become aware of the epidemic threat at

day t is determined by a dynamical process where the rate for the individual transi-
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tion S → I into the aware state is defined as λSN
t = λS

t +λN
t , where the terms λS

t and

λN
t represent the social and the news contributions to the force of contagion, respec-

tively. The force of contagion is itself depending on the number of aware individuals

It and the volume of news Mt at time t . This social-news contagion (SN ) model is

compartmental (i.e. individuals with the same characteristics are represented by a

unique dynamic variable), and takes into account also individuals not yet aware of

the disease, and individuals aware but not actively interested in seeking or spreading

information on the disease. Mechanisms of waning and re-emergence of the aware-

ness are also considered in the model. For each epidemic, the model’s parameters are

calibrated separately by using a Markov Chain Monte Carlo (MCMC) approach [64].

The explicit mathematical definition of the model, and the MCMC calibration are de-

tailed in the Material and Methods section of this chapter.

In Fig. 2, 3, 4, we report the results obtained by using the calibrated model to fit the

Wikipedia time series. Remarkably, the model is able to capture the large fluctuations

induced by the media cycle and the quick rise and decay of attention more typical of

the social contagion processes [25]. In order to evaluate the performance of the SN-

model, we have considered three other modeling approaches. The first one is a clas-

sic regression based on a supervised machine learning approach (L) that models the

Wikipedia signal by considering as explanatory variables the news released during

the preceding days (see details in the Material and Methods section). We then con-

sidered two alternative contagion models, the S-model and the N -model, containing

only the and force of contagion, respectively. A closer inspection of these models (re-

ported in the Appendix) shows that each one of these alternative models has clear

limitations. For instance, the N -model appears to not reproduce accurately the de-

cay of interest because of saturation in the awareness process [143]. On the contrary,

the S-model accounts for the quick rise of awareness but does not captures fluctua-

tions that can be traced back to the media cycle.

In order to put on rigorous ground the comparison across models, we report in

Table 1 the basic metrics describing the goodness of fit of the various models (addi-

tional metrics in the Appendix section). We observe that the SN -model outperforms

all other models on the basic quantities such as the mean absolute percentage er-

ror (MAPE), the Pearson correlation coefficient, and the coefficient of determination

(R2).

In Fig. 5 we also report the relative error of each model as a function of time, show-

ing that along the entire time window the SN -model is consistently better perform-

ing than the other models. In addition, since we are comparing models with different

numbers of parameters, we performed an information theoretic multi-model anal-

ysis that clearly shows a very low likelihood that any models could better explain
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Figure 2: SN-model estimates for Ebola epidemic. A) in the United States. B) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the SN -model on the daily number

of informed individuals seeking information on Wikipedia. Bubble plots represent

the median incidences of informed individuals. Yellow and red bubbles refer to inci-

dences of informed individuals by media communications and through social con-

tagion, respectively.

the data with respect to the SN -model [157, 24, 144]. Finally, to assess the predictive

power of different modeling approaches here considered, model performances of the

SN -model were compared with those obtained with the L-model, by using only the

first 80% of data points (train set) for model calibration and by testing model compli-

ance with the remaining 20% of data (test set). The goodness of fit associated with the

two models was compared in terms of MAPE, R2, and Pearson correlation coefficient,

and also compared with the goodness of fit in the last 20% of data points obtained
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Figure 3: SN-model estimates for Zika epidemic. A) in the United States. B) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the SN -model on the daily number

of informed individuals seeking information on Wikipedia. Bubble plots represent

the median incidences of informed individuals. Yellow and red bubbles refer to inci-

dences of informed individuals by media communications and through social con-

tagion, respectively.

when using 100% of data for model calibration. The carried out analysis suggests that

in all these cases SN -model performs better than the supervised machine learning

approach (L, see Table 2).

Our analysis shows that in order to model the spreading of awareness in a popula-

tion both influence of media and social contagion are relevant mechanisms. A model
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Figure 4: SN-model estimates. A) for Influenza in the United States. B)for Meningitis in Italy.

In each panel, blue bars represent the daily number of Wikipedia page views over

time for the considered infection. The blue lines and the shaded areas refer to the

average and the 95% CI of estimates as obtained with the SN -model on the daily

number of informed individuals seeking information on Wikipedia. Bubble plots

represent the median incidences of informed individuals. Yellow and red bubbles

refer to incidences of informed individuals by media communications and through

social contagion, respectively.

accounting for both these routes to develop awareness proves to better reproduce

and forecast the dynamics of Wikipedia accesses over time. The model has the added

benefit of being mechanistic in describing the impact of media communications and

peer-to-peer contagion processes. This allows us to quantify the specific contribu-

tion to the process from the two drivers considered and to measure some key features
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Figure 5: Percentage error between model estimates and data records on the number of

Wikipedia page views over time, as obtained for different models when considering

the Ebola awareness epidemic. A)in the US. B) in Italy.

characterizing the spread of awareness in a population.

Our estimates show that, among the different epidemiological scenarios consid-

ered, the fraction of individuals that acquired awareness from media broadcast ranges

from 30% to 60% (Fig. 6). This result strongly suggests that both media and the word

of mouth represent crucial components of the awareness dynamics. Our results are

compliant with recent estimates showing that 20% of visits on Wikipedia are triggered

by conversations with other individuals and 30% by the media coverage [139].

The estimated proportion of aware people who seek information on Wikipedia

(Fig. 6) is expected to mirror the level of interest and concern raised during an epi-

demic. This proportion was found higher for epidemics declared Public Health Emer-

gencies of International Concerns by the World Health Organization, i.e. Ebola in

2014 (4.6% US, 1.4% Italy) and Zika virus in 2015 (0.9% US, 0.2% Italy), with respect

to well known infections as Meningitis (0.08% in Italy between 2016 and 2017) and In-

fluenza (0.14% in US between 2016 and 2017). These estimates suggest that a higher

concern is triggered by the emergence of pathogens representing relatively new threats,

associated with higher mortality rates [146, 143]. Although the occurrence of severe

cases in higher proximity may increase the public attention to a specific disease, the

estimated higher impact of Ebola and Zika in US with respect to Italy may be driven

by the use of Wikipedia pages written in English by other countries (only 41% of ac-
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cess to Wikipedia pages in English are from US; 91% of access to Italian pages are

from Italy [53]).

Model estimates of the media transmission rate during different epidemic scenar-

ios (Fig. 6) provide insights on the impact of media communications on different top-

ics across countries. This quantity represents the average number of individuals who

get informed by the release of one single news within 24 hours, in a completely unin-

formed population. Average estimates of this quantity suggest that the impact of me-

dia in US might have been more intense (or effective) during the epidemics of Zika

in 2015 and Ebola in 2014 with respect to what has occurred during the 2016-17 In-

fluenza season (see Fig. 6) [55, 146, 143]. In Italy a higher media transmission rate was

estimated for Ebola in 2014 and Meningitis in 2016-17 with respect to what observed

during the 2015 Zika epidemic. Interestingly, for all the scenarios considered but for

Influenza in US, the accumulation of media communications over time resulted as

an amplifier of the impact of news released afterwards (see Appendix). The negligible

effect of past media coverage on the effectiveness of new media communications esti-

mated for Influenza between 2016 and 2017 may be explained by the perceived lower

severity of Influenza infection with respect to others and the occurrence of annual

regular Influenza epidemics [55].

By comparing estimates of the doubling time characterizing the social contagion

mechanism during different epidemics (Fig. 6), i.e. how fast the number of individu-

als informed though the word of mouth doubles, we found that the spread of aware-

ness through peer-to-peer individual interactions was more than three times faster

during 2014 Ebola in the US and 2016-2017 Meningitis in Italy. These two events pos-

sibly represent the two threats that have mostly changed the disease risk perception

in the public [55, 146, 147].

Finally, as for the Ebola awareness dynamics, the estimated average duration of im-

munity against the exposure to new information, driving possible waning of individ-

uals’ awareness and representing the average time between two visits on a Wikipedia

page by the same individual, resulted around 80 days for US and 110 days for Italy.

Obtained estimates roughly correspond to the period of time between the two major

peaks in the Wikipedia and Google News signals and suggest that two dominant sets

of Ebola stories impacted the population in the two countries during 2014. On the

opposite, for Zika, and Influenza in US, the estimated duration of immunity exceeds

the time frames considered in our analysis, suggesting that the awareness dynamics

associated with these two epidemics has been influenced by news stories that has

occurred within a relatively narrow period of time. For Meningitis in Italy the average

duration of immunity was found around 50 days.
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Figure 6: Posterior distribution (2.5%, 25%, 75%, and 97.5% quantiles and mean) of fraction

of informed individuals using Wikipedia (A), the transmissibility potential related to

media communications (B), the doubling time associated with the social contagion

mechanism (C), the fraction of informed individuals due to media communications

(D), as obtained for the different epidemic scenarios considered with the SN-model.

2.3 C O N C L U S I O N

The approach presented here provides a modeling framework for investigating time-

series related to the spread of awareness of health threats in a population. Our pro-

posed model goes beyond the usual statistical analysis with respect to dependent ex-

ogenous variables; indeed, we introduce a mechanistic modeling approach based on

the idea that along the news and media drivers, peer-to-peer social contagion plays

a major role in the emergence of awareness.

It is worth remarking a number of limitations for the presented approach. First, the

models considered for social contagion driven by the word of mouth assume a ho-

mogeneous mixing in the population. However, the influence of individuals may be

highly heterogeneous and significant different contributions of opinion leaders with

respect to the ones of less active individuals may affect the spread of awareness in

a population [86, 162]. Clustering of opinions around a given topic within specific

population groups or geographical areas are also likely to occur in response to lo-

cal events or as a consequence of different cultural backgrounds, social norms, and

social reinforcement mechanisms [28]. Second, the influence of media is here esti-

mated by using only news released by news websites. Although these are likely rep-
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resentative of the overall media attention, we did not considered the heterogeneous

contribution of different mass media (e.g. television, radio, newspapers) in shaping

the spread of awareness and the impact of news was considered regardless the con-

tent of different communications and the reputation of who provides the informa-

tion. More refined models may explicitly take into account the heterogeneity in the

infectiousness associated with different peers (both for media communications and

social interactions) instead of adopting a mean field approximation. All these aspects

may affect the impact of media on the public, the persistence of concern generated

by news and may also be relevant to explain the spread of fake news and mispercep-

tion [121, 55, 146, 89, 147, 158]. Furthermore, media attention is here considered as

an exogenous factor of the considered dynamics, taken as given regardless potential

feedback responses between the onset of new stories and people need of more in-

formation on a given topic. Finally, our analysis does not provide any indication on

whether and how the public has changed their behavior in response to the perceived

risk of infection [157, 145, 46, 33, 121]. Further efforts are therefore required to better

understand similar mechanisms.

This study however represents a first important attempt to qualitatively and quan-

titatively describe the role played by the media and the word of mouth in influencing

individual awareness and risk perception during different epidemic threats. In par-

ticular, the proposed model is able to disentangle the contribution of news influence

and social contagion in driving Wikipedia page views in the case of six different pub-

lic health threats. Furthermore, it provides better explanatory and forecasting power

than alternative models considering only one of the driving mechanisms. Most im-

portantly, the model allows the measurement of parameters defining the contagion

process such as the fraction of aware people, and the relative contributions of the

different contagion processes. The possibility of gathering quantitative information

on these parameters is a first step in the operationalization of epidemic models that

include the spread of awareness to diseases and the ensuing behavioral changes of

the population. The proposed framework is fairy general and can be applied in other

contexts related to the diffusion of information and knowledge.

2.4 M AT E R I A L A N D M E T H O D S

2.4.1 Data Description

The daily numbers of visits to Wikipedia pages on specific diseases were obtained by

publicly available data [51, 52] and used to model temporal changes in the number

of individuals seeking information on a specific epidemic threat. Pages in Italian and

English, accessed between 2014 and 2017, were used for Italian and US users respec-
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tively. Wikipedia data were preferred to other public available datasets (e.g. Google

Trends Data, etc.) for the following reasons: a) Wikipedia visits may better reflect the

need to acquire in-depth information about a diseases, instead of capturing recur-

rent accesses to an updated source of information on what is occurring during an

epidemic; and b) access of individuals are provided in absolute numbers, therefore al-

lowing a comparison of time-series associated with different countries and diseases.

Accesses during 2016 on any Wikipedia page in two languages were considered to

assess, separately for the two countries, potential differences in the individual use

of Wikipedia across different days of the week (e.g. weekdays/weekend). Deviations

with respect to weekly means were used to remove spurious fluctuations in Wikipedia

accesses (details can be found in the Appendix section). Temporal changes of me-

dia attention to a given epidemic were modeled by using Google News platform [68].

Specifically, a proxy of daily media response to potential threats was defined by the

amount of articles released by websites based in the country containing the name of

the considered epidemic in its headline. A cross-correlation at different time lags was

performed to assess potential synchrony in the two types of signals.

2.4.2 Supervised machine learning approach

We conduct a multi-linear regression analysis (L) in order to test whether the dynam-

ics of Wikipedia accesses mirror changes of the media attention to a given disease.

We consider the number of Wikipedia page views at time t as the response variable

and the amounts of news released at different times prior t as potential explanatory

variables. Specifically a set of linear models was defined as follows:

Wt =
T∑

i=0
αi Mt−i +W0,

where Wt represents the daily number of Wikipedia page views at time t ,αi are the re-

gression coefficients, Mt is the number of news released at time t , T defines the num-

ber of days before t in which media communication can affect Wikipedia accesses

and W0 reflects accesses to Wikipedia in the absence of media coverage on a given

disease. Best values for T were obtained as a result of a model selection procedure

based on the Akaike information criterion [24]. Details are reported in the Appendix.

2.4.3 Modeling awareness as a contagion process

Word of mouth and media communications are both considered as plausible routes

of transmission. The spread of information through the word of mouth was modeled

by assuming homogeneous-mixing in the population and a force of infection

λS
t = βS

N
It ,
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where βS represents the transmission rate for the social contagion associated with

peer-to-peer conversations between individuals.

As for the rate at which individuals becomes aware thanks to media communication,

we assume that the impact of news released at time t can be inflated by news released

in the previous days. The strength of media communications to reach an individual

is therefore defined as follows:

λN
t = βN

N
Mt

(
t−1∏
i=t0

(
1+Mi e−ρ(t−i )

))

, where βN is the transmissibility potential related to media coverage at time t , while

the term in parenthesis defines the amplifying mechanism due to past media com-

munications. Specifically, the contribution of past communications to the amplifica-

tion of the strength of news released afterwards is assumed to exponentially decay

with time passed since their release: smaller the value of ρ, longer the influence of

past communications. For large value of ρ , the model considers only media commu-

nication released at time t , i.e. λN
t = βN

N Mt . Alternative amplification mechanisms

are considered in the SI. The two routes of transmission are considered alone (mod-

els S and N ) or combined in a nested model (SN ). Briefly, in the proposed models,

transitions between classes can be described by the following system of ordinary dif-

ferential equations: dS/d t = −λ(t )S(t ) + νR(t ); dI/d t = +λ(t )S(t ) − γI(t ); dR/d t =
+γ(t )I(t )−νR(t ), where λ(t ) represents the force of contagion at time t ; 1/γ is the av-

erage time period in which an aware individual can spread the information through

word of mouth; 1/ν is the average duration of immunity against the exposure to new

information. Such a period of time can be interpreted as the average time between

two visits on a Wikipedia page by the same individual. The proposed SIRS model, for

specific choices of free model parameters, can degenerate into a SIR model (no im-

munity waning), and even into a SI model (no immunity).

2.4.4 Model calibration and goodness of fit

Each model was calibrated separately. Free model parameters were estimated by us-

ing a Markov Chain Monte Carlo approach [64] applied to the negative binomial Like-

lihood of the observed Wikipedia page views for each scenario. Goodness of fit was as-

sessed through a wide set of statistical measures including, among others, the Akaike

and Deviance Information Criteria (AIC, DIC), the mean absolute percentage error

(MAPE) and the Pearson correlation coefficient [157, 24, 144]. Details can be found in

the Appendix section.
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MAPE Pearson R2 AIC P. of I.L.

Ebola US L 84.895 0.666*** 0.352 3709.75 < 0.001

N 56.883 0.832*** 0.659 3635.1 < 0.001

S 70.214 0.584*** -8.853 3648.48 < 0.001

SN 39.597 0.844*** 0.551 3556.51 -

Ebola IT L 109.63 0.61*** 0.289 2831.26 < 0.001

N 80.224 0.706*** -4.744 2792.92 < 0.001

S 97.871 0.729*** 0.509 2808.03 < 0.001

SN 46.521 0.913*** 0.809 2681.16 -

Zika US L 72.545 0.787*** 0.523 3259.58 < 0.001

N 52.509 0.932*** 0.846 3173.02 < 0.001

S 33.393 0.89*** 0.775 3080.87 < 0.001

SN 30.482 0.929*** 0.841 3059.46 -

Zika IT L 203.127 0.782*** 0.492 2017.67 < 0.001

N 374.899 0.874*** 0.71 2119.44 < 0.001

S 58.985 0.805*** 0.041 1911.98 < 0.001

SN 56.774 0.871*** 0.746 1853.94 -

Meningitis IT L 71.238 0.569*** 0.311 3392.09 < 0.001

N 57.034 0.792*** 0.588 3333.81 < 0.001

S 74.089 0.524*** 0.161 3369.43 < 0.001

SN 51.203 0.739*** 0.526 3280.18 -

Influenza US L 14.066 0.781*** 0.589 4907.52 < 0.001

N 16.772 0.719*** 0.503 4997.7 < 0.001

S 17.231 0.706*** 0.49 5000.99 < 0.001

SN 10.138 0.88*** 0.773 4693.88 -

***p value < 0.001

Table 1: Basic metrics describing the goodness of fit associated with different epidemics and

models including the mean absolute percentage error (MAPE), the Pearson correla-

tion coefficient, the coefficient of determination (R2) and the Akaike information cri-

terion (AIC). Values of R2 were computed on the basis of equation y=ax, thus allowing

for negative R2 values. AIC was used to estimate the probability that information loss

(P. of I.L.) is minimized when we consider an alternative model to the model having

the lowest AIC value.
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MAPE Pearson R2

80/20 Baseline 80/20 Baseline 80/20 Baseline

Ebola US L 258.46 188.22 0.85*** 0.85*** -2.08 -0.53

SN 46.30 31.93 0.91*** 0.92*** 0.70 0.83

Ebola IT L 382.95 291.96 0.77*** 0.78*** -3.74 -1.58

SN 46.91 38.88 0.94*** 0.94*** 0.81 0.86

Zika US L 122.38 35.01 0.50* 0.53* -17.06 -0.72

SN 53.61 30.23 0.90*** 0.87*** -4.59 -1.00

Zika IT L 121.08 47.77 0.57** 0.63** -1.59 0.34

SN 42.38 40.64 0.90*** 0.90*** 0.27 0.64

Meningitis IT L 230.92 124.91 0.77*** 0.77*** -10.57 -1.99

SN 69.77 41.53 0.49** 0.67*** -0.27 0.40

Influenza US L 21.48 19.91 0.26** 0.27** -1.56 -1.22

SN 16.92 13.75 0.48*** 0.48*** -0.29 0.09

*p value < 0.1 **p value < 0.05 ***p value < 0.001

Table 2: Statistical measures on the performances of the SN -Model (SN ) and the supervised

machine learning approach (L), as obtained for different epidemic scenarios. Each

measure was obtained for two distinct calibration procedures. In the first one (la-

beled as 80/20 in the table), model parameters were calibrated using only 80% of

data; in the second (baseline) model parameters were calibrated using 100% of data.

In both cases, performances were assessed only in the last 20% data points.
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2.A S U P P O R T I N G M AT E R I A L

2.A.1 Data description

Four different epidemic threats were considered in our study:

1. the Ebola virus epidemic in West Africa during 2014;

2. the Zika virus epidemic between 2015 and 2016;

3. the Meningitis outbreak in Italy between 2016 and 2017;

4. the seasonal Influenza in US between 2016 and 2017.

In our analyses, Wikipedia page views associated with different diseases were used

as a proxy of awareness in the population during the corresponding epidemic. The

number of news released in the Internet was used as a proxy of media attention in

the same period of time.

Wikipedia page views for Meningitis and Influenza were obtained by using a free tool,

recently made available through the community-led Wikimedia Toolforge project, for

the analysis of the number of page views of published articles [52]. Specifically, daily

desktop views on Influenza page in English and on Meningitis page in Italian were

considered.

As for Ebola and Zika, new Wikipedia pages were created as a consequence of the

emergence of a new epidemic threat. Hence, we considered multiple pages for these

two epidemics. More precisely, each page including the terms “Ebola” and “Zika” in

the page title, and the respective redirects incoming to that pages were considered.

Data for page views in English and Italian were retrieved from a dataset providing

hourly aggregates of page views to any desktop version of Wikipedia pages [51] and

aggregated at the day level afterwards.

We tested whether spurious temporal fluctuations in Wikipedia page views may

have occurred due to a different use of Wikipedia across different days of the week. To

this aim, for each week in 2016, we computed the number of accesses to all pages of

Wikipedia associated with different days of the week and the corresponding weekly

mean. The empirical distribution of deviations from the weekly mean for 52 weeks

33
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were defined as the ensemble of deviations D(d , w) associated with a given day d =
{monday, . . . ,sunday} of the all weeks w = {1, . . . ,52} in 2016:

D(d , w) = ω(d , w)−ω(w)

ω(w)
,

where ω(d , w) is the number of visits in the day d of week w and ω(w) is the average

of daily number of visits during the week w . Deviations were computed separately

for Wikipedia in Italian and English and are shown in Fig. 7. The number of page
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Figure 7: Violin plots of the distribution of the deviations in the number of visits associated

with a given day of the week from the average number of visits recorded in the same

week, as detected across different weeks of 2016.

views associated with a given day of the week was also compared with the average

number of page views in the remaining days of the week. The intrinsic variation in

the Wikipedia visits across different days of the week in 2016 was found statistically

significant (t-test) for 6 out of 7 days of the week (Table 3). Thus, we have decided

to analyze the temporal changes in the awareness of individuals on a given epidemic

threat by removing from the original raw signalωraw, defined as the observed number

of page views over time, the intrinsic weekly seasonality identified by the analysis of

weekly deviations during 2016. We therefore re-computed the number of Wikipedia

page views as

ω(t ) = ωraw(t )

(1+Dd(t ))
,

where d(t ) is the day of the week associated with time t and Dd is the estimated

mean of the distribution of the deviation as obtained by analyzing data on access to

all pages of Wikipedia in 2016 [52]. A comparison between ω(t ) and ωraw(t ) is shown

in Fig. 8.

Figure 9 shows the two datasets used in our analysis.

Temporal changes in the media coverage on a given topic were estimated on the

basis of the daily number of news released, as obtained by using Google News plat-

form [68]. Google News is a news aggregation service provided free-of-charge, that

collects thousands of articles published in news websites, providing information on

the date and country in which news are released. Articles containing the name of the
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English Italian

t-test p-value t-test p-value

Monday vs. others 6.89 <0.001 5.85 <0.001

Tuesday vs. others 6.18 <0.001 5.91 <0.001

Wednesday vs. others 4.70 <0.001 4.27 <0.001

Thursday vs. others 3.09 0.002 2.80 0.005

Friday vs. others -1.94 0.052 -0.70 0.48

Saturday vs. others -11.50 <0.001 -11.12 <0.001

Sunday vs. others -7.50 <0.001 -7.03 <0.001

Table 3: Student’s t-test results as obtained by comparing, separately for each day of the week

(Monday,..., Sunday), the average number of page views occurred in a given day of

the week for any week in 2016 with the average number of page views during the

remaining days of the same week.

Figure 8: Comparison between the original raw signal ωraw and the adjusted signal ω for the

six epidemic scenarios under analysis.ωwas obtained by removing the expected os-

cillations in numbers of page views due to intrinsic variations across different days

of the week, as identified for all Wikipedia pages’ visits during 2016

infection in their headlines were considered. Specifically, “Ebola”, “Zika” and “Menin-

gite” (denoting Meningitis in Italian) were used as search keyword for the correspond-

ing epidemic threats. News on Ebola and Zika were retrieved separately for news re-

leased in Italy and in US. Finally, both terms “Influenza” and “flu” were included to
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Figure 9: Data (adjusted signals) on the amount of Wikipedia page views and news from

Google News platform for Ebola (A), Zika (B), Influenza (C) in the US and for Ebola

(D), Zika (E), Meningitis (F) in Italy.

select articles related to Influenza published in US.

Possible time lags between the two signals (Google News vs. Wikipedia) were eval-

uated by performing a Cross-correlation analysis. Obtained results suggest an over-

all synchrony between the media coverage and the individuals’ awareness about a

specific disease threat. The time series associated with these two data sources were

found significantly correlated (Pearson p-value <0.001) for all the considered scenar-

ios (Figure 10 and Table 4).

Figure 10: Cross correlation at different time lags (in days) of time series of Wikipedia page

views and the number of news collected by Google News platform for the six epi-

demic scenarios considered.
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Pearson correlation coefficient Spearman correlation coefficient

Ebola US 0.67*** 0.79***

Ebola Italy 0.60*** 0.72***

Zika US 0.77*** 0.73***

Zika Italy 0.76*** 0.82***

Influenza US 0.60*** 0.65***

Meningitis Italy 0.70*** 0.72***

***p value < 0.001

Table 4: Pearson and Spearman correlations between the daily number of news collected by

the Google News platform and the number of Wikipedia page views for the six epi-

demic scenarios considered.

2.A.2 Supervised machine learning approach

A regression analysis was conducted by using Wikipedia visits at time t as target vari-

ables, and the count of Google News items released before t as explanatory variables.

Specifically, in this analysis we assume that the number of Wikipedia visits over time

can be approximated as follows:

Wt =
T∑

i=0
αi Mt−i +W0

where Wt is the estimated number of Wikipedia page views at time t ; Mt is the amount

of news released at time t ;αi is the regression coefficient associated with the explana-

tory variable Mt−i ; W0 represents the expected number of Wikipedia page views in

absence of media attention; T defines the number of days before t during which me-

dia communications influence the number of Wikipedia visits at time t . In particular,

when we consider T = 0 we are assuming that the number of Wikipedia visits at time

t only depends on the number of news released at time t . Values of T considered in

our analysis range from 0 to 9, so that ten different multi-linear models were applied

to each epidemic scenario and calibrated separately.

For each epidemic scenario, the best regression model was defined on the basis

of the Akaike information criterion (AIC). More specifically, AIC for a given model

m was computed as the average of all AIC values associated with 30,000 simulations

obtained by sampling parameters from their posterior distribution as obtained by a

Monte Carlo Markov Chain (MCMC) approach:

AIC(m) = 1

J

J∑
i=0

2K (m)−2ln(L j ),
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where K represents the number of parameters of model m; J is the number of sam-

ples drawn from the posterior distribution of free model parameters; L j is the Likeli-

hood associated with the j th sample. According to the adopted criterion, best models

are defined as those associated with lower values of AIC. Once the best model b is

selected, AIC can be used to estimate the probability p that the information loss is

minimized when we adopt an alternative model i instead of model b [24]:

p = exp(AICb −AICi /2) ,

where AICb and AICi are the AIC values associated with the best model b and the al-

ternative candidate model i , respectively.

Obtained results are shown in Tables 5 and 6. A trade-off between the number of

parameters and the goodness of fit emerges in the AIC values obtained with differ-

ent models considered. This result is due to the fact that the AIC measure includes a

penalty term for increasing the number of free model parameters (2K ).

Threshold

time

Number of

parameters

AIC

T K Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

0 3 3719.36 2891.59 3272.69 2129.98 3398.5 4994.24

1 4 3709.99 2841.37 3261.05 2104.29 3392.09? 4986.13

2 5 3709.75? 2831.96 3259.58? 2089.49 3396.67 4974.82

3 6 3712.07 2831.26? 3261.53 2017.67? 3401.25 4965.7

4 7 3715.48 2833.74 3264.66 2021.58 3404.8 4958.87

5 8 3719.73 2836.16 3267.37 2024.76 3409.43 4936.12

6 9 3724.84 2840.46 3270.81 2024.76 3414.63 4914.43

7 10 3729.3 2844.7 3274.91 2027.17 3417.62 4907.52?

8 11 3733.42 2848.72 3278.35 2030.46 3423.12 4908.57

9 12 3738.05 2852.49 3281.95 2030.01 3427.49 4910.34

?model associated with best performances according to the considered statistical measure

Table 5: AIC values obtained with the different models considered.

2.A.3 Contagion models

All contagion models considered in our analysis to describe the spread of awareness

in the population are based on a SIRS transmission schema [6]. In these models,

the population is divided into three different compartments: individuals that are not

aware about the epidemic and can get informed either by social interactions with
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Threshold

time

Number of

parameters

Probability that information

loss is minimized

T K Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

0 3 0.008 < 0.001 0.001 <0.001 0.041 < 0.001

1 4 0.89 0.006 0.48 <0.001 1? < 0.001

2 5 1? 0.702 1? <0.001 0.101 < 0.001

3 6 0.314 1? 0.377 1? 0.01 < 0.001

4 7 0.057 0.289 0.079 0.141 0.002 < 0.001

5 8 0.007 0.086 0.02 0.029 < 0.001 < 0.001

6 9 0.001 0.01 0.004 0.029 < 0.001 0.032

7 10 < 0.001 0.001 < 0.001 0.009 < 0.001 1?

8 11 < 0.001 < 0.001 < 0.001 0.002 < 0.001 0.592

9 12 < 0.001 < 0.001 < 0.001 0.002 < 0.001 0.244

?model associated with best performances according to the considered statistical measure

Table 6: Probability that the information loss is minimized when we adopt an alternative

model instead of the one associated with the lowest AIC value [24].

other individuals or by media communications (S); individuals who are aware about

the ongoing outbreak and can share their concern and information with other indi-

viduals (I), and people who were previously informed about the epidemic and are

immune against the exposure to new information (R). Transitions between classes

can be described by the following system of ordinary differential equations:

dS(t )

d t
=−λ(t )S(t )+νR(t )

dI(t )

d t
=+λ(t )S(t )−γI(t )

dR(t )

d t
= γI(t )−νR(t )

(1)

where t denotes time, λ(t ) represents the rate at which individuals get informed at

time t by conversations with other individuals or media communications; 1/γ is the

average time period in which an aware individual can contribute to spread the in-

formation about the epidemic threat through word of mouth and represent the av-

erage time required to develop immunity against the exposure to new information;

finally, 1/ν represents the average duration of such immunity. In our model formu-

lation, variables S, I, R reflect respectively the fraction of susceptible, infected and
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immune individuals in the population in a classic SIRS epidemic schema. Similarly,

1/γ, 1/ν and λ(t ) mirror the average duration of infectiousness, the average duration

of immunity against re-infection and the force of infection over time [6].

In particular, we define λt as the sum of two distinct contributions:

i) λS
t representing the contribution to the overall force of infection due to social con-

tagion and depending on the number of aware individuals at time t , i.e. λS
t =λS(I(t ));

ii) λN
t representing the contribution to the overall force of infection due to media

response to the epidemic and modeled as a function of media communications oc-

curred before time t , i.e. λN
t =λN (M(t )).

We assume that the spread of information through social contagion is driven by

homogeneous mixing within the considered population. In this framework, homoge-

neous mixing approach indicates that each individual can get informed by any aware

individual in the population, This means that possible social structures and spatial

heterogeneities affecting the word of mouth are not considered in our models.

Specifically, we defined λS(It ) as follows:

λS(It ) = βS

N
It ,

where N represents the number of individuals in the considered population and βS

defines the transmission rate associated with peer-to-peer conversations.

As for the awareness generated by the media response to the epidemic threat, dif-

ferent formulations of λN (Mt ) were considered. The first one assumes that only news

released at time t , namely Mt , can change the status of individual awareness at time

t .

In this case is defined as:

λN
t = βN

N
Mt , (2)

where βN is the transmission rate associated with one single media communication

released at time t ; Mt is the number of news released at time t .

Other two models were considered for λN (Mt ), taking into account the potential

effect of past communications on individual response to new communications. The

first model we considered for λN (Mt ) is defined as follows:

λN
t = βN

N

t∑
i=t0

Mi e−ρ(t−i ), (3)

whereρ is a parameter driving the waning of individuals’ memory about past commu-

nications; t0 is the time at which the awareness of a given epidemic starts to spread

in the population; Mi is the number of news released at time i ; βN represents the
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transmission rate associated with one single media communication released at time

t when Mi = 0 for any i before t , i.e. when λN
t = βN

N
Mt . It is worth noting that, in

principle, if ρ is sufficiently large this formulation of λN (Mt ) reduces to λN
t = βN

N
Mt .

The second model considered for λN (Mt ) is defined as follows:

λN
t = βN

N
Mt

(
t−1∏
i=t0

1+Mi e−ρ(t−i )

)
, (4)

where, again, ρ is a parameter driving the waning of individuals’ memory about past

communications; t0 is the time at which the awareness of a given epidemic starts to

spread in the population; Mi is the number of news released at time i ; βN represents

the transmission rate associated with one single media communication released at

time t when Mi = 0 for any i before t , i.e. when λN
t = βN

N
Mt . For ρ is sufficiently large

this formulation also reduces to λN
t = βN

N
Mt .

However, in model 3, the contribution of media communications released at time

t is not affected by news released before t , which in turn independently contribute to

the overall force of infection at time t . On the opposite, in model 4, the contribution

of communications released at time t is directly amplified by the amount of news re-

leased before t . Contagion models considered in our analysis are summarized in Ta-

ble 7, which includes for each model the list of corresponding free model parameters.

When we consider that the awareness of individuals spread through a contagion

process, we assume that the number of Wikipedia page views at time t associated

with a specific disease, namely Wt , reflects the number of individuals who get in-

formed about the epidemic threat at day t , namely INew
t . Specifically, we assume that

the number of Wikipedia page views over time can be approximated as:

Wt = kINew
t +W0,

where k ∈ [0,1] represents the fraction of informed individuals seeking information

in Wikipedia and W0 represents the expected number of Wikipedia page views in ab-

sence of any information on the ongoing epidemic threat. Initial conditions for sys-

tem 1 were defined as St=t0 = N,It=t0 = Rt=t0 = 0, where t0 represents the time at

which the awareness of a given epidemic starts to spread in the population. Finally,

we assume that the number of individuals who get informed by an epidemic at t0

is INew
0 = ω0 −W0

k
. In our analysis the stochastic version of models described by sys-

tem 1 were simulated.

2.A.4 Models calibration

The estimation of free model parameters was carried out, separately for each scenario

and each candidate model, through a MCMC approach with random walk Metropolis-
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Force of contagion

Model Free parameters Social contagion

λS
t

Media response

λN
t

S k,βS ,γ,ν, t0,W0, x
βS

N
It 0

N# k,βN ,ν, t0,W0, x 0
βN

N
Mt

N## k,βN ,ρ,ν, t0,W0, x 0
βN

N

∑t
i=t0

Mi e−ρ(t−i )

N### k,βN ,ρ,ν, t0,W0, x 0
βN

N
Mt

(∏t−1
i=t0

1+Mi e−ρ(t−i )
)

SN# k,βN ,βS ,γ,ν, t0,W0, x
βS

N
It

βN

N
Mt

SN## k,βN ,βS ,γ,ρ,ν, t0,W0, x
βS

N
It

βN

N

∑t
i=t0

Mi e−ρ(t−i )

SN? k,βN ,βS ,γ,ρ,ν, t0,W0, x
βS

N
It

βN

N
Mt

(∏t−1
i=t0

1+Mi e−ρ(t−i )
)

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 7: Summarized description of contagion models considered in our analysis.

Hastings sampling [64], applied to the negative binomial likelihood of observing the

daily number of Wikipedia page views related to the considered disease and country.

The likelihood associated with a specific parameter set θ was defined as:

L (θ, x|ωd ) =
∏
d

Γ(x +ωd )

Γ(x)ωd !

(
Wd (θ)

Wd (θ)+x

)ωd
(

x

Wd (θ)+x

)x

where d runs over the days considered to calibrate models for a specific epidemic

threat; ωd is the number of observed Wikipedia page views occurred within day d ; x

is the dispersion parameter of the negative binomial distribution; Γ(·) is the standard

gamma function; Wd (θ) is the estimated number of Wikipedia page views at the day

d as obtained with the considered model and parameter set θ.

At each iteration, the algorithm evaluates the likelihood of a new candidate vector

of parameters, which is accepted or not based on the standard Metropolis-Hastings

algorithm. Uniform prior distributions are assumed for the free parameters; new can-

didate values of free model parameters are proposed from a normal distribution cen-

tered on their current values. MCMC convergence was assessed by checking that,

after a burn-in period of 2,000 iterations, the trace plots associated with different

chains, i.e. the sequence of accepted parameter values, were approximately charac-

terized by a constant width and average, therefore proving good mixing of the pa-

rameters. Figure 11 shows the trace plots associated with illustrative chains consist-

ing of 30,000 iterations, as obtained through the MCMC approach with random walk
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Metropolis–Hastings sampling applied to the negative binomial likelihood of the ob-

served Wikipedia page views on Ebola in US by using model SN based on equation 4.

Figure 11: Trace plots of illustrative MCMC chains as obtained with random walk Metropo-

lis–Hastings sampling applied to the negative binomial likelihood of the observed

Wikipedia page views on Ebola in US by using model SN based on equation 4

2.B A D D I T I O N A L R E S U LT S

2.B.1 Model performances

Accuracy of different models in reproducing the observed data was assessed by using

a variety of statistical measures [157]. These include the root mean square error be-

tween model estimates and data, the corresponding mean absolute error (MAE) and

mean absolute percentage error (MAPE), the coefficient of determination (R2), the

Pearson correlation coefficient, the Akaike Information Criterion (AIC), the Bayesian

Information Criterion (BIC) and the Deviance Information Criterion (DIC). Specifi-

cally, for each model and epidemic scenario considered, all the statistical measures,

with the exception of the DIC, were computed as the average of the 30,000 values

of the considered statistic as obtained by running 30,000 simulations with parame-

ter sets sampled from the posterior distribution of parameters estimated with the

MCMC approach. In addition to all contagion models summarized in Table 7, the
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best regression model (denoted by L) was included in this analysis. Obtained results

associated with different epidemic scenarios and models are shown in Table 8 9 10

11 12 13 14 15 16. The corresponding model estimates on the number of Wikipedia

page views over time are shown in Figures 12 13 14 15 16 17 18 19.

According to the majority of the statistical measures here considered, the nested

model (SN ) outperforms all other models. Parameters estimates obtained with model

SN based on equation 4 are reported in Table 17. Although available data do not sup-

ply sufficient information for reliably estimating all free parameter values (e.g., for

estimating bothβS and 1/γ), interesting insights emerge from the comparison of esti-

mates obtained across different scenarios considered (e.g., when comparing the dou-

bling time associated with the social contagion during different epidemic threats).

Finally, model performances were also measured by using only 80% of data points

(train-set) for model calibration and by testing the model compliance with the re-

maining 20% (test-set). Only two models were considered for this analysis:

1) model SN , representing the best model according to different statistical measures

of the goodness of fit;

2) the best regression model (denoted by L), representing a simple approach to esti-

mate a given time series without attempting to explicitly connect the response vari-

able to a specific hypothesis about the process that created the data.

Obtained results are shown in Figures 20 21 22 23 24 25. A discussion on model

performances obtained is provided in the main text.
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DIC

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 3704 2825 3254 2009 3388 4895

S 3638 2799 3073 1901 3326 4992

N # 3638 2803 3160 2099 3331 4890

N ## 3610 2710 3104 1906 3286 4806

N ### 3627 2783 3163 2106 3325 4968

SN # 3579 2707 3089 1830 3275 4682

SN ## 3584 2702 3091 1840 3288 4724

SN? 3546 2668 3043 1830 3269 4682

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 8: DIC values associated with different models and epidemics

AIC

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 3709.75 2831.26 3259.58 2017.67 3392.09 4907.52

S 3648.48 2808.03 3080.87 1911.98 3369.43 5000.99

N # 3645.38 2816.93 3168.2 2107.09 3337.96 4997.06

N ## 3618.33 2722.36 3112.32 1924.34 3294.66 4814.95

N ### 3635.1 2792.92 3173.02 2119.44 3333.81 4997.7

SN # 3589.08 2720.32 3103.58 1845.97 3284.13 4692.23

SN ## 3596.67 2719.83 3103.32 1852.43 3301.37 4736.16

SN? 3556.51 2681.16 3059.46 1853.94 3280.18 4693.88

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 9: AIC values associated with different models and epidemics
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Probability of minimizing the estimated information loss

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

S < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

N # < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

N ## < 0.001 < 0.001 < 0.001 < 0.001 0.001 < 0.001

N ### < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SN # < 0.001 < 0.001 < 0.001 - 0.139 -

SN ## < 0.001 < 0.001 < 0.001 0.04 < 0.001 < 0.001

SN? - - - 0.019 - 0.438

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 10: Probability of minimizing the estimated information loss associated with different

models and epidemics

BIC

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 3724.74 2849.24 3274.89 2036.04 3405.97 4946.04

S 3669.46 2829.01 3102.31 1933.42 3393.73 5027.96

N # 3663.36 2834.91 3186.57 2125.46 3358.79 5020.17

N ## 3639.31 2743.34 3133.76 1945.77 3318.97 4841.92

N ### 3656.08 2813.9 3194.46 2140.88 3358.11 5024.66

SN # 3613.05 2744.3 3128.08 1870.47 3311.9 4723.05

SN ## 3623.64 2746.8 3130.88 1880 3332.62 4770.83

SN? 3583.49 2708.14 3087.03 1881.5 3311.43 4728.55

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 11: BIC values associated with different models and epidemics
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RMSE

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 134415 9729.55 25067.1 1184.8 714.938 287.673

S 516354 8085.85 17189.5 1608.81 788.141 319.61

N # 97865.8 6931.29 11661.5 1012.63 569.433 317.6

N ## 97785.4 6275.79 18037.8 1091.13 568.696 260.065

N ### 97350.7 25873.7 14151.3 884.04 552.511 316.322

SN # 93953.5 6136.29 18599.7 960.875 602.831 213.666

SN ## 93082.9 6152.49 17983.7 967.233 572.839 226.179

SN? 110566 4993.79 14379.1 835.451 591.411 213.693

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 12: Root mean square errors (MSE) associated with different models and epidemics

MAPE

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 84.895 109.63 72.545 203.127 71.238 14.066

S 70.214 97.871 33.393 58.985 74.089 17.231

N # 61.959 88.998 53.319 447.078 59.485 16.8

N ## 54.039 59.74 40.435 112.926 55.2 12.522

N ### 56.883 80.224 52.509 374.899 57.034 16.772

SN # 45.559 56.808 39.525 55.942 52.657 10.142

SN ## 46.024 56.264 37.789 53.437 55.747 11.047

SN? 39.597 46.521 30.482 56.774 51.203 10.138

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 13: Mean absolute percentage errors (MAPE) associated with different models and epi-

demics
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R2

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 0.352 0.289 0.523 0.492 0.311 0.589

S -8.853 0.509 0.775 0.041 0.161 0.493

N # 0.657 0.639 0.897 0.628 0.563 0.499

N ## 0.657 0.704 0.752 0.569 0.564 0.664

N ### 0.659 -4.744 0.846 0.71 0.588 0.503

SN # 0.681 0.717 0.736 0.666 0.506 0.773

SN ## 0.689 0.715 0.754 0.662 0.558 0.746

SN? 0.551 0.809 0.841 0.746 0.526 0.773

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 14: Values of the coefficient of determination (R2) associated with different models and

epidemics

Figure 12: Model estimates based on model L for Ebola (A), Zika (C), Influenza (E) in the US

and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each panel, blue bars repre-

sent the daily number of Wikipedia page views over time for the considered infec-

tion. The blue lines and the shaded areas refer to the average and the 95% CI of

estimates as obtained with the model on the daily number of informed individuals

seeking information on Wikipedia.
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Pearson correlation coefficient

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 0.666 0.61 0.787 0.782 0.569 0.781

S 0.584 0.729 0.89 0.805 0.524 0.706

N # 0.815 0.807 0.952 0.821 0.819 0.717

N ## 0.827 0.905 0.925 0.816 0.783 0.816

N ### 0.832 0.706 0.932 0.874 0.792 0.719

SN # 0.839 0.865 0.929 0.82 0.738 0.88

SN ## 0.84 0.875 0.927 0.818 0.778 0.865

SN? 0.844 0.913 0.929 0.871 0.739 0.88

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 15: Pearson correlation coefficients associated with different models and epidemics

MAE

Model Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

L 89000.1 5933.26 12204.6 458.193 379.561 213.492

S 149324 4683.11 6575.59 518.305 401.479 252.701

N # 67808.4 4295.07 6329.59 404.018 285.317 242.535

N ## 63624.1 3544.4 6682.43 356.824 280.194 191.581

N ### 62419.6 6961.49 7496.41 372.234 275.066 242.191

SN # 54976 3410.05 7320.11 346.021 285.435 152.55

SN ## 54330.9 3370.27 6662.37 343.464 281.787 166.454

SN? 53925.6 2697.62 5983.21 289.98 277.237 152.597

# based on equation 2 ## based on equation 3 ### based on equation 4
? based on equation 4 and representing our baseline formulation

Table 16: Mean absolute errors associated with different models and epidemics
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Figure 13: Model estimates based on model S for Ebola (A), Zika (C), Influenza (E) in the US

and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each panel, blue bars repre-

sent the daily number of Wikipedia page views over time for the considered infec-

tion. The blue lines and the shaded areas refer to the average and the 95% CI of

estimates as obtained with the model on the daily number of informed individuals

seeking information on Wikipedia.

Figure 14: Model estimates based on model N and equation 2 for Ebola (A), Zika (C), In-

fluenza (E) in the US and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia.
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Figure 15: Model estimates based on model N and equation 3 for Ebola (A), Zika (C), In-

fluenza (E) in the US and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia.

Figure 16: Model estimates based on model N and equation 4 for Ebola (A), Zika (C), In-

fluenza (E) in the US and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia.
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Figure 17: Model estimates based on model SN and equation 2 for Ebola (A), Zika (C), In-

fluenza (E) in the US and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia.

Figure 18: Model estimates based on model SN and equation 3 for Ebola (A), Zika (C), In-

fluenza (E) in the US and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia.
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Figure 19: Model estimates based on model SN and equation 4 for Ebola (A), Zika (C), In-

fluenza (E) in the US and for Ebola (B), Zika (D), Meningitis (F) in Italy. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia.

Parameter Ebola

US

Ebola

IT

Zika

US

Zika

IT

Meningitis

IT

Influenza

US

k 0.047 0.014 0.0092 0.0018 0.00083 0.0014

βS 1.19 0.52 0.085 0.11 5.35 0.049

1/γ 1.21 2.41 43.04 59.41 0.22 20.20

βN 30579 47570 53797 21528 40763 20368

ρ 3.53 1.79 3.14 1.41 4.96 15.78

1/ν 80.66 113.47 211.44 298.63 53.13 366.41

x 5.57 4.76 7.47 3.85 3.43 59.85

W0 17396 956 1471 2 166 847

t0 22/07/14 23/07/14 22/12/15 1/01/16 26/07/16 1/07/16

Table 17: Mean estimates of free model parameters obtained for the SN-model and equa-

tion 4
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Figure 20: Model estimates obtained with model SN (A) and model L (B) for Ebola in the US

when only the first 80% of data points were used for model calibration. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia. Red regions highlight the

20% of data points that has not been used for model calibration. The dashed grey

lines show model estimates as obtained when using 100% of data points for model

calibration (baseline).
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Figure 21: Model estimates obtained with model SN (A) and model L (B) for Ebola in the Italy

when only the first 80% of data points were used for model calibration. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia. Red regions highlight the

20% of data points that has not been used for model calibration. The dashed grey

lines show model estimates as obtained when using 100% of data points for model

calibration (baseline).
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Figure 22: Model estimates obtained with model SN (A) and model L (B) for Zika in the US

when only the first 80% of data points were used for model calibration. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia. Red regions highlight the

20% of data points that has not been used for model calibration. The dashed grey

lines show model estimates as obtained when using 100% of data points for model

calibration (baseline).
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Figure 23: Model estimates obtained with model SN (A) and model L (B) for Zika in Italy

when only the first 80% of data points were used for model calibration. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia. Red regions highlight the

20% of data points that has not been used for model calibration. The dashed grey

lines show model estimates as obtained when using 100% of data points for model

calibration (baseline).
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Figure 24: Model estimates obtained with model SN (A) and model L (B) for Meningitis in

Italy when only the first 80% of data points were used for model calibration. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia. Red regions highlight the

20% of data points that has not been used for model calibration. The dashed grey

lines show model estimates as obtained when using 100% of data points for model

calibration (baseline).
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Figure 25: Model estimates obtained with model SN (A) and model L (B) for Influenza in the

US when only the first 80% of data points were used for model calibration. In each

panel, blue bars represent the daily number of Wikipedia page views over time for

the considered infection. The blue lines and the shaded areas refer to the average

and the 95% CI of estimates as obtained with the model on the daily number of

informed individuals seeking information on Wikipedia. Red regions highlight the

20% of data points that has not been used for model calibration. The dashed grey

lines show model estimates as obtained when using 100% of data points for model

calibration (baseline).





3
R E D U C I N G M E A S L E S R I S K I N T U R K E Y T H R O U G H S O C I A L

I N T E G R AT I O N O F S Y R I A N R E F U G E E S

3.1 I N T R O D U C T I O N

Human migration represents a complex phenomenon influencing in several inter-

connected ways the economy, the healthcare and the social cohesion of whole coun-

tries [3, 140, 29, 173, 26, 126, 18]. However, it is only recently that the availability

of massive datasets opened to new advancements in modelling and understanding

such complexity [96, 38, 19, 97], addressing the urgent need for effective, large-scale

intervention policies towards managing the consequences of massive migration flows [26].

In this chapter, we focus our attention on Turkey, a country facing a humanitar-

ian emergency of unprecedented levels [152]. In the last eight years, more than 3.5M

Syrians, displaced by the war, have sought refuge in Turkey. This number, through

births and new arrivals, is also increasing by approximately 1,000 people per day. The

arrival of a huge amount of people with different economic, health, and living condi-

tions, and from a country where the healthcare system has been almost completely

disrupted, may raise serious concerns about the risks of Turkish health systems being

overburdened.

For instance, Turkish infectious disease specialists are concerned that Syrian refugees’

crisis may impose serious risks to their country for infectious diseases previously

eliminated or in the process of being eliminated [73]. According to the latest reports

from WHO and UNICEF [166], immunization coverage in Syria dropped from more

than 80% before the war to a worrying 41% in 2015 for the most basic vaccines, re-

sulting in millions of unvaccinated children. Direct consequences of this alarming

situation are a high risk of epidemic outbreaks (e.g., evidence for polio [167] and

measles [164] has been reported) and a potential increase of mortality due to dis-

eases which could be prevented with vaccines [138]. Thus, countries, such as Turkey,

Lebanon, and Jordan, hosting a great concentration of Syrians perceive the lack of

an appropriate immunization coverage as a potential risk of epidemic outbreaks for

the local population [73]. This perceived risk may ignite a cascade of social dynamics

which could: i) reinforce the segregation of refugees; ii) increase unemployment and

poverty; iii) result in difficult relationships between healthcare workers and Syrians.

The aim of this study is to quantify the risk of observing widespread measles epi-

demics in Turkey, showing potential public health benefits coming from social in-
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tegration between Syrian refugees and Turkish citizens. To such aim we developed

a transmission model to investigate the influence of social mixing and integration

among Syrian refugees and Turkish citizens on the potential spread of measles epi-

demics in Turkey. The model takes explicitly into account empirical mobility patterns,

as inferred by mobile phone data [129], and the current level of immunity against

measles in the two considered populations, as estimated from available epidemio-

logical evidences [165, 166]. Since the current amount of integration is difficult to

estimate with available data, measles transmission is modelled by considering a tun-

able parameter that accounts for a variety of scenarios, ranging from full segregation

to full integration. Results are obtained by simulating the spread of measles by as-

suming different scenarios for measles transmission potential and different levels of

social integration.

In particular, measles represents an illustrative case of a highly contagious infec-

tious disease which can be prevented with a safe and effective vaccine [69, 90, 138,

106, 91, 151, 124]. Despite substantial progress towards measles elimination at the

global level has been documented, re-emergence of large measles epidemics was ob-

served in the last decade both in low-income and in high-income countries [151].

Moreover, measles epidemiology varies widely across different geographical regions,

as a consequence of heterogeneous immunity gaps, generated by sub-optimal immu-

nization activities, in different socio-demographic settings [106, 151, 91].

The crucial role played by both human mobility [48, 32, 10, 105, 108, 171] and mix-

ing patterns [111, 54, 5] in shaping the transmission dynamics of infectious diseases

has been widely documented in the literature and represents a key component of

realistic modeling aimed at informing public health policies. Thus, human mobility

models have been used to map flows of individuals between geographical areas at

different scales and to improve the reliability of transmission models of infectious

diseases [48, 32, 10, 104, 9, 93, 66]. In the last years, mobile phone data have been

successfully used as a valuable proxy for human mobility [67, 142, 137, 149, 19, 14].

We capitalize on these works to build, from mobile phone data, a multilayer net-

work [36, 83, 35] map of human mobility of Turkish citizens and Syrian refugees in

Turkey, and we use this knowledge to develop a computational model for the poten-

tial epidemic spread of measles.

The contribution of our work is twofold. On the one hand, we identify the epidemic

risks associated with measles in Turkey. On the other hand, we investigate how these

epidemic risks are affected by policies devised to enhance social integration between

Syrian and Turkish populations.
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Figure 26: Measles immunity levels. A) Reported number of measles disease cases over time,

during the 2016-2018 measles epidemics in Syria as recently reported by the World

Heath Organization [165]; red bars correspond to data points used to derive the Re

as a function of the exponential growth rate of the observed epidemic. B) Obtained

fit of the epidemic exponential growth between September and February 2017 in

Syria: red solid line represents the mean estimate, orange shaded area represents

95%CI. C) Observed distribution of measles cases across different ages during the

2016-2018 measles epidemics in Syria as recently reported by the World Heath Or-

ganization [165]. D) Estimated age specific serological profile in Syria at the be-

ginning of 2017: green bars represents mean values, vertical black lines represent

95%CI. E) Observed age distribution of Syrian refugees in Turkey (light green) [1]

compared with the population age distribution in Syria (dark green). F) Estimated

percentage of susceptible individuals among Syrian refugees.

3.2 R E S U LT S

3.2.1 Immunity levels in the two populations.

Two different immunity levels against measles infection are estimated for the Turkish

and the Syrian populations. As measles epidemics have not been recently reported

in Turkey, we assume the measles immunity level among Turkish citizen reflects the

fraction of immunized individuals among birth cohorts between 2006-2016 through

1st and 2nd dose routine vaccination programs [166] (see Appendix). Accordingly, our

estimates suggest that only 3.8% of Turkish people might be currently susceptible to

measles infection. A different level of susceptibility in the Turkish population is also

considered for sensitivity analysis in the Appendix section of this chapter.

Estimates of the immunity level among refugees was instead obtained by inferring

the age-specific fraction of susceptible individuals in Syria during a recent measles

epidemic from the growth rate and age-distribution of cases reported in 2017 [165],

and accounting for the age distribution of Syrian refugees in Turkey [1] (Fig. 26). We

found that the effective reproductive number (Re ) of the recent Syrian measles epi-
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demic was 1.32 (95%CI 1.26-1.38). Consequently, we estimated that the percentage

of susceptible individuals in Syria at the beginning of 2017 was 8.92% (95%CI 7.29-

10.96). The resulting percentage of susceptible individuals among Syrian refugees in

Turkey was estimated to be 9.87% (95%CI 8.07-–12.18)(Fig. 26).

Obtained results suggest that nowadays, in Turkey, 280,000-430,000 out of 3.5M Syr-

ian refugees and about 3M out of 80M Turkish people are measles susceptible.

3.2.2 Social integration, human mobility and disease transmission.

The risk of measles re-emergence in Turkey is here analyzed by using a compartmen-

tal transmission model explicitly taking into account potential infectious contacts oc-

curring between individuals moving across the country. Different scenarios on how

much Syrian refugees interact with Turkish citizens are investigated. A schematic rep-

resentation of the model is shown in Fig. 27 A,B along with spatial mobility patterns

inferred by the analysis of Call Detailed Records (CDRs) associated with the usage of

mobile phones in the country.

The fundamental quantity regulating disease dynamics is the basic reproduction

number (R0), which represents the average number of secondary infections in a fully

susceptible population generated by a typical index case during the entire period of

infectiousness. Larger R0, higher the disease transmissibility. If R0 > 1 the infection

will be able to spread in a population. Otherwise, the infection will die out. For en-

demic diseases like measles, R0 provides insights into the proportion p of immune

population (either due to vaccination or natural infection) required to prevent large

outbreaks; the equation p = 1−1/R0 represent the proportion of immune population

needed to prevent the spread of the disease as a function of the basic reproduction

number R0 [6, 69, 90]. For instance, if R0 = 20 at least 95% of the population has to

be immune to eliminate the disease. As for measles, typical values of R0 ranges from

12 to 18 [6, 69, 90, 106, 124]. However, when considering diseases with pre-existing

levels of immunity (e.g. childhood diseases like measles), R0 is a theoretical value

representing what could happen in terms of disease transmissibility by removing im-

munity. In these cases, an appropriate measure of diseases transmissibily is provided

by the effective reproduction number (Re ), which represents the average number of

secondary infections in a partly immunized population generated by a typical index

case during the entire period of infectiousness.

In Fig. 27 C we show the ratio Re /R0 as obtained by varying the fraction of Syr-

ian refugees susceptible to measles from 8.07% to 12.18% and by varying the level of

social integration from 0% (full segregation of refugees) to 100% (full integration of

refugees). We found that pre-existing levels of immunity of the two populations re-

duce Re to values lower than 10% of R0. For example, if R0 is lower than 10, the proba-

bility of observing an epidemic outbreak would be close to 0 because Re would result
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Figure 27: Model structure, human mobility and transmission potential. A) Schematic illus-

tration of the model considered in this work. Each prefecture of Turkey is consid-

ered as a node of a meta–population network of geographic patches. Two popula-

tions, namely Turkish and Syrians, are encoded by different colors and move be-

tween patches following the inferred inter-patch mobility pathways. Turkish and

Syrian populations encode two different layers of a multilayer system [36, 83, 35]

where social dynamics and epidemics spreading happen simultaneously. B) Mobil-

ity of Syrian refugees (Top) and Turkish citizens (Bottom) between the prefectures

of Turkey as inferred from CDR. Different colors are used to indicate the number of

individuals moving from a prefecture to another. C) Effective reproduction number

for measles spreading according to our model, rescaled by R0, as a function of the

mixing parameter accounting for social integration between Turkish and Refugees.

Colored lines are associated with the estimated levels of susceptibility among Syr-

ian refugees.

lower than 1 as a consequence of pre-existing immunity levels. However, if R0 is in a

more plausible range of values (e.g. 12-18), pre-existing levels of immunity, which are

particularly low among Syrian refugees, might not be sufficient to prevent the spread

of the disease. Moreover, we found that Re is maximum when the two populations

live socially segregated from each other, whereas it quickly decreases by almost 50%

when the two populations are socially well integrated.

In sum, the immunity level characterizing the Turkish population in 2017 is ex-

pected to prevent the spread of future measles epidemic in geographical locations

predominantly populated by Turkish citizens. However, if a measles index case would

occur in a population with a sufficiently large proportion of Syrian people, transmis-

sion events will be sustained by the lack of adequate immunity levels among refugees.

Our modelling analysis show that for any scenario considered the risk of observing

large epidemics increases with the basic reproduction number and the proportion of

susceptible among the refugees (see Fig. 28 and Appendix section).
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3.2.3 Measles epidemic risks in Turkey.

In case of full segregation of refugees (although practically infeasible and therefore

unlikely), potential measles epidemics would result in dramatic health consequences

among refugees, causing a huge amount of measles cases widespread in the country

(Fig. 28). Specifically, when R0 = 15 is considered and 9.8% of refugees are assumed

to be measles susceptible, the probability of observing an epidemic with more than

20 cases is 100% (see Supplementary Discussion) and the final size of potential epi-

demics is expected to exceed 10,000 cases (mean estimate 10,662 95%CI 3,172–18,414,

see Fig. 28). Our results show that the risk of observing sustained transmission in the

country is large for any value of R0 larger than 15 but also for lower values of R0 (e.g.

R0 = 12) if the proportion of refugees susceptible is 9.8% or more (see Fig. 28 and

Appendix).

Figure 28: Cumulative infections considering epidemics that exceed 20 cases in the entire

population. Bars represent the average number of infections occurring among Syr-

ian refugees (red) and Turkish citizens (blue) for the model projections as a func-

tion of the mixing parameter, black lines represent 95%CI. Three different values

of R0 and Susceptibility levels among the Syrian refugees population (SRe f
0 ) were

considered. A) R0 = 18, SRe f
0 = 8.07%. B) as A but for SRe f

0 = 9.87%. C) as A but

for SRe f
0 = 12.15%. D) as A but for R0 = 15. E) as B but for R0 = 15. F) as C but for

R0 = 15. G) as A but for R0 = 12. H) as B but for R0 = 12. I) as C but for R0 = 12.
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In the case of full segregation, infections would occur only among refugees. How-

ever, when assuming high level of segregation (i.e. only a small fraction, yet equal or

greater than 10%, of refugees’ contacts occur with Turkish citizens), the risk of expe-

riencing large measles outbreak is high (see Appendix) and measles epidemics could

produce non-negligible spillover of cases among Turkish citizens as well (Fig. 28). In

particular, in a worst case scenario where R0 = 18, 12.18% of refugees are suscepti-

ble and more than 70% of Syrian contacts occur with Syrian people, thousands of

measles cases are expected all over the country among the Turkish people as well

(see Fig. 28, 29).

Figure 29: The potential spatial burden of epidemics. A) shows the estimated cumulative in-

fections in the case of 20% of Syrian contacts with Turkish citizens considering the

worst case scenario in terms of R0 and immunity levels against measles infection

among Syrian refugees. Bubbles size are proportional to the average number of

measles cases in the Turkish prefectures per 10,000 individuals. Inset displays the

Istanbul prefectures. B) as A but for 40% of Syrian contacts with Turkish citizens.

C) as A but for 60% of Syrian contacts with Turkish citizens. D) as A with respect to

the Turkish population. E) as B with respect to the Turkish population. F) as C with

respect to the Turkish population.

More in general, obtained results suggest that the risk of observing sustained measles

transmission, the final size of potential epidemics and the populated area at risk of

measles infection are significantly smaller in the presence of high levels of integration

of refugees (Fig. 28, 29). Specifically, when R0 = 15 is considered, 9.8% of refugees are

assumed to be measles susceptible and refugees well mix with the Turkish (e.g. more

than 70% of Syrian contacts occur with Turkish people), the probability of observing

epidemic outbreak dramatically decreases to values lower than 10% (see Appendix

section). Moreover, in case of outbreak, the expected overall number of cases is no

larger than few hundred (Fig. 28), as potentially infectious contacts would more prob-

ably occur with Turkish immune individuals, who represent about 90% of individuals

currently leaving in Turkey.
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3.2.4 Spatial diffusion of potential epidemics.

Remarkably, larger segregation levels also promote the spatial invasion of the epi-

demic across the whole country (Fig. 30). In the worst case scenario of R0 = 18, 12.18%

of Syrian refugees susceptible, and more than 90% of Syrian contacts occur within the

Syrian population, the measles epidemic is expected to affect more than 300 out of

1021 prefectures of Turkey (Fig. 30 A). On the opposite, if more than 70% of contacts

of refugees would occur with Turkish people, as a consequence of good integration of

refugees with Turkish citizens, for the majority of epidemiological scenarios consid-

ered, measles epidemics are expected to remain geographically bounded in less than

10 prefectures of the country (Fig. 30 and Appendix).

Figure 30: Spatio-temporal spread of potential epidemics. A) shows the estimated number of

prefectures affected by the epidemic as a function of the mixing parameter in the

worst case scenario. Bars represent the average number of prefectures exceeding

20 cases among Syrian refugees (red) and Turkish citizens (blue); black lines indi-

cate the 95%CI. B) Percentage of the simulated epidemic that exceed 20 cases per

prefecture in the case of 20% of Syrian contacts with Turkish citizens. Red and blue

bubbles refer to Syrian refugees and Turkish citizens respectively. C) as B but for

40% of Syrian contacts with Turkish citizens. D) as B but for 60% of Syrian contacts

with Turkish citizens. E) (Top) relative incidence over time considering both the

populations per prefecture in the case of total segregation. Prefectures are ranked

in decreasing order at week 20. (Bottom) Proportion of region affected in the initial

phase of the epidemic considering the first 25 prefectures affected by more than

10 cases. Border refers to Hatay, Kilis, Gaziantep, Sanliurfa, Mardin and Sirnak re-

gions. F) as E in the case of 20% of Syrian contacts with Turkish citizens. G) as E in

the case of 40% of Syrian contacts with Turkish citizens. H) as E in the case of 60%

of Syrian contacts with Turkish citizens.

Furthermore, our results suggest that the level of social integration between refugees

and the Turkish population can also strongly affect the spatio-temporal spread of po-

tential measles epidemics. Figure 30 E-H shows for each prefecture the expected cu-
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mulative measles incidence over time for different levels of social integration in the

the worst case scenario. Obtained estimates indicate that, in the case of full segre-

gation, 57% of Turkish prefectures is expected to experience more than 10 measles

cases after 30 weeks since the beginning of an epidemic. Such percentage decreases

to 11%, 1% and 0.4% when refugees contacts with Turkish citizens increases to 20%,

40% and 60% respectively. Interestingly, in case of full segregation, prefectures where

cases of infections are registered at earlier stages are mainly located in regions asso-

ciated with the four largest cities of Turkey (64%, see Figure 30 E). In contrast, when

60% of refugees’ contacts occur with Turkish citizens, a remarkable fraction of prefec-

tures that would be affected the early phase of a measles epidemic are close to the

Syrian border (Figure 30 H). This partially explains why social integration can - dur-

ing a potential measles epidemic - significantly reduce the spillover of cases in the

Turkish population.

3.3 D I S C U S S I O N

The widely accepted critical immunity threshold for measles elimination is 95% of

immune individuals. According to our estimates, while Turkish citizens are mostly

protected by high vaccine uptake levels, Syrian refugees display a considerably larger

fraction of individuals that is susceptibile to the measles, as a consequence of the sub-

optimal vaccination during the ongoing civil war. More specifically, while the level

of protection of the Turkish population against the disease is nearly optimal (more

than 96% of immune individuals), the protection of Syrian refugees is far from being

acceptable (only about 90% of immune individuals, though highly uncertain).

The strong difference in the immunity levels among the two populations may have

deep repercussions on the society perception towards the movement of Syrians within

Turkey. As common in Western countries hosting considerable amounts of migrants [34],

Turkish citizens might perceive the lower immunization coverage of Syrian refugees

as a potential threat to national welfare and health. This perception might be even

worsened by the staggering numbers of Syrian refugees registered in Turkey, 3.5M in

2018 [129, 34]. This well documented negative perception [43, 13] may trigger segre-

gation mechanisms, aimed at reducing as much as possible interactions and contacts

between Syrian refugees and Turkish citizens.

The carried out analysis provides compelling evidence that social segregation does

not hamper but rather boosts potential outbreaks of measles to a greater extent in

Syrian refugees but also in Turkish citizens, although to a lesser extent. The main re-

sult of the current study is the quantitative evidence that social mixing among Syrian

refugees and Turkish citizens can be highly beneficial in drastically reducing the in-

cidence and the strength of infection of measles. This is due to the fact that the high

immunization coverage of Turkish citizens can shield Syrian refugees from getting
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exposed to the infection and this reduces potential sources of infection, in a virtuous

cycle reminiscent of herd immunity and well documented in many real-world social

systems [49, 138]. Our quantitative model combines CDRs data with available epi-

demiological evidences to estimate the spatial distribution, the immunity profile and

the mobility patterns characterizing the two considered populations, allowing the in-

vestigation of spatio-temporal patterns of a potential measles epidemic in Turkey.

Provided that a full homogeneous mixing of refugees and citizens could prove to

be impracticable or rather difficult to achieve, there are several policies that could

reduce social segregation. For instance, designing specific housing policies for re-

distributing refugees across different neighbourhoods of a given metropolitan area

could avoid the creation of ghettos [26], while also increasing the chances of social

interactions between refugees and citizens in schools, shops, third places, etc. Al-

though the proposed analysis clearly shows that increasing social mixing between

Syrian refugees and Turkish citizens is expected to produce positive public health

outcomes, social integration is also expected to provide major societal benefits such

as the reduction of violent crimes, economic and educational inequalities [114].

From a geographic perspective, our analysis confirmed that there are metropoli-

tan areas that are pivotal in diffusing the incidence of the disease over time. These

areas are mainly prefectures of Istanbul and Ankara and, unsurprisingly, include also

many areas adjacent to the national borders of Turkey with Syria. It is in these areas

that the efforts for reducing social segregation should be strategically focused. This

poses a great challenge for the future, provided that recent reviews of urban regenera-

tion projects highlighted an important process of social segregation of minorities and

non-Turkish ethnicity particularly strong in large cities such as Istanbul [43]. How-

ever, our results also suggest that social integration would decrease the relevance of

large Turkish cities in promoting the spread of the infection. On the other hand, im-

munization campaigns targeting areas characterized by a large amount of refugees

with respect to the Turkish population, as it is the case of many prefectures close to

the Syrian border, might critically reduce the chances of measles transmission and

prevent the onset of widespread epidemics.

The performed analysis has several limitations that should be considered in inter-

preting the results. Estimates of immunity levels in Syrian refugees and in Turkish cit-

izens should be considered cautiously as no recent serological surveys are available

for the two populations. Immunity levels are inferred from the analysis of vaccine

coverage for Turkish citizens and from the analysis of the 2016-2018 measles out-

break in Syria. This last analysis in particular might be affected by under-reporting

of cases [138, 124] and does not consider potential spatial heterogeneities that could

drastically affect estimates of the overall level of protection against the disease. Also,

we assume the same levels of immunity in all municipalities, thus neglecting spatial
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heterogeneities that may be present as a consequence of different vaccine uptake

across different regions [148]. Moreover, no data on mixing patterns (e.g. by age) are

available for either Syrian refugees and Turkish citizens. Consequently, the model ne-

glects potential differences in measles transmissibility by age of individuals and, simi-

larly, potential differences in measles transmissibility for Syrian refugees and Turkish

citizens (e.g. induced by different numbers of overall contacts). Finally, CDRs data

used in the proposed analysis are associated with only a fraction of the population.

Although these data may not perfectly reflect real movements occurring across all

the prefectures in the country, they provide valuable evidence to infer a fair approx-

imation of human mobility in the country driving the spatio-temporal spread of an

epidemic.

All this considered, the analysis carried out represents a first attempt to quantify

the risk of measles outbreak in Turkey and provides striking evidence that, besides

policies aimed at increasing vaccination coverage among Syrian refugees, social inte-

gration of refugees within the Turkish population might be an effective countermea-

sure.

3.4 M AT E R I A L A N D M E T H O D S

The epidemic model used in our study is an standard one based on three compart-

ments, namely Susceptible, Infected and Recovered (SIR). We refer to the Appendix

section for the details about the model. Here, we provide information about the force

of infection used in our model.

To model the mobility of Turkish and Syrian refugees, we assume two populations

of individuals, namely population 1 of size N (1) and population 2 of size N (2), living

in a territory consisting of L distinct geographically patches (i.e., Turkish prefectures)

accounting for N (1)
k and N (2)

k individuals, k = 1, ...,L with
L∑

k=1
N (1)

k = N (1) and
L∑

k=1
N (2)

k =
N (2).

The absolute number of individuals moving between patches is inferred from avail-

able Call Detail Records as in Refs. [93, 100] and rescaled to adequately represent the

volumes corresponding to 80M Turkish individuals and 3.5M Syrian refugees.

Let us indicate by c(p)
ki (p = 1,2) the elements of a matrix C(p) encoding the number

of people belonging to population p travelling from patch k to patch i , and with α

the fraction of Syrian contacts with Turkish citizens. The force of infection for each

population in the i th patch depends on the contribution of all patches in the country:
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λ(1)
i (α,C(1),C(2)) = β1

L∑
k=1

 c(1)
ki

I (1)
k

N (1)
k︸ ︷︷ ︸

Endogenous

+αc(2)
ki

I (2)
k

N (2)
k︸ ︷︷ ︸

Exogenous



λ(2)
i (α,C(1),C(2)) = β2

L∑
k=1

αc(1)
ki

I (1)
k

N (1)
k︸ ︷︷ ︸

Exogenous

+ c(2)
ki

I (2)
k

N (2)
k︸ ︷︷ ︸

Endogenous

 ,

where βp = β/P (p)
i (α,c) is the transmission rate for population p and P (p)

i (α,c) is an

appropriate normalization factor (such that all individuals have the same number of

contacts, regardless of geography and citizenship, see Appendix for further details).

Each contribution consists of an endogenous term, accounting for the infectivity due

to individuals from the same population, and an exogeneous term, accounting for the

infectivity due to the other population. The interplay between mobility and social

integration is thus encoded in the force of infection for the two populations.



A P P E N D I X

3.A M E T H O D S

3.A.1 Human mobility patterns in Turkey

The mobility of Turkish and Syrian refugees in the country is modeled as follows. We

consider two populations of individuals, namely population 1 of size N 1 and pop-

ulation 2 of size N 2, living in a territory consisting of K geographically separated

patches, corresponding to the Turkish prefectures. Each patch k ∈ {1, ...,K } accounts

for N 1
k and N 2

k individuals, with
K∑

k=1
N 1

k = N 1 and
K∑

k=1
N 2

k = N 2. The absolute number

of individuals moving between patches is inferred from available Call Detail Records

following an approach similar to one used in previous studies [93, 100] and rescaled

in such a way to adequately represent the the current amount of individuals living

in Turkey, which consists in 80M Turkish citizens and 3.5M Syrian refugees. Let c1
i k

be the daily number of individuals of population 1 travelling from patch i to patch

k, with
K∑

k=1
c1

i k = N 1
i and c1

i i representing individuals who remain in the patch i . Sim-

ilarly, let c2
i k be the daily number of individuals of population 2 travelling from path

i to path k, with
K∑

k=1
c2

i k = N 2
i . The number of individuals in any patch i is therefore

defined as:

Pi (c) =
K∑

k=1
c1

ki +
K∑

k=1
c2

ki .

3.A.2 The measles transmission model

Measles transmission is considered as driven by a deterministic meta-population

transmission model following a Susceptible-Infected-Removed schema [6, 69, 106,

151, 124], but taking into account: i) heterogeneous immunity among Turkish citi-

zens and Syrian refugees; ii) realistic individuals’ mobility patterns across different

Turkish prefectures, characterizing both the Turkish and the Syrian populations; iii)

the effect of different levels of social integration between the two populations. We

assume that, in each considered prefecture, individuals of population 1 mix homo-

geneously among themselves and with a fraction α (with 0 ≤ α ≤ 1) of individuals

73
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of population 2. As a consequence, the overall contact rate of each individual of the

population 1 in patch i is assumed proportional to:

P 1
i (α,c) =

K∑
k=1

c1
ki +α

K∑
k=1

c2
ki . (5)

Similarly, the contact rate of individuals of population 2 in patch i is assumed propor-

tional to:

P 2
i (α,c) =α

K∑
k=1

c1
ki +

K∑
k=1

c2
ki . (6)

It is worth noting that, according to this definition of contacts, α = 0 represents the

situation of two completely separated populations (therefore mimicking the full seg-

regation of refugees in the country) and α = 1 corresponds to fully homogeneous

mixing among individuals of the two populations.

We assume that the contact rate of each individual is equal to a certain value σ for

all individuals. Basically, this means that the individual contact rate does not depend

on population type, mobility, mixing, and geography. According to this assumption,

the following equations should be satisfied in any patch i :

σ=σ∗1P 1
i (α,c); σ=σ∗2P 2

i (α,c),

for individuals of population 1 and 2, respectively. It is straightforward to see that this

occurs by setting:

σ∗1
i (α,c) =σ/P 1

i (α,c); σ∗2
i (α,c) =σ/P 2

i (α,c).

The rate of contacts of individuals of population 1 with infected individuals can be

therefore defined as:

Q1
i (α,c) =σ∗1

i (α,c)

[
N∑

k=1
c1

ki

I 1
k

N 1
k

+α
K∑

k=1
c2

ki

I 2
k

N 2
k

]
,

where
I 1

k

N 1
k

and
I 2

k

N 2
k

represent the fraction of infected individuals of the two populations

in the patch k. Note that the term between square brackets represents the number of

infected individuals among P 1
i (α,c). Similarly, the rate of contacts of individuals of

population 2 with infected individuals can be defined as:

Q2
i (α,c) =σ∗2

i (α,c)

[
α

N∑
k=1

c1
ki

I 1
k

N 1
k

+
K∑

k=1
c2

ki

I 2
k

N 2
k

]
,

By defining p the probability of infection transmission given a contact, and β = pσ

the measles specific transmission rate, we can assume that susceptible individuals of

population 1 in any patch i are exposed to the following force of infection:

λ1
i (α,c) =β

[
K∑

k=1

c1
ki

P 1
i (α,c)

I 1
k

N 1
k

+α
K∑

k=1

c2
ki

P 1
i (α,c)

I 2
k

N 2
k

]
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Similarly, the force of infection for individuals of population 2 can be defined as:

λ2
i (α,c) =β

[
α

K∑
k=1

c1
ki

P 2
i (α,c)

I 1
k

N 1
k

+
K∑

k=1

c2
ki

P 2
i (α,c)

I 2
k

N 2
k

]
.

Consequently, in our model, the system of ordinary differential equations regulating

the epidemic transmission dynamics is the following:

Ṡ1
i =−λ1

i (α,c)S1
i

Ṡ2
i =−λ2

i (α,c)S2
i

İ 1
i =λ1

i (α,c)S1
i −γI 1

i

İ 2
i =λ2

i (α,c)S2
i −γI 2

i

Ṙ1
i = γI 1

i

Ṙ2
i = γI 2

i

for i ∈ {1, ...,K }, where γ−1 = 14 days is the exponentially distributed generation time

associated with measles infection [6].

It is worth noting that the approach developed and used here to model measles

transmission in Turkey is fairly general to be also applied to other infectious diseases

and other socio-demographic settings.

3.A.3 Initial contitions

We assume different levels of protection against the infection f 1 and f 2 (0 ≤ f j ≤ 1)

for individuals of the populations 1 and 2, respectively. We also assume that, at time

t = 0, the epidemic is seeded by one single index case randomly chosen in a given

patch. If the index case is an individual belonging to population 1 and living in patch

i∗, the initial conditions in patch i∗ are S1
i∗(0) = (1− f 1)N 1

i∗ −1; S2
i∗(0) = (1− f 2)N 2

i∗ ;

I 1
i∗(0) = 1; I 2

i∗(0) = 0; R1
i∗(0) = f 1N 1

i∗ ; and R2
i∗(0) = f 2N 2

i∗ . In patches i 6= i∗, the initial

conditions are S1
i (0) = (1− f 1)N 1

i ; S2
i (0) = (1− f 2)N 2

i ; I 1
i (0) = 0; I 2

i (0) = 0; R1
i (0) = f 1N 1

i ;

and R2
i (0) = f 2N 2

i .

3.A.4 Reproduction numbers

Reproduction numbers associated to the epidemic transmission model and defining

the transmission potential of measles in Turkey are computed by applying next gener-

ation matrix techniques [39, 41, 103]. Specifically, if we define X = (I 1
1 , ..., I 1

K , I 2
1 , ..., I 2

K )

and Y = (S1
1, ...,S1

K ,S2
1, ...,S2

K ), it is straightforward to observe that, for appropriate

choices of coefficients mi k , the model equations for X can be written in the form

Ẋi = Yi

2K∑
k=1

pσmi k
Xk

Nk
−γXi ,
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where mi k are defined as:

mi k = c1
ki

P 1
i (α,c)

for i ∈ {1, ...,K } and k ∈ {1, ...,K },

mi k = αc2
ki

P 1
i (α,c)

for i ∈ {1, ...,K } and k ∈ {K +1, ...,2K },

mi k = αc1
ki

P 2
i (α,c)

for i ∈ {K +1, ...,2K } and k ∈ {1, ...,K },

mi k = c2
ki

P 2
i (α,c)

for i ∈ {K +1, ...,2K } and k ∈ {K +1, ...,2K }.

Note that the terms σmi k represent numbers of contacts that individuals in patch i

have with individuals of patch k and thus, put in this form, the model resembles a

classical age structured SIR model. By denoting with M the matrix with entries mi k ,

it follows that:

R0 = pρ(σM)γ−1,

where ρ(σM) indicates the spectral radius ofσM. Since M is a probability matrix (also

termed transition matrix, i.e. all rows sum up to 1) it follows that ρ(M) = 1, and there-

fore R0 = βγ−1, resembling the R0 associated with simple homogeneous mixing SIR

models.

The effective reproduction number can be computed in a similar way, but account-

ing for the susceptibility of infectors, that is by defining M as the matrix with entries:

m∗
i k = mi k (1− f 1) (i = 1, ...,K ; k = 1, ...,K )

m∗
i k = mi k (1− f 2) (i = 1, ...,K ; k = K +1, ...,2K )

m∗
i k = mi k (1− f 1) (i = K +1, ...,2K ; k = 1, ...,K )

m∗
i k = mi k (1− f 2) (i = K +1, ...,2K k = K +1, ...,2K ).

3.A.5 Estimating measles immunity levels among Turkish citizens and Syrian refugees

Two different immunity levels against measles infection are assumed in the Turkish

and the Syrian populations, hereafter denoted by f 1 and f 2 respectively. As measles

epidemics have not been recently reported in Turkey, we assume that f 1 reflects

the fraction of immunized individuals among recent birth cohorts through 1st and

2nd dose routine vaccination programs. In particular, by assuming a vaccine efficacy

e = 95% [154] and considering the average coverage levels for the 1st and 2nd doses

reported by the WHO for the period 2006-2016, c1 = 97% and c2 = 88% respectively

[166], we estimate 1− f 1 as:

1− f 1 = 1− c1 + c1(1−e)(1− c2)+ c1c2(1−e)2
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where 1 − c1 denotes the fraction of individuals who have never been vaccinated,

c1(1−e)(1−c2) represents the fraction of individuals who have been vaccinated only

with 1st dose but have experienced vaccine failure (occurring in a fraction 1-e of vac-

cinees), and c1c2(1− e)2 defines the fraction of individuals who experienced vaccine

failure after 2 dose administrations.

Estimates of f 2 were obtained by inferring the fraction of susceptible individuals

among different age classes in the Syrian population, on the basis of data on the

measles epidemic reported in Syria during 2017 (> 700 cases) [165], and accounting

for the age distribution of Syrian refugees in Turkey. More specifically, we estimate the

effective reproductive number (Re ) associated with the 2017 epidemic as Re = 1+r Tg ,

where Tg = 14 days is the measles generation time [6], r is the exponential growth rate

in the weekly number of cases reported during 2017 (Fig. 26 A,B). Estimates of Re are

used to derive the fraction of susceptible individuals in Syria at the beginning of 2017

as S0 = Re /R0, using three values of R0: 12, 15 and 18 [69, 90, 124]. Estimates of S0

are combined with the age distribution of observed cases and the age structure of the

considered population (Fig. 26 C,E) to estimate the age specific immunity profile of

the Syrian population. Specifically, the fraction of immune individuals in each age

group a (Fig. 26 D) is approximated as:

i mm(a) = 1−S0
cases(a)∑

cases

∑
pop

pop(a)
,

where cases(a) denotes the number of cases observed in the age group a,
∑

cases

denotes the total number of cases of any age, pop(a) is the number of individuals

of age a in the population and
∑

pop is the overall population size. Finally, the frac-

tion of susceptible Syrian refugees in Turkey was obtained by combining the age spe-

cific immunity profile estimated for Syria and the age distribution of Syrian refugees

in Turkey [1] (Fig. 26 E). Estimates obtained on the fraction of measles susceptible

refugees (i.e. 1− f 2) are shown in Fig. 26 F.

The obtained results suggest that the effective reproductive number (Re ) of the re-

cent Syrian measles epidemic was 1.32 (95%CI 1.26–1.38), the percentage of suscep-

tible individuals in Syria at the beginning of the 2017 measles epidemic (S0) was 8.92

(95%CI 7.29–10.96); consequently, the percentage of susceptible individuals among

Syrian refugees in Turkey was estimated to be 9.87% (95%CI 8.07—12.18).

3.A.6 Simulating measles epidemic in Turkey

Simulations of measles epidemics in Turkey were obtained under three different sce-

narios of R0 = 12,15,18, three different scenarios of 1− f 2 = 0.0987,0.0807,0.1218 and

eleven illustrative values of α. Explored values of α were selected in such a way to re-

produce different proportion of Syrian contacts occurring with Turkish citizens: from

0% to 92%; the former representing the full segregation scenario and the latter repre-



78 S O C I A L I N T E G R AT I O N A N D M E A S L E S R I S K I N T U R K E Y

senting homogeneous mixing between Syrian refugees and Turkish citizens. Starting

from Eq. 5 and 6 it is easy to see that, for any given value of α, the fraction of contacts

that Syrian refugees have with Turkish citizens in patch i is given by αBi /(Ai +αBi ),

where Ai and Bi are the number of Syrian refugees and Turkish citizens in patch i

respectively. It follows that the average fraction of contacts that Syrian refugees have

with Turkish citizens in the whole study area is given by
∑

i wi αBi /(Ai +αBi ), where

wi = Ai /
∑

i Ai . Similarly, the average fraction of contacts that Turkish citizens have

with Syrian refugees in the whole study area is given by
∑

i w̃i αAi /(Bi +αAi ), where

w̃i = Bi /
∑

i Bi . Note that for a given value of α the fraction of Syrian contacts with

Turkish citizens is generally different from the fraction of Turkish contacts with the

Syrians. The value of α resulting in a certain fraction x of contacts of Syrian refugees

with Turkish citizens can therefore be computed by solving the equation

∑
i

wi
αBi

Ai +αBi
= x.

For each considered scenario, 100 measles epidemics were simulated for one year

starting from the September, by seeding each epidemic in one different patch, se-

lected among the 100 prefectures of Turkey with the highest amount of refugees. In

our simulations, the force of infection associated with measles transmission is as-

sumed to decrease by a factor r̃ during summer (i.e. between June and September),

as a consequence of school closure. Following estimates provided in [124], r̃ was

taken equal to 0.33. Finally, all simulations were performed under the assumption

of 1− f 1 = 0.038. However, an illustrative value of 1− f 1 = 0.05 was also explored for

sensitivity analysis.

3.B A D D I T T I O N A L R E S U LT S

The developed transmission model takes into account both mobility patterns and

different levels of social mixing between Syrian and Turkish population. Here, we

summarize the results obtained by simulating a measles epidemic in Turkey for all

the considered scenarios associated with different policies for the integration of Syr-

ian refugees. Figure 31 shows the probability of experiencing an outbreak causing at

least 20 cumulative infections among the Syrian or the Turkish population. Figure 32

displays the number of prefectures affected by those simulated epidemic that cause

at least 20 cumulative infections overall (i.e. in the sum of the two populations). Ob-

tained results show that higher levels of integration are associated with a lower prob-

ability of measles re-emergence in Turkey. Additionally, our analysis also show that

increasing the social integration of the two population could favor the containment

of potential spread of the infection, resulting in a smaller amount of prefectures af-

fected by the measles epidemic.
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Figure 31: Bars represent the percentage of epidemics causing at least 20 cases among among

Syrian refugees (red) and Turkish citizens (blue) for the model projections as a

function of the mixing parameter. Three different values of R0 and susceptibility

levels among the Syrian refugees population (1− f 2) were considered. A) R0 = 18,

1− f 2 = 0.0807. B) as A but for 1− f 2 = 0.0987. C) as A but for 1− f 2 = 0.1218. D)

as A but for R0 = 15. E) as B but for R0 = 15. F) as C but for R0 = 15. G) as A but for

R0 = 12. H) as B but for R0 = 12. I) as C but for R0 = 12.

3.B.1 Sensitivity analysis

We also investigate the role played by the uncertainty surrounding the immunity level

against measles infection assumed in the Turkish population in determining the ro-

bustness of obtained results. We therefore simulate all scenarios explored so far un-

der the assumption that 5% of Turkish citizens are susceptible (i.e. 1− f 1 = 0.05). Ob-

tained results show that, although in this case benefits coming from social integra-

tion of refugees in Turkey would result slightly reduced (Fig. 33, 34, 35, S36), the

importance of social integration for reducing epidemic risk associated with measles

in Turkey is strongly confirmed.
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Figure 32: Bars represent the average number of prefectures exceeding 20 cases among Syrian

refugees (red) and Turkish citizens (blue); black lines indicate the 95%CI. Three dif-

ferent values of R0 and susceptibility levels among the Syrian refugees population

(1− f 2) were considered. A) R0 = 18, 1− f 2 = 0.0807. B) as A but for 1− f 2 = 0.0987.

C) as A but for 1− f 2 = 0.1218. D) as A but for R0 = 15. E) as B but for R0 = 15. F)

as C but for R0 = 15. G) as A but for R0 = 12. H) as B but for R0 = 12. I) as C but for

R0 = 12.
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Figure 33: Effective reproduction number for measles spreading according to our model,

rescaled by R0, as a function of the mixing parameter accounting for social inte-

gration between Turkish and Refugees as obtained by assuming 1− f 1 = 0.05. Col-

ored lines are associated with the estimated levels of susceptibility among Syrian

refugees.
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Figure 34: Cumulative infections as obtained by assuming 1− f 1 = 0.05 and considering epi-

demics that exceed 20 cases in the entire population. Bars represent the average

number of infections occurring among Syrian refugees (red) and Turkish citizens

(blue) for the model projections as a function of the mixing parameter, black lines

represent 95%CI. Three different values of R0 and Susceptibility levels among the

Syrian refugees population (SRe f
0 ) were considered. A) R0 = 18, SRe f

0 = 8.07%. B) as

A but for SRe f
0 = 9.87%. C) as A but for SRe f

0 = 12.15%. D) as A but for R0 = 15. E) as

B but for R0 = 15. F) as C but for R0 = 15. G) as A but for R0 = 12. H) as B but for

R0 = 12. I) as C but for R0 = 12.
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Figure 35: Bars represent the percentage of epidemics causing at least 20 cases among among

Syrian refugees (red) and Turkish citizens (blue) for the model projections as a func-

tion of the mixing parameter, as obtained by assuming 1− f 1 = 0.05. Three different

values of R0 and susceptibility levels among the Syrian refugees population (1− f 2)

were considered. A) R0 = 18, 1− f 2 = 0.0807. B) as A but for 1− f 2 = 0.0987. C) as A

but for 1− f 2 = 0.1218. D) as A but for R0 = 15. E) as B but for R0 = 15. F) as C but

for R0 = 15. G) as A but for R0 = 12. H) as B but for R0 = 12. I) as C but for R0 = 12.
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Figure 36: Bars represent the average number of prefectures exceeding 20 cases among Syrian

refugees (red) and Turkish citizens (blue) as obtained by assuming 1− f 1 = 0.05;

black lines indicate the 95%CI. Three different values of R0 and susceptibility levels

among the Syrian refugees population (1− f 2) were considered. A) R0 = 18, 1− f 2 =
0.0807. B) as A but for 1− f 2 = 0.0987. C) as A but for 1− f 2 = 0.1218. D) as A but for

R0 = 15. E) as B but for R0 = 15. F) as C but for R0 = 15. G) as A but for R0 = 12. H)

as B but for R0 = 12. I) as C but for R0 = 12.
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The interplay between human behavior and epidemic spreading represents a chal-

lenge in describing the dynamics of infectious diseases [98, 57, 59, 155]. As extensively

discussed, understanding the role of human behavior, and how deeply it affects the

impact and diffusion of an epidemic outbreak, represents a crucial step. In this thesis,

we focused on two aspects involving the dynamics of infectious diseases associated

with human behaviors.

The first aspect is related to possible behavioral changes that occur as a response

to pandemic events. As a matter of fact, a change in people’s behavior can be either

spontaneous, in order to reduce their risk of infection, or imposed by the government

as a necessary response to protect the community [48, 48, 27, 145]. In both cases,

risk perception and awareness of the epidemic is a crucial aspect that should be con-

sidered to characterize the reactive response to a health threat [159]. On one hand,

awareness triggers spontaneous behavioral changes that may break the disease trans-

mission. On the other hand, it promotes the public acceptance of the restrictive mea-

sures imposed by policy makers, making them more effective [2, 44, 4]. Awareness

is often invoked in models of infectious disease dynamics, it is not clear which are

the main drivers responsible for the increased awareness in the population. Actually,

awareness is usually coupled with the disease prevalence, in fact neglecting possible

mechanism among biological and social contagion processes. Thus, understanding

these types of mechanism would allow to conceive models that explicitly account for

the effects of population awareness into the progression of infectious diseases in a

population.

The second problem we investigated is associated with the possibility of measles re-

emergence in Turkey caused by social dynamics, i.e. the segregation of Syrian refugees,

in the hosting population. Since few years, the number of migrants has been increas-

ing worldwide with a trend constantly growing. Migrants are nowadays perceived

more and more often as a threat for the countries health system and economy [3].

This negative perception triggers mechanisms of social segregation of migrant and

refugees and may cause a cascade of adverse consequences detrimental to social

stability, and potentially dangerous for the public health of the country [31]. As an

emblematic case study, we considered Turkey, currently hosting 3.5 million of Syrian

refugees and facing a humanitarian emergency of unprecedented levels. In fact, one

of the most serious concerns of the Turkish population is about the possibility of dis-

85
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ease outbreaks, such as measles, because of the poor immunization coverage in Syria

due to recent civil war in the last years.

In chapter 2 we developed a transmission model to detect the major drivers of

awareness spreading associated with the emergence of an epidemic threat. The con-

sidered model is based on a contagion process that considers two routes of trans-

mission, namely world of mouth social contagion and mass media communication.

Contagion processes are extensively used in the literature to model infectious dis-

ease dynamic but recently were used also to model other types of phenomena such

as contagion of non-healthy behaviors, emotions, and ideas [30, 76, 16]. We took ad-

vantage of novel data sources such as the number of Wikipedia page views over time

and the volume of news article collected in Google News per day about a specific dis-

ease. Specifically, Wikipedia page usage was employed as a proxy of the awareness in

the population, while Google News data was assumed to mirror the volume of media

response to the considered epidemic.

We analyzed four different epidemic threats (Ebola, Zika, Meningitis epidemics and

seasonal influenza) in two countries, i.e. the United States and Italy, to asses the con-

tribution of the different information drivers in the awareness building of infectious

diseases.

The analysis carried out suggests that the proposed model is able to disentangle

the contribution of news influence and word of mouth social contagion in driving

the Wikipedia accesses in the case of different public health threats. Furthermore, it

provides better explanatory and forecasting power than alternative models consid-

ering only one of the driving mechanisms. Most importantly, the model allows the

measurement of parameters defining the contagion process such as the fraction of

aware people and the relative contributions of the two different contagion processes.

In chapter 3 we build a data driven computational transmission model to evaluate

the likelihood of experiencing a measles outbreak in Turkey. In particular, the model

is informed with mobility patterns inferred from mobile phone data and considers

different levels of immunity among Syrian refugees and Turkish citizens. Immunity

levels in the refugees’ population are estimated from the recent measles outbreak

occurred in Syria during 2017. The model we propose is capable to evaluate differ-

ent scenarios of integration/segregation between the two populations that are asso-

ciated with the possibility of measles re-emergence in the country. Results strongly

suggest that improving integration of Syrian refugees can mitigate and contain the

diffusion of measles in Turkey with respect to the two different populations. Thanks

to the use of mobile phone data, we are able to estimate the spatial distribution of

Syrian refugees in Turkey and to characterize the prefecture responsible for the onset

of possible widespread epidemics. Accordingly, the developed analysis suggests that
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the areas most at risk for seeding of future measles epidemics may be those with a

high percentage of Syrian refugees in the population, as a higher proportion of sus-

ceptible individuals in the population can sustain the initial spread of the epidemic

at the local level. These results can be used to guide targeting immunization cam-

paigns in specific areas characterized by a large number of refugees with respect to

the Turkish population.

As pointed out, the digital revolution has opened the door for new methodologies

to reveal the hidden structures and behaviors of our society [131]. This work repre-

sents a step in this direction. We have used data on individual usage of the internet

to gain information about the major drivers of awareness during health emergence

over time. Moreover, mobile phone data were adopted to asses refugees behavioral

patterns recently emerging as a consequence of the political crisis in Syria. Accord-

ingly, collecting real time data represent a great opportunity to identify and explore

novel elements characterizing the dynamics [87]. Feeding mathematical models with

these new data streams is a natural way to exploit this information. However, data on

individual behaviors are difficult to collect and obtain, thus more effort is needed to

to allow both replications of experiments and comparative studies in the community

of infectious diseases dynamics [74].

As a final remark, a general limitation, that might globally affect the investigated

dynamics in our works, is the difficulty in modeling the heterogeneity in the individ-

ual contacts. The large diversity both in the number and in the intensity of individual

contacts might be responsible for additionally hidden patterns that we do not con-

sider in our study. In particular, information about an epidemic may be conveyed by

opinion leaders to the less active segment of the population [86]. Identifying opin-

ion leaders can be useful also to target cost-effective awareness campaigns [159]. In

addition, potential differences in measles transmissibility in Syrian refugees commu-

nities and in Turkish citizens, induced by different numbers of overall contacts, can

affect the predictions on the possibility of the disease re-emergence. Thus, the under-

standing of complex phenomena would benefit from the availability of new sources

of data, characterizing the individual behaviors in a deeper level, such as informa-

tion on the opinion leaders in a population or age-specific social contact pattern in

migrants communities.

Concluding, models benefit from the different contributions coming from a broad

spectrum of research fields. This rich interdisciplinary knowledge contributes in turn

to the performances and reliability of the predictions. The dialogue between scien-

tists and policy makers is ultimately needed to shape the right and effective strategies

in the fight of infectious diseases.
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