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Abstract 

Our ability to store knowledge and represent the world within our minds has spanned 

multiple disciplines (philosophy, psychology, neuroscience). Currently, theories of human 

conceptual knowledge suggest that human representation of the world is widely 

distributed across the brain. Regions involved in sensory/motor simulation as well as 

amodal systems contribute to our flexible ability to manipulate knowledge. A detailed 

account of how the overall human semantic system works at a network level is still lacking.  

To begin our investigation into how knowledge is distributed across brain networks, 

we will first consider a specific kind of knowledge - person related knowledge. Chapter 2 

will look at the behavioural indicators of person-knowledge organisation. We will ask 

participants to judge explicit/subjective similarity between different person-knowledge 

domains: social, physical, biographical, episodic and nominal knowledge. This will allow 

us to investigate whether these processes are independent or related to each other. We 

will then compare these judgements to implicit similarity measures to see whether 

correlated patterns of responses or reaction are informative about cognitive similarity. 

Chapter 3 will look at how the brains core/extended system for face perception 

coordinates across the aforementioned person-knowledge domains. We will investigate 

the representational similarity of different person-knowledge domains in individual 

regions, and crucially - across the network as a whole. This will allow us to address 

whether cognitions are localised in individual regions or distributed across the whole 

network. Chapter 4 will investigate the stability of network organisation when going across 

modalities. Extended system for face perception has been shown to be recruited during 
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familiar name reading. We will ask whether network-level patterns of activation during 

person-knowledge remain stable across input modalities. Chapter 5 will generalize the 

network-level approach to investigate broader semantic categories. We will interrogate 

how diverse regions activated during semantic processing, interact during processing of 

naturally occurring conceptual categories. We will use a corpus derived semantic distance 

model and compare it to individual region activity to that of the network overall. We will 

ask whether information about conceptual distance between categories is contained 

within individual regions or arises as a product of coordinated effort across the network. 

Combined, evidence presented in this thesis speak to the distributed nature of 

cognitive representation. Different kinds of person-knowledge and object categories are 

highly linked and rely on overlapping neural substrates. We demonstrate that instead of 

being specialised for particular tasks, brain areas involved in meaning extraction tend to 

be involved in most kinds of conceptual processing. Individually regions have slight 

cognitive tunings and can be geared towards specific cognitions. Differences in person-

knowledge and object categories emerge as a product of the coordinated interplay 

between multiple brain regions. 
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Chapter 1: General Introduction 

 

Knowledge in the brain & Previous work 

Our ability to store knowledge and represent the world within our minds has spanned 

multiple disciplines: philosophy, psychology & neuroscience. Conceptual knowledge 

refers to our ability to represent objects and ideas that are abstracted away from individual 

exemplars or experiences. Our ability to store, manipulate and combine complex 

concepts differentiates us from other animals and has been the basis for incredible human 

achievements of technology, culture and arts. How the brain represents knowledge is 

currently unclear. Theories investigating the mechanisms enabling our capacity for 

conceptual knowledge suggest that human representation of the world is widely 

distributed across the brain. It also is, at least in part, shaped by and depends on the 

senses through which humans acquired that knowledge (Barsalou, Kyle Simmons, 

Barbey, & Wilson, 2003). Further studies support a view of a “lumpy” semantic space, - 

knowledge of the world is represented based on attributes such as manipulability size & 

color (Thompson-Schill, 2003). Recent investigations have shown that tools - a recent 

invention in evolutionary terms, activate a common brain area (Bracci, Cavina-Pratesi, 

Ietswaart, Caramazza, & Peelen, 2012) – suggesting that concepts belonging to the same 

conceptual categories might be stored in overlapping brain regions. However, a detailed 

account of how the overall semantic system works is still lacking. Several prominent 

theories have been proposed to describe how knowledge might be organised in the brain.  
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The organisation of conceptual knowledge in the brain – theoretical perspectives 

Questions of how the brain represents various concepts has been sparked by early work 

with brain damaged patients, when researchers observed that damage to specific brain 

areas produced impairments in recognising very specific object categories. Selective 

impairments of categories such as people, tools, animals, plants, musical instruments & 

buildings have been observed (Caramazza & Shelton, 1998; Warrington & Shallice, 

1984), - suggesting that semantic knowledge may be organised in lumps - knowledge 

about exemplars of a particular category are stored together in the brain. While being 

influential, this account does not account for concepts that cross category boundaries. 

Whether our knowledge of the meaning of the word “handyman” is located in a single 

region or depends on our knowledge of both people and tools - is unclear. Several other 

theories have been proposed to elucidate how different sources of knowledge get 

integrated to form conceptual knowledge.  

Embodied theories 

Embodied theories of cognition suggest that modalities through which we acquire a 

concept, play a major role in understanding that concept. Under this view – retrieving a 

concept involves active simulation of our motor and sensory experiences and the 

interactions between modality specific neural populations (Barsalou, Simmons, Barbey, 

Wilson, 2003; Tyler, Moss, Durrant-Peatfield & Levy, 2000). Evidence from both 

neuropsychology and neuroimaging provide some evidence for this theory. Perceiving 

and knowing about colour relies on shared neural substrates (Simmons et al., 2007). 

Thinking of motor related action concepts, activates primary motor cortices (Hauk, 
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Johnsrude & Pulvermüller, 2004; Papeo et al., 2015). Recalling perceptual knowledge 

activates visual cortices (Goldberg, Perfetti & Schneider, 2006). Additional evidence 

suggests that patients with motor disorders, have trouble with knowledge related to motor 

concepts, reinforcing the link between sensory-motor cortices and concept knowledge. 

However, embodied frameworks do not explain the organisation of concepts that rely little 

on sensory-motor features, such as abstract concepts. Some accounts therefore stress 

the importance of high-level, abstract representations of conceptual knowledge to 

account for the versatility of the conceptual system (Caramazza, Anzellotti, Strnad & 

Lingnau, 2014).  

Disembodied cognition 

In contrast, disembodied theories suggest that conceptual knowledge representation 

resides outside the sensory and motor cortices, and any activation in sensory-motor 

systems is epiphenomenal. Disembodied cognition accounts stress that conceptual 

knowledge is located within amodal regions (Mahon & Caramazza, 2008). Evidence 

showing dissociation between concept and feature knowledge support this theory. Mahon 

& Caramazza (2005) demonstrated that patients can have impairments in using a tool, 

but can still name it, inconsistent with embodied theories. These theories suggest an 

amodal, symbolic representation of conceptual knowledge. However, selective 

impairment in knowledge about concepts related to motion in patients with Parkinson’s 

disease (Boulenger, et al., 2008), or when motor cortex is stimulated with TMS 

(Friedemann Pulvermüller, Hauk, Nikulin & Ilmoniemi, 2005) suggest an active, rather 

than an epiphenomenal role for motor areas in semantic knowledge. Most current theories 
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acknowledge that both sensory-motor cortices and amodal regions (or systems) 

participate in semantic knowledge representation (Binder & Desai, 2011; Patterson & 

Lambon-Ralph, 2016; Mahon & Caramazza, 2008). 

 

Distributed plus hub 

Aligning embodied and disembodied theories, Patterson, Nestor & Rogers (2007) 

proposed a distributed, hub-and-spoke model. At its core, the model suggests an 

interaction of both embodied and amodal (disembodied) systems. Modality specific stores 

(‘spokes’) contribute information to a single ‘hub’ where generalised, amodal 

representations emerge. This model provides more information in explaining conceptual 

processing and its disorders, such as the graded deterioration of knowledge in semantic 

dementia than embodied or disembodied theories in isolation.  Originally proposed with 

a single hub, located in the bilateral ATL, this theory was later expanded to allow for two 

(ATL and AG) hubs (Lambon-Ralph, Jefferies, Patterson & Rogers, 2016). Accumulating 

evidence, however suggest the possible existence of more areas that receive abstracted, 

multimodal input (Binder et al., 2009). These results raise the possibility of a network of 

hub-like regions (including but not limited to ATL) integrating broad kinds of semantic 

information.  

 

The Internalised semantic system 

Studies contrasting semantic versus non-semantic content (meaningful v. meaningless 

words, familiar vs. unfamiliar proper nouns, famous vs. unknown people) frequently 
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observe activations in a stable collection of regions spanning parietal, temporal & frontal 

lobes. In meta-analysis, Binder et al (2009) described a set of regions, active for a variety 

of meaningful stimuli. These regions have been termed internalised cognition regions and 

are involved in meaning extraction regardless of stimulus category (Binder et al, 2009) 

Anatomically, these regions reside outside of sensory-motor cortices, suggesting an 

integrative or representational, rather than perceptual function. Moreover, Fairhall and 

Caramazza, (2013) observed cross-modal representations were limited to these 

internalised regions, further emphasizing their importance in non-perceptual, conceptual 

representation.  

 

Multiple ‘hubs’ 

Regions associated with the internalised semantic processes, described by Binder et al., 

(2009) raise the possibility of multiple semantic, disembodied ‘hubs’. A set of regions 

located outside of sensory cortices, and active during a variety of semantic tasks suggest 

their role general meaning processing. Evidence reviewed by Pulvermüller (2013) 

suggest that multiple brain regions receive multi-modal input from sensory-motor cortices 

suggesting a distributed set of binding sites, instead of the single one proposed by 

Patterson et al. (2006). Binder and Desai (2011) suggest that multiple regions across the 

brain bind information from different sensory-motor cortices and that this network of high-

level semantic areas jointly participates in complex semantic tasks. Functional roles of 

the regions comprising the internalised semantic system - whether they perform 
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complementary or redundant functions is unclear. This is due, at least in part – because 

these regions are co-actived across many different cognitive efforts (see next section). 

 

Diverse functions 

Striking feature of the brains internalised cognition system is that it can be observed 

activated not only across different semantic categories and modalities - from verbs, 

nouns, objects and faces, - but also across vastly different cognitive efforts. Parts of the 

internalised cognition network participate in autobiographical memory (thinking about the 

self) (Hassabis & Maguire, 2007, Schacter & Addis, 2007), theory of mind (thinking about 

others) (Schilbach et al, 2008), trait attribution (social cognition) (Frith, 2007), episodic 

memory recall & prospection. The common feature of these vastly different cognitive 

efforts is the need to retrieve and manipulate conceptual content. This suggests that the 

brains semantic system is involved in diverse kinds of conceptual processes. The 

semantic network is largely identical to the default-mode-network (DMN), originally 

characterised by task induced de-activation (Raichle et al., 2000). Activation of DMN 

during rest has been linked to mind-wandering - incidental retrieval of semantics and 

episodic memories when the mind is at rest. Components of this networks remain active 

even during deep sleep (Horovitz et al., 2009). The extreme versatility of the brain 

internalised cognition network makes it difficult to study - if a brain region (or a collection 

of them) is activated for everything - how do we know what it does? One feasible starting 

point could be to reduce the complexity by considering a single stimulus category. 
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Single Category: People 

Conspecifics represent a rich source of diverse information. Each individual person has 

with them associated diverse kinds of information. Unique episodic memories, 

biographical facts, names, and social traits can be accessed by looking at someone we 

know.  By considering a single stimulus class, it's possible to gain a deeper, more precise 

understanding of knowledge organisation. People are a class of unique stimuli, and 

person's identity can be accessed by different modalities, such as by looking at their face, 

reading their name or listening to their voice. At a neural level, human faces elicit activity 

in both perceptual and semantic areas (Haxby, Hoffman, Gobbini, 2000) - making a them 

a suitable stimulus to investigate the interaction between the two systems. Two important 

aspects that might help shed light on it are investigation of representational content within 

regions and functional coordination between network elements. 

 

Co-ordination vs co-activation 

Do functionally co-activated regions perform similar or different functions? To answer this, 

we need to compare representational spaces of regions involved. Approaches 

investigating representational spaces have been informative in untangling the processing 

differences in co-activated regions. Fairhall & Caramazza (2013) showed that within a 

network of regions active during semantic processing, only a handful were sensitive to 

semantic distance, as indicated by comparing representational spaces to a semantic 

model. Representational similarity analysis (RSA) is a pivotal tool in elucidating regional 

function. RSA abstracts from activation magnitudes, instead focusing on similarity in 
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patterns of activity. Using representational similarity matrices (RDMs) as a multivariate 

measurement unit, RSA enables us to computationally test what stimulus 

dimensions/features a particular brain region represents. For example, to investigate 

whether a particular brain region is sensitive to visual similarity or semantic category, one 

can fit competing models of expected similarity and then test then against the fMRI data. 

By comparing representational spaces between two or more brain regions, we can infer 

regional co-ordination. Among many regions co-activated to perform a function (such as 

face perception), regions co-ordinating to perform a shared or similar function would be 

expected to share response pattern similarity. Castello, Halchenko, Guntupalli, Gors  & 

Gobbini (2017) demonstrated the efficacy of this procedure (second order RSA – 

similarity of similarity spaces). By comparing multivariate response patterns of regions 

involved in face perception authors found that groups of regions traditionally associated 

with perceptual functions - early visual cortex, occipital and fusiform face areas, grouped 

largely separately from regions associated with cognition – Precuneus, TPJ and mPFC.  

 

Thesis structure 

I will begin this thesis by investigating what information about the relationships between 

different kinds of person-knowledge can be learned from behavioural responses (Chapter 

2). By utilising multivariate analysis techniques (clustering, RSA) we investigate whether 

patterns of behavioral responses contain information about underlying structure of 

person-knowledge. Chapter 3 will extend the approach used in Chapter 2 to investigate 

the neural correlates of person-knowledge. We will interrogate the coordinated activity of 
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core/extended person-knowledge systems. By looking at network level activity we will 

look at person-knowledge domain similarity and regional coordination. This will allow us 

to answer whether different kinds of person-knowledge that are similar behavioral, are 

similarly represented in the brain. We look for groups of regions, sharing multivariate 

response patterns to infer regional co-ordination in the large coactivated network for 

person knowledge. Chapter 4 will investigate how the extended component of the person-

perception system behaves when person-knowledge is accessed via written names. This 

will establish whether relationships between different person-knowledge domains are 

perceptually driven or represent a stable feature knowledge encoding. Chapter 5 will 

generalize the approach to broader object categories. We will investigate whether 

knowledge about conceptual distance is localized in individual regions or distributed 

across a broader network. By utilizing corpus derived conceptual distance model we will 

contrast whether there is more information about conceptual distance located in individual 

regions, or whether this information arises at the network level. This direct comparison of 

local versus shared information will allow us to quantify the degree to which conceptual 

knowledge is distributed across brain networks, as opposed to localized in individual 

regions. 

Concisely, this thesis will present evidence for distributed knowledge 

representation. In a series of experiments utilizing multivariate measures, we will look at 

what information structure is represented across brain networks. We will show that 

conceptual relationships between different person-knowledge domains, as well as object 

categories are visible in the network-level patterns of regional interactions.  
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Chapter 2: Behavioral measures of person knowledge 

 

Introduction 

 
Knowledge is broad and wide-ranging. The richness of this repertoire is particularly 

evident in our knowledge about other people. Person knowledge includes classical 

semantic knowledge such as a person’s occupation. It also includes knowledge about 

their appearance, episodic memories, nominal knowledge as well as knowledge about 

personality traits such as friendliness and trustworthiness (social knowledge). Transient 

impairments evident in situations where we forget someone’s name or feel like we’ve 

met someone but fail to recognize them suggest different types of person knowledge is 

at least somewhat independent. Bruce and Young‘s (1986) model includes different 

nodes for naming and person recognition to explain these phenomena. Other accounts 

argue for a correlated structure of person knowledge (Wiggins, 1979). Frequently 

observed, impairments in recalling episodic memories associated with a person are 

correlated with impairment to factual knowledge retrieval, suggesting at least some 

degree of correlation (Seidenberg et al., 2009). Todorov, Said, Engell & Oosterhof 

(2008) demonstrated that people differ along multiple, highly related social dimensions, 

such as attractiveness, trustworthiness, dominance & threat. The subjective difference 

between cognitions, and no associated measurement units makes building a cognitive 

ontology difficult - how can we compare attractiveness of a person to the memories 

associated with them? 
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Measuring things that have no associated units or measures is challenging. A 

common measure used to combat this is multivariate similarity. Similarity and its inverse 

- discriminability are the bases for many modern multivariate tools, such as hierarchical 

clustering analysis and representational similarity analysis (RSA). 

Hierarchical Clustering 

Clustering analyses reveal hierarchical patterns in similarity structures, visualized by 

dendrograms. Frequently used in taxonomic research, clustering arranges multivariate 

features, such as phenotypic trait descriptions of different animals (e.g. has claws, is 

small) to form cohesive groups. In this instance, hierarchical structure of the dendrogram 

reflects increasingly superordinate categories, from felines to mammals to vertebrates. 

RSA 

Representational similarity analysis (RSA) is a framework for testing similarity-based 

hypotheses. By constructing a model of expected pattern of similarities, it is possible to 

evaluate information content derived from heterogenous sources. RSA facilitates 

comparing different measures (Cichy, Pantazis & Oliva, 2014), neuroimaging data 

across species (Kriegeskorte, 2009) and comparing representational spaces between 

humans and artificial neural networks (Cichy, Khosla, Pantazis & Oliva, 2017). 

Task selection 

We have chosen to inspect broad ranging kinds of person-knowledge. Haxby et al (2001) 

and Gobbini & Haxby (2007) models of person knowledge suggested that Social, 

Episodic and Biographical knowledge are represented (at least partly) in different brain 

regions. Additionally, we decided to investigate two further elements of knowledge about 
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other people. We investigate how accessing predominantly physical knowledge, such 

as attractiveness and distinctiveness of a person’s face relates to other kinds of person-

knowledge. Lastly - retrieval of proper names (nominal knowledge) has been suggested 

by Bruce and Young (1986) to be a distinct process than recalling other kinds of facts 

and was included as a separate category.  

Divisions between domains are sometimes soft boundaries – some person 

knowledge domains are similar and interlinked. Responses of traditionally perceptual 

judgements such as attractiveness and social judgements, like trustworthiness are 

correlated across individuals (García, Beltrań & Calvo, 2018). This raises a question 

whether these two tasks rely on the same cognitive mechanism. Neuroimaging evidence 

has shown that Attractiveness and Trustworthiness activate different brain areas. In a 

meta-analysis, Bzdok, Langner & Caspers (2011) demonstrated that judging facial 

attractiveness engaged brain areas associated with reward while trustworthiness 

preferentially engaged mentalizing regions of the brain.  

 

Organisation of person knowledge 

Harnessing recent advances in computational tools (clustering, RSA) opens up new 

avenues for cognitive science. By investigating how people differ across multiple person 

knowledge dimensions, we can start to build a data driven cognitive ontology. 

In this first experimental chapter, we report an investigation of the behavioral indicators 

of the relationship between different types of person-knowledge domains. We start by 

asking participants to provide person-knowledge ratings for 40 famous people. We first 
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model subjective similarity by explicitly asking participants which tasks they thought were 

similar. We then compare it to different, implicit behavioural indicators of cognitive 

processing. We do this by separately clustering reaction times, as well as person 

knowledge ratings. We then employ RSA to elucidate which measures provide more 

information about cognitive structure. 

Methods 

Subjects 

25 subjects underwent fMRI scanning (see chapter 3), during which they looked at 

pictures of famous people. Participants answered 10 separate person specific questions 

(see experimental conditions below). Subjects indicated their responses via button 

boxes provided (4 buttons). fMRI data will be analysed separately in next chapter, 

current chapter will focus on concurrently collected behavioural measures (responses, 

reaction times and subjective task similarity ordering). 19 subjects also took part in the 

post-scanning, multiple-item-arrangement (MIA) task (see below: Explicit/Declarative 

Cognitive Similarity). In the current analysis we analyse the data from 19 subjects that 

participated in both person-rating (RT, response data) and MIA tasks (subjective 

similarity ratings). 

 

 

Experimental conditions 

During fMRI acquisition, participants looked at faces of 40 celebrities and answered ten 

different questions about each person. The questions were chosen to span five person-
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knowledge domains: nominal, physical, social, episodic and biographical knowledge. 

For each domain, we selected two questions that require access to that domain (figure 

1.1). Responses to nine questions ranged from 1 to 4 (ordinal scale), one question 

(‘Occupation’) had predefined answer categories. For more detailed description of the 

task, see chapter 3.  

 

Figure 1.1. Experimental Conditions and procedure. Top) For each of the five cognitive 

domains (e.g. nominal knowledge) we included two related questions (“How well do you 

know their name”, “how common is their first name”). Tasks are colour coded according 

to the domain they were sampled from. Bottom) Each block was preceded by the task 
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name, faces were presented for .5s, followed by 1.5s of fixation cross, during which 

participants provided their response. 

 

Explicit/Declarative Cognitive Similarity (Multiple Item Arrangement, MIA) 

Immediately after the fMRI experiment, participants took part in post-experiment task, in 

which they were asked to arrange tasks they just performed according to their similarity. 

They were presented with a circular arena and asked to drag similar questions closer 

together, procedure known as multi-item-arrangement (MIA). Throughout the procedure 

subjects iteratively arrange items in an arena presented on the screen according to their 

similarity (Kriekeskorte & Mur, 2012). After items are arranged, pairwise dissimilarity 

structure can be inferred from the two-dimensional distance information, inverse of 

multidimensional scaling (MDS) procedure. By utilizing this approach, we can estimate 

the subjective pairwise similarity of different cognitive tasks (figure 1.2). 
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Figure 1.2. MIA procedure. A) Starting position of MIA, participants are asked to arrange 

tasks according to subjective similarity. B) Participants arrange tasks, placing similar 

tasks close together and dissimilar tasks further apart. C) Once done, pairwise similarity 

structure for ten tasks can be inferred. D) Correlation matrix is then clustered to reveal 

hierarchical relationships. 

 

Response Similarity 

Another way of calculating task similarity is to look for similar patterns of responses. For 

example, if people who are rated as more attractive are also rated as more trustworthy, 

- this correlated pattern of responses would suggest a commonality between the two 

tasks. Similarly, if friendliness and trustworthiness judgements rely on similar cognitive 
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mechanisms, we can expect reaction times when performing these two tasks to be more 

correlated to each other than to other tasks. We calculated pairwise similarities for both 

patterns of responses and patterns of reaction times, figure (1.3). 
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Figure 1.3. Implicit similarity measures. Patterns of responses across 40 faces were 

correlated for each pair of tasks. 10-by-10 correlation matrices representing response 

similarity and reaction time similarity were then subjected to further RSA analyses.  

Results 

Here we evaluated how well different behavioral measures (MIA, responses, RTs) 

capture task similarity relationships. Broadly, we investigate whether different person-

knowledge domains are independent or related to each other. Similarity/independence 

of different tasks could imply shared/distinct cognitive mechanisms. Here we investigate 

both subjective and implicit behavioral measures related to person-knowledge similarity. 

Visualizing MIA results in a group-average dendrogram demonstrates the 

correlated nature of person knowledge (Figure 1.4). Tasks requiring social and physical 

judgements were rated as being similar to each other, forming a cluster. They also 

appear distinct from biographical, episodic and nominal knowledge tasks, which form a 

separate cluster. Tasks selected from the same domain (‘friendliness’ and 

‘trustworthiness’ tasks both belong to social domain of person knowledge) are often 

grouped close together. This hold true for social, physical & nominal knowledge, but not 

for biographical and episodic knowledge. Episodic and biographical judgements cluster 

together, distinct from nominal knowledge tasks. To see whether these results are 

common to all subjects, we next apply RSA measures. 
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Figure 1.4. Subjective similarity ratings. Average MIA clustering of experimental 

tasks. Social and perceptual judgements cluster apart from biographical, episodic & 

nominal knowledge. 

Next, we constructed an RSA task couplet model to test whether tasks sampled 

from the same domain were rated being more similar to each other than to other tasks. 

For example, we expect that rating how friendly someone is will be more similar to ratings 

of trustworthiness than to any other task in all measures (MIA, response and RT 

patterns), figure 1.5. Response scheme for occupation task did not follow ordinal scale, 

so we removed it and its biographical knowledge couplet ('how many facts do you know 
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about this person’) from RSA analyses. We will relate these biographical domain tasks 

to other person-knowledge exemplars on the bases of their neural signatures in chapter 

3.  

 

 

Figure 1.5. Data analysis pipeline and results. Similarity matrices derived from three 

different measurements - Reaction Times (RT), Response Ratings (resp), and subjective 

multiple-item arrangement task (MIA) were compared to an a priori expectation model 

(similarity model). Correlations between individual subjects’ similarity matrices and the 

model were then compared in a paired samples t-test (model evidence). 

 

MIA similarity significantly correlated with the expected (task couplet) model t(18) 

= 7.23,p < 0.001; task sampled from the same domain (e.g. ‘friendliness’ and 

‘trustworthiness’) were rated as being most similar. Within domain similarity is also 

evident from response pattern similarity. Significant similarity model fit revealed that 



 28 

tasks from the same domain elicited strongly correlated patterns of responses t(18) = 

7.88,p < 0.001. Reaction times did not correlate with the task couplet model t(18) = 

0.96,p = 0.352, suggesting that RT similarity provides no information about task 

relatedness.  

Next, we directly compare which measures provide more information about task 

relatedness. To do this we contrast the model fit of different measures in a paired samples 

t-test. This analysis revealed no difference between model fit of response patterns and 

MIA, t(18) = 1.67,p = 0.111; Indicating similar efficacy in explaining task similarity. When 

we correlate the two measures we observed that for each subject, their response pattern 

similarity matrix was correlated to their later MIA t(18) = 4.25,p < 0.001.  

Both response similarity and MIA provided a better model fit than reaction times; 

t(18) = 4.71,p < 0.001 and t(18) = 4.89,p < 0.001 respectively. Individual subject’s RT 

matrices did not correlate to their response pattern similarity matrix t(18) = 1.57,p = 0.134 

or their MIA t(18) = 0.68,p = 0.506. 

People clustering 

Here we present a proof-of-concept grouping of people rated similarly across nine person-

knowledge dimensions. Pairwise person similarity was calculated as their rating 

correlation across 9 cognitive tasks, figure (1.6).  



 29 

 

 

Figure 1.6. Famous person similarity across nine person-knowledge domains. Left) 

Clustering of different famous people reveals two prominent clusters. Right) Matrix of 

person-knowledge ratings, sorted by people and task similarity.  

 

Visualizing the results, we see two prominent clusters. While there is no single 

feature (such as occupation or gender) describing the split, famous people grouped by 

the clustering procedure, tend to be rated similarly on multiple person-knowledge tasks.  

Looking into the responses arranged by task similarity, we observe that people rated low 

on friendliness, tend to be ascribed low scores in trustworthiness and attractiveness as 

well. This demonstrates the correlated nature of these cognitive efforts and offers a 

validation of the cognitive cluster describe above.  
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Discussion 

In this chapter we investigated the behavioral indicators of the linked nature of person-

knowledge. Establishing whether different knowledge domains are independent or related 

to each other is an important aspect of knowledge organisation. We observed that some 

forms of person-knowledge are more related than others. Converging evidence from both 

subjective task arrangement, and correlated patterns of behavioral responses suggest 

that social and physical knowledge domains might rely on related cognitive mechanisms. 

In the broad context of person knowledge spanning episodic and biographical domains 

of knowledge are rated as being more similar to each other, than they are to social, 

physical and nominal knowledge. 

We used a similarity analysis approach to investigate knowledge of other people. 

By applying similarity measures to broad domains of person-knowledge we investigate 

efficacy of behavioral measures in uncovering cognitive structures. Using different 

behavioral metrics: reaction times, person knowledge ratings and subjective arrangement 

of task similarity we investigate the relatedness of cognitive processes. We sampled five 

domains of person knowledge - physical, social, biographical, episodic, and nominal. For 

each domain we selected two probe questions that tap into that domain. We used two 

different approaches, explicit ordering of tasks based on subjective similarity (MIA), and 

implicit patterns of response similarity (response similarity, RT similarity). These different 

measures can be compared via representation similarity analysis (RSA), we fit an a priori 

constructed model to see which measures capture expected task relationships. 
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MIA 

By asking participants to arrange similar tasks, we investigated subjective task 

relationships. By inferring the pair-wise similarity space from a two-dimensional 

arrangement we obtain subjective hierarchy of task ordering. We first observed that task 

couplets tend go together, validating our task selection. For social, physical and nominal 

knowledge domains, the task placed closest, was a task from the same domain. This 

suggests that we reliably sampled these domains of knowledge. At the next grouping 

level, we see relationship emerge not only between tasks, but also task domains. Social 

and perceptual judgements are rated as being distinct from other kinds of knowledge. 

Factual and episodic knowledge was rated as being very similar. Explicit task ordering, - 

while informative is subjective and may not faithfully reflect cognitive mechanisms. We 

additionally analyse correlated patterns of responses and reaction times – a more implicit 

measure of similarity.  

Clustering and Correlations 

To gain convergence with explicit task ordering, we employed pattern similarity measures 

to interrogate the correlation patterns across two response measures - reaction times, 

and ratings. If tasks that originate from common or related cognitive processes, patterns 

of reaction times and response ratings could be expected to be similarly related. 

Reaction times 

Reaction times have been used to compare cognitive processing. Semantic priming 

paradigms demonstrate that reaction times are faster when a target word is preceded by 

a semantically related prime (Tipper, 1984). The time it takes to decide if two objects are 
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different, has been used as a measure object similarity (Podgorny & Garner, 1979). In 

this experiment, we evaluated whether patterns of reaction times are indicative of 

cognitive similarity. If a pair of tasks are produced by the related neural substrates, it 

would be reasonable to assume a relation in reaction times as well. Despite this 

reasonable hypothesis, we observed no relationship between cognitive task similarity and 

reaction times. One possible explanation of this is uncontrolled task difficulty. The 

measures we employed were somewhat robust towards differences by constant in 

reactions times. Since we investigated patterns of correlated RTs, if two cognitions are 

related, but differ by a constant time (of some miliseconds) we should still expect to see 

a correlation. However, our observed results show that patterns of reaction did not 

indicate task similarity. Additionally, they did not correlate with either patterns of 

responses or subjective task similarity. Taken together these results suggest that task 

similarity is not independent of the time it takes to provide a response, as measured by 

reaction times.  

Response ratings 

We demonstrated that patterns of response ratings can be a useful measure of 

conceptual similarity. Tasks that we sampled from the same domain of person-knowledge 

tended to covary across person-knowledge ratings. Additionally, they correlated with 

subjective similarity – providing convergence between explicit and implicit measures. 

Patterns of responses were not correlated with patterns of reaction times, suggesting that 

this measure captured task similarity that is independent from the time it takes to make a 

judgement. Our proof-of-concept analysis of people clustering demonstrated how people 
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are rated across person-knowledge domains. Across 40 people contained in the stimulus 

set, social and physical rating can be seen to covary. People rated less friendly, tend to 

be rated less trustworthy and less attractive.  

 

Behavioral to Brain 

In this chapter we demonstrate the feasibility to uncover the implicit structure of cognitive 

processing via multivariate analysis of behavioral patterns. Convergent results from 

subjective ordering and correlated patterns of responses reveal commonalities between 

different person-knowledge domains. Similarity between cognitions is independent of 

reaction times and may reflect common neural processes. Next chapter will address 

whether these cognitions share common neural substrates.  

 

Conclusion  

In summary, similarity analysis techniques are a promising approach for investigating 

cognitive processing. By looking at patterns of responses we are able to uncover 

similarities in the underlying processes. MIA and response ratings provide more insight 

into knowledge organisation than reaction time measures. By looking at behavioral 

response patterns we can plausibly recover implicit cognitive structure. We confirm a 

similarity structure between cognitive domains using two independent measure that 

yielded convergent results. This suggests graded commonality in neural substrates which 

we address in the next chapter. 
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Chapter 3. Regional Specialisation and Coordination within the 
Network for Perceiving and Knowing about Others 

 

Introduction 

In the preceding chapter we investigated the behavioural indicators of person knowledge. 

We observed that social and physical judgements are rated as being similar to each other 

and different from nominal, episodic and biographical knowledge retrieval. We also saw 

that this structure is reflected in the patterns of behavioural responses. Here we 

investigate the neural mechanisms when participants performed the same tasks. We will 

investigate whether tasks that were rated as being similar in the previous chapter rely on 

similar neural substrates.  

Neuroimaging studies have identified an interconnected network of regions 

activated when we see and think about other people (Haxby, Hoffman, and Gobbini 2000; 

Gobbini and Haxby 2007; Fairhall and Ishai 2007). This network is composed of a 

perceptual ‘core system’, the occipital and fusiform face areas (OFA, FFA; Kanwisher et 

al. 1997; Gauthier et al. 2000) and the posterior superior temporal sulcus (pSTS). This 

core is complemented by an ‘extended system’ - a more loosely grouped set of regions 

implicated in a broad range of person-related cognition less related to perception (Haxby, 

Hoffman, and Gobbini 2000). The extended system includes lateral frontal regions: 

inferior frontal gyri (IFG), lateral orbitofrontal cortex (OFC); regions associated with 

internalised cognition: the anterior temporal lobes (ATL), precuneus, ventromedial and 

dorsmomedial prefrontal cortices (vmPFC, dmPFC); and medial temporal regions: the 
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amygdalae and potentially the recently identified anterior temporal face patch ATFP 

(Moeller et al. 2008; Rajimehr et al. 2009).  

Activation of the extended system has been linked to the spontaneous retrieval of 

person related knowledge (Todorov, Gobbini, Evans & Haxby, 2007). Seeing a familiar 

person brings to awareness a variety of related attributes: biographical facts (semantic 

knowledge), personal experiences (episodic knowledge), perceptual attributes (physical 

knowledge), trustworthiness (social knowledge) and their name (nominal 

knowledge).  We use this wealth of person specific information frequently in our day-to-

day lives. The question of how this diverse information is represented in the brain is an 

area of active research. 

Numerous investigations of the contribution of these regions have produced diverse, 

and at times discordant, results (Table 1). For example, while the pSTS is classically 

characterised as a core ‘perceptual’ region, it is frequently linked with social and other 

person-related cognition that is unrelated to perception (Adolphs, 2003; Fairhall and 

Caramazza 2013a; Koster-Hale et al. 2017), potentially linked to the marked 

heterogeneity of the broader temporoparietal junction (TPJ, Gobbini and Haxby 2007; 

Hein and Knight 2008). Likewise, the varied functional attributions of the ATL to proper 

naming (Grabowski et al. 2001), semantic information (Tippett et al. 2000; Glosser et al. 

2003; Olson et al. 2007) and social cognition (Frith, 2007) illustrate further the diversity 

and complexity of regional roles within the extended system (see Simmons and Martin 

(2009) for discussion).  
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Much insight has been gained from research addressing single cognitive function in 

one or a few brain areas. However, this approach has the potential to ambiguate the true 

functions of regions. Uncertainties surrounding regional function are expounded by the 

tendency of research to address single cognitive functions in one or a few brain areas. 

Most regions of the extended system are recruited to some extent across multiple 

experimental contexts, including simple tasks such as repetition detection (Todorov et al. 

2007) or superordinate categorization (Fairhall et al. 2014). In other words, most-all 

person related cognition involves most-all of the extended system. The important 

information may not be whether a specific region is modulated by a task but the relative 

change of regional activity across the entire network. Rather than attributing a function to 

a region or a region to a function it may be that the representation of cognition within the 

brain is best described in terms of the patterns of activation over distributed cortical 

networks.  

The importance of network over region is especially important considering that many 

elements of the extended system fall within one prominent network in the brain, the 

internalised cognition brain network - a collection of brain regions associated with a range 

of internalised cognitive processes (Spreng et al. 2010). These include not only the 

eponymous ‘default mode’, task-deactivated states (Raichle et al. 2001) but also a broad 

range of internalised cognitive processes:  general semantic knowledge (Binder et al. 

2009; Fairhall and Caramazza 2013b; Huth et al. 2016); social cognition, (Greene et al. 

2001; Van Overwalle 2009; 2011), as well as context integration episodic memory and 

mental time travel (Schacter and Addis 2007; Keidel, Oedekoven, Tut & Bird, 2017). As 
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elements of the internalised cognition network are frequently activated together, 

establishing specific contributions of each region has proved challenging (Moran et al. 

2011; Van Overwalle 2011).  

In this work, we isolate the network activated when we view familiar faces during a 

simple stimulus repetition detection task. Then we push the network towards different 

aspects of person knowledge (social, semantic, episodic, nominal and physical) to 

understand the relative importance of these processes to each region. The goals of the 

current experiment are twofold. The first is to re-examine the roles of key brain regions in 

cognitive function by considering these regions both in context of different cognitions and 

other brain regions. Specifically, we investigate the role of the anterior temporal lobe in 

social cognition and nominal knowledge and the role of the pSTS and AG in access to 

person knowledge. Our second goal is to apply network level representational similarity 

analysis (netRSA). NetRSA entails a multivariate approach based on the regional 

response magnitude within network nodes, with the multivariate element coming from the 

changing regional biases across different tasks. We employ netRSA to address two 

questions: a) how are cognitive domains represented across the network and b) how do 

these regions work together to accomplish the diverse range of ensemble functions of the 

network. We hypothesise that all person-knowledge regions are involved across all 

cognitive dimensions related to other people and that the cognitive flexibility of this system 

lies within subtle differences in the pattern of activation across the network.  
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Table 1. Illustrates complex cognitive landscape of the attribution of cognitive roles 

to various regions of the person-knowledge network. We sampled published reviews and 

meta-analyses reporting regional function in in the context of person perception of 

knowledge. Regional function attributions made by the authors of meta-analyses and 

reviews have been broadly grouped into the categories such as Perception, Semantic 

knowledge, or Working memory. 
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Brain region Cognitive function 

OFA 
Perception (Adolphs 2002; 2003;  Gobbini and Haxby 2007; Wieser 

and Brosch 2012) 

FFA 

Perception (Adolphs 2002; 2003; Gobbini and Haxby 2007; 

Minnebusch and Daum 2009; Wieser and Brosch 2012; Werner et al. 

2013) 

OFC 

Motivation and reward (Bortolon et al. 2015) 

Top-down modulation of OFA, FFA (Bortolon et al. 2015)  

Emotion (Adolphs 2002)  

IFG 

Semantic knowledge (Gobbini and Haxby 2007)  

Working memory (Adolphs 2003) 

Perception (Adolphs 2003; Calder and Young 2005; Minnebusch and 

Daum 2009) 

Naming (Adolphs 2002) 

Attractiveness & Physical knowledge (Bzdok et al. 2010) 

Precuneus 

Familiarity (Adolphs 2003; Werner et al. 2013) 

Episodic knowledge (Adolphs 2003; Gobbini and Haxby 2007; 

Patterson et al. 2007; Wieser and Brosch 2012) 

vmPFC 

Social knowledge & personality traits (Adolphs 2003; Adolphs, 2002 

Werner et al. 2013) 

Mental states (Gobbini and Haxby 2007; Wieser and Brosch 2012) 

Emotion (Werner et al. 2013)  
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Methods 

Participants 

25 right-handed, native Italian participants (8 males; mean age: 23.2 years, range: 19-32 

years) took part in this study.  Participants had normal or corrected-to-normal vision and 

no history of neurological incidents. The study was approved by the University of Trento 

Attractiveness & Physical knowledge (Bzdok et al. 2010) 

ATL 

Semantic knowledge (Adolphs 2003; Gobbini and Haxby 2007; Olson 

et al. 2007; Wieser and Brosch 2012) 

Identity representation (Adolphs 2003) 

Naming (Calder and Young 2005; Olson et al. 2007; Patterson et al. 

2007) 

Familiarity (Olson et al. 2007; Werner et al. 2013) 

Social knowledge (Olson et al. 2013) 

pSTS 

Perception (Adolphs 2003) 

Social knowledge &  Mental states (Gobbini and Haxby 2007; Wieser 

and Brosch 2012)  

Amygdala 

Emotion (Gobbini and Haxby 2007) 

Physical knowledge (Bzdok et al. 2010) 

Social knowledge  (Bzdok et al. 2010) 

ATFP 
Familiarity (Ross and Olson 2012; Heide et al. 2013)  

Identity representation (Ross and Olson 2012) 
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ethical committee. All participants gave informed consent and were compensated for their 

time. Data from five subjects was excluded from further analyses, due to excessive 

motion during fMRI acquisition.  

 

Stimuli 

Stimuli were 40 pictures of famous faces and 40 pictures of famous buildings. The 

stimulus set consisted of Italian and foreign politicians, actors, singers and sportsmen, as 

well as landmarks (Eiffel Tower, Colosseum). Stimuli were cropped with a face-shaped 

mask and the eyes and mouth were aligned across faces. Stimuli extended 400 pixels 

vertically and 300 pixels horizontally and were presented centred on the screen 

(1280x1024 resolution, 60hz refresh rate), with grey background. After the experiment 

13/20 participants were presented with faces, they saw in the experiment and asked 

whether they recognised the celebrity. On average, the subjects recognised M = 84% of 

faces.  

 

Task 

Each experimental block started with 4s instruction screen specifying the task, followed 

by 6s of fixation cross. After that a face was presented for .5s followed by 2s of fixation 

cross during which subjects provided a response via button box. Within each 8-trial block, 

participants were instructed to respond to questions covering five categories of person 

knowledge: episodic memories, semantic knowledge, social judgments, nominal 

knowledge and physical knowledge. For each of the categories, we chose two different 
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probe questions that require access to each kind of knowledge (totalling ten experimental 

tasks; see Figure 2.1 and Table 2). In addition, there were two 1-back matching control 

tasks with either pictures of faces or famous monuments. The experiment consisted of 

five runs (8 min, 42s each). Sixteen blocks were presented in a randomised order (one 

block for each task plus three face and three monument 1-back control blocks). 

 

Table 2: Experimental questions. We selected five categories of person related 

knowledge (nominal, perceptual, episodic, social and semantic). For each category we 

chose two different probe question that require accessing the specific category of 

knowledge. Each task was presented in a block of eight trials. On each trial, participants 

were instructed to relate the task question to the famous person. 

Knowledge 

category 
Task Cue 

Participant 

instructions 
Answer choices 

Nominal 

Common name 
How common is this 

person’s name? 
Likert scale (1-4) 

Full name 

How well can you 

recall the person’s full 

name? 

Likert scale (1-4) 

Perceptual 

Attractive 
How attractive do you 

find this person? 
Likert scale (1-4) 

Distinctive 
How distinctive is this 

person’s face? 
Likert scale (1-4) 

Social Friendly 
How friendly is this 

person? 
Likert scale (1-4) 
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Participants answered 9/10 questions using a 1-4 Likert scale. Occupation question 

(“what is this persons’ occupation”) had predefined categories (1 = actor or TV presenter, 

2 = singer or musician, 3 = politician or sportsman, 4 = none of the above). Prior to 

scanning, participants practiced answering experimental questions on a different set of 

famous people repeating each question for five trials. 

 

 

 

Trustworthy 
How trustworthy is 

this person? 
Likert scale (1-4) 

Episodic 

Familiar 
How familiar is this 

person is to you? 
Likert scale (1-4) 

First memory 

For how long have 

you known this 

person? 

Likert scale (1-4) 

Semantic 

How many facts 

How many facts could 

you recall about this 

person? 

Likert scale (1-4) 

Occupation 
What is this person 

occupation? 

Predefined categories 

(see ‘task’) 



 44 

 

 Figure 2.1. (A) Top: Schematic representation of the experiment. Experimental 

blocks were preceded by 4s of instruction screen, and 6s fixation point. Each trial 

consisted of .5s face presentation and 2s fixation. Bottom: five domains of person 

knowledge and two questions per domain are noted in corresponding colours. (B) Data 

analysis schematic. ROI beta averages for each of the ten tasks were extracted from 

ROIs, correlated and subjected to RSA. 

Data Acquisition 

Participants were scanned at the Center for Mind/Brain Sciences (CIMeC), University of 

Trento, Italy. Data was collected using Bruker BioSpin MedSpec 4T, with 8-channel 

phased-array head coil. Five runs of 209 echo-planar volumes, consisting of 34, AC-PC 

aligned axial slices were acquired while participants performed the task (FOV = 64mm x 

64mm, TR = 2.5s, TE = 33, FA = 73°). Voxel size was 3x3x3mm with a 1mm gap. In 

addition to functional data, a whole brain T1 MPRAGE anatomical image was acquired 

(whole brain (FOV = 256x224, 176 1mm axial slices). 
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Region of interest definition 

Regions of interest (ROIs) were selected from an independent (N=42) experiment, 

conducted for high power functional localisation. In the localiser experiment participants 

performed a 1-back matching task with 12 second blocks of famous faces, common 

animals or common objects. The contrast faces > animals+tools (p < .05 FWE corrected) 

was used to identify face selective peaks (Table 2).  7.5mm radius spheres were drawn 

around the peak voxels and task evoked brain responses (beta estimates) were extracted 

for each subject.  

To investigate differences in pSTS/Angular gyrus (see: introduction) we anatomically 

constrained the volume with angular and superior temporal gyri masks. Then the masks 

were inflated, and the overlap was removed. This allowed us to distinguish face selective 

anatomical activation within anatomical angular and superior temporal gyri within 

anatomical boundaries. 

Monuments > Face control tasks contrast was used to validate ROI selection. We expect 

extended system, but not core systems ROIs to respond to person-knowledge tasks. To 

ensure that core system ROIs are correctly localised we will compare face selective 

response (face > monuments control tasks) in the core system (see below: Accessing 

person related knowledge recruits extended, not core, components.) 

Table 3: ROI sphere centre coordinates. Peak coordinates for regions active in the 

localiser experiment (N=42) and ROI sizes in voxels after thresholding. Coordinates are 

in MNI space. 
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Region Hemisphere X Y Z 
ROI Size 

(voxels) 

Precuneus Medial 3 -52 29 81 

OFA 
Right 30 -91 -10 65 

Left -33 -88 -10 49 

FFA 
Right 42 -46 -22 81 

Left -39 -46 -22 30 

IFG 
Right 39 17 23 44 

Left -36 20 26 38 

ATL 
Left -60 -7 -19 69 

Right 57 -7 -19 81 

Amygdala 
Left -21 -10 -13 62 

Right 21 -7 -16 59 

dmPFC Medial 6 59 23 59 

vmPFC Medial 3 50 -19 66 

OFC 
Right 33 35 -13 58 

Left -33 35 -13 27 

ATFP 
Right 33 -10 -40 39 

Left -36 -10 -34 24 

Angular 
Left -48 -67 35 68 

Right 42 -64 35 57 

pSTS 
Left -48 -49 14 54 

Right 48 -55 14 71 

 

Data Analysis 

Data were pre-processed with SPM12. Functional images were realigned to account for 

motion, grey matter segmented, warped into common space and smoothed with 8mm 



 47 

FWHM kernel. Subject specific response estimates (beta weights) were derived by fitting 

a general linear model (GLM) to the data. 12 regressors (10 tasks, 2 controls) were 

included as explanatory variables. Six motion parameters from re-alignment procedure 

were included as regressors of no interest. We drew 7.5mm spheres around chosen 

coordinates (Table 2) and extracted the mean beta value significantly active at p < 0.001 

within those ROIs (contrast faces > animals+tools). To isolate the magnitude of cognitive 

response, we subtracted beta value for 1-back matching face control task from each 

experimental task. 

Multivariate Analyses 

ROI responses across ten tasks were averaged across voxels and correlated to obtain a 

dissimilarity matrix (1-r), which was then subjected to Ward hierarchical agglomerative 

clustering. For task similarity analysis the matrix was transposed before correlating so 

that similarity matrix consisted of task correlation across 21 ROIs. Similarity models were 

constructed and fitted according to conventional RSA framework (Kriegeskorte, Mur & 

Bandettini, 2008) by building a matrix of expected similarity (either regional similarity or 

task similarity) with 1 denoting expected pairwise similarity and 0 denoting no-

relationship. To establish model fit we correlated the model with observed network RSM 

(r) for each subject. Subject-model correlations were then subjected to one sample t-test 

(null hypothesis r=0) to establish significance.  

 

Results 

Behavioural Data 
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Mean Reaction time (RT) was M = 1203msec, SD = 111msec. Subjects reacted fastest 

during full name task (M=1110ms, SD=120ms), and slowest during common name task 

(M=1386ms, SD = 200ms). RTs differed across the ten tasks (F(9, 171) = 17.13, p < 

.001). Critically, this RT effect did not persist when tasks were collapsed into the five 

domains of knowledge used in the imaging analysis (i.e. “Nominal“, “Physical“, “Social“, 

“Episodic“, “Semantic“; F(4, 95) = 2.21 p = .076). RT did not significantly differ between 

face (M = .71, SD = .11) and place (M = .68, SD = .12) control 1-back matching tasks 

(t(18) = 1.96, p = .066). 

Mean ratings ranged from M = 2.2, SD = 0.25 (attractiveness task) to M = 3.1, SD = .38 

(full name task). Ratings differed across 10 exemplar tasks (F(4.8, 91.7) = 27.741, p < 

.001, Greenhouse-Geisser correction) and 5 cognitive domains (F(4,76) = 20.03, p < 

.001). Faces were rated highest on attractiveness (M = 2.79, SD = .025) and lowest on 

participants’ ability to recall full name (M = 1.82, SD = .38).  

 

Accessing person related knowledge recruits extended, not core, components. 

To assess the global importance of access to person knowledge in the core and extended 

systems for person perception/knowledge, we compared the average regional increase 

when participants accessed the 10 variants of person knowledge, compared to the one-

back matching task on famous faces. The results are shown in Figure 2.2. 
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Figure 2.2: Regional response to person knowledge access (average of experimental 

tasks > face control task). Bars show response estimate magnitude (beta value), error 

bars represent standard error of the mean (SE). Retrieving person knowledge activated 

extended system regions to variable extent, but core system did not show an increased 

response. 

The most apparent distinction is between regions of the core system, which show 

no increase in activity (t(19) = -1.69, p = .11; averaged across all core regions) and other 
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elements of the network (t(19) = 6.98, p < .001; averaged across all extended regions). 

While unresponsive to person-knowledge tasks, core system responded more to face 

than monument control tasks, validating ROI selection, t(19) = 2.91,p = 0.009.  

A second clear organisational feature of person knowledge is the left lateralisation 

of this process, with left hemisphere regions showing a greater relative increase when 

accessing person knowledge than their right hemisphere counterparts (t(19) = 4.67, p < 

.001).  

Individually, regions of the internalised cognition part of extended system were all 

strongly recruited during access to person knowledge (t-values > 4.60, p < .001). Lateral 

frontal regions, the IFG and lateral OFC show an increased response most consistently 

in the left, with the right IFG failing to show a significant modulation. More subtle increases 

are seen in medial temporal lobe structures, with only the left amygdala and the right ATL 

exhibiting significant modulation when person knowledge was accessed. 

 

The Role of Cognitive Domain across the Person Knowledge Network 

To investigate the role of different kinds of knowledge in the person knowledge network, 

Figure 2.3 shows the scaled importance of each cognitive domain in those regions that 

were activated during access to person knowledge. Here we focus only on regions that 

showed at least a significant unilateral increase when person knowledge is accessed. For 

simplicity, we have collapsed across hemisphere (significant interaction between domain 

and hemisphere were present only in IFG; F(4,76) = 2.508, p = 0.049). Regions of the 



 51 

intrinsic network are strongly involved in all cognitive domains with the exception of 

nominal knowledge, to which ATL and dmPFC were unresponsive. 

 

Figure 2.3. Regional preference patterns. Percentage of total activation elicited by 

each cognitive domain. Stars denote significance threshold. Most regions are involved in 

most cognitive domains. Although patterns vary across components of the network, it can 

also be seen that regions that respond to episodic knowledge tend to respond to semantic 

access as well. 

 

The ATL is weighted towards Social not Nominal knowledge.  
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The involvement of ATL in social or nominal (proper names) knowledge is a matter of 

current contention (Grabowski et al. 2001; Olson et al. 2013). We exploited the presence 

of all these cognitive aspects within one single study to address their relative importance 

in bilateral ATL. ANOVA revealed significant differences across cognitive domains (F(4, 

95) = 8.13, p = < .001). A planned comparison specifically testing the role of social and 

nominal tasks revealed that access to social knowledge recruited this region to a greater 

extent than access to nominal knowledge (t(19) = 5.79, p < .001), with nominal knowledge 

showing marginal increase compared to control (t(19) = 2.08, p = .052. Follow up analyses 

revealed that, while the largest response was evident during access to social knowledge, 

this was not significantly greater than episodic, semantic or physical cognitive domains, 

each of which showed a greater response than the nominal tasks (post hoc: all t-values 

> 2.49, all p < .02, uncorrected). The response during the nominal tasks were not 

diminished in all regions, with IFG responding more strongly to access to nominal than 

social knowledge (t(19) = 3.1, p = .006). These results show a distinction between the 

way social and nominal knowledge is processed, social tasks engage ATL more than 

nominal ones, while the IFG exhibits the opposite pattern, being more responsive to 

nominal than social knowledge. 

 

Perceptual and non-perceptual processing in the pSTS/Angular gyrus 

Here we sought to test whether the pSTS and AG, have diverse functional roles. While 

these regions sometimes form a contiguous activation cluster, pSTS has been implicated 

in perceptual processes, while AG is involved in cognitive processes such as intent and 
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mental state processing (Gobbini & Haxby, 2007). The functional division between these 

two regions was apparent even at a level of global access to person-knowledge, (c.f. 

figure 2.2). Specifically, while the pSTS showed a suppressed response during access to 

stored person-knowledge (pSTS left: t(19) = -1.26, ns.; right: t(19) = -3.81, p = .001), the 

angular gyrus conversely showed a robust response (AG left: t(19) = 5.81, p < .001.; right: 

t(19) = 2.99, p = .008). This difference was also apparent in the global laterality pattern. 

pSTS showed a stronger inhibition in response on the right (t(19) = 3.47, p = .001), 

consistent with the pattern of right laterality in core regions. Conversely, there was no 

laterality effect in global response of the angular gyrus (t(19) = 1.57, p = .134). 

Collectively, these patterns underscore the pronounced functional subdivision of these 

regions of the temporo-parietal junction. 

At the level of the single cognitive domain (see Figure 2.3) an increased response 

in AG was evident across each cognitive domain (t-values > 3.12, p < .006) while the 

pSTS did not show and increase for any cognitive domain. Finally, while cognitive domain 

did not have a variable effect in pSTS at the univariate level, the angular gyrus responded 

more during episodic memory retrieval than any other task (t-values > 2.8, p < .01). 

Together, these results demonstrate a pattern of response in the pSTS consistent with 

core perceptual processing and a pattern in the AG consistent with access to knowledge. 

Differences in inter-regional coordination patterns will be discussed in the next section. 

 

Inter-Regional Coordination and Network organisation 
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Which brain regions work together to accomplish the person-knowledge network’s varied 

functions?  The functional coordination between ROIs was examined through a network 

level Representational Similarity Analysis (netRSA). The ten task-induced beta patterns 

were correlated between each pair of ROIs and subjected to hierarchical clustering 

analysis (see figure 2.1 and methods). The validity of this netRSA approach is confirmed 

by the close proximity of left and right regional homologues (figure 2.4): In all cases, 

despite the anatomical distance, a given ROI’s cognitive profile matched most closely to 

that of its contralateral counterpart. An RSA template model (figure 2.4), confirmed the 

high reliability of this effect across subjects (t(19) = 13.89, p < 0.001). This result highlights 

the commonality of function between hemispheric homologues despite hemispheric 

asymmetries in the overall response. 

At a descriptive level, netRSA revealed the expected cognitive clustering of core 

regions (OFA, FFA, pSTS). Interestingly, the lateral frontal regions the orbito-frontal and 

inferior frontal gyri cluster with the core system, rather than the other components of the 

extended system (figure 2.4 – red cluster).  To test whether lateral frontal regions 

coordinate more closely with core or extended systems, we built competing models of 

regional coordination (see figure 2.4). Post hoc comparisons of the goodness of fit 

between the two competing models confirmed that lateral frontal regions co-ordinate more 

closely with core than other extended system regions (t(19)  = 3.09, p = .006). Considering 

regions separately, this effect persisted for IFG (t(19) = 4.35, p < 0.001), while no 

preference was evident for OFC (t(19) = 1.59, p = 0.13). 
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Within the extended system, regions overlapping with those associated with 

internalised cognition form a distinct cluster (Cluster 2 - green) with respect to the 

amygdala and anterior face patch of the medial temporal lobe (Cluster 3 – purple). 

However, planned comparison of whether the ATFP groups more closely with the core or 

extended system resulted in no evidence for either hypothesis (t(19) = -0.21, p = 0.84). 

 

 Figure 2.4. A) ROI clustering. First major division separates core together with IFG 

& OFC from the rest of the extended system (red vs (green + purple)). Within the extended 

system, a further division is evident between medial temporal regions and regions 

involved in the intrinsic system (purple, green). B) Schematic representation of clusters 

projected onto the brain. C) model comparison schematic. Competing models of network 
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organisation were constructed, fitted to observed data for each participant, and compared 

in a paired samples t-test. 

 

Cortical Similarity between Cognitive Domains 

To address the fundamental question of how different forms of cognition relate to one 

another, netRSA was performed across ROIs to investigate how similar the neural 

representations of cognitive domains are in the brain (see Figure 2.5 and 

methods). Despite variance across tasks, reactions times, and in one case response 

scales, the task pairs for each cognitive domain (e.g. ‘common name’ and ‘full name’ for 

nominal knowledge) are grouped together. This illustrates the efficacy of netRSA in this 

context, providing another internal validation. To test our a priori selection of task 

couplets, we built a model to test their similarity. Results show that tasks from the same 

cognitive domain have highly similar representation across the person knowledge 

network (t(19) = 4.14, p < 0.001). 
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 Figure 2.5. A) Task similarity in core and extended system ROIs. Tasks are 

grouped according to the domain they were sampled from. Episodic and semantic 

knowledge retrieval tasks elicit differentiable patters from nominal, physical or social ones 

(dendrogram, left). B) fMRI pattern similarity matrix and models tested.  

 

At the next level of hierarchical clustering, results reveal three distinct cognitive 

clusters. Network activity is more similar for physical (yellow) and social (blue) 

knowledge than to other forms of knowledge. Likewise, episodic (pink) and semantic 

(purple) knowledge form a cluster, that is distinct from nominal knowledge. We 

compared competing models (see Figure 2.5) to make inference about whether 

semantic knowledge more closely relates to the episodic or nominal domain. Results 
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confirm that semantic knowledge is more similar to episodic memories, than nominal 

knowledge (t(19) = 3.97, p < .001).  

 

Whole Brain Analysis - Beyond the person-selective network 

The motivation of this project was to gain insight into the normal function of the well-

characterised network for person knowledge by strongly pushing the system towards 

access to different domains of knowledge. While we focus on the network for perceiving 

and knowing about others, cognitive processes are not enacted solely by the person 

knowledge system. It is important to consider that these systems presumably pair and 

couple with brain regions outside the person-selective network, with the network’s 

periphery potentially driving transient specialisation within the network itself. 

A whole brain analysis comparing each cognitive domain to the average of the other 

domains is presented in figure 2.6. Notably, no regions demonstrated a significant 

preference for two or more cognitive domains, consistent with non-overlapping cognitive 

specialisation outside the person knowledge network. Access to nominal knowledge is 

characterised by a broad pattern of activation, stronger in the left hemisphere than the 

right (Figure 2.6, Table 4). It encompasses left hemispheric sites associated with 

language production and comprehension (Price, 2012). Conversely, accessing physical 

knowledge is more pronounced in the right hemisphere, predominantly in the superior 

portion of the IFG. Social knowledge retrieval more strongly activated left ATL and an 

anterior patch of dmPFC. Recalling episodic memories involved the posterior cingulate 

cortex (PCC), angular gyrus as well as right lateral frontal pole and bilateral patches of 
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the superior frontal gyrus. Semantic knowledge retrieval tasks did not selectivity recruit 

any region outside of the person-knowledge network.  
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Figure 2.6. Cognition specific brain activations. Whole brain map highlights 

peripheral, domain specific cognitive systems that are recruited during diverse kinds of 

person-knowledge retrieval. Semantic knowledge did not elicit significant clusters of 

activity.  
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Table 4: Peak location, extent and cluster-level significance of whole brain analysis of 

the differential effects of each cognitive domain (see also: Figure 2.6). SFG - superior 

frontal gyrus, IPL - inferior parietal lobule. PMC - premotor cortex, PCC – posterior 

cingulate cortex. 

Domain Region Hemisphere 
cluster Peak 

p (FWE) size T 

Episodic 

Angular Right < 0.001 507 8.06 

Angular Left < 0.001 264 6.57 

SFG Right < 0.001 216 5.68 

PCC Medial < 0.001 142 5.68 

SFG Left 0.001 125 4.77 

OFC Right 0.017 71 4.65 

Precuneus Medial 0.032 61 4.16 

Social 
dmPFC Medial < 0.001 396 6.57 

ATL Left 0.001 130 4.58 

Physical 

IFG Right < 0.001 616 5.72 

FFA Right < 0.001 274 4.86 

PMC Right 0.006 87 4.38 

Amygdala Right 0.020 68 4.37 

dmPFC Medial < 0.001 253 4.34 

FFA Left 0.004 94 4.24 

IPS Right 0.005 92 3.93 

Nominal 

IFG Left < 0.001 1188 6.99 

SFG Medial < 0.001 1670 6.40 

Angular Left < 0.001 370 6.35 

Angular Right < 0.001 265 5.31 

FFA Left 0.003 97 4.70 
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Discussion 

Cognitive processes are distributed across networks of regions. By having our 

participants perform a broad range of cognitive tasks and exploiting data complexity 

through derivations of statistical tools such as RSA, we could focus on the subtle 

differences in inter-regional coordination that endow distributed cortical networks their 

considerable cognitive flexibility. By relating task activity not only to a baseline but to other 

tasks, we were able to establish regional preferences which allowed us to tackle specific 

hypotheses about regional function. Leveraging multivariate methods provided insight 

into regional coordination, uncovering principles of network organisation, as well as the 

similarity between different cognitive processes allowing us to build a cognitive taxonomy 

grounded in brain representation.  

 

Accessing person related knowledge recruits extended, not core, components. 

Clear functional division between core and extended system can be seen even at the 

broadest view of systems organization. Face-selective core regions (OFA, FFA & pSTS) 

were not responsive to person knowledge tasks. This stands in contrast of the extended 

system regions which were strongly engaged by the experimental tasks, and particularly 

so in the left hemisphere. This is consistent with a predominant role of these regions in 

the extraction of perceptual information which is made available to the other elements of 

the system (c.f. Downing and Peelen 2011). 
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Functional subdivisions between pSTS and Angular Gyrus 

The pSTS was originally designated as part of the core system (Haxby, Hoffman, and 

Gobbini 2000b). Over the years this classification has become less clear and pSTS has 

been reclassified as part of both core and extended systems (Gobbini and Haxby 2007). 

The pSTS is part of a heterogeneous cortical region, the temporal parietal junction (TPJ), 

which includes pSTS, the angular gyrus and the supramarginal gyrus. In this study, we 

anatomically divided the person selective patch into pSTS and angular gyral components. 

We observed a pronounced dissociation across this subdivision. Firstly, compared to the 

face repetition-detection control task, AG exhibited a strong global response to access to 

person related knowledge while pSTS was either unresponsive (left) or supressed (right). 

Secondly, the response profile across cognitive tasks grouped them differently, with pSTS 

clustering with other core regions while AG clustered with regions of the extended system 

associated with intrinsic cognition.  

These results indicate that the contiguous TPJ activation reported during the viewing 

of familiar faces is functionally heterogeneous, divided into an angular gyrus component 

that responds to non-visual theory of mind (Saxe and Powell 2006) and amodal access 

to person knowledge (Fairhall and Caramazza 2013a) and a pSTS component involved 

in face perception. Future work will determine how these anatomically adjacent brain 

regions coordinate across other cognitive processes but within the context of person-

related cognition, they appear to be highly distinct.  
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Regional tuning of ATL 

Different hypotheses propose that ATL might mediate person-specific social knowledge 

(Olson et al. 2007) or proper naming (Semenza 2011). Here we directly contrasted these 

two hypotheses and observed that ATL responds strongly to social knowledge and is 

unresponsive to nominal knowledge retrieval. This is in apparent contrast to early positron 

emission studies which show strong activation of the region during overt naming (Gorno-

Tempini et al. 1998; Grabowski et al. 2001). However, it is consistent with the finding that 

the ATL responds equally to familiar people whether or not the name is known by the 

participant (Gesierich et al. 2011). The reason for these disparities may lie in fMRI signal 

drop-off in the ATL (Devlin et al. 2000) or in specific representational or phonological 

demands associated with overt speech production. Alternatively, it may be that ATL 

activation observed in earlier studies was not specific to nominal knowledge but rather, 

to generalised activation of person knowledge. Indeed, this generality is evident in the 

present study where, access to semantic, episodic and physical cognitive domains, as 

well as social, activated ATL. It is noteworthy that, while social knowledge did not produce 

a stronger response in the ATL ROI than these other three domains, the whole brain 

analysis (Figure 2.6) only social knowledge showed a significant cognitive selective 

response in adjacent the left ATL, consistent with the importance of social conceptual 

knowledge in this region (Simmons & Martin, 2009). 
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Regional coordination across the person knowledge network 

Elements of the network for person knowledge coordinate to form its diverse range of 

functions. Here, in contrast to investigating functional connectivity over time (e.g. Fairhall 

and Ishai 2007) we consider how these regions functionally coordinate over different 

tasks in response to their varied cognitive domains. Consistent with classic models 

(Haxby, Hoffman, and Gobbini 2000b) we observed that functional coordination between 

core perceptual (OFA, FFA and pSTS) regions was high. Interestingly, we observed that 

the fronto-lateral components of the classic extended system, IFG and OFC, coordinated 

more closely with these core regions rather than other elements of the classic extended 

system. It is notable that these fronto-lateral regions, particularly IFG, are closely related 

to extrinsic, task-activated, networks, distinguishing them from extended regions 

associated with the anti-correlated intrinsic resting state network (Fox et al. 2005). 

Additionally, during access to stored knowledge, the fronto-lateral IFG is implicated in 

guiding access to relevant information (Martin and Chao 2001; Wagner et al. 2001; 

Thompson-Schill 2003) suggesting a modulatory rather than representational role. 

Other components of the extended system appear to coordinate most closely with 

each other across different cognition domains. Hierarchical clustering revealed an 

apparent dissociation between medial temporal components (ATFP, amygdala) and 

those associated with internalised cognition (vmPFC, precuneus, ATL, AG). However, 

this was not confirmed by statistical analysis and future work will be needed to verify this 

grouping. A planned comparison of whether ATFP grouped more closely with core or 

extended systems revealed no evidence in either direction. 
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Cognitive taxonomy in person knowledge  

By considering the similarity between the neural profile of different cognitive domains we 

can gain insight into the relationship between these cognitive processes. We 

implemented this approach within the network for perceiving and knowing about others 

by comparing the profile of each task across the 21 ROIs comprising this network. We 

observed that for each task, despite variations in reaction times and task structure, that 

the two task-exemplars for each of the five cognitive domains reliably clustered with their 

counterpart. Demonstrating that cognitive domain is the primary grouping factor of 

activation patterns across this network and validating our selection of tasks. The general 

pattern of cognitive clustering across the regions suggests that social and perceptual 

knowledge share similar neural patterns, as do semantic and episodic knowledge, with 

nominal being represented somewhat distinctly. These findings fall broadly within 

hypothesised domain-specificity boundaries (Spunt and Adolphs 2017) suggesting that 

declarative memory (episodic, semantic tasks) and language (nominal tasks) are part of 

the ‘cognitive’ macro-domain, while facial reception (physical tasks) and theory of mind 

(social tasks) are part of the ‘social’ macro-domain.  

Of specific interest to us was the relationship between episodic, semantic and 

nominal knowledge. One classic distinction in forms of declarative memory is between 

episodic (personal experience) and semantic (general knowledge) (Tulving 1972). The 

term ‘semantic knowledge’ refers to a broad range of knowledge about objects, factual 

knowledge and linguistic access to word meaning. Here we specifically contrasted 
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competing models comparing whether semantic memory factual knowledge about people 

was more closely related to our personal experience and memories about that person 

than to access to their name, a task domain that strongly recruited language circuity (see 

next section).  Model comparison revealed significantly greater evidence that semantic 

memory clustered more closely to episodic than nominal access. This grouping is roughly 

apparent in the tuning profiles presented in Figure 2.3, where episodic and semantic 

domains load most heavily on regions associated with intrinsic cognition while nominal 

knowledge follows a different pattern – additionally engaging regions outside of the 

intrinsic network (e.g. IFG). In a broad sense, this result suggests that within the context 

of the tasks used in this study, semantic access shares a mechanism with episodic rather 

than linguistic neural systems.  

 

Cognitive domain across the whole brain 

In the study, we sought to understand how different elements of the person knowledge 

network, active spontaneously when we view familiar people (Gobbini and Haxby 2007), 

contribute to our diverse array of person related knowledge. To this end, we perturbed 

the system towards five difference cognitive domains to understand regional processing 

bias. However, these cognitive domains are not manifest solely within the person 

knowledge network and a whole brain analysis revealed the cognitive-domain selective 

regions outside this network. Figure 2.6 shows the selective activation of cognitive 

domains across the brain (domain v. others). 
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Recruitment of language regions in the Nominal tasks: the supramarginal gyrus, 

lateral PFC and dorsomedial PFC (Price 2012), validate the importance of linguistic 

processes in the performance of this task. Similarly social knowledge tasks preferentially 

recruited regions of the left ATL and an anterior section of dorsomedial PFC, consistent 

with the social cognition network (Adolphs 2009). The engagement of broad parts of right 

lateral PFC as well as small clusters in medial temporal and occipital areas is consistent 

with the involvement of these regions in the retrieval of perceptual attributes (Kan et al. 

2010). Episodic access generally recruited regions associated with autobiographical 

memory (Schacter et al, 2012; Spreng & Grady, 2009) In particular, bilateral angular gyrus 

showed a strong modulation with episodic tasks and is an area associated with the 

strength of autobiographical recollection (Rissman et al., 2016). Notably, despite the 

involvement of a broad set of regions consistent with the episodic domain, the 

hippocampus was not recruited, even at uncorrected thresholds. The reason for this 

absence is uncertain but may relate to the use of a familiarity rather than recognition 

weighted tasks in our design (Eichenbaum, Yonelinas & Ranganath, 2007) or to other 

factors related to this kind of episodic access. Collectively, these results indicate the 

separable nature of the cortical processes associated with these five cognitive domains 

and suggest that cognitive biases within the elements of the person knowledge network 

may arise from coordination with brain regions outside the network. 
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Conclusion 

The current study examined how the distributed cortical network for perceiving and 

knowing about others coordinates to accomplish its diverse range of cognitive functions. 

By examining a range of tasks within a single study we were able to observe a clear 

preference for access to social over nominal knowledge in ATL and, within the TPJ, a 

clear division between a more perceptual pSTS and a more cognitively weighted angular 

gyrus - both in terms of their global response to cognitive access and the profile of 

activation across different cognitive domains. Through further multivariate analysis of the 

cognitive response profile across the network, we observed that regional coordination 

profiles grouped core regions with the lateral frontal extended system regions, which 

functioned relatively independently of intrinsic components of the extended system. 

Moreover, we were able to use similarity in activation patterns across the network to 

reconstruct a taxonomy that reflected how similar cognitive domains are to one another 

within the cortex. Notably, we observed that access to factual semantic knowledge 

employs neural substrates more similar to episodic memory than to language-related 

nominal knowledge. Collectively, these results demonstrate the importance of network 

level dynamics in the instantiation of person related cognition and knowledge 

Results of this chapter provide novel insight into both knowledge organisation and 

regional coordination. To rule out the perceptual effects on our findings, next chapter will 

investigate whether these findings are robust across stimulus modalities. If what we found 

is a true organisation of knowledge, we should see it regardless of stimulus modality.  
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Chapter 4: Organisation of person knowledge across stimulus 
modalities 

Introduction 

Previous chapter investigated how person knowledge is organised in the cortical network 

for face perception across core and extended systems. We described correlated 

organisation of knowledge and observed that episodic memories and biographical 

knowledge are represented distinctly from nominal knowledge. Similarly, Social and 

Physical knowledge retrieval relied on different neural substrates. Regionally, perceptual 

(OFA, FFA, pSTS) co-ordinate with frontal regions (OFC, IFG) across different kinds of 

person-knowledge retrieval. Regions associated with internalised cognition (Angular 

gyrus, ATL, Precuneus, and medial PFC) show tight regional co-ordination forming a 

distinct cluster from Amygdala and ATFP.  

Importantly, person-knowledge stores can be accessed in several other modalities 

(such as name & voice) in addition to face. Extended component of the person-

perception system has been observed activated in the blind (Wang, Peelen, Han, 

Caramazza & Bi, 2016). However, whether the representation in the extended system 

changes according to the stimulus modality is unclear. It is important to establish 

whether knowledge is organised in an amodal modality independent way, or whether 

recalling knowledge is largely dependent on stimulus modality. Key feature of conceptual 

processing is invariance across stimulus modalities. To disentangle conceptual 

representation from perceptual processes, this chapter will addresse stimulus invariance 

of regional coordination of the extended system  
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In a PET study Gorno-Tempini et al. (1998) contrasted famous face and name 

processing. Expectedly, they found that some core regions, namely the FFA respond to 

faces but not names. When names were compared to meaningless strings of letters, 

they engaged portions of the posterior middle temporal gyrus and superior temporal 

sulcus, suggesting that these areas are name-specific. Analysis of famous faces + 

famous names – face and name control conditions revealed an extended network of 

regions that are involved in person knowledge regardless of modality of presentation. 

Authors found that regions implicated in the extended system of face processing – 

regions of the internalised cognition network, IFG and OFC respond to famous names 

as well. These results suggest that largely, regions involved in person-knowledge are at 

least cross-modal, i.e. respond to both face and name inputs. Within these regions, 

authors found that bilateral ATL and OFC are active during face and name processing 

but are more recruited during face-viewing than name reading. In a later fMRI study 

contrasting famous face and name processing, Nielson et al (2010) further highlighted 

similarities and differences between the two stimulus types. They again found modality-

specific activations, regions in the temporal lobes selective for either name and face 

processing. Regions associated with internalised cognition (ATL, precuneus, AG, 

vmPFC) were not modulated by the stimulus type. IFG and OFC showed face preference 

effect - these are regions are more active during face perception, than during name 

reading, but are recruited for both. In addition, there were differences in auxiliary 

systems (regions not part of core or extended systems) recruited. Face processing was 

accompanied by pronounced activity in the medial part of the superior frontal gyrus. 
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Names recruited areas along the cingulate gyrus, post-central gyrus among others. How 

these distinct-yet-overlapping activations affect the organisation of knowledge within 

these regions is still unclear. Whether modality-specific activations accompanying face 

and name processing affect the relationships between extended system regions is 

unclear.  

Here we investigate the role of stimulus in the organisation of person knowledge. 

More specifically, we investigate to what degree the is the coordination within extended 

person-knowledge system amodal. Stability across stimulus modalities would indicate a 

single distributed system accessed by both famous faces and names, providing insight 

into knowledge organisation. This comparison is needed because it is possible person-

knowledge is encoded differently, depending on the stimulus modality. By closely 

following the methodology we developed in the previous chapters with a single pivotal 

manipulation - changing the stimulus from a person’s face to a person’s full name 

accomplish two main goals: 1) Replicate findings about the organisation of knowledge 

and regional co-ordination and 2) Generalize the findings and rule out perceptual effects. 

 

Methods 

Participants 

31 participants took part in this study (mean age M = 24.74, SD = 3.13). All participants 

had normal or corrected to normal vision and were free from neurological disorders. 

Study was approved by the University of Trento Ethical committee. Participants were 

compensated for their time. Seven participants were removed from analysis: Two 
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participants did not complete the experiment due to technical issues with the stimulation 

computer, five participants were removed due to excessive motion in the scanner.   

 

Stimuli 

Stimuli referred to the same 40 celebrities were used as in chapter 2. Instead of 

presenting their faces, famous person’s first and last names were presented on separate 

lines. Mean name length (first name + last name) was M = 12.15, SD = 2.59 letters. All 

experimental conditions were kept the same with one exception. “Full name” task in the 

previous experiment required participants to “recall persons full name”. For the current 

experiment this was changed to “how common is this person’s last name”. 

 

Data analysis 

Preprocessing and GLM fitting pipelines were kept the same as in chapter 2. To compare 

organisation of knowledge and functional co-ordination only across the extended system 

ROIs, we restrict the ROI set by removing core regions - OFA, FFA, pSTS (bilaterally) 

from the analysis. We use similarity structures from the face experiment (regional and 

cognitive similarity matrices, averaged across participants (N=20) as a model (figure 

3.3), and compare it against similarity patterns observed in the current experiment. 

Correlations between model and individual similarity patterns were then subjected to a 

one-sample t-test, to establish significance.   
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Results 

Whole brain analysis 

Contrasting all tasks over 1-back name matching control task revealed an expected 

network of activated regions. Within the extended system, most of the regions previously 

observed active during face-queued person knowledge are seen activated during name 

reading as well (see figure (3.1), also chapter 3, figure 2.6). Left ATL, precuneus, bilateral 

AG and prefrontal cortices are active during person knowledge regardless of input 

modality. Name reading specifically engaged areas left pre-motor cortex. We next extract 

task-specific response magnitudes from independently defined, face selective ROIs for 

further analyses. 

 



 75 

 

Figure (3.1). Regions involved in person knowledge when reading names (top) and 

viewing faces (bottom). Figure shows regions significantly active in all tasks > control 

contrasts. Control tasks were 1-back matching tasks with either name or face stimuli. Both 

experiments elicited broad clusters of activation, when access to person-knowledge is 

required.  



 76 

ROI analyses 

In chapter 3, to isolate cognitive response, we subtracted activity magnitudes elicited by 

perceptual 1-back matching task of famous faces, from the average activity produced 

when accessing person knowledge. This revealed robust activation of regions involved 

in person-knowledge such as regions of the internalised condition network, as well as 

left IFG and bilateral OFC. We perform the same analysis in the current experiment as 

well. Namely, we subtract response magnitude elicited by 1-back name matching task, 

from the average magnitude observed during person knowledge tasks. This allows us 

to compare regional involvement in person-knowledge, abstracted from perceptual 

stimulus effects, figure (3.2). Broadly, face perception recruits extended system regions 

to larger extent, as evident in the regional amplitude differences. Overall right 

hemisphere regions were engaged more than the left, t(42) = 2.59,p = 0.013. 

Individually, no single region showed face preference after correcting for multiple 

comparisons.  
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Figure 3.2. Extended system ROI involvement in person knowledge during face and 

name reading. Independently defined ROI active during face viewing tend to be active 

during name reading as well. Face viewing engaged regions more than name reading 

does.  
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Regional co-ordination stability across modalities  

We first investigate regional co-ordination stability, when going across modalities. We 

use the average regional similarity matrix from the previous experiment as a model and 

correlated it against each subject’s regional similarity matrix in the present experiment, 

figure 3.3. In this way we compare the regional coordination across tasks when we look 

at faces to the regional coordination profile when we read names. Results show strong 

similarity in functional connectivity patterns across experiments t(23) = 10.30,p < 0.001, 

indicating that overall co-ordination is largely preserved across input modality. We 

visualize the regional co-ordination structure, by clustering similarity patterns of the two 

experiments. Looking at clustered patterns of similarity, we see that regions associated 

with internalised cognition – precuneus, ATL, vmPFC, dmPFC and AG preserve shared 

similarity structure during name reading, consistent with findings from the previous 

experiment. Amygdala and ATFP again demonstrate cognitive profile similarity and 

cluster apart from the internalised cognition regions. Comparing competing models of 

regional coordination we observe that ATFP shares more response pattern similarity 

with the amygdala than the internalised cognition network t(23) = 3.77,p < 0.001. 

Focusing on differences, we observe that IFG clusters with the internalised cognition 

network, while OFC clusters with amygdala and ATFP. To see whether this effect is 

common to all subjects, we directly compared observed organisation against the model 

derived from the previous chapter. Namely, in this post-hoc analysis, we constructed an 

RSA model in which IFG couples with internalised cognition regions, and OFC couples 

with amygdala and ATFP. We compare this model to the average regional coordination 
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matrix from the previous experiment. We observe robust model fit suggesting that IFG 

coordinates with the internalised cognition regions, and OFC coordinates with amygdala 

and ATFP t(23) = 2.62,p = 0.015.  

 

 

Figure 3.3. Cognitive and Regional organisation within the extended system regions 

involved in person knowledge. Top row: average clustering from the face experiment 

was used as a model and was correlated to the observed clustering during name 

reading. Bottom row: Results of cognitive and regional clustering during name reading. 

 

Conceptual stability across modalities  

Overall, cognitive structure remains largely the same, using the data from the previous 

experiment as a model we find significant correlation between task similarity matrices 
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within the extended system t(23) = 5.33,p < 0.001. This is contrast to the core system, 

where there was no similarity between face data model and name data for task similarity 

t(23) = -0.69,p = 0.496. Visualizing the cognitive similarity across the extended system 

ROIs in the name experiment, we see an overall similar structure like we did in the face 

experiment, with the exception that distinctiveness task clusters with nominal knowledge 

during name presentation. To confirm our previous findings that biographical knowledge 

is more similar to episodic knowledge than knowledge about names, we fit competing 

RSA models. Results replicate previous findings, t(23) = 2.96,p = 0.007. 

Discussion 

In this experiment we investigated person knowledge representation during name 

reading. We show that the same regions involved in person knowledge during face 

perception are also active during name reading. This attests to the cross-modality of the 

extended system and supports its role in knowledge, rather than perception. Regions 

showed a more pronounced effect during face processing, possibly because we used 

face sensitive regions-of-interest defined via faces > animals + tools localizer. Despite 

this, we demonstrate that person-knowledge encoding, and regional co-ordination 

remain stable regardless of stimulus type. 

 

Differences in regional coordination 

We describe effects of stimulus modality on regional co-ordination. Cognitive similarity 

between different regions involved in person knowledge remains largely stable. During 

both face viewing and name reading, regions involved in internalised cognition remain 
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tightly connected, suggesting that stimulus modality does not affect how these regions 

co-ordinate. Our finding that ATFP shares response similarity with the amygdala, 

together forming a distinct part of the extended person knowledge system, is replicated. 

In the absence of an active core system, IFG and OFC regions couple with different 

parts of the network.  

IFG, previously implicated in guiding attention is seen to couple with internalised 

cognition regions. This pattern of results has been observed before. Humphreys et al 

(2015) observed IFG co-activate with the intrinsic semantic network specifically during 

semantic tasks involving reading. The activity in IFG attenuated when the stimulus was 

changed to pictures. Some accounts implicate IFG in guiding attention. In tasks where 

attention demands are focused inwards (such as creativity tasks), IFG has been 

observed to couple with the brains intrinsic semantic network (Beaty et al. 2014). Our 

results are in line with these findings. Flexible connectivity profile of the IFG, coupling 

with perceptual regions during face viewing, and intrinsic semantic regions during 

reading is further evidence for its modulatory role in person knowledge.  

Lateral orbito-frontal cortex (OFC) has traditionally been implicated in reward and 

facial beauty. During face viewing we observed that OFC couples with core perceptual 

regions, in line with accounts which found that attractiveness modulates perceptual, and 

lateral frontal regions (Chatterjee et al, 2009). It is consistent then, that in the absence 

of an active core system, OFC would cluster close to amygdala, a region known to be 

involved in facial attractiveness judgements (Winston et al., 2007). Throughout the 

years, however, role of OFC has expanded, Lindner et al. (2008) found increased OFC 



 82 

activity during person comparison for both physical (height) and mental (intelligence) 

judgements. Such findings are inconsistent with purely reward/attractiveness account of 

the OFC, as it suggests a more complex role (mental processes unrelated to emotional 

valence).  

Taken together, these results show that cognitive profiles of the extended system 

regions are stable across modalities. Regions involved in internalised cognition remain 

tightly coupled, amygdala and ATFP form a functionally distinct part of the extended 

system. During face-viewing, we observe robust response-pattern similarity between 

IFG, OFC and the core system. Shifting the stimulus to names revealed previously 

overshadowed, more subtle similarity patterns between these regions and the rest of the 

extended system. 

 

Cognitive Domain Similarity Structure is preserved across modalities 

In chapter 2 we observed that different cognitive efforts (episodic retrieval, remembering 

biographical facts, social judgements, accessing nominal knowledge and physical 

judgements) rely of overlapping neural substrates. We showed that in the context of 

person-knowledge episodic and biographical domains are encoded similarly across the 

person perception network. Here we demonstrate that this cognitive structure is largely 

unaffected by stimulus modality. Episodic memories and biographical facts cluster 

together, during both face and name presentation replicating our previous finding that 

these cognitions rely on similar extended system regions. This suggests that the 
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extended system regions jointly encode stable representations of correlated cognitions, 

abstracted from perceptual features. 

Judging facial distinctiveness, de-clusters from previously observed social-

physical judgement cluster, suggesting that, at least some kinds of physical judgments 

are affected by stimulus modality. It’s unsurprising that out of the cognitions tested, 

judging facial distinctiveness would be the task most sensitive to stimulus modality. 

Attractiveness (other exemplar of physical knowledge domain of tasks) is intrinsically 

linked to both physical features and social norms, possibly explaining its robust encoding 

across modalities. Prosopagnosic patients have troubles judging face distinctiveness but 

not attractiveness (Carbon, Grüter, Grüter, Weber & Lueschow, 2010), suggesting 

selective benefit that perceiving the face has on distinctiveness, but not attractiveness 

tasks.  

Notable differences aside, both regional co-ordination and conceptual structure 

remain largely intact across the two stimulus modalities. Regional and cognitive similarity 

models built using face modality data show robust fit, when correlated with data from 

written word modality.  

 

Conclusions 

In chapters 3 & 4, we investigated person-knowledge organisation in core and extended 

person knowledge systems. In two separate experiments we looked inside the 

processing happening within the core and extended components of this system. By 

manipulating the aspects of person knowledge and the stimulus modality we were able 
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to parcellate different functional units of this coordinating system. Historically 

investigated in the context of face perception, the extended system subserving person 

knowledge shows robust cross-modal response. We demonstrate that the regions 

involved in internalised cognition form a distinct part of the extended system. These 

regions coordinate closely across different cognitions and stimulus modalities. 

Amygdala and ATFP consistently form a distinct cluster of the extended system. 

Regional coordination of IFG and OFC are more dependent on the input modality. IFG 

couples with perceptual regions during face viewing and the internalised cognition 

network during name-reading, possibly reflecting attentional demands.  

Overall, person-knowledge is linked and relies on shared neural substrates. Instead of 

being localized in individual regions, diverse kinds of person-knowledge seem to be 

distributed across ensembles of regions. Seemingly different forms of person-

knowledge, such as biographical facts and episodic memories are encoded in 

overlapping brain regions. Diverse kinds of person-knowledge are accomplished by the 

coordinated activity of the extended system. Person knowledge representation is 

abstracted from perceptual features and is stable across stimulus modalities. Next 

chapter will investigate whether this holds true for our knowledge of object categories. 

 

Chapter 5: Conceptual knowledge of object categories 

 



 85 

Introduction 

Previous chapters focused on specific type of knowledge - person knowledge. More 

specifically we investigated how different domains of person knowledge are organised 

across the core and extended system for person perception. We observed that different 

domains of person knowledge engage overlapping neural substrates. Here we will 

investigate whether these findings generalise to our knowledge of broader semantic 

categories and conceptual distance. 

Object categories are encoded differentially across the cortex. Evidence from 

neuropsychological literature has demonstrated that focal damage to the brain can 

produce impairments accessing knowledge about specific categories of objects, often 

regardless of input modality (visual or verbal) (for a review see: Thompson-Schill, Kan 

& Oliver, 2006). Patients have been observed to have impairments to broad categories, 

such as only living things, or only non-living things (Martin & Caramazza, 2003). Other 

patients have even more specific impairments that only affect animal, fruit & vegetable 

or tool knowledge. (Thompson-Schill, et al., 2006). Broadly patients with prominent 

lesions in the temporal lobe, are more likely to exhibit impairments to living things, while 

non-living category knowledge impairments are associated with extensive fronto-parietal 

damage (Thompson-Schill, et al., 2006). Theories aimed at explaining where and how 

different concepts are encoded have not reached a consensus. It is thought that the 

stark distinction between the way object categories are encoded in the brain, is, at least 

to a degree, due to the different loading on attributes (also called features) they possess. 

Our experience with living things relies heavily on our sensory interaction with them, 
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making sensory features, such as their size, colour, smell, and taste - more important at 

differentiating them. In contrast, non-living things rely heavily on functional features - 

such as shape (“has a handle”) and intended purpose (“is it used for cutting”) (Warrington 

and McCarthy, 1983).  

Despite observable impairments to category processing, observing category 

selectivity with fMRI/PET has been challenging (for a meta-analysis of natural objects 

and artefacts see Gerlach, 2007). A large-scale meta-analysis by Binder et al (2009) 

identified seven key regions reliably recruited during semantic processing, spanning 

parietal lobes (Inferior Parietal Lobule (IPL), angular gyrus), temporal lobes (posterior 

middle temporal gyrus (pMTG), parahippocampal gyrus (PHG)), frontal lobes 

(dorsomedial and ventromedial prefrontal cortices (dmPFC, vmPFC), inferior frontal 

gyrus (IFG)) as well as medial cortex (Precuneus (PC)). Despite wide-spread activation 

in response to semantic processing demands, little category specificity was observed. 

While portions of pMTG were more involved when accessing tool knowledge other 

concept categories (such as animals) did not rely on specialised neural substrates.  

Commonly, individual studies investigating semantic processing observe activity 

in seemingly category-general semantic system. Devlin et al. (2002) reports three 

experiments focusing on five categories of objects: animals, fruit, tools and vehicles. 

Across the three experiments, authors reliably found a network of regions responding to 

semantic categories over a non-semantic baseline. However, no brain region was 

selective for any particular object domain (living, non-living).  



 87 

Increasingly however, studies employing multivariate analyses observe that while 

category selective response may not be evident in the overall regional activity, the 

multivariate patterns of voxel activity are sometimes sensitive to semantic content 

(Bruffearts et al., 2013; Simanova, Hagoort, Oostenveld & Van Gerven, 2014; Fairhall & 

Caramazza, 2013). These studies report differences in fine-grained voxel patterns 

across semantic categories, such as mammals, birds & tools or in individual exemplars. 

These differences were evident in category general regions such as AG, IFG and pMTG 

(Simanova et al, 2014). Taken together, these results raise a question, how a largely 

category-general system, processing overlapping stimulus features, encodes category 

relationships. Whether knowing that spatula and a cat belong to different conceptual 

categories is encoded in a particular region or emerges as a product of the coordinated 

activity across multiple the semantic regions is still unclear.  

Competing theories addressing knowledge organisation in the brain have been 

proposed. Some suggesting that regions process specific stimulus features and 

contribute to a single, high-level hub (Patterson, Nestor & Rogers, 2007). Other accounts 

do not assume a hub. Massively distributed account (Tyler, Moss, Durrant-Peatfield & 

Levy, 2000) suggests that object categories emerge from subtle differences in content 

and structure within regions, with no explicit category information in any region. In this 

account, the driving force to behind category grouping is their overlapping sets of 

semantic features.  

In addition to investigating category sensitivity, Fairhall and Caramazza (2013) 

investigated regional sensitivity to semantic distance. They observed that six regions: 
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VTC, AG, latPFC, dmPFC, PC and pMTG sensitive to semantic categories. However, 

only PC and pMTG were sensitive to semantic distance between categories. These 

findings suggest that that some regions involved in concept processing might not 

necessarily be encoding conceptual distance. 

 

Current approach 

The current study will investigate the distributed nature of object category 

knowledge representation. Building on Fairhall and Caramazza (2013), we will 

investigate the relationship between neural representation and semantic distance. 

Crucially, we will extend this approach to test the sensitivity of the overall semantic 

network to semantic distances. Specifically, we will ask whether there is more 

information about semantic distance arising from the coordinated network activity than 

is contained in individual regions alone. We will start by building a word co-occurrence 

based semantic reference model by clustering a large corpus of text to identify 

naturally occurring concept categories. Distributed accounts (Tyler, Moss, Durrant-

Peatfield & Levy, 2000) predict that information about semantic distances would be 

visible at the network-level, whereas semantic hub theory (Patterson, Nestor & Rogers, 

2007) predict this knowledge to be localized in a few key regions.  

Method 

Participants 

Twenty right-handed, native Italian participants (mean age M=25.8 SD=4.47, 11 

females) took part in the study. Participants had normal or corrected to normal vision 
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and were free from neurological disorders. All participants gave informed consent and 

the study was approved by the university of Trento ethical committee. Two subjects were 

removed from the analysis due technical problems during fMRI acquisition.  

 

Stimuli & model  

To sample naturally occurring semantic categories, we looked at how words cluster in 

written text. In a large corpus (wikipedia) we counted the co-occurrence of frequent, 

concrete nouns (1481 nouns, referred to as ’targets’) with common verbs, adjectives and 

nouns (i.e nouns not already present as ‘targets’) - referred to as features (6773 features 

in total). Word occurrences were log transformed, and the correlation distance (1-r) 

between targets was taken as a measure of word relatedness. We visualised word 

similarity by computing a dendrogram (1481 items, correlation across 6773 features), 

see figure (4.1). Word embedding similarity analysis captures well known categorical 

divisions, such as living-non-living distinction (Warrington & Shallice, 1984). Zooming in, 

within the living thing cluster we see that food related items are represented differently 

from other living things. Within non-living things clothing items and musical instruments 

are represented differently from the rest, in line with previous work using semantic 

feature production (Cree & McRae, 2003). Hypothesis raised by McRae and Cree (2002) 

that vegetables and plants would cluster differently because of their marked difference 

in ecological salience can be seen confirmed in the clustering. We used this word 

clustering to select categories to be used in the experiment. Some categories were too 

mixed to ascribe a label that fits all items, some categories were unintuitive when paired 
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with a typicality task. Final stimulus set contains 17 categories (one category was 

removed from the analysis, see results: Removed category), 24 items each. English 

words were translated to Italian. The control condition (1-back matching task) was 

performed on Italian function words (matched on word length to experimental stimuli).  

 

Figure 4.1. Corpus clustering procedure used to derive a semantic mode. A) Clustering 

of all 1481 items shows naturally emerging conceptual structure. Known division such 

as living and non-living can be readily seen. B) Zooming in on a representative cluster, 

we see that conceptually similar items, such as musical instruments, cluster together. C) 

Averaging across category exemplars we demonstrate category relatedness 

(dendrogram) and the model (matrix) used.  

 

To get a measure of how categories are related we average the feature vectors 

belonging to the same category (e.g. for domestic animals that would be averaging 
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’cat’,'dog’, etc.). Word embeddings for 24 items for each category (24x6773) we 

averaged into a 1x6773 co-occurrence vector, describing the category. We then 

correlated category vectors to build a 16x16 category similarity matrix. It is important to 

note, that the importance of semantic model lies not with categorical differences (animals 

vs food), but with the quantified degree of relatedness (how different are animals from 

food).  

 

Procedure 

Stimuli were presented in a blocked design. Each block started with 4s of fixation, 

followed by the name of the category (e.g. “Household items”) for 4s, followed by an 

additional 2s of fixation cross. Then a stimulus from the category (e.g. “Spatula”) was 

presented in the screen for 2s, during which participants were asked to read the word 

and rate how typical it was or the given category (How typical is spatula of a household 

item). Participants rated the items on a scale from 1 (low typicality) to 4 (high typicality) 

using the button boxes provided. Blocks consisted of eight stimuli presentations, each 

category block was presented three times during the experiment so that 24 items were 

presented once, and all stimuli that participants saw were unique. Mean word length was 

M = 5.5, SD = 1.78 letters, ranged between 3 and 12 letters, and did not differ 

significantly between any pair of categories (all p > .001, independent samples t-test). 

 

Data acquisition 
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MRI data was acquired using SIEMENS Prisma scanner (field strength - 3 Tesla) with a 

64-channel head coil. Total of 720, T2* weighted EPI scans (voxel size - 3mm, isotropic) 

were acquired during the experiment. The experiment was split into 2 runs, each lasting 

12minutes (360 volumes). Functional scans were AC/PC aligned, and 30 axial slices 

(gap - 0.6mm, TR = 2000ms, TE = 28ms, image matrix = 64 64, flip angle =  75, 108mm 

brain coverage) were collected for each volume. To aid coregistration, for each subject 

we also collected a high resolution T1 weighted MPRAGE (1mm, isotropic) anatomical 

scan (208 saggital slices, image matrix  = 288mm 288mm, flip angle 12, TR - 2140ms, 

TE - 2.9ms). Stimuli were presented on a 42”, MR-compatible Nordic NeuroLab LCD 

monitor positioned at the back of the magnet bore that participants saw through a mirror 

in front of them. Stimuli were presented using a custom PsychToolBox 3 script running 

on top of Matlab R2017b.  

 

 

Data analysis 

Data were pre-processed with SPM12. Functional images were realigned, grey matter 

segmented, warped into common space and smoothed with 8mm FWHM kernel. Subject 

specific response estimates (beta weights) were derived by fitting a general linear model 

(GLM) to the data. GLM was estimated using a blocked design of 24 unique stimuli per 

each category and each block consisted of 8 stimulus repetitions. Each block was 

presented 3 times during the experiment. Estimated motion parameters from the 

realignment procedure were included in the model as regressors of no interest. To 
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isolate regions sensitive to semantic content we compute a contrast the average of all 

categories > function word 1-back matching control condition. We hypothesise that 

regions sensitive to semantic content might not overlap with regions sensitive to 

semantic structure. An omnibus, one-way ANOVA test was also computed, with 16 

categories serving as factors. ANOVA test highlights regions that demonstrate the most 

change across categories. Whole brain analyses served as bases for ROI selection.  

  

ROI definition 

Region-of-interesting definition procedure was the same for both contrasts (all vs control 

and ANOVA), figure 4.3. We selected regions of potential relevance based on previous 

literature (see Binder et al, 2009). Regions that were active but were not associated with 

semantic processing (e.g. activations in the striatum) were ignored. After identifying 

region of interest, we located nearest local maximum and drew a 6mm sphere around it. 

For each subject, category specific beta values were extracted for each ROI, for each 

run, averaged across runs and subjected to further analyses (see: multivariate 

analyses). Complete list of ROIs used can be seen in appendix 1. 

 

 

Multivariate analyses 

Multivariate analyses leveraged the patterns of activation either across voxels within a 

ROI (Representation Similarity Analysis (RSA)), or across a network of regions 

(netRSA), figure 4.2. For both RSA and netRSA procedures we measured pattern 
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similarity for each pair of categories. Similarity measure in a single region (RSA 

procedure) was a Pearson correlation between voxel patterns for all categories 

(pairwise). For netRSA we averaged across ROI voxels and for a given category pair, 

computed similarity of categories across regional activations (network pattern 

correlation). Both RSA and netRSA procedures result in a 16x16 category similarity 

matrix. The similarity matrix for each subject is then correlated to the semantic model 

(see: stimuli & model) and the correlations are subjected to a one sample t-test (null 

hypothesis r=0) to establish statistical significance (correlation between model and 

regional or network representational spaces are referred to as RSA fit and netRSA fit, 

respectively). To test whether information is predominantly distributed or localized, we 

use a stricter test and directly compare netRSA fit version average model fit in individual 

regions (null hypothesis that netRSA = average regional model fit). 
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Figure 4.2. Multivariate analyses procedures. Regional model fit (RSA) was averaged 

across regions and compared to network-level model fit (netRSA). 

 

To directly compare the two methods, we average across RSA fit from different regions, 

and compare against netRSA fit, in a paired samples t-test (see results: Information 

content at the Network-level vs Region-level). By Comparing average RSA fit against 

netRSA fit, we isolate the information that emerges from inter-regional coordination, after 

accounting for isolated regional information content. Lastly, we investigated fine-grained 

representation (both within individual regions and across the network), by reducing both 

the model and the data (n=16) to only include living (n=8) and non-living (n=8) 

categories, in separate tests. Investigation of fine-grained representation accounts for 

large-scale differences (broad differences between living and non-living categories) 

potentially influencing the model fit.  
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Results 

Removed category 

Whole brain analyses revealed that one category out of 17, consisting of leisure related 

concepts (“book”, “ball”, “song” etc.) produced unexpected brain activation patterns, 

affecting the whole brain analysis results. ANOVA contrast showed unexpected range 

of F values (up to 60) across 17 categories. After removing leisure category, F values fit 

within an acceptable (from 0 to 7) range. We removed leisure category from all 

subsequent analyses.  

 

Behavioral Results  

Across 16 experimental categories, there were significant differences in reaction times, 

F(15,225) = 3.952, p < .001. On average, however, there were no difference between 

living (n=8) / non-living (n=8) category domains, t(17) = -0.62,p = 0.5453. Typicality 

ratings differed across 16 categories, F(15,225) = 15.659, p < .001. Items in domestic 

animals category were rated as being less typical than other categories. Differences in 

behavioural responses were anticipated during experiment design and steps taken to 

elucidate whether they affected variables of interest are discussed further (see below: 

response similarity does not explain brain data).  

 

ROI selection 
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Highlighting regions sensitive to semantic content, we observe broad clusters of 

activation spanning temporal, parietal, frontal & medial lobes, consistent with findings 

from previous studies investigating semantic processing (all categories > control 

condition, p < .001,), (figure 4.3, red). Next, we isolate regions sensitive to change across 

categories, as opposed to change relative to control condition (Figure 4.3, green). We 

computed an ANOVA contrast across 16 categories. Whole brain maps served as basis 

for ROI selection. Two different sets of ROIs were analysed, corresponding to two 

different whole brain contrasts (all categories > control & an omnibus ANOVA). 

Categories > control contrast were designed select regions common to all categories, 

while ANOVA ROIs highlighted regions specialized to only some categories.  
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Figure 4.3. Whole brain analyses. All categories vs control contrast (red) shows 

expected, broadly distributed set of semantic regions reliably activated by all tasks. In 

contrast, ANOVA (green) shows regions demonstrating most variation across tasks. 

Peaks from both contrasts served as ROI centres for multivariate (RSA and netRSA) 

analyses 
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Regions common to all categories do not encode category relationships 

We first investigate sensitivity to semantic distance within regions common to all 

categories (all categories > control ROIs). There was no concordance with the model 

either at the network level, netRSA fit - t(17) = 1.55, p = .139, or at a single region level, 

(RSA fit, all t < 2.482, all p > 0.024 (unc.)). Further analyses focused on ROIs that 

demonstrated sensitivity to change across categories (defined via omnibus ANOVA).  

 

Sensitivity to semantic distance in individual regions 

Having seen that regions commonly activated for all categories (all categories > control 

contrast) are not sensitive to semantic distance (individually, or as a network), we shift 

our focus to a different set of ROIs, defined via an omnibus ANOVA test. This highlights 

regions that exhibited most change across semantic categories (figure 4.3, green). Here 

we report an investigation of how these regions behave at the individual level. Fitting 

model individually to semantic regions (RSA fit), we see that some regions contain rich 

information about semantic relationships. Three regions survived multiple comparisons, 

left OFC t(17) = 5.01,p < 0.001, left PHG t(17) = 3.81,p = 0.001 and left pMTG t(17) = 

3.34,p = 0.004. This suggests that there is substantial amount of semantic information 

contained locally (in individual regions).  
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Figure 4.4. Regional model fit in regions significantly active in ANOVA contrast. Voxel 

activity patterns in these regions were compared to semantic model for each region 

individually. Activity in OFC, PHG, and pMTG significantly correlated with the semantic 

model (star denotes p < .05, corrected for multiple comparisons). 
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Information content at the Network-level vs Region-level 

After investigating local information content, we focus on inter-regional behavior, by 

looking at these regions as a network (netRSA procedure, figure 4.2). netRSA revealed 

that network patterns reflect canonical similarity relationships t(17) = 3.82,p = 0.0014. 

Further analysis, directly contrasting information contained in individual regions 

(average of individual region model fit, figure 4.4) versus information contained across 

the network (netRSA fit), revealed a significant information gain when considering 

network as a whole, instead of looking at the sum of its parts t(17) = 2.40,p = 0.0283. 

Introducing across-region effects, by averaging regional RDMs results in information 

content equal to that observed in netRSA, difference between averaged RDMs > netRSA 

t(17) = 0.41,p = 0.6876. Taken together these results suggest that sensitivity to semantic 

relationships between categories is reflected in the network activity i.e. as the interaction 

between brain regions, more so than local activity. 

 

Response similarity does not explain brain data 

It is possible that systematic differences in response patterns across categories 

influenced the pattern of cortical response. Here we investigate whether our results were 

potentially confounded by variations in typicality ratings or reaction times (RT). For each 

subject we constructed separate RDMs based on RT and typicality ratings. We then 

compared them to netRSA and individual region similarity matrices to see whether 

reaction times or rating had an effect on the brain’s representational structure. 

Behavioural matrices did not significantly correlate with network-level RDM (t(17) = -
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1.78,p = 0.0930) or individual region RDMs (typicality fit: t < 1.70, p  > .107, RT fit:  t < 

1.84, p > .083).  

 

Regional vs Voxel coordination 

Is the information about category distinction encoded between regional or voxel 

interactions? To answer this question, we investigate whether RSA can be further 

improved by collapsing across ROI voxels to form a combined ROI (583 voxels). We 

then performed the same RSA procedure as we did for individual ROIs (figure 4.2). 

Comparing voxel concatenated netRSA vs regionally averaged netRSA revealed no 

difference in model fit t(17) = 0.54,p = 0.595, and high correlation between RDMs 

(M=0.908, SD = .057) suggesting that regionally averaged network activity captures as 

much information as fine grained voxel patterns.  

 

Fine-Grained representation of categories 

Lastly, we sought to investigate whether network-level activity is enough to allow 

discrimination of fine-grained category distinctions. We separately computed semantic 

template fit for living and non-living kinds. There was no information that would 

differentiate between items within living kinds t(17) = 1.26,p = 0.2256 or within non-living 

kinds t(17) = 1.08,p = 0.2941 encoded at the network level. Individually, none of the 

three regions were able to differentiate between different living kinds (all t < .79, all p > 

.219). Left PHG gyrus was sensitive to differences between non-living things t(17) = 

2.22,p = 0.02, but pMTG and OFC were not (t < 1.44, p > .08).  
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Discussion 

In the current experiment, we investigated the distributed nature of object category 

knowledge. Extending the approach that we applied to person knowledge, we sought to 

investigate whether knowledge about conceptual distance of object categories is 

distributed or localised. Contrasting local versus network-level activity we observed that 

there is more information about conceptual distances at the network level, than is stored 

locally. 

More specifically, by looking at brain pattern similarities, we were able to capture 

the cognitive processing happening within individual regions, as well as network overall. 

By then comparing representational spaces with a corpus derived semantic model we 

measured the sensitivity to semantic distance. We demonstrated that regions contribute 

to a robust network level representation. This work highlights the importance of focusing 

on cross-regional interactions, in addition to regional function.  

 

Model  

Our investigation is only as good as our model. To look for brain regions reflecting 

semantic distance we built a reference model to compare against. We sampled a broad 

set of concepts and chose word co-occurrence as a measure of overall similarity 

because it allows us to identify groups of nouns belonging to different contexts. By then 

clustering bottom-up, i.e. allowing item similarity form homogenous groups - we 

effectively sample naturally occurring conceptual categories. This approach proved 
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robust - the model contains well-known divisions - the main one separating living/non-

living kinds. Within the living domain of categories, we observed a known division 

between animals and vegetables. Interestingly, composite foods (such as cake, and tea) 

share context similarity with living things, this, while factually untrue - is a feature 

observed in both feature generation tasks, as well as neuropsychological literature. 

Patients with impaired living kind knowledge usually have impaired non-living food 

knowledge (Cree & McRae, 2003). The relative degree of semantic relatedness between 

categories in our model is also consistent with previous literature on semantic feature 

production (vegetables cluster late with food, musical instruments cluster late with non-

living things, body parts cluster with non-living (Cree & McRae, 2003)) suggesting that 

we have faithfully captured similarity relationships between our concept categories.  

 

Regions not sensitive to semantic distance 

Focusing on regions more active during semantic access than the control condition, we 

observe expected network of semantic regions. All categories, overall, recruited a well-

known semantic network of regions, spanning temporal, parietal, frontal and medial 

lobes of the brain. This validated the efficacy of our task in eliciting semantic activation 

and served as a starting point for a targeted analysis of regions involved in semantic 

cognition. Investigation of this network revealed no sensitivity to semantic distance. 

Neither activation patterns within individual regions, nor combined activity across a 

network reflected semantic distance between categories. One explanation of this pattern 

of results can be that focusing on peaks common to all categories imposes a constrain 
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that dilutes specificity and rewards domain-general voxels. This is consistent with some 

accounts of neuroimaging of semantic memory that observed no categorical differences 

(such as Devlin et al., 2002), however others have (e.g. Fairhall & Caramazza, 2013b). 

Given this discrepancy in the literature, we shifted our focus and used an omnibus 

ANOVA test to highlight regions most sensitive to change across categories, instead of 

those responding to most categories. This targeted investigation revealed small foci of 

activation, often close to the previously described peaks. We interrogated the 

coordinated and isolated activity of these regions to see whether the change across 

categories that they exhibit corresponds to conceptual distance.  

 

Statistical power 

All categories > control task contrast revealed a network of regions sensitive to semantic 

content. These regions were significant at acceptable thresholds (peak p < .001, k > 20). 

We do not think that increasing statistical power would have drastically changed the 

location of these regions. Even given the acceptable locations of these regions, neither 

fine-grained voxels patterns, nor network level patterns reflected semantic distance, as 

measured RSA. On the other hand, defining regions via omnibus ANOVA test yielded 

much smaller activation foci. While it is possible that such effect could be due to 

statistical power, it can also signify reliably similar activation magnitude differences for 

different categories in our experiment. If regions chosen via ANOVA contrast were not 

involved in semantic processing one would expect them to not fit the semantic model 

tested. Instead, modest ROIs revealed by ANOVA showed were robustly sensitive to 
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semantic distance at both regional and network levels of analysis. Taken together, 

statistical power seems to have been adequate in this experiment.  

 

 

Network level representation of semantic distance  

By focusing on peaks sensitive to change across categories we highlight a network of 

regions that contribute to a robust, distributed representation of semantic content. We 

then directly compared representational content of individual regions, and the network 

as a whole. This revealed that more information about semantic distance emerges as a 

product of coordinated activity than is contained within individual regions. These results 

support distributed theories of conceptual organisation. We further demonstrate that 

network pattern devoid of local information (netRSA) captures as much information 

about conceptual distance as a measure that includes both local and distributed 

information (voxel concatenated RSA). This suggest that semantic distance of object 

categories is encoded in the macroscopic scale of regional interactions.  

Different theories have been proposed to explain how the information is passed 

through a cortically distributed semantic network. Hub-and-spoke model (Rogers et al, 

2004) proposes a single hub within which modality-dependent representations 

converge. Distributed accounts (Tyler, Moss, Durrant-Peatfield & Levy, 2000) propose 

that categories can emerge without an explicit hub. Anderson et al. (2018) demonstrate 

the correlated nature the semantic system. They observed that the representational 

spaces of semantic regions are highly correlated, and elaborate sentence meaning is 
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jointly encoded across groups of brain regions with no convergence hub. Our findings fit 

within a distributed representation framework. While we observe that some key regions 

encode category relationships, we demonstrate that information encoded at the network-

level, (i.e. as a product of co-ordination) is significantly more robust.  

 

Regional sensitivity to semantic distance 

We uncovered three regions, robustly sensitive to semantic distance. Left lateralized, 

parahippocampal gyrus (PHG) posterior middle-temporal gyrus (pMTG) and orbito-

frontal cortex (OFC), showed significant fit with the expected distance model. All three 

regions have been previously reported to be active during semantic tasks (Binder, 2009). 

Sensitivity to semantic distances is an expected property of a high-level convergence-

hub region. We demonstrated that activation patterns in these regions reflect semantic 

distance. However, caution in interpretation is needed; Whether these activation 

patterns reflect conceptual distance or property (feature) processing is still unclear. 

Within domain differentiation is a strict test of knowledge representation. If a region 

houses robust semantic representations, it should reliably differentiate not only between 

conceptually different items (knowledge that “cat” and “spatula” belong to different 

domains of knowledge), but between relatively similar items as well (knowing that “cat” 

and “bird” are conceptually different animals). Here we discuss evidence of semantic 

processing observed within each region and weigh it against alternative explanations.  

When we tested the differences between concepts within a macro domain (within 

living and within non-living separate) activity patterns in the left PHG were indicative of 



 108 

conceptual non-living concept distance. Activity patterns within OFC and pMTG showed 

no sensitivity to within domain distance. PHG has been observed to be involved in entity-

specific semantic access. More specifically, PHG robustly responds to scenes & large 

objects (Bi, Wang & Caramazza, 2016). Fairhall, Anzellotti, Ubaldi & Caramazza (2014) 

observed cross-modal activation in this region, favoring inanimate place concepts. OFC 

and pMTG regions also did not show expected sensitivity. Our results showing sensitivity 

to semantic distance in pMTG replicates previous findings. Fairhall & Caramazza (2013) 

first observed robust sensitivity to semantic distance in this region suggesting a central 

role in semantic processing. We did not observe within domain sensitivity in the pMTG. 

Whether the pMTG is sensitive to subtle within category differences remains to be 

established but accumulating evidence suggests its involvement in broad knowledge 

representation with a possible preference for tool knowledge (Binder, 2009). Activity in 

OFC during semantic tasks is often reported but often not discussed. Traditionally 

ascribed roles of emotion regulation and reward processing (Bechara, Damasio & 

Damasio, 2000) it’s possible that activity in the OFC represents the reward value of the 

stimuli used. Cree and McRae (2003) showed that some categories comprising the living 

domain (animals, vegetables & foods) rank highly on the taste dimension, whereas non-

living things rank low, offering a non-conceptual explanation of observed activity in the 

OFC. Taken together, when we cautiously interpret nature of category organisation in 

these regions, our evidence does not out-weight alternative explanations of processing 

within these regions.  
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In summary, this chapter investigated the distributed representation of object 

categories. To relate the findings to previous chapters - when accessing person-

knowledge, category-general regions co-ordinate to jointly encode information. Person-

related information is represented in shared neural substrates and differences between 

them are reflected in different network-level patterns of activity. In contrast when 

interrogating conceptual knowledge of object categories, we observed that regions 

common to all categories do not contribute to a significant network-level representation. 

Nor do they contain information about conceptual distance individually. When we 

investigated regions sensitive to change across categories (ANOVA contrast), we 

observed a network of regions contributing to a distributed representation of conceptual 

distance. While regions involved in person knowledge provide overlapping contributions, 

knowledge about the conceptual distance of object might be more sensitive to distinct 

contributions from specialized regions.  
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Chapter 6: General Discussion 

Aims of the thesis 

This thesis asked whether semantic knowledge is represented in the coordinated activity 

across networks of interacting regions. The question was motivated by knowledge that 

semantic processes are broadly distributed across the cortex. Diverse kinds of thinking 

engage both sensory/motor regions associated with perception and amodal regions, such 

as the ones involved in internalised cognition. Little is known about how the coordinated 

activity across regions gives rise to the wide repertoire of human conceptual knowledge. 

In a series of experiments, we investigate the representational structure not only of 

individual regions, but of networks as a whole. Aided by modern computational tools, we 

can get a glimpse at the coordinated processing across brain regions, as well as the 

structure of different cognitions. We demonstrate the correlated nature of knowledge 

representation - diverse cognitive efforts rely on overlapping neural substrates. We also 

highlight that regions do not perform functions in isolation – most-all cognitions recruit 

multiple brain regions. We conclude that representation of knowledge is broadly 

distributed across brain networks.  

 

Person knowledge 

Keeping track of people in our lives is a complex task. Each person that we know has a 

wealth of associated information such as their name, job, shared memories and social 

traits. How the brain organises and keeps track of this information is a fundamental 

question in social neuroscience. Early accounts postulated a special cognitive 
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mechanism for recalling someone’s name, and that the rest of person-knowledge comes 

from a singular cognitive system (Bruce and Young, 1986). Later accounts, incorporating 

neuroimaging evidence, highlighted that different person knowledge aspects rely of 

different neural substrates. Haxby, Hoffman & Gobbini (2000) described a distributed 

neural network, comprised a core element involved in perception, and an extended 

system involved in person knowledge. The model also suggests that different cognitions 

rely differentially on extended system regions. For example, faces associated with strong 

emotions engaged the amygdala, while accessing episodic memories engaged regions 

involved in theory of mind (Gobbini & Haxby, 2007). These complex tasks are unlikely to 

accomplished in individual regions alone. Further research demonstrated that all regions 

of the extended system are recruited regardless-of and even in absence-of an explicit 

task (Todorov, Gobbini, Evans & Haxby, 2007). Together the results suggest a complex 

and correlated nature of person knowledge. In a series of experiments, we interrogated 

the structure of person knowledge and the brain mechanisms responsible. 

 

Behavioural indices 

Investigating behavioural indices of person-knowledge we start to observe that some 

cognitive efforts are similar to each other, and different from others. When we explicitly 

asked participants to arrange person-knowledge exemplars according to their similarity, 

we observe that social and perceptual tasks are rated being subjectively similar, and 

different from the ones that required remembering biographical facts, names, or 

memories. Subjective similarity between retrieval of episodic memories and biographical 
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facts put a well-known distinction between these two domains (Tulving, 1972) into a 

broader perspective. We observe that the largest distinction is between trait (social or 

physical) judgements and other forms of knowledge (episodic, semantic and nominal). 

We go on to show that some this structure can be recovered from implicit measures, 

patterns of response ratings provide insight into this latent structure of cognitive efforts. 

To investigate whether behaviorally similar tasks share similar neural mechanisms, we 

further investigated the neural activity associated with these cognitions.  

 

Person-knowledge network organisation 

When making sense of the world around us, the brain processes perceptual and semantic 

attributes separately. When perceiving faces, regions of the core perceptual system 

(OFA, FFA, pSTS) coordinate in analysing the visual features of the face culminating in 

face identification (Haxby, Hoffman & Gobbini, 2000). An ensemble of extended system 

regions works together to retrieve and integrate diverse information about the person.  

By looking at patterns of similarity across brain areas we investigate how the coordinating 

brain regions in the core/extended person perception systems encode person knowledge. 

Building on previous findings we demonstrate that subjective grouping of tasks is largely 

replicated using multivariate brain analyses. We observe that, in the context of the broad 

repertoire of person-knowledge, tasks cluster into socio-perceptual judgements, episodic-

factual retrieval and nominal knowledge. We highlight that task differences arise not from 

individual regions activity, but rather from subtle cognitive tunings and regional co-

ordination. Focusing on cognitive tuning, we observed that most-all regions are involved 
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in most-all cognitions, with subtle variations between them. For example, while ATL is 

active for all cognitions, relating tasks to one another we observe that it is preferentially 

recruited by social domain of tasks. Similarly, Angular gyrus contributed to all cognitions, 

but is tuned towards episodic memories.  

To ensure that our findings were robust, and to demonstrate input modality 

invariant knowledge representation, we additionally replicated the experiment using 

names, instead of faces, as a stimulus. Previous research has shown that the extended 

system regions, associated with retrieval of person knowledge, are engaged both by 

faces and by names (Gorno-Tempini et al., 1998; Nielson et al., 2010). Whether stimulus 

modality affects the representational content and functional coordination within these 

regions remained unclear. This second neuroimaging experiment allowed us to 

demonstrate the modulatory role of the IFG, which co-ordinates either with the core 

perceptual regions during face-viewing, or intrinsic cognition network during reading. This 

possibly reflects attention orientation. When viewing faces, more attention is directed 

towards the stimulus, while during name reading, attention is focused on internal stores.  

We also observed some notable stability when going across stimulus modalities. The 

internalised cognition network remains tightly correlated regardless of stimulus modality, 

suggesting that the representations within are amodal. These results contribute to an 

emerging consensus that these regions form the brain’s general semantic network 

(Binder & Fernandino, 2015). Originally termed the default-mode-network (DMN) - 

defined by its task-deactivated characteristics (Raichle et al., 2001), recent evidence has 

implicated DMN in broader semantic processing, namely internally focused cognition. 
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These regions are frequently recruited together, suggesting coordinated processing. We 

expanded on these results, showing that during access to person-knowledge, these 

regions interact as a functional unit, characterised by shared response similarity across 

cognitions. Internalised cognition regions had a different response profile from other 

extended system regions, such as the amygdala and the ATFP. During name reading, 

we observe increased co-ordination of these regions with the IFG, consistent with 

previous accounts (Humphreys et al., 2014). Coordination between internalised cognition 

network and IFG is both stimulus dependent (present during reading, but not picture 

viewing) and specific to semantic content (not present during meaningless word reading).  

To summarize the experiments on person knowledge, we demonstrate the complex and 

correlated way that person-knowledge is encoded. We show that relationships between 

different cognitive efforts as seen in subjective ratings and correlated patterns of 

responses can be traced back to shared neural mechanisms. Person-knowledge is stored 

in overlapping substrates within the extended system for person perception. These 

regions individually are involved in all person-knowledge efforts. Regions within the 

extended system coordinate to jointly encode diverse kinds of person-knowledge, 

abstracted from perceptual features. 

 

General Semantic Object-Knowledge 

Accessing semantic representations reliably engages a broad network of regions (Binder 

et al., 2009). However, questions of how the coordinated network-level activity endows 

our capacity for flexible conceptual knowledge has been less prominently explored. 
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Building on the findings from previous chapters, we investigated whether the approach 

we used to characterize the distributed representation of person-knowledge generalizes 

to broad conceptual categories. Within regions more active when accessing semantic 

knowledge (typicality task) compared to the word reading control task, there was little 

information about conceptual distance both individually (voxel level MVPA) and when we 

treated these regions as a network (netRSA). This is surprising given the previous 

research showing sensitivity to semantic distance within these regions at the voxel level 

(Fairhall & Caramazza, 2013; Liuzzi et al., 2015; Bruffaerts et al., 2013; Devereux, Clarke, 

Marouchos & Tyler, 2013; Simanova et al., 2012). However, the lack of effect in the 

netRSA analysis is not inconsistent with previous reports that averaged regional activity 

within these regions is not modulated by semantic object category. This may indicate that 

knowledge about semantic categories is represented differently within the brain semantic 

network from people-knowledge. Another potential explanation for the lack of significance 

in netRSA analysis is the different cognitive tasks investigated. Whereas during person-

knowledge we investigated a single category and manipulate cognitive task, in the last 

study investigated the effect of semantic class with a single typically of task – which may 

not influence average regional responses in the same fashion.  

Alternatively, this could be because of our voxel selection procedure. Contrasting 

all categories versus control condition may have imposed a homogenizing effect on the 

activity patterns – diluting regional specialization. This methodological decision may 

potentially account for the lack of both netRSA and individual regions RSA results.  
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When we selected regions that varied the most across categories, we observed a 

network of regions where differences between the multivariate patterns of activity 

conformed to our a priori semantic model. A result that indicates that semantic 

representation of object concepts is encoded across the ensemble activations patterns of 

this network. Moreover, we directly compared local and distributed information content by 

comparing the a priori semantic model fit of netRSA to the combined fit of voxel level 

RDMs in single regions. We observed that, within the regions showing the greatest 

sensitivity to semantic category, general semantic knowledge is strongly represented in 

the coordinated activity of these regions. A pattern that we previously saw in the person-

knowledge. Taken together, these results show that coordinated activity across regions 

encodes object category relationships. Overall, similar to the manner in which person-

knowledge relies on co-ordination across regions subtly tuned to different cognitions – 

understanding of semantic distance relies of the interplay of regions tuned to different 

categories. However, the analytic approaches used seem particularly sensitive to the ROI 

selection process. While independent ROIs selection (chapters 3 and 4) or ROI selection 

based on variation across conditions produces sensitive ROIs, selection based against a 

single referent condition appear to homogenize differential effects. Future work may 

benefit from focusing on regions defined via voxel-level multivariate pattern analysis (c.f. 

Fairhall & Caramazza, 2013), which could result in increased sensitivity to semantic 

distance. 
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Broader Implications 

Mechanisms of semantic representation is a topic of debate. Questions regarding 

grounded/disembodied representations, hub vs distributed nature of these 

representations are topics of active debate. Emerging evidence from studies of perception 

suggest that different forms of information are represented in the coordinated activity 

across multiple regions. Wang et al. (2016) demonstrated that different stimulus 

categories such as faces, scenes animals and tools can be discriminated by whole-brain 

connectivity patterns across different regions. Authors showed that alterations in 

connectivity between regions carry information about stimulus category being viewed – 

lending credence to the idea that information can be encoded in the cross-regional 

communication. The effect persisted even when activation magnitudes in category 

preferring regions was regressed out as well as when category preferring regions were 

excluded from the analysis – suggesting that information sufficient for category 

discrimination is present in the distributed correlation patterns between traditionally 

category-general regions.  

Further stressing the importance of distributed knowledge encoding - Fang et al 

(2018) showed that damage to white matter tracts results in impairments not explained 

by the functional properties of the regions they connect. Authors constructed an RDM 

representing object-naming impairments associated with lesions in different white matter 

tracts. Using RSA, authors showed that white matter RDMs could not be explained by 

RDMs in the grey matter regions that were being connected.  
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Evidence presented in the experimental chapters of this thesis suggest that human 

conceptual knowledge might be similarly encoded in the interactions across multiple – 

general purpose regions. These results are seemingly at odds with theories which 

suggest that ATL as an integration hub of semantic knowledge (Patterson et al., 2007). 

However, it is consistent with a view which posits ATL as a part of a network of regions 

exhibiting hub-like behavior (see next section). 

 

Single hub or multiple hubs.  

The role of ATL in semantic knowledge has been well established. ATL is active during a 

variety of semantic tasks (Visser, Jefferies & Lambon-Ralph, 2010), and focal damage to 

the ATL (such as in semantic dementia SD) results in debilitating semantic deficits.  TMS 

applied to either left or right temporal lobe produces semantic impairments (Pobric, 

Jefferies & Lambon-Raph. 2010), consistent with the notion that ATLs are part of a 

semantic network. However, there is an ongoing debate whether it constitutes a sole 

semantic hub. Can, and if so, how can elaborate semantic knowledge emerge without an 

explicit hub? Distributed accounts, such as Tyler & Moss (2001) conceptual structure 

account suggest that robust semantic representation emerges without a conceptual hub. 

Binder et al (2009) described a network of regions is active for broad kinds of 

stimuli – potentially implicating multiple regions in hub-like activity. Pulvermüller (2013) 

discussed five candidates for a semantic hub, including but not limited to the ATL. 

Evidence reviewed by Pulvermüller (2013) suggest that in addition to the ATL - IFG, 
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Superior Temporal Gyrus, AG and pMTG, all receive processed, multi-modal input and 

have been reported to play a central role in semantic processing.  

Semantic Dementia (SD) affects both anterior and posterior temporal lobes, and 

while ATL is the most common site of atrophy, result do not rule out possible involvement 

of pMTG (Hickok & Poepel, 2004). Semantic deficits similar to those of SD are associated 

with acute left posterior temporal lobe damage (Hickok & Poepel, 2004), potentially 

implicating the pMTG as well as ATL in semantic knowledge. Neuroimaging studies 

suggest that lateral while ATL is involved in accessing knowledge about individual 

exemplars including people and places (Fairhall et al., 2013) it is relatively uninvolved in 

retrieving category level information (Fairhall & Caramazza, 2013). Fairhall & Caramazza 

(2013) showed that during category-level retrieval, pMTG and the precuneus contain rich 

information about conceptual distance. 

Left ATL resection in epileptic patients tends to impaired naming (in some groups), 

but not comprehension abilities, suggesting that ATL can play crucial a role in naming, 

but not necessarily overall semantic representation (Ives-Deliperi & Butler, 2012). In line 

with these findings - Bi et al. (2011) described a glioma patient for whom left ATL resection 

produced naming, but not conceptual deficits, calling into question ATL role as a sole 

conceptual hub.  

These results, together with evidence presented in this thesis suggest the 

presence of not a single hub located in the ATL, but a network of regions containing rich 

conceptual information, jointly encoding conceptual structure. One of the clearest 

illustrations of this was in Chapter 5, where we present evidence that knowledge about 
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semantic distance about object concepts is represented in an ensemble of regions, more 

than in single regions. In Chapter 3 we demonstrated the generality of the semantic 

system. We presented evidence that regions involved in person-knowledge respond to 

multiple kinds of semantic demands, and person-knowledge structure is encoded across 

these regions. Chapter 4 provided evidence that conceptual structure encoded is robust 

and cannot be explained away by perceptual effects. Together these results further the 

notion that conceptual knowledge relies on multiple interacting regions.  

 

System redundancy 

We observed that the brain semantic system responds to a broad range of stimuli (object 

concepts of different categories, different kinds of person knowledge, written and pictorial 

stimuli). For any particular stimulus, multiple brain regions are engaged. This raises a 

question whether these regions process redundant information.  

 Other brain networks exhibit similarly broad-tunings. For example, visual 

attention recruits a network of regions spanning the frontal and parietal lobes. While often 

recruited together, these regions perform different tasks. Across multiple studies, 

functional neuroimaging studies delineated a ventral aspect involved in the detection of  

salient, exogenous, stimuli detection and dorsal attention system responsible for 

endogenous attention orientation (Corbetta & Shulman, 2002). It is likely that generality 

in the semantic system reflects something similar – namely that regions involved in 

conceptual knowledge perform not redundant, but complementary functions.  
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 Two pieces of evidence from this thesis indicate that representation contained 

within regions of this network are not redundant with one another. The first is the 

differential response profiles observed across regions shown in stacked bar plots in 

Chapter 3 (c.f. figure 2.3). With respect to the representation of person related attributes, 

it can be seen that person-knowledge is not represented in all regions the same way – 

regions exhibit different tunings. This suggests that activation, while being present for 

each of the cognitive domains, had differential, non-redundant, weighting within regions 

of this network. Following on from this, we observe that regional clustering based on 

responsive profile across different person knowledge tasks (chapters 3 & 4, c.f. figures 

2.4, 3.3) groups regions into more similar (redundant) or different (diverse) functional 

profiles. Clustering regions based on response pattern similarity, in effect, measures 

redundancy – and would be evident in these plots. Instead, while we observe similarity 

between left and right hemisphere homologues – brain regions are grouped apart, 

indicating heterogenic rather than redundant contributions. Likewise, it is this diversity in 

the regional response profile that allow the taxonomic reconstruction of the relationship 

between different cognitive processes or between the representation of different 

categories of knowledge. Collectively these results suggest that brain regions contribute 

to a higher-order, network-level signature, jointly encoding conceptual knowledge. Just 

like voxel patterns in an individual region jointly encode stimulus features in a distributed 

code (Haxby et al, 2001), evidence presented in this thesis suggest that regions 

contribute to a distributed network level-code. The netRSA procedure we used throughout 

this thesis discounts local code - by averaging across voxels within a region. In Chapter 
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5 we demonstrated that conceptual distance between object categories is reflected in 

locally averaged network code. When we directly compared locally averaged netRSA 

versus combined voxel activity from all regions of interest, we observed that they capture 

similar levels of information. If regional response patterns were redundant, we would 

expect the information contained across the network to not differ from information 

contained within individual regions. Our results instead suggest the presence of sufficient 

heterogeneity across regions to facilitate robust encoding of conceptual distance.  

 Collectively, these results suggest a system where different (but overlapping) 

forms of knowledge are represented in different brain regions and that these regions work 

together to share information and endow the flexible combination of semantic information 

about the world. It is still an open question of how these different brain regions work 

together to allow us our rapid and effortless access to stored knowledge - one mechanism 

might be the parallel activation o elements of the semantic system. 

 

System Speed 

There is evidence for some parallel computation within the semantic system. In an MEG 

experiment Sudre et al (2012) suggested that low-level perceptual stimulus features can 

be decoded early (50ms) in the brain, while different semantic features can be decoded 

later (250ms - 450ms time window). Areas involved in semantic processing activate in 

parallel or in rapid (near-simultaneous) succession (Pulvermul̈ler et al., 2009).  There are 

subtle differences (10-20ms) between time-courses of broadly distributed semantic 

regions (STG, IFG), consistent with near-parallel accounts of semantic activation.  The 



 123 

amplitude of N400 meaning component, typically occurring in the 300ms-500ms window 

is modulated by semantic content, such as face familiarity or semantic anomaly 

(Debruille, Pineda & Renault, 1996; Lau, Phillips & Poeppel, 2008). Combined evidence 

showing that N400 component arises from a distributed network of sources (Federmeier, 

Kutas & Dickson, 2016) and is modulated in amplitude rather than latency (Federmeier 

et al., 2016) can be reflective of the coordinated output from a network of regions. 

 

Abstract words, emotion as a feature 

There are differences in how abstract and concrete words are encoded, demonstrated by 

differential impairments in stroke patients (Crutch & Warrington, 2004). However, a recent 

meta-analysis demonstrates that abstract and concrete words might be represented in 

the same network of regions (Wang, Conder, Blitzer & Shinkareva, 2010). Authors found 

that abstract concepts preferentially engage the LATL & LIFG, while concrete concepts 

preferentially engage PCC, PHG, pMTG and AG. That brain regions involved in concrete 

nouns processing, contain information about abstract word meaning similarity as well – 

suggesting at least somewhat overlapping neural substrates for concrete and abstract 

concepts. Furthermore, recent accounts suggest abstract knowledge is encoded similarly 

to concrete knowledge, if emotion, sociality are included as features. Abstract words tend 

to be more emotionally valanced than concrete nouns, and if affect is controlled for, known 

reaction time advantage for abstract words disappear (Kousta, Vigliocco & Andrews, 

2011). Combined these results suggest that while abstract concepts rely on different 
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features than concrete nouns, the encoding principles might be more similar than 

previously thought.  

 

Further directions  

This thesis focused on coordinated network activity rather than processing happening 

within individual regions. Further research could benefit from targeted investigations of 

regional contributions to network function. Incorporating functional connectivity measures 

can also further inform relationships between region and network function. 

 Large scale brain networks, like the one involved in person knowledge, is 

comprised of coordinating functional units. In chapters 3 & 4 We demonstrated that within 

core and extended systems for person knowledge, further divisions are visible based on 

regional tuning similarity. We observed that regions associated with internalised cognition 

(previously known as DMN) contribute shared response similarity across multiple person-

knowledge tasks. What exactly these regions contribute is rather unclear. Modern 

informational connectivity measures make it possible to track how information is passed 

and transformed between regions, or regional contributions to network-level function. 

Measures such as combinatorial MVPA (Wang et al., 2016) or modelling regional 

transformations across the networks (Anzellotti et al., 2017) enable us to track how 

information is transformed along processing steps. Distilling contributions of regions (or 

groups of regions) to network-level function would be a step forward in understanding 

how conceptual knowledge emerges from regional interactions. 
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Incorporating traditional functional connectivity measures can help uncover 

precise connections that are important for specific kinds of semantic knowledge encoding. 

Wang et al. (2016) demonstrated that information meaningful to stimulus category 

discrimination is present is groups of pairwise regional connectivity patterns. Building on 

evidence presented in this thesis, namely that groups of high-level, broadly-tuned 

semantic regions jointly encode information – further insights are possible. For example, 

which functional connections are most informative about conceptual categories? Are any 

of them redundant? This line of research would help better understand how information 

is passed between brain regions during semantic processing. 

Current thesis stressed the importance of network function. We presented 

evidence that robust information is encoded even at a coarse network level activity. Next 

logical avenue to pursue is investigate the contributions of individual regions to network 

level code. 

 

Conclusion 

Combined, evidence presented in this thesis speak to the distributed nature of semantic 

representation. Extending accounts that assume a single hub region – we stress the 

importance of a network of regions jointly encoding conceptual knowledge. Different kinds 

of person-knowledge and information about sematic distance of object categories emerge 

as a product of the coordinated activity across multiple regions. For person-knowledge, 

we observed that most-all regions are involved in most-all person-related cognitive 

domains but that subtle differences between regional profiles contribute to distributed 
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representations of knowledge. We observe conceptual knowledge about objects is 

similarly distributed across the broader semantic system – network activity conforms to 

semantic distance model – and to a greater extent than the within-region multivariate 

pattern when combined across regions.  
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Appendix 1 
 

ROI coordinates used in chapter 4. 
 
 
Coordinates provided in MNI space. 
 
 
ANOVA contrast  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
All > Control ROIs  
 

Hame Hemisphere X Y Z 

vmPFC M -4 26 -16 

dmPFC L -10 46 42 

Prec M -6 -54 14 

VTC R 26 -18 -18 

VTC L -34 -30 -20 

OFC L -40 30 -14 

OFC R 24 28 -12 

IFG L -48 28 4 

IFG R 48 36 18 

Name Hemisphere X Y Z 

Prec. M 0 -52 24 

RSC R 14 -56 18 

RSC L -12 -56 16 

pMTG L -56 -58 -6 

pMTG R 60 -46 2 

PHG L -30 -40 -12 

PHG R 34 -34 -16 

vmPFC L -6 44 2 

OFC L -24 28 -14 

OFC R 24 26 -14 

IPL L -52 -48 44 

IPL R 46 -62 46 
AG L -48 -67 27 
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pMTG L -60 -48 -10 

AG L -38 -62 30 

AG R 38 -68 34 

ATL L -62 -16 -20 

ATL R 60 -12 -24 
 

 

 

 


