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Abstract

Preference-based decision problems often involve choosing one among a large set of options,
making common tasks like buying a car or a domestic appliance very challenging for a cus-
tomer to handle on her own. This is especially true when buying online, where the amount
of available options is humongous, and expert advice is yet limited. Recommender systems
have become essential computational tools for aiding users in this endeavor. Recommender
systems represent one of the most successful applications of arti�cial intelligence. In the last
decades, several recommendation approaches have been proposed for di�erent types of ap-
plications, from assisted browsing of product catalogs to personalization of results in search
engines. Depending on the application, the job of the recommender system may be to recom-
mend a satisfying option for the given context, as in �nding the next best song to play, as op-
posed to helping the user in �nding an optimal instance, e.g. when looking for an apartment.
The former is generally handled by data-driven approaches, such as collaborative �ltering
and contextual bandits, while in the latter case data is usually scarce, making it necessary
to employ specialized algorithms for preference elicitation. Preference elicitation algorithms
interactively build a utility model of the user preferences and then recommend the instances
with the highest utility. Preference elicitation is especially e�ective when recommending
infrequently purchased items, such as professional work tools, electronic devices and other
products that can be explicitly stored e.g. in the database of an e-commerce website. Standard
preference elicitation algorithms, however, struggle when the options are so numerous that
cannot even be explicitly enumerated, and instead need to be represented implicitly as a col-
lection of variables and constraints. Indeed, when a customer wants to con�gure a product by
putting several components together, e.g. for a custom personal computer, the option space
is combinatorial and grows exponentially with the number of components, making it imprac-
tical to store every single feasible combination explicitly. This is an example of constructive
decision problem, in which an object has to be synthesized on the basis of the preferences of
the customer and the constraints over the con�guration domain. Constructive problems such
as product con�guration have traditionally been addressed by specialized con�gurator sys-
tems, which guide the user through the con�guration process component by component and
check whether the user choices are consistent with the set of feasibility constraints. Over the
years, however, the limitations of product con�gurators for mass customization have become
apparent. With the growing scale of con�guration problems, product con�gurators have be-
come more di�cult for non-experts to use and ultimately do not provide relief against the
“mass confusion” caused by the sheer amount of choice. Research in this �eld has progres-
sively been integrating recommendation technologies into con�guration systems, in order to
make them more �exible and easy to use. Preference elicitation in product con�guration has
been attempted as well but still remains a challenge.
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We propose a generic framework for preference elicitation in constructive domains, that
is able to scale to large combinatorial problems better than existing techniques. Our con-
structive preference elicitation framework is based on online structured prediction, a machine
learning technique that deals with sequential decision problems over structured objects. By
combining online structured prediction and state-of-the-art constraint solvers we can e�-
ciently learn user utility models and make increasingly better recommendations for complex
preference-based constructive problems such as product con�guration. In particular, we fa-
vor the use of coactive learning, an online structured prediction framework for preference
learning. Coactive learning is particularly well suited for constructive preference elicitation
as it may be seen as a cooperation between the user and the system. The user and the sys-
tems interact through “coactive” feedback: after each recommendation, the user provides a
modi�cation that makes it slightly better for her preferences. This type of feedback is very
�exible and can be acquired both explicitly and implicitly from the user actions. Coactive
learning also comes with theoretical convergence guarantees and a set of ready-made exten-
sions for many related problems such as learning in a multi-user setting and learning with
approximate constraint solvers.

In this thesis we detail our coactive learning approach to constructive preference elicitation,
and propose extensions for scaling up to very large constructive problems and personalizing
the utility model. We also applied our framework to two important classes of constructive
preference elicitation problems, namely layout synthesis and product bundling. The former is
a design process for arranging objects into a given space, while the latter is a kind of product
con�guration problem in which the object to con�gure is a package of di�erent products and
services. Within the product bundling application, we also performed an extensive validation
involving real participants, which highlights the practical bene�ts of our approach.
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Chapter 1

Introduction

Decision making is a central aspect of the human experience. We are constantly faced with
decision problems about ourselves and our state of a�airs, from which brand of cereal to buy
at the supermarket, to whether to vote for one party or the others in the general elections.
Indeed, some decisions have longer-term consequences and need to be made considering
several criteria, which makes them more signi�cant yet more di�cult. While in the everyday
life an individual usually does not employ analytical tools to decide which brand of cereal to
buy, she might want to do so for an expensive item such as a car or an apartment. In these
cases, a decision support system may be of great help in solving complex decision problems.

In some situations, the goal (or objective) of the decision maker can be precisely stated, such
as pro�t maximization or cost minimization, and thus the decision problem can be solved via
analytical methods from operations research and game theory [187, 281]. This is usually the
case for e.g. companies deciding upon their economic strategy. In other cases, when an indi-
vidual wishes to buy a product for instance, the decision problem is in�uenced by the prefer-
ences of the decision maker. To make a meaningful choice and to be able to solve analytically
this type of decision problems, the objective has to be clearly stated as a preference model,
which can then be algorithmically optimized to �nd the best decision to make. According to
the typical view in microeconomics and decision theory, when faced with a preference-based
decision problem, the goal of the decision maker is to maximize her utility [107, 186]. Loosely
speaking, the notion of utility relates to the degree of desire of an individual towards a prod-
uct, and represents the trade-o� between con�icting objectives, such as quality and price. In
decision theory, the utility is a function de�ned over a set of products, ranking them accord-
ing to the preferences of the decision maker. The best decision amongst a set of choices is the
one determined by maximizing the utility function. While not being universally accepted as
a �tting model of the human rationality in the decision-making process, utility maximization
is the principle that a decision support system uses to aid a user in making a good decision
when faced with a complex decision problem. The utility model, however, is not known a
priori, so the decision support system needs to estimate it using specialized preference elic-
itation algorithms [150, 206]. Preference elicitation is an interactive process with which a
preference model is progressively built as more preference information is acquired from the
user, enabling the system to provide recommendations of increasingly higher quality.
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In this thesis, we are interested in preference-based decision problems, and the algorithmic
processes to solve them, with the aim of developing e�cient and reliable decision support
systems. In particular, we will focus on a certain type of decision problems, for which an
object does not just have to be chosen among a set of available options, but has instead to be
“built” from scratch, assembling its components while maximizing the utility for the user and
satisfying a set of feasibility constraints. We call these constructive decision problems and the
process for solving them constructive preference elicitation [85]. Constructive problems arise
e.g. in product con�guration [100], in which a customer wishes to customize a certain type
of product by setting up its components one by one. This category also includes preference-
based design tasks, such as shaping 3D printed objects, and other combinatorial tasks with
unknown objectives to be estimated from the interaction with a user.

1.1 Motivation

With the growing availability of mass produced products, evaluating more and more choices
has become increasingly harder for human decision makers. This phenomenon is often re-
ferred to as the paradox of choice or product variety paradox. While theoretically more choice
should lead to products of higher quality and higher customer satisfaction, in practice this is
not the case due to the greater e�ort the customer has to put into making a choice over the
vast variety of available goods [74, 239]. This problem is exacerbated in the context of mass
customization, in which products can technically be highly customized through specialized
con�guration systems, yet users are often paralyzed by the amount of available choices, lead-
ing to so called mass confusion [139]. The development of decision support systems capable
of aiding users in making good choices in very complex scenarios is therefore becoming ever
more important.

Despite having been theorized decades ago [155, 207], mass customization has yet to be fully
realized in practice. Much progress has been made on the industrial side, as well as on the
product con�guration technology between the customers and the production process. How-
ever, less attention has been given to the development of e�ective user interfaces, which
should help users throughout the decision process by providing recommendations and ex-
planations, in order to mitigate the negative e�ects of the product variety paradox [267].
This lack of awareness in regard to the user needs explains the lag in adoption of mass cus-
tomization technology.

In the past decade, product con�guration systems have seen an increasing blend with rec-
ommendation technologies [94, 264]. Constraint-based recommenders, in particular, can be
used to assemble and recommend con�gurable products [97, 287]. Typically, these systems
also allow the user to interact and state preferences through preference elicitation or exam-
ple critiquing, i.e. stating what should the system do to improve the currently recommended
con�gurations [29, 211, 275]. Critiquing systems based on soft constraints [211], in particular,
permit the user to state expressive trade-o�s over the products attributes.

Most constraint-based critiquing systems, however, do not employ a rigorous utility maxi-
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mization paradigm, which is necessary to guarantee the eventual convergence to an optimal
solution. Also, many existing systems require the direct manipulation of the trade-o� objec-
tives, which is impractical for more than a few preference criteria. State-of-the-art preference
elicitation techniques, including regret-based and Bayesian preference elicitation [272, 274],
could be integrated into constraint-based con�guration systems, to provide a sound way to
collect preference information and guarantee the user to reach an optimal solution. These
techniques, however, come with their own set of shortcomings, mostly regarding noise re-
silience and scalability [86].

All the above issues, in one way or another, obstruct the wide spread adoption of mass cus-
tomization, and have prevented the implementation of fully functional decision support sys-
tems to help users in making optimal choices when dealing with complex decision problems.
Notwithstanding the plentiful research in this �eld, not a single method capable of addressing
all the above issues at once has been proposed. In this thesis, we aim at �lling this gap and
develop a complete, reliable and e�cient methodology for preference elicitation in complex,
constraint-based, combinatorial domains.

1.2 Contributions

In order to overcome the issues exposed in the previous section, a preference elicitation sys-
tem should exhibit certain properties. Guo and Sanner [128] provided a thorough list of
principles that modern preference elicitation techniques should abide to:

1. Real-time interaction

A preference elicitation system should be reactive to the user input and provide rec-
ommendations within a few seconds or less, in order to ensure a smooth interaction.

2. Multi-attribute domains

The utility model should adhere to the principles of multi-attribute utility theory, which
establishes the concept of evaluating feasible choices along several attributes and en-
ables e�cient preference elicitation by decomposing the utility over these components.

3. Low cognitive load

The system should provide an interaction method and a type of feedback that is not
overwhelmingly di�cult for the user to provide. In general, requiring the user to di-
rectly manipulate utility values, trade-o�s weights, probabilities or any cardinal value
has been proven to be too cognitively di�cult. More suiting types of interactions in-
clude pair-wise and set-wise comparisons, or other types of ordinal judgment.

4. Robustness to noise

Additionally to providing an interaction with low cognitive e�ort, a preference elicita-
tion system needs to account for noise in the user feedback, which can be introduced
by a number of external factors such as distraction and fatigue. This ensures the system
to provide good recommendations despite the uncertainty in the user response.
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5. Scalability (domain size w.r.t. amount of feedback)

A preference elicitation algorithm should be able to �nd a good solution with little
user feedback despite a large number of possible choices. Expanding the decision space
should not drastically increase the amount of feedback required from the user.

The previous �ve properties are indeed required by any preference elicitation algorithm able
to deal with large catalogs of products. We propose to complement the above list with seven
additional properties. While these properties are bene�cial for all decision support systems,
even non-constructive ones, their simultaneous satisfaction is a necessary condition for the
successful implementation of a constructive preference elicitation system. The following is
our complementary list of properties:

6. Constrained combinatorial spaces

As for constraint-based recommenders, in a constructive scenario such as product con-
�guration, the preference elicitation algorithm should be able to reason over intention-
ally speci�ed option spaces, whose instances are made up as combinations of various
attributes and are subject to several feasibility constraints.

7. Hybrid domains

Many existing preference elicitation algorithms deal exclusively with categorical at-
tributes. In a constructive scenario, we also require the algorithm to deal with numer-
ical attributes in conjunction to categorical ones. This is needed to ensure full repre-
sentability of constructive problems, and to allow more complex numerical trade-o�s.

8. Explicit and implicit feedback

In a constructive problem feedback might be scarce and hard to acquire, hence prefer-
ence elicitation algorithms need to be able to adapt to any kind of feedback available,
being it explicit or implicit, or even combinations of both.

9. Contextual information

Preference elicitation algorithms should formally take into account contextual infor-
mation. Besides being helpful for single runs, a preference model with contextual infor-
mation would be able to generalize to similar contexts and would be reusable to similar
tasks. By encoding user features as contextual information, for instance, a contextual
preference model would be able to exploit previously acquired information from sim-
ilar users to make good recommendations right from the beginning of the elicitation
process, thereby making it easier and quicker to reach satisfactory solutions.

10. Optimality guarantees

Most constraint-based systems provide heuristically “good” recommendations relying
on the incremental improvements of the user. We instead require formal guarantees of
convergence towards an optimal solution. State-of-the-art preference elicitation tech-
niques do provide such guarantees, but fail to do so in a fully constructive scenario,
while realizing all the above properties.
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11. Scalability (domain size w.r.t. inference time)

As mentioned, constructive domains are combinatorial, and as such they grow exponen-
tially with the number of attributes. Allowing numerical variables can even potentially
make the domain in�nitely large. While research on constraint solvers has made com-
binatorial problems more practical, scaling up to a large number of attributes is still a
challenge for a preference elicitation system, especially in relation to the requirement
of real time interaction. Nevertheless, to solve constructive decision problems, a pref-
erence elicitation needs to be able to scale up to a quite large number of attributes,
which is not doable with existing techniques.

12. Expressive trade-o�s

Preference elicitation techniques should permit the formulation of more complex trade-
o�s than just a weighted sum of the attribute values. Also, it is important to adapt the
set of preference criteria used by the utility model with respect to the particular user
needs [211]. Critiquing systems based on soft constraints provide such functionality,
yet soft constraints are no longer su�cient when the choice domain includes numerical
attributes. Greater expressive power is guaranteed by techniques working with gener-
alized additive independent (GAI) models (see Section 2.1.2), which can be formulated
over numerical attributes too, but they are usually assumed �xed and the user cannot
expand the set of preference criteria as doable in critiquing recommenders. A combi-
nation of the expressiveness of GAI models with the �exibility of critiquing systems is
needed in the constructive preference elicitation setting.

A constructive recommender system is expected to satisfy all the above desiderata. To the
best of our knowledge, no preference elicitation nor recommendation technique has been
proposed so to satisfy these twelve properties all together. Table 1.1 provides an overview
of the properties satis�ed by state-of-the-art techniques. Regret-based approaches utilize a
multi-attribute representation in conjunction with a constraint solvers, but do not directly
model noise in the user feedback. Bayesian approaches do model noisy feedback but do not
deal well with constrained domains and are more susceptible to increasing domain size (see
e.g. [86, 257]). Constraint-based recommenders are typically combined with critiquing inter-
faces and soft constraint solvers, which can enlarge the set of relevant preference criteria, but
are limited to Boolean criteria and typically do not provide optimality guarantees. We will
review in detail all the aforementioned techniques in Chapter 2.

This thesis presents a framework speci�cally designed for recommending structured objects
such as con�gurable products, which satis�es all the above requirements. To do so, we cast
the task of preference elicitation over the constrained combinatorial outcome space of a com-
plex decision problem as a speci�c type of machine learning problem. The learning tech-
nique we employ is online structured prediction, which is itself a combination of two broader
methodologies: online learning [50] and structured-output prediction [14]. Online learning is
a paradigm for solving sequential decision problems, in which information about the pre-
diction is revealed only after the prediction has been made. This is analogous to preference
elicitation, in which the feedback of a recommendation is observed only after the recom-
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Properties

Regret-based
preference
elicitation

Bayesian
preference
elicitation

Recommenders
with soft

constraints

Constructive
preference
elicitation

1. Real-time interaction X X X X

2. Multi-attribute domains X X X X

3. Low cognitive load X X X

4. Robustness to noise X X

5. Scalability (feedback) X X X X

6. Constraints X X X

7. Hybrid domains X X X X

8. Feedback (expl. & impl.) X X X

9. Contextual information X X

10. Optimality guarantees X X X

11. Scalability (inf. time) † † X

12. Expressive trade-o�s ∗ ∗ ‡ X

Table 1.1: Overview of our desired properties among di�erent techniques in the literature
compared to constructive preference elicitation. (X): property satis�ed; (†): depends on the
underlying constraint solver; (∗): only with GAI models (see Section 2.1.2); (‡): only with
Boolean criteria.

mendation has been made. Structured-output prediction is a learning method that deals with
structured objects, such as sequences, trees and graphs. Structured prediction can also be used
in conjunction with constraint solvers, which are the same solvers used by constraint-based
recommender systems [87, 259]. By combining online learning and structured prediction,
we obtain a learning method that attains the bene�ts of constraint-based recommenders and
state-of-the-art preference elicitation techniques, ensuring robustness to noise, scalability
and guaranteed optimality. Chapter 3 covers all the relevant machine learning background.

Whilst constructive preference elicitation can be achieved through any online structured pre-
diction method, this thesis focuses on one particular technique called coactive learning [247].
Coactive learning is an online structured prediction framework that can be used to learn a
user utility function from weak “coactive” feedback. Coactive feedback consists in receiving
from the user an “improvement” to the currently recommended solution. This is particularly
suiting for our purposes as it resembles the kind of interaction of a critiquing system, yet
being more �exible and with the possibility of being acquired implicitly as well as explicitly
from the user manipulations. Also, coactive learning comes with theoretical convergence
guarantees under very general assumptions, which apply to the constructive case as well.

The constructive preference elicitation setting will be detailed in Chapter 4. Our technique
provides the �rst ten of the above desired properties out-of-the-box. In its basic formula-
tion, domain scalability is tied to the underlying constraint solver, which is our performance
bottleneck, just like regret-based elicitation and constraint-based recommenders. Scaling up
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to larger constructive domains is therefore still a research problem, which we aim to ad-
dress in this thesis. One possible approach is to use local search solvers or other heuristics
to approximate the utility maximization procedure [82, 93]. This comes at the price of a
possible degradation of the recommendation quality and more feedback needed to reach an
optimal solution. We will explore this possibility in Chapter 7. In Chapter 5 we will discuss
an alternative approach that may, in principle, be able to scale to arbitrarily large spaces by
decomposing the constructive problem into “parts” and solve sub-utility maximization one
part at the time [84]. This could potentially attain an exponential speedup per iteration with
respect to standard constructive preference elicitation, allowing us to scale to much larger
constructive problems. Besides the increase in the amount of feedback needed, a drawback
of this approach is that it is only able to reach a “local” optimum with respect to the user
utility. Nevertheless, the local optimum found by this technique has bounded approximation
error, and provides a good trade-o� between domain scalability and risk of sub-optimality.

In our constructive preference elicitation framework based on coactive learning, the expres-
siveness of the utility function is on par with state-of-the-art preference techniques using
GAI models and recommenders using soft constraints. As it is, though, coactive learning
assumes the utility of the user to be �xed and cannot be extended with more informed pref-
erence criteria during the elicitation process. This remains a research problem that needs
to be addressed. We aim at doing so in Chapter 6, in which we introduce an extension to
coactive learning, combining it with example critiquing [255]. This technique progressively
enlarges the feature space that the algorithm works with, thereby making the utility model
more expressive. Using this technique, we can personalize the preference criteria of each
user utility model, without the need of stating them beforehand, which is advantageous for
both generalization and computational speed. This approach might require more e�ort from
the user, yet with clever selection criteria we can ask the user to state a critique only when
strictly necessary. We will show how this method is capable of reaching an optimal solution
while requiring far fewer features than standard coactive learning.

Further contributions of this thesis consist in extensively testing our technique on several dif-
ferent constructive scenarios, as well as the implementation of a number of applications. In
this thesis we present two applications of particular interest, namely automated layout syn-
thesis, a kind of design process, and bundling of products and services, respectively treated
in Chapter 7 and 8. The latter has also served as a test bed for an empirical study with real
participants, whose results highlight the practical bene�ts of our framework [83].

This thesis is the result of the following peer-reviewed publications (in chronological order):

[256] “Structured Feedback for Preference Elicitation in Complex Domains”. Teso, S.;
Dragone, P.; Passerini, A. In BeyondLabeler Workshop at IJCAI, 2016.

[82] “Constructive Layout Synthesis via Coactive Learning”. Dragone, P.; Erculiani,
L.; Chietera, M. T.; Teso, S.; and Passerini, A. In Constructive Machine Learning
Workshop at NIPS, 2016.

[255] “Coactive Critiquing: Elicitation of Preferences and Features”. Teso, S.; Dragone,
P.; and Passerini, A. In AAAI Conference on Arti�cial Intelligence, 2017.
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[81] “Constructive Recommendation”. Dragone, P. In ACMConference on Recommender
Systems (RecSys), 2017.

[85] “Constructive Preference Elicitation”. Dragone, P.; Teso, S.; and Passerini, A. In
Frontiers in Robotics and AI, vol. 4. 2018.

[86] “Constructive Preference Elicitation over Hybrid Combinatorial Spaces”. Dragone,
P.; Teso, S.; and Passerini, A. In AAAI Conference on Arti�cial Intelligence, 2018.

[84] “Decomposition Strategies for Constructive Preference Elicitation”. Dragone, P.;
Teso, S.; Kumar, M.; and Passerini, A. In AAAI Conference on Arti�cial Intelligence,
2018.

[87] “Pyconstruct: Constraint Programming meets Structured Prediction”. Dragone, P.;
Teso, S.; and Passerini, A. In International Joint Conference on Arti�cial Intelligence
(IJCAI), 2018.

[93] “Automating Layout Synthesis with Constructive Preference Elicitation”. Ercu-
liani, L.; Dragone, P.; Teso, S.; and Passerini, A. In European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-
PKDD), 2018.

[83] “No More Ready-made Deals: Constructive Recommendation for Telco Service
Bundling”. Dragone, P.; Giovanni, P.; Vescovi, M.; Tentori, K.; and Passerini, A. In
ACM Conference on Recommender Systems (RecSys), 2018.

1.3 Thesis outline

The following is an overview of the thesis structure and a brief summary of each chapter.

Chapter 2: Preferences and recommendations

This is the �rst of the two chapters discussing the background knowledge needed for de-
veloping our constructive preference elicitation framework. This chapter, in particular, de-
tails the topics of preference elicitation and recommendation systems. In the �rst part, the
decision-theoretic treatment of preferences is introduced, together with its application to util-
ity elicitation algorithms. The state-of-the-art approaches for preference elicitation are also
reviewed. In the second part, the literature on recommendation systems is reviewed, focusing
on constraint-based techniques and their application to product con�guration.

Chapter 3: Online and structured learning

This chapter introduces three important paradigms of learning that are the basis for our con-
structive preference elicitation approach, namely online learning, structured-output predic-
tion and coactive learning. The three are reviewed through the lens of the online convex
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optimization framework, which provides a simple yet powerful method for devising learning
algorithms in all three those scenarios. Online convex optimization also provides the proof
techniques used to analyze those algorithms.

Chapter 4: Constructive recommendation

In this chapter, we will formally introduce our constructive recommendation technique. We
will detail the components of constructive recommenders, their characteristics, and their
evaluation. We will also compare the constructive recommendation framework to the alter-
native techniques introduced in the previous chapters. We will then highlight the research
problems that we ought to solve, which will then be addressed in the next two chapters. Fi-
nally, we point out several applications of the constructive recommendation framework. This
chapter is based on the work published in [256, 81, 86, 85].

Chapter 5: Part-wise domain decomposition

This chapter details our methodology for partitioning the domain of a constructive decision
problem with the aim of reducing inference overhead and cognitive e�ort for the user. We
�rst introduce the formal framework for decomposing the domain and the utility function.
Next, we propose and analyze a coactive learning algorithm relying only on partial interac-
tion. The analysis will result in a convergence guarantee to a local optimum with bounded
approximation error. Experiments are also presented to validate the algorithm performance.
The technique and the results presented in this chapter are based on [84].

Chapter 6: Critiquing and feature elicitation

In this chapter, we introduce a method for augmenting coactive learning with example cri-
tiquing to personalize the features used in the utility model and solve the issue of learning
with a combinatorial explosion of possibly relevant features. We �rst review the literature
on critiquing systems and then propose a “coactive critiquing” approach, which elicits both
preferences and features through coactive learning and example critiquing respectively. We
analyze the proposed algorithm showing its eventual convergence to optimality. Finally, we
report experimental evidence of the performance of our algorithm compared to more in-
formed baselines. The coactive critiquing method and the experimental results exposed in
the chapter are based on [255].

Chapter 7: Automated layout synthesis

This is the �rst of two chapters on applications of constructive preference elicitation to real-
world problems. In this chapter we discuss the development of an automated layout synthesis
system based on constructive recommendation, which could be integrated into CAD-like
design software as a design-aiding component. We describe our approach and test it on two
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Symbol Meaning

x Input object / contextual information
y Output object / recommendation
X Input space / set of contexts
Y Output space / set of feasible objects

φ(x, y) Feature map
u(x, y) Generic utility function
w Generic parameter vector
y∗ True label / best object
w∗ Best hypothesis / true weight vector

u∗(x, y) True utility function
T Time horizon

t ∈ [T ] Iteration index
xt Input at iteration t
yt Prediction / recommendation at iteration t

ut(x, y) Utility function at iteration t
wt Estimate of parameter vector at iteration t

reg(xt, yt) Instantaneous regret at iteration t
regT Average regret up to iteration T
α Informativeness parameter (coactive learning)
ξt Slack variables / violations to the α-informative feedback
ζt Utility leak / utility mismatch

Table 1.2: List of symbols and their meaning.

layout synthesis tasks, reporting our �ndings. The content of this chapter is based on the
work from [82, 93].

Chapter 8: Product and service bundling

This chapter describes the application of constructive recommendation to product and service
bundling, and, in particular, to the recommendation of telecom service bundles. In this work
we implemented a full constructive recommendation system as a web application and tested
it with the help of real users. In the chapter we �rst describe the system structure and detail its
components. We then describe the experimental setting and the evaluation protocol. Finally,
we present our results and draw interesting conclusions. This chapter is based on the results
published in [83].

Chapter 9: Conclusions

This chapter concludes the thesis and provides a recap of the contributions of this thesis, and
describes the possible research directions to undertake as future work.
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1.4 Remarks on notation

Throughout this thesis, we will attempt to maintain a common underlying notation, despite
the vast heterogeneity of exposed concepts. The aim is to make it simpler to relate the many,
seemingly unconnected, components that make up the background knowledge that the thesis
work is based on. For this reason, in many sections, the notation used in this thesis may di�er
signi�cantly from the one of the original works.

Throughout the thesis, we will indicate recommended objects as well as predicted outputs
with the letter y, while reserving x for input objects and contextual information. Bold letters
indicate vectors and vector-valued functions. Sometimes we will employ the notation y to
explicitly point out that the object is represented as a vector, while the notation y implies that
the representation of the object is underspeci�ed. Calligraphic letters such as X and Y are
generally reserved for vector spaces or other sets with an underspeci�ed structure. In many
situations we will use abbreviations: [n] = {1, . . . , n}, {i : j} = {i, i+1, . . . , j−1, j}, as well
as
⋃
A =

⋃
a∈A a and

⋂
B =

⋂
b∈B b. Throughout all the chapters, we will denote the usual

dot product in Rn as 〈a,b〉 =
∑n
i=1 aibi, and the Euclidean norm as ‖a‖ =

√
〈a,a〉. Other

norms that we will use will be always explicitly denoted, such as ‖·‖0 and ‖·‖1 for the `0 and
`1 norms respectively, and ‖·‖∞ for the in�nite norm. Table 1.2 provides a non-exhaustive
list of reserved symbols used throughout this thesis.





Part I

Background





Chapter 2

Preferences and recommendations

Understanding preferences has long been a topic of interest in several academic �elds, such as
psychology [147, 249], statistics [104, 233] and economics [170, 186]. Modeling and reasoning
about preferences has also been a great interest of researchers in arti�cial intelligence [80,
206], who aim at developing decision support systems capable of aiding users in making op-
timal choices when facing complex decision problems. Such systems aid the user by building
a model of their preferences, which can then be used to infer the most preferred outcome. To
build such a preference model, decision support systems need to collect information about
the user preferences, typically by interacting with and asking questions to the user, a process
commonly known as preference elicitation [35, 37, 56, 119]. Preference elicitation systems use
specialized algorithms to estimate a preference model and search for the best option for the
user among a large set of candidates, while minimizing the amount of questions asked to the
user [52]. In Section 2.1 we will survey the topic of preference handling in AI and describe
the most well known preference elicitation algorithms in the literature.

In parallel, especially after the proliferation of e-commerce websites, AI researchers have been
developing systems capable of providing recommendations to users, as a way of addressing
the problem of choice overload [25]. Recommendation systems have then spread to many
other sectors and industries, and have been shown to increment user satisfaction and �delity,
as well as increase diversi�cation and overall revenue [221]. Several techniques have been
developed in this area over the years, addressing many di�erent recommendation scenarios
and applications [2, 220]. Generally speaking, recommendation techniques can be divided
into two separate categories [221]: [i] data-driven approaches [7], including collaborative [92,
153] and content-based [172] �ltering, which exploit past purchases, ratings and other data
sources to “match” users to interesting items; [ii] knowledge-based approaches [45], which
employ an explicit representation of the domain to select recommendations that comply
with the user requirements. Constraint-based recommenders [97, 99] are knowledge-based
systems that encode domain knowledge through constraint satisfaction programs and select
recommendations by solving them. Constraint-based recommendation systems are the most
closely related to our constructive preference elicitation framework, so we will concentrate
our discussion around them in Section 2.2.
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In the following sections we will describe the most important aspects of preference elicitation
algorithms and constraint-based recommendation systems, highlighting their properties and
use cases, and �nally pointing out their di�erences and historical connections.

2.1 Preference handling

The formal treatment of preferences has its roots in decision theory [234] and neighbor-
ing branches of economics [186] and statistics [233]. The development of the mathematical
framework for describing and manipulating preferences still used today is primarily due to the
work of von Neumann and Morgenstern [186], Keeney and Rai�a [150], and Fishburn [103,
104]. In their work, preference elicitation [150] was primarily seen as the process of gather-
ing preference information prior to the construction of a preference model, which could then
be used to make informed decisions. This process was once carried out by a decision analyst
interacting with the decision maker (DM). This process was, however, error prone and only
viable for small decision problems, due to the inherent di�culty for human decision makers,
as well as decision analysts, to handle large preference models. For this reason, preference
elicitation has caused much interest in the arti�cial intelligence community [76, 206], which
aimed at developing computational models and preference elicitation algorithms to handle
complex decision problems.

One important distinction to be made in preference handling is between decision making
under certainty and decision making under uncertainty. In the former case, the choices of the
DM lead to certain outcomes, whereas in the latter the consequences of the DM choices are
uncertain. In this thesis, we will be exclusively interested in decision theory under certainty,
which encompasses decision problems like purchasing a product, choosing a movie to watch,
and other tasks that do not involve uncertain outcomes.

For a preference model to be useful, it needs to be built in agreement with a certain notion of
rationality of the DM’s choices, which also drives the subsequent inference process. The stan-
dard de�nition of rationality in decision theory is based on the von Neumann–Morgenstern
rationality axioms [186]. The von Neumann-Morgenstern theory assumes economic agents
to behave in agreement to the goal of utility maximization. This de�nition is however by no
means universally accepted (see e.g. [229, 170, 36]). Much work in behavioral economics and
psychology has addressed this issue, highlighting the fact that the choices of human decision
makers are actually better described by a bounded rationality model. The bounded rationality
model implies that human decision makers are not able to accurately articulate their prefer-
ences considering more than a handful of variables at the time [169]. Another problem with
the standard notion of rationality is that it assumes the preferences of a DM to be invariant,
static and revealed through interaction. Many argue, instead, that preferences are constructed
by the DM throughout the elicitation process [20, 163, 202, 203, 249]. The bounded rational-
ity of human DM is also evinced by the fact that their stated preferences are often erroneous
and inconsistent due to external factors such as distraction and fatigue [26, 51, 52, 173, 129].
This makes the elicitation process a laborious and error prone task. Arti�cial intelligence
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techniques deal with this problem by accounting for uncertainty over feasible models and by
devising elicitation algorithms robust to noise in the user response [26, 52, 129, 272]. Despite
the criticisms, the von Neumann–Morgenstern utility theory is by far the most used in AI. In
this thesis, we will use a subset of the von Neumann–Morgenstern axioms (su�cient for the
treatment of decision making under certainty), and we will comply with the standard notion
of rationality while allowing a boundedly rational user behavior through noisy feedback.

In the following, we will brie�y describe the formal framework for modeling and eliciting
preferences typically used in AI. In Section 2.1.1 we will introduce the decision-theoretic
formulation of preference relations and utility functions, which are the basic tools to describe
and reason about preferences. In Section 2.1.2 we will detail the multi-attribute utility theory,
which is the most common formulation used by preference elicitation techniques in AI. Next,
in Section 2.1.3, we will introduce the classical preference elicitation procedure, pointing out
its limitations, and then, in Section 2.1.4, we will review the state-of-the-art techniques for
preference elicitation in the literature.

2.1.1 Preference modeling

In the classic decision-theoretic view, the preferences of an individual are represented by a
preference relation < over a set Y of outcomes. For y, y′ ∈ Y , the notation y < y′ intuitively
means that y is at least as good as y′. A rational agent is expected to maintain a preference
relation satisfying the following axioms [186]:

1. Comparability: ∀ y, y′ ∈ Y y < y′ ∨ y′ < y

2. Transitivity: ∀ y, y′, y′′ ∈ Y y < y′ ∧ y′ < y′′ =⇒ y < y′′

A binary relation with the above properties corresponds to a total preorder over the set Y .
The total preorder induces a complete directed graph over the elements of Y , whose edges
connect y and y′ if and only if y < y′. Cycles are admissible in a total preorder, in which
case we have that y < y′ ∧ y′ < y, which is usually abbreviated by an indi�erence relation
y ∼ y′, meaning that neither object is preferred to the other. When y < y′ ∧ y′ 6< y, instead,
we use a strict preference relation y � y′, meaning that y is strictly preferred to y′.

Under the above comparability and transitivity conditions, when the set of outcomes Y is
�nite or countably in�nite, it is possible to de�ne an ordinal utility function u : Y → R such
that:

y < y′ ⇐⇒ u(y) ≥ u(y′)

The same holds for uncountably in�nite outcome sets, provided the preference relation < is
continuous over the setY . Continuity of a preference relation over a compact setY is achieved
if “small” variations to y and y′ do not change their order of preference. More formally, for
a continuous preference relation, if y � y′, there exist two balls B and B′, around y and y′
respectively, such that for every element z ∈ B and z′ ∈ B′, z � z′. It can be shown that a
preference relation is continuous if and only if it can be represented by a continuous utility
function [73].
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Every utility function u represents a unique preference relation <. The opposite is however
not true, since the same preference relation can be represented by any utility function that
is a monotonically increasing transformation of u. That is, if f is a monotonically increasing
function, f(u(y)) represents the same preference relation of u(y). In other words, ordinal
utility functions are unique up to monotonically increasing transformations.

2.1.2 Multi-attribute utility theory

Outcomes of complex decision problems can typically be evaluated along di�erent directions.
For instance, when buying a house one needs to look at several aspects, such as the square
footage, the number of rooms, the proximity to work and schools, the neighborhood, and
the cost. These are usually called attributes (or features) of the objects one is making the
decision over. More formally, multi-attribute utility theory (MAUT) [150] describes outcomes
as vectors y of m variables (a.k.a. attributes) taking values from domains Y1, . . . ,Ym. The
space of possible outcomes is the Cartesian product of the variables domains Y = Y1×· · ·×
Ym. Given an index set I ⊆ [m]1, we can de�ne a partial outcome yI ∈ YI = ×i∈IYi.
We denote the complement of I as I– = [m] \ I . Given a partial assignment yI and its
complement yI– , we de�ne a completion y = (yI ,yI–) ∈ Y .

If preferences over multi-attribute domains exhibit su�cient structure, preference models
can be compactly encoded and e�ciently queried. In a multi-attribute setting, structure is
often determined by some kind of independence between attributes. The most basic is the
preferential independence between a subset I of attributes and its complement:

∀ yI ,y
′
I ∈ YI , ỹI– , ỹ′I– ∈ YI– (yI , ỹI–) < (y′I , ỹI–) ⇐⇒ (yI , ỹ

′
I–) < (y′I , ỹ

′
I–)

This means that if a subset of attributes I is preferentially independent of the remaining
attributes I–, then the preferences over attributes I do not depend on the attributes I–, as
long as they are kept �xed. The statement (yI , ỹI–) < (y′I , ỹI–) is usually abbreviated as
yI < y′I ceteris paribus (all else being equal).

If preferential independence holds for every subset of attributes with respect to its comple-
ment we say that they are additively independent. If additive independence holds, the utility
function can be decomposed into m subutilities ui, each dependent on a single attribute yi,
for 1 ≤ i ≤ m:

u(y) =

m∑
i=1

ui(yi)

We call the latter an additive utility. While the assumption leading to a utility in additive form
are rather strong, it is often used in practice thanks to the marked simpli�cation it endows
on the elicitation process. Elicitation of an additive utility only involves �nding the utility
value of the best and the worst value of each attribute separately, which can then be scaled
and straightforwardly combined thanks to their mutual preferential independence.

1Recall that the notation [m] stands for {1, . . . ,m}.
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Algorithm 1 Classical preference elicitation procedure
1: Select a query
2: Ask query to the DM
3: Receive response from the DM
4: Update preference model
5: Repeat steps 1 – 4 until the preference model is complete
6: Recommend best outcome based on preference model

A more relaxed independence condition is the conditional preferential independence. Let [m]

be partitioned into three non-overlapping sets I, I ′, I ′′. The sets I, I ′ are conditionally pref-
erential independent given z ∈ YI′′ if and only if:

∀ yI ,y′I ∈ YI , ỹI′ , ỹ′I′ ∈ YI′ (yI , ỹI′ , z) < (y′I , ỹI′ , z) ⇐⇒ (yI , ỹ
′
I′ , z) < (y′I , ỹ

′
I′ , z)

The above condition induces a conditional preference relation <z for all z over which I and
I ′ are preferential independent, thus we can write yI <z y′I ceteris paribus. When this inde-
pendence condition holds for some attribute sets, the preference relation can be represented
by a conditional preference network (CP-net) [28]. CP-nets are directed graphs in which each
node represents an attribute, whose incident edges represent its preferential dependencies
with other attributes. For each node, a conditional preference table completely speci�es the
conditional preference relation <z of the node given every assignment z to the values of its
parent nodes.

Another form of relaxed independence is the generalized additive independence (GAI) [12, 103]
assumption, under which a utility function can be decomposed into independent subutilities
over a collection of K (possibly overlapping) subsets of attributes:

u(y) =

K∑
k=1

ui(yIk)

This condition is much more general than additive independence and it has been shown that
any acyclic CP-net admits a GAI utility function over the collection of attribute sets de�ned
by all attributes with their respective parent nodes [34]. By merging acyclic CP-nets with
GAI decomposition it is possible to devise elicitation strategies employing the minimax regret
criterion (see below) [27]. Other strategies have been developed later on [34, 154].

In Chapter 5 we will employ some of the results in the literature on GAI utilities to develop
a part-based elicitation process for constructive preference elicitation.

2.1.3 Classical preference elicitation

Decision processes were once split into two separate phases: an elicitation phase, in which a
preference model is built, and a recommendation phase, in which the model is used to help
the DM in making an optimal decision. Preference models such as CP-nets were considered
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static objects that, once obtained, could be used to infer the answer to di�erent types of
queries, similarly to other types of graphical models like Bayesian networks [205]. Querying
a preference model might be useful to assess e.g. dominance or indi�erence between an object
y over y′, i.e. whether y � y′ or y ∼ y′, or it could be used to perform outcome optimization,
i.e. �nding out the outcome with the highest utility, perhaps given some partial assignment
of the attributes. The optimal outcome could then be recommended to the decision maker.
In order to attain an optimal decision, it was implicitly assumed that the preference model
should be elicited completely, i.e. �nding the true preference relation y < y′ for each pair of
items (y, y′), or equivalently �nding the true utility value u(y) for each object y.

Preference (or utility) elicitation was an interactive process, between a decision analyst and
a decision maker, aimed at constructing a preference model. This process usually consisted
in a sequence of “queries” asked to the decision maker in order to gather information about
his or her preferences. A typical preference elicitation loop would progress as shown in
Algorithm 1. Common types of queries used in the literature include:

• Pair-wise comparison: the DM is asked to state her preference between two objects
y and y′. This query conveys the information y � y′ or vice versa. Sometimes, an
indi�erence answer y ∼ y′ is also allowed.

• Set-wise comparison: the DM is asked to pick the most preferred outcome among a
set Q of alternatives. Given an answer y, then we can implicitly deduce that y <
y′ for y,y′ ∈ Q, y 6= y′. Sometimes set-wise queries require the DM to order the
objects according to her preferences, in which case the answer to the query provides a
much more accurate preference information, resulting in all combinations of pair-wise
preference rankings.

• Gambles: the DM is asked whether she would prefer an object y for sure, or a gamble
between y′ with probability p and y′′ with probability 1 − p. A gamble is usually de-
noted as 〈y′, p ;y′′〉, and the result of a choice between a gamble and a certain outcome
determines y � 〈y′, p ;y′′〉 or vice versa. If y′ is the best possible object y> and y′′

is the worst possible object y⊥, then 〈y>, p ;y⊥〉 is called a standard gamble and we
have that the result of query between y and a standard gamble equates to u(y) > p or
vice versa, assuming u(y⊥) = 0 and u(y>) = 1. If the DM is indi�erent between the
gamble and the certain outcome, y ∼ 〈y>, p ;y⊥〉 then u(y) = p.

Many approaches to preference elicitation have been proposed over the years, most relying
on some assumption about the structural independence of the attributes to simplify the elic-
itation process and using di�erent types of queries to optimize the amount of information
gained per query.

For additive independent utility functions, for instance, the elicitation process is rather simple
and straightforward [150]. An additive utility function can be described using m local value
functions vi and m scaling factors λi:

u(y) =
∑
i∈[m]

ui(y) =
∑
i∈[m]

λivi(y)
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Algorithm 2 Modern preference elicitation procedure
1: while User is not satis�ed do

2: Select a recommendation based on partial preference model
3: Make recommendation to the DM
4: Receive feedback (implicit or explicit) from the DM
5: Update preference model

Since the subutilies are all independent of each other, one can proceed in eliciting each at-
tribute separately. Once a ranking for each attribute has been established, e.g. by local pair-
wise or set-wise comparisons over the attributes values, let y>i and y⊥i be the best and worst
attribute values for each attribute i ∈ [m], and set vi(y>i ) = 1 and yi(y⊥i ) = 0. The value
function vi(yi) can now be determined locally for each value of the attribute, using standard
gambles with increasing probabilities. Once the local value functions have been determined,
one only needs to elicit the true utility of the best values of each attribute in order to assign
the right value to the scaling factors λi. Let y⊥ = (y⊥1 , . . . , y

⊥
m) and u(y⊥) = 0, as well

as y> = (y>1 , . . . , y
>
m) and u(y>) = 1. We can use standard gambles over full objects to

determine the true utility of u(y>i ,y
⊥
i– )2: if (y>i ,y

⊥
i– ) ∼ 〈y>, p ;y⊥〉 then u(y>i ,y

⊥
i– ) = p.

The scaling factors can then be set to:

λi =
u(y>i ,y

⊥
i– )∑

j∈[m] u(y>j ,y
⊥
j–)

This ensures that the subutilities functions are properly scaled and that the full utility is
de�ned in the [0, 1] range. Similar elicitation procedures based on local elicitation and global
scaling can be devised for GAI models as well [39].

The classical paradigm for preference elicitation has fallen out of fashion over the years due
to several practical problems [52]. First and foremost, gathering complete preference infor-
mation is unattainable for decision problems with more than a handful of attributes. Additive
utility functions are often not descriptive enough, resulting in erroneous models that do not
really represent the user preferences, thereby leading to suboptimal decisions. Another im-
portant factor to take into account is the cognitive e�ort of decision makers, especially non-
expert ones. Queries involving cardinal utility values and probabilities are too di�cult for
non-expert decision makers. Also, in general, the number of queries asked to the DM should
be minimized to reduce the cognitive burden. These problems lead to a shift in perspective in
preference elicitation, which now is mostly based on the assumption that algorithms should
help the user in �nding optimal decisions with only partial preference information. Also, a
partially elicited preference model could be used to select the most informative query to ask
to the DM, in order to minimize the number of queries. To further reduce cognitive e�ort
for the user, most recent preference elicitation systems adopt comparison queries, which are
deemed to require low cognitive e�ort [64, 128, 129, 173]. Another advantage of compari-
son preference feedback is that it can often be inferred implicitly from the behavior of a user
on an online system. Viappiani and Boutilier [272, 273, 274] showed that, in the context of

2With a slight abuse of notation i– = [m] \ {i}.
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preference elicitation with set-wise preference queries, the optimal recommendation set my-
opically coincides with the optimal query set, thereby merging the querying phase and the
recommendation phase into one single process. The new paradigm for preference elicitation
and decision making proceeds as in Algorithm 2. The preference elicitation process now rec-
ommends the best item according to the current partial preference model and stops only when
the user is satis�ed with the recommendation. Modern preference elicitation algorithms are
designed along these lines [18, 31, 129, 272, 274, 278]. In the next section we will describe
two of these state-of-the-art algorithms for regret-based and Bayesian preference elicitation.

2.1.4 Regret-based and Bayesian elicitation

To make optimal recommendations with only partial preference information, one needs to
take into account the uncertainty resulting from the lack of a full preference knowledge. The
two most used paradigms for handling uncertainty in utility models are based on theminimax
regret principle and Bayesian statistics.

Within a strict uncertainty scenario, i.e. without any distributional information about the pos-
sible utility functions, a well known decision criterion is the minimax regret [234]. Descrip-
tively, minimax regret suggests to choose the possibility y which minimizes the maximum
regret over both U and Y , i.e. the worst-case loss one would su�er by choosing y. Formally,
given a set of utilities U over a choice space Y , the minimax regret principle imposes:

y∗ = argmin
y∈Y

max
u∈U

max
y′∈Y

u(y′)− u(y)

In practice, the calculation of the above optimization problem depends on the structure of the
utility models u ∈ U (often GAI models are used) and the type of interaction with the user.
In general, the minimax regret problem can be cast as a mixed integer program and can be
solved through constrained optimization [201, 238]. This has the side bene�t of allowing us to
impose arbitrary constraints on the decision space in order to limit the feasible area. As more
preference information is acquired throughout the elicitation process, more constraints are
imposed on the space U , shrinking the space of feasible utility functions and thus reducing
the uncertainty about the decision. The minimax regret has been applied to many elicitation
scenarios, with di�erent utility models and types of feedback. One major drawback of this
approach that has emerged over the years, is that it fails to take into account uncertainty in
the user feedback. Indeed, user feedback is inherently noisy, as human decision makers make
mistakes and inaccuracies due to lack of focus and other factors extraneous to the decision
process. Noisy feedback leads to inconsistencies, which can make a regret-based system never
reach an optimal solution. Assuming noiseless responses is unrealistic, especially for systems
involving interaction with non-expert users, who do not fully understand the constraints of
the problem and the consequences of their choices.

An alternative approach that does take into account noisy feedback is Bayesian preference
elicitation. In this case, uncertainty is handled through a probability density function π(u)

over the space of utility functions U . Given the current belief π, the optimal decision would
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be the one maximizing the expected utility Eπ[u(y)] with respect to the prior π:

y∗ = argmax
y∈Y

Eπ[u(y)] = argmax
y∈Y

∫
u∈U

u(y)π(u)du

However, throughout the elicitation, one would rather select the query yielding the most
preference information. One popular approach is maximizing the expected value of informa-
tion (EVOI) [26, 52]. The EVOI is the di�erence between the expected posterior utility (EPU)
and the maximal expected utility over the current belief. The EPU is the maximal utility in
expectation over the posterior distribution according to the response model of the selected
query. A user response model is a distribution P (r|q, u) over the possible responses r ∈ Rq
to a query q ∈ Q given utility u ∈ U . The response model used depends on the type of
queries the elicitation process employs. Typical response models for e.g. comparison queries
are the Bradley-Terry or Plackett-Luce models [33, 175, 208], which are logistic models of the
type:

P (r|q, u) =
exp(γ u(r))∑

s∈Rq exp(γ u(s))

For a response r ∈ Rq to query q ∈ Q, Bayes rule yields the posterior probability π̂ over U :

π̂r,q(u) =
P (r|q, u)π(u)

P (r|q)

where P (r|q) =
∫
u∈U P (r|q, u)π(u)du is the marginal probability of response r given q.

The expected posterior utility of a query q ∈ Q is:

EPU(q) =
∑
r∈Rq

P (r|q)
(

max
y∈Y

Eπ̂r,q [u(y)]

)

The EVOI of a query q ∈ Q is the di�erence between EPU and the maximal expected utility
according to the current belief π; the best query q∗ is the one maximizing the EVOI:

q∗ = argmax
q∈Q

EVOI(q) = argmax
q∈Q

(
EPU(q)−max

y∈Y
Eπ[u(y)]

)
The above de�nition considers a myopic optimization of the EVOI [52], while the general se-
quential case would require to optimize the EVOI considering possible future queries as well,
i.e. by treating the elicitation as a partially observed Markov decision process (POMDP) [26].
Sequential EVOI maximization is unattainable even for small decision problems, so myopic
optimization is used in practice. Even for myopic EVOI optimization, EPU maximization is
computationally expensive and often impractical. Viappiani and Boutilier [272] showed that
an alternative greedy optimization algorithm achieves bounded approximation error. They
also proposed a faster randomized alternative but with no theoretical guarantees. Despite
the latter approximate approach, Bayesian preference elicitation still requires a high compu-
tational cost, which is a major shortcoming for scaling to very large decision domains.
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2.2 Recommendation systems

Recommender systems are computational tools providing suggestions in regard to a decision
task the user is faced with. Typical scenarios in which a recommender system is used include
buying a product, choosing which movie to stream, listening to a playlist while traveling,
reading a news article online. In all these tasks, the choice is among a set of items, and the
job of the recommender system is to pick a few items from the bunch that are likely to be
of interest to the current user. This implies that the recommender system has to provide
personalized suggestions to each user separately, based on di�erent criteria such as demo-
graphics, location, browsing and purchase history, likes, ratings and reviews. It is usually the
case that a recommender system gathers all this information into a user pro�le, which is then
matched to the features of the items in search of promising recommendations. Indeed, this
is a form of content-based recommendation [172], in which learning algorithms and similarity
measures are used to determine how “similar” an item is to a user pro�le or to the items the
user has liked in the past. Other content-based techniques treat the recommendation task as a
multi-armed bandit problem [41, 160], in which the recommender system has to choose which
item to display to the current user, balancing between exploration and exploitation, in order
to maximize some overall expected reward, e.g. click-through rate. Another data-driven ap-
proach to recommendation is collaborative �ltering [92, 153], in which the recommendations
for a user are determined on the basis of her behavior with respect to other users’ behavior.
The standard approach to determine how much a user liked a given item is through ratings.
The assumption in collaborative �ltering is that users rating items in the same way will likely
rate other items similarly too. In this way, recommendations are simply based on how other
users with similar ratings to the current user have rated items that the current user has not
yet rated. This avoids the need for extracting item features entirely, yet requiring much more
data from a large number of users in order to make good quality recommendations. Collab-
orative �ltering also su�ers from the cold start problem for new users [164, 236], as no data
is available for them to provide meaningful recommendations. As such, often hybrid tech-
niques are used to address this problem [43, 288]. A radically di�erent approach is taken by
knowledge-based techniques, which represent the knowledge about the items properties and
their relation to the user needs and preferences explicitly. They often rely on some kind of
structure in describing the relations between items and their properties and users and their
preferences, such as graphs, logical predicates and constraints. Inference algorithms over
these structured models can then be used to make recommendations. One particular subset
of knowledge-based techniques are the constraint-based recommender systems, which cast
the recommendation task into a constraint satisfaction problem [183, 268]. In the following
we will describe constraint-based recommendation in more details, as it is the most related
to the constructive recommenders that will be introduced in Chapter 4. In the next section,
we will detail the constraint-based recommendation paradigm and its many variants. In Sec-
tion 2.2.2, we will then describe the product con�guration problem and the systems that are
typically used to solve it [100]. We will also see how constraint-based recommendation can
be employed for product con�guration tasks, which is a particularly relevant point in the
context of constructive recommendation.
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2.2.1 Constraint-based recommendation

Constraint-based recommenders [97, 99, 266] are a kind of knowledge-based systems in which
domain knowledge as well as user preferences are represented as constraints. This formalism
is particularly bene�cial in recommending complex objects like cars, �nancial services and
insurance policies, bundles, and con�gurable products such as PC con�gurations and trips.
In all these scenarios, items are infrequently purchased objects, for which it is di�cult to
maintain a sizable and updated set of ratings for each user, making data-driven approaches
ine�ective.

In constraint-based recommendation, the problem of selecting a recommendation is cast as a
constraint satisfaction problem (CSP) [268]. Given a set ofm variables Y = {y1, . . . , ym}with
domains Y1, . . . ,Ym and a set of constraints C , a constraint satisfaction problem consists in
�nding one or more assignments to all variables Y , i.e. instantiations of the variables yi ∈ Yi
from their respective domains, that also satisfy all the constraints C . Formally, a possible
assignment is a tuple y = (y1, . . . , ym) ∈ Y = Y1 × · · · × Ym and a constraint c ∈ C is a
set of valid assignments3. A solution of the CSP is a feasible assignment y ∈ Y ∩ C, where
C =

⋂
C is the set of feasible assignments. In a constraint-based recommender, the variables

Y encode the attributes of the recommended objects. Another set of variables X may en-
code given contextual information, e.g. user attributes, which can be used in the de�nition
of constraints. Constraints in constraint-based recommenders can mainly be of three kinds:
[i] feasibility constraints, i.e. constraints encoding the realizability of con�gurations based
on the available domain knowledge, business-driven restrictions and compatibility between
components; [ii] user requirements, i.e. user-speci�ed constraints that �lter the con�gura-
tions to comply with his or her preferences; [iii] catalog constrains, i.e. constraints encoding
the available con�gurations in the item database. When a constraint-based recommender is
used for product con�guration (discussed in the next section), the last type of constraints is
missing entirely. Solutions to the CSP are valid recommendations. O�-the-shelf CSP solvers
are widely available, so the system designer is only concerned with describing the full domain
knowledge and translating the speci�ed user requirements into valid constraints.

Most constraint-based systems in the literature also incorporate methods for ranking the
solutions found by the CSP solver [98, 101]. Multi-attribute utility theory (Section 2.1.2) has
often been used for this purpose [102, 101, 142]. Usually, a linear additive utility model would
be used, and the weights for each attribute would be set by the designer of system or could be
modi�ed manually by the user. Later on, systems based on soft constraints [183] for ranking
were introduced, which allow to articulate more expressive preference trade-o� rules and
providing a clearer semantics to the interaction with the system [24, 211, 289]. Soft CSPs
are generally understood as standard CSPs with an attached semiring whose elements can be
assigned to the problem constraints [23]. Instantiation of this paradigm include fuzzy CSPs,
probabilistic CSPs and weighted CSPs. While some work uses fuzzy and probabilistic CSPs

3Technically, each constraint is de�ned over a subset of variables Yc ⊆ Y and determines a set of the valid
partial assignments, i.e. assignments to the variables Yc only. For simplicity, we consider constraints as sets of full
assignments containing all the combinations of feasible assignments to the variables Yc with all the values in the
domains of the other variables.
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for recommendation and preference elicitation [113, 275], most works focus on weighted
CSPs [211], in which each constraint is assigned a weight and the objective is to maximize
the cumulative weight of the satis�ed constraints.

Constraint-based recommender systems typically incorporate a way of collecting user re-
quirements through interaction [97]. A natural way of modeling the interaction with the
user in a constraint-based system is through a dialog, i.e. a sequence of re�nement steps
in which the user would assess the available options and tweak some of the options, pro-
viding additional requirements [165]. This type of systems are often called conversational
recommender systems [118, 165, 279]. The re�nement steps are carried out through so-called
critiques [47, 55, 181]. Critiques may be either user initiated or elicited by the system [54].
Either way, they are statements of the type “I would like a similar product, but cheaper”,
i.e. statements providing additional information on the preference of the user, in order to
improve the search of a satisfying option. In systems using soft constraints, critiques are
usually interpreted as either additional soft constraints or a (manual) changes to the weights
of the soft constraint [211, 277]. To the best of our knowledge, the �rst constraint-based sys-
tem that combined acquiring soft constraints and learning the weights of the soft constraints
from user feedback is the work of Rossi and Sperduti [22, 225, 227, 226]. They proposed to ac-
quire ratings as user feedback and learn weights for the soft constraints with an incremental
strategy [227]. Later, [110] used ranking SVMs [144] to learn from critiques, though they did
not use constraint solvers to generate recommendations. In [48], the authors propose for the
�rst time a recommendation system based on soft constraint, while learning a utility function
from pair-wise preference feedback with ranking SVMs.

A constraint-based system using regret-based elicitation was proposed by Boutilier et al. [29,
274], acquiring critiques in the form of comparison feedback. Their decision problem did not
employ soft constraints, but their approach encompasses GAI models, which have the same
expressive power of soft constraints [29, 40]. They were the �rst to apply a provably optimal
decision theoretic criterion for eliciting preferences in a constraint-based recommender.

2.2.2 Product con�guration

Product con�guration is a long standing research area in arti�cial intelligence [100, 126].
Product con�guration is the task of combining the components of an object in such a way
that the �nal object satis�es a set of constraints. Components can be instantiated in several
di�erent ways, and their combination form a full con�guration that is subject to feasibility
constraints, e.g. compatibility constraints between the components, and user requirements,
i.e. based on the user needs and preferences. Due to the combinatorial explosion of the so-
lution space, product con�guration tasks are often computer-aided by con�guration systems,
whose job is to help users de�ning their requirements and �nding feasible solutions. Con-
�gurator systems have been the main technology to enable and drive the adoption of a mass
customization paradigm in industrial production [5].

Most con�gurator systems in the literature are mainly concerned with checking consistency
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of the user requirements and satis�ability of the overall constraint problem. Most often con-
�guration systems assume to get the user requirements in one go, regardless of how they
are obtained [5]. An alternative way to acquire user constraints is, instead, through a step-
by-step process in which a user speci�es the value (or range of values) for each variable one
by one, and at each step the solver uses constraints propagation to check and update the
current solution [5, 100]. Since product con�guration is mainly used at industrial level, re-
search in this area is mainly focused on the issues of creating, employing and maintaining
CSP models for con�guration tasks. Only a small subset of works in this �eld addresses the
problem of how to drive the users towards a good solution and improve the interaction with
the con�guration system [98, 178, 232]. The majority of these works propose some way to
combine recommendation techniques to con�guration systems, in order to ease the choice
of attribute values to the user. Among the others, [98] proposes several methods to address
cases in which the problem constraints, together with the user requirements, yield no feasible
solutions. In [178], the authors propose to use recommendation techniques to suggest which
variable to �ll next and with which value. Another work in this direction proposes to pro-
ceed with a guided search, aided by content-based �ltering techniques, through progressively
more constrained partial con�guration problems [232]. In general, however, con�guration
systems are more used in an industrial setting or other areas in which the computer-aided
con�guration task is handled by a domain expert [123, 263].

Constraint-based recommenders are generally more concerned with providing the user with
re�ned interaction protocols and more robust utility models than product con�guration sys-
tems [99]. This is especially important for non-expert users, who do not have full information
about the domain and do not fully understand the consequences of their choices. As men-
tioned in the previous section, con�guration problems can be handled through a constraint-
based system as well. The potential application of constraint-based recommendation to prod-
uct con�guration has long been acknowledged [97, 99, 287]. While the original approaches
of constraint-based recommenders and con�guration systems were rather di�erent, they are
now progressively converging [94, 95, 99, 96, 235, 264, 265].

2.3 Summary

In this section we surveyed two areas in the �eld of arti�cial intelligence that deal with the
issue of designing computational decision support systems, namely preference elicitation and
constraint-based recommendation. The former has the goal of estimating a preference model
through interaction and recommend an optimal solution to the decision maker, whereas the
latter is aimed at suggesting interesting items (not necessarily optimal in a decision-theoretic
sense) based on the requirements stated by the user and the constraints of the problem. The
literature of these two areas are quite distinct and come from two once separate communities.
Preference elicitation came out of decision theory and was heavily in�uenced by neighboring
�elds of statistics and econometrics [104, 150, 234]. On the other hand, constraint-based rec-
ommendation was developed within the constraint programming community and was in�u-
enced by knowledge representation, formal veri�cation and other logic-based approaches [89,
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224, 228, 230, 268]. As in other areas of AI, preference elicitation, a traditionally statistical
methodology, and constraint-based systems, as a form of knowledge-based approach, are pro-
gressively converging. Indeed, despite their separate origins, these two approaches are very
much interdependent. Our work on constructive preference elicitation draws insight from
both these approaches, providing a methodology that summarizes the best aspects of both.
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Online and structured learning

Recommendation systems often rely on algorithms that learn to predict which, among the cat-
alog of available items, are interesting suggestions for the users. As such, machine learning
techniques are widely used in recommendation. For instance, matrix factorization is com-
monly used in collaborative �ltering, while k-nearest neighbor and deep learning are often
used in content-based recommendation [204, 271]. Learning-to-rank algorithms [168] learn
ranking models to optimize e.g. the click-through rate of search engines and top-k recom-
mendation systems [144, 148]. The same objective can be achieved by online learning algo-
rithms such as multi-armed bandit and contextual bandit algorithms [50, 160]. Indeed, online
learning algorithms are extensively used in recommendation [2] and beyond [50]. Online
learning algorithms operate in a somewhat similar setting to the preference elicitation al-
gorithms seen in Chapter 2. Both run in an iterative fashion, making recommendations (or
generally predictions) sequentially and obtaining feedback only after the prediction is made.
Their objective are, however, di�erent: while preference elicitation algorithms construct a
preference model to �nd the optimal object for a user in a combinatorial space of options,
online learning algorithms learn to choose actions in such a way to maximize the cumulative
gain (e.g. clicks) of the player (e.g. a recommender system). Despite their di�erences, they
are not incompatible, as we will argue in Chapter 4.

Another machine learning topic that is related to ranking [53] is structured-output predic-
tion [14]. Structured prediction techniques are used in contexts in which the outputs of the
algorithm are objects that exhibit some level of structure, such as sets, sequences, matrices,
trees or graphs. These tasks are more complex than standard binary classi�cation and regres-
sion, so specialized learning algorithms are needed. Interestingly, though, these algorithms
have been developed in such a way to actually be independent of the particular structure of
any given prediction problem. The only requirement for using these algorithms is to have
access to an oracle capable of making predictions with the particular structure by solving
certain optimization problems. We will discuss in Chapter 4 how this mechanism can be
exploited in a constructive scenario as well.

In this chapter we will survey the online learning (Section 3.1) and structured-output pre-
diction (Section 3.2) sub�elds, while linking them together using online convex optimization,
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a powerful tool for deriving online learning algorithms to solve many di�erent prediction
tasks. Lastly, we will detail the coactive learning framework, which is the technique our work
on constructive preference elicitation is based on. Coactive learning is an online structured
prediction framework that is used for personalizing search engine results and recommenda-
tions. We will argue in Chapter 4 that it may also constitute an e�ective preference elicitation
method for constructive problems.

3.1 Online learning

Online learning [50] deals with sequential decision problems, in which predictions are made
in a sequence of consecutive rounds, while information about the quality of a prediction
(feedback) is revealed only after the prediction has been made. In this setting, learning occurs
between two consecutive predictions, and typically involves updating the parameters of a
decision model utilizing the feedback received after the prediction. The most well known
online learning problems are the multi-armed bandit model and the problem of prediction
with expert advice. In the multi-armed bandit problem an agent has to iteratively choose
which “arm” to pull (i.e. which action to play) based on the information she has about the
distribution of the reward of that arm. After the agent plays an action, only the reward of
the played actions is revealed and not that of the other actions. As such, an agent has to
trade-o� exploration and exploitation, in order to maximize the cumulative reward. In the
problem of prediction with expert advice, an agent has to choose a prediction based on the
recommendations of several experts, and, once the choice is made, the reward of each expert’s
recommendation is revealed, but the agent only retains the one from the chosen expert. Also
in this case the goal of the agent is to maximize the cumulative reward, though she has full
information on the rewards of the other actions so exploration is not an issue.

An important extension to the experts problem is the prediction with side information [50].
This model is the most closely related to typical machine learning problems like classi�cation
and regression. Algorithm 3 shows the typical schema of an online prediction algorithm [242].
At each time step t ∈ [T ], the learner receives an object xt from an input domain X . The
input object xt represents the side information the learner has access to before making its
prediction. After receiving the input xt, the learner has to make a prediction yt ∈ Y . Both the
input and output spaces, X and Y , are de�ned on the basis of the task at hand. For instance,
in standard classi�cation and regression, inputs are feature vectors from X = Rd, while the
output spaces Y are {0, 1} and R, respectively. We will see in Section 3.2 that more complex
scenarios may be encoded using the same formalism.

After making the prediction yt, the true output y∗t is revealed. Given the prediction yt and
the true output y∗t , the learner su�ers a loss `(yt, y∗t), measuring the degree of error of the
prediction. For example, for a classi�cation task we would use a 0-1 misclassi�cation loss1

`(y, y′) = 1[y 6=y′], whereas in regression we would use a squared loss `(y, y′) = (y − y′)2.

1The notation 1[·] equals 1 if the condition is satis�ed, 0 otherwise.
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Algorithm 3 The generic online prediction model.
1: for t = 1, . . . , T do

2: Receive input xt ∈ X
3: Predict output yt ∈ Y
4: Observe true output y∗t
5: Su�er loss `(yt, y∗t)

In this learning scenario, we typically �x a hypothesis classH, from which the learner picks,
at each iteration t ∈ [T ], a function ht ∈ H to perform the prediction yt = ht(xt). The
objective of the learner is to compete with the best hypothesis from H. More formally, the
learner needs to minimize its cumulative regret (or simply regret):

T∑
t=1

`(yt, y
∗
t)− inf

h∈H

T∑
t=1

`(h(xt), y
∗
t) (3.1)

The regret measures the cumulative di�erence between the loss of the predictors chosen by
the learner and the best predictor in H. While we seek that our learner achieves the lowest
possible regret, a satisfying condition for online learning algorithms is to have regret growing
sub-linearly with the number of iterations T . This condition implies that the average regret
over the iterations [T ] approaches 0 for T →∞.

In the next section, we will introduce one important tool that is extensively used in online
learning to derive low regret algorithms, namely online convex optimization. Online convex
optimization is a generic framework comprising algorithms adaptable to learning when the
output space is a convex subset of Rd and the loss function is convex. In this setting, we will
introduce a simple yet powerful algorithm, the online gradient descent. This algorithm will
then be instantiated to the online classi�cation case in Section 3.1.2, yielding the well known
(online) perceptron algorithm.

3.1.1 Online convex optimization

Many online learning problems can be cast as online convex optimization ones [242]. This
framework comprises a set of iterative optimization algorithms for convex functions, whose
properties can be analyzed within the same elegant formalism [132]. Most used loss func-
tions in machine learning are convex or can be made convex through randomization or by
employing surrogate losses that are convex. Convexity is a fundamental property of many
learning problems that allows us to derive e�cient online learning algorithms.

Algorithm 4 shows the prototypical online convex optimization algorithm. At each iteration
t ∈ [T ], the algorithm predicts a vector wt from a convex set B ⊆ Rd. The algorithm then
receives a convex loss function `t : B → R and su�ers the loss `t(wt). The goal of the
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Algorithm 4 The online convex optimization loop.
1: for t = 1, . . . , T do

2: Predict vector wt ∈ B
3: Observe loss `t : B → R
4: Su�er loss `t(wt)

algorithm is to minimize the cumulative regret:

T∑
t=1

`t(wt)− inf
w∈B

T∑
t=1

`t(w) (3.2)

To achieve this goal in online convex optimization we make use of the convexity of the loss
function. A function f : B → R is convex if and only if for any vector w ∈ B there exists a
vector z ∈ B such that:

∀v ∈ B f(w)− f(v) ≤ 〈w − v, z〉 (3.3)

Any vector z satisfying Equation 3.3 is called a sub-gradient of f at w. We indicate the set
of sub-gradients of f at w with ∂f(w). In particular, when f is di�erentiable at w, ∂f(w)

contains a single point that is the gradient ∇f(w). At non-di�erentiable points, the set
∂f(w) may contain an in�nite number of vectors.

With the above notions of convexity and sub-gradient, we can go ahead and derive a sim-
ple but e�ective algorithm for online convex optimization, called online (sub-)gradient de-
scent [242]. Algorithm 5 shows the simplest version of the algorithm, but many others have
been derived over the years. Starting with w1 = 0, at each iteration the vector wt gets up-
dated by taking a step in the opposite direction of a sub-gradient zt of the loss function `t at
wt. The parameter η ∈ R+ is a positive constant step-size.

It can be shown (see e.g. [243]) that the regret su�ered by the online gradient descent algo-
rithm is upper bounded by:

1

2η
‖w∗‖2 +

η

2

T∑
t=1

‖zt‖2 (3.4)

where w∗ = argminw∈B
∑T
t=1 `t(w).

We can derive a tighter bound in case the loss functions `t happen to be Lipschitz. A function
is Lipschitz when it does not change “too fast” at any given point. More formally, a function
is Lipschitz over a set B if there exists G ∈ R+ such that for any two vectors w,v ∈ B
we have |f(w) − f(v)| ≤ G‖w − v‖. If f is both convex and Lipschitz, then we also have
that the norm of sub-gradients of f at any point is bounded by G. Therefore, if all the loss
functions `t are Lipschitz with factor G, at all t ∈ [T ], ‖zt‖ ≤ G for all zt ∈ ∂`t(wt). The
regret bound in this case becomes:

1

2η
‖w∗‖2 +

η

2
TG2 (3.5)
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Algorithm 5 The online gradient descent algorithm.
1: Initialize w1 = 0
2: for t = 1, . . . , T do

3: Predict vector wt

4: Observe loss `t
5: wt+1 ← wt − ηzt with zt ∈ ∂`t(wt)

If we also assume the set B to be enclosed in a ball of radiusB, i.e. B ⊆ {v ∈ Rd : ‖v‖ ≤ B},
and we know the time horizon T beforehand, we can set η = B

G
√
T

and obtain:

1

2η
‖w∗‖2 +

η

2
TG2 ≤ 1

2η
B2 +

η

2
TG2

≤ G
√
T

2B
B2 +

B

2G
√
T
TG2

≤ BG
√
T

2
+BG

√
T

2

≤ BG
√
T

This proves that online gradient descent has sub-linear cumulative regret, and its average re-
gret decreases asO(1/

√
T ). If the time horizon is not known, the so called doubling trick can

be used to eliminate the dependency of η from T , worsening the regret bound by a constant
multiplicative factor [242]. The same can be achieved with a variant of Algorithm 5 using
a variable step size ηt and a projection step [292]. Many other variants of this algorithm
have been developed, e.g. to derive logarithmic regret bound in the case of strongly convex
functions [134] and to deal with limited bandit feedback [106].

3.1.2 Online perceptron

As mentioned, the online convex optimization framework can be used to derive e�cient on-
line learning algorithms. We will now instantiate the online gradient descent algorithm in the
simple case of online classi�cation. The resulting algorithm is the famous (online) perceptron
algorithm. The perceptron was �rst introduced by [223] and then analyzed by [109, 124, 189].
Many variants of this algorithm have been developed, such as the Winnow algorithm [166]
and passive-aggressive algorithms [67], all analyzable within the online convex optimization
framework. In the online classi�cation setting, we have X = Rd and Y = {−1, 1}. We con-
sider a linear model 〈w,x〉, with parameters w ∈ Rd to be estimated by the algorithm, and
use the sign of this model sign(〈w,x〉) as prediction rule. We de�ne a 0-1 misclassi�cation
loss of the type:

`0-1(y, y
∗) = 1[y∗y≤0] = 1[y∗〈w,x〉≤0] (3.6)

In the above loss, when the sign of y∗ and 〈w,x〉 agree, then y∗〈w,x〉 > 0 and thus the
loss is equal to 0. Otherwise, if the sign of y∗ and 〈w,x〉 do not agree, or 〈w,x〉 = 0, the
expression y∗〈w,x〉 ≤ 0 and the algorithm incurs in a loss equal to 1.
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Algorithm 6 The perceptron algorithm.
1: for t = 1, . . . , T do

2: Receive input xt
3: Predict output yt = sign(〈wt,xt〉)
4: Observe true output y∗t
5: if y∗t〈wt,xt〉 ≤ 0 then

6: wt+1 ← wt + y∗txt
7: else

8: wt+1 ← wt

The cumulative 0-1 loss over the online predictions counts the number of mistakes the algo-
rithm makes:

|M| =
T∑
t=1

`0-1(yt, y
∗
t)

whereM = {t ∈ [T ] : y∗t〈wt,xt〉 ≤ 0} is the set of iterations t ∈ [T ] in which the algorithm
has made a mistake. It is common in the literature to derive amistake bound, instead of a regret
bound, when analyzing an online classi�cation algorithm. We will now derive an algorithm
for online classi�cation and its associated mistake bound starting from the regret bound of
online gradient descent.

To cast this learning problem into an online convex optimization one, we de�ne a sequence
of loss functions `t(w) to pass to the online gradient descent algorithm:

`t(w) = `0-1(sign(〈w,xt〉), y∗t) = 1[y∗t〈w,xt〉≤0]

Unfortunately, the above `t based on the 0-1 loss are not convex. We will, therefore, resort
to deriving a classi�cation algorithm using a surrogate convex loss. A loss ˆ̀

t is a convex
surrogate of `t if: [i] ˆ̀

t is convex; [ii] ˆ̀
t(w) is an upper bound for `t(w), i.e. ˆ̀

t(w) ≥ `t(w),
for allw and all t ∈ [T ]2. To derive the online perceptron algorithm we de�ne the following
loss function:

ˆ̀
t(w) =

{
0 if t 6∈ M
|1− y∗t〈w,xt〉|+ if t ∈M

(3.7)

where |a|+ = max{0, a} is the hinge function. When the prediction of the algorithm is cor-
rect, it receives a loss ˆ̀

t(w) = 0, which is convex and satis�es ˆ̀
t(wt) = `t(wt) = 0. When

the algorithm makes a mistake, instead, it receives the loss |1 − y∗t〈wt,xt〉|+, commonly
known as hinge loss, which is convex and ˆ̀(wt) ≥ `t(wt) = 1.

We can now apply the online gradient descent algorithm. At iteration t ∈ [T ] we pick the
following sub-gradient of the above loss:

zt =

{
0 if y∗t〈wt,xt〉 > 0

y∗txt if y∗t〈wt,xt〉 ≤ 0

2For the analysis to go through it is su�cient to have ˆ̀
t(wt) ≥ `t(wt).
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Resulting in the update rule:

wt+1 =

{
wt if y∗t〈wt,xt〉 > 0

wt + ηy∗txt if y∗t〈wt,xt〉 ≤ 0

LetMt = {i ∈M : i < t} be the set of iterations in which the algorithm has made a mistake
up to iteration t ∈ [T ]. We have that:

yt = sign(〈wt,xt〉) = sign
(∑
i∈Mt

ηy∗ixi

)
= sign

(∑
i∈Mt

y∗ixi

)

The last equality holds because the sign of the model does not depend on the value of the pos-
itive constant η. This fact yields the update rule of the perceptron algorithm3 (Algorithm 6).

To derive a mistake bound for the perceptron algorithm, we can use the tools from the pre-
vious section. In particular, we can adapt the bound in Equation 3.4 using the loss de�ned in
Equation 3.7:

T∑
t=1

ˆ̀
t(wt)−

T∑
t=1

ˆ̀
t(w
∗) ≤ 1

2η
‖w∗‖2 +

η

2

∑
t∈M
‖y∗txt‖2

Let R = maxt∈[T ]‖xt‖. Also, since the loss ˆ̀
t is a convex surrogate of the 0-1 loss, we have∑T

t=1
ˆ̀
t(wt) ≥ |M|. Therefore, the above bound can be rewritten as:

|M| ≤
T∑
t=1

ˆ̀
t(w
∗) +

1

2η
‖w∗‖2 +

η

2
R2|M| (3.8)

Since the update rule does not depend on η, it is equivalent to the update rule using any η > 0

and the above bound still holds. Setting η = ‖w∗‖
R
√
|M|

we obtain:

|M| ≤
T∑
t=1

ˆ̀
t(w
∗) +

1

2
R‖w∗‖

√
|M|+ 1

2
R‖w∗‖

√
|M|

≤
T∑
t=1

ˆ̀
t(w
∗) +R‖w∗‖

√
|M|

Rearranging:

|M| −R‖w∗‖
√
|M| −

T∑
t=1

ˆ̀
t(w
∗) ≤ 0

Notice thatR‖w∗‖ ≥ 0 and
∑T
t=1

ˆ̀
t(w
∗) ≥ 0. The above inequality can be solved for

√
|M|

3In the literature, the perceptron is often derived using the loss ˆ̀(w) = |−y∗t〈w,xt〉|+ and setting η = 1. While
this approach allows to derive the same algorithm, this loss is not technically a surrogate of the 0-1 misclassi�cation
error, and thus it cannot be straightforwardly applied to derive the mistake bound of the perceptron.
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by analyzing the roots of the convex parabola x2−bx−c = 0. In particular, x = b
2±
√

b2

4 + c,
therefore we have:

√
|M| ≤ R

2
‖w∗‖+

√√√√R2

4
‖w∗‖2 +

T∑
t=1

ˆ̀
t(w∗)

By squaring both sides of the inequality, and by the fact that
√
a+ b ≤

√
a+
√
b for a, b ≥ 0,

we obtain:

|M| ≤ R2

2
‖w∗‖2 +R‖w∗‖

√√√√R2

4
‖w∗‖2 +

T∑
t=1

ˆ̀
t(w∗) +

T∑
t=1

ˆ̀
t(w
∗)

≤ R2

2
‖w∗‖2 +R‖w∗‖

√
R2

4
‖w∗‖2 +R‖w∗‖

√√√√ T∑
t=1

ˆ̀
t(w∗) +

T∑
t=1

ˆ̀
t(w
∗)

≤ R2

2
‖w∗‖2 +

R2

2
‖w∗‖2 +R‖w∗‖

√√√√ T∑
t=1

ˆ̀
t(w∗) +

T∑
t=1

ˆ̀
t(w
∗)

≤ R2‖w∗‖2 +R‖w∗‖

√√√√ T∑
t=1

ˆ̀
t(w∗) +

T∑
t=1

ˆ̀
t(w
∗)

For linearly separable data, i.e. if exists w∗ such that y∗t〈w∗,xt〉 > 1 for all t ∈ [T ], we have∑T
t=1

ˆ̀
t(w
∗) = 0, and thus:

|M| ≤ R2‖w∗‖2 (3.9)

3.2 Structured-output prediction

Algorithms for standard multi-label classi�cation and multi-dimensional regression aim at
�nding a function f : Rd → Rm that is able to predict the right output y = f(x;θ) given
the input x ∈ Rd, by estimating the model parameters θ from data. In doing so, one typi-
cally assumes that the output variables correlate well with the input variables and that the
output variables are independent of each other. The latter assumption is not always true,
especially when predicting structured objects like sets, sequences, matrices, trees or graphs.
Typical problems of structured prediction arise in natural language processing when extract-
ing the parse tree of a sentence [253], or in computer vision when segmenting the image into
meaningful parts [135]. In these cases, output variables are interdependent and standard dis-
criminative models can not represent nor learn these dependencies. The most well known ap-
proaches to structured prediction are conditional random �elds (CRFs) [158] and large-margin
approaches, a.k.a. structured SVMs [68, 252, 269]. These two methods share many common-
alities (see e.g. [146]), and they can be seen as generalizations to the structured case of binary
classi�cation with logistic regression [179] and linear SVMs [65]. In Section 3.2.1 we will
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concentrate on describing the standard formulation of large-margin structured classi�ers.

Even though many algorithms for learning structured models exists, we will focus our anal-
ysis on a simple online method proposed by Collins [60, 62] based on a variant of the percep-
tron algorithm. This method is commonly known as the structured perceptron. In Section 3.2.2
we will describe the structured perceptron and derive a mistake bound using the tools from
online convex optimization.

3.2.1 Large-margin structured classi�ers

The common approach for modeling structured prediction problems is to use a joint input-
output model F (x, y), encoding not only the dependency between input and output, but also
the dependency within the output variables. The model F : X ×Y → R represents the score
of the input-output pair (x, y) ∈ X × Y , with a higher score meaning a more “compatible”
output to a given input. A structured predictor f(x) can then be de�ned by �nding the output
object maximizing the score for the given input x:

f(x) = argmax
y∈Y

F (x, y)

To be able to use a structured predictor, an e�cient inference oracle capable of solving this
maximization problem must be available. For example, when the prediction task involves
sequences, the Viterbi algorithm (and variants) is often used [177], which �nds the highest
score sequence using dynamic programming.

To learn the model F , one common approach is to de�ne it as a linear model in some joint
input-output feature space:

F (x, y) = 〈w,φ(x, y)〉 (3.10)

where w ∈ Rd is the parameter vector to be learned from data, while φ : X × Y →
Rd is a feature function, mapping input and output pairs to d-dimensional feature vectors.
In the batch setting, when training labels are available prior to the prediction, the most
widely adopted method for learning the model in Equation 3.10 is by structured support vec-
tor machines (SSVMs) [270, 269]. Modern training algorithms for SSVMs include: cutting-
plane [145], exponentiated gradient [61], stochastic subgradient [217, 244], and block-coordinate
Frank-Wolfe [157, 197]. Given a dataset (xi, y

∗
i )
n
i=1, all the aforementioned algorithms train a

structured predictor that minimizes a structured loss ∆(yi, y
∗
i ), which measures the “discrep-

ancy” between the prediction yi and the structured label y∗i . The structured loss used depends
on the type of structures the model predicts. If the task is sequence prediction, for instance,
the loss is usually a Hamming distance between yi and y∗i . Most of these algorithms can also
work in an online fashion, minimizing the loss:

`t(w) = max
y∈Y

[∆(y, y∗t)− 〈w,φ(xt, y
∗
t)− φ(xt, y)〉] (3.11)

The above loss is often called structured hinge loss. Minimizing the structured hinge loss
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Algorithm 7 The structured perceptron.
1: Initialize w1 = 0
2: for t = 1, . . . , T do

3: Receive input xt ∈ X
4: Predict output yt = argmaxy∈Y〈wt,φ(xt, y)〉
5: Observe true output y∗t
6: wt+1 ← wt + φ(xt, y

∗
t)− φ(xt, yt)

is usually achieved by �rst solving the so called loss-augmented inference problem, setting
yt to: yt = argmaxy∈Y [∆(y, y∗t) − 〈wt,φ(xt, y

∗
t) − φ(xt, y)〉]. The same maximization

oracle is usually capable of solving the standard inference problem and the loss-augmented
one. Learning algorithms then update the model by exploiting the gradient of the structured
hinge loss. For instance, the algorithm from [217] is based on the projected subgradient
method [292], resulting in the update rule: wt+1 ← ΠB(wt − ηt(φ(xt, yt) − φ(xt, y

∗
t))),

where ΠB(·) projects a vector onto a convex set B, and ηt is a variable step size.

In this thesis we will focus on a much simpler approach, namely the structured perceptron [60],
which is closely related to the coactive learning algorithms (Section 3.3) that we will employ
in our constructive preference elicitation framework. For the structured perceptron, the loss
∆(y, y′) = 1[y 6=y′] is simply a 0-1 loss, thereby making it analyzable along the lines of the
perceptron algorithm for the binary classi�cation case (Section 3.1.2).

3.2.2 Structured perceptron

The structured perceptron was introduced by [60] as a way for training sequence models,
alternative to CRFs [158]. However, it can be used for training models over arbitrary struc-
tures, provided a compatible inference oracle. The original formulation of the structured per-
ceptron [60] was mainly thought for training structured predictors in a batch setting. Here
we provide an online version of the structured perceptron, in which examples simply come
sequentially throughout the iterations, instead of being ready available in a training set. Al-
gorithm 7 shows the pseudocode of this slightly adapted version of the structured perceptron.
After initializing the weights w1 to 0, the algorithm starts iterating through the examples.
At each iteration t ∈ [T ], the algorithm receives an input xt ∈ X and predicts an output
object yt by maximizing the current scoring function 〈wt,φ(xt, ·)〉 over Y . The algorithm
then receives a true structured label y∗t , with which updates the weights wt+1 according to
the rule in line 6 of Algorithm 7.

The original analysis was given following the standard empirical risk minimization protocol,
i.e. bounding training and generalization errors separately. In this section we present an al-
ternative version of the analysis based on the online convex optimization tools. Our approach
yields the same result of [60] but follows an argument similar to the one used in Section 3.1.2
for the perceptron in the binary classi�cation case. We are not aware of any other work in
the literature proving the mistake bound of the structured perceptron using this technique.
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We will focus on the separable (or realizable) case, as it is similar to the case in which coactive
learning algorithms operate (see Section 3.3). We assume there exists a vectorw∗ ∈ Rd, with
‖w∗‖ = 1, separating the data points by a constant margin δ > 0, i.e.:

∀ t ∈ [T ], ∀ y ∈ Y, y 6= y∗t 〈w∗,φ(xt, y
∗
t)− φ(xt, y)〉 ≥ δ

As for the original formulation, we consider a 0-1 misclassi�cation loss (Equation 3.6), where
predictions are made using the rule yt = argmaxy∈Y〈wt,φ(xt, y)〉. Also, as for the standard
perceptron, here we use a di�erent loss depending on whether the algorithm has made a
mistake or not. If t 6∈ M, we use ˆ̀

t(w) = 0, whereas, if t ∈M, we use the structured hinge
loss (Equation 3.11) as a surrogate loss, with ∆(y, y∗t) = 1[y 6=y∗t ]. When the algorithm makes
a mistake, we have that:

yt = argmax
y∈Y

〈wt,φ(xt, y)〉 = argmax
y∈Y

[1[y 6=y∗t ] − 〈wt,φ(xt, y
∗
t)− φ(xt, y)〉]

Therefore, the gradient of the structured hinge loss is ∇ˆ̀
t(wt) = −(φ(xt, y

∗
t)− φ(xt, yt)),

resulting in the following update rule for the online gradient descent:

wt+1 = wt + η (φ(xt, y
∗
t)− φ(xt, yt))

This rule is also used when the algorithm makes a correct prediction, in which case yt = y∗t ,
hence φ(xt, y

∗
t) − φ(xt, yt) = 0 and thus the update becomes wt+1 = wt, the same we

get by using ˆ̀
t(wt) = 0 for t 6∈ M. With an argument similar to the one used in the

online classi�cation case, we can see that the predictions of the structured perceptron are
independent of the step size η. If the algorithm does not make a mistake, then the update is
φ(xt, y

∗
t)− φ(xt, yt) = 0 and thus the weights at iteration t are equal to:

wt = η
∑
i∈Mt

(φ(xi, y
∗
i )− φ(xi, yi))

Hence, the prediction of the algorithm equals:

yt = argmax
y∈Y

〈wt,φ(xt, y)〉 = argmax
y∈Y

η
∑
i∈Mt

〈φ(xi, y
∗
i )− φ(xi, yi),φ(xt, y)〉

Since η is a positive constant, the solution of the above optimization problem is the same for
any value of η. Using the regret bound of online gradient descent (Equation 3.4), we have:

T∑
t=1

ˆ̀
t(wt)− ˆ̀

t(w
∗) ≤ 1

2η
‖w∗‖2 +

η

2

T∑
t=1

‖φ(xt, y
∗
t)− φ(xt, yt)‖2

Let ‖φ(xt, y
∗
t)− φ(xt, yt)‖ ≤ R. Expanding ˆ̀

t(wt) we get:

∑
t∈M

(1− 〈wt,φ(xt, y
∗
t)− φ(xt, yt)〉)−

T∑
t=1

ˆ̀
t(w
∗) ≤ 1

2η
‖w∗‖2 +

η

2

∑
t∈M

R2
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Rearranging:

|M| ≤
∑
t∈M
〈wt,φ(xt, y

∗
t)− φ(xt, yt)〉+

T∑
t=1

ˆ̀
t(w
∗) +

1

2η
‖w∗‖2 +

η

2
R2|M|

Since yt is the maximizer of 〈wt,φ(xt, · )〉, we have that 〈wt,φ(xt, y
∗
t) − φ(xt, yt)〉 ≤ 0,

making the above equation:

|M| ≤
T∑
t=1

ˆ̀
t(w
∗) +

1

2η
‖w∗‖2 +

η

2
R2|M|

This equation is identical to Equation 3.8 and is valid for any positive constant η. We can
therefore apply a similar argument to the one we used for the analysis of the perceptron for
online classi�cation. Substituting η = ‖w∗‖

R
√
|M|

and expanding ˆ̀
t(w
∗) we get:

|M| ≤
∑
t∈M

(1− 〈w∗,φ(xt, y
∗
t)− φ(xt, yt)〉) +

1

2
R‖w∗‖

√
|M|+ 1

2
R‖w∗‖

√
|M|

≤
∑
t∈M

(1− δ) +R‖w∗‖
√
|M|

≤ (1− δ)|M|+R‖w∗‖
√
|M|

The second inequality follows from the separability assumption. Rearranging:

δ|M| −R‖w∗‖
√
|M| ≤ 0

Solving for
√
|M| we get: √

|M| ≤ R‖w∗‖
δ

Squaring both sides and setting ‖w∗‖ = 1:

|M| ≤ R2

δ2

As we can see, we obtained the same mistake bound found in the original formulation [60],
but starting from the online gradient descent algorithm.

3.3 Coactive learning

Coactive learning [248] is an online structured prediction framework for learning the utility
function of a user and provide high quality recommendations. A coactive learning algorithm
interacts with the user through coactive feedback, i.e. after providing an object y as a rec-
ommendation, the algorithm receives from the user another object ȳ that is preferred (even
slightly) to y by the user. Given this feedback, a coactive learning algorithm can improve its
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Algorithm 8 The preference perceptron.
1: Initialize w1 = 0
2: for t = 1, . . . , T do

3: Receive context xt
4: Recommend object yt = argmaxy∈Y〈wt,φ(xt, y)〉
5: Receive feedback ȳt
6: wt+1 ← wt + φ(xt, ȳt)− φ(xt, yt)

estimate of the user utility function and provide better recommendations in the future. This
paradigm can be seen as a cooperation between the user and the system to pursue the com-
mon goal of producing high quality recommendations. Objects recommended by coactive
learning are structured, as those predicted by the structured perceptron seen in the previous
section. Indeed, there are many commonalities between coactive learning algorithms and
the structured perceptron, with the main di�erence being that coactive learning algorithms
accept weak user feedback rather than optimal labels. Also, di�erently from other online
learning frameworks (e.g. [160]), coactive learning never observes cardinal utilities, which
is a requirement for many tasks involving the interaction with a human, such as preference
elicitation (see Section 2.1). Coactive learning has much in common with online convex op-
timization, as most of online convex optimization algorithms can be adapted to the coactive
learning case [247].

Coactive learning has been developed extensively along several directions. The original au-
thors extended the framework by deriving coactive learning algorithms for handling arbitrary
convex and strongly convex functions, as well as learning with sparsifying multiplicative up-
dates [247]. Other developments include the possibility of learning multi-task decision prob-
lems involving multiple users [117] and approximately solving decision problems through
local search [116], among others [214, 216, 215]. Applications of coactive learning range from
personalizing a search engine results [246], to improving machine translation systems [250]
and learning trajectories in robot manipulators [140, 141].

In the next section we will focus on the simplest coactive learning algorithm, called preference
perceptron, for which we will derive a regret bound using the original derivation from [248],
and we will show that the same bound can be derived starting from the online gradient de-
scent algorithm as well.

3.3.1 Preference perceptron

The preference perceptron is the �rst [246] and most basic coactive learning algorithm. Our
constructive derivations (Chapter 5 and 6) will be based on this algorithm, though extensions
using more complex coactive learning techniques are rather straightforward.

The preference perceptron is showed in Algorithm 8. The algorithm starts o� by initializing
the utility parameters to zero, and then loops over a series of T iterations. At each iteration
t ∈ [T ], the algorithm �rst receives an input xt ∈ X , which can be thought as the context of
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the subsequent recommendation, much like in contextual bandits [160]. The algorithm then
produces an output object yt ∈ Y that is recommended to the user. The recommendation is
selected by optimizing the current estimate of the utility function ut(x, y) = 〈wt,φ(x, y)〉.
The algorithm then receives the improvement ȳt from the user. This object does not have to
be constructed by the user explicitly, but it can be created from implicit feedback collected
from logged user activity. Indeed, the original formulation of coactive learning was mainly
adopted for optimizing rankings from clicks [247]. On the other hand we also advocate the
use of coactive learning with explicit user feedback, like the feedback that one would get from
a con�gurator system (see Section 2.2.2), or a combination of both implicit and explicit, as we
will see in Chapter 8. After receiving the feedback ȳt, the algorithm obtains the new weights
wt+1 with an update step similar to the one we have seen in the structured perceptron. The
preference perceptron is essentially identical to a structured perceptron, though it exploits
the fact that, in the absence of the true gradient, a vector with positive inner product with
the gradient in expectation su�ces to achieve regret minimization [209, 247].

We now go ahead with the analysis of the preference perceptron algorithm. The analysis will
rely on a realizability assumption similar to the one made for the structured perceptron in
the previous section. Let �x be the true preference relation of the user given context x ∈ X .
We assume there exists a true utility function u∗(x, y) = 〈w∗,φ(x, y)〉 such that:

∀ x ∈ X , y, y′ ∈ Y y �x y′ ⇐⇒ u∗(x, y) > u∗(x, y′)

This also implies that there must exist an optimal object y∗x for �x and it must be equal to:

∀ x ∈ X y∗x = argmax
y∈Y

u∗(x, y)

This in turn means that:

∀ x ∈ X , y ∈ Y \ {y∗x} 〈w∗,φ(x, y∗x)− φ(x, y)〉 > 0

This equates to the separability for the structured perceptron (Section 3.2.2), though here an
explicit notion of margin is not needed.

The goal of coactive learning is to recommend high utility objects across the iterations, so its
objective is to minimize the following average regret:

regT =
1

T

T∑
t=1

u∗(xt, y
∗
t)− u∗(xt, yt)

The above regret provides a measurable quantity indicating the quality of the recommenda-
tions, as opposed to the 0-1 mistake loss used in the structured perceptron (Section 3.2.2).

We will prove that the preference perceptron has a O(1/
√
T ) upper bound on its average

regret. To prove this bound, we further need a model of the behavior of the user. The authors
in [247] propose a boundedly rational model, in which an improvement ȳt is selected by
utility maximization within a neighborhood of the prediction yt. To quantify the quality of
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the improvement ȳt, we use the following α-informative feedback model [247]:

∀ t ∈ [T ] u∗(xt, ȳt)− u∗(xt, yt) = α (u∗(xt, y
∗
t)− u∗(xt, yt))− ξt (3.12)

with α ∈ (0, 1] and ξt ∈ R. The α-informative model describes the “margin” by which the
utility of the improvement ȳt should be greater than the utility of the prediction yt. This
margin is quanti�ed by a fraction α of the regret at iteration t, u∗(xt, y∗t) − u∗(xt, yt). The
slack variables ξt allow for violations to this rule. Note that the model can describe feedback
of any quality, given appropriate values of α and ξt. The α-informative feedback model also
captures the intuitive notion that, as the quality of the recommended objects increases (i.e.
the regret decreases), providing an informative feedback becomes more di�cult.

Let ‖φ(·)‖ ≤ R. The following is the original derivation of the regret bound from [247].

Theorem 3.3.1. For a user with true utility parameters w∗, following the α-informative feed-
back model, the average regret of the preference perceptron is upper bounded by:

regT ≤
2R‖w∗‖
α
√
T

+
1

αT

T∑
t=1

ξt (3.13)

Proof. We start by expanding the squared norm of the vector wT+1:

‖wT+1‖2 = 〈wT+1,wT+1〉
= 〈wT ,wT 〉+ 〈φ(xT , ȳT )− φ(xT , yT ),φ(xT , ȳT )− φ(xT , yT )〉

+ 2〈wT ,φ(xT , ȳT )− φ(xT , yT )〉

Since yT is the maximizer of 〈wT ,φ(xT , · )〉, the last term is null or negative. We can there-
fore bound the above expression as:

‖wT+1‖2 ≤ ‖wT ‖2 + ‖φ(xT , ȳT )− φ(xT , yT )‖2

≤ ‖wT ‖2 + 4R2

≤ 4R2T (3.14)

The second last inequality follows from the assumption that ‖φ(·)‖ ≤ R and the last inequal-
ity is obtained by unrolling over t ∈ [T ], keeping in mind that w1 = 0. Now, applying the
Cauchy–Schwarz inequality to the dot product between w∗ and wT+1 we get:

〈w∗,wT+1〉 ≤ ‖w∗‖‖wT+1‖ ≤ 2R‖w∗‖
√
T (3.15)

We get the second inequality by applying Equation 3.14 to ‖wT+1‖ =
√
‖wT+1‖2. Expand-

ing the dot product 〈w∗,wT+1〉:

〈w∗,wT+1〉 = 〈w∗,wT 〉+ 〈w∗,φ(xT , ȳT )− φ(xT , yT )〉

=

T∑
t=1

〈w∗,φ(xt, ȳt)− φ(xt, yt)〉 (3.16)
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Combining Equation 3.15 and 3.16 we obtain:

T∑
t=1

〈w∗,φ(xt, ȳt)− φ(xt, yt)〉 ≤ 2R‖w∗‖
√
T (3.17)

Applying the α-informative feedback (Equation 3.12) to the LHS, we get:

α

T∑
t=1

〈w∗,φ(xt, y
∗
t)− φ(xt, yt)〉 −

T∑
t=1

ξt ≤ 2R‖w∗‖
√
T

Rearranging:

α

T∑
t=1

〈w∗,φ(xt, y
∗
t)− φ(xt, yt)〉 ≤ 2R‖w∗‖

√
T +

T∑
t=1

ξt

Dividing by αT both sides proves the claim.

The same bound can be derived from the bound of online gradient descent. Using the loss:

ˆ̀
t(w) = 〈w,φ(xt, yt)− φ(xt, ȳt)〉

The resulting update rule for online gradient descent is:

wt+1 = wt + η (φ(xt, ȳt)− φ(xt, yt))

As usual η is a positive constant that can be ignored in the actual update rule of the preference
perceptron. Plugging the above update rule into the usual bound of online gradient descent
results in:

T∑
t=1

ˆ̀
t(wt)− ˆ̀

t(w
∗) ≤ 1

2η
‖w∗‖2 +

η

2

T∑
t=1

‖φ(xt, ȳt)− φ(xt, yt)‖2

≤ 1

2η
‖w∗‖2 + 2ηR2T

Rearranging and expanding the loss ˆ̀
t(w
∗):

T∑
t=1

〈w∗,φ(xt, ȳt)− φ(xt, yt)〉 ≤ −
T∑
t=1

ˆ̀
t(wt) +

1

2η
‖w∗‖2 + 2ηR2T

Since yt is the maximizer of 〈wt,φ(xt, · )〉, the loss ˆ̀
t(wt) ≥ 0 and thus we can upper bound

the above expression by:

T∑
t=1

〈w∗,φ(xt, ȳt) + φ(xt, yt)〉 ≤
1

2η
‖w∗‖2 + 2ηR2T
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Setting η = ‖w∗‖
2R
√
T

we get:

T∑
t=1

〈w∗,φ(xt, ȳt) + φ(xt, yt)〉 ≤ R‖w∗‖
√
T +R‖w∗‖

√
T = 2R‖w∗‖

√
T

The above inequality is identical to that in Equation 3.17. Applying the inequality of the
α-informative feedback (Equation 3.12):

α

T∑
t=1

〈w∗,φ(xt, y
∗
t)− φ(xt, yt)〉 −

T∑
t=1

ξt ≤ 2R‖w∗‖
√
T

Rearranging and dividing by αT we obtain the same bound as Theorem 3.3.1:

1

T

T∑
t=1

〈w∗,φ(xt, y
∗
t)− φ(xt, yt)〉 ≤

2R‖w∗‖
α
√
T

+
1

αT

T∑
t=1

ξt

3.4 Summary

In this chapter we have presented the online convex optimization framework [132, 242], and
one simple, yet powerful, algorithm: the online gradient descent [242]. We stated the re-
gret bound of this algorithm without proof and used it to derive an online algorithm for
binary classi�cation, the perceptron [189, 223]. We have then overviewed structured-output
prediction [14], highlighting the structured perceptron [60], an online algorithm for struc-
tured prediction, providing an alternative proof to the original one, using the tools from
online convex optimization. Finally, we have introduced coactive learning [247], an online
structured prediction framework for preference learning. Within coactive learning, we pre-
sented the preference perceptron algorithm [246, 248] and replicated the proof for the original
O(1/

√
T ) average regret bound. We have also connected back this approach to the online

gradient descent method, providing an alternative proof employing the tools from online
convex optimization. One remarkable common denominator is the online gradient descent
approach, which has proven e�ective for deriving algorithms to solve three very di�erent,
and seemingly unrelated tasks, namely binary classi�cation, structured prediction and coac-
tive learning.
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Chapter 4

Constructive recommendation

Constructive preference elicitation refers to the problem of learning to synthesize novel ob-
jects according to the preference of one or more users. The act of generating new objects
from scratch often involves searching over an exponentially (or even in�nitely) large instance
space while optimizing the desired objective. When the objective being optimized is unknown
a priori and needs to be learned from data, the task becomes a constructive machine learning
one. The goal in a constructive learning problem is to generate one or more instances that
exhibit some desired properties, and it is commonly approached by iteratively re�ning the
output as new data comes along. Typical applications of constructive machine learning are
de novo molecule and drug design [66, 115, 120, 194], automatic music composition [63, 151,
198], video-game levels generation [171], recipe completion [69], and more [176, 191, 192,
193]. In general, constructive machine learning encompasses di�erent learning techniques,
such as probabilistic context free grammars [151], non-negative matrix factorization [69],
Monte Carlo sampling over structured spaces e.g. sequences [198] and graphs [66], and deep
learning [120]. In this thesis we will focus on one technique in particular, namely constrained
structured prediction [87, 259], which will be discussed in Section 4.1.

Constructive recommendation is a kind of constructive learning problem in which the objec-
tive to optimize is the unknown utility function of the user. To learn a utility model of the
user preferences, the constructive recommender has to interact with the user in order to
collect preference feedback, a process that we call constructive preference elicitation. This is
analogous to the standard preference elicitation techniques seen in Section 2.1. While there
is a large literature in preference elicitation, state-of-the-art techniques are not suitable for
large constructive tasks, as will be discussed in Section 4.2. In order to scale to large com-
binatorial spaces we use instead online structured prediction algorithms. In particular, we
use coactive learning [247] (see Section 3.3) as our preference elicitation framework, which
o�ers a number of advantages over standard preference elicitation techniques, as argued in
Section 4.2.1 and 4.3. In Section 4.3 we will also highlight di�erences between constructive
recommendation and other types of recommender systems. In Section 4.4, we will detail the
research problems associated with our constructive approach, which will then be investigated
in Chapter 5 and 6. Finally, in Section 4.5, we will enumerate some of the possible applications
of constructive recommendation, two of which will be covered in detail in Chapter 7 and 8.
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4.1 Constrained structured prediction

As seen in Section 3.2, to learn structured models, one has to de�ne a domain of structured in-
put and output objectsX andY , a joint input-output feature mapφ : X ×Y → Rd and needs
an oracle capable of solving an inference problem of the type argmaxy∈Y〈w,φ(x, y)〉, for a
given w ∈ Rd and x ∈ X . This paradigm has been traditionally applied only to structures
for which an e�cient oracle was known. With the advancement of constrained optimiza-
tion solvers, however, it has become more and more practical to apply this kind of paradigm
to generic constrained combinatorial domains. In essence, constrained structured prediction
consists in just that: learning structured models over arbitrary constrained combinatorial
spaces, taking care of inference problems through o�-the-shelf constraint solvers.

In practice, this boils down to encoding the input and output objects x ∈ X and y ∈ Y
with a collection of variables, with the possibility of imposing arbitrary constraints to the
feasible space. Depending on the type of variables, constraints and features φ(·), inference
corresponds to a program from di�erent classes of optimization problems [201]. In the sim-
plest case, when the problem contains only real variables and linear features and constraints,
inference reduces to a linear program (LP) which is solvable in polynomial time [149]. Many
problems are, however, discrete in nature and a relaxed linear program would not �nd an
optimal solution. In these cases, variables taking only integer values are needed, yielding an
integer program (IP). Allowing a mixture of real and integer variables, we get a mixed integer
program (MIP). Restricting the features and constraints to be linear in the decision variables,
the inference problem can be solved by an integer linear program (ILP) or mixed integer linear
program (MILP) [238]. In general, we will stick to the MILP case, which is the best supported
nowadays, though algorithms and solvers for problems with non-linear constraints or objec-
tive functions exist for certain particular cases such as quadratic programming (QP) [290] or
second order cone programming (SOCP) [19].

While using LP or ILP solvers for structured inference is not a new concept (see e.g. [190]), the
technology for employing them out-of-box in an e�cient way is relatively recent. The use
of mixed programs is also a recent advancement �rst proposed by [259], which employed an
optimization modulo theories (OMT) solver [240, 241] with a mix of LRA and LIA theories1.
Another recent progress is the integration of structured predictors and constraint program-
ming languages. One notable example is Pyconstruct [87], which leverages MiniZinc [188],
perhaps the most well-known high-level constraint programming language to date. Simi-
larly to other frameworks like MiningZinc [125] for constraint-based mining, Pyconstruct
allows us to de�ne the domain of structured learning problems through a uni�ed declara-
tive language. The MiniZinc language is itself independent of the underlying solver, allow-
ing to choose the best solver for each situation. Pyconstruct, together with the possibility
of mixing discrete and continuous variables [259], e�ectively makes structured predictors
programmable, allowing the de�nition of complex learning problems over arbitrary struc-

1Within the vast literature on satis�ability (SAT) [21], researchers have developed solvers for handling satis�-
ability of formulas with respect to certain background theories, such as the linear arithmetic over reals (LRA) or
over integers (LRI), or combinations thereof. This method is called satis�ability modulo theories (SMT) [70]. SMT
solvers have also been extended to handle optimization problems, yielding optimization modulo theories (OMT) [240].



Chapter 4. Constructive recommendation 51

tures [87].

Constrained structured prediction [87, 259] can also be seen as a method to inject prior knowl-
edge into a learning problem, which is a typical characteristic of statistical relational learning
(SRL) frameworks [114]. In particular, constrained structured prediction is related to various
hybrid probabilistic relational models such as hybrid Markov logic networks [222, 280] and hy-
brid ProbLog [72, 130]. We refer to [259] for a detailed comparison of constrained structured
prediction techniques with several SRL frameworks.

4.2 Constructive preference elicitation

By pulling together constrained structured prediction and preference elicitation (see Sec-
tion 2.1), we can devise algorithms for learning utility functions from user feedback over
structured combinatorial output spaces. We call this methodology constructive preference
elicitation. Constrained structured prediction serves as a modeling, inference and learning
framework, while preference elicitation provides the interaction paradigm, the de�nition and
manipulation of utility functions and their decision theoretic interpretation.

Recall from Section 2.1 that it is usually assumed that the utility function u(·) comes with
a certain structure, in order to simplify the elicitation process. In particular, when the util-
ity can be broken down over independent components, we can select recommendation more
e�ciently and the utility can be elicited more quickly. In multi-attribute utility theory (Sec-
tion 2.1.2), output objects are generally represented as (and uniquely determined by) feature
(or attribute) vectors y ∈ Rd in some d-dimensional feature space. In this case, a typical
assumption made on the structure of the utility function is to be additively independent over
the features: u(y) = 〈w,y〉. Let us assume now that the vectors y are vectorial representa-
tions of objects y from some arbitrary output space Y and that there exists a vector-valued
function φ : Y → Rd to extract features from these objects, i.e. such that y = φ(y). If φ is
bijective and its inverse φ−1 is known, we can still go through the elicitation process with
the same additive utility function by selecting recommendation via optimization of u(y) over
Rd and translating to Y through φ−1. Alternatively, if we have access to an oracle that is
capable of searching for a recommendation directly over Y , we can avoid passing through
Rd entirely. In this case, we can abstract away the dependency of the utility from the feature
vectors and de�ne the utility function over Y directly: u(y) = 〈w,φ(y)〉. At this point the
feature function φ is not required to be bijective anymore, and we can still enjoy the bene�ts
of additivity over the features. This approach has also the advantage of providing a easy way
to embed contextual information x ∈ X into the utility model by simply making the features
context-dependent: u(x, y) = 〈w,φ(x, y)〉.

This latter form is equivalent to the scoring function typically used in structured-output pre-
diction (see Section 3.2). Indeed, like a scoring function for structured classi�cation, a utility
function assigns higher scores to better objects for the given context. The main di�erence
with the structured prediction case is that the scoring function is learned from a dataset of
“perfect” input-output pairs. Unfortunately, such dataset is rarely available in constructive
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preference elicitation, especially for decision problems over exponentially large combinato-
rial spaces. As in standard preference elicitation, we need to resort to exploit preferential
information acquirable via interaction with the user. As seen in Section 2.1.2, multi-attribute
utility theory already encompasses elicitation over combinatorial spaces. In practice, though,
existing preference elicitation algorithms often fail to scale to truly constructive problems.
We can, however, draw insight from them for devising new, more e�cient, preference elici-
tation techniques based on constrained structured prediction that can also be applied to the
constructive case. The �rst method proposed for constructive preference elicitation is the set-
wise max-margin framework from Teso et al. [257]. The core idea in set-wise max-margin is to
use a max-margin learning procedure, similar to structured support-vector machines [269],
encoded as a MILP to learn not one but k maximally distant parameter vectors, with the
simultaneous selection of the k objects of the next recommendation set. Just like Bayesian
preference elicitation alternatives [129, 272], set-wise max-margin elicits and learns from set-
wise comparison feedback. Teso et al. [257] demonstrated empirically that set-margin is much
more computationally e�cient than existing Bayesian techniques while achieving compara-
ble performance. Another constructive approach for learning from choice set feedback is the
choice perceptron [86] that, di�erently from set-wise max-margin, separates learning from
inference and updates the utility parameters in an online fashion. This online approach has
been shown to perform and scale substantially better than set-wise max-margin over large
combinatorial problems [86]. The choice perceptron also comes with theoretical convergence
guarantees, which are not provided by set-wise max-margin.

Another online structured prediction technique is coactive learning, which is a generic learn-
ing framework for learning structured predictors from weak user feedback (see Section 3.3).
Being based on structured prediction algorithms, coactive learning can be readily applied to
constructive preference elicitation. The manipulative feedback used in coactive learning is
also very well suited for certain constructive tasks, like product con�guration and design, in
which a user is able to provide feedback by directly improving the proposed con�guration,
an approach similar to critiquing systems (see Section 2.2.1), yet without the need of directly
modifying the weights of the utility function.

A constructive preference elicitation system based on coactive learning has the following
components. As for standard structured prediction techniques, learning and inference are
decoupled into two separate software components. The learning part is handled by a coactive
learning algorithm, which drives the elicitation through coactive feedback and learns a utility
function of the form u(x, y) = 〈w,φ(x, y)〉. As in constrained structured prediction, we
model the output space Y with a collection of variables y1, . . . ym with domains Y1, . . . ,Ym.
The variables yi represent basic attributes of the objects, similarly to other techniques in
multi-attribute utility theory. The output objects y ∈ Y are tuples (y1, . . . , ym) ∈ Y1×· · ·×
Ym, combining all the components into one object. The feasible output space Y can also be
limited by a set of hard constraints C , Y = (Y1 × · · · × Ym) ∩ C, where C = ∩C . Input
contexts x ∈ X are represented as variables as well, though they are given constants at any
run of the inference procedure. Context variables x ∈ X can be used to de�ne features and
constraints, making the feasible output space Y(x) context-dependent as well, though we
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will usually avoid to explicitly state this dependency for ease of notation.

The feature map φ is a collection of real functions φ : X × Y → R de�ned over the con-
text variables and the output variables. Features in constructive preference elicitation are
similar to soft constraints used in critiquing systems and constraint-based recommenders (see
Section 2.2.1). They encode arbitrarily complex preference criteria over the attributes of the
objects. Features in constructive preference elicitation are, however, strictly more general
than standard soft constraints. The weighted CSP used in constraint-based recommenders
associate a weight wi to each soft constraint ci and maximize the cumulative weight of the
satis�ed constraints. Each soft constraint contributes either 0 if y 6∈ ci orwi if y ∈ ci. Boolean
features φ(x, y) 7→ {0, 1} achieve the same result. Features φ(x, y), however, can also encode
more complex numerical dependencies, e.g. cost functions of the type max{0, yj −λ}, which
is 0 as long as the attribute yj is less than λ and increases linearly with yj when yj ≥ λ. This
allows us to truly encode arbitrary preference criteria [259]. In fact, a utility function of the
type u(x, y) = 〈w,φ(x, y)〉 can encode any utility function over the attributes of the objects
x and y (see Section 4.4.2).

In this setting, the inference problem y = argmaxy∈Y〈w,φ(x, y)〉 becomes a combinatorial
optimization problem over the variables y1, . . . , ym. As such, we can use any o�-the-shelf
constraint optimization solver as inference oracle. As seen in Section 4.1, depending on the
type of constraints and features, the inference problem may be arbitrarily complex. We will
typically restrict to MIP or MILP problems, solvable with available software packages like
Gecode, Opturion, or Gurobi2. As for standard constrained structured prediction, we can use
declarative modeling languages like MiniZinc to encode the domain of the decision problem
and the inference procedure [87, 188].

The weights of the utility model can be learned by any coactive learning algorithm. Many
variants of the preference perceptron algorithm (see Section 3.3) have been proposed. The
authors in [247] developed algorithms for handling batch updates, sparse weight learning
with multiplicative exponentiated gradient updates (based on [152]), learning from arbitrary
convex and strongly convex losses (based on [292] and [133] respectively). Many extensions
to the coactive paradigm have been developed as well, e.g. for handling locally optimal infer-
ence [116] and learning a balanced global-local utility model from multiple users [117]. All
extensions to coactive learning can be seamlessly integrated into our constructive preference
elicitation framework.

4.2.1 Contextual preference elicitation

One important distinction between coactive learning and most of the previous work on pref-
erence elicitation is its ability to learn from di�erent contexts. The importance of contextual
information has long been recognized in the recommendation systems literature [1], and pref-
erence elicitation algorithms should take it into account too. The key di�erence between a
contextual and a non-contextual model is that the former can generalize to unseen contexts,

2Gecode: gecode.org Opturion: opturion.com Gurobi: gurobi.com

gecode.org
opturion.com
gurobi.com
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carrying over the information acquired in one context to similar ones. This also means that
contextual models are reusable over di�erent instances of the same decision problem.

Contextual variables can hold any kind of additional information, including information
about the user. This can be useful to e.g. initialize the weights of the model to a mean-
ingful starting point learned o�ine from previously collected data of other users. This model
would generalize over similar users, providing a good starting point for a new user, speeding
up elicitation and reducing the amount of feedback needed from the user.

Standard preference elicitation algorithms are focused on delivering to the user the optimal
con�guration within the feasible space, while learning a good utility model is a secondary
issue. Indeed, to �nd the best instance in the feasible space a good utility model is not strictly
necessary, but rather it su�ces to learn a model that ranks �rst the best object, regardless of
the ranking of the other non-optimal ones. The goal of online structured prediction, and of
coactive learning as an instance, is instead to learn to approximate the best function in the
hypothesis class, in our case the space of utility functions.

While similar on the surface, �nding the best instance in the feasible space is a much dif-
ferent task from learning a good utility model able to generalize across di�erent contexts.
The former is often achievable with few user interactions, while the latter usually requires
much more data. This di�erence in goals often determines the decision problems the two
techniques are used for. Coactive learning is mainly used to solve contextual decision prob-
lems like personalizing search engine results, providing recommendations for frequently ac-
cessed items such as movies, and improving predictive tasks with weak user feedback like
machine translation [250]. On the other hand, preference elicitation (often used in conjunc-
tion with constraint-based recommender systems) is generally more suitable for infrequently
purchased items in a non-contextual environment, such as �nding the best apartment or car.
In this category fall also many constructive tasks such as product con�guration. There are,
however, constructive preference elicitation tasks that are also contextual, for instance cre-
ating novel personalized recipes, planning a trip, selecting a fashionable out�t, or aiding an
expert in a design work. We believe (supported by empirical evidence from [85, 86, 93]) that
coactive learning is a viable algorithm for both contextual and non-contextual constructive
preference elicitation tasks.

4.2.2 Evaluation

The most direct performance measure for any coactive learning algorithm is its regret with
respect to the user utility u∗. At any iteration t ∈ [T ] of a coactive learning run, the instan-
taneous regret of the algorithm is:

reg(xt, yt) = max
y∗t∈Y

u∗(xt, y
∗
t)− u∗(xt, yt) (4.1)



Chapter 4. Constructive recommendation 55

We will also be interested in the cumulative regret
∑T
t=1 reg(xt, yt), or equivalently, the

average regret of the algorithm:

regT =
1

T

T∑
t=1

reg(xt, yt)

Throughout this thesis, we will use the term regret to refer to either the instantaneous and
the average regret interchangeably, qualifying any ambiguities that might occur.

The instantaneous regret measures the recommendation quality at each iteration separately,
while the average regret measures the overall performance of the system up to iteration T .
When the decision problem is non-contextual, the goal of the algorithm is to help the user
in �nding the optimal object in the feasible space, which equates to minimizing the instan-
taneous regret of the last iteration, no matter how the algorithm performed in the previous
ones. When the problem is contextual, instead, the aim of the algorithm is to propose good
solutions (if not optimal) for each context, and its performance in doing so is measured by
the average regret.

Coactive learning algorithms are designed to minimize the average regret. As seen in Sec-
tion 3.3, the preference perceptron algorithm enjoys aO(1/

√
T ) upper bound on its average

regret, making it converge to 0 for T →∞. This means that coactive learning is well suited
for contextual preference elicitation problems. As for most online learning algorithms, van-
ishing generalization error bounds can be derived for coactive learning algorithms too [250].
This implies that, the “out-of-sample” instantaneous regret (i.e. at iteration T+1) decreases in
expectation [49, 109], thereby adding support to the claim that coactive learning is a suitable
option for non-contextual preference elicitation as well.

While regret bounds provide worst-case theoretical guarantees, it is useful to test the behavior
of the algorithm in the average case through simulations. Simulations are a widely used tool
to showcase the algorithm performance under certain assumptions on the user behavior. It is
usually the case that user choices are simulated through a feedback model. Commonly used
models for choice set feedback, for instance, are the Bradley-Terry [33], Plackett-Luce [175,
208], or the Thurstone-Mosteller [180] models. In coactive learning we typically employ the
α-informative feedback model [247] (see Section 3.3). Given a user utility u∗ and a parameter
α, improvements ȳt are selected so to satisfy the α-informative model. Random noise is often
used to simulate violations ξt to the α-informative model. Simulations can be performed
with di�erent parametrizations of α and noise level, in order to compare the performance of
the algorithm under di�erent levels of user expertise. Simulations are generally performed
in batches using many sampled weight vectors w∗ and results are averaged over the users,
highlighting the average performance of the algorithm over users with di�erent tastes.

While simulations are e�ective empirical tools to test the algorithm performance, they rely
on assumptions that may not hold true in practice. An alternative solution for testing recom-
mender systems is o�ine evaluation over logged data [245]. In principle, it is possible to use
an o�ine evaluation procedure similar to [160, 161]. This approach would require a dataset of
logged coactive interactions (xi, yi, ȳi)

n
i=1, collected with a random selection policy (to avoid
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bias in the performance estimator). The evaluation algorithm would then “re-run” history.
For each example xi, the algorithm would make a prediction ŷi with the current coactive
model. If ŷi = ȳi then the algorithm would receive a loss `i = 0 and move to the next
example. If ŷi = yi, the algorithm would receive a loss `i = 1 and observe the gradient
φ(xi, ȳi) − φ(xi, yi). If ŷi is neither equal to ȳi or yi, the example is discarded. Given the
set of retained examples D, the average loss 1

|D|
∑
i∈D `i can then be used to assess the per-

formance of the algorithm and compare di�erent models. Being the problem constructive,
the retained examples would be extremely rare, and thus it would only work with a large
amount of logged data. In a constructive scenario, it is very di�cult and expensive to collect
such dataset, so this type of evaluation is often impractical.

The third and �nal evaluation method we consider is through real user experiments. Such
experiments, often called A/B tests, are used to compare two di�erent algorithms or models,
and collect evidence on their performance over two separate groups of users. This is perhaps
the most e�ective way to test the real performance of a constructive system, yet it is very
expensive compared to simulations. As such, simulations will be the main evaluation tool
for the algorithms developed in this thesis. However, we will also show in Chapter 8 the
results of an empirical analysis performed with human participants over a fully implemented
constructive system.

4.3 Detailed related work

In this section we provide an in depth comparison between our constructive preference elici-
tation framework based on coactive learning and related work in the literature. In particular,
we will be comparing with the three closest approaches, which we already surveyed in Chap-
ter 2 and Chapter 3, namely standard (i.e. regret-based and Bayesian) preference elicitation,
constraint-based recommendation and other online learning approaches.

4.3.1 Standard preference elicitation

In Section 2.1.4 we discussed the characteristics of state-of-the-art preference elicitation ap-
proaches, namely regret-based and Bayesian preference elicitation. Both these approaches
are not suitable for constructive tasks for di�erent reasons [85].

Regret-based approaches natively support the representation of the recommendation task as
a constrained optimization program and the possibility of encoding con�guration tasks im-
plicitly makes it similar to the constraint-based inference of our constructive recommenders.
The lack of support for preference reasoning under noisy feedback, however, makes regret
based approaches not viable for non-expert users.

Bayesian preference elicitation is arguably the most general way of dealing with an elicita-
tion problem, especially if represented as a full POMDP. Bayesian decision theory provides
an elegant framework to deal with the uncertainty of the utility function, uncertainty of
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the user feedback, and the most sensible criteria to drive the elicitation process. The most
prominent problem with Bayesian preference elicitation is its high computational complex-
ity, which limits its applicability to cases in which the decision catalog contains relatively few
items, let alone scale to fully constructive scenarios. Approximate sampling techniques that
scale linearly with the number of items in the cataloger [272] have been shown to require too
much computational overhead, even on relatively small con�guration problems [86, 257]. By
replacing expensive Bayesian inference with utility estimation via online structured learn-
ing, our constructive preference elicitation technique provides performance comparable to
Bayesian preference elicitation at a fraction of the computational cost. Bayesian techniques
also cannot straightforwardly take into account implicitly-de�ned constrained problems like
regret-based and constructive approaches do.

Our constructive preference elicitation technique is able to combine the bene�ts of regret-
based and Bayesian approaches, while providing a more e�cient means of learning. Also,
standard preference elicitation techniques are generally not contextual, and do not build
models able to generalize across di�erent instances of the same decision problem. Lastly,
all the approaches described in this thesis are based on coactive feedback, which was never
considered by any other approach in the literature on preference elicitation so far.

4.3.2 Constraint-based recommenders

While recommendation techniques like collaborative and content-based �ltering may seem
to ful�ll the same goal of the preference elicitation techniques described in the previous sec-
tion on the surface, there is one fundamental di�erence: preference elicitation techniques aim
at �nding the optimal object for the user, whereas standard recommendation systems only
suggest any item that the user may like, without a precise notion of optimality. Indeed, most
recommendation techniques in the literature do not employ an explicit preference model,
they simply represent the user preferences implicitly through the set of liked or rated items.
Some techniques do rank items according to some distance metric or reward model which are
designed to maximize click-through rate and similar “success” metrics, rather than a decision-
theoretic notion of utility. Many constraint-based approaches adhere to this view too: good
recommendations are simply those that satisfy the imposed constraints. The �rst constraint-
based systems to take into account aspects from utility theory are those based on MAUT [101]
and soft constraints [289]. Pu and Faltings [211] proposed to represent MAUT subutility func-
tions as soft constraints (see Section 2.1.2 and 2.2.1). This allows us to use constraint solvers
with soft constraints to �lter and rank solutions on the basis of the hard constraints and the
utility model, represented as weighted sum of soft constraints. They also advocate the use
of the same technique for both catalog-based recommendation and con�guration tasks [276].
This is fundamentally identical to what a constructive recommender system does. There are,
however, several key di�erences with [211] and subsequent work in constraint-based rec-
ommendation. As mentioned in Section 4.2, the expressiveness of the features used in con-
structive preference elicitation is greater than soft constraints, allowing to represent more
complex trade-o�s and preference criteria. Soft constraint-based systems also typically do
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not directly measure regret and do not provide optimality convergence guarantees. Perhaps
the most important di�erence though is in the fact that most of these techniques do not learn
the weights of the utility model, but rather require the user to adjust their numerical value
by hand, which is too cognitively complex for models with more than a few soft constraints.
As seen in Section 2.2.1, Rossi and Sperduti [225, 227, 226] proposed to represent preferences
as soft constraints, and to learn their weights through machine learning. Their technique
assumed that a dataset of ratings of objects would be available or that could be collected
through interaction. Ratings, however, have been shown not to be an appropriate measure
of the user tastes due to inconsistency and noise in their collection [8]. This is especially
true when recommendations involve complex objects as for constraint-based recommenders.
Their technique also did not provide convergence guarantees either.

Interestingly, Pu and Faltings [211] already used the term constructive preference elicitation,
though intended with a di�erent meaning to that we attach to the same term. While we
use the term to align our preference elicitation method with the larger literature in con-
structive machine learning, they dubbed their methodology “constructive” in reference to
the fact that their method enables users to construct their preferences while interacting via
critiques. This constructive view is advocated by many experts in psychology and behavioral
economics [163]. Indeed, in Chapter 6 we will extend our framework through critiquing,
thereby making it “constructive” in this sense as well.

4.3.3 Online learning

Our constructive preference elicitation framework is based on coactive learning, which is
closely related to other online learning models. As highlighted in [247], coactive learning is
at midway between the bandit and the expert settings (see Section 3.1). The online convex
optimization model is the continuous relaxation of the prediction with expert advice. Simi-
lar relaxations can be obtained for the bandit setting as well. One major di�erence between
coactive learning and online learning in the expert or bandit setting is that the latter observe
cardinal rewards, whereas coactive learning only observes ordinal information through the
implicit ranking ȳt < yt induced by the coactive improvements. As argued in Section 2.1.3,
cardinal utilities and cardinal feedback are not well suited for preference elicitation and they
have long been replaced by ordinal feedback like pair-wise or set-wise preference compar-
isons. This makes coactive learning a more suitable candidate for our constructive preference
elicitation scenario. Indeed, the multi-armed bandit model is used in many other settings that
do involve cardinal feedback, such as network routing, portfolio optimization and online ad
placement. A variant of the multi-armed bandit model is also heavily used in recommenda-
tion, namely the contextual bandit model [160]. Contextual bandits algorithms make online
choices with the help of contextual information available prior to the decision. This is similar
to coactive learning, though they di�er in the fact that arms in coactive learning are structured
objects and again in the kind of feedback they accept. Contextual bandits collect cardinal
feedback, so they are mainly used in settings in which one single contextual bandit model
serves recommendation for many users. The context holds, among other information, user
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features that are useful to generalize recommendations over similar users. The contextual
bandits algorithm then learns a model that optimizes some success metric, e.g. click-through
rate, based on the feedback of all users.

Compared to contextual bandits and other online learning frameworks, coactive learning
is the most suited for constructive preference elicitation, thanks to the fact that it handles
structured objects and structured prediction out-of-the-box, and learns from ordinal feed-
back instead of cardinal rewards. Recall that our objective is to learn a single, optimal, utility
model for each user, so it does not su�ce to optimize the click-through rate or similar met-
rics, we instead need to utilize a proper utility model in order to drive the user towards the
optimal choice. Coactive learning is also closely related to other online learning techniques
like dueling bandits [91, 286], and learning-to-rank approaches [168]. We refer to [247] for
more details.

Another online learning approach related to constructive preference elicitation is the com-
binatorial multi-armed bandit framework [58] and its contextual counterpart [212]. In this
setting, at each iteration the agent has to choose a super arm, i.e. a set of arms, from a com-
binatorial space of available super arms. This is similar to a constructive scenario in which
structured objects from a combinatorial space are recommended. Also in this case, however,
the main di�erence is that the combinatorial bandit setting assumes a cardinal reward, which
is not suitable for preference elicitation. We can, however, envision a constructive recom-
mender system based on contextual combinatorial bandits instead of coactive learning for
certain tasks that do not require optimal interactive preference elicitation, such as recipes
completion, playlist creation, and compound personalized ad placement.

4.4 Research problems

Thanks to the great expressiveness of constraint optimization tools, and the �exibility of coac-
tive learning we can develop solutions to a large variety of constructive preference elicitation
problems. There are, however, several research issues to be tackled, especially in regard to
the possibility to scale to large constructive problems and the ability to represent complex
preference criteria.

4.4.1 Decomposition of the learning task

One critical aspect in an interactive preference elicitation system is the requirement of being
near real time [128]. To make the interaction run smoothly, recommendations need to be
selected very quickly, without latency. Using an online learning framework such as coactive
learning for estimating the utility of a user is certainly an advantage in this regard, as learn-
ing between iterations boils down to a simple (and fast) gradient update over the weights.
In constructive preference elicitation, the bottleneck in performance is the inference oracle,
which often prevents us from scaling to large constructive problems whilst keeping the inter-
action smooth. One solution is to use approximate oracles [82, 93, 116], which may speedup
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inference and allow scaling to larger problems, at the price of possibly a higher number of
iterations. In some cases, it is also possible to retain optimality guarantees [116]. We will be
investigating the trade-o�s given by this approach in Chapter 7.

Large constructive problems are impractical also from the cognitive perspective, as reasoning
and providing feedback over large structures is very di�cult for any user, especially non-
expert ones. A common strategy in preference elicitation is to elicit the utility one attribute
(or small subsets of attributes) at the time. However, this is not straightforwardly applicable
to coactive learning as it is. We will describe an approach to approximate coactive learning
through a part-wise decomposition of the learning task in Chapter 5. The usefulness of this
approach is twofold: [i] inference would be dealt with one part at the time, bringing a po-
tentially exponential speedup to each inference call, though requiring more iterations to pass
through all the parts; [ii] the per-iteration cognitive e�ort of the user drops, as only partial
feedback is needed. We will also prove that this approach always reaches a local optimum
that has bounded approximation error with respect to standard coactive learning over full
objects.

4.4.2 Expressiveness of the utility

As mentioned in Section 3.3, coactive learning works under a quite strong realizability as-
sumption. In particular, this realizability assumption implies that, for coactive learning to
work, the user should reason with the same (or at least a subset of the) preference criteria
encoded in the features of the utility model. In constructive preference elicitation, this is
a concern because to accommodate each user one might need to encode a large number of
features, and doing so for such complex decision problems may be very expensive from a
design perspective. A solution proposed by [48] is to explicitly encode many combinations
of attributes as features, while learning a sparse utility model through a sparsity-inducing
norm [261] to keep many features to zero weight and reduce inference time. This approach,
however, has the drawback that the number of features increases exponentially with the
number of attributes, making it viable only for small problems.

In constructive preference elicitation, the utility has the form u(x, y) = 〈w,φ(x, y)〉, where
y = (y1, . . . , ym) is a tuple ofm variables andφ : X ×Y → Rd is a feature map containing d
arbitrary real functions of the m output variables (plus the context variables). The structure
we require for the utility poses no restriction on its expressiveness. Multi-attribute utility
theory [150] shows that, without loss of generality, a utility function can be decomposed into
a sum of subutilities, each dependent on a subset of attributes, for all subsets of attributes:

u(y) =
∑
I⊆Y

uI(yI)

In our case, since features are arbitrary real functions of the objects attributes, we can de-
compose any utility as a weighted sum of features, each dependent on a subset of attributes
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(both input and output):

u(x, y) =
∑
I⊆X

∑
J⊆Y

wI,JφI,J(xI , yJ)

Depending on the complexity of the features φI,J themselves, we can encode arbitrarily com-
plex utility functions. While this allow us to potentially take into account the preference
criteria of any user, the exponential number of possibly required feature subsumes an im-
practical computational complexity. Indeed, in a large constructive problem, representing
explicitly all possible features becomes unfeasible. A di�erent approach worth mentioning
is that of [78, 77] which uses kernel machines to implicitly represent an exponential feature
space and e�ciently learn a high-dimensional preference model using ranking SVMs [144].
This approach was however limited to Boolean attributes only and inference would require
to solve either a non-linear constrained optimization problem in the dual model, or a lin-
ear constrained optimization problem with exponentially many features in the primal model,
which are both impractical for large constructive problems.

An alternative approach, based on many other constraint-based systems in the literature, is
to acquire features as critiques. In this case, the utility models starts o� with few signi�cant
features, while eliciting more through the interaction. This keeps inference time low while
adding the possibility to customize the utility model depending on the particular preferences
of the user. In Chapter 6 we discuss this approach and propose to integrate it within a coac-
tive learning algorithm, eliciting both preferences, through coactive feedback and weight
learning, and features, through example-critiquing [255].

4.5 Applications

A constructive recommender is essentially a constraint-based recommendation system, with
the interactive component taken care of by constructive preference elicitation. As such, the
constructive recommendation paradigm may be applied to any problem a constraint-based
recommender would be suitable for. The constructive preference elicitation techniques, how-
ever, shine in contexts in which there is a clear notion of optimality of the decision to be made.
This fact is more prominent in product recommendation for infrequently purchased items,
which are typically more complex objects and have a higher price, such as cars, apartments,
electronic and domestic appliances, or infrequently accessed items, such as jobs recommen-
dations. These objects also do not generate much useful preference information, which might
even be outdated the next time the same user is going to buy a similar object [99].

On the other hand, frequently purchased items, such as groceries, or frequently accessed con-
tent, such as music and movies, are generally simpler and less expensive items, that come with
large datasets of purchase, ratings and similar preference information. While our technique,
just like coactive learning, would be applicable to recommendation of frequently purchased
items, it would probably not perform as well as other data-driven techniques like collabo-
rative �ltering and content-based recommendation. There are, however, recommendation
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tasks involving frequently accessed items that exhibit su�cient structure to bene�t from
a constructive recommendation treatment, such as recipe completion [69], and composing
fashionable out�ts [143]. These, in particular, may bene�t of the contextual nature of our
constructive preference elicitation approach.

Infrequently purchased products are often also con�gurable, such as PC con�gurations, trips
and events (e.g. weddings). Product con�guration (see Section 2.2.2) is a complex task that
involves the synthesis of personalized products, based on the requirements of the user. This is
the primary task for which constructive recommender have been designed for. Thanks to the
integration of constraint-based technology and e�ective and e�cient preference elicitation
methodology, constructive recommenders can be successfully employed in recommending
product con�gurations, while interacting with the user to receive preference information,
with the goal of eventually arriving to the optimal con�guration. In this category falls also
product and service bundling, which is typically used for insurance policies and banking. In
Chapter 8 we will present a fully implemented constructive system for bundling of telecom
services.

Another important category of tasks that a constructive recommendation could be useful
for are design tasks, such as layout and 3D object design. A constructive recommender could
learn from the input of a designer, an architect or an engineer, how to automatically �x, adjust,
or even create from scratch, complex structures, in order to ease the work of the expert. This
may bene�t non-expert users as well, which would be able to design proper structures, e.g.
for amateurish 3D printing, without the need to learn the complex details involved. One
can imagine that a constructive recommender could be seamlessly integrated into a CAD
system or similar software to provide suggestions to the designers. The coactive interaction
in this case is very well suited, as feedback would consist mostly of direct manipulations
of the objects being created. Also in this case, the preference model needs to be contextual
in order to be able to learn to generate editing suggestion for di�erent kinds of objects. In
Chapter 7 we will explore in detail the application of constructive preference elicitation to
layout synthesis tasks.

Constructive preference elicitation essentially solves a combinatorial optimization problem
for which the objective is unknown and has to be estimated from the interaction with a user.
Many classical combinatorial optimization problems may be extended in this way. For in-
stance, in a travelling salesperson problem (TSP), the edges of the graph may be represented
through a number of numerical features, and their respective costs would be linear in the
features with unknown weights [116]. Based on how the user changes the recommended
path, the edges models can be updated in order to have a better estimate of their cost and
provide progressively better paths. A similar formulation may also be used for other combi-
natorial optimization problem such as for preference-based planning, scheduling, allocation
or assignment problems.
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4.6 Summary

In this chapter we presented our constructive recommendation methodology, which brings
together constrained structured prediction and preference elicitation through coactive learn-
ing. This approach is strictly more general than standard constraint-based recommendation
systems based on soft constraints and is more e�cient than state-of-the-art Bayesian prefer-
ence elicitation techniques. These advantages make constructive recommendation suitable
for a large variety of applications, encompassing product con�guration, product and service
bundling, design aiding systems and generic preference-based combinatorial optimization.
The development of constructive layout synthesis systems will be covered in Chapter 7, while
Chapter 8 will detail a fully implemented constructive recommender for product and service
bundling.

We have also seen that constructive preference elicitation comes with several research prob-
lems. E�ciency of constraint solvers is a bottleneck to overcome in order to scale to larger
constructive problems, an issue that will be addressed in Chapter 5. E�cient, near real-time,
inference while allowing expressive utility models is a non-trivial challenge given the expo-
nential nature of multi-attribute utility functions. We will address this problem in detail in
Chapter 6.





Chapter 5

Part-wise domain decomposition

In the basic formulation of constructive preference elicitation, the algorithm has to solve
a constraint optimization problem at each iteration to �nd the best object according to the
learned preference model, which is subsequently recommended to the user. This requirement
may lead to scalability issues as the domain size increases. The complexity of the constrained
problems increases exponentially with growing number of variables, and the longer inference
times may become impractical for a real-time user interaction.

As mentioned in Section 4.4.1 and will be further discussed in Chapter 7, it is possible to suc-
cessfully elicit user preferences while heuristically selecting a suboptimal recommendation at
each iteration [82, 93]. This is a viable method for reducing the inference time, at the cost of
increased instantaneous regret and slower convergence rate. For very large problems, how-
ever, a good trade-o� is hard to �nd, as the recommendation quality degrades to the point
that regret reduction by subgradient descent is unattainable [86].

An alternative approach is to decompose the large objects into several “parts” and proceed
with eliciting the user preferences by recommending and updating one part at the time [84].
Elicitation over partial con�gurations has several connections with existing work in pref-
erence elicitation with GAI (generalized additive independence) utility models [38, 39, 40].
Indeed, we will show that a linear utility model 〈w,φ(x, y)〉 typically used in constructive
preference elicitation is a GAI model over the feature subsets induced by the partition. Here
we propose an elicitation technique using coactive learning over decomposed objects.

Consider, for instance, a complex preference-based decision problem, such as organizing a
road trip. If there is a long sequence of traveling days, several cities, and a large set of activities
to choose from, the decision maker might be more inclined to optimize the trip one day at
the time, or perhaps shorter or longer periods, depending on the timescale. Another example
could be a preference-based design problem, such as selecting the furniture of a hotel. The
owner might prefer the hotel to be a luxurious one or a family-oriented one, there would be
a budget to cope with and the kind of furniture used may a�ect the satisfaction of di�erent
kinds of customers. Such a complex allocation problem might be better solved �oor by �oor
or even room by room, freeing the user from having to suggest improvements by looking at
all rooms and �oors at the same time.
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In this chapter we detail our part-wise decomposition approach that will lead to the de�nition
of a coactive learning algorithm, dubbed P3, that is used to optimize a recommended object
one part at the time. The two main advantages of this approach are the decrease in cognitive
cost for the user and the speedup of the inference procedure. Solving a partial inference
problem may be exponentially faster than solving the full inference problem. The number
of iterations to reach a satisfying solution may indeed increase, but the cognitive cost for
the user per iteration is lower as she is only required to improve a partial con�guration by
manipulating a subset of the object variables.

This technique does not assume complete partitioning of the objects and indeed it is rea-
sonable to assume that there is instead substantial overlapping between parts. In decompos-
ing overlapping parts, however, one needs to “cut” some of the dependencies between parts,
thereby loosing information about these dependencies from the user feedback. Unfortunately,
this fact prevents us from providing theoretical guarantees of convergence to the optimal so-
lution for the true user utility. This is the price to pay for learning a full utility function with
only partial feedback. Despite this shortcoming, we can prove that this technique converges
to a “local optimum”, for which the user can not further improve any of the parts separately.
This local optimum will have bounded approximation error with respect to the global opti-
mum that standard coactive learning over full objects would have found. Furthermore, we
will empirically verify that, in many practical cases, the algorithm converges to the globally
optimal solution nonetheless.

This chapter is organized as follows. Section 5.1 will introduce a formalism useful for work-
ing with parts and partial con�gurations. Section 5.2 introduces the P3 algorithm, and Sec-
tion 5.3 presents its theoretical analysis. The empirical validation is provided in Section 5.4.
Section 5.5 concludes the chapter.

5.1 Partitioning the decision problem

In this section we introduce a formal framework for manipulating partial con�gurations,
which we will later use to describe and analyze the P3 algorithm. The next two sections will
describe how to divide the domain of a decision problem into di�erent parts (Section 5.1.1) and
how to decompose the utility function into “subutilities” in a principled way (Section 5.1.2).

5.1.1 Parts and partial con�gurations

As in the standard constructive preference elicitation setting, here we have two sets X and
Y of input and output objects respectively. Here we further assume that the structure of the
output objects can be partitioned into a �nite set of basic parts Q. The basic parts represent
indivisible and non-overlapping portions of the objects y ∈ Y , which can be composed to
form parts. A part p is any non-empty subset p ⊆ Q of the set of basic parts. Each part p ⊆ Q
determines a space of partial con�gurations Yp and induces a mapping y 7→ y[p] between
objects y ∈ Y and their corresponding partial con�gurations y[p] ∈ Yp. A part p ⊆ Q
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can be thought as a portion of the “blueprint” of the objects, whereas a partial con�guration
y[p] as the instantiation of part p excerpt from object y. Another useful metaphor may be
to consider the objects y ∈ Y as full jigsaw puzzles with the same splitting patterns, each
one with a di�erent picture on top. Following the jigsaw puzzle metaphor, each part p ⊆ Q
would be a portion of the pattern containing pieces that �t well together, while a partial
con�guration y[p] would be one such portion for a particular picture y. A partition of this
kind can easily be found in many tasks, e.g. a partition of a house into rooms for layout
synthesis or a segmentation of months into days and weeks for a scheduling problem.

The above domain partitioningQ has to undergo some additional assumptions in order to be
used in our part-wise elicitation process. First, we need to assume that the set Q of all basic
parts covers the entire object, i.e. y[Q] = y for all y ∈ Y . Second, we require that in the
domain at hand there can be de�ned a sensible notion of part combination, e.g. by combining
rooms into �oors in layout synthesis or hours into dayparts in scheduling problems. The
combination of parts is formally de�ned with the operator ◦ : Yp × Yq → Yp∪q . Given two
non-overlapping parts p, q ⊆ Q, the operation y[p] ◦ y′[q] generates a new partial con�gu-
ration y′′[p ∪ q] ∈ Yp∪q from the instances of basic parts contained in p and q over y and y′
respectively. For non-overlapping parts, the part combination operation is commutative and
associative. Given instead two overlapping parts p and q, there are at most 2|p∩q| di�erent
ways to combine two distinct partial con�gurations. To extend the part combination to this
case we select deterministically the instances of the overlapping basic parts belonging to the
�rst argument, overloading the part combination operation as y[p] ◦ y′[q] = y[p] ◦ y′[p \ q].
In this way, a proper single-valued combination operation is de�ned even for overlapping
parts. Note that this makes part combination not commutative for overlapping parts. Lastly,
we de�ne the complement p̃ of a part p as p̃ = Q \ p. Combining any two partial con�gura-
tions y[p] and y′[p̃] results in a full object y′′ ∈ Y , and in particular the combination of two
complementary partial con�gurations of the same object y[p] ◦ y[p̃] recovers the full object
y.

5.1.2 Utility decomposition

In the previous section we introduced the tools needed for partitioning an object into smaller
parts. We are now going to de�ne how a utility function over full objects may be decomposed
as well. As in standard constructive preference elicitation, we assume the utility to be a linear
function of the type u(x, y) = 〈w,φ(x, y)〉, with w ∈ Rd being the model parameters, and
φ : X × Y → Rd being a d-dimensional feature map. In this work we have that each part
p ⊆ Q is associated to a non-empty feature subset I(p) ⊆ [d] containing the indices of all
features dependent on part p. This means that the feature vectors of two objects di�ering
only on part p will di�er only on features in I(p). The feature subsets of di�erent parts may
overlap, signaling a dependency between them. Disjoint parts may share features as well, i.e.
in general p ∩ q = ∅ 6=⇒ I(p) ∩ I(q) = ∅. Finally, we assume that the features associated
to the full set of basic parts correspond to the full set of features, I(Q) = [d].

Given a part p ⊆ Q with its feature subset I(p) ∈ [d], we are going to refer to the feature
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map portion corresponding to features in I(p) as φ[I(p)](·) ∈ R|I(p)|. In the same way, we
use the notation w[I(p)] ∈ R|I(p)| to break down the weight vector w in the components
corresponding to I(p). Given the partial feature map and weight vector, for all parts p ⊆ Q,
we can de�ne a partial utility function as:

u[I(p)](x, y) = 〈w[I(p)],φ[I(p)](x, y)〉 =
∑
i∈I(p)

wiφi(x, y) (5.1)

Here wi and φi indicate the i-th component of the weight and feature vectors, respectively.

Decomposition of the utility functions is a common tool for devising tractable preference elic-
itation procedures in the context of multi-attribute utility theory [150]. The typical approach
is to assume a certain structure in the way the utility decomposes over the attributes of the
object, allowing for easier component-wise elicitation. In particular, as seen in Section 2.1.2
the two most common assumptions found in the literature are additive independence between
the attributes of the objects, and the weaker generalized additive independence (GAI) [12, 39,
103, 121].

Additive independence between the components of a decision problem is achieved if the util-
ity can be decomposed into a sum of subutility functions, each dependent on one component
and independent of the others. In our case, let S be a non-empty collection of parts p ⊆ Q
such that: [i] their union covers the whole object,

⋃
p∈S p = Q; [ii] their feature subsets do

not overlap,
⋂
p∈S I(p) = ∅. We can de�ne a subutility up(·) for each part p ∈ S as the par-

tial utility over p, i.e. up(x, y) = u[Ip](x, y). To satisfy the additive independence condition
we have to have:

u(x, y) =
∑
p∈S

up(x, y) (5.2)

It is easy to verify that, with the above construction, the condition in Equation 5.2 holds,
thereby leading to an additively independent utility over the parts p:

u(x, y) =
∑
p∈S

up(x, y) =
∑
p∈S

u[I(p)](x, y) =
∑
p∈S
〈w[I(p)],φ[I(p)](x, y)〉 = 〈w,φ(x, y)〉

Since the union of the parts p ∈ S covers the entire object, and the feature subsets are
non-overlapping, then each feature is added exactly once, hence the last equality is veri�ed.
Learning the utility parameters w in the additive independence setting is rather trivial: one
might simply use coactive learning on one part at the time and then, since the parts do not
share features, combining the resulting optimal partial con�gurations would yield an optimal
object for the full utility function.

A more complicated problem arises in the case of generalized additive independent models,
which assume that decomposition is possible over (possibly overlapping) component subsets.
In our case, the utility function is GAI if it can be rewritten as a sum of independent subu-
tilities over the parts in collection S , as for Equation 5.2, while allowing the feature subsets
I(p) to overlap. As discussed in the previous section, we expect that in many real-world sce-
narios the feature subsets of the parts p ∈ S do overlap, and thus the P3 algorithm has to
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Algorithm 9 An ordering strategy for the parts based on a GAI network [121].
1: procedure SelectOrdering(S)
2: Build a GAI network G from I(p) for all p ∈ S
3: Produce P = (p1, . . . , pK) by sorting the nodes in G in ascending order of degree
4: return P

operate in a GAI setting. Therefore, we need to �nd a decomposition of the utility satisfying
Equation 5.2, while still allowing the feature subsets I(p) to overlap. For this purpose, we
adapt a construction commonly used in the literature [39, 103]. Let us de�ne an ordering
P = (p1, . . . , pK) of the parts pk ∈ S with k ∈ [K], K = |S|, and let:

Jk = Ik \

 K⋃
j=k+1

Ij

 ∀ k ∈ [K] (5.3)

where Ik = I(pk). We de�ne the subutilities for the GAI construction as:

upk(x, y) = u[Jk](x, y) ∀ k ∈ [K] (5.4)

The sets Jk de�ned in Equation 5.3 are all disjoint from one another. By de�ning the subutil-
ities as in Equation 5.4, the utility u(x, y) satis�es the GAI condition on the feature subsets
associated with the parts p ∈ P . Adding up the subutilities we can see that the full utility
function is recovered:

u(x, y) =
∑
k∈[K]

upk(x, y) =
∑
k∈[K]

u[Jk](x, y) =
∑
k∈[K]

〈w[Jk],φ[Jk](x, y)〉 = 〈w,φ(x, y)〉

This decomposition makes the subutilities upk(·) independent of one another, allowing us to
elicit each one of them separately, as in the additive independence case. The drawback of
this approach is that each Jk excludes all the features that are also included in the following
subsets [Ij ]

K
k+1, i.e. the features Ik\Jk . This means that, when eliciting upk(·) separately from

the others, we do so by ignoring some of the dependencies between the parts. This has the
direct consequence that the optimal object found by combining optimal partial con�gurations
for the subutilies may in the end be suboptimal with respect to the full utility function. It is
therefore important to choose an ordering of the parts resulting in a minimal number of
broken dependencies. This is not a trivial problem, and in general a domain dependent one.
However, we propose a simple generic approach that might provide satisfactory results, or at
least a good starting point for further re�nement.

Algorithm 9 shows a procedure for selecting an ordering P of the parts p ∈ S by leverag-
ing a GAI network [121]. A GAI network is an undirected graph containing one node for
each feature subsets I(p) associated to the parts p ∈ S , and an edge for each pair of fea-
ture subsets sharing one or more features. The procedure returns an ordering of the parts
P = (p1, . . . , pK) by sorting them in ascending order of node degree, i.e. number of incident
edges, of the corresponding nodes in the GAI network. In this way, subsets that share fea-
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tures with many other feature subsets are placed last, in an e�ort to avoid to break too many
dependencies in the above decomposition (Equation 5.3). This is one of many possible ap-
proaches, which is here provided as an example and is employed in some of our experiments.
More informed techniques could be devised: in particular, this procedure does not take into
account the amount of shared features but only the number of other subsets a feature subset
shares at least one feature with.

We will now de�ne some of the properties that our utility decomposition satis�es, which will
prove useful in the theoretical analysis in Section 5.3. In the following we are going to refer
to the union of a range of parts as {pj:pk} = pj ∪ · · · ∪ pk and use the shorthand y[pj:pk] =

y[pj ∪ · · · ∪ pk]. A direct consequence of the utility decomposition in Equation 5.4 is that, for
all y[pk] ∈ Ypk , z[p1:pk−1] ∈ Y{p1:pk−1} and z′1[pk+1:pK ], z′2[pk+1:pK ] ∈ Y{pk+1:pK}:

u[Jk](x, y[pk]◦z[p1:pk−1]◦z′1[pk+1:pK ]) = u[Jk](x, y[pk]◦z[p1:pk−1]◦z′2[pk+1:pK ]) (5.5)

meaning that, given the partial con�guration z[p1:pk−1], then the contribution of y[pk] to the
partial utility u[Jk](x, ·) is independent of the rest of the parts {pk+1:pK}. This is similar to
the conditional preferential independence seen in Section 2.1.2, but for u[Jk](x, ·) only. Equa-
tion 5.5 in turn entails the following part-wise linearity property, for all y[pk], y′[pk] ∈ Ypk
and z1[p̃k], z2[p̃k] ∈ Yp̃k :

u[Jk](x, y[pk] ◦ z1[p̃k])− u[Jk](x, y′[pk] ◦ z1[p̃k])

=

u[Jk](x, y[pk] ◦ z2[p̃k])− u[Jk](x, y′[pk] ◦ z2[p̃k])

(5.6)

In other words, the part-wise linearity property a�rms that the di�erence in contribution
to the features Jk of any two partial con�gurations y[pk] and y′[pk] is independent of their
complement, as long as it is kept �xed.

One last postulate for our formalism is that the feature map φ(x, ·) is de�ned in such a way
to satisfy the following part-wise addition rule, for all k ∈ [K], all y, y′ ∈ Y , and for any
p, q ∈ {p1:pk}:

u[Jk](y[p ∪ q] ◦ y′[p̃ ∩ q̃])
= u[Jk](y[p] ◦ y′[p̃]) + u[Jk](y[q] ◦ y′[q̃])− u[Jk](y[p ∩ q] ◦ y′[p̃ ∪ q̃])

(5.7)

This is a form of inclusion-exclusion principle commonly used in set theory and combinatorics.
To visualize the above property one can imagine that to count the contributions of y[p ∪ q]
we can add up the separate contributions of y[p] and y[q], but doing so we are counting the
contributions of their intersection twice1. In Section 5.4 we will point out a way to de�ne the
feature vector φ(x, ·) so that this property holds.

1The same holds true for the complements, which we add together separately, and then by removing their union
we recover their intersection.
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5.2 Part-wise coactive learning

In this section we detail our part-wise coactive learning method. We are going to proceed in
two stages. We will �rst describe our proposed learning algorithm, named part-wise prefer-
ence perceptron (P3), for eliciting user preferences over a decomposed domain within a �xed
context x ∈ X (Algorithm 10). Next, we will illustrate a part-wise coactive learning proce-
dure (PCL) for reusing the same learned model over di�erent contexts (Algorithm 11). The
contexts x ∈ X , in our case, e�ectively represent di�erent tasks, i.e. variations of the same
problem, over the same type of objects, same features and same partition. For instance, in
a preference-based scheduling problem, the partition might be over the time (hours, days,
weeks), the output objects are assignments of agents to jobs, while the context might rep-
resent the level of expertise of the agents for di�erent types of jobs. In this case, learning a
utility function over di�erent context means learning the preferences of the user over di�er-
ent combinations of expertise of the agents.

The rationale behind the split of the proposed approach into two separate algorithms is
twofold. First, for complex decision problems, we expect that a user would interact with
the algorithm over the same object in the same context for a certain number of iterations,
before moving on to the next task. Second, the decoupling of the two algorithms makes
Algorithm 11 usable with di�erent learning algorithms, besides the one we propose here.
Indeed, following the literature in coactive learning [247], one can derive di�erent learning
algorithms also in the part-wise case, e.g. for handling arbitrary convex and strongly-convex
losses. For the sake of simplicity, we developed our approach by adapting the simpler pref-
erence perceptron to the part-wise case, while acknowledging the possibility of extensions
along the aforementioned directions.

5.2.1 Part-wise preference perceptron

Algorithm 10 lists the part-wise preference perceptron algorithm, also dubbed P3. The al-
gorithm expects to receive as input a context x ∈ X , a initial object y0 ∈ Y and a initial
weight vectorw1 ∈ Rd. If Algorithm 10 is not used in a multi-task environment, the context
would be empty, the initial object would be any initial guess, and the weight vectorw1 would
be initialized to 0. The algorithm also takes as input the sequence of parts P and the time
horizon T ∈ N+. We include the time horizon explicitly in the algorithm for correctness, but
the algorithm could also work with an unde�ned time horizon, stopping when an optimal
solution is found, or when the user is satis�ed with the recommended object.

Along with the current estimate of the user utility ut(x, y) = 〈wt,φ(x, y)〉, the P3 algorithm
keeps a copy of the currently recommended object yt, starting from y0, which is iteratively
modi�ed one part at the time. At each iteration t ∈ [T ], the algorithm �rst selects the index kt
of the part it is going to consider next. We indicate the currently selected part as pt = pkt with
feature subsets It = Ikt and Jt = Jkt . The part selection is carried out by the SelectPart
function. We left this function underspeci�ed, as it could be implemented in a number of
ways. The rationale is to use a part selection strategy attempting to �nd a sequence of parts
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Algorithm 10 The part-wise preference perceptron algorithm (with �xed context).
1: procedure P3(x ∈ X , y0 ∈ Y , w1 ∈ Rd, P = (pk)Kk=1, T ∈ N+)
2: for t = 1, . . . , T do

3: kt ← SelectPart(P)
4: pt ← pkt It ← Ikt Jt ← Jkt
5: yt[p̃t]← yt−1[p̃t]
6: yt[pt]← argmaxy[pt]∈Ypt ut[Jt](x, y[pt] ◦ yt[p̃t])
7: User provides improvement ȳt[pt] of yt[pt], keeping yt[p̃t] �xed
8: if ut[It](x, ȳt[pt] ◦ yt[p̃t])− ut[It](x, yt) ≤ 0 then Qt ← It else Qt ← Jt ;
9: wt+1[Q–

t ]← wt[Q
–
t ]

10: wt+1[Qt]← wt[Qt] + φ[Qt](x, ȳt[pt] ◦ yt[p̃t])− φ[Qt](x, yt)

11: Recommend yT to the user
12: return wT+1

minimizing the number of iterations needed to reach an overall good solution. For instance,
one could prioritize parts with large feature overlap as they are the most di�cult to elicit,
or use some bandit-based strategy attempting to optimize heuristically the distance from the
current object to the optimum. While not explicitly stated in Algorithm 10, the SelectPart
function can take as input whichever piece of information is available to the algorithm in
order to make the decision.

Next, the algorithm performs inference on the selected part, while keeping the rest of the
object yt[p̃t] �xed. Inference is done over the subutility function upk(x, y) = ut[Jt](x, y),
which is independent of all the other subutilies, and thus can be elicited separately. We
assume we have access to an oracle capable of solving the optimization problem in line 6
of Algorithm 10. When using a mixed integer linear programming solver, for instance, this
optimization problem would be the same as the problem on the full object but including a
number of equality constraints on the complementary partial con�guration yt[p̃t].

Since the complexity of MILP problems is generally exponential in the number of decision
variables, solving the problem restricted to the currently selected part only is exponentially
faster than solving inference on the full object, provided the parts contain a strict subset of the
decision variables of the whole object. This is a clear advantage when the decision problem
involves many variables. Of course, the drawback is that each part has to be elicited sepa-
rately, increasing the number of iterations need as well as the number of separate problems
to solve. However, as long as the number of iterations remains polynomial in the number of
parts K , using this method can be very bene�cial in terms of computational complexity.

On the other hand, more iterations also imply more feedback needed from the user. The
user, however, only needs to improve one part of the object at the time, which implies less
cognitive e�ort per iteration. Assuming cognitive e�ort proportional to the size of the part,
the increase in number of iterations does not necessarily mean an increase in overall cognitive
e�ort. However, if parts and their features overlap substantially, the net e�ect might be an
increase of the cognitive e�ort proportional to the amount of overlap between parts.
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Another drawback of decomposing a large optimization problem into a sequence of smaller
ones is that the solution found by combining them is an approximation, i.e. it might be sub-
optimal with respect to the one the full problem would �nd. As we will see in Section 5.3.4
of the theoretical analysis, the suboptimality of the solution also depends on the amount of
overlapping features between the parts.

Indeed, there is a trade-o� to seek between the bene�t in computational complexity and the
suboptimality of the solution, as well as the amount of additional user e�ort. In the theoretical
analysis we will formalize this trade-o� and highlight how the overlap between features plays
a crucial role in the ability of the algorithm to converge to a good solution.

After generating the new partial con�guration yt[pt], the algorithm shows the yt[pt] to the
user, along with side information needed to make an informed update over it. Side informa-
tion might be the (�xed) con�guration of the parts of the object that share features with the
one being improved, or a summary of the common features that can be a�ected by a change
in that part. The user then produces a new partial con�guration ȳt[pt] improving upon the
recommended partial con�guration yt[pt] over the feature subset It. With this information
the algorithm proceeds with updating its current estimate of the utility parameters.

Since inference is carried out over Jt, while feedback is expected over It, the update schema
follows a certain rule (line 8 of Algorithm 10) to decide whether to update the weights corre-
sponding to Jt or It. In particular, if the utility ut[It](x, ȳt[pt]◦yt[p̃t]) of the improved object
is smaller than or equal to the utility ut[It](x, yt) of the recommended object, than the update
will be executed on It, otherwise only the features Jt will be updated. The rationale behind
this condition, which relates to whether or not the algorithm made a “mistake” according to
ut[It](·), will be made clear in the theoretical analysis. The update in line 10 of Algorithm 10
is the standard update of the preference perceptron, but performed only on the features in
the subset Qt chosen according to the above condition. We indicate the complement of Qt
as Q–

t = [d] \Qt. After the update, the algorithm moves on to the next iteration.

As said, the algorithm can either stop after a �xed number of iterations T , or alternatively
continue until the user is satis�ed the current solution or until the algorithm reaches a “local
optimum”. We will qualify the notion of local optimum in the analysis section. For readability,
we omitted these possible additional stopping criteria from Algorithm 10. Once the loop
stops, the algorithm recommends the full object composed by the algorithm so far, and returns
the learned utility parameters to the caller.

5.2.2 Handling variable contexts

We will now move on to describe the PCL algorithm for generic part-wise coactive learning
with variable contexts. Algorithm 11 shows the PCL algorithm using P3 as a subroutine. The
algorithm accept as input the collection of partsS over which the decision tasks can be solved.
Again, we have the time horizon T ∈ N+ as input for correctness, even though we could let
each call of P3 terminate when other stopping criteria are met. The PCL algorithm starts by
initializing the initial weightsw(1) to zero and then proceeds in “epochs” n = 1, 2, . . . , each
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Algorithm 11 The part-wise coactive learning on variable contexts.
1: procedure PCL(S , T ∈ N+)
2: w(1) = 0
3: for n = 1, 2, . . . do

4: Receive context x(n) ∈ X
5: Initialize y(n) based on x(n)
6: P(n) ← SelectOrdering(x(n),S)
7: w̄(n) ← P3(x(n), y(n),w(n),P, T )
8: w(n+1) ← ΠB

(
w̄(n)

)

corresponding to a di�erent elicitation task. At each epoch n, the algorithm receives a context
x(n) ∈ X and initializes an object y(n), e.g. from a catalog of good guesses for each context.
The algorithm then selects an ordering P with the SelectOrdering function on the basis of
S and the context x(n). Depending on the problem, the order of the parts may need to be
chosen di�erently for each separate context. Next, the PCL algorithm calls the P3 algorithm
with the current context x(n), the starting object y(n), the current estimate of the utility
weights w(n), the selected ordering P(n), and the time horizon T . Once P3 terminates, PCL
collects the updated weights w̄(n) and projects them into a ball B = {w ∈ Rd : ‖w‖ ≤ B}
of radius B, to obtain a new vector w(n+1) with bounded norm. The projection operator
is de�ned as: ΠB(w) = argminv∈B ‖w − v‖2. The projection step keeps the norm of the
weights w(n) bounded across the epochs and guarantees that all the calls to P3 converge at
the same rate, as will be showed in the theoretical analysis.

5.3 Analysis

In this section we will analyze the convergence properties of the P3 and PCL algorithms. As
we mentioned in the previous section, because the P3 algorithm performs partial inference
and receives only partial feedback, the solution found at the end of the elicitation process
may be suboptimal with respect to the solution that standard coactive learning would �nd.
Indeed, this fact is also re�ected in this analysis, as we will only be able to prove convergence
to a “local optimum”. We start the analysis (Section 5.3.1) by de�ning what we mean by
local optimum and highlighting the conditions needed to guarantee the convergence of the
P3 algorithm to local optimality, which involve minimizing a quality measure that we call
conditional regret. Second, in Section 5.3.2, we will prove a sub-linear upper bound on the
average conditional regret, for both the non-contextual and contextual cases. In Section 5.3.3,
we will then show how, under certain conditions, the P3 algorithm converges to a locally
optimal solution. In Section 5.3.4, we will provide a comparative analysis of the part-wise
performance of the local optimum found by P3 against the global optimum found by standard
coactive learning. Finally, in Section 5.3.5 we will recap the analysis and point out di�erences
with the original version of the analysis [84].
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5.3.1 Realizability and local optimality

As in standard coactive learning, we assume the user holds a stationary, unobserved true
utility function u∗ : X × Y → R. Recall from Section 3.3 that in coactive learning we make
the realizability assumption:

∀ x ∈ X , y, y′ ∈ Y y <x y
′ ⇐⇒ u∗(x, y) ≥ u∗(x, y′) (5.8)

for any true preference relation <x in context x ∈ X . Here, instead, we make a “part-wise”
realizability assumption, that is:

∀ x ∈ X , p ∈ P, ŷ[p̃] ∈ Yp̃, y[p], y′[p] ∈ Yp
y[p] ◦ ŷ[p̃] <x y′[p] ◦ ŷ[p̃] ⇐⇒ u∗(x, y[p] ◦ ŷ[p̃]) ≥ u∗(x, y′[p] ◦ ŷ[p̃])

(5.9)

In other words, we assume that the utility u∗(·) is decomposable along the parts p ∈ P
and is expressive enough to be able to discern two given partial con�gurations for each part
p ∈ P in all contexts x ∈ X and given any complementary partial con�guration ŷ[p̃]. As
might be expected, this condition is actually weaker than the realizable case over full objects
(Equation 5.8), as the preference relations <x as well as the utility u∗(x, · ) only need to be
consistent within each part p when the complement ŷ[p̃] is kept �xed. The true utility of the
user does not need to be consistent over full objects, which is something that can be expected
of a user when faced with a complex decision problem.

Making the part-wise realizability assumption (Equation 5.9) instead of its counterpart on
full objects (Equation 5.8) implies that the usual notion of regret over full con�gurations
(Equation 4.1) is ill-posed. If the utility function is inconsistent with the true preferences of
the user outside of the single parts p ∈ P , then �nding a global optimum with respect to the
full utility u∗(x, · ) has no real meaning, as it would be inconsistent with the true preference
relation<x, and therefore not a globally optimal object for the user preferences2. What P3 can
do, however, is �nd a “locally” optimal con�guration, as we will prove shortly. This result is in
line with previous work on coactive learning with approximate inference [116]. In [116], the
authors propose a coactive learning approach for solving intractable combinatorial problems
using a locally optimal inference oracle and local user improvements. They prove that the
method converges to a local optimum with a sublinear regret bound. Their method, however,
still requires (approximate) inference and (local) feedback over full con�gurations.

This analysis is dedicated to showing that, given a su�cient number of iterations, the P3

algorithm converges to a con�guration that is a local optimum for the true user preferences,
according to the following de�nition.

De�nition 5.3.1. An object y∗ is locally optimal for u∗(x, · ) if and only if:

∀ p ∈ P @ y[p] ∈ Yp u∗(x, y[p] ◦ y∗[p̃]) > u∗(x, y∗[p] ◦ y∗[p̃]) (5.10)

2Unless the feature subsets of the parts p ∈ P do not overlap, in which case the conditions (5.8) and (5.9) are
actually equivalent and the decision problem degenerates into one over additive independent utility.
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In other words, y∗ is locally optimal if and only if there is no part-wise modi�cation yielding
an object y with higher utility than y∗. This means that if an object y∗ is locally optimal, the
user can not �nd a part-wise improvement for that object, and neither can the P3 algorithm.

To prove the local optimality of P3, we will �rst de�ne a “local” qualitative measure for the
recommended objects, akin to the regret in Equation 4.1 but de�ned on partial con�gurations
instead. We call this measure the conditional regret cregp(y) of an object y ∈ Y with respect
to part p ∈ P . We will later show that P3 has sublinear cumulative conditional regret in the
number of iterations T , a necessary condition for proving convergence to a local optimum.

For the sake of readability, we will henceforth drop the context x from all expressions, as it is
constant for any run of Algorithm 10. We will also replace the notation u∗[It](x, yt[pt]◦yt[p̃t])
in favor of the lighter u∗[It](yt).

De�nition 5.3.2. The conditional regret of an object y ∈ Y over part p ∈ P is:

cregp(y) = u∗(y∗[p] ◦ y[p̃])− u∗(y)

where y∗[p] = argmaxy′[p]∈Yp u
∗(y′[p] ◦ y[p̃]).

De�nition 5.3.3. A con�guration y is conditionally optimal for part p if cregp(y) = 0.

Lemma 5.3.1. For a user with utility u∗(·), [A] a con�guration y∗ is locally optimal for u∗(·)
if and only if [B] y∗ is conditionally optimal for u∗(·) all parts p ∈ P .

Proof. The proof proceeds by contradiction.

[A =⇒ B] Suppose y∗ is locally optimal but not conditionally optimal for some part p ∈ P .
This implies that the conditional regret cregp(y∗) > 0, and thus there exists an object y
such that u∗(y[p] ◦ y∗[p̃]) > u∗(y∗). This, however, violates the local optimality condition
(Equation 5.10), leading to a contradiction.

[B =⇒ A] Assume y∗ is conditionally optimal for all parts p ∈ P but not locally optimal.
Then there exist a part q ∈ P and a partial con�guration y[q] such that u∗(y[q] ◦ y∗[q̃]) >
u∗(y∗). This, however, implies that cregq(y∗) > 0, which contradicts the assumption of
conditional optimality with respect to all basic parts.

The above lemma provides a measurable criterion for local optimality: by minimizing the
conditional regret with respect to all the parts, the algorithm will eventually converge to
a conditionally optimal con�guration with respect to all parts, which is consequently also
locally optimal. The following section of the analysis is devoted to prove that the P3 algorithm
enjoys aO(1/

√
T ) upper bound on its average conditional regret 1

T

∑T
t=1 cregpt(yt), which

implies convergence to conditional optimality with respect to all basic parts for T →∞.

Under the part-wise realizability assumption, we will be satis�ed with �nding a local opti-
mum object. In the case of full realizability, instead, we will show (Section 5.3.4) that the local
optimum y∗ found by P3 is competitive with its best improvement over u∗(·), with bounded
approximation error.
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5.3.2 Conditional regret bound

In this section we derive an upper bound on the conditional regret of the P3 algorithm. We
start by proving a bound for P3 for the �rst epoch of PCL, which is also equivalent to the
non-contextual case. We will then derive another bound, with the same convergence rate,
for P3 for epoch number n > 1. All the de�nitions and derivations below apply to any run
of P3 regardless of the epoch, so we will generally omit the epoch number superscript for
readability.

To derive the bound, we will rely on a part-wise feedback model, adapted from the stan-
dard α-informative model, quantifying the amount of information obtained from the partial
improvements provided by the user.

De�nition 5.3.4. The feedback of a user with utility u∗(·) is partially α-informative if, for
any selected part pt ∈ P :

u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt) = α
(
u∗[It](y

∗
t [pt] ◦ yt[p̃t])− u∗[It](yt)

)
− ξt (5.11)

In other words, the user feedback is partially α-informative if, given a recommended partial
con�guration yt[pt], the partial improvement ȳt[pt] has a partial utility higher than yt[pt] of
at least a fraction α ∈ (0, 1] of the conditional regret, modulo a slack ξt ∈ R. The partial
α-informative feedback quanti�es the partial utility gain (LHS of Equation 5.11) over the
feature subset It corresponding to part pt. Intuitively, this is a re�ection of the fact that the
user can potentially modify any of the features associated to the part pt when providing the
improvement ȳt[pt].

Since part pt only a�ects features in It, under the partially α-informative feedback model,
the improvement ȳt[pt] satis�es u∗[It](ȳt[pt] ◦ yt[p̃t]) > u∗[It](yt) − ξt, for ȳt[pt] 6= yt[pt].
This means that, aside from the noise ξt in the user feedback, the algorithm mistakenly rec-
ommended yt in place of the better solution ȳt[pt] ◦ yt[p̃t], and thus the weights wt+1[It]

should be adjusted to avoid this mistake in the future: ut+1[It](ȳt[pt]◦yt[p̃t]) > ut+1[It](yt).
However, since inference is done over Jt and not over It, it might happen that the above con-
dition is already satis�ed at iteration t and the algorithm did not actually make a mistake
according to the partial utility ut[It](·). When this happens, the only safe update the algo-
rithm can perform on the weights is over the features Jt, because it is always the case that
ut[Jt](ȳt[pt] ◦ yt[p̃t]) ≤ ut[Jt](yt), given that yt[pt] is the maximizer of ut[Jt]( · ◦ yt[p̃t]).
Therefore, the choice of the subset of weights to be updated is between It and Jt, and the cho-
sen subsetQt is selected according to the condition in line 8 of Algorithm 10. WhenQt = Jt,
there is a mismatch between the subset of updated weights and the subset of weights ac-
cording to which the user selects the improvement. While needed to ensure coherence of
the partial utility with respect to the partial con�gurations yt[pt] and ȳt[pt], this uneven up-
date schema can make the algorithm “miss” some of the utility gain from the user feedback,
thereby slowing down the convergence rate of the algorithm. This fact will be quanti�ed in
conditional regret bound by the average of the terms [ζt]

T
t=1, which we will introduce next.
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Let us distinguish two sets of iterations based on the condition in line 8 of Algorithm 10:

IT = {t ∈ [T ] : ut[It](ȳt[pt] ◦ yt[p̃t])− ut[It](yt) ≤ 0}
JT = {t ∈ [T ] : ut[It](ȳt[pt] ◦ yt[p̃t])− ut[It](yt) > 0}

If t ∈ IT then Qt = It, whereas if t ∈ JT then Qt = Jt. Considering the dot product
between w∗ and wt+1 at each iteration t ∈ [T ], we have:

〈w∗,wt+1〉 = 〈w∗[Qt],wt+1[Qt]〉+ 〈w∗[Q–
t ],wt+1[Q–

t ]〉
= 〈w∗[Qt],wt[Qt]〉+ 〈w∗[Q–

t ],wt[Q
–
t ]〉

+ 〈w∗[Qt],φ[Qt](ȳt[pt] ◦ yt[p̃t])− φ[Qt](yt)〉
= 〈w∗,wt〉+ 〈w∗[Qt],φ[Qt](ȳt[pt] ◦ yt[p̃t])− φ[Qt](yt)〉
= 〈w∗,wt〉+

(
u∗[Qt](ȳt[pt] ◦ yt[p̃t])− u∗[Qt](yt[pt])

)
(5.12)

We call the second summand of the last equality the utility step, which is the quantity the
estimate wt moves at iteration t with respect to w∗. If this quantity is positive, wt+1 will
move closer to w∗, whereas if it is negative, wt+1 will move apart from w∗.

When t ∈ IT , the utility step equals the partial utility gain:

u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt) (5.13)

which directly follows the partial α-informative feedback (Equation 5.11).

When t ∈ JT , instead, the utility step reduces to:

u∗[Jt](ȳt[pt] ◦ yt[p̃t])− u∗[Jt](yt)

which, however, can be rewritten in terms of partial utility gain over It as:(
u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt)

)
−
(
u∗[It \ Jt](ȳt[pt] ◦ yt[p̃t])− u∗[It \ Jt](yt)

)
(5.14)

Combining Equation 5.13 and Equation 5.14, we can compactly re-de�ne the utility step for
all iterations t ∈ [T ] as:

u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt)− ζt (5.15)

where

ζt =

{
0 if t ∈ IT
u∗[It \ Jt](pt[ȳt] ◦ yt[p̃t])− u∗[It \ Jt](yt) if t ∈ JT

(5.16)

In Equation 5.15 we have rephrased the utility step into the di�erence between the partial
utility gain and a quantity ζt, which we call the utility leak at iteration t. Note that the utility
leak ζt can be positive, negative or null. If the leak is null or negative, updating the weights
only on Jt is actually bene�cial, avoiding a step back or even increasing the step in utility.



Chapter 5. Part-wise domain decomposition 79

Finally, let us assume that ‖φ(y)‖∞ ≤ D and de�ne S = maxp∈P |I(p)|. We are now ready
to state and prove the bound on the average conditional regret of the P3 algorithm in the
stand-alone case or within the execution of PCL for n = 1.

Theorem 5.3.2. For a user with true utility parameters w∗, under the partial α-informative
feedback assumption, the average conditional regret incurred by the P3 algorithm is upper bounded
by:

1

T

T∑
t=1

cregpt(yt) ≤
2DS‖w∗‖
α
√
T

+
1

αT

T∑
t=1

(ξt + ζt) (5.17)

Proof. The proof proceeds by �rst bounding the term ‖wT+1‖ for both T ∈ IT and T ∈ JT .
We will then expand and bound the term 〈w∗,wT+1〉 using the Cauchy-Schwarz inequality.
Finally, we apply the partial α-informative feedback assumption to the resulting expression,
yielding the �nal statement.

Let us begin by expanding the term ‖wT+1‖2 in the general case:

‖wT+1‖2 = ‖wT+1[Q–
T ]‖2 + ‖wT+1[QT ]‖2

= ‖wT [Q–
T ]‖2 + ‖wT [QT ] + φ[QT ](ȳT [pT ] ◦ yT [p̃T ])− φ[QT ](yT )‖2

= ‖wT [Q–
T ]‖2 + ‖wT [QT ]‖2 + ‖φ[QT ](ȳT [pT ] ◦ yT [p̃T ])− φ[QT ](yT )‖2

+ 2〈wT [QT ],φ[QT ](ȳT [pT ] ◦ yT [p̃T ])− φ[QT ](yT )〉
≤ ‖wT ‖2 + ‖φ[QT ](ȳT [pT ] ◦ yT [p̃T ])− φ[QT ](yT )‖2∞|QT |2

+ 2
(
uT [QT ](ȳT [pT ] ◦ yT [p̃T ])− uT [QT ](yT )

)
The last inequality follows from the fact that ‖z‖ ≤ d‖z‖∞ for z ∈ Rd.

If T ∈ IT , then QT = IT and thus we have:

uT [IT ](ȳT [pT ] ◦ yT [p̃T ])− uT [IT ](yT ) ≤ 0

Hence, the above inequality reduces to:

‖wT+1‖2 ≤ ‖wT ‖2 + ‖φ[IT ](ȳT [pT ] ◦ yT [p̃T ])− φ[IT ](yT )‖2∞|IT |2

≤ ‖wT ‖2 + 4D2S2

If T ∈ JT , instead, by the optimality of yT with respect to uT [JT ] we always have that:

uT [JT ](ȳT [pT ] ◦ yT [p̃T ])− uT [JT ](yT ) ≤ 0

Thus the above inequality becomes:

‖wT+1‖2 ≤ ‖wT ‖2 + ‖φ[JT ](ȳT [pT ] ◦ yT [p̃T ])− φ[JT ](yT )‖2∞|JT |2

≤ ‖wT ‖2 + 4D2S2

where the last inequality follows from JT ⊆ IT , therefore |JT | ≤ |IT | ≤ S.
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As the two inequalities for T ∈ IT and T ∈ JT coincide, we can unroll the above expression
to obtain:

‖wT+1‖2 ≤ 4D2S2T (5.18)

Here we used the fact that w1 = 0, thus ‖w1‖2 = 0. Now, applying the Cauchy-Schwarz
inequality we have:

〈w∗,wT+1〉 ≤ ‖w∗‖‖wT+1‖ ≤ 2DS‖w∗‖
√
T (5.19)

From the derivation in Equation 5.12 and the utility step in Equation 5.15 we have:

〈w∗,wT+1〉 = 〈w∗,wT 〉+
(
u∗[IT ](ȳT [pT ] ◦ yT [p̃T ])− u∗[IT ](yT )

)
− ζT (5.20)

Expanding the above equation we obtain:

〈w∗,wT+1〉 =

T∑
t=1

(
u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt)

)
−

T∑
t=1

ζt ≤ 2DS‖w∗‖
√
T

Rearranging:

T∑
t=1

(
u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt)

)
≤ 2DS‖w∗‖

√
T +

T∑
t=1

ζt

By Equation 5.11, we can substitute the LHS of the above expression with:

α

T∑
t=1

(
u∗[It](y

∗
t [pt] ◦ yt[p̃t])− u∗[It](yt)

)
−

T∑
t=1

ξt ≤ 2DS‖w∗‖
√
T +

T∑
t=1

ζt

Rearranging and dividing by T both sides we obtain:

1

T

T∑
t=1

(
u∗[It](y

∗
t [pt] ◦ yt[p̃t])− u∗[It](yt)

)
≤ 2DS‖w∗‖

α
√
T

+
1

αT

T∑
t=1

(ξt + ζt) (5.21)

Since u∗[It](y∗t [pt] ◦ yt[p̃t]) − u∗[It](yt) = u∗(y∗t [pt] ◦ yt[p̃t]) − u∗(yt), the LHS equates the
conditional regret of yt for part pt, and thus Equation 5.21 proves the theorem.

The above theorem is a slightly reworked version of the original bound, �rst published in [84],
using the non-strictα-informative feedback model. Let us now add to the analysis a bound on
the conditional regret of any run of P3 in the general contextual case, within PCL for n > 1.

Corollary 5.3.3. For a user with true utility parameters w∗, under the partial α-informative
feedback assumption, the average conditional regret incurred by the P3 algorithm, at epochn > 1

of the PCL algorithm, is upper bounded by:

1

T

T∑
t=1

cregpt(yt) ≤
2DS‖w∗‖
α
√
T

+
2B‖w∗‖
αT

+
1

αT

T∑
t=1

(ξt + ζt) (5.22)
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Proof. In this proof we will employ the superscript indicating the epoch number. Recall from
Equation 5.18 that the squared norm of wT+1 is bounded by:

‖w̄(n)
T+1‖

2 ≤ ‖w̄(n)
T ‖

2 + 4D2S2 ≤ ‖w̄(n)
1 ‖2 + 4D2S2T

Here we are considering the case n > 1, thus ‖w̄(n)
1 ‖2 is not necessarily equal to 0. However,

we have that w̄(n)
1 = w(n−1) ∈ B, and thus:

‖w̄(n)
T+1‖

2 ≤ 4D2S2T +B2

Using the Cauchy-Schwarz inequality and applying the above bound we have:

〈w∗, w̄(n)
T+1〉 ≤ 2DS‖w∗‖

√
T +B‖w∗‖ (5.23)

Unrolling the LHS as in Equation 5.3.2:

〈w∗, w̄(n)
1 〉+

T∑
t=1

(
u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt)

)
−

T∑
t=1

ζt ≤ 2DS‖w∗‖
√
T +B‖w∗‖

Since 〈w∗, w̄(n)
1 〉 ≥ −‖w∗‖‖w̄

(n)
1 ‖ ≥ −B‖w∗‖, rearranging the above bound we have:

T∑
t=1

(
u∗[It](ȳt[pt] ◦ yt[p̃t])− u∗[It](yt)

)
≤ 2DS‖w∗‖

√
T + 2B‖w∗‖+

T∑
t=1

ζt

Applying the partial α-informative feedback model and dividing by αT proves the claim.

The above result shows that only a term vanishing as O(1/T ) is added to the bound for
n > 1, implying the same convergence rate of O(1/

√
T ) of the non-contextual case.

To further qualify the utility leak that appears in both Theorem 5.3.2 and Corollary 5.3.3, we
can �nd a bound the terms ζt depending on the number of iterations JT and on the amount
of overlapping in the partition P . Let us de�ne the constant ν ∈ [0, 1] as:

ν = max
k∈[K]

|Ik \ Jk|
|Ik|

The average utility leak can then be bounded by:

T∑
t=1

ζt =

T∑
t=1

u∗[It \ Jt](ȳt[pt] ◦ yt[p̃t])− u∗[It \ Jt](yt)

≤ 2D‖w∗‖
∑
t∈JT

|It \ Jt| ≤ 2D‖w∗‖
∑
t∈JT

νS ≤ 2νDS‖w∗‖|JT |

We can see here the close dependency between the utility leak and the ratio ν of overlapping
features. We will see in Section 5.3.4 how ν crucially a�ects P3 approximation error too.
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5.3.3 Local optimality convergence

Given the result from Theorem 5.3.2 and Corollary 5.3.3, then the conditional regret for each
part approaches zero with increasing T . This fact alone, however, still does not prove that
the algorithm will eventually converge to a local optimum. In P3, inference is made on one
part pk at the time over the features Jk , ignoring the other features Ik \ Jk . From the user
perspective, the features Ik \ Jk are still a�ected, even if the algorithm ignores them. This
means that a partial con�guration yt[pt] that was once conditionally optimal, may become
suboptimal later when the other parts have changed. In principle, this may happen even if the
conditional regret is consistently 0 from some point onward. In this case, even if the user does
not provide any feedback anymore (as she cannot improve the parts further), the algorithm
might keep changing the object at each iteration to adjust it after the changes made on the
other parts in the previous iterations, never reaching a stable local optimum. Next, we will
show that this situation can never occur, thanks to our particular utility decomposition.

Theorem 5.3.4. Let τ1 ≤ · · · ≤ τK ≤ τ̂1 ≤ · · · ≤ τ̂K ≤ T such that pτk = pτ̂k = pk and
cregpt(yt) = 0 for all t ≥ τ1. The con�guration yT is a local optimum.

Proof. The proof proceeds by strong induction. We will �rst show that yt[p1] = yτ1 [p1] for all
t ≥ τ1. At iteration τ1, the part p1 is selected and the partial con�guration yτ1 [p1] is inferred
from the partial utility de�ned over the features J1. Since J1 = I1 \

⋃K
j=2 Ij , inference is

done over the weights wt[J1], which depend exclusively on p1 \ {p2: pk}. Changes on any
other part do not a�ect the weightswt[J1]. Since cregpτ1 (yτ1) = 0 by assumption, the user
will not provide an improvement, and thus no weight update is performed. If p1 is selected
again at t > τ1, the weightswt[J1] will be equal towτ1 [J1], since no other part a�ects those
weights. The algorithm will therefore make the same prediction yt[p1] = yτ1 [p1]. Given
that by assumption cregpt(yt) = 0 the weights wt[J1] will not be updated as well. Hence,
yt[p1] = yτ1 [p1] and wt[J1] = wτ1 [J1] for all t ≥ τ1.

By strong induction, suppose that yt[pj ] = yτj [pj ] for all j = 1, . . . , k − 1 and for all t ≥
τk−1. At iteration τk , the part pk is selected and the partial con�guration yτk [pk] is inferred
over the features Jk . Since Jk = Ik \

⋃K
j=k+1 Ij , the weights wτk [Jk] are only a�ected

by changes to {p1 : pk} \ {pk+1 : pK}. By inductive hypothesis, the partial con�gurations
yt[pj ], 1 ≤ j ≤ k − 1, do not change for t ≥ τk−1. This means that inference over Jk at
t ≥ τk > τk−1 only depends on pk itself. By assumption cregpk(yτk) = 0, so the weights
wτk [Jk] will not change. If pk is selected again at t > τk , the partial con�gurations yt[pj ],
1 ≤ j ≤ k − 1, will not have changed by inductive hypothesis. The weights wt[Jk] too will
not have changed, thus the partial con�guration yt[pk] = yτk [pk]. As cregpk(yt) = 0, the
weights wt[Jk] = wτk [Jk] will not change as well.

This proves that for k ∈ [K] and any t > τk , yt[pk] = yτk [pk]. This implies that none
of the partial con�gurations will change for t ≥ τK . At τ̂1 > τK , the entire object will
not have changed yτ̂1 = yτK . Since cregp1(yτ̂1) = 0, it means that yτ̂1 is conditionally
optimal with respect to p1. Likewise, at τ̂k , yτ̂k = yτK and since cregpk(yτ̂k) = 0 the object
yτ̂k is conditionally optimal with respect to pk . At iteration τ̂K , the object yτ̂K = yτK is
conditionally optimal for all parts [pk]Kk=1, therefore yT = yτ̂K = yτK is a local optimum.
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The above theorem proves that if the conditional regret is null at all iterations after τ1, the P3

algorithm reaches a local optimum after two consecutive ordered rounds over the parts p ∈ P .
At iteration t = τK , if

∑τK
t=τ1

cregpk(yt) = 0 and if the conditions of Theorem 5.3.4 hold
in hindsight, the algorithm has actually already reached a local optimum yτK , but it needs
to double check that all the partial con�gurations are still conditionally optimal for the user.
Since the user provides feedback over the full It, changes made to the parts for t ≤ τK may
still make other partial con�gurations conditionally suboptimal. Once the algorithm reaches
τ̂k , it can be sure that the object will never change again and all the parts are conditionally
optimal for the user, hence the object is a local optimum. This fact can actually be used as
a stopping criterion in practice: if the algorithm completes two full runs over the parts and
the user has never been able to improve any of them, that means that the current object is a
local optimum and the algorithm may stop. We actually employed this stopping criterion in
our implementation, but we left it out from Algorithm 10 for simplicity.

5.3.4 Approximation error

As said at the beginning of the analysis, the P3 algorithm operates with a part-wise realizabil-
ity assumption, for which there is not a clear notion of regret over full objects. If we assume
full realizability, instead, we can see how the local optimum y∗ found by P3 compares with
the global optimum y∗∗ that would be found by standard coactive learning. In particular, the
following theorem states that P3 has bounded regret (over full objects) with respect to u∗.
Recall that K is the number of parts, while S = maxp∈P |I(p)| and ‖φ(y)‖∞ ≤ D.

Theorem 5.3.5. For a user with true utility parametersw∗, the regret of the local optimum y∗

found by the P3 algorithm is upper bounded by:

u∗(y∗∗)− u∗(y∗) ≤ 4νDSK‖w∗‖ (5.24)

The above theorem e�ectively gives us a bound on the approximation error, in terms of full
utility, of P3 with respect to the best object that could be found with full inference. Notably,
this regret bound depends on ν, hinting to the fact that low feature overlap leads to low
approximation error. In the extreme case, if there is no overlapping between the parts, then
ν = 0, implying that the P3 algorithm would converge to the global optimum. This is in line
with the fact that with no overlap, the utility degenerates to the additively independent case.

If we assume that the norm of the features are bounded by a constant ‖φ(·)‖ ≤ R, as done in
standard coactive learning, and we have ν = ε R

4DSK for some constant ε ∈ [0, 1], then the
regret bound in Equation 5.24 becomes:

u∗(y∗∗)− u∗(y∗) ≤ εR‖w∗‖

The regret can be normalized between [0, 1] by the constant upper bound 2R‖w∗‖, yielding:

u∗(y∗∗)− u∗(y∗)
2R‖w∗‖

≤ ε

2

u∗(y∗)

R‖w∗‖
≥ u∗(y∗∗)

R‖w∗‖
− ε
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The last inequality a�rms that P3 �nds an object whose normalized full utility is no more
than εworse than that of the optimal object. This means that P3 is an (opt−ε)–approximation
algorithm for standard coactive learning. Note that the constant ε = 4νDSK

R is computable
a priori by the system designer, providing an e�ective performance guarantee.

Let us now proceed with the proof of Theorem 5.3.5. In order to prove it, though, we will �rst
need to show the following lemma, which quanti�es the change in utility of an object y′ if the
complement for its part-wise contributions u[Jk](·) were to change from y′ to y. This quan-
tity is equal to the part-wise contributions of y, complemented by y′, to the complementary
subutilities u[Jk \ Ik](·).

Lemma 5.3.6. Let qk = {p1: pk−1} ∪ {pk+1: pK}. The following equality holds for any pair
of objects y, y′ ∈ Y :

K∑
k=1

u∗[Jk](y′[pk] ◦ y[p̃k])−u∗[Jk](y′) =

K∑
k=1

u∗[Ik \ Jk](y[pk \ qk] ◦ y′[qk])−u∗[Ik \ Jk](y′)

Proof. Let us start by showing that, since Jk contains only features dependent on p1, . . . , pk ,
the following equality holds:

u∗[Jk](y′[pk] ◦ y[p̃k])− u∗[Jk](y′) =

k−1∑
j=1

(u∗[Jk](y[pj \ qj ] ◦ y′[qj ])− u∗[Jk](y′)) (5.25)

The above expression follows from the part-wise addition rule (Equation 5.7) by noticing that,
for k ∈ [K], since Jk depends only on p1, . . . , pk , we have:

u∗[Jk](y′[pk] ◦ y[p̃k])− u∗[Jk](y′)

= u∗[Jk](y′[pk] ◦ y[p1:pk−1] ◦ y′[pk+1:pK ])− u∗[Jk](y′)

= u∗[Jk](y[{p1:pk−1} \ pk] ◦ y′[pk:pK ])− u∗[Jk](y′) (5.26)

Let us now apply the part-wise addition rule (Equation 5.7) to the non-overlapping parts
{p1:pk−2} \ {pk−1:pk} and pk−1 \ ({p1:pk−2} ∪ pk):

u∗[Jk](y[{p1:pk−1} \ pk] ◦ y′[pk:pK ])

= u∗[Jk](y[{p1:pk−2} \ {pk−1:pk}] ◦ y′[pk−1:pK ])

+ u∗[Jk](y[pk−1 \ ({p1:pk−2} ∪ pk)] ◦ y′[{p1:pk−2} ∪ {pk:pK}])− u∗[Jk](y′)

Recurring on the �rst summand of the RHS:

u∗[Jk](y[{p1:pk−1} \ pk] ◦ y′[pk:pK ])

=

k−1∑
j=1

u∗[Jk](y[pj \ ({p1:pj−1} ∪ {pj+1:pk})] ◦ y′[qj ])−
k−2∑
j=1

u∗[Jk](y′)
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Plugging the above expression in Equation 5.26:

u∗[Jk](y′[pk] ◦ y[p̃k])− u∗[Jk](y′)

=

k−1∑
j=1

u∗[Jk](y[pj \ ({p1:pj−1} ∪ {pj+1:pk})] ◦ y′[qj ])−
k−2∑
j=1

u∗[Jk](y′)

− u∗[Jk](y′)

=

k−1∑
j=1

(u∗[Jk](y[pj \ ({p1:pj−1} ∪ {pj+1:pk})] ◦ y′[qj ])− u∗[Jk](y′))

Since the features Jk are only a�ected by parts {p1:pk} \ {pk+1:pK}, we have that:

u∗[Jk](y[pj \ ({p1:pj−1} ∪ {pj+1:pk})] ◦ y′[qj ])
= u∗[Jk](y[pj \ ({p1:pj−1} ∪ {pj+1:pK})] ◦ y′[qj ]) = u∗[Jk](y[pj \ qj ] ◦ y′[qj ])

which proves Equation 5.25. As part pj only a�ects features in Ij , Equation 5.25 equates to:

u∗[Jk](y′[pk] ◦ y[p̃k])− u∗[Jk](y′) =

k−1∑
j=1

(u∗[Jk ∩ Ij ](y[pj \ qj ] ◦ y′[qj ])− u∗[Jk ∩ Ij ](y′))

Summing up for all k ∈ [K] we get:

K∑
k=1

(u∗[Jk](y′[pk] ◦ y[p̃k])− u∗[Jk](y′))

=

K∑
k=1

k−1∑
j=1

(u∗[Jk ∩ Ij ](y[pj \ qj ] ◦ y′[qj ])− u∗[Jk ∩ Ij ](y′))

By unrolling the above expression we can see that each j ∈ [K] occurs together with all
k = j + 1, . . . ,K , adding up all intersections Jj+1 ∩ Ij , . . . , JK ∩ Ij . This means that we
end up summing all features in Ij but those in Jj , hence Ij \ Jj . Simplifying we get:

K∑
k=1

u∗[Jk](y′[pk] ◦ y[p̃k])−u∗[Jk](y′) =

K∑
k=1

u∗[Ik \ Jk](y[pk \ qk] ◦ y′[qk])−u∗[Ik \ Jk](y′)

thereby proving the claim.

We are now ready to prove Theorem 5.3.5.

Proof. [Theorem 5.3.5] Let us �rst de�ne the part-wise optimum ŷ, which is the result of
the combination of the partial con�gurations obtained by optimizing u∗ over the parts pk
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separately, for all k ∈ [K]:

ŷ = y′1[p1] ◦ · · · ◦ y′K [pK ]

y′k[pk] = argmax
y[pk]∈Ypk

u∗[Jk](y[pk] ◦ y′k−1[p̃k])

Since J1 depends only on p1, the �rst partial con�guration y′1[p1] can be computed using any
object as complement. If parts overlap, we choose the combination yielding the maximum
utility. The object ŷ is the best object we can achieve with our part-wise inference procedure
knowing u∗. As such, it follows that for all pk ∈ P :

u∗[Jk](ŷ)− u∗[Jk](y∗∗[pk] ◦ ŷ[p̃k]) ≥ 0 (5.27)

Since y∗ is a local optimum, by Lemma 5.3.1, we also have that, for all pk ∈ P :

u∗[Ik](y∗)− u∗[Ik](ŷ[pk] ◦ y∗[p̃k]) ≥ 0 (5.28)

Applying part-wise linearity to Equation 5.27, we get:

u∗[Jk](ŷ[pk] ◦ y∗∗[p̃k])− u∗[Jk](y∗∗) ≥ 0

Changing signs and direction of the inequality:

u∗[Jk](y∗∗)− u∗[Jk](ŷ[pk] ◦ y∗∗[p̃k]) ≤ 0

We can bound the above inequality using Equation 5.28:

u∗[Jk](y∗∗)− u∗[Jk](ŷ[pk] ◦ y∗∗[p̃k]) ≤ u∗[Ik](y∗)− u∗[Ik](ŷ[pk] ◦ y∗[p̃k])

Decomposing Ik into Jk and Ik \ Jk we get:

u∗[Jk](y∗∗)− u∗[Jk](ŷ[pk] ◦ y∗∗[p̃k]) ≤ u∗[Jk](y∗)− u∗[Jk](ŷ[pk] ◦ y∗[p̃k])

+ u∗[Ik \ Jk](y∗)− u∗[Ik \ Jk](ŷ[pk] ◦ y∗[p̃k])

Rearranging:

u∗[Jk](y∗∗)− u∗[Jk](y∗) ≤ u∗[Jk](ŷ[pk] ◦ y∗∗[p̃k])− u∗[Jk](ŷ[pk] ◦ y∗[p̃k])

+ u∗[Ik \ Jk](y∗)− u∗[Ik \ Jk](ŷ[pk] ◦ y∗[p̃k])

Applying again the part-wise linearity to the above expression we get:

u∗[Jk](y∗∗)− u∗[Jk](y∗) ≤ u∗[Jk](y∗∗)− u∗[Jk](y∗∗[pk] ◦ y∗[p̃k])

+ u∗[Ik \ Jk](y∗)− u∗[Ik \ Jk](ŷ[pk] ◦ y∗[p̃k])
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Summing over k ∈ [K]:∑
k∈[K]

(u∗[Jk](y∗∗)− u∗[Jk](y∗)) ≤
∑
k∈[K]

(u∗[Jk](y∗∗)− u∗[Jk](y∗∗[pk] ◦ y∗[p̃k]))

+
∑
k∈[K]

(u∗[Ik \ Jk](y∗)− u∗[Ik \ Jk](ŷ[pk] ◦ y∗[p̃k]))

We can now apply Lemma 5.3.6 to the �rst summation of the RHS of the above inequality:∑
k∈[K]

u∗[Jk](y∗∗)− u∗[Jk](y∗) ≤
∑
k∈[K]

u∗[Ik \ Jk](y∗∗)− u∗[Ik \ Jk](y∗[pk \ qk] ◦ y∗∗[qk])

+
∑
k∈[K]

u∗[Ik \ Jk](y∗)− u∗[Ik \ Jk](ŷ[pk] ◦ y∗[p̃k])

Now we can bound both the sums in the RHS with:∑
k∈[K]

u∗[Jk](y∗∗)− u∗[Jk](y∗) ≤
∑
k∈[K]

u∗[Ik \ Jk](y∗∗)− u∗[Ik \ Jk](y∗[pk \ qk] ◦ y∗∗[qk])

+
∑
k∈[K]

u∗[Ik \ Jk](y∗)− u∗[Ik \ Jk](ŷ[pk] ◦ y∗[p̃k])

≤ 2D‖w∗‖
∑
k∈[K]

|Ik \ Jk|+ 2D‖w∗‖
∑
k∈[K]

|Ik \ Jk|

≤ 4D‖w∗‖
∑
k∈[K]

νS

≤ 4νDSK‖w∗‖

which concludes the proof.

5.3.5 Remarks

To recap, we sought to prove that the P3 algorithm converges to a local optimum. Lemma 5.3.1
showed that we can do that by �nding an object that is conditionally optimal with respect to
all the parts p ∈ P , i.e. by minimizing the conditional regret for all parts. Theorem 5.3.2 and
Corollary 5.3.3 proved an upper bound on the average conditional regret over the iterations
t ∈ [T ] for the non-contextual and contextual case respectively. Theorem 5.3.4 proves that,
if cregpt(yt) = 0 for t ≥ τ1, the algorithm reaches a local optimum after two complete
iterations over the parts pk ∈ P . From Theorem 5.3.2 we have that the average conditional
regret approaches 0, implying that the conditions for Theorem 5.3.4 will eventually hold,
thereby proving that the P3 algorithm will eventually converge to a local optimum for T →
∞. Finally, with Theorem 5.3.5 we proved that the local optimum found by the P3 algorithm
enjoys a regret with respect to the global optimum bounded by a constant dependent on the
maximal ratio ν of overlapping feature within the feature subsets. This e�ectively means that
P3 constitutes an (opt− ε)–approximation algorithm for standard coactive learning (with ε



88

de�ned in Section 5.3.4).

The analysis presented in this chapter is based on the one �rst published in [84]. Here we ex-
tended the original analysis by providing a clearer notion of part-wise realizability, extending
the proofs to the non-strict partial α-informative feedback, adding a conditional regret bound
on the contextual case, explicitating the dependency of the utility leak with the overlap of
the feature subsets, and proving the bound on the approximation error of the P3 algorithm.

5.4 Experiments

We now apply our decomposition strategy to constructive problems by dividing the under-
lying constraint optimization problems into parts. The parts p ∈ S are subsets of decision
variables and feature subsets I(p) simply contain all the features dependent on at least one
decision variable in p. We restrict to linear features only, which makes the part decomposition
satisfy the part-wise addition rule de�ned in Section 5.1.2.

We report in this section the same experiments made in the original contribution [84]. The
MILP solver used was Gecode3 and the full experimental setup is available on Github4.

We ran PCL on three constructive preference elicitation tasks of increasing complexity, com-
paring di�erent degrees of user informativeness. According to our experiments, informa-
tiveness is the most critical factor. The three problems involve rather large con�gurations,
which can not be handled by coactive interaction via complete con�gurations. For instance,
in [196] the user is tasked to solve relatively simple SAT instances over three variables and
(at most) eight clauses; in some cases users were observed to show signs of cognitive over-
load. In comparison, our simplest realistic problem involve 35 categorical variables (with 8
possible values) and 74 features, plus additional hard constraints. As a consequence, Coactive
Learning can not be applied as-is, and part-wise interaction is necessary.

We employed a user simulation protocol similar to that of [255]. First, for each problem, we
sampled 20 vectorsw∗ at random from a standard normal distribution. Then, upon receiving a
recommendation yt[pt], an improvement ȳt[pt] is generated by solving the following problem:

argmin
y[pt]∈Ypt

u∗[It](y[pt] ◦ yt[p̃t])

s.t. u∗[It](y[pt] ◦ yt[p̃t])− u∗[It](yt)
≥ α(u∗[It](y

∗[pt] ◦ yt[p̃t])− u∗[It](yt))

This formulation clearly satis�es the partial α-informativeness assumption (Equation 5.11).

3gecode.org 4github.com/unitn-sml/pcl

gecode.org
github.com/unitn-sml/pcl
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Synthetic setting

We designed a simple synthetic problem inspired by spin glass models, see Figure 5.1 for a
depiction. In this setting, a con�guration y consists of a 4 × 4 grid. Each node in the grid is
a binary 0-1 variable. Adjacent nodes are connected by an edge, and each edge is associated
to an indicator feature that evaluates to 1 if the incident nodes have di�erent values (green
in the �gure), and to−1 otherwise (red in the �gure). The utility of a con�guration is simply
the weighted sum of the values of all features (edges). The parts p ∈ P consist of all the
non-overlapping 2 × 2 sub-grids of y, for a total of 4 parts (indicated by dotted lines in the
�gure).

Figure 5.1: Example of grid con�guration.

Since the problem is small enough for inference of complete con�gurations to be practical,
we compared PCL to standard Coactive Learning, using the implementation of [255]. In order
to keep the comparison as fair as possible, the improvements fed to CL were chosen to match
the utility gain obtained by PCL. We further report the performance of three alternative part
selection strategies: random, smallest (most independent) part �rst, and UCB1.

The results can be found in the �rst column of Figure 5.2. We report both the regret (over com-
plete con�gurations) and the cumulative runtime of all algorithms, averaged over all users,
as well as their standard deviation. The regret plot shows that, despite being restricted to
work with 2 × 2 con�gurations, PCL does recommend complete con�gurations of quality
comparable to CL after enough queries are made. Out of the three part selection strategies,
random performs best, with the other two more informed alternatives (especially smallest
�rst) quite close. The runtime gap between full and part-wise inference is already clear in
this small synthetic problem; complete inference quickly becomes impractical as the problem
size increases.

Training planning

Generating personalized training plans based on performance and health monitoring has re-
ceived a lot of attention recently in sport analytics (see e.g. [105]). Here we consider the
problem of synthesizing a week-long training plan y from information about the target ath-
lete. Each day includes 5 time slots (two for the morning, two for the afternoon, one for the
evening), for 35 slots total. We assume to be given a �xed number of training activities (7
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Figure 5.2: Regret over complete con�gurations (top) and cumulative runtime (bottom) of
PCL and CL on our three constructive problems: synthetic (left), training planning (middle),
and hotel planning (right). The x-axis is the number of iterations, while the shaded areas
represent the standard deviation. Best viewed in color.

in our experiments: walking, running, swimming, weight lifting, push-ups, squats, abs), as
well as knowledge of the slots in which the athlete is available. The training plan y associates
an activity to each slot where the athlete is available. Our formulation tracks the amount
of improvement (e.g. power increase) and fatigue over �ve di�erent body parts (arms, torso,
back, legs, and heart) induced by performing an activity for one time slot. Each day de�nes
a part.

The mapping between training activity and improvement/fatigue over each body part is as-
sumed to be provided externally. It can be provided by the athlete or medical personnel moni-
toring his/her status. The features of y include, for each body part, the total performance gain
and fatigue, computed over the recommended training plan according to the aforementioned
mapping. We further include inter-part features to capture activity diversity in consecutive
days. The fatigue accumulated in 3 consecutive time slots in any body parts does not exceed
a given threshold, to prevent injuries.

In this setting, CL is impractical from both the cognitive and computational points of view.
We ran PCL and evaluated the impact of user informativeness by progressively increasing
α from 0.1, to 0.3, to 0.5. The results can be seen in Figure 5.2. The plots show clearly
that, despite the complexity of the con�guration and constraints, PCL can still produce very
low-regret con�gurations after about 50 iterations or less.

Understandably, the degree of improvement α plays an important role in the performance of
PCL and, consequently, in its runtime (users at convergence do not contribute to the runtime),
at least up to α = 0.5. Recall, however, that the improvements are part-wise, and hence α
quanti�es the degree of local improvement: part improvements may be very informative
on their own, but only give a modest amount of information about the full con�guration.
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However, it is not unreasonable to expect that users to be very informative when presented
with reasonably sized (and simple) parts. Crucially PCL allows the system designer to de�ne
the parts appropriately depending on the application.

Hotel planning

Finally, we considered a complex furniture allocation problem: furnishing an entire hotel.
The problem is encoded as follows. The hotel is represented by a graph: nodes are rooms and
edges indicate which rooms are adjacent. Rooms can be of three types: normal rooms, suites,
and dorms. Each room can hold a maximum number of furniture pieces, each associated to
a cost. Additional, �xed nodes represent bathrooms and bars. The type of a room is decided
dynamically based on its position and furniture. For instance, a normal room must contain at
most three single or double beds, no bunk beds, and a table, and must be close to a bathroom.
A suite must contain one bed, a table and a sofa, and must be close to a bathroom and a bar.
Each room is a part, and there are 15 rooms to be allocated.

The feature vector contains 20 global features plus 8 local features per room. The global fea-
tures include di�erent functions of the number of di�erent types of rooms, the total cost of the
furniture and the total number of guests. The local features include, instead, characteristics
of the current room, such as its type or the amount of furniture, and other features shared by
adjacent rooms, e.g. whether two rooms have the same type. These can encode preferences
like “suites and dorms should not be too close”, or “the hotel should maintain high quality
standards while still being pro�table”. Given the graph structure, room capacities, and total
budget, the goal is to furnish all rooms according to the user’s preferences.

This problem is hard to solve to optimality with current solvers; part-based inference alle-
viates this issue by focusing on individual rooms. There are 15 rooms in the hotel, so that
at each iteration only 1/15 of the con�guration is a�ected. Furthermore, the presence of the
global features implies dependencies between all rooms. Nonetheless, the algorithm man-
ages to reduce the regret by an order of magnitude in around a 100 iterations, starting from
a completely uninformed prior. Note also that as for the training planning scenario, an alpha
of 0.3 achieves basically the same results as those for alpha equal to 0.5.

5.5 Summary

In this chapter we addressed the issue of scalability of constructive preference elicitation
to large constructive domains by partitioning the problem domain and eliciting the utility
function one part at the time. We derived the P3 algorithm, based on the preference percep-
tron [247], which only performs inference and updates on partial con�gurations, speeding
up the per-iteration inference time substantially. The user feedback also consists in partial
improvements, making it cognitively a�ordable to tackle large constructive problems. We
provided an extensive theoretical analysis demonstrating that, despite working only with
partial con�guration, the P3 algorithm is capable of reaching a locally optimal solution with
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bounded approximation error with respect to standard coactive learning. The theoretical
analysis presented in this chapter is based on that of the original publications [84], but ex-
tended in a number of directions. Finally, we empirically validated the performance of the P3

algorithm on three constructive scenarios of increasing complexity, showing that it is capa-
ble of reducing the regret almost to optimality, despite the worst-case approximation error
saying otherwise.



Chapter 6

Critiqing and feature elicitation

In Chapter 4 we introduced our framework for constructive preference elicitation based on
coactive learning, while in Chapter 5 we derived a new technique to scale up to larger con-
structive problems. In this chapter we will tackle another important problem that arises in
a constructive scenario, namely how to handle an exponentially large feature space. In con-
structive preference elicitation, the size of the output domain Y is exponential in number of
attributes used to represent the objects, but so is the number of possibly relevant features.
As explained in Chapter 4, features represent the “preference criteria” with which a user can
assess the quality of a recommended object. Features may be arbitrarily complex formulas
of the attributes of the objects. In Section 4.4.2 we have also seen that functions of the form
u(x, y) = 〈w,φ(x, y)〉 can represent any possible utility with an exponential number of fea-
tures. One way to picture the size of the possible formulas is to consider a set of operators,
such as logical conjunction and disjunction or arithmetic sum and multiplication, and de�ne
each feature by combining an arbitrary number of attributes using these operators. In this
case, the size of the feature space is O(s(n+l)) where s is the maximum number of allowed
attributes to combine for each feature, n is the number of attributes, and l is the number of
operators. Enumerating all the possible features beforehand would make the complexity of
the inference problem exponential and thus unfeasible [200]. One possible approach to solve
this problem, adopted by [48], is to select the most relevant ones by learning a sparse pref-
erence model [261]. While sparsi�cation may mitigate the problem of intractable inference,
this approach still su�ers from several drawbacks. First, learning with these many features is
harder and more computationally demanding. Also, it is still possible that relevant but unan-
ticipated preference criteria might be excluded from the feature space. Another approach that
we have mentioned in Section 4.4.2, is the kernel-based technique from [77, 78]. While feature
augmentation and kernel methods have long been used to improve generalization [237], in
this case they pose a problem on the inference procedure, as the kernelized model from [77]
would require solving either a non-linear optimization problem in the dual variables, or a
linear optimization problem with an exponential number of features.

While a good feature set is important for generalization, and elicitation with a more ex-
pressive utility has more chances to reach good solutions, ultimately the features need to
re�ect the best trade-o�s for the user, which are hard to determine beforehand. The work
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of Pu and Faltings [211] clearly highlights the problem. They argue that the set of prefer-
ence criteria of a user is not completely determined in advance. Users are likely to discover
relevant preference criteria throughout the elicitation process [203]. Also, the weight a user
assigns to a certain criterion is likely to change as she uncovers new available options that
she did not know about. For this reason they propose an interaction schema that allows the
user to express their preference criteria and trade-o�s through soft constraints.

In this chapter, we present a method inspired by [211]. We take however a slightly di�erent
approach and propose to elicit the relevant features for the users, in parallel with the elic-
itation of their preferences. In particular, we devised an algorithm that allows the users to
critique some of the examples. Like soft constraints for [211], critiques are essentially formu-
las of the attributes of the objects that can be interpreted as features. Unlike [211], we give
a precise semantics to our critiques. Using our system, the user does not state any critique
that comes to mind, but rather she is asked to state a critique when certain conditions occur.
In practice, critiques in our system are explanations for ambiguous improvements elicited via
standard coactive learning. When a user provides an improvement that strongly disagrees
with the current utility model of the algorithm, chances are that the algorithm does not pos-
sess the right feature that “explains” that improvement, together with the other evidence it
has already collected. At this point the algorithm can ask the user to provide a critique, i.e. a
formula explaining why the feedback is actually an improvement over the recommendation.
This formula can then be attached to the current utility model and make it more expressive.
This process allows to gradually enlarge the feature space of the preference model, while
asking only the necessary critiques and minimizing the e�ort for the user. Crucially, un-
like [211], this approach provably converges to an optimal solution when the feature space
becomes expressive enough. As an additional bene�t, the inference procedure can be solved
much faster, thanks to the fact that, at least at the �rst iterations, the algorithm works with
many fewer features than those needed by standard coactive learning.

The rest of the chapter is organized as follows. In Section 6.1 we review the literature on
critiquing recommendation systems. Section 6.2 then exposes the details of our proposed
critiquing algorithm, also pointing out when and how to elicit critiques. In Section 6.3 we
will proceed in analyzing our algorithm, proving that it will converge to an optimal solution
despite the fact that it starts o� in a lower-dimensional feature space than the space of the user
true utility. In Section 6.4, the empirical results will show how the algorithm reaches optimal
solutions while eliciting only a fraction of the total number of the user features. Section 6.5
concludes the chapter.

6.1 Critiques

Example critiquing is a type of feedback that has been extensively employed in interactive
recommendation systems [54, 181]. When using a critiquing-based recommender, after re-
ceiving a set of recommendations, a user is allowed to reply with a critique, i.e. a sugges-
tion on how to improve the proposed solutions. This resembles in many ways the coactive
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interaction, but instead of providing a new better object, the user provides a direction of im-
provement. For instance, when presented with a product, the user may state a critique of
the type “I would like a similar but cheaper product”. In this case, the attribute to improve is
the price, speci�cally by lowering it. The critique then acts as a sort of �lter for the follow-
ing recommendation, in which similar products are retrieved but incorporate the speci�ed
suggestion.

Many critiquing systems proposed in the literature do not employ an explicit preference
model. They use, instead, the current set of recommended options as an implicit represen-
tation of the user preferences, which is incrementally re�ned through critiques [44, 47, 218,
219]. Few other critiquing systems, instead, do keep an explicit representation of the user
preferences [274, 279, 289]. Most closely related to our approach are those systems that rep-
resent the user preferences as soft constraints. Recall from Section 2.2.1 that soft constraints
are arbitrary formulas over objects attributes with attached weights, and recommendations
are selected based on the cumulative weight of the formulas satis�ed by the object. As pointed
out in Chapter 4, the feature functions used in our constructive preference elicitation frame-
work are comparable to soft constraints, with the added property of not necessarily being
Boolean valued.

The critiquing method we propose follows the same intuition behind the approach of Viappi-
ani et al. (2006) [277]: critiques can be expressed as soft constraints, and the preference model
can be extended as new critiques are collected. This approach has been extensively used by
many constraint-based recommenders [55, 275, 279, 287]. These systems, however, most of-
ten lack a principled way to determine proper values to the weights associated to the soft
constraints, assigning them heuristically or even rely on the user to manually adjust them
based on their preferences [210, 211, 287]. To the best of our knowledge, the �rst attempt to
use machine learning techniques to estimate user preferences encoded as soft constraints is
the work by Rossi and Sperduti [22, 225], and, in particular, in [227] they propose a system
that allows the user to state preferences as soft constraints and then learns the weights of the
soft constraints from collected user ratings. Another early form of learning in this context
appears in the system developed by Viappiani et al. (2007) [279], in which they use a prob-
abilistic modeling and learning of critiquing suggestions, to help the user stating relevant
critiques. Our approach has many similarities with [227], but they di�er in several important
ways, as explained in Chapter 4.

The idea of eliciting preferences and features simultaneously in an incremental fashion was
already proposed by Boutilier et al. [30, 31]. Notably, they propose to use concept learning [10]
to generate new constraints from examples collected throughout the interaction in a minimax
regret setting [31]. In Chapter 4 we discussed the disadvantages of regret-based elicitation
as opposed to our coactive learning approach, but it is worth noting that our work draws
from [31] the fundamental idea that it is not necessarily required to elicit the full feature set
of the user, but a small subset may be enough to reach an optimal solution. While in this work
we assume for simplicity that the user is capable to provide an arbitrarily complex critique,
we can relax this assumption by generating critiques through concept learning, as done by
Boutilier et al. [31]. We will discuss this possibility in Section 6.2.3.
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Algorithm 12 The critiquing preference perceptron algorithm [255].
1: procedure CPP(T ∈ N+)
2: w1 ← 0
3: for t = 1, . . . , T do

4: Receive context xt from the user
5: yt ← argmaxy∈Y〈wt,φt(xt, y)〉
6: User provides improvement ȳt
7: if NeedCritiqe(xt, yt, ȳt) then
8: Receive critique ρ from the user
9: φt ← φt ◦ [ρ]

10: wt ← wt ◦ [0]

11: wt+1 ← wt + φt(xt, ȳt)− φt(xt, yt)
12: φt+1 ← φt

6.2 Coactive critiquing

We detail here our approach, called coactive critiquing, that extends the coactive learning
framework [247] to allow feature elicitation through critiquing feedback [255]. In particular,
we present an algorithm, dubbed critiquing preference perceptron (CPP), that learns user pref-
erences as in the standard preference perceptron (see Section 3.3), and is able to expand the
feature space of the utility function from the user critiques. Algorithm 12 shows an updated
version of the critiquing preference perceptron algorithm, originally presented in [255], that
also includes contexts in the utility function.

6.2.1 Critiquing preference perceptron

The algorithm starts with an initial set of features φ1
1 and traverses increasingly more ex-

pressive feature spaces φt, t = 1, . . . , T , as critiques are collected. At each iteration t ∈ [T ],
the algorithm receives a context xt and recommends an object yt, by performing inference
over the current feature space φt. The algorithm then receives an improvement ȳt from the
user as in standard coactive learning. At this point, the algorithm checks whether or not a
critique is needed (line 7 of Algorithm 12). If the condition is met, the algorithm queries the
user for a critique ρ, which is appended to the current feature vector φt. The weight vector
is also zero-padded accordingly. Finally, the algorithm updates the weights as in the standard
preference perceptron (line 11).

We assume the user critique ρ to be a real function of the type ρ : X × Y → R, such that
ρ(xt, ȳt) ≥ ρ(xt, yt). This constraint e�ectively explains why the user prefers ȳt over yt.
When collecting critiques we make a “local rationality” assumption: given two objects yt and
ȳt, the user is always able to state at least one critique to di�erentiate between the two. The
user explicitly created ȳt to be better than yt, so it is reasonable to assume the user can also

1We will interchangeably use the notation φt(·) to refer to both the set of features held by the algorithm at
iteration t ∈ [T ] and the feature map de�ned over this set.
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state at least one reason why this is actually an improvement. In the ideal scenario, the user
would respond with a critique that best explains the di�erence between the objects, i.e. the
critique with maximum di�erence ρ(xt, ȳt)−ρ(xt, yt). However, the user could reply with a
suboptimal critique, a fact that we address in the theoretical analysis and in our experiments.

In the next two sections we cover the conditions for the NeedCritiqe function (line 7) and
the methods a coactive critiquing system can use to elicit critiques in a user friendly manner.

6.2.2 When to ask for critiques

Asking critiques allows the algorithm to build up an increasingly richer feature space, which
is not only useful, but needed to reach an optimal solution. However, each critique comes
with a cost in cognitive e�ort for the user, so asking them should be limited to only those
cases in which they are really needed and actually useful. That is why a proper design of the
NeedCritiqe function (line 7) is critical for any coactive critiquing system. If this procedure
is too lazy, it may hurt the ability of the model to properly represent the user preferences,
and thus advancing towards an optimal solution. On the other hand, if the NeedCritiqe is
too eager, many unnecessary critiques might be elicited, incurring in higher user e�ort.

We propose a simple, yet e�ective, method that is a good trade-o� between representation
power of the utility model and cognitive e�ort for the user. We design the NeedCritiqe
so to ask the user to provide a critique whenever the provided improvement ȳt disagrees
with the other preference information collected so far. In other words, a critique is asked
when the current ranking constraint ȳt < yt cannot be included in the utility model without
violating the ranking constraints observed in the previous iterations. This condition can be
tested by checking the existence of a weight vectorw that can correctly rank all the pairwise
preference examples in the dataset D, i.e. more formally:

@w ∀(yt, ȳt) ∈ D 〈w,φt(xt, ȳt)− φt(xt, yt)〉 > 0 (6.1)

For noiseless users, this criterion is guaranteed to elicit critiques only when the user prefer-
ences collected so far are not representable anymore with the current set of features. Noisy
users, on the other hand, could state contradictory preference constraints, in which case the
algorithm may end up asking one critique for every iteration. To avoid this case, one might
reduce the number of examples used in the check, either by sampling or by discarding older
examples. This also has the positive side e�ect of reducing the computational overhead of
the check.

While this simple criterion is e�ective in practice, it might be suboptimal because it is not
guaranteed (not even in the noiseless case) that the critique provided by the user will make
the condition in Equation 6.1 false in the next iteration. More sophisticated strategies could
be devised to address this issue and to tackle the problem of noisy ranking constraints. We
experimented with a strategy based on estimating the likelihood of inconsistencies being due
to lack of features or noise, but we did not see an improvement over the simpler criterion in
Equation 6.1, therefore we will report our results with the latter.
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6.2.3 How to acquire critiquing feedback

The primary focus of this work is to devise an extension to coactive learning to allow cri-
tiquing feedback, so we assume there exist an interface that allows the users to generate
fairly articulated critiques that re�ect their preferences. Here we mention some of the meth-
ods that can be used to acquire critiquing feedback in our setting.

First and foremost, simple interfaces used in other rule-based critiquing systems may be em-
ployed in our setting as well [44, 46, 165, 211, 266, 277]. We argue that in our case it might
even be easier for users to interact with such interface, since they do not have to provide
generic critiques, which might be di�cult to think about when the objects have many com-
ponents, but instead they only need to compare two speci�c objects and provide a critique to
set them apart.

The speci�city of the critiques to only two comparable objects, allows us to think about more
complex interfaces. For instance, one could use a concept learning approach similar to that
of Boutilier et al. (2010) [31]. They collect feedback from membership queries (e.g. “Is this
object safe?”) that can be used to learn “concepts” (e.g. the concept “safe”) which can then be
incorporated in the utility model. We can use a similar “labeling” system, but instead we could
ask the user to assign a distinguishing label, that is a label for which ȳt is a positive instance
and yt is a negative instance (or vice versa), e.g. “ȳt is safe” and “yt is not safe”. In this case, it
might even be better to allow the user to di�erentiate the objects by their degree of a property
or lack thereof, e.g. “ȳt is safer than yt”. Soft constraints can be learned from these critiquing
examples using inductive logic programming [71] or constraint learning [213]. We can easily
imagine this type of interaction being carried out through natural language, since labels of
this kind might be extracted from text through some simple form of semantic parsing [162].
This is especially true if we think about the coactive critiquing interaction as taking place
through a conversation of a user with a dialogue system [122, 283].

6.3 Analysis

As in standard coactive learning, we assume the user to behave according to a true utility
function u∗ : X ×Y → R. In this work, we relax the assumption of existence of a “universal”
feature map φ(·), used to elicit the preference of any user, but rather we posit that each
user behaves according to her own true feature map φ∗ : X × Y → Rd′ . This feature map
contains a number of features unknown to the algorithm (including their weights). The utility
function of each user has therefore the form u∗(x, y) = 〈w∗,φ∗(x, y)〉, withw∗ and φ∗(x, y)

of unknown but �nite dimension.

For the rest of this analysis we will assume that the set of features held by the algorithm to
be a subset of the user features. We can assume, without loss of generality, that the initial
features φ1 are included in the user features φ∗ as well, with zero weight if not relevant.
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The goal of this analysis is to show that CPP enjoys aO(1/
√
T ) bound on its average regret:

1

T

T∑
t=1

reg(xt, yt) =
1

T

T∑
t=1

〈w∗,φ∗(xt, y∗t)− φ
∗(xt, yt)〉

To derive the bound, we �rst need to transform the temporary feature maps φt into vectors
of the same dimension of φ∗. We can do so by “masking” those features that are not owned
by the algorithm at iteration t. More formally, let Ft be the set of features collected up to
iteration t, and let zt be a 0-1 vector masking the features not owned by the algorithm at
iteration t, i.e. zt ∈ {0, 1}d

′ whose components zt,i are equal to:

zt,i =

{
1 if φ∗i ∈ Ft
0 if φ∗i 6∈ Ft

We can now rede�ne φt : X × Y → Rd′ as:

φt(x, y) = zt � φ∗(x, y) (6.2)

where � denotes the Hadamard (element-wise) product. Given the above de�nition, we can
also derive the following property:

φ∗(x, y)− φt(x, y) = φ∗(x, y)− zt � φ∗(x, y)

= (1− zt)� φ∗(x, y) (6.3)

where 1 is a vector of the same dimension containing 1 for all components.

In coactive critiquing we observe feedback over the weights through the standard coactive
feedback, whereas feedback over the features is observed through critiques. While inference
and learning are carried out over the current set of featuresφt(·), the user improvements will
be generated over the full φ∗(·), according to the usual α-informative feedback model. This
mismatch causes the CPP algorithm to “miss” some utility gain over the feature it still does
not possess. More speci�cally, we quantify this utility mismatch as:

ζt = 〈w∗,φ∗(xt, ȳt)− φ∗(xt, yt)〉 − 〈w∗,φt(xt, ȳt)− φt(xt, yt)〉 (6.4)

Using Equation 6.2 and Equation 6.3 we can rewrite the ζt quantity as follows:

ζt = 〈w∗,φ∗(xt, ȳt)− φ∗(xt, yt)〉 − 〈w∗,φt(xt, ȳt)− φt(xt, yt)〉
= 〈w∗,φ∗(xt, ȳt)− φ∗(xt, yt)− zt �

(
φ∗(xt, ȳt)− φ∗(xt, yt)

)
〉

= 〈w∗, (1− zt)�
(
φ∗(xt, ȳt)− φ∗(xt, yt)

)
〉 (6.5)

The quantity ζt appears on the following regret bound, explaining the slow down in the
convergence rate of the algorithm due to the fact that the algorithm starts with a lower di-
mensional feature space than the one used by the user. Finally, let ‖φ∗(·)‖ ≤ R.
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Theorem 6.3.1. For a user with true utility parametersw∗, under the α-informative feedback
assumption2 (Equation 3.12), the average regret incurred by the CPP algorithm is upper bounded
by:

1

T

T∑
t=1

reg(xt, yt) ≤
2R‖w∗‖
α
√
T

+
1

αT

T∑
t=1

(ξt + ζt) (6.6)

Proof. We begin by �nding an upper bound to the following dot product by applying the
Cauchy-Schwarz inequality:

〈w∗,wT+1〉 ≤ ‖w∗‖‖wT+1‖ = ‖w∗‖
√
〈wT+1,wT+1〉 (6.7)

By unrolling the term 〈wT+1,wT+1〉:

〈wT+1,wT+1〉 = 〈wT ,wT 〉+ 2〈wT ,φT (xT , ȳT )− φT (xT , yT )〉+
〈φT (xT , ȳT )− φT (xT , yT ),φT (xT , ȳT )− φT (xT , yT )〉

≤ 〈wT ,wT 〉+ ‖φT (xT , ȳT )− φT (xT , yT )‖2

≤ 〈wT ,wT 〉+ 4R2

≤ 4R2T

The second inequality follows from the optimality of yT with respect to wT , while the last
equality follows from the fact ‖φT (x, y)‖ ≤ ‖φ∗(x, y)‖ ≤ R. Combining the above inequal-
ity with Equation 6.7 we get:

〈w∗,wT+1〉 ≤ ‖w∗‖
√

4R2T

= 2R‖w∗‖
√
T (6.8)

Expanding the LHS with the update rule (line 11) we get:

〈w∗,wT+1〉 = 〈w∗,wT 〉+ 〈w∗,φT (xT , ȳT )− φT (xT , yT )〉

Applying Equation 6.2 and Equation 6.3 on the remaining term we get:

〈w∗,wT+1〉 = 〈w∗,wT 〉+ 〈w∗, zT � (φ∗(xT , ȳT )− φ∗(xT , yT ))〉
= 〈w∗,wT 〉+ 〈w∗,φ∗(xT , ȳT )− φ∗(xT , yT )〉−

〈w∗, (1− zT )� (φ∗(xT , ȳT )− φ∗(xT , yT ))〉

Substituting the de�nition of ζt (Equation 6.5) and unrolling the recursion we get:

〈w∗,wT+1〉 = 〈w∗,wT 〉+ 〈w∗,φ∗(xT , ȳT )− φ∗(xT , yT )〉 − ζT

=

T∑
t=1

〈w∗,φ∗(xt, ȳt)− φ∗(xt, yt)〉 −
T∑
t=1

ζt

2Recall the α-informative model: u∗(xt, ȳt)− u∗(xt, yt) = α(u∗(xt, y∗t)− u∗(xt, yt))− ξt.



Chapter 6. Critiquing and feature elicitation 101

Applying the de�nition of the α-informative feedback (Equation 3.12):

〈w∗,wT+1〉 = α

T∑
t=1

〈w∗,φ∗(xt, y∗t)− φ
∗(xt, yt)〉 −

T∑
t=1

ξt −
T∑
t=1

ζt

Plugging the above form into Equation 6.8 we get:

α

T∑
t=1

〈w∗,φ∗(xt, y∗t)− φ
∗(xt, yt)〉 −

T∑
t=1

ξt −
T∑
t=1

ζt ≤ 2R‖w∗‖
√
T

Rearranging:

α

T∑
t=1

〈w∗,φ∗(xt, y∗t)− φ
∗(xt, yt)〉 ≤ 2R‖w∗‖

√
T +

T∑
t=1

(ξt + ζt)

α

T∑
t=1

reg(xt, yt) ≤ 2R‖w∗‖
√
T +

T∑
t=1

(ξt + ζt)

Dividing by αT we obtain the claim.

Note that:

1

T

T∑
t=1

ζt ≤
‖w∗‖
T

T∑
t=1

‖(1− zt)� (φ∗(xt, ȳt)− φ∗(xt, yt))‖

≤ ‖w
∗‖
T

T∑
t=1

‖1− zt‖0‖φ∗(xt, ȳt)− φ∗(xt, yt)‖∞

≤ 2D‖w∗‖
T

T∑
t=1

‖1− zt‖0

With D = maxy∈Y‖φ∗(x, y)‖∞. This means that, as new features get acquired, the norm
‖1− zt‖0 decreases with t, and thus the average 1

T

∑T
t=1 ζt is guaranteed to converge to 0.

6.4 Experiments

We evaluated the CPP algorithm over two constructive settings, a synthetic task and a travel
plan recommendation problem. All experiments were run by sampling 20 complete user
weight vectors from a standardized normal distribution and simulating their behavior ac-
cording to these vectors. Improvements were simulated using the α-informative feedback
model as in coactive learning (Section 3.3). Critiques were simulated by selecting the most
discriminative feature for a given pair (yt, ȳt), accounting for some noise in the selection. For
both settings, the problem domain was encoded via MiniZinc [188] and inference was solved
using Gecode. Please refer to [255] for a complete description of the experimental setup.
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Figure 6.1: Left: comparison of CPP for di�erent choices of NeedCritiqe procedure; me-
dian utility loss at the top, average number of acquired features at the bottom. Middle: com-
parison between CPP and PP on the synthetic problem. Right: comparison between CPP and
PP on the trip planning problem. Best viewed in color.

The �rst experimental setting we considered is a synthetic constructive problem, in which
con�gurations are represented by all points in a 100×100 lattice (104 feasible con�gurations).
Features are represented as rectangles inside the lattice, and 50 of them were sampled uni-
formly at random. The corresponding formula in the feature vectorφ is an indicator function
(φ(y) = {−1, 1}) of whether the point corresponding to the con�guration y is included in the
rectangle. A positive weight wi associated to a feature φi corresponds to a preference of the
user for points inside the corresponding rectangle, whereas a negative weight corresponds
to the user disliking points inside the rectangle.

The synthetic setting was used for two experiments. We �rst tested the performance of our
formulation for the function NeedCritiqe, which, as said, consists in querying the user
for a critique when the current feature space cannot represent all the ranking pairs in D.
This strategy was compared against a random strategy consisting in asking critique queries
at random iterations, according to a binomial distribution with p ∈ {0.25, 0.5, 0.75, 1}. The
left plots of Figure 6.1 show the regret (top) and the acquired features (bottom) of CPP us-
ing the di�erent possible criteria for NeedCritiqe. The results show that the separability
criterion is a good trade-o�, performing almost as well as asking a critique at each iteration,
while asking for roughly 25% less critiques. We employed this criterion in all the following
experiments.

In the second experiment, we compared CPP to the standard preference perceptron (PP) algo-
rithm (see Section 3.3.1). CPP started with 2 randomly selected user features and acquired the
others throughout the elicitation process, whereas PPp started with a �xed percentage p% of
(randomly selected) user features and did not acquire more. The middle plots in Figure 6.1
report the regret and the acquired features of CPP and PPp, with p ∈ {20, 40, . . . , 100}.
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The plots show that PP100 clearly converges much faster than all other settings, which was
expected given that it uses all the user features. CPP also converges, albeit in a few more
iterations, while PP does not converge at all if not provided with the entire set of features.
Notice that CPP manages to converge to an optimal solution by eliciting only roughly 60%

of the user features.

The same experimental setting was used for a more realistic (and complicated) scenario con-
sisting of an interactive travel plan problem. A trip is represented as a sequence of time slots,
each one �llable with some activity in some city or by traveling between cities. The algorithm
is in charge or recommending a trip y between a subset of the cities, along with the activities
planned for each time-slot in each city. A subset of activities is available in each city. The
trip has a maximum of usable time-slots. In our experiments the trip length was �xed to 10.
User features include, e.g. the time spent in each city and the time spent doing each activity,
the number of visited cities, etc. The total number of acquirable features is 92. As for the
synthetic experiment, we ran CPP and PPp, averaging the results over 20 randomly selected
users. The results are shown in the right plots of Figure 6.1. Even in this complex scenario
CPP outperforms PP40 and is competitive against the much more informed PP60 and PP80,
by converging in roughly the same amount of iterations. This experiment shows that CPP is
very e�ective despite using a fraction of the user information. Indeed, it ends up using less
than 20% of the acquirable user features, even less of PP20 and PP40 that fail to converge
after 100 iterations.

6.5 Summary

In this chapter we introduced and detailed our coactive critiquing approach. This methodol-
ogy aims at relaxing the assumption of a universal feature map φmade by standard coactive
learning, allowing to customize the utility model to the di�erent needs of each user. Coactive
critiquing extends coactive learning by dynamically expanding the feature space through ex-
ample critiquing. As critiques are elicited from the user, the utility becomes increasingly more
expressive, up to the point of enabling the algorithm to converge to an optimal solution. Our
proposed algorithm, the critiquing preference perceptron, is able to converge while asking
critiques only when necessary, i.e. when the current feature space of the algorithm does not
su�ce to represent all the ranking pairs collected so far. In this chapter, we also proved that
our algorithm enjoys a O(1/

√
T ) bound on its average regret, only slowed down by a term

dependent on the features the algorithm misses, which vanishes to zero as new critiques are
acquired. Finally, we presented experimental evidence that shows that the critiquing prefer-
ence perceptron is competitive with standard coactive learning, while requiring many fewer
features to reach an optimal solution.
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Chapter 7

Automated layout synthesis

In this chapter we apply the constructive preference elicitation framework to the class of
design problems called layout synthesis. Layout synthesis refers to the task of generating lay-
outs, i.e. arrangements of objects within a �xed 2D or 3D space. Examples of layout synthesis
tasks are designing the interior of a room, create the blueprint of an apartment or plan the
disposition of buildings in a block- or city-sized urban space. Many of these tasks can be
seen as preference-based decision problems over a constrained combinatorial space. Indeed,
the solutions to all these problems are restricted by functional and structural requirements,
while at the same time largely dependent on the designer or end user style and taste. Solving
problems of such complexity is not an easy task, and even experts may �nd certain layout
synthesis problems especially challenging. Automated layout synthesis systems can greatly
enhance the productivity of experts in their design work, as well as improving the outcome
quality for non-experts users.

Layout synthesis tasks are combinatorial in nature, and as such can be expressed very natu-
rally as constructive preference elicitation problems. A constructive layout synthesis problem
can be de�ned by representing layouts as a collection of variables describing the properties of
the objects involved (position, size, type, etc.), and by imposing constraints to encode the nor-
mative and engineering requirements, as well as any applicable human design guideline [6,
199] (visibility, accessibility, etc.).

We propose to use coactive feedback to learn user preferences in constructive layout synthesis
tasks. Using a kind of manipulative feedback, the coactive interaction appears to be a natural
choice for an interactive layout synthesis system, as it could be seamlessly integrated within
CAD-like software.

The concept of incrementally improving layouts through manipulative interaction has al-
ready been proposed in previous work [182, 184]. We also borrow from previous work the
idea of representing layout synthesis tasks as constrained combinatorial optimization pro-
grams [185]. The novelty of our approach consists in combining interaction, preference
learning and combinatorial optimization to solve layout synthesis tasks.

An important advantage of our approach over the others found in the literature is the ability
of a constructive layout synthesis system to generalize across di�erent contexts and sets of
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constraints. This implies re-usability of the same model to di�erent instances of the same
problem or similar problems with di�erent requirements. A use case for this feature is to
employ a constructive layout synthesis system to learn to furnish apartments according to a
user taste and reuse it to automatically furnish di�erent apartments. For instance, a customer
wishing to buy an apartment from a set of alternatives might want to evaluate each candidate
by simulating the end result of �lling in missing furniture through a layout synthesis system.
While many existing tools may assist the user in this task [182, 184], none of them learn to
generalize the user preferences across di�erent apartments, forcing the user to repeat this
tedious task for each of them separately. A constructive system would instead be able to
learn from the �rst interaction with the user and then automatically furnish the rest of the
apartments based on the estimated preferences and the new constraints.

In this work, �rst published in [82] and later extended in [93], we applied our constructive
layout synthesis to two speci�c tasks: arranging furniture in a room and planning the lay-
out of an apartment. We also tested two di�erent ways to implement coactive feedback. In
the furniture arrangement task we allow the user to adjust the values of features of inter-
est (e.g. the average distance between tables in a cafè), while in the �oor planning task the
user is allowed to modify the layout directly by, for instance, moving or removing walls.
In our experiments we test our system over increasingly more complex instances in terms
of feedback quality and computational cost, showing that it is able to e�ectively learn and
recommend better layouts over time in many di�erent scenarios. Here we also explore the
use of approximation techniques and we found that the algorithm can still reliably learn the
user preferences over time, providing good trade-o�s between recommendation quality and
inference speed can be found. Finally, we also evaluate the ability of the algorithm to learn
to generate proper layouts in very di�erent scenarios and deal with users with very di�erent
preferences.

The rest of the chapter is organized as follows. In Section 7.1 we place our proposed tech-
nique with the proli�c literature on design aiding systems, describing di�erences with other
proposed techniques. In Section 7.2 we describe our approach and simulation strategy. In
Section 7.3 we detail our two experimental settings and point out the results. Section 7.4
concludes the chapter.

7.1 Design aiding systems

The goal of this work is to investigate the feasibility of a design aiding system capable of
creating and suggesting custom layouts, a task that requires solving two distinct problems:
generating a layout consistent with the known requirements and preferences (synthesis), and
biasing the synthesis process toward layouts preferred by the user (customization).

Broadly speaking, synthesis can be solved in two ways, namely sampling and optimization.
The �rst consists in designing a parameterized distribution over layouts (e.g. a probabilistic
graphical model [284] or a probabilistic grammar [167]), whose structure encodes the set of
validity constraints on objects and arrangements. Synthesis equates to sampling from the
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distribution via Monte Carlo Markov Chain methods. A major downside of probabilistic ap-
proaches is that enforcing hard constraints (other than those implied by the structure of the
distribution) may severely degrade the performance of the sampler, potentially compromising
convergence, as discussed for instance in [259]. The alternative strategy, also adopted by our
method, is to de�ne a scoring function that ranks candidate layouts based on the arrangement
of their constituents. In this case, synthesis amounts to �nding a high-scoring layout subject
to design and feasibility constraints. This optimization problem may be solved using stochas-
tic local search [3, 285], mathematical optimization [184], or constraint programming [185].
Our constructive preference elicitation technique is based on the latter: constraint program-
ming [228] allows to easily encode expressive local and global constraints, and is supported by
many e�cient o�-the-shelf solvers. Further, in many cases it is easy to instruct the solver to
look for (reasonably) suboptimal solutions, allowing to trade-o� solution quality for runtime,
for enhanced scalability. This synergizes with our learning method, which is robust against
approximations, both theoretically [248] and experimentally (see Section 7.3). Many of the
existing tools are concerned with synthesis only, and do not include a customization step:
their main goal is to automate procedural generation of realistic-looking scenes or to pro-
duce concrete examples for simplifying requirement acquisition from customers [282]. Other
approaches bias the underlying model (distribution or scoring function) toward “good” lay-
outs by �tting it on sensibly furnished examples [182, 284, 285]. However, the generated
con�gurations are not customized for each user1. More generally, o�ine model estimation
may be used in conjunction with our method to accelerate layout �ne-tuning for the end user.

Akase and colleagues proposed two interactive methods based on iterative evolutionary opti-
mization [3, 4]. Upon seeing a candidate furniture arrangement, the user can tweak the �tness
function either directly using sliders [3] or indirectly via conjoint analysis [4]. In both works
the number of customizable parameters is small and not directly related to the scene com-
position (e.g. illumination, furniture crowdedness). Contrary to these methods, we enable
the user to graphically or physically manipulate a proposed layout to produce an improved
one. This kind of interaction was successfully employed by a number of systems [182, 184,
262] using ideas from direct manipulation interfaces [131, 251]. We stress that our method
works even if user improvements are small, as shown by our empirical tests. The major
di�erence to the work of Akase et al., however, is that we leverage constraint programming
rather than generic evolutionary optimization algorithms. This enables our method naturally
handle arbitrary feasibility constraints on the synthesized layouts, extending its applicability
to a variety of layout synthesis settings. Among interactive methods, the one of Merrell et
al. [182] is the closest to ours. Both methods rely on a scoring function, and both require
the user and system to interact by suggesting modi�cations to each other. In contrast to our
approach, the method of Merrel et al. does not learn the scoring function in response to the
user suggestions, i.e., it will always suggest con�gurations in line with �xed design guide-
lines. Since no user model is learned, this method does not allow transferring information
across distinct design session.

1While the examples may be provided by the end user, it is unreasonable to expect the latter to manually select
the large number of examples required for �ne-grained model estimation. Through interaction, our system allows a
more direct control over the end result.
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7.2 Constructive layout synthesis

In this work we instantiate the preference perceptron algorithm to solve two di�erent con-
structive layout synthesis tasks: [i] a furniture arrangement problem, in which a user has
to decide which pieces of furniture to place in a room and how to arrange them; [ii] a �oor
planning problem, in which a �oor (2D space) needs to be partitioned into rooms (subspaces).

As usual, we represent the user preferences with a utility function u(x, y) = 〈w,φ(x, y)〉. In
both types of layout synthesis problems, contexts x ∈ X will be the user provided �oor area,
while predicted objects will be the furniture arrangement and the �oor partitioning, respec-
tively. The structure of the layouts is then de�ned by a set of hard constraints Y(x), possibly
also dependent on the context, while the adjustable components of the layouts y ∈ Y(x) are
described by the featuresφ(x, y). The layout y is encoded with a set of variables representing
its properties, e.g. the position and size of the pieces of furniture in the furniture arrangement
problem, or the assignment of the unit squares to di�erent rooms in the �oor planning one.
Hard constraints include e.g. non-overlapping pieces of furniture and unique room type as-
signments. The feature vector φ(x, y) contains, for example, the distance between the pieces
of furniture, or the number of rooms of a certain type. We will give details about the full
formulation of the two tasks in the following sections.

Inference at each iteration t ∈ [T ] is handled with the regular utility-maximizing structured
prediction from coactive learning:

yt = argmax
y∈Y(xt)

〈wt,φ(xt, y)〉

We use a mix of Boolean, integer and �oating point variables, with linear features and con-
straints, making inference a MILP problem, solved by external solvers.

For problems that are too complex to a�ord an exact solution, we used an approximation
technique to speed-up the inference process. Reasonably suboptimal synthesized layouts do
not signi�cantly alter the performance of coactive learning, as proven theoretically in [216].
In our experiment we test this strategy and show empirically the advantage and disadvantage
of this approach.

As mentioned, in this work we also tested two di�erent feedback approaches, exempli�ed in
Figure 7.1. In the �rst problem of furniture arrangement, we use a feature-based feedback, in
which a user can produce improvements to the current object by tweaking the value of one
or more features, using a UI composed of e.g. sliders for numeric features and switches for
Boolean ones. In the top example of Figure 7.1, a user has improved the left con�guration
by increasing a feature encoding the distance between the tables, resulting in the top right
con�guration.

To simulate this type of behavior we follow theα-informative feedback model, and we assume
a “minimal-e�ort” feedback, which translates into an improvement ȳt that follows the α-
informative rule, but has a minimal change in terms of features. To select a improvement
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Figure 7.1: Examples of visual improvement that a user may perform. An image of a con�g-
urations y proposed by the system (left) is followed by an image of an improvement ȳ made
by the user (right). For the furniture arrangement setting (top), there is a feature-level im-
provement, e.g. the user sets the minimum distance between tables (a feature) to a higher
value. The �oor planning case (bottom) has, instead, an object-level improvement, e.g. the
user manually modi�es the object shape by adding a new wall. Best viewed in color.

following this approach we solve the following optimization problem:

ȳt = argmin
y∈Y(xt)

‖φ(xt, y)− φ(xt, yt)‖0

s.t. u∗(xt, y)− u∗(xt, yt) ≥ α(u∗(xt, y
∗
t)− u∗(xt, yt))

That is we select the improvement by �nding the object with minimum number of changed
features that satis�es the α-informative feedback model.

The second type of feedback considered is an object-based feedback, in which a user can
directly change the object itself, i.e. modifying the value of some of the object variables.
The bottom part of Figure 7.1 shows this type of feedback applied to the �oor planning task.
On the left, the starting con�guration, and on the right the user improvement, in which she
directly modi�ed the layout of the rooms adding a new room by splitting an existing one.
To simulate this feedback we again select the minimal-e�ort α-informative improvement by
solving the problem:

ȳt = argmin
y∈Y(xt)

∆(y, yt)

s.t. u∗(xt, y)− u∗(xt, yt) ≥ α(u∗(xt, y
∗
t)− u∗(xt, yt))

where ∆(y, yt) is a custom distance measure between two objects, dependent on the task at
hand. We will give details on the one used for the �oor planning task in Section 7.3.2. By
minimizing the distance ∆(y, yt) we simulate a minimal e�ort improvement.
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7.3 Experiments

We evaluated our system on two di�erent tasks. In the �rst experiment, the system recom-
mends table arrangements in a room, for e.g. a bar or an o�ce. The second experiment
consists in a space partitioning task, in which the system suggests how to partition the sur-
face of an apartment into rooms. In both settings we make a quantitative evaluation, i.e. we
compare the regret of the system for increasing levels of problem complexity. As the problem
complexity increases, approximate solutions become necessary to keep real-time interaction.
As an approximate inference heuristic we set a time cut-o� to the solver and return the best
solution found in that time. Increasing the time cut-o� will result in a higher utility solution
but increases the inference time. We evaluate empirically the e�ect of using approximate in-
ference on the quality of the recommendations in both settings, providing trade-o�s between
inference time and loss in recommendation quality.

All the quantitative experiments were run over 20 randomly generated users and averaged
over them. The user responses were simulated following the α-informative feedback model
with assumed minimal e�ort as described in the previous section. Varying the α parameter
we can describe di�erent levels of user expertise in providing good improvements over the
system recommendation. We also assume no user expertise required to interact usefully with
our system, and thus we set α = 0.1 to simulate a non-expert user. For a larger α parameter
the performance of the algorithm would increase proportionally.

In both experimental settings, we also report a qualitative evaluation showcasing the be-
havior of the system in interacting with some “prototypical” type of user (e.g. a cafè owner
arranging the tables in her place). We show that the system achieves the goal of �nding good
con�gurations matching the user taste.

The system is implemented in Python2 and uses MiniZinc to model the constrained optimiza-
tion problems [188], and an external MILP solver3 for inference and improvement problems.
All the experiments were run on a 2.8 GHz Intel Xeon CPU with 8 cores and 32 GiB of RAM.

7.3.1 Furniture arrangement

In the �rst experimental setting, the goal of the system is to learn to arrange tables in a room
according to the user preferences. Rooms are 2D spaces of di�erent shapes. We model the
rooms as squared bounding boxes, plus several inaccessible areas making up internal walls.
The size of the bounding box and the inaccessible areas are given in the context x, together
with the number of tables to place. The available space is discretized into unit squares of
�xed size. Tables are rectangles of di�erent shape occupying one or more unit squares. The
output objects y consist in the table arrangements in the given room. More precisely, tables
are represented by their bottom-left coordinates (h, v) in the bounding box and their sizes
(dh, dv) in horizontal and vertical directions. The object y contains the coordinates (ht, vt)

2Code available at: github.com/unitn-sml/constructive-layout-synthesis
3Opturion CPX: opturion.com

github.com/unitn-sml/constructive-layout-synthesis
opturion.com
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Furniture arrangement

Context x - Size of bounding box
- Inaccessible areas
- Position of doors
- Number of tables

Object y - Position (h, v) of all tables
- Sizes (dh, dv) of all tables

Features φ(x, y) - Max and min distance of tables from bounding box:
maxt∈Tables bbdist(t)
mint∈Tables bbdist(t)

- Max and min distance of tables from inaccessible areas:
maxt∈Tables wdist(t)
mint∈Tables wdist(t)

- Max and min distance between tables:
maxt1,t2∈Tables dist(t1, t2)
mint1,t2∈Tables dist(t1, t2)

- Number of tables per type (1× 1 and 1× 2):
|{t ∈ Tables | dht + dvt ≤ 2}|
|{t ∈ Tables | dht + dvt ≥ 3}|

Table 7.1: Summary of the structure of the objects in the furniture arrangement settings. In
this task, Tables is the set of tables, bbdist(t) is the distance of table t from the bounding box,
wdist(t) is the distance of table t from the inaccessible areas (walls), dist(t1, t2) is distance
between tables t1 and t2. All distances considered here are Manhattan distances.

and the sizes (dht, dvt) of each table t. Several constraints are imposed to de�ne the feasible
con�gurations. Tables are constrained to �t all in the bounding box, to not overlap, and to not
be positioned in unfeasible areas. Tables must keep a minimum “walking” distance between
each other. Doors are also placed on the room walls (in the context) and tables are required
to keep a minimum distance from the doors.

In our experiment the total size of the bounding box is 12×12. Tables are either 1×1 squares
(occupying one unit square) or 1× 2 rectangles (occupying two unit squares). Room shapes
were selected randomly at each iteration from a pool of �ve candidates.

The feature vector φ(x, y) is composed of several numeric properties of the con�guration,
such as the maximum and minimum distance between tables, the maximum and minimum
distance between tables and walls, and the number of tables per type (1× 1 and 1× 2). The
�rst column of Table 7.1 contains a detailed summary of the structure of x, y and φ(x, y) in
this setting.

As mentioned in the previous section, in this setting we employ a feature-based improvement
scheme to simulate a minimal e�ort α-informative user behavior.
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Floor planning

Context x - Size of bounding box
- Inaccessible areas
- Position of entrance door
- Max and min rooms per type

Object y - Position (h, v) of all rooms
- Sizes (dh, dv) of all rooms
- Type tr of each room r

Features φ(x, y) - Ranges of occupied space (percent) per room type:
∀t ∈ Types

∑
r∈Rt Ar ≤ 15%

∀t ∈ Types 15% <
∑
r∈Rt Ar ≤ 30%

∀t ∈ Types
∑
r∈Rt Ar > 30%

- Upper bound Dr of di�erence of sides for each room r:
∀r ∈ Rooms Dr s.t. |dhr − dvr| ≤ Dr

- Number of rooms per type:
∀t ∈ Types |Rt|

- Room with entrance door rdoor is of type t:
∀t ∈ Types t == type(rdoor)

- Sum of pairwise di�erence of room areas per type:
∀t ∈ Types

∑
i,j∈Rt |Ai −Aj |

- Number of rooms adjacent to corridors
|{r ∈ Rooms | ∃s ∈ Rcorridor adj(r, s)}|

- Distance of each room from South (bottom edge)
∀r ∈ Rooms sdist(r)

Table 7.2: Summary of the structure of the objects in the �oor planning experiment. In this
setting, Types is the set of room types, Rooms is the set of rooms,Rt the set of rooms of type t,
Ar the area of room r (number of unit squares), dhr and dvr the horizontal and vertical size
of room r, type(r) the type of room r, adj(r, s) is a Boolean function denoting the adjacency
between rooms r and s, sdist(r) is the distance between r and the south edge of the bounding
box. All distances considered here are Manhattan distances.

In the quantitative evaluation we run the recommendation algorithm for an increasing num-
ber of tables to be placed. A high number of tables makes the inference problem more com-
plex, as it involves more optimization variables and constraints. We test the algorithm on
problems with 6, 8 and 10 tables. We compare the average regret and the running time of
the system in each of these scenarios. Figure 7.2 shows the median results (over all users) on
settings with di�erent number of tables. The plots show the median average regret (top) and
the median cumulative inference time (bottom). The �rst row of Figure 7.2 shows the results
for the table arrangement task with exact inference on problems with di�erent numbers of
tables. Using exact inference, the di�erence in regret decay between di�erent levels of com-
plexity is minimal. This means that when the system is able to solve the inference problem
to optimality, the complexity of the problem does not a�ect much the performance of the
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Figure 7.2: Median average regret (left) and median cumulative time (right) of the system
in various settings. Top: furniture arrangement setting with exact inference on 6, 8 and 10
tables. Bottom: furniture arrangement settings comparison between exact and approximate
inference in the 10 tables problem. Best viewed in color.

system. Inference time, however, increases drastically with the increasing complexity. Exact
inference in the 10 tables setting is already largely impractical for an interactive system. The
second row of Figure 7.2 shows a comparison of the results of exact and approximate infer-
ence on the furniture arrangement setting with 10 tables, for time cut-o�s at 5, 10 and 20
seconds4. When using approximate inference, the running times drop to a much lower rate,
while the regret su�ers a slight increase but keeps decreasing at a similar pace as the exact
variant. We can see that the time cut-o� can be modulated to achieve the desired balance
between recommendation quality and inference time. This is a promising behavior suggest-
ing that the method can scale with the problem size with predictable running time without
compromising performance.

To get a visual grasp of the quality of the recommendations, we also evaluated our system
on two prototypical arrangement problems, featuring a user interested in furnishing a café
and another one wishing to furnish an o�ce. Cafés are usually furnished with small tables
(1× 1), positioned along the walls in a regular fashion. O�ces, instead, contain mostly desks
(1×2) positioned along the walls or in rows/columns across the room. We sampled two users

4The time cut-o� is on the solver time, but the actual inference time has some more computational overhead,
taking on average 2.21 seconds more.
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Initial Intermediate Final

Café

O�ce

Figure 7.3: Two use cases of our system. The images are 3D renderings of con�gurations
recommended by our system when interacting with users whose goal is to furnish a café
(top) and an o�ce (bottom). Horizontally, the �gures/layout/layout-synthesis show di�erent
stages of the elicitation process. In the café, 1× 1 and 1× 2 tables are seen as dining tables
of di�erent sizes, whereas in the o�ce 1×2 tables represent desks while 1×1 tables contain
utilities such as printers. Best viewed in colors.

according to the above criteria. Figure 7.3 showcases the recommendations at di�erent stages
of the learning procedure. Initially, tables are randomly spread across the room. Gradually,
the system learns to position tables in a more meaningful way. In the café, the intermediate
image shows that the algorithm has learned that a café should mostly contain 1 × 1 tables
and they should be placed along the walls. The intermediate �gure in the o�ce case shows
that the algorithm has roughly �gured out the position of tables, but not their correct type.
At the end of the elicitation, the �nal con�gurations match the user desiderata.

7.3.2 Floor planning

Our second experimental setting is on �oor planning, that is recommending partitions of
apartments into separate rooms. The outer shape of the apartment is provided by the context,
while the user and the system cooperate on the placement of the inner walls de�ning the
room boundaries. As in the previous setting, the space is discretized into unit squares. Each
room is a rectangle described by four variables: (h, v) indicate its position, (dh, dv) its size.
Coordinates and sizes are measured in unit squares. Rooms must �t in the apartment and must
not overlap. Rooms can be of one among �ve types, namely kitchen, living room, bedroom,
bathroom and corridor. In the context, the user can also specify an upper and lower bound
on the number of rooms of each type. For instance, a user may look for an apartment with
exactly one kitchen, one living room, and between one and two bathrooms and bedrooms.
After placing all the rooms, the spaces left in the apartment are considered corridors. The
context also speci�es the position of the entrance door to the apartment.
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Figure 7.4: Median average regret (left) and median cumulative time (right) of the system
in the �oor planning setting, comparison between exact and approximate inference. Best
viewed in color.

In this experiment we consider a 10 × 10 bounding box. We de�ne �ve di�erent apartment
shapes and generate random contexts with any combination of room types, summing to a
maximum of �ve rooms, with random lower bounds.

The feature vector φ(x, y) contains a variable number of features, depending on the maxi-
mum number of rooms (sum of upper bounds). Features are normalized in order to generalize
di�erent contexts and di�erent numbers of rooms. The features include: [i] the percentage
of space occupied by the rooms of each type, discretized in several ranges of values, each
denoting a certain target size for each room type; [ii] an upper-bound on the di�erence be-
tween the sides dhr and dvr of each room r, which is used to modulate how “squared” the
room should be; [iii] the actual number of rooms per type; [iv] a Boolean value for each room
type indicating whether the entrance door is in a room of that type; [v] the sum of the pair-
wise di�erence between the areas of rooms of the same type, to modulate how similar in size
rooms of a certain type should be; [vi] the number of rooms that are adjacent to corridors;
[vii] the distance of each room from the South border of the apartment, as living rooms are
usually made to look south and bedrooms look north for lighting purposes. A summary of
all the features of this setting is listed in the second column of Table 7.2.

Di�erently from the previous setting, here we employ the object-based improvement schema,
with minimal-e�ort α-informative feedback. The function ∆(y, yt) used here is de�ned as:

∆(y, yt) = ‖Uy − Uyt‖0

where Uy is the matrix 10 × 10 containing the room types per unit square. To comply with
the minimal-e�ort principle, we assume a user to perform an α-informative improvement
involving the least possible number of rooms, which we simulate by minimizing the number
of unit squares a�ected by the change.

In this case, the problem complexity is mainly given by the maximum number of rooms to be
placed in the apartment. Notice that this problem is more di�cult than the previous one, as it
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Initial Intermediate Final

Flat

Loft

Figure 7.5: Two use cases of our system for the task of �oor planning. The images are
3D renderings of con�gurations recommended by our system when interacting with users
whose goal is to build a �at (top) and an loft (bottom). Horizontally, the �gures/layout/layout-
synthesis show di�erent stages of the elicitation process. Room colors are associated to room
types: the kitchen is in red, the living room is in blue, the bathroom is in turquoise, the
bedroom in green, the corridor is in violet. Best viewed in colors.

has more optimization variables, more features and it has to learn from a more diverse set of
possible contexts. We evaluate this setting only on a scenario with a maximum of �ve rooms.
As in the previous experiment, we report a comparison of the results of exact inference and
approximate inference. We again run approximate inference with time cut-o�s at 5, 10, and
20 seconds. Figure 7.4 shows the median average regret and the median cumulative inference
time in this setting. Both regret and times follow the same trend as the ones in the previous
experiment. Approximate inference allows for substantial computational savings5 at the cost
of a small reduction in recommendation quality.

In the qualitative experiment we compare two users who are interested in di�erent kinds of
apartments. In the �rst case, the user is interested in a “traditional” apartment (here dubbed
“�at” to avoid ambiguities), which contains a corridor from the entrance door to the rooms,
two separate rooms for the kitchen and living room, with the former slightly smaller that the
latter, a bedroom and a bathroom. The second user is interested in a loft, which is composed
by fewer rooms, usually a big living room with a kitchenette, a bedroom and a bathroom. In
Figure 7.5 we can see di�erent stages of the learning process for both users. At the beginning
the recommended con�gurations are random. The system then is able to learn that a �at
should have a corridor as entrance and a smaller bathroom, and that a loft should have only
a moderately large living room plus a bedroom and a bathroom of approximately equal size.
Finally the system reaches good recommendations that meet the preferences of the users: an
apartment with a kitchen smaller than the living room and a corridor connecting rooms, and
a loft with a big living room, a bedroom and a small bathroom.

5Exact inference becomes impractical for more than �ve rooms.
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7.4 Summary

In this chapter we presented a method to devise design aiding systems for layout synthesis,
based on our constructive recommendation framework. The layout synthesis tasks, such
as furniture arrangement and �oor planning, are cast as constructive preference elicitation
problems, in which inference over the components of the layouts (such as the position of the
tables and the size of the rooms) and their relative structural and functional constraints is
encoded as a MILP problem.

Di�erently from other approaches seen in Section 7.1, our constructive layout synthesis ap-
proach learns the user utility function and personalizes the created layouts, while also gener-
alizing the learned preferences across di�erent design sessions. Also, the use coactive learn-
ing [247] in our constructive layout synthesis approach seems a natural choice in such a
design environment, where explicit manipulative feedback is abundant and easy to attain.

We tested our approach in two di�erent layout synthesis tasks, namely furniture arrangement
and �oor planning, and evaluated it on instances of increasing complexity. The results show
that coactive learning is an e�ective learning method for our constructive layout synthesis
systems and that it was robust to suboptimal inference, allowing us to scale to larger synthesis
problems at the cost of a minor degradation of recommendation quality. We also showcased
the �exibility of our system by learning from users with radically di�erent preferences, e.g.,
users that prefer lofts to highly partitioned apartments and vice-versa.





Chapter 8

Product and service bundling

In this chapter we apply constructive preference elicitation to another class of well known
problems, namely product and service bundling, and in particular bundling of telephone con-
nectivity and entertainment services. Service bundling has emerged as an important market-
ing tool for the telecommunication industry, as in many other sectors [111, 112, 136, 156].
Bundling in telco market consists in combining di�erent product and services into one pack-
age sold at a single �xed price, usually paid in monthly installments. Nowadays, telco bundles
may include mobile and home connectivity services, calls and messages, as well as subscrip-
tion to third party services for streaming of music and movies, and other entertainment ser-
vices. O�ers may also include electronic devices and other expensive items, which can be
purchased exploiting the recurrent structure of payments. The inclusion of many subscrip-
tions and devices into a single plan is of great convenience for the customer and supports his
or her retention.

The typical strategy telco operators use to market these bundles is to prepare a small amount
of base packages, targeted to a certain group of consumers (young, family, business, etc.), and
allow the customers to purchase some extra services on top of those. This approach, while
widely spread and quite e�ective, might be relatively suboptimal, both for the customer and
the company. Customization has been shown to be an important factor in customer satis-
faction and often increases retention and brand loyalty [59, 88, 254, 260]. Creating a custom
service plan from scratch is, however, not an easy task for a user, as it involves deciding
within a large number of options for each component of the plan, and there might be some
feasibility constraints from the company side that the user would not be aware of. Product
con�gurators [138] and recommendation systems [221] can greatly help a customer in such
endeavor.

In Section 2.2.2, we have highlighted the disadvantages of standard product con�gurators in
the context of decision aiding for non-expert users. More practical in this setting are recom-
mendation systems that free the user from the burden of choosing the value of each single
component and let her choose by browsing generated alternatives. Many di�erent approaches
to product and service bundling recommendation have been proposed in the past, ranging
from data-driven techniques [15, 127, 291] to constraint-based recommenders [287]. Data-



122

driven approaches use a combination of rule mining of frequently purchased item-sets and
similarity measures over collaborative data to generate new bundles [15, 127, 291]. These
approaches, however, are heavily dependent on purchase data and cannot exploit the full
combinatorial span of the services domain, nor can they express in a principled way the fea-
sibility constraints over the generated plans that the company might want to impose. A more
adequate technique from this point of view is constraint-based recommendation.

We have discussed the characteristics of constraint-based recommendation systems in Sec-
tion 2.2.1. These systems can represent the full domain of feasible services implicitly through
constraints over a collection of variables, and �nding a new candidate amounts to solving a
constraint satisfaction problem [97, 287]. Constraint-based systems can also handle soft con-
straints to represent the user preference criteria and their weights [79, 289]. Thanks to these
properties, constraint-based recommenders have been extensively applied to the recommen-
dation of con�gurable products like personalized service bundles [97, 99].

As discussed in Chapter 4, constructive preference elicitation can be used as a preference
elicitation method over a constraint-based recommender. Applying constructive preference
elicitation on top of a constraint-based system has numerous advantages. First, it provides a
principled way to interact with the user and learn the weights of the soft constraints. When it
comes to dealing with very large combinatorial spaces of choices, constructive methods have
been proven superior to other preference elicitation techniques [86, 257]. Employing generic
combinatorial optimization tools, constructive preference elicitation can not only be used to
�nd a high utility solution, but one could also optimize a combination of di�erent objectives,
e.g. metrics correlating with long-term customer retention.

In this work we adopt a kind of coactive interaction, in which a user is allowed to reply not
by changing the value of the component directly but instead the direction of improvement
of some of the components. This lessens the cognitive burden for the user, letting the sys-
tem take care of the underlying constraints between the components, and ensuring that no
unfeasible con�guration is provided as feedback to the learning algorithm. We also designed
an ad-hoc coactive learning algorithm which adapts to this kind of feedback.

In the following sections we will describe the implementation of a constructive recommenda-
tion system for telco service bundling, dubbed Smart Plan. This system aids users in choosing
the best monthly plan of telco services and products for their needs. We implemented the sys-
tem as a web application that users could use in any standard web browser. We tested the
system through a rigorous empirical study involving more than 130 participants. We tracked
both quantitative measures of satisfaction, e.g. number of participants choosing a plan in the
end, and qualitative ones through a questionnaire, e.g. whether the system was pleasant to
interact with. Comparing constructive and non-constructive alternative systems, the results
show a striking advantage of the constructive one in the number of users that concluded the
interaction by choosing a satisfactory plan. Also, our results show that it is useless to let a
user interact with a system whose interface is speci�cally designed for coactive interaction
but that does not have the ability of synthesizing new plans from the full domain of feasible
options.
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Mobile Connectivity

Gigabytes [0, 2, 4, 6, . . . ]
Minutes [0, 500, 1000, 1500, 2000, ∞]

Landline

Internet landline [None, ADSL, Broadband]
Phone landline [None, Pay-per-minute, Unlimited]

Multimedia

TV on demand [Netflix, Infinity TV, . . . ]
Sky [Sky Tv, Sky Sport, . . . ]
Music [Spotify, Apple Music, . . . ]
Apps & Games [Audible, Playstation Plus, . . . ]

Devices

Smartphones [iPhone 8, Samsung Galaxy S8, . . . ]
Tablet [iPad Pro 10, Galaxy Tab S2, . . . ]
TV [Samsung TV 28", 4K 43", . . . ]
Laptops [Macbook Air 13", . . . ]

Table 8.1: Summary of the structure of the recommended telephone plans. Left column:
component names. Right column: outline of the possible values for each component.

The rest of the chapter is organized as follows. In Section 8.1 we describe the Smart Plan
system, detailing both its UI and the learning algorithm underneath. Section 8.2 reports the
methodology and the �ndings of the user study. Finally, Section 8.3 draws the �nal conclu-
sions.

8.1 The Smart Plan system

In this section we describe the Smart Plan system, a constructive recommender system for
integrated telephone plans based on coactive learning. The system recommends con�gura-
tions y ∈ Y formed of several components. The components are organized into four groups:
[i] Mobile Connectivity services; [ii] Landline services; [iii] Multimedia (apps and services
for entertainment and multimedia content provisioning such as TV streaming, music, etc.);
[iv] Devices (such as smartphones, tablets, etc. paid in monthly installments). Table 8.1 sum-
marizes the groups and their components, outlining the range of possible values for each
component. In total, there are 12 basic components, each taking on average about 5 possible
values, which combined form a number of possible con�gurations in the order of 512 ≈ 109.
The feasible space Y is a subset of the full set of combinations that is determined by hard
constraints over the attributes. For example a landline internet connection is needed to get
the pay TV service, or a mobile subscription (either voice minutes or GB of data tra�c) is
needed to include a smartphone in the plan. Besides the basic components, the plans also
contain several derived attributes, such as the total price of the plan (computed as a function
of the included components), or the amount of monthly payments due for the installments of
the devices included in the plan. At the beginning of the interaction, the system asks the user
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to select one out of four categories of plans. The categories are: [i] “Young” (plans for users
under 30); [ii] “Family” (plans for families with children); [iii] “Business” (high-end plans for
business); [iv] “Flex” (for everybody else). The user choice of category becomes the context
x ∈ X for the full elicitation process1. The category x may further alter the feasible space
Y(x) ⊆ Y of plans, e.g. prices of certain services are lower for the “Young” category.

The feature vector φ includes about 160 features describing the components of the plan and
their interconnections, for instance several features describing di�erent ranges of minutes
amount (e.g. minutes ≤ {200, 500, 1000, . . . }), or a feature encoding the di�erence between
the �nal price and the price paid after the installments due for the devices. A complete de-
scription of the components, constraints and features is given in the supplementary material
of the original contribution [83].

The system is implemented as a web application composed of: [i] a web interface with which
users interact; [ii] a web service connected to a learning back-end which is in charge of
generating recommendations and collecting data.

8.1.1 The user interface

The user interface of the system is a web page alike to that shown in Figure 8.1. The page
shows one recommended plan at the time, displayed as a grid containing all of its components.
The grid separates the various groups of components and arranges the various components
within the groups, showing placeholders for components that are not present in the given
plan. For each group, the sub-total price is displayed. For the device group, the amount of
monthly payments due for the devices included in the plan is shown as well. The total price
of the plan is reported on the right side of the grid. A discount is sometimes applied to the
total price depending on the number and type of services in the con�guration. Additional
information on the di�erent components is displayed using tooltips and overlays on mouse
over. The user can interact with the system via the buttons shown in the right part of the
grid. At any given time the user can: [i] choose the currently displayed plan; [ii] suggest some
changes to the current plan and request a new one; [iii] exit the session without choosing any
plan. The system starts with an initial recommendation depending on the category chosen
at the beginning and then computes new recommendations every time the user suggests
changes. The plans in the history are numbered and the user can navigate the entire history
of recommendations using the appropriate buttons (top right), and focus on any of them
(and not only the last one) for the interaction. In any case, novel recommendations will be
enqueued as the last plan in the history.

The bottom screenshot in Figure 8.1 shows the interface once the “Suggest changes” button
has been pressed. In this state, several toggle buttons appear underneath the components
that can be changed. In the case of numerical values and ordinal values, such as the amount
of gigabytes for the mobile connection or the proposed monthly price of the plan, the user
can suggest to increase or decrease the value, or ask it to be left unchanged. For categori-

1Henceforth, the terms “category” and “context” are used interchangeably.
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Figure 8.1: Two screenshots of the web interface of our system. On the top, a screenshot of
the view of a recommended plan while navigating throughout the recommendation history.
On the bottom, a screenshot showing the interface the user can interact with when selecting
the changes to suggest to the system. Best viewed in color.

cal components, such as the multimedia services and devices, the user can suggest to add a
service if it is not present, or, if it is present, the user can suggest to remove it, change it or
keep it as it is. As the system needs to make trade-o�s between the current con�guration,
the constraints of the domain, the current preference model and the user feedback, the user
suggestion of changing one component may result in a change of other components as well.
For instance, if the user asks to add more gigabytes to the plan and asks for a lower price, the
system will need to remove some of the other services to accommodate this opposite feed-
back. This is the reason why we also included the “equal” button, with which the user can
suggest which components should not change (e.g. because they are considered important)
when computing these trade-o�s. In general, however, we warn the user (via an overlay)
to keep the number of suggestions per iteration as low as possible in order to increase the
chance of having them satis�ed, reminding her that there is no limit to the number of plans
she can require from the system.
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8.1.2 The learning subsystem

This component of the system is in charge of providing recommendations, keeping track of
the user feedback and updating the user utility model accordingly. This subsystem is further
divided into the actual learning algorithm, and a web service API, that intermediates between
the constraint solver used to infer new recommendations, a database storing the collected
data and the user interface. Here we outline the learning algorithm used in the Smart Plan
system, while a more in depth description of the full system implementation is given in the
supplementary material of the original publication [83].

The learning algorithm used in our system (Algorithm 13) is a slightly adapted version of
the preference perceptron (see Section 3.3) to accommodate the type of feedback received
by our user interface. Also, to make the learning algorithm more �exible, we used the “con-
vex” version of the preference perceptron [247], based on the projected gradient method
from [292]. In this version, the gradient steps are sized by a learning rate ηt and then the
updated weights are projected back onto a convex set B ⊆ Rd via a projection operator
ΠB(θ) = argminw∈B‖w−θ‖. The set B is typically a `2 d-dimensional ball of a given radius,
or alternatively an `1 ball can be used to encourage sparsi�cation of the weights [90].

At the beginning the algorithm receives the category x ∈ X of user choice. Based on the
category x, the algorithm sets the initial weights w0 = wx and the initial recommenda-
tion y0 = yx. Selecting a meaningful starting point for both the initial con�guration and
the initial weight vector can drastically speed-up the elicitation process. In principle, ini-
tial con�gurations may be estimated from generic data of previous users if available, using
e.g. collaborative or content-based techniques. We did not have previous data on this task, so,
with the help of a domain expert, we identi�ed four realistic initial con�gurations yx ∈ Y(x),
one for each category x. The four initial con�gurations attempt to address the need of a pro-
totypical user who chooses a certain category. For instance, a user choosing the category
“young” would probably need more mobile data tra�c than a user choosing the “family” one,
probably more interested in more voice minutes and landline services (more details on the
initial plans yx can be found in the supplementary material [83]). The initial weightswx are
set to argmaxw∈B〈w,φ(x, yx)〉, i.e. the value for which yx is the highest scoring con�gura-
tion for the category x. The algorithm also initializes a listH where the plans recommended
at each iteration will be stored.

At each iteration, the algorithm �rst presents to the user the plan yt = ȳt−1 generated at
the end of the previous iteration (which, except for the �rst iteration, is the one trying to
meet user feedback on the previous recommendation) and stores it in the listH. If the user is
unsatis�ed by the current recommendation (as well as all previous ones) and decides to quit
the interaction, the algorithm stops without recommending any plan. Otherwise, the user
chooses a plan from the list H and can either accept it (the algorithm stops and returns it as
the �nal recommendation) or suggest some changes.

In the latter case, the algorithm updates its weight vector based on the plan selected and
the current history. Indeed, the user selection of some yk from the recommendation history
as the plan on which to provide new suggestions is already an implicit source of feedback.
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Algorithm 13 The learning algorithm of the Smart Plan system.
1: User selects category x ∈ X
2: Initialize w0 and y0 = ȳ0 according to x
3: H ← empty list
4: for t = 1, 2, . . . do
5: Recommend yt = ȳt−1
6: Append yt intoH
7: if User quits the interaction then

8: return ∅
9: User selects plan yk ∈ H, k ≤ t

10: if User accepts yk then
11: return yk
12: for i = k − 1, . . . , t do
13: wt ← ΠB (wt−1 − ηt (φ(x, yi)− φ(x, yk)))

14: Receive feedback y=t , y 6=t , y±t on plan yk
15: ȳt ← improve(x,wt, yk, y

=
t , y 6=t , y±t )

Intuitively, if the user chose to improve the last suggested plan (i.e. k = t), this implicitly
tells us that the last performed improvement was most likely going in the right direction,
and thus we can safely update the weights with the ranking pair (yt−1, yt) (same as in the
standard preference perceptron but delayed of one iteration). If, instead, k < t, it means that
the user preferred to “start over” from some previous recommendation yk , probably because
the recommendations yi, for k < i ≤ t, turned out to be farther out from the user desiderata
than yk . This implicit feedback provides the ranking pairs (yi, yk) for k < i ≤ t, exploited
to update the weights (line 13 of Algorithm 13). Preliminary experiments showed that this is
a better choice than just adding the single pair (yt, yk).

Finally, the user provides feedback on the chosen plan yk , and a re�ned plan accounting for
such a feedback is generated. The user feedback is not a direct manipulation of the recom-
mended plan but rather a set of “suggestions” on the components that need to be changed or
should be kept equal, leaving the system the possibility of adjusting the remaining compo-
nents to accommodate these suggestions. The improvement ȳt is then obtained by �nding a
feasible plan satisfying the suggestions of the user as much as possible.

In order to formalize the search problem for an improvement ȳt, plans are encoded in a form
that allows to test the satisfaction of the di�erent types of suggestions the user can provide.
A plan yk is thus represented in terms of two component vectors, ϕn(yk) and a ϕc(yk) 2.
The �rst contains quantitative information for numerical or ordinal attributes (e.g. num-
ber of minutes or gigabytes) and presence/absence information for categorical ones (e.g. TV
Streaming, Laptop). The second contains the one-hot encoding of the categorical attributes
(e.g. which TV Streaming among the di�erent options available) 3.

2Note that these vectors di�er from the feature vector φ on which the utility function is de�ned, although they
largely overlap in practice. See the supplementary material for details [83].

3The vectors ϕn(yk) and ϕc(yk) also contain some more elaborate features, such as the price range and the
smartphone category. More details are provided in the supplementary material of the original paper [83].



128

The user suggestions are gathered into three feedback vectors y±t , y=
t , y 6=t . The �rst feedback

vector y±t has the same size as ϕn(yk), and contains 1 and −1 for components the user has
requested to respectively increase (by pressing the “plus” button) and decrease (by pressing
the “minus” button) in ȳt with respect to yk , and 0 otherwise.

The second vector y=
t has again the same size as ϕn(yk), and contains for each component

the value 1 if the user requested to keep the value unchanged in ȳt with respect to yk (by
pressing the “equal” button), and 0 otherwise.

The third vector y 6=t has instead the same size as ϕc(yk), and contains 1 on components for
which the user has requested to be changed in value (by pressing the “change” button) in
ȳt with respect to their value assumed in yk . In other words, if the y 6=t contains 1 for some
component, then the new plan ȳt should contain a di�erent value (not speci�ed which) for
that component with respect to yk .

The improvement ȳt is obtained by solving an optimization problem that attempts to maxi-
mize a “feedback” score Gt(ȳt), i.e. a function that encodes how well the user suggestion are
satis�ed. The new plan however should also be of high utility according to the current utility
model ut and should not be too distant from yk , in order to make the transition from one plan
to the next one as smooth as possible. The improve function (line 15 of Algorithm 13) seeks
a plan ȳt trading-o� these aspects, by solving the following optimization problem:

ȳt = argmax
y∈Y(x)

Gt(y) + λ1 ut(x, y)− λ2 ‖φ(x, y)− φ(x, yk)‖1 (8.1)

Gt(y) = λ3〈y±t , δ
n
t 〉 − λ4〈y=

t , |δ
n
t |〉+ λ5‖y 6=t � δ

c
t‖0

δnt = ϕn(y)−ϕn(yk) δct = ϕc(y)−ϕc(yk)

The above optimization problem maximizes a combination of: [i] the utility of y according
to the current model ut(x, y); [ii] the (negated) `1 distance between y and the selected plan
yk (in feature space); [iii] the feedback score function Gt(y) computing how much y meets
the user suggestions. The function Gt(y) is itself a combination of: [i] the amount 〈y±t , δ

n
t 〉

of changes that go in the same direction with respect to the user suggestion (increase if user
asked to increase and vice versa); [ii] the number 〈y=

t , |δ
n
t |〉 of components that should re-

main equal but they have not; [iii] the number ‖y 6=t � δ
c
t‖0 of categorical components that

changed according to the user request. In the above formula: |y| denotes the element-wise
absolute value; � denotes the Hadamard product (element-wise product); and ‖·‖0 denotes
the `0 norm (number of non-zero elements). The parameters λ1, . . . , λ5 are real coe�cients
de�ning the relative importance of each component of the function being maximized. These
coe�cients, as well as the learning rate ηt, were chosen manually among a set of prede�ned
values, validating the quality of the recommendations on a pilot set of users (beta testers
which are not included among the real users involved in the study described in Section 8.2).
The �nal implementation used a learning rate ηt = 1

t0.8 with a projection onto a `2 ball. The
learning rate decreases rather quickly because, in this particular setting, feedback given in
the early iterations is more important than �ner adjustments at later iterations when most
of the users already had a rough idea in mind of what the �nal plan should look like. The
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parameters λ1, . . . , λ5 were set so that the feedback score, primarily the y±t component,
had the highest weight. Furthermore, a slightly higher weight was given to the distance
‖φ(x, ȳt)−φ(x, yk)‖1 with respect to the utility ut(x, ȳt), so that not too many components
would change between yk and ȳt, thus ensuring a smooth enough transition between plans.

Regarding the implementation, we used the MiniZinc constraint programming language as
modeling platform [188]. The underlying constraint solver used was Gurobi4. Concerning
timing, preliminary experiments showed that inference and learning steps took on average
0.21 seconds per iteration using Gurobi on a 2.8 GHz Intel Xeon CPU with 8 cores and 32
GiB of RAM. This time magnitude makes the user interaction in the practical implementation
comfortable and without delays.

8.2 Empirical validation

This section describes the empirical validation of the system through an experiment with real
participants. The supplementary material of the original paper [83] also contains a batch of
preliminary experiments made with simulated users in order to assess the convergence rate
of the algorithm when interacting with users of di�erent informativeness, as done in previous
works on constructive preference elicitation [82, 84, 255].

In order to evaluate the usefulness of our constructive approach, we compared it with two
alternative versions of the system. The �rst mimics the standard approach of telecommu-
nication companies, which consists of hand-crafting a pool of integrated plans tailored for
di�erent categories of users, and let them choose their preferred plan in the pool. The sec-
ond employs the very same interaction modality of our constructive approach, but when
building the recommendation in response to the suggestions from the user, it is forced to
pick one of the preset plans in the pool. The rationale behind the inclusion of this third
version of the system is to evaluate the relative importance of the constructive interface ver-
sus the constructive plan generation in determining the success of the interaction and the
user’s satisfaction. In what follows, we refer to our constructive approach as CC (standing
for “constructive-constructive”), while the two alternative approaches as PP (“pool-pool”) and
PC (“pool-constructive”), respectively.

In the CC version of the system, the recommendations were selected from the full con�gura-
tion space as described in Sections 8.1. In the PP version, the recommendations were selected
from a prede�ned pool. The pool was created by reviewing currently available telco compa-
nies o�ers and interacting with a domain expert. This process resulted in 65 di�erent plans,
divided into a set of sub-pools Px ⊂ Y of approximately equal size for each of the “Young”,
“Family”, “Business”, and “Flex” categories x (see Section 8.1). Note that, albeit very small
if compared to the size of the con�guration space, the pool is still substantially larger than
those typically provided by telco companies. Finally, in the PC version, the algorithm learned
a model of the user preferences as for the fully constructive version, but recommendations

4Gurobi: gurobi.com

gurobi.com
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were selected from the same prede�ned pool of the PP version. However, while in PC ver-
sion the full pool was used for inference, in the PP version only the sub-pool associated to
the chosen category was used, to make the choice not too overwhelming for the user.

Participants and procedure

A sample of 157 adults was recruited for the experiment. Participation was anonymous and
on a voluntary basis. Those who abandoned the session or did not visualize at least two
recommendations (15% of the total) were excluded, leaving us with 134 participants. Fifty-
eight percent of them were male, the average age was 32.7 years (SD 10.42). The experiment
was performed online, throughout a web page compatible with any widely used web browser.
Participants were explicitly informed that the experiment was only for scienti�c purposes and
that the plans were not associated to any real o�er. However, they were asked to behave as
if they really had to choose a plan to purchase.

A between-subjects design was employed: participants were randomly assigned to one of
three groups, each interacting with a di�erent version (CC, PP or PC) of the recommender.
More speci�cally, 34% were presented with the PP, 33% with the PC, and 33% with the CC
version of the system. Participants in all groups had �rst to select the category of plans they
were most interested in. The system used the information about the category to suggest an
appropriate initial recommendation y0 (see Section 8.1.2). In the CC and PC versions of the
system, this information was also used to initialize the weight vector w0, whereas in the
PP version of the system the category was used to select the pool Px to be presented (in a
randomized order) to participants.

Participants could spend as much time as they needed to assess each recommended plan.
They could then suggest modi�cations to the plan (for PC and CC versions only, as outlined
in Section 8.1.1), choose the plan, or decide to conclude the experimental session without
choosing any plan (or even to leave the test simply by closing the browser window). As de-
scribed in Section 8.1.1, in all the versions of the system, participants were free to navigate
the full history of recommendations by going back and forth between plans. Speci�c instruc-
tions on how to interact with the speci�c version of the system were provided by means of a
video tutorial before the start of the experiment.

Finally, once participants had chosen a plan or decided to leave the experimental session
without choosing any, they were presented with a small questionnaire. For all participants,
this included questions about how pleasant and tiring the interaction with the system had
been on a scale ranging from 0 (= “completely disagree”) to 5 (= “completely agree”). Other
questions depended on the version of system and on whether the user chose a plan or left
without choosing any. All participants in the PC and CC versions were also asked whether
they had found the plans proposed by the system of growing interest, while all participants
who chose a plan were asked how much they were satis�ed with it (again from 0 to 5). At
the very end, participants were invited to provide minor demographic information (i.e., their
age and gender).
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Figure 8.2: Statistics concerning the interaction with the three (PP, PC, CC) versions of the
system. From left to right: [i] the percentage of participants who found a plan satisfying
enough to choose it; [ii] the average number of plans visualized (only for participants who
chose a plan); [iii] the average duration (in minutes) of the interaction with the system (only
for participants who chose a plan). Top bars indicate signi�cant comparisons (*= p<.05 and
**= p<.01, adjusted standardized residuals post-hoc analysis for [i], Tukey post-hoc tests for
[ii] and [iii]). Best viewed in color.

Results

Participants who interacted with the three (PP, PC, and CC) versions of the system were not
signi�cantly di�erent by gender (χ2(2)=4.334, p=.114), age (one-way ANOVA, F (2,120)=.617,
p=.541), and possession of a phone plan (χ2(2)=.628, p=.731). They did not signi�cantly dif-
fer also in their choice of the category of the plan (χ2(6)=3.763, p=.709). As a consequence,
they can be considered fully suitable to be compared in the experiment. Overall, the cate-
gories “�ex”, “young”, ‘family”, and “business” were chosen by 31%, 45%, 18%, and 6% of
the participants, respectively.

As shown in Figure 8.2, the percentage of participants who ended their interaction with
the system successfully by choosing a plan was signi�cantly di�erent in the three groups
(χ2(2)=15.106, p<.001). In particular, while almost all participants (95%) who interacted with
the CC version of the system found a plan that they liked, the same held only for a bit more
than half of those who interacted with the other two versions (63% and 66% for PP and PC,
respectively). The di�erence between the former and the latter is statistically signi�cant (ad-
justed standardized residuals post-hoc analysis, p<.01).

Before making their choice, participants in the three groups visualized a di�erent number
of plans (one-way ANOVA, F (2,97)=6.474, p<.01). In particular, participants who interacted
with the PP version of the system visualized a greater number of plans than participants who
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Pleasant

interaction

Tiring

interaction

Increasing

interest

Satisfaction

degree

PP 3.79 1.07 – 3.54

PC 2.95 2.40 1.51 3.03

CC 3.44 1.79 3.02 3.34

Table 8.2: Participants’ average answers to the �nal questions in the three (PP, PC, CC) sys-
tem versions. Value range from 0 to 5. From left to right: [i] how pleasant the interaction with
the system was; [ii] how tiring the interaction with the system was; [iii] (only for participants
in the PCand CCversions) whether the plans proposed by the system were of growing inter-
est; [iv] (only for participants who chose a plan) how much the chosen plan was considered
satisfying.

interacted with the CC version (Tukey post-hoc test, p<.01). This is not entirely surprising
since participants who interacted with the PP version of the system could not suggest them-
selves a new plan, but had only the possibility to explore the available plans.

Participants in the three groups who chose a plan also di�ered with regard to the duration of
their overall interaction with the system (one-way ANOVA, F (2,97)=4.622, p<.05). This was
greater for participants who interacted with the PC version of the system than participants
who interacted with the PP and CC versions (Tukey post-hoc tests, p<.05), while participants
in the latter two groups did not di�er between each other (Tukey post-hoc test, p=.935). Such
a result indicates that the PC version of the system was especially time-consuming, while the
CC version was comparable to the PP one.

The average answers to the �nal questions are reported in Table 8.2. Unsurprisingly, the
three versions of the system have not been rated as equally enjoyable or tiring (one-way
ANOVAs, F (2,126)=5.928, p<.01, and F (2,126)=8.703, p<.01, respectively). More speci�cally,
Tukey post-hoc tests revealed that interacting with the PC version of the system was con-
sidered as less pleasant (<.01) and more tiring (p<.01) than interacting with the PP version,
while there were no signi�cant di�erences between PC and CC versions (p=.33 and p=.06,
respectively). This result indicates that combining a constructive interface with a standard
search over a �xed pool of candidates is not a good strategy, since a restricted number of
options cannot typically accommodate the modi�cations suggested by the users. Moreover,
it shows that the interaction with the CC version of the system, although more engaging, is
not perceived as less pleasant or more tiring than the interaction with the PP one.

Participants who interacted with the CC version of the system found the plans progressively
suggested to them of growing interest more than participants who interacted with the PC
version (Independent t-test, t(84)=5.972, p<.01). Yet again, this suggests that participants’
appreciation of the interaction depends on having a constructive plan generator rather than
a constructive interface.

Finally, there were not signi�cant di�erences in the satisfaction with the chosen plan between
the three groups (F (2,95)=1.911, p=.154).
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8.3 Summary

In this chapter, we presented Smart Plan, a constructive recommender system for bundles of
telecommunication services, entertainment subscriptions and electronic devices. The typical
marketing strategy for this type of bundles used by telco companies consists in selecting
a �xed set of carefully designed plans, yet with limited possibility of editing. In contrast,
we allow the user to fully customize her own plan, within the allowed boundaries. This
con�guration process is eased by Smart Plan, which uses constructive preference elicitation
and coactive feedback to learn the preferences of the user and suggests progressively more
interesting plans.

A between-subjects study was carried out with real participants in order to validate and com-
pare our system against two alternative non-constructive systems. The results showed that,
when using Smart Plan, the participants almost always found a satisfactory plan at the end
of the interaction, which was not the case for the non-constructive alternatives, regardless of
the interfaced used. The results also show that using an interface designed for constructive
interaction while using a non-constructive algorithm underneath leads to an unpleasant and
tiring interaction. Satisfaction degree was not signi�cantly di�erent across the systems. This
might imply that recommendation quality was, after all, similar across the various systems,
either for the inability of the system to provide better recommendation, or to the general
high quality of the plans in the handcrafted pool. Another explanation might be the stronger
correlation of the satisfaction degree with the plan itself rather than the process for acquiring
it. To assess this correlation, we will need to perform a more in depth analysis with a higher
number of participants.





Chapter 9

Conclusion

In this chapter we will provide a summary of the whole thesis, highlighting the salient points
and remarking how the methods proposed in the thesis addressed the research problems
posed in the introduction. We will then conclude with some research directions that might
be worth pursuing in the future.

9.1 Summary of contributions

In Chapter 1, we discussed how the adoption of mass customizable products has come to a halt
due to the complexity of the decision problems associated with their con�guration. To solve
this problem and to tackle related preference-based combinatorial problems, we laid down
twelve principles that a preference elicitation system should abide to. Of these, the �rst �ve
were posited by Guo and Sanner [128] for any preference elicitation method. To be able to
tackle complex combinatorial decision problems, a.k.a. constructive problems, we postulate
other seven properties that a constructive preference elicitation system should exhibit. The
following is a recapping list of all twelve of these properties:

1. Real-time interaction

2. Multi-attribute domains

3. Low cognitive load

4. Robustness to noise

5. Scalability (feedback)

6. Constrained combinatorial spaces

7. Hybrid domains

8. Explicit and implicit feedback

9. Contextual information

10. Optimality guarantees

11. Scalability (inference time)

12. Expressive trade-o�s

As we argued in Chapter 1, and saw in detail in Chapter 2, existing state-of-the-art methods
in preference elicitation or constraint-based recommendation do satisfy some of the above
requirements, yet none of these techniques can cope with all of them simultaneously.
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Preference elicitation for combinatorial problems

After stating our goal, we proposed a method for constructive preference elicitation and we
claimed that it would be able to satisfy all of our desired properties. Based on the background
knowledge built up in Chapter 3, we described our constructive preference elicitation frame-
work in Chapter 4. Our technique is based on online structured prediction, a machine learning
method for predicting structured objects, while learning a utility model in an online fashion.
Online structured prediction, just like standard batch structured-output prediction, can be
combined with constraints solvers, which can be used to make predictions over constrained
combinatorial domains. Using a constraint solver as inference oracle, we can easily shape
the domain as a hybrid multitude of categorical and numerical attributes subject to arbitrary
constraints, hence satisfying properties 2, 6 and 7.

The particular online structured prediction framework that we employ in this thesis is coac-
tive learning [247]. As we described it in Section 3.3, coactive learning satis�es proper-
ties 3, 4, 5, 8, 9, and 10 out-of-the-box. As we have proven in Chapter 7 and 8, coactive
feedback is very �exible and can be easily acquired both explicitly and implicitly, thereby
satisfying properties 3 and 8. Coactive learning also handles context directly in the utility
model, satisfying property 9. Coactive learning comes with guarantees of vanishing aver-
age regret, ensuring its convergence to an optimal solution, as required by property 10. This
method also learns from and provide guarantees for weak, noisy user feedback, ensuring the
satisfaction of property 4. In our tests and validation in Chapter 7 and 8, we have demon-
strated that this technique, when applied to constructive preference elicitation, is able to
provide real time interaction and satisfying solutions with little feedback, hence meeting the
requirements of properties 1 and 5.

In Chapter 1, and again in Chapter 4, we argued that coactive learning does not satisfy prop-
erties 11 and 12 on its own. In particular, the scalability to large domains is mainly limited
by the capacity of the underlying constraint solver to make predictions fast enough to ensure
real-time interaction. Also, the expressiveness of the utility function is capped by the amount
of feature engineering required to de�ne meaningful preference criteria for a large and di-
verse audience. In order to solve these research problems, we proposed two approaches that
extend coactive learning so as to satisfy the requirements of properties 11 and 12.

Problem decomposition strategies

In Chapter 5, we introduced a partitioning strategy for constructive decision problems and
proposed a coactive learning algorithm for eliciting the user utility relying solely on part-
wise interaction. This has the advantage that, at each iteration, the algorithm only needs
to change a part of the object, i.e. a subset of the decision variables, rather than the full
object at once. This may speedup the inference procedure exponentially, depending on the
size of the parts with respect to the whole object. Feedback is only partial too, implying a
lower cognitive e�ort per iteration for the user. These two aspects enable us to tackle much
larger constructive problems by simply splitting them into smaller ones and then pulling
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the results together. This, however, comes at the price of optimality. As we have seen, for
complex problems involving overlapping features between parts (which is equivalent to the
case of GAI utilities), this method is not able to reach a global optimum with respect to the
hidden user utility. However, we were able to show that our method converges to a “local
optimum”, for which the user cannot improve any part of the proposed object separately
from the others. Also, we showed that this local optimum has bounded approximation error
with respect to the global one. Crucially, the approximation error depends primarily on the
amount of overlapping features within the parts, which essentially means that we are able to
scale to very large problems by decomposing them and converge to good solutions as long
as the features do not substantially overlap. We also evaluated the algorithm empirically
and showed that in practice it often reaches or comes very close to a global optimum in a
reasonable amount of iterations, while being vastly more computationally e�cient than its
counterpart on full objects. Using this technique we can scale to larger domains, and hence
satisfy the above property 11.

Feature elicitation for coactive learning

In Chapter 6, we detailed our coactive critiquing approach, which combines coactive learning
and example critiquing with the aim of eliciting relevant features and allowing the utility
model to adapt to the user personal preference criteria. Our approach consists in eliciting a
critique any time the algorithm is faced with a dubious improvement, i.e. when the set of
features cannot correctly represent the improvements collected up to that point. This makes
the algorithm ask for critiques only when strictly necessary. Also, the critiques asked by our
technique are simpler than most other critiquing systems as they only require the user to state
an “explanation” for why the object that she provided as feedback is indeed an improvement
over the recommended one. We showed that our algorithm enjoys an average regret bound,
converging to an optimal solution as soon as the feature space is expressive enough. This fact
is re�ected in the experiments, in which we see that a small percentage of the total features is
needed for our algorithm to converge, compared to standard coactive learning. This approach
allows the algorithm to express complex feature spaces and to adapt to each user’s speci�c
preferences, solving the issue stated in property 12.

Applications and extensive evaluation

Besides the algorithmic improvements, this thesis also contributes with two implemented ap-
plication (besides the test beds used in Chapter 5 and 6), one of which was tested in a user
study involving real participants. Chapter 7 showcases the application of coactive learning
for constructive preference elicitation in the context of layout synthesis, a type of design task
with the goal of arranging objects in a 2D or 3D space. Chapter 8, instead, describes our
application of coactive learning to product and service bundling, a type of product con�gu-
ration task. In particular, we implemented a constructive recommender for service bundles
in the telecommunication industry, including connectivity and multimedia services, as well



138

as leased devices. In our empirical validation, we have seen that, with our constructive rec-
ommendation system, the percentage of satis�ed users increases dramatically with respect to
alternative pool-based techniques. Also, using our system in combination with a speci�cally
designed interface is not much more challenging than simply browsing a pool of alternatives,
taking users about the same time as using the pool-based interface to arrive at a satisfying
solution. These results highlight the practical bene�t of using our constructive preference
elicitation technique, aside from the methodological ones.

9.2 Future directions

In this section we describe several possible research direction not directly engaged in this
thesis but that would constitute interesting developments for future work.

Multiple users and social choice

The simplest yet most generic way of extending our constructive preference elicitation frame-
work is to scale it from single to multiple users [137]. Indeed, recommendation systems, in-
cluding constructive ones, are meant to be used by many users and exploiting information
about their collectively learned preferences is crucial for making the system e�ective. We al-
ready mentioned in Section 4.2.1 that, thanks to the contextual information directly handled
by the utility model of coactive learning, we can learn o�ine a global utility model based on
all the previously collected data, generalizing over user features encoded as contexts, and then
start with this model as a new user comes along, in order to accelerate the elicitation process.
This approach can be seen as form of multitask learning [11, 231], which has already been
explored in the constructive case [258]. Specialized algorithms for learning global and local
utility functions via coactive learning in a multitask setting have already been proposed [117],
which are directly applicable to our framework, yet a practical implementation con�rming
the feasibility of this approach in a constructive scenario is still missing.

Another setting of interest for constructive recommenders considering multiple users is that
of social choice [17, 174], in which a group of user has to collectively decide upon one instance
maximizing the social utility. This has particular appeal in a constructive preference elicita-
tion setting, which could be used to devise preference-based social extensions to classical
combinatorial problems such as the travelling salesperson problem [195] and the nurse ros-
tering problem [42]. These could be the basic formulations for e.g. a social trip planner and
a social scheduler, based on social constructive preference elicitation. Coactive learning has
been already extended to this context as well [214], yet it has mainly been applied to optimiz-
ing search engines responses to ambiguous terms involving con�icting results. Nevertheless,
this technique may be straightforwardly applied to the constructive case as well, providing
convergence guarantees out-of-the-box. Further research on the practical applicability of this
technique to the constructive case is however needed.
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More expressive utility functions

While the utility function used in coactive learning and constructive preference elicitation
has the potential for representing any utility over the object attributes, we are still limited
by two important factors, namely feature engineering and linearity. The former is partially
addressed by coactive critiquing (see Chapter 6), yet we can not expect the user to state very
complex critiques that may however be relevant or may speedup the elicitation process. The
latter is mainly imposed by the inability of constraint solvers to handle non-linear objec-
tives. One possible approach to overcome this limitation would be to employ solvers able to
handle quadratic objectives and constraints, such as quadratically constrained quadratic pro-
gramming or second-order cone programming solvers. Quadratic programs would already be
much more expressive than linear, allowing to directly encode features and constraints over
e.g. areas and Euclidean distances. However, quadratic optimization is much harder than
linear, so its applicability in constructive preference elicitation still needs to be understood.

Non-linear aggregation of preference criteria has long been of interest in preference elicita-
tion to make utility functions more expressive and capture subtle nuances in the preference
criteria of the users. One recent approach uses the Choquet integral, a sophisticated non-
linear aggregator, with an e�cient minimax regret approach [18]. It would be interesting to
investigate whether it is possible to leverage this approach in a constructive scenario.

Another approach would be to use a deep neural network [159] to represent a non-linear
utility function. Recent advances in deep learning have produced novel architectures for deep
structured prediction [16, 57]. These methods learn an energy network and make predictions
by optimizing this network through gradient descent. The energy network is comparable to
an (inverse) utility functions, which makes these methods appealing for preference learning.
However, mixing deep neural networks and preference elicitation over constrained domains
is still a challenge. One di�culty is the amount of data needed to train one such architecture,
which is rarely available in preference elicitation. Another problem is the fact that deep
neural networks still do not cope well with prior knowledge in the form of hard constraints.

One possibility to handle the above issues is to use a combination of deep energy networks
and constraint solving in a multitask scenario. The energy network would provide a global
utility, trained with data from all users, and would provide a rough, unconstrained prediction.
Then, the constraint solver would be tasked to “re�ne” the network prediction by taking into
account the hard constraints of the problem and the local utility of the speci�c user. We
expect that this method would be a way of learning expressive utility models and would
provide good recommendations for new users. We also expect that the inference process
would be faster, since the constraint solver would only need to re�ne an existing prediction
and not create one from scratch.

An alternative prospect relies on one particular types of networks, called input convex neural
networks (ICNNs), which provide deep structured prediction with convex inference [9]. A
way of injecting prior knowledge into an ICNN would be to represent constraints in a “soft
logic” formalism. In particular, using a fragment of Łukasiewicz logic, the resulting objective
is still convex [75]. In this setting, e�cient optimization algorithms for non-smooth convex
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optimization can be used for inference, such as the alternating direction method of multipliers
(ADMM) [32]. The same formalism and optimization method are used in hinge-loss Markov
random �elds (HL-MRFs), a class of statistical relational models for constrained structured
prediction at the basis of the probabilistic soft logic (PSL) language [13]. ICNNs could function
as non-linear potentials for HL-MRFs while keeping inference convex in the output variables.
The application of PSL, with or without non-linear potentials through ICNNs, to constructive
preference elicitation is an interesting research direction.

Other statistical relational learning frameworks may be integrated in constructive preference
elicitation as well. Type extension trees [108], for instance, are tools for learning complex com-
binatorial features which may be used in substitution of or in combination with coactive cri-
tiquing to learn complex, personalized preference criteria. Their potential use in constructive
preference elicitation is currently being investigated.
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