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Abstract 
 
 
Theoretical modelling of challenging multiscale problems arising in 
complex (and sometimes bioinspired) solids are presented. Such 
activities are supported by analytical, numerical and experimental 
studies. For instance, this is the case for studying the response of 
hierarchical and nano-composites, nanostructured solid/semi-fluid 
membranes, polymeric nanocomposites, to electromagnetic, 
mechanical, thermal, and sometimes biological, electrical, and 
chemical agents. Such actions are notoriously important for sensors, 
polymeric films, artificial muscles, cell membranes, metamaterials, 
hierarchical composite interfaces and other novel class of materials. 
The main purpose of this project is to make significant advancements 
in the study of such composites, with a focus on the electromagnetic 
and mechanical performances of the mentioned structures, with 
particular regards to novel concept devices for sensing. These latter 
ones have been studied with different configuration, from 3D colloidal 
to 2D quasi-hemispherical micro voids elastomeric grating as strain 
sensors. 
Exhibited time-rate dependent behavior and structural phenomena 
induced by the nano/micro-structure and their adaptation to the applied 
actions, have been explored.  
Such, and similar, ordered submicroscopic systems undergoing thermal 
and mechanical stimuli often exhibit an anomalous response. Indeed, 
they neither follow Fourier’s law for heat transport nor their mechanical 
time-dependent behavior exhibiting classical hereditariness. Such 
features are known both for natural and artificial materials, such as 
bone, lipid membranes, metallic and polymeric “spongy” composites 
(like foams) and many others. Strong efforts have been made in the last 
years to scale-up the thermal, mechanical and micro-fluidic properties 
of such solids, to the extent of understanding their effective bulk and 
interface features. The analysis of the physical grounds highlighted 
above has led to findings that allow the describing of those materials’ 
effective characteristics through their fractional-order response. 
Fractional-order frameworks have also been employed in analyzing 
heat transfer to the extent of generalizing the classical Fourier and 
Cattaneo transport equations and also for studying consolidation 
phenomenon. 
Overall, the research outcomes have fulfilled all the research objectives 
of this thesis thanks to the strong interconnection between several 
disciplines, ranging from mechanics to physics, from structural health 
monitoring to chemistry, both from an analytical and numerical point 
of view to the experimental one.  
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1. Introduction 
 
 
From atoms and molecules to crystals and bulk components, optical 
materials are naturally structured at different scales [1]. Thanks to 
tremendous progresses in nanotechnologies, these optical materials can 
also be artificially structured to the same different scales [2].  
The interaction of materials with optical waves and photons is strongly 
dependent on the structure, which can then be used to control light field 
distribution and light propagation. This allows the development of a 
wide range of key components for optical systems and it is now a major 
field of photonics. Refraction, interferences, diffraction, scattering, 
anisotropy, absorption, light emission, and nonlinear effects are all 
widely used to develop photonic components [3, 4].  
The applications are numerous and generally belong to what are called 
information and communication technologies [5] and green photonics 
[6]. Such materials can find application in different strategic areas such 
as food security [7] and civil infrastructures [8].  
From a structural point of view, depending on deposition process and 
the material, the natural micro/nanostructure of the structures can be 
more or less complex. This has different consequences on the optical 
properties, especially depending on the assembly, meaning when the 
materials are periodically structured in one- (1D), two- (2D), or three-
dimensions (3D) [9]. For optical coatings, the light is reflected or 
transmitted through the sample. On the contrary, diffraction structures 
are generally used to distribute the light in a controlled way in different 
directions of the space. The association of diffractive and interference 
structures in 3D components allows for controlling the directions of the 
propagation and the spectral distribution of the optical waves in the 
space. In particular, the local field and the propagation in the structure 
can be adjusted with the photon lifetime. The typical dimensions of the 
structure are in the order of a part of the wavelength. These periodically 
structured materials are also named photonic crystals because light 
waves behave similarly to the wave function of electrons in crystals 
[10].  
Referring to the different applications in recent years, photonic sensors 
have seen a massive development because of the increasing demand of 
sensing applications in healthcare [11], defence, security [12], 
aerospace [14], environment [13], food quality control [15], to name a 
few. 
Nowadays, integrated PhC-based sensors represent one of the most 
popular class of photonic sensors, generally employed for physical and 
chemical/biochemical sensing. In this context, the principal advantages 
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of these intriguing photonic sensor architectures are ultra-high light 
confinement in very small volumes, high wavelength selectivity, ultra 
high sensitivity and selectivity in sensing mechanism. 
Among them a specific class is based on colloidal crystals (2D and/or 
3D). From a fabrication point of view in the last years several methods 
have been developed for their realization, for example the bottom-up 
approach which is based on the self-assembly processes of suitable 
building blocks [16]. 
In most cases, nanospheres of silica or polystyrene can be assembled 
into ordered 3D and 2D structures. In this case, the obtained sample 
consists of a composite dielectric with a periodically varying refractive 
index, that induces a forbidden frequency gap where the 
electromagnetic wave can not be propagated. From energetic 
considerations, it has been verified that nanospheres are assembled in a 
centered cube (fcc) packing with the <111> direction perpendicular to 
the film surface [17]. Furthermore, it is worth mentioning that the 
refractive index contrast between the sphere and its surrounding 
environment determines the scattering strength of the single building 
block and thereby determines the key parameters of the final complex 
dielectric. In fact, under specific conditions regarding the refractive 
index contrast and topology of the structure [18, 19], stop bands along 
every direction of propagation may share a common interval of 
frequencies in which electromagnetic modes will be forbidden: the so 
called photonic band gap. The existence of stop bands instead implies 
forbidden frequency channels for the propagation of light along certain 
directions. Considering a disordered situation, the characterizing 
sample parameters are the mean free path and the diffusion coefficient, 
while in an ordered photonic crystal case, the main parameters are the 
width and positions of the stopbands and/or band gap. These last 
features have been employed for the development of engineered 
photonic crystal in particular for the realization of optical sensors, by 
infiltrating the voids with specific responsive materials [20]. 
As previously recalled, the position and the width of the photonic band 
structure mainly depends on the lattice constants and the refractive 
indices of the dielectrics, in particular, considering the infiltration 
process, it generally produces, with respect to the bare colloidal crystal, 
a variation of the stop band and in particular its red shift due to an 
increase of the effective index, on the other hands a decrease of the full 
width of the band gap is present as described by Shkunov et al. [21]. 
In this regard, colloidal crystals may represent a class of ideal 
candidates for fabricating optical sensors that can be used to monitor, 
measure, and display environmental variations in terms of color 
changes (which can even be easily visualized by the naked eye). As a 
matter of fact, such a strategy has been employed by fishes (such as the 



Introduction 

3 
 

blue damselfish) to reconfigure their skin colors in response to 
environmental changes. 
By embedding colloidal crystals in appropriate responsive material 
such as polymer hydrogels, Asher et al. have demonstrated the 
fabrication of temperature-, pH-, and ion-responsive optical sensors 
[22, 23]. The hydrogel colloidal crystals developed by Hu et al. and 
Lyon et al. have enabled them to tune the color of diffracted light either 
by varying temperature or by applying an electric field [24]. In [25, 26 
27]. have been demonstrated that colloidal crystals embedded in thin 
films of appropriate polymer matrices could serve as mechanical 
sensors to provide a platform for in situ monitoring of strains caused by 
uniaxial stretching or compressing. In all of these demonstrations, the 
lattice constant and thus the color exhibited by the colloidal crystal, 
varied in response to the environmental change(s). In a number of 
related studies, change in refractive index was also demonstrated as a 
means to detect variations in the environment. In this contest appear 
evident that the choice of the infiltrating material is correlated to the 
kind of stimuli that one wants to determine.  
Finding the perfect balance between the matrix and the spheres has been 
the goal of this thesis for design and fabricate a new kind of strain sensor 
which could be a great improvement in the field of structural health 
monitoring. For this latter field the key parameter is the sensitivity of 
the sensor to the external stimuli, in this specific case the sensitivity to 
strain. To this aim, several other experiments and studies have been 
conducted in order to magnify this paramenter. This lead to 2D semi-
hemispherical voids micropatterned pdms, an optical grating that 
shown a higher sensitivity. The drawback is that the change in the strain 
field could not be seen by the naked eye as in the previous structures, 
but this 2D structure allow one to know the direction and entity of the 
strain field. 
This first part of the present thesis has been developed through 
experiments, analytical models and numerical models to prove the 
results of the investigations and support the potential of these novel kind 
of sensors. 
Ordered nanostructured materials, such as the ones presented above, 
have different physical behaviors depending (i) on the ways in which 
their nano/micro-structure is organized, and (ii) on whether or not such 
ordering is hierarchical. In this second case, if the number of levels in 
which a hierarchy can be recognized is sufficiently large, often times 
some key features of the effective physical behaviour of such materials 
can be mathematically captured by fractional models. As it is well 
known from the literature, this is certainly the case for fractal materials, 
although fractional-order models may be used to accurately 
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approximate the effective behaviour of materials with an ordered 
nano/microstructures organized in a finite number of hierarchies. 
The focus of the second part of this thesis deals, in fact, with novel 
analytical models in the context of fractional-order calculus. 
This particular field of calculus is usually referred to as the 
generalization of the ordinary differential calculus introducing real-
order integrals and derivatives. It traces back to the basic definitions by 
Riemann as well as to successive memories of famous mathematicians 
[28], while, more recently, other scientists focused on the feasibility of 
integral measures involved in fractional-order operators [29, 30, 31]. 
After having fully consolidated into the mathematical word, their 
introduction into continuum field theories has received significant 
interests worldwide [32, 33, 34, 35, 36, 37]. Indeed,  the replacement of 
classical operators with their real-order counterparts 

andd d d d
dx dt dt dt

α β

α β

 
→ → 

 
 with ,α β ∈ℜ  (where ℜ is the set of real 

numbers) has proved to be valuable in several engineering and physical 
contexts predicting phenomena with great accuracy [38, 32, 39, 40]. 
The use of fractional-order operators has been also reported in non-local 
continuum field theories of mechanics [41, 42, 43, 44, 45, 46, 47], non-
local heat transfer [48, 49, 50, 51] stochastic analysis [52, 53, 54, 55], 
diffusive transport [56, 57, 58, 59], biophysics [60], rheology and many 
others. 
Despite their rapid success, the physics beyond the use of fractional-
order derivative was still lacking. The answer to this fundamental point 
would be of great stimulus for worldwide researchers to re-derive the 
classical continuum field theories in terms of fractional-order operators. 
On that subject, a strong effort has been profused during last years, 
including this thesis, to provide a solid physical ground in the use of 
fractional-order derivative in the transport equations. Cases involving 
polymer viscoelasticity, anomalous fluid diffusion, as well as laminar 
flow across fractal sets have been recently provided [61, 62, 63, 64]. 
Fractional-order calculus has been also used in the theory of thermo-
elasticity to generalize the classical Fourier and Cattaneo transport 
equations [65, 66, 67, 68]. However, no physical ground in the 
formulation of neither anomalous heat transfer nor thermo-elasticity 
theory has been provided, leading to a non-physical representation of 
the thermoelastic phenomena reported in such studies. 
In the present thesis, the author obtains a fractional-order Fourier 
diffusion law from a multi-scale rheological model and provide a 
physical exact description of the fractional-order Fourier diffusion 
equation that is also thermodynamically consistent. Then the coupled 
phenomenon, meaning the thermo-elasticity problem, has been 
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analysed, where a measure of the signature of the anomaly based on a 
measure of the energy rate is explored. 
This, toghether with the fractional-order consolidation, provides a step 
forward to the answer of the physics beyond the use of fractional-order 
derivatives. In fact, the memory formalism in the flux-pressure 
constitutive relation, ruling the water diffusion phenomenon occurring 
in several classes of porous media have been studied. The resulting 
flux-pressure law has been applied to the classical 1D Terzaghi’s 
consolidation problem. The memory formalism, useful to capture non-
Darcy behavior, is modeled by the Caputo’s fractional derivative. It has 
been shown that the time-evolution of both the degree of consolidation 
and the pressure fields is strongly influenced by the order of Caputo’s 
fractional derivative. It has been demonstrated that in a classical 
Terzaghi’s consolidation process of a sand sample, the classical Darcy 
equation may lead to inaccurate estimates of the consolidation time. 
This clearly shows the importance of taking into account the 
submicrometric structure of the medium in which a physical 
phenomenon occurs. 
 
The aim of the thesis is to develop experimental and novel analytical 
models for couplings in ordered submicroscopic systems, ranging from 
optomechanics to thermomechanics. 
To this end, the structure of the thesis is the following: 
the second chapter provides a comprehensive state of the art of glass 
nanospheres and artificial opals, with the description of the mechanisms 
of growth for the synthesis of monodisperse dielectric nanospheres and 
the condition for the realization of colloidal crystals. After this 
overview on fabrication processes, structural and optical properties 
have been discussed. And at the end, several examples of opals systems 
are reported and analysed, exploiting their potential applications. 
The third chapter is linked with the second one because it presents a 
focus on one particular 3D colloidal crystal structure that has been 
tailored specifically for structural health monitoring application. This 
colloidal crystal structure has been investigated both with experiments 
that coupled optic and mechanics and then validated through an 
analytical model and then a numerical one that takes into account the 
nanostructures that changes with the application of an external stimuli. 
The fourth and fifth chapters deals with a 2D optical grating made via 
colloidal route. These structures have been studied in order to make a 
step forward to the enhancement of the sensitivity for structural health 
monitoring sensors. In this frame both experiments and new analytical 
models for the interpretation of the results have been performed. 
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The sixth chapter revisits the 3D colloidal structure which have been 
investigated to see its response to organic solvents in order to study the 
swelling and diffusion process.  
These kind of analysis regarding diffusive and transport problems have 
been carried out from a purely analytical point of view in the last three 
chapters, employing the fractional-order operators and taking into 
account the memory effect of structured systems, which has been 
discussed above. 
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2. Glass Nanospheres and Artificial Opals 
 
 
By A. Chiappini, C. Armellini, A. Carpentiero, L. Pasquardini, A. Vaccari, S. Pelli, V. 
Piccolo, A. Lukowiak, G. C. Righini, R. Ramponi, D. Zonta, and M. Ferrari 
 
Abstract 
 
The potential of glass materials in the field of photonics can be 
enhanced by providing them with a submicrometer structure. This can 
strongly affect the light–matter interaction, e.g., adding to the material 
a structural color or a tailored porosity at the micro- and/or nanoscale. 
Colloids and opals have fascinating properties, both as model systems 
to probe fundamental phenomena in condensed matter physics and as 
templates for patterned materials useful for different applications, 
ranging from optics to energy storage. In the present chapter we provide 
a comprehensive account on the state of art of glass nanospheres and 
artificial opals by describing the mechanisms of growth for the 
synthesis of monodisperse dielectric nanospheres and the conditions for 
the realization of colloidal crystals. Structural and optical properties of 
these structures are also discussed. Finally, different examples of opal 
systems are reported and analyzed, putting in evidence their possible 
applications. 
 
2.1 Introduction 
 
Colloids are usually referred to as small particles with at least one 
characteristic dimension in the range of a few nanometers to 
micrometers, dispersed in a different phase [1]. Since the pioneering 
work by Graham [2] and Ostwald [3], begun more than 140 years ago, 
colloids have become a subject of extensive research in the context of 
chemistry, biology, materials science, condensed matter physics, and 
applied optics [4]. Fundamental studies on colloidal particles require 
the production of monodisperse beads that are uniform in size, shape, 
composition, and surface properties. Thanks to many years of 
continuous efforts, a variety of colloids can now be synthesized as 
monodisperse particles where size, shape, and charges chemically fixed 
on their surface are identical within 1–2% [5]. Over the past several 
decades, complementary chemical routes have been developed to 
synthesize colloidal particles, with controlled features (shape, size, 
substructure, and surface functional groups) from various materials, 
including polymers and inorganic materials. 
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Figure 2.1 A list of some representative colloidal systems, together with their typical 
ranges of dimensions. In this chart the upper limit of the critical dimension for colloids 
has been extended from 1 μm to 100 μm. 
 
Among them, glass micro- and nanospheres are important in the fields 
of both basic and applied physics since they can be widely employed in 
a large area covering information communication technologies, health 
and biology, structural engineering, and environment monitoring. In 
particular, glass spheres, arranged in close-packed structures, lead to the 
formation of optical passive devices such as switches, mirrors, filters, 
and superprisms [6–9]. On the other hand, silica spheres of tailored size 
and shape, activated with defined concentration of rare earth (RE) ions, 
like Er3+ or Eu3+, have significant potential for use in optical devices 
such as active photonic bandgap materials [10, 11], luminescent 
markers [12–14], nanosensors, and microlasers [15, 16]. Moreover, 
spherical colloids represent a class of ideal building blocks that could 
be assembled into long-range-ordered lattices, such as opals, also called 
colloidal crystals. The ability to crystallize spherical colloids into 
spatially periodic structures allows us the observation of interesting and 
often useful functionalities not only from the constituent material of the 
colloidal particles, but also from the long-range order exhibited by these 
periodic lattices. The beautiful, iridescent, and attractive colors of opals, 
already described in Chapter 2 of this book, are caused by the three-
dimensionally periodic lattices of colloids that are colorless by 
themselves. In this context, recent studies on the optical properties of 
these materials have now evolved into a new and active field of research 
that is usually referred to as photonic crystals or photonic bandgap 
(PBG) structures. The unique features associated with this class of 
materials can be exploited as a directly observable model system to 
study various fundamental phenomena such as crystallization, phase 
transition, and light–matter interaction. At the same time, they have a 
technological importance because they might lead to the fabrication of 
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more efficient light sources, waveguiding structures, and diffractive 
elements to fabricate sensors, filters, and switches. For a more detailed 
description of PBG’s properties and their numerical simulation, the 
interested reader is referred to Chapter 2. 
The present chapter focuses on both glass-based nano-objects and 
opals, as well as on their potential applications being explored 
nowadays. Firstly, we describe dielectric nanoparticles of tailored shape 
and dimensions which are being used as components of artificial opals, 
as well as the processing techniques currently employed to achieve 
complex nanostructures which allow us to tailor light–matter 
interaction. After introducing the mechanisms of growth for the 
synthesis of monodisperse dielectric nanospheres, we focus attention on 
the conditions for the realization of colloidal crystals and describe the 
main structural and optical features, putting in evidence the 
characterization approaches for their determination. Finally, we discuss 
novel applications of opals related to the modification of the 
spontaneous emission, and to the implementation of physical, chemical, 
and biological sensors. 
 
2.2 Synthesis of Dielectric Nanospheres 
 
Numerous chemical methods can be used for the preparation of 
dielectric nanoparticles (NPs). The aim of this section is to describe the 
mechanism of growth and to report the conditions necessary for the 
realization of monodisperse particles of different materials such as (i) 
polystyrene, (ii) silica, (iii) silica activated with rare earth ions, and (iv) 
gold-silica core–shell particles. Let us now briefly discuss each of the 
four cases. 
 
2.2.1 Polystyrene Nanospheres 
 
Polystyrene (PS) or latex spheres can be easily synthesized by means 
of the emulsion polymerization process, which is based on the 
dispersion of a monomer in water [17–19]. There, the formation of long 
polymeric chains occurs, because of the reaction with the initiator. In 
order to improve the dispersion of monomer in water, a surfactant is 
added to the emulsion. The presence of the surfactant in aqueous 
dispersion results in the formation of micelles, which act as reservoirs 
for monomers. Thus, the reaction between the monomers dissolved 
inwater and the free radicals fromthe initiator generates nucleo-
oligomers in the form of tiny particles. The nucleus grows into large 
chains until all monomers encapsulated into the micelles have been 
eliminated. It appears evident that by modifying the quantity of 
surfactant in the emulsion it is possible to control the dimensions of the 
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particles and to obtain building blocks with a size distribution that goes 
from 100 nm to 1 μm [1, 5]. Furthermore, the surface charge of latex 
spheres depends on the nature of the initiator used in the synthesis. 
Experimentally, the synthesis of polystyrene NPs with an average 
dimension of about 235 nm can be obtained using a polymerization 
process based on formation and growth of polymeric nuclei dispersed 
in an emulsion constituted by water, styrene, potassium persulfate 
(KPS), and sodium docecyl sulfate (SDS). The polymerization is 
carried out in an all-glass reactor of 500 ml equipped with a stirrer, a 
reflux condenser, and a heating jacket to control the temperature. 
Twomain parameters have to be controlled during the synthesis: 
temperature and impeller speed. In our case, temperature was set at 80 
± 2◦C by means of a heating jacket connected to a PID controller. The 
mechanical stirrer has a speed equal to 300 rpm, with a variation 
estimated to be 1 rpm. The standard procedure consists in premixing 
190 g of water and 20 ml of styrene monomer in the reactor at the 
temperature of 80◦C for 2 min. The polymerization starts when 0.70 g 
of KPS and 0.092 g of SDS are dissolved in 10 ml of water and added 
to the reactor; after 4 hours the polymerization is completed. After 
cooling down, the colloidal solution is purified by repeated 
centrifugation/redispersion cycles followed by dilution to the final 
volume fraction. Figure 2.2 shows an image of the experimental setup 
used for the synthesis of polystyrene NPs, together with a TEM 
(transmission electronic microscope) image of the nanoparticles 
obtained using the protocol above described. 
 

      

 
Figure 2.2 Left: Photograph of the experimental setup for the synthesis of polystyrene 
(PS) nanoparticles. Right: TEM image of the PS NPs with a diameter of about 235 nm 
[19]. 
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2.2.2 Silica Nanospheres 
 
The best-known method to synthesize monodisperse SiO2 spheres was 
originally developed by Stöber et al. [20] and relies on the hydrolysis 
(1) of a silicon alkoxide and successive condensation (2) of alcohol and 
water to form siloxane groups: 
 
(1) Si(OC2H5)4 + 4H2O→Si(OH)4 + 4C2H5OH 
(2) Si(OH)4→SiO2 + 2H2O 
 
In fact, under appropriate conditions of temperature, pH, and reactants 
concentrations, this synthesis process yields spheres with diameters 
ranging from 100 to 600 nm with a few percent standard deviation in 
diameter [21, 22]. For larger sizes, a strategy based on seeded growth 
technique has been developed [22]. Modifying the quantity of catalyst 
(ammonia) as well as the water content in the reaction, it is possible to 
vary the dimensions of the SiO2 particles keeping low the polydispersity 
of the NPs. Moreover, it is possible to predict the final dimension of 
these spheres using an experimental expression proposed by Bogush et 
al. [22] that specifies the connection between D (average diameter of 
the spheres) and the reagent concentration expressed in mol/L. 
Experimentally, the synthesis of SiO2 NPs with an average diameter of 
250 nm can be obtained using the “Stöber method”, where tetraethyl 
orthosilicate (TEOS), ethanol, concentrated ammonia (NH3), and 
distilled water are used as reagents. Generally, two mother solutions are 
prepared, one containing TEOS and ethanol and a second one with 
ammonia/water/ethanol. The two solutions are quickly combined in a 
reaction vessel and stirred for 24 h by using amagnetic stirrer. Typical 
molar concentration values used are TEOS 0.22 M, distilled water 15 
M, and NH3 1 M. It is important to underline that the condensation 
reaction occurs after a few minutes (typically, 5 min). This can be easily 
observed because, after an invisible hydrolytic reaction forming silicic 
acid, the condensation of the supersaturated silicic acid is indicated by 
an increasing of the opalescence of the mixture after the addition of 
TEOS. After this initial phase, the transition to a turbid white 
suspension occurs, as is noticeable in Fig. 2.3. 
Finally, the silica suspension is centrifuged at 3000 rpm for 30 min and 
washed with water. The centrifuging/washing procedure is repeated 
several times and finally the particles are dried at 80◦C overnight. A 
typical SEM (scanning electron microscope) image of the NPs obtained 
is shown in Fig. 2.3. 
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Figure 2.3 Left: Photograph of the silica suspension after 24 h. Right: SEM image of 
the SiO2 NPs with a diameter of 250 nm [23]. 
 
2.2.3 RE-Activated Silica Core-Shell Particles 
 
The synthesis of core–shell particlesis a successful method to fabricate 
novel materials with different compositions and morphologies. There is 
much interest in the synthesis of nanoscale particles doped with 
lanthanide ions; in particular, silica colloids of predictable size and 
shape, doped with a controllable concentration of lanthanide ions, have 
significant potential for their use as microlasers, luminescentmarkers 
and nanosensors. In this scenario, one of the main requests is the 
synthesis of silica monosize nanoparticles activated with RE ions. They 
can be formed by either an acid-catalyzed reaction [24–26] or a base-
catalyzed (Stöber) reaction [20]. However, the incorporation of the RE 
ions in the silica matrix using a base-catalyzed reaction fails because 
the RE ions immediately form an insoluble RE hydroxide [25]. On the 
other hand, the acid-catalyzed hydrolysis of TEOS results in the 
formation of large particles with sizes and size distributions that are 
difficult to control [27]. Recently, it has been shown by Moran et al. 
that it is possible to incorporate lanthanide ions during the growth of 
silica particles with a polidispersity of about 10% by using an acid 
catalyzed reaction. 
An alternative approach for the synthesis of monodispersed silica 
nanoparticles activated with RE ions is based on core–shell structures. 
These systems are constituted by a core of silica, synthesized by a base-
catalyzed process, and a RE-doped silica shell, e.g., Er2O3-SiO2, 
obtained using a seeded growth method and an acid catalyst. Figure 2.4 
(left) shows a SEM image of silica Er3+-activated core–shell structures, 
where the absence of clusters of particles is evident, thus indicating that 
the shell growth occurs on individual particles [21].  
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Figure 2.4 Left: SEM image of Er3+-activated core–shell particles after seeded growth 
using the acid-based reaction. Right: Room temperature photoluminescence spectrum 
of the 4I13/2 → 4I15/2 transition of Er3+ ions for these particles, upon excitation at 514.5 
nm (dashed line) and upon excitation at 980 nm (straight line) [21]. 
 
Photoluminescence measurements, reported in Fig. 2.4 (right), confirm 
the incorporation of Er3+ ions in the silica shell; in fact, the shape of the 
4I13/2 → 4I15/2 emission band is typical of Er3+-activated silica glasses 
with a main emission peak at 1533 nm. 
 
2.2.4 Gold-Silica Nanospheres 
 
The core–shell configuration is also a suitable tool to obtain hybrid 
nanoparticles with low polydispersity. Nowadays, in particular, 
researchers are interested in synthesizing nanoparticles constituted by a 
metallic core with a dielectric shell. Among the different structures, 
gold-silica core–shell particles have attracted a wide interest not only 
as probes but also as building blocks for the creation of hybrid nano-
objects. Experimentally, the realization occurs through a two-step 
approach: (i) the synthesis of Au nanoparticles with a typical dimension 
of tens of nanometers, and (ii) the growth of a silica shell with desired 
thickness. One of the main approaches for the realization exploits the 
Turkevich method, which allows producing gold particles of spherical 
shape and high monodispersity [28]. With this method the synthesis 
occurs through the reduction of chloroauric acid (HAuCl4) at 80◦C, 
under vigorous stirring, by a reducing agent such as sodium citrate. In 
this way a burgundy-red solution appears in few minutes due to the 
formation of spherical gold nanoparticles (see Fig. 2.5). The gold 
nanoparticles thus prepared are then diluted in 2-propanol and used as 
seeds in a coating process based on the Stöber method. Aqueous 
ammonia is added to the alcoholic gold colloidal solution under 
vigorous stirring. Silica coating is started by adding 
tetraethylorthosilicate. The addition of TEOS and ammonia in proper 
molar ratio allows controlling the shell thickness [29]. A typical SEM 
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image of the goldsilica core–shell spherical nanoparticles is shown in 
Fig. 2.5. 
 

           

 
Figure 2.5 Left: Photograph of gold spherical nanoparticles suspension with amean 
diameter of about 10 nm. Right: TEM image of gold-silica core–shell particles with a 
dimension of about 200 nm. 
 
2.3 Artificial Opals by Self-Assembly Approach 
 
Artificial opals, also called colloidal crystals, are confined structures 
composed of assemblies of elements having identical shape and size, 
crystallized in an ordered structure [21, 30]. The first requirement, in 
order to make good self-assembled photonic structures, is the 
monodispersity in the size of the building blocks. In the previous 
section we described four complementary approaches to realize 
monodisperse nanoparticles of different materials (organic and 
inorganic). A further aspect to be considered is the technique used for 
the formation of colloidal crystals. In the last few years, different 
techniques have been developed to obtain self-assembled structures for 
photonic applications. The principal ones can be summarized as 
follows: sedimentation, Langmuir–Blodgett, motor drawing, 
shearinduced, spin coating, and vertical deposition [31]. Among them, 
the most widely used method is the vertical deposition, also known as 
convective deposition method. This technique is based on the 
evaporation of the liquid (generally ethanol or water) forcing the 
spheres to arrange in the meniscus formed between the vertical 
substrate, the suspension and the air, as sketched in Fig. 2.6. This 
method, as demonstrated by Jang et al. [33], provides a precise control 
over the thickness, with a higher crystalline quality with respect to other 
deposition techniques [31]. Colvin et al. [34] demonstrated that it is 
possible to predict the thickness of the systems as a function of the 
number of particle layers, K, from the following expression: 
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where L is the meniscus length, φ is the particle volume fraction in 
suspension, and D is the dimension of the nanoparticles. 
Experimentally, the growth of the polystyrene opal occurs dispersing 
0.036 wt% of PS nanoparticles in 3 ml of water [35]; a hydrophilic 
substrate is placed vertically in a beaker containing the suspension, as 
shown in Fig. 2.6. The deposition occurs in an oven at the temperature 
of 45°C. After 1–2 days, we have the total evaporation of the solvent 
with the formation of the crystallized structure (colloidal crystal). A 
typical image of the opal is reported in the photograph in Fig. 2.6 (right), 
where an evident opalescence is present. 
 

                 

 
Figure 2.6 Left: Schematic illustration of the vertical deposition technique for the 
growth of opals. The substrate is immersed in a beaker containing a suspension of small 
spheres in water. The spheres are self-assembled into a face-centered cubic lattice at 
the meniscus formed at the interface between water, air, and substrate. (Reproduced 
with modifications from the website of the Tyndall Institute [32].) Right: A photograph 
of an opal obtained usingpolystyrene NPs of 270 nm. 
 
2.4 Properties of Opals 
 
For what concerns the structure of these artificial opals, Woodcock 
theoretically demonstrated that when hard spheres self-assemble in 
thermodynamical equilibrium, the face-centered cubic (fcc) 
arrangement is more stable than the hexagonal close packed (hcp) one 
[36]. This assumption was also confirmed by experimental studies, as 
exemplified by the SEM images in Fig. 2.7 [23, 37]. 
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Figure 2.7 Left: SEM image of top surface of an opal structure, where a hexagonal 
alignment is present, corresponding to the plane <111> of an fcc structure. Right: 
Quadratic alignment assigned to the plane <100> of an fcc structure can be discovered 
when the opal is cleaved along the axis [23]. 
 
In fact, analyzing the SEM images in Fig. 2.7, we can clearly observe 
the presence of a hexagonal alignment that can be attributed to the 
<111> plane of the ordered structure. Instead, a quadratic alignment 
assigned to the plane <100> of an fcc structure becomes evident when 
the opal is cleaved along the axis. The periodic pattern in an fcc 
arrangement produces a bandgap where light cannot propagate in the 
structure, as is evident from the diagram of bands reported in Fig. 2.8. 
In this case there is the formation of a pseudo gap in the Γ-L direction 
that can be associated with the plane <111> of the structures. 
 

 

 
Figure 2.8 Diagram of bands for a direct opal structure constituted by polystyrene NPs 
of size 236 nm, assembled in a face cubic centered system. 
 
From an optical point of view, the central wavelength position of the 
pseudo bandgap can be determined by the modified Bragg’s law. 
 

2 2 1/2
1112 ( sin )effd nλ θ= ⋅ ⋅ −  (2) 
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where d111 corresponds to the interplanar spacing of fcc <111> planes 
and neff is the effective refractive index in the opal structure, which can 
be calculated from the following equation for fcc structure 
 

2 2 2(1 )eff spheres mediumn f n f n= ⋅ + − ⋅  (3) 

 
Here, nspheres and nmedium are the refractive indixes of the nanoparticles 
and the surrounding medium, respectively; f corresponds to the filling 
factor of the spheres and it is very close to the fcc ideal value of 74%. 
Moreover, for the fcc lattice with unit cell parameter a, the interplanar 
spacing dhkl is given by the equation 
 

2 2 2 2 2 2

2
( ) ( )

hkl
ad D

h k l h k l
= = ⋅

+ + + +
 (4) 

 
where the relationship between the unit cell parameter and the diameter 
of the nanospheres is given by 
 

2a D= ⋅  (5) 

 
Therefore, d111 is defined as 
 

111 2 / 3d D= ⋅  (6) 

 
In this way, the equation (2.2) can be rewritten as a function of the 
diameter of the nanoparticles: 
 

2 2 1/22 ( sin )effD nλ θ= ⋅ ⋅ −  (7) 

 
Analyzing eq. (2.7) it is evident that it is possible to tune the position of 
the band by various means, e.g., by (i) modifying the dimension D of 
the NPs or (ii) varying the incident angle (θ), but also (iii) infiltrating 
the voids of the opal structure with a desired material. It has been 
experimentally demonstrated that a blue shift of the position of the 
diffraction peak occurs when increasing the incident angle (θ) of the 
light respect to the normal to the <111> plane, as evidenced in Fig. 2.9. 
Moreover, as shown in the same Fig. 2.9, by fitting the position in 
wavelength of the bandgap as a function of the incident angle (θ) and 
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using equation (2.7), it is possible to estimate important values such as 
the size D of the nanoparticles and the effective refractive index of the 
opal. The comparison of this last value, neff, with the theoretical one 
determined using equation (2.3) permits to have a clear indication of 
the quality of the structure realized. 
 

    

 
Figure 2.9 Left: Reflectance spectra at different incidence angles taken on the opal 
produced by the vertical deposition method with 236 nm silica spheres [21]. Right: Plot 
of the angle of incidence θ to the surface normal versus the pseudo bandgap position. 
 
An additional approach to tune (red shift) the position of the bandgap 
of the opal structure concerns the infiltration of the voids of the opal 
with a given material. As a matter of fact, by infiltrating the voids of 
the colloidal crystal with a material that presents a high refractive index 
it is possible to enhance the value of the effective refractive index (see 
eq. (2.3)): this produces a red shift, as expressed by the equation (2.7), 
of the wavelength position of the bandgap. A typical example is 
reported in Fig. 2.10.  
It is also important to remember that the frequency gap of the opal ν 
(with implied hkl indices) can be determined by the contrast between 
the refractive index of the spheres (nspheres) and the medium (nmedium), as 
reported by Shkunov et al. [39]. Precisely, the frequency gap can be 
expressed as follows: 
 

| |spheres medium

spheres

n n
n

ν
ν

−
=

∆
 (8) 
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Figure 2.10 Reflectance spectra: (a) straight curve corresponds to the bare opal with 
NPs of 230 nm; (b) dashed curve represents the same opal infiltrated with poly-
dimethylsiloxane (PDMS) [38]. 
 
Analyzing Fig. 2.10 we can clearly notice a red shift of the position of 
the bandgap after the infiltration, together with a narrowing of the 
frequency bandgap as predicted by the equation (2.8).  
Finally, the thickness of the opal can be determined by means of 
reflection measurements. Let us, for example, analyze the spectrum 
reported in Fig. 2.11. It is possible to observe both the main peak 
attributed to the Bragg diffraction (λb) and several peaks known as 
Fabry–Pérot (FP) oscillations for wavelengths higher than λb, which are 
due to the interference of the light reflected by opposite surfaces of the 
opal films. Now, using the approach proposed by Reculusa et al. [40], 
considering in a first approximation the opal system as a layer of index 
neff and thickness t deposited on a glass substrate, and taking into 
account the wavelength difference of two consecutive FP maxima, the 
thickness (t) can be determined through the expression (2.9): 
 

2 ( )p p m eff p m pm n tλ λ λ λ+ +⋅ ⋅ = ⋅ ⋅ − ⋅  (9) 

 
From eq. (2.9) it appears to be clear that the plot of mλpλp+m versus 
2neff(λp+m−λp) is a linear regression with a slope equal to the thickness t 
of the sample. This approach could be seen as an alternative and 
nondestructive way to estimate the thickness of the opal structures. 
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Figure 2.11 Left: Reflectance spectrum acquired at normal incidence on the inverse 
silica opal, the arrows correspond to the position of the Fabry–Pérot fringes considered 
for the estimation of the thickness. Right: Experimental values of plotted Λ that 
corresponds to mλpλp+m, as a function of 2neff∆Λ, where ∆Λ is (λp+m−λp). 
 
2.5 Heterostructures 
 
In the previous section we described the structural and the optical 
properties of opals. In particular, we saw that colloidal crystals show 
opalescent colors due to the Bragg reflections by the lattice planes 
defined by the nanoparticles. The photonic bandgap of these materials 
mainly depends on the size of the constituting colloidal spheres and on 
the dielectric constant. A complementary confined system based on 
opal structures is constituted by the so-called heterostructures (HT). 
These systems have attracted considerable attention from both the 
scientific and engineering points of view [34, 41, 42] due to their many 
attractive features, such as multi-stop band [43] and extended photonic 
bandgap [44, 45]. A heterostructure is based on multiple layers of opal 
films with different lattice constant or different dielectric constant, or 
both. 
In this section we want to describe the fabrication of HT systems and 
the structural and optical properties of an heterostructure based on opal 
films of different materials such as silica and polystyrene (PS). The 
formation of the HT can, as reported in this example, be induced by 
depositing an opal structure of PS NPs on the SiO2 NPs colloidal film 
that presents analogous dimensions [35]. Actually, using the vertical 
deposition technique, described in section 2.3, it is possible to grow 
opal films of different nature, as reported in Chiappini et al. [35]. Figure 
2.12 presents, on the right, a typical SEM image relative to the cross 
section of an heterostructure, where it is possible to notice the growth 
of the two photonic layers as well as a good ordering of the structures 
realized. From a structural point of view, the two opal films preserve 
the face cubic centered configuration, as one can see in Fig. 2.12 (left). 
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Figure 2.12 Left: SEM image of cross section of a cleaved edge of a heterostructure 
constituted by silica (320 nm) and polystyrene (350 nm) spherical NPs. Right: Top view 
of the HT where large domains of the top layer are present [35]. 
 

 

 
Figure 2.13 Transmittance (dashed line) and reflectance (solid line) spectra of the 
heterostructure of Fig. 3.12. The peaks centered at about 800 and 700 nm are attributed 
to the top (PS) and bottom (SiO2) layer, respectively [35]. 
 
Regarding the optical properties, the Fig. 2.13, which shows the 
transmission and reflectance spectra measured for the the HT of Fig. 
2.12 (nanospheres of silica (320 nm) and polystyrene (350 nm)), reveals 
the presence of a double peakwhose components are centered at about 
800 and 700 nm. Comparing the position in wavelength of the stop 
bands of the double layer of the HT with the stop band of each single 
layer, we clearly notice that there is an excellent agreement, indicating 
that the double peak of the HT can be seen as just the superposition of 
the properties of each individual layer [34]. 
The optical quality of this heterostructure, however, is lower than that 
of each individual layer; this effect can be mainly attributed to the 
roughness at the interface between the two opal layers [42, 46]. Liu et 
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al. [47] have demonstrated that it is possible to enhance the optical 
quality of the heterostructures depositing a thin layer of TiO2 NPs on 
the bottom opal film, thus reducing the roughness at the interface. 
 
2.6 Infiltrated Opals 
 
An additional confined system based on opal structure is constituted by 
a composite material based on polystyrene colloidal nanoparticles 
assembled and embedded in an elastomeric matrix. These types of 
systems can be designed in order to operate in the visible range, by 
choosing properly the nature and the dimensions of the nanoparticles. 
To date, colloidal crystals are used to realize several types of responsive 
photonic devices that can be employed in different fields such as color 
displays [48, 49], biological and chemical sensors [50–52], physical 
sensors [53–56], inks, and paints [57, 58]. Their main feature concerns 
the capability to change color under an external stimulus, due to a 
variation of the structural and optical properties, so that their response 
can be visually tracked by naked eyes. The versatility of this type of 
structures allows one to develop responsive materials, sensitive to 
physical and chemical stimuli. Looking at the literature, several papers 
report on the use of colloidal crystals as responsive materials: Asher 
and coworkers [59] have pioneered the fabrication of hydrogel-based 
photonic crystal sensors for temperature, pH, ionic species, creatinine, 
etc.; Takeoka and coworkers [49] have extensively studied gels that 
exhibit switchable colors over the visible region when exposed to 
external stimuli; Kand et al. [57] have studied solvent-swelling 
colloidal crystals with tunable colors that served as a photonic paper for 
colored writing; Gu et al. [60] have studied the stop-band shift of PCs 
based on the refractive index change; Stein et al. [58] have reported 
solvent-filling effects on the optical properties of ceramic inverse opals, 
which could be used in detecting organic solvents through the change 
in refractive index. Focusing the attention on mechanochromic systems, 
Fudouzi et al. [61] and Zonta et al. [62] have demonstrated their 
potential application to the structural health monitoring through the 
detection of mechanical deformations. From a physical point of view, 
the working scheme of this type of infiltrated opals can be explained by 
the following example (see Fig. 2.14). 
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Figure 2.14 Dependence of interplanar spacing from the applied strain. Comparison 
between the initial (upper figure) and strained (lower figure) configurations [62]. 
 
When an axial strain is applied to the infiltrated opal, the interplanar 
spacing d is modified by the transversal contraction as a function of the 
applied strain value ε. As a side effect, the refractive index neff is also 
linearly affected by the stress variation [62]. The combination of these 
two effects makes the reflectance properties of the colloidal crystal, and 
particularly the position in wavelength of the diffraction peak, sensitive 
to the applied strain (ε). Once the relation is known, a measure of the 
color reflected by the opal system can be used to estimate the strain 
inherited from the structure to which it is attached. In Fig. 2.15 two 
typical photograph images of a mechanochromic structure before and 
during the application of strain are reported: the variation of the color 
of the structure can be easily observed by the naked eye. 
 

          

 
Figure 2.15 Changes in the structural color of the colloidal crystal film deposited on a 
Viton substrate (1.6 × 1.6 cm2): (a) photographic image of the initial sheet (length L); 
(b) photographic image of the stretched sheet (length L+∆ L) [23]. 
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From a quantitative point of view, reflectance measurements reported 
in Fig. 2.16 evidence a blue shift of the diffraction peak as a function of 
the applied strain. Furthermore, when plotting the wavelength position 
of the diffraction peak as a function of the elongation it is evident that 
a linear relationship exists for elongations as large as 2 mm. In this 
region, the lattice distance of the <111> planes, d, also decreases at the 
same rate. For higher elongation values, instead, the position of the peak 
does not change significantly, because the interplanar distance remains 
constant also for higher applied mechanical strain since the PS spheres 
have already been forced in contact with each other. 
 

    

 
Figure 2.16 Relationship between the peak positions and elongation of composite sheet 
(from initial 0 to 3 mm) owing to stretching. Left: Reflectance of the photonic crystal. 
Right: Diffraction peak wavelength position as a function of the elongation [63]. 
 

        

 
Figure 2.17 Colorimetric sensor. Left: Black line corresponds to the reflectance of the 
polymeric composite system. Reflectance spectra acquired after spotting 0.5 μl (one 
drop) of different solvents onto the “sensor” surface, and monitoring the optical change 
of the diffraction peak: (yellow line) ethylene glycol, (green line) methanol, (blue line) 
ter-butyl alcohol and (red line) 1 cSt silicone fluid. Right: Optical photograph showing 
naked eyes detection (from green to red) of a drop of the silicon fluid [38]. 
 
On the other hand, the variation of the interplanar distance and the 
consequent variation in color can be exploited for the development of 
colorimetric solvent sensor, as demonstrated by Chiappini et al. [38]. In 
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this case, the infiltrated opals present a different response as a function 
of the organic solvent dropped on the surface. This is attributed to the 
different capability of the solvents to swell the polymeric matrix. 
Analyzing Fig. 2.17 (left) it is possible to observe a red shift of the 
diffraction peak respect to the initial position, as a function of the 
solvent applied. Higher is the capability of the solvent to swell the 
composite system [8], bigger is the red shift of the Bragg peak obtained, 
due to the variation of the interplanar distance of the colloidal crystal. 
This approach allows one to realize low-cost, flexible, and highly 
sensitive chemical sensors with the advantage to present a reversible 
signal change [38]. 
 
2.7 Inverse Opals 
 
Further structures that can be obtained starting from a colloidal crystal 
are the so-called inverse opals. This type of systems can be used in 
different fields, as platforms for the realization of optical sensors [64–
66], or for the development of photonic devices such as channel 
waveguides [67, 68] or random laser systems [69]. 
Experimentally, an inverse opal is realized by infiltrating the voids of 
the direct one with a suitable material and removing the beads that 
formed the original colloidal crystal. Several techniques have been used 
for the fabrication of these systems such as chemical vapour deposition, 
atomic layer deposition, sol–gel route, etc. In particular, the sol–gel 
technique is a low-cost approach that does not require highly expensive 
and sophisticated equipment for the realization of inverse opals. In this 
case, the formation of the inverse structures occurs by means of the 
following steps: (i) realization of a stable sol (a typical example is 
reported in Ref. [70]), (ii) infiltration of the opal structure with the sol, 
and (iii) removal of the beads through chemical or thermal process. 
From a structural point of view, the inverse opal can be seen as just a 
negative replica of the direct opal. Typical SEM images of inverse silica 
structures are reported in Fig. 2.18. 
Analyzing this type of structures we can observe the presence of hollow 
regions of air spheres well-ordered in a hexagonal lattice corresponding 
to the <111> planes of an initial fcc crystalline structure [71]. As to the 
optical properties of these systems, the periodic variation of the 
refractive index produces an interval of frequencies where the light 
cannot propagate inside the inverse structures. This phenomenon can be 
described using the equation (2.7) from section 2.4, where D, in this 
case, corresponds to the center-to-center distance of the hollow spheres. 
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Figure 2.18 SEM images of the top surface of inverse silica opal obtained using NPs 
of the dimension of 270 nm (left) and NPs of the dimension of 236 nm (right) [70]. 
 
 

 

 
Figure 2.19 Reflectance spectra at different incident angles (step of 2.5◦) obtained from 
an inverse silica opal with voids dimension of about 320 nm. The inset shows a 
photographic image of the inverse silica opal where a green opalescence is evident. 
 
For the inverse structures as well it is possible to determine important 
parameters such as neff and the filling factor by plotting the wavelength 
position of the diffraction peak as a function of the value of the 
incidence angle. In this way it has been possible to verify that these 
structures present a filling factor of 23%, indicating the presence of a 
large surface area [70]. Moreover, colloidal crystals are structures able 
to modify the density of states (DOS). In the bandgap DOS is zero, 
while at the band edge the group velocity vg tends to zero and the 
DOS⇒∞. In this case, the photons propagate slowly through the 
photonic crystal. As discussed above, the optical characteristics of 
photonic crystals make them ideally suited to several light-relevant 
applications. Through the introduction of defects that locally disrupt the 
periodicity, allowed states can be created within the bandgap, thereby 
producing light localization close to the defect [72]. The exploitation of 
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this effect is ideal for trapping and/or guiding light and for the creation 
of specific devices suitable for optics and optoelectronics, energy 
storage, communications, sensors, and biological applications. Among 
the different applications of inverse structures that have been explored, 
sensors are probably the most developed and provide an excellent 
showcase of the advantageous properties of these structures. 
Sensing can benefit from several attributes of inverse systems, 
including their structural colors, their highly accessible surfaces, and 
their nanostructured features. Here we report two possible examples of 
silica inverse structures: (i) structures functionalized with DNA 
aptamers labeled with Cy3 fluorophore for the realization of biosensors 
in dye-labeled fluorescence detection scheme, and (ii) structures where 
gold nanoparticles are immobilized on the silica network of the inverse 
opal for the development of metallodielectric colloidal structures 
(MDCS) suitable for the realization of omnidirectional absorbers [73] 
and chemical-biological sensors. 
 
2.7.1 Fluorescent Aptamer Immobilization on Inverse Colloidal 
Crystals 
 
The development of confined structures and of inverse colloidal crystals 
in particular has potential interest for the implementation of a biosensor 
platform in a dye-labeled fluorescence detection scheme. However, the 
definition of a robust, easy, stable, and costeffective procedure that 
allows the whole functionalization of an inverse structure is still a 
challenge. The use of inverse colloidal crystals, however, will permit to 
achieve photonics-based biosensors combining the optical and 
structural properties of the colloidal crystals with the selectivity due to 
the specific probe immobilization. Kim et al. [74] have demonstrated 
that exploiting the high porosity (increased surface area) it is possible 
to obtain a fluorescence signal 100 times stronger than from the 
conventional planar reference platform. Moreover, by taking 
advantages of the bandgap properties of the colloidal crystals it is 
possible to control the emission of the fluorescent aptamers, thus 
opening new horizons at the interface between biology and the 
nanosciences, showing the potential of combining biological systems 
with nanophotonics. This biophotonic engineering may be extended to 
control emission rates and complex Forster energy-transfer systems 
obtained by protein engineering [75]. A typical result is reported in Fig. 
2.20, which makes evident the possibility to modify and tailor the 
emission of the fluorescent aptamers as an internal light source in a 
photonic crystal by varying the position of the bandgap of the inverse 
colloidal crystal. This effect is due to the fact that the photons whose 
energy lies within the PBG cannot propagate along the <111> direction. 
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The black line corresponds to the typical emission of the Cy3-aptamer 
where there is no overlap between PGB and fluorescence emission [76]. 
Increasing the detection angle (i.e., 20◦ red line and 40◦ green line), the 
bandgap starts to overlap to the spontaneous emission of the Cy3-DNA, 
thus inducing a variation in the shape of the emission spectra. 
 

 

 
Figure 2.20 DNA-Cy3 fluorescence of the inverse opal obtained using for excitation 
the Ar+ line at 514.5 nm and collecting the emission at 0◦, 20◦, and 40◦ detection angles, 
respectively. At 0◦ there is no overlapping between DNA-Cy3 and PBG, whereas at 40◦, 
due to its blue shift, the photonic bandgap overlaps with the emission of the DNA-Cy3 
[77]. 
 
A possible approach to quantify the effect of the bandgap of the 
colloidal crystal, and its efficiency, on the emission spectrum of the 
DNA-Cy3 concerns the determination of the intensity ratio I620/I575 of 
the fluorescence emission at I575 and I620 of the spectra reported in Fig. 
2.20. In this case, a variation equal to 25% has been determined that is 
comparable with the photonic bandgap depth of the inverse structure. 
In a future perspective, the possibility to functionalize silica inverse 
structures with specific sequences (sensitive and selective transducer), 
combined with the features of the colloidal crystals to tailor the 
emission of fluorescent molecules, paves the way to design 
immunosensors for the diagnosis of pathogens [78]. 
 
2.7.2 Metallo-Dielectric Colloidal Crystals 
 
Metallo-dielectric colloidal structures (MDCS) have attracted an 
intense research activity [79–82] during the last decade, thanks to their 
combined features, namely the localized surface plasmon resonance 
(LSPR) of noble metallic nanoparticles and the photonic bandgap of 
colloidal crystals. From an application point of view, these systems can 
be employed as omnidirectional absorbers in a broadband range from 
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visible to near-IR [83], and as chemical sensors [60] or SERS (surface-
enhanced Raman scattering) substrates. [84, 85] Among different 
techniques, the wet chemistry approach is a very interesting, cheap, and 
easymethod that allows one to realize different metallo-dielectric 
structures such as colloidal photonic crystals doped with gold [76, 86], 
long-range-ordered broccolilike arrays [87], and self-organized arrays 
of Au nanocrescents deposited over a compact monolayer of polymeric 
nanospheres [88]. A complementary further example concerns the 
realization of MDCS based on the immobilization of gold spherical 
nanoparticles in the network of an inverse silica opal (ISO). From an 
optical point of view, this type of system again combines the properties 
of the localized surface plasmon resonance of Au NPs with the photonic 
bandgap features of the colloidal crystal structures, as evidenced in the 
absorbance spectra reported on the right of Fig. 2.21. 
In Fig. 2.21 we can notice that the MDCS structures present two 
characteristic peaks, one centered at about 600 nm and the second one, 
smaller, at 520 nm. The peak centered at about 600 nm is attributed to 
the stop-band of the inverse structure which has originated from the 
diffraction of the 3D ordered system. Moreover, we can notice that the 
position of the diffraction peak remains fixed at 600 nm for all the 
spectra reported, suggesting that the Au Nps are predominantly 
immobilized on the surface of the structures or infiltrated just in the first 
layers of the PCs. The peak centered at 520 nm, on the contrary, can be 
assigned to the localized surface plasmon resonance (LSPR) of the Au 
NPs immobilized on the silica network of the inverse structure. In fact, 
this peak is almost in the same position as that obtained for the 
synthesized gold colloidal nanoparticles in aqueous solution [23, 80, 
89]. In order to prove that this type of systems can be used as SERS 
substrate, we performed Raman measurements using benzenethiol (BT) 
as a probe molecule. Figure 2.22 shows the Raman signal obtained from 
a MDCS (a), compared with the signal from a gold film deposited by 
sputtering, where the same amount of BT is absorbed (b), and the signal 
obtained when pouring (and letting to dry) a 5 μL drop of pure BT onto 
an inverse silica opal (ISO) (c) [23]. 
Observing Fig. 2.22, we can underline that the typical Raman bands of 
BT can be very easily identified only in the case of the MDCS structure 
(curve a). Moreover, one clearly notices that the spectrum (a) appears 
significantly enhanced compared to the Raman spectra obtained from 
gold film and ISO structures, thereby suggesting that metallo-dielectric 
colloidal structures can be used for the detection of biomolecules at low 
concentrations. 
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Figure 2.21 A metallo-dielectric colloidal structure (MDCS) where Au NPs of the 
dimension of about 10 nm are immobilized in the network of an inverse silica opal 
(ISO). Left: SEM image of the MDCS. Right: Absorbance spectra of (a) an inverse silica 
opal and (b–d) metallo-dielectric structures obtained after immersion of ISO into the 
Au Nps colloidal solution for different times: 1 h, 2 h, and 4 h, respectively [89]. 
 
 

 

 
Figure 2.22 Raman spectra of benzenethiol adsorbed (a) on the metallicdielectric 
colloidal structure, (b) on sputtered gold film, and (c) on an ISO covered with a 5 μL 
drop of pure (BT) and then dried [23]. 
 
2.8 Conclusions 
 
In this chapter, various colloidal systems were discussed. The first 
section described a variety of chemical methods to make up colloidal 
systems consisting of spherical particles, with diameters ranging from 
20 nm to 1 μm, with different functionalities. Specifically, by 
controlling the chemistry of the reactions, it is possible to synthesize 
monodisperse nano- and microparticles, based on organic and inorganic 
materials, with tailored dimensions, that can be activated with rare earth 
ions, as well as hybrid particles in core–shell configuration. Starting 
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from these nanospheres, some possible approaches were described for 
the fabrication of 3D colloidal crystals, considering the main deposition 
parameters such as particles volume fraction, spheres dimensions, and 
deposition temperature. 
The second section focused on the structural and optical properties of 
different confined colloidal systems such as direct opals, infiltrated 
opals, inverse colloidal crystals, heterostructures, and metallo-dielectric 
colloidal systems. Their optical features, such as photonic bandgap 
position, peak broadening effect, and frequency gap, were considered 
and analyzed by means of an analytical model, which was validated 
through comparison with experimental results. 
The last section was devoted to the discussion of the properties and the 
possible applications in different fields. As an example, properly 
designed structural colored composite systems can be exploited as 
strain and chemical sensors, where detection can be obtained by naked 
eyes. Inverse structures functionalized with specific fluorescent 
aptamers can find potential interest as a biosensor platform in a dye-
labeled fluorescence detection scheme, taking advantage of the bandgap 
properties of the colloidal crystals that allow us to control the emission 
of the fluorescent aptamers. 
Finally, metallo-dielectric structures based on the immobilization of 
gold nanoparticles in the network of an inverse silica opal can be 
applied as SERS substrates, combining the properties of the localized 
surface plasmon resonance of Au NPs with the structural features of 
colloidal crystals. 
The great design flexibility of the various ordered structures based on 
glass and polymeric nanospheres leaves great room for the ingenuity of 
researchers and engineers, thus providing high potential for novel or 
advanced photonic applications. 
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3. Stimuli-Responsive Colloidal Crystal for 
Structural Health Monitoring: Fabrication and 
Numerical Modelling 
 
 
By V. Piccolo, A. Chiappini, C. Armellini, A. Vaccari, L. Deseri, M. Ferrari and D. 
Zonta 
 
Abstract 
 
In this reaserch the concept and development of a strain sensing system 
for a future structural application based on the properties of stimuli-
responsive opals is presented. One type of colloidal crystals can be seen 
as a periodic arrangement of regularly shaped materials with different 
dielectric constants. Their optical properties are tailored by the 
periodicity in the refractive index, changing this one means that the 
wavelength of reflectance will change. This effect makes the opal 
structures a convenient tool for sensing, especially if the effect can be 
made specific for the stimulus. Once the colloidal crystal is designed to 
work in the visible range, a distortion in the periodicity of such structure 
results in a change in its apparent color. Such effect makes them 
amenable to visual readout by untrained operators. This latter aspect 
could be a huge improvement for permanent monitoring of structural 
elements, as any critical changes in the strain field can be immediately 
and easily detected by visual inspection. Here we provide the basic 
information concerning the physical principle and expected 
performance of stimuli-responsive colloidal crystals and the fabrication 
of these structures, then a finite difference time domain analysis has 
been performed and compared to the experimental results. Finally, we 
discuss the results in terms of possible applications to structural health 
monitoring of civil structures. 
 
3.1 Introduction 
 
One of the most common malfunction causes in civil, industrial and 
transportation structures is fatigue damage, involving initiation of 
cracks in critical sites and their propagation until eventual catastrophic 
failure. Often these structures are exposed to complicated (sometimes 
stochastic) operational and environmental conditions that, in 
combination with complex geometrical features, make the prediction of 
their life cycle very difficult. The uncertainty about the structural 
integrity of in-service structures forces designers to damage-tolerant-
design approaches relying on periodic inspections to ensure that the 
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structure is free of critical defects able to jeopardize the 
functionality/safety before the next scheduled inspection. Since size, 
location and propagation behaviour of potential critical defects may not 
be known exactly, the number of inspections is often overestimated, 
thus incrementing maintenance costs and idle times. The uncertainty 
about the actual state of a structure can be considerably reduced by 
structural health monitoring (SHM), which has been defined by 
Housner et al. [12] as “the continuous or regular measurement and 
analysis of key structural and environmental parameters under 
operating conditions, for the purpose of warning of abnormal states or 
accidents at an early stage”. Therefore, many SHM strategies are 
devoted to timely detect fatigue cracks for continuous real-time damage 
estimation and condition-based maintenance. In the past, several non-
destructive damage detection (NDD) techniques has been envisaged 
and applied for SHM purposes. They are based on a wide variety of 
physical characteristics, such as damping [20], natural frequencies [7], 
modal shapes [17], mechanical guided (Lamb) waves scattering [14], 
[15], nonlinear acoustic-ultrasonic methods [5], electric potential drop 
[22]. Although these methods have certain advantages, their 
applicability is impaired by some drawbacks, among them sensitivity to 
boundary and/or environmental conditions (e.g. temperature, varying 
operative load conditions), utilization of invasive sensors/actuators and 
in many cases inability to estimate size and location of the defect. 
One promising NDD technique is based on strain field measurements 
aimed at revealing anomalous perturbations exerted by cracks [16]. In 
this case, the strategies to identify, locate and quantify a crack depend 
on the type of strain sensors employed in the SHM technique. Strain 
sensors, like electrical resistance-based or optical fibre Bragg grating 
(FBG) strain gauges [19], have relatively short gauge lengths resulting 
in engineering information collected at a single point. Consequently, a 
network of sensors placed at certain critical points of the structure is 
required to accomplish a global evaluation of a large structure [11]. 
These ‘point monitoring’ methods are feasible only if the hot spots of 
the structure, where the point sensors will be installed, have been 
identified accurately. Moreover, as cracks generally produce a very 
localized perturbation of the strain field, a large number of point strain 
sensors is required to detect cracks whose size is still compatible with 
the integrity/functionality of the structure [3]. To overcome this 
drawback, long-gauge optical strain sensors have been developed [8]. 
In this case, local effects caused by the crack on the strain field are lost, 
while changes in global dynamic response of the structure are detected 
by integrating the response along the length of the structure. As in the 
approaches based on the change in natural frequency and modal shapes, 
the crack is detected indirectly from the global response of the structure 
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and therefore the method suffers from similar environmental 
limitations. 
If a large structure with many possible crack nucleation sites needs to 
be monitored, a distributed crack monitoring method becomes 
necessary [23]. Line-distributed strain sensors are generally based on 
the modulation of light intensity in optical fibres. More specifically, in 
the optical time domain reflectometry (OTDR) Rayleigh and Fresnel 
scatterings are used for sensing structural perturbations, while Brillouin 
scattering detects the Doppler shift in light frequency which is related 
to the strain measurement [10]. These techniques have been 
successfully applied in SHM of aircraft and civil structures [10], [27]: 
the onset of a crack is detected as a peak or discontinuity in the strain 
field monitored along the fibre. The appealing feature of these methods 
would be even greater if the entire stress field of the structure could be 
monitored by employing a 2D-distributed strain sensor. Therefore, the 
possibility of applying on the structure surface polymeric films as strain 
sensors is arousing increasing interest. For instance, some new concepts 
exploit piezoelectric or capacitor smart layers [26], [9], [18] as well as 
thin-film full-bridge strain sensors [25] for determining not only crack 
length and location but also fracture mechanics parameters [1]. On the 
other hand, the required data acquisition system and the signal-
processing algorithm make this approach cumbersome and still not 
ready for practical applications. 
In the present paper we propose to use for SHM purpose stimuli-
responsive colloidal crystals (CCs) as a 2D distributed sensors based on 
a low cost technology. They could serve as an easy tool for the in situ 
monitoring of mechanical deformations by stretching or compressing. 
Specifically, CCs change their reflectance properties depending on the 
applied strain field, so that a deformation of the film results in a change 
in its apparent colour (once they have been design to work in the visible 
range). In principle, this feature makes the sensor suitable for the 
permanent monitoring of structural elements, as any particular changes 
in the strain field could be immediately and easily seen by visual 
inspection without complicated systems for data acquisition and signal 
processing. Despite the state of the art on similar devices is still at the 
initial level [6], and the application are limited to laboratory tests (only 
few in situ application on small structural parts), this technology is very 
promising for the fatigue damage detection, as it allows the 
identification of the strain field in critical zones, e.g. around cracks. In 
a future scenario, this kind of sensor could be directly integrated in the 
structural elements’ production or used as a coating spread into the 
surface. Many practical issues, such as the in situ maintenance and 
duration, are still to be overcome, but the present research is a first step 
in that direction. 
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This paper is organized as follows: Section 2 presents the approximate 
analytical optomechanical solution; Section 3 presents the briefly the 
fabrication protocol and the results of the experimental 
characterization; Section 4 illustrates the Finite Difference Time 
Domain (FDTD) model that has been written to both validate the 
experimental results and to elaborate a new design tool for this kind of 
nanomaterials with the comparison between its output and the 
experiments, then some concluding remarks are provided in the last 
section. 
 
3.2 Colloidal Photonic Crystals: Approximate 
Optomechanical Approach and Expected Performance 
 
The idea of using CC as a sensor for SHM is based on the observation 
that a distortion in the crystal structure produces a change in the 
reflected bandwidth. Fiber Bragg Gratings (FBGs) are a well-known 
example of photonic structure commonly used as sensors in civil and 
mechanical applications [8], although they normally operate in the 
infrared field. Whenever a photonic crystal is designed to work in the 
visible range of the spectrum, a variation in the crystal lattice results in 
a change in its apparent colour. Fuduozi [6] has suggested these crystals 
can also be utilized for obtaining optical strain sensors, suitable for 
monitoring and displaying structural and environmental variations in 
terms of colour variations, which can be visualized by appropriate 
optical instruments or even by the naked eye. This feature makes CCs 
suitable for monitoring in continuus structural elements, as any changes 
in the strain field can be immediately and easily detected by visual 
inspection. 
Consider the 3D CC deposited on a substrate, having colloidal spheres 
in an elastomeric matrix of refractive indices n1 and n2, respectively, 
and filling factor f, illuminated by white light, as depicted in Figure 1. 
The crystal will reflect the light around a specific bang-gap wavelength 
λ. As a first approximation this could be expressed by the modified form 
of Bragg's law: 
 

𝜆𝜆 = 2 ∙ 𝑑𝑑111 ∙ ��𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒�
2 − (sin𝜃𝜃)2 (3.1) 

 
where d111 is the inter-planar distance, neff is the effective refractive 
index and θ is the angle of the incident light measured with respect to 
the crystal surface. For the effective refractive index, a mixture theory-
like approximation is adopted, namely: 
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𝑛𝑛𝑒𝑒𝑒𝑒𝑓𝑓2 = 𝑓𝑓 ∙ 𝑛𝑛12 + (1 − 𝑓𝑓) ∙ 𝑛𝑛22 
(3.2) 

 
where f is the composite filling factor, in this case the rate between 
sphere volume and matrix volume. Assuming an incidente angle equal 
to zero, equation (3.1) reduces to the classical form of Bragg’s law: 
 

𝜆𝜆 = 2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑑𝑑 
(3.3) 

 
Assuming the refractive index invariant with strain, the reflected 
wavelegnth is directly proportional to the interplanar spacing d111. Thus, 
a relatively small change in the interplanar spacing d111 will result in a 
change in the reflected wavelength according to: 

 
𝛥𝛥𝛥𝛥 = 2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝛥𝛥𝛥𝛥 

(3.4) 

 
With a first order approximation, the change in the d can be evaluated 
as 𝛥𝛥𝛥𝛥 = 𝑑𝑑0 ∙ 𝜀𝜀3 where 𝜀𝜀3 is the crystal small strain in the orthogonal 
direction to its plan and 𝑑𝑑0 is the interplanar spacing in unstrained 
conditions. Thus, in general, the following expression holds: 
 

𝛥𝛥𝛥𝛥 = 2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑑𝑑0 ∙ 𝜀𝜀3 
(3.5) 

 
From the deformation of the substrate one can predict the change in 
band-gap wavelength. Although the magnitude of the strain reached in 
this device is the order of 15%, hence we are in the regime of finite 
deformations, the isotropic Kirchhoff-Saint Venant consitutive relation 
is assumed in this paper. This has the advantage that looks exactly like 
the Hook’s law for linear isotropic elastic solids. Henceforth, the strain 
tensor of the crystal 𝜀𝜀 is related to its stress tensor 𝜎𝜎 through classical 
linear and isotropic elasticity as follows: 
 

𝜀𝜀 = 𝐸𝐸 𝜎𝜎 ; �
𝜀𝜀1
𝜀𝜀2
𝜀𝜀3
� = 1

𝐸𝐸
�

1 −𝜈𝜈 −𝜈𝜈
−𝜈𝜈 1 −𝜈𝜈
−𝜈𝜈 −𝜈𝜈 1

� �
𝜎𝜎1
𝜎𝜎2
𝜎𝜎3
� (3.6) 

 
where E and ν are the equivalent Young modulus and Poisson’s ratio of 
the crystal, and the subscripts 1-2-3 indicate the principal directions. 
For the envisaged application, the CC is typically in a state of plain 
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stress, meaning 𝜎𝜎3 = 0. In this case, the direct relationship between 
strain and in-plain stress simplifies to: 
 

�
𝜀𝜀1
𝜀𝜀2� = 1

𝐸𝐸
� 1 −𝜈𝜈
−𝜈𝜈 1 � �

𝜎𝜎1
𝜎𝜎2� ; �

𝜎𝜎1
𝜎𝜎2� = 𝐸𝐸

1−𝜈𝜈2
�1 𝜈𝜈
𝜈𝜈 1� �

𝜀𝜀1
𝜀𝜀2� (3.7a,b) 

 
and from equation 6 one can simply obtain: 
 

𝜀𝜀3 = −
𝜈𝜈
𝐸𝐸
∙ (𝜎𝜎1 + 𝜎𝜎2) (3.8) 

 
Replacing in equation 8 the strain as in equation 3.7b, one can obtain 
the following fundamental raltionship between the vertical strain 𝜀𝜀3 and 
in-plain strain tensor: 
 

𝜀𝜀3 = −
𝜈𝜈

1 − 𝜈𝜈
∙ (𝜀𝜀1 + 𝜀𝜀2) (3.9) 

 

 
Figure 3.1: Three dimensional CC on the substrate with applied stress (𝜎𝜎1) and the 
related strain distribution (𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3); Es, νs, are Young modulus and Poisson’s ratio of 
the substrate, ν is the Poisson’s ratio of the CC. 
 
Because the CC adhers to the substrate, equation 3.9 can be seen as the 
raltionship between the vertical strain of the CC and the in-plane strain 
of the substrate surface. 
If a stress 𝜎𝜎1 is applied to the support, its in-plane strain results: 
 

�
𝜀𝜀1 =

𝜎𝜎1
Es

𝜀𝜀2 =
−νs ∙ 𝜎𝜎1

Es

 (3.10) 
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where Es, νs are the Young modulus and Poisson’s ratio of the substrate. 
With the assumption of isotropy of the material the strain in the same 
plane of the substrate, 𝜀𝜀2, can be evaluated with the following formula: 
 

𝜀𝜀2 = −νs ∙ 𝜀𝜀1 
(3.11) 

 
and replacing (3.11) in (3.9), we obtain: 
 

𝜀𝜀3 = −ν ∙
1 − ν𝑠𝑠
1 − ν

∙ 𝜀𝜀1 ≈ −ν ∙ 𝜀𝜀1 (3.12) 

 
where the approximation is valid as long as the two Poisson’s rations 
are close enough. Equation 12 states that when the substrate is stretched 
under a uniaxial stress in one in-plane direction, it and the crystal itself 
contracts approximately ν times the elongation along the stress 
direction. Combining (3.12) with (3.5) lead to the determination of the 
change in reflected wavelength 𝛥𝛥𝛥𝛥 as follows: 
 

𝛥𝛥𝛥𝛥 = −2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ν ∙
1 − ν𝑠𝑠
1 − ν

∙ 𝜀𝜀1 ≈ −2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ν ∙ 𝑑𝑑0 ∙ 𝜀𝜀1 (3.13) 

 
In the most general case both the refractive index 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 and Poisson’s 
ratio ν could change with strain. Henceforth, the relationship between 
the bandgap wavelength and the transverse strain becomes nonlinear. 
In this case the sensitivity of 𝛥𝛥𝛥𝛥 with the change in longitudinal strain 
takes approximately the following form: 
 

𝛥𝛥𝛥𝛥
d𝜀𝜀1

≈ −2 ∙ 𝑑𝑑0 ∙ �
d𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒

d𝜀𝜀1
∙ ν ∙ 𝜀𝜀1 + 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙

d𝜀𝜀3
d𝜀𝜀1

� (3.14) 

 
Making the assumption of a linearly elastic behavior of the material and 
the effective refraction index 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 constant with strain, Equation (3.14) 
reduces to the following expression: 
 

𝛥𝛥𝛥𝛥
d𝜀𝜀1

= −2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ν ∙
1 − ν𝑠𝑠
1 − ν

≈ −2 ∙ 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒 ∙ ν ∙ 𝑑𝑑0 (3.15) 

 
which basically shows in first approximation that the crystal sensitivity 
to strain is proportional to its refractive index, lattice spacing and 
Poisson’s ratio. 
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3.3 Fabrication Protocol of Colloidal Photonic Crystals and 
Testing 
 
3.3.1 Fabrication Protocol 
 
In the last decade, several methods have been developed to create CCs, 
such as: vertical deposition, electrostatic repulsion, capillary forces 
induced convective self-assembly [40] and electric field induced 
assembly. Depending on the technique, the production time ranges from 
days to weeks. The authors of this paper already performed a simple 
and effective method to obtain monosize polystyrene spheres and 
consequently, to realize colloidal photonic crystal structures from these 
spheres, based on spin coating technique. Despite of the array of 
advanced techniques available, the CCs developed as strain sensors for 
the application presented in this paper have been produced by using the 
most classical technique, meaning vertical deposition. This is the 
simplest and cheapest technique at the state of the art, while its 
drawback is essentially the high time-consuming and the size of the 
final crystal. 
The sample that has been made was constituted by polystyrene spheres 
(PSs) embedded into a poly-dimethylsiloxane (PDMS) elastomer. The 
applied technique is basically made by three main steps: the first step is 
the fabrication of the PSs; second step consists into the deposition of 
the PSs in a lattice structure, finally the infiltration with the elastomer. 
The fabrication of the spheres is characterized by the mixture of styrene, 
water, a surfactant (SDS), and a polymerization initiator (K2S2O8), in 
temperature and stirring speed control (see figure 3.2a) . As a result of 
the selected parameters, the PSs have been produced with a diameter of 
about 230nm. This value was chosen to obtain a suitable color of the 
CC, although the size can be modified by applying a different 
fabrication protocol. 
Then, in the second phase, a highly mono-disperse PSs suspension is 
deposited on a highly deformable rubber substrate (Viton) with size 
50x15x1mm. This substrate was vertically placed in a beaker 
containing the aqueous suspension and put in an oven at constant 
temperature of 50°C. A couple of days were necessary to deposit the 
CC on the support. In this time, the crystallization is initially driven by 
strong attractive capillary forces acting between particles at the drying 
front when the liquid film reaches a thickness of the particle diameter 
(see figure 2b). This effect drives particles to aggregate in layers and 
creates a porous structure with high specific surface area. The large 
surface area facilitates solvent evaporation. The thickness of the PC is 
in the order of 10µm. 
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The third step was the infiltration with PDMS (Sylgard 184, Dow 
Corning) (see figure 2c). The elastomer is made of two separate 
components: base and curing agent. The base and curing agent were 
mixed in a 3:1 ratio. After infiltration the PDMS was cured for 4h at 
65°C and then the excess elastomer was peeled-off from the crystal. 
Several infiltration cycles were necessary to completely fill the voids 
among the PS spheres, before any re-infiltration step the sample was 
swollen in a silicone fluid (Dow Corning 1cSt). The obtained composite 
film was a 3D lattice of PS spheres embedded in a PDMS matrix. The 
elastomer has the fundamental function to allow a flexible CC structure 
which can be handled. Furthermore, this process affects the range of 
deformability of the CC. 
 

a)  
 

b)  
 

stirring

water

styrene



Valentina Piccolo – Experimental and Novel Analytic Results for Couplings in 
Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics 

54 
 

c)  
 

Figure 3.2: Production of the Photonic crystals: fabrication of the Polystyrene Spheres 
(a), vertical deposition (b), and infiltration (c) (Hatton2010). 

 
 

 
 
Figure 3.3: shows an AFM (Atomic Force Microscope) image of the of the final CC 
sample. 
 
3.3.2 Testing 
 
A sample of CC, produced with the fabrication protocol presented in 
the previous section, has been tested in the laboratory for identifying 
the relationship between the applied strain and the wavelength of the 
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reflected peak. The CC is a 10x10mm patch and, as described before, it 
has been deposited onto a 50x15x1mm rubber support.  
 

 
 
Figure 3.4: On the left the sample in the reference configuration, characterized by a 
length of 14mm, which exhibit an orange color, on the right the sample with a final 
length of 16 mm, exhibiting a green opalescence.  
 
As shown in Figure 3.4 the sample appears orange in the reference 
configuration (not stressed) and it turns green as a tensile strain is 
applied.  
During the test, the strip has been fixed to two micrometric linear 
stages, so that the center of the sample is kept almost fixed, while 
symmetrically elongating the ends. Thus the applied field is basically a 
mono-axial strain, and the test is carried by elongating the support. 
Figure 3.5 shows the experimental set-up. 
 

 
 
Figure 3.5: Set-up for the laboratory test on the CC sample. 
 
The diffraction characteristic of the CC has been recorded by using a 
spectrometer.This is composed by a light source, a light receiver and a 
spectrometer analyzer. Both source and receiver are connected with a 

linear 
stage

probe for light
source and detector

photonic 
crystal

anchorage
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probe that permits to easily inspect the sample surface. During the test 
the probe was kept perpendicular to the strip. The outcome of this 
instrument is the full spectrum of the received light in the visible range 
(350-750nm), with a wavelength resolution in the order of 0.1nm. The 
area of the CC inspected by the device is about 4 mm2: hence it is a 
local measure. The sample underwent a deformation cycle, from an 
original length of 14.0 mm up to 16.0mm, corresponding to a maximum 
elongation of 2 mm and a strain 14.3%, and then down to the reference 
configuration. The outcomes are reported below in Figure 3.6.  
 

 
 
Figure 3.6: Reflectance spectra of the CC sample recorded during the elongation test. 
 
The attenuation at each step of elongation (depending from the strain) 
is a well known phenomenon [6]. Each spectrum presents a clear bell-
shape, with a width of about 30 nm and a wavelength shift of the peak 
around 9 nm at aech recorded step. Figure 7 reports the relationship 
between the peak wavelength and the applied strain, recorded during 
the load cycle. The wavelength decreases as the strain increases as 
expected from the formulas described in the previous section. The 
performance of the device in terms of sensitivity is around 3.5 µε /pm. 
There are several possible explanations of the sample behaviour in 
terms of its reflection spectra whenever such device undergoes imposed 
deformations. 
The decrease in the reflection intensity is proportional to the ratio 
between the difference of the refractive index of the materials (which is 
assumed to be constant in the model) and the effective refractive index 
as shown in the following formula [28].  
 



Stimuli-Responsive Colloidal Crystal for Structural Health Monitoring: Fabrication 
and Numerical Modelling 

57 
 

I∝Δn/neff 
(3.16) 

 

 
 
Figure 3.7: Experimental relationship between the peak positions and the applied 
elongation. 
 
This demonstrates that the effective refractive index is changing due to 
the change in the volume fraction of the system, as it was highlighted 
above. Such a volume fraction for the FCC lattice can be evaluated as 
follows [29]: 
 

f = 2π/3  d3/a3 
(3.17) 

 
where d is the diameter of the spheres and a is the lattice parameter 
(a=d111√3).  
The asymmetry in the shape of the reflection spectra in the experiments 
is due to the cracks that are present into the sample[30] and to the 
interrogation system, for example the influence of the lamp that has an 
own particular spectrum as shown in figure 3.8.  
If the effect of the particular shape of the spectrum of the lamp could be 
purged, the effects of defects is unavoidable while measuring, since the 
illuminated area is much larger (the unit are millimeters squared) than 
the domain without them (of the order of micrometers). Those cracks, 
which arises during the drying process of the PhC films, are not entirely 
avoidable and some other groups are working on this fabrication 
problem [31, 32, 33]. 
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Figure 3.8: Spectrum of the lamp that has been used to perform the optic 
measurements. 

 
The shape of the experimental spectra changes also with the applied 
strain showing a broadening of it. This behaviour is probably due to the 
coexistence of two phenomena that happen during the deformation of 
the sample: the opening of the cracks described above and an 
inhomogeneous differential displacement of the different planes of the 
crystal, nonetheless the measurements itself that is not restricted into a 
very small area. This differential displacement of planes could lead to 
an analogy with the reflectance spectra of a heterostructure [34, 35, 36], 
where there is the convolution of the contributions that every different 
inner structure gives. 
 
3.4 Numerical Simulation with Finite Difference Time 
Domain Code and Comparison with the Experimental Results 
 
In this section a computational approach is presented. It has been used 
not only for validating the experimental results showed before, but also 
for better understanding the behavior of this highly complex physical 
system, and pave the way to the design of innovative and versatile 
photonic sensors. The experimental optical behavior has been 
compared with the corresponding solution for the electromagnetic field 
obtained from the governing Maxwell’s equations. Due to their 
analytical complexity, they can be solved only approximately, by means 
of a numerical approach. Using the Finite-Difference Time-Domain 
(FDTD) method, we directly implemented the two Maxwell’s curl 
equations in an in-house developed C/C++ code. The remaining two 
divergence free scalar equations (there are no free electric charge inside 
the structure) are automatically obeyed for all the subsequent instants 
of time t, if the initial electromagnetic field distribution satisfies them 
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at t=0. In fact, we use a causal approach, in which an electromagnetic 
plane wave linearly polarized pulse of finite duration impinges on the 
structure, starting from a zero-field situation. The particular geometry 
of the structure (reported in figure 3.9) is included on the FDTD spatial 
grid by modifying, at the electric field sampling points, the coefficients 
of the relevant finite-difference equations with the values of the electric 
permittivity of the PDMS slab (relative permittivity εr=n2 with n the 
refractive index of the PDMS medium: n=1.40) or the polystyrene 
spheres (n=1.55). Outside these materials, the electric permittivity 
equals that of vacuum, ε0=8.854×10-12 Farad/meter, a value practically 
coinciding with that of air. No magnetic effects are considered at all, 
meaning that the magnetic permeability is everywhere the vacuum 
permeability, μ0=4π×10-7 Henry/meter. 
Thirteen consecutive planes of spheres are considered, from a face-
centered cubic (fcc) three-dimensional arrangement, taken along the Λ 
path direction of the Brillouin zone. 

 

 
Figure 3.9: Image of the ripartition of the FDTD volume between vacuum (depicted in 
blu), PDMS (grey), and PS (red). The longest side is arranged in the direction of 
propagation of the electromagnetic wave. 
 
Space steps of the FDTD Yee unit cell nearly equal along the three 
coordinate directions were used, of about 4 nm each, for a total of 
200×1200×200 Yee cells. The time step for the evolution of the explicit 
FDTD algorithm was chosen to obey the Courant-Friedrichs-Lewy 
stability condition [39], guaranteeing numerical stability. Given that our 
spatial scheme was of second order accuracy, we assume a relative error 
accuracy in the final calculated values of the electric field components 
of 1%, as reported in literature. In fact, we used space steps very small 
compared to the wavelengths contained in the main part of the exciting 
pulse. This was a compact pulse of the “smoothed raised cosine” type. 
It has to be recognized, however, that eventually the final result can 
further be affected by the “staircasing” in the geometrical structures 
approximate representation. 
When the impinging initial electromagnetic pulse interacts with the 
dielectric structure, a secondary field is produced, which overlaps to the 
initial one, mixing with it and giving rise to a total electromagnetic field 
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inside the computational volume. After a sufficiently long time interval, 
such total field falls off to zero, because the initial forcing field has 
finite duration and no other sources are present. 
By in-line Fourier transforming the response of the system, obtained via 
a buffering of the field values calculated at each FDTD time step 
multiplied by the correct exponential time phase factor, it is possible to 
calculate the frequency response at any given frequency (or vacuum 
wavelength) of analysis [38]. 
In order to work properly the FDTD algorithm requires special 
boundary conditions at the outer surface of the FDTD spatial grid. Such 
boundary conditions are needed to emulate an infinite extension even if 
only a limited RAM is allowable, thus avoiding any spurious back 
reflection from the outer surface into the computational domain. Such 
a feature is implemented through perfectly matched layers (PML) able 
to absorb outgoing waves without any reflection and attenuate them to 
zero inside the layer thickness. In this specific case, the so called CPLM 
(convolutionary PLM) implementation [37] has been used. CPML 
boundary conditions were used only along the direction corresponding 
to the initial beam propagation direction. On the other surfaces Periodic 
Boundary Conditions have been applied in order to emulate infinite 
transverse dimensions. Particular attention has been paid to assume the 
correct periodicity of the transverse edges of the structure, to avoid the 
introduction of artificial structural defects in the numerical calculations. 
The incident plane wave pulse has been injected on a surface in front of 
the structure, allowing the reflected field to pass freely through such a 
surface without any constrains. We calculated the reflected power flux 
by integrating numerically the real part of the Poynting vector for the 
Fourier transformed reflected field on a transverse surface made of 
200×200 Yee cells. It was normalized with the corresponding flux 
contained in the incident pulse at the same frequency (wave 
wavelength), thus getting the reflectance spectra in the range 350÷750 
nm. 
 

 
Figure 3.10: Internal sections of the FDTD computational volume, which report the 
electromagnetic field maps normalized with respect to the injected wave. The blu part 
is where there is only the reflected field and where the reflectance of the structure is 
calculated. 
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From a mechanical point of view,  the phenomenon is modeled as a 
progressive change of the relative distance of the PS spheres inside the 
PDMS matrix that represents, approximately, the manifestation of the 
deformation of the device during the experiments. At each value the 
response of the sample in terms of reflectance spectra is acquired and 
then compared with the experimental one, as reported in Figure 3.11. 

 

 
Figure 3.11: Comparison between the experimental reflectance spectra (continuous 
line) and the numerical ones (dashed line). 
 
At each programmed step in which we have vary the lattice constant of 
the CC, that means varying the distance between the centre of the 
spheres, a change in the reflectance specta is observed, as shown in 
Figure 3.11. A change in the lattice constant means a change in the 
geometry of the nanostructured device, which directly impact on the 
filling factor that in turn, as shown in Equation (2), implies a change in 
the effective refractive index. This latter parameter plays a key role in 
the process of understanding the behaviour of this kind of structures and 
it is the cause of several features on both the experimental and 
numerical spectra. 
Comparing the normalized spectra, where the influence of the lamp in 
the experiment has been purged, reported in Figure 3.11, one can see an 
optimum agreement between the behaviour of the simulated structure 
and the real one.  
Analyzing the trend, reported in Figure 3.12, one can notice good 
agreement between the experimental data and those obtained by the 
FDTD model. From the practical point of view the key aspect for SHM 
is the sensitivity of sensor. As we highlighted in section 3.2, the 
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sensitivity of the sample was around 3.5 µε /pm and it results in good 
agreement with the numerical one, which is around 3.8 µε /pm. One can 
state with confidence that the numerical model approximates at the best 
the experiment. 
 

 
Figure 3.12. Peaks’ position of the experimental results (black dots) and the numerical 
ones (red dots). 
 
3.5 Conclusions 
 
In this contribution the possibility of using mechanocromic colloidal 
photonic crystals as strain sensors has been discussed. The fabrication 
protocol and the materials involve have been discussed, then we 
demonstrated that the photonic properties of the sample change with an 
applied deformation to the substrate according to theoretical prediction. 
This property is what makes colloidal crystals attractive for strain 
sensing. For this kind of specimens produced so far, the strain resolution 
is in the order of 350 me, insufficient for structural applications if 
compared to the Fiber Bragg Grating sensors, whose resolution is in the 
order of few me. The crystal sensitivity to strain depends directly on its 
interplanar spacing and Poisson’s ratio and it’s limited to the material 
employed. Despite the low strain resolution of these systems, they are 
a promising new generation of sensors to be employed as a sort of skin 
for structural elements. 
 
 
 
 



Stimuli-Responsive Colloidal Crystal for Structural Health Monitoring: Fabrication 
and Numerical Modelling 

63 
 

References 
 
[1] D. Bäcker, A Ricoeur and M. Kuna. Sensor concept based on 

piezoelectric PVDF films for the structural health monitoring of 
fatigue crack growth, Structural Durability and Health Monitoring 
7 (2011) 1-22. 

[2] M. Benedetti, V. Fontanari, D. Zonta (2011). Structural health 
monitoring of wind towers: remote damage detection using strain 
sensors. Smart Mater. Struct. 20 (2011) 055009. 

[3] M. Benedetti, V. Fontanari, L. Battisti (2013). Structural health 
monitoring of wind towers: residual fatigue life estimation. Smart 
Mater. Struct. 22 (2013) 045017. 

[4] M. Benedetti, V. Fontanari and C. Santus. Crack growth resistance 
of MAG butt-welded joints of S355JR construction steel, Eng. 
Fract. Mech. 108 (2013) 305-315. 

[5] C. Biemans, W.J. Staszewski, C. Boller, G.R. Tomlinson, Crack 
detection in metallic structures using broadband excitation of 
acousto-ultrasonics, Journal of Intelligent Material Systems and 
Structures 12 (8) (2001) 589–597. 

[6] H. Fudouzi, T. Sawada, Y. Tanaka, I. Ario, T. Hyakutake and I. 
Nishizaki. Smart photonic coating as a new visualization technique 
of strain deformation of metal plates, Proceedings of SPIE - The 
International Society for Optical Engineering, Vol. 8345 (2012) 
83451S. 

[7] V. Giurgiutiu, A. Cuc, Embedded non-destructive evaluation for 
structural health monitoring, damage detection, and failure 
prevention, The Shock and Vibration Digest 37 (2) (2005) 83–105, 
(2005 Sage Publications). 

[8] B. Glisic, D. Hubbell, D. Sigurdardottir and Y. Yao. Damage 
detection and characterization using long-gauge and distributed 
fiber optic sensors, Opt. Eng. 52 (2013) 087101 

[9] H. Gu, Y. Zhao and M.L. Wang. A wireless smart PVDF sensor 
for structural health monitoring, Structural Control and Health 
Monitoring 12 (2005) 329–343. 

[10] A. Guemes, A. Fernandez, B. Soller, Optical fiber distributed 
sensing—physical principles and applications, Struct. Health 
Monit. 9 (3) (2010) 233–245. 

[11] G. Heo, M.L. Wang and D. Satpathi. Optimal transducer 
placement for health monitoring of long span bridge. Soil Dyn. 
Earthq. Eng. 16 (1997) 495–502 

[12] G.W. Housner, L.A. Bergman, T.K. Caughey, A.G. Chassiakos, 
R.O. Claus, S.F. Masri, et al., Structural control: past, present, and 
future, J. Eng. Mech. 123 (9) (1997) 897–971. 



Valentina Piccolo – Experimental and Novel Analytic Results for Couplings in 
Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics 

64 
 

[13] IEC61400–1 Ed.3 CD. 2. Revision 2005 Wind Turbines. Part 1: 
Design Requirements (Geneva: International Electrotechnical 
Commission). 

[14] J.B. Ihn, F.K. Chang. Detection and monitoring of hidden fatigue 
crack growth using a built-in piezoelectric sensor/actuator 
network: I. Diagnostics. Smart Mater. Struct. 13 (2004) 609–620. 

[15] J.B. Ihn, F.K. Chang. Detection and monitoring of hidden fatigue 
crack growth using a built-in piezoelectric sensor/actuator 
network: II. Validation using riveted joints and repair patches. 
Smart Mater. Struct. 13 (2004) 621–630. 

[16] Ch.E. Katsikeros and G.N. Labeas. Development and validation of 
a strain-based Structural Health Monitoring system, Mechanical 
Systems and Signal Processing 23 (2009) 372-383. 

[17] J.T. Kim, Y.S. Ryu, H.M. Cho and N. Stubbs. Damage 
identification in beam-type structures: frequency-based method vs 
mode-shape-base method. Eng. Struct. 25 (2003) 57-67. 

[18] S. Laflamme, H.S. Saleem, B.K. Vasan, R.L. Geiger, D. Chen, 
M.R. Kessler and K. Rajan. Soft Elastomeric Capacitor Network 
for Strain Sensing Over Large Surfaces, IEEE Transactions on 
Mechatronics 18 (2013) 1647-1654. 

[19] M. Majumder, T.K. Gangopadhyay, A.K. Chakraborty, K. 
Dasgupta and D.K. Bhattacharya. Fibre Bragg gratings in 
structural health monitoring—present status and applications, 
Sensors Actuators A 147 (2008) 150–64. 

[20] T. Mickens, M. Schulz, M. Sundaresan, A. Ghoshal, Structural 
health monitoring of an aircraft joint, Mechanical Systems and 
Signal Processing 17 (2) (2003) 285-303. 

[21] D. Ryu and K. J. Loh. Multi-modal sensing using photoactive thin 
films, Smart Mater. Struct. 23 (2014) 085011. 

[22] M. Saka, M. Nakayama, T. Kaneko and H. Abe. Measurement of 
stress-intensity factor by means of A-C potential drop technique. 
Exp. Mech. 31 (1991) 209-212. 

[23] C. Sbarufatti, A. Manes and M. Giglio. Application of sensor 
technologies for local and distributed structural health monitoring. 
Structural Control and Health Monitoring 21 (2014) 1057-1083. 

[24] F. Trivellato, L. Battisti and G. Miori. The ideal power curve of 
small wind turbines from field data, J. Wind Eng. Ind. Aerodyn. 
107–108 (2012) 263–273. 

[25] S.T. Tung, Y. Yao and B. Glisic. Sensing sheet: the sensitivity of 
thin-film full-bridge strain sensors for crack detection and 
characterization. Meas. Sci. Technol. 25 (2014) 075602. 

[26] A.F. Vaz and R. Bravo. Smart piezoelectric film sensors for 
structural control. IEEE Transactions on Instrumentation and 
Measurement 53 (2004) 472 - 484 



Stimuli-Responsive Colloidal Crystal for Structural Health Monitoring: Fabrication 
and Numerical Modelling 

65 
 

[27] S. Villalba and J.R. Casas. Application of optical fiber distributed 
sensing to health monitoring of concrete structures, Mechanical 
Systems and Signal Processing 39 (2013) 441–451. 

[28] T. Ding, S. K. Smoukov, and J. J. Baumberg, Stamping colloidal 
photonic crystals: a facile way towards complex pixel colour 
patterns for sensing and displays, Nanoscale, DOI: 
10.1039/c4nr05934d, 2014. 

[29] R. D. Pradhan, I. I. Tarhan, and G. H. Watson, Impurity modes in 
the optical stop bands of doped colloidal crystals, Phys. Rev. B, 
Vol 54, No 19, 1996. 

[30] Y. A. Vlasov, V. N. Astratov, A. V. Baryshev, A. A. Kaplyanskii, 
O. Z. Karimov, and M. F. Limonov, Manifestation of intrinsic 
defects in optical properties of self-organized opal photonic 
crystals, Phys. Rev. E, vol 61, no 5, 2000. 

[31] B. Hatton, L. Mishchenko, S. Davis, K. H. Sandhage and J. 
Aizenberg, Proc. Natl. Acad. Sci. U. S. A., 107, 2010. 

[32] J. Zhou, J. Wang, Y. Huang, G. Liu, L. Wang, S. Chen, X. Li, D. 
Wang, Y. Song and L. Jiang, NPG Asia Mater., 4, 2012. 

[33] Y. Huang, J. Zhou, B. Su, L. Shi, J. Wang, S. Chen, L. Wang, J. 
Zi, Y. Song and L. Jiang, J. Am. Chem. Soc., 134, 2012. 

[34] H. S. Lee, R. Kubrin, R. Zierold, A. Y. Petrov, K. Nielsch, G. A. 
Schneider, and M. Eich, Photonic properties of titania inverse opal 
heterostructures, Optical Material Express, Vol 3, No 8, 2013. 

[35] A. Chiappini, C. Armellini, N. Bazzanella, G. C. Righini, M. 
Ferrari, Opal-based photonic crystals heterostructures, Optics and 
Photonic Journal 2, 206-210, 2012.  

[36] D. K. Hwang, H. Noh, H. Cao, and R. P. H. Chang, Photonic 
bandgap engineering with inverse opal multi-stacks of different 
refractive index contrast, Appl. Phys. Lett., 95, 2009. 

[37] J. A. Roden and S. D. Gedney, “Convolution PML (CPML): An 
efficient FDTD implementation of the CFS-PML for arbitrary 
media," Microwave and Optical Technology Letters 27(5), 334-
339 (2000). 

[38] R. Pontalti, L. Cristoforetti, and L. Cescatti, \The frequency 
dependent FD-TD method for multi-frequency results in 
microwave hyperthermia treatment simulation," Phys. Med. Biol., 
vol. 38, 1283-1298 (1993). 

[39] R. Courant, K. O. Friedrichs, and H. Lewy, “On the partial 
difference equations of mathematical physics," IBM Jour. of Res. 
and Dev. 11, 215-234 (1967). English translation of the original 
1928 paper. 

[40] Chiappini, A., Armellini, C., Chiasera, A., Ferrari, M., Jestin, Y., 
Mattarelli, M., Montagna, M., Moser, E., Nunzi Conti, G., Pelli, 
S., Righini, G.C., Gonçalves, M.C., Almeida, R.M. 2007. “Design 



Valentina Piccolo – Experimental and Novel Analytic Results for Couplings in 
Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics 

66 
 

of photonic structures by sol–gel-derived silica nanospheres”, J. of 
Non-Cryst. Solids, 353: 674-678. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



2D Optical Gratings Based on Hexagonal Voids on Transparent Elastomeric Substrate 

67 
 

4. 2D Optical Gratings Based on Hexagonal Voids 
on Transparent Elastomeric Substrate 
 
 
By V. Piccolo, A. Chiappini, C. Armellini, M. Barozzi, A. Lukowiak, Pier-John A. Sazio, 
A. Vaccari, M. Ferrari and D. Zonta 
 
Abstract 
 
A chromatic vectorial strain sensor constituted by hexagonal voids on 
transparent elastomeric substrate has been successfully fabricated via 
soft colloidal lithography. Initially a highly ordered 1.6 microns 
polystyrene spheres monolayer colloidal crystal has been realized by 
wedge-shaped cell method and used as a suitable mold to replicate the 
periodic structure on a polydimethylsiloxane sheet. The replicated 2D 
array is characterized by high periodicity and regularity over a large 
area, as evidenced by morphological and optical properties obtained by 
means of SEM, absorption and reflectance spectroscopy. In particular, 
the optical features of the nanostructured elastomer have been 
investigated in respect to uniaxial deformation up to 10% of its initial 
length, demonstrating a linear, tunable and reversible response, with a 
sensitivity of 4.5 ± 0.1 nm/%. Finally, it has been demonstrated that the 
specific geometrical configuration allows determining simultaneously 
the vectorial strain-stress information in the x and y directions. 
 
4.1 Introduction 
 
Among the different fabrication techniques that allow obtaining 
micro/nanostructured surfaces, colloidal lithography is attracting big 
interest due to low cost, time efficiency, simplicity, and the possibility 
to pattern over a large surface area [1]. 
This bottom-up approach exploits the self-assembly of hard dielectric 
micro and nano spheres such as silica or polystyrene (PS) in order to 
fabricate two dimensional arrays. In recent literature, 2D colloidal 
crystals have been realized by self-assembly under electrophoresis 
deposition [2], Langmuir–Blodgett deposition [3], spin coating [4] and 
capillary forces [5]. Considering this last approach, Sun et al. [6] have 
demonstrated that the use of wedge-shaped cell allows obtaining large 
domains 2D colloidal crystals, with centimeter size, taking advantage 
on the capillary forces and drying front formed in the cell. 
In this contest it is worth mentioning that 2D colloidal crystals are 
interesting and promising systems for micro and nanopatterning due to 
their periodicity and specific size [7]. In micro and nano patterning 
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field, colloidal crystals can be employed as lithographic masks or as 
molds for the production of micro and nanostructures for light trapping 
applications [8] or for the realization of SERS (Surface Enhanced 
Raman Spectroscopy) substrates [9]. Furthermore, they can act as 
masters by means of soft lithography in order to produce hexagonally 
arrayed structures. 
These types of systems can be employed for the realization of 
responsive materials able to measure physical quantities such as 
magnetic fields [10], and temperature [11], or detect different 
chemicals, [12–14] including important analytes such as glucose [15], 
creatinine [16] and nerve gas agents [17]. 
Focusing the attention on mechanical parameters (i.e., strain), periodic 
polymeric photonic materials demonstrated sensitivity to deformation, 
in particular different configurations have been employed such as opal-
type photonic crystals infiltrated with elastomeric materials [18,19]; 1D 
grating based on buckled thin film with periodic sinusoidal patterns on 
a transparent elastomeric substrate [20]; 1D array of gold nanoparticles 
on flexible substrate [21] and double sided 1D orthogonal 
polydimethylsiloxane (PDMS) gratings [22]. 
In particular, the realization of surface stress-based sensors has become 
fundamental in several fields in order to detect acoustic waves and 
forces on different structures such as spacecrafts, submarines, buildings 
or bridges. 
Recently Guo et al. [22] have demonstrated that a double sided 1D 
orthogonal polydimethylsiloxane grating can be used as a vector 
mechanical sensor, able to detect mechanical parameters and giving 
information about their direction and strength. 
In this work we have developed a strain/stress vector sensor based on 
hexagonal voids on a transparent elastomeric substrate: due to the 
specific geometric configuration, the application of a horizontal strain 
induces an opposite movement of the diffraction spots created by a 
white light impinging on the structure. The relative displacement of 
these spots can be investigated to estimate the vectorial strain/stress 
information and to characterize the applied strain in both the x and y 
directions. 
This structure paves the way for the development of low cost vector 
strain sensor systems. 
 
4.2 Materials and Methods 
 
4.2.1 Materials 
 
The PS latex beads were delivered by Thermo Scientific (Waltham, 
MA, USA), the PDMS Sylgard 184 by Dow Corning (Midland, MI, 
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USA) and all the chemicals (Absolute ethanol, Clorothrimethylsilane 
and Dimethylformamide), used as received, by Aldrich (St. Louis, MO, 
USA). 
 
4.2.2 PS Colloidal Particles and Substrate Preparation 
 
Monodisperse latex particles 1.6 microns in diameter and size 
distribution of 0.021 µm, 1.3% CV were purchased from Thermo 
Scientific and used as received at standard concentration of 1 wt% 
suspension in water. The v-SiO2 substrates were cleaned firstly by 
brushing with neutral glassware detergent and then by ethanol. Finally, 
they were treated in an ozone cleaner for 30 min. 
 
4.2.3 Assembly of the PS 2D Template 
 
The PS spheres monolayer was used as a template for the fabrication of 
the PDMS grating and was deposited on v-SiO2 by means of the wedge-
shaped cell method. This growth method allows the deposition of large 
domains two-dimensional colloidal crystals that self-organize by 
controlling the drying front of evaporation when the constituting 
particles are confined within two slides holding at an angle of about 2. 
After the infiltration of 125 µl of PS suspension, the cell was maintained 
at room temperature (RT) and relative humidity (RH) of 40% for 1 day. 
Due to the evaporation of the solvent in the suspension, the latex beads 
crystallized in an ordered hexagonal structure. 
 
4.2.4 Functionalization and Infiltration of the PS 2D Template 
 
The 2D PDMS grating was obtained by infiltrating the template with 
the elastomer. Before the infiltration, to facilitate the following peeling 
off from the glassy substrate, the PS monolayer was functionalized by 
silanization with clorotrimethylsilane in a Petri dish for 90 min. As a 
second step a mixture of a 10:1 base:curing Sylgard 184 elastomer was 
poured on the functionalized template and thermally cured for 4 h at 
65°C. Finally, the PDMS with embedded PS spheres was gently 
removed from the glass substrate by peeling off the elastomer. 
 
4.2.5 PS Particles Chemical Etching 
 
The last step of the fabrication protocol was the etching of the PS 
particles in the elastomeric matrix that was performed by immersion of 
the PDMS slab in dimethylformamide for 90 min. Dimethylformamide 
is a solvent for PS and a non-solvent for PDMS, hence it provides a 
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selective etching of the latex beads allowing the formation of an inverse 
replica of the template based on hexagonal voids in elastomeric matrix. 
After the etching process the sample was rinsed in water and blown with 
nitrogen. 
 
4.2.6 Sample Characterization 
 
Morphological investigation of the samples has been carried out by 
means of scanning electron microscopy (SEM) measurements using a 
SEM JEOL JSM 7401-F FEG (Akishima, Tokyo, Japan). 
Transmittance measurements have been performed using a double 
beam VIS-NIR spectrophotometer Varian Cary 5000 (Palo Alto, CA, 
USA) in the range between 1000 and 2500 nm. The spectra of the 
samples were obtained illuminating the whole sample with a white light 
(halogen lamp) and collecting the diffracted light using a fiber-optic 
UV-Vis spectrometer Ocean Optics USB 4000 (Edinburgh, UK) as 
shown in Figure 4.1. Measurement of wavelength shift has been 
performed analyzing the displacement of two different diffraction 
spots, under the application of a horizontal strain. For both spots, this 
effect has been investigated by means of the wavelength shift of the 1st 
order of the transmittance diffraction, keeping the detection angle fixed 
at a specific value in order to have an initial spectrum centered in the 
visible region. 
 

 

 
Figure 4.1 Sketch of the experimental set-up for the 2D diffraction grating 
measurements. 
 
4.3 Results and Discussion 
 
The first step, as shown in Figure 4.2a, concerned the realization of two-
dimensional assembly of PS colloidal particles later used as a mold; 
Figure 4.3a reports a typical optical image of an ordered 2D colloidal 
crystal obtained by wedge-shaped cell method, where we can notice the 
presence of large areas of ordered domains (about 100 × 70 µm with 
few punctual defects). In Figure 4.3b, three transmission dips at λ = 
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1954 nm, 1598 nm, 1480 nm can be distinguished at normal incidence 
(θ = 0°) and are the result of the excitation of the photonic eigenmodes 
of the periodic dielectric structure due to its coupling with the incident 
light as proposed by Sun et al. [6], which, confirm the high optical 
quality. Furthermore, we can notice a decrease in the transmittance 
values attributed to an increase in the scattered radiation for lower 
wavelength affecting the collection of the zero order transmitted signal. 
 

 

 
Figure 4.2 Schematic illustration of the experimental approach employed for the 
realization of 2D PDMS replica patterns (a) formation of 2D colloidal crystal by means 
of wedge-shaped cell (b) functionalization and infiltration of PDMS by capillary force; 
(c) peeling off PDMS infiltrated PS colloidal crystal; (d) chemical etching of the PS 
spheres. 
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Figure 4.3 (a) Optical microscopy image of a typical area of the 2D colloidal crystals 
self-assembled using a wedge-shaped cell (scale bar of 2 µm). (b) Transmittance 
spectrum obtained on a 2D colloidal crystal deposited on a v-SiO2 substrate. The 
individual spectra are offset vertically by 5% for clarity (the black spectrum is the 
original one). 
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Following the procedure described in Figure 4.2, a hexagonal voids 
regular structure (sketched in Figure 4.4a), has been fabricated via soft 
colloidal lithography. Figure 4.4b,c shows SEM-images of the resulting 
patterned polymeric structure where the reciprocal morphology of the 
PS mold has been successfully obtained. From a morphological point 
of view, the hexagonal voids structure presents a periodicity of about 
1600 nm with a depth of the voids of about 460 nm. 
 

 

 
(a) (b) 

  
(c) (d) 

 
Figure 4.4 (a) Sketch of the concave structure obtained via soft lithography (not in 
scale) (b) SEM surface image of PDMS inverted colloidal crystal. (c) detail of the 
ordered hexagonal array. (d) Photograph of hexagonal voids on transparent 
elastomeric substrate. 
 
Furthermore, as shown in Figure 4.4d, the hexagonal voids structure, 
that can be seen as a 2D grating, presents an iridescent color that is 
attributed to the high order over a large area. In this case the 
morphology of the periodic hexagonal pattern satisfies the diffraction 
features that can be expressed through the simple law of diffraction 
(equation 4.1). 
 

sin( ) sin( )m i i
mn n

d
λθ θ ⋅

⋅ − ⋅ =  (4.1) 

 
where θi is the incident angle while θm corresponds to the mth diffraction 
order angle; ni and n are the refractive indices of the incident medium 
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and of the medium where the diffracted orders propagate respectively; 
λ represents the wavelength of the incident light; and d is the period of 
the grating.  
From an optical point of view illuminating the grating by white light, 
and collecting the diffraction projected on a screen, we can clearly 
notice the presence of a chromatic hexagonal pattern (see Figure 4.5) 
due to the arrangement of the semispherical voids. 
In order to verify the optical response of the system to mechanical 
deformation, the structure has been mounted on a linear stage and a 
deformation in the horizontal direction was applied.  
As evidenced in Figure 4.5b, the application of a horizontal strain 
produces a change in the diffraction pattern. In this case it is worth 
mentioning that the movement of the first-order diffraction spot (see 
points 1 and 6 as labeled in the inset) is attributed to the variation of the 
grating period as a function of the strain, as predicted by the multi-slit 
Fraunhofer diffraction theory. 
 

  
(a) (b) 

 
Figure 3.5 Strain induced diffraction spot movements: (a) Optical diffraction pattern 
without strain; inset: labelling of the investigated spots (1 and 6); (b) optical diffraction 
with a strain (ε) ε = 10% along the horizontal direction. 
 
In particular comparing Figure 4.5a,b, focusing the attention on spot 
number 1, we can observe its movement towards the center (0), while 
if we consider spot number 6 we can notice that it moved away from 
the zero order. This effect can be attributed to an increase in the 
diffraction pitch in the parallel direction of the strain, and a consequent 
decrease (contraction) in the opposite side.  
These features have been investigated by means of reflectance 
measurements detecting the wavelength shift of the 1st order of the 
transmittance diffraction, maintaining fixed the detector and applying a 
different strain to the grating. 
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Figure 4.6 Reflectance spectra collected considering: (a) spot 1 as a function of the 
applied strain; (b) spot 6 as a function of the applied strain. 
 
Analyzing Figure 4.6a, related to spot number 1, we can notice that the 
first order of the diffraction peak presents a noticeable red-shift when 
increasing the applied strain. The diffraction peak wavelength passes 
from 510 to 553 nm for a uniaxial deformation of the structure up to 
10% of its initial length. On the other hand, for spot 6 we have observed 
a decrease in wavelength of the diffraction peak from 575 to 551 nm. 
The images shown in Figure 4.5 and the difference in the peak 

(a) 

(b) 
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wavelength shifts indicate that the strain induces an elliptical 
modification of the voids. Evidently, Figure 4.5 is suggestive of the fact 
that the grating’s sensitivity is much higher against longitudinal 
geometrical changes then transversal ones. Indeed, the former are due 
to the imposed strain while the latter are due to Poisson’s effect. 
Clearly, the initially circular semi-voids become elongated ellipses in 
the direction of the applied strain. 
Moreover, we can see an increase of the intensity of the transmitted 
diffracted light at longer wavelength. To explain this effect, we have 
devised a simple model of its optical response. According to this model, 
the grating optical behavior is assimilable to two 2D arrays of secondary 
sources, both having the periodicity of the hexagonal semi-voids 
structure. The two arrays however, are half shifted in the grating plane, 
because one of them corresponds to rays emerging from the semi-void 
tops and the other corresponds to rays emerging from the semi-void 
bottoms. The two kinds of rays have an inherent optical path length 
difference due to the difference in the top and bottom substrate height. 
After calculations, the resulting intensity pattern for the downstream 
interference formula is thus depending from the primary beam 
wavelength, and in such a way that at an increase of its value necessarily 
implies an increase in the revealed intensity of a given secondary 
maximum [23]. 
Now in order to determine the sensitivity of the 2D grating as strain 
sensor we have analyzed the variation in wavelength of the diffraction 
peak as a function of the applied strain. In Figure 4.7 we report the 
variation of the peak positions of the diffracted light (a) for spot 1 and 
(b) spot 6 in respect to the % applied strain. First of all, we can notice a 
linear behavior, moreover we can determine a sensitivity equal to 4.5 ± 
0.1 nm/% and 2.5 ± 0.1 nm/% for spot 6 and 1 respectively. These 
results, if compared with those reported in the literature for 
mechanochromic systems, permit to include the developed structure 
among the most sensitive as strain sensors [21]. 
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Figure 4.7 Experimental relationship between the peak position of the diffracted light 
(a) for spot 1 and (b) spot 6 in respect of the strain as a result of the elongation tests, 
(error bars are hidden by the circle points). 
 
4.4 Conclusions 
 
A chromatic strain sensor based on hexagonal voids on a transparent 
PDMS elastomeric substrate has been realized via soft colloidal 
lithography. The fabricated 2D grating can be employed for the 
development of a low cost and innovative sensor able to determine 
simultaneously the vectorial strain - stress information in the x and y 
directions.  
Moreover, we have demonstrated that the sensor exhibits a tunable and 
reversible response under the application of a mechanical strain.  

(a) 

(b) 
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Optical reflection measurements have evidenced a linear behavior 
under the application of a horizontal strain up to 10% of its original 
length. The sensitivity of 4.5 ± 0.1 nm/%, when compared with 
mechanochromic photonic systems already present in literature, permits 
to classify the structure developed among the most sensitive strain 
sensors, paving the way for its applications in several fields such as 
smart sensing, mechanical sensing, and strain imaging. 
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5. Quasi-Hemispherical Voids Micropatterned 
PDMS as Strain Sensor 
 
 
By V. Piccolo, A. Chiappini, C. Armellini, M. Mazzola, A. Lukowiak, A. Seddon, M. 
Ferrari, D. Zonta 
 
Abstract 
 
Polydimethylsiloxane elastomers are largely employed in soft 
lithographic replication for the realization of microstructures that find 
application in microfluidic and micro-engineering. In the last years 
micro and nano patterned ordered structures have gained remarkable 
attention for their employment in the development of biomedical 
devices, smart displays, chemical and physical sensors. Here a 2D 
quasi-hemispherical micro voids elastomeric grating has been 
successfully realized and it has been demonstrated that this structure 
can be considered a simple, low cost reversible strain sensor. 
Specifically, the sensor permits simultaneous determination of the 
strain-stress information analyzing the voids' spacing based on Debye 
diffraction distance. A model from Continuum Mechanics has been 
employed in order to assess its optical response, meaning to predict the 
mechanical deformation of the patterned surface of the sample and to 
corroborate the accuracy of the optical measurements. The results 
demonstrate that the 2D quasi-hemispherical micro voids sensing 
system can be considered as a complementary approach respect to the 
traditional strain sensors. 
 
5.1 Introduction 
 
Polydimethylsiloxane (PDMS) has been broadly used as a material for 
the realization of lab-on-a-chip [1] and for the depositions of thin films 
[2, 3] or the fabrication of membranes [4]. Nowadays PDMS is the most 
common polymer utilized for the manufacturing of microfluidic devices 
[1]. The chemical and physical features of PDMS and its practical 
application have been reported in detail [5]. In the specific its success 
is due to low cost, fast and easy fabrication and optical transparency 
ranging from 240 to 900 nm with a transparency over 90% [6]. 
Moreover, it presents low shrinkage rates and the capability to replicate 
micro-scale features making it suitable for soft lithography processes.  
PDMS can be patterned in different forms by means of molds realized 
by optical lithography or via soft lithography [7]. 
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Moreover, its peculiar elastic properties have driven the research on its 
mechanical features [8]. In fact, several studies on mechanical 
properties of PDMS concerned different applications such as material 
elasticity for the realization of accelerometers [9], the deposition of thin 
film for sensors [10], and biomedical devices [11]. Focusing the 
attention on strain sensors, PDMS is one of the main materials 
employed for the realization of low cost and stretchable conductive [12] 
or chromatic strain sensor [13]. For the last category, different 
mechanisms and geometries can be used to obtain mechanochromic 
sensors. Typical examples concern the use of gold nanoparticles 
embedded in a PDMS matrix or immobilizing them on its surface as 
demonstrated by Duarte [14], where the sensing mechanism is based on 
the variation of the plasmonic response [14]. A complementary 
approach exploits elastomeric materials doped with specific 
chromophores [15], for instance Cellini et al. correlated the fluorescent 
signals to the mechanical strain applied [16].  
Finally, mechanochromic sensors have been realized exploiting the 
optical properties of photonic crystals, that give rise to diffraction 
phenomena. Considering 1-dimensional (1D) structures, several 
examples have been reported in the literature, where specific 1D 
systems based on submicron wrinkling shape grating [17] and on 
aligned gold nanoparticle 1D arrays [18] are used as strain sensors. 
Here, the modification of the sample periodicity, caused by the elastic 
deformation, produces a variation in the optical diffraction response. 
Few examples report on 3D structures, among them the pioneering 
work of Fudouzi et al. [19] demonstrates the application of a polymeric 
opal embedded in a PDMS matrix. In this case the working principle is 
based on a linear shift of the Bragg diffraction peak of the photonic 
crystal as a function of mechanical strain in elastic deformation. 
Although the above systems allow the easy determination of strain, 
nowadays the research is focused on the development of optical sensors 
able to detect both amplitude and direction of mechanical deformation. 
In this contest a new approach is based on the realization of a double-
sided PDMS 1D-diffraction gratings structure [20], where the analysis 
of the displacement of the diffraction spots allows obtaining the 
stress/strain information in x and y directions. 
In this paper we propose the design and the fabrication of an alternative 
structure constituted by quasi-hemispherical micro-voids arranged in 
hexagonal configuration for the determination of the applied strain 
field. 
The advantages of the 2D structure which has been developed are the 
fast and simple fabrication method and the easy interrogation system 
based on Debye diffraction distances that permits to reconstruct the 
strain field.  
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To validate the applied interrogation method and its suitability to the 
detection of strain, a model from Continuum Mechanics has been 
employed that predicts the mechanical behavior of the 2D PDMS 
nanostructured grating. 
 
5.2 Experimental 
 
2D nanostructured grating based on quasi-hemispherical micro-voids 
arranged in hexagonal configuration has been obtained by means of soft 
lithography as described in Ref. [21]. Briefly a multi steps process, 
based on the following three steps, has been developed: (a) realization 
of a 2D hexagonal ordered polystyrene (PS) monolayer, to be used as a 
mold; (b) its infiltration with polydimethylsiloxane and (c) chemical 
etching of PS microparticles allowing the formation of quasi-
hemispherical micro-voids on elastomeric matrix (see Figure 5.3). 
The morphological properties have been investigated using a Scanning 
Electron Microscopy (SEM) JEOL JSM 7401-F FEG (Akishima, 
Tokyo, Japan); while the optical response of the grating at the initial 
stage and under the application of the uniaxial strain has been 
characterized analyzing the modification of the diffraction pattern 
projected on a screen and acquired by a Charged-Coupled Device 
(CCD) camera using as excitation source 632.8 nm He-Ne laser, as 
sketched in Figure 5.1. 
 

 

 
Figure 5.1 Scheme of the experimental setup for diffraction measurements on 
stretchable PDMS grating. 
 
It is worth mentioning that at normal incidence the diffracted light on 
the screen, orthogonal to the laser, allows determination of the spacing 
of the 2D voids through the analysis of the hexagonal diffraction 
pattern.   
In fact, it is well known that the neighboring voids’ spacing, d, can be 
calculated through the modified diffraction equation (see equations 
(5.1-5.3)) measuring the so called Debye distance D [22] and the 
distance h of the screen from the 2D quasi-hemispherical micro-voids 
nanostructured sample. The application of the strain, as evidenced in 
Figure 2b, produces a modification in the diffraction pattern that 
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imposes to replace the Debye distance D with the length of the major 
(D’) and minor axis (d’) of the ellipse in order to take into account the 
elongation and the contraction in the two directions, respectively. 
Finally, the analysis of the acquired images in term of intensity of the 
spots and their displacement has been obtained by means of MATLAB 
software in order to reduce the error from the measurement setup. In the 
specific the software allows determination of the shift of the six spots 
with respect to the zero order and measurements of the values D, D’ and 
d’. Furthermore, analyzing the pixel intensity, related to each laser spot, 
with respect to the total image intensity, it is possible to determine the 
intensity variation as a function of the applied strain. 
 

 

 
Figure 5.2 (a) Schematic illustration of the projected hexagonal diffraction pattern at 
the initial stage and (b) under application of an applied strain. 
 
5.3 Results and Discussion 
 
Figure 5.3 shows the typical SEM image of the 2D quasi-hemispherical 
micro-voids’ grating where a hexagonal order is evident, moreover it 
has been verified that the grating presents a period of ~ 1.6 µm with a 
depth of the voids of about 460 nm over a whole sample thickness of 
around 1 mm. 
Now, it is possible to correlate the variation of the micro-voids’ spacing 
with the application of the applied strain through the analysis and the 
measurement of the Debye diffraction distances.  
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Figure 5.3 Typical SEM image of the 2D quasi-hemispherical micro-voids’ grating 
where a hexagonal order is present. 
 
First of all, it is worth mentioning that at normal incidence, the forward 
diffracted light, from 2D array monolayer, forms a hexagonal 
diffraction pattern on the screen. The first Debye diffraction of the 2D 
array can be expressed by the following equations: 
 

2sin
3
laser

d
λα =  (5.1) 

 
where α is the forward diffraction angle of the Debye diffraction 
distance, λlaser is the incident wavelength, and d is the adjacent voids’ 
spacing.  
Furthermore, from a geometrical point of view, as shown in Figure 5.2a: 
 

1tan
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h
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 (5.2) 

 
where h is the distance between 2D array and the screen, D is the Debye 
diffraction distance.  
Now, combining equation (5.1) and (5.2), the micro-voids’ spacing of 
2D grating can be easily determined, by measuring the Debye distance 
D, D’ and d’, through equation (5.3) substituting each time these last 
three values to the parameter M. 
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From an experimental point of view, the application of an uniaxial 
strain produces a distortion (an elliptical modification) in the diffraction 
pattern. As evidenced in Figure 5.4b, it is observed, that the first-order 
spots oriented in the Γ-M direction moves towards the center (0th order 
spot), while for the Γ-K direction the first-order spots move away from 
the zero order spot.  
This effect is associated to an increase in the diffraction period in the 
direction parallel to the strain, and is due to a contraction in the vertical 
direction. 
 

 

 
Figure 5.4 (a) Diffraction patter at zero applied strain; (b) optical diffraction with a 
strain (ε) ε ~ 9% along the horizontal direction (perpendicular to the laser). 
 
In order to determine the optical response and the sensitivity of the 2D 
grating to the applied strain, the sample has been mounted on a linear 
stage applying an elongation in the Γ-M direction along the PDMS 
grating (see Figure 5.6). 
Now analyzing the images, in particular the spots’ displacement by 
means of MATLAB program and considering the equation (5.3), it is 
possible to determine the voids’ spacing as a function of the ε%, as 
reported in Figure 5.5. 
From Figure 5.5 it is evident that the application of the strain produced 
an almost linear variation, for both the directions, with a sensitivity of 
14.0 nm/ε% for Γ-M (red) and 5.7 nm/ ε % for Γ-K (black) respectively. 
Moreover, it is possible to observe a higher voids’ spacing in Γ-M 
longitudinal direction with respect to the Γ-K direction. This behavior 
is associated to the fact that the strain is applied in the longitudinal 
direction, while the Γ-K direction is affected by Poisson’s effect.  
This particular change in the diffraction patterns, means the variation in 
the voids’ spacing is correlated to the modification of the patterned 
surface from hemispherical to elliptical voids.  
 
 

(a) (b) 
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Figure 5.5 Strain, ε% applied dependence of 2D array voids spacing in the two 
directions Γ-M (black) and Γ-K (red) respectively. 
 

 

 
Figure 5.6 Schematic representation of the top view and cross section of the sample 
with the direction of the extension e1 and the associated component of the 
displacements. 
 
In order to understand better and demonstrate this geometrical change 
in the patterned surface, a model from Continuum Mechanics has been 
employed. Thanks to this model one can locally map the principal 
directions of deformation of the whole structure. From the mechanical 
stand point, the investigated sample is a bulky parallelepiped; one of 
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the two larger surfaces presents texturing. The dimensions in x, y and z 
directions are infinitesimal when compared to the whole sample. A 
uniaxial tensile test for the nominal strains of interest, for example 
about 10%, practically incompressible behavior and homogenous 
deformation across each is expected. The fact that the size of each 
indentation is 10-6 times smaller than the thickness of the body suggests 
that only a very small boundary layer across the indentations is 
characterized by a non-homogeneous perturbation of the strain imposed 
through the uniaxial test. 
For the reasons highlighted above, a homogeneous isochoric extension 
in the direction e1 (see Figure 5.6) is assumed for the sample. In such a 
case, the associated components of the displacements (as shown in 
Figure 5.6) are the following affine functions: 
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(5.4a) 
 

(5.4b) 
 
 

(5.4c) 

 
where x1, x2 and x3 are the coordinates of the material points of the body 
in the assumed undeformed reference configuration and µ is the 
assumed constant stretch. The gradient of such a displacement is 
obviously constant and it can be represented as follows: 
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where: 
 

1/2
1 1 2 2 3 3( )F e e e e e eµ µ−= ⋅ ⊗ + ⋅ ⊗ + ⊗  (5.6) 
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is the corresponding constant deformation gradient. The symbol ⊗ 
denotes the standard dyadic product between vectors. It is worth 
recalling that isochoric deformations are such that det F =1, which is 
the case for assumed kinematics. As it is well known, the engineering 
strain tensor, E, takes the following form [23]: 
 

2 1 0 0
2

1 10 1 0
2 2

1 10 0 1
2

TF F IE

µ

µ

µ

 − 
 
  −
 = = − 
  
   −    

 (5.7) 

 
It is worth mentioning that such a strain coincides with the regular one, 
namely the symmetric part of the gradient of the displacement 
whenever the applied nominal strain is very small, i.e. of the order of 
10-1 %. Such a simple form of the strain tensor allows one to estimate 
the deformations in the three principal directions of the quasi-
hemispherical micro-voids. The imposed nominal strain, here 
henceforward consistently denoted by E11, actually determines the 
value of the associated stretch µ through the first component of the 
engineering tensor through the relation: 
 

1/2
11(1 2 )Eµ = +  (5.8) 

 
Substituting µ in (5.4) one can find the deformation in all three 
directions, meaning the deformations of the hemispherical voids, that 
in turn are the change in their spacing, and the variation of the voids’ 
depth, depending on the applied strain. 
As mentioned above, the deformation of the voids in the Γ-K direction 
is affected by Poisson’s effect, which, in turn, is a function of the strain. 
In fact, as expected, one can experimentally confirm that under imposed 
finite strain, even though the considered deformation is isochoric, the 
Poisson’s ratio ν does vary with such a strain and, hence, it is the case 
that the following relations hold for an isotropic material: 
 

3322

11 11
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In particular, the explicit form of the second term in such a relation is 
as follows: 
 

22
2

11

1 1
1 ( )

1 ( 1)
E
E

µν ν µ
µ µ µ

−
= − = = =

− +


 (5.10) 

 
Here, the function ν ̃(µ) emphasizes the fact that the Poisson’s ratio has 
to vary with the stretch and, hence, with the imposed longitudinal strain 
E11. Of course, in the case of infinitesimal strain, namely µ=1, ν=1/2 as 
expected for a linear elastic incompressible material. Otherwise, for the 
imposed values of the nominal uniaxial strain, the Poisson’s ratio 
actually does decrease and influences the deformation of the voids. 
If instead of considering the nonlinear geometry (set of equations 5.4), 
one would have accounted for a linear response of the material, ν would 
obviously be constant as sad above. Henceforth, this would have led to 
miss the key-geometric effect captured by equation 5.10, according to 
which ν decreases by increasing the strain, thereby reveling values up 
to 15% lower than the one predicted by assuming linear elasticity for 
the revealed level of longitudinal strain. In other words, the transverse 
contraction exhibited by the sample is actually amplified by the 
nonlinearity and the experimental results do show a good quantitative 
agreement with this effect as shown below. 
Following this approach, the values determined from the analytical 
model, u1 and u2, are compared with those obtained by the optical 
measurements (see Figure 5.5) as shown in Figure 5.7. 
Analyzing the trend, reported in Figure 5.7, one can notice good 
agreement between the experimental data and those obtained by the 
analytical model. Through the analysis of the diffraction patterns one 
can say with a very good approximation how the micropattering is 
changing, showing also the fidelity of the optical investigation 
approach. Moreover, we can claim that the use of the model from 
Continuum Mechanics allows design of first approximation responsive 
sensors that is characterized by a superficial texturing with respect to 
the total dimension of the system. 
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Figure 5.7 Comparison between the voids’ spacing determined by means of the 
analytical model (black) and optical measurements (red) in Γ-M (full) and Γ-K (empty), 
respectively. 
 
To investigate the effect of the modification of the voids’ depth on the 
optical response of the 2D grating, a comparison between the calculated 
values obtained using equation 4c and the analysis of the intensity of 
the diffraction images has been carried out. In Figure 5.8(a) and 5.8(b) 
are reported the pixel contour intensity of the diffraction patterns of the 
initial state and under the application of a longitudinal strain of about 9 
ε%, respectively. From Figure 5.8, in both case, it is possible to notice 
that, initial state and elongated one, the intensity distribution of the first 
order diffraction is equivalent for the six spots with an incertitude of ± 
1%. This is in agreement with the values obtained through the 
mechanical model previously described and reported in Figure 5.8(c), 
where a variation of 2 nm/ε% has been determined, indicating that for 
values up to 9  % of applied strain the decrease in the voids’ depth is 
negligible and therefore the detected intensity is almost constant. 
Finally, to fully characterize the quasi-hemispherical micro-voids 
hexagonal arrays in term of the reversibility, and the reproducibility of 
the response as a strain sensor, the diffraction pattern variation has been 
investigated during cyclic elongation and release under the application 
of 14 ε%.  
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Figure 5.8 (a) Pixel intensity as contour plot spectra for the initial stage and (b) after 
application of ~ 9 ε%. (c) voids’ depth as a function of the applied ε % strain. 
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Figure 5.9 Tuning voids’ spacing position by repeating the elongation and the release 
steps under the application of 14 ε %. 
 
Figure 5.9 shows the variation of the voids’ spacing at the initial, 
elongated, and recovered states, considering several deformation cycles 
for the Γ-M direction. Equivalent results in terms of reversibility and 
repeatability have been obtained for the Γ-K direction (data not 
reported). 
Under mechanical strain, considering the Γ-M direction, the voids’ 
spacing decreases as expected, whereas when the stress is released it 
returns almost to the initial value, indicating that the tuning voids’ 
spacing position is reversible and reproducible. Moreover, Figure 5.9 
indicates that the microstructured 2D grating possesses a good 
mechanical stability and flexibility under cyclic deformation. 
 
5.4 Conclusions 
 
A 2D quasi-hemispherical voids micropatterned elastomer has been 
successfully realized. It has been demonstrated that this structure can 
be considered a simple, low cost and reversible strain sensor. In the 
specific, it has been verified that the developed structure and the method 
employed for the interrogation of the system permit simultaneous 
determination of stress-strain information in the x and y directions. In 
addition, the application of a model from Continuum Mechanics has 
allowed the behavior to be predicted of the patterned surface of the 
PDMS sample and to corroborate the accuracy of the optical 
interrogation and analysis. 
Finally, the realized system and the interrogation approach can be seen 
as a useful tool for the development of a safe device also suitable for 
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untrained end-users that can be employed in different fields such as the 
aerospace industry and structural health monitoring. 
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6. Colloidal Crystals Based Portable Chromatic 
Sensor for Butanol Isomers and Water Mixtures 
Detection 
 
 
By A. Chiappini, C. Armellini, V. Piccolo, L. Zur, D. Ristic, D. J. Jovanovic, A. Vaccari, 
D. Zonta, G.C. Righini, M. Ferrari 
 
Abstract 
 
In this work, we report on a structurally-colored composite colloidal 
crystal able to change its color in presence of different polar solvents 
such as butanol and to distinguish its isomers. Herein, 
polydimethylsiloxane (PDMS) infiltrated polystyrene opals are 
fabricated by means of a two steps approach and their final structure 
exhibits a green opalescence, the diffraction peak wavelength position 
changes as a function of the analytes spotted on the surface. In fact, the 
realized composites present a colorimetric variation in their response, 
since a remarkable red-shift of the diffraction peak is observed. An 
analytical model has been proposed and validated in order to assess the 
optical chromatic response, according to which the changing of the 
filling factor is the main element that produces the variation in the 
optical response. The selectivity, sensitivity and the reusability of the 
sensor have been investigated by monitoring the static reflectance 
spectra considering a mixture of 2-Methylpropan-2-ol (TerB) and 
water. 
Dynamic reflection spectra have been employed as an appropriate 
technique for the recognition of butanol isomers such as TerB, Butan-
1-ol (NB) and Butan-2-ol (2B). The results demonstrate that the 
prepared photonic crystal sensing material and the interrogation 
approach used are a suitable tool for the development of low cost, 
portable sensors for homologues and isomers. 
 
6.1 Introduction 
 
After the publication of the pioneering papers of Yablonovich [1] and 
John [2] in 1987, several attempts have been carried out to fabricate 
Photonic Crystal (PC) structures with photonic band gaps (PBGs) [3, 
4]. The great attention attracted in recent years by PCs is due to their 
potential applications in many fields, such as anti-counterfeiting [5], 
displays [6], photonic paper [7], and chemical and biological sensors 
[8, 9, 10]. Nowadays, focusing the attention on these application areas, 
PC sensors have been employed to detect different chemicals and 
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parameters such as organic solvents [11, 12, 13], gases and volatile 
organic compounds [14]; temperature [15], humidity [16; 17] and pH 
[18]. Generally, PC sensors are constructed using responsive photonic 
crystals (RPCs) that change their photonic structures and reflectance 
under external stimuli. Because of the tunable crystal structure and the 
behavior of its optical signal under external stimuli or in different 
environment, the RPCs are intrinsically suitable for portable and 
visually detectable sensors. Actually, many papers are present in 
literature concerning the use of complementary methods for the 
determination of volatile alcohols, such as quartz crystal microbalance 
based on polymers [19], electrical resistance response exploiting the 
features of metal oxides [20], and colorimetric PCs approach [8, 12, 
21]. Some of them need specific apparatus or high temperature, while 
chromatic sensing, which working principle is based on the change of 
optical response, has attracted considerable attention because of its 
simplicity, safe operation and the possibility to detect by the naked eye. 
The importance of the determination of the water volume fraction in 
different chemicals is crucial from a commercial point of view in 
particular in the case of high purity gases for semiconductor industry 
[22]. In the field of renewable energy, alcohol biofuels produced from 
biological sources, have attracted intense research and commercial 
interest because they may offer significant benefits in terms of reduced 
emissions, improved price stability, and more distributed production 
facilities [23]. The use of bioderived fuel such as ethanol is increasing 
worldwide but, due to higher energy content and better blending 
compatibility with gasoline, butanol is under consideration to replace 
ethanol as an alternative fuel to gasoline and diesel [24]. Moreover, the 
employment of alcohols and alcohol/water mixtures in the field of 
pharmaceutical processes represents a solution in case of hydrophobic 
and insoluble active principles that can not be freeze dried adequately 
with water-based formulations [25]. 2-Methylpropan-2-ol (TerB) and 
its water mixtures has been progressively used in many pharmaceutical 
processes, the control of the composition of the mixture is one of the 
main freezing parameters that heavily affects the final results in terms 
of solubility, sublimation rates and times, costs and product stability 
[26]. In this contest the development of economic-fast-portable 
methods to determine water in alcohols and distinguish between 
different isomers, is greatly needed. In this paper we report an easy and 
practical method for the fabrication of composite colloidal crystals 
based on polystyrene (PS) nanoparticles (NPs) embedded in 
elastomeric matrix such as PDMS which is optically responsive to 
solvents considering in the specific butanol isomers and alcohol/water 
mixtures. Starting from the experimental data, an analytical model has 
been proposed and validated in order to assess the chromatic response 
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of the colloidal crystal, making the assumption of an isotropic 
displacement of the spheres assembled in its periodic lattice fcc. 
Finally, we have demonstrated that such developed structures are a 
suitable tool for the determination of water content in homologues, in 
particular butanol and to distinguish different isomers. 
 
6.2 Experimental 
 
6.2.1 Chemicals 
 
Styrene monomer, sodium dodecyl sulfate (SDS), potassium persulfate 
(KPS), sodium hydroxide (NaOH), 2-Methylpropan-2-ol (TerB), 
Butan-1-ol (NB), Butan-2-ol (2B), methanol (MetOH) were purchased 
from Aldrich. Sylgard 184 (PDMS) was purchased from Dow Corning. 
Polyethylene terephthalate (PET) sheet was purchased from Polymer 
House and used as polymeric substrate.  
 
6.2.2 Synthesis of Monodisperse Polystyrene Particles 
 
Polystyrene spheres have been synthesized following a single-stage 
polymerization process [27]. The reaction was performed using a 500 
ml glass bowl equipped with a stirrer, a reflux condenser and a heating 
jacket. Most of the chemicals were used as received; but, in order to 
remove the polymerization inhibitor, the styrene monomer was washed 
with NaOH and water. For the typical procedure 245 ml of water, 0.081 
g of SDS, dissolved in 13.6 ml of water, and 27.2 ml of styrene 
monomer, were premixed at 80°C for 2 min in the reactor with a stirrer 
speed of 300 rpm. 0.952 g of KPS dissolved in 13.6 ml of water were 
injected to start the polymerization. The polymerization was completed 
after 4 h and the colloidal solution was purified by repeated 
centrifugation/redispersion cycles. 
 
6.2.3 Preparation of the colloidal crystal template and infiltration with 
PDMS 
 
The polymeric composite based on PS spheres embedded in the PDMS 
matrix was obtained as reported in Fig. 6.1: 
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Figure 6.1 Schematic of the fabrication and detection process. (a) assembly of the 
colloidal structure by vertical deposition (VD) (b) sketch of the ordered system (c) 
infiltration with responsive material (PDMS) (d) detection of the analytes by absorption 
and swelling of the composite structure. 
 
The composite structure is assembled into 3D ordered PCs on a PET 
sheet using the vertical deposition (VD) technique as shown in Figure 
1a. First the substrate was hydrophilized using an ozone cleaner for 30 
min. Then, the clean PET sheet was placed in a cylindrical vessel. The 
PS suspension was added to the vessel and then evaporated in a 
homemade proportional-integral-derivative (PID) oven at set 
temperature of 45°C for 48h to form a film (Figure 1b). The infiltration 
of the 3D structure is obtained by pouring a PDMS solution into the 
voids of the colloidal crystal. The elastomer was supplied as a kit with 
two separate components: base and curing agent; we mixed base and 
curing agent in a 10:1 ratio. After infiltration the structure was cured 
for 4 h at 65 °C and then the excess elastomer was peeled-off from the 
crystal as reported in ref [28]. 
 
6.2.4 Characterization 
 
The morphology and the size of the obtained colloidal crystals and the 
particles were investigated using scanning electron microscopy (SEM-
FEG Jeol JSM-7001F). The optical features of the colloidal crystals 
were characterized using an UV-VIS reflection fiber optic spectrometer 
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(Ocean Optics USB 200) equipped with a halogen lamp. The incident 
white light was aligned perpendicular to the <111> planes of the 
colloidal crystal, UV-VIS spectra were collected by a probe placed 
orthogonally to the surface. Dynamic spectra were continuously 
recorded by Ocean Optics USB 200 spectrometer coupled to a six-
around one reflection probe (6 illumination fibers around 1 read fiber) 
with incident and reflection angles fixed at 0° (Figure 1d). The 
reflection spectra were collected every 2 sec by the spectrometer after 
spotting 5 µl of solvent on the surface of the colloidal crystal. In 12 min 
about 360 spectra were imported to the matrix table of software 
“Origin”, which was further used to plot the contour map with time (t) 
on x-axis, reflection wavelength (λ) on y-axis and reflection intensity 
(R) in color. 
 
6.3 Results and Discussion 
 
6.3.1 Choice of the Materials and Sensor Design 
 
We have shown previously that 3D PCs can be prepared very efficiently 
via controlled assembly of periodic dielectric monodisperse PS spheres 
[27] and that it is possible to tailor their optical response infiltrating 
specific responsive materials [28]. It is worth mentioning that PDMS is 
one of the most widely used silicon-based elastomers, since is a 
viscoelastic, biocompatible, chemically and mechanically robust 
material with low glass transition temperature and high transmittance. 
Moreover, it is resistant to most aqueous solutions and alcoholic 
solvents, even if some homologues are able to swell it [29]. Exploiting 
these properties, here we present the fabrication of a 3D colloidal 
crystal film infiltrated with PDMS elastomer to form a composite 
chromatic and portable system able to detect alcohol/water mixtures 
and butanol isomers. In Fig. 6.2 is reported a typical SEM image of the 
top surface of the opal infiltrated with PDMS, where we can observe a 
long order periodicity and a hexagonal arrangement attributable to the 
<111> plane of the fcc structure. The inset (Fig. 6.2) shows a 
photograph of the infiltrated opal, where a clear green opalescence is 
evident. 
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Figure 6.2 SEM image of the infiltrated opal; in the inset: a photograph of the 
composite opal where a green opalescence can be seen by naked eyes. 
 
The assessment of the chromatic behavior of the infiltrated opal and its 
variation in the optical response under external stimuli is the “key” 
point in order to properly design this type of sensors and render them 
selective. Generally, the opalescence and, therefore, the reflectance 
wavelength for normal incidence, is based on the Bragg’s law reported 
in equation (6.1) 
 

1112 effd nλ = ⋅ ⋅  (6.1) 

 
where λ is the wavelength of reflected light, d111=0.816·D is the 
interplanar spacing in the <111> direction, D represents the diameter of 
PS nanoparticles and neff is the effective refractive index of the sample. 
The effective refractive index of a two-phase structure can be expressed 
by 
 

2 2 2 (1 )eff spheres i medium in n f n f= ⋅ + ⋅ −  (6.2) 

 
Where, in the initial state, fi =0.74 is the filling factor of the porous 
structure for an ideal fcc package, nspheres=1.55 and nmedium=1.40 
represent the refractive index, at 631.8 nm, of PS and PDMS materials 
respectively. 
The application of an external stimulus produces a specific change in 
lattice constant value ai (ai=(d111)i∙√3) and therefore in the filling factor 
fi, as expressed by the equation (6.3). 
 



Colloidal Crystals Based Portable Chromatic Sensor for Butanol Isomers and Water 
Mixtures Detection 

103 
 

3

3

2
3i

i

Df
a

π
= ⋅  (6.3) 

 
where D is the diameter of the nanoparticles. 
The stimulus is responsible of a modification in the volume fraction of 
the PS NPs in the crystal as sketched in Fig. 6.3, and therefore results 
in a new value of fi that induces a red shift in the optical response as 
expressed by equation (6.1).  
Now, in the simplest case it’s possible to assume an isotropic 
displacement of the spheres assembled in the periodic lattice fcc (Fig. 
6.3), that causes a variation in the value of effective refractive index neff 
as well as on the d111. 
The swelling is a kinetic process coupling mass transport and 
mechanical deformation, which depends on the interaction between the 
polymer network and the solvent and is generally determined via 
changes in linear dimensions or volume. 
The swelling coefficient S can be defined by equation (6.4) 
 

111

111 0

( )
( )

SdS
d

=  (6.4) 

 
where (d111)s,0 is the interplanar spacing in presence of the analyte 
(swelled state) and for initial configuration (initial state), respectively. 
It’s worth recalling that a crosslinked polymer network can absorb a 
large amount of solvent without dissolving, considering this, in order to 
validate the analytical model previously described, homologues such as 
MetOH and TerB have been taken into account. Figure 6.4 shows the 
reflectance spectra acquired after spotting respectively 5 μl of MetOH 
and TerB onto the ‘‘sensor’’ surface and monitoring the optical change 
of the diffraction peak. 
Analyzing Fig. 6.4 we can observe a red shift in the wavelength position 
of the diffraction peak as a function of the different types of solvents 
used. We can clearly see that higher is the swelling coefficient of PDMS 
with the solvent (equation (6.4)), bigger is the red shift of the diffraction 
peak. From the wavelength position of the diffraction peak as a function 
of the applied solvents (Figure 4) and taking into account the equations 
6.1, 6.2, 6.3 and 6.4 we have determined the swelling values S.  
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Figure 6.3 Sketch of the isotropic displacement of the spheres assembled in the periodic 
lattice fcc of the colloidal crystal after solvent application. Clock wise: initial state 
(green colour), intermediate state (orange colour), and final state (red colour) with 
their respective reflectance peak shift. The process is completely reversible. 
 
 

 

 
Figure 6.4 Reflectance spectra of the composite colloidal crystal before (green solid 
line) and after spotting 5 μl of different solvents onto the ‘‘sensor’’ surface: (orange 
dash line) MetOH, (red dot line) TerB. 
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The calculated values compared with the tabulated ones, have 
evidenced an optimum agreement as shown in Table 6.1. 
 

Analyte S Tabulated [29]  S Calculated  
MetOH 1.02 1.03 

TerB 1.21 1.19 
 
Table 6.1 Swelling coefficient S of the solvent used to validate the model, an error of 
5% is attributed to the measured values. 
 
Hence, the analytical model discussed, can be seen as a suitable 
approach in order to describe the working principle of the colloidal 
structure and it allows a proper design of the chromatic sensor. 
 
6.3.2 Tert-butyl Alcohol Concentration Detection 
 
As described in the previous section, a change in the filling factor f 
causes a variation in the photonic band gap features which can be 
observed as a shift in the wavelength of the light reflected from the 
crystal (color change). Taking advantage of this, we have used the 
composite colloidal crystal for the analysis of butanol-water mixture 
concentration. It is worth noting that the determination of water 
concentration in organic solvents, in particular ethanol and butanol, is 
of great interest for industry e.g. in pharmaceutical and chemical ones 
for the efficiency of drugs and usefulness of chemical products as 
pointed out in the introduction. Using the same approach applied for the 
model validation, 5 µl of different concentrations of TerB and water 
mixtures have been spotted on the surface of the composite colloidal 
crystal. Alcohol concentration was expressed in % Vol, mixtures were 
prepared by measuring the respective volumes with micropipettes. 
Fig. 6.5 shows the variation of peak position (∆λ), respect to the initial 
state, as a function of different mixtures of TerB and H2O, that allows 
to investigate the sensitivity of the composite colloidal crystal structure 
as chemical responsive material. 
At a first glance we can notice that the ∆λ is not proportional to the 
alcohol volume fraction. Since the PDMS elastomer hardly swells in 
pure water, the peak shift is negligible due to the hydrophobic 
condition, however we can clearly distinguish two main regions, the 
first one goes from 10% to 80% of TerB, in which only a moderate shift 
in term of wavelength (17 nm) is observable, while in the second one, 
that goes from 90% to 99%, there is a much steeper slope with a 
variation of 23 nm. 
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Figure 6.5 Relationship between the variation of peak position (∆λ), with respect to the 
initial state, and the TerB concentration (v/v0). The error bars are ± 1nm. 
 
This trend can be explained due to the fact that the value of the solubility 
parameter for a mixture of solvents is not volume-wise proportional to 
the solubility parameters of the components [30]. In fact, anomalies of 
the physicochemical properties of mixtures, such as solubility, depend 
on microhetereogeneity caused by separation at molecular level. In 
alcohol-water mixtures, when the water concentration is very low, the 
molecules of alcohols can be considered in the same environment as 
those in the pure liquid alcohols, while the H2O molecules are well 
dispersed in the organic phase [31].  
Considering the solution behavior of the PDMS-solvent system, it is 
well known that to have the solubility of two materials, since the 
molecules of the solute have to permit the insertion of the solvent, the 
cohesive energy densities have to be similar. In case of cross-linked 
polymers, that do not dissolve, solubility is expressed by the degree of 
swelling. As already reported by Lee et al. [29] and Rumens et al. [32] 
the relationship between solubility and swelling is not linear and is 
distinctive for each polymer-solvent system. 
In conclusion, we have demonstrated that the photonic crystal sensing 
material developed is a suitable tool that allows the detection of water 
in TerB by using a simple and portable spectroscopic system. 
 
6.3.3 Isomers Detection 
 
Traditional photonic sensing based on the change of balanced reflection 
of photonic structures can hardly distinguish chemical species with 
similar refractive indices, in this case composite colloidal crystals are 
able to discriminate also isomers. In order to differentiate among 
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isomers, dynamic measurements, compared to static reflectance 
spectra, can efficiently distinguish them even if they present similar 
physico-chemical features, exploiting their capability to diffuse in and 
swell PDMS. 
The approach based on dynamic reflectance spectra has been applied 
for the recognition of different species such as demonstrated by Lova et 
al. [10] and Ge’s group [12], to detect volatile organic compounds 
(VOC) and homologues respectively.  
The advantage of dynamic measurements is that they allow following 
different processes happening when the solvent is applied on the surface 
of the composite. As a function of time the solvent diffuses into the 
structure and evaporates into the atmosphere, leading to continuous 
variation of the observed pattern.  
Fig. 6 a, b, c show the reflectance-time diagram obtained from three 
butanol isomers (TerB, NB, and 2B). On these figures, the horizontal 
axis represents time, the vertical one represents wavelength and the 
colours give the normalized measured intensity. Pattern changes, which 
are a result of swelling induced deformations, can be readily and easily 
visualized in this way, allowing the discrimination of the butanol 
isomers. 
Analyzing Fig. 6.6 a’, b’, c’, where some significative spectra extracted 
from the maps have been reported, we can observe that the time needed 
to reach the maximum red shift and intensity of the reflectance 
diffraction peak is different and typical of each isomer, moreover we 
can observe that the intensity follows the phenomenological formula 
[7]: 
 

eff

nI
n
∆

∝  (6.5) 

 

 
(a) 

 
(a’) 
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(b)  

 
(b’) 

 
(c)  

 
(c’) 

 
Figure 6.6 Dynamic Reflectance contour-plots spectra of: (a) 2-Methylpropan-2-ol 
(TerB), (b) Butan-2-ol (2B) and (c) Butan-1-ol (NB) and time resolved optical response 
(a’), (b’),(c’) highlighting differences typical of each isomer and the reversibility of the 
process. 
 
where Δn is the difference of refractive index between spheres and the 
infiltrating medium, and neff is the effective refractive index after 
swelling of the structure; this can be associated to the fact that, as 
predicted in the model described in section 6.3.1, the swelling induces 
a decrease in the neff value. 
Moreover, we can notice that the change induced to the composite 
structure is totally reversible after the complete evaporation into the 
atmosphere of the solvent (Fig 6.6 a’, b’); in the case of NB, due to the 
low vapor pressure of the solvent, after 720 s the reflectance peak was 
not yet returned to the initial position, however for a time of 30 min we 
have observed a complete reversibility of the process. Furthermore, the 
measurements were repeated several times, and the material was found 
to display highly reproducible changes in the optical spectra upon 
cycling.  
Finally, it is worth highlighting that the analytes can diffuse into the 
PDMS matrix, swell it and evaporate with different kinetics, depending 
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on their chemical properties (polarity, viscosity, chemical affinity, 
vapor pressure), and this produces a sort of finger print that allows a 
quite fast recognition even if they present similar features. 
 
6.4 Conclusions 
 
In this paper we have reported an easy and reliable method for the 
fabrication of composite colloidal crystals based on PS nanoparticles 
embedded in an elastomeric matrix such as PDMS. These systems can 
be employed as low cost and reversible chromatic sensors for the 
investigation of mixtures and to distinguish among different kind of 
isomers. Moreover, we have highlighted the working principle of this 
class of sensors, assessing the crucial role that the filling factor f plays 
in the position of the diffraction peak. It has been demonstrated that the 
developed structures are a suitable tool for the determination of small 
water (≥ 1 vol%) content in butanol indicating that this structure can be 
seen as a portable spectroscopic system. Dynamic measurements have 
permitted to selectively distinguish the isomers exploiting their intrinsic 
features. Finally, the presented approach suggests that is possible to 
realize a colorimetric responsive sensor, which potentially does not 
require any signal transduction and it could be a safe device suitable for 
untrained end-users. 
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7. Fractional-Order Theory of Thermoelasticicty. I: 
Generalization of the Fourier Equation 
 
 
By G. Alaimo, V. Piccolo, A. Chiappini, M. Ferrari, D. Zonta, L. Deseri and M. Zingales 
 
Abstract 
 
The paper deals with the generalization of the Fourier-type relations in 
the context of fractional-order calculus. The instantaneous temperature-
flux equation of the Fourier-type diffusion is generalized introducing a 
self-similar, fractal type mass clustering at the micro-scale. In this 
setting the resulting conduction equation at the macro-scale yields a 
Caputos’ fractional derivative with order [ ]0,1β ∈  of temperature 
gradient that generalizes the Fourier conduction equation. The order of 
the fractional-derivative has been related to the fractal assembly of the 
micro-structure and some preliminary observations about the 
thermodynamical restrictions of the coefficients and the state functions 
related to fractional-order Fourier equation has been introduced. The 
distribution and the temperature raising in simple rigid conductors have 
been also reported to investigate the influence of the derivation order in 
the temperature field. 
 
7.1 Introduction 
 
Fractional-order calculus is usually referred as the generalization of the 
well-known ordinary differential calculus introducing real-order 
integrals and derivatives. It traces back to the basic definitions by 
Riemann as well as to successive memories of famous mathematicians, 
among the others (see e.g. [41]), while, more recently, other scientists 
focused on the feasibility of integral measures involved in fractional-
order operators [4, 5, 6] 
After definitions and feasibility of fractional-order operators, their 
introduction into continuum field theories has received significant 
interests worldwide [33, 26, 39, 46, 45, 43]. Indeed the replacement of 
classical operators with their real-order counterparts 

andd d d d
dx dt dt dt

α β

α β

 
→ → 

 
 with ,α β ∈ℜ  has proved to be valuable in 

several engineering and physical contexts predicting phenomena with 
great accuracy [32, 33, 28, 7]. The use of fractional-order operators has 
been also reported in non-local continuum field theories of mechanics 
[27, 20, 21, 11, 12, 44, 9], non-local heat transfer [40, 36, 47, 49] 
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stochastic analysis [18, 16, 3, 17], diffusive transport [42, 25, 34, 31], 
biophysics [13], rheology and many others. 
Despite the wider and wider use of fractional-order operators an 
important question has not been answered: “What is the physics beyond 
the use of fractional-order derivatives?” The answer to this fundamental 
issue would be of great stimulus for worldwide researchers to re-derive 
the classical continuum field theories in terms of fractional-order 
operators. 
On that subject, a strong effort has been profused during last years to 
provide a solid physical ground in the use of fractional-order derivative 
in the transport equations. Cases involving polymer viscoelasticity, 
anomalous fluid diffusion, as well as laminar flow across fractal sets 
have been recently provided [22, 19, 15, 2]. 
Fractional-order calculus has been also used in the theory of thermo-
elasticity to generalize the classical Fourier and Cattaneo transport 
equations [23, 8, 35, 10]. However, no physical ground in the 
formulation of neither anomalous heat transfer nor thermo-elasticity 
theory has been provided, leading to a non-physical representation of 
the thermoelastic phenomena reported in such studies. 
In the present work, the authors obtain a fractional-order Fourier 
diffusion law from a multi-scale rheological model. This is done by 
means of the introduction of an inhomogeneous conductor leading to an 
anomalous time evolution as t β  with 0 1β≤ ≤  [48]. Such 
consideration is used in the paper to provide a physical exact description 
of the fractional-order Fourier diffusion equation that is also 
thermodynamically consistent. Numerical experiments have been 
reported to show the evolution of the temperature field in different 
domains with different boundary conditions. Anomalous thermo-
elasticity is analyzed in Part II of this paper [38], where a measure of 
the signature of the anomaly based on a measure of the energy rate is 
explored. 
 
7.2 The Thermodynamical Model of Power-Law 
Temperature Evolution 
 
In this section the authors show that anomalous rising of temperature in 
the form of power-law t β  is obtained using arguments presented 
extensively in [38]. 
It is assumed a distribution of 1n +  masses =j jm A z∆  with 

= 1,2,..., 1j n + , where jA  represents the cross-sectional area of the thj  
mass and = / ( 1)z l n∆ +  its length, being = ( 1)l n z+ ∆  the overall 
length of the conductor Fig. (7.1a). The masses, located at abscissas 
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=jz j z∆  and separated by adiabatic walls from the external 
environment, are connected each other by a perfect conductor, so that 
thermal energy exchange may occur only along the z  direction. The 
thermodynamic state variables describing the system are assumed as the 
macroscopic temperatures ( )jT t  of the masses jm  for = 1,2,..., 1j n + . 
 

 

 
Figure 7.1 Thermodynamical model of anomalous temperature rising: (a) the 
concentrated mass system; (b) thermal energy balance of the jth mass. 
 
The energy balance of the thj  mass jm  involves the rate of the internal 
energy jU  and the energy flux along the conductors jm , namely, ( )jq t  
and 1( )jq t−  that can be written as: 
 

( )
1 1

( ) ( ) ( )
= = = ( ) ( )j j jV

j j j j j j j

dU t du t dT t
m m C A q t A q t

dt dt dt − − −
 

(7.1) 

 

where with 
( )

0

= jV
j

T

u
C

T
∂ 

 ∂ 
 is denoted the specific thermal capacity at 

constant volume that is assumed to be uniform for the considered 
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temperature interval; ( )ju t  is the internal energy function density of the 
mass jm . 
Given the assumption that only diffusive phonon-phonon interaction 
yields thermal energy transport, the thermal energy flux ( )jq t  of the 
mass located at abscissa jz  may be expressed as: 
 

1 1( ) ( )

1

( ) ( ) ( ) ( )
( ) = =j j j jT T

j j j
j j

T t T t T t T t
q t

z z z
χ χ+ +

+

− −
− −

− ∆

 
(7.2) 

 
where with ( )T

jχ  the thermal conductivity of the thj  conductor is 
denoted. Substitution of (7.2) in (7.1) yields the thermal energy balance 
as an ordinary differential equation system in the temperatures ( )jT t . 
 

( )( ) ( ) ( ) ( ) ( )
1 1 1 1 1

1( ) = ( ) ( ) ( )V T V V T
j j j j j j j j jzC T t T t T t T t

z
ρ χ χ χ χ+ + + − −

 ∆ − + + ∆


 

 (7.2) 
 
where it is assumed that = jA A  for = 1,2,..., 1j n +  and that the masses 

=jm A zρ ∆  (see fig. (7.1)) where ρ  is the mass density. The energy 
balance equations reported in eq. (7.3) involve masses jm  with 

= 2,3,.....,j n  as the temperature of the 1nm +  mass of the system has 
been set to the value 1 = 0nT +  without loss of generality. Energy balance 
of mass 1m  of the thermodynamical system in fig. (7.1) involves an 
external thermal energy flux, denoted in the following formula as ( )q t
, yielding: 
 

( ) ( ) 2 1
1 1 1

( ) ( )( ) = ( )V T T t T tC z T t q t
z

ρ χ −
∆ +

∆


 
(7.4) 

 
The anomalous time-scaling of the temperature field is achieved 
assuming that the spatial distribution of the thermal conductivity ( )V

jχ  

and the specific thermal capacity ( )V
jC  varies along the masses jm  with 

the relations: 
 

( )
( ) ( )=

(1 )

V
V

j
C j zC

α
α

α

−∆
Γ −

 
(7.5a) 
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( )

( )

1( )
2=

(1 )

T

T
j

j z α
α

αχ
χ

α

− + ∆ Γ 
 

Γ −

 
(7.5b) 

 
where ( )Γ •  is the Euler-Gamma function and the real exponent α  
belongs to the interval 1 < 1α− ≤  for diffusion-type phenomena. It 
must be remarked that the assumption of a power law variation of the 
thermal properties of the non-homogeneous rigid conductor is the 
fundamental hypothesis from which comes out the fractional 
constitutive relation between the heat flux and the temperature gradient. 
Indeed, for the case = 0α , an homogeneous conductor and, 
consequently, the classical Fourier transport equation is obtained. 
Coefficients ( )VCα  and ( )T

αχ  are the thermal capacity and the thermal 
conductivity, respectively, with anomalous physical dimensions in the 
International System of Units (SI) as:  

 
( ) 2 1 2 ( ) 1 1 3= ; =V TC m K s kgm K sα α
α αχ

+ − − + − −      
 

(7.6) 

 
In order to show that the discrete mass system yields a power-law time 
rising of the temperature field it is supposed that, at the same time, 
n →∞ , 0z∆ →  and l →∞ . In this framework the functions ( )jT t  

and ( )jq t  represents local values of the fields ( ) ( ),j jT t T z t→  and 

( ) ( ),j jq t q z t→ . 
Under these circumstances the balance equation reported in (7.1) 
becomes:  
 

( ) ( , ) ( , )
( ) =V T z t q z t

C z
t z

ρ
∂ ∂

−
∂ ∂

 
(7.7) 

 
Eq. (7.8) describes the balance at location z  between the rate of the 

thermal energy =
u

U
t

ρ
∂

∂
  and the difference of the outgoing thermal 

energy ( , )q z dz t+  and the incoming one ( , )q z t  in unit time. 
Introducing the following Fourier transport equation, obtained for 

0z∆ →  
 

( ) ( , )
( , ) = ( )T T z t

q z t z
z

χ
∂

−
∂

 
(7.8) 
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in eq.(7.8), the heat equation is obtained as: 
 

( ) ( )( , ) ( , )
( ) = ( )V TT z t T z t

C z z
t z z

ρ χ
∂ ∂ ∂

∂ ∂ ∂
 
  

 
(6.9) 

 
In eq.(7.10) the thermodynamical properties of the distributed mass 
system are described through the continuous counterparts of eqs. (7.1 
a,b), i.e. ( ) ( ) ( )V V

j jC C z→  and ( ) ( ) ( )T T
j jzχ χ→  that read: 

 

( ) ( )

( )
( )

( ) ( )

1
2( ) = ; ( ) =

1 1

T
V

V T

z
C z

C z z

α
α α

α

α
χ

χ
α α

−
−

+
Γ

Γ − Γ −

 
 
 

 
(7.10) 

 
Accordingly, the boundary conditions associated to the heat equation 
(7.10) are obtained as the continuous conditions on the first mass 1m  
and the last mass 1nm +  of the discrete system (see fig. (7.1) under 
consideration as:  
 

( )

0

( , )
( ) = ( ) ; ( , ) = 0lim limT

z z

T z t
q t z T z t

z
χ

→ →∞

∂
−

∂

 
(7.11) 

 
The temperature field ( , )T z t  may be obtained introducing the Laplace 
transform of (7.10), yielding to an ordinary differential equation in 
Laplace domain as:  
 

( )
 ( ) ( )  ( )( ) ( ),

= ,T VdT z sd
z s C z T z s

dz dz
χ ρ
 
 
  

 

(7.12) 

 
where  ( ),T z s  represents the Laplace transform of the temperature 
field ( , )T z t . Relation (7.13) can be cast, after some straightforward 
manipulation, as: 
 

 ( ) ( )
( )

 ( ) ( )
( )

 ( )
'( )2 ( )

2 ( ) ( )

, ,
, = 0

T V

T T

zd T s z dT s z C z
s T s z

dz z dz z

χ
ρ

χ χ
+ −
  

 
(7.13) 
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Substituting for the thermal conductivity coefficient ( )( )T zχ  and the 

specific heat ( )( )VC z  with the corresponding power-laws reported in 
eqs. (7.11), the differential equation ruling the temperature field 
becomes: 
 

 ( )  ( )
 ( )

2

2

, ,
, = 0

d T z s dT z s
sT z s

dz z dz
α

τ− −
 

(7.14) 

 
where: 
 

( )

( )

1
=

1
2

V

T

Cα

α

τ ρ
αχ +

Γ 
 
 

 

(7.15) 

 
is constant with respect to space z  and time t  and its value changes 
with α  as shown in (7.16). However, physical dimensions of τ  are 
[ ] 2= smτ − , consequently they do not depend on the exponent α . A 
canonical Bessel equation of second kind may be obtained from eq. 
(7.16) introducing the auxiliary function ( ),T z s  by means of the 

mapping ( ) ( )ˆ , = ,T z s z T z sα  yielding: 
 

( ) ( ) ( ) ( )
2

2 2
2

, ,
, = 0

d T z s dT z s
z z z s T z s

dz dz
α τ α+ − +

 
(7.16) 

 
Solution of eq.(7.17) involves modified Bessel functions denoted 

( )Y z sβ τ  and ( )K z sβ τ , respectively (see [48] for details) as: 

where β  is related to the scaling exponent α  as: 
 

1
=

2
α

β
+  

(7.17) 

 
Boundary conditions in Laplace domain yield the integration constants, 
namely, 1B  and 2B  as: 
 

( )
 ( )

2

1 2 ( )

2 (2 2 ) sin( )
= 0 ; =

T

s
B B q s

β
β

α

β πβ τ
πχ

−Γ −
 

(7.18) 
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with [ ]2 =B K sm β− , so that the temperature field of the distributed 
mass systems reads: 
 

 ( ) ( )
 ( )2

( )

2 (2 2 ) sin( )
, = ( )

T

s
T z s q s z K z s

β
β

β
β

α

β πβ τ
τ

πχ

−Γ −
 

(7.19) 

 
Power-law time rising of the temperature field is obtained evaluating 
the temperature at = 0z  as: 
 

 ( )  ( ) 

0
0

1
= , = ( )lim

z
T s T z s s q s

R
β

β

−

→

 
(7.20) 

 
where the anomalous thermal diffusivity coefficient, Rβ  reads: 
 

1 2 ( )2 csc( )
=

(2 2 ) ( )

T

R
β β

α
β

πχ πβ τ
β β

−

Γ − Γ

 
(7.21) 

 
and 1 3=R kg K sβ

β
− −   . Special cases of eq. (7.22) can be obtained 

looking at some representative values of β  ans α  as follows: 
 

( )
1

0
1

2
=lim

T

Rβ
β
α

χ
π
−

→
→−

 

(7.22a) 

( ) ( )4
0 0

1
2
0

=lim T VR Cβ
β

α

π ρχ
→

→

 

(7.22b) 

( )
1

1
1

=lim VR Cβ
β
α

ρ
→
→

 
(7.22c) 

 
Under the assumption of stationary thermal energy flux 0( ) = ( )q t q U t , 
the time-varying temperature function 0 ( )T t  is obtained applying the 
inverse Laplace transform to eq. (7.21), yielding: 
 

0
0 ( ) =

(1 )
q

T t t t
R

β β

β β
∝

Γ +

 
(7.23) 
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that is the power-law temperature time scaling observed in fig. (7.1) for 
the discretized mass system considered in the analysis with [ ]0,1β ∈  
(see e.g.[48] for details). 
 
7.3 The Fractional-order generalization of Fourier heat 
transport equation 
 
In this section the authors introduce a fractional-order generalization of 
the Fourier transport equation according to the physical model of the 
power-law described in previous section. To this aim, the basic 
framework of fractional-order calculus is first provided followed by the 
physical model used to generalize the Fourier equation and its 
compatibility with the second law of thermodynamics. 
 
7.3.1 Preliminary Remarks on Fractional-Order Calculus 
 
Fractional calculus may be considered the extension of the ordinary 
differential calculus to non-integer powers of derivation orders (e.g. see 
[37], [42]). In this section the authors address some basic notions about 
this mathematical tool. 
The Euler-Gamma function ( )zΓ  may be considered as the 
generalization of the factorial function because, when z  assumes 
integer values, it follows that ( 1) = !z zΓ + . The Euler-Gamma is 
defined as the result of the integral as follows:  
 

1

0
( ) = .x zz e x dx

∞ − −Γ ∫
 

(7.24) 

 
The Riemann-Liouville fractional integrals and derivatives with 
0 < < 1β  of functions defined on the entire real axis have the following 
forms: 
 

( )( ) 1

1 ( )
I =

( ) ( )
t f

f t d
t

β
β

τ
τ

β τ+ −−∞Γ −∫
 

(7.25a) 

( )( ) 1 ( )
D = .

(1 ) ( )
td f

f t d
dt t

β
β

τ
τ

β τ+ −∞Γ − −∫
 

(7.25b) 

 
The Riemann-Liouville fractional integrals and derivatives with 
0 < < 1β  of functions defined over intervals of the real axis, namely 

( )f t  such that [ , ]t a b∈ ⊂  , have the following forms: 
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( )( ) 1

1 ( )
I =

( ) ( )
t

a a

f
f t d

t
β

β

τ
τ

β τ −Γ −∫
 

(7.26) 

( )( ) ( ) 1 ( )
D =

(1 )( ) (1 ) ( )
t

a a

f a f
f t d

t a t
β

β β

τ
τ

β β τ

′
+

Γ − − Γ − −∫
 

(7.27) 

 
Beside Riemann-Liouville fractional operators defined above, another 
class of fractional derivative that is often used in the context of 
fractional calculus is represented by Caputo fractional derivatives 
defined as: 
 

( )( ) ( )D := I D ( ) 1 < <m m
C a a a

f t f t m mβ β β−
+ + + −

 
(7.28) 

 
and whenever 0 < < 1β  it reads as follows: 
 

( )( ) 1 ( )
D =

(1 ) ( )
t

C aa

f
f t d

t
β

β

τ
τ

β τ+

′

Γ − −∫
 

(7.29) 

 
A closer analysis of eq. (7.28) and eq. (7.29) shows that Caputo 
fractional derivative coincides with the integral part of the Riemann-
Liouville fractional derivative in bounded domain. Moreover, the 
definition in eq. (7.28) implies that the function ( )f t  has to be 
absolutely integrable of order m  (e.g. in eq. (7.29) the order is = 1m ). 
Whenever ( ) = 0f a  Caputo and Riemann-Liouville fractional 
derivatives coalesce. 
Similar considerations hold true also for Caputo and Riemann-Liouville 
fractional derivatives defined on the entire real axis. Caputo fractional 
derivative may be considered as the interpolation among the well-
known integer-order derivatives, operating over functions ( )f   that 
belong to the class of Lebesgue integrable functions ( 1( )f L∈ ); 
consequently it is very useful in the mathematical description of 
complex system evolution. It is worth noting that the Laplace and 
Fourier integral transforms are defined as follows: 
 

0
[ ( )] = ( )e stf t f t dt

∞ −∫
 

(7.30a) 

[ ( )] = ( )ei tf t f t dtω+∞

−∞∫
 

(7.30b) 
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It is worth introducing integral transforms for fractional operators and, 
similarly to classical calculus, the Laplace integral transform ( )  is 
defined in the following forms: 
 

( )( ) ( )( )1
0 0 =0

D = [ ( )] D if 0 < 1 
t

f t s f t f tβ β β β−− ≤       
 

(7.31a) 

( )( ) 1
0D = [ ( )] (0) if 0 < 1C f t s f t s fβ β β β−− ≤   

 
(7.31b) 

( )( )
0

I = [ ( )]f t s f tβ β−
+

 
  

 
(7.31c) 

 
In the same way, the Fourier integral transform ( )  assumes the 
following forms: 
 

( )( ) ˆD = ( ) [ ( )] = ( ) ( )f t i f t i fβ β βω ω ω+ − −   
 

(7.32a) 

( )( ) ˆI = ( ) [ ( )] = ( ) ( )f t i f t i fβ β βω ω ω− −
+ − −   

 
(7.32b) 

 
7.3.2 The Fractional-Order Generalization of the Fourier 
Equation 
 
Power-law rising of temperature field described in previous sections 
corresponds, in the context of a linear-order heat transport to a 
fractional-order relation among thermal flux and temperature. Indeed, 
assuming that the thermal energy flux across the = 0x  cross-section is 
a time-dependent function, inverse Laplace transform of (7.21) yields: 
 

( )( )1
0 0 0

1 1 1
( ) = ( ) ( ) = I

( )
t

T t t q d q t
R R

β β

β β

τ τ τ
β

−
+−

Γ ∫
 

(7.33) 

 
that is a Riemann-Liouville fractional-order integral of order [ ]0,1β ∈  
as in (7.26). 
The inverse relation of eq.(7.33) could be obtained introducing the β −
order fractional derivative of both sides of (7.33) yielding: 
 

( )( )00
( ) = Dq t R T tβ

β +

 
(7.34) 
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that is a fractional-order description of the temperature-flux in terms of 
Caputos’ fractional-order derivatives analogous to fractional-order 
generalization of the Darcy equation ([15]). 
A close observation of eq. (7.34) reveals that it does not correspond to 
the fractional-order generalization of the Fourier heat transport equation 
in terms of fractional derivatives, because no spatial gradient of the 
temperature field is involved, in spite of what occurs in Fourier equation 
rewritten with fractional calculus formalism, as: 
 

( )0
0 0

( ) = D
T

q t K t
x+

∂
−

∂
  
    

 
(7.35) 

 

where ( )( )
0

0
00

( )
D ( ) = = ( )

d f t
f t t f t

dt+
 is the 0th -order derivative of the 

function ( )f t  with respect to t . Fractional-order generalization of the 
Fourier equation will involve the presence of the real-order derivative 

0D Dβ→  with 0 < 1β≤  that is not present in eq. (7.34). 
In order to provide a generalization of eq. (7.34) in terms of fractional-
order derivative of order β , the authors introduce a self-similar 
conductor micro-structure (see, for example, [14]). 
In this framework, an 1D conductor with macroscopic thermal 
conductivity Tχ , mass density ρ  and specific heat ( )VC  is considered. 
The conductor is referred to an one-dimensional abscissa x  and it 
occupies the interval [ ]0, l  of the real line (see fig. (7.2a) for further 
details) where A  is the cross-sectional area of the conductor. A spatial 
discretization of the conductor with interval 1= j jx x x+∆ −  is 
considered along with a spatial thermal energy flux along the positive 
direction of the x -axis (fig. 7.2b). 
For an homogeneous conductor, the thermal energy across the cross-
section at abscissa jx , namely ( )jq t , depends only on the thermal 

conductivity Tχ  and on the temperature gradient 
T
x

∂

∂
 as in classical 

Fourier equation: 
 

1

0 0
( ) = =lim lim

j j
j

x x

T TT
q t

x x
χ χ +

∆ → ∆ →

−∆
− −

∆ ∆

 
(7.36) 
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Figure 7.2 (a) Macroscopic thermal conductor; (b) thermal energy flux. 
 
According to eq. (7.36), the study of thermal energy flux across the 
cross-section at abscissa jx  can be conducted, without any loss of 

generality, assuming that ( ) =jT t T−∆  and 1( ) = 0jT t+ . The latter 
assumption is equivalent to the choice of the zero-temperature 
condition, coincident with the temperature of the cross-section 1( )jT t+  
as in Fig. 7.3(a). 
 

 

 
Figure 7.3 Scheme of the self similar mass distribution: (a) definition of 
thermodynamical quantities; (b) z0=1; (c) z1=3; (d) z2=32; (e) z3=33; (f) zk=3k. 
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In the following the authors assume that the mass density within the 
element of length x∆  is not uniformly distributed at any resolution 
scale. Given such assumption and introducing a scale factor z , a self-
similar cluster of mass-distribution is observed as in Fig. 7.3(b-e). The 
longitudinal cross-sections of the conductor along the x -axis is shown 
in Fig. 7.3(a) assuming a Sierpinski-like mass clustering with the 
observation scale kz  for illustrative’ sake. In passing, the authors 
observe that the proposed self-similar micro-structure organization is 
very different from the fractal mass curdling. Indeed, in the considered 
self-similar clustering, all the masses observed at resolution scales 

0 1 1, , , kz z z −  are present examining the mass condensation at 

resolution kz . 
Thermal energy exchange across the mass micro-structure is assumed 
in the form of phononic-phononic diffusion, ruled by the Fourier 
relation, in a material with uniform thermal conductivity 0χ . Under 

these circumstances, masses km  and distances kl  at resolution scale kz  
read: 
 

2

0= = k
k k k k

k

b
m A l a z x

z
ρ ρ ∆ ∆

 
 
 

 
(7.37) 

 
where 1=k k kz z z−∆ − , 0b  is the edge of the conductor cross-section 

assumed squared at resolution 0 = 1z  and ka  is the number of self-

similar elements at resolution kz ; for the proposed fractal scheme 
= 2a . The equivalent measure condition is achieved incrementing the 

resolution factor of a quantity kz  and introducing an anomalous 

dimension-dependent density dρ  in eq. (7.37) yielding: 
 

1
0 0= =k d d k d

k d k k d k km a b z z x a b z z xαρ ρ− −∆ ∆ ∆ ∆  
(7.38) 

 

where 
log 2

=
2 log 3

d  for the considered mass assembly at the microscale 

and it represents the Housdorff dimension of the geometric self-similar 
set describing mass curdling. Thermal energy balance of mass km  
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involves a dynamic equilibrium among the rate of internal energy and 
the net thermal flux across the generic mass / k

km a  yielding: 
 

( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( 1) ( )
0 1

( ) ( )
( ) ( 1) ( 1) ( )1

1

= = ( ) ( ) =

=

k d V k k kk
j d k k j j k j kk

c c
k k k kT k T k

j j j j
k k

m
u b z z xC t q t A q t A

a
A A

t t t t
z x z x

αρ θ

χ χ
θ θ θ θ

− −
−

− −−

−

∆ ∆ − +

− − + −
∆ ∆ ∆ ∆





 

 (7.39) 
 
where the relative temperature ( )( )k

j tθ  of the mass km  at the thk  
resolution scale (corresponding to the volume element located at the 
macroscopic abscissa jx ) is introduced; moreover, ( ) = /c k

k kA A a  is the 

cross-sectional area of the conductor at the resolution kz . Bearing in 

mind that ( )
0=c d

k kA b z α− , eq. (7.39) can be rewritten as: 
 

( )

( )
( ) ( ) ( )

( )

( 1) ( 1)
1( )1

2( )
1 1

=k
k j

k k
k j k jkk kT

jV
k k k kd

z t

z t zz z
t t

z z z zC x

α

α αα α

θ

θ θχ
θ

ρ

−

− + − −− −
−−

− −

= − + +
∆ ∆ ∆ ∆∆

  
  

  

  

 (7.40) 
 
With some straightforward manipulations and letting 0kz∆ → , so that 
a continuous resolution scale is achieved, eq. (7.40) becomes: 
 

( )
( )

( )( )
2

,1
, =k

k j

d

z t
z z t z

z zx
α α θ
θ

τ
− − ∂∂

∂ ∂∆

 
 
 



 

(7.41) 

 
Eq. (7.41) is formally analogous to eq. (7.13) for inhomogeneous 
conductor presented in previous section but, it is formulated for the 
micro-structure observed at abscissa jx . The boundary conditions 
associated with the temperature equation (7.41) read: 
 

( )
0

,1
( ) = ( ) = lim

j
j j

z

z t
q t q t

x z

θ
→

∂

∆ ∂

 
(7.42a) 

( ) ( )1, = , = 0lim j j
z

z t z tθ θ −
→∞

 
(7.42b) 
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Solution of eq. (7.41), accounting for boundary the conditions (7.42a) 
and (7.42b) can be obtained relying on similar arguments as in previous 
sections, yielding: 
 

( ) ( ) ( )22 (2 2 ) sin( )
, = ( )j j d

T

s
z s q s z K z s

β
β

β
β

β πβ τ
θ τ

πχ

−Γ −
 

 
(7.43) 

 
where = ( 1) / 2 = (2 ) / 2dβ α + − . 
Letting 0z → , the temperature ( ),j z sθ  tends to 

( ) ( )  ( )= , = ,j j j js x s T x sθ θ −∆   yielding: 
 

 ( ) ( )
0

1
, = , = ( )lim j jj

z
T x s z s s xq s

R
β

β

θ −

→
−∆ ∆ 

 
(7.44) 

 
where: 
 

1 22 csc( )
=

(2 2 ) ( )
T dR

β β

β

πχ πβ τ
β β

−

Γ − Γ

 
(7.45) 

 
Recasting relation (7.44) the fractional-order generalization of the 
Fourier equation is obtained as: 
 

( )


( ) ( )
00

, = = D ,lim
z

T T
q x t R s R x t t

x x
β β

β β +
∆ →

∆ ∂
− −

∆ ∂
 
 
 

 
(7.46) 

 
that has the formal structure of eq. (7.35) but also involves derivative 
of order = (2 ) / 2dβ −  that depends on the fractal-like clustering of 
mass micro-structure. When = 2d , = 0β  and the classical Fourier 
equation is obtained. 
Summing up in this section the authors observe that an approach based 
on a self-similar clustering of micro-scale masses in a macroscopically 
homogeneous conductor yields, at the macro-scale, to a fractional-order 
generalization of the Fourier equation in terms of Caputo fractional 
derivatives. The order of the derivative is related to the topological 

features of the microscopic set of mass clustering as 
2

=
2

d
β

−
. 

The analysis has been obtained for an 1D case and it may be 
generalized, straightforwardly to more complete case, repeating the 
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analysis for an isotropic conductor in a three dimensional domain V  of 
the Euclidean space R  referred to a three dimensional coordinate 
system ( )1 2 3, , ,O x x x . In this case identical micro-structure is observed 
along any direction and, therefore, the fractional-order Fourier equation 
may be generalized in term of the spatial gradient of the temperature 

field, namely, [ ] [ ]= k
k

i
x
∂

∇ • •
∂

 ( ki  the unit vector of the coordinate 

system) as: 
 

( )( ) ( )( )
0 0

( , ) = D , = D ,q x t R I T x t R T x tβ β
β β+ +− ⋅ ∇ − ⋅ ∇

 
(7.47) 

 
where =IR Rβ β  is the isotropic second-order tensor of the anomalous 
conductivities. 
 
7.3.3 Thermodynamical Consistency of the Fractional-Order 
Fourier Conduction 
 
Thermodynamical assessment of eq.(7.46) must be formulated in terms 
of the irreversible entropy production rate ( , )us x t  for unit volume, 
must be satisfied for any thermodynamical process at the macro-scale 
( ),T x t . In this section the authors report some basic considerations 

that correspond to the thermodynamical consistency of the model with 
a bottom-up approach from the self-similar micro-scale considered. In 
this circumstances the Gibbs inequality yields ( , ) 0us x t ≥  that must be 

fulfilled for any 0t ≥  and at any location of the conductor jx V∈  and 

for any micro-scale location jz . 
To this aim, the second principle of thermodynamics, written for the 
observation scale z , reads:  
 

( ) ( )
( ),1

( , )
,

j
j j

j j

q z t
z s z t

z t z
ρ

θ

∂
≥ −

∂


 

(7.48) 

 
where s  represents the entropy rate. Introducing the irreversible 
specific entropy rate ( , )u js z t , relation (7.48) is rewritten as: 
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( ) ( )
( ) ( ),1

( , ) = ( , ) 0
,

j
j j j u j

j j

q z t
z s z t z s z t

z t z
ρ ρ

θ

∂
+ ≥

∂
 

 

(7.49) 

 
The entropy rate ( ),js z t  could be cast in terms of the balance among 

the incoming and outcoming entropy flux, namely ( ),jJ z t , as: 
 

( )
( ),1

( , ) = ( , )j
j u j

j j

J z t
s z t s z t

z zρ

∂
− +

∂
 

 

(7.50) 

 
Introducing eq. (7.50) into eq. (7.49), the relevant inequality among the 
balance of the entropy flux and the the balance of the heat flux, at 
location z , is obtained in the form: 
 

( )
( )

( ), ,1j j

j j j

J z t q z t

z z zθ

∂ ∂
≥

∂ ∂

 

(7.51) 

 
In the context of classical irreversible thermodynamics it is assumed 
that the entropy flux is a function of a state variable ( , )ju z t  that 
corresponds to the specific internal energy of the conductor at location 
z  as: 
 

( ) ( ) ( ), = ,j jJ z t u q z tϕ
 

(7.52) 

 
that, after substitution in eq.(7.51) (omitting arguments) it leads to: 
 

( ) ( )1
, 0j

j j

q
u q z t

z z
ϕ

ϕ
θ

∂ ∂
− + ≥

∂ ∂
 
  

 
(7.53) 

 
Since relation (7.53) must be fulfilled for any thermodynamic 

transformation, for the linear term ( )uϕ  equal to 
1
θ

, it is obtained: 

 

2

( ) 1
= 0

j j

u
q q

z z
ϕ θ

θ
∂ ∂

≤
∂ ∂

 
 
 

 
(7.54) 
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Introducing the Fourier relation in (7.54) gives: 
 

( ) ( ) 2

2

,
, = 0jT

u j
j

z t
s z t

z

θχ
θ

∂
≥

∂

 
  
 



 

(7.55) 

 
The relation (7.55) must be verified for any thermodynamical process, 
for any location along the conductor, at any micro-scale resolution and 
for any temperature field ( , )jz tθ  yielding the thermodynamical 

restriction on the thermal conductivity 0Tχ ≥  so that 0Rβ ≥ . 
It may be shown that the fractional-order generalization of the Fourier 
transport equation, reported in eq. (7.47), involves a state function of 
the form: 
 

( ) ( )[ ] ( )[ ]1 2
1 2 1 2

1 2

, ,
( , ) = ,

t t T x T x
x t K t t d d

τ τ
ψ τ τ τ τ

τ τ−∞ −∞

∂ ∇ ∂ ∇
− −

∂ ∂∫ ∫
 

 (7.56) 
 
where the kernel function 1 2( , )K t tτ τ− −  may be written in the form: 
 

( ) ( )1 2 1 2

1 2

1 1 1
( , ) = (2 ) =

2 2 2

K
K t t G t

t
β

βτ τ τ τ
β τ τ

− − − −
Γ − −

 
(7.57) 

 
that, after a Frecht differentiation, it takes back the fractional-order 
Fourier equation reported in eq.(7.47). It may be observed that the 
expression for the free energy function in eq.(7.56) is obtained from the 
evaluation of the overall dissipation rate associated to the 
inhomogeneous conductor in fig. (7.1) (see e.g. [21] and [14] for 
details). 
 
7.4 Numerical Experiments 
 
In the present section the authors report some numerical experiments 
regarding the temperature field of anomalous conductors in presence of 
different boundary and initial conditions. In particular, in the next 
subsection the heat conduction problem in a one-dimensional (1D) slab 
with imposed initial temperature field and fixed temperature at the 
extremities, over time, is studied. The aim of the presented analysis is 
to show how the solution of the fractional heat conduction equation, i.e. 
the diffusion-wave equation, is influenced by the introduction of the 
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Caputo’s fractional derivative in the heat flux constitutive relation by 
means of problems defined in simple spatial domain. 
The solution of the heat equation is obtained using the method of 
separation of variables: an equivalent approach has already been 
proposed in bounded space domains by means of the finite sine 
transform and the Laplace transform techniques [1]. Moreover, the 
Green’s function approach has been thoroughly studied for the Cauchy 
and the Signalling problem [28, 29, 30] . 
In case of isotropic transport of the thermal energy across the conductor, 
the constitutive equation reported in eq. (7.47) becomes: 
 

( )( )
0

( , ) = D ,q x t R I T x tβ
β +⋅ ∇

 
(7.58) 

 
where I  is the identity matrix and Rβ  is the  “fractional” thermal 

conductivity with dimension 1 3=R kgmK sβ
β

− −   . Introducing relation 
(7.58) in the energy balance equation, the three-dimensional (3D) 
fractional heat equation is obtained as: 
 

( ) ( )( )2 1
0

1
, = D ,CT x t T x tβ

βγ
−∇

 
(7.59) 

 

Coefficients ( )
=

V

R
C

β
βγ ρ

, ρ  and ( )VC  are the  “fractional” thermal 

diffusivity, the density and the specific thermal capacity respectively, 
with physical dimensions reported below: 
 

[ ]2 1 3 ( ) 1 2= ; = ; =Vm s kgm C mK sβ
βγ ρ− − − −     

 
(7.60) 

 
The last part of this section is devoted to the solution of heat problem 
in cylindrical coordinates { }, , ,O r zθ ; in such a case the 3D heat 
conduction equation (7.59) is rewritten as: 
 

( )( )
2 2 2

1
02 2 2 2

1 1 1
= D .C

T T T T
T t

r r r r z
β

βψ γ
−∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

 
(7.61) 
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7.4.1 Transient Heat 1D Problem in Cartesian Coordinates 
 
A transient boundary value problem of heat conduction for a 1D slab is 
considered; the initial parabolic distribution of temperature 

( , 0) = ( )T x F x  is shown in Fig. (7.4) : 0T  and MT  represent, the initial 
temperature at the ends ( = 0x  and =x L ) and at the center of the slab, 
respectively. Moreover, the faces at coordinates = 0x  and =x L  are 
kept, over time, at temperature 0T  and there is not heat flux at the 
boundary lateral surfaces. 
 

 
 
Figure 7.4 Initial parabolic temperature distribution for problem Eq. (62a). 
 
The problem is to find the corresponding temperature field ( , )T x t : its 
mathematical formulation is given as: 
 

( )( )
2

1
02

1
= D with 0 < , > 0, 0 < 1C

T
T t x L t

x
β

β

β
γ

−∂
≤ ≤

∂

 
(7.62a) 

0=0
= , > 0

x
T T t∀  

(7.62b) 

0=
= , > 0

x L
T T t∀  

(7.62c) 

2

0 0=0
= ( ) = 4( ) , 0 < <Mt

x x
T F x T T T x L

L L
+ − −

  
  
  

 
(7.62d) 

 
The problem in Eq. (7.62a) with boundary conditions in Eqs. (7.62b) 
and (7.62c) and initial condition Eq. (7.62d) can be solved shifting the 
temperature scale, namely defining the relative temperature as below: 
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0( , ) = ( , )x t T x t TΨ −  
(7.63) 

 
Considering Eq. (7.63), the problem in Eq. (7.49) could be reformulated 
as follows: 
 

( )( )
2

1
02

1
= D with 0 < , > 0, 0 < 1C t x L t

x
β

β

β
γ

−∂ Ψ
Ψ ≤ ≤

∂

 
(7.64a) 

=0
= 0, > 0

x
tΨ ∀  

(7.64b) 

=
= 0, > 0

x L
tΨ ∀  

(7.64c) 

2

0 0=0
= ( ) = ( ) = 4( ) , 0 < <Mt

x x
F x T Q x T T x L

L L
Ψ − − −

  
  
  

 

 (7.64d) 
 
The solution is found using the method of separation of variables, 
namely separating ( , )x tΨ  into space-dependent and time-dependent 
functions as reported below: 
 

( , ) = ( ) ( )x t t xφ ψΨ  
(7.65) 

 
Substituting Eq. (7.65) into Eq. (7.64a) and introducing the separation 
constant λ , give: 
 

( )( )
2

1 2
02

1 1
= D = .C

d
t

dx
β

β

ψ
φ λ

ψ γ φ
− −

 
(7.66) 

 
The relation Eq. (7.66) is equivalent to the two following differential 
equations:   
 

2
2

2

( )
( ) = 0

d x
x

d x
ψ

λ ψ+
 

(7.67a) 

=0
= 0

x
ψ  

(7.67b) 

=
= 0

x L
ψ  

(7.67c) 
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and 
 

( )( )1 2
0D = 0C tβ

βφ λ γ φ− +
 

(7.68) 

 
The general solution of Eq. (7.67a) is 
 

1 2( ) = cos( ) sin( )x D x D xψ λ λ+  
(6.69) 

 
where boundary condition Eq. (7.67b) yields 1 = 0D , while boundary 
condition Eq. (7.67c) yields  
 

sin( ) = 0 = , with = 1, 2,3,..n

n
L n

L
π

λ λ⇒
 

(7.70) 

 
The roots nλ  of relation Eq. (7.70) are the eigenvalues of the associated 
Sturm-Liouville problem [24]. As a consequence, the eigenfunctions of 
the problem are: 
 

2 2( ) = sin( ) = sinn n

n x
x D x D

L
π

ψ λ  
 
 

 
(7.71) 

 
After solving the problem corresponding to the space dimension, the 
solution for the time-dimensional problem, namely the fractional 
differential Eq. (7.68), is requested. Taking the Laplace transform of 
Eq. (7.68), using formula (7.31b), gives: 
 

1 2( ) (0) ( ) = 0s s s sβ β
βφ φ λ γ φ− −− + 

 
(7.72) 

 
and then the solution in Laplace domain is: 
 

1 2

(0)
( ) =

s
s

s

β

β
β

φ
φ

λ γ

−

− +


 
(7.73) 

 
the inverse Laplace transform of relation Eq. (7.73) is [39]: 
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2 1
1 ,1( ) = (0) ( )t E t U tβ

β βφ φ λ γ −
− −  

 
(7.74) 

 
where , ( )E zζ η  is the Mittag Leffler function defined as [41]: 
 

,
=0

( )
( ) =

( )

n

n

z
E z

nζ η ζ η

∞

Γ +
∑

 
(7.75) 

 
and ( )U t  is the Heaviside unit-step function. The relations in Eq. (7.71) 
and (7.74) can be combined introducing the constant 2= (0)nD D φ  
yielding, considering the relation (7.65), the general solution: 
 

2 1
1 ,1

=1

( , ) = ( ) sin( )n n n
n

x t U t D x E t β
β βλ λ γ

∞
−

−Ψ −  ∑
 

(7.76) 

 
where the constant nD  is defined utilizing the initial condition (7.64d) 

and noting that [ ],1 0 = 1Eζ  if 0 < < 1ζ , namely: 
 

=1

( , 0) = ( ) = sin( )n n
n

x Q x D xλ
∞

Ψ ∑
 

(7.77) 

 
The relation Eq. (7.77) is the Fourier series expansion of the function 

( )Q x  then, multiplying both sides of such relation by sin( )m xλ  and 
integrating over the interval 0 < <x L  give: 
 

2

0
0

( ) = if =sin( ) sin( ) = 2
0 if

L
L m m m

m

L
D d D m n

Q d
m n

λ ξ ξ
ξ λ ξ ξ

≠






∫∫
 

(7.78) 

 
where the property of orthogonality of the eigenfunctions sin( )m xλ  for 

arbitrary eigenvalues mλ  has been used. Summing up, Eq. (7.78) gives: 
 

0

2
= ( ) sin( )

L

n nD Q d
L

ξ λ ξ ξ∫
 

(7.79) 

 
and finally, using relations in Eq. (7.63) and (7.76), the temperature 
field is obtained as: 
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2 1

0 1 ,1
=1

( , ) = sin( )n n n
n

T x t T D x E t β
β βλ λ γ

∞
−

−+ −  ∑
 

(7.80) 

 
The relation Eq. (7.80) can be converted into non-dimensional form by 
defining the non-dimensional independent variables, through the 
dimensional parameters of the thermal problem, as reported 
subsequently: 
 

=
x

x
L

 
(7.81a) 

1
1

2
=

t
t

L

β
β βγ

−
−

 
(7.81b) 

0

0

=
M

T T
T

T T
−

−

 
(7.81c) 

=n nλ π  
(7.81d) 

 
Some examples of the non-dimensional temperature field are shown in 
Fig. (7.5). Compared to the time-solution 2exp n tλ γ−    of the Fourier 

heat conduction equation ( = 0)β , the solution 2 1
1 ,1 nE t β

β βλ γ −
− −    of 

the fractional equation ( 0 < < 1β ) exhibits for small times a much 
faster rising, and for large times, a much slower decay. In view of its 
slow decay, the fractional thermal conduction is usually referred to as a 
super-slow process. Accordingly, in Fig. (7.5) it is seen that the main 
feature characterizing the anomalous heat transfer is that the time-rate 
of change at which the resulting temperature field reaches a steady 
behavior gets higher as the discrepancy from the Fourier law increases. 
When it comes to considering how long does it take for the body to 
achieve thermal steadiness, the trend shown by anomalous conductors 
is to employ longer times than Fourier ones. Indeed, this is exactly the 
“long-tail memory effect”, due to the power law thermal memory of 
such materials. 
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Figure 7.5 Nondimensional temperature field (T − T0)/(T0 − TM) for different value of 
the exponent β: (a) Fourier solution β = 0; (b) β = 0.2; (c) β = 0.4; all the surfaces 
have been obtained with n = 10; (d) nondimensional temperature field at x = 0.5 
 
7.4.2 Transient Heat Problem in Cylindrical Coordinates 
 
In this example a long solid cylinder of radius b, with initial temperature 

( )F r  is considered. For > 0t , the boundary surface at =r b  is 
insulated; in this case the temperature field depends only on the position 
along the radius r  of the cylinder. The mathematical formulation of the 
problem is 
 

( )( )
2

1
02

1 1
= D with 0 < , > 0, 0 < 1C

T T
T t r b t

r r r
β

β

β
γ

−∂ ∂
+ ≤ ≤

∂ ∂

 

 (7.82a) 

=0
bounded, > 0

r
T t∀  

(7.82b) 

( )0
=

D = 0, > 0C
r b

T
t t

r
β ∂ ∀
∂

 
 
 

 
(7.82c) 
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=0
= ( ), 0 < <

t
T F r r b  

(7.82c) 

 
The solution of the problem in Eq. (7.82a) with boundary conditions 
Eqs. (7.82b) and (7.82c) and initial condition Eq. (7.82d) may be 
obtained using the method of separation of variables as in the previous 
example, namely by assuming a separation of ( , )T r t  into space-
dependent and time-dependent functions as 
 

( , ) = ( ) ( )T r t t rφ ψ  
(7.83) 

 
substituting Eq. (7.83) into Eq. (7.82a) and introducing the separation 
constant λ  give: 
 

( )( )
2

1 2

02

1 1 1
= D =C

d d
t

dr r dr
β

β

ψ ψ
φ λ

ψ γ φ
−+ −

 
 
 

 
(7.84) 

 
The relation Eq. (7.84) is equivalent to the two following differential 
equations:   
 

2
2

2

( ) 1 ( )
( ) = 0

d r d r
r

d r r dr
θ θ

λ θ+ +
 

(7.85a) 

=0
bounded

r
θ  

(7.85b) 

=

= 0
r b

d
dr
θ  

(7.85c) 

 
and 
 

( )( )1 2
0D = 0C tβ

βφ λ γ φ− +
 

(7.86) 

 
The general solution of Eq. (7.85a) is: 
 

1 0 2 0( ) = ( ) ( )r M J r M I rψ λ λ+  
(7.87) 

 



Valentina Piccolo – Experimental and Novel Analytic Results for Couplings in 
Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics 

140 
 

where mJ  is the Bessel functions of the first kind of order m  defined 
as: 
 

2

=0

( 1)
2( ) =

2 ! ( 1)

n
n

m

m
n

z
z

J z
n m n

∞
−

Γ + +

 
    

 
 

∑
 

(7.88) 

 
and 0I  the Bessel function of the second kind of order zero. Boundary 

condition (7.85b) yields 2 = 0M , while boundary condition (7.85c) 
produces eigenvalues from the corresponding transcendental equation: 
 

1 1( ) = 0 with = 0,1, 2,..nM J b nλ λ λ− ⇒  
(6.89) 

 
with 0 = 0λ . The roots nλ  of relation Eq. (7.89) are the eigenvalues of 
the associated Sturm-Liouville problem [24]. The eigenfunctions of the 
problem are, consequently 
 

1 0( ) = ( ).n nr M J rψ λ  
(7.90) 

 
The solution for the time-dimensional problem, namely the fractional 
differential Eq. (7.86), is given by the relation Eq. (7.74). The relations 
(7.90) and (7.74) can be combined introducing the constant 

1= (0)nM M φ  yielding, and taking into account relation (7.83), this 
leads to: 
 

2 1
0 1 ,1

=0

( , ) = ( ) ( )n n n
n

T r t U t M J r E t β
β βλ λ γ

∞
−

− −  ∑
 

(6.91) 

 
the constant nM  is defined utilizing the initial condition Eq. (7.82d) 

and noting that [ ],1 0 = 1Eζ  if 0 < < 1ζ , namely 
 

0
=0

( , 0) = ( ) = ( )n n
n

T r F r M J rλ
∞

∑
 

(7.92) 
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Relation Eq. (7.92) is the Fourier series expansion of the function ( )F r  
then, multiplying both sides of such relation by 0 ( )mJ rλ  and integrating 
over the interval 0 < <r b  give:  
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(7.93) 

 
where the property of orthogonality of the eigenfunctions 0 ( )mJ rλ  for 

arbitrary eigenvalues mλ  has been used. Summing up, Eq. (7.93) gives: 
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(7.94) 

 
and finally, inserting relation (7.94) into Eq. (7.91) the temperature field 
is obtained as: 
 

2 1
0 1 ,1

=0

( , ) = ( )n n n
n

T r t M J r E t β
β βλ λ γ

∞
−

− −  ∑
 

(7.95) 

 
The non-dimensional temperature field at = 0t  is a linear distribution 
as: 
 

( ) = 20 1F r r +  
(7.96) 

 
As in the previous numerical example, in Fig. (7.6) it is shown the non-

dimensional temperature field 
( , )
(0)

T r t
F

 as a function of non-dimensional 

time t  [Eq. (7.81b)] and non-dimensional radius =
r

r
b

, for different 

value of the exponent β . Like in the case of the uniaxial thermal rigid 
conductor of Fig. (7.5), the discrepancy from Fourier’s law manifests 
itself with higher time-rates and slower time-transients. 
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Figure 7.6 Nondimensional temperature field T(r; t)=F(0) for different value of the 
exponent β: (a) Fourier solution β = 0; (b) β = 0.2; (c) β = 0.4; all the surfaces have 
been obtained with n = 10; (d) nondimensional temperature field at r = 0.5 
 
7.5 Conclusions 
 
In this paper the authors showed that the analysis of the temperature 
field in an inhomogeneous rigid conductor with power-law grading of 
the thermodynamical parameters yields a power-law time rising of the 
temperature at the insulated boundary of the conductor. The order of 
the power-law is related to the grading exponent of the physical 
properties of the conductor and the use of Boltzmann superposition 
principle for generic histories of the incoming heat flux yields a 
temperature-flux relation involving fractional-order operators. The 
main idea that a power-law rising appears as a non-homogeneous, non-
stationary flux is established in the conductor has been further expanded 
in the paper to yield a fractional-order generalization of the Fourier 
transport equation. Indeed, under the assumption of a non-
homogeneous, self-similar distribution of mass micro-structure in any 
generic volume element of the conductor, a non-stationary flux at 
micro-structure level is experienced. In this setting, the assumption of 
a fractal mass clustering at micro-structural level with an Hausdorff 
dimension d  yields the same kind of thermal flux, at micro-structural 
level, as those experienced with the non-homogeneous macroscopic 
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conductor. As a consequence, the resulting macroscopic relation 
provides the heat flux by means of the fractional-order, Caputo’ type, 
derivative of spatial gradient of the temperature field with derivation 
order related to the fractal dimension of the self-similar assembly as 

2
=

2
d

β
−

. The thermodynamic assessment of the introduced 

fractional-order generalization of the Fourier equation has been 
exploited with the same micro-structure arguments and more details are 
reported in a forthcoming paper. The numerical examples provided 
show the influence of anomalous conductivity and differentiation order 
for temperature fields in simple 1D and 2D domains. Indeed the 
obtained non-dimensional temperature fields have been compared to 
the time-solution of the Fourier heat conduction equation ( = 0)β . 
Results show that the solution of the fractional heat equation ( 0 < < 1β
), governed by Mittag-Leffler functions, exhibits for small times a much 
faster rising, and for large times, a much slower decay. Accordingly, 
the main property of the anomalous heat transfer is that the time-rate of 
change at which the resulting temperature field reaches a steady state, 
becomes higher as the discrepancy from the Fourier law increases: the 
thermal steadiness is consequently achieved, by anomalous conductors, 
employing longer times than Fourier ones. Such particular behavior 
represents the “long-tail memory effect”, due to the power law thermal 
memory of such materials. The proposed fractional-order 
generalization of the Fourier heat transport equation is used in the 
companion paper to formulate the fractional-order linear thermoelastic 
problem. 
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8. Fractional-Order Theory of Thermoelasticicty. II: 
Quasi-Static Behavior of Bars 
 
 
By V. Piccolo, G. Alaimo, A. Chiappini, M. Ferrari, D. Zonta, M. Zingales and L. Deseri 
 
Abstract 
 
This work aims to shed light to the “thermally-anomalous” coupled 
behavior of slightly deformable bodies, in which the strain is additively 
decomposed in an elastic contribution and in a thermal part. The 
macroscopic heat flux turns out to depend upon the time history of the 
corresponding temperature gradient, and this is the result of a multi-
scale rheological model developed in Part 1 of the present study, 
thereby resembling a long-tail memory behavior governed by a 
Caputo’s fractional operator. The macroscopic constitutive equation 
between the heat flux and the time history of the temperature gradient 
does involve a power law kernel, resulting in the “anomaly” mentioned 
above. The interplay between such thermal flux and the elastic and 
thermal deformability are investigated for a pinned-pinned truss. This 
allows for focusing on the effects of the deviation from the Fourier’s 
law on the thermoelastic coupling. Indeed, the interactions in the 
presented system are fully coupled as the temperature and the 
displacement field mutually influence one another. 
 
8.1 Introduction 
 
In [1] the authors raised the most natural question about the physical 
grounds on which the fractional-order behavior arises in various 
contexts (see e.g. [5, 24] etc.). In particular, it was studied the case of 
rigid thermal conductors characterized by anomalous heat transfer, in 
which the relationship between the macroscopic heat flux and the 
corresponding temperature gradient inherits a power law memory in 
time. This has been explained in [1] through a hierarchy of Fourierian 
rigid heat conductors across infinite observation scales, thereby 
resembling a fractal material. Essentially, this is equivalent to having a 
distribution of masses characterized by a functionally graded hierarchy 
of thermal conductivities and heat capacity scaling with a certain power. 
The latter can be related to the porosity of hierarchical media, where the 
thermal transport encounters obstacles (such as voids and a rigid solid 
matrix) that can heavily influence the overall heat diffusion. This is 
consistent with the findings in [23], where anomalous time scaling of 
the thermal energy has been explained through a statistical approach, 
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thereby characterizing the evolution of its non-equilibrium excess in a 
one dimensional conductor. There the transient behavior of the heat flux 
has been found to be originated by small initial excess perturbations of 
the thermal energy away from equilibrium, thereby leading to an 
anomalous diffusion scaling in time like t β , being β  a real number. 
Anomalous heat transfer is essentially an averaged, hence macroscopic, 
transient phenomenon affected by the scaling discussed above. 
Anomalous behavior has been detected in certain materials [25] 
although often times such materials are treated as if both their thermal 
conductivity and specific heat behave non-linearly with the temperature 
[27]. 
Other works have been explaining anomalous heat transfer in rigid 
bodies with “billiard-like” models, quantum mechanics (see e.g. [22]), 
etc. It is worth noting that what is found about a connection between 
such methods and the hierarchical structure of the media exhibiting 
anomalous behavior, does not bring into play the scalings of the thermal 
conductivities and heat capacities at the various observation scales. 
The most natural generalization of the findings in [1] is to allow for a 
coupled linear thermo-elastic behavior of the material under external 
actions. This is surely an approximate way to account for the 
deformability of bodies whose macroscopic thermal behavior is not 
Fourierian. The justification for this approach resides on the modeling 
of what happens at each observation scale. As a first approximation, the 
chain of rheological systems employed in [1] can be thought to be 
generalized as if associated elastic stiffness present at each observation 
scale would generate internal forces entering the energy balance (see 
e.g. eqn. (3) in [1]). If, unlike the thermal conductivities and heat 
capacities, such stiffnesses would not change with such scales, the 
overall macroscopic equations would boil down to linear thermo-
elasticity with thermal memory. In physical terms this may happen 
whenever the time scales of thermal and mechanical exchanges 
significantly differ at the various observation scales. In a hierarchical 
porous material this can be envisioned if stress re-distributions are 
much slower than the effects causing the impact between thermally 
excited particles and generating the anomalous spread of thermal 
energy in the solid matrix, as found in [23]. Small deformabilities of 
hierarchical solids undergoing heat exchanges are then based on a 
multi-scale ground. This is missing in all of the known approaches 
present in the literature. 
 Nonetheless, in [29, 30] recent phenomenological fractional-order 
theories for three dimensional thermo-elasticity with no such multi-
scale origins were formulated and applied. Although in the present 
treatment the authors will focus on the space-time evolution of the 
system by neglecting inertia, a useful and comprehensive review about 
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propagating waves with finite speed in thermoelastic media can be 
found in [20]. Here, upon removing the paradox of thermal waves 
propagating with infinite speed in Fourier type deformable conductors, 
the main focus is about the dynamics of spatially anomalous thermal 
response of fractal materials. To the best of authors’ knowledge, a 
multi-scale rheological explanation analog to the one given in [1] is not 
yet available for such a case. 
While the anomalous thermal behavior in time has been extensively 
studied from the phenomenological and mathematical viewpoint 
starting from the late 1960s and continuing to today (see e.g. [10, 26, 2, 
3, 16]), anomalous thermoelastic coupling in engineering applications 
still requires thorough investigations. To this end, for the sake of 
illustration, a one dimensional anomalous thermoelastic truss subject to 
thermal loading and pinned at both ends is examined in the sequel. The 
full analytical solution of the problem is provided obtaining the 
resulting displacement, temperature, and internal axial force. The 
anomalous thermal behavior of such slightly deformable system is then 
investigated, thereby exploring not only the transient behavior due to 
its deviation from the Fourier law, but also by studying a resulting 
overall measure of energy rate. The obtained quantity corresponds to 
the “thermal work” introduced in [26] and studied later in several papers 
(see e.g.[2, 3, 16]), for the first time for rigid conductors with memory. 
A more extensive study of a theory for trusses and beams would have 
to entail a Saint Venant-type of argument, analog to the one developed 
in [12] for small strain viscoelasticity. Future developments of the 
proposed approach accounting for material hierarchies within three 
dimensional geometries in the presence of coupled multi-physics 
phenomena (such as in [24, 21], and ref.s cited therein), are envisioned 
in a combination between the current approach and the methodologies 
developed in [13, 14, 15], [19, 18], [4] and [31]. 
 
8.2 Thermoelastic Trusses and Anomalous Bahavior 
 
Anomalous heat conduction and its impact on evolutionary 
thermoelastic processes arising in one dimensional deformable solids 
are studied in this section. Wherever it will be not needed, the 
dependence on x  and t  in all the fields involved in the treatment will 
be omitted. 
The constitutive equations governing the problem relate to the internal 
axial force ( N )-strain (ε ) response and to the heat flux ( q ) and 
temperature gradient ( ,xT ) behavior. The former entails the usual 
coupling between the axial internal force N  arising at each cross 
section of the solid at the current time and the elastic strain, namely 
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0= ( ( )),N EA T Tε α− −  

(8.1) 

 
where E  is the Young modulus of the material, A  is the area of the 
cross section of the bar, α  is the linear thermal expansion coefficient 
of the solid, 0T  is a reference temperature and T  is the current value of 
the temperature field. The latter constitutive equation for the heat flux 
has been obtained in [1], i.e.: 
 

( ) ,0
= .C xq K D Tβ

β +−
 

(8.2) 

 
In eq. (8.2) it is involved the time-fractional Caputo’s derivative of 
order [ ]0,1β ∈  defined as:  
 

( ) 00

1 ( )
=

(1 ) ( )
t

C

f
D f d

t
β

β

τ
τ

β τ+

′

Γ − −∫
 

(8.3) 

 
where ( )zΓ  is the Euler-Gamma function that may be considered as the 
generalization of the factorial function because, when z  assumes 
integer values, it yields that ( 1) = !z zΓ + . 
A general framework for the definition of fractional-order integrals in 
Sobolev metric space has been provided in recent mathematical 
literature [6, 7]. The use of fractional-order calculus to handle functions 
defined on fractal subsets has been reported in terms of the fundamental 
theorem of integral calculus involving a corrective series beside values 
of the primitives at the borders of the integrals [8]. 
The fractional operator in eq. (8.3) is the result of the multi-scale 
rheological model developed in Part 1 of the present study, thereby 
accounting for a “long-tail” memory behavior. 

In eq. (8.3) it is considered the definition of the Caputo’s left fractional 
derivative (following [28]), for which the integral lower terminal 0  is 
kept fixed, and the upper terminal t  is varied, with 0 < t . However, it 
is also possible to consider Caputo’s right fractional derivatives with 
moving lower terminal t  and fixed upper terminal 0 . 
From a physical point of view, if the function ( )f t  represents the 
present state of a time-evolving dynamical process started at the instant 

= 0t , then the left derivative is an operator performed on the  “past” 
states ( )f τ  of the process being < tτ , while the right derivative relies 
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on its “future” states ( )f τ  being > tτ . Given such considerations, 
causality principle is satisfied by left derivative definition. 
In this section the authors are interested in analyzing the impact of the 
anomalous heat transfer and of the deformability in the quasi-static 
thermo-mechanics evolution of the system. This is characterized by the 
main unknown fields u  and T , namely the axial displacement of cross 
sections of the truss and the temperature, respectively. 
Standard compatibility between strain and displacement reads as 
follows  
 

= , ,xuε  
(8.4) 

 
and it will be accounted for in the sequel. In the absence of 
accelerations, balance of linear momentum implies: 
 

, = 0xN pρ+  
(8.5) 

 
where ρ  is the density of the material per unit length and p  is the 
(distributed) axial external load. Balance of energy must further be 
imposed, namely: 
 

, , 0 ,= ( ),x v t tq Q c T T EAρ α ε− +  
(8.6) 

 
where Q  is the heat flux source term, vc  is the thermal capacity of the 
material at constant volume. The whole term included in the brackets 
on the right hand side of such equation represents a specific enthalpy 
per unit length of the system. Relation (8.6) has been obtained in the 
paper by [30]. In that work, the authors start from the first law of 
thermodynamics (eq. 7.6) and from the balance equation of entropy 
density (eq. 7.7) subsequently linearized (eq. 7.27). The authors 
combine them and, after some manipulations, they obtain eq. 7.28 that 
is equivalent to eq. (8.6). 
Thermo-mechanical coupling arises only through (8.1), namely the 
constitutive equation for N , and through (8.2), the balance of energy 
rate. Indeed, the employed constitutive equation for the anomalous heat 
conduction (8.2) does not involve any contribution coming from the 
mechanics. Substitution of (8.4) into (8.1) and then in (8.5) yields 
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, ,( ) = 0,xx xEA u T pα ρ− +  
(8.7) 

 
while (8.2) into (8.6) delivers 
 

( ) , , 0 ,0
= 0.C xx v t txK D T c T EAT u Qβ

β ρ α+ − − +
 

(8.8) 

 
The obtained coupled system of nonstandard linear Partial Differential 
Equations (PDE) will be studied in the sequel for the case in which no 
sources terms pρ  and Q  are present. 
In order to illustrate the outcomes of the anomalous thermo-elasticity, 
the same initial temperature profile assumed in [1] is considered, 
namely:  
 

0 0( , 0) = 4( ) 1 .m

x x
T x T T T

L L
+ − − 

 
 

 
(8.9) 

 
The corresponding displacement ( , 0)u x  is then reconstructed through 
the balance of linear momentum (8.7). Indeed, if = 0p , upon 
integrating (8.7) twice with respect to x , the initial displacement profile 
takes the following form: 
 

3 2
0

0 1( , 0) = 4 ,
3 2

mT T x x
u x C C x

L L
α

−
+ + −

 
 
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(8.10) 

 
where 0C  and 1C  are arbitrary constants. 
It is not difficult to show that one way to solve the problem is to 
eliminate one of the two fields, thereby obtaining a higher order on the 
remaining function equation. To this end, T  will be eliminated and a 
resulting governing equation for u  will be found. 
 On obviously integrating (8.7) with respect to x , the axial internal 
force N  turns out to depend on t  alone. Hence ˆ= ( )N N t  takes the 
following expression 
 

( )( ), 0
ˆ ( )= ( , ) ( , )xN t EA u x t T x t Tα− −

 
(8.11) 
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thereby implying that there will be cancellation on the x -dependence 
of ,xu  and T . For the sake of illustration, the following boundary 
conditions will be assumed for the temperature: 
 

0(0, ) = ( , ) =T t T L t T  
(8.12) 

 
which are the same as in [1], eq.s (49b,c). 
Various sets of boundary conditions can be explored. Here the pinned-
pinned case and the pinned-free case will be considered. 
 
Pinned-pinned case. This case arises when both ends are fixed in time, 
namely when 
 

(0, ) = ( , ) = 0.u t u L t  
(8.13) 

 
Obviously this is a (quasi) statically undetermined problem, i.e. the time 
evolving internal normal force is not known a-priori and it must be 
determined through the full solution of the governing equations. The 
corresponding values of the constants appearing in (8.10) are the 
following: 
 

0
0 1

2
= 0 and =

3
mT T

C C L
EA
−  

(8.14) 

 
Pinned-free. In this case one end of the bar is set free. This is a (quasi) 
static determinate problem and, if no external force is applied, then 
there is no normal force arising in any of the cross sections of the bar. 
The evolution of the “stress-free” movements and heat flux of the 
system can be determined by imposing = 0N  and either of one of the 
two conditions (8.13), e.g.  
 

ˆ(0, ) = 0, and ( ) = 0.u t N t  
(8.15) 

 
Hence, by (8.10) and substituting (8.9) into (8.11) and imposing (8.15) 
give: 
 

0 1= 0 = 0C C  
(8.16) 
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By substituting the results in the balance of energy rate (8.6), it is found 
that the following PDE must be verified: 
 

( ) , 0 , ,0

1
= ( ).v

C xxx tx v t

c
K D u E AT u c N tβ

β

ρ
α ρ

α α+ − + 
 
 

 
(8.17) 

 
For the pinned-free case it is obtained that the right-hand side is zero 
and (8.17) already represents the governing field equation for the 
displacement. Further differentiation of the latter relationship with 
respect to x  allows for finding the governing PDE for the displacement 
in general, including the case of (quasi) static undetermined bar. This is 
the equation that will be studied in the sequel. 
For this purpose, the auxiliary function ν , defined as follows, is 
introduced:  
 

,:= xxuν  
(8.18) 

 
and hence the corresponding resulting field equation becomes: 
 

( ) , ,0
= 0,C xx tDβ ν δν+ −

 
(8.19) 

 
after setting 
 

1
2

0

= .
1

v

E AT
c

βγδ
α
ρ

−

+

 

(8.20) 

 

where :=
v

K
c
β

βγ ρ
 has been introduced in [1] Sect.4.1. 

The behavior of rigid thermal conductors can be retrieved by 
simultaneously letting α  (the linear dilation factor) and E A  (the axial 
rigidity) to tend to zero and to infinity respectively, and by requiring 
that 20 = 0limE A E Aα α→

→∞ . 
Relation (8.19) is formally analogous to the governing equation of the 
anomalous heat conduction obtained in [1] eqn. (7.49a), namely 
 

( ) , ,0
= 0.C xx tD T Tβ δ+ −

 
(8.21) 
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Nevertheless the solution for such PDE obtained there is not suitable 
for the case under investigation, as neither the boundary conditions nor 
the initial ones (7.49b,c,d) are directly applicable to the function 

,= xxuν . Nonetheless, the technique used to solve the above mentioned 
problem is obviously applicable in this case. This is based on space-
time eigenmodes series expansions for both T  and u  in the separated 
variables form for solving the original coupled system (8.7), (8.8), 
namely: 
 

0
=1

( , ) = ( ) ( )m m
m

T x t T f t g x
+∞

+∑
 

(8.22) 

=1

( , ) = ( ) ( ).m m
m

u x t v t w x
+∞

∑
 

(8.23) 

 
Henceforth, an ansatz for ν  in agreement with (8.22) and (8.23) is 
assumed as follows 
 

=1

( , ) = ( ) ( ),m m
m

x t v t z xν
+∞

∑
 

(8.24) 

 
where '( ) := ( )m mz x w x′ , where '′  indicates double differentiation with 
respect to x . Substituting such expression in (8.19) and imposing its 
validity term-by-term, does lead to the following set of two ordinary 
differential equations: 
 

( )
'

2

0

( ) ( )1
= = ,

( ) ( )
m m

m
m C m

z x v t
K

z x D v tβδ

′
−

+

−


 

(8.25) 

 
where '′  denotes differentiation with respec to time, and 2

mK  is 
arbitrary, to be determined by solving the associated eigenvalue 
problem. To this end, eq.(8.25) leads to the following expression for mz
: 
 

( ) = cos( ) sin( ),m m m m mz x a x b xω ω+  
(8.26) 

 
where 
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2 2:=m mKω δ −  
(8.27) 

 
and hence, because ' =m mw z′ , the following expression for the spatial 
m-mode of u  is obtained: 
 

( ) = cos( ) sin( ) .m m m m m m mw x c x d x h x lω ω+ + +  
(8.28) 

 
It is worth noting that this function carries the dimension of length, 
hence mv  is dimensionless. The second equation in (8.25), namely 
 

( ) 2

0
( ) ( ) = 0,C m m mD v t K v tβ

+ + 

 
(8.29) 

 
represents the associated fractional-order homogeneous initial value 
problem for mv . Of course mω  appearing in (8.26), (8.27) and (8.28) 
can be determined through the boundary conditions on the displacement 
and, hence, mK  will follow according to relation (8.26). 

Although eqn. (8.29) is nonstandard, it can be solved as in the case of 
anomalous heat transfer in rigid conductors, treated in [1]. There such 
equation has been recast in the following form:  

 

( )1 2

0
( ) ( ) = 0.C m m mD v t K v tβ− −

+ +
 

(8.30) 

 
Its solution has been shown to be represented as follows: 
 

( )2 1
1 ,1( ) = ,m mv t E K t β

β
− −

− −
 

(8.31) 

 
where 1 ,1E β−  is the Mittag-Leffler function of order (1 ,1)β− . Without 
loss of generality the time amplitude in (8.31) is set equal to 1, as the 
coefficient modulating each mode will be computed through a Fourier 
expansion technique starting from the initial data (8.10). 
A sufficient condition for (8.11) is that such relation is verified term-
by-term, namely:  
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' ˆ( ( ) ( ) ( ) ( )) = ( ),m m m m mEA w x v t g x f t N tα−  
(8.32) 

 
where ˆ ( )mN t  represents the contribution of the thm -mode of the axial 
force. Upon differentiating the last relation with respect to x  it is found 
that: 
 

" '( ) ( ) ( ) ( ) = 0,m m m mw x v t g x f tα−  
(8.33) 

 
and hence the following two equations are obtained 
 

"

'

( ) ( )
= = ,

( ) ( )
m m

m
m m

w x f t
g x v t

λ
α

 
(8.34) 

 
where mλ  are real constants. It is worth nothing that such relations do 

force the spatial modes for the strain gradient ,xxu  and for the 

temperature gradient ,xT  to be the same. 
Because of (8.28) and (8.34) the spatial form of the temperature takes 
the form: 
 

1
( ) = [ ( ) ( ) ].m m

m m m m m m
m m

h p
g x c sin x d cos xω ω ω

αλ ω
+

− + +
 

(7.35) 

 
This comes from the balance of linear momentum (8.7), bearing in mind 
(8.23) and (8.28), and also the fact that 
 

1
( ) = " ( ).m m

m

g x w x
αλ

′
 

(8.36) 

 
Integration of the last equation yields: 
 

( )1
( ) = ( ) ,m m m

m

g x w x p
αλ

′ +
 

(8.37) 

 
where mp  has the meaning of a constant modal elastic strain. Indeed, 
revisiting (8.32) and knowing (8.37) and (8.28) give: 
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'ˆ ( ) = ( ( ) ( )) ( ) = ( ).m m m m m m mN t EA w x g x v t EA p v tαλ− −  
(8.38) 

 
Because of (31), at the beginning of the evolution of the system it yields 
that 
 

ˆ (0) = ,m mN EA p−  
(8.39) 

 
which explains why mp  is a constant elastic modal strain. Obviously, 
no axial force could develop in the bar if either each mp  would be 

identically zero or if 
=0

( ) = 0m mm
p v t∞∑ . 

As it was previously pointed out, the path for determining the 
eigenvalues mω  is based on the boundary conditions. The system is 
mechanically over-constrained. The problem is then treated in a 
standard way, by first removing the extra constraint and by studying a 
pinned-free truss undergoing the same initial conditions of the original 
problem. Then two cases will be considered with the idea of eventually 
superimposing their effects. 
Case (0) The initial distribution of temperature and its corresponding 
initial displacement field will be taken to act on the pinned-free bar: 
here it is expected the modal strains ( )

0
mp  are zero as there is no axial 

force. 
Case (1) Because of the extra constraint, an unknown axial force arises 
within the bar: this is the only thermo-mechanical load acting in this 
case. 
Once the separate effects of those two cases will be worked out, the 
requirement for which the displacement at both ends is inhibited by the 
original constraint will be enforced, thereby owing the value of the axial 
force and the complete solution of the problem. The two cases are now 
examined in details.  
 
8.2.1 Case 0: Pineed-Free System Undergoing the Initial 
Distributions of Temperature and Displacements 
 
This corresponds to the boundary conditions (8.15). All the quantities 
relative to this case are re-labeled with the superscript (0). Upon 
applying (8.15) term by term to the functions (0)

mw  and (0)
mg  introduced 

above, the following set of equations to be satisfied is obtained: 
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(0) (0) (0)1
(0) = 0 ( ) = ( )m m mw w L g L

α
′

 (8.40) 
1, 2 

(0) (0)(0) = 0 ( ) = 0,m mg g L  (8.40) 
3, 4 

 
from (8.15), (8.12), and (8.22) respectively. From (8.28) and (8.40) the 
following relations hold: 
 

(0) (0)
(0) (0) (0)

(0)
= = 0m m

m m m
m

h p
c l d

ω
+

− +
 

(8.41) 
1, 2 

 
and hence (40) 2  and (40) 3  become:  
 

(0) (0)
(0) (0) (0) (0)

(0)
( ) ( ) = 0m m

m m m m
m

h p
c sin L d cos Lω ω

ω
+

− + +
 

(8.42) 

(0)
(0) (0) (0) (0)

(0)
0 ( ) ( ) = 0.m

m m m m
m

h
c sin L d cos Lω ω

ω
= − + +

 
(8.42) 

 
The last two equations imply that the modal strains (0)

mp  must vanish, 
i.e. 
 

(0) = 0,mp  
(8.43) 

 
and, hence, (41) 2  yields 
 

(0) (0) (0)= .m m mh dω−  
(8.44) 

 
Back substitution of (8.41)1 , (8.43) and (8.44) on either of the (8.42) 
yields an homogeneous problem which is verified if either of the 
following three conditions hold: 
 

(0) (0)

(0) (0) (0)

( ) = 0 and ( ) = 1,

forall , hence = 2( 1)
m m

m m m

sin L cos L

c d L m

ω ω

ω π−
 (8.45) 

(0) (0) (0)= 0 and hence ( ) = 1 hence = 2( 1)m m mc cos L L mω ω π−  
(8.46) 
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(0) (0) (0)= 0 and hence ( ) = 0 hence = ( 1)m m md sin L L mω ω π−  
(8.47) 

 
for all integers m . In order to determine which of the three possibilities 
itemized above occurs, one need to appeal to the initial data of the 
problem. Indeed, upon applying the standard Fourier procedure, and by 
taking into account relations (8.43), (8.44) and (8.41) 2 , together with 
the initial data (8.9) and (8.10) yields: 
 

(0) =0,mc  
(8.48) 

 
while (0)

md  is certainly non-zero. Henceforth, the m th -mode for the 
temperature takes the following form 
 

(0) (0) (0)( ) = ( ( ) 1),m m mg x T cos xω −  
(8.49) 

 

where (0) 2( 1)
=m

m
L

π
ω

−
 and after setting  

 
(0) (0)

(0) = .m m
m

m

d
T

ω
αλ

 
(8.50) 

 
Summing up the pinned-free case, the displacement and temperature 
fields take the following forms: 
 

( )
(0)2

(0) (0) (0) (0) 1
1 ,1( , ) = sin( ) m

m m m
m

u x t d x x E t β
β

ω
ω ω

δ

+∞
−

−− −
 
 
 

∑
 

(8.51) 

( )
(0)2

(0) (0) (0) 1
0 1 ,1( , ) = ( ) 1 ,m

m m m
m

T x t T T cos x E t β
β

ω
λ ω

δ

+∞
−

−+ − −
 
 
 

∑
 

(8.52) 

 
after making use of (8.34) 2 , relating the time dependence of the m th -
mode of the temperature and the one of the displacement. 
The coefficients (0)

mT  are determined, again, by standard Fourier 

procedure. Upon integrating both sides of (0)
0( , )T x t T−  multiplied 

against (0)( )mcos xω  over the length of the bar, it is found that:  
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(0) 0

2 2

2( )
= , 2.

( 1)
M

m m

T T
T m

m
λ

π
−

≥
−

 
(8.53) 

 
As expected, the higher is the order of the spatial mode the lower is its 
contribution to the temperature. The amplitudes of the modal 
displacements are evaluated, in an analogous way, through relation 
(8.51), to get: 
 

(0) 0
3

( )
= ,

( ( 1))
m

m

T T L
d

m
α
π

−

−

 
(8.54) 

 
Again, it is obtained that the higher is the order of the spatial mode the 
lower is its contribution to the total displacement field. 
 
8.2.2 Case 1: Pinned-free system undergoing boundary axial 
forces only 
 
The pinned-free body is now analyzed as if it would be subject to the 
sole unknown axial forces arising at the boundary because of the extra 
constraint present in the original system. Each mode contributes to such 
a force with its component, denoted by mX . The initial conditions for 
Case 1 are then the following: 
 

(1) (1)( , 0) = 0 and ( , 0) = ,m m mT x N x X  
(8.55) 

 
where the suffix (1)  emphasizes the fact that Boundary conditions 
(8.40)1  are replaced as follows: 
 

(1) (1)(0) = 0 and ( ) = ,' m
m m

X
w w L

E A

 
(8.56) 

 
while (8.40) 2  still remain valid as they are. It is straightforward to show 
that the boundary conditions, the initial conditions and the usual Fourier 
procedure yield the following results: 
 

(1) (0) (1) (1) (1) (1) (1)= = 2( 1) , = = = 0 , = = .m
m m m m m m m

X
L L m l c d h p

E A
ω ω π− −

 

 (8.57) 
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8.2.3 The Pinned-Pinned case 
 
Per each index m , the overall spatial mode is the result of the 
superposition of (0) ( )mw x  and (1) ( )mw x , namely 
 

(0) (0) (0) (0)( )= sin( ) .m
m m m m m

X
w x d x d x

E A
ω ω+ −

 
 
 

 
(8.58) 

 
By imposing the requirement due to the pinning at =x L  at all times, 
namely ( ) = 0mw L , and by recalling that (0)sin( ) = 0m Lω , the value of 

the modal axial force mX  is obtained as follows: 
 

(0) (0) 0
2 2

2 ( )
= = , 2.

( 1)
M

m m m

E A T T
X E A d m

m
α

ω
π

−
≥

−

 
(8.59) 

 
It is worth noting that, as expected, the series of the normal force 
amplitudes does converge as 2 2

2
( 1) = / 6m π

∞ −−∑  and, hence, at = 0t  
it holds that 
 

0( )ˆ (0) = .
3

ME A T T
N

α −  
(8.60) 

 
Because of the fact that time-decaying functions multiply of each term 
of both the temperature and of the displacement, relations (7.38) reads 
as follows: 
 
 

2 2
1

0 1 ,12 2
=2

1 4 ( 1)ˆ ( ) =2 ( ) ,
( 1)M

m

m
N t E A T T E t

m
β

β

π
α

π δ

∞
−

−

−
− −

−

 
 
 

∑
 

 (8.61) 
 
after making use of (8.59), (8.57) and (8.31). This does imply that the 
axial force is certainly decaying in time, thereby keeping its value 
always bounded and eventually fully relaxing. 
Relations (8.58) and (8.59) imply that the m th  mode for u  is purely 
sinusoidal, and hence the final displacement takes the following form:  
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2 2
1

0 1 ,13 3 2
=2

1 2( 1) 4( 1)
( ) sin .

( 1)

( , ) =

m
m

m x m
T T L E t

m L L

u x t

β

β

π π
α

π δ

∞
−

−

− −
− −

−

  
      

∑

 

 (8.62) 
 
For the spatial modes of T , (8.49) and the results above are considered 
to yield the following expressions for the temperature: 
 

0 0 2 2
=2

2 2
1

1 ,1 2

1 2( 1)
( , )= 4( ) 1

( 1)

4( 1)
.

M
m

m x
T x t T T T cos

m L

m
E t

L
β

β

π
π

π
δ

∞

−
−

−
+ − −

−

−
−

  
    

 
 
 

∑  

 (8.63) 
 
Here, eq. (8.50) is used along with the fact that, actually, the mλ  
arising in (8.34) do not depend on the circumstance that either of the 
cases 0  or 1 are examined. 
It is worth noting that a non-anomalous behavior can be achieved by 
letting 0β → . The result does not affect the spatial modes of neither 
the displacement nor of the temperature. 
 
8.3 Thermal “Work” and Measures of Available Energy Rate 
and Dissipation 
 
The localized form of the balance of energy rate (8.6) can be used for 
further investigating the sources of dissipation and recovery of such 
rate. This can be done by multiplying both sides of such equation by the 
rate of change of temperature at which the line density ,xq  of heat flux 
arises, and by integrating over time and over the length of the bar. This 
gives an instantaneous measure of how much thermal “work” is done 
on the bar thanks to heat transfer and mechanical actions. Indeed, 
integration by parts in space and boundary conditions yields the 
following expression of the overall balance equation: 
 

2 2
0 ,0 0 0 0 0 0

,
, = ( ( ) ) , .

t L t L t L
t

t x v t t

N
qT dxdt c EA T T dxdt T dxdt

E A
ρ α− + −∫ ∫ ∫ ∫ ∫ ∫

 

 (8.64) 
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The interpretation of such quantity is that this is a space-time global 
measure of the direct expenditure of the heat flux against the gradient 
of the temperature rate. The dimension of such a quantity is 1F Lt T− , 
hence it represents a power times a temperature. 
The quantity on the left-hand side generalizes an idea of [9, 10] for rigid 
thermal conductors, specialized by [26] in the presence of thermal 
memory. This also corresponds to eq. (4.3) obtained in [3]. Nonetheless, 
in the present treatment the elastic deformability of the bar explicitly 
manifests itself in the second term on the right-hand side of (8.64), 
besides having an effect on the expressions of T  and N , as it has been 
highlighted in the previous section. 
The case under study has a very special form of memory in time, 
regulated by the power law t β− . One can show that in the absence of a 
heat source within the bulk (so that the first term in (6.3) in [26] 
vanishes), the thermal “work” done by the heat flux given by (8.2) can 
be defined as follows: 
 

,0 0
( ):= ( ), .

t L

T xw t q T dxdτ τ−∫ ∫
 

(8.65) 

 
By appealing to Fubini’s theorem to interchange the order of 
integration, and substituting (8.2) in the expression above, after some 
calculations the following expression for the thermal work are obtained 
 

, ,

0 0 0

( , ), ( , ),
( ) = .

(1 ) ( )
L t x x

T

K T x T x
w t d d dx

τβ τ ρ

β

τ ρ
ρ τ

β τ ρΓ − −∫ ∫ ∫
 

(8.66) 

 
It is worth remarking that (8.65) is a general notion and its definition 
(easily generalizable to three dimensions) does not depend on the 
specific solution of the Initial Boundary Value Problem under 
consideration. Of course neither from (8.64) nor from this latter 
expression of the overall balance of energy rates clearly appears which 
fraction of ( )Tw t  gets dissipated and which one is actually at the 
disposal of the thermoelastic processes available for the system. 
Indeed, the direct inspection of the right-hand side of (8.64), which only 
depends on the fact that it is considered a thermoelastic truss with 
thermal memory coming from the multi-scale procedure derived in [1], 
does not directly enable one to understand if part of this global energy 
rate gets dissipated. In order to shed light on this issue, the authors note 
the formal analogy of the integrand in (8.65) (or (8.66)) and with the 
product σε  in relation (22) of [11]. Indeed, by setting  
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( ) := ,
(1 )
K

G t tβ β

β
−−

Γ −

 
(8.67) 

 
upon formally identifying q  with σ  and ,xT  with ε  in such a relation, 
it holds 
 

( , ), = , ( , ) ( , ),x t tq T x t x tψ +  
(8.68) 

 
where 
 

1 2 1 2 1 20 0

1
( , )= (2 )( , ), ( , )( , ), ( , ) .

2
t t

x t x tx t G t T x T x d dψ τ τ τ τ τ τ− − −∫ ∫
 

 (8.69) 
 
After some calculations, it is possible to show that the rate of change of 
such ψ  takes the following form: 
 

1 2 1 2 1 20 0

, ( , )=

1
( , ), (2 )( , ), ( , )( , ), ( , ) .

2

t

t t

x t x t x t

x t

q T G t T x T x d d

ψ

τ τ τ τ τ τ+ − −∫ ∫ 
 

 (8.70) 
 
Finally, by making use of (8.67), the associated specific measure of 
“dissipation rate” (per unit length and per unit time) turns out to read as 
follows 
 

( 1)
1 2 1 2 1 20 0

( , )=

(2 ) ( , ), ( , )( , ), ( , ) .
2 (1 )

t t

x t x t

x t
K

t T x T x d dβ ββ
τ τ τ τ τ τ

β
− +− − −

Γ − ∫ ∫

  

 (8.71) 
 
It is worth nothing that ( , )x tψ  is the analog of the free energy (21) in 
[11], which turns out to be in the form of Stavermal and Schwarzl. The 
rate of change of this last quantity represents the part of the thermal 
work that can be at the disposal of the body, while (8.71) gives the 
measure of the rate of dissipation during the thermo-mechanical loading 
of the bar. This is of particular interest as its overall value 
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(8.72) 

 
will tell us how much of ( )Tw t  gets dissipated. Indeed, upon integrating 
(7.68) on space and time the following equation arises: 
 

( ) = ( ) ( ),T T Tw t t tψ +  
(8.73) 

 
where the overall measure of energy rate Tψ  takes the form: 
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 (8.74) 
 
This global measure has been evaluated in analogy with the definition 
(8.72). Interchanging the order of integration can be done thanks to 
Fubini’s theorem, which requires enough smoothness to do so. The 
correspondent measure of the overall thermal work is evaluate in full 
analogy with Tψ , to get  
 

2 2

20 1 2

5 2 0 0
= 2 2

2 2 2 2
1 1

1 ,1 1 1 ,1 2 1 22 2

512 ( ) ( )
( ) = ( 1)

(1 ) ( )

4( 1) 4( 1)
.

t tM

T

m

K T T
w t m

L t

m m
E E d d

L L

β

β

β

β β

β β β β

π τ τ

δ β τ

π π
τ τ τ τ

δ δ

−∞

− −

− − − −

−
−

Γ − −

− −
− −
   
   
   

∑ ∫ ∫
 

 (8.75) 
 
A direct inspection of the series expansion of each term of the integrand 
in the latter expression shows that ( )Tw t  has a finite value only for 

< 1 / 2β  (this agrees with the fact that the original range for β  is [0,1)  
and with the convergence of the resulting singular integral). The 
finiteness of the global thermal work limits the degree anomaly that the 
heat flux can exhibit. In terms of multi-scale rheological models, there 
is a purely mechanical analog in [11] - Sect. 4.1, although there the 
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value 1 / 2  can be achieved. This result has a direct consequence on the 
partition of the thermal work, thereby ensuring that both ( )T t  and 

( )T tψ  are finite in the same range. 
 
8.4 Discussion 
 
The detailed analysis performed above and the related investigation 
about the global measures of the thermo-mechanical work, energy and 
dissipation rates allow one for comparing the consequences of 
anomalous heat transfer in (one dimensional) deformable bodies. 
All the resulting fields, namely the axial stress (8.61), the displacement 
(8.62), and the temperature (8.63) are influenced by the thermal and 
elastic deformability of the bar. 
Two effects, namely (i) the deformability and (ii) the emerging 
deviation for the Fourier behavior, can be analyzed separately in the 
sequel.  
 
1) Once = 0β  is considered, namely the latter case, and the 
temperature distributions (63) and (65) in [1] are compared (see Figure 
(8.1)) a noticeable difference in their time behavior is reported. The 
non-dimensional times with respect which the fields for deformable 

versus rigid conductors are plotted are 
1 1
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−

, 

respectively. In particular, a very significant influence on the thermal 
and elastic deformability on the time-rise of the temperature is detected. 
Indeed, from (8.20), because of the thermal and of the mechanical 
deformability, it is seen that the time dependence of the temperature 
(8.63) gains a scaling factor always less than or equal than 1, thereby 
reducing the value of the argument of the time modulating function 

2 22 2
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mode. These then leads to a higher magnitudes of such modulating 
functions relative to the case of rigid conductors. For the only sake of 

illustration, numerical data such as 
3

= 7860
Kg
m

ρ , = 502V

J
C

Kg C
, 

= 30
W

K
m C

, 6 1
= 12 10

C
α −⋅



, = 220E GPa  , 0 = 125T C  and 

= 25MT C  have been implemented to investigate the effects of the 
deformability. 
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Figure 8.1 Nondimensional temperature fields (T−T0)/(T0−TM) for β=0; all the 
surfaces have been obtained with n=20: (a) deformable conductor; (b) rigid conductor. 
 
An interpretation of this outcome can simply be related to the fact that 
in the current study the bar is fully thermoelastic, which implies that 
there is a continuous feedback between the temperature gradient and its 
rates and the strain rate itself. The redistribution of temperature and 
displacement is indeed due to the interplay between the balance of 
energy rate and the one of linear momentum. Within the former, (8.6), 
the heat flux (line) density has an extra forcing supply term, which is 
driven by the total strain rate, given by the sum of its elastic and thermal 
parts (e.g. (8.5)). This extra supply rate then triggers a faster 
temperature raise with respect to the case of rigid conductors, where 
neither the thermal nor the elastic dilatation can take place.  
 
2) The influence of the deviation from the Fourier behavior of 
deformable conductors is summarized by comparing Figures 8.2a, 2b 
with the outcomes of Figure 8.1b. While the rapid rise in time to a 
regime value it is still seen here, the higher is the deviation from a 
Fourier-like behavior, the more rapid that rise gets. This is indeed an 
intrinsic feature of the anomalous heat transfer, now coupled with an 
elastic and thermally deformable bar. Another effect of the deviation 
from the Fourier behavior is the tendency to reach steady values in 
longer times. The higher the value of the anomaly exponent β  in 
[0,1 / 2)  the faster this becomes. In particular, for higher values of β  
the temperature tends to reach 0T . This effect is more visible in the time 
evolution of the associate axial force, namely in Figure 8.2c and it is a 
consequence of the “long-tail memory” effect, a feature of a power law 
behavior given by (8.67). Indeed, as it is well known, the constitutive 
relation (8.2) for the heat flux can be recast as 
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0
( , ) = ( )( , ), ( , ) ,

t

xq x t G t T x dττ τ τ−∫
 

(8.76) 

 
 where the  “relaxation function” G  is given by (8.67).  
 

 
 
Figure 8.2 (a and b) Nondimensional temperature fields (T−T0)/(T0−TM) for 
deformable conductors with different values of β, equal to β=0.2 and β=0.4, 
respectively; all the surfaces have been obtained with n=20; (c) time evolution of 
nondimensional axial force ˆN/(αEA(T0–TM)); (d) time evolution of nondimensional 
temperature fields at x=0.5. 
 
A comparison among the different landscapes obtained for the 
displacement field for the three values of β  mentioned above suggests 
a similar trend in terms of its time evolution. 
In fact, the higher is the discrepancy against the Fourier behavior the 
more pronounced is the long-tail effect on settling to a stationary value, 
which in this case is actually zero. Spatially, the resulting odd 
fluctuations relative to the midpoint of the span is essentially governed 
by the initial condition on u , a result of the balance of linear 
momentum. 
The most interesting features of the anomalous thermoelastic coupling 
for bars comes from the comparison of the global measures of the 
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“thermal work” Tw , of the available energy rate Tψ  and the dissipation 
rate T , (8.66), (8.74) and (8.72) respectively. 
 

 
 
Figure 8.3 Displacement fields for deformable conductors with different values of β; 
all the surfaces have been obtained with n=20: (a) β=0; (b) β=0.2; (c) β=0.4; (d) 
displacement time evolution at x=0.25. 
 
Both for the rigid and for the deformable Fourier-like cases, a smooth 
monotonically increase of (non-dimensional) thermal work W , defined 
in Figures (8.4) and (8.5) respectively, is noted. For rigid conductors 
there is a smoother increase with respect to deformable ones with no 
appreciable asymptote before 0.5t   and with the corresponding value 
of 32 10W −⋅ . On the contrary, for deformable conductors a steady 
value (circa 0.7 ) is achieved at 0.10t   (see Figure (8.5)), where 

1 1

2
:= =d

t
t t

L

βδ − −

. The higher values and the sharper time rise of W , a 

quadratic operator involving the rate of change of temperature 
gradients, is primarily due to the fact that much higher rates of 
temperature gradient are detected in the deformable case, as Figure 
(8.1) shows. In both cases there is a perfect equi-partition of the quotas 
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of Tψ  and TD  (which in the figures are replaced by their corresponding 

non-dimensional counterparts Ψ  and D ) in which the thermal work is 
decomposed. This fits in a striking formal analogy with linear elasticity, 
as = 0β  implies 0= ,xq K T−  like =N EA  for the latter case. In [17] 
it is seen as this results from a smart re-visitation of Clapeyron’s 
theorem for three dimensional linear elasticity. This has been rendered 
free of the paradox that no dissipation would have occurred even if the 
total work is twice the value of the strain energy at the final values of 
the strain in an underlying loading process. A (rate-type) viscoelastic 
term allowed there to consider the effect of slow loading processes, 
thereby retrieving the asymptotic value of the overall dissipation and 
matching the other missing half of the work. 
 

 
 
Figure 8.4 Rigid conductors: nondimensional thermal work W=wT/[512π2Kβ(T0−TM)2 
/(LΓ(1−β))*(L2/γβ)2/(β−1)], nondimensional energy rate Ψ=ΨT/[256π2Kβ(T0−TM) 2/( 
LΓ(1−β))*(L2/γβ)(2/β−1)], and nondimensional dissipationrate D=W−Ψ, along with 
nondimensional time t, for β=0. 
 
Signatures of the thermal anomaly are seen in the thermal work and in 
the available energy and dissipation rates. First of all, it is noticeable 
that the higher the value of β  the more the thermal work exhibit a 
discrepancy with respect to the Fourierian case. Furthermore, a 
deviation from equipartition between Tψ  and T  is also detected, 
thereby indicating that this global measure of rate dissipation rises due 
to the deviation from the Fourier behavior. Anomaly then introduces a 
further source of dissipation, most likely due to the fact that the scaling 
of q  like t β−  resembles an hierarchy of thermal properties, as explained 
in [1], enhancing the possibilities of dissipating energy at the various 
scales. A change in signature is noticeable for = 0.2β , for which a 
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softening is exhibited by W after 0.025t  , while a plateau is then 
reached at 0.95W  . The rising of the thermal work in time is analog 
to what it has been discussed above to the temperature, essentially 
characterizing the response of the anomalous thermo-mechanics 
evolution of the system under study. 
 

 
 
Figure 8.5 Rigid conductors: nondimensional thermal work W=wT/[512π2Kβ(T0−TM)2 
/(LΓ(1−β))*(L2/γβ)2/(β−1)], nondimensional energy rate Ψ=ΨT/[256π2Kβ(T0−TM) 2/( 
LΓ(1−β))*(L2/γβ)(2/β−1)], and nondimensional dissipationrate D=W−Ψ, along with 
nondimensional time t, for different values of β: (a) β=0; (b) β=0.2; (c) β=0.4 
 
A further extreme behavior for all the quantities W , Ψ  and D  is 
recorded for = 0.4β . Here the time rise becomes almost immediate, as 
for the corresponding temperature (see Figure (8.3c)), and the softening 
behavior essentially dominates their trend. The discrepancy between 
the global dissipation rate D  and the corresponding Ψ  becomes more 
pronounced, thereby confirming the trend noticed before. Henceforth, 
the more the heat flux deviates from the standard Fourier behavior the 
higher is the likelihood of having further dissipation during the 
thermoelastic evolution of the system. 
A modal decomposition of the global measures of energy rates is 
reported in Fig. 8.6 subsequently. 
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Figure 8.6 Modal decomposition of the global measures of energy rates for different 
values of β: (a–c) nondimensional thermal work; (d–f) nondimensional dissipation rate: 
(a) β=0; (b) β=0.2; (c) β=0.4; (d) β=0; (e) β= 0.2; (f) β=0.4 
 
As expected, the global measures of work, energy and dissipation rates 
are heavily guided by the first mode, given by = 2m , which hence 
gives a qualitative idea about the global measures of energy rate 
response of the anomalous thermoelastic system.  Given the importance 
of the conclusions drawn above, a comprehensive thermodynamic 
analysis should be performed to investigate how the deviation from the 
standard Fourier behavior influences the performances of such systems. 
This is the subject for further thorough investigations involving refined 
measures of the actual entropy rate, that should be calculated starting 
from the multi-scale rheological scheme introduced in [1]. 
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8.5 Conclusions 
 
In the present work the “fractional thermally-anomalous” coupled 
behavior of slightly deformable bodies is studied. The mentioned 
“anomaly” originates from the relation among the macroscopic heat 
flux and the time history of the temperature gradient, that involves a 
“long-tail” memory behavior, governed by a Caputo’s fractional 
operator. Indeed, the macroscopic constitutive equation between the 
heat flux and the time history of the temperature gradient does involve 
a power law kernel, and it is the result of a multi-scale rheological 
model developed in Part 1 of the present study. 
For the sake of illustration, the interplay between the thermal flux and 
the elastic and the thermal deformability are investigated for a pinned-
pinned truss. Given the simplicity of the system geometry, together with 
the richness of the arising axial stress, this allows for focusing on the 
effects of the deviation from the Fourier’s law on the thermoelastic 
coupling. Results show that the interactions, in such simply geometry, 
are fully coupled as the temperature and the displacement fields 
mutually influence one another. 
A space-time modal analysis performed on the fractional-order system, 
relying on the balance of linear momentum and on the balance of energy 
rate, provides the explicit solutions of the problem. The time evolution 
of each spatial mode, for the temperature, for the displacement and for 
the axial force, turn out to be characterized by modulated Mittag-Leffler 
functions. The higher is the deviation from the Fourier-like behavior for 
the heat flux, the steeper is the resulting time-transient of each mode. 
The influence of the deformability on the one hand, and of the 
discrepancy from the Fourier behavior on the other hand, are thoroughly 
analyzed for the three fields mentioned above. 
Measures of the overall “thermal work”, and of the associate available 
and dissipation energy rates are evaluated, both mode-by-mode and 
globally, enabling the characterization of the coupled response of 
anomalous thermoelastic trusses. Besides determining the range of 
admissible discrepancies from the Fourier behavior, such quantities are 
shown to fully reveal the manifestation of the thermal anomaly together 
with the effects of the elastic and thermal deformabilities. 
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9. A Fractional Order Theory of Poroelasticity 
 
 
By G. Alaimo, V. Piccolo, A. Cutolo, L. Deseri, M. Fraldi 
 
Abstract 
 
We introduce the memory formalism in the flux-pressure constitutive 
relation, ruling the water diffusion phenomenon occurring in several 
classes of porous media. The resulting flux-pressure law has been 
applied to the classical 1D Terzaghi’s consolidation problem. The 
memory formalism, useful to capture non-Darcy behavior, is modeled 
by the Caputo’s fractional derivative. We show that the time-evolution 
of both the degree of consolidation and the pressure fields is strongly 
influenced by the order of Caputo’s fractional derivative. Also a 
numerical experiment aiming at simulating the Terzaghi’s 
consolidation process of a sand sample is performed. In such a case, the 
classical Darcy equation may lead to inaccurate estimates of the 
consolidation time. 
 
Glossary 
 

q  fluid volume flow per unit area m s−⋅  

k̂  permeability of porous medium 2m  

µ  fluid viscosity 
1 1kg m s− −⋅ ⋅  

p  fluid pressure 
1 2kg m s− −⋅ ⋅  

k  hydraulic conductivity 1m s−⋅  

ρ  density 
3kg m−⋅  

g  gravity 2m s−⋅  

γ  volumetric weight 
2 2kg m s− −⋅ ⋅  

kβ  anomalous hydraulic conductivity 1m s β− +⋅  

K  bulk modulus of porous medium 
1 2kg m s− −⋅ ⋅  



Valentina Piccolo – Experimental and Novel Analytic Results for Couplings in 
Ordered Submicroscopic Systems: from Optomechanics to Thermomechanics 

178 
 

G  shear modulus of porous medium 
1 2kg m s− −⋅ ⋅  

B  Biot’s coefficient dimensionless 

S  storativity 
1 2kg m s− ⋅ ⋅  

vm  confined compressibility 
1 2kg m s− ⋅ ⋅  

ν  
Poisson’s coefficient of the porous 
medium dimensionless 

c  consolidation coefficient 2 1m s−⋅  

cβ  anomalous consolidation coefficient 2 1m s β− +⋅  

sK  bulk modulus of solid phase 
1 2kg m s− −⋅ ⋅  

η  porosity dimensionless 

 
9.1 Introduction 
 
The mass transport of fluid particles through a porous medium is a 
mechanism similar to the diffusion of chemical and mass species 
through biological structures, i.e. cell membranes, epithelial tissues and 
sprayed parenchymatous organs. The first one is governed by Darcy 
equation whereas the latter is related to the Fick equation (meaning the 
relation that linearly links the flux of the chemical species in motion in 
a fluid medium with the concentration gradient in the direction of the 
transport). 
Such two linear diffusive equations, both in Fick and Darcy form, have 
shown some discrepancies with the observed experimental data [19, 
13]. The time evolution of the concentration and of the velocity 
predicted by such equations is described by exponential solutions, but 
regarding fluid flows in biological tissues os sand soils, a sort of  
“stretched exponential” is found, meaning a deviation from the 
predicted values. 
During last years several methods to capture the the difference between 
the observed behaviour and the experimental one have been developed 
and adopted. Among others we recall molecular dynamics [22, 21, 20, 
12] and Continuous Time Random Walk (CTRW) models that describe 
the random path of contaminant flux plumes in heterogeneous porous 
media [16, 2, 3]. 
A different approach to handle this problem has been framed in the 
contex of anomalous diffusions in terms of power-laws with real 



A Fractional Order Theory of Poroelasticity 

179 
 

exponents [5, 4]. The introduction of the memory formalism in 
Fick/Darcy transport equations is used to capture changes in the 
chemical/physical properties of the pores as well as of the interactions 
among pore channels and fluid particles of the porous media, during the 
transport process. For example, in water diffusion in porous media, 
experimental data [10] shown that the permeability of sand layers may 
decrease due to rearrangement of the grains and consequent 
compaction, or if the fluid carries solid particles which obstruct some 
of the pores. Accordingly, the flow would occur as if the medium had a 
memory, meaning that, at any instant, the diffusion process is affected 
by the (past) history of pressure and flow. The transport equations 
resulting from the application of fractional derivatives to diffusion 
problems are mainly phenomenological but, if accurately verified with 
experimental evidence, they may represent a step forward with respect 
to the classical equations in explaining transport phenomena or other 
physical processes. 
However, in [7] the authors provided a mechanical justification for the 
presence of anomalous diffusion in porous media, as recently 
demonstrated in scientific literature for the hereditary behavior of the 
matter [9, 8] as well as in bone tissues viscoelasticity [6]. More in the 
details, the fractional-order force-flux relations for the flux of a viscous 
fluid across an elastic porous media was found for a one dimensional 
problem, where an unbonded porous media with a power-law variation 
of geometrical and physical properties was considered. Actually, 
having a variation of the characteristics of the media yields to a 
fractional-order relation among the ingoing flux and the applied 
pressure to the control section. Two different behaviours were found to 
be perhaps related to different states of the mass flow across the porous 
media. In fact, if it is considered a power-law decay of the physical 
properties from the control section then the flux is related to a Caputo 
fractional derivative of the pressure of order 0 < 1ω≤ . On the other 
hand, if the physical properties of the media show a power-law increase 
from the control section, then the flux is related to a fractional-order 
integral of order 0 1ω≤ ≤ . In this work, we show the effect resulting 
from the introduction of the memory effect, by means of the Caputo’s 
fractional derivative, in the flux-pressure constitutive relation. The 
latter has been employed to describe the water diffusion phenomenon 
in porous media, and has been applied to the classic Terzaghi’s 
consolidation problem.  
 
9.2 Fractional Darcy Law 
 
The force-flux relation provided by Darcy linear relation was modified 
to include changes in physical properties of the porous media during the 
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flow. The well-known Darcy law in porous media is ruled by the 
following equation:  
 

ˆ
( , ) = ( , )kq x t p x t

µ
− ∇

 
(9.1) 

 

where 1 2 3
1 2 3

[ ] [ ] [ ]
[ ] = i i i

x x x
∂ • ∂ • ∂ •

∇ • + +
∂ ∂ ∂

 denotes the Laplacian operator, 

1 2 3( , ) = [ ( ) ( ) ( )]Tq x t q x q x q x  is the vector of specific volume flux 
across a generic cross-section, k̂  is the Darcy permeability coefficient 
depending on the material and ( , )p x t  is the pressure field. Introducing 
the hydraulic conductivity (or diffusivity) k  that is defined as 
 

ˆ ˆ
= =f fk g k

k
ρ γ
µ µ

 
(9.2) 

 
where fρ  is the fluid density, g  the gravity and =f gγ ρ  the fluid 
volumetric weight, relation (9.1) may be written 
 

( , ) = ( , )
f

kq x t p x t
γ

− ∇
 

(9.3) 

 
The anomalous force-flux relation in advection/diffusion has been 
obtained in terms of a modified transport equation as: 
 

( ) * ( , ) = ( )* ( , )f t q x t f t p x tα β ∇  
(9.4) 

 
where the symbol *  indicates the well-known convolution product. We 
assume that ( )f tα  and ( )f tβ  are differential operators provided in the 
form: 
 

2
1( ) = ( ) [ ]

(1 )
m tf t m t

t

α

α δ
α

− ∂
+ •
Γ − ∂

 
(9.5a) 

 
2

1( ) = ( ) [ ]
(1 )
n tf t n t

t

β

β δ
β

− ∂
+ •
Γ − ∂

 
(9.5b) 
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where ( )tδ  is the Dirac-delta function, α  and β  are real order 
exponents with 0 < , < 1α β , 1m , 2m , 1n  and 2n  are model parameters, 
and ( )Γ •  is the Euler-Gamma function which is defined through the 
following integral: 
 

1

0
( ) = x zz e x dx

∞ − −Γ ∫
 

(9.6) 

 
Euler-Gamma may be considered as the generalization of the factorial 
function since when z  assumes integer values, we have that 

( 1) = !z zΓ + . 
The substitution of eq. (9.4) with the transport fluid-pressure relation 
(9.1) has been dubbed memory formalism (see e.g. the paper by [4]). 
Replacing the expressions (9.5a) and (9.5b) of functions ( )f tα  and 

( )f tβ  in the convolution product (9.4), the transport equation is 
expressed as: 
 

1 2 0 1 2 0( ) = ( )m m D q n n D pα β+ − + ∇  
(9.7) 

 
where 0 ( )Dα •  and 0 ( )Dβ •  are Caputo fractional derivatives, which 
definitions is: 
 

0 0

1 ( )( ) =
(1 ) ( )

't fD f d
t

ω
ω

τ τ
ω τΓ − −∫

 
(9.8) 

 
valid for 0 < 1ω≤ . Eq. (9.8) states that the value of the Caputo 
fractional derivative of a differentiable function f , at time t , is 
obtained by adding to its initial value (0)f  the increments ( )'f dτ τ  
over time ( [0, ]tτ ∈ ), weighted by the factor ( )t ωτ −− , which decreases 
increasing time separation from t . Accordingly, the memory formalism 
is obtained through the Caputo fractional derivative that, essentially, 
results in a weighted mean of the “past” value of the function f . 
To reduce the number of parameter needed to define the transport 
equation (9.7), in this work we consider the case 2 = 0m  that is one of 
the most interesting in practical applications. With such assumption, 
equation (9.7) may be rewritten as follows:  
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0= ( )f q k k Dβ
βγ − + ∇p  

(9.9) 

 
where kβ  is the “anomalous” hydraulic conductivity or diffusivity. 
 
9.3 Fractional-Order Consolidation 
 
Soft soils such as sand and clay consist of small particles, and often the 
pore space between the particles is filled with water. In soil mechanics 
this is denoted as a saturated or partially saturated porous medium. The 
deformation of such porous media depends upon the stiffness of the 
porous material, and upon the behaviour of the fluid in the pores. If the 
permeability of the material is small, the deformations may be 
considerably retarded by the viscous behaviour of the fluid in the pores. 
The simultaneous deformation of the porous material and the flow of 
the pore fluid is the subject of the theory of consolidation, often denoted 
as poroelasticity. The theory was originally developed by Terzaghi for 
the 1D case, and extended to the 3D case by Biot. In his original theory 
Terzaghi postulated that the deformations of a soil were mainly caused 
by a rearrangement of the system of the particles, and that the 
compression of the pore fluid and of the solid particles can practically 
be disregarded. In a saturated soil this means that a volume change of 
an element of soil can only occur by a net flow of the fluid with respect 
to the solid particles. This system of assumptions often is a good 
approximation of the real behaviour of soft soils, especially clay, and 
also soft sands. Such soils are highly compressible (deformations may 
be as large as several percents), whereas the constituents, particles and 
fluid, are very stiff. 
In later presentations of the theory, starting with those of Biot, 
compression of the pore fluid and compression of the particles has been 
taken into account. This generalization has made it possible to also 
consider the deformations of stiffer materials such as sandstone and 
other porous rocks, which are very important in the engineering of deep 
reservoirs of oil or gas. In this section the authors will present the 
fractional-order model for consolidation. This works takes the 
inspiration from the previous work [7] that has been summarized in the 
previous section. The linear fractional theory of poroelasticity (or 
consolidation) relies on the following set of equations: 
 

2 = 0
3 x x
G pK G u B f

x x
∂ ∂ + + ∇ − +  ∂ ∂ 

  
(9.10a) 
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2 = 0
3 y y
G pK G u B f

y y
∂ ∂ + + ∇ − +  ∂ ∂ 

  
(9.10b) 

 
2 = 0

3 z z
G pK G u B f

z z
∂ ∂ + + ∇ − +  ∂ ∂ 

  
(9.10c) 

 

=pB S
t t

∂ ∂
+ −∇ ⋅

∂ ∂
q  

(9.10d) 

 
= u∇ ⋅  

(9.10e) 

 
0= ( )f q k k Dβ

βγ − + ∇p  
(9.10f) 

 
Eqs. (10a-10c) represent, in terms of displacements u , the equilibrium 
equations under the assumption of linear elastic isotropic solid phase 
and small strains regime on the porous media while eq. (10d) is the 
“storage” equation, namely the mass balance. 
In eqs. (10) K  and G  are the bulk and the shear moduli of the porous 
medium respectively, B  is the Biot’s coefficient, S  is the storativity, 

fγ  is the specific weight of the fluid, = [ ]T
x y zf f f f  is the vector 

of mass forces, and   is the volumetric strain defined as: 
 

= xx yy zzε ε ε+ +  
(9.11) 

 
The system of PDEs (10) in 3D-consolidation problems usually 
involves the simultaneous resolution of the storage equation (10d) 
together with the equilibrium equations, as such equations are coupled. 
However, an important class of problems in which an uncoupled 
analysis may be performed is the case where it can be assumed that )i  
the horizontal strains xxε  and yyε  are equal to zero and )ii  the vertical 
total stress zzσ  is constant over the time. 
Assumptions )i  and )ii  were first derived by Terzaghi for the 1D case 
of flow and strain, as occurs during an experimental compression test. 
Moreover, we recall the well-known Terzaghi’s principle which states 
that total stresses ijσ  can be additively decomposed into the effective 
stresses ˆijσ  and in the pore pressure p  as: 
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ˆˆ=ij ij ijB pσ σ δ+  

(9.12) 

 
where îjδ  is the Kronecker’s symbol. If the horizontal strains are 
imposed to be equal to zero, it follows that the volumetric strain   is 
equal to the vertical strain: 
 

ˆ= =zz v zzmε σ−  
(9.13) 

 
where vm  is the confined compressibility defined as: 
 

3 1= =
3 4 3 (1 )vm

K G K
ν
ν

+
+ −

 
(9.14) 

 
in eq. (14) ν  is the Poisson’s coefficient of the porous medium. Taking 
into account the Terzaghi’s principle, and differentiating with respect 
to time eq. (13) we obtain: 
 

= zz
v v

pm m B
t t t

σ∂∂ ∂
− +

∂ ∂ ∂
  

(9.15) 

 
and inserting eq. (9.15) in the storage equation (10d) we have: 
 

2( ) =zz
v v

pBm B m S
t t
σ∂ ∂

− + + −∇ ⋅
∂ ∂

q
 

(9.16) 

 

Observing that for > 0t  we have = 0zz

t
σ∂
∂

 for the assumption ii , and 

taking into account the transport equation (10f), relation (16) reads: 
 

( ) ( )( )0=p c c D
t

β
β

∂
∇ ⋅ ∇ +∇ ⋅ ∇

∂
p p

 
(9.17) 

 
valid if =f o . In eq. (23), c  and cβ  are the usual and the “anomalous” 
(in the sense of fractional calculus) consolidation coefficients 
respectively, defined as: 
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2=
( )f v

kc
B m Sγ +

 
(9.18a) 

 

2=
( )f v

k
c

B m S
β

β γ +

 
(9.18b) 

 
In case of homogeneous porous medium, namely when the quantities 

f

k
γ  and 

f

kβ

γ  in eqs. (9.18a) and (9.18b) respectively are constant in 

space, eq. (9.17) becomes: 
 

( )2 2
0=p c p c D p

t
β

β
∂

∇ + ∇
∂

 
(9.19) 

 
In light of equation (9.19), we observe that the system (9.10) is actually 
uncoupled since firstly the pressure field p  may be evaluated from 
equation (9.19) together with the associated BCs and, subsequently, the 
mechanical problem can be solved using the equilibrium equations 
(9.10a - 9.10c). 
In the next section we analyze the solution of Terzaghiâ€™s 
consolidation problem when the porous medium is characterized by the 
fractional transport relation (9.10f). 
 
9.3.1 Fractional Terzaghi’s Consolidation Problem 
 
Let us consider the transient boundary value problem of a confined 
homogeneous soil sample of height h , surrounded by a circular ring, 
and placed in a container filled with water as shown in Fig. (9.1). 
 

 

 
Figure 9.1 Schematic description of Terzaghi’s problem. A confined homogeneous 
porous medium sample of height h, is placed in a container filled with water and is 
loaded by a vertical stress s. 
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The sample is loaded by a vertical stress = ( )zz sU tσ  at its upper 
surface, where ( )U t  is the Heaviside unit step function; the lower 
boundary of the sample ( = 0z ) is considered impermeable while the 
upper boundary ( =z h ) is fully drained. To find the initial condition 
we observe that at time = 0t  no flux can occur through the porous 
medium: accordingly eq. (9.16) reads: 
 

2( ) ( ) = 0v v
pm s t B m S
t

α δ ∂
− + +

∂

 
(9.20) 

 
where ( )tδ  is the Dirac delta function; integrating eq. (9.20) from 

= 0t −  and = 0t +  we have: 
 

0 2=0 =0 =0
= = = v

t t t
v

Bmp p p p s
B m S+ − +−

+

 
(9.21) 

 
The mathematical formulation of the problem is: 
 

( )2 2
0= with 0 , > 0, 0 < 1p c p c D p z h t

t
β

β β∂
∇ + ∇ ≤ ≤ ≤

∂

 
(9.22a) 

 

=0
= 0, > 0

z
q t∀  

(9.22b) 

 

=
= 0, > 0

z h
p t∀  

(9.22c) 

 

0 2=0
= = , 0v

t
v

Bmp p s z h
B m S+ ≤ ≤

+

 
(9.22d) 

 
The problem (9.22a) with boundary conditions (9.22b) and (9.22c) and 
initial condition (9.22d) can be solved using the method of separation 
of variables, namely separating ( , )p z t  into space-dependent and time-
dependent functions as reported below: 
 

( , ) = ( ) ( )p z t t zφ θ  
(9.23) 

 
substituting (9.23) into (9.22a) and introducing the separation constant 
λ , we obtain 
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2

2
2

0

1 1= =
( )

d d
dz c c D dtβ

β

θ φ λ
θ φ φ

−
+

 
(9.24) 

 
Relation (9.24) is equivalent to the two following differential equations: 
 

2
2

2

( ) ( ) = 0d z z
dz
θ λ θ+

 
(9.25a) 

 

=0

= 0
z

d
dz
θ  

(9.25b) 

 

=
= 0

z h
θ  

(9.25c) 

 
and 
 

2 2
0

( ) ( )( ) ( ) = 0d t c D t c t
dt

β
β

φ λ φ λ φ+ +
 

(9.26) 

 
The general solution of the spatial evolution in eq. (9.25a) is 
 

1 2( ) = cos( ) sin( )z D z D zθ λ λ+  
(9.27) 

 
where boundary condition (9.25b) yields 2 = 0D , while boundary 
condition (9.25c) yields 
 

( )2 1
cos( ) = 0 = ,with = 1,2,3,..

2n

n
h n

h
π

λ λ
−

⇒
 

(9.28) 

 
The roots nλ  of relation (9.28) are the eigenvalues of the associated 
Sturm-Liouville problem. As a consequence, the eigenfunctions of the 
problem are: 
 

1 1
(2 1)( ) = cos( ) = cos

2n n
nz D z D z

h
πθ λ − 

  

 
(9.29) 

 
After solving the problem corresponding to the space dimension z , we 
note that the solution for the time-dimensional problem, namely the 
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fractional differential equation (9.26), has been obtained by the Laplace 
transform method in [17, eq. 5.3.47]. We have: 
 

( ) ( )

( ) ( )

2 1 2 1
1 , 1

=0

2 1 2 1 2 1
1 , 2

=0

( ) =
k k

n n k n
k

k k
n n k n

k

t ct E c t

c t ct E c t

β
β β

β β
β β β β

φ λ λ

λ λ λ

∞
+ −
− +

∞
− + −

− + −

− − +

+ − −

∑

∑

 

(9.30) 

 
where , ( )E xξ

ζ η  is the Prabhakar function (see for example [15, 11, 14]) 
defined as: 
 

,
=0

( ) ( )( ) =
( ) !

i
i

i

xE x
i i

ξ
ζ η

ξ
ζ η

∞

Γ +∑
 

(9.31) 

 
being ( )iξ  the Pochhammer symbol: 
 

1 if = 0
( ) =

( 1) ( 1) ifi

i
i i N

ξ
ξ ξ ξ

 + + − ∈ 

 
(9.32) 

 
Relations (9.29) and (9.30) can be combined introducing the constant 

1=nD D  yielding, considering relation (9.23), the general solution: 
 

=1 =1

(2 1)( , ) = ( ) ( ) = cos ( )
2n n n n

n n

np z t z t D z t
h

πθ φ φ
∞ ∞ − 

  
∑ ∑

 
(9.33) 

 
where the constant nD  is defined utilizing the initial condition (9.22d) 
and noting that, n∀ , (0) = 1nφ , namely: 
 

0
=1

(2 1)( ,0) = = cos
2n

n

np z p D z
h

π∞ − 
  

∑
 

(9.34) 

 
Relation (9.34) is the Fourier series expansion of the function 0p  then, 
multiplying both sides of such relation by cos( )m zλ  and integrating 
over the interval [ ]0,h  we obtain: 
 

2
0

00

( ) = if =coscos( ) = 2
0 if

h
h m m m

m

hD v dv D m n
p v dv

m n

λ
λ




 ≠

∫∫
 

(9.35) 
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where the property of orthogonality of the eigenfunctions cos( )m zλ , for 
arbitrary eigenvalues mλ , has been used. Summing up, from eq. (9.35) 
we have: 
 

0
00

42 ( 1)= cos( ) =
1 2

nh

n n
pD p v dv

h n
λ

π
−
−∫

 
(9.36) 

 
and finally, using relation (9.33) with eqs. (9.36) and (9.30), we obtain 
the expression for the pressure field as 
 

0

=1

4 ( 1) (2 1)( , ) = cos ( )
1 2 2

n

n
n

p np z t z t
n h

π φ
π

∞ − − 
 −  

∑
 

(9.37) 

 
In the next section we report a numerical experiment regarding the 
fractional Terzaghi’s consolidation problem. In particular, the 
consolidation problem in a 1D sample with imposed load and fixed, 
over time, pressure and flux at the extremities, is studied. The aim of 
the presented analysis is to show, by means of a problem defined in a 
simple spatial domain, how the solution of the consolidation problem is 
influenced by the introduction of the Caputo’s fractional derivative in 
the pressure - flux constitutive relation. 
 
9.4 Numerical Experiment 
 
In order to further reduce the number of parameters in eq. (9.10f), in 
this section we set a zero value of the consolidation coefficient ( = 0c ) 
which implies that the flux tends to zero as t →∞ . This assumption 
may be considered sufficiently valid also in light of the following 
considerations. Firstly, we note that only few experimental works 
regarding fractional Darcy transport equation are available in literature 
and most of them have been focused on the transient phase of the 
diffusion phenomenon (see for example the paper by [10]. The authors 
of the above mentioned work observed that the flux seems to reach a 
stationary state after a relatively small time interval (about 10 hours), 
but they cannot rule out that it is asymptotically nil; in other words, no 
certain indications about the flux stationary value can be obtained from 
their experiments. Moreover, the pressure field time-evolution 
evaluation is not a simple task because of the convergence issues related 
to the series involved in expression (9.30), since a very large number of 
terms are required to obtain a sufficiently accurate evaluation. Integral 
relations representing relation (9.30) can be more useful but, to the 
authors’ knowledge, they are not available in literature. 
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Given that no other more reliable indications of the flux asymptotic 
value was available, we consider the transient boundary value problem 
of the fractional Terzaghi’s consolidation when = 0c . The 
mathematical formulation of the problem is: 
 

( )2
0= with 0 , > 0, 0 < 1p c D p z h t

t
β

β β∂
∇ ≤ ≤ ≤

∂

 
(9.38a) 

 

=0
= 0, > 0

z
q t∀  

(9.38b) 

 

=
= 0, > 0

z h
p t∀  

(9.38c) 

 

0 2=0
= = , 0v

t
v

Bmp p s z h
B m S+ ≤ ≤

+

 
(9.38d) 

 
As detailed in the previous, also in this case we used the method of 
separation of variables. The spatial evolution of the pressure field 

( , )p z t  reported in eq. (9.29) is still valid also in the case = 0c  under 
consideration. As concerns the fractional differential equation ruling 
the time evolution, it is straightforward to observe that it becomes: 
 

2
0

( ) ( )( ) = 0d t c D t
dt

β
β

φ λ φ+
 

(9.39) 

 
eq. (9.39) may be solved using the Laplace transform method [17, eq. 
5.3.39] yielding: 
 

( )2 1
0 1 ,1( ) =n nt E c t β

β βφ φ λ −
− −

 
(9.40) 

 
By means of eq. (9.40), the solution of problem (9.38a) is obtained as: 
 

12 2
0

1 ,1 2
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( , ) =

4 ( 1) (2 1) (2 1)cos
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p z t

c tp n z nE
n h h

β
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β
π π

π

−∞

−

 − − − = −  −     
∑

 
(9.41) 

 
Relation (9.41) can be converted into a non-dimensional form by 
defining the non-dimensional independent variables, through the 
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dimensional parameters of the consolidation problem, as reported 
below: 
 

0

= pp
p

 
(9.38a) 

 

= zz
h

 
(9.38b) 

 
1

2=
c t

t
h

β
β

−  
(9.38c) 

 
(2 1)=

2n
n πλ −  

(9.38d) 

 
Adopting the non-dimensional variables of eqs. (9.42) we obtain the 
non dimensional pressure field as: 
 

( ) ( )2
1 ,1

=1

4 ( 1)( , ) = cos .
1 2

n

n n
n

p z t z E t
n βλ λ

π

∞

−

−
−

−∑
 

(9.43) 

 
We also consider the time evolution of the displacement ( )u t  at the free 
end of the sample. It can be obtained by integration of the strain zzε  
through the height (see eq. (9.13)): 
 

0 0
ˆ( ) = =

h h

zz v zzu t dz m dzε σ−∫ ∫
 

(9.44) 

 
considering the Terzaghi’s principle (9.12), relation (9.44) reads:  
 

( )
0 0

12 2
0

1 ,12 2 2
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∫ ∫

∑

 

(9.45) 

 
The final displacement u∞  is obtained as t →∞ , namely when all the 
pore have dissipated the pressure. Considering that 
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12 2

1 ,1 2

(2 1) = 0,lim 4t

c tnE
h

β
β
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− 
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(9.46) 

 
we have: 
 

= ( ) = .lim v
t

u u t hm s∞
→∞

 
(9.47) 

 
Moreover, the initial displacement is evaluated as follows: 
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taking into account that the following relation helds: 
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As done for the pressure field, we introduce a dimensionless measure 
of the displacement, namely the degree of consolidation ( )w t  that, 
considering relations (9.47) and (9.48) yields: 
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9.4.1 Consolidation of a Sand Sample and Comparison Between 
Fractional and Classical Darcy’s Law 
 
In this section we show how the introduction of the memory effect, by 
means of the Caputo fractional derivative in the transport equation, 
affects both the pressure and the consolidation coefficient time 
evolutions in the Terzaghi’s problem. The analysis is carried out relying 
on the experimental data obtained first in [4] and after confirmed in 
[10]. As noted before, the authors did several experiments to measure 
the mass flow-rate of water through a sample of sand embedded in a 
cylinder, with applied a constant pressure gradient between its surfaces. 
The experiments have been performed applying a pressure on one side, 
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through a water column, and measuring the flow on the other side. It 
has been observed that at the beginning of the experiments the flux was 
almost 140g s−⋅  while, after 10  hours, it decreased to about 127g s−⋅ , 
showing that the mass flow-rate induced by the applied constant 
gradient pressure was not constant as ruled by the Darcy’s law. 
Assuming a constitutive flux-pressure relation as in eq. (9.10f) with 

= 0k , which implies = 0c , it follows that the diffusion phenomenon 
under observation is ruled by two parameters, namely the order of the 
Caputo derivative β , and the anomalous diffusivity kβ . The authors 
found that the data obtained during their experiments are well fitted 
with the following values: = 0,51β  and 1= 0,11k m s β

β
− +⋅ . Moreover, 

the classical hydraulic conductivity can also be estimated from their 
experiments, resulting in the value 3 1= 1,6 10k m s− −⋅ ⋅  that is 
compatible with the range of hydraulic conductivity for sand, namely 

610−  to 3 110 m s− −⋅  (see for example [1]). It is also not surprising that 
the value of anomalous hydraulic conductivity is out of the range of the 
classic for sand, since the two quantities represent different physics and 
dimensions. 
Assuming for the porous medium a bulk modulus of = 8K GPa , a 
Poisson’s coefficient = 0,2ν , a porosity = 0,19η  and for sand a bulk 
modulus of = 36sK GPa  respectively [18], we can estimate the Biot’s 
coefficient as:  
 

= 1 = 0,78
s

KB
K

−
 

(9.51) 

 
the confined compressibility (see eq. (9.14)) as: 
 

11 1 2= 6,3 10vm kg m s− −⋅ ⋅ ⋅  
(9.52) 

 
and the storativity S  as: 
 

11 1 2( )= = 9,9 10
f s

BS kg m s
K K
η η − −−

+ ⋅ ⋅ ⋅
 

(9.53) 

 
where, in eq. (9.53) = 2,3fK GPa  is the bulk modulus of water. 
Through eq. (9.18) it is then possible to evaluate the consolidation 
coefficients: 
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3 2 1= 1,2 10c m s−⋅ ⋅  
(9.54a) 

 
4 2 1= 8,0 10c m s β

β
− +⋅ ⋅  

(9.54b) 

 
the time evolution of both non-dimensional pressure field and degree of 
consolidation are shown in Fig. (9.3). 
 
9.5 Discussion 
 
Some examples of the non-dimensional pressure field obtained by eq. 
(9.43) are shown in Fig. (9.2). 
 

 

 
Figure 9.2 Non-dimensional pressure field p  for different value of the exponent β . 

All the surfaces have been obtained with n=100. 
 
When it comes to considering how long does it take for the porous 
medium to achieve consolidation steadiness, the trend shown in 
presence of anomalous porous media is, compared to classical ones, to 
employ longer non-dimensional times. From a physical point of view, 
such phenomenon is observed when rearrangement of the grains and 
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consequent compaction occurs, or if the fluid carries solid particles 
which obstruct some of the pores grain. Basically, in the case of fluid 
transport in porous medium, this results into a change in time of the 
permeability. Accordingly, from a mathematical point of view, this 
effect may be taken into account considering force-flux relations with 
a “memory effect”. 
 

 

 
Figure 9.3 Solution of the Terzaghi’s problem in terms of degree of consolidation and 
pressure time evolution. The solution related to the classical Darcy’s law has been 
obtained imposing 0β =  . 
 
From the analysis of Fig.(9.3) it is seen that the main feature 
characterizing the anomalous consolidation is that the time-evolution of 
both displacement and pressure field is strongly influenced by the order 
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of the Caputo fractional derivative. The influence of the deviation from 
the Darcy behavior of porous media reveals itself in the initial rapid rise 
in time, followed by the tendency to reach steady values in longer times: 
the higher the deviation from a Darcy-like behavior, the more 
pronounced this effect becomes. In addition, for the time-evolution of 
the pressure field, a significant time-shift compared to what obtained 
with Darcy law has been observed; beside such time-shift, the degree 
of consolidation also exhibits a sensibly different behavior. 
 
9.6 Conclusion 
 
In this work the authors study the effects, for consolidation problems, 
of introducing a memory effect in the flux-pressure constitutive relation 
employed to describe the water diffusion phenomenon in porous media. 
In particular, the classic 1D Terzaghi’s consolidation problem has been 
studied. The introduction of the memory effect has proven to be useful 
to capture non-Darcy behavior, as highlighted by some works reporting 
experimental data. The fractional Darcy’s law assumed in this work is 
characterized by the Caputo’s fractional derivative. 
The main result of this work is to show that the time-evolution of both 
the displacement and pressure fields is strongly influenced by the order 
of Caputo fractional derivative. Higher is the order of the Caputo’s 
derivative, higher will be the initial rise in time, with the tendency to 
reach steady values in longer times. 
The authors also performed a numerical experiment aiming at 
simulating and predicting the Terzaghi’s consolidation process of a 
sand sample, assuming a fractional Darcy’s law. The authors show that 
the classical Darcy equation may mainly lead to inaccurate estimates of 
the consolidation time, as well as of the pressure field time-evolution. 
When in presence of rearrangement of grains and consequent 
compaction, or if the fluid carries solid particles which obstruct some 
of the pores, more accurate results can obtained by simple, 2-parameters 
fractional models. 
From a mathematical point of view, in the majority of cases, the time-
evolution of the pressure field and of the degree of consolidation, is 
obtained by simply substituting the classical exponential law with a 
Mittag-Leffler type function. Moreover, from an experimental point of 
view, the fitting of the proposed fractional model does not require a 
significantly more burdensome effort, since only two parameters have 
to be evaluated. Also, the experimental setup required is, in all respects, 
the same as the one used in the classical permeability evaluation. 
Fractional models would reveal their efficiency also when dealing with 
consolidation problems of clay soils that, as observed for sand, basically 
consist of small particles surrounded by water. Accordingly, the 
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phenomena observed in sand soils such as compaction or transport of 
solid particles obstructing pores can occur in clay soils. For the latter, 
characteristic consolidation times are order of magnitude higher than 
sand considered in this work thus the approximation introduced by the 
use of the classical Darcy’s law could be not negligible for practical 
use. Unfortunately, to the best of authors’ knowledge, experimental 
data reporting the time evolution of the flux for clay soils are not 
available in literature. 
Experimental test aiming at evaluate the 2-parameters of the fractional 
Darcy’s law for clay soils could be conducted, to further study the 
applicability of the proposed model for this type of porous medium. 
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10. Summary and Conclusions 
 
 
10.1 Summary 
 
Novel analytical models for challenging multiscale problems arising in 
complex ordered submicroscopic systems have been presented. Such 
activities have been supported by analytical, numerical and 
experimental studies. For instance, this is the case when studying the 
response of polymeric nano-composites to electromagnetic and 
mechanical stimuli. Such actions are notorious to be important for 
sensors, polymeric films, artificial muscles, cell membranes, 
metamaterials, hierarchical composite interfaces and other novel class 
of materials.  
Complex nanostructured systems have been investigated, both from an 
experimental point of view and from an analytical one, with different 
configurations, from 3D colloidal crystals to 2D gratings made via 
colloidal route as strain sensors. 3D colloidal crystals have also been 
investigated to see their response to organic solvents in order to study 
the swelling and diffusion process.  
These kind of analysis regarding diffusive and transport problems have 
been carried out also from a purely analytical point of view in the last 
three chapters of this thesis in order to provide novel models able to 
scaling up from an ordered microstructure to a macroscopic structure, 
providing a relation for the diffusive and transport phenomena.  
It has been demonstrated that ordered submicrometric materials may 
exhibit some physical properties, such as the thermal and the 
mechanical creep/relaxation ones, with time-rate dependent response. 
In fact, the analysis of the temperature field in an inhomogeneous rigid 
conductor with power-law grading of the thermodynamic parameters 
has shown a power-law time increase of the temperature at the insulated 
boundary of the conductor. The order of the power law is strictly linked 
to the grading exponent of the physical properties of the conductor, and 
the use of the Boltzmann superposition principle for generic histories 
of the incoming heat flux has yielded a temperature-flux relation 
involving fractional-order operators. The main idea that a power-law 
increase appears as a nonhomogeneous, nonstationary flux is 
established in the conductor has been further expanded to yield a 
fractional-order generalization of the Fourier transport equation. As a 
consequence, the resulting macroscopic relation has provided the heat 
flux by means of the fractional-order, Caputo type, derivative of the 
spatial gradient of the temperature field with derivation order related to 
the fractal dimension of the self-similar assembly.  
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Then the attention has been focused on the coupling of this phenomenon 
with the mechanics, meaning the “fractional thermally anomalous” 
coupled behavior of slightly deformable bodies. Results have shown 
that the interactions in a simple geometry (like a truss) are fully coupled 
because the temperature and the displacement fields mutually influence 
one another. A space-time modal analysis performed on the fractional-
order system has provided the explicit solutions of the problem. The 
time evolution of each spatial mode for the temperature, displacement, 
and axial force turned out to be characterized by modulated Mittag-
Leffler functions. The higher the deviation from the Fourier-like 
behaviour for the heat flux, the steeper the resulting time-transient of 
each mode. The influence of the deformability on the one hand and the 
discrepancy from the Fourier behavior on the other hand have been 
thoroughly analysed. Measures of the overall thermal work and of the 
associated available and dissipation energy rates have been evaluated 
both mode by mode and globally, enabling the characterization of the 
coupled response of anomalous thermoelastic trusses. In addition to 
determining the range of admissible discrepancies from the Fourier 
behavior, such quantities have been shown to fully reveal the 
manifestation of the thermal anomaly together with the effects of the 
elastic and thermal deformabilities. 
In the last chapter the effects, for consolidation problems, of 
introducing a memory effect in the flux-pressure constitutive relation 
employed to describe the water diffusion phenomenon in porous media 
have been studied. In particular, the classic 1D Terzaghi’s consolidation 
problem has been taken into account. The introduction of the memory 
effect has proven to be useful to capture non-Darcy behaviour. The 
main results shown that the time-evolution of both the displacement and 
pressure fields is strongly influenced by the order of Caputo fractional 
derivative. Higher is the order of the Caputo’s derivative, higher will be 
the initial rise in time, with the tendency to reach steady values in longer 
times. Assuming the classical Darcy equation may mainly lead to 
inaccurate estimates of the consolidation time, as well as of the pressure 
field time evolution. When in presence of grain rearrangement and 
consequent compaction, or if the fluid carries solid particles which 
obstruct some of the pores, more accurate results can be obtained by 
simple, 2-parameters fractional models, both in case of sands and clay 
soils.  
 
 
10.2 Conclusions 
 
The research activity that has been developed is characterized by a 
significant multidisciplinary value and coordinates competences in 
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photonics, structure of matter, materials science, applied mathematics, 
analytical mechanical model for coupled phenomena and a hint of 
numerical simulations.  
The realization of this thesis has increased the knowledge in important 
scientific and technological areas, ranging from fundamental physics to 
novel applications, through materials science and photonics and will 
give a specific contribution to the needs expressed in different 
institutional documents (Photonics21, Horizon 2020) about the 
perspectives in the field of optics, photonics and technology of matter, 
or those technologies and sciences that have a key role in the 
development of new goods and services in different sectors. 
The obtained results pave the way to develop a technology for the 
creation of a new class of systems chromatically sensitive to external 
stimuli. This kind of structure may be considered as a low cost sensor 
that can be applied in different strategic areas ranging from food 
security to civil infrastructures; areas that have an impact on our quality 
of life and safety.  
In fact, the final objective lies in using these systems to perform health 
monitoring of buildings, measuring, for example, the state of 
deformation and cracks or the determination of volatile organic 
compounds. 
The originality of this class of systems is the working scheme of the 
structures, in fact, the application of an external stimulus will result in 
a variation of the optical and structural properties of the polymeric 
system, changing the optical responce as a function of the external 
stimuli (applied strain, organic solvents). 
Now, thanks to the optimized design, it has been possibible also to 
detect by naked eye the changes in the system, without the necessity of 
external probes. It is worth mentioning that the created devices do not 
need external power for their operation.  
 
While the first part of this thesis is focused on the strict connection 
between experiments, design and analytical models using real sample 
of colloidal photonic crystals or special kind of gratings made via 
colloidal route, the second part is maily focused on the development of 
novel model for coupled phenomena in order to capture the real 
physical behaviour of structured systems from an analytical point of 
view. 
With the development of these novel analytical models using fractional 
derivatives it has been shown that ordered submicroscopic systems do 
not behave like bulky materials. This “special” behaviour is enhanced 
in the case of coupled phenomena as demonstrated in the case of 
thermomechanics and consolidation. 
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These novel models could lead to a new way of both interpretations of 
data and prediction of the expected behaviour more close to the real 
phenomenon with respect to the theoretical one.  
For example, in has been demonstrated that a fractional model works 
for sandy soils and an experimental test aiming at evaluating the 2-
parameters of the fractional Darcy law for clay soils could be conducted 
to further study the applicability of the proposed model for this type of 
porous medium. 
These models for physical phenomena could lead to new trends in the 
interpretation and prediction of physical events that an engineer or 
researcher might experience in his everyday life which deals with 
complex systems. 


	cap1DEF_Intro.pdf
	1. Introduction
	References


	cap2DEF_Glass nanosph and opals.pdf
	2. Glass Nanospheres and Artificial Opals
	2.1 Introduction
	2.2 Synthesis of Dielectric Nanospheres
	2.2.1 Polystyrene Nanospheres
	2.2.2 Silica Nanospheres
	2.2.3 RE-Activated Silica Core-Shell Particles
	2.2.4 Gold-Silica Nanospheres

	2.3 Artificial Opals by Self-Assembly Approach
	2.4 Properties of Opals
	2.5 Heterostructures
	2.6 Infiltrated Opals
	2.7 Inverse Opals
	2.7.1 Fluorescent Aptamer Immobilization on Inverse Colloidal Crystals
	2.7.2 Metallo-Dielectric Colloidal Crystals

	2.8 Conclusions
	References


	cap3DEF_3D pcc.pdf
	3. Stimuli-Responsive Colloidal Crystal for Structural Health Monitoring: Fabrication and Numerical Modelling
	3.1 Introduction
	3.2 Colloidal Photonic Crystals: Approximate Optomechanical Approach and Expected Performance
	3.3 Fabrication Protocol of Colloidal Photonic Crystals and Testing
	3.3.1 Fabrication Protocol
	3.3.2 Testing

	3.4 Numerical Simulation with Finite Difference Time Domain Code and Comparison with the Experimental Results
	3.5 Conclusions
	References


	cap4DEF_2D opt grat based on hex voids.pdf
	4. 2D Optical Gratings Based on Hexagonal Voids on Transparent Elastomeric Substrate
	4.1 Introduction
	4.2 Materials and Methods
	4.2.1 Materials
	4.2.2 PS Colloidal Particles and Substrate Preparation
	4.2.3 Assembly of the PS 2D Template
	4.2.4 Functionalization and Infiltration of the PS 2D Template
	4.2.5 PS Particles Chemical Etching
	4.2.6 Sample Characterization

	4.3 Results and Discussion
	4.4 Conclusions
	References


	cap5DEF_quasi-hemisph voids as strain sensors.pdf
	5. Quasi-Hemispherical Voids Micropatterned PDMS as Strain Sensor
	5.1 Introduction
	5.2 Experimental
	5.3 Results and Discussion
	5.4 Conclusions
	References


	cap6DEF_Dynamic.pdf
	6. Colloidal Crystals Based Portable Chromatic Sensor for Butanol Isomers and Water Mixtures Detection
	6.1 Introduction
	6.2 Experimental
	6.2.1 Chemicals
	6.2.2 Synthesis of Monodisperse Polystyrene Particles
	6.2.3 Preparation of the colloidal crystal template and infiltration with PDMS
	6.2.4 Characterization

	6.3 Results and Discussion
	6.3.1 Choice of the Materials and Sensor Design
	6.3.2 Tert-butyl Alcohol Concentration Detection
	6.3.3 Isomers Detection

	6.4 Conclusions
	References


	cap7DEF_Thermo I.pdf
	7. Fractional-Order Theory of Thermoelasticicty. I: Generalization of the Fourier Equation
	7.1 Introduction
	7.2 The Thermodynamical Model of Power-Law Temperature Evolution
	7.3 The Fractional-order generalization of Fourier heat transport equation
	7.3.1 Preliminary Remarks on Fractional-Order Calculus
	7.3.2 The Fractional-Order Generalization of the Fourier Equation
	7.3.3 Thermodynamical Consistency of the Fractional-Order Fourier Conduction

	7.4 Numerical Experiments
	7.4.1 Transient Heat 1D Problem in Cartesian Coordinates
	7.4.2 Transient Heat Problem in Cylindrical Coordinates

	7.5 Conclusions
	References


	cap8DEF_Thermo II.pdf
	8. Fractional-Order Theory of Thermoelasticicty. II: Quasi-Static Behavior of Bars
	8.1 Introduction
	8.2 Thermoelastic Trusses and Anomalous Bahavior
	8.2.1 Case 0: Pineed-Free System Undergoing the Initial Distributions of Temperature and Displacements
	8.2.2 Case 1: Pinned-free system undergoing boundary axial forces only
	8.2.3 The Pinned-Pinned case

	8.3 Thermal “Work” and Measures of Available Energy Rate and Dissipation
	8.4 Discussion
	8.5 Conclusions
	References


	cap9DEF_Consolidation.pdf
	9. A Fractional Order Theory of Poroelasticity
	9.1 Introduction
	9.2 Fractional Darcy Law
	9.3 Fractional-Order Consolidation
	9.3.1 Fractional Terzaghi’s Consolidation Problem

	9.4 Numerical Experiment
	9.4.1 Consolidation of a Sand Sample and Comparison Between Fractional and Classical Darcy’s Law

	9.5 Discussion
	9.6 Conclusion
	References


	cap10DEF_Concl.pdf
	10. Summary and Conclusions




