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Abstract

Tree Kernel functions are powerful tools for solving different classes of problems requiring large
amounts of structured information. Combined with accurate learning algorithms, such as Support
Vector Machines, they allow us to directly encode rich syntactic data in our learning problems
without requiring an explicit feature mapping function or deep specific domain knowledge.

However, as other very high dimensional kernel families, they come with two major drawbacks:
first, the computational complexity induced by the dual representation makes them unpractical
for very large datasets or for situations where very fast classifiers are necessary, e.g. real time
systems or web applications; second, their implicit nature somehow limits their scientific appeal,
as the implicit models that we learn cannot cast new light on the studied problems.

As a possible solution to these two problems, this Thesis presents an approach to feature
selection for tree kernel functions in the context of Support Vector learning, based on a greedy
exploration of the fragment space. Features are selected according to a gradient norm preservation
criterion, i.e. we select the heaviest features that account for a large percentage of the gradient
norm, and are explicitly modeled and represented. The result of the feature extraction process is
a data structure that can be used to decode the input structured data, i.e. to explicitly describe a
tree in terms of its more relevant fragments.

We present theoretical insights that justify the adopted strategy and detail the algorithms and
data structures used to explore the feature space and store the most relevant features. Experiments
on three different multi-class NLP tasks and data sets, namely question classification, relation
extraction and semantic role labeling, confirm the theoretical findings and show that the decoding
process can produce very fast and accurate linear classifiers, along with the explicit representation
of the most relevant structured features identified for each class.

Keywords: Machine learning, Supervised learning, Kernel methods, Tree kernel functions,
Model reverse engineering, Feature selection
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Chapter 1
Introduction
1.1 The Context
The last decades have seen a massive shift of attention from the so-called
knowledge based approaches to Natural Language Processing (NLP) in
favour of corpus based or statistical approaches to the analysis of language.
In the former, linguists and domain experts would hard-code the rules and
knowledge necessary to complete a task, wheras in the latter a system
learns how to perform a task by means of rules inferred from text corpora in
which the target phoenomena are instantiated. The research in Statistical
NLP is indeed devoted to the development and exploitation of Machine
Learning (ML) models and techniques for NLP applications.

Among discriminative machine learning algorithms, Support Vector Ma-
chines (SVMs) have seen a very widespread application across diverse
learning tasks and domains, and they are at the heart of many state-of-
the-art models and systems. They are indeed very appealing for four main
reasons: 1) solid theoretical foundations, that allow us to estimate a lower
bound on the error based on the empirical error, measured on the training
set, and the corpus size; 2) robustness to irrelevant features; 3) an optimiza-
tion problem that can be solved efficiently; and 4) outperforming accuracy
and generalization capabilities, thanks to the large margin learning bias.
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CHAPTER 1. INTRODUCTION

In combination with SVMs, Kernel functions have been proven very useful
to implicitly represent data in high dimensional spaces for NLP systems, e.g.
[Kudo and Matsumoto, 2003, Cumby and Roth, 2003, Culotta and Sorensen,
2004, Toutanova et al., 2004, Shen et al., 2003, Kudo et al., 2005].

An especially interesting class of kernel functions for statistical NLP are
the so-called Tree Kernels (TK). A TK is a convolution kernel [Haussler,
1999] defined over pairs of trees. Convolution kernels are functions that
measure the similarity between structured object pairs in terms of the num-
ber of substructures that they share. Each substructure is a feature in the
convolution kernel space, and can be univocally associated with a compo-
nent in a very-high dimensional space. The number and type of features is
specific to each kernel function.

By using a TK, for example, it is possible to directly encode rich, struc-
tured syntactic data into a learning problem without the need for manual
feature design, as the kernel function will automatically evaluate the simi-
larity between two parses as a measure of their overlap.

For all these reasons, the combination of a robust learning algorithm,
such as Support Vector Machines, with the flexibility and ease of use of
a tree kernel function is an effective and interesting way to explore new
tasks and domains, where the knowledge about the relevant features can
be inadequate or insufficient, e.g. [Diab et al., 2008], or in those contexts
where a massive amount of syntactic information is needed, e.g. [Collins
and Duffy, 2002] and [Moschitti et al., 2008].

1.2 The Problem
Generality and implicitness, the key advantages of high dimensional ker-
nels, are also the cause of their main drawbacks.

Generality comes at a computational cost, which does not make high
2
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dimensional kernels very practical to deal with extremely large data sets
(due to excessively long training time), or to cope with problems where
classification speed is a must, e.g. when fast response times are required
or large sets of unlabeled documents have to be classified. Concerning tree
kernels even the most efficient algorithms e.g. [Moschitti, 2006b, Zhang
et al., 2006], suffer from the burden imposed by the dual formulation of the
problem, that makes them much less performant than conventional linear
classifiers working in the primal space.

Concerning implicitness, high dimensional kernel spaces allow us to
model very complex problems more easily and with smaller injections of
domain knowledge, but on the other hand we cannot directly observe the
most relevant features, which could provide useful insights towards a deeper
understanding of the studied problems. In this respect, it is undeniable that
corpus based approaches and especially kernel methods are not as informa-
tive as knowledge based methods when trying to explain why some model
performs better than others. Exploring the feature space of tree kernel func-
tions, that can cope with large amounts of rich syntactic data, would indeed
be a very promising way to discover new, relevant structured features.

Complexity and implicitness make the adoption of tree kernels less at-
tractive for a number of possible users, like those who would be interested
in performant solutions for real-world tasks and applications, such as in-
dustries and IT companies, or those that would prefer approaches that can
advance our understanding of linguistic processes, such as linguists, cog-
nitivists or anyone interested in improving available models by means of
error analysis and feature inspection.

Complexity-wise, feature selection techniques can offer a solution in
many important cases. Still, even though very effective models exist for
kernel families defined over RN , such as polynomial or gaussian kernels
(e.g. [Cao et al., 2007], [Aksu et al., 2008] and [Guyon et al., 2002]), the
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approaches that focus on, or can cope with, the rich space generated by a
convolution kernel are few and isolated [Kudo and Matsumoto, 2003, Suzuki
and Isozaki, 2005]. As for the implicitness of the result, to our knowledge
there are no previous works that directly try to address this problem for
high dimensional kernels.

1.3 Proposed solution
This thesis describes a methodology to employ feature selection in a very
high dimensional kernel space as a possible solution to both problems. In
particular, it will focus on the kernel space generated by TK functions in
the context of a Support Vector Machine (SVM) learning framework.

The SVM optimizer is an effective device to select the most relevant
examples (the support vectors) and to obtain a feature selection side-effect.
Indeed, the weights expressed by the gradient of the SVM’s separating
hyperplane implicitly establish a ranking between features in the kernel
space. This property has been exploited in feature selection models based
on approximations or transformations of the gradient, e.g. [Rakotomamonjy,
2003], [Weston et al., 2003], [Guyon et al., 2002] or [Kudo and Matsumoto,
2003].

Tree kernels generate a huge feature space, in which each distinct tree
sub-structure is mapped onto a different dimension. In this situation it is
impossible to enumerate and rank all the features in the space. The only
possibility is to start generating features in order of relevance, starting from
the most relevant, and define a criterion to terminate the exploration.

We mine the TK feature space encoded by an SVM model and discard
all the features that do not contribute relevantly to gradient norm of the
separating hyperplane. As a result, we are able to select just a very small
number of features (i.e. a few hundreds or thousands instead of billions) and

4
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still retain a large fraction of the gradient norm. As a consequence, we also
preserve a large fraction of the margin of the original model, and therefore
its accuracy. The relevant fragments are explicitly represented and stored
in a convenient data structure that we can then use to decode the data
of the original problem. We call decoding the process by which the input
trees are projected onto an explicit, lower-dimensional space where each
component accounts for the presence of a relevant feature. The decoded
data can then be used to carry out fast learning and classification in the
projected space.

The data structure that we use to store the relevant fragment can actually
be considered as a graphical representation of a set of explicit algorithms
to extract structured features from the input data. In this respect, the ex-
pressivity of the rules that we can induce is only limited by the expressivity
of the target kernel space, and the kind of rules that can be produced is
a combination of the structured input data and the characteristics of the
kernel. This kind of representation allows us to actually unleash all the
potential for automatic feature discovery of tree kernels, generating and
weighing relevant features in the huge fragment space. We select the most
relevant structured features and encode them as linear attributes in a tra-
ditional attribute-value representation, thus combining the advantages of
both representations.

The suggested line of research poses modeling and computational chal-
lenges, collocating itself in the largely unexplored research field of feature
selection for convolution kernels and in an area of interest between:

• machine learning, since the feature selection technique moves from
statistical learning theory and offers interesting solutions that may be
employed in fields other than natural language processing, or for other
classes of structural kernels;

5
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• data mining, since the algorithms and the data structure that we em-
ploy are heavily influenced by previous work in this field, e.g. [Zaki,
2002, Pei et al., 2001];
• computational linguistics, since by proposing an approach that can

make (part of) the tree kernel space explicit we hope to offer the
community a valuable technique for discovering and engineering new
structured features for a wide class of problems.
A note on related publications.
Parts of this work have already been peer-reviwed by the scientific community.
In [Pighin and Moschitti, 2009a], we presented an earlier version of our feature selec-
tion framework based on the SIMLE MINER(·) algorithm (discussed in Sec. 4.5.2), and
applied it to a semantic role labeling benchmark. In that context, we also considered
the very demanding task of boundary classification for semantic role labeling, includ-
ing 1,000,000 training instances. We showed that the LOpt (Sec. 4.1.2) and Split (Sec.
4.1.3) architectures can result in very accurate and fast learning and classification
cycles.
In [Pighin and Moschitti, 2009b], we mostly focused on the explicit representation of
the tree kernel feature space, by tackling the question classification task with the LOpt
architecture (4.1.2) and the BOUNDED MINER(·) algorithm (Sec. 4.5.3). We demonstrated
that feature selection in the TK space is a very effective way to automatically engineer
relevant structured features.
The theoretical framework, outlined in Section 4.3, and the latest version of the mining
algorithm, GREEDY MINER(·) (Sec. 4.5.4), are currently under review.

1.4 Innovative Aspects
The thesis presents the following main points of novelty:

A theoretical framework for feature selection in very high dimensional feature spaces.
We link the gradient norm to the margin of a classifier in the kernel space,
showing that small changes in the gradient norm have a limited effect on the

6
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margin and therefore on the error rate of the classifier (Lemma 4.3.1). We
show how the peculiarities of the TK space make it possible to discard an
exponentially large number of features while preserving most of the gradient
norm (Lemma 4.3.4). The combination of these two findings establishes the
basis of our feature selection technique. To our best knowledge, this is
the first attempt to feature selection in TK spaces that clearly establishes
a link between the empirical model and the theory, thus providing a solid
starting point for the exploration of the feature space of other structural
kernel families.

Insights about the inner working of TK functions. Due to TK functions implicit
formulation, the nature of the feature space they generate and the behaviour
of individual features in these spaces is by and large obscure. We clearly
break down the process by which TK functions generate their rich feature
space, and provide insights about the kind of information that different
kernel functions can represent (Sec. 4.4).

A greedy strategy to mine the TK feature space. We describe an algorithm for the
exploration of the TK space (Alg. 4.4) that can efficiently select the most
relevant features in the high dimensional tree kernel space. Supported
by our theoretical claims, the algorithm can implement a very aggressive
selection strategy. The gradient norm in the TK space is employed to guide
the selection process and to estimate the relevance of individual fragments.
The space is explored in a small-to-large fashion, as according to the kernel
definition smaller fragments have more chances of being highly relevant
(Sec. 4.5).

Efficient data structure and algorithms for fragment indexing. We introduce a data
structure that can conveniently store several hundreds of thousands of frag-
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ments, and design algorithms for fragment indexing and matching that have
linear complexity with respect to the number of nodes of the input trees
(Sec. 4.6).

An explicit representation of the fragment space. Our data structures store ex-
plicit representations of the most relevant fragments. This allows us to ex-
ploit the feature-discovery capabilities of tree kernel functions in very fast
linear classifiers, by projecting the input data onto a lower dimensional
space where only the most relevant fragments are accounted for. The frag-
ments that we isolate can be a valuable tool in the hands of linguists and
domain experts to gain insights on the problems at study.

Three architectures for exploiting feature selection in TK spaces. We present three
different architectures that stress different aspects of the feature selection
methodology (Sec. 4.1): the link with the theoretical framework (MLin,
Sec. 4.1.1), classification accuracy (LOpt, Sec. 4.1.2) and training time effi-
ciency (Split, Sec.4.1.3).

A general framework for feature selection in high dimensional spaces. Even though
we focus on a specific class of kernel functions, the framework that we
introduce is general enough to be easily extended to include other families
of kernel functions.

1.5 Structure of the Thesis
The rest of the document is structured as follows.

Chapter 2 introduces notations and concepts that will be used throughout
the discussion, namely support vector machines, kernel functions, tree ker-
nel function and feature selection techniques. Chapter 3 presents the most

8
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relevant results in the previous work concerning the use of tree kernels for
NLP and feature selection techniques for kernel learning. Chapter 4 details
the solution that we advocate, in terms of theoretical insights, algorithms
and data structures. Chapter 5 presents the setup and the results of an
extensive empirical evaluation on three very different benchmarks: ques-
tion classification, relation extraction and semantic role labeling. Finally,
Chapter 6 draws the conclusions and hints possible directions for future
work.

9
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Chapter 2
Preliminary Concepts
In this chapter, we introduce terminology and concepts that will be used
throughout the rest of the discussion. The chapter is structured as follows:
Section 2.1 explains the problem of classification and introduces linear clas-
sifiers; Section 2.1.1 describes maximum margin classifiers and support vec-
tor machines; Section 2.1.3 shows how the kernel trick can allow a linear
classifier to cope with non linearly separable problems; Section 2.2 explains
tree kernel functions in more detail, and presents a selection of relevant TK
families; finally, Section 2.3 outlines the basic concepts behind feature se-
lection.

2.1 Linear Classifiers
The problem of classification consists of learning how to partition elements
of some set O into a finite number of classes C . As an example, we may
want to assign the most appropriate topical label to some news (e.g. politics,
economics, sports or technology), or, given a collection of X-rays lung scans,
we may be interested in recognizing the cases showing evidence of tumoral
forms. If the problem only involves two classes, i.e. |C| = 2, the classifier is
called a binary classifier. If |C| > 2, then it is referred to as a multi-class
classifier.

11
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Classification is very conveniently handled as a supervised learning
problem, where a learning algorithm learns an approximation g of the func-
tion f : O → C that assigns the proper class to any object o ∈ O, based on
the observations provided by a training set T ⊂ O × C , in which training
points oi ∈ O are paired with their correct label f(oi) ∈ C . Learning is
a generalization process, since the learner must be capable of abstracting
from individual traits of the training data in order to be able to cope with
examples never seen before, i.e. the test data E ⊂ O. Here, an important
assumption is that the examples that make up the training and test data
are independent and identically distributed (iid), meaning that they are
sampled from a fixed, yet possibly unkown, distribution independently from
each other.

For complex objects, a mapping function φ : O → RN can provide a
so-called feature based representation of the objects oi ∈ O as vectors
xi ∈ RN , where the scalar product can be used as a measure of pairwise
similarity. In this case, learning a classifier requires to estimate a function
g : RN → R that can separate the examples belonging to different classes.
The mapping function φ(·) summarizes the process of feature design, a rel-
evant aspect of classifier design that requires efforts, expertise and domain
knowledge in order to find a convenient representation for the (potentially
complex and structured) objects of O in RN .

Given a set of training points T , it is generally possible to find more
than one function that can separate them. Figure 2.1 gives a graphical
example by showing a few of the infinite functions that could separate the
two classes of points in a simple 2-dimensional classification problem. Since
when learning a classifier we do not have any information about the test
data, we cannot decide which of these functions is preferable. All we can
do is minimizing the so called empirical risk, i.e. the error on the training
set:

12
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Figure 2.1: Separating boundaries for a binary classification problem.

Remp(g) = 1
|T |

|T |∑
i=1

1
2 |f(xi)− g(xi)| ,

but it does not give us information about the risk, i.e. the error on the test
data, and therefore it is not a useful tool for comparing different choices of
g.

Intuitively, we can imagine that very complex functions would be better
at outlining the boundaries of class distributions. On the other hand, such
carefully tailored boundaries would increase the risk of over-fitting the
training data, i.e. of learning a classifier which performs very well on the
training data but not as well on a training sample having a distribution
even slightly different.

Statistical learning theory [Vapnik, 1998] (SLT) uses the the Vapnik-
Chervonenkis (VC) dimension of a class of functions F as a measure of
the trade-off between its capacity to separate a set of data points and
its generalization capability. The VC dimension of F is defined as the
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maximum number of points that can be shattered by F . F is said to shatter
a set of points P iff, ∀P1, P2 ⊂ P |P1⊕P2 = P, 1 ∃f ∈ F so that P1 and P2
are separated by f , i.e. if there is at least one function in the family that
can be used to define a boundary between any partition of the points.

A collection of related results shows that it is very important to consider
classes of functions that have just enough capacity to separate the training
points [Schölkopf and Smola, 2001]. Interestingly enough, knowing the VC
dimension of a decision function also allows us to estimate an upper bound
on the risk of the classifier, i.e. the error on any possible selection of test
points, as explained by the following theorem [Vapnik, 1998]:
Theorem 2.1.1. Let h be the VC dimension of a class of functions F. Then,
with probability 1− δ, the risk R(f) of a classifier f ∈ F on a test set of `
examples is bounded by:

R(g) = Remp(g) +
√
h(log 2h̀ + 1)− logδ4` . (2.1)

The structural risk minimization (SRM) principle is a straightforward
consequence of these results: when designing a classifier, the decision
function should be selected so as to
• minimize the empirical risk, and
• belong to a family with the lowest possible VC dimension.

If we can satisfy these two properties, we minimize Equation 2.1 and identify
the function(s) with the lowest bound on the test error.

Linear functions, which have a low VC dimension, are hence interesting
candidates for the definition of the boundary if the training data are linearly
separable.

1X = {P1, P2} is a partition of P.

14
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Algorithm 2.1 LEARN PERCEPTRON(T ,D, alpha)
mainb ← 0,w ← 0N
for d ∈ {1, . . . , D}

do



for each 〈yi, xi〉 ∈ T
do



∆ = α(yi − sgn(w · xi + b))
w ← w + ∆xib ← b+ ∆

The decision function of a linear classifier is a hyperplane in RN , i.e.:

g(x) = sgn(w · x + b) , (2.2)
where x is a point to classify and w and b are called the gradient and the
bias of the hyperplane, respectively. A set of points x1, . . . , x` are linearly
separable if ∃γ ∈ R+,w ∈ RN, b ∈ R so that ∀i = 1, . . . , ` , it holds that
yi (w · xi + b) ≥ γ. Here, yi ∈ R is the label associated to the point xi, that
marks it as belonging (or not) to the target class. The minimum distance
between two points in different classes along the direction of w , γ, is called
the margin of the classifier.

Different learners use different algorithms to estimate the weight vector
w and the bias b, generally resulting in different boundaries for the same
data and, as a consequence, in different margins. A very simple algorithm for
learning a linear classifier is the perceptron [Rosenblatt, 1958]. The learning
process consists of one or more iterations over the training points. Whenever
the perceptron misclassifies an example, the components of the gradient
are updated accordingly. The learning algorithm is shown in Algorithm 2.1,
where:
T = ⋃ì=1〈yi, xi〉 is the training set, yi ∈ {0, 1},
0 < α ≤ 1 is the learning rate of the perceptron, and
D is the number of intended iterations.

15
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2.1.1 Maximum Margin and Support Vector Machines
Among the class of linear functions, an especially interesting family is that
of maximum margin hyperplanes, i.e. the hyperplanes that are maximally
distant from the examples of the two training classes. As we have seen
before, this property is expressed by the margin γ of the hyperplane. Indeed,
statistical learning theory shows that maximum margin hyperplanes have a
lower VC dimension than other hyperplanes. As a consequence, they show
better generalization performance than any other linear functions.

As shown by the following theorem, the margin of the hyperplane is in
fact inversely proportional to the bound on the risk [Bartlett and Shawe-
Taylor, 1998]:
Theorem 2.1.2. Let

C = {x → w · x : ‖w‖ ≤ 1, ‖x‖ ≤ R}
be the class of real-valued functions defined in a ball of radius R in RN .
Then there is a constant k such that for any classifier h = sgn(c) ∈ sgn(C),
for any sample of ` randomly selected examples, if all the ` examples are
separated with margin γ, i.e. |w · x| ≥ γ, then with probability 1 − δ the
error over the sample is bounded by

k
`
(R2
γ2 log2` + log1

δ
)
.

Furthermore, if b examples are separated with margin less than γ, then
with probability 1− δ the error on the ` examples is less than

b
` +

√
k
`
(R2
γ2 log2` + log1

δ
)
.

A Support Vector Machine [Boser et al., 1992] (SVM) is a learning ma-
16
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chine that implements the structural risk minimization principle by forc-
ing margin maximization when learning a linear solution to a classification
task 2.

Given a set of training examples T = {〈x1, y1〉, . . . , 〈x` , y`〉}, with yi ∈
{+1, −1}, the optimization problem solved by the SVM optimizer is

Maximize: 1
2‖w‖2

Subject to: yi(w · xi − b) ≥ 1 ∀i = 1, . . . , ` , (2.3)

where the space is implicitly normalized so that the closest points are at
distance 1 from the hyperplane. This is generally referred to as the primal
optimization problem.

By introducting Lagrange multipliers αi ≥ 0, the previous conditions can
be rewritten as the Lagrangian:

L(w, b,α) = 1
2‖w‖2 −

∑̀
i=1

αi (yi (w · xi − b)− 1) (2.4)

where w and b are the primal variables, while α is the dual variable.
Solving the problem requires to find a saddle point of the Lagrangian,
by minimizing L for the primal variables and maximizing it for the dual
variables. By deriving for w and b we obtain that

2SVMs can also be used for regression, but this aspect falls outside the scope of this thesis.
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w∗ = ∑̀
i=1

αiyixi (2.5)
∑̀
i=1

αiyi = 0 . (2.6)

If we substitute 2.5 and 2.6 in 2.4 we can derive the dual form of the
optimization problem, where the only variable is the dual variable α:

Maximize: W (α) = ∑̀
i=1

αi − 1
2
∑
i,j
αiαjyiyjxi · x j (2.7)

Subject to: ∑̀
i=1

αiyi = 0 , αi ≥ 0 .

Practically, only a few αi will be greater than zero. The corresponding
xi are called the support vectors of the decision function, and lie exactly on
the margin, i.e. they satisfy yi (w · xi + b) = 1.

Figure 2.2 shows a simple two dimensional classification problem and the
maximum margin hyperplane that separates the two classes. The gradient w
is normal to the separating hyperplane, and the margin measures γ = 2‖w‖ .
The bias b is the distance, along the direction of w, of the hyperplane from
the origin.

2.1.2 Soft-margin SVMs
The constraints of the SVM optimization problem require that all the points
are correctly separated by the hyperplane. This very strong condition,
called hard margin, would make the SVM not applicable to a wide range of
problems where some examples are mislabeled, i.e. they lie on the wrong

18
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wx + b
= 1

wx + b
= 0

wx + b
= −

1

γ =
2‖w‖

b

w

Figure 2.2: Maximum margin classification.

side of the hypothetical boundary.
Soft margin SVMs [Cortes and Vapnik, 1995] extend the range of appli-

cability of SVMs by learning a hyperplane that allows for some examples
within the margin, while still trying to maximize inter-class distance. This
result is obtained by including in the optimization problem slack variables
ξi that allow a training point xi to fall also within the margin, i.e.:

Maximize: 1
2‖w‖2 + C ∑̀

i=1
ξi

Subject to: yi(w · xi − b) ≥ 1− ξi
0 ≤ αi ≤ C ,

where the costant C > 0 accounts for the trade-off between classification
errors, i.e. examples within the margin, and margin maximization.

It should also be noted that the optimization problems of the hard and
19
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soft margin SVM fall under the category of quadratic problems (QP), for
which very efficient solvers exist [Nocedal and Wright, 2000].

2.1.3 Kernel Machines
By combining together i) the optimization of QP, ii) the low VC dimension of
the large margin classifier, and iii) the ability to cope with mislabeled data,
thanks to the soft margin formulation, an SVM is an efficient, accurate and
robust solution which is very attractive for learning linear classification
problems. By applying the so-called kernel trick [Aizerman et al., 1964],
as explained below, these interesting features can be exploited also to
tackle classification problems that require a more complex boundary to be
separated.

If we substitute (2.5) in (2.2), we obtain the decision function of the SVM
for a test point x, i.e.:

g(x) = sgn (w · x + b)
= sgn

((∑̀
i=1

αiyixi
)
x + b

)

= sgn
((∑̀

i=1
αiyixi · x

)
+ b
)
, (2.8)

and we can observe that the result only depends on the dot product between
pairs of points rather than on the individual points. Similarly, also the
optimization problem in 2.7 depends on the dot product.

Since both training and classification do not depend on individual test
points, the inner product in all the equations can be replaced with a function
k : Rn → R, so that k(xi, x j) = xi · x j . More generally, for any set of input
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objects O we can define a function k : O×O → H so that:
k(oi, oj) = φ(oi) · φ(oj) = xi · x j , xi, x j ∈ HN , (2.9)

i.e. a function that evaluates the inner product in some high-dimensional
space HN by representing the input objects oi, oj ∈ O via a mapping
function φ : O → HN , where H = R or H = C.

As an example, let us consider the polynomial kernel of degree d, which
is defined as

K (a,b) = (a · b+ 1)d . (2.10)
If d = 2 and a,b ∈ R2, then we can write (2.10) explicitly as:
K (a,b) =(a1b1 + a2b2 + 1)2

=a21b21 + a22b22 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2
=[a21, a22, 1,

√2a1a2,√2a1,√2a2] · [b21, b22, 1,
√2b1b2,√2b1,√2b2]

=φ(a) · φ(b) , (2.11)
and observe that the φ(·) maps a vector onto a space where also all the
conjunctions of features having length up to d are represented, i.e. a1a2
and b1b2.

Using the kernel trick, i.e. replacing dot products with a kernel function,
we can rewrite the decision function of the SVM as:

c(o) = sgn
(∑̀

i=1
αiyik(oi, o) + b

)
. (2.12)

If the mapping is appropriate, we can expect our objects to be mapped onto
a space with enough dimensions to make the problem linearly separable. As
an example, consider the set of points in Figure 2.3, which are not linearly
separable in the original space (left). By applying the mapping φ induced
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x1

x2

x1

φ : x1 → [x1, x2 = (x1−a)2
b ]

Figure 2.3: Kernel functions and linear separability - The points are not linearly sep-
arable in the original 1-dimensional space (left), but they are separable in the higher
dimensional space induced by the mapping φ(·) (right).

by a kernel function, we can represent them in a higher dimensional space
where a linear separation is possible.

The condition to apply the kernel trick is that k must be equivalent
to a dot product in some high dimensional space. According to Mercer’s
theorem [Mercer, 1909], for real valued functions the equivalence holds if k
is continuous, symmetric and positive semidefinite, but other theorems can
be used to demonstrate that a function is a valid kernel also in different
cases [Schölkopf and Smola, 2001].

As a side effect of these conditions, if c > 0 and k1, k2 : O × O → H
are valid kernel functions, then in all the following cases k is a valid kernel
too:

k(oi, oj) = ck1(oi, oj)
k(oi, oj) = c + k1(oi, oj)
k(oi, oj) = k1(oi, oj) + k2(oi, oj)
k(oi, oj) = k1(oi, oj) · k2(oi, oj)

Interestingly, the definition of a kernel function k does not require the
22
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corresponding mapping φk(·) to be explicit, as it suffices to demonstrate
that such mapping exists by satisfying Mercer’s theorem or equivalent con-
ditions. This allows us to evaluate pairwise similarity in very high dimen-
sional spaces using very compact and implicit definitions.

It should be noted that the kernel trick is not a peculiarity of support
vector learning, as it can be applied to any learning algorithm for which
both the training and the decision function can be expressed in terms of
dot products. Learning algorithms that can be reformulated to exploit the
kernel trick are generally referred to as kernel machines. For example, also
the perceptron algorithm can be rewritten in terms of dot products, which
can then be replaced by a kernel function [Freund and Schapire, 1999].

2.2 Tree Kernel Functions
For the scope of this thesis, we focus on a specific class of kernel functions
that can directly estimate pairwise similarity between trees, the so-called
Tree Kernel (TK) functions. Before describing TKs in more detail, it is con-
venient to introduce notation and terminology that will be used throughout
the rest of the discussion.

Formally, a tree is a simple, connected and undirected graph. As such,
a tree t is defined by the a pair 〈Nt, Et〉, where Nt is the set of vertices, or
nodes, of t, and Et the set of edges. A tree is rooted if one node has been
designated as the root, in which case the edges have a natural orientation,
towards or away from the root. In a rooted tree, the parent of a node is the
node connected to it on the path to the root; every node except the root
has a unique parent. A child of a node v is a node of which v is parent. A
leaf (or terminal node) is a node without children. Conversely, a node with
at least a child is called internal. A node whose all children are leaves is
called preterminal. An ordered tree is a rooted tree for which an ordering
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t1

A

B A

B A

C

t2

D

B A

C

φ(t1) = [2, 1, 1, 1, 1, 0, 0]

φ(t2) = [0, 0, 0, 0, 1, 1, 1]

K(t1, t2) = 〈φ(t1), φ(t2)〉 = 1

Figure 2.4: Fragment space - The fragment space generated by two trees, and the resulting
kernel product as evaluated by a tree kernel function.

is specified for the children of each node. In the rest of the discussion, the
word tree will always be used to refer to a rooted and ordered tree.

A tree kernel is a convolution kernel [Haussler, 1999] defined over tree
pairs, i.e. a kernel that evaluates the similarity between two trees by
estimating the degree of their overlap. The overlap is estimated by counting
the number of substructures, or fragments shared between the two trees. It
does so by establishing an implicit mapping φ(·) that associates different
fragments with different dimensions in a high-dimensional space.

Basically, each tree t is mapped onto a vector x = [x(1), . . . , x(N)], whose
attributes x(i) account for the occurrences within t of the fragment fi, i.e.
the fragment mapped onto the ith dimension of the N-dimensional kernel
space, and the kernel product is equivalent to the scalar product between
pairs of such vectors, as exemplified in Figure 2.4. Here, the tree labeled
t1, on the left, contains the five fragments labeled 1-5, while the tree on
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the right, t2, contains the fragments labeled 5-7. Since the two trees only
share the fragment labeled 5, the kernel product evaluates to 1.

Actually, each fragment can also be weighted according to one or more
decay factors that penalize larger substructures. Decay factors are intro-
duced to compensate for the intrinsic dependence between a large fragment
and the smaller fragments it contains. For example, if we consider the frag-
ment labeled as 4 in Figure 2.4 we can observe that it is a super-structure
of fragments 1, 2, 3 and 5, which are already accounted for. In turn, fragment
3 can be expressed as a combination of 1 and 5.

Different kernel functions (e.g. [Collins and Duffy, 2002, Kashima and
Koyanagi, 2002, Viswanathan and Smola, 2003, Moschitti, 2006b]) result in
different constraints to the construction of fragments, that affect the topology
and number of substructures that can be observed in a tree. More precisely,
each kernel function defines implicitly: i) constraints about the topology
of admissible fragments; ii) rules to generate the fragments encoded in a
tree; iii) weights to be assigned to each fragment depending on how it is
generated. All these aspects will be explained in more detail in the next
sections and chapters.

The rest of this section details two kernel families that are especially
interesting for computational linguistics, as they can effectively model prob-
lems involving constituency and dependency parsed data. In Section 3.1,
other tree kernels and their applications to natural language processing
will be discussed.

2.2.1 The Syntactic Tree Kernel
The Syntactic Tree Kernel (STK) [Collins and Duffy, 2001, Collins and
Duffy, 2002] relies on a fragment definition that does not allow to break
production rules, that is: if any child of a node is included in a fragment,
then also all the other children have to. As such, it is especially indicated
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for tasks involving constituency parsed texts as it allows to directly employ
rich syntactic data in the learning algorithm.

Let F = {f1, f2, . . . , f|F|} be an explicit representation of all the fragments
encoded by the training data, i.e. its fragment space. Let χi(n) be an
indicator function3, equal to 1 if the target fragment fi is rooted at node n,
and equal to 0 otherwise. The STK function over t1 and t2 is defined as

STK (t1, t2) = ∑
n1∈N1

∑
n2∈N2

∆(n1, n2), (2.13)

where N1 and N2 are the sets of nodes in t1 and t2, respectively and

∆(n1, n2) =
|F|∑
i=1

χi(n1)χi(n2). (2.14)
The ∆ function counts the number of subtrees rooted in n1 and n2 and

can be evaluated as:

1. if the productions at n1 and n2 are different, then ∆(n1, n2) = 0;

2. if the productions at n1 and n2 are the same, and n1 and n2 have only
leaf children (they are pre-terminal symbols), then ∆(n1, n2) = λ;

3. if the productions at n1 and n2 are the same, and n1 and n2 are not
pre-terminals then

∆(n1, n2) = λ
l(cn1 )∏
j=1

(1 + ∆(cjn1, cjn2)), (2.15)

3We will consider it as a weighting function.
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where l(cn1) is the number of children of n1, cjn is the j-th child of node n,
and λ is a decay factor penalizing larger structures.

2.2.2 The Partial Tree Kernel
The Partial Tree Kernel (PTK) [Moschitti, 2006a] defines a more general
class of fragments, allowing any connected substructure of a tree to be
considered as a valid fragment. Unlike the STK, it does not require that
two nodes have the same productions in order to contribute to the kernel
product. This feature makes it more appropriate to deal, for example, with
dependency parsed text.

The evaluation of the common fragments rooted in two nodes n1 and n2
involves the evaluation of all the possible subsequences of the children of
both nodes, and considers all the identical subsequences. As an example,
let n1 = (S(DT )(JJ)(N)) and n2 = (S(DT )(N)). Even though the productions
of the two nodes are different, we can observe that there is one children
sequence of length 2 that is shared across n1 and n2, i.e. [DT,NN]. As a
consequence, the two nodes also share two children sequences of length 1,
i.e. [DT ] and [NN]. This process is no different than applying a sequence
kernel [Lodhi et al., 2002] to the nodes children.

More formally, let Zi be an index sequence associated with the ordered
child sequence ci of the node ni. Let Zi[k ] be the k-th element of Z , and
Zi[−1] a notation for its last element. For example, if n = (A(B)(C )(D)), two
of its possible index sequences would be Z = [0, 2] (selecting nodes B and
D) or Z = [2] (selecting node D).

Let l(Zi) be the length of Zi. Zimilarly to the STK, the PTK can be
evaluated as:

PTK (t1, t2) = ∑
n1∈N1

∑
n2∈N2

∆(n1, n2) , (2.16)

27



CHAPTER 2. PRELIMINARY CONCEPTS

but in this case the ∆ function is defined as:

∆(n1, n2) = µ

λ2 + ∑

Z1,Z2|l(Z1)=l(Z2)
λd(Z1)+d(Z2)

l(Z1)∏
i=1

∆(cZ1[i]1 , cZ2[i]2 )

 (2.17)

where

d(Zi) =
{ 1 , if l(Zi) = 0
Zi[−1]− Zi[1] + 1 , else. (2.18)

accounts for the length of the sequence Zi in terms of the difference between
the last and the first element in the sequence, plus 1. Thus, for example:

d([2, 3, 4, 5]) = d([2, 5]) = d([2, 4, 5]) = 5− 2 + 1 = 4 ,
and

d([2]) = 2− 2 + 1 = 1 .

The PTK makes use of two decay factors: µ, which accounts for the
depth of the fragment, and λ, which accounts for the number of nodes in the
fragment.

It should be noted that the set of fragments generated by the PTK is
a superset of those generated by the STK. In the general case, the same
fragments will be assigned different weights by the two kernels. This is
a consequence of the different decay factors, and of the utterly different
dimensionality of the induced spaces.
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2.2.3 Tree Kernel Normalization
The output of tree kernel functions is generally normalized in the interval
[0, 1]. Since the norm of a tree t can be evaluated as:

‖t‖TK = √φ(t) · φ(t) = √TK(t, t) , (2.19)
where φ(·) is the explicit mapping of a generic kernel function TK, to nor-
malize TK(ti, tj) it is sufficient to replace it with:

T̃K(ti, tj) = TK
( ti
‖ti‖,

tj
‖tj‖

)

= TK(ti, tj)
‖ti‖ · ‖tj‖

= φ(ti)√TK(ti, ti) ·
φ(tj)√TK(tj , tj)

= φ(ti)√φ(ti) · φ(ti) ·
φ(tj)√φ(tj) · φ(tj) . (2.20)

2.3 Feature Selection Techniques
The problem of variable, or feature, selection arises in almost any research
field, from gene microarray data analysis to image recognition and text
categorization, where common machine learning problems are characterized
by the necessity to cope with very large data sets, typically described by
high-dimensional vectors in some dot product space.

Feature selection is the name given to a set of techniques commonly
used to improve the quality of the models learned with machine learning
methods. Depending on the context, it can aim to alleviate the effect of
the curse of dimensionality [Bellman, 1961], enhance the generalization
capabilities of the learning algorithm, improve the efficiency of the learning
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process or make the models more easily interpretable. A very interesting
and comprehensive survey on feature selection is carried out in [Guyon and
Elisseeff, 2003].

As explained in Section 2.1.3, when using kernel functions we generally
do not know explicitly all (if any) of the attributes that will represent the
objects in the kernel space. Instead, a mapping function φ(·) projects an
example in some implicit feature space, generally very high if not infinite-
dimensional. Given the very high dimensionality of kernel spaces, feature
selection is a critical task for the realization of compact, accurate and ef-
ficient predictors. Feature selection strategies are typically divided into
three main categories:
filters, where features are selected independently of the learning algorithm.

Features are filtered based on some measure suggested by the data,
such as the correlation between features and labels (e.g. mutual in-
formation);

wrappers, in which the learning algorithm is used as a black box to search
the space of feature subsets. The learning machine is trained on dif-
ferent subsets of features. Then, the accuracy of the resulting model
is evaluated and used to focus the search;

embedded methods, that incorporate the search of the feature subsets into
the optimization problem of the learning algorithm. A common strategy
is to minimize the cost function of the learner while enforcing some
constraints on the dimensionality of the input space.

Filter methods are very generic, yet the kind of induction used by the
filter may be utterly different from the one employed by the learning machine
and introduce a new source of bias in the learning process.

In this respect, the main advantage of wrapper methods is that the same
inductive method is responsible for both the evaluation of the relevance
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of features and the learning, and no further bias is introduced. On the
other hand, wrappers are computationally very expensive, and for very large
feature spaces only rough searches (generally involving greedy algorithms)
can realistically be performed.

Embedded methods share the virtues of wrapper methods, with the fur-
ther advantage that the optimization problem can be refined in many subtle
ways. The main disadvantages of this approach are the complexity of the
implementation and the general impossibility to decouple the feature se-
lection model from the embedding learning machine.

In Section 3.2 we will discuss a selection of interesting feature selection
approaches in the context of support vector and high-dimensional kernel
learning.
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Chapter 3

Related Work

This chapter presents a selection of relevant work concerning the tree ker-
nels and feature selection approaches for support vector machines and ker-
nel methods.

In particular, in Section 3.1, we will focus our attention on several in-
teresting applications of TKs that show how they have been successfully
applied to a wide range of different tasks. These applications demonstrate
the flexibility of the tool and its importance as a solution for all those situ-
ations where the clues about the relevant features are not enough to define
accurate explicit models. These works motivate the interest towards effec-
tive feature selection strategies, and especially towards ways of making the
most relevant fragments observable.

Concerning feature selection, in Section 3.2 we present an overview of
feature selection techniques in the context of kernel methods and support
vector learning. Due to the breadth of the topic and the vast amount of
literature on this topic, we will only consider work that is in some way
related to the approach that we propose.
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3.1 Tree Kernels for Natural Language Processing
Seminal works for TK learning are [Collins and Duffy, 2001, Collins and
Duffy, 2002], where the authors define the STK (see Section 2.2.1) and apply
it to the task of parse reranking, in conjunction with the voted perceptron
algorithm of [Freund and Schapire, 1999]. They also define a variant of
the algorithm, the Tagging Kernel, employed for labeling tasks where a
sentence S can be described as a sequence of states S = [n1, n2, . . . , n|s|,
with each state ni being a pair 〈wi, hi〉. Here, wi is the i-th word in the
sentence and hi the associated tag. The tagging kernel, defined over pairs
of state sequences, is equivalent to the evaluation of the STK on trees
where each state ni is a node whose children are hi, wi and the next state
in the sequence ni+1, e.g.

n1

h1 w1 n2

h2 w2 .. . .

This is an interesting example of the flexibility of tree kernels, that due
to their generality can be used to abstract a wide range of more specific
problems and to prototype effective working solutions.

The PTK is introduced in [Moschitti, 2006a], where it is applied to the
task of question classification. The paper clearly shows how the PTK can
cope with dependency parsed data, whereas the constraints of the STK do
not allow it the necessary flexibility to deal with the task. The kernels
are also compared on a semantic role labeling benchmark defined over
syntactic parse trees, where the STK shows far superior performance. Since
it also generates all the STK fragments, the accuracy of the PTK is never
noticeably inferior when applied to constituency parsed data. The loss
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in accuracy of the PTK can mostly be ascribed to the extra fragments
generated by the PTK, possibly overfitting the training data, and to the
dimensionality of the fragment space.

In [Moschitti et al., 2007], the PTK is employed to build a tree-kernel
driven model for question answering. Sequences (with gaps) of words or
POS tags, which could be modeled using string kernels [Lodhi et al., 2002,
Cancedda et al., 2003], are here evaluated by a PTK on pairs of ad-hoc
engineered trees. A fake syntax is used as a container for the sequences
of words/POS tags, and to allow the computation of the tree kernel.

In [Zhang and Lee, 2003], the authors describe a variant of the STK
that also assigns a weight to terminal nodes, whereas the STK would not
consider them independently of their pre-terminal parents. This allows the
kernel to fall back to a bag of words (BOW) model in the cases where there
is no syntactic overlap between two trees, i.e. the only contribution comes
from the leaves. They also introduce a second decay factor that accounts
for the depth of the trees, similarly to the PTK. The resulting kernel is
applied to the task of coarse grained question classification.

In [Moschitti et al., 2008], the STK is used in conjunction with a polyno-
mial kernel on an assessed set of attribute-value features for semantic role
labeling. The classifiers that also employ tree kernels show an improvement
over the explicit features, thus suggesting that the tree kernels are discov-
ering new attributes which are relevant for the task and are not encoded
by the linear features. Still, these features (and the feature classes they
stand for) are unknown as they are only represented implicitly in the ker-
nel space. The TK is also exploited to carry out fast feature-prototyping,
by engineering artificial trees that encode the relation between a predi-
cate and a set of candidate arguments in a reranking model for semantic
annotations. In this case, the structures are designed so as to exploit the
features of the STK.
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In [Diab et al., 2008], TKs are used to tackle the problem of semantic
role labeling for Arabic. Unlike the English language, where a set of rel-
evant lexical and syntactic features for the task have been identified and
commonly exploited [Gildea and Jurafsky, 2002, Pradhan et al., 2005, Xue
and Palmer, 2004], this kind of linguistic knowledge is not available for
the Arabic language. The STK is therefore used to automatically discover
relevant features by only relying on the information encoded in parse trees.
The results show that TKs are valuable tools for tackling in an effective
way tasks where there is not enough knowledge to explicitly design a set
of relevant features, but there is high availability of rich syntactic data.

[Kazama and Torisawa, 2005] describe an interesting algorithm to speed
up TK evaluation. This algorithm looks for node pairs in which the rooted-
subtrees share many substructures (malicious nodes) and applies a trans-
formation to the trees rooted in such nodes to make the kernel computation
faster. The results show a several-hundred-fold speed increase with respect
to the basic implementation.

[Shen et al., 2003] define a lexicalized tree kernel based on the structured
features generated by a Lexicalized Tree Adjoining Grammar (LTAG) and
apply it to the task of parse reranking. The subtrees induced by the kernel
are built using the set of elementary trees as defined by the LTAG, and the
STK of [Collins and Duffy, 2002] is extended so as to increase the relevance
of lexical features.

In [Zelenko et al., 2003], two kernels over syntactic shallow parser struc-
tures are devised for the extraction of linguistic relations, e.g. person-
affiliation. To measure the similarity between two nodes, the contiguous
string kernel and the sparse string kernel are used. [Culotta and Sorensen,
2004] generalize the approach by defining a kernel over dependency parsed
sentences that provides a matching function for node pairs. Other examples
of tree kernels for relation extraction include [Zhang et al., 2006], [Reichartz
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et al., 2009] and [Nguyen et al., 2009].

3.2 Feature Selection for Support Vector Learning
As SVMs and kernel methods are very popular learning frameworks, they
have also been studied in great detail with respect to feature selection
issues, and many interesting approaches have been proposed. Most of the
literature concentrates on polynomial and Gaussian kernels, and this may
have two main justifications:
• these families of kernels have shown to be very general. They have a

very broad field of application, and have successfully been applied to
many domains, thus attracting the interest of different communities;
• other kernel families, such as convolution kernels, generate very high

dimensional spaces to which traditional feature selection approaches
may not be easily extended. Furthermore, as the resulting spaces
cannot be traced back to a set of linear features previously extracted,
convolution kernels have an inherent abstract quality that complicates
the interpretation of the outcome of feature selection.

In the context of support vector learning, since results in statistical learn-
ing theory clearly link the gradient of the separating hyperplane to the
margin on the risk [Vapnik, 1998, Schölkopf and Smola, 2001], most of the
approaches try to remove as many features as possible while limiting the
effect on the gradient.

A very popular approach to feature selection for linear problems and sup-
port vector machines is called Recursive Feature Elimination (RFE) [Guyon
et al., 2002]. Basically, it is an embedded method that, after each training
iteration, ranks features based on their weight magnitude, i.e. the asso-
ciated gradient component, and selects out the (set of) feature(s) with the
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smallest magnitude. The claim is that, by removing such features, the gra-
dient norm, and hence the classifier’s accuracy, is largely preserved. The
authors also propose an extension to the non linear case, but its application
requires that features in the primal space are explicitly represented, i.e. it
can only work with kernels defined over RN .

In [Aksu et al., 2008] the authors observe that the theoretical assumption
behind RFE is verified in the case of linear and polynomial cases, where
it is possible to demonstrate that the norm of the gradient is monotoni-
cally increasing with the dimensionality of the space, but it does not hold
in general. As an example, they claim to have empirical evidence (even
though no theoretical proof) that for a Gaussian kernel the gradient norm
can increase or decrease when removing features. As an alternative, they
propose a method called Margin-based Feature Elimination (MFE) that
directly enforces margin maximization after each feature selection step, in
an iterative approach similar to RFE.

A study on several alternative embedded approaches to SVM feature se-
lection is carried out in [Rakotomamonjy, 2003]. The author compares three
strategies based on different criteria: the gradient norm, the radius/margin
bound and the span estimate. He concludes that the approach based on the
gradient norm criterion performs consistenly well across different data sets,
and could be the most indicated for practical applications. It is interesting
to observe that his gradient based approach is equivalent to RFE in the
case of linear kernels.

In [Neumann et al., 2005], an embedded approach to select features using
linear and non linear (polynomial and Gaussian) SVMs is detailed. For the
former case, a combination of `0, `1 and `2-norm penalty terms is combined
to achieve good feature selection and classification. For the latter, the
authors introduce the appropriate indicator functions in the optimization
problem, so that the features can be selected in the (explicit) input space
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rather than in the (implicit) kernel space.
[Weston et al., 2003] exploit SVM as a feature selection device by consid-

ering the zero-norm of the gradient in the optimization problem of a linear
SVM. As a result, the gradient can be used to project the most relevant fea-
tures of the input vectors. The resulting features can then be used to train
a traditional SVM. In the paper, which mostly discusses a computational-
friendly approximation of the zero-norm optimization problem, the authors
observe that their method does not generalize to non-linear kernels for
which the mapping function cannot be explicitly represented.

All the work discussed so far addresses the problem of feature selection
in the linear space, before considering the mapping implied by the ker-
nel function. Conversely, the following approaches try to select the most
relevant features in the high dimensional kernel space.

[Cao et al., 2007] present a general approach to feature selection in the
kernel space based on the idea of building an orthogonal basis set in the
kernel space. They provide theoretical proof that, even for infinite dimen-
sional spaces, it is possible to identify a finite dimensional basis set that is
a good approximation of the real one, based on the assumptions that train-
ing and test examples are drawn from the same distribution. The process of
finding a basis set only depends on the input points and the kernel function,
and therefore the basis set can be used to carry out learning and classi-
fication using any kernel machine. Feature weighting is carried out via a
kernelized extension of the Relief [Kira and Rendell, 1992] method. The
approach, which never makes the kernel space explicit, is general enough
to be applied to any kernel function. In the paper, experiments are carried
out on radial basis and sigmoid kernels.

Concerning convolution kernels, the most simple way to carry out fea-
ture selection would simply require to consider structures which have a
limited size. This approach, which is also suggested in [Cancedda et al.,
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2003] and [Collins and Duffy, 2001] for sequence and tree kernels, respec-
tively, is motivated by two considerations: 1) large structures are very
unfrequent, and therefore generally not relevant for classification; 2) con-
volution kernels include decay factors that make the contribution of large
structures marginal. However, as also pointed out in [Suzuki and Isozaki,
2005], though, such methods inhibit the most interesting aspect of convo-
lution kernels: their potentiality to generate large structured features that
would not be represented otherwise. These large structures should at least
have a chance to contribute their relevance to the learning problem.

The idea of an explicit representation of a kernel feature space to build
a fast and accurate SVM is explored in [Kudo and Matsumoto, 2003]. The
work focuses on polynomial kernels and relies on a rewriting of the kernel
function that allows to shift most of the computational burden from the
classifier onto the learner. This leads to a linear representation of the kernel
space in which feature combinations are explicitly expanded, resulting in
a very fast classifier. An extension of the PrefixSpan algorithm [Pei et al.,
2001] is used to efficiently mine the features in the kernel space. The
authors also discuss an approximation of their method for polynomial kernels
of high degree, whose explicit representation cannot easily be dealt with.
They also hint that a similar approach may be possible for tree kernels,
by efficiently enumerating the effective fragments encoded in the support
vectors.

In [Suzuki and Isozaki, 2005], the authors present a feature selection
method for convolution kernels based on the statistical relevance of the
features encoded in the data. The proposed methodology applies to convo-
lution kernels and concentrates on efficiently mining the kernel space. The
kernel function is extended to embed substructure mining and techniques
for the evaluation of statistical significance. To assess the relevance of a
structure (i.e. a partial sequence or a tree fragment), the χ2 of its distri-
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bution within the two classes is evaluated. A threshold is set to filter out
all the structures with a low χ2. The mining strategy, based on [Pei et al.,
2001], considers structures of increasing size. An upperbound on the χ2
of larger structures is the key ingredient to contain the complexity of the
mining algorithm.

A very recent paper [Rieck et al., 2010] discusses a feature selection
technique for tree kernels called Approximate Tree Kernel (ATK). The main
idea behind ATK is to speed up TK evaluation for very large trees (e.g.
HTML or XML documents) by only considering fragments rooted in nodes
with certain labels. The authors redefine the optimization problem by forc-
ing a limit to the number of node types (symbols) in which a fragments
can be rooted.1 Experiments are carried out on on question classification
and spam detection. In both cases, accuracy is comparable with a standard
TK, even if only a very small number of symbols (between five and ten) are
retained. On question classification, training and test time are reduced by
a factor of 1.7 and 1.8, respectively. The improvement is more noticeable
on the larger spam detection benchmark, on which training and classifi-
cation are approximately thirteen times as fast. Space complexity of TK
evaluation is also considerably reduced. The approach is very interesting
in terms of feature selection, and it also provides some interesting insights
concerning relevant features in the kernel space. On the other hand, its
benefits are mostly exploited in those cases in which a small fraction of the
symbols of the grammar are relevant for the task. In fact, optimization and
classification still rely on the dual representation. This aspect may limit
its application to very complex syntactic tasks, such as relation extraction
or argument boundary detection for semantic role labeling.

1They also present results in the context of unsupervised learning, in which case the selection of symbols
is based on a bound on the expected time complexity of ATK evaluation.
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Chapter 4
Mining Fragments Efficiently
At a very high level, the feature projection process that we propose consists
of three main tasks:
• We exploit the target kernel function in the original, high dimensional

space in combination with the SVM optimizer to carry out a first step
of example selection and select the most relevant example points, i.e.
the support vectors. This step is called Kernel Space Learning (KSL),
since learning occurs in the space of the target kernel function;
• We use a greedy algorithm to explore the fragment space encoded by

the support vectors, generate the most relevant fragments and store
them into an index. We employ a gradient-based approach to decide
wich features to retain or discard, and also as a criterion to guide
the greedy exploration of the fragment space. Indeed, fragments are
selected based on their contribution to the norm of the gradient of the
model learnt during KSL. This stage is called Kernel Space Mining
(KSM);
• The index is used to decode the input structured data, i.e. the trees

in the dataset of the TK learning problem, and to represent them as
vectors in a linear space. This step is called Linear Space Generation
(LSG);
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These three main building blocks can be combined in different ways,
resulting in different architectures for tackling different learning problems or
stress different properties of the feature selection methodology, as explained
in Section 4.1.

Gradient-based approaches to feature selection (see Section 3.2) exploit
the idea that a good variable selection strategy should have a limited effect
on the geometry of the separating hyperplane, i.e. on the gradient. The
contribution of each variable to the norm of the gradient is used to establish
a ranking between features (or feature sets) and hence to discard the least
relevant ones.

The component of the gradient associated with each feature can be cal-
culated as a linear combination of the weights, estimated by the learning
algorithm optimizer for the training points, with the values assumed by the
feature in each examples. For a linear classification problem having ` train-
ing examples xi ∈ RN , the absolute value of the j-th component w(j) of the
gradient w = [w(1), w(2), . . . , w(N)] has value:

w(j) = ∑̀
i=0

αiyix(j)
i . (4.1)

Generalizing this criterion to any kernel function K is straightforward if
we assume that xi is the result of the application of the mapping function
φK to the input object oi. Still, in order to apply (4.1) it must be possible
to isolate the value that the feature mapping function projects on each
dimension j for any given object oi, i.e. x(j)

i . In other words, it must be
possible to weigh individual components of the kernel space. How this
value can be calculated in the case of the STK and PTK functions will be
explained in Section 4.2.

The exploration of the huge tree fragment space is a very challenging
task in terms of temporal and spatial complexity. Efficient algorithms based
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on solid theoretical assumptions and compact data structures are necessary
pre-requisites for a feature selection approach that should be both compu-
tationally reasonable, by possibly improving the efficiency of learning and
classification, and preserve the accuracy of the rich tree kernel function.

The last three sections of this chapter deal with these aspects of the
problem: Section 4.3 presents theoretical results that provide a formal jus-
tification to the criterion employed for the greedy exploration of the frag-
ment space; Section 4.5 describes the algorithms used to enumerate the
fragments and to explore the fragment space; finally, Section 4.6 discusses
the datastructure that is used to store (during KSM) and access (during
LSG) the mined fragments conveniently.

4.1 Architectural Configurations
In this section we describe three architectures for feature selection in TK
spaces. In our experiments (Chapter 5), the three models will be employed
to assess different properties of our linearization technique. The first ar-
chitecture, MLin (Sec. 4.1.1), is a valuable tool to empirically support our
theoretical claims (discussed in Section 4.3). The second architecture, LOpt
(Sec. 4.1.2), can produce very accurate and efficient linear classifiers, that
alleviate the burden of TK classification. The third architecture, Split (Sec.
4.1.3), can be used to reduce learning time on large data sets, while retain-
ing most of the accuracy of non-linearized TK models.

4.1.1 Model Linearization (MLin)
The first architecture that we present is called Model Linearization (MLin),
depicted in Figure 4.1. In the diagram, black boxes stand for training ac-
tivities; light gray boxes stand for testing activities; arrows indicate data
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〈yi, ti〉TR KSL M〈αiyi,ti〉 KSM

IndexLSG

M〈αiyi,xi〉

〈yi, ti〉TE

LSG

〈yi, xi〉TELSC

Predictions
Figure 4.1: Architectural overview of an MLin classifier.

flowing between activities of the process. With respect to the figure, training
an MLin binary classifier involves the following steps:

1. KSL: all the available training data is used to learn an STK model.
Training data consists of label/tree pairs, 〈yi, ti〉TR . In the model
M〈αiyi,ti〉, each support vector ti is associated with its estimated weight
and label αiyi;

2. KSM: the modelM is mined and the most relevant fragments are stored
in an index;

3. LSG: by means of the index, the support vectors are decoded, i.e.
represented as vectors in the linear space. A linear model M〈αiyi,xi〉 is
built by combining:
• the linearized support vectors, xi;
• their labels, yi;
• the weights estimated for them in the TK space, αi.

Concerning test activities, they are:
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〈yi, ti〉TR KSL M〈αiyi,ti〉 KSM

IndexLSG

〈yi, xi〉TR LSL M〈αiyi,xi〉

〈yi, ti〉TE

LSG

〈yi, xi〉TELSC

Predictions
Figure 4.2: Architectural overview of an LOpt classifier.

1. LSG: test data, consisting of label/tree pairs 〈yi, ti〉TE , is projected
onto a lower dimensional space, resulting in 〈yi, xi〉TE ;

2. LSC: we use the linearized model M〈αiyi,xi〉 to classify 〈yi, xi〉TE .
MLin is a very simple architecture, in which we reuse the support vectors

and their weights, as estimated by the learner in the TK space, to carry
out classification in the target linear space.

Since the weights are estimated for a space that is utterly different from
the projected linear space, we would not expect this approach to result
in very accurate classifiers. Nonetheless, studying this kind of classifier
is interesting to assess the aftermaths of feature selection on the original
kernel space. The experiments that exploit this property are detailed in
Section 5.2.

4.1.2 Linear Space Optimization (LOpt)
With the Linear Space Optimization (LOpt) architecture, we learn a new
model in the target low dimensional space. The diagram for this architecture
is shown in Figure 4.2. The differences with MLin are the following: 1) we
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linearize all the available training data; 2) the model learnt during KSL is
solely employed for feature mining. Training LOpt involves:

1. KSL: we use the structured data to learn an STK model (same as
MLin);

2. KSM: the model is mined to collect the most relevant fragments into
an index (same as MLin);

3. LSG: all the available training data 〈yi, ti〉TR are linearized, resulting
in 〈yi, xi〉TR . Every input tree is now represented as a vector in a
linear space;

4. LSL: the linearized data is used to learn a new model M〈αiyi,xi〉 in the
lower dimensional space.

As for testing, the LOpt and MLin configurations are just the same: the
structured test data are linearized, and classified with the linear model.

Unlike MLin, the support vectors retained in the linear model will be
generally different from those used during KSM, and the new SVM-learned
weights will be optimal with respect to the target low-dimensional space.
In LOpt, the model learnt during KSL is only exploited for fragment mining.
LSG is applied to all the available training and test data, and LSL is
carried out on the linearized training data 〈yi, xi〉TR to obtain the linear
model M〈αiyi,xi〉, which in turn is used to classify the decoded test data.

This kind of configuration can produce very fast and accurate linear
classifiers, a property that will be exploited in Section 5.3 to assess the
accuracy of linearized classifiers.

4.1.3 Split KSL, Linear Space Optimization (Split)
The good accuracy achieved with cascades of SVMs [Graf et al., 2004]
suggests that support vectors that are collected from locally learned models
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〈yi, ti〉TR
s1,〈αiyi,ti〉 KSL M1,〈αiyi,ti〉 KSM

sS,〈yi,ti〉 KSL MS,〈yi,ti〉 KSM
. . . . . . . . . . . .

IndexLSG

〈yi, xi〉TR LSL M〈yi,xi〉

〈yi, ti〉TE

LSG

〈yi, xi〉TELSC

Predictions
Figure 4.3: Architectural overview of a Split classifier.

encode many of the relevant features retained by global models.
The Split architecture is an extension of LOpt in which this property is

exploited to improve the efficiency of learning from large datasets. We par-
tition training data into S smaller sets, learn S models and mine fragments
from each of them. The fragments mined from all the models are then used
for LSG. As shown in Figure 4.3, training a Split classifier involves:

1. KSL: S tree kernel models M1,〈αiyi,ti〉, . . . , MS,〈αiyi,ti〉 are learned inde-
pendently on S splits of the available trainin data;

2. KSM: each model is mined. The relevant fragments collected from
all the models are collected in a unique index. The index contains
features that were observed only in one of the models, as well as
features appearing in more than one;

3. LSG: all the available training data is linearized using the fragments
stored in the index (same as LOpt);
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4. LSL: the linearized training data are used to learn an optimized model
in the low dimensional space (same as LOpt).

Since SVM training time is approximately quadratic in the number of
examples, with the Split configuration we expect to achieve considerable
efficiency improvements when estimating support vector weights in the TK
space. According to statistical learning theory, being trained on smaller
subsets of the available data, these models will be less robust with respect
to the minimization of the empirical risk [Vapnik, 1998]. Nonetheless, since
the weights are only needed to establish a coarse ranking among fragments,
we can accept to rely on sub-optimal solutions. In Section 5.5 we will
show that Split classifiers can indeed result in much faster learning cycles.
Provided that the data set is large enough, the efficiency improvement can
come at little or no cost in terms of accuracy.

4.2 Relevance Estimation
This section explains how we can calculate feature weights in the rich space
generated by the STK and PTK functions.

4.2.1 STK Fragments
Eq. 2.14 shows that ∆ counts the shared fragments rooted in n1 and n2 in the
form of scalar product, as evaluated by Eq. 2.13. However, when λ is used in
∆ as in Eq. 2.15, it changes the weight of the product χi(n1)χi(n2) according
to the topology of the fragment. As λ multiplies ∆ in each recursion step,
we may be induced to assume that the weight of a fragment is λd, where d
is the depth of the fragment.

On the contrary, we should consider that the kernel product holds be-
tween pairs of fragments. Therefore, the term λd is contributed by one
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fragment for λd/2, and by the other for λd/2. Furthermore, the exponent of
the decay factor does not depend on the depth of the fragment d, but rather
on the number of nodes with children that it contains, s(f). It follows that
the real weight of an individual fragment is λs(f)/2. With the following the-
orem, we prove that the correct exponent of λ is the number of fragment
nodes that have at least one child, divided by 2: 1

Theorem 4.2.1. Let T and f be a tree and one of its STK fragments, re-
spectively. The weight of f accounted by STK is λ s(f)

2 , where s(f) = |{n ∈
T : lf (n) > 0}| is the number of nodes that have active productions in the
fragment (i.e. at least one child) and lf (n) is the number of children of n in
f.
Proof. The thesis can be proven by induction on the depth d of f . The
base case is f of depth 1. Fragments of depth 1 are matched by step 2
of ∆(n1, n2) computation, which assigns a value λ = χi(n1)χi(n2) (where
fi = f are the minimal fragments rooted in ni), independent of the number
of children. Since χ(n1) = χ(n2), it follows that the weight of f is λ1/2, due
to n1 = n2.

Suppose that the thesis is valid for depth d and let us consider a fragment
f of depth d+1, rooted in r. Without loss of generality, we can assume that
f is in the set of the fragments rooted in n1 and n2, as evaluated by Eq. 2.15.
It follows that the production rules associated with n1 and n2 are identical to
the production rule in r. Let us consider M = {i ∈ {1, .., l(n1)} : l(cir) > 0},
i.e. the set of child indices of r which have at least one child. For j ∈ M,
cir has a production shared by cjn1 and cjn1 . Conversely, for j /∈ M, there is
no match and ∆(cjn1, cjn2) = 0 .

The resulting product is λ∏j∈M ∆(cjn1, cjn2), where the term 1 in (1 +
1In [Collins and Duffy, 2002], there is a short note about the correct value of the weight of lambda for

each product components (i.e. pairs of fragments), and also in [Zhang et al., 2006] there are hints in this
direction.
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∆(cjn1, cjn2)) is not considered since it accounts for those cases in which
there are no common productions in the children, i.e. cjn1 6= cjn2∀j ∈ M.

We can now substitute ∆(cjn1, cjn2) with the weight of the subtree tj of
f rooted in cjr (and extended until its leaves), which is λs(tj ) by inductive
hypothesis (since tj has depth lower than d). Thus, the weight of f is
λ∏j∈M λs(tj ) = λ1+∑j∈M s(tj ), where ∑j∈M s(tj) is the number of nodes in f ’s
subtrees rooted in r’s children and having at least one child; by adding 1, for
the contribution of r, we obtain s(f). Finally, we have λs(f) = χi(n1)χi(n2),
which satisfies our thesis: χi(n1) = χi(n2) = λ s(f)

2 .
In the light of this result, we can use the definition of a TK function to

project a tree t onto a linear space, by recognizing that t can be repre-
sented as a vector xi = [x(1)i , . . . , x(N)i ] whose attributes are the count of the
occurrences of each fragment weighed with respect to the dacay factor λ.

For a normalized STK, the value of the j-th attribute of the example xi
is therefore:

x(j)
i = ti,jλ s(fj )

2

‖xi‖ = ti,jλ s(fj )
2√∑Nk=1 t2i,kλs(fk )

(4.2)

where ti,j is the number of occurrences in the tree ti of the fragment fj ,
associated with the j-th dimension of the feature space. It follows that the
components of w (see Eq. 2.5) can be rewritten as:

w(j) = ∑̀
i=1

αiyix(j)
i = ∑̀

i=1
αiyiti,jλ s(fj )

2√∑Nk=1 t2i,kλs(fk )
. (4.3)

4.2.2 PTK Fragments
With a similar reasoning, it is also possible to calculate the weight of PTK
fragments.
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The reader should recall that in (2.18) we used the symbol Zn to represent
an index sequence of the children of a node n. For the way it is constructed,
Zn has at most l(cn) elements, where cn is the ordered set of n’s children
and the operator l(·) calculates its length.

The values of Zn can range from 1 to l(cn), and it holds that k < k ′ ⇒
Z [k ] < Z [k ′]. The quantity d(Zn) for an index sequence Zn was defined as
the difference between the last and the first value in the sequence, plus 1,
i.e. d(Zn) = Zn[−1]− Zn[1] + 1.

If we decouple the contribution of the two fragments in (2.17), we obtain
that the cumulative relevance of a PTK fragment can be measured with:

w(j) = ∑̀
i=1

αiyix(j)
i = ∑̀

i=1
αiyiti,jµ n(fj )

2 λD(fj )√∑Na=1 t2i,kµn(fk )λ2D(fk )
. (4.4)

where n(f) = |Nf | is the number of nodes in f , and D(f) is defined as

D(f) = ∑
n∈Nf

d(Zn) ,
i.e. it is the cumulative length of the node sequences Zn evaluated for
each node in the fragment. Since it depends on the set of node expansions
carried out on the original tree, the value of Zn for any node in f cannot
be derived by observing its surface form. Therefore, for PTK fragments we
also need to store the value of D(f) and update it at every expansion.

4.3 Theoretical Justification
In order to provide a theoretical background to our feature selection tech-
nique and to develop effective algorithms, we want to relate our approach
to statistical learning and, in particular, support vector classification the-
ory. Since we select features with respect to their weight w(j), we can use
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Theorem 2.1.2 that establishes a general bound for margin-based classifiers.
According to the theorem, if X is separated with a margin γ by a linear

classifier, then the error has a bound depending on γ. A feature selection
algorithm that wants to preserve the accuracy of the original space should
not affect the margin.

Since we would like to exploit the availability of the initial gradient w
derived by the application of SVMs, it makes sense to try to quantify the
percentage of γ reduction after feature selection, which we indicate by ρ.
We found out that γ is linked to the reduction of ‖w‖, as illustrated by the
next lemma.
Lemma 4.3.1. Let X be a set of points in a vector space and w be the
gradient vector which separates them with a margin γ. If the selection
decreases ‖w‖ by a rate ρ, then the resulting hyperplane separates X by
a margin larger than γin = γ − ρR‖w‖.
Proof. Let w = win + wout, where win and wout ∈ RN are constituted by
the components of w that are selected in and out, respectively, and have
zero values in the remaining positions. By hypothesis, |w · x| ≥ γ. Without
loss of generality, we can consider just the case w · x ≥ γ, and write

w · x = win · x + wout · x ≥ γ
⇒

win · x ≥ γ − wout · x
≥ γ − |wout · x|
≥ γ − ‖wout‖ × ‖x‖ , (4.5)

from Cauchy-Schwarz inequality. The margin associated with win, i.e. γin,
is therefore

γin ≥ γ − ‖wout‖ × ‖x‖ ≥ γ − ‖wout‖R = γ − ρR‖w‖ . (4.6)
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Remark 4.3.2. The lemma suggests that, even in case of very aggressive
feature selection, if a small percentage ρ of ‖w‖ is lost, the margin reduction
is small. Consequently, through Theorem 2.1.2, we can conclude that the
accuracy of the model is by and large preserved.
Remark 4.3.3. We prefer to show the lemma in the more general form, but if
we use normalized x and classifiers with ‖w‖ ≤ 1, then γin = γ − ‖w‖ρ >
γ − ρ.

A note on the relation between the gradient and the margin.
The reader should not be confused by the fact that, for a linear classifier, the norm of
the gradient ‖w‖ is inversely proportional to the margin, γ: γ = 2‖w‖ (see Fig. 2.2).
In that context, we are learning an optimal separation for the two classes: the best
separation maximizes the margin, hence minimizing the gradient norm.
In the context of Lemma 4.3.1, the point of view is completely different. We are trans-
forming the input space by ignoring several dimensions. We show that if we select
these dimensions so as to have a small effect on the gradient norm, the margin is only
slightly affected. In fact, we are inducing a trasformation on the initial space that has
a limited (and measurable) effect on our ability to tell the classes apart. This ensures
that the features that we are retaining are those that encode the relevant information.

The last result that we present justifies our selection approach, as it
demonstrates that most of the gradient norm is concentrated in relatively
few features, with respect to the huge space induced by tree kernels. The
selection of these few features allows us to preserve most of the norm and
the margin.
Lemma 4.3.4. Let w be a linear separator of a set of points X, where each
xi ∈ X is an explicit vector representation of a tree in the space induced
by STK, and let ν be the maximum size (number of active productions) in
any tree. Then, if we select fragments with size greater than η, it holds
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that
‖wout‖ ≤ ν

γ2

√(λν)η − (λν)ν
1− λν . (4.7)

Proof. By applying simple norm properties,

‖wout‖ =
∥∥∥∥∥
∑̀
i=1

αiyixouti
∥∥∥∥∥ ≤

∑̀
i=1
‖αiyixouti‖ = ∑̀

i=1
αi‖xouti‖ . (4.8)

To evaluate the latter, we first re-organize the summation in Eq. 4.2 by
summing on fragments of different size, obtaining:

‖xi‖2 =
ν∑
k=1

∑
j:s(fj )=k

t2i,jλs(fj )∑Nk=1 t2i,kλs(fk )
. (4.9)

Since a fragment fj can be at maximum rooted in ν nodes, then ti,j ≤ ν.
Moreover, for not extremely small λ, it holds that ∑Nk=1 t2i,kλs(fk ) > 1 (e.g.
for λ > 1/ν ).

By using νk as an upper bound for the number of trees having size k ,
we obtain

‖xi‖ <
√√√√ ν∑

k=1
ν2λkνk =

√√√√ ν∑
k=1

ν2(νλ)k =
√
ν21− µν1− µ , (4.10)

where we have assumed that µ = λν < 1 (by using a small enough λ) and
applied geometric series summation. If we assume that our algorithm selects
out (i.e. discards) fragments with size s(f) > η, we can write ‖xouti‖ <
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√ν2 µη−µν1−µ . It follows that

‖wout‖ < ∑̀
i=1

αi
√
ν2µη − µν1− µ . (4.11)

In case of hard-margin SVMs, we have ∑ì=1 αi = 1/γ2. It follows that

‖wout‖ < ν
γ2
√µη − µν

1− µ = ν
γ2

√(λν)η − (λν)ν
1− λν . (4.12)

Remark 4.3.5. The lemma shows that for an enough large η and λ < 1/ν,
‖wout‖ can be very small, even though it includes an exponential number
of features, i.e. all the subtrees whose size ranges from η to ν. Therefore,
according to Lemma 4.3.1 and Theorem 2.1.2, we can discard an exponential
number of features with a limited loss in accuracy.
Remark 4.3.6. Regarding the proposed norm bound, we observe that νk is
a coarse overestimation of the the real number of fragments having size k
rooted in the nodes t. In case of soft-margin SVMs, we can bound αi with
the value of the trade-off parameter C.

4.4 Generating Fragments
As already mentioned in Section 2.2, a fragment f is a substructure of some
tree t. A fragment is rooted in a node n ∈ Nt (the set of nodes of t), and
it comprises a set of nodes Nf ⊆ Nt, with the constraint that the resulting
graph must be connected in the original tree.

In the remainder, let Ef ⊆ Nf ⊂ Nt be the set of expandable nodes of f .
Expandable nodes are nodes that are leaves with respect to the fragment
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(they have no active production in the fragment) but that are not leaves
with respect to the original tree t. For example, if t = (A(B(b))(C (c))) and
f = (A(B(b)(C ))), then Ef = {C}, since C is the only node of f that has
children in t but that has no children in f .

The fragments encoded in a tree t can be enumerated by combining two
atomic operations:
FRAG(n) (base fragment generation), that builds the smallest fragment rooted

in n ∈ Nt, and
EXPAND(f) (fragment expansion), that builds the set of fragments that span

one more level of the tree. A fragment expansion consists of one or
more node expansions, in which one or more children of a node n ∈ Ef
are included in the fragment.

The actual implementation of the two operations depends on the target
kernel function and on the kind of fragments that it can generate.

4.4.1 STK Fragments
According to the definition of the STK (see Section 2.2.1), fragments that
span a single level of the tree, i.e. isolated nodes, do not contribute to the
evaluation of the kernel function. Therefore, the smallest possible fragment
must contain at least one node and some of its children. However, the
STK does not allow us to break production rules. Therefore, if a fragment
includes any of the children of a node n, then it must also include all
their siblings. It follows that the minimal fragments that can be generated
according to the definition of the STK are those that encompass a node and
all its direct children, i.e. all the fragments that describe a production rule
of the grammar. It follows that the number of base fragments in a tree t is
the number of internal nodes, i.e. It.
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Figure 4.4: Recursive enumeration of the STK fragments encoded in a tree. - The
fragments are generated by combining the two atomic operations FRAG(·) (F ) and EXPAND(·)
(E).

As for the EXPAND(f) operation, the number of fragments it generates
depends on the number of leaves in f that have active productions in t, i.e.
|Ef |. The definition of the STK forces us to include all the children of a
node whenever we include at least one of its children. It follows that for
any expandable node in a fragment there is only one possible expansion,
i.e. the one in which all its children are included. Since we must consider
all the possible combinations of nodes to expand, the complexity of this
operation for the STK is:

C (EXPAND STK(f)) =
|Ef |∑
i=1

(|Ef |
i
)

(4.13)

Figure 4.4 shows how the FRAG(·) and EXPAND(·) operations can be com-
bined to generate all the STK fragments encoded in a tree.
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4.4.2 PTK Fragments
The PTK provides a very general definition of fragment. Indeed, every con-
nected subset of a tree is a valid fragment according to the PTK definition
(see Section 2.2.2) . As a consequence, generating PTK fragments is an
intrinsecally complex operation.

Since even a single node is a valid fragment, in a tree having |Nt| nodes
there are exactly |Nt| base fragments.

Concerning the EXPAND(·) operation, it should be considered that expand-
ing a node n is a combinatorial operation. For any node n ∈ Ef having
|cn| children we obtain ∑|cn|i=i

(|cn|i
) different fragments, i.e. one fragment for

every combination of n’s children. If we consider all the nodes that can be
expanded in f , i.e. Ef , then the number of generated fragments is:

C (EXPAND PTK(f)) = ∏
nj∈Ef

|cnj |∑
i=1

(|cnj |i
)

(4.14)

Figure 4.5 represents graphically the process of generating all the PTK
fragments in a tree by combining the FRAG(·) and EXPAND(·) operations. First,
the five base fragments are generated. Then, they are recursively expanded
to generate the larger fragments. As we can see, even a very small tree
like the one in figure can generate a conspicuous number of fragments.

4.5 Algorithms for Fragment Mining
We call fragment mining the process by which the fragment space encoded
by a set of tree is explored, and the most relevant fragments are stored in
an index. Since we use SVM estimated weights to assess the relevance of
fragments, henceforth we will assume that every input tree has an associated
weight, i.e. the set of tree is an SVM model M.
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fragments are generated by combining the two atomic operations FRAG(·) (F ) and EXPAND(·)
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The algorithms described in the following pages make use of several
operators that is convenient to define in advance:
COPY(x), which makes a shallow copy of an object x;
MKINDEX(), which creates a new index to store the relevant features. The

actual implementation of the index will be detailed in Section 4.6;
UPDATE(i,f ), which updates the index i with the fragment f . The index keeps

track of the cumulative relevance of a fragment, i.e. all the instances
of the same fragment across all the input trees. For simplicity, it will
be assumed that the fragment contains all the required information to
calculate its individual relevance.

We will start defining a very naive approach to fragment mining, go-
ing through the steps that led us to the formulation of the greedy mining
strategy currently employed in our model.

4.5.1 Naive Fragment Space Generation

Algorithm 4.1 FULL MINER(model)
global result
mainresult ← MKINDEX()
for each tree ∈ model

do
{for each node ∈ NODES(tree)

do MINE(FRAG(node))
return (result)

procedure MINE(frag)
UPDATE(result, frag){for each fragment ∈ EXPAND(frag)

do MINE(fragment)
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The most naive approach to fragment mining would be the generation
of the complete fragment space encoded by the model. The FULL MINER(·)
procedure, listed in Algorithm 4.1, shows how the basic operators FRAG(·)
and EXPAND(·) can be combined to achieve this goal. All the nodes of all
the trees in the model are traversed, and the MINE(·) procedure is invoked
on the base fragment generated from each node. The MINE(·) procedure
first updates the index by calling the UPDATE(·) operator; then it generates
the expansions of the input fragment by means of the EXPAND(·) operator;
finally, it recursively invokes itself on the newly generated fragments.

This solution has the advantage of generating the complete fragment
space, but its very high computational complexity is a major limitation.
Indeed, even very small sets of real world trees can encode billions of frag-
ments. Explicitly generating and storing all of them implies a computational
burden that is not possible to handle within reasonable time and spatial
boundaries.

4.5.2 Fragment-size Constrained Generation
Since we are interested in identifying the most relevant fragments, we could
consider (4.3) and (4.4) and find out which are the factors that mostly in-
fluence the relevance of a fragment.

The only exponential term is the decay factor λ, and in both cases the
exponent is a function of the number of nodes included in the fragment.
Let us concentrate on the STK (i.e Eq. 4.3), and try to understand how
the number of nodes, i.e. the size of a fragment, affects its relevance. For
simplicity, we can assume that a fragment appears either zero or one times
in each tree, and that for all the support vectors, i.e. αi 6= 0, it holds that
αi = α and ‖ti‖ = T . The relevance of a fragment can then be expressed
as
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w(j) = αλ s(fj )
2 |cj |
T ,

where cj = ∑i|yi=1 yi−∑i|yi=−1 yi is the difference between the number of
positive and negative support vectors in which fj appears, and is a measure
of the correlation of the fragment with one of the two classes. If we consider
two fragments fa and fb, with s(fa) = k and s(fb) = k + β, and force the
equality between the relevance of the two fragments we obtain that:

w(a) = w(b)

⇒ λk/2|ca| = λ(k+β)/2|cb|
⇒ |cb| = 1

λβ/2 |ca| , (4.15)
i.e. if fb includes β nodes more than fa, then in order for the two fragments
to have the same relevance, |cb| must be larger than |ca| by a factor 1λβ/2 . To
give a practical example, assuming the default value of λ = 0.4 [Collins and
Duffy, 2002], if β = 5 then |cb/ca| = 9.88, i.e. if fb includes 5 more nodes
than fa then it must be approximately ten times more correlated with one of
the two classes in order to have the same relevance. If β = 10 (fb includes
ten more nodes than fa), then |cb/ca| = 97.66, i.e. its correlation must be
almost a hundred times as much.

These figures suggest that a first direction to explore for reducing the
complexity of the mining process is to force the algorithm to consider only
fragments which include a given number of nodes, i.e. to avoid generating
too large fragments whose relevance would probably be very low. Similarly
to what proposed in [Collins and Duffy, 2001], we can control the size of the
fragments we generate in two ways, by limiting their maximum depth and
the number of nodes included with every expand operation.

The resulting procedure, called SIMPLE MINER(·), is shown in Algorithm 4.2.
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Algorithm 4.2 SIMPLE MINER(model,maxexp,maxdepth)
global result
mainresult ← MKINDEX()
for each tree ∈ model

do
{for each node ∈ NODES(tree)

do MINE(FRAG(node), maxexp,maxdepth, 0)
return (result)

procedure MINE(frag, depth)
UPDATE(result, frag)
if depth < maxdepth

then
{for each fragment ∈ EXPAND(frag,maxexp)

do MINE(fragment,maxexp,maxdepth, depth+ 1)

The two extra parameters, maxexp and maxdepth, control respectively, i)
the maximum number of nodes included during each fragment expansion
operation, and ii) the maximum depth of the generated fragments. Here,
the EXPAND(·) operator (see Section 4.4) is overloaded to expand at most
maxexp nodes in a fragment.

In the light of the considerations about fragment size in the previous
paragraphs, we can assume that in the general case this very simple ap-
proach will generate a set including the most relevant fragments. On the
other hand, the selection of the maxexp and maxdepth parameters is crit-
ical in order not to exclude possibly heavy larger fragments and not to
include irrelevant ones. Furthermore, this kind of approach clearly limits
the ability of the kernel to generate larger structured features.

4.5.3 Fragment-number Constrained Generation
An alternative approach would be to directly enforce a limit on the number
of fragments that we want to collect. Suppose that we are interested in
mining the L most relevant fragments. As shown in the previous paragraphs
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and by Equation 4.15, small fragments are generally more relevant than
large ones. Therefore, we can keep generating fragments in a small-to-
large fashion, with the difference that we collect all the fragments with the
same depth from all the input trees.

Let BL be the set of the L best fragments generated for depth values
up to d. Let f be the least relevant of the fragments in BL. If we expand
the fragments in BL having depth d, we obtain a set of fragments that have
depth equal to d + 1. Let us call this set F . If F contains at least one
fragment more relevant than f , then:
• we update the set: BL ← BL ∪ F ;
• we sort it based on the relevance of the fragments;
• we keep the L most relevant fragments. At least one of the L elements

of BL has depth d+ 1;
• we continue iterating by expanding these fragments, and generate the

fragments with depth d+ 2.
If no fragment in F is more relevant than f , we can stop. In fact, it is very
unlikely that fragments with depth d + 2 will be more relevant than those
generated for depths 1, . . . , d+ 1.

The algorithm implementing this search strategy, which is shown in Al-
gorithm 4.3, is called BOUNDED MINER(·). Similarly to Algorithm 4.2, the
parameter maxexp is used to control the maximum number of expansion
produced by EXPAND(·). The L parameter is the number of fragments that
we want to collect. The procedure BASE FRAGS(·) generates all the base
fragments encoded in a model and stores them in a new fragment index,
whereas BEST(·) sorts the fragments in an index according to their cumula-
tive relevance and discards those ranked lower than L. The for each loop
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Algorithm 4.3 BOUNDED MINER(model,maxexp, L)
mainresult ← BASE FRAGS(model)
prev ← COPY(result)
best pr ← BEST(result, L)
while true

do




next ← ∅
for each f ∈ prev

do




if f ∈ best pr

then



Ef = EXPAND(f, maxexp)
for each frag ∈ Ef

do
{next ← next ∪ {frag}

UPDATE(result, frag)
best ← BEST(result, L)
if not CHANGED()

then break
prev ← next
best pr ← best

return (best pr)
procedure BASE FRAGS(model)
result ← MKINDEX()
for each t ∈ model

do
{for each n ∈ Ntdo UPDATE(result, FRAG(n))

return (result)
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generates all the expansions of the best-L fragments collected at the previ-
ous step, and stores them in the index. After each iteration, the CHANGED(·)
operator verifies if the fragment ranked L is still the same and if its relevance
has not changed, which is the stop condition of the loop.

This algorithm is an improvement over SIMPLE MINER(·), because it can
generate fragments of any depth d, assuming that at depth d − 1 at least
one fragment made it to the set of the best-L. On the other hand, it still
cannot generate fragments where more than maxexp nodes are expanded
at the same time. Furthermore, sorting all the fragments based on their
relevance after each iteration is a very costly procedure when the number
of indexed fragments is very large.

4.5.4 Greedy Generation
The last algorithm that we present aims at solving these two limitations, by
eliminating the need for the maxexp parameter and by including fragments
in the index based on their relevance rather than based on their ranking.
We want to generate f expansions including k + 1 new nodes only if at
least one of the expansions of k nodes is considered relevant. The value of
k is called the width factor of the expansion. Concerning the criterion used
to decide which fragments are relevant, we need to set a threshold value to
compare against. The solution that we adopt is to assess the relevance H
of the most relevant fragment in the model, and to consider relevant only
the features whose weight is at least σ = H/L, where L is a parameter of
the algorithm. As we will show briefly, the value of H can be linked to the
gradient norm after feature selection.

To excatly determine H, we should first generate the whole fragment
space, and then calculate the maximum among the fragment weights. Since
this approach is unpractical, we need to find an approximator H̃ for H. We
decide to approximate H with the relevance of the best base fragment, i.e.
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the heaviest fragment among those generate by the FRAG(·) operator. The
choice is motivated as follows.

In Eq. 4.3, we can identify a term Ti = αiyi/‖ti‖ that is the same for
all the fragments in the tree ti. For 0 < λ ≤ 1, if fj ∈ Efk , i.e it is an
expansion of fk , then from our definition of fragment expansion it follows
that λ s(fj )

2 < λ s(fk )
2 . It can also be observed that ti,j ≤ ti,k . Indeed, if ti,k is

a subset of ti,j , then it will occur at least as many times as its expansion
ti,k , possibly occurring as a seed fragment for different expansions in other
parts of the tree as well. Therefore, for every two fragments fi,j , fi,k coming
from the same tree ti, we can conclude that x(j)

i < x(k)i ∀fi,j ∈ Efi,k . In other
words, for each tree in the model, base fragments are the most relevant. This
fact and the discussion about fragment size carried out in 4.5.2 suggest that
there is a high probability that H̃ is the correct approximation fo H. As
empirical evidence in support of this conjecture, we report that in all our
experiments we have never observed a counterexample.

The value of H can be linked to the fraction of norm that we lose with
feature selection, i.e. ρ (see Section 4.3). Let us define the quantity σ = HL ,
where L is a parameter of the algorithm, and assume that we want to select
only the fragments fj so that w(j) ≥ σ , i.e. σ is the relevance of the less
relevant fragment that we will consider. Let N be the number of selected
features. If we assume that all the selected features are as relevant as
the least relevant fragment, i.e. σ , we obtain the following lower bound for
‖win‖, i.e. ‖win‖ ≤ √Nσ2 = σ√N. Similarly, if we assume that all the
fragments have the same relevance as the best fragment, i.e. H, we can
derive an upper bound ‖win‖, and conclude that the norm of the gradient
after feature selection will be

σ√N ≤ ‖win‖ ≤ H√N . (4.16)
This result can be exploited to link the the values of H and L to the gradient
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norm after feature selection. In fact,
‖win‖ = (1− ρ)‖w‖ ≥ σ√N = H

L
√N (4.17)

that tells us that norm after feature selection can be expressed as a function
of H, L and N.
Algorithm 4.4 GREEDY MINER(model, L)
mainB ← BASE FRAGS(model)
H̃ ← REL(BEST(B))
σ ← H̃/L
Dprev ← FILTER(B, σ )
UPDATE(result, Dprev )while Dprev 6= ∅

do




Dnext ← ∅τ ← 1/ ∗ widthfactor ∗ /
Wprev ← Dprevwhile Wprev 6= ∅

do




Wnext ← ∅for each f ∈ Wprev

do




Ef ← EXPAND(f, τ)
F ← FILTER(Ef , σ )
if F 6= ∅

then


Wnext ←Wnext ∪ {f}Dnext ← Dnext ∪ FUPDATE(result, F )

τ ← τ + 1
Wprev ←WnextDprev ← Dnextreturn (result)

If we combine all these elements, we obtain a new algorithm for the
exploration of the fragment space that we call GREEDY MINER(·), which is
shown in Algorithm 4.4. We generate all the base fragments and calculate
the values of H̃ and σ . We then apply the FILTER(·) operator to the set
F , which removes from the set all the fragments whose cumulative score
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is less than σ . To improve the efficiency of the algorithm, the FILTER(·)
algorithm also removes all the fragments which appear less than three times,
which are very unlikely to be ever observed in the test set. The fragments
whose relevance is above the threshold are added to the index result, and
are considered for further expansion. The inner and outer while loops are
responsible for growing fragments in width and height, respectively.

In the algorithm, Dprev is the set of fragments expanded at the previous
depth level and that have the required relevance, while Dnext is the set of
fragments that will have to be expanded at the next level. Similarly, Wprev
stores the fragment that must be expanded with the current width factor
τ, that controls the maximum number of nodes to be included in a new
fragment. Wnext is used to collect the fragments that will be expanded with
a larger width factor. A fragment f that generates no relevant expansions
for a width factor τ will not be considered for expansions of width τ + 1.
Relevant expansions of f , generated for width factors smaller than τ, will
still be considered for expansions at the next depth level.

The inner loop terminates when none of theWprev fragments can generate
a relevant expansion for a given width factor, i.e. whenWnext ends up being
an empty set. Similarly, the outer loop ends if no fragments in Dprev have
generated at least one relevant expansion, i.e. when Dnext is empty.

Unlike the algorithms defined in the previous sections, GREEDY MINER(·)
works according to the theoretical framework established in Section 4.3,
as the criterion used to select the fragment can be linked to the norm of
the gradient after feature selection. Furthermore, since there are no hard-
coded limitations to the number of expanded nodes or to the maximum depth
of generated fragments, in theory it could generate fragments of any size,
provided that smaller fragments have sufficient relevance. It is also very
efficient, since it implements a very aggressive search strategy that builds
larger expansions of a fragment only if the smaller ones are interesting.
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This kind of approach is in line with the considerations about fragment size
presented in the previous paragraphs, which suggest that an expansion of
a fragment is very unlikely to be more relevant than the fragment itself.

4.6 Fragment Indexing
One of the critical issues for fragment mining is the definition of a data
structure that can store compactly and efficiently a large number of frag-
ments.

At first, an attempt was made to employ a Direct Acyclic Graph (DAG)
by referring to the algorithms described in [Aiolli et al., 2006] where the
structure is used to store compactly all the trees a TK model. This kind of
approach has soon shown some limitations in three main areas:
Memory: every subtree (i.e. a node along with all its descendants, up to

the leaves) is only represented once. This property makes it a compact
structure for the representation of subtrees, while it is not as convenient
in the case of arbitrary tree subsets;

Insertion: insertion is a costly operation, as it requires sorting the nodes
of each fragment in reverse fan-out order;

Lookup: searching for the fragments encoded in a tree would require to
generate all the fragments in the tree, which is an operation with
exponential complexity.

The first two problems, that affect time and space complexity of the training
stages of the process, would not be a real concern: the amount of avail-
able memory can always be increased, and the additional time required to
populate the index would be largely shaded by the learning time of the TK
function. On the other hand, if we want to realize a fast, linear classifier, the
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efficiency of the decoding process is absolutely critical. In this respect, it is
necessary to devise a data structure whose decoding performance degrades
nicely for growing numbers of indexed fragments.

4.6.1 The FragTree Data Structure
The adopted solution is called a FragTree. Its design is based on the
following idea: the nodes in a graph can be used to describe the set of
expansions that define a fragment, starting from its root. This property
can be exploited when decoding a tree t, i.e. when querying the index to
retrieve the list of fragments contained in t. Instead of generating all the
fragments in t and trying to match them in the index2, we can apply the
expansions in the index to the nodes of t, and check if they result in some
indexed fragment.

In a FragTree, each path in the graph can then be univocally associated
with a fragment. As an example, consider the fragment

(A (B) (C (d))).
The fragment can be obtained by applying the following algorithm:
� The root of the fragment is labeled A;
© Expand the first node observed at the previous level by generating two

children. This operation can be represented with the pair (0, 2), where
the first number is the relative offset of the expanded node, and the
second is the number of nodes resulting from the expansion;

� The two resulting nodes are B and C ;
© Expand the second node at the previous level (i.e., C ) and generate

one child. Again, this operation can be described with the pair (1, 1):
expand the second node (offset = 1) and obtain one child;

2That would have exponential complexity, assuming lookup time of a fragment in the index to be constant.
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� The resulting node is labeled d.
The sequence of these operations, i.e. [A]→ (0 : 2)→ [B,C ]→ (1 : 1)→ [d],
completely describes the fragment and can be represented as a path in a
graph whose nodes are of two kinds:
� nodes that list the label sequences encountered at some level in a tree,

and
© nodes that describe node expansion operations.

In a FragTree, these different kinds of information are accounted for by two
different classes of nodes, called label and production nodes, respectively.
Together, label and production nodes can be used to describe the structure
of a fragment without ambiguity.

As an example, consider the FragTree in Figure 4.6, that describes all
the PTK fragments of the tree (A (B (c) (d)) (C (h))) rooted in A. Here,
production nodes are represented as circles, whereas label nodes are rep-
resented as squared blocks and are given a unique numeric identifier (id).
In a label node, a special character (’#’, in the example) is used to separate
node labels originating from different parents. Each path from the root of
the FragTree to any label node identifies the surface form of an observed
fragment, i.e. it is possible to establish a bijective correspondence between
nodes in the FragTree and fragments. For example, the path from the root
to the node with id = 8 describes the fragment (A (B) (C)), whereas the
nodes with id = 11 and id = 12 correspond to the fragments (A (B (c))
(C (h))) and (A (B (c)) (C (k))), respectively. This kind of structure can be
effectively exploited to reduce decoding complexity in the general case, as
will be shown shortly.

Even if they are not shown in figure, label nodes also store a pointer
to a so-called data node that collects statistics about the occurrencies of
the fragment in the data: the number of positive and negative support
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Figure 4.6: Exemplification of a FragTree - A FragTree encoding all the PTK fragments
in the tree (A(B(c)(d))(C (h))) which are rooted in A.

vectors containing the fragment, and its cumulative relevance. When a
fragment is added to the FragTree, if the node describing the fragment
already exists (i.e. the same fragment has already been observed before),
then the statistics about the new fragment are merged with the existing
data, otherwise a new data node is created.
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Algorithm 4.5 ENCODE(frag, fragData, idxRoot)
mainnodes ← [ROOT(frag)]
PUT(idxRoot, nodes, fragData)

procedure PUT(idxNode, nodes, fragData)
idxNode ← GET LAB(idxNode, nodes)
temp ← idxNode
next ← [ ]
for each offset ∈ [0, . . . , LEN(nodes)− 1]

do




children ← CHILDREN(nodes[offset])
l ← LEN(children)
if l > 0

then
{idxNode ← GET PROD(idxNode, offset, l)

APPEND(next, children)
if LEN(next) = 0

then UPDATE(idxNode, fragData)
else PUT(idxNode, next, fragData)

4.6.2 Tree Encoding
Algorithm 4.5 lists the pseudocode of the ENCODE(·) operation, i.e. the op-
eration that creates the path describing the fragment frag in the FragTree
rooted in idxRoot. Here, fragData are the statistics associated with frag.
The description of the algorithm requires the definition of several functions
and operators:
[ ] (empty square brackets) return an empty sequence;
x[y] accesses the y-th element of the list x;
x{y} accesses the element associated with the key y in the hashmap x;
LEN(x) returns the length of the sequence x;
APPEND(x, y) appends all the elements of the list y to the end of the list x;
ROOT(x) returns the root of the tree (or fragment) x;
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CHILDREN(x) returns the ordered sequence of children of the tree node x;
GET LAB(x, y) returns the label node outgoing from x that encodes the node

sequence y. If no such node exists, it is created and returned;
GET PROD(x, y, z) returns the production node outgoing from x that encodes

the production rule y : z. If no such node exists, it is created;
UPDATE(x, y) uses the statistics in y to update the data node linked by the

FragTree node x.
At the beginning of the main procedure, a list containing the root of the
fragment is created. Then, the PUT(·) procedure is invoked. The procedure
recursively invokes itself to generate all the label nodes that describe the
nodes in each level of the fragment. During each recursion, the procedure
iteratively builds the production nodes that describe the transition between
the nodes encountered in two consecutive levels. PUT(·) first checks if a
label node describing the incoming set of nodes nodes is already present.
If it is not, it is created. The idxNode pointer is set to point to this
label node. The for each loop calculates all the expansion operations that
must be sequentially applied to obtain the sequence of nodes at the next
level in the tree. For each expansion, a corresponding production node is
created, and idxNode is updated to point to it. The sequence next, i.e.
the sequence of nodes at the next level in the tree, is built incrementally.
If a node does not have any children, then the iteration is skipped and the
value of idxNode is unaffected. At the end of the loop, if all the nodes
in nodes have no children, then next will be empty. If this is the case,
then the path from the root to idxNode completely describes the fragment.
Therefore, the data node associated with idxNode can be updated with the
statistics about the fragment. Otherwise, the PUT(·) procedure is invoked
recursively on the FragTree node pointed by idxNode and the set of nodes
at the next level in fragment next.
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One fragment ⇐⇒ One representation. It should be observed that the set of
expansions that describe a fragment is generally not unique. As an example, the
fragment (A (B (b)) (C (c))) can be obtained from the fragment (A (B) (C)) in two
distinct ways: by first expanding the node B and then C , or vice-versa. In a FragTree,
this problem is resolved by adopting a strict left-to-right policy for the description of
a node’s children in the fragment, which in Algorithm 4.5 is enforced by the for each
loop. This is enough to ensure that in a FragTree there cannot be more than one
representation of the same fragment.

4.6.3 Tree Decoding
Tree decoding is the process by which an input tree is actually represented
as a vector, based on the relevant fragments stored in an index. The most
naive approach to tree decoding would require to generate all the fragments
encoded in a tree and look them up in a dictionary. This solution was
employed in a very early version of our model, but due to its exponential
complexity it was later discarded in favor of a more efficient strategy that
relies on the information stored in a FragTree.

The underlying idea is to combine the information stored in the label
and production nodes so that only the fragments that are actually stored
in the FragTree are generated. Each time a label node of the FragTree is
traversed, the production rules encoded by outgoing production nodes are
applied to the sequence of input nodes, i.e. the nodes described by the
label node. Only the productions that are compatible with the input set of
nodes are applied. For example, if one of the input nodes has only one child
and the production rule requires to expand two of its children, then the rule
is incompatible with the tree. An incompatible production rule encoded by
the path P allows to cut the search space by discarding all the subsequent
branches of the FragTree on that path: if the fragment represented by P is
not present in the tree, then all its expansions are not either.

Each chain of compatible production rules outgoing from a label node
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results in a search direction, and the production rules in each chain are
applied in sequence. At each step, if a label node matching the sequence
of labels generated by the expansions is found, then information about the
matching fragment is added to the search result.

As an example, consider decoding the tree t = (A(B)(D)) with the
FragTree shown in Figure 4.6. First, a label node matching the root of
the tree is searched within the children of the FragTree root, and it is found
(id:1). Since node A has 2 children, both production rules outgoing from
the label node are compatible, and result in two search paths. If we fol-
low the top path, we are required to expand one of the children of A in
t. This results in two fragments: (A(B)) and (A(D)). The first fragment is
matched (id:2) and added to the result, whereas the second does not exist.
This search path is now exhausted, since neither (A(B)) nor (A(D)) can be
further expanded. If we follow the bottom search path, we are required to
include both children of A in t, and obtain the fragment (A(B)(D)). Since
there is no label node matching the label set [B,D], search on this path is
terminated.

Algorithm 4.6 lists the pseudocode of the DECODE(·) operation, which
realizes the decoding process. Explaining the algorithm requires the defi-
nition of the following operators, in addition to those already introduced in
Section 4.6.2:
NODES(x) returns the set of nodes of tree x, i.e. Nx;
IS LAB NODE(x) is verified if the FragTree node x is a label node;
LAB NODES(x) returns the set of label nodes emanating from node x;
PROD NODES(x) returns the set of production nodes emanating from the node

x;
FOUND(x) updates the results of the decoding process with information
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Algorithm 4.6 DECODE(tree, idxRoot)
mainfor each node ∈ NODES(tree)

do




nodes ← [node]
labs = LAB NODES(idxRoot)
if nodes ∈ labs

then
{idxNode ← labs{nodes}

LOOKUP(idxNode, nodes, [ ])
procedure LOOKUP(idxNode, curLevel, nextLevel)
if IS LAB NODE(idxNode)

then FOUND(idxNode)
else



labs ← LAB NODES(idxNode)
if nextLevel ∈ labs

then LOOKUP(labs{nextLevel}, nextLevel, [ ])
for each prod ∈ PROD NODES(idxNode)

do




if COMPATIBLE(prod, curLevel)

then




nextLabCombs ← APPLY(prod, curLevel)
for each nextLabs ∈ nextLabCombs

do


next ← COPY(nextLevel)
APPEND(next, nextLabs)
LOOKUP(prod, curLevel, next)

about the fragment x appearing in the input tree. Decoding keeps
track of how many times each fragment is found within a tree;

COMPATIBLE(x, y) checks whether the production rule encoded by x is com-
patible with the node set y. For example, if the first element of y were
a node with only one child, a production rule like (0 : 2) would not be
compatible, as it would require to expand two children of a node having
just one child. Conversely, (0 : 1) would be a compatible production
rule;

APPLY(x, y) applies the production rule x to the node set y, and returns
all the compatible sequences of expandable nodes. This operation is
combinatorial. Assume that x = (0 : 1) and y = [A], where A is the root
of the subtree (A (B) (C)). The production rule requires to expand one
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child of A. Since A has 2 children, the inclusion of one of its children
can result either in (A(B)) or (A(C )). Therefore, APPLY((0 : 1), [A]) would
return [B] and [C ];

COPY(x) returns a copy of the list x.

The main procedure of the algorithm just traverses all the nodes in the
tree, wraps them in one-element lists and invokes the LOOKUP(·) procedure
on the top-level label nodes with a matching label, if any. The LOOKUP(·)
procedure, which actually implements the exploration of the FragTree, re-
quires three parameters. The first parameter, idxNode is the FragTree
node currently being investigated. The second parameter, curLevel, is a
sequence of nodes. If idxNode is a label node, then curLevel is a se-
quence of nodes whose labels match the sequence encoded by idxNode.
If idxNode is a production node, then curLevel is the last matched node
sequence, i.e. the sequence of nodes matching the label of the first label
node p on the path from idxNode to the root of the index. Let P be the
path from p to idxNode. The third parameter, nextLevel, is the sequence
of nodes obtained by applying to curLevel the expansions encoded by the
production nodes on P. If the length P is zero, i.e. idxNode is a label
node, then it follows that nextLevel = [ ].

When the procedure is invoked, if idxNode is a label node, the FOUND(·)
operator is used to add the associated fragment to the result. If idxNode
is not a label node, then it is a production node and it may have outgoing
label nodes; in this case, if a label node matching nextLevel is found,
a new search is started from there. In both cases, the node might have
outgoing production nodes, and the search continues on all the branches
that describe a compatible production.
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Figure 4.7: Examplification of an STKTree.

4.6.4 STKTree: a Simplified FragTree for the STK
The FragTree is general enough to represent all the fragments generated by
the PTK. For kernel functions that generate a more constrained fragment
space, it is possible to re-engineer the data structure and make it more
compact and fit for the task.

The STKTree is a specialized FragTree that is enough to represent the
set of operations necessary to describe STK fragments. The simplification
moves along the following lines:
• Expanding a node automatically implies the inclusion of all its chil-

dren. As a consequence, production nodes do not need to represent
the cardinality of each node expansion operation, but only the offset
of expanded nodes;
• All the expansions performed at a given depth can be compacted into

a single production node, listing the offsets of all the nodes expanded.
An example of STKIndex is shown in Figure 4.7. A production node la-
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beled (0, 1) means that the first and the second nodes listed in the incoming
label node should be expanded by including all their children in the frag-
ment. As an example, consider all the nodes on the path labeled a, i.e. the
path connecting the root of the index to the node labeled c,d,#,h,k (id: 11),
on the top right. From left to right, the path can be read as:

1. The root of the fragment is labeled A;
2. Expand the first node (offset 0) at the previous level;
3. The expansion produces two nodes, B and C ;
4. Expand the first and the second (offsets 0 and 1) nodes at the previous

level;
5. The expansion produces four nodes: c and d, which descend from the

first node expanded (i.e. B), and h and k, which descend from the
second.

This path encodes the fragment labeled as fa in Figure 4.7. Similarly, the
path whose edges are labeled b encodes the fragment fb.

Encoding and decoding for the STKTree are basically the same as for the
general case. However, we can exploit the simplified structure of the graphs
to streamline the algorithms and make them more compact and efficient.
Algorithm 4.7 shows a tailored version of the ENCODE(·) procedure for the
STKTree. In this case, the main difference is that we do not generate a new
production node for each node expansion, but just one production node that
encodes all the expansions that occur at a given depth. The for each loop
builds the sequence of nodes that constitute the next level in the tree and
the corresponding list of offsets. If these sequences are not empty, then a
new production node is created and the PUT(·) method is invoked with the
new set of nodes, otherwise the statistics about the fragment are updated
via the UPDATE(·) operator.
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Algorithm 4.7 ENCODE STK(frag, fragData, idxRoot)
mainnodes ← [ROOT(frag)]
PUT(idxRoot, nodes, fragData)

procedure PUT(idxNode, nodes, fragData)
idxNode ← GET LAB(idxNode, nodes)
next ← [ ]
productions ← [ ]
for each offset ∈ [0, . . . , LEN(nodes)− 1]

do




children ← CHILDREN(nodes[offset])
l ← LEN(children)
if l > 0

then
{APPEND(next, children)

APPEND(productions, offset)
if LEN(next) = 0

then UPDATE(idxNode, fragData)
else

{idxNode ← GET PROD(productions)
PUT(idxNode, next, fragData)

Algorithm 4.8 lists the pseudocode for tree decoding in a STKTree. The
first difference is that only an internal node of a tree can be the root of a
fragment. Therefore, only the internal nodes of the tree are considered in the
main procedure. Concerning the LOOKUP(·) procedure, the main difference
is that the APPLY(·) operation in this case is not combinatorial, i.e. there is
only one possible expansion for any set of nodes, since every time all their
children must be included. If idxNode is a label node, then we identify the
compatible production nodes and initiate as many search paths, if any. If
idxNode is a production node, we search for an outgoing label node that
matches the expected labels (at the next level) and, if found, we continue
searching in the direction.

84



4.6. FRAGMENT INDEXING

Algorithm 4.8 DECODE STK(tree, idxRoot)
mainfor each node ∈ INTERNAL NODES(tree)

do




nodes ← [node]
labs = LAB NODES(idxRoot)
if nodes ∈ labs

then
{idxNode ← labs{nodes}

LOOKUP(idxNode, nodes, [ ])
procedure LOOKUP(idxNode, curLevel, nextLevel)
if IS LAB NODE(idxNode)

then




FOUND(idxNode)
for each prod ∈ PROD NODES(idxNode)

do



if COMPATIBLE(prod, curLevel)
then

{next ← APPLY(prod, curLevel)
LOOKUP(prod, curLevel, next)

else


labs ← LAB NODES(idxNode)
if nextLevel ∈ labs

then LOOKUP(labs{nextLevel}, nextLevel, [ ])

4.6.5 Learning Architectures and Decoding
With respect to the alternative architectures described in Section 4.1, we
should observe that the results of the decoding process are employed dif-
ferently in the MLin and the LOpt (or Split) architectures.

In the first case (Sec. 4.1.1), since we want to carry out classification
using the weights estimated by the SVM, we want the linear representation
of the space to be as close as possible to the original frament space. We
evaluate Eq. 4.3 (for STK) or Eq. 4.4 (for PTK) for every fragment identified
within a tree ti, and build the corresponding vector xi using these values. If
we imagine to project the whole fragment space, it is equivalent to simply
assume that relevant fragments have the correct weight, whereas the weight
of irrelevant fragments is set to zero.

Concerning LOpt (Sec. 4.1.2), since the linearized data will be used for
a new optimization problem in the projected space, we are only interested
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in listing which fragments appear in a tree. In this case, it is sufficient to
build the vectors by encoding the number of occurrences of each fragment
in the original tree, as exemplified in Figure 2.4.
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Chapter 5
Experimental Evaluation
To confirm our theoretical results and to demonstrate the performance of our
algorithms, we ran experiments on three very different NLP benchmarks that
allow us to stress and evaluate different aspects of the problem. The three
tasks are Question Classification, Relation Extraction and Semantic Role
Labeling.

In the remainder of this chapter, 5.1 describes the three tasks and the
data sets that we employed.

In Section 5.2 we provide evidence that confirms the theoretical frame-
work outlined in Section 4.3. We do so by means of the Model Linearization
architecture (MLin, Sec. 4.1.1).

In Section 5.3 we compare the accuracy of the Linear Space Optimization
(LOpt, Sec. 4.1.2) model against non-linearized STK classifiers, and show
that our feature selection technique achieves comparable results on all the
benchmarks.

In Section 5.4 we demonstrate the efficiency of the greedy mining al-
gorithm (Sec. 4.5.4) and the STKTree data structure (Sec. 4.6.4). We
empirically analyze time complexity of the kernel space mining (KSM) and
linear space generation (LSG) stages of the process (Sec. 4.1).

In Section 5.5 we show how classification in the linear space can be far
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more efficient than in the original STK space, and that, for large datasets
such as SRL, the Split architecture (Sec. 4.1.3) can be used to improve the
efficiency of the learning process, without compromising the final accuracy.

Finally, in Section 5.6 we discuss the capability of the feature selection
technique to make explicit the most relevant fragments for each class.

Experimental setup. All the experiments were run on a machine equipped with 4
Intel R© Xeon R© CPUs clocked at 1.6 GHz and 4 GB of RAM running on a Linux 2.6.9
kernel. As a supervised learning framework we used SVM-Light-TK 1, which extends
Thorsten’s SVM-Light optimizer [Joachims, 2000] with support for tree kernel functions.
The package implements the efficient STK and PTK algorithms described in [Moschitti,
2006a]. In all the experiments, the STK is normalized and evaluated with the default
decay factor λ = 0.4. During LSL, the classifier is trained using a linear kernel.

5.1 Tasks and Datasets
This section describes the tasks that we tackled with our feature extraction
framework and provides details about the composition of the datasets.

5.1.1 Question Classification
Given a question, the QC task consists of selecting the most appropriate ex-
pected answer type from a given set of possibilities. We adopt the question
taxonomy known as coarse grained, which has been described in [Zhang and
Lee, 2003] and [Li and Roth, 2006], including six non overlapping classes:
Abbreviations (ABBR), Descriptions (DESC, e.g. definitions or explana-
tions), Entity (ENTY, e.g. animal, body or color), Human (HUM, e.g. group
or individual), Location (LOC, e.g. cities or countries) and Numeric (NUM,
e.g. amounts or dates).

We employ TREC 10 QA data [Voorhees, 2001], consisting of 6,000 ques-
tions. For each question, we generate the full parse of the sentence and

1http://disi.unitn.it/~moschitt/Tree-Kernel.htm
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ABBR DESC ENTY HUM LOC NUM
TR+ 85 1,192 1,223 1,201 834 933
TR− 5,383 4,276 4,245 4,267 4,634 4,535
TE+ 11 106 122 91 80 75
TE− 474 379 363 394 405 410

Table 5.1: Question classification dataset - Number of positive and negative examples in
the training (TR) and test (TE) set for the binary classifiers of the QC task.

1 2 3 4 5 6 7
TR+ 982 272 1,284 160 115 433 217
TR− 33,555 34,265 33,253 34,377 34,422 34,104 34,320
TE+ 225 91 331 51 19 91 58
TE− 8,409 8,543 8,303 8,583 8,615 8,543 8,576

Table 5.2: Relation extraction dataset - Number of positive and negative examples in the
training (TR) and test (TE) set for the binary classifiers of the RE task.

used it to train our models. The automatic parses are obtained with the
Stanford parser [Klein and Manning, 2003]. 2 We actually have only 5,953
sentences in our data set due to parsing issues with a few of them.

Since we observe an uneven distribution of positive and negative ex-
amples in the standard split of the dataset, we use a balanced random
selection to generate our training/test split, containing respectively 5,468
and 485 sentences.Table 5.1 shows, for each class, the number of positive
and negative examples in the training and test splits.

The classifiers are arranged in a one vs. all configuration, where each
sentence is a positive example for one of the six classes, and negative for
the other five. The accuracy of our models is measured as the percentage
of correct class assignments.
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5.1.2 Relation Extraction
For the relation extraction task we used the newswire and broadcast news
domain of the ACE 2004 English corpus [Doddington et al., 2004], consisting
of 348 documents. The dataset defines seven types of relations between en-
tity pairs: Physical, Person/Social, Employment/Membership/Subsidiary,
Agent-Artifact, Person/Organization Affiliation, Geo-Political Entity Affili-
ation, and Discourse. In the remainder, these relations will be associated
with class labels 1 through 7. The class label 0 is assigned to those ex-
amples where none of the seven relations is instantiated. Classifiers are
arranged in a One vs. All fashion, where a positive instance for a class is
negative for all the others.

The dataset used in the experiments is the same used by [Nguyen et al.,
2009]. We consider the entity mentions annotated in each sentence, and
for each sentence we generate as many examples as the number of men-
tion pairs compatible with some class definition. For example, the sen-
tence “Bush commented on the agreement between Yahoo! and Microsoft”
would generate two examples for Person/Organization, one for the pair
“Bush/Yahoo!” and one for “Bush/Microsoft”. In this case, both of them
would be positive examples for the class labeled 0, i.e. no relation. Each
example is parsed with the Stanford parser [Klein and Manning, 2003],
where entities are annotated as synthetic nodes which are added between
the node dominating the mention and its parent. The result of this process
includes 43,171 examples, 34,537 of which are used for training and 8,632
for testing. Table 5.2 shows, for each class, the number of positive and
negative examples in the training and test splits.

The accuracy of the multiclass classifier is evaluated as the micro-
averaged precision, recall and F1 measure of the seven relation classifiers,
i.e. 1-7. If all the classifiers classify an example as a negative instance,

2http://nlp.stanford.edu/software/lex-parser.shtml.
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5.1. TASKS AND DATASETS

A0 A1 A2 A3 A4 A5
TR+ 60,707 81,511 19,423 3,313 2,651 68
TR− 106,966 86,162 148,250 164,360 165,022 167,605
TE+ 2,007 2,791 624 101 60 2
TE− 3,533 2,749 4,916 5,439 5,480 5,538

Table 5.3: Semantic role labeling dataset - Number of positive and negative examples in
the training (TR) and test (TE) set for the binary classifiers of the SRL task.

then it is considered as labeled 0.

5.1.3 Semantic Role Labeling
The Semantic Role Labeling (SRL) task requires to identify word sequences
that play a semantic role with respect to some predicate word w. As a
benchmark, we use PropBank annotations [Palmer et al., 2005] and auto-
matic Charniak parse trees [Charniak, 2000] as provided for the CoNLL 2005
evaluation campaign [Carreras and Màrquez, 2005]. We start from trees an-
notated with gold information about the position of arguments, and focus
on the multi-classification problem of assigning the correct role to each ar-
gument. In particular, we will consider argument nodes corresponding to
any of the six core roles defined in PropBank, i.e. A0, A1, . . . , A5.

We build a dataset by extracting ASTm structured features [Moschitti
et al., 2008] for each predicate/argument pair. An ASTm is defined as the
minimal tree that covers all and only the words of the predicate node p
(i.e. the node that dominates the predicate word) and the argument node
a (i.e. the node that dominates the argument words). In the ASTm, p and
a are marked so that they can be distinguished from the other nodes. As a
training set, we collected all the ASTms for core roles from all the available
training sections, i.e. 2 through 21, for a total of 167,673 examples. For
testing, we used 5,540 ASTm similarly extracted from section 24.

Table 5.3 shows, for each class, the number of positive and negative
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examples in the training and test splits.

5.2 Fragments and Gradient Norm
The basic assumption of our feature selection technique is that in a TK
space it is possible to select out an exponential number of fragments, while
retaining a large fraction of the norm of the original gradient, as theorized
in Lemma 4.3.4. If we can preserve the gradient norm, we can assume that
removing a great number of features has not altered the geometry of the
separation problem significantly, i.e. the margin, as shown by Lemma 4.3.1.
Therefore, it should be possible to use the hyperplane characterized by win,
i.e. the projection of the original hyperplane in the low-dimensional space,
to classify the projected data with some degree of accuracy.

To this aim, we can combine the greedy miner algorithm described in
Algorithm 4.4 (for aggressive feature selection) with the MLin architecture
presented in Section 4.1.1 (for the evaluation of the linearized models). It
should be recalled that in this configuration we re-use the weights estimated
in the TK space to classify examples in the lower-dimensional linear space.

Figures 5.1, 5.2 and 5.3 show how the gradient norm changes according
to the number of fragments that we mine, i.e. according to different values
of the threshold factor parameter value L, for each of the QC, RE and SRL
classes, respectively. The reader should recall that, in Section 4.3, we
used (1−ρ) to designate the fraction of norm that is retained after feature
selection.

As we can see, all the plots show a very similar behaviour. By increasing
the number of fragments that we mine, first (1− ρ) increases very fast, ap-
proximately with the logarithm of the number of fragments, then it stabilizes
and remains mostly constant even if we keep adding fragments. This point
is approximately between 103 and 103.5 fragments for QC classes, between
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Figure 5.1: QC: included fragments vs. norm.

103.5 and 104 for RE classes, and between 104 and 105 for SRL classes.
The plateau point of each class shows some correlation with the number

of training instances for each class, and especially with the number of
positive points, which is then correlated with the number of support vectors
retained in the model. In fact, in Figure 5.1 we can see that it takes
more fragments to reach the plateau for DESC, ENTY and HUM, which
have approximately 1,000 positive examples in their training sets, than for
ABBR that only have 85 positive training points (see Table 5.1). The same
behaviour can be observed in Figure 5.2 (classes 1 and 3 vs. 4 and 5) and
in Figure 5.3 (classes A0, A1 and A2 vs. A5). As we can expect, classes
having very few positive training points, for which we can generally learn
compact models with a small number of SVs, require a smaller number of
fragments to reach the plateau. As an example, with approximately 150-200
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Figure 5.2: RE: percentage of norm retained after feature selection (1 − ρ) vs. number
of fragments.

fragments we can build a gradient win for the A5 classifier in Figure 5.3
whose norm is approximately 85% of the norm of the original gradient w .

Most interestingly, these plots confirm the theoretical result of Lemma
4.3.1, showing that it is actually possible to discard an exponential number
of features producing only a limited effect on the gradient norm. To quantify
the aggressiveness of the feature selection with an example, the reader
should consider that the fragment space encoded in the A1 STK model
consists of approximately 1025 ∼ 1035 fragments. The 140 most relevant
fragments that we select account for approximately 26% of the gradient
norm, and with less than 2,000 fragments only half of the norm is lost. By
including between 50 and 60 thousand fragments, less than 1/4 of the norm
is lost.
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Figure 5.3: SRL: percentage of norm retained after feature selection (1− ρ) vs. number
of fragments.

The next three figures plot the F1 measure of MLin with respect to (1−ρ)
for each class of the three tasks, respectively QC (Figure 5.4), RE (Figure
5.5) and SRL (Figure 5.6). In spite of per-class and per-task differences,
we can generally observe that the accuracy of the linearized models is near
zero for lower values of (1 − ρ), e.g. 0.2 ∼ 0.4, and tends to grow very
fast and reach results that are comparable with non-linearized classifiers,
represented as dashed lines. With an appropriate number of fragments,
almost every MLin classifier can match the accuracy of STK.

By comparing the three groups of plots, we can observe that the trend
of accuracy is especially regular for those classifiers that observed a large
number of positive examples during training, e.g. DESC and ENTY for
QC, 1 and 3 for RE, and A0, A1 and A2 for SRL. Since the features that
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Figure 5.4: QC: Accuracy of the MLin model vs. norm after feature selection - A dashed
line marks the accuracy of the corresponding STK (i.e. non-linearized) classifier.

we consider while calculating ‖win‖ are those with the highest cumulative
relevance, potentially relevant fragments are not very likely to be selected if
they do not appear with sufficient frequency. This leads to irregular trends,
due to bad generalization performance, in classes like A5 (SRL) or ABBR
(QC).

The high accuracy values that we can achieve with MLin clearly confirms
the findings of Lemma 4.3.1. They show that the less we affect the gradient
norm, the more we can retain the geometric properties of the separating
hyperplane, and preserve the large margin estimated by the SVM. In fact,
we can reuse the weights estimated by the SVM in a space with an ex-
ponentially larger number of features and still achieve good classification
accuracy.
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Figure 5.5: RE: Accuracy of the MLin model vs. norm after feature selection - A dashed
line marks the accuracy of the corresponding STK (i.e. non-linearized) classifier.

5.3 Comparing Accuracy against STK
To assess the potential of the feature selection strategy in terms of accuracy,
we consider the greedy miner algorithm (Alg. 4.4) with the LOpt architecture
(Sec. 4.1, Fig. 4.2) and compare its accuracy against STK. For each task,
a multi-classifier is obtained by combining the binary classifiers in a One-
vs-All (OvA) fashion.

Training LOpt for a class c implies: 1) learning an STK model M for
c (KSL); 2) mining M with a value L for the threshold factor parameter
(KSM); 3) decoding the training and test data (LSG); 4) learning a linear
model M′ in the projected space using the decoded training data (LSL); 5)
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Figure 5.6: SRL: Accuracy of the MLin model vs. norm after feature selection - A dashed
line marks the accuracy of the corresponding STK (i.e. non-linearized) classifier.

classifying the decoded test data with M′ (LSC).
Since binary STK classifiers for QC and RE showed a consistent pre-

cision/recall unbalance, we optimize the parameter j of SVM-Light on a
per-class basis. j is the cost factor by which training errors on positive
examples outweight errors on negative examples [Morik et al., 1999]. Val-
idation is carried out on a development set obtained by sampling 1/7 and
1/6 of the respective training data. The optimal value of the parameter is
estimated with a simple hill-climbing algorithm. Per-class estimated values
of the parameter are listed in Table A.4a.

The optimized STK models are then employed for KSL, as well as a term
of comparison for LOpt. To make the comparison fair, for QC and RE we
also optimize j for learning in the linear space. LSL optimization is carried
out for each value of L, i.e.:

1. we set a value for L;
2. the STK model is mined;
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Figure 5.7: LOpt multiclass accuracy on the different tasks for different values of the
threshold factor parameter L.

3. linear data are generated;
4. the optimal value for j is estimated on these data.
Figure 5.7 plots the multiclass F1-measure on the three tasks. Multi-

classifiers are obtained by OvA-combining LOpt classifiers that used the
same value of L during KSM. For reference, the number of fragments mined
from each class for different values of L is listed in Tables A.1 (QC), A.2
(RE) and A.3 (SRL).

The three tasks exhibit a very similar behaviour: they are very inaccurate
for extremely low values of L (i.e. 2 or 5, corresponding to a linear space
with approximately O(101) ∼ O(102) attributes), then peak for 10 ≤ L ≤ 25.
After that, they stabilize. The thick lines in the plot correspond to the
accuracy of STK multi-classifiers for the three tasks, from top to bottom:
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ABBR DESC ENTY HUM LOC NUM MULTI
STK 80.00 86.26 76.86 84.92 81.69 92.31 83.71
LOpt 89.66 87.50 75.56 84.53 92.08 94.60 83.92

Table 5.4: QC: F1-measure of STK vs. LOpt best model.

SRL, QC and RE.
For SRL, LOpt generally outperforms STK, stabilizing for L ≥ 10 around

F1 values close to 90. Concerning QC, LOpt improves over STK only for
L = 10, then stabilizes approximately two F1 measure points below it (e.g.
81.65 for L = 50 vs. 83.71). The RE-LOpt multi-classifier cannot improve
over STK, and stabilizes two points below it, i.e. 65.92 for L = 75 vs. 68.01.

These results suggest that the feature selection framework is capable
of producing linear classifiers whose accuracy is comparable with STK, if
appropriate values of the threshold factor parameter L are selected. Inter-
estingly enough, these values are generally very low, i.e. 10 or 25, resulting
in very compact linear classifiers.

In the next experiment, for each class we estimate the optimal value of
L on the development set. For the SRL task, validation is carried out on
the 9,277 argument nodes of PropBank section 23. 3 For QC and RE, after
estimating the optimal value for L, we also select the best cost factor in
the linear space. The set of optimal parameters for all the binary LOpt
classifiers are listed in Table A.4b. The results of the per-class and multi-
class evaluation are displayed in tables 5.4, 5.5 and 5.6.

Concerning QC (Table 5.4), LOpt binary classifiers outperform STK on
four classes, namely ABBR, DESC, LOC and NUM. In two cases, i.e. ABBR
and LOC, the improvement is very consistent: 9.66 points in the former
(89.66 vs. 80.00) and 7.39 in the latter (92.08 vs. 81.69). The improvements
are very interesting, especially if we consider that the STK classifier is

3In the official CoNLL-2005 split, section 24 is used for development and section 23 for testing. We used
section 23 for development because we already running experiments using section 24 as a test set.
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1 2 3 4 5 6 7 MULTI
STK 51.61 81.66 79.75 76.19 16.00 57.69 68.69 68.01
LOpt 63.96 67.33 74.14 63.33 58.82 62.83 61.70 67.08

Table 5.5: RE: F1-measure of STK vs. LOpt best model.

highly balanced and optimized.
ABBR and LOC are the two classes with the smallest number of positive

training points (85 and 834), and in these cases the TK may over-estimate
the relevance of positive training points, by over-fitting irrelevant features
to the data. This is not an issue in the very low dimensional projected
space. As for the multiclassifier, we observe that LOpt can preserve the
accuracy of STK, i.e. 83.92 vs. 83.71. Unluckily, most of the accuracy
gained with the binary classifiers is lost during recombination.

In the case of RE (Table 5.5), we observe that the linearization framework
is generally less effective. In fact, LOpt improves over STK on three classes
out of 7, namely 1, 5 and 6. The LOpt classifier for class 5 is more than three
times as accurate as its STK counterpart, which has a very low F1. However,
the STK classifier is still well parametrized, with a precision of 12.9 and
a recall of 21.05. Also in this case, the class has a very small positive
training set, and the good improvement is an effect of the reduced tendency
to overfit. The classes where LOpt accuracy loss is more evident, e.g. 2
and 4, correspond to heavily lexicalized relations, Person/Social Group and
Agent/Artifact. Overall, the LOpt multi-classifier is approximately one F1
point less accurate than STK, i.e. 67.08 vs. 68.01.

Unlike the QC task, in which different classes of questions often have a
different syntactic structure, in RE many relations share a similar syntax
but are characterized by different lexical realizations. In many cases, the
mentions involve proper nouns, and in order to establish the presence of a
relation it is necessary to consider fragments that contain lexical anchors
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A0 A1 A2 A3 A4 A5 MULTI
STK 91.55 88.50 72.33 57.34 65.96 66.67 87.69
LOpt 91.77 90.09 78.63 62.67 72.16 66.67 88.90

Table 5.6: SRL: F1-measure of STK vs. LOpt best model.

for both mentions. This kind of information (the subtree dominating both
mentions, up to their leaves) is encoded only by large fragments, which are
very unlikely to achieve high cumulative relevance due to data sparsity and
the decay factor of the kernel. In this context, the STK has the advantage of
considering all the fragments that characterize the two mentions and their
syntactic link. These may be discarded by the miner since not very relevant
per se. However, they still play a decisive role when observed together.

The results on the SRL benchmark are listed in Table 5.6. All the LOpt
classifiers outperform or match (A5) the accuracy of STK. LOpt manages
to improve by approximately 1.5 points the accuracy of A1-STK, 90.09 vs.
88.50, whereas for A2, A3 and A4 the improvement is more consistent, by
about 5 F1 points. The A5-LOpt classifier classifies correctly only one of the
two positive test examples, just like A5-STK. On the multi-class problem,
LOpt improves over STK by more than 1 F1 point, i.e. 88.90 vs. 87.69, a
good achievement considering the high accuracy of STK.

As a whole, the results obtained on the three benchmarks confirm that
the LOpt model can result in classifiers whose accuracy is in line with non-
linearized STK classifiers. Interestingly, the best values for the threshold
factor parameter L are generally very low, the most frequent being 10 and
25 (as shown in Table A.4b and anticipated by 5.7). As we will show in
Section 5.5, these classifiers are also very efficient if compared against STK.
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5.4 Algorithmic Efficiency
This section focuses on the evaluation of the efficiency of the algorithms
involved in the feature selection process. It begins with an empirical anal-
ysis of KSM and LSG time complexity. KSM insists on the greedy miner
and fragment encoding algorithms, respectively described in Alg. 4.4 and
Alg. 4.7. LSG efficiency depends on the complexity of the STK decoding
algorithm, listed in Alg. 4.8.

A note on implementation. The STKTree data structure and all the algorithms involved
in the linearization process are coded in Python34. This choice is motivated by the
need for a fast development platform that would allow us to effectively implement and
experiment with different algorithms and data structures. Due to the experimental
nature of the software, non-critical parts of the process have not been optimized. We
can expect that optimizing the code and re-implementing it in a compiled language
like C or C++ would result in further and consistent efficiency gains.

Figure 5.8 plots KSM and LSG time against the number of mined frag-
ments, along with the respective trendlines. The scatters are based on the
STKTrees for the SRL task, which contains the highest number of fragments
due to the larger dataset. Both algorithms show sub-linear behaviour, re-
spectively O(x0.76) and O(xo.17), confirming that STKTree scales well with
the number of mined fragments.

Concerning KSM, fragment mining and tree encoding are very tightly
coupled operations. However, we can observe that the encoding process
(Alg. 4.7) traverses a fragment in depth first order. The complexity of this
operation is linear with the number of nodes in the fragment, and does not
really depend on the size of the STKTree. On the other hand, the more
the fragments in the STKTree, the less the chances of having to create
new nodes when invoking the GET LAB(·) and GET PROD(·) procedures. The
asymptotic behaviour of KSM time can therefore be largely ascribed to the

4http://www.python.org.
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Figure 5.8: KSM and LSG time vs. number of mined fragments - For KSM, the plot is
obtained by combining data from all binary linearized classifiers of the three tasks. For
LSG, SRL data has been employed.

greedy miner5.
Concerning LSG, the plot shows that the time it takes to decode the data

is approximately proportional to the cubic root of the size of the dictionary.
This result, which suggests that the STKTree structure is effective in guiding
the decoding process, is confirmed by the plots in Fig. 5.9, where we show
how the size of the to-be-decoded tree affects LSG time. With respect to
Algorithm 4.8, the figure plots time complexity of the LOOKUP(·) operation
(that finds the fragments rooted in a given node of the tree) and of the
overall DECODE STK(·) operation (that invokes LOOKUP(·) for all the nodes

5Mining complexity is actually a function of L, i.e. the threshold factor parameter, and not of the number
of fragments in the STKTree. The latter is, in turn, a function of L and the characteristics of the dataset. The
values of L corresponding to different number of fragments for the SRL classifiers are listed in Table A.3.
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Figure 5.9: Average decoding time for trees of different size.

in a tree). The plot is obtained by measuring decoding time for all the
trees in the SRL with the STKTree for the A1 class, the index with the
highest number of fragments, and shows average and standard deviation for
subtrees of the same size.

The scatters can be approximated with sub-linear curves, but they ba-
sically show a linear trend. This is a feature of the STKTree, that while
decoding allows us to generate only a subset of all the possible fragments.
If we could not rely on this information, we would have to generate all the
fragments in the tree, and hence expect an exponential complexity. Even
assuming to know the size of the maximum expansion performed during min-
ing, let us call it E , and the depth of the largest encoded fragment, D, the
complexity of generating all the fragments rooted in a node n would still be
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O(s(n)ED), s(n) being the number of internal nodes in the subtree rooted
in n.

5.5 Process Efficiency
In this section we provide an empirical evaluation of the efficiency of our
feature selection strategy, i.e. its effect on the training and test time of a
classification problem.

When employing LOpt (or Split), classification time is the time necessary
to decode the test data (LSG) and to classify it with the linear model (LSC)6.
Similarly, training time is the sum of the time required to carry out: KSM,
during which we learn the tree kernel model; KSM, where the relevant
fragments are mined; LSG, consisting of the decoding of the training data;
and LSL, during which the linear model is learned.

Figure 5.10 plots LOpt classification time normalized against its STK
counterpart, for different values of the threshold factor parameter L. For
each task we show the results measured on the slowest of the binary clas-
sifiers, namely ENTY for QC, class 1 for RE and A1 for SRL. STK classifi-
cation time is shown as a thick black line. As we can expect, the efficiency
improvement is especially noticeable for the A1 classifier: in this case, the
very large model (36,824 support vectors) requires STK to perform a great
number of kernel products, making it quite inefficient. LSG time for LOpt
is more than compensated by the increased burden of tree kernel evalua-
tion, and also for L = 1, 000 (when the STKTree indexes approximately 3e5
fragments) the A1-LOpt classifier is about 20% faster than STK.

At the other end of the spectrum, the model for ENTY is very small (3,342
SVs), and therefore STK classification is more efficient than LSG+LSC.

6We consider the sum of LSG and LSC, even though decoding and classification could be easily pipelined,
e.g. after decoding the first test example, we could classify it and decode the first example in parallel.
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Figure 5.10: Classification efficiency of LOpt classifiers - We consider classification time
the time required to decode the test set (i.e. LSG time for the test data) and to classify in
the linear space. For each task, the slowest STK classifier was selected.

However, by referring to Table A.4b we can observe that the most accurate
models for the three binary classifiers are those with L = 25. With these
parameters, LSC time is approximately 40% of STK time for ENTY (QC)
and class 1 (RE) classifiers, and less than 20% in the case of A1 (SRL). We
should also note that while LOpt classification time also accounts for I/O
time (which is a major player, especially for large values of L since decoding
a tree requires to write very long vectors), STK classification time does not.

To analyze learning efficiency, we consider the most data intensive
among the three tasks, SRL, and the Split configuration outline in Fig.
4.3. The split configuration is an extension of the LOpt architecture, where
the original training data is partitioned into S sets at the time of KSL.
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Figure 5.11: Learning time on the A1 class (SRL) with the Split configuration.

For each class, we learn S models using STK during KSL, then mine them
during KSM, and finally recombine the fragments into a unique STKTree,
which is used for LSG. The linearized data is then used for learning a linear
model in the lower dimensional space, i.e. LSL. The LOpt architecture is a
special case of Split with S = 1. Henceforth, let Splitx be a Split model
with S = x, e.g. Split1 is an LOpt model.

Figure 5.11 focuses on the most demanding classifier for the SRL task,
A1, and plots, for different values of L, time complexity (in seconds) of the 4
components of Split learning: KSL, KSM, LSG (only for training data) and
LSL. We consider learning to be carried out on a single CPU, i.e. all the
stages of the process are sequential. The top-left plot in Fig. 5.11 shows
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Figure 5.12: Learning efficiency of the Split architecture vs. STK on the A1 class.

KSL time. Since KSL does not depend on L, all the plots are constant. As
expected, increasing the number of splits can drastically reduce learning
time in the kernel space.

Concerning KSM (top-right) and LSG time (bottom-left), they are only
marginally influenced by the number of splits. For increasing values of S, we
have less SVs in a model, therefore mining each model is generally faster.
Furthermore, the final STKTree (obtained by combining the fragments mined
from each mode) will tend to include less fragments than when mining a
single model. This is explained by the fact that most of the fragments will be
duplicated across models, and therefore will be redundant after merging.7
For the same reason, LSG is faster for Split50 than for Split1. Due to the
smaller linear space, increasing the number of splits also has a positive
effect on LSL, as shown by the bottom-right plot in Fig. 5.11.

7See Table A.5 for the size of the A1 STKTree for different values of L and S.
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Overall, a high number of splits can considerably reduce KSL, which con-
tributes most of the computational burden, while affecting only marginally
the other stages of the process. In Figure 5.12 we plot the cumulative
training time of the A1-Split model, i.e. KSL + KSM + LSG + LOpt
time, normalized against STK training time (which is the same as KSL
time for Split1. As a reference, KSL learning time has been measured to
approximately 50 thousand seconds, i.e. 5 days). Training Split1 is less
efficient than training STK, since the latter does not have the overhead
introduced by KSM, LSG and, especially, LSL. The overhead introduced
by the linearization framework is approximately 20% for L = 25 and 30%
for L = 1, 000. Increasing the number of splits, learning efficiency improves
considerably. Training Split5 is approximately between 70% and 50% less
costly than STK, while Split50 can be trained in between 1/10 (L < 10) and
1/5 (L = 1, 000) of the time necessary to train STK.

The efficiency of Split can be further improved if we consider paral-
lelization. In fact, several activities of the process can be carried out con-
currently: KSL (we can assign each split of the training data to a distinct
CPU/core/node to learn the STK model); KSM (each model can be mined
indipendently); and LSG (each split can be linearized on a different node).
The only stage that cannot be carried out in parallel is the optimization
of the global linear model, LSL. The dotted line in Fig. 5.12 marks Split1
training time when using 5 CPUs. In this case, also KSL cannot be par-
allelized, since we have only one split. Therefore, increasing the number
of CPUs for Split1 does not introduce a real gain. The situation is very
different for Split5 using 5 CPUs, whose learning time is shown in figure
as a dashed line: since we can parallelize KSL, we can drastically reduce
the time complexity of the model and make it approximately as efficient as
Split10 or Split25 on a single processing unit.

Faster algorithms in the linear space. Concerning learning time of LOpt and Split
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Figure 5.13: Multi-class accuracy of the Split configuration on SRL - The plot shows
the percentage of STK accuracy achieved by using different number of splits for different
values of the threshold factor parameter L.

classifiers, the LSL stage (during which we learn a global optimization in the linear
space) is a major bottleneck. The impact of LSL on the overall training time could
be easily reduced by employing faster SVM learners than SVMLight, which is not
highly optimized for linear spaces. As an example, the LinearSVM optimizer (http:
//www.linearsvm.com/Linear_SVMs.html) scales linearly with the size of training
data and promises very fast learning cycles.

Finally, Figure 5.13 shows the effect of training data splitting on the
final accuracy of the multi-class models. The accuracy of Split, for different
values of L and S, is normalized with respect to the accuracy of STK, shown
as a thick black line. Increasing the number of splits has a negative effect
on the accuracy, but the loss of accuracy is almost negligible. While Split1
(i.e. LOpt) is more accurate than STK, Split5 is as accurate as STK for
L > 10, and Split50 preserves more than 97.5% of the accuracy of STK,
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while being five times more efficient.

5.6 Making the Fragment Space Explicit
As we pointed out in Chapter 1, one of the key features of our fragment
selection strategy is its ability to make the fragment space explicit and
observable. The fragments that we obtain can be a valuable instrument to
improve our understanding of the problems at study, since they can provide
interesting clues about the features that characterize different classes.

A meaningful analysis of the fragments, requiring deep linguistic knowl-
edge and expertise, is out of the scope of this thesis. However, some results
in this direction are discussed in our previous work. In [Pighin and Mos-
chitti, 2009b], we carried out a very high-level analysis of the most relevant
fragments identified for the QC task, observing how different classes insist
on consistently different families of relevant fragments; in [Pighin and Mos-
chitti, 2009a] we observed that a large part of the most relevant fragments
for SRL encode the linguististic features described in [Gildea and Jurafsky,
2002] and [Pradhan et al., 2005].

For completeness, in Appendix B we list the 100 most relevant features
that were selected for each class of the three investigated tasks. The ranking
of the fragments is not based on their weight in the kernel space, but rather
on their relevance in the linear space. After learning the LOpt model,
we check which fragments are encoded by support vectors in the lower-
dimensional space, and we rank them according to their cumulative weight,
considering their sign. By doing so, we obtain the fragments that are more
strictly correlated with positive examples, i.e. those that mostly characterize
the class. The features are collected from the best models optimized for each
class, with the parameters listed in tables A.4a and A.4b for the different
stages of LOpt.
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As a general remark, we can observe that the decay factor is very effective
at limiting the relevance of large structures as shown by the fact that most
fragments only span one or two levels. Still, some classes (e.g. ENTY and
DESC) show a consistent presence of more structured information, and in
some cases the greedy miner is capable of generating quite large fragments,
as in the following examples:

PP

IN NP

NP

NP

T2-GPE

NNP

SBARQ

WHNP SQ

NP

NN

color

VP

.

?

SBARQ

WHNP

WP

SQ

VP

VBP NP

NP PP

IN

of

NP

.

VP

VBD NP

NP

DT

the

NN

PP

IN NP

NP PP .
This is a good piece of evidence in support of our feature generation strat-
egy, that allows large structures to be considered, as opposed to containing
complexity by hard-coding a limit to the size of the admissible fragments.
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Chapter 6
Conclusions
Tree Kernels are interesting tools that can be effectively employed to tackle
problems requiring a large amount of syntactic information, and more gen-
erally for all those cases where there are no clear theories or evidence
concerning the relevant features that characterize a problem.

This thesis has introduced a novel method for feature selection in tree
kernel spaces, combining the power and modeling simplicity of convolution
kernels with the speed and clarity of linear models and explicit feature
representations. Among the major points points of novelty:
• it provides a theoretical framework for feature selection in convolution

kernel spaces. The theory motivates the adoption of very aggressive
selection strategies, which are necessary to cope with the exceptional
dimensionality of the kernel space;
• it describes a greedy selection strategy that exploits the properties

of convolution kernels to project structured data onto a significantly
lower dimensional space. After featue selection, the gradient norm and
the margin in the original space are largely preserved;
• the projection is effective and efficient. Our model can automatically

discover relevant features in a huge space, without the need for ex-
plicitly defined feature extraction algorithms;
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• the interesting features discovered in the rich tree kernel space are
made observable;
• the linearized classifiers sport very good accuracy and faster classi-

fication time. With the Split configuration, training time on larger
datasets can also be improved.

Our theoretical framework is based on statistical learning theory and
properties of support vector learning. We showed that it is possible to
discard an exponential number of attributes in the kernel space and lose
only a relatively small portion of the norm of the separating hyperplane’s
gradient. This finding allows us to reduce the dimensionality of the problem
by several orders of magnitude while still retaining a large margin, and
hence most of the classifier’s accuracy, in the original space.

We studied the problem of how to map individual fragments onto a linear
space, and how to estimate the contribution of individual fragments to the
gradient. We designed an algorithm that finds and explicitly represents
the most relevant fragments encoded in a tree kernel space. The gradient
component associated with a fragment is used both as a measure of its
relevance and to direct the search strategy. As it does not enforce any
constraint on the maximum size of the fragments that it generates, it has
the potential to selectively generate large structures.

To support our claims, we ran an exhaustive empirical evaluation on three
different NLP multi-classification tasks: question classification, relation
extraction and semantic role labeling.

We showed that the weights estimated by the SVM in the tree kernel
space can be reused to carry out classification in a projection of the input
space, where only a few thousands out of billions of attributes are retained.
The good accuracy obtained by these classifiers confirms the validity of
our theoretical assumptions. The algorithms and the data structures that
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we devised show interesting time-complexity properties. Mining the kernel
space and generating the linear representation of the structured data exhibit
sub-linear behaviour with respect to the number of fragments that we decide
to consider. Tree decoding (the process of generating an explicit vector of
relevant fragments from a tree) is approximately linear with the size of the
tree.

The features selected in the high-dimensional space were reused to learn
a new model in the linear space, resulting in classifiers as accurate as those
in the original tree kernel space. Interestingly, the accuracy is generally
maximized for small values of the parameter that controls the size of the
linear space, resulting in very compact models. Such classifiers are very
fast, and they can classify the same test data much more efficiently even
if we consider the burden introduced by tree decoding. We also demon-
strated a technique that, for large datasets, can also improve the efficiency
of learning by splitting the learning problem in the kernel space and learn-
ing a global model in the linear space. With this technique we can exploit
parallel hardware and have learning cycles up to five times as fast, without
compromising the final accuracy of the classifiers.

Finally, we showed that our strategy can produce an explicit representa-
tion of the most relevant structured features for each class, and presented a
selection of the most relevant fragments identified for each class of the three
tasks. Every class shows some peculiarities that would require a deeper
linguistic analysis to be exploited and understood. We demonstrated that
the framework can also be employed for feature discovery in high dimen-
sional spaces, exploiting the capability of the TK to generate and weigh
complex structured objects. This evidence confirms that this thesis marks
an interesting advance towards effective techniques for automatic feature
engineering.
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Research Directions
The results of our experiments have shown that our feature selection ap-
proach for structural kernel is efficient and accurate. Nonetheless, the
model and the algorithms could still be improved in several ways. Most
notably, it would be extremely interesting to establish a theoretical cor-
relation between the optimal value of the threshold factor parameter and
the classification problem. Assuming that it would be possible, the solution
likely depends on several factors, among which the distribution of positive
and negative examples, the weight of the most and least relevant fragments,
the norm of the original gradient and the number of classes involved. The
outcomes of our experiments suggest that a simple correlation between the
distribution of the examples and the optimal threshold does not exist. This
fact is clearly shown by the best parameters identified for the SRL task.

Even lacking a theoretical framework, it would be interesting fo find an
effective algorithm to automatically set the threshold value, without the need
to estimate an optimal parameter on a development set. In this way, the
linearization framework would be more efficient and less prone to overfitting
training data, thus becoming an even more appealing solution. Our results
show that fragment/norm curves (e.g. figures 5.1 and 5.2) have a monotonic
behaviour that makes them interesting candidates in this respect. As we
know that including more fragments than necessary tends to have a negative
effect on accuracy, we could increase the value of the threshold parameter
until the derivative of the fragment/norm curve is above a fixed threshold.

The linearization framework has been designed to be adaptable to cope
with different families of kernel functions. Even though we only experi-
mented wth the STK, basic support for the PTK and for combinations of TK
functions is already available in the software and ready to be experimented
with. By testing our framework with other kernel families, we will be able
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to tackle a lot of other interesting problems and verify the generality of our
claims. It would also be interesting to test the model on datasets coming
from other disciplines, such as bio-informatics or topologic problems, where
TKs and other kinds of structural kernels can find a natural application.

Last but not least, it would be interesting to make the framework even
more general by devising strategies to mine classes of relevant fragments
rather than fragments. In other words, we would like to define a set of
topological and domain-knowledge based rules that can define classes of
equivalence between fragments, and then mine the TK space for the most
relevant classes rather than for fragment instances. A similar approach
would make it possible to learn automatically the abstract feature defini-
tions that characterize a learning problem.
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Appendix A
Evaluation Complement
This appendix collects some tables that can be helpful in reading the out-
come of the experiments (Chapter 5).

L ABBR DESC ENTY HUM LOC NUM
2 2 · 100 1.2 · 101 2.2 · 101 1 · 101 5 · 100 1.4 · 101
5 9 · 100 9 · 101 2.4 · 102 1.2 · 102 3 · 101 7.5 · 101
10 3.9 · 101 4.2 · 102 8.8 · 102 4.9 · 102 1.4 · 102 2.4 · 102
25 1.7 · 102 1.9 · 103 2.9 · 103 1.9 · 103 7.2 · 102 1 · 103
50 3.5 · 102 3.5 · 103 5.7 · 103 3.8 · 103 1.7 · 103 2.2 · 103
75 5.7 · 102 5.2 · 103 7.8 · 103 5.2 · 103 2.8 · 103 3.5 · 103
100 7.8 · 102 6.4 · 103 9.7 · 103 6.5 · 103 3.8 · 103 4.6 · 103
200 1.4 · 103 9.6 · 103 1.5 · 104 1 · 104 6.8 · 103 7.5 · 103
300 1.7 · 103 1.1 · 104 1.9 · 104 1.2 · 104 9 · 103 9.1 · 103
400 2 · 103 1.2 · 104 2.1 · 104 1.5 · 104 1.1 · 104 1.1 · 104
500 2.1 · 103 1.3 · 104 2.4 · 104 1.6 · 104 1.2 · 104 1.2 · 104
750 2.5 · 103 1.5 · 104 2.8 · 104 1.9 · 104 1.5 · 104 1.4 · 104
1,000 2.8 · 103 1.6 · 104 3 · 104 2 · 104 1.6 · 104 1.5 · 104
2,500 3.9 · 103 2.5 · 104 4 · 104 2.7 · 104 2.2 · 104 2.1 · 104
5,000 4.4 · 103 2.7 · 104 4.8 · 104 3.2 · 104 2.5 · 104 2.3 · 104
7,500 4.7 · 103 2.8 · 104 5.3 · 104 3.4 · 104 2.6 · 104 2.4 · 104
10,000 5 · 103 2.8 · 104 5.4 · 104 3.5 · 104 2.7 · 104 2.5 · 104

Table A.1: QC: number of fragments mined for different values of the threshold factor
parameter.
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L 1 2 3 4 5 6 7
2 9.6 · 101 3.1 · 101 4.8 · 101 1.4 · 101 2.3 · 101 2.3 · 101 2.3 · 101
5 9.7 · 102 3.2 · 102 6.3 · 102 1.9 · 102 1.9 · 102 4.1 · 102 2.3 · 102
10 3.1 · 103 8.1 · 102 1.8 · 103 6.6 · 102 4.9 · 102 1.2 · 103 9.1 · 102
25 7.5 · 103 1.8 · 103 4 · 103 1.6 · 103 9.4 · 102 2.9 · 103 2.5 · 103
50 1.2 · 104 2.8 · 103 5.9 · 103 2.5 · 103 1.3 · 103 4.1 · 103 4.1 · 103
75 1.5 · 104 3.2 · 103 6.8 · 103 3 · 103 1.4 · 103 4.8 · 103 5.2 · 103
100 2 · 104 3.6 · 103 7.3 · 103 3.6 · 103 1.5 · 103 5.4 · 103 5.9 · 103
200 2.9 · 104 4.8 · 103 9.3 · 103 4.9 · 103 1.6 · 103 6.4 · 103 8.6 · 103
300 3.6 · 104 5.6 · 103 1 · 104 5.9 · 103 1.7 · 103 7.1 · 103 1.1 · 104
400 4.2 · 104 6.5 · 103 1.1 · 104 7.2 · 103 1.8 · 103 7.6 · 103 1.3 · 104
500 4.8 · 104 6.9 · 103 1.1 · 104 7.5 · 103 1.9 · 103 7.7 · 103 1.5 · 104
750 6 · 104 7.9 · 103 1.3 · 104 9.6 · 103 2 · 103 1 · 104 2.1 · 104
1,000 7.4 · 104 9.1 · 103 1.4 · 104 1.3 · 104 2.1 · 103 1.1 · 104 2.8 · 104

Table A.2: RE: number of fragments mined for different values of the threshold factor
parameter.

L A0 A1 A2 A3 A4 A5
2 1.5 · 102 1.4 · 102 6.9 · 101 7 · 100 3.4 · 101 9 · 100
5 1.2 · 103 1.8 · 103 1 · 103 9.7 · 101 3.5 · 102 2 · 101
10 4.5 · 103 7.1 · 103 3.8 · 103 5.7 · 102 1.3 · 103 5.4 · 101
25 1.4 · 104 2.6 · 104 1.5 · 104 2.9 · 103 3.9 · 103 1.4 · 102
50 2.6 · 104 5 · 104 3.2 · 104 6.5 · 103 6.6 · 103 1.9 · 102
75 3.4 · 104 7 · 104 4.7 · 104 1.1 · 104 8.4 · 103 2 · 102
100 4.1 · 104 8.6 · 104 5.8 · 104 1.3 · 104 1 · 104 2.2 · 102
200 6.3 · 104 1.3 · 105 9.2 · 104 2.1 · 104 1.4 · 104 2.4 · 102
300 7.8 · 104 1.7 · 105 1.2 · 105 2.6 · 104 1.6 · 104 2.5 · 102
400 8.9 · 104 2 · 105 1.3 · 105 3 · 104 1.8 · 104 2.5 · 102
500 9.8 · 104 2.2 · 105 1.5 · 105 3.4 · 104 1.9 · 104 2.5 · 102
750 1.2 · 105 2.7 · 105 1.8 · 105 4 · 104 2.1 · 104 2.6 · 102
1,000 1.3 · 105 3.1 · 105 2 · 105 4.4 · 104 2.3 · 104 2.7 · 102

Table A.3: SRL: number of fragments mined for different values of the threshold factor
parameter.
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QC RE
Cl. j Cl. jKSL
ABBR 2 1 2
DESC 3 2 3
ENTY 3 3 3
HUM 4 4 4
LOC 3 5 3
NUM 4 6 4

7 4
(a) KSL

QC RE SRL
Cl. L jLSL Cl. L jLSL Cl. L
ABBR 25 4.5 1 25 3 A0 25
DESC 50 2.5 2 25 3 A1 25
ENTY 25 2.5 3 100 2.5 A2 25
HUM 10 5.0 4 25 5 A3 100
LOC 10 3.0 5 75 2.5 A4 50
NUM 10 5.0 6 10 5 A5 10

7 10 5
(b) KSM and LSL

Table A.4: Per-class best model parameters for the three tasks.

L S = 1 S = 5 S = 10 S = 25 S = 50
2 140 163 164 128 98
5 1,768 2,019 2,133 2,076 1,736
10 7,098 8,548 8,206 6,695 5,239
25 25,872 24,402 20,394 15,284 11,594
50 50,111 40,856 32,566 23,270 17,146
75 69,515 52,033 40,735 28,385 20,479
100 86,070 60,799 46,620 31,995 22,821
200 134,560 82,125 60,832 39,990 27,882
300 169,376 93,948 68,759 43,840 30,126
400 197,510 102,126 73,703 46,114 31,481
500 221,335 108,293 77,657 47,742 32,462
750 266,701 118,702 84,144 50,371 33,712
1000 306,883 126,603 88,505 51,944 34,472

Table A.5: Number of fragments in the STKTree for A1 for different values of the thresh-
old factor parameter L and number of splits S.

123



APPENDIX A. EVALUATION COMPLEMENT

124



Appendix B
Relevant Fragments
In this appendix we list the 100 more relevant fragments extracted from each
class of the three tasks.

B.1 Question Classification

Fragments for Class ABBR

ABBR.1
NN

abbreviation

ABBR.2
SQ

VBZ NP

NNP

ABBR.3
SQ

VBZ

is

NP

NNP

ABBR.4
NN

acronym

ABBR.5
SQ

VBZ NP

NNPS

ABBR.6
SQ

VBZ

is

NP

NNPS

ABBR.7
VP

VB

stand

PP

ABBR.8
VB

stand

ABBR.9
NN

computer

ABBR.10
WHNP

WP

ABBR.11
NP

NNPS

ABBR.12
WHNP

WP

What

ABBR.13
NN

stand
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ABBR.14
SQ

VBZ NP ADVP VP

ABBR.15
NP

DT

the

JJ

full

NN

ABBR.16
SBARQ

PP , WHNP SQ .

ABBR.17
ROOT

SBARQ

PP , WHNP SQ .

ABBR.18
S

VP

VBN PP

ABBR.19
VP

VBZ

does

NP PP

IN

ABBR.20
WP

what

ABBR.21
NP

WP

ABBR.22
S

NP VP .

ABBR.23
NNP

Gorbachev

ABBR.24
NP

NP “ NP ”

ABBR.25
WP

What

ABBR.26
JJ

full

ABBR.27
NNP

Investigation

ABBR.28
NNP

Bureau

ABBR.29
NP

DT NNP

National

NNP

Bureau

ABBR.30
NP

NNP

Investigation

ABBR.31
NP

DT

the

NNP NNP

Bureau

ABBR.32
SBAR

WHADVP

WRB

S

VP

ABBR.33
NN

way

ABBR.34
NN

business

ABBR.35
NN

form

ABBR.36
PP

IN

for

PP

IN NP

ABBR.37
PP

IN

for

PP

ABBR.38
FRAG

PP

IN NP

.

ABBR.39
CD

5

ABBR.40
NNS

letters

ABBR.41
SQ

VBP NP ADVP VP

ABBR.42
JJ

blue

ABBR.43
WHADVP

WRB

when

ABBR.44
WRB

when

ABBR.45
SBAR

WHADVP

WRB

S

ABBR.46
IN

In

ABBR.47
NN

letter

ABBR.48
SBAR

WHADVP S

VP

ABBR.49
IN

for
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ABBR.50
VB

mean

ABBR.51
PP

IN PP

IN NP

ABBR.52
VBN

used

ABBR.53
FRAG

PP .

ABBR.54
FRAG

PP .

?

ABBR.55
WHNP

WP

what

ABBR.56
S

NP VP

VBZ NP

.

.

ABBR.57
NP

WP

What

ABBR.58
S

NP

WP

VP .

.

ABBR.59
S

NP

WP

VP

VBZ NP

.

ABBR.60
NP

DT

the

NNP

National

NNP

ABBR.61
PP

IN

for

ABBR.62
NP

DT NNP NNP NNP

ABBR.63
SBAR

WHADVP S

ABBR.64
SQ

VBZ NP

ABBR.65
VBZ

does

ABBR.66
SBAR

S

ABBR.67
VP

VB

stand

PP

IN

ABBR.68
VP

VB PP

IN

for

ABBR.69
VP

VB

stand

PP

IN

for

ABBR.70
JJ

middle

ABBR.71
VP

VB PP

ABBR.72
“

“

ABBR.73
PP

IN

of

ABBR.74
NP

NNP

ABBR.75
SQ

VP

VBZ NP PP

ABBR.76
.

.

ABBR.77
PP

IN PP

ABBR.78
NNP

General

ABBR.79
NP

NNP NNPS

ABBR.80
VP

VBZ NP PP

ABBR.81
NP

NP PP SBAR

ABBR.82
NN

E

ABBR.83
NN

number

ABBR.84
NNP

National

ABBR.85
NP

DT NNP NNP

ABBR.86
PP

IN

ABBR.87
RB

as
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ABBR.88
IN

at

ABBR.89
ADVP

RB

ABBR.90
SBAR

S

VP

ABBR.91
SQ

VP

VBZ NP

ABBR.92
NP

NNP POS

’

ABBR.93
“

‘

ABBR.94
IN

on

ABBR.95
PP

IN

for

PP

IN

in

NP

ABBR.96
PP

IN PP

IN

in

NP

ABBR.97
NNS

mc2

ABBR.98
NP

NNP NNP POS

ABBR.99
NN

expression

ABBR.100
NP

JJ NN

Fragments for Class DESC

DESC.1
WHADVP

WRB

How

DESC.2
WHADVP

WRB

Why

DESC.3
WRB

Why

DESC.4
VB

mean

DESC.5
WHADVP

WRB

DESC.6
VB

do

DESC.7
NN

reason

DESC.8
SBARQ

WHADVP

WRB

How

SQ .

?

DESC.9
IN

about

DESC.10
SBARQ

WHNP

WP

What

SQ .

?

DESC.11
SBARQ

WHNP

WP

What

SQ

VBZ

is

NP

.

DESC.12
VP

VBN PP

IN

for

DESC.13
VBZ

causes
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DESC.14
PP

IN

for

DESC.15
SQ

VP

VBZ “ ADJP ”

DESC.16
WHNP

WP

What

DESC.17
SBARQ

WHADVP

WRB

How

SQ

DESC.18
”

’

DESC.19
VBZ

makes

DESC.20
VBD

caused

DESC.21
SBARQ

WHNP

WP

SQ

VBZ NP

.

DESC.22
VP

VB PP

IN

on

NP

DESC.23
ADJP

IN

DESC.24
NNP

Constitution

DESC.25
VB

believe

DESC.26
NN

function

DESC.27
NNP

Butterfield

DESC.28
WHNP

WP

What

RB

DESC.29
NN

process

DESC.30
RB

about

DESC.31
NNP

A

DESC.32
WP

What

DESC.33
VBD

happened

DESC.34
VP

VBD NP

NP

DT

the

NN

PP

IN NP

NP PP

DESC.35
VP

VBZ ADJP

DESC.36
NN

mean

DESC.37
WRB

How

DESC.38
PP

IN

from

DESC.39
VBP

do
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DESC.40
VP

VBZ NP

NP

DT NN

PP

IN

of

NP

NN

DESC.41
NP

DT NNP NNP

DESC.42
SBARQ

WHNP

WP

What

SQ

VBZ NP

DT NN

ADJP

.

DESC.43
SBARQ

WHADVP

WRB

SQ

DESC.44
VP

VBP

DESC.45
SBARQ

WHNP

WP

SQ

VBZ NP ADJP

.

DESC.46
SQ

VBP NP

NNS

VP

VB PP

DESC.47
SQ

VP

VBP

are

ADJP

DESC.48
SQ

VP

VBP ADJP

DESC.49
WHNP

WP RB

DESC.50
NNP

War

DESC.51
SBARQ

WHNP SQ

VBZ NP ADJP

.

?

DESC.52
JJ

short

DESC.53
VP

VB

come

PP

IN

DESC.54
VP

VB

come

PP

IN

from

DESC.55
NP

NP

DT

the

JJ NN

PP

IN

of NP PP

NP

DESC.56
SBAR

WHNP

WP

What

S

VP

DESC.57
VBG

doing

DESC.58
SBARQ

WHNP SQ

VBZ NP

.

?

DESC.59
VP

VBZ

does
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DESC.60
NP

DT JJ NNS

DESC.61
NN

school

DESC.62
VP

VBN PP

IN

DESC.63
ROOT

SQ

DESC.64
SQ

VBZ NP

DESC.65
VBD

did

DESC.66
IN

like

DESC.67
VP

VBD

caused

NP

DESC.68
SBAR

WHNP

WP

S

VP

DESC.69
VP

VB SBAR

DESC.70
VP

VB SBAR

IN

that

S

DESC.71
ADJP

ADJP PP

DESC.72
SBARQ

WHNP SQ

VBZ NP VP

.

?

DESC.73
SBARQ

WHNP

WP

What

SQ

VP

.

DESC.74
SQ

VP

VBZ NP

NP PP

IN NP

NNS

DESC.75
NP

DT NN NN NN

DESC.76
VP

VB

do

DESC.77
PP

IN NP

NP PP

IN

for

NP

DESC.78
“

“

DESC.79
NN

motto

DESC.80
SBARQ

WHADVP

WRB

Why

SQ .

?

DESC.81
NP

DT

the

NN

origin
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DESC.82
NP

DT NN

origin

DESC.83
SBARQ

WHNP

WP

SQ

VP NP PP

.

DESC.84
SQ

VBP

do

NP VP

VB PP

DESC.85
VBN

come

DESC.86
VP

VBN

come

PP

IN

DESC.87
VP

VBN

come

PP

IN

from

DESC.88
VP

VBN

come

PP

DESC.89
NN

difference

DESC.90
VP

VB

come

PP

DESC.91
SBARQ

WHADVP

WRB

SINV

VBD NP VP

.

DESC.92
SBARQ

WHADVP SINV

VBD NP VP

.

?

DESC.93
SBARQ

WHADVP

WRB

SQ .

?

DESC.94
SINV

VBD NP VP

DESC.95
VBP

have

DESC.96
SQ

VP

VBZ ADJP

DESC.97
ADJP

JJ

DESC.98
SBARQ

WHNP

WP

What

SQ

VBZ

is

NP ADJP

.

DESC.99
SBAR

WHNP S

VP

DESC.100
SBARQ

WHNP

WP

What

RB

SQ .

?
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Fragments for Class ENTY

ENTY.1
NN

color

ENTY.2
WP

What

ENTY.3
NN

book

ENTY.4
NN

kind

ENTY.5
NN

animal

ENTY.6
NN

novel

ENTY.7
NN

film

ENTY.8
NN

disease

ENTY.9
NN

sport

ENTY.10
NN

movie

ENTY.11
VB

say

ENTY.12
NN

bird

ENTY.13
JJ

common

ENTY.14
NN

dog

ENTY.15
RBS

most

ENTY.16
NN

flower

ENTY.17
VP

VBN

called

ENTY.18
NN

instrument

ENTY.19
NN

food

ENTY.20
VBP

drink

ENTY.21
NN

letter

ENTY.22
NN

drink

ENTY.23
VBP

use

ENTY.24
NN

symbol

ENTY.25
JJ

favorite

ENTY.26
NN

game

ENTY.27
WP

what

ENTY.28
NN

magazine

ENTY.29
JJS

fastest

ENTY.30
NN

series

ENTY.31
NN

language

ENTY.32
VBN

called

ENTY.33
VP

VB ADJP

ENTY.34
NN

product

ENTY.35
SBARQ

WHNP SQ

NP

NN

color

VP

.

?

ENTY.36
PP

IN NP

JJ NN

ENTY.37
NN

chemical

ENTY.38
WDT

Which

ENTY.39
NNP

VHS

ENTY.40
NN

beer

ENTY.41
NN

play
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ENTY.42
SBARQ

WHNP

WP

SQ

VP

VBP NP

NP PP

IN

of

NP

.

ENTY.43
CD

four

ENTY.44
NNS

features

ENTY.45
NNS

ways

ENTY.46
CC

or

ENTY.47
NN

fear

ENTY.48
NP

NNP

Latin

ENTY.49
NP

NNP

VHS

ENTY.50
NN

crop

ENTY.51
PP

IN NP

NNP

Latin

ENTY.52
NP

NNP NNP NNP NNP NNP

ENTY.53
NN

cereal

ENTY.54
PP

IN

in

NP

NNP

Latin

ENTY.55
NNS

events

ENTY.56
SBARQ

WHNP

WP

SQ

VBD NP VP

.

ENTY.57
NP

NP

DT NN

name

PP

ENTY.58
VB

grow

ENTY.59
NP

WDT

ENTY.60
.

.

ENTY.61
VBZ

’s

ENTY.62
NN

type

ENTY.63
JJ

main

ENTY.64
PP

IN

of

ENTY.65
NP

DT NNS NN

ENTY.66
PP

IN

into

NP

ENTY.67
NP

NP

NNP NNP

CC NP

NNP NNP NNP
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ENTY.68
PP

IN

with

ENTY.69
VP

VBP NP

NP PP

IN

of

NP

ENTY.70
PP

IN

of

NP

NNS

ENTY.71
NN

race

ENTY.72
JJ

soft

ENTY.73
WHNP

WP

What

ENTY.74
VBD

featured

ENTY.75
CD

7

ENTY.76
NP

DT ADJP NN

ENTY.77
NN

paper

ENTY.78
VP

VBZ NP

NP JJS JJ NN

ENTY.79
NP

NP JJS JJ NN

ENTY.80
NN

weapon

ENTY.81
NN

program

ENTY.82
NP

DT CD NNS

ENTY.83
NP

NP NP .

ENTY.84
NP

DT JJ JJ NN

ENTY.85
NP

NP

NNP NNP

CC

and

NP

ENTY.86
NNP

Old

ENTY.87
S

NP VP

VBZ NP

ENTY.88
JJ

celebrated

ENTY.89
NP

DT JJS JJ NN

ENTY.90
NN

substance

ENTY.91
VP

VBD

were

NP

ENTY.92
NP

NNP NNP NN

ENTY.93
NP

NP VP

VBG PP

ENTY.94
NNP

Latin

ENTY.95
NN

way

ENTY.96
NNS

colors

ENTY.97
NN

newspaper
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ENTY.98
SBARQ

WHNP

WP

What

SQ

VBD

did

NP VP

.

ENTY.99
NNP

James

ENTY.100
NNS

languages

Fragments for Class HUM

HUM.1
NN

company

HUM.2
NN

business

HUM.3
NN

organization

HUM.4
NN

name

HUM.5
NN

nickname

HUM.6
NN

manufacturer

HUM.7
NN

living

HUM.8
NN

team

HUM.9
NNS

names

HUM.10
NN

occupation

HUM.11
NN

character

HUM.12
NNS

fans

HUM.13
VP

ADVP VBD NP

HUM.14
NN

boy

HUM.15
NN

profession

HUM.16
NN

comedian

HUM.17
NN

role

HUM.18
NN

director

HUM.19
NN

member

HUM.20
VB

work

HUM.21
NN

president

HUM.22
NN

college

HUM.23
VP

ADVP VBD NP PP

HUM.24
NN

producer

HUM.25
NN

divorce

HUM.26
NN

writer

HUM.27
NN

university

HUM.28
NP

EX

HUM.29
WHNP

WP

Who

HUM.30
WP

Who

HUM.31
PRP$

her

HUM.32
JJ

single

HUM.33
NN

girl

HUM.34
NN

woman

HUM.35
NP

NNP NNP NNP NNP

HUM.36
WP

whom
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HUM.37
NNS

companies

HUM.38
JJ

Whose

HUM.39
JJ

Soviet

HUM.40
NN

cartoon

HUM.41
NN

group

HUM.42
VB

exist

HUM.43
NN

person

HUM.44
NN

title

HUM.45
CD

Seven

HUM.46
NN

actor

HUM.47
NN

football

HUM.48
NP

NN NNP NNP

HUM.49
SQ

NP VP

HUM.50
ADVP

RB

comedian

HUM.51
RB

comedian

HUM.52
NN

baseball

HUM.53
JJ

following

HUM.54
SINV

PP VP NP

HUM.55
NN

general

HUM.56
RB

so

HUM.57
NN

school

HUM.58
NN

record

HUM.59
VP

ADVP VBZ NP PP

HUM.60
NN

part

HUM.61
NP

DT

the

JJS

oldest

NN

HUM.62
VP

VBZ NP

NP JJ NN

HUM.63
S

VP

VBG PP

HUM.64
NN

department

HUM.65
NP

NNP NNS

HUM.66
VBP

advertise

HUM.67
ADVP

JJ

HUM.68
VP

VBD NP PP PP

HUM.69
NN

singer

HUM.70
NN

leader

HUM.71
RB

not

HUM.72
NNP

Rogers

HUM.73
VB

play

HUM.74
NN

diamond

HUM.75
VBD

named

HUM.76
NN

son

HUM.77
NNP

Radio

HUM.78
NNP

Vatican

HUM.79
NP

NP

DT JJ JJ NN

PP

HUM.80
VB

Name
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HUM.81
NN

novelist

HUM.82
NP

NP PP PP

HUM.83
NN

band

HUM.84
VP

VBD VP

HUM.85
NNP

Tracy

HUM.86
JJS

oldest

HUM.87
NP

NNP

U.S.

NNP

HUM.88
NN

army

HUM.89
NN

painter

HUM.90
WP$

whose

HUM.91
NNP

Cage

HUM.92
NNP

Nicholas

HUM.93
VBN

seen

HUM.94
NN

police

HUM.95
NNP

County

HUM.96
VBD

wrote

HUM.97
NN

radio

HUM.98
NP

NP NN

nickname

HUM.99
NP

DT JJ CD NNS

HUM.100
NP

NP NN

job

Fragments for Class LOC

LOC.1
NN

country

LOC.2
NN

city

LOC.3
NN

planet

LOC.4
NNS

cities

LOC.5
NN

ocean

LOC.6
NN

river

LOC.7
RB

nationality

LOC.8
NNS

states

LOC.9
NN

town

LOC.10
NNS

countries

LOC.11
NN

state

LOC.12
JJ

famed

LOC.13
NN

address

LOC.14
NNS

sites

LOC.15
NN

sea

LOC.16
NN

island

LOC.17
NNP

Earth

LOC.18
NN

constellation

LOC.19
NN

capital

LOC.20
NN

building

LOC.21
NN

seaport

LOC.22
NN

website

LOC.23
NN

desert

LOC.24
NNS

rivers

LOC.25
PP

IN

in

LOC.26
NN

bridge

LOC.27
NN

lake

138



B.1. QUESTION CLASSIFICATION

LOC.28
NN

site

LOC.29
NNP

Park

LOC.30
NN

continent

LOC.31
VP

VBZ ADVP PP

LOC.32
NNP

Superman

LOC.33
NN

location

LOC.34
NN

center

LOC.35
JJS

highest

LOC.36
NNP

Britain

LOC.37
WRB

Where

LOC.38
NNS

flows

LOC.39
NNP

River

LOC.40
NNS

attractions

LOC.41
RB

continent

LOC.42
NN

museum

LOC.43
NN

nation

LOC.44
NN

mountain

LOC.45
NP

NP CD NNS

LOC.46
JJS

largest

LOC.47
JJS

tallest

LOC.48
VBN

located

LOC.49
NP

DT NN

world

LOC.50
VP

VBG PRT

LOC.51
NN

province

LOC.52
NNP

Pollock

LOC.53
NNP

Edgar

LOC.54
NN

street

LOC.55
NNP

Reims

LOC.56
PP

IN

into

LOC.57
NN

county

LOC.58
NP

NNS JJ

LOC.59
NN

home

LOC.60
WHADVP

WRB

Where

LOC.61
WHNP

WRB

LOC.62
JJ

southern

LOC.63
NP

DT JJS NN NNS

LOC.64
NP

NP JJS NN

LOC.65
NP

DT NN

location

LOC.66
NNP

London

LOC.67
VB

live

LOC.68
NNP

East

LOC.69
NN

Internet

LOC.70
NP

PDT DT NNS

LOC.71
NNP

Scotland

LOC.72
NNP

US

LOC.73
JJS

longest

LOC.74
NN

size

LOC.75
NN

area

LOC.76
JJ

Asian

LOC.77
NNP

Thomas

LOC.78
NNP

America

LOC.79
NNP

California

LOC.80
NN

place

LOC.81
JJ

European
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LOC.82
VBZ

contains

LOC.83
NP

DT

the

NN

capital

LOC.84
NP

DT NN

capital

LOC.85
NN

world

LOC.86
NN

star

LOC.87
JJ

e-mail

LOC.88
IN

In

LOC.89
NP

CD JJ NNS

LOC.90
WP

What

LOC.91
NNP

Airport

LOC.92
NNP

Jackson

LOC.93
NP

NNP NN

LOC.94
PDT

all

LOC.95
NP

NNP CC NNP

LOC.96
WHNP

WP

LOC.97
PP

IN

for

LOC.98
CD

two

LOC.99
NNP

U.S.

LOC.100
NP

DT JJS NN

Fragments for Class NUM
NUM.1

NN

year

NUM.2
NN

population

NUM.3
NN

temperature

NUM.4
NN

length

NUM.5
NN

percentage

NUM.6
NN

salary

NUM.7
NN

number

NUM.8
NN

price

NUM.9
NN

chapter

NUM.10
NN

income

NUM.11
NN

date

NUM.12
NN

age

NUM.13
NN

season

NUM.14
NP

DT NN CC NN

NUM.15
JJ

average

NUM.16
NN

day

NUM.17
NN

birthday

NUM.18
NN

toll

NUM.19
NN

century

NUM.20
NNS

odds

NUM.21
NP

DT NN NNS

NUM.22
JJ

old

NUM.23
JJ

many

NUM.24
NN

weight

NUM.25
JJ

worth

NUM.26
JJ

current

NUM.27
NN

speed

NUM.28
NN

amount

NUM.29
NN

melting

NUM.30
NN

life

NUM.31
NN

score

NUM.32
RB

long

NUM.33
WRB

How
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NUM.34
NN

diameter

NUM.35
NN

month

NUM.36
NN

rate

NUM.37
JJ

chemical

NUM.38
WHADVP

WRB

When

NUM.39
NN

IQ

NUM.40
VB

weigh

NUM.41
NN

male

NUM.42
NN

size

NUM.43
NN

wage

NUM.44
JJ

minimum

NUM.45
NN

beach

NUM.46
VBG

having

NUM.47
JJ

long

NUM.48
NP

JJ

many

NNS

NUM.49
WRB

When

NUM.50
SBARQ

WHADVP SQ

ADVP VP

.

?

NUM.51
SBARQ

WHADVP

WRB

SQ

ADVP VP

.

NUM.52
NNP

Einstein

NUM.53
JJ

third

NUM.54
NN

tax

NUM.55
NN

percent

NUM.56
NNP

Thatcher

NUM.57
CD

2000

NUM.58
NN

eleven

NUM.59
NNP

Simpsons

NUM.60
VB

cost

NUM.61
JJ

normal

NUM.62
NP

DT

the

NN NN

rate

NUM.63
NN

earth

NUM.64
NN

cost

NUM.65
JJ

tuberculosis

NUM.66
NN

golf

NUM.67
PP

IN SBAR

NUM.68
NNS

pounds

NUM.69
VB

run

NUM.70
NNS

years

NUM.71
NN

point

NUM.72
NN

expectancy

NUM.73
NP

NNS POS

NUM.74
NN

sun

NUM.75
SBARQ

WHADVP

WRB

When

SQ .

?

NUM.76
NNP

Angeles

NUM.77
JJ

much

NUM.78
NNS

drugs
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NUM.79
VB

begin

NUM.80
QP

CD CD

NUM.81
NN

phone

NUM.82
NN

time

NUM.83
NN

death

NUM.84
NNP

Los

NUM.85
VB

live

NUM.86
NN

area

NUM.87
NN

dollar

NUM.88
NN

field

NUM.89
NN

hole

NUM.90
NN

exercise

NUM.91
NN

setting

NUM.92
NNP

University

NUM.93
SQ

ADVP VP

NUM.94
WHADVP

WRB

How

RB

NUM.95
NN

week

NUM.96
WHNP

WRB RB

NUM.97
VBG

giving

NUM.98
NN

air

NUM.99
WHADJP

WRB

How

JJ

NUM.100
NNP

Dick

B.2 Relation Extraction
Fragments for Class 1

1.1
NP

T1-LOC T2-GPE

1.2
T1-LOC

NN

1.3
NP

T2-GPE T1-GPE

1.4
NP

T2-GPE T1-LOC

NNS

1.5
T1-GPE

NN

1.6
NP

T2-FAC

1.7
NNP

T1-GPE

1.8
NP

T1-ORG

NNS

forces

1.9
T1-LOC

NNS

1.10
NP

T1-GPE T2-FAC

1.11
NNP

Hummer

1.12
NP

T2-GPE T1-GPE

NNS

1.13
VBG

carrying
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1.14
VP

VBD ADVP

1.15
NP

NP

T1-PER

PP

IN

in

NP

T2-GPE

1.16
NN

gaza

1.17
NP

NP

T2-LOC

PP

IN NP

1.18
T2-FAC

NN

1.19
NP

NP

T1-LOC

PP

IN NP

1.20
NP

NP

T1-LOC

PP

1.21
NP

NP

T1-PER

VP

1.22
NP

PP

NP

T1-GPE

1.23
ADVP

RB

back

1.24
NP

NP

T2-LOC

PP

1.25
NP

T2-GPE

NNP

, T1-GPE

NNP

1.26
T2-FAC

NNS

1.27
T1-LOC

NNP

1.28
NP

DT T2-FAC

1.29
T1-PER

VBD

1.30
NP

T2-VEH

1.31
NP

NP ,

,

NP

T2-GPE

1.32
NN

visit

1.33
NP

DT

the

T2-FAC

1.34
NP

JJ T1-LOC

1.35
T2-FAC

NNP

1.36
S

NP

T1-PER

VP

1.37
RB

back

1.38
NP

T2-GPE T1-LOC

1.39
NP

T2-GPE , T1-GPE

1.40
IN

in

1.41
NP

T1-GPE T2-FAC

NN

1.42
NP

DT JJ T2-FAC

1.43
NNP

West
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1.44
NP

T2-GPE

NNP

,

,

T1-GPE

1.45
NP

T2-GPE ,

,

T1-GPE

NNP

1.46
IN

around

1.47
NP

NP

T2-GPE

, NP

T1-GPE

1.48
T1-GPE

NNP

1.49
T1-GPE

NNP NNP

1.50
T1-LOC

RB

1.51
NP

T1-LOC T2-GPE

NNS

1.52
NP

JJ T1-LOC

NN

1.53
NP

NP

T1-GPE

,

,

NP

1.54
NP

NP

T1-PER

PP

IN

in

NP

T2-GPE

NNP

1.55
NP

T2-GPE

JJ

T1-GPE

1.56
NP

T2-GPE

NN

1.57
VP

PP

NP

PP

1.58
VP

PP

NP

PP

NP

1.59
S

NP VP

VBD ADVP

1.60
NNP

T1-GPE

NNP

1.61
NP

DT

the

T1-FAC

1.62
NP

NP ,

,

NP

NP

T1-GPE

NNP

1.63
NP

NP ,

,

NP

NP

T1-GPE

1.64
T1-FAC

NN

1.65
S

NP

T1-PER

ADVP

RB

VP
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1.66
NN

clinic

1.67
T1-VEH

NN

1.68
NNP

Bullock

1.69
NNP

Mich

1.70
RB

else

1.71
GPE

NN

israeli

1.72
NN

lebanon

1.73
PP

NP

T1-ORG

NNS

forces

1.74
NP

T1-LOC

NNP

T2-GPE

1.75
NP

NP

T2-FAC

PP

IN NP

1.76
NP

T1-LOC T2-GPE

NN

1.77
NP

T2-GPE

NNP

T1-GPE

1.78
NP

T1-GPE POS

’s

1.79
NP

T1-GPE POS

1.80
NP

NP

T1-ORG

NNS

forces

PP

IN

in

NP

1.81
NP

NP

T1-GPE

, NP

NP

1.82
NP

PP

NP

T1-GPE

NNP NNP

1.83
RB

there

1.84
NP

T1-LOC

1.85
S

NP

NP

T1-PER

1.86
NP

NP

T1-ORG

NNS

forces

PP

1.87
NN

stop

1.88
NP

T1-LOC POS

’s

1.89
NP

T1-LOC POS

1.90
T1-PER

NNP

Haider

1.91
T2-LOC

NN
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1.92
NNS

forces

1.93
T2-GPE

NN

1.94
NP

T1-GPE

NNP

T2-FAC

1.95
NP

NP

T2-GPE

PP

IN NP

1.96
NP

NP

T2-GPE

,

,

NP

1.97
GPE

NNP

Somalia

1.98
NP

NP

T1-FAC

PP

IN NP

1.99
VP

T2-GPE

1.100
S

NP

T1-PER

NNS

people

VP

Fragments for Class 2

2.1
NP

T2-PER JJ T1-PER

2.2
T2-PER

PRP$

2.3
T2-PER

NN

2.4
NP

T2-PER

NNP

T1-PER

2.5
NP

T2-PER

PRP$

T1-PER

2.6
NP

T2-PER

NNP

T1-PER

NNS

2.7
T1-PER

NN

team

2.8
NP

NP

T2-PER

NN

PP

IN

for

NP

2.9
NP

T2-PER NN T1-PER

2.10
NP

T1-PER T2-PER

NN
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2.11
NP

T2-PER T1-PER

NNS

2.12
NP

T2-PER T1-PER

2.13
NNP

Nader

2.14
NP

NP T2-PER

2.15
NP

NP

T2-PER

PP

IN NP

2.16
NP

T1-PER T2-PER

2.17
NNS

children

2.18
NN

wife

2.19
T2-PER

NNS

2.20
NP

NP

T2-PER

NNS

PP

IN

for

NP

2.21
NN

mother

2.22
NN

brother

2.23
NP

T2-PER

PRP$

JJ T1-PER

NN

2.24
NP

T2-PER

PRP$

JJ T1-PER

NNS

2.25
NP

T2-PER

PRP$

T1-PER

NN

2.26
NP

NP T2-PER

NN

2.27
T2-PER

NN

lawyer

2.28
NP

NP

T2-PER

PP

2.29
NP

NP

T1-PER POS

T2-PER

2.30
NN

team

2.31
NP

NP

T2-PER

NNS

PP

2.32
T2-PER

NN

wife

2.33
NP

T2-PER

NN

wife

147



APPENDIX B. RELEVANT FRAGMENTS

2.34
NNP

Gore

2.35
NN

daughter

2.36
NN

son

2.37
NP

NP

T2-PER

NN

PP

IN NP

NP

T1-PER

2.38
JJ

chief

2.39
NNP

Amidu

2.40
NNP

Berry

2.41
NN

lawyer

2.42
NP

DT T2-PER

NNS

2.43
T2-PER

NN

brother

2.44
NN

T2-PER

2.45
JJ

legal

2.46
NP

NP JJ T2-PER

2.47
NNS

lawyers

2.48
NN

campaign

2.49
NP

T2-PER T1-PER

NN

2.50
PP

IN NP

DT T1-PER

NN

2.51
T2-PER

NNS

lawyers

2.52
NP

DT NN

2.53
NN

-

2.54
NNS

Lawyers

2.55
NN

father

2.56
T2-PER

PRP$

his

2.57
NN

clinton

2.58
NP

DT

a

PER

2.59
T2-PER

CD

two

2.60
PP

IN NP

NN T1-PER

2.61
VP

VBN PP

IN NP

NP

T2-PER
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2.62
T2-PER

NN

spokesman

2.63
JJ

personal

2.64
PER

JJ

dictator

2.65
NP

T2-PER

CD

two

2.66
NP

NP

T1-PER POS

T2-PER

NNS

2.67
NNP

Elect

2.68
T1-PER

NN

2.69
PP

IN NP

DT T2-PER

2.70
T1-PER

NN

mother

2.71
NP

NP

T2-PER

NN

wife

PP

2.72
NP

T2-PER POS

’s

2.73
NP

T2-PER POS

2.74
PP

IN NP

DT T2-PER

NNS

2.75
CD

two

2.76
NP

NP

T2-PER

PP

IN

for

NP

NP

2.77
T1-PER

NN

brother

2.78
PP

IN NP

NP T1-PER

NN

2.79
PP

IN NP

NNP PER T1-PER

2.80
NP

NP JJ

legal

T2-PER

NN

team

2.81
NP

NP JJ

legal

T2-PER

NN

2.82
NP

T1-PER

NNP

Bush

POS

’s
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2.83
NP

T1-PER

NNP

Bush

POS

2.84
NP

CD

four

T1-PER

NNS

2.85
NP

CD

four

T1-PER

2.86
NNS

aides

2.87
VP

PP

NP

T2-PER

2.88
T1-PER

NNP

Gore

2.89
NNS

friends

2.90
NP

T1-PER POS

2.91
“

“

2.92
NP

T2-PER

NNP

T1-PER

NN

2.93
RBS

most

2.94
S

NP

T2-PER

NN

VP

2.95
NN

T2-PER

NN NN NN

2.96
T2-PER

NN NN NN

2.97
T2-PER

PRP$

their

2.98
NP

NP T1-PER

NN

2.99
T2-PER

NN

son

2.100
WP$

whose

Fragments for Class 3

3.1
NP

T2-GPE T1-ORG

3.2
NP

T2-ORG T1-PER

3.3
NP

T1-PER T2-ORG

3.4
NP

T2-GPE T1-PER

3.5
T2-ORG

NN

3.6
NP

T2-ORG T1-ORG

3.7
NP

T2-ORG JJ T1-PER

3.8
T2-ORG

NNP NNP

3.9
T2-ORG

NNP

3.10
T1-PER

NN
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3.11
NP

NP

T1-PER

PP

IN NP

3.12
T2-ORG

PRP$

3.13
NP

T2-GPE JJ T1-PER

3.14
T2-ORG

NNS

3.15
T2-ORG

PRP$

its

3.16
NP

NP

T2-ORG

NN

PP

IN

of

NP

3.17
NP

T1-PER

NNP

T2-ORG

3.18
NP

T2-GPE T1-PER

NNP

3.19
VBD

led

3.20
T2-ORG

JJ

3.21
NP

NP

T1-PER

PP

3.22
NP

NP

T2-ORG

VP

VBN PP

3.23
NP

NP

T2-ORG

NN

VP

VBN PP

IN NP

3.24
T2-ORG

JJ NN

3.25
NP

T2-GPE NN T1-PER

3.26
T1-PER

NNP

3.27
NP

T2-GPE T1-PER

NN

3.28
NP

T2-ORG T1-ORG

NN

3.29
NP

T2-GPE T1-ORG

NNS

3.30
T1-PER

NNS

officials

3.31
NP

T2-GPE

NNP

T1-ORG

3.32
VP

VBZ

’s

NP
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3.33
S

NP VP

VBZ

’s

NP

3.34
NP

NP

T1-PER

NN

president

PP

IN NP

T2-GPE

3.35
NP

NP T2-ORG

3.36
NP

NP

T1-PER

, NP

T2-ORG

3.37
NN

news

3.38
NP

T2-GPE NNP T1-PER

3.39
T1-PER

NNS

leaders

3.40
NN

division

3.41
NNP

Party

3.42
NP

T1-PER

PRP$

T2-ORG

3.43
NP

T2-ORG NN T1-PER

3.44
NP

T2-ORG

NNP

T1-PER

3.45
PP

IN

of

NP

3.46
NP

T1-PER

NNP NNP

3.47
NNS

leaders

3.48
NP

NP

T1-PER

NNS

officials

PP

IN

in

NP

3.49
VP

PP

NP

T1-PER

NNS

PP

IN

from

NP

3.50
NP

NP

T1-PER

NNS

officials

PP

3.51
VP

VBD NP

T2-ORG

NNP

3.52
NP

NP

T1-PER

,

,

NP
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3.53
NN

intelligence

3.54
T1-PER

NNP

Minister

3.55
JJ

JJ JJ JJ

3.56
PP

IN NP

T2-ORG

3.57
NP

T2-GPE T1-ORG

NNP

3.58
NP

T2-GPE

NN

T1-ORG

3.59
T1-PER

NNS

3.60
NP

NP T1-PER

3.61
VBZ

’s

3.62
T2-ORG

NNP NNP NNP

3.63
NP

T2-GPE T1-PER

NNS

3.64
NP

T2-GPE POS

’s

3.65
NP

T2-GPE

NNP

T1-ORG

NNP

3.66
VP

VBD

led

NP

3.67
T2-ORG

NNP NNP NNP NNP

3.68
T1-PER

NN

director

3.69
NP

NP

T2-ORG

PP

IN NP

3.70
NP

T2-GPE

NNP

T1-PER

NNP

3.71
NP

NP ORG

NNP

T2-ORG

NN

3.72
NP

NP ORG T2-ORG

3.73
NP

NNP NNP

3.74
PP

IN NP

NP

DT T2-ORG

3.75
NP

T2-ORG

NNP

T1-ORG

3.76
PP

IN

for

NP

DT T2-ORG

3.77
NP

JJ

JJ JJ JJ

NNS

3.78
NN

committee

3.79
NP

NP JJ T1-PER
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3.80
NP

NP

T2-ORG POS

T1-PER

3.81
NP

NP

T2-ORG POS

’s

T1-PER

3.82
T1-ORG

NN

3.83
NP

NP

T1-PER

NN

PP

IN NP

DT T2-ORG

3.84
NP

T1-PER T2-ORG

NN

3.85
NP

NP ,

,

NP

T2-ORG

3.86
NP

T2-ORG POS

3.87
PP

IN NP

NP

DT

the

T2-ORG

3.88
NP

T1-PER T2-ORG

NNS

3.89
PP

IN NP

T2-ORG

NNP

3.90
NP

T2-GPE POS

3.91
NP

T2-GPE NNP

T1-PER

NNP

3.92
NP

T2-GPE NNP

T1-PER

3.93
VP

PP

NP

T1-PER

PP

IN

from

NP

3.94
T2-GPE

JJ

Israeli

3.95
NP

T2-GPE

JJ

JJ T1-PER

NN

3.96
NP

T1-PER NNP T2-ORG

3.97
NNP

City

3.98
T1-PER

NN

coach

3.99
NP

T2-ORG

JJ

T1-PER
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3.100
NP

NP

T2-ORG

NN

PP

Fragments for Class 4

4.1
T2-VEH

NNS

4.2
T2-VEH

NN

4.3
T2-WEA

NN

4.4
T2-FAC

NN

4.5
NP

T1-ORG T2-FAC

4.6
T2-FAC

NNS

4.7
NP

T1-GPE T2-VEH

4.8
T2-WEA

NNS

4.9
NP

T1-ORG T2-VEH

4.10
NP

T1-GPE T2-WEA

4.11
NP

T1-PER T2-FAC

4.12
S

NP

T1-PER

VP

VBD NP

4.13
S

NP

T1-GPE

VP

4.14
T1-ORG

PRP$

4.15
NP

NP T2-WEA

4.16
JJ

owned

4.17
NP

T2-VEH

NN

T1-PER

4.18
NP

T2-VEH T1-PER

4.19
NNS

storeowners

4.20
NN

fire

4.21
T1-GPE

JJ

4.22
NP

JJ T2-WEA

4.23
NNS

tanks

4.24
VBD

bought

4.25
T2-WEA

NN

gun

4.26
VBD

set
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4.27
JJ

Cheney

4.28
NP

T1-PER T2-FAC

NN

4.29
PRP

We

4.30
NP

T1-GPE

JJ

T2-FAC

NNS

4.31
JJ

white

4.32
IN

with

4.33
NP

T1-PER

NNS

hunters

4.34
T1-PER

NNS

hunters

4.35
NNS

hunters

4.36
NN

israeli

4.37
S

NP

T1-PER

NN

VP

4.38
T2-VEH

NNS

helicopters

4.39
NP

T1-ORG POS

4.40
NN

gun

4.41
VBN

owned

4.42
T1-PER

PRP$

4.43
NP

T1-GPE T2-FAC

NNS

4.44
NP

T1-GPE

JJ

T2-FAC

4.45
PP

NP

T2-VEH

4.46
T2-VEH

NNS

vehicles

4.47
NNS

vehicles

4.48
S

NP VP

VBD NP

DT T2-FAC

NN

4.49
NP

NP T2-FAC

4.50
PP

IN

with

NP

NP

4.51
VBG

using

4.52
NP

NP

T1-PER POS

T2-FAC

NN
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4.53
NP

NP

T1-PER POS

T2-FAC

4.54
T2-FAC

NNS

farms

4.55
NP

T1-GPE

NNP

Israel

POS

4.56
NP

T1-GPE

NNP

Israel

POS

’s

4.57
T2-FAC

NN

headquarters

4.58
NN

headquarters

4.59
PP

IN NP

JJ T2-WEA

NNS

4.60
NP

NP JJ T2-FAC

4.61
T1-GPE

JJ

Israeli

4.62
S

NP

NP

T1-PER

NNS

PP

VP

4.63
T2-FAC

NN

facility

4.64
NN

facility

4.65
NP

T1-PER

PRP$

T2-FAC

4.66
NP

DT T2-WEA

NN

4.67
NP

T2-WEA

NNS

4.68
NN

stone

4.69
NP

DT GPE

4.70
PP

IN

of

NP

NP PP

IN NP

4.71
PP

IN

of

NP

NP PP

4.72
NP

T1-ORG T2-VEH

NN

4.73
VP

VBG PP

4.74
JJ

armored

4.75
JJ

Turkish

4.76
PP

IN

by

NP

NP

4.77
T2-WEA

NNS

guns
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4.78
NP

CD JJ T1-PER

4.79
PP

IN NP

NP

4.80
PP

IN NP

NP PP

IN

of

NP

4.81
VBN

been

4.82
S

NP VP

VBP

have

NP

4.83
T1-PER

PRP$

their

4.84
S

NP VP

VBD NP

DT T2-FAC

4.85
T2-VEH

NN

jet

4.86
NP

JJ T2-WEA

NNS

4.87
POS

’

4.88
NP

T1-ORG

NN

T2-FAC

4.89
NN

deterrent

4.90
NNS

farms

4.91
NNS

motorbikes

4.92
T1-GPE

JJ

Palestinian

4.93
VBD

had

4.94
S

NP VP

VBP NP

4.95
S

NP

T1-PER

VP

4.96
S

NP

NP

T1-PER

PP

VP

4.97
S

NP

NP

T1-PER

PP

IN NP

VP

4.98
NNS

ships

4.99
NP

DT

a

T2-WEA

4.100
NP

DT

a

T2-WEA

NN
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Fragments for Class 5

5.1
NP

T2-PER

JJ

T1-PER

5.2
NP

T1-PER

JJ

T2-GPE

5.3
NP

T1-PER T2-GPE

5.4
NP

T2-PER

JJ

Jewish

T1-PER

5.5
NP

T2-PER

JJ

T1-PER

NNS

5.6
NP

T1-PER

JJ

T2-GPE

NN

5.7
JJ

Arab

5.8
NP

T1-PER T2-GPE

NN

5.9
JJ

Jewish

5.10
JJ

Western

5.11
T2-LOC

JJ

Western

5.12
NP

T2-PER T1-PER

5.13
NP

T1-PER T2-GPE

NNS

5.14
NP

T1-PER

JJ

T2-GPE

NNS

5.15
NP

T2-LOC

JJ

T1-PER

5.16
JJ

Islamic

5.17
NNS

supporters

5.18
NP

T2-LOC T1-PER

NNS

5.19
T2-PER

JJ

5.20
NP

NP

T2-PER

PP

IN

of

NP

T1-PER

5.21
NNP

Muslim

5.22
NP

NP

T2-PER

NNS

PP

IN

of

NP

5.23
NP

T2-PER T1-PER

NNS

5.24
NP

T2-PER JJ T1-PER

5.25
T1-PER

JJ

Jewish

5.26
NP

T2-PER

JJ

T1-PER

NN

5.27
T2-ORG

NN

republican

5.28
T1-PER

JJ

Arab
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5.29
NP

NP

T2-PER

NNS

PP

IN NP

T1-PER

5.30
NP

T1-PER

NNS

backers

5.31
NNS

senators

5.32
T2-PER

JJ

Jewish

5.33
NP

NP

T2-PER

PP

IN

of

NP

T1-PER

NNP

5.34
NP

NP

T2-PER

NNS

PP

IN NP

T1-PER

NNP

5.35
NP

NP

T2-PER

NNS

PP

5.36
NN

republican

5.37
NP

NP

T1-ORG

NNS

PP

IN

of

NP

5.38
T1-PER

NNP

Muslim

5.39
T2-LOC

JJ

5.40
NNS

men

5.41
T1-PER

NNS

5.42
T2-PER

NN

leader

5.43
NP

NP

T2-PER

NNS

supporters

PP

IN

of

NP

5.44
NP

NP

T2-PER

NNS

supporters

PP

5.45
NP

NP

T1-ORG

NNS

PP

5.46
T1-PER

NNS

prisoners

5.47
T2-PER

NNS

supporters

5.48
NNP

Pinochet

5.49
NP

NP

T1-ORG

PP

IN

of

NP

NP

5.50
NP

T2-LOC T1-PER

5.51
NP

T2-PER

NNS

supporters
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5.52
NNS

prisoners

5.53
T2-PER

JJ

Arab

5.54
NP

T2-PER

NN

T1-PER

NNS

5.55
NP

NP T2-PER

NNS

supporters

5.56
NP

NP

T1-PER POS

’s

T2-PER

NNS

supporters

5.57
NP

T2-PER T1-PER

NN

opponent

5.58
NP

T2-PER

PRP$

T1-PER

NN

opponent

5.59
T2-ORG

NN

government

5.60
NP

T2-ORG

NN

republican

T1-PER

5.61
NP

T2-PER T1-PER

NNS

people

5.62
NP

JJ T1-PER

NNS

5.63
T1-PER

JJ

5.64
NNP

Dakar

5.65
T2-GPE

NNP

Dakar

5.66
NP

T2-GPE

NNP

Dakar

5.67
T1-PER

NNS

leaders

5.68
JJ

political

5.69
NP

T2-PER T1-PER

NNS

supporters

5.70
NP

T2-PER

PRP$

their

T1-PER

5.71
ADJP

PP

5.72
NNP

Arizona

5.73
NNS

boys

5.74
NP

NP T2-GPE
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5.75
JJ

Indonesian

5.76
NP

DT T1-PER

NNS

people

5.77
T1-PER

NNS

boys

5.78
T1-PER

NNS

Americans

5.79
NP

NP T2-GPE

NN

5.80
NNS

Americans

5.81
NP

T1-PER

NNP

Bush

5.82
JJ

Democratic

5.83
JJ

gay

5.84
NNS

backers

5.85
NP

T1-PER

NNP

Milosevic

5.86
T1-ORG

NN

government

5.87
NP

S

VP

VP

5.88
NP

S

VP

5.89
NP

S

5.90
PP

NP

T1-ORG

5.91
JJ

JJ JJ JJ

5.92
JJ

JJ

pro

JJ

-

JJ

5.93
JJ

pro

5.94
PP

NP

T2-ORG

5.95
NP

NP

T1-ORG

PP

IN NP

5.96
NP

NP

T1-ORG

PP

5.97
T2-GPE

NNS

5.98
PP

IN NP

NP

NP

T2-GPE

NNP

5.99
PP

IN NP

NP

NP

T2-GPE

5.100
T1-PER

NNS

supporters
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Fragments for Class 6

6.1
T2-GPE

JJ

6.2
T2-GPE

NN

6.3
NP

T1-ORG

6.4
NP

T2-GPE NN T1-ORG

6.5
NN

home

6.6
T1-ORG

NNS

6.7
NNS

areas

6.8
T1-ORG

NN

6.9
T2-GPE

NNP

6.10
T2-GPE

PRP$

6.11
T2-GPE

NNP NNP

6.12
T1-PER

NNS CC NNS

6.13
T2-LOC

NN

6.14
NP

T2-GPE

JJ

T1-GPE

NN

6.15
T2-GPE

NN

palestinian

6.16
VBN

based

6.17
PP

IN

of

NP

JJ T2-GPE

6.18
T1-PER

NNS

ladies

6.19
NNS

ladies

6.20
JJ

political

6.21
VP

VBN

based

PP

IN

in

NP

6.22
NN

land

6.23
NP

T2-GPE T1-PER

6.24
T1-PER

NN

6.25
NP

DT

a

JJ

large

NN

6.26
JJ

large

6.27
NP

T2-GPE

NNP

NNP T1-ORG

NNP

6.28
T1-ORG

NN

channel

6.29
T2-GPE

NN

country

6.30
NNS

states

6.31
NP

ADJP

T2-GPE

T1-PER

6.32
GPE

NNP

Bahrain
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6.33
NNS

people

6.34
NP

T2-GPE

NN

town

6.35
T2-GPE

NNS

6.36
NP

DT GPE T2-GPE

6.37
VP

VBN

based

PP

IN NP

6.38
VP

VBN

based

PP

6.39
NP

T2-GPE

NNP

T1-ORG

NN

6.40
T1-PER

NNS

voters

6.41
T2-GPE

NNS

countries

6.42
NNP

Lebanon

6.43
NP

T2-GPE JJ T1-ORG

6.44
GPE

NNP

6.45
PP

IN NP

T2-GPE

NNP

6.46
NN

channel

6.47
NNP

gore

6.48
NP

T2-GPE NNP T1-ORG

6.49
CD

2,000

6.50
T1-LOC

NN

land

6.51
T1-PER

NNS

6.52
NP

T1-PER

NN

farmer

6.53
T1-PER

NN

farmer

6.54
NN

farmer

6.55
T2-GPE

NN NN

6.56
NNS

businesses

6.57
PP

IN NP

DT T2-GPE

6.58
NNP

Syrian

6.59
T1-PER

PRP$

6.60
JJ

T2-GPE JJ JJ

6.61
PP

IN

from

NP

6.62
NNS

electors

6.63
T1-PER

NNS

electors

6.64
NP

T2-GPE

JJ

T1-LOC

NNS
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6.65
NP

T2-GPE

NNP

T1-PER

NN

6.66
NNP

Egypt

6.67
T2-GPE

NN

hometown

6.68
NN

palestinian

6.69
PP

IN NP

T2-GPE

6.70
JJ

northern

6.71
NP

T2-GPE

JJ NN

6.72
PP

IN NP

NP

T2-GPE

6.73
NP

T2-LOC T1-ORG

6.74
NP

T2-GPE

JJ

Palestinian

T1-GPE

6.75
NNS

scientists

6.76
JJ

T2-GPE JJ

-

JJ

based

6.77
JJ

T2-GPE

JJ

JJ JJ

based

6.78
T2-GPE

PRP$

our

6.79
T2-GPE

NNP NNPS

6.80
NP

T2-GPE

NNP

T1-PER

NNS

6.81
JJ

own

6.82
ADJP

T2-GPE

6.83
NN

country

6.84
NN

city

6.85
PP

IN NP

DT GPE T2-GPE

6.86
NNS

chuhes

6.87
S

NP VP

VBZ

is

PP

6.88
NP

T2-GPE

JJ

T1-ORG

6.89
NNP

Korea

6.90
NP

T2-GPE T1-ORG

6.91
JJS

largest

6.92
NP

T2-GPE

NNP

T1-ORG

6.93
NP

NN NN

6.94
NP

T2-GPE T1-LOC
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6.95
NP

T2-GPE T1-PER

NNS

6.96
NP

NP ,

,

ADVP

RB

6.97
NP

NP

T2-GPE

,

,

ADVP

6.98
NP

NP

NP , ADVP

,

6.99
NP

NP , ADVP

6.100
NP

NP

NP , ADVP

,

,

Fragments for Class 7

7.1
NNP

Pinellas

7.2
T1-GPE

NNS

counties

7.3
IN

like

7.4
PP

IN

like

NP

7.5
VBP

include

7.6
T2-PER

CD

7.7
T2-PER

DT

7.8
T1-GPE

NNS

7.9
NN

%

7.10
JJ

first

7.11
ORG

NNP NNP

League

7.12
NNS

officers

7.13
T1-FAC

NNS

7.14
NP

NP

T2-PER

PP

7.15
DT

those

7.16
NNS

counties

7.17
JJ

7.18
NN

iCAST

7.19
NNS

shepherds

7.20
NNS

pitchers

7.21
PRP

them

7.22
NP

QP

7.23
NNP

Richard

7.24
VBN

joined

7.25
T1-WEA

NNS

bomblets
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7.26
NN

station

7.27
NNS

bomblets

7.28
NNP

Dade

7.29
NNP

Beach

7.30
T2-FAC

CD

7.31
T2-PER

NNS

members

7.32
S

NP

T2-GPE

NNS

VP

7.33
NP

NP , PP

7.34
NNP

DeWitt

7.35
PP

VBG

including

NP

7.36
VBG

including

7.37
PP

VBG NP

7.38
NP

NP

T1-PER

PP

7.39
NN

population

7.40
S

NP

T2-PER

VP

VBD NP PP : NP

7.41
NNP

Appier

7.42
NP

T2-ORG

NNS

7.43
NNP

Algeria

7.44
ORG

NNP

Arab

NNP

7.45
T1-GPE

NNP

Pennsylvania

7.46
T1-WEA

NNS

7.47
PP

IN NP

DT JJ T1-PER

7.48
NNS

providers

7.49
NNS

partners

7.50
NN

majority

7.51
T2-PER

NN

cast

7.52
NP

T2-PER

CD NN

7.53
T2-PER

CD NN

7.54
NN

community

7.55
T1-ORG

NNS

7.56
T2-PER

NNS

independents

7.57
PP

IN

of

NP

T2-PER

PRP

them

7.58
NP

T2-ORG

NNS

competitors

7.59
T2-ORG

NNS

competitors
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7.60
NP

DT GPE POS

7.61
JJS

Most

7.62
NP

ADJP T2-PER

NNS

7.63
NP

ADJP T2-PER

7.64
NNPS

Philippines

7.65
NNP

Pennsylvania

7.66
NP

NP

T2-PER

NN

PP

IN

of

NP

7.67
T2-ORG

NNS

newspapers

7.68
NP

T2-ORG

NNS

newspapers

7.69
JJ

only

7.70
NP

NP

T2-ORG

PP

IN NP

7.71
T1-PER

JJ

many

7.72
VBZ

7.73
NN

police

7.74
NNS

independents

7.75
T2-ORG

NN

company

7.76
T2-PER

NNS

7.77
PDT

half

7.78
NN

hank

7.79
NNS

states

7.80
PP

IN

as

NP

7.81
NP

QP

JJR IN T2-PER

7.82
QP

JJR IN T2-PER

7.83
QP

JJR IN

than

T2-PER

CD

7.84
NNS

voters

7.85
PP

IN NP

NP

T2-PER

NNS

7.86
NNP

Kevin
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7.87
T1-LOC

NNS

7.88
NP

GPE

NNP

Germany

POS

7.89
S

NP VP

VBP

include

S

7.90
PER

NNS

voters

7.91
PP

IN

of

NP

DT T1-PER

NNS

7.92
T2-GPE

NNS

7.93
PP

NP

T1-PER

NNS

7.94
JJS

most

7.95
NNS

competitors

7.96
T1-PER

PDT

7.97
T1-PER

PDT

half

7.98
PP

IN

of

NP

7.99
NP

T2-PER

7.100
RB

notably

B.3 Semantic Role Labeling
Fragments for Class A0

A0.1
PP ARG

IN

by

NP

A0.2
VP

VBG REL

A0.3
NP

VBG REL NNS ARG

A0.4
NP

VBG REL NN ARG

A0.5
VP

AUX REL

A0.6
VP

VB REL

A0.7
SINV

VP NP ARG

A0.8
VP

VBZ REL

says

NP ARG

A0.9
S

NP ARG VP

A0.10
S

NP VP

VP

VB REL

continue

A0.11
VP

VBP REL

A0.12
VBG REL

leading
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A0.13
S

NP VP

VBD REL

A0.14
VP

VB REL

benefit

PP ARG

A0.15
VP

VBD REL

said

NP ARG

A0.16
ADJP

VBG REL

A0.17
S

NP VP

VBZ REL

A0.18
VBG REL

underlying

A0.19
VP

VP

VBD REL

A0.20
VP

VB REL

benefit

PP ARG

IN NP

A0.21
S

NP ARG VP

VBD REL

A0.22
S

NP ARG

DT

some

NNS

VP

VP

VBN REL

A0.23
S

NP VP

VP

VBN REL

heard

A0.24
VP

VBN REL PP ARG

IN

by

NP

A0.25
VP

VB REL

benefit

PP ARG

IN

from

NP

A0.26
VP

VBN REL

contributed

A0.27
S

NP VP

VP

VBN REL

made

A0.28
VP

VBN REL

agreed

A0.29
VP

VBZ REL

takes

S

A0.30
VP

VBZ REL

A0.31
VBG REL

ruling

A0.32
VP

AUXG REL

A0.33
SBAR

S

VP

VBD REL

A0.34
VP

VP

VBN REL

shown
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A0.35
VP

VBN REL

worried

A0.36
VP

VP

VBN REL

received

A0.37
S

VP

VP

VB REL

continue

A0.38
VBG REL

competing

A0.39
VBN REL

worried

A0.40
VBN REL

contributed

A0.41
VBG REL

manufacturing

A0.42
S

NP VP

VP

VBN REL

seen

A0.43
VP

VP

VBZ REL

A0.44
S

NP ARG

DT NN

company

VP

VP

VBN REL

A0.45
S

NP VP

VP

VBG REL

getting

A0.46
NP

VBG REL NNS ARG

companies

A0.47
VBN REL

concerned

A0.48
VP

VP

VBN REL

decided

A0.49
VP

AUXG REL

having

A0.50
S

VP

VP

VB REL

end

A0.51
VP

NP ARG NP

A0.52
NP

NP ARG VP

VBG REL

A0.53
NP

NP VP

VBG REL

A0.54
S

NP ARG VP

VBZ REL

A0.55
VP

VBG REL

benefiting

PP ARG

A0.56
VP

VBG REL

benefiting

PP ARG

IN

from

NP
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A0.57
ADJP

RB ARG VBN REL

A0.58
VP

VBG REL

benefiting

PP ARG

IN NP

A0.59
VP

VBN REL

benefited

PP ARG

IN NP

A0.60
VP

VBN REL

benefited

PP ARG

A0.61
VP

VBN REL

benefited

PP ARG

IN

from

NP

A0.62
VP

VB REL

take

S

VP ARG

A0.63
VP

VB REL

take

S

VP ARG

TO VP

A0.64
VP

VB REL

take

S

VP ARG

TO

to

VP

A0.65
NN

spokesman

A0.66
VP

VB REL

say

NP ARG

A0.67
SINV

VP

VBD REL

NP ARG

A0.68
S

VP

VP

VB REL

prove

A0.69
VBG REL

working

A0.70
NN

analyst

A0.71
VP

VBN REL

suffered

A0.72
S

NP VP

VBP REL

A0.73
NP

NP ARG

DT

the

JJ NNS

SBAR

S

VP

VBP REL

A0.74
VBN REL

opposed

A0.75
VBG REL

voting

A0.76
VP

VBN REL

worked
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A0.77
VP

VBN REL

concerned

PP ARG

A0.78
VP

VBN REL

concerned

PP ARG

IN NP

A0.79
S

NP VP

VP

VBN REL

found

A0.80
NP

NP

NN ARG

SBAR

S

VP

VBZ REL

A0.81
NNS

analysts

A0.82
VP

VBN REL

contained

PP ARG

IN

in

NP

A0.83
VP

VBN REL

contained

PP ARG

A0.84
VP

VBN REL

contained

PP ARG

IN NP

A0.85
VP

VP

VBN REL

agreed

A0.86
S

NP

PRP ARG

VP

VBD REL

went

A0.87
VP

VBZ REL

takes

S

VP ARG

TO VP

A0.88
VP

VBZ REL

takes

S

VP ARG

A0.89
VP

VBZ REL

takes

S

VP ARG

TO

to

VP

A0.90
S

NP VP

VP

VBN REL

sold

A0.91
VP

VP

VBN REL

taken

A0.92
VP

VBN REL

met

A0.93
VP

VP

VBN REL

suffered

A0.94
VP

VBN REL

decided

A0.95
NP

VBG REL

operating

NNS ARG

A0.96
VBN REL

posted

A0.97
VP

VBN REL

posted
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A0.98
VBN REL

helped

A0.99
SQ

NP ARG VP

A0.100
S

NP

NNP ARG

VP

VP

VP

VBN REL

Fragments for Class A1
A1.1

S

NP ARG VP

VBD REL

became

A1.2
VP

VB REL

become

A1.3
VP

VBZ REL

remains

A1.4
S

NP ARG VP

VBD REL

totaled

A1.5
VBD REL

appeared

A1.6
VP

VBP REL

remain

A1.7
S

NP VP

VBD REL

rose

A1.8
VP

VB REL

remain

A1.9
VBD REL

closed

A1.10
S

NP ARG VP

VBD REL

fell

A1.11
VP

VBG REL

totaling

A1.12
VP

VP

VB REL

remain

A1.13
VP

VBG REL

waiting

A1.14
VP

VBG REL

becoming

A1.15
S

NP ARG VP

VBD REL

went

A1.16
S

NP ARG VP

VBD REL

rose

A1.17
VP

VP

VB REL

become

A1.18
VP

VB REL

cost
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A1.19
VP

VBG REL

operating

A1.20
VBD REL

died

A1.21
VP

VB REL

stay

A1.22
VBD REL

failed

A1.23
VP

VP

VB REL

cost

A1.24
VBD REL

seemed

A1.25
S

NP VP

VBD REL

fell

A1.26
VBG REL

coming

A1.27
VP

VBZ REL

becomes

A1.28
VBD REL

came

A1.29
VP

VBZ REL

costs

A1.30
S

NP ARG VP

VBD REL

followed

A1.31
S

NP ARG VP

VBD REL

increased

A1.32
VP

VB REL

come

A1.33
VBD REL

ended

A1.34
VP

VBG REL

going

A1.35
S

NP ARG VP

VBD REL

jumped

A1.36
S

NP ARG VP

VBD REL

gained

A1.37
S

NP ARG VP

VP

VB REL

continue

A1.38
VP

VBP REL

tend

A1.39
S

NP ARG VP

VBZ REL

follows

A1.40
VP

VB REL

grow

A1.41
S

NP ARG VP

VBD REL

remained

175



APPENDIX B. RELEVANT FRAGMENTS

A1.42
S

NP VP

VBD REL

became

A1.43
VP

VBG REL

ranging

A1.44
VP

VBP REL

become

A1.45
VBD REL

occurred

A1.46
VP

VBZ REL

seems

A1.47
VP

VBP REL

seem

A1.48
VBP REL

seem

A1.49
VBZ REL

appears

A1.50
VP

VBZ REL

appears

A1.51
VBZ REL

seems

A1.52
S

NP ARG VP

VBD REL

dropped

A1.53
VP

VP

VB REL

stay

A1.54
VP

VBP REL

come

A1.55
S

NP ARG VP

VBD REL

advanced

A1.56
VP

VBN REL

A1.57
VBD REL

collapsed

A1.58
VP

VBZ REL

stands

A1.59
S

NP ARG VP

VBD REL

plunged

A1.60
VP

VP

VB REL

wait

A1.61
VP

VB REL

wait

A1.62
S

NP ARG VP

VBD REL

climbed

A1.63
VP

VB REL NP ARG

A1.64
VP

VBG REL NP ARG

A1.65
VP

VBG REL

falling
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A1.66
VP

VBG REL

sitting

A1.67
VP

VBZ REL

sounds

A1.68
NP

VBG REL

increasing

NN ARG

A1.69
VP

VB REL

rise

A1.70
VP

VBZ REL

goes

A1.71
VBD REL

finished

A1.72
S

NP VP

VBD REL

came

A1.73
VP

VBP REL

appear

A1.74
VBP REL

appear

A1.75
VBG REL

existing

A1.76
VP

VBP REL NP ARG

A1.77
PP ARG

IN

about

NP

A1.78
VP

VBZ REL

comes

A1.79
VP

VBZ REL

lies

A1.80
VBG REL

remaining

A1.81
S

NP ARG VP

VBD REL

surged

A1.82
S

NP ARG VP

VBD REL

slipped

A1.83
S

NP ARG VP

VBD REL

grew

A1.84
NP

VBN REL NN ARG

A1.85
NP

VBN REL NNS ARG

A1.86
VP

VBZ REL NP ARG

A1.87
ADJP

VBN REL
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A1.88
VP

VB REL

go

A1.89
VP

VP

VB REL

go

A1.90
S

NP VP

VBD REL

traded

A1.91
S

NP ARG VP

VBD REL

came

A1.92
VP

VB REL

appear

A1.93
VB REL

appear

A1.94
VP

VBG REL

rising

A1.95
VP

VBD REL NP ARG

A1.96
VBG REL

maturing

A1.97
S

NP ARG VP

VBD REL

tumbled

A1.98
VP

VBP REL

stand

A1.99
S

NP ARG VP

VBD REL

failed

A1.100
S

NP ARG VP

VBD REL

plummeted
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Fragments for Class A2

A2.1
VP

VBP REL

include

A2.2
VP

VBZ REL

includes

A2.3
VP

VBD REL

included

A2.4
VP

VB REL

include

A2.5
VP

VBG REL

reflecting

A2.6
PP

VBG REL

following

NP ARG

A2.7
PP

VBG REL

including

A2.8
VP

VBZ REL

reflects

A2.9
VP

VBZ REL

involves

A2.10
VP

VB REL

involve

A2.11
VP

VBD REL

told

NP ARG

A2.12
VP

VB REL

reflect

A2.13
VBG REL

totaling

A2.14
VP

VBN REL

Asked

A2.15
VP

VBN REL

intended

A2.16
VP

VBG REL

negotiating

NP ARG

A2.17
VP

VBG REL

involving

A2.18
VP

VBD REL

asked

NP ARG

A2.19
VP

VBD REL

involved

A2.20
VP

VB REL

offset

A2.21
VP

VBD REL

became

NP ARG

A2.22
VP

VBZ REL

covers

A2.23
VP

VBD REL

told

NP

A2.24
VP

VB REL

become

NP ARG

A2.25
VP

VBN REL

become

NP ARG

A2.26
VP

VB REL

cost

NP ARG

A2.27
PRT

RP ARG

A2.28
VP

VBG REL

surrounding

NP ARG

A2.29
VB REL

become

A2.30
VP

VBD REL

reflected
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A2.31
VP

VBG REL

becoming

NP ARG

A2.32
VP

VB REL PP ARG

IN

by

NP

A2.33
VP

VBD REL

fell

NP ARG

A2.34
NP

NN ARG

effect

A2.35
ADVP

RB ARG

A2.36
VP

VBD REL

totaled

NP ARG

A2.37
VP

VBG REL

covering

A2.38
NN ARG

place

A2.39
NP

NN ARG

place

A2.40
PP ARG

IN

by

NP

QP

A2.41
VP

VBD REL NP

CD ARG

A2.42
VP

VBZ REL

becomes

NP ARG

A2.43
VP

VB REL

tell

NP

A2.44
VBP REL

become

A2.45
VP

VBN REL ADVP ARG

A2.46
NP ARG

CD NNS

points

A2.47
VP

VBP REL

reflect

A2.48
VP

VB REL

give

NP

A2.49
VP

VBN ARG

A2.50
NN ARG

effect

A2.51
VP

VB REL

require

S

A2.52
S

ADJP ARG

A2.53
VBD REL

totaled

A2.54
VP

VBD REL

rose

NP ARG

A2.55
VBN REL

called

A2.56
VP

VBD REL

asked

NP

A2.57
VP

VBZ REL

follows

NP ARG

A2.58
VP

VB REL

hurt

A2.59
VP

VB REL

cover
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A2.60
VP

VBD REL

followed

NP ARG

A2.61
VP

VBP REL

involve

A2.62
VP

VP

VBN REL

awarded

A2.63
VP

VBG REL

resulting

A2.64
VBG REL

becoming

A2.65
VBD REL

became

A2.66
VP

VBG REL ADVP ARG

A2.67
VP

VB REL

serve

NP ARG

A2.68
VBN REL

become

A2.69
VBG REL

reflecting

A2.70
VB REL

reflect

A2.71
VBG REL

negotiating

A2.72
VP

VB REL

require

S

NP

A2.73
VP

VBD REL

worked

PP ARG

IN

for

NP

A2.74
VBZ REL

reflects

A2.75
PP

VBG REL

Following

NP ARG

A2.76
VP

VBG REL

including

A2.77
VP

VBG REL

awaiting

NP ARG

A2.78
NP

VBG REL

offsetting

NNS ARG

A2.79
VP

VB REL

fuel

A2.80
VP

VBN REL ADJP

A2.81
ADJP

JJ ARG

A2.82
VP

VBD REL

spent

S

VP ARG

A2.83
VP

VB REL

ask

NP

A2.84
VP

VB REL

require

S

NP ARG

A2.85
VP

VBN REL ADJP ARG
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A2.86
PP

VBN REL PP ARG

A2.87
VP

VB REL

cost

NP

QP ARG

A2.88
VBZ REL

becomes

A2.89
VP

VB REL

provide

PP ARG

IN

for

NP

A2.90
CD ARG

100

A2.91
VBN REL

negotiated

A2.92
VP

VBD REL ADVP ARG

A2.93
ADJP

JJR ARG

A2.94
VP

VBD REL

outnumbered

NP

A2.95
VP

VBD REL

outnumbered

NP

NNS ARG

A2.96
VP

VBZ REL ADVP ARG

A2.97
VB REL

cost

A2.98
VP

VB REL ADVP ARG

A2.99
VP

VBZ REL

makes

S

VP ARG

A2.100
S

NP

NP ARG
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Fragments for Class A3

A3.1
VBZ REL

remains

A3.2
VB REL

remain

A3.3
VB REL

stay

A3.4
VBP REL

remain

A3.5
VBD REL

remained

A3.6
VP

VB REL

work

PP ARG

IN

with

NP

A3.7
VP

VB REL

spend

NP

A3.8
PP ARG

IN

from

NP

CD

A3.9
VP

VBD REL

filed

PP ARG

IN

against

NP

A3.10
VB REL

spend

A3.11
VP

VB REL

buy

PP ARG

IN

at

NP

A3.12
VBN REL

combined

A3.13
PP ARG

IN

from

NP

QP

A3.14
VP

VB REL

bring

PRT

RP ARG

A3.15
VP

VB REL

bring

PRT

A3.16
NP

VBN REL

combined

NN ARG

A3.17
VP

VB REL

open

PP ARG

A3.18
VP

VBN REL

filed

PP ARG

IN

against

NP

A3.19
VP

VBG REL

pouring

PP ARG

A3.20
VBG REL

spending

A3.21
NP

NP ARG

$

$

CD

VP

VBN REL

asked
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A3.22
VP

VB REL

spend

NP ARG

A3.23
VP

VB REL

pay

PP ARG

IN

for

NP

A3.24
VP

VB REL

pay

PP ARG

IN NP

A3.25
VP

VBG REL

paying

PP ARG

IN NP

A3.26
VBD REL

outnumbered

A3.27
PP

PP ARG

IN

from

NP

A3.28
VP

VB REL

receive

PP ARG

IN

for

NP

A3.29
VP

VBG REL

spending

NP ARG

A3.30
VP

VBN REL

offered

PP ARG

TO

to

NP

A3.31
VP

VBN REL

offered

PP ARG

TO NP

A3.32
VP

VBG REL

selling

PP ARG

IN NP

A3.33
VP

VB REL

sell

PP ARG

IN NP

A3.34
VP

VB REL

offer

PP ARG

TO NP

A3.35
VP

VB REL

offer

PP ARG

TO

to

NP

A3.36
VP

VBN REL

paid

PP ARG

IN

for

NP

A3.37
VP

VBG REL

pouring

PP ARG

IN NP

A3.38
VP

VBG REL

pouring

PP ARG

IN

into

NP

A3.39
VP

VBG REL

trading

PP ARG
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A3.40
PP ARG

IN NP NP

A3.41
NP

NP ARG VP

VBN REL

asked

A3.42
VP

VB REL

stay

ADJP

A3.43
VP

VBG REL

paying

PP ARG

IN

for

NP

A3.44
VP

VBN REL

found

S

A3.45
PP ARG

IN

from

NP

CD NN

%

A3.46
VBG REL

bringing

A3.47
VP

VBD REL

paid

PP ARG

IN

for

NP

A3.48
VP

VBD REL

paid

PP ARG

IN NP

A3.49
VP

VBN REL

designed

S

VP ARG

TO

to

VP

A3.50
VP

VBN REL

designed

S

A3.51
VP

VBN REL

designed

S

VP ARG

TO VP

A3.52
VP

VBN REL

designed

S

VP ARG

A3.53
VP

VBN REL

opened

PP ARG

A3.54
VBP REL

stay

A3.55
VP

VBN REL

brought

PRT

RP ARG

A3.56
VBD REL

stayed

A3.57
VP

VBN REL

brought

PRT

A3.58
VP

VBN REL

spent

NP

QP ARG

A3.59
VP

VBN REL

sold

PP ARG

IN

at

NP
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A3.60
VB REL

bring

A3.61
VP

VBD REL

remained

ADJP

A3.62
VP

VBD REL

remained

ADJP

JJ ARG

A3.63
VP

VBG REL

paying

PP ARG

A3.64
VP

VBP REL

remain

ADJP ARG

A3.65
VP

VB REL

pay

PP ARG

A3.66
VP

VB REL

sell

PP ARG

IN

at

NP

A3.67
VP

VB REL

stay

PP ARG

A3.68
PP ARG

IN

from

NP

CD NN

A3.69
VP

VBG REL

spending

NP

QP ARG

A3.70
VP

VBD REL

paid

PP ARG

A3.71
VP

VBP REL

remain

ADJP

A3.72
VP

VBP REL

pay

PP ARG

IN NP

A3.73
VP

VBP REL

pay

PP ARG

IN

for

NP

A3.74
VP

VB REL

open

PP ARG

TO NP

A3.75
VP

VB REL

open

PP ARG

TO

to

NP

A3.76
VP

VBN REL

sold

PP ARG

IN NP

A3.77
VP

VBN REL

opened

PP ARG

TO NP

A3.78
VBN REL

remained
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A3.79
VP

VBN REL

opened

PP ARG

TO

to

NP

A3.80
VP

VBD REL

spent

NP

QP ARG

A3.81
PP ARG

IN

from

NP

CD NNS

A3.82
PP ARG

IN NP

QP

A3.83
VP

VB REL

say

PP ARG

IN NP

A3.84
VP

VB REL

acquire

PP ARG

IN

for

NP

A3.85
VBN REL

spent

A3.86
VBN REL

brought

A3.87
VP

VBD REL

remained

ADJP ARG

A3.88
VP

VBD REL

received

PP ARG

IN

for

NP

A3.89
VP

VB REL

remain

NP ARG

A3.90
VP

VBG REL

bringing

PP ARG

TO NP

A3.91
VP

VBG REL

bringing

PP ARG

TO

to

NP

A3.92
VP

VBD REL

paid

S

VP ARG

TO VP

A3.93
VP

VBD REL

paid

S

VP ARG

A3.94
VP

VBD REL

paid

S

VP ARG

TO

to

VP

A3.95
VP

VBD REL

paid

S

A3.96
VP

VBG REL

buying

PP ARG

IN

at

NP
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A3.97
VP

VBD REL

remained

PP ARG

IN NP

A3.98
VP

VBP REL

remain

PP ARG

A3.99
VP

VBN REL

scheduled

PP ARG

IN NP

A3.100
VP

VBN REL

scheduled

PP ARG

Fragments for Class A4
A4.1

PP ARG

TO NP

CD

A4.2
PP ARG

TO

to

NP

CD

A4.3
PP ARG

IN

below

NP

A4.4
VP

VB REL

expand

PP ARG

A4.5
VP

VB REL

return

PP ARG

A4.6
PP

NP

QP ARG

A4.7
VB REL

return

A4.8
VBD REL

arrived

A4.9
VP

VB REL

go

ADVP ARG

A4.10
VP

VBN REL

adjusted

PP ARG

A4.11
VP

VBN REL

adjusted

PP ARG

IN NP

A4.12
VP

VBN REL

adjusted

PP ARG

IN

for

NP

A4.13
VBD REL

returned

A4.14
PP ARG

TO

to

NP

CD NNS

A4.15
PP ARG

TO NP

CD NNS

A4.16
PP ARG

TO

to

NP

QP

A4.17
PP ARG

TO NP

QP

A4.18
VB REL

range

A4.19
VP

VBD REL

arrived

PP ARG

IN NP

A4.20
VP

VBD REL

arrived

PP ARG

A4.21
VP

VBD REL

rose

PP ARG

TO

to

NP

A4.22
VP

VBD REL

rose

PP ARG

TO NP
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A4.23
VP

VBD REL

returned

PP ARG

TO NP

A4.24
VP

VBD REL

returned

PP ARG

TO

to

NP

A4.25
VP

VBD REL

returned

PP ARG

A4.26
VBZ REL

falls

A4.27
VP

VBD REL

filed

S

VP ARG

A4.28
VP

VBD REL

filed

S

A4.29
VB REL

expand

A4.30
VP

VBG REL

returning

PP ARG

TO

to

NP

A4.31
VP

VBG REL

returning

PP ARG

TO NP

A4.32
VP

VBG REL

returning

PP ARG

A4.33
IN

beyond

A4.34
VBP REL

go

A4.35
VBG REL

returning

A4.36
VBG REL

coming

A4.37
IN

below

A4.38
VP

VBG REL

coming

PP ARG

TO NP

A4.39
VP

VBG REL

coming

PP ARG

TO

to

NP

A4.40
VBN REL

fallen

A4.41
RB

short

A4.42
PP ARG

TO NP PP

A4.43
VB REL

go

A4.44
VB REL

fall

A4.45
VBD REL

lowered

A4.46
VBZ REL

goes

A4.47
VP

VBD REL

settled

PP ARG

A4.48
VP

VBD REL

settled

PP ARG

IN NP

A4.49
PP ARG

TO NP

CD NN
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A4.50
PP ARG

TO

to

NP

CD NN

A4.51
PP ARG

TO NP

$ CD

A4.52
PP ARG

TO

to

NP

$ CD

A4.53
NNS

wells

A4.54
PP ARG

TO NP

QP NNS

A4.55
PP ARG

TO

to

NP

QP NNS

A4.56
VBD REL

soared

A4.57
VBN REL

adjusted

A4.58
VBD REL

filed

A4.59
VP

VBD REL

settled

PP ARG

IN

at

NP

A4.60
VP

VB REL

return

PP ARG

TO

to

NP

A4.61
VP

VB REL

return

PP ARG

TO NP

A4.62
VP

VBG REL

ranging

PP

A4.63
VP

VBN REL

increased

PP ARG

TO

to

NP

A4.64
VP

VBN REL

increased

PP ARG

TO NP

A4.65
VP

VBD REL

dropped

PP ARG

TO

to

NP

A4.66
VP

VBN REL

gone

PP ARG

TO NP

A4.67
VP

VBN REL

gone

PP ARG

TO

to

NP

A4.68
VBN REL

arrived
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A4.69
VP

VBD REL

dropped

PP ARG

TO NP

A4.70
VBN REL

gone

A4.71
VP

VBD REL PP ARG

TO NP

CD CD

A4.72
PP ARG

TO NP

CD CD

A4.73
VP

VBD REL PP ARG

TO

to

NP

CD CD

A4.74
PP ARG

TO

to

NP

CD CD

A4.75
VP

VB REL

expand

PP ARG

TO

to

NP

A4.76
VP

VB REL

expand

PP ARG

TO NP

A4.77
VBG REL

ranging

A4.78
VP

VBN REL

expanded

PP ARG

A4.79
VBN REL

expanded

A4.80
VBN REL

dropped

A4.81
VBD REL

rose

A4.82
VBD REL

dropped

A4.83
VBG REL

falling

A4.84
PP ARG

ADVP

RB

IN

beyond

NP

A4.85
VP

VB REL

go

PP ARG

TO

to

NP

A4.86
VP

VB REL

go

PP ARG

TO NP

A4.87
VP

VB REL

go

PP ARG

TO

to

NP

NNP
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A4.88
VP

VB REL

go

PP ARG

TO NP

NNP

A4.89
PP ARG

TO NP

$

$

CD

A4.90
PP ARG

TO

to

NP

$

$

CD

A4.91
NN ARG

home

A4.92
VP

VBD REL

went

PP ARG

TO

to

NP

A4.93
VP

VBD REL

went

PP ARG

TO NP

A4.94
NN

split

A4.95
VP

VBN REL

reduced

PP ARG

A4.96
VBN REL

reduced

A4.97
VBP REL

range

A4.98
VBD REL

climbed

A4.99
VP

VBP REL PP

A4.100
VP

VBG REL

coming

PP ARG

Fragments for Class A5
A5.1

VBN REL

scaled

A5.2
VBG REL

edging

A5.3
VP

VBG REL

edging

ADVP

A5.4
VBD REL

edged

A5.5
VB REL

scale

A5.6
VBD REL

inched

A5.7
ADVP

RBR ARG

A5.8
ADVP

RB ARG

A5.9
VBD REL

shot

A5.10
VBD REL

sent

A5.11
VP

VB REL ADVP ARG

A5.12
ADVP

JJR ARG

A5.13
ADVP

JJR ARG

higher

A5.14
ADJP

JJR ARG
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A5.15
RP ARG

up

A5.16
JJR ARG

higher

A5.17
RB ARG

up

A5.18
ADVP

RB ARG

up

A5.19
PRT

RP ARG

A5.20
RP ARG

back

A5.21
PRT

RP ARG

back

A5.22
VP

VBD REL

inched

PRT

RP ARG

A5.23
VP

VBD REL

inched

PRT

RP ARG

up

A5.24
VP

VBD REL

inched

PRT

A5.25
VP

VBD REL

edged

PRT

RP ARG

up

A5.26
VP

VBD REL

edged

PRT

RP ARG

A5.27
VP

VBD REL

edged

PRT

A5.28
VBG REL

inching

A5.29
VP

VBG REL

inching

ADVP

A5.30
VP

VBG REL

inching

ADVP

RB ARG

A5.31
VP

VBG REL

inching

ADVP

RB ARG

up

A5.32
NP

$ CD

A5.33
CC

and

A5.34
PRT

RP ARG

up

A5.35
VP

VBD REL PRT

RP ARG

up

A5.36
VP

VBD REL PRT

RP ARG

A5.37
VP

VBD REL PRT

A5.38
RBR ARG

higher

A5.39
VP

VBG REL ADVP
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