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Abstract

Digital images are becoming the most commonly used multimedia data nowadays
thanks to the massive manufacturing of cheap acquisition devices coupled with the un-
precedented popularity of Online Social Networks. As two sides of a coin, massive use of
digital images triggers the development of user-friendly editing tools and intelligent tech-
niques that violate image authenticity. By this respect, digital images are less and less
trustable as they are easily modified not only by experts or researchers, but also by unez-
perienced users. It has been also witnessed that malicious use of images has tremendous
impact on human perception as well as system reliability. Those concerns highlight the
importance to verify image authenticity.

In practice, digital images are created, manipulated, and diffused world-wide via many
channels. Simply answering to the question “Is an image authentic?” appears insufficient.
Further steps aiming at understanding the provenance of images with respect to acquisition
device or distributed platforms as well as the processing history have to be considered
significant.

This doctoral study contributes solutions to recover digital image provenance under
multiple aspects: i) image acquisition device, ii) social network origin, and iii) source-
target disambiguation in image copy-move forgery.
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Chapter 1

Introduction

Thanks to the massive manufacturing of acquisition devices, the high computing power
of computers, photography becomes unprecedentedly advanced. Unfortunately, photog-
raphy nowadays is losing its innocence. “One Picture is Worth a Thousand Words”,
an English language-idiom, implies the trustworthiness of traditional photographs, yet a
similar implication fails on modern digital images due to the ease of manipulation [4].
The availability of sophisticated photo-editing software, e.g. Adobe Photoshop, Adobe
Lightroom, GIMP, CorelDRAW, enables the prevalence of manipulated digital images.
Recent advances in Artificial Intelligence (AI) allow to generate plausible image content
in autonomous way, deceiving viewers easily. By the popularity of online social networks
nowadays, world-wide users have a shared channel for the diffusion of user-generated con-
tent, including most common means of multimedia data. When such technologies are
mutually available, and if abused for malicious purposes, the negative consequences could
be hardly measurable.

Concerns on integrity and authenticity, therefore, motivate effective and efficient tech-
niques to detect or to verify digital images. In the last decade, we have witnessed a set
of invented tools easing the analysis at the current stage of the image, while the process
of understanding on how that image comes to the current stage receives less attention.
The latter particular aspect is attributed to image provenance analysis. “Provenance”
comes from French word, provenir, is used popularly in art to prove the source or origin
of artwork. In computing, we have found thevery similar implication but with broader
sense. Data provenance can be defined as the history of a data item from the time of
its creation to the present [5]. Similarly to multimedia data, a digital image also has its
own history, of which a full profiling involves not only the creation, or origin, but also the
manipulation processes. By this regard, image provenance could imply physical capturing
device, or computer generating software that produces the image at the very first stage,
or intermediate platforms that produce the new image at intermediate stages. Over the
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circulating process, the image might undergo a set of manipulations, before arriving to
the current stage.

1.1 Contributions of this study

This doctoral study presents a number of forensic solutions contributing to image prove-
nance analysis including:

Clustering Images by Acquisition Device. Realistic images are created through
a capturing device which is tightly associated to an identity. Being able to extract sort
of camera fingerprint from images help establish reliable mappings between images and
person. As an example, Facebook has filed a patent on camera fingerprinting and its
applications!. The patent describes how to extract fingerprint of the acquisition camera
based only on uploaded images. Based on camera fingerprinting features, Facebook can
identify multiple situations in which a user might borrow or change the camera, a user
might have multiple social profiles, a user might have real-life relationship with other
users and so on. In this situation, uploaded images are unsourced (unknown origin).
Occasionally, the information of device can be extracted from the attached metadata,
e.g., the Exif header. However, this may be unavailable or can be easily modified or
swept out even by non-experts.

It is more practical to consider a situation referred to as blind, in which the forensic
investigator only has access to pixel values, and no other auxiliary information. With
this respect, clustering images with respect to their acquisition devices is a preliminary
step. Further steps, such as detecting how many cameras a suspect owns, or how likely
an image was taken by the suspect’s camera, can derive from clustering results. Indexing
images by source camera also results in direct applications in large-scale image retrieval.
Towards this goal, this doctoral study introduces a novel approach to cluster images by
their acquisition devices in both medium-scale and large-scale contexts. The proposed
framework exploits linear dependencies of Sensor Pattern Noise in their intrinsic vector
subspaces which better represent relationship of images with respect to acquisition de-
vice. Extensive experiments have been conducted to corroborate the accuracy as well as
scalability of the proposed framework.

Identifying Social Network Origin of Digital Images. Social networks include
both public social networks such as Facebook, Twitter, Flickr, etc., and instant messaging
apps like Facebook Messengers, Whatsapp, Telegram, and many others. Such platforms
are more and more engaging people in their personal relations taking possession of an
important part of their daily life. Huge amount of multimedia contents, mainly photos,

"https://patents.google.com/patent /US20150124107
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are poured and successively shared on these platforms so quickly that is not possible
to follow their paths. This last issue surely grants anonymity and impunity, thus it
consequently makes easier to commit crimes such as reputation attack and cyberbullying.
In fact, contents published within a restricted group of friends on an instant messaging
app can be rapidly delivered and viewed on a public social network by acquaintances and
then by strangers without any sort of tracking. In a forensic scenario (e.g., during an
investigation), succeeding in understanding this flow could be strategic, thus allowing to

reveal all the intermediate steps a certain content has followed.

This study investigates several approaches for tracking the social network origin of
digital images. In particular, the inclusion of metadata-based features which are highly
distinctive for characterizing the last JPEG compression, and DCT coefficients which
could contain traces of multiple JPEG compressions, are analyzed in this study. More-
over, the considered platforms are expanded from public social networks to private com-
munications in instant messaging apps. Not only the last platform where images directly
come from, but also the chain of platforms where images have been circulated through are
taken into account. The identification of social network origin is cast into classification
problem, where traditional classifiers and deep neural networks are proposed and tested.
We achieve state-of-the-art performance on broad evaluations.

Source-Target Disambiguation in Copy-Move Forgery. Copy-move forgery is
a process of geometrically transforming an indicated region and applying some means
of postprocessing within the same image in order to conceal an evidence or to deceive
viewers. Copy-move detection methods are able to detect the presence of copy-move
forgeries by looking for duplicated regions. Nevertheless, to gain further insights on the
image before being forged, the source and target regions must be disambiguated. Despite
the popularity of copy-move detection methods, source-target disambiguation task has

received less attention.

This study proposes a novel solution to solve this forensic problem. The principle idea
is based on the fact that color interpolation and postprocessing make copy-move forgery
a non-invertible process. It means, the inverse geometrical transformation from target
to source introduces flaws. By exploiting this fact, we design a discriminative model by
means of a four-stream neural network for this task. We build a data synthesizer to
generate a large-scale dataset of forged images enabling the training of such network. We
also introduce a method to estimate the transformation matrix from localization mask,
broadening the applicability of our method. Despite the fact that this research is on
progress, our preliminary results on some benchmarking datasets are highly promising.
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1.2 Outline

The remaining sections of this thesis is organized as follows:

In Chapter 2, we provide an overview of popular forensic problems in image prove-
nance analysis, including problems we particularly focus in this dissertation. The first
contribution of this doctoral study, a novel method for image clustering with respect
to acquisition device, is presented in Chapter 3. We describe the second contribution
regarding to the identification of social network origin in Chapter 4. The remaining con-
tribution on source-target disambiguation is presented in Chapter 5. Finally, in Chapter

6 we conclude this dissertation by some remarks.

1.3 List of activities

The presentation of this dissertation follows chronological order of the PhD course.

o We first target the problem of image clustering by source camera in medium-scale
contexts, and afterwards extend to large-scale contexts as well. Majority of results
presented in Chapter 3 have been published in the following venues:

Q.-T. Phan, G. Boato, F. G. B. De Natale. Image Clustering by Source Camera via Sparse
Representation. In Proceedings of International Workshop on Multimedia Forensics and Security,
pages 1-5, 2017. [6]

Q.-T. Phan, G. Boato, F. G. B. De Natale. Accurate and Scalable Image Clustering Based On

Sparse Representation of Camera Fingerprint. IEEE Transactions of Information Forensics and

Security, 2019. 2 [7]

o We study the identification of instant messaging apps, and later expand to public so-
cial networks. Partial results presented in Chapter 4 have been published /submitted

in the following venues:

Q.-T. Phan, C. Pasquini, G. Boato, F. G. B. De Natale. Identifying Image Provenance: An Anal-
ysis of Mobile Instant Messaging Apps. In Proceedings of International Workshop on Multimedia
Signal Processing, 2018. [8]

Q.-T. Phan, G. Boato, I. Amerini, R. Caldelli. Tracking Multiple Image Sharing on Social
Networks. To appear in International Conference on Acoustics, Speech, and Signal Processing,

2019.

o We study the problem of source-target disambiguation recently and present prelim-
inary results in Chapter 5. This work is still on progress.

*Early access: https://ieeexplore.icee.org/document /8576558
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Besides, we have worked on other projects, and published (or submitted) in the fol-
lowing venues:

Q.-T. Phan, M. Vascotto, G. Boato. Hue Modification Localization By Pair Matching. Submitted
to Furopean Signal Processing Conference, 2019.

E. Sansone, Q.-T. Phan, F. G. B. De Natale. Coulomb Autoencoders. Submitted to International
Conference on Machine Learning, 2019.

F. Lago, Q.-T. Phan, G. Boato. Visual and Textual Analysis for Image Trustworthiness Assessment
within Online News. Submitted to Security and Communication Networks, 2018.

F. Lago, Q.-T. Phan and G. Boato. Image Forensics in Online News. In Proceedings of International
Workshop on Multimedia Signal Processing, 2018.

Q.-T. Phan, D.-T. Dang-Nguyen, G. Boato, F. G. B De Natale. Using LDP-TOP in Video-Based
Spoofing Detection. In Proceedings of International Conference on Image Analysis and Processing, pages
614-624, 2017.[9]

Q.-T. Phan, A. Budroni, C. Pasquini, F. G. B. De Natale. A Hybrid Approach For Multimedia Use
Verification. In MediaFEval, 2016. [10]

Q.-T. Phan, D.-T. Dang-Nguyen, G. Boato, F. G. B De Natale. Face Spoofing Detection using
LDP-TOP. In Proceedings of International Conference on Image Processing, pages 404-408, 2016. [11]






Chapter 2

Digital Image Provenance

When you see digital images on the Web, you might ask questions to yourself: Where do
they come from? Do they reflect the reality? If not, how have they been modified? 1t is
important to answer such questions, particularly in forensic science. Unfortunately, an-
swering them is not easy. By relating to analog forensics, [12] justifies why such questions
are difficult. Interactions between two entities in the physical world leave patterns (or
footprints) allows unconstrained forensic investigators to analyze the scene to find even
the subtlest traces. Digital forensic investigations, on the other hand, are limited to finite
states of computers. All traces can be erased completely, defeating even unconstrained
forensic investigators.

In practice, there neither exist unconstrained forensic investigators, nor unconstrained
perpetrator that can erase completely traces. Actions taken on digital data often leave
intrinsic evidences, which serve as the basis for research on multimedia forensics moving
on. Multimedia forensics have been considered as relatively young, but rapidly received
attentions from researchers from different communities. Two original main missions in
multimedia forensics are to identify the source device (or sensor), and to reveal traces
of manipulation. The first mission is dedicated to answering the first aforementioned
question, while the second mission means to answer the second question. Recent efforts
in multimedia forensics research not only extend the first question to different contexts:
Social Network (SN) origins and image phylogeny, but also answer the third question:
how to reconstruct the manipulation process.

This study concentrates more on the first and the third question. By our classification,
the focus of the study is therefore dedicated to image provenance analysis which unveils
the origin of digital images and the process on which images have been manipulated.
To this end, we consider leaf nodes of the hierarchy in Figure 2.1 as elements of image
provenance analysis, and attempt to describe concrete problems as well as remarkable
solutions in this Chapter.
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Image Provenance Analysis

/ \

Image Origin Image Manipulation
Acquisition Device Social Network Parameters

Figure 2.1: Hierarchy of image provenance analysis.

Section 2.1 briefly introduces key problems and solutions regarding to acquisition de-
vice, while Section 2.2 discusses the recovery of social network origin. The reconstruction

of popular image manipulations is presented in Section 2.3.

2.1 Image Acquisition Device

Images, a popular form of multimedia taken by digital cameras, are faithfully associated
with an identity. Being able to retrieve information of the capturing device is essential for
forensic applications. In this section, we review remarkable solutions for three well-known

problems:

e Source Camera Classification: classifying images according to their origin, given a

set of possible devices.

e Source Camera Identification: proving a given image was acquired by a specific
device.

o Image Clustering by Source Camera: clustering images by their acquisition device.

The aim of Source Camera Classification (SCC) is to assign a given image into one of
possible devices, e.g. Canon versus Kodak, scanner versus digital cameras, etc. The chal-
lenge here is to develop a discriminative information of cameras from pixel values. This
problem is addressed in the literature by means of software and hardware artifacts. Soft-
ware artifacts are caused by particular processing deployed inside the camera. Remark-
able artifacts are Color Filter Array (CFA) configuration and demosaicing [13, 14, 15], and
color statistics [16, 17]. CFA configuration settles the locations of directly observed pixels
and interpolated pixels, while interpolation algorithm decides on how neighboring pixels
are correlated. In [13], Expectation Maximization (EM) is applied in a similar way to [1§]
for finding coefficients of a linear interpolation model, while [14] searches for CFA pattern
that minimizes the interpolation error of a linear model estimated by least squares. An
extension of [14] is introduced in [15] by considering cross-channel color interpolations.
In addition to CFA patterns and interpolation algorithms, artifacts of auto-white balance

process are exploited to identify source camera [19].



Image Acquisition Device 9

Despite being effective, methods based software artifacts are sensitive to camera config-
urations at the capturing time. For this reason, research is oriented to hardware artifacts,
such as lens radial distortion, vignetting, lens chromatic aberration.

Most of camera lenses have spherical shape which can distort images, for instance,
a straight line deforms to a curved line. This deformation refers to lens radial distor-
tion which is a function of radius from the image center [20]. The estimation of lens
radial distortion involves estimating parameters of distortion function. Different lenses
inherit different levels of distortion, and thus an estimation of distortion parameters is
useful in SCC. Originating from the attempt to estimate chromatic aberration caused
as the light of different wavelengths fails to converge at a single point [21], work in [22]
exploits chromatic aberration for SCC by estimating color misalignment between red and
green channels, as well as blue and green channels, and searches for maximum mutual
agreement between two estimates. Brute-force search for color misalignment is compu-
tationally expensive, [23] proposes a method to work on sub-sampled blocks to alleviate
the complexity. Another optical distortion, vignetting, is known as the decrease of color
intensity from the optical centre to the borders of the image, making the image brighter
in the centre and darker towards the borders. For classifying different lens models (po-
tentially for SCC problem), [24] estimates parameters formulating the light attenuation
pattern of the lens by Maximum Likelihood Estimation (MLE). Recent advances of deep
learning, in particular Convolutional Neural Networks (CNNs), allow to extract features
and to classify the input image in an end-to-end system [25]. The learnt features have

been proved to be discriminative enough for fingerprinting camera models [26].

Techniques for SCC rely on discriminative information of camera brands/models, yet
infeasible for identifying particular device. On the other hand, the aim of SCI is to prove
that a given image has been taken by a specific device. To this end, researchers seek for
fingerprints individualizing a particular device instead. Similarly to human fingerprints or
iris, digital cameras are also associated with their fingerprints. Taking this as the motiva-
tion, sensor dust of DSLR cameras is served as peculiar footprints. The pixel intensities
corresponding to lens dust are modelled as Gaussian and SCI is cast into detecting and
matching dust spots [27]. This type of fingerprint is not robust since it is easily confused
with highly textural regions. Introduced the first time by [28], Sensor Pattern Noise (SPN)
can be considered as “biometrics” of digital cameras. Due to the imperfections of camera
sensors, each taken image is overlaid with a noise-like signal called SPN which composes
Fixed Pattern Noise (FPN) and Photo-Response Nonuniformity (PRNU). FPN is caused
by dark currents, and usually suppressed automatically by digital cameras, while PRNU is
the dominant component of SPN caused by different sensitivity of pixels to incoming light.
Due to this reason, the terminology SPN and PRNU are sometimes used interchangeably.
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In [28], a reference pattern of SPN is estimated by averaging multiple noise residuals
extracted from images belonging to a specific camera. Averaging suppresses random com-
ponents in noise residuals and strengthens SPN. Afterwards, a given image is attributed to
a camera if the correlation between its noise residual and camera reference pattern exceeds
a predefined threshold. This threshold is found based on Neyman-Pearson approach, in
such a way that it minimizes False Rejection Rate (FRR) and maintains False Acceptance
Rate (FAR) at an acceptable level. Despite the effectiveness of noise residual averaging, it
lacks a theoretical justification. [29] afterwards develops a theory for PRNU estimation,
which shows that PRNU is a MLE given the acquisition model. Details of the estimation
is provided in Appendix 7.1 for interested readers. Also shown in [29], the variance of the
estimated PRNU depends on the number of images, and which type of images used for
the estimation. Generally, a good estimate requires the number of images to be large and
the luminance of images should be high (yet not saturated). If the camera is available,
those conditions can be fulfilled by taking large number of smooth images. Linear pat-
terns such as color interpolation, JPEG blocks, row-wise and column-wise operation of
sensors and processing circuits make PRNUs of different cameras slightly correlated. [29]
also proposes row-wise and column-wise zero-meaning in addition with Wiener filtering

on frequency domain to suppress non-unique artifacts.

Based on the theoretical framework of [29], SCI is equivalent to detecting whether
or not the test image contains the PRNU of a specific camera. This problem is formal-
ized as hypothesis testing and the optimal detection statistic turns out to be normalized
correlation under the assumption that the random noise component is independent with
PRNU component. In [30], Peak to Correlation Energy (PCE) is proposed as improved
detection statistic for rescaled and cropped images. PCE can also reduce the effect of
periodic patterns in noise residuals and PRNUs [31]. The use of correlation over circular
Cross-Correlation Norm (CCN) [32] is another alternative detection statistic in SCI.

Majority of research later aim at improving the reliability of SCI. For instance, [33]
proposes six enhancing models to alleviate the contamination of scene details given SPN
as input. [32] addresses the same problem as [33] but proposes to extract only phase com-
ponent of SPN spectrum, called phase SPN. Differently, [34] detects and suppresses peaks
in high frequency band of SPN spectrum. Rather than improving SPN with postprocess-
ing, [35] aims at better extracting SPN by using an innovative filter, block-matching and
3D filtering (BM3D) [36]. BM3D groups similar 2D blocks to form 3D arrays and finds
sparse representation of 3D arrays on frequency domain. Thanks to the similarity of 2D

blocks on pixel domain, the signal and the noise are well separated.

Regarding to Image Clustering by Source Camera (ICSC), which is our main focused
problem towards uncovering image origin. This problem is addressed in blind scenario
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where there is no auxiliary information is available except pixel values. As aforementioned,
in order to properly estimate SPN, a number of smooth and uniformly bright images
should be collected [29]. Unfortunately, this requirement is usually not fulfilled in a blind
scenario, where all images are unlabeled and no assumption can be made about the visual
content. Consequently, SPN can just be coarsely approximated from the noise residual
of a single image, which contains not only the pattern noise but also various other noise
sources, such as shot noise and noise resulting from lossy compression or other filtering.
Different methods have been proposed to enhance the SPN estimation and matching, yet
require a labeled training set, making them unsuitable for image clustering by source

camera in unsupervised scenarios.

Existing unsupervised techniques are typically based on the normalized correlation
among SPNs, used as a similarity measure, whose degree of reliability is limited by the
impact of multiple noise sources. In [37], an image is assigned to a group if the correlation
between its noise residual and the relevant centroid exceeds a threshold, approximated by
a quadratic model. Markov Random Fields are applied in [38, 39] to iteratively assign a
class label to an image based on the consensus of a small set of SPNs, called membership
committee. This raises another problem on how to choose a good committee, especially
on asymmetric datasets where cluster cardinalities are unbalanced. In [40, 41, 42], a
hierarchical partition - a binary tree containing singleton clusters as leaf nodes and whose
root node is a cluster containing all data points - is built by hierarchical clustering. The
major problem of existing hierarchical approaches is the sensitivity to noise and outliers,
as a wrong assignment might result in the propagation of errors to higher tiers. Multiclass
spectral clustering is applied in [43] to partition an undirected graph of unsourced images.
The algorithm starts with two clusters and stops when it finds a cluster containing only one
member. This stopping condition is heuristic, and as been improved by using normalized
cut in [44]. Recently, in [45, 46], multiple base partitions are obtained on top of multiple
binarized undirected graphs and then combined to form a complete clustering solution.

Another important problem that has to be taken into account is scalability. In practical
applications, often the clustering has to be applied to large databases, containing huge
numbers of high-resolution images. To the best of our knowledge, only the method in
[2] addresses large-scale clustering of camera fingerprints, where the main idea is to split
the dataset into small batches, which can be efficiently loaded on RAM, and to apply a
coarse-to-fine clustering.

Remaining issues and our concentration. Acquisition device forensic has become
matured, but performance of available techniques is still dependable on critical assump-
tions. For instance, the accuracy of SCI and ICSC heavily relies on assumption of pixel
alignment, which is easily broken in practice. Despite the fact that pixel alignment is just
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a mild assumption in SCC, it instead requires knowledge about the complete set of sus-
pected cameras. Moreover, the consideration of large-scale contexts and adversarial-aware
contexts are essential. In this study, we address the problem of ICSC by proposing a novel
method for accurately clustering images in both medium-scale and large-scale contexts.

2.2 Social Network Origin of Images

If cheap acquisition devices and user-friendly editors allow for the creation of manipulated
content, online social networks (SNs) are the privileged channel for their systematic and
uncontrolled distribution. Through these services, users are free to upload, share, down-
load and re-upload unprecedented numbers of images, videos, audio tracks, with basically
no limitation on the information that can be exchanged within a time frame.

The negative impact of malicious manipulations over such sharing platforms are im-
mense, and witnessed by several cases. After the Malaysia Airlines jetliner carrying 227
passengers and 12 crew vanished on March 2014, online scammers posted on social media
manipulated images and videos claiming that the flight had been found, causing severe
depressions for families involved in the accident [47]. Moreover, misleading information
can be propagated even if images and videos are authentic but artificially inserted in
wrong contexts. In all these cases, the information went viral quickly and uncontrolled,
creating chaos and panic among people. For this reason, researchers started addressing
the wider problem of multimedia verification, i.e. the classification of verifiable online
multimedia content with respect to its credibility and veracity. In SN context, fake con-
tent refers to any publication or post with multimedia content that does not represent
accurately the event that it refers to [48]. This was recently one of the main objectives of
the European project REVEAL — REVEALing hidden concepts in Social Media !, which
investigated the case of Twitter and proposed solutions to identify fake tweets [49, 50] by
jointly analyzing textual, visual and user information.

While image forensics techniques have been employed to solve the overall verification
problem, they have been shown to be generally weak for this task, for which textual
features are proved to be more informative. We can identify two main reasons for that.
First, when uploaded and shared via SN platforms, data undergo strong processing such
as compression and resizing, thus substantially removing traces left by previous manipu-
lation and making the detection of tampering extremely difficult [51]. In fact, to optimize
the storage, transfer bandwidth as well as display, most SNs enforce their own compres-
sion/resizing policy on images and videos, which is generally not published nor fixed.

Secondly, image forensic techniques are unable to differentiate between harmful and un-

"https:/ /revealproject.eu
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harmed forgeries (like text or logo insertion, or image quality enhancement), so that
standard forensic features often give inaccurate information and must be complemented

by external information retrieved online [50, 52].

Given the pervasive use of SNs, a huge source of multimedia content on the Inter-
net nowadays belong to such platforms. Nevertheless, being uploaded and downloaded
to/from multiple platforms, an image is losing its origin. It is important to identify a
posteriori the SN platform the image come from. This task can support other forensic
tasks such as multimedia content verification, or image phylogeny. SN origin gives hint
on how an image has been processed on a SN platform and forensic methods can be
adapted accordingly. Towards this goal, researchers exploits mainly artifacts of JPEG
compressions for identifying SN origin.

JPEG is an image format that has been chosen by many platforms as default saving
format thanks to its great tradeoff between compression rate and visual fidelity. JPEG
compression is lossy [53], which means that the compressed signal is different from the orig-
inal signal. The information loss is due to two phases: Discrete Cosine Transform (DCT)
and quantization. In theory, forward DCT and inverse DCT are perfectly revertible, but
no physical implementation can obtain perfect accuracy. Forward DCT transformation
results in DCT coefficients, which are then quantized and rounded to limit the precision
needed for their representations. Quantization, the main cause of information loss, is
many-to-one mapping which discards visually insignificant information. Due to the lossy
nature, JPEG compression leaves inevitable artifacts on the compressed image.

The pioneering work in [54] identifies SN origin with respect to Facebook, Twitter
and Flickr. Although both platforms perform JPEG compression on uploaded images,
the chosen compression parameters might be different, resulting peculiar patterns. The
approach in [54] analyzes such peculiar patterns in histograms of AC coefficients. Re-
sults show that such histograms are distinguishable among three platforms regarding to
magnitude and position. The SN origin identification is cast to classification problem.
Experimental results are highly accurate, highlighting the feasibility of the problem. Fur-
thermore, the image quality before uploading can be detected if images are not resized
by the platform. While such results are limited to only three platforms, [55] expands the
analyses on Tumblr, Imgur, Whatsapp, Tinypic, Instagram and Telegram. [55] considers
a combination of quantization coefficients of luminance and chrominance channels, num-
ber of metadata entries found in header, number of JPEG markers, as peculiar patterns.
In fact, there is a correlation between coefficients of quantization tables used in [55] and
histogram of DCT coefficients in [54]. The key difference is that if an image is uploaded on
a platform, downloaded, and re-uploaded to another platform, the method in [55] cannot
detect the first platform because the considered peculiar patterns belong only to the last
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platform. This scenario is referred to as multiple sharing, and will be analyzed in more
detail in this study. Apart from traditional classifiers, [56] shows the potential use of
CNNs in the detection of SN origin on small 64 x 64 image patches. It is not surprising
when the CNN-based approach in [56] achieves state-of-the-art performance due to highly
representational power of deep networks.

Remaining issues and our concentration. Despite the distinctiveness of JPEG
compression artifacts, a thorough exploration of multiple sharing scenarios remains open.
In this study, we build large-scale benchmarking datasets to conduct such analyses, both
on public social networks and instant messaging apps, and propose innovative methods

to improve identification performance.

2.3 Manipulation Reconstruction

Image manipulations are operations resulting pixel values that deviate from typical camera
outputs. Under this general sense, image manipulation reconstruction refers to forensic
techniques that trace back how the given image has been manipulated. We found this
definition is close to recovery of the processing history mentioned in [57], and estimation
of manipulation parameters in [58, 59]. Being able to reconstruct image manipulations
is useful to build digital image provenance in legal cases, or to provide prior knowledge
supporting other forensic tasks.

Although image manipulations in reality can be highly complex and divergent, vast
studies have been focused on specific manipulations as listed in [57]: contrast enhancement
(and gamma correction), image resizing, median filtering, copy-move forgery, and JPEG
compression. In addition to such well-studied operations, hue modification has been
addressed as well by [60, 61]. Besides detection of such manipulations, i.e. “whether or
not they were applied”, efforts have been acknowledged to answer to “how they have been
done”. In the followings, we present principle ideas of these studies.

Contrast enhancement and gamma correction. Contrast enhancement and
gamma correction are mon-linear mappings of pixel values, followed by quantization.

These operations result in three main kinds of artifacts:

o Correlations on image bispectrum.
o Artifacts (peaks and empty bins) on color histogram.

o Periodicity change on histogram of DCT coefficients if the image has been JPEG

compressed once.

Non-linear gamma correction creates higher-order correlations of the signal in frequency
domain. By analyzing bispectrum of the image, the parameter gamma is estimated as the
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one to which the inverse of the corresponding gamma correction yields minimal normalized
bispectrum [62]. The image is decomposed into 1D signals by horizontal scans, and the
estimates from 1D signals are averaged to obtain the estimate gamma. More generally, if
both of contrast enhancement and gamma correction are fairly mapping functions (non-
parametric), they results in peaks and empty bins on color histograms because of many-
to-one mappings. These artifacts are clearer when comparing with histograms of natural
images, which are generally smooth. To smooth histograms, a bin value can be well
interpolated by all other bin values. A peak on the histogram of contrast enhanced image
therefore indicates many-to-one mapping, causing a significant interpolation error. Under
a probabilistic model of errors, peaks as well as the set of pixel values before mapping
are gradually identified in iterative fashion [63]. In the end, both of mapping functions
and histogram of the unaltered image are jointly estimated. More interestingly, despite
the non-linearity of contrast enhancement and gamma correction, histogram of the image
before and after being manipulated have linear relationship. Using this fact, [64, 65] solve
an optimization problem alternatively for recovering the mapping and the histogram of
unaltered image. [66] targets a rather particular case where double JPEG compression is
interleaved by a linear contrast enhancement. The estimation of contrast enhancement
in this case becomes finding the slope of the linear mapping. Due to the linearity of
DCT, if the pixel values are scaled by a factor, it leads to the scaling of DCT coefficients
by the same factor. In theory, the periodicity on the histogram of DCT coefficients of a
doubly compressed image is scaled by that factor as well. The estimation of the slope (the
scaling factor) therefore can be performed via exhaustive search such that it minimizes
the distance between empirical and theoretical periodicity.

Image resizing. Regarding to the problem of resizing factor estimation, prior art

considers three main artifacts:
o Periodicity of the variance of second-order derivative of columns and rows.
o Dependency of samples to their neighbors.
o Periodic patterns of JPEG blocking artifacts.

The first artifact is exploited by [67] to detect interpolated signal and to estimate the
resampling factor. Based on the observation that the variance of the second-order deriva-
tive of an interpolated signal has a periodicity equal to the resampling factor. The second
derivative signal of each row are therefore computed and their absolute values are aver-
aged over all rows to obtain a second-order derivative trace. Since this trace is periodic,
frequency analysis can facilitate interpolation detection and resampling factor estimation.
The resampling factor is assumed to be at least two; otherwise aliasing will introduce sort
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of ambiguity in the estimation. Another widely used method to detect the presence of
resampling in images in the literature is [68], and this method leverages the second men-
tioned resizing artifact. When a signal is resampled, the interpolation results in the set
of samples are correlated in the same way to their neighbors. [68] applies EM to jointly
estimate the probability that a sample is correlated to their neighbor (forming a p-map),
and interpolation coefficients. The method can detect the presence of resampling by ana-
lyzing peaks in the spectrum of p-map. Nevertheless, the exact parameters of resampling,
i.e. resizing factors, cannot be recovered as different resamplings might result in similar
interpolation coefficients. [69] further explains the spectral representation of p-map and
proposes an accelerated and simplified method to detect resampling. This effort offers a
hint to perform brute-force matching using p-map spectrums in order to recover resizing
factor. The last resizing artifact is considered by [70] when double JPEG compression is
interleaved by resizing. As a consequence, periodic patterns introduced by JPEG blocking
artifacts after resizing can be analyzed on frequency domain to recover a set of candidate
resizing factors. Without basing on any prior knowledge of three aforementioned artifacts,
[71] trains deep neural networks (DNNs) on images resized by a finite set of resizing fac-
tors, i.e. 0.5 to 1.5, step 0.1. While the detection of resampling is possible, what remains

open is to overcome aliasing and estimate fine-grained resizing factors.

Median filtering. Median filtering is known as a common denoising technique for
impulsive noise removal. It operates using a sliding window called kernel and the median
pixel value is selected at every window position. The single parameter of this technique is
the kernel size. Although many detectors have been proposed for detecting median filter-
ing, the estimation of its kernel size draws less attention. Techniques for median filtering
detection typically focus on statistical properties of the first-order difference image. It is
pretty obvious that median filtering with different kernel sizes leave different statistical
traces, and since the number of practical kernel sizes are limited, typical classifiers can
be trained on statistical features like histograms of first-order difference image for finding
kernel size. Indeed, [72] confirms this capability. In particular, given the image under
investigation, [72] first proposes to extract an image residual, which is the difference of
median filtered image and the image itself in order to mitigate the interference of scene
details. After that, coefficients of a linear predictor are learnt from the image residual,
and used as features for estimating kernel size. Different from model-based approach,
[58] exploits DNNs for this task and obtains promising results. One characteristic of this
network is the inclusion of front constraint filters which extract image residuals. While
traces of median filtering are inevitable, they are also easily erased by counter-forensic

methods [73, 74].

JPEG compression. A common processing which has been deploying into popular
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imaging devices nowadays is JPEG compression. The parameters of JPEG compressions
are stored in JPEG file header, and it is often pointless to spend efforts on reconstruct-
ing them. It is useful, however, to detect the presence as well as parameters of JPEG
compression when a JPEG compressed image is decompressed and resaved in a format
different from JPEG, e.g. analyzing blocking artifacts [75] or the distribution of most
significant digits of AC DCT coefficients [76], to detect whether or not an image has been
JPEG compressed once. In particular, the DCT coefficients are reasonably assumed as
Gaussian distribution and quantization steps can be estimated using MLE [75]. Tt is also
straightforward to estimate the quality factor by fairly assuming that the quantization
table used is a scaled version of the standard one. When the image is doubly JPEG
compressed with grid alignment, the distribution of DCT coefficients changes depend-
ing on the interplay of primary and secondary quantization steps. Based on this fact,
the primary quantization steps and if necessary, the primary quality factor can be esti-
mated. A primitive method towards this purpose creates simulated histograms of doubly
compressed image and matches with the observed histogram [77]. This approach is com-
putationally expensive and can be replaced by training a set of neural networks for each
of low spatial frequencies to predict the primary quantization steps [77]. SVM classifier
has been adopted in [78] for this purpose. Particularly challenging cases such as double
JPEG compression interleaved by resizing or non-aligned double JPEG compression have
been addressed by [70, 79].

Hue modification. In digital image forensics, hue modification has not been well-
known despite its popularity in practice. First, hue modification is defined as the change
in the ratio of red, blue and green channels [60]. For geometrical interpretation, hue
modification is the rotation of a vector with three color components, i.e. red, green, blue
by a specific angle. The estimation of angle has been firstly addressed by [60] based on
CFA configuration. In principle, given CFA configuration, one can estimate the number
of interpolated pixels as those are often smaller than the maximum and larger than the
minimum of their neighbors. At observable cells with respect to CFA configuration, this
count is notably smaller than those at unobserved positions. Hue modification violates
this property. Based on the fact that hue modification is periodic, i.e. modifying by an
angle and subsequently by its complementary angle returns back the unmodified image,
the estimation of hue modification can be done by searching over a finite set of angles and
verifying the aforementioned property. By assuming the camera PRNU can be estimated,
[61] proposes to first modify the PRNU pattern by a finite set of possible angles and

afterwards match with noise residual of the questioned image.

Copy-move forgery. The common principle of copy-move detection methods is to
find duplication in the forged image. The closer the two regions are, the easier copy-
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move detection methods can detect. There is, however, a complementary problem after
copy-move detection. It is the disambiguation of source and target. The essential of this
problem is undeniable if a forensic investigator desires to understand the image before
being forged. With this respect, [80] builds a large-scale synthetic dataset and designs
an end-to-end CNN; called BusterNet to jointly localize duplicated regions and to discern
source and target. Due to this dual task, BusterNet composes two sub-networks, one is
trained for localizing duplication and one is trained for localizing target. The outputs
of two sub-networks are combined to come up with final decision. Despite interesting
motivation, discernibility of BusterNet needs to be revisited, in the sense that it is fairly
weak in localizing duplicated regions. While BusterNet requires fixed input size, images
are typically resized before feeding to the network without respecting image aspect ratio.
This technical issue limits BusterNet in practical considerations.

Remaining issues and our concentration. Being part on the line of manipulation
reconstruction, this study addresses the problem of source-target disambiguation in copy-
move forgery. Despite its importance, this problem has been overlooked and just been
tackled recently by [80]. As discussed, [80] exhibits several weaknesses and indeed its
discernibility is pretty weak. We will describe how the proposed solution can solve this

problem.



Chapter 3

Clustering Images by Acquisition

Device

Clustering images according to their acquisition devices is typically faced by means of
camera Sensor Pattern Noise (SPN). Such a problem is challenging since SPN is a noise-
like signal, hard to be estimated and easy to be attenuated or destroyed by many factors.
Moreover, the high dimensionality of SPN hinders large-scale applications. Ezisting ap-
proaches are typically based on the correlation among SPNs in the pixzel domain, which
might not be able to capture intrinsic data structure in union of vector subspaces, and thus

are suffered from the curse of dimensionality.

In this chapter, novel methodologies which exploit linear dependencies among SPNs
in their intrinsic vector subspaces, are presented. Such dependencies are encoded under
sparse representations which are obtained by solving a LASSO problem with non-negativity
constraint. We show that our proposed methodologies are particularly suited to image clus-

tering by acquisition device, both in medium-scale and large-scale applications.

In Chapter 1, we draw the importance of image clustering by source camera in blind
scenarios which means that no auxiliary information can be assumed except the image
pixel values. Based on that only information, the forensic analyst is required to group
images by their acquisition devices. Figure 3.1 draws a simple illustration on how a pool

of images coming from two devices is clustered.

In the next section, the process of SPN extraction from image pixel values is described,
which results in noise-like signals to be ready for clustering.
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Clustering by
acquisition device

Blind scenario

E Metadata
E Set of devices
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Figure 3.1: Image clustering by acquisition device in blind scenario.

3.1 Sensor Pattern Noise

A digital camera sensor is made of a discrete array of cells (pixels), which convert photons
in output voltages. Voltages are then quantized into finite numerical values. Due to
imperfections of pixels, the output image is overlaid by a pattern noise modulated by the
scene light intensity [29]. Each digital image therefore intrinsically contains a SPN caused
by sensor imperfections of the capturing device [28, 29].

Given a grayscale image Y, its noise residual W can be extracted by a denoising filter.

A simplified model of W can be expressed as follows [81, 29]:
W = TYK+E, (3.1)

where Z is a the matrix of independently and identically distributed (i.i.d) Gaussian
random variables, T is an attenuation matrix, and K is referred to as Photo-Response
Non-Uniformity (PRNU) whose maximum likelihood estimate can be found in [29].

In theory, PRNU can be used to cluster images with respect to the acquisition device.
However, in a blind scenario this is difficult due to two main problems. First, the Cramer-
Rao Lower Bound on the variance of PRNU estimate indicates that a number of smooth
and bright (but not saturated) images are required for each camera [29] and this condition
is hardly satisfied. Indeed, the only available information is the noise residual W for
each image, which contains not only the PRNU but also the additive noise =, which
limits the reliability of traditional similarity measures used in conventional clustering
algorithms. Several methods have been proposed for SPN enhancement [33, 34] but it
has been confirmed by [2] that such methods are not suitable for unsupervised setting.
Second, the dimension of camera fingerprints is usually high, due to the high resolution
of camera sensors, thus their clustering requires huge computation and memory as long
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as the number of data increases.

The first challenge can be addressed partially by using a good denoising filter to extract
W such that the image details are greatly suppressed out. In this study, a noise residual
We¢, ¢ € {red, green, blue} is extracted from each color channel of Y, by exploiting the
wavelet-based denoising filter commonly used in [28, 81, 29, 82|, and then converted to

one-channel noise residual W:
W = 0.3W™ 4 g.gWseen (. ] WPlue,

As discussed in [81, 29], W contains non-unique artifacts possibly caused by demosaic-
ing, JPEG blocky artifacts, row-wise and column-wise operation of sensors and processing
circuits. The diagonal artifacts reported by [83] on Dresden dataset [3] can be also con-
sidered as non-unique, whose cause has not been comprehended yet. Non-unique artifacts
make noise residuals of images of different cameras slightly correlated. They therefore
should be suppressed to reduce false alarm rate. Following [81, 29], W is postprocessed
by: row-wise and column-wise whitening, followed by Wiener filtering on its Fourier trans-
form. After that, W is standardized as one-dimensional unit-norm signal and arranged
as one column of X € R¥" n being the number of images, and d the number of selected
pixels. Since the clustering algorithms typically work on W, it is referred to as SPN
throughout this chapter.

Existing approaches use normalized correlation to measure the similarity between two
flattened SPNs a, b of dimension d:

J - _
pla,b) = =1 (@ 7 8) <bZ b) —, (3.2)
Vs (a3 (b D)

where scalars a, b are the mean values of a and b, respectively. Without loss of generality,

if a, b are normalized to have zero mean and unit norm, Equation (3.2) simply becomes:

d
p(a,b) = Zaibi,
i=1

which represents the cosine similarity between a and b in the pixel space.

The residual W is a noisy estimate of true camera fingerprint, thus the distributions
of intra-class and inter-class correlations computed on W are heavily overlapped, making
clustering algorithms less accurate. This challenge raises the need to eliminate inter-
class data relationships and obtain unambiguous underlying data structure. The next
section focuses on a powerful method which expresses each data point by a few linear
relationships with other data points and extracts unambiguous representation which is
afterwards proved to be effective for clustering SPNs.



22 Clustering Images by Acquisition Device

3.2 Sparse Representation

Given a set of data points arranged into the columns of a matrix X € R*", a data point
y can be expressed as a linear combination of the columns of X. A sparse combination
reveals columns in the same subspace which y happens to lie into. Sparse Subspace Clus-
tering (SSC) [84] finds a sparse representation of y by solving the following optimization
problem:

minimize |[z[]; subject to Xz =y. (3.3)

If columns of X are contaminated by noise or not well distributed, Xz = y might
never be reached. Works in [85, 86] have shown that SSC can deal with noisy data if
Equation (3.3) is reformulated as a LASSO problem:

minimize Xz — y[}3 + a1, (3.4)

where v > 0 is a regularization hyperparameter.

Let us interpret sparse representation via a simple example. As illustrated in Figure
3.2, we have X = [X;, Xy, X3, X,| € R***. We assume there are two subspaces spanned
by [Xi,X,] and [X3, X,]. Without the regularization term, y can be expressed as linear
combination of any 3 columns of X. However, we would like to assign y to the closest
subspace spanned by [X;,Xs], i.e., ||¥ — yll2 < ||¥ — yl|2, a preferable solution should
satisfy:

V= 21X + zoXs.

Such solution can be reached if we encourage the sparseness of z by penalizing ||z||¢. Un-
fortunately, ¢y optimization is usually intractable due to its non-convex and combinatorial
nature. ||z||; can be used instead, being a good approximation of ||z, [87]. Exploiting the
¢y regularization term as in Equation (3.4) and properly selecting v, SSC finds a sparse
solution that minimizes the reconstruction error.

In the next section, we introduce a clustering method that leverages the power of

sparse representations. This algorithm is particularly suited to medium-scale datasets.

3.3 Medium-Scale Clustering

3.3.1 The Proposed Optimization

SSC learns a sparse representation z of y, whose non-zero entries indicate data points
closest to the orthogonal projection of y onto the relevant subspace. We can interpret the
magnitude of z; as a similarity measure: the closer X, is to y, the more it contributes to
the reconstruction of y, resulting in a larger value of z;. Back to the example in Figure
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Figure 3.2: Geometric interpretation of solution of SSC.

3.2, denoted as «; = £ (X,;,y) the angle between y and X;, it is easily to see that if
a; < a; then |z;| > |z;|:

a; < O = COS(O(»L‘) > COS(Oéj) =4 HZ2X2H2 > ||ZijH2
& |zi| > |z] (since || X[z = 1).

Thus, |z;| is inversely proportional to «;. The ¢; regularization term encourages the
sparseness of z, whose non-zero entries should indicate data points closest to y. Due to
the nature of /1 norm, however, negative and positive contributions are weighted equally.
In Figure 3.3, the solution z = [—2}, —z,]” might be chosen instead of z = [z1,2,]" as it
is possible that ||z||, < |/z]|,. Note, in this example z; > 0 and z; > 0, thus Z contains
negative entries. This is an unexpected solution since X/, X} lie in another half-space,
ie., Z(X),¥) > /2 and Z(X},,y) > 7/2. In order to avoid this solution, all entries z; can
be constrained to non-negative values. Therefore, the optimal solution reveals data points
lying in the subspace closest to y and positively correlated to the orthogonal projection of
y onto that subspace. Another interesting property is that if z; > 0, z; > 0 and o; < ¢;
then z; > z;. Thanks to this observation, it is necessary to impose a non-negativity
constraint on the optimization problem. By this particular difference to SSC, we refer
to the proposed clustering method as Sparse Subspace Clustering with Non-negativity
Constraint (SSC-NC).

For each column X;, a sparse representation Z, is obtained such that X; = XZ,.
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Figure 3.3: Geometric interpretation of negative solution of SSC.

To obtain a meaningful representation, a column should not be expressed by itself, thus
requiring the constraint Z;; = 0. Accordingly, the following optimization problem is pro-

posed in this study to extract sparse representation of X:

1
minimize §HXZ—X||§;+V”Z||1
subject to  diag(Z) =0,Z > 0, (3.5)

where v > 0 is the regularization hyperparameter.

Many research efforts have been spent in solving the unconstrained version of Equation
(3.5) [88]. The ¢; minimization problem does not have an analytical solution; its solution
instead has to be obtained numerically. Among the proposed algorithms, Augmented
Lagrange Multiplier (ALM) generally converges faster under a wide range of data [88].
This study adopts Alternating Direction Method of Multipliers (ADMM) [89] to solve
the problem in Equation (3.5), which couples the fast convergence of ALM with the
decomposability property, which is fundamental for distributed implementation in large-
scale problems. ADMM introduces a complementary variable V and re-formulates the
unconstrained version of Equation (3.5) into the following equivalent form:

L 1 2
minimize  Y[Vi + 5|XZ - X|[F
subject to  Z=V. (3.6)
Here, decomposability means that Z and V can be updated separately, possibly on a

distributed system, thus constraints in Equation (3.5) can be imposed on V. They are
enforced during V update by Euclidean projections which are much simpler than ALM.
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The augmented Lagrangian form of Equation (3.6) is
1 n
Ly(Z,V, ) =AIVIi + 5I1XZ = X[z + (A, Z = V) + 5| Z = V][5

where A € R"*" is the Lagrangian multiplier and n > 0 is the augmented Lagrangian
hyperparameter. ADMM iteratively optimizes Z,V in an alternate fashion, by keeping
one variable fixed and updating the others:
t+1 . t oAt
Z = arngmQ7 (Z,V,A),
t+1 . t+1 t
\% = argm\}nﬁ77 (Z ,V,A),
A — Aty n (Zt+1 - Vt+1) '
It is straightforward to demonstrate that Z can be updated by solving the linear

equation:
(XTX +9)Z = (X'X — A +1V),

using Cholesky decomposition of X7X + nI. On the other hand, solution of V at each
iteration is obtained through soft thresholding operator S defined as:
a—v a>v
S,(a) = Sa4+v a<—v.
0 la| <wv

Details of its update are provided in Appendix 7.2. After V update, the two following

operators are applied to project V into the feasible set of solutions:

M, i 4]
Ip(My;) = 0 T (3.7)
i=Jj,
M, M, >0
M) =19, ] M]<O 3
i < 0.

The optimization procedure is reported in Algorithm 1: it converges efficiently to an
acceptable solution as ||Z — V|, — 0.

To visually compare sparse representation and normalized correlation matrix, we con-
duct an analysis on synthetic noise and another one on realistic noise. Synthetic noise
is extracted from images generated by the simple imaging model described in [29] for
smooth images (without the attenuation factor T), that is Y = Y@ + YOK + Z. The
clean image Y(© is uniform, having pixel value of 0.9 (relatively bright). K;; and E;; are
reasonably assumed as white Gaussian noise. As the signal K is generally weaker than
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Algorithm 1 Constrained LASSO
procedure CONSTRAINED__LASSO(X, v, 7)
initialize: Z + 0,V + 0, A + 0,6 + 1074
while convergence condition is not satisfied do
Fix the others, update Z

Z+— (XTX +9I) " H{(XTX — A +1V)

Fix the others, update V

Ay
Vz‘j%SJ <Zij+ j)
m n

Vij < Hp(IIn(Vyy))

Fix the others, update A: A+ A+n(Z—-V)
Check convergence condition: ||Z — V| < &
end while
return Z

end procedure

E, the variance of K;; is selected as 0.001 and the variance of E;; is 0.1 (for pixel values
in [0, 1]). We simulate the situation of 5 cameras corresponding to 5 different K patterns,
considering 100 images for each camera, thus resulting into 500 different Z patterns. Af-
ter that, we apply the same wavelet-based denoising filter to extract synthetic noise. A
sample of extracted synthetic noise is depicted in Figure 3.4 (a). For the realistic setting,
we select 5 cameras from the Vision dataset [90], 100 images for each camera, and apply
the same denoising procedure. In Figure 3.4 (b) an example of realistic noise is shown.
We intentionally group noise residuals of the same camera so that the representation
matrix is easily observable. We show sparse representation matrix of synthetic noise in
Figure 3.4 (c), and of realistic noise in Figure 3.4 (e). The dense representation matrix
in Figure 3.4 (d) and 3.4 (f) are obtained by computing pair-wise normalized correlation
for synthetic noise and for realistic noise, respectively. Noticeably, solving the problem in
Equation (3.5) obtains meaningful representation where inter-class relations are effectively

removed, revealing clearer block-diagonal structure compared to normalized correlation.

3.3.2 Clustering

It is worth to emphasize again that in blind scenario no auxiliary information including

the number of acquisition devices, i.e. number of clusters, is given. In this study, the
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Figure 3.4: Visual comparison of sparse representation and dense representation (obtained by
normalized correlation): (a) synthetic noise sample, (b) realistic noise sample, (c) sparse repre-
sentation matrix of synthetic noise, (d) dense representation matrix of synthetic noise, (e) sparse

representation matrix of realistic noise, (f) dense representation matrix of realistic noise.

number of clusters is found automatically based on the sparse representation matrix Z.
The sparse representation matrix captures asymmetric relationships among data points,
i.e., Z;j # Zj;,. For our clustering purpose, we build a weighted undirected graph G from
Zas G =(Z+7Z")/2. G;; # 0 implies a linear dependency between node i and node j,
while G;; = 0 implies a linear independence. To obtain the final segmentation, the spec-
tral clustering described in [91] is applied to partition G into k connected components or
clusters. In ideal cases, the number of connected components in G is indeed the number
of zero eigenvalues of the normalized graph Laplacian L (Proposition 4 in [92]), where

L=I1-DY2GD'2,

and D is a diagonal matrix with D;; = 2?21 G;, i.e., the degree of i-th vertex.

k can be inferred from the number of small eigenvalues. Therefore, we adopt an
approach based on eigengap heuristic [92] to infer the number of clusters. The idea is to
choose k such that sorted eigenvalues Ao, ..., A\, (A is always 0) of L are relatively small
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but A1 is large, creating a biggest gap among consecutive eigenvalues. More classical
algorithms exist for x estimation, such as finding feasible segmentations with multiple
values of k and select the best segmentation based on some criterion, such as Silhouette
coefficients [93] or gap statistics [94]. Nevertheless, we found that our approach is more
efficient since we find only one segmentation. It is worth noting that eigendecomposition is
computed only once for both k estimation and spectral clustering. Moreover, the estimate
of k is more accurate, because the sparseness of G can be controlled by the regularization
hyperparameter . This hyperparameter controls the natural trade-off between false and
true discovery rates. Larger ~ results in sparser solutions, making few false discoveries.
At the same time, we expect to have many true discoveries by making the solution less
sparse.

We define a criterion based on normalized cut (NCut) and eigengap. NCut is originally
introduced in [95] for image segmentation problem, and is defined as:
& G(Am Ac)

1
NCut, = -3 u ,
! K c=1 G<AC7 AC) + G(Aca Ac)

where k, G refer to the number of clusters and to the affinity matrix, respectively. A.
is the set of indices of SPNs belonging to cluster ¢. Note that A is the complement of
A and G(A,B) = Y,ca e Gij. Minimizing NCut is indeed equivalent to mimimizing
inter-connections and maximizing intra-connections. The parameter v should be selected
so that it maximizes the eigengap I'x = A\c11 — A\x and minimizes neighboring eigengaps
Ix_1,T%s1. By composing two defined criteria, NCut and eigengap, we seek v minimizing

the following cost function:

J(k) = NCut, + ; + L1 + 11 (3.9)

As NCut, ranges in [0, 1], we linearly scale \; to [0, 1] so that no weighting is needed
for terms in Equation (3.9). v can be found by brute-force search over 7' discrete values
of v In [Vmin, Ymax)- 1t is well-known that solutions of LASSO are piece-wise linear with
respect to v [96]. This property also holds for CONSTRAINED _L.ASSO, where solutions
are constrained to be zero-diagonal and non-negative. We exploit the linearity of solution
path and design a warm start CONSTRAINED__LLASSO. In particular, the solution at v, 1
(1 <t <T)is used to initialize the solver at ;, and Cholesky decomposition is computed
only once. This computational saving is extremely important on large-scale sets.

In summary, the proposed algorithm SSC-NC learns sparse representations of noise
residuals. This approach provides a good instrument to discover structures on high-
dimensional data, but shows a major drawback on scalability, since all data must be
loaded on RAM. In Section 3.5 the computational complexity of Algorithm 1 will be



Large-Scale Clustering 29

demonstrated to be in the order of n3, n being the number of fingerprints. Empirically,
this is acceptable only for datasets with n < 6000. In the following section, we extend
SSC-NC to large-scale contexts.

3.4 Large-Scale Clustering

The problem scaling to large datasets can be addressed in different ways. A possibility is
applying classical methods such as DBSCAN [97], BIRCH [98], or CURE [99]. Unfortu-
nately, these methods make use of similarity measures such as Euclidean distance or cosine
similarity, which can be computed accurately and efficiently on small data batches. SSC
instead, requires to learn data relationship from the entire dataset. One of the first con-
tributions to scalable SSC is [100], later extended in [101]. In these works, the underlying
idea is that a small number of data samples are sufficient to learn sparse representations
and forming base clusters. The remaining data can be later associated to the existing
clusters using sparse coding. However, there is no guarantee that a subset of data allows
discovering all clusters. More recently, in the work Orthogonal Matching Pursuit (OMP)
[102] the authors proposed to replace the complex ¢; norm optimization, but their method
guarantees the optimality only if the subspaces are independent; moreover, it does not
solve the memory problem.

In this section, a new methodology called large-scale SSC (LS-SSC) is introduced to
cluster images in large-scale contexts. First, we address the memory issue using a divide-
and-conquer strategy, so that compact clusters could be discovered on small data batches.
Since SSC learns the linear dependencies among data points, insufficient data might result
in inappropriate relationships. This problem can be solved by preserving only confident
data dependencies and discarding outliers. Obviously, some clusters might be hidden
and undiscovered even after visiting all data batches. We therefore re-cycle previously
discarded data in order to eventually discover all clusters. This process is followed by
merging and attraction phases which finalize clustering results. The overall large-scale

clustering includes three main phases, which are depicted in Figure 3.5.

Splitting, Clustering and Recycling
The baseline strategy of our large-scale clustering is the divide-and-conquer paradigm,

which breaks an intractable problem into several smaller tractable problems. We randomly
split the set of all SPNs X into B batches of equal size, X = {Xl}l_l . where B is

n

originally set to [;1 and p is the batch size. Only one data batch at a time is loaded
on RAM. We then apply Algorithm 1 on the data batch to learn sparse representations
among SPNs.
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Figure 3.5: Schema of the proposed LS-SSC.

We hereby refer to cluster purity as the quality of a cluster. A pure cluster should
contain only SPNs of the same camera. The main purpose of this phase is to extract
small-size but pure clusters that can be later merged to form larger clusters. As a result
of splitting, a SPN might not be well reconstructed by only SPNs from the same camera.
To minimize the reconstruction error, the algorithm might select SPNs from multiple

cameras. Such representations are considered as outliers, similarly to [103].

Let us now consider a sparse representation matrix as a directed graph: outliers have
connections to both outliers and inliers, while inliers have connections to inliers only. If
we perform a random walk on the graph, the probability of ending at inliers is therefore
higher than ending at outliers. We apply the random walk algorithm described in [103]
with 1000 steps to acquire the state probabilities, we model such probabilities as a normal
distribution, and we keep 80% of the distribution as inliers, thus classifying the rest as

outliers.

To guarantee the purity of clusters, we avoid spectral clustering, but we attempt to
localize dense regions using the interpretability property of our sparse representation.
Accordingly, large values indicate closest SPNs. Since our target is to discover small-size
but pure clusters, we can further simplify the graph by retaining only K largest entries
on each column of the sparse representation matrix, and setting other entries to zero.
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Each remaining SPN is located in a region of K nearest neighbors, and SPNs in the same
cluster should have common neighbors, forming a dense region.

After that, we apply DBSCAN [97] to discover dense regions. This classical clus-
tering technique is computationally feasible for large-scale datasets and does not require
the number of clusters to be known. Two parameters need to be indicated as input of
DBSCAN: radius € and minimum number of neighbors MinPts. The radius e should
be selected on the basis of K largest values on each column of the sparse representation
matrix, while MnPts must be smaller or equal to K. If € is too small, this results in
many clusters. Conversely, very limited number of clusters are discovered, complicating
the recycling process. On the other hand, if MinPts > K, there is no cluster discovered
by DBSCAN. We empirically found that setting MinPts = K and € equal to the mean
of non-zero entries, allows discovering pure clusters.

After clustering, we obtain the set of inliers and outliers, where inliers are used for the
merging phase and outliers are fed to the recycling process. The aim of recycling is to
combine outliers from each batch and feed them back to the clustering process, thus in-
creasing the chance to discover hidden clusters. For that reason, clustering and recycling

can be seen as an iterative procedure, as outlined in Algorithm 2.

Merging

In the first phase, by increasing K we obtain larger clusters at the expense of a lower
cluster purity. Conversely, we yield small-size pure clusters. The latter is preferable, as
small-size clusters (subclusters) can be merged efficiently to form larger subclusters.

Let W4 and WP be two noisy SPNs of dimension d, i.e., two singleton subclusters,
reasonably assumed to follow a normal distribution since the denoising filter extracts
stationary Gaussian noise in wavelet domain (see Appendix A of [28]). K# and K? are
the noise-free SPNs residing in W4, W2, The merging problem can be formulated as a
classical hypothesis test:

Hy : K*#KP?,
H, : K'=K’=K.

Under null hypothesis, p (WA, WB> ~ N(0, é) according to the Central Limit The-
orem (CLT). Two subsclusters can be merged if their normalized correlation exceeds
%Q‘l(PF 4), where () is the probability that a standard normal variable is larger than
t and Ppa is the expected false alarm rate [82]. More generally, if each cluster contains
more than one SPN, W4 and WP represent respectively the subcluster centroids. Under
alternative hypothesis, the correlation between W4 and W?E increases if the cardinality
of each subcluster increases, as random noise is effectively suppressed by averaging. Obvi-
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Algorithm 2 Splitting, clustering, recycling

procedure SPLITTING__CLUSTERING__RECYCLING
input: X, p, R, K,v,n > X': dataset, p: batch size, R: number of recycling steps, K:
number of nearest neighbors
output: X, Xout > set of clustered and unclustered SPNs
X < 0
B« [7]
Split X into {Xl}lzl,...,B
XL, 0, >l=1,...,B
for/=1— B do
XL XL« PARTITION(X!, K, 7,7)
Append XY, to X, and append X!, to XL,
end for
t+ B,B+ B
repeat
Ko < 0, X1 0
for|l=1— B do

Pop out randomly s' = | °““’Xp SPNs from X!,

= 1| 0Ut|

Append s' SPNs to X*

end for
Xt XL, <+ PARTITION(X?, K,fy 77)

Append XY, to X, and append XY, to XL,
t<t+1, B+~ B+1
untilt > B+ R
Fout = {XOUt}lzl,...,B+R
end procedure

procedure PARTITION

input: X, K,v,n > X: dataset, K: number of nearest neighbors
output: Xy, Xout > set of clustered and unclustered SPNs
Load SPNs in X to X > X: matrix of SPNs

Z + CONSTRAINED__LAsso(X,~,n)

Remove outliers, obtain Z. Append outliers to Xyt

Keep only K largest entries on each column of Z, obtain Zgny
Apply DBSCAN to discover clusters

Append inliers to X,

Append outliers to Xyt

end procedure
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ously, the merging phase will be more reliable if one knows not only the null distribution
but also the alternative distribution.

To determine the alternative distribution, [104, 2] established a parametric model with
some statistical assumptions and determined model parameters. For instance, the true
SPNs are assumed to be additive noise [104, 2], and the WGN of a camera presents
always the same variance [104]. Nevertheless, if those assumptions are not guaranteed,
and usually they are not, parameter estimation becomes extremely difficult.

We resort the merging problem into finding a threshold value 7 that is able to exclude
the null hypothesis and to adapt to the variation of the alternative hypothesis, based
on real data. This is achieved by taking into account the cardinality and intra-class
correlation within each subcluster. Let X4 and X? be the two matrices containing n4
and ng SPNs of each subcluster, and p4 and pg be the intra-class correlation within these
subclusters. We learn the threshold adaptiveness via linear regression:

R (na,np,pa,pg) = [na,np,pa,ps]w+Db,

where w € R**! and b € R are weights and bias, respectively. From real data, we calculate
pa, pp and the regression output R(-) as follows:

1 na na
- - XA X4,
= (X7, X7,
- "B nB_l ;] ;J#Zp
p(XA, X5)
R() = B3

where X4, X5 are respectively two subcluster centroids, i.e., mean of columns in X* and
XB. The estimate of R(-) is interpreted as the central value between mean of null and
alternative distribution. The final regressor learnt from real data (we will mention this

development set in Section 3.6.1) has the form:
R (na,ng,pa,pg) = 0.0016n4 +0.0016 ng + 2.2474 p4 + 2.2474 pp — 0.0474.

Careful readers will notice that the regressor is symmetric in terms of cluster role, i.e.,
R (na,np,pa,pp) =R (np,na,pp,pa ). This is achieved by augmenting the training
data with the role of two clusters exchanged. The threshold 7 is finally calculated as:

;= max {\}an(Pm), R (-)} ,

where Ppy4 is chosen as 0.001 (0.1% false alarm rate).
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Figure 3.6: Comparison of the proposed threshold and Lin’s threshold [2] under two cameras:
Kodak M1063 and Nikon CoolPix S710. Better viewed in color.

The merging phase is conducted as an iterative procedure, which respectively selects
pairs of subclusters having maximum centroid correlation and compares them to 7. If the
correlation is larger than 7, the two subclusters are merged and relevant information is
updated. The algorithm stops when no more pairs of subclusters exist that satisfy the
merging condition.

In practical cases, a good regressor might not be linear, but for n4, ng within a rea-
sonably small range, 7 can be fitted by a linear function. Therefore, to calculate a reliable
7, we set ny = min {fi4,50} and ng = min {npg, 50} where n4,np are actual cluster car-
dinalities, and calculate p4, pp using bounded sets of SPNs. The quantity 50 is suggested
as a minimal cardinality for SPN estimation [105, 28].

To demonstrate the effectiveness of the proposed threshold, we compare with Lin’s
threshold [2], which was previously shown to be superior than thresholds in [37] and
[106]. We select two cameras, namely Kodak M1063 and Nikon CoolPix S710 from Dres-
den database [3]. We randomly split images of one camera into two parts to simulate two
same-camera subclusters. Images from different cameras are used to create cross-camera
subclusters. The process is replicated 2000 times and intra-class and inter-class correla-
tions are collected. Figure 3.6 shows how the proposed threshold and the threshold in
[2] (Lin’s threshold) separate null and alternative distribution. When the cardinality of
same-camera subclusters increases, the alternative distribution shifts towards the right,
while the null distribution is centered at 0. The proposed threshold consistently splits the
two distributions, while Lin’s threshold tends to be unnecessarily confident when two dis-
tributions are close. An interesting behavior of the proposed threshold and Lin’s threshold
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is their adaptiveness to distribution shifting.

Attraction

In attraction phase, we assign remaining SPNs to available clusters. Let us denote
C = [(_31, C,,...,C L} € R¥L the matrix containing centroids of L final clusters, and
Xout ¢ RV the data matrix containing U unclustered SPNs. Since the quality of camera
SPNs is generally non-homogeneous, cluster assignment should be performed for high-
quality SPNs first, in order to minimize assignment errors. The cluster membership
[,1 <1 < L of SPN X" 1 <4 < U is obtained iteratively by finding at each step
the pair [ and 7 such that p(X9", C;) is maximum and greater than Q~'(Ppr,) which is
the threshold used to exclude null hypothesis in merging phase. After being attracted
X9ut is discarded, otherwise it is labeled to as unclustered. Since the remaining SPNs to
be merged have been classified as outliers after recycling, we can expect that they are
low-quality samples. Therefore, to reduce false alarm rate, the cluster centroid is updated
only when its cardinality does not exceed 50, consistently with the empirical value used
in the merging phase.

Eventually, we obtain the cluster memberships of camera SPNs in a large-scale database
and a number of unclustered SPNs.

3.5 Computational Complexity

This section discusses on the time complexity of our proposed SSC-NC, LS-SSC and
two recent works: correlation clustering with consensus (CCC) [46] and Lin’s large-scale
method (Lin-LS) [2].

SSC-NC. SSC-NC is composed by CONSTRAINED__[LASSO and spectral clustering.
CONSTRAINED__LLASSO consists of Cholesky decomposition, linear equation solving and
soft thresholding. In the worst case, Cholesky decomposition requires n/3 flops. Solv-
ing linear equations requires 2n? flops of forward and backward substitutions. Soft-

2 variables requires n? computations. Let T} be the bound

thresholding operation on n
number of iterations, total cost of CONSTRAINED _LAsSso is O (n®/3 + 3Tin?). Spec-
tral clustering consists of maximum O (n®) computations for eigendecomposition and
O (Tyk*n) for K-means clustering on n x-dimensional eigenvectors, where T is the bound
number of iterations in K-means and x is the number of clusters. The time complexity
of SSC-NC is O (4n3/3 + 3T\n* + Tor?n).

CCC. Similarly to typical clustering methods, CCC computes the correlation matrix
which costs O (n?). Correlation clustering are afterwards carried out by Adaptive Label

Iterated Conditional Modes (AL-ICM) [107]. AL-ICM, a greedy algorithm, operates in it-
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erative mode. Every SPN is initially assigned to a unique label. At each iteration, AL-ICM
assigns to a SPN the label of its closest SPNs. This process is repeated until convergence
where no label is updated. If T3 is the bound number of iterations, the time complex-
ity of AL-ICM is bounded to O (T3n?). In CCC, correlation clustering is performed Q
times where @) is the number of similarity thresholding values. Multiple base clusterings
are combined to find the final clustering agreement by Weighted Evidence Accumulation
Clustering (WEAC) [108]. The time complexity of WEAC is O ((Q + logn)n? + Qn). Fi-
nally, m obtained clusters are refined via a merging step which costs O (m?logm). Total

cost of CCC is O ((QTs + Q + logn + 1)n* + Qn + m? logm).

LS-SSC. In large-scale contexts, we suppose that RAM can cache only p SPNs. The
dataset is split into B batches, B = [%] Clustering each batch requires running CON-
STRAINED__[LASSO, finding K nearest neighbors and DBSCAN. Finding K nearest neigh-
bors requires sorting each column of sparse representation matrix, which is O (p*logp).
In the worst case, DBSCAN visits p points and scans for their neighbors, which costs
O (p*). Total cost of clustering B batches is O (B [p®/3 + (3T} + logp + 1)p?]). In our
large-scale experiments, recycling step is replicated B/2 times on batches of size p. Merg-
ing and attracting phase work similarly to agglomerative hierarchical clustering, and their
time complexity is respectively O (L?log L) and O (ULlogU), where L is the number of
discovered clusters after the first phase and U is the number of unclustered images. Total
cost of LS-SSC is O ( 1.5B? [p*/3 + (3Ty +logp + 1)p?] + L?log L + ULlogU ).

Lin-LS. The time complexity of Lin-LS is analyzed for the first iteration. In the
coarse step, the correlation calculation of B batches requires O (Bp?). If the correlation
matrix n x n has E non-zero entries, Graclus partitioning algorithm [109] has the time
complexity of O (pE/n). Since the number of clusters in coarse step is fixed to n'/4, the
calculation of correlation matrix in the fining step costs O (nl/ 4b2) where b is the average
size of clusters. Markov Clustering Algorithm (MCL) applied on n'/* coarse clusters
is bounded to O (nl/ DK 2), where K, for abuse of notation, is the maximal number of
nonzero entries on each column of the binarized correlation matrix. Similarly to LS-SSC,
merging and attraction of Lin-LS can be approximated to O (L*log L) and O (ULlogU)
where L is the discovered number of clusters and U refers to the number of unclustered
SPNs. Since both LS-SSC and Lin-LS aim to obtain high-quality clusters of small size, we
can equalize U, L in LS-SSC and U, L in Lin-LS for easy comparison. The first iteration
of Lin-LS totally costs O (Bp2 + (K20 + b*)n* + pE/n + L*log L + ULlog U). The two
parameters E and K depend on the cluster distribution in the dataset.

In medium-size datasets where no divide-and-conquer is needed, i.e., p = n, SSC-NC
and LS-SSC are cubic while Lin-LS and CCC are approximately quadratic. In large-
scale datasets, only algorithms designed with divide-and-conquer strategy can be run
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under the constraint on RAM as well as computational power. The time complexity
of LS-SSC is cubic with respect to p, while Lin-LS is almost quadratic with respect
to p and cluster distribution. In fact, when n becomes very large, we can fix p in
LS-SSC as an upper bound, while Lin-LS requires to synthesize the correlation matrix
n X n in the coarse step. Moreover, the time complexity of Lin-LS is analyzed only
on the first iteration, the cost of following iterations must be accounted. Although LS-
SSC is cubic with respect to p due to Cholesky decomposition, we optimize this com-
putation by exploiting LAPACK [110] whose implementation of Cholesky decomposi-
tion is extremely efficient. The core of our clustering framework can be found here:
https://github.com/quoctin/residual-clustering.

3.6 Experiments

In this section, we provide experimental analyses of the proposed clustering framework.
Based on real data, hyperparameters are selected and used thorough all experiments. We
validate the superiority of our methodologies under intensive settings, both on medium
and large-scale clustering contexts.

Dataset. All experiments are conducted on JPEG images of Dresden [3] and Vision
[90]. The top-left regions of size 512 x 512 are cropped out for SPN extraction. We
have tested diverse configurations whose quantitative details are outlined in Table 3.1
and Table 3.2, considering;:

o Cluster symmetry. On Dresden and Vision, we create symmetric datasets containing
100 images for each camera, and asymmetric datasets containing all available images
on each camera. We denote such configuration on Dresden as D¢ D:, and on Vision
as V2V, where a and s stand for symmetric and asymmetric, respectively, and c is

the number of cameras.

o Multiple instances of the same model. On Dresden, we create datasets containing
5 camera instances of each camera model. Combining with cluster symmetry, we

obtain symmetric and asymmetric datasets of this configuration as D™ and D™.

o Number of cameras. In medium-size datasets, we first select ¢ = 5, and incrementally
add 5 cameras till ¢ = 20.

o Large-scale clustering. On Dresden, we first select ¢ = 30, and incrementally add 5
cameras till the maximum ¢ = 74, considering all cameras. Since Vision is smaller
than Dresden, we start with ¢ = 21 and incrementally add 3 cameras till ¢ = 33.
Such configurations on Dresden and Vision are respectively denoted as £D: and
LVe. All these configurations include cameras of same models.



38

Clustering Images by Acquisition Device

Table 3.1: Testing configurations on medium-size datasets.

Configuration # cameras # models # images
Dresden| Vision | Dresden| Vision | Dresden| Vision | Dresden| Vision
Dz Vi ) 5 500
D3, Vio 10 10 1000
s Vis 15 15 1500
D3y V5o 20 20 2000
Ds Ve 5 5 1089 1041
o Vo 10 10 1954 2110
Dis Vis 15 15 3031 3208
D3, VS 20 20 4186 4435
D™ — 5 — 1 — 500 —
s — 10 — 2 — 1000 —
DI — 15 — 3 — 1500 —
D3y — 20 — 4 — 2000 —
Dgm — 5 — 1 — 855 —
s — 10 — 2 — 2663 —
D — 15 — 3 — 3558 —
D3y — 20 — 4 — 4540 —

Performance metric. We report performance in F-measure and Adjusted Rand
Index (ARI). In the presence of outliers (unclustered SPNs), we follow [2] and treat
outliers differently in the computation of True Positive (T'P) and False Positive (TP).
Specifically,

o True Positive (TP): the number of image pairs from the same cluster which are

assigned to the same cluster, excluding outliers.

o False Positive (FP): the number of image pairs from different clusters which are

assigned to the same cluster, excluding outliers.

o True Negative (T'N): number of image pairs from different clusters which are as-

signed to different clusters.

 False Negative (FN): number of image pairs from the same cluster which are as-

signed to different clusters.

F-measure is computed based on precision (P) and recall (R):
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Table 3.2: Testing configurations on large-scale datasets.

Configuration # cameras # images
Dresden| Vision | Dresden| Vision | Dresden| Vision
LDs, LVS, 30 21 6596 4397
LDgs LV5, 35 24 7538 5051
LD, LYV5, 40 27 8545 5773
LD LV5, 45 30 9635 6377
LDg, LV 50 33 10765 7070
LDz — 55 — 11673 —
LDy, — 60 — 12729 —
LDgs — 65 — 13995 —
LD, — 70 — 14915 —
LD3, — 74 — 15677 —

TP TP P-C

TP+ FP’ TP+ FN’ P+C
Rand Index (RI) and ARI are computed as:

f _ _ TP+TN . ARi= B ERI
TP+ TN + FP + FN I~ B[R]

where E[RI]] is the expected value of RI and is computed based on the expected value of
TP and TN.
E[TP]+ E[TN]

ERI = =— — .
[R1) TP+TN+ FP+ FN

More details of F-measure and ARI in the presence of outliers can be found in Ap-
pendix 7.3. When the number of outliers is zero, F-measure and ARI become canonically
defined.

For comparing the number of clusters discovered by each algorithm, we follow [2] to
report the ratio L,/L, where L, refers to the number of predicted clusters and L, the
number of ground-truth clusters. Differently to [2] where L, only accounts for unique
predicted clusters, i.e., L, < L, it is possible in our evaluation that L,/L, > 1 if an
algorithm overestimates, or L,/L, < 1 if under-estimating the number of ground-truth
clusters.

Performance comparison. We compare the results of the proposed methodologies
with the state of the art. Tests have been done also with hierarchical clustering [41],
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Markov Random Field [38], and Spectral Clustering with Normalized Cut criterion [44],
but for the sake of space and readability we only present comparisons with the following
top performing works:

o Multiclass Spectral Clustering (MSC) [43]. A star graph is built with 5 nearest
neighbors, as suggested in [43].

« Lin’s Large-Scale (Lin-LS) method [2]. Lin-LS is implemented with all parameters
recommended from [2]: the correlation matrix of compressed SPNs (256 x 256)
are binarized by threshold 0.008, while the correlation matrix of original-size SPNs
(1024 x 1024) are binarized by threshold 0.005. In order to take divide-and-conquer
strategy into effect on medium-size datasets, each dataset is split into two equal
batches and only one is loaded at once.

o Correlation Clustering with Consensus (CCC) [46]. Results of CCC are acquired
from the implementation provided by the authors. No parameter needs to be speci-
fied.

o Sparse Subspace Clustering (SSC) [6]. To validate the effectiveness of non-negativity
constraint, we compare with ordinary SSC which is implemented similarly to SSC-

NC but without the non-negativity constraint.

We analyze the performance of LS-SSC to verify its adaptation on medium-size and
large-scale datasets. To simulate divide-and-conquer on medium-size datasets, LS-SSC
splits each dataset into two equal batches and only one is loaded at once in the same
manner as Lin-LS.

Under large-scale datasets, LS-SSC is compared only to Lin-LS since these methods
are particularly designed for large-scale contexts. One matter of clustering on large-scale
datasets is the lack of memory. Since only a limited number of SPNs can be allocated on
RAM, we fix this bound to 4000 (=~ 4 GBs are required to store SPNs).

Due to some randomization used in MSC, CCC, Lin-LS and LS-SSC, those methods
are run 10 times, and the average scores are reported.

3.6.1 Settings

In order to select a number of parameters required by our methodologies we collect a
dataset, obviously different from the test one. From RAISE dataset [111] we extract
200 raw images from Nikon D90 and 250 from D7000, and perform JPEG compression
(quality factor 98). Since there are only 76 raw images of Nikon D40, we leave them



FExperiments 41

out and instead select 300 JPEG images (default JPEG quality setting) from an external
Canon 600D. We refer to this dataset as Dy, including 750 images from 3 cameras.
Selecting 7. 7 is the augmented Lagrangian hyperparameter which stands for how
much penalty added in order to enforce the equality Z = V. This parameter partially
decides the convergence speed of CONSTRAINED _[LASSO. Small n means slow convergence
but with high accurate solutions, while large n accelerates convergence speed but results in
modest accurate solutions. Since sparse representation learning is followed by a clustering
procedure, solutions with modest accuracy are sufficient. On Dyey, 77 € [1.0, 1.3] results in
acceptable solutions and fast convergence. We adopt n = 1.0 in all experiments.
Selecting v. On Dyey, we vary 7 in the range [0.0001,0.02] and select v = 0.0018
that minimizes the cost function defined in Section 3.3.2 taken into account normalized

cuts and eigengaps as criterions.

Precision

Figure 3.7: Precision and L;/L, with respect to diverse values of K and # recycling steps.

Jointly selecting R and K. In LS-SSC, the main goal of recycling is to reduce
the number of undiscovered ground-truth clusters. Let us denote as L4, L, the number
of ground-truth clusters discovered after merging phase and the number of ground-truth
clusters, respectively. The strategy is to adopt the number of recycling steps R such that
L4/Ly — 1 and discovered clusters are pure, namely Precision — 1. Another parameter
which impacts on Ly is the number of nearest neighbors K. Small K means more ground-
truth clusters are likely to be discovered, otherwise only noticeably dense clusters are
discovered. We conduct experiments on an asymmetric dataset from Dresden containing
5 cameras coming from different models. We split the dataset into 6 equal batches of
size &~ 182 in order to simulate splitting step. Figure 3.7 depicts precision of discovered
clusters after merging step in panel (a), and the ratio L;/L, in panel (b). It is clear that
K =5 is a reasonable choice for discovering pure ground-truth clusters. From these plots
one can argue that selecting R = 0 allows to obtain the highest precision in this case.
However, it is important to remember that recycling plays an important role since it helps
discover more hidden clusters. In principle, high value of R should be chosen considering
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the computational complexity, but the precision is likely to drop if we run more recycling
steps with big K. In large-scale contexts, we adopt R = | B/2], where B is the number of
batches. In medium-scale contexts, where computational requirement is less important,
we run recycling until there is no noticeable subclusters discovered.

3.6.2 Medium-Scaling Clustering

We report performance of all methods on medium-size datasets with the maximum number

of images ranging from 4000 to 5000.
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Figure 3.8: Clustering performance on medium-size datasets of Dresden: (a) symmet-
ricc:  Dg, D3y, Dis, D5y (b) asymmetric:  Dg, Dy, Di5, D3, (c) symmetric + same model:
D™ DIy, DiE, Dsgt (d) asymmetric + same model: DE™, D", DIE*, DSy*. Better viewed in

color.
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Results on Dresden suggest that MSC performs relatively well on symmetric (in Figure
3.8 (a)) and asymmetric (in Figure 3.8 (b)) datasets. MSC applies an extra step before
clustering. It is the creation of a star graph among SPNs, where noisy connections are
partially eliminated. The star graph can be considered as a suboptimal sparse represen-
tation matrix of data. Differently to MSC, SSC finds a sparse representation of data by
solving an optimization problem. In Figure 3.8, SSC outperforms MSC in most configu-
rations with high F-measure. As an improved version of SSC, SSC-NC performs equally
or better than SSC in the majority of symmetric and asymmetric datasets. Balanced
precision and recall are obtained, gaining high F-measure. The number of predicted clus-
ters L, obtained by SSC and SSC-NC are identical, approximating well the number of
ground-truth clusters L,. Such approximation is the best among all tested algorithms.

Dresden Vision

gj ‘ ‘ ‘ 1,03‘4 ‘ ‘ 6(](;
2 1,000 | 600 |
e
£ 800
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=
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Figure 3.9: Number of unclustered SPNs on medium-size datasets of Dresden and Vision.

Although Lin-LS and LS-SSC are especially designed for large-scale datasets, they
produce convincing results also on medium-size datasets. Lin-LS aims to obtain high-
quality clusters of small size, resulting in high precision. Comparing to Lin-LS, LS-SSC
obtains less precise clusters but the precision is still high without penalizing recall. Thanks
to this balanced behavior, LS-SSC outperforms Lin-LS in terms of F-measure and ARI.
To keep precision high, both Lin-LS and LS-SSC tend to overestimate the number clusters
in medium-size datasets.

Zooming into the cases where cameras of the same model share some commonalities
in SPNs, this clearly introduces a certain level of ambiguity. In Figure 3.8 (c¢) and (d)
we report results on datasets containing multiple camera models, each model with 5
camera instances. Despite the fact that all methods suffer from performance degradation,
SSC-NC outperforms other methods in D™, D3, while LS-SSC is superior in all other
configurations. In Figure 3.8 (¢) and (d), the superiority of SSC-NC over SSC is evident.
We argue that, in such complicated contexts where SPNs of the same camera model stay
close to each other, SSC-NC can find better data representations.
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We replicate the evaluation of all methods on medium-size datasets of Vision, see
Figure 3.10. MSC, SSC-NC and LS-SSC perform on par with each other, but SSC-NC
achieves more accurate estimation on the number of clusters. On the other hand, SSC-NC
also obtains more accurate results than SSC in almost all configurations (7 out of 8). It
seems that Lin-LS outperforms all other methods, however, we argue that its performance
gain is partially due to high number of unclustered SPNs it produces. We show in Figure
3.9 the number of unclustered SPNs of LS-SSC and Lin-LS on medium-size datasets of
Dresden and Vision. It is evident that Lin-LS produces more outliers than LS-SSC, thus

gaining a certain advantage over precision, and then F-measure as a consequence.

3.6.3 Large-Scale Clustering

In practice, there exist large-scale contexts where a large number of images need to be
clustered. In Dresden, we conduct experiments on datasets containing 30 to 74 cameras,
and the number of images exceeds 6000, while in Vision the number of cameras ranges
from 21 to 33 and the number of images exceeds 4000. To the best of our knowledge,
Lin-LS [2] is the only method proposed for large-scale clustering of SPNs; thus results are
compared only with it.

As depicted in Figure 3.11, Lin-LS achieves high precision, which means FP is neg-
ligible. Nevertheless, in order to keep high precision a noticeable number of SPNs are
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Figure 3.12: Clustering results on large-scale datasets of Vision.

not clustered. Unclustered SPNs essentially cause low recall, or equivalently high FFN
due to the separation of pairs belonging to the same cluster. On the contrary, LS-SSC
produces less precise clusters with precision from 80% to 100%. One advantage of our
method is the achievement of relatively high recall which slightly oscillates around 80%.
Apart from keeping precision and recall balanced, we obtain high F-measure. LS-SSC can
cluster the whole Dresden dataset with F-measure higher than 80% which substantially
improves the 64% obtained by Lin-LS. The improvement of LS-SSC over Lin-LS should
be further amplified because Lin-LS requires to access 1024 x 1024 SPNs in refining step
while LS-SSC only works on 512 x 512 SPNs. Moreover, as depicted in Figure 3.11 (last
panel), LS-SSC produces a higher number of clusters than the ground-truth clusters, but
the ratio between the two quantities is relatively constant when the dataset size grows.
Vice versa, for Lin-LS this ratio rapidly increases.

Shown in Figure 3.12 are the performance of Lin-LS and LS-SSC on Vision dataset.
Lin-LS again produces highly precise clusters, but tends to overestimate the number of
ground-truth clusters. The F-measure scores of the two methods are close since unclus-
tered SPNs are not accounted for precision computation.

In Lin-LS, the main cause of unclustered SPNs are due to the merging step. If the

merging threshold is too high, small subclusters cannot be merged to form larger subclus-
ters, and thus filtered out in the end. On the other hand, in LS-SSC a SPN is unclustered
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if the correlation between it and all available cluster centroids is smaller than a threshold
that was used to exclude the null hypothesis. Also for the case of large-scale datasets,
we show the number of unclustered SPNs in Lin-LS and LS-SSC, see last panel of Figure
3.11, 3.12. In this scenario, it is clear that to keep precision high Lin-LS produces large
number of unclustered SPNs, not comparable with unclustered SPNs in LS-SSC. The ad-
vantage of this mechanism is to reduce false alarm rate, but its downside is evident since
data of interest could be ignored by the algorithm. LS-SSC provides a reasonable tradeoff
allowing to cluster large-scale databases without skipping too many images which might

be important for forensic analysis.

3.6.4 Analysis On The Robustness

In this section, we analyze the robustness of LS-SSC in more realistic testing configura-
tions.

Presence of outliers. Firstly, we test the robustness of LS-SSC to outliers. We select
images coming from 20 cameras of Vision, and add 50 images randomly collected from
Facebook (from different entities) to make sure that they do not share the same source
camera. On this dataset, LS-SSC achieves F-measure 0.89. Remarkably, LS-SSC assigns
69 images as unclustered, in which 33 out of 50 images are truthfully outliers.

Double JPEG compression. Images taken by smartphones usually undergo a pri-
mary JPEG compression by default, and double JPEG compression once being shared
via social networks. Therefore, we test the robustness of LS-SSC on images coming from
20 cameras of Vision, further compressed using convert tool provided by ImageMagick.
The compression quality ranges from 50 to 95 (step 5). Results in Table 3.3 expose very
reasonable and pretty stable performance of LS-SSC over different quality factors. Indeed,
the algorithm is generally robust to double JPEG compression if the quality factor of the
second compression is more than 65. Clustering performance starts to drop if images are

aggressively compressed (quality factor smaller than 65).
Table 3.3: Numeric results of LS-SSC on double compressed images.

Quality factor
50 55 60 65 70 75 80 85 90 95
P 0.79 0.81 0.84 0.88 090 093 094 095 0.93 0.96
R 0.58 0.61 0.66 0.72 077 080 0.83 0.86 0.85 0.88
F 0.67 0.70 0.74 0.79 0.83 0.86 0.88 0.90 0.89 0.92
ARI | 0.65 0.68 0.73 078 0.82 0.85 0.87 0.89 0.88 0.88

Metric

Images from social networks. Images acquired from online social networks are
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invaluable resources for forensic investigations. Unfortunately, once being uploaded and
shared online images undergo strong processing such as JPEG compression and resizing
which substantially remove forensic traces. By taking images uploaded via Facebook
in high-quality and low-quality mode from Vision [90], we test LS-SSC on large-scale
settings where the number of cameras ranges from 21 to 33 with step 3 and report results
in Figure 3.13 in terms of F-score. Unsurprisingly, performance of LS-SSC fairly decreases
correspondingly to the quality of images. On high-quality upload, F-score is about 60%,
while this number decreases to 50% on low-quality upload. We also observe that in low-
quality upload, LS-SSC produces more unclustered images than high-quality upload. This
is in fact an expected behavior as low-quality images are marked as outliers. On another
hand, it has been confirmed from [46] that SPN-based clustering methods are susceptible
to images downloaded from Facebook since the signal of interest is significantly distorted.

0.8 [ .

0.6 [ .

F-score

- Before upload
0.2 [| -4 After high-quality upload -
-@- After low-quality upload

21 24 27 30 33

#cameras

Figure 3.13: Performance of LS-SSC on Vision images before uploaded, after uploaded in high-

quality and low-quality mode.

Different SPN sizes. Next, we validate the robustness of LS-SSC to different sizes
of SPN. We pick the same set of images used in previous experiment, but crop the top-left
region to 4 different sizes: 256 x 256, 512x512, 768 x 768, 1024 x 1024. The hyperparameter
v is also re-estimated on the development set where images are cropped to similar sizes.
The values of v for each of corresponding size are 0.0045,0.0018,0.0012, 0.0008. In Table
3.4, the performance generally improves if larger-size SPNs are used. Nevertheless, the
results also suggest that using SPN sizes larger than 512 x 512 is not the key for the
success of LS-SSC. Indeed, using 768 x 768 does not gain any improvement over 512 x 512
SPNs, and using 1024 x 1024 SPNs brings only a minor improvement.

Few images per camera. In some specific contexts, forensic analysts might face
with databases where the number of cameras is higher than the average number of images
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Table 3.4: Numeric results of LS-SSC on SPNs of different sizes.

SPN size
Metric
256 x 256 512 x 512 768 x 768 1024 x 1024
P 0.85 0.92 0.92 0.89
R 0.84 0.84 0.85 0.90
F 0.84 0.88 0.88 0.89
ARI 0.83 0.87 0.87 0.88

acquired by each camera (one camera per each model). To simulate such context, we
start with an original set of 20 cameras selected from Dresden. The number of images
on each camera alternatively ranges from 10 to 50 (step 10). For each image, we crop at
50 different positions, ending an augmented set of images coming from 50 cameras. We
fianlly obtain a dataset of 12000 images of 400 cameras. It is a challenging dataset since
the number of cameras is high, while the number of images for each camera is much lower.
LS-SSC assigns images into 258 clusters, and 469 images remain unclustered. Obviously,
many small-size clusters are hard to be discovered due to random splitting.

It is acknowledged in [2] that Lin-LS is especially designed to cope with such scenarios.
However, such capability comes at a cost of discarding many outliers, which might leave
images of interest out of consideration. Lin-LS assigns images into 892 clusters, while
4083 images remain unclustered. We obtain an F-measure 47% in this dataset, while
Lin-LS achieves 52%, at a price of a 10 times larger number of unclustered images.

In this scenario, LS-SSC performs not very well, but this is somehow inherently defined
in the method itself. Indeed, we know from the theory that learning sparse representation
of camera SPNs requires sufficient number of images per camera. Without this assump-
tion, the algorithm might learn inexact representations which usually result in high FP.

3.6.5 Running time analysis

We measure the running time of SSC-NC and LS-SSC on Dresden images, where the
number of cameras ranges from 10 to 70. To observe the running time of SSC-NC we
assume RAM is sufficient to catch all SPNs of 70 cameras, and allows to solve the opti-
mization in Equation (3.5). Figure 3.14 (a) reveals the fact that LS-SSC requires higher
I/O cost due to extra reading/writing operations. SSC-NC, on the other hand, requires
much higher computational cost, which are critical in practical usages. For LS-SSC, it
takes approximately 1 hour and 20 minutes to cluster the whole Dresden dataset. In the
case of limited RAM, LS-SSC requires more I/O time while SSC-NC cannot be operated.
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Figure 3.14: (a) Running time of SSC-NC and LS-SSC. (b) Running time of all methods.

The total running time of all methods are shown in Figure 3.14 (b) '. LS-SSC exposes
its computational advantage when the number of images significantly increases. While
Lin-LS is claimed to take approximately 45 minutes to cluster the whole Dresden [2], our
implementation yields inferior performance. The computational time of CCC is quite slow
even though we use the implementation of the authors. While SSC, MSC appear to be

acceptable, we emphasize again that when RAM is limited, they cannot be operated.

3.7 Conclusions

In this chapter, two clustering methodologies are proposed for medium-scale and large-
scale contexts. The proposed methodologies seek for better representations of SPNs in
order to improve clustering accuracy. Since SPNs are high-dimensional and noisy, tradi-
tional measure like normalized correlation results in severe inter-class correlations, making
the affinity matrix ambiguous. By leveraging Sparse Subspace Clustering (SSC), whose
principle is to find sparse linear relationships among data points, we successfully design
a novel clustering framework for clustering SPNs both in medium-scale and large-scale
contexts. Despite many advantages of our framework, we anticipate certain scenarios that
is hard to deal with:

« Few images per camera. In high dimensional vector space, a data point must
be reconstructed by a large number of linearly independent data points. Otherwise,

LCPU time of execution strongly depends on the implementation and may mislead the reader in the presence
of suboptimal implementations. Also, optimization or parallelization of the code may affect the execution time
(e.g., the code of CCC [46] provided by the authors contains parallel for loops). Since we cannot guarantee a fair
evaluation of execution times, in particular for competing methods, we prefer to provide a detailed computational
complexity analysis (Section 3.6.5).
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we cannot ensure the small reconstruction error. This theoretical weakness limits

SSC-based methods to cases where sufficient images per camera are available.

o Pixel misalignment. Since SPNs are caused by imperfections of camera sensors,
two images that come from the same camera and are misaligned with respect to
pixel position, will not well correlated. This problem is well-known in the literature
and to the best of our knowledge, has not been seriously addressed. Our method-
ologies are not a solution to this problem because we work on the same data. More
unfortunately, images available online usually undergo geometric transformations
which cause pixel misalignment. Our preliminary experiments on Facebook images
has confirmed the inferior performance. Such phenomena have been observed also
in [46].

Recent efforts have shown that SPNs are compressible [112, 113, 114, 115, 116], and
these findings are interesting to be considered in unsupervised context. A potential ex-
tension of this work is to conquer the high dimensionality in SPNs by resorting to dimen-
sionality reduction methods that expectedly preserve the underlying subspace structure.
Another research question could be investigated in the near future is how features ex-
tracted by DNNs [25, 26, 117] are effective in this clustering problem.



Chapter 4

Identitying Social Network Origin of

Images

Nowadays, Social Network (SN) are privileged channel for diffusion of digital images.
Most of SN platforms employ strong processing operations, e.g., compression and resizing,
in order to optimize the storage cost, transfer bandwidth as well as display quality. On
one side, such strong processing significantly destroys forensic traces, hindering image
forensic investigations. On another side, processing done by SNs leave their own peculiars
on images which enable the distinction of SN origin of images. Being able to identify a
posteriori the SN origin of images brings useful evidences to forensic analyst in certain
scenarios.

In this chapter, we discuss the exploitation of traces jointly from Discrete Cosine
Transformation (DCT) coefficients and metadata for the identification of Public Social
Network (PSN) platforms as well as Instant Messaging Apps (IMAs) as they characterize
JPEG compression and resizing. Furthermore, our effort is also spent on understanding
to which extent the chain of sharing platforms can be identified when the image is circu-

lated across multiple platforms.
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Figure 4.1: Hierarchy of our considerations in the identification of social network origin.

It is popular nowadays that images after acquired by a smart device are shared im-
mediately through (online) Social Network (SN). Due to the complex implementations
of modern SNs, this study will investigate different scenarios, see Figure 4.1. Firstly,
we draw a boundary between IMAs and PSNs, the two most common forms of SNs but
intrinsically distinctive. PSNs enable users to upload and share user-generated content
which can be viewed and interacted publicly by many users, on the contrary IMAs are
designed for private communications. PSNs are more popular on Web environment, while
IMAs are typically made for mobile devices. In both cases, images can be transferred
once or through many hops. We refer to them as single sharing and multiple sharing
scenarios. Further information on how these operations are done on IMAs and PSNs will
be provided in Section 4.5.1. To this end, our considerations are oriented to single sharing
and multiple sharing scenarios on IMAs and PSNs.

Before storing images, SN platforms often employ their own policy including different
operations like resizing and JPEG compression in order to optimize the storage cost,
transfer bandwidth as well as display quality. Such policies are in fact neither known, nor
fixed. Under certain conditions, the operations performed by SN platforms leave forensic
traces which can be exploited to a posteriori identify the SN platform(s) an image has
been circulated through. In the following section, we recall the JPEG compression process
and possible traces that can be investigated.

4.1 Traces of JPEG Compression

The vast majority of digital images are in JPEG format, a popular compressed format
which allows to store images in smaller files by retaining only the amount of information
necessary to maintain their visual quality. It plays a key role in the analysis of SN origin,
since JPEG compression can be applied according to several tunable parameters, that are
stored in the header of the final JPEG file.

The JPEG compression scheme is depicted in Figure 4.2. In JPEG compression
standard [118], an image in three channel color space (RGB) is first converted to lu-
minance/chrominance channel space (YCbCr). The two chrominance channels (CbCr)
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are typically subsampled by a factor of two relative to the luminance channel (Y). Each
channel is partitioned into non-overlapping 8 x 8 blocks, and pixel values within each
block are converted into [—128,127]. Each block is subsequently transformed into 8 x 8
coefficients using 2-D Discrete Cosine Transformation (DCT). Let F.(u,v) be a DCT co-
efficient on the spatial frequency (u,v) and channel ¢. For simplicity, we consider only
luminance channel and ¢ is omitted as chrominance channels are often subsampled by the
factor of two or four and subject to stronger quantization, they contain less information
than luminance channel [55].

N T A L W LA

=0 y=0 16

where a,, is the scaling factor, and f(-) is the pixel value of luminance channel (after
converted), 0 < u,v < 7.

DCT
Color space | [Discrete Cosine . Entropy
a M . M coefficients [ .
transformation | | transformation N encoding
quantization
Before compression After compression

Figure 4.2: Pipeline of the JPEG compression scheme. The effect of JPEG compression can by
observed in the resulting image. By zooming closer to one portion of the image, we can notice
the artifacts of 8 x 8 blocks. Image taken from Dresden dataset [3].

In the next step, each DCT coefficient is quantized by an amount ¢(-) (quantization
step) depending on the spatial frequency u, v.

q(u, v)

F(u,v) = round (F (u, “)> | (4.1)

This step is the main cause of information loss. For low compression rates, ¢(u,v) tends
to 1. For higher compression rates, ¢(u,v) tends to increase. The quantization for low
frequency components is typically less than for high frequency components since low
frequency components contain most of visual information and need to be retained. The
quantization for luminance channel is also typically less than for chrominance channels.
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Figure 4.3: (a) H; o associcated with ¢(1,0) =1, (b) Hj o associcated with ¢(1,0) =5, (c) Hi
associcated with ¢(1,0) = 8.

After quantization, quantized DCT coefficients are entropy encoded to reduce the
storage size. Entropy encoding encodes frequent values by shorter code length, and less
frequent values by longer code length. Entropy encoding is lossless, and it works well due
to the fact that after quantization majority of F'(u,v) are zeros (frequent value).

It is well-known that SN platforms employ JPEG compression for uploaded images,
and the experimental investigation in [55] confirms this fact. Therefore, the identification
of SN is not the verification whether JPEG compression has been performed, but more
about how it has been done. In JPEG compression pipeline, DCT coefficient quantization
is the step that can be mostly customized by SN platforms.

Histogram of DCT coefficients reveals JPEG compression artifacts [18]. Let H,,, the
histogram of I3 (u,v) over all 8 x 8 blocks of luminance channel. As rounding opera-
tion in Equation (4.1) is many-to-one function, single JPEG compression with different
quantization steps ¢(u, v) will result in distinctive histograms. Figure 4.3 represents H g
associated with (a) ¢(1,0) = 1, (b) ¢(1,0) = 5, and (c) ¢(1,0) = 8. Specifically, higher
quantization step results in sparser histogram since many values are rounded to the same
bin. The choice of quantization steps is the main source of variation, and it therefore can
be exploited for SN origin identification. Most of acquisition devices select JPEG as the
default format, and images are subjected to the second JPEG compression once they are
uploaded to SN platforms. If an image is doubly compressed using the quantization step
¢1(u, v) followed by g2(u,v), the quantized DCT coefficient F (u,v) of the final JPEG file

is expressed as:

F'(u,v) = round (ql(u, v) X round (F(u, U>>> : (4.2)

q2(u, v) ¢1(u; v)
The presence of double JPEG compression can be detected also by observing the histogram

of F' (u,v), denoted by H;m. The interplay of ¢ (u,v) and go(u, v) decides the appearance
of H; -
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Figure 4.4: (a) Hjpo associcated with ¢1(1,0) = 2, (b) Hi,o associcated with ¢1(1,0) = 2
and ¢2(1,0) = 3, (c) Hy,o associcated with ¢;(1,0) = 3, (d) Hi,o associcated with ¢;(1,0) =
3, q2(1,0) = 2.

In Figure 4.4 (a), the original image is firstly compressed with the quantization step
¢1(1,0) = 2, and in (b) it is doubly compressed with ¢2(1,0) = 3 respectively. In Figure 4.4
(c), the original image is firstly compressed with the quantization step ¢;(1,0) = 3, and in
(d) it is doubly compressed with go(1,0) = 2. It is worth to note that JPEG quantization
and dequantization are simulated to obtain Figure 4.4 instead of real implementation. The
reason is that real implementation introduces some sources of errors: color conversion,
truncation of the values to eight bit integers, DCT inverse transformation; and therefore
it is hard to observe the clean effects of double JPEG compression. As we can see from
Figure 4.4 (b), when ¢(1,0) > ¢1(1,0) the histogram shrinks towards 0 and some bins
contain more samples than neighboring bins. On the other hand, Figure 4.4 (d) shows
the case ¢2(1,0) < ¢1(1,0) the histogram expands to wider bin ranges and some bins are
empty.

Detection of double JPEG compression has been vastly studied, most of them exploit
the artifacts from histogram of DCT coefficients. Remarkably, in [18, 119] the presence
of double JPEG compression can be detected by looking at periodic patterns on the his-
togram in frequency domain. Differently, [120] detects double compression by training
a SVM classifier directly on absolute values of histogram bins. Not only detecting the
presence of double JPEG compression, [78] attempts to estimate the first quantization
table by training multiple SVMs on the same feature set as [120]. All of these methods
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consider rather restricted scenarios where the second quantization table is different from
the primary one. Due to errors during JPEG compression, i.e., quantization error, trun-
cation error and DCT inverse transformation, the two successive compressions with the
same quantization table could produce two pixel-wise different images. [121] exploits the
number of unique DCT coefficients between the two compressions to design a decision
rule for the detection of double JPEG compression. In fact, the number of unique DCT
coefficients is also encoded in the histogram of DCT coefficients.

Given the distinctive power of the aforementioned histogram, it is potential for the
identification of SN platforms since each platform employs its own parameters in JPEG
compression pipeline. Unfortunately, such methods are feasible only on limited cases:

o Aligned double JPEG compression: the grids of successive compressions are aligned.

o No resizing between the two compressions: the image sizes between two successive

compressions are equal.

For that reason, the exploitation of other possible traces apart from histogram of DCT
coefficients is useful. The next section presents distinctive attributes from metadata that
can be opted for the identification of SN platforms.

4.2 Traces from Metadata

Metadata is simply data about data. In digital images, metadata contains useful infor-
mation for forensic investigation and they should not be overlooked in every investigation
process. For instance, EXIF (Extended File Information) contains information about the
camera that took the picture, date/time of the acquisition. Below is a typical EXIF
header in human readable format [122]:

File name: 0805-153933.jpg

File size: 463023 bytes

File date: 2001:08:12 21:02:04

Camera make: Canon

Camera model: Canon PowerShot S100

Date/Time: 2001:08:05 15:39:33 Resolution: 1600 x 1200

Flash used: No

Focal length: 5.4mm (35mm equivalent: 36mm) CCD Width: 5.23mm

Exposure time: 0.100 s (1/10)

Aperture: {/2.8

Focus Dist.: 1.18m



Traces from Metadata 57

Metering Mode: center weight
Jpeg process: Baseline
Such piece of information is useful, but obviously does not characterize the SN plat-
form. Work in [123] shows that apart from EXIF header, other information from header
of a JPEG file characterizes the JPEG compression process, which is highly distinctive

aCross cameras:

e Image dimensions: two integers identifying the image size. This information is

useful to discriminate different sensor resolution.

o Quantization tables: the set of three 8 x 8 quantization tables corresponding to
luminance (Y), chrominance (Cb), and chrominance (Cr). The entries on each table

are quantization steps, used to quantize DCT coefficients before entropy encoding.

o Huffman code: the six sets of 15 values corresponding number of codes of length
1,...,15: each of three channels require two codes, one for DC and one for AC
coefficients. In fact, it is very common that Cb and Cr share the same tables.

Besides, some additional parameters can be also retrieved:

e Component information: the set of 18 integer numbers describing auxiliary infor-

mation on each luminance/chrominance channel. Below is a typical table for such

values:
component_id h_samp_factor| v_samp_factor| quant_tbl_no | dc_tbl_no ac_tbl_no
1 2 2 1 1 1
2 1 1 2 2 2
3 1 1 2 2 2

The first row contains information of the luminance channel, i.e. this channel is
up-sampled by a factor of 2 (relative to chrominance channel) on horizontal and
vertical axis; its quantization table index is 1; coding table index is 1 for both DC
and AC coefficients.

the third row can be read in a similar manner.

The information of chrominance channels in the second and

e Progressive mode: boolean value indicating whether progressive mode is applied.

e Optimized coding: boolean value indicating whether optimized Huffman tables are

used.

In this study, we investigate two kinds of feature set: i) histogram of DCT coefficients
and metadata, the so-called hand-crafted features, and ii) deep features extracted by
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Convolutional Neural Networks (CNNs). The next section focuses on hand-crafted feature

extraction.

4.3 Exploitation of Hand-Crafted Features

Hand-crafted features composes two main kinds of features:

o Histogram of DCT coefficients, denoted by SignalFea.

o Metadata-based features, denoted by MetaFea.

As mentioned in Section 4.1, DCT coefficients from chrominance (CbCr) contain less
statistical information than of luminance (Y) channel since chrominance channels are typ-
ically subject to subsampling and stronger quantization. We therefore extract SignalFea
on luminance channel only. For each 8 x 8 block of DCT coefficients, we select a set of
quantized DCT coefficients F(u,v) of the last JPEG compression (we do not assume to
know the number of JPEG compression) where (u, v) are limited to the set of 9 low spatial

frequencies:
LF ={(0,1),(1,0),(2,0),(1,1),(0,2),(0,3),(1,2),(2,1),(3,0) }.

The DC frequency (u = 0,v = 0) is omitted. The dequantized DCT coefficients F'(u, v)
are then computed by:

F(u,v) = F(u,v) x q(u,v).

The histograms of F(u,v) over all blocks are accumulated, normalized by number
of blocks, and denoted by H,,. To avoid the explosion in number of features, we only
retain histogram bins in [—20, 20] (bin width is 1) which significantly capture statistical
information of DCT coefficients. The final feature set is the concatenation of all H,, ,, with
(u,v) € LF. The length of SignalFea is 41 x |LF| = 369.

On the other hand, MetaFea is extracted from the JPEG header. We list here the data
extracted the corresponding number of features in brackets (total number 152):

o Quantization tables (128): extracted for luminance channel and chrominance chan-
nel, they contain the quantization steps and reflect the quality factor of the (last)
JPEG compression.

e Huffman encoding tables (2): number of encoding tables used for AC and DC com-
ponent.

o Component information (18): for the components Y, Cb, Cr, 6 features describe com-
ponent id, horizontal/vertical sampling factors, quantization table index, AC/DC
coding table indices.
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o Optimized coding and progressive mode (2): Binary values indicating the use of
optimized coding and progressive mode.

o Image size (2): image dimensions.

Hand-crafted features, denoted by HanCrFea, is the concatenation of SignalFea and
MetaFea, ending up 521 features. The evaluation of hand-crafted feature is carried out
under three well-known classifiers: LR (Logistic Regression), SVM (linear Support Vector
Machine with penalty parameter 1) and RF (Random Forest with 100 estimators).

4.4 Exploitation of Deep Features

By the recent advance of deep learning and big amount of data available, several forensic
problems can be solved at better performance: tampering detection [124, 125, 126, 71,
127, 26|, device identification [25], device linking [128], double JPEG compression [129].
In particular, in [56] a CNN-based approach has been proposed for the identification of
SN, showing the potential of deep learning approaches for this particular problem.

In this section, we investigate further a CNN-based solution for end-to-end classifica-
tion, and introduce the combination of MetaFea and deep features extracted from CNN
trained on large amount of collected data.

4.4.1 CNN Architecture and Training Tactics

We propose a new CNN architecture that is able to work directly on DCT coefficients
as input. Our CNN is named as P-CNN, and it is sketched in Figure 4.5, which takes as
input a DCT coefficient map of B x B (B is multiple of 8) and outputs probability scores
over class labels, i.e. P-CNN Predictions.
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Figure 4.5: Architecture of P-CNN and P-CNN-FF.
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A typical way to learn statistics of DCT coefficients on each spatial frequency is
computing their histogram; and this feature has been successfully incorporated into
CNNs [130, 129]. Denote Fj;(u,v) the quantized DCT coefficient in the (i,5)-th block
(1 <1i,7 <*B). In principle, bin x of histogram H, , can be computed by an indicator

function I(+):
64 B/3B/

Huﬂ)(f) = @ Z Z ]I:c(ﬁ’i,j(uv U))a
i=1 j=1
where:
A 1, E (u,v) =
I, (Fi,j<u7v)) = 7](u U) i

0, ﬁii,j (U, U) 7£ T

A limitation of indicator function in end-to-end CNNs is its non-smoothness, i.e. zero
derivative everywhere except x. It prevents back-propagating errors during training. In
[130], the authors proposed to replace indicator function by a Gaussian activation centered
at z. This solution allows the back flow of gradients, but it requires evaluating Gaussian
activation multiple times — it is the number of bins by number of DCT coefficients in our
problem, and more importantly it has not been supported yet by common deep learning
frameworks. Because of its complication, it is suitable to histograms with small number
of bins.

Work in [129] proposes another alternative, where a sigmoid activation is used as an
approximation of indicator function. Specifically, bin x of histogram H, , is computed,

firstly by means of an accumulative histogram A, ,:

G4 B/8B/8 A
Auol) = 3 2 D0 (C(Fy(u.v) — )

By fixing ¢ as a large number, the sigmoid function o(:) outputs 1 if Fm(u,v) > .
Basically, A, ,(x) accounts for the number of DCT coefficients at spatial frequency (u,v)
that larger than x. After that, H, , is obtained by differentiating neighboring bins of A, ,:

Hy(x) = Ayp(z) — Auo(z + 1),

which can be done efficiently by 1D convolution with kernel [1, —1].
To implement histogram layer, we need to select a number of hyperparameters:

o Choosing x, (: In [129], x is treated as variables, initialized as 101 integers from —50
to 50 (typical range of DCT coefficients), and tunable during training. On the other
hand, ¢ is fixed to 10°. This setting leads to vanishing gradients in our problem
since we deal with integer DCT coefficients while [129] deals with real numbers.
Therefore, the sigmoid function always reaches its extremes, making the update of
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x infeasible. Therefore, we finally fix  as 101 constant bins from —50 to 50 for the
efficiency.

« Choosing B: We use B = 64, similarly to the patch size used in [56].

o Choosing spatial frequencies: We use all AC frequencies on luminance channel, and

just omit DC frequency.

The output of histogram layer is 63 x 101 (63 AC frequencies, and 101 bins) are
consecutively fed to 3 consecutive convolutional layers of receptive field 5 x 5 with kernels
dimension 8,16, 32, respectively. Then, tanh activation is added after each convolution
layer to obtain nonlinearity, followed by max pooling with stride [2, 2] to reduce the size
of feature maps. We, afterwards, incorporate the statistical moments layer described in
[131] to extract 4 statistical values (max, min, mean and variance) of each of 32 feature
maps. This layer significantly reduces dimensionality of feature maps, and stabilizes
the training. Since variance is computed based on realizations and mean, end-to-end
training with both variance and mean computation might lead to instabilities, thus we
treat variance as a constant in P-CNN. Subsequently, max, min and mean values of each
of feature maps are concatenated in a vector of 96 features (3 x 32) and fed to Multilayer
Perceptron (MLP) classifier (two hidden layers of 128,64 hidden units and one output
layer of C output units). Probabilities over C classes are computed through C-way softmax,
obtaining P-CNN predictions. P-CNN is trained up to 100 epochs using Adam optimizer.
The initial learning rate is set to 107* and exponentially decayed after 50 epochs to
improve convergence. Batch normalization, dropout, and weight regularization are not

applied during training.

4.4.2 Combination with Metadata-Based Features

As SNs employ their own JPEG compression and resizing, quantization tables and image
size can be considered as useful cues. Furthermore, specifications of encoding process also
present peculiarities of SN platforms. In this study, we explore the ability to combine
deep features from P-CNN, called PCnnFea, and MetaFea.

PCnnFea consists of 4 statistical values (max, min, mean, variance) of each of 32
feature maps output from the third convolutional layer of P-CNN. Its dimensionality is
4 x 32 = 128, as shown in Figure 4.5. Although variance is treated as constant during
P-CNN training due to instability, once P-CNN is optimal, these features encode the
variability of feature maps. Thus, final classifier named as P-CNN-FF (P-CNN with Feature
Fusion), exploiting both types of features, use 128 deep features (4 x 32) concatenated
with 152 metadata-based features, thus working on a 280-d feature vectors. P-CNN-FF is
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simply a Multi-Layer Perceptron (MLP) classifier with two hidden layers of 128, 64 hidden
units and an output layer of C output units. P-CNN-FF is trained for 100 epochs using
Stochastic Gradient Descent (SGD) with momentum 0.9, initial learning rate 1072. The
learning rate is divided by 5 if the training loss does not decrease after two consecutive

epochs.

4.5 Experiments

In this section, extensive tests are carried out to evaluate the goodness each type of
features, the capability of classification methods under different test scenarios. We first
introduce in Section 4.5.1 benchmarking datasets used in our experiments, and in Sec-
tion 4.5.2 general test settings. The remaining three sections concentrate on results and

discussions.

4.5.1 Benchmarking datasets

A. Images Sharing via Instant Messaging App (ISIMA)

As the name suggest, this dataset contains images shared via instant messaging apps.
We first select images from different mobile devices to have variety of resolution, JPEG
compression quality and attached metadata. To do this, images are taken from Vision [90]
dataset, a recently proposed dataset for source identification, that contains JPEG images
captured from 35 different mobile devices. 10 images are taken under default settings on
each camera, thus ending up with 350 original images. Original images are then manually
shared via Facebook Messenger (M), Telegram (T) and WhatsApp (W), by using both
an Android system and an iOS system.

Since the processing of images is reasonably performed in the uploading phase, so the
focus is shifted on the sending OS (Android to iOS and iOS to Android instead of four
possible combinations of Android and iOS). The single sharing schema is described in
Figure 4.6. By doing so, the total number of collected images is 350 x 3 x 2 = 2100.

After a first sharing, it is common that images are shared once again either via the
same app or through another app, thus leading to multiple shared images. In order to
study this scenario, the set of images used in the previous section is extended by adding
images that are shared twice. In particular, each of the 350 original images is first shared
through one of the apps and then re-shared through another app, among the three ones
considered. In order to study the interaction among OSs but at the same time avoiding
the dataset size to explode, the double sharing is performed successively either by iOS-
Android or by Android-iOS. The double sharing scenario considered is depicted in Figure
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Figure 4.6: Single sharing scenario in ISIMA.

4.7. By doing so, 3 x 3 x 2 = 18 different app/OS combinations lead to 350 x 18 = 6300

double shared images, plus the 350 original images.
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Figure 4.7: Double sharing scenario in ISIMA.

In the end, ISIMA dataset contains 350 4+ 2100 + 6300 = 8750 images. We made this
dataset available at http://loki.disi.unitn.it/ISIMA/.

B. RAISE Social Multiple Up-Download (R-SMUD)
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To study in-depth multiple sharing scenario, we create a large-scale dataset of images
that are uploaded over multiple SNs. R-SMUD contains images shared over three SNs:
Facebook (FB), Flickr (FL) and Twitter (TW). 50 images (raw format) have been se-
lected from RAISE and cropped on top-left corner at sizes: 377 x 600, 1012 x 1800 and
1687 x 3000 with an aspect ratio of 9 : 16. All cropped images are subsequently JPEG
compressed (the independent JPEG group’s software has been adopted) at quality factors
QF = {50,60,70,80,90,100}. This yields to 900 images in total, shared at maximum 3
times through the three platforms. By considering all the possible combinations with
repetitions we have totally C = °7_, (SN)¥ classes, where SN represents the number of
social networks (SN = 3) and J indicates the maximum number of sharing (e.g., for
J = 3 it yields C = 3' 4+ 3% + 3% = 39).

To the end, this dataset consists of 900 + 39 x 900 = 36,000 images. Technically, we

have developed bots to support automatic upload/download. This dataset can be down-
loaded from: http://loki.disi.unitn.it/~rvsmud.

C. Vision Social Multiple Up-Download (V-SMUD)

The previous dataset, R-SMUD, originates from raw images. Differently, we develop
V-SMUD dataset by selecting 510 original JPEG images from Vision dataset [90] (15 for
each of the 34 cameras, except camera number twelve Sony XperiaZ1 Compact that it is
excluded since all of its images exceed 5 MBs, which is the image size limit by Twitter !).

All selected images are then shared via FB, FL, TW, at maximum 3 times.

In the end, V-SMUD consists of 510 + 39 x 510 = 20, 400 images. This dataset can be
downloaded from: http://loki.disi.unitn.it/~rvsmud.

D. Ucid Social (U-SOC)

U-SOC dataset ? has been proposed by [54]. 1338 raw images (512 x 384 pixels) of
UCID dataset [132] are JPEG compressed with QF = {50, 55, 60, 65, 70, 75, 80, 85,90, 95}.
For each of QF, 1000 images are uploaded/downloaded on FB, FL, TW, resulting 10 x
1000 x 3 = 30,000 images in total. For multiple sharing scenario, images uploaded the
first time are subsequently downloaded and cross-uploaded the second time via another

SN, resulting totally 60,000 images.
In the end, U-SOC consists of 10,000 + 10,000 x 9 = 100, 000 images.

"https://developer.twitter.com/en/docs/media/upload-media/uploading-media/media-best-practices.html,
last access: 25/10/2018
http://lci.micc.unifi.it/labd /2015/01 /trustworthiness-and-social-forensic/, last access: 04/01/2019
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4.5.2 Settings

We evaluate different methodologies:

Caldelli et al. [54]: this method relies on SignalFea and RF classifier.

Amerini et al. [56]: this method relies on CNNs trained on pre-extracted histogram of
DCT coefficients. [56] provides predictions on patch (64 x 64) level, the predictions
on image level is taken by majority voting.

LR-HCF, SVM-HCF, RF-HCF: these three methods rely on HanCrFea with three clas-
sical classifiers LR, SVM, RF, respectively.

P-CNN: as mentioned in Section 4.4.1, this method relies on CNNs with histogram
layer. Therefore, it can be trained directly on DCT coefficients. P-CNN provides
predictions on patch (64 x 64) level, the predictions on image level are done by
majority voting.

P-CNN-FF: as mentioned in Section 4.4.2, this method relies on the combination
(concatenation) of PCnnFea and MetaFea, and a MLP classifier. P-CNN-FF provides
predictions on patch (64 x 64) level, the predictions on image level are done by
majority voting.

All classical classifiers are trained and tested following one-vs-all strategy, regarding to

fitting a single classifier to distinguish a single class against the rest.

We use two protocols for the evaluation:

Strategic cross-validation [54]: From the dataset analyzed in each case, 30% of images
are used for training and 70% for testing. We circularly shift the training set by 5
images until it covers the whole dataset and reporting the average accuracy.

Pre-splitting [56]: As strategic cross-validation is not suitable to CNN-based ap-
proaches due to multiple splittings of training and test set, we follow [56] and split
the each dataset into training, validation and test set with the proportion 80%, 10%
and 10%, respectively. The performance is obviously measured on the test set in

terms of accuracy.

4.5.3 Modifications performed by SNs

In this section, we analyze the operations of SNs on our two large-scale collected datasets,

namely R-SMUD and V-SMUD. In particular, we analyze whether or not the uploaded

image is compressed, the corresponding compression quality (QF), and the maximal al-

lowable dimension of the image (Max dim.) in single sharing scenario. Note that, the QF



66 Identifying Social Network Origin of Images

can only be retrieved exactly if the quantization table (only of luminance channel for the
sake of brevity) is the scaled instance of the standard quantization table [53]. Otherwise,
the QF computed is a real-valued number rather than integer. Details of the analysis

Compress QF Max. dim Extra info.
FB Yes Fine-grained 2048 A few images are pixel-wise unmodified
TW Yes Original QF, 85 1200 A few images are pixel-wise unmodified
FL Yes Fine-grained 2048

Table 4.1: Operations performed by SNs on R-SMUD.

on R-SMUD is shown in Table. 4.1. We can observe that all SNs re-compress uploaded
images. FB and FL use fine-grained QF rather than a fixed one, while TW occasionally
reuses the same original QF', and 85. All SNs limit the maximum dimension of an image.
It can be also noted that a few images are pixel-wise unmodified by FB and TW even if
they are re-compressed.

The same operational behaviors have been confirmed on V-SMUD, see Table. 4.2,
except that all images have been modified after being uploaded. Obviously, as original
images selected from Vision are subject to default JPEG compression with high Q) F" which
in theory can be further effectively re-recompressed. On the contrary, some of original
images from of R-SMUD have been aggressively compressed, i.e. QF = 50. In multiple

Compress QF Max. dim Extra info.
FB Yes Fine-grained 2048
™ Yes 85 1200
FL Yes Fine-grained 2048

Table 4.2: Operations performed by SNs on V-SMUD.

sharing scenario, the number of possible sharing paths increase exponentially. To examine
operations applied at each step, we pick an original image from R-SMUD and V-SMUD
and report the image dimensions (maximal dimension X minimal dimension) as well as
QF in Table 4.3.

For IMAs, the modification policies are further complex. They depend not only on
apps, but also on the interplay of device OS and screen resolution. In general, the images
are resized and re-compressed after being shared via IMAs. In the next section, we first

analyze the SN origin of digital images with respect to instant messaging apps.

4.5.4 Analysis on Instant Messaging Apps

In the context of instant messaging apps, we are interested in understanding the interplay
of the apps. Following strategic cross-validation, we first evaluate LR-HCF, SVM-HCF,
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R-SMUD V-SMUD

SN chain Image dimensions, QF SN chain Image dimensions, QF
FB 2048 x 1151,90 FB 2048 x 1536, 77
T™W 1200 x 675,85 TW 1200 x 900, 85
FL 2048 x 1152,85 FL 2048 x 1536, 81
FB-FB 2048 x 1151,90 FB-FB 2048 x 1536, 77
FB-TW 1199 x 674,85 FB-TW 1200 x 900, 85
FB-FL 2048 x 1151, 87 FB-FL 2048 x 1536, 74
TW-FB 1200 x 675,71 TW-FB 1200 x 900, 71
TW-TW 1200 x 675,85 TW-TW 1200 x 900, 85
TW-FL 1024 x 576,90 TW-FL 1024 x 768,83
FL-FB 2048 x 1151, 77 FL-FB 2048 x 1536, 71
FL-TW 1200 x 675,85 FL-TW 1200 x 900, 85
FL-FL 2048 x 1152,82 FL-FL 2048 x 1536, 77
FB-FB-FB 2048 x 1151,90 FB-FB-FB 2048 x 1536, 77
FB-FB-TW 1199 x 674,85 FB-FB-TW 1200 x 900, 85
FB-FB-FL 2048 x 1151, 87 FB-FB-FL 2048 x 1536, 74
FB-TW-FB 1199 x 674,71 FB-TW-FB 1200 x 900, 71
FB-TW-TW 1199 x 674,85 FB-TW-TW 1200 x 900, 85
FB-TW-FL 1024 x 576,91 FB-TW-FL 1024 x 768, 81
FB-FL-FB 2048 x 1151, 88 FB-FL-FB 2048 x 1536, 71
FB-FL-TW 1199 x 674,85 FB-FL-TW 1200 x 900, 85
FB-FL-FL 2048 x 1151,85 FB-FL-FL 2048 x 1536, 69
TW-FB-FB 1200 x 675,71 TW-FB-FB 1200 x 900, 71
TW-FB-TW 1200 x 675,71 TW-FB-TW 1200 x 900, 71
TW-FB-FL 1024 x 576,88 TW-FB-FL 1024 x 768, 81
TW-TW-FB 1200 x 675,71 TW-TW-FB 1200 x 900, 71
TW-TW-TW 1200 x 675,85 TW-TW-TW 1200 x 900, 85
TW-TW-FL 1024 x 576,90 TW-TW-FL 1024 x 768, 83
TW-FL-FB 1024 x 576,83 TW-FL-FB 1024 x 768,71
TW-FL-TW 1024 x 576,85 TW-FL-TW 1024 x 768,85
TW-FL-FL 1024 x 576,87 TW-FL-FL 1024 x 768,79
FL-FB-FB 2048 x 1152,77 FL-FB-FB 2048 x 1536,71
FL-FB-TW 1200 x 675,85 FL-FB-TW 1200 x 900, 85
FL-FB-FL 2048 x 1152,74 FL-FB-FL 2048 x 1536, 83
FL-TW-FB 1200 x 675,73 FL-TW-FB 1200 x 900, 71
FL-TW-TW 1200 x 675,85 FL-TW-TW 1200 x 900, 85
FL-TW-FL 1024 x 576,91 FL-TW-FL 1024 x 768,85
FL-FL-FB 2048 x 1152, 71 FL-FL-FB 2048 x 1536,71
FL-FL-TW 1200 x 675,85 FL-FL-TW 1200 x 900, 85
FL-FL-FL 2048 x 1152, 78 FL-FL-FL 2048 x 1536, 74

Table 4.3: The properties of image at every SN step. An image of QF = 80 and 1687 x 3000 is
selected from R-SMUD and an image of QF = 99 and 2560 x 1920 is selected from V-SMUD.
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RF-HCF on two tasks defined on ISIMA dataset:

o APP: identifying whether an image comes from one of the apps, if so, determining

the correct one (4 classes, the one for the case of no uploading indicated as O.

o APP+QS: identifying whether an image comes from one of app+OS combinations

considered and, if so, determining the correct one (7 classes, including O).

The confusion matrices for these classification tasks are reported in Figures 4.8 and
4.9, together with the average accuracy for all the classifiers. The right figure presents
importance scores of the top 10 important features. The color of the bins indicates the kind
of feature, according to the legend. It is worth to emphasize that the feature importance
scores are taken from RF-HCF.

Confusion matrix

Feature importance

0.05 O vs Rest
3 Omlll.llllIl
o 0.05 M vs Rest
Q
: LTI
0.00
= 0.05 T vs Rest
P vy o ANNEEEEEEE
W vs Rest

Predicted label 0.05
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Il [mage size

Overall accuracy

LR-HCF  SVM-HCF RF-HCF
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Figure 4.8: Results for the APP task. Better viewed in color.

It turns out that all SN platforms are correctly identified. Interestingly, the ranking of
features allows to interpret which kind of features contribute significantly to the results in
one-vs-all fashion. As we can see, the image size is critical clue helping to separate original
images (never shared) and shared ones. In fact, all apps limit the maximum resolution of
images. On the other hand, the apps can be identified based on the distribution of DCT
coefficients.
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In the second task, APP4+0S, we ask whether or not the same app installed on dif-
ferent OSs leave distinctive traces. Perfect classification results on Figure 4.9 answer this
question convincingly, that we can identify not only the app but also the OS of the device
used to share the image. In order to jointly identify the OS the component information

and quantization table values also play a key role, see Figure 4.9.
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Figure 4.9: Results for the APP+0S task. Better viewed in color.

Finally, we compare the performance of all methodologies in identifying apps in single
sharing scenario of ISIMA. The comparison follows pre-splitting protocol and on image
level. Results shown in Figure 4.4 highlight the fact that all methods can identify accu-
rately the apps, particularly methods based on hand-crafted features.
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Table 4.4: Results of all methodologies in identifying apps in single sharing scenario of ISIMA.

Caldelli| Amerin
Method LR-HCF | SVM-HCF RF-HCF P-CNN | P-CNN-FF
et al. et al.
Accuracy (%) 100 100 100 100 100 98.57 100

4.5.5 Analysis on Public Social Networks

In the context of PSNs, we test all methodologies on the remaining three datasets, namely
U-SOC, R-SMUD, and V-SMUD. We decide to use pre-splitting protocol since the dataset
size is large. In Table 4.5, performance on image level in single sharing scenario is recorded

and presented.

Table 4.5: The accuracy (%) of all methodologies in identifying PSN origin in single sharing

scenario.
Method — Caldelli | Amerini
LR-HCF | SVM-HCF RF-HCF P-CNN | P-CNN-FF
Dataset | et al. et al.
U-SOC 100 100 100 99.31 99.24 92.74 100
R-SMUD 99.26 98.89 99.26 93.70 93.25 89.63 99.26
V-SMUD 100 100 100 90.20 98.69 100 100

Noticeably, LR-HCF, SVM-HCF, RF-HCF and P-CNN-FF achieve perfect performance
on U-SOC, while remaining methods are accurate, yet slightly inferior. The four outper-
forming methods share the same common characteristic; it is the utilization of MetaFea.
Since U-SOC originally consists of small-size images, the images then preserve their size
after uploaded. The distinctiveness of MetaFea therefore rely on other information rather
than image size. This is evident that aside from image size, other information extracted

from image metadata is extremely important in the identification of SN origin.

The above observation is again confirmed on R-SMUD and V-SMUD when LR-HCF,
SVM-HCF, RF-HCF and P-CNN-FF continue to outperform the remaining methods which
exploit only DCT coefficients.

As a summary, the tests in Section 4.5.4 and this Section highlight the feasibility
to a posteriori identify SN origin of images. Among different cues, MetaFea appears to
be very distinctive, but they have been overlooked by Caldelli et al. and Amerini et al..
Nevertheless, whenever the image is shared /uploaded more than once, the old metadata
is overwritten by the new one; thus in principle cannot be useful to identify the first SN
platform. In the next section, we analyze in-depth the multiple sharing scenario.
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4.5.6 Analysis on Multiple Sharing Scenarios

In double sharing scenario, we attempt to identify the chain of apps on which an image
has been circulated through, given zero knowledge about the number of sharing phases.
Therefore, in ISIMA dataset we might end up totally 12 categories (classes) in: {M, T,
WHIU{{ M, T, W } x { M, T, W }}. Similarly, on R-SMUD and V-SMUD we also end up
12 categories: {FB, FL, TW} U{{FB, FL, TW} x {FB, FL, TW}}. The only exception
happens to U-SOC where the second SN must be different from the first one. Therefore,
the double sharing scenario of U-SOC contains 9 categories only.

We again use pre-splitting protocol, and report performance in terms of accuracy in
Table 4.6.

Table 4.6: The accuracy (%) of all methodologies in identifying SN origin in double sharing

scenario.
Method — Caldelli | Amerini
LR-HCF | SVM-HCF RF-HCF P-CNN | P-CNN-FF
Dataset | et al. et al.
ISIMA 61.31 62.26 58.81 50.36 55.71 65.12 70.60
U-SOC 69.87 65.83 65.82 50.07 53.71 54.82 74.10
R-SMUD 52.22 52.13 59.35 39.91 45.18 43.24 65.91
V-SMUD 70.42 71.90 68.30 43.24 54.90 58.82 77.12

Without exploiting MetaFea, performance Caldelli et al. and Amerini et al. is modest
compared to rest on ISIMA. Exceptionally, P-CNN outperforms traditional classifiers even
when only DCT coefficients are used. On the remaining three datasets, we can observe
that traditional classifiers with HanCrFea can outperform CNN-based approaches, i.e.
Amerini et al. and P-CNN. What makes this is the utilization of MetaFea residing in
HanCrFea. In overall, P-CNN-FF achieves state-of-the-art accuracy in double sharing
scenario.

To illustrate the superiority of P-CNN-FF, we show the confusion matrices of P-CNN
and P-CNN-FF on V-SMUD. Undoubtedly, the diagonal of the confusion matrix in Figure
4.10 (b) is clearer than in Figure 4.10 (a). Zooming closer to Figure 4.10 (b), the mis-
classifications happen on cases where the last SNs are identical, e.g. TW and FB-TW,
TW and FL-TW, TW-TW and FB-TW, TW-TW and FL-TW. This phenomenon is un-
derstandable as the same SN platform employs a unique compression and resizing policy,
that results in similar peculiarities on the observed image.

We extend the tests to triple sharing scenario on R-SMUD and V-SMUD where images
might be shared up to three times, resulting 39 categories. Classical classifiers again
outperform CNN-based approaches, see Figure 4.7. Our judgement for this phenomenon is
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Figure 4.10: Confusion matrices on V-SMUD dataset in double sharing scenario for (a) P-CNN
and (b) P-CNN-FF.
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two folds: i) MetaFea is useful at least for identifying the last platform, ii) multiple JPEG
compressions make the DCT coefficients very sparse and thus CNN-based approaches
cannot learn their statistics just from small individual patches. On the other hand, by
combining PCnnFea and MetaFea, the best accuracy is achieved by P-CNN-FF.

Table 4.7: The accuracy (%) of all methodologies in identifying SN origin in triple sharing

scenario.
Method — Caldelli | Amerini
LR-HCF | SVM-HCF RF-HCF P-CNN | P-CNN-FF
Dataset | et al. et al.
R-SMUD 25.30 26.21 32.76 17.29 16.95 19.32 36.18
V-SMUD 39.57 40.32 40.12 23.68 16.41 27.10 49.12

4.6 Conclusions

We have two proposed methodologies for the identification of SN platforms, one based on
traditional classifiers with the use of hand-crafted features which are extracted from DCT
coefficients and metadata, and another one based on CNNs which can work directly on
DCT coefficients. It has been proved experimentally that the metadata-based features are
very discriminative, characterizing the JPEG compression of different SNs. Large-scale
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datasets are collected to evaluate our methodologies and extensive analyses have been
carried out considering: PSNs and IMAs, multiple sharing scenario (up to three times
sharing/uploading).

Remaining issues for future investigations include:

« Stability of DCT coefficients. Our analyses reveal the fact that it is harder and
harder to identify the chain of SNs when an image is circulated multiple times. In
fact, the best accuracy in triple sharing scenario is less than 50%. We deem that
DCT coefficients are getting stable after quantized many times.

o Complexity of compression and resizing policies. Different SN platforms
employ different policies for storing and transferring images. Unfortunately, such
polices are complex and non-stationary. We discover that policies investigated by
[55] are too simple. For instance, Facebook stores multiple instances of an image
on the server and depending on the device which requests, the appropriate instance

will be transferred.






Chapter 5

Source-Target Disambiguation in

Copy-Move Forgery

Image copy-move forgery is a process of geometrically transforming an indicated region
and applying some means of postprocessing within the same image. Fxisting algorithms
for copy-mowve detection are able to highlight such nearly duplicated regions but ambiguous
in distinguishing source and target.

In this chapter, we propose a four-stream DNN to disambiguate source and target region
in copy-move detection. Due to color interpolation and post-processing during copy-move
process, the transformation from source to target is irreversible. We show that such a
network is able to disambiguate source and target given the forward transformation of the

supposed source and the inverse transformation of the supposed target.
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Copy-move forgery is one of the most commonly used technique that violates the
authenticity of digital images. This operation composes of copying a source region and
pasting to a target region in such a way that it is imperceptible. The purpose of copy-move
forgery is mainly to conceal an evidence or to deceive viewers. Despite the fact that this is
an easy-to-perform operation, detecting it is non-trivial since copy-move forgery is often
followed by geometrical transformations such as rotation, resizing, and complex postpro-
cessing. Copy-move detection (hereon we imply the inclusion of localization) methods can
be coarsely classified into two categories [133]: i) block-based methods, and ii) keypoint-
based methods. Block-based methods split the image into rectangular blocks and extract
different kinds of features. On the other hand, keypoint-based methods aim to select
high-entropy regions only without splitting the image, and extract local information or
features. Both methods afterwards perform matching, and detecting duplicated regions
based on extracted features.

This study focuses on another problem after duplicated regions are detected; it is to
disambiguate source and target regions. The forensic scenario we considered is illustrated
in Figure 5.1. Given the forged image, an effective and efficient copy-move detection
method can be used to detect and localize duplicated regions, and after that the forensic
investigator is required to indicate source and target region.

Forged image —————— Copy-Move Detection —— Source-Target Disambiguation

Figure 5.1: Forensic scenario in source-target disambiguation. Left: forged image, middle:

duplicated regions, and right: annotation of source and target. Better viewed in color.

5.1 Problem statement

The source region P is defined on {P;}, where P; = (x{,y?) is a point on the 2D regular
grid. Analogously, the target region Q is defined on {Q;}, where Q; = (x!,y!). Copy-
move operation can be comprehensible as a geometrical transformation between P and
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Q. Using a transformation Ty(-) parameterized by six parameters, the transformation of
a point P; in source region results in Q; = (X!, §!) in target region:

st

X O1p 012 O3] (X]
st |

Vi| = (021 b2 O23| | Vi

0 0 1 1

T¢ can represent rotation, resizing, sheering, and translation. After transformation, 0,
may deviate from the regular grid points. The pixel value of the forged image I at regular
grid point Q; = (x!,y!), therefore, is interpolated from neighboring pixels of the source

region by:

(x}, vh) Zl L yk (x5 k(v 91) (5.1)

where k(-,-) is the kernel function drawmg spatial relationship of inputs. For instance, if
nearest neighbor interpolation is used, Eq. (5.1) becomes:

1P|
I, y) Z[ 3, y)0 ([ +05] —%1) 8 (|yt+0.5] —3%)

where 0(+) is the Dirac delta function. With bilinear interpolation, Eq. (5.1) becomes:

P
I(xtyh) = Y15, v max (0,1 — [x! — %!
j=1

) max (0,

-5 (5.2)

Although the transformation is one-to-one mapping, after interpolation |Q| # |P|
as new pixels are produced or duplicated pixels are discarded. Interpolations introduce
correlations among neighboring pixels in Q. After interpolation, pixel values in P and Q
are nearly duplicated. Various postprocessing might be applied globally on the image or
locally on the target region in order to hide traces of pasting.

The motivation of this work is based on two observations: i) in realistic copy-move
forgery, the composition of interpolation and postprocessing makes the entire copy-move
process non-invertible, ii) even if copy-move forgery is carried out carefully, subtle artifacts
like edge inconsistencies are inevitable. Given the forged image, if one mimics the copy-
move process starting from source, i.e. forward copy-move, it is possible to approximate
target because it is the correct direction. On the opposite, if one performs copy-move
process from target, i.e. backward copy-move, it can hardly approximate source due to
non-invertibility.
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Based on this reasoning, the disambiguation of source-target can be ideally carried out
under two hypotheses:

o« H;: P is source, and Q is target.
o Hy: Q is source, and P is target.

Let us denote Q the result of forward copy-move made from P, and P the result of
backward copy-move made from Q. Testing the aforementioned hypotheses requires a
measure of approximation which quantifies how much similar the two regions are. If o)
approximates Q better than P approximates P, we select H;. Otherwise, we select Hy.
Under the role of a forensic investigator, the complete set of parameters of the copy-
move process is unknown. Moreover, the investigator needs a proper metric to assess the
approximation of two regions, which is non-trivial for high-dimensional data.

In this work, we propose a solution to estimate parameters of the affine transformation
Ty, and leverage discriminative power of DNNs for such purpose.

Given complex forms of copy-move in practice, we need to draw a clear boundary
of our consideration. In particular, with two hypotheses we consider only single source
paired with single target (1-1) as illustrated in Figure 5.2 (a). The case n sources singly
paired with n targets in Figure 5.2 (b) can be solved practically as multiple (1-1) cases.
More complicated copy-move forgeries that require more than two hypotheses remain for

future consideration.

o—A
o—A
o——0

(a) single pairing, 1-1 (b) single pairing, n-n

Figure 5.2: Two forms of copy-move forgeries that can be disambiguated with two hypotheses.

5.2 Siamese Network Approach

We can assume that parameters of postprocessing of copy-move forgery are unknown.
Therefore, the simulated copy-move forgeries involve only geometrical transformation and
a pre-selected interpolation method, i.e. Q = Ty(P) and P = T, (Q), where T, '(:) is
the inverse transformation. We can verify if Q approximates well Q by means of a
Siamese network [134] which was originally proposed in 1990s for signature verification
and later successfully extended for other computer vision applications. Siamese network
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composes of two identical sub-networks, followed by a non-linear classifier that classifies
latent representations of two inputs.

For each of M training images, we can extract positive pair (yii) =1, xgi) = {Q(i), Q(i)}),
and a negative pair (y(()i) = 0,20 = {PW), 75(i)}>, where ygi) and y(()i) are positive and neg-
ative labels, and 1 < ¢ < M. The Siamese network returns logistic prediction p(i)

. J
pair xy) with j € [0, 1], indicating how probable the pair is correct. It is straightforward

on the

to train this network by minimizing binary cross-entropy between logistic predictions and
labels. For a test image with 2\ = {Q© 0©} and 2"’ = {P© PO} the hypothesis
is selected by the following rule:

Loit g > pp

0, otherwise.

h = (5.3)

The limitation of such a Siamese architecture is its incapability to jointly learn the depen-
dency of {Q®, QW} and {P® PO}, Instead, it treats positive and negative examples
independently, while {Q®, Q®} and {P®, P™} are indeed dependent, i.e. if one is neg-
ative, the other one must be positive.

We propose a 4-twin DNN (hereon called 4-Twin Net) as a solution. 4-Twin Net simulta-
neously receives two pairs as input and outputs conditional probabilities of two hypotheses.
Concretely, we train 4-Twin Net on large number of training examples (ygi), xgi), y(()i), xé“).
In the next section, we describe in detail the architecture of 4-Twin Net and its training

tactics.

5.3 4-Twin Network Approach

5.3.1 Architecture

Our proposed architecture for 4-Twin Net is represented in Figure 5.3. This network
composes of four identical stacks of convolutional layers, i.e. all of them share the same
weights, and two identical stacks of fully connected layers. The key role of stacked con-
volutional layers is to finally extract a 512-d feature vector from the 64 x 64 x 3 input
image. On the other hand, the feature vector of its counterpart image is extracted in the
similar way. To this end, we mention convolutional layers as a feature extractor.

Let us describe the flow of 4-Twin Net when (Q, Q,P, 75> are fed as inputs. The top
two branches extract features of Q, @ and combine them via a concatenation operator.
The combined feature vector is then passed through an MLP network whose output is
pre-normalized score z; (or logit). The bottom two branches, on the other hand, receive
P,P and similarly output z, in the end. Due to weight sharing, 4-Twin Net can be
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Figure 5.3: The proposed architecture of 4-Twin Net.

interpreted as two standard Siamese networks unless the probabilistic dependency of zq, 2o
are constructed by the softmax function:

e~

1€[0,1]

Di =

where p; has probabilistic interpretation and »Z;cp0qpi = 1.
Given M training examples {(yy), xgl), y(()l), x((f))}le[l M) we train 4-Twin Net by min-
1 )
imizing the empirical cross entropy of predictions and input labels written in terms of a
loss function L: .
1 , ,
L=-:3 >~y logp!.

j=1i€[0,1]

5.3.2 Motivating The Architecture of 4-Twin Net

The actual architecture of 4-Twin Net is sketched in Figure 5.3. Before coming up to this
architecture, we have empirically investigated some other alternatives.

Feature extractor. We have experimented with a simpler architecture of feature
extraction net which consists of 4 convolutional layers whose details are shown in Table
5.1. Each row represents details of each convolutional layer. This architecture involves
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a total of & 25000 parameters including biases. Our preliminary results discourage this
architecture since the network does not generalize on our synthetic examples.

Table 5.1: Simple architecture of feature extractor.

Layer ) Output Max
Input dim . Kernel .
name dim pooling

convl 64x64x3 | 32x32x8 | 5x5x8, stride 1 stride 2
conv?2 32x32x8 | 16x16x16 | 3 x 3 x 16, stride 1 stride 2
conv3 16x16x16 | 8 x 8 x 32 | 3 x 3 x 32, stride 1 stride 2
conv4 8X8%x32 | 4x4x64 | 3x3x064, stride 1 stride 2

The idea of choosing a deep architecture like 50-layer Residual Network (ResNet) [135]
is mainly to ensure that the 4-Twin Net has sufficient capacity, given rich training data.
Moreover, such a deep architecture have been successfully employed by [136] in a Siamese
network. Details of 50-layer ResNet in our implementation is listed in Table 5.1. It
includes totally 50 convolutional layers (conv*). [135] hypothesizes that if stacked non-
linear layers can approximate an underlying unknown function, they can also approximate
the residual function instead. Therefore, the output of every few layers are added back
by their input before passing to next layers. This principle eases the training of very
deep architectures. Here for example, the input of conv2 2 block is the summation of

the output and input of conv2_1 (after linearly projected to have size consistency).

Feature combination. Before passing through the MLP classifier, we need to decide
on how to fuse feature vectors output from convolutional layers. Popular choices can
be point-wise absolute difference [137], square Euclidean distance [117], or concatenation
[136]. Square Euclidean distance is not encouraged as previously mentioned in [138] that
the gradient would vanish once the distance approaches 0, creating a dangerous plateau in
landscape of the loss function. Absolute difference function on the other hand is unsmooth
(undefined derivative at 0). We choose to implement the concatenation of feature vectors
as done in [136]. Concatenation of features, however, breaks the symmetry of 4-Twin Net,
i.e. the order of inputs is sensitive. We will introduce a trick during training to mitigate
this effect.

MLP. We have tried to concatenate all feature vectors of four branches and come up
with one MLP classifier (instead of two). This option doubles the number of parameters
in MLP compared with the current use, and exhibits convergence instabilities during

training.
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Table 5.2: 50-layer ResNet architecture of feature extractor.

Layer name | Input dim | Output dim Kernel
convl 64 x64x3 | 32x32x64 7 X 7 x 64, stride 2
max_pool | 32x32x64 | 16 x 16 x 64 3 x 3 x 1, stride 2
[ 1x1x64
conv2_ X 16 x 16 x 64 | 16 x16x256 3 x3x64 x 3, stride 1
| 1 x1x256 |
[ 1x1x128 |
conv3d_x 16x16x256 | 8 x 8 x 512 3x3x128 | x4, stride 2
i 1x1x512 |
1x1x256 |
convd_ x 8 x 8 x 512 | 4x4x1024 3x3x256 | x6,stride 2
| 1 x1x 1024 |
[ 1x1x512 |
convb_ X 4x4x1024 | 2 x2x2048 3x3x512 | x3,stride 2
| 1 x1x2048 |
global _avg | 2x2x2024 | 1x1x2048 -
conv6_ x 1x1x2048 | 1 x1x512 1 x 1 x 512, stride 1

conv*_x refer to x blocks of convolutional layers. The number of blocks are appended in the

details of kernel. max_ pool is max pooling layer, and global avg is global averaging layer.

5.3.3 Training tactics

Training 4-Twin Net requires more particular attentions than training a standard CNN.
We present two training tactics which are critical to the success of 4-Twin Net.

Data feeding. Due to feature concatenation before classification, the order of Q and
Q, or of P and P is sensitive. However, switching between Q and Q as well as between P
and P should semantically remain the predictions unchanged. To maintain this property,
during training we randomly shuffle {Q, O} and {P, P} so that 4-Twin Net does not learn
the order. On the opposite, switching between {Q, Q} and {P,P} should invert the
labels because the target now is positioned as the source, i.e. [1,0] becomes [0,1]. With
this respect, we randomly interchange the role of {Q, Q} and {P, P} accompanied with
inverted labels.

Batch normalization (BN). A typical pipeline in machine learning applications of-
ten involves a feature normalization step which convert features into a fixed distribution,
avoiding feature domination and accelerating gradient-based optimizations. Similarly, in
our architecture BN [139] is useful for training the convolutional layers. BN normalizes
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layer inputs to zero-mean and unit-variance by accumulated means and standard devia-
tions of mini-batches. This procedure is straightforward only with standard CNNs, yet
it is not in 4-Twin Net since data flow through four branches. To avoid the accumulated
means and standard deviations being biased, we have to ensure within each mini-batch
that each of four branches are fed with both four categories, i.e. Q, Q,P, P by employing
the previously described data feeding. More importantly, we accumulate the statistics
on one branch only and broadcast to other branches as well in order to make feature
extraction part in four streams identical.

Patch cropping. DNNs fix data input size, thus each image region must be prepro-
cessed. We employ a simple strategy: create a bounding box of each region, only resize
if one dimension of the bounding box is smaller than 64, and perform centering cropping
to 64 x 64.

5.4 Transformation Estimation

Existing copy-move detection methods provide a (binary) tampering map highlighting
source-target regions, yet not all of them provide the estimation of geometrical trans-
formation. As our proposed method requires the transformation matrix, being able to
estimate it from the tampering map is essential. This ability is important since there is
no perfect detection method that works on every condition. Therefore, it is encouraging
to have a method that can be incorporated on top of any copy-move detection method.
Our goal is to estimate a homography matrix that is used to transform the region P to

1,
P wy

Wq

(a) (b)
Figure 5.4: Illustrations of rotation angle and resizing factor estimation.
Q given the binary tampering map. The estimation is done via three steps: i) estimate

rotation angle «, ii) estimate resizing factors f,, f,, and iii) estimate the translation ¢,, t,.

To estimate «, we find two principle directions of P and Q and differentiate their
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angles. As real objects are not perfectly circular, the covariance of x-coordinates and y-
coordinates therefore is non-zero. Inspired by the idea of Principle Component Analysis
(PCA) [140], for each region we attempt to find a direction on which the variance of
projected points is maximized. Such principle components are illustrated as w,, u, in
Figure 5.4 (a). Denote P the 2x N matrix whose i-th column P, represents 2D coordinates
of point ¢ within P (1 < i < N); and P = LYV, P, the mean of P. If we assume
ugup = 1, the variance of projected points in P is given by:

]ifz (uZPi — ugp) (UZ;B — u?ﬁ)T = uZSpup,

=1

_ \T
where S, = % Zf\il (P,- — P) (B - P) is the covariance matrix of ordinary points in P.
The principle component u, is found by:

— T T, _
up = argmax u’ Spu s.t. utu = 1.

It can be demonstrated that u, is the eigenvector corresponding to the largest eigenvalue

of S,. We find v, in a similar way. The angle o is computed as:

o=ttt {0

Afterwards, P is rotated by the angle «, obtaining P’. By finding the hy, x w, bounding

box of P" and the h, x w, bounding box of Q, as illustrated in Figure 5.4 (b), the resizing
factors are computed as: f, = z—z, fy = Z—Z Finally, the translation is merely the difference

of mean of P’ after resized by f,, fy and mean of Q.

5.5 Experimental Methodologies

5.5.1 Synthetic Dataset

Training 4-Twin Net requires large amount of data. [80] proposes USCISI, a synthetic
dataset of 100,000 images with annotated source-target, where 80,000 images can be
used for training. Nevertheless, training with only 80, 000 images is insufficient and prone
to overfitting to specific settings of that particular dataset. To this end, we develop a
large-scale synthetic dataset of 800,000 images with diverged settings, named as SYN.
The development of SYN involves four steps, as shown in Figure 5.5.

Background preparation. We first create a pool of images from RAISE 2k [111],
Dresden [3] and Vision [90] datasets. This set includes approximately 28, 000 images (both
raw and JPEG formats). For each host image we generate multiple forged instances by
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Background preparation Source selection Target creation Pair extraction

v

Figure 5.5: Four steps in synthetic dataset (SYN) creation.

working on random cropped portions whose crop size is 1024 x 1024. Images having
minimum dimension smaller than 1024 are skipped.

Source selection. The 1024 x 1024 image is split into four quadrants, the source is
generated from one of them. We generate random convex polygons whose vertices always
stay within bounding boxes of 256 x 256, 128 x 128,64 x 64 randomly positioned within
the selected quadrant. Pixels inside the convex polygon are selected as source.

Target creation. The target is created via an affine transformation of the source. We
consider rotation, resizing, resizing after rotation, and rotation after resizing. Rotation
angles are randomly picked in [2, 180], step 2, while horizontal and vertical resizing factors
are randomly picked in [0.5,2.0], step 0.01. We use bilinear interpolation as described in
Eq. (5.2). Translation is done at last to move the transform of source to one of three
remaining quadrants. To improve the forgery quality, we blur the boundary of the target
as follows: detecting edge from the target mask by using a highpass filter 5 x 5, performing
binary dilation for 5 iterations to emphasize the edge, and applying averaging filter whose
size is randomly selected from {3 x 3,5 x 5,7 x 7,9 x 9,11 x 11} on the edge. Finally,
we simulate various postprocessing globally on the forged image. FEach processing is
accompanied with a selection probability as detailed in Table 5.3. 50% of images are
unprocessed (probability 0.5), and another 50% are processed under different operations

and parameters.

Pair extraction. Given the forged image I with assumed source P and target Q,
the transformation Ty, we proceed to extract the transform of source O = To(P) and
the inverse transform of target P = 7, *(Q).  is known from the previous step. Since
4-Twin Net disallows arbitrary shapes of inputs, we decide the fit a rectangular bounding
box to every of four regions. Let denote the bounding box of Q as QY = {Qi’} The
pixel value at coordinates QU is set to the pixel value at T, *(Q?) which belongs to the
neighborhood of P. Clearly, if 7;_1(@-’) deviates from the regular grid, it is interpolated
from its neighborhood. The key difference of this step and the copy-move forgery before is
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Transform of source Source Inverse transform of target

Figure 5.6: Two 64 x 64 pairs extracted from the forged image.

that the values of pixels within QP, but outside Q are interpolated from the neighborhood
of source. The similar procedure applies to P. Finally, we resize each region such that
the minimum dimension is 64 and crop the remaining dimension to 64 as well. Examples
of four regions are presented in Figure 5.6. As our synthetic images satisfy the required
size of 4-Twin Net, no further preprocessing is needed for training and test.

Table 5.3: Postprocessing applied with selected probabilites.

Processing Matlab command | Prob.|
Identity - 0.5
fspecial(’gaussian’,3,.5) 0.017
fspecial(’gaussian’,3,1.) 0.017
Lowpass filter fspecial (’gaussian’,3,1.5) 0.017
fspecial(’gaussian’,3,2.) 0.017
fspecial(’average’,3) 0.017
Highpass filter fspecial(’unsharp’, .5) 0.017
wiener2(-, [3,3]) 0.05
Denoising filter
wiener2(-, [5,5]) 0.05
Noise adding imnoise(-,’gaussian’,0,.001) 0.1
) imadjust(-, stretchlim(x,2/100),[],.8) 0.033
Tonal adjustment
imadjust(-, stretchlim(x,6/100),[],.8) 0.033
Histogram
o histeq(-) 0.033
equalization

qfs = 55:5:100
JPEG 0.1
compression imwrite(-, -, ’Quality’,randi(length(qfs)))
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5.5.2 Settings

Evaluation metric. Given one forged image with single source-target, there are two
possible directions: source — target, or target — source. A prediction [1,0] accepts the
direction source — target, and at the same time rejects the direction target — source.
We simply use accuracy as the evaluation metric, which is the ratio between the number
of correct predictions to the number of images. If the forged regions are known (in terms
of binary mask), a correct prediction means the source and target are correctly marked.

Benchmarking datasets. We evaluate our model on four datasets with source-target

annotated:

« USCISI. Introduced by [80], this dataset consists of 80,000 training, 10,000 vali-
dation and 10,000 test images. All background images are taken from SUN2012
dataset [141] and Microsoft COCO [142] that provide object segmentation mask.
Objects are copied and moved by means of geometrical transformations.

o CASIA ! [143]. This is known as the largest public benchmarking dataset for image
forgery detection. A subset of 1313 copy-move forged images are manually selected
out of 5123 tampered ones by [80]. Afterwards, source and target regions are labeled

by differentiating the tampered and the pristine image.

o CoMoFoD [1]. This dataset consists of 200 base images that are forged without
postprocessing. Six kinds of postprocessing are afterwards performed globally on
200 base images. Each postprocessing comes with different parameters, ending up
25 categories of postprocessing (5,000 images totally). The source-target annotation

is done in a similar manner as with CASIA by [80].

o Grip [144]. This dataset includes 80 base images with rigid copy-move. Two ge-
ometrical transformations, i.e. rotation and resizing, and two postprocessing, i.e.
local noise addition, and global JPEG compression, are performed on top of base
images using the software in [133] to generate 41 categories (3280 images totally).
Source/target of all forged images are annotated by ourselves, considering the infor-
mation of top-left coordinates of source-target given by the software as clues.

Test models. Based on two available large-scale datasets, namely SYN and USCISI,

we create and evaluate two models:

o 4-Twin Net*. 800,000 images in SYN are randomly split into training and valida-
tion set with splitting ratio 9:1. We train 4-Twin Net for approximately 66 epochs
(375,000 iterations with batch size 128) using Adam optimizer. The learning rate is

"http:/ /forensics.idealtest.org/casiav2
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CASIA USCISI

CoMoFoD

Grip

Figure 5.7: Examples of forged images on four datasets. Red: target, green: source, blue:

background. All images are resized to 5:4 aspect ratio.

set to 107, and after 45 epochs the learning rate is divided by a factor of 2 every
10 epochs.

4-Twin Net**. 80,000 training images from USCISI and 150,000 images from SYN
are used for fine-tuning 4-Twin Net*. This dataset of 230, 000 images is also randomly
split into training and validation set with the splitting ratio 9:1. We fine-tune 4-Twin
Net* on this new dataset for 150,000 iterations starting from learning rate 5 x 107>
using Adam optimizer. The learning rate after 25,000 iterations is divided by a
factor of 2 every 25,000 iterations.

5.6 Experimental Results

In this section, we present experimental results under different scenarios:

o Source-target disambiguation given localization and transformation. We are inter-

ested in the discernibility of 4-Twin Net if the two regions (source and target) are
localized and the transformation matrix is given. To avoid any confusion here, we
note that the given transformation could be either from actual source to actual

target or vice versa.

Source-target disambiguation given localization. Under many circumstances, the ac-

tual transformation is unavailable. We estimate the transformation matrix from the
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given localization map by using the algorithm described in Section 5.4.

5.6.1 Source-target disambiguation given localization and transformation

The transformation matrix is given only by USCISI. We evaluate 4-Twin Net* and 4-Twin
Net** on 10,000 test images. As our consideration is single source and single target,
i.e. (1-1), we perform Connected Component (CC) analysis to automatically verify this
condition. Especially, binary erosion and deflation are performed on the given localization
mask to remove holes and dots before CC analysis. 1567 images are filtered out since they
do not obey (1-1) condition. Table 5.4 presents interesting results. Despite being trained
only with SYN where images are less visually plausible, 4-Twin Net* can discern source
and target in more realistic images from USCISI, with a high accuracy. Once being fine-
tuned jointly on USCISI and a subset of SYN, 4-Twin Net** reaches a nearly perfect
accuracy. These results are promising, proving the feasibility of our proposed method. In
the next section, we expand the test to more practical contexts.

Table 5.4: Accuracy (%) of 4-Twin Net* and 4-Twin Net** on USCISI. Both localization mask

and transformation matrix are given.

’ Dataset ‘ 4-Twin Net* ‘ 4-Twin Net** ‘
| USCISI (8433/10,000) | 9266 |  99.32 |

5.6.2 Source-target disambiguation given localization

In this scenario, the transformation is unavailable. We therefore estimate it from the
localization mask. We show in Figure 5.8 how the rotation angle is estimated. The top-
left and top-right present the input and its localization map of source and target regions.
The bottom-left shows the two principle components of two regions (the red line). By
rotating one of the region, we obtain two regions that are well aligned. The estimation of
resizing factors and translation distance afterwards become easier. By manually checking,
we observe that our algorithm is highly accurate. We do not validate the overall accuracy
of this algorithm due to the lack of an evaluation metric. We can compute the product
of ground-truth transformation matrix and inverse of our estimated matrix, and expect it
to be as close as identity matrix. Nevertheless, this approach may be misleading since we
do not know whether our estimate approximates the ground-truth transformation matrix
or its inverse. In the previous case, the estimated matrix is very accurate, see Table 5.5.

We first test this scenario in the three datasets, namely USCISI, CASIA and CoMoFoD.
Another dataset — Grip, is left out since its base images include only rigid copy-move
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Figure 5.8: The estimation of rotation angle.

Table 5.5: 50-layer ResNet architecture of feature extractor.

Ground-truth transformation matrix Estimate transformation matrix

129 0.062 —238.259 | [ 1203 0.064 —239.482 ]
~0.62 129  290.167 ~0.063 1.207  29.655
00 1 0 0 1|

forgeries, and without postprocessing. By giving a first look at USCISI, we can see that
the performance of 4-Twin Net maintain as good as when the transformation matrix is
given. This evidence confirms the robustness of our estimation. On two challenging
datasets CASIA and CoMoFoD, the number of images satisfying (1-1) condition is 818
and 135, respectively. The performance decreases, as we can see, yet still acceptable.
4-Twin Net** is less accurate than 4-Twin Net* due to the effect of fine-tuning. Our
conjecture about the cause of this phenomenon is the diversity difference of SYN and
USCISI. SYN includes more diverged rotation angles and rich postprocessing compared
to USCISI.

We also validate the discernibility of 4-Twin Net* and 4-Twin Net** under various at-
tacks. With this respect, CoMoFoD provides forged images with different postprocessing
including brightness change (BC), contrast adjustment (CA), image blurring (IB), JPEG
compression (JC), color reduction (CR), noise addition (NA). Each postprocessing comes
with different parameters, see Table 5.7 for more details. Figure 5.9 represents the per-
formance of 4-Twin Net* and 4-Twin Net** under different postprocessing. Among those,

image blurring and noise addition and JPEG compression with low quality factors have
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Table 5.6: Accuracy (%) of 4-Twin Net* and 4-Twin Net** on three datasets. Only the localiza-

tion mask is given.

’ Dataset ‘ 4-Twin Net* 4-Twin Net**
USCISI (8433,/10, 000) 92.93 99.44
CASIA (818/1313) 73.96 71.27
CoMoFoD (135,/200) 73.33 71.85

Table 5.7: Naming convention in CoMoFoD [1]. Increasing numbers in [-] of the first column

correspond to parameters in the second column.

’ Naming ‘ Parameters
JC[1-9] factor = [20,30,40,50,60,70,80,90,100]
NA[1-3] mean = 0, variance = [0.009, 0.005, 0.0005]
IBJ[1-3] averaging filter = [3 x 3,5 x 5,7 x 7]
BC[1-3] (lower bound, upper bound) = [(0.01,0.95), (0.01,0.9), (0.01,0.8)]
CR[1-3] intensity levels per each color channel = [32, 64, 128]
CAJ1-3] (lower bound, upper bound) = [(0.01,0.95), (0.01,0.9), (0.01,0.8)]

strong impact, significantly degrading the performance. We note that, the size of forged
regions in CoMoFod dataset is particularly small. In most the cases, images are subject
to upscaling with nearest neighbor interpolation before feeding to 4-Twin Net. We assume
that this technical issue also negatively affects to the performance.

Results on Grip dataset is shown in Figure 5.10. As aforementioned, Grip contains
80 base images that are not subject to rescaling, rotation or postprocessing. The only
remaining artifact is edge inconsistency. However, the input size of 4-Twin Net is 64 x64x 3,
which might be insufficient to capture artifacts at edges when the forged regions are
large. This limitation explains why 4-Twin Net loses its discernibility on global JPEG
compression, i.e. the source and target exhibit similar visual information. For local
noise adding, the accuracy levels off under 50%, which is a untypical behavior in binary
classification. Since 4-Twin Net* is trained mainly on SYN which involves only global noise
adding. Even if fine-tuned with USCISI, 4-Twin Net** is fooled with this type of attack.

On the remaining cases which leave interpolation artifacts, rotation and resizing, the
two models perform pretty well. No interpolation is performed with rotation angle 0, 90,
180 and resizing factor 1.0, thus we can observe some levels off.
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Figure 5.9: Accuracy of 4-Twin Net in CoMoFoD under different attacks. There are totally 200

images for each specific attacks.
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Figure 5.10: Accuracy of 4-Twin Net in Grip under different attacks.

top horizontal label.

5.7 Conclusions

Rotation (angle)

Resizing (factor)

There are totally 80

images for each specific attacks. The number of images satisfying (1-1) condition is shown as

Copy-move forgeries with careful blending make the source and target regions ambiguous.

Copy-move detection algorithms have been designed for detecting and localizing dupli-

cated regions but are not able to discern them. In this chapter, we introduce a four-stream
DNN called 4-Twin Net to disambiguate source and target regions. To train 4-Twin Net,
we develop an automatic data synthesizer which can generate large-scale datasets of di-

verged copy-move forgeries. We also propose a method to estimate the transformation

matrix between source and target in case it is not given by copy-move detection methods.
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Despite encouraging results, we are on the process to overcome the following issues:

e Input shape. Real copy-move forgeries are associated with highly non-convex
shapes, while typical DNNs only accept rectangules. Currently, we employ a simple
strategy: fitting a bounding box and central cropping to have shape consistency.
This technical detail impacts significantly to 4-Twin Net performance.

o« Complex forms of copy-move forgeries. We currently consider only single
source and single target which are non-overlapped. Real copy-move forgeries involve
more complex forms. In practice, a user might manually select two regions and use
4-Twin Net to disambiguate each pair of regions. To solve this issue automatically,
we might make use of keypoint-based methods to properly pair source and target

before estimating the transformation matrix.

o End-to-end implementation. To make 4-Twin Net an end-to-end system includ-
ing copy-move detection and source-target disambiguation, we might have to im-
plement a customized detection method which outputs two localized regions. By
incorporating with this feature, we can fairly compare to BusterNet, the only avail-

able end-to-end system for such purpose.






Chapter 6

Conclusion

This doctoral study introduced several methodologies towards uncovering digital image
provenance. In particular, we addressed practical concerns on digital image origin with
respect to source camera and social network platforms, and the disambiguation of source
and target in copy-move forgeries. Despite the fact that the proposed methods possess
some improved features, they are also prone to several limitations which have been high-
lighted in the end of every chapter.

Methodologies proposed for image clustering by source camera have been proved to
be accurate and scalable. However, performance cannot be guaranteed when the number
of cameras is much larger than the average number of images per camera, and images are
misaligned with respect to underlying pixel positions. One cause of the first matter is
due to random splitting which separates images belonging to the same camera to different
subsets, and strategic splitting might possibly mitigate this problem. On the other hand,
pixel misalignment is more challenging and it demands more investigations.

Regarding to the identification of social network origin, we have considered the multiple
sharing scenario where images might be shared /uploaded up to three times. Experimental
observations suggest that the number of JPEG compressions has significant impact to the
accuracy. Compressing an image many times results in the convergence of DCT coeffi-
cients, erasing discriminative traces. Furthermore, if the social network platform makes
change on compressing and resizing policies, it is important to make our methodologies
adapted to such changes.

Despite being on progress, our developed model for source-target disambiguation is
a promising research direction, and in the near future, we will spend efforts to address
complex forms of copy-move forgeries as well as to implement an end-to-end system of
copy-move detection with source-target discernibility.

In conclusion, image provenance analysis is fundamental in digital image forensics.

Its final target is to build a trustworthy profile of a digital image including information
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of image origin and manipulations. Proposed methodologies in the literature are mainly
associated with some assumptions and tested under limited conditions. By the advances
of technologies and deep learning, the massive amount of data, it is time to explore to
which extent the theoretical and practical aspects can be expanded to realistic cases.
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Chapter 7

Supplemental Materials

7.1 PRNU estimation

Given a grayscale image Y, its noise residual composes PRNU component modulated by

image content Y, and white Gaussian noise Z:

W =YK+ E. (7.1)
The white Gaussian noise at each pixel j is assumed to have variance o and be inde-
pendent with YK, i.e. E[j] ~ N(0,0?). Without loss of generality, the index j is omitted
for simplicity, and the following derivations are interpreted as pixel-wise operations. For
each of NV images taken by the same camera, Eq. (7.1) becomes:
W, =
~K="' 1<i<N.
Y; Y, -
The variance of white Gaussian noise from every image of the same camera is assumed to
be stationary, =t ~ N (0, Y2) Likelihood of ¥4 — K is:

Y,
W, Y, 7’(% 2)2
Pr[Z—K}: e 2/Y;
Y; 2o
Likelihood of observing Wll, ‘;V—;, ce ‘g—fvv giving K is:
(W ,K)Q
W, W, Wy A .
Pr[ , s ‘K}: e Y 7.2
Y, Y Yy g V2o (7.2)

Maximizing likelihood is cast to maximizing logarithm of likelihood (LLH). By taking
logarithm of Eq. (7.2):

LLH[‘;_V; ‘;VQ | ’K] Zm(}g) iw (7.3)

=1
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By taking the partial derivative of Eq. (7.3) and setting it as 0

w33 Y (K ()
0K —~ o%/Y? ’
we can then solve for K: N
— WZYZ
K==
=1 Y;
7.2 Derivation of V Update in Algorithm 1
At each iteration of CONSTRAINED__LASSO, V is updated by:
V= argmin f(V).
where
Ui
FV) = VI +{AZ=V) + J1Z ~ V%
= V, — i J
GVM " 8VU + Y g J n
-7+ 77sz ( ,;J) , Vi <0
undeﬁned, V=0
of
= 0th
v, en
Ay
Vij - Sl (Z” + J)
" n
Aij Ay oy
%+Zij+77 if Zl]—f—n < Z]
- {= oy Ay Ay
n +Zi+ n’ it Zy+ n >77
. Aij 5
0, lf ZZ] + e S Z

Solution V € R™"™ might violate two constraints in Equation (3.5). Denote C; the set of
all zero-diagonal and C, the set of non-negative matrices. Cy,Cy are convex. To impose the
two constraints on V, it is equivalent to find V(»? € C; N C, that minimizes f. This can
be obtained via von Neumann’s alternating projections [145]: first Euclidean projection
onto Cq, and second Euclidean projection onto Cs. Since V € R™ " is a minimizer of f,
V12 can be obtained by two successive projections:

VU = argmin||V — V||,
Vel
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VY = argmin||[ VY — V|2
Vecls

The two projections are implemented element-wise as in Equation (3.7) and Equation
(3.8), respectively.

7.3 JF-measure and ARI In The Presence of Outliers

In the presence of outliers (unclustered images), if they are considered as a normal cluster
(as the dataset has no outlier), we can compute F-measure and ARI canonically. Other-
wise, we can treat outliers differently in the computation of True Positive (T'P) and False
Positive (FP):

o TP: the number of image pairs from the same cluster which are assigned to the

same cluster, excluding outliers.

e FP: the number of image pairs from different clusters which are assigned to the

same cluster, excluding outliers.

The main reason for this modification is that outliers are not considered as a normal
cluster. On the other hand, TN and F'N should be computed canonically.

Denote U = {Ul, Us, ..., ULg} the ground-truth clusters, and V = {Vo,Vl, .. .,VLP}
the predicted clusters. Vj is a special cluster containing unclustered fingerprints (high-

lighted in red), if any. The contingency matrix of U,V has the form:

Ui Uy ... Up| c=X7"0¢;
VO Co1 C02 cee CoL, Co.
V1 C11 C12 . Cng C1.
VLp CLpl CLPQ N CLpLg CLp'
C.j = ZiL:pO Cij C.1 C.2 e C~Lg
where ¢;; is the number common images between V; and Uj;.
We can compute all basic measures as:
Ly Lg /. Ly /..
TP=%% (?), FP=Y (CQ) ~ TP,
i=0 j=1 i=0

Lp Lg s Lp /.
TP=Y%% (C;)’ FP=3 (‘;) ~TP,

i=1j=1

Lg ]
FN=Y (62'3> — TP, TN = (Z) _TP_FP—FN
j=1
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F-measure is computed based on precision (P) and recall (R), taking TP and FP
into account:
TP TP :
- R=—"" F P-C
TP+ FP TP+ FN P+C
Rand Index (RI) and ARI are computed as:

TP+ TN RI -~ E[R]]
— — 5 AR,I - 9
TP+TN + FP+ FN 1~ E[R]]

where E[RI] is the expected value of RI and is computed based on the expected value of
TP and TN.

E[TP] + E[TN]
TP+TN+FP+FN

- 565 ()/(%7)
o = (3)-%(5)-%(2)
5 ()26)/0)

The readers can refer to [146] for more details of ARI computation. ca on ma

E[RI| =

—_

[\



