
Doctoral School in Mathematics

Variational and convex approximations of 1-dimensional
optimal networks and hyperbolic obstacle problems

Mauro Bonafini
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Introduction

In this thesis we investigate variational problems involving 1-dimensional sets (e.g., curves,

networks) and variational inequalities related to obstacle-type dynamics from a twofold

prospective. On one side, we provide variational approximations and convex relax-

ations of the relevant energies and dynamics, moving mainly within the framework of

Γ-convergence and of convex analysis. On the other side, we thoroughly investigate the

numerical optimization of the corresponding approximating energies, both to recover op-

timal 1-dimensional structures and to accurately simulate the actual dynamics.

Variational approximations and convex relaxation to the Gilbert–Steiner problem.

The starting point of our research is the Steiner tree problem: given N distinct terminal

points P1, . . . , PN in the Euclidean space Rd, find the shortest connected graph joining

them. In a more abstract way, what we are looking for is a minimizer of

(STP) inf{H1(L), L connected, {P1, . . . , PN} ⊂ L}.

It is well known that an optimizer L for (STP) always exists, the solution being, in

general, not unique for symmetric configurations of the terminal points. Any optimizer

L turns out to be a tree, called Steiner Minimal Tree (SMT), and can be described as a

union of segments connecting the given points, possibly meeting at 120◦ in at most N −2

further branched points, called Steiner points.

From a computational point of view, finding an SMT is known to be an NP-hard

problem, even NP complete in certain cases: taking into account the upper bound on

the number of possible Steiner points, the real problem, and thus the source of the high

combinatorial complexity, is indeed to sort out the topology of an optimal graph. Many

different approaches have been proposed to tackle the problem from a discrete point of

view, both looking for exact algorithms in dimension 2 and 3 [110, 54] and providing

more general PTAS approximation schemes [13, 14]. These algorithms are, up to date,

the most efficient way to compute exact or approximated solutions to (STP), and it is

not our purpose to battle in efficiency with them. Instead, we would like to look at

the problem from the point of view of the Calculus of Variations, in order to provide a

more robust variational approach to (STP) and, more generally, to problems involving

1-dimensional sets.

The prototypical problem we look at is the single sink Gilbert–Steiner problem, which

fits within the realm of α-irrigation problems. Given again N distinct points P1, . . . , PN
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in Rd, we look for the optimal way to transport N−1 unit masses located at P1, . . . , PN−1

to PN . Such a transportation is realized through a graph L = ∪N−1
i=1 λi, where each λi is a

simple rectifiable curve that connects Pi to PN and represents the path of the ith mass.

Taking into account scaling effects, i.e., the more we transport the less we pay per unit

mass, we fix 0 ≤ α ≤ 1 and look for an optimizer of

(Iα) inf

{∫
L
|θ(x)|αdH1(x), θ(x) =

N−1∑
i=1

1λi(x)

}
.

The fact that θ(x) 7→ |θ(x)|α is a sublinear concave function of the transported mass

density θ enforces aggregation of masses and the emergence of branching structures [21].

We notice that (I1) corresponds to the Monge optimal transport problem, while (I0)

corresponds to (STP). As for (STP) a solution to (Iα) is known to exist and any optimal

network turns out to be a tree.

In the recent years, as we outline in 1.1, many variational approaches for (Iα) have

been proposed. Among them, the stepping stone of this thesis is the interpretation

of (Iα) as a mass minimization problem in a cobordism class of integral currents with

multiplicities in a suitable normed group as studied by Marchese and Massaccesi in [70,

69]. The underlying idea is to switch our focus from a problem involving families of N−1

curves {λ1, . . . , λN−1} each one connecting Pi to PN , to a problem involving families of

integral rectifiable 1-currents Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rd)]N−1 where each component

has boundary ∂Λi = δPN − δPi . Within such a framework, given a norm Ψ on RN−1, we

introduce the Ψ-mass of Λ ∈ [I1(Rd)]N−1 as

||Λ||Ψ := sup
ω∈C∞c (Rd;Rd)

h∈C∞c (Rd;RN−1)

{
N−1∑
i=1

Λi(hiω), |ω(x)| ≤ 1, Ψ∗(h(x)) ≤ 1

}

where Ψ∗ is the dual norm to Ψ with respect to the scalar product on RN−1. When one

chooses Ψ = Ψα as the `1/α-norm, it can be shown that (Iα) is equivalent to

(Icα) inf{||Λ||Ψα : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rd)]N−1, ∂Λi = δPN − δPi}.

The equivalence, as we are going to discuss in the forthcoming chapters, is meant in the

sense that any minimizer L of (Iα) describes a minimizer ΛL of (Icα) with the same energy

and, vice versa, the support of any minimizer of (Icα) describes a minimal graph for (Iα).

Moving from this equivalence, the first three chapters of this thesis focus on Ψ-mass

minimization problems among suitably defined families of integral rectifiable 1-currents

(or, equivalently, rectifiable vector valued measures), where Ψ is chosen in order to re-

produce the desired behaviour of the optimal structures we are looking for. As our main

results we provide a variational approximation of Ψ-mass minimization problems in Rd
for any dimension d ≥ 2 and we introduce a suitable notion of convex relaxation for (Iα)

which can be extended to treat the surface Gilbert–Steiner problem (i.e., when our ambi-

ent space is assumed to be a manifold). In particular, the choice of a suitable “optimal”

ii



restriction of (Icα) will be essential for the derivation of a sharp relaxed energy. The first

three chapters are organized as follows.

Variational approximation in the planar case. In Chapter 1 we mainly focus on the

planar case R2, where a Ψ-mass minimization problem can be further recast in terms of an

optimal partition type problem involving integer valued vector functions. We provide a

variational approximation of the arising limiting functional by means of Modica–Mortola

type energies, and we prove that minimizers of regularized functionals identify, in the

limit, a (local) minimizer of (Iα). We therefore address the numerical optimization of

these regularized energies and provide examples for various α and different configurations

of the endpoints. The content of Chapter 1 represents a joint work with G. Orlandi

and É. Oudet, published in “SIAM Journal on Mathematical Analysis” [25]. The same

results were previously announced in “Geometric Flows” [22] and in “Rendiconti Lincei

- Matematica e Applicazioni” [24].

Variational approximation in arbitrary dimension. In Chapter 2 we switch our focus

on the higher dimensional scenario, and provide a variational approximation of Ψ-mass

energies by means of Ginzburg–Landau type functionals. The results build upon the work

presented in [5, 6] and use as main technical tool the relationship between boundaries and

Jacobians of vector valued Sobolev maps. The content of Chapter 2 represents a joint

work with G. Orlandi and É. Oudet, currently submitted for publication [26].

Convex relaxation. One of the main issues in the direct numerical optimization of

Ψα-mass problems in the form of (Icα) resides in the non convexity of the set of candidate

minimizers, which are generally only rectifiable objects with integer multiplicities. In Sec-

tion 1.4, to overcome this issue, we investigate possible convex relaxations of the problem,

much in the spirit of [43]. We look at convex extensions of the energy on a wider class of

objects, so as to include in the picture also diffused objects with real valued multiplicities.

The sharpest of these relaxations is the main subject of Chapter 3, where we present an

extensive numerical investigation of it both in two and three space dimensions. Further-

more, we propose to extend this convex framework to more general α-irrigation problems

(with multiple sources/sinks) and to use the same approach to address Gilbert–Steiner

problems on manifolds. The main advantage of the proposed framework relies in the

possibility to introduce a corresponding notion of calibration, giving us an analytical tool

to prove that minimizers of the relaxed functional are convex combinations of minimizers

of (Iα). However, as discussed in Chapter 3, there exist configurations of the endpoints

for which the relaxation fails to recover convex combinations of minimal graphs, proving

in turn that for these configurations optima of (Iα) cannot be calibrated. The content

of Chapter 3 represents a joint work with É. Oudet, currently submitted for publication

[27] and partly announced in [22].

Hyperbolic obstacle problems.

Obstacle type problems are nowadays a very active field of research in the Calculus of

Variations community. Loosely speaking, obstacle problems arise whenever we solve a

partial differential equation or optimize an energy functional and we require at the same
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time that the solution must lie above a given “obstacle” g. In case of an evolutive equation,

one can think of the obstacle g as a physical obstruction to the movement. Consider, for

example, the dynamic of a string having fixed extrema and oscillating above a table: as

soon as the string reaches the table we have to take into account the collision, and such

an interaction cannot be described by a classical PDE, but it is rather described by a

variational inequality [107, 55].

Obstacle problems for the minimizers of classical energies and regularity of the arising

free boundary have been extensively studied in the literature, together with the corre-

sponding evolutive equations in a parabolic context (cf. Section 4.1). What seems to be

missing in the picture is the hyperbolic scenario which, despite being in some cases as

natural as the previous ones, has received little attention so far. In Chapter 4 we study

the obstacle problem for the fractional wave equation

utt + (−∆)su = 0

where (−∆)s is the fractional Laplace operator of exponent s, with s > 0. For suitable

initial data at time t = 0, we study the problem assuming homogeneous Dirichlet bound-

ary conditions and under the additional constraint u ≥ g for a given profile g. The idea is

to apply a convex minimization approach based on a semi-discrete approximation scheme:

at each time step the subsequent approximation in time is obtained as the unique opti-

mizer of a suitably defined convex energy depending on previous steps. Such an approach

has been extensively exploited in the literature to address parabolic and hyperbolic evo-

lution problems, and fits within the general framework of minimizing movements. As

main result we prove existence of a suitably defined weak solution, together with the

corresponding energy estimates. The approximating scheme allows to perform numerical

simulations which give quite precise evidence of dynamical effects. In particular, based

on our numerical experiments, we conjecture that this method is able to select, in cases of

non uniqueness, the most dissipative solution, that is to say the one losing the maximum

amount of energy at contact times. The content of Chapter 4 represents a joint work

with M. Novaga and G. Orlandi, currently submitted for publication [23].

Summary of research outcome.

The thesis work led to the following publications and preprints, some of which constitute

the content of this manuscript.
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Chapter 1

Variational approximation of
functionals defined on
1-dimensional connected sets: the
planar case

In this chapter we consider variational problems involving 1-dimensional connected sets in

the Euclidean plane, such as the classical Steiner tree problem and the irrigation (Gilbert–

Steiner) problem. We relate them to optimal partition problems and provide a variational

approximation through Modica–Mortola type energies proving a Γ-convergence result.

We also introduce a suitable convex relaxation and develop the corresponding numerical

implementations. The proposed methods are quite general and the results we obtain can

be extended to n-dimensional Euclidean space as shown in the next chapter.

1.1 Introduction

Connected 1-dimensional structures play a crucial role in very different areas like discrete

geometry (graphs, networks, spanning and Steiner trees), structural mechanics (crack

formation and propagation), inverse problems (defects identification, contour segmenta-

tion), etc. The modeling of these structures is a key problem both from the theoretical

and the numerical point of view. Most of the difficulties encountered in studying such

1-dimensional objects are related to the fact that they are not canonically associated

to standard mathematical quantities. In this article we plan to bridge the gap between

the well-established methods of multiphase modeling and the world of one dimensional

connected sets or networks. Whereas we strongly believe that our approach may lead

to new points of view in quite different contexts, we restrict here our exposition to the

study of two standard problems in the Calculus of Variations which are respectively the

classical Steiner tree problem and the Gilbert–Steiner problem (also called the irrigation

problem).
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The Steiner Tree Problem (STP) [58] can be described as follows: given N points

P1, . . . , PN in a metric space X (e.g., X a graph, with Pi assigned vertices) find a con-

nected graph F ⊂ X containing the points Pi and having minimal length. Such an

optimal graph F turns out to be a tree and is thus called a Steiner Minimal Tree (SMT).

In case X = Rd, d ≥ 2 endowed with the Euclidean `2 metric, one refers often to the

Euclidean or geometric STP, while for X = Rd endowed with the `1 (Manhattan) distance

or for X contained in a fixed grid G ⊂ Rd one refers to the rectilinear STP. Here we will

adopt the general metric space formulation of [86]: given a metric space X, and given a

compact (possibly infinite) set of terminal points A ⊂ X , find

(STP) inf{H1(S), S connected, S ⊃ A},

where H1 indicates the 1-dimensional Hausdorff measure on X. Existence of solutions for

(STP) relies on Golab’s compactness theorem for compact connected sets, and it holds

true also in generalized cases (e.g., infH1(S), S ∪A connected).

The Gilbert–Steiner problem, or α-irrigation problem [21, 112] consists of finding a

network S along which to flow unit masses located at the sources P1, . . . , PN−1 to the

target point PN . Such a network S can be viewed as S = ∪N−1
i=1 γi, with γi a path

connecting Pi to PN , corresponding to the trajectory of the unit mass located at Pi. To

favour branching, one is led to consider a cost to be minimized by S which is a sublinear

(concave) function of the mass density θ(x) =
∑N−1

i=1 1γi(x): i.e., for 0 ≤ α ≤ 1, find

(Iα) inf

∫
S
|θ(x)|αdH1(x).

Notice that (I1) corresponds to the Monge optimal transport problem, while (I0) cor-

responds to (STP). As for (STP) a solution to (Iα) is known to exist and the optimal

network S turns out to be a tree [21].

Problems like (STP) or (Iα) are relevant for the design of optimal transport channels

or networks connecting given endpoints, for example, the optimal design of net routing

in VLSI circuits in the case d = 2, 3. The Steiner Tree Problem has been widely studied

from the theoretical and numerical point of view in order to efficiently devise constructive

solutions, mainly through combinatoric optimization techniques. Finding a Steiner Min-

imal Tree is known to be a NP hard problem (and even NP complete in certain cases),

see, for instance, [13, 14] for a comprehensive survey on PTAS algorithms for (STP).

The situation in the Euclidean case for (STP) is theoretically well understood: given

N points Pi ∈ Rd a SMT connecting them always exists, the solution being in general

not unique (think, for instance, to symmetric configurations of the endpoints Pi). The

SMT is a union of segments connecting the endpoints, possibly meeting at 120◦ in at

most N − 2 further branch points, called Steiner points.

Nonetheless, the quest of computationally tractable approximating schemes for (STP)

and for (Iα) has recently attracted a lot of attention in the Calculus of Variations commu-

nity. In particular, (Iα) has been studied in the framework of optimal branched transport

theory [21, 35], while (STP) has been interpreted as, respectively, a size minimization
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problem for 1-dimensional connected sets [77, 49], or even a Plateau problem in a suit-

able class of vector distributions endowed with some algebraic structure [77, 70], to be

solved by finding suitable calibrations [74]. Several authors have proposed different ap-

proximations of those problems, whose validity is essentially limited to the planar case,

mainly using a phase field based approach together with some coercive regularization,

see, e.g., [30, 44, 82, 29].

Our aim is to propose a variational approximation for (STP) and for the Gilbert–

Steiner irrigation problem (in the equivalent formulations of [112, 69]) in the Euclidean

case X = Rd, d ≥ 2. In this chapter we focus on the planar case d = 2 and prove a

Γ-convergence result (see Theorem 1.3.12 and Proposition 1.3.11) by considering integral

functionals of Modica–Mortola type [76]. In Chapter 2 we rigorously prove that certain

integral functionals of Ginzburg-Landau type (see [6]) yield a variational approximation

for (STP) and (Iα) valid in any dimension d ≥ 3. This approach is related to the

interpretation of (STP) and (Iα) as a mass minimization problem in a cobordism class of

integral currents with multiplicities in a suitable normed group as studied by Marchese

and Massaccesi in [70, 69] (see also [77] for the planar case). Our method is quite general

and may be easily adapted to a variety of situations (e.g., in manifolds or more general

metric space ambients, with densities or anisotropic norms, etc.).

The plan of the chapter is as follows: in Section 1.2 we reformulate (STP) and (Iα) as

a suitable modification of the optimal partition problem in the planar case. In Section 1.3,

we state and prove our main Γ-convergence results, respectively Proposition 1.3.11 and

Theorem 1.3.12. Inspired by [43], we introduce in Section 1.4 a convex relaxation of the

corresponding energies. In Section 1.5 we present our approximating scheme for (STP)

and for the Gilbert-Steiner problem and illustrate its flexibility in different situations,

showing how our convex formulation is able to recover multiple solutions whereas Γ-

relaxation detects any locally minimizing configuration.

1.2 Steiner problem for Euclidean graphs and optimal par-

titions

In this section we describe some optimization problems on Euclidean graphs with fixed

endpoints set A, like (STP) or irrigation-type problems, following the approach of [70, 69],

and we rephrase them as optimal partition-type problems in the planar case R2.

1.2.1 Rank one tensor valued measures and acyclic graphs

For M > 0, we consider Radon measures Λ on Rd with values in the space of matrices

Rd×M . For each i = 1, . . . ,M we define as Λi the vector measure representing the ith

column of Λ, so that we can write Λ = (Λ1, . . . ,ΛM ). The total variation measures |Λi|
are defined as usual with respect to the Euclidean structure on Rd, while we set µΛ =∑M

i=1 |Λi|. Thanks to the Radon–Nikodym theorem we can find a matrix-valued density

function p(x) = (p1(x), . . . , pM (x)), with entries pki ∈ L1(Rd, µΛ) for all k = 1, . . . , d
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and i = 1, . . . ,M , such that Λ = p(x)µΛ and
∑M

i=1 |pi(x)| = 1 for µΛ-a.e x ∈ Rd (where

on vectors of Rd | · | denotes the Euclidean norm). Whenever p is a rank one matrix

µΛ-almost everywhere we say that Λ is a rank one tensor valued measure and we write it

as Λ = τ⊗g ·µΛ for a µΛ-measurable unit vector field τ in Rd and g : Rd → RM satisfying∑M
i=1 |gi| = 1.

Given Λ ∈M(Rd,Rd×M ) and a function ϕ ∈ C∞c (Rd;Rd×M ), with ϕ = (ϕ1, . . . , ϕM ),

we have

〈Λ, ϕ〉 =

M∑
i=1

〈Λi, ϕi〉 =

M∑
i=1

∫
Rd
ϕi dΛi,

and fixing a norm Ψ on RM , one may define the Ψ-mass measure of Λ as

|Λ|Ψ(B) := sup
ω∈C∞c (B;Rd)

h∈C∞c (B;RM )

{〈Λ, ω ⊗ h〉 , |ω(x)| ≤ 1 , Ψ∗(h(x)) ≤ 1} , (1.2.1)

for B ⊂ Rd open, where Ψ∗ is the dual norm to Ψ w.r.t. the scalar product on RM , i.e.,

Ψ∗(y) = sup
x∈RM

〈y, x〉 −Ψ(x).

Denote ||Λ||Ψ = |Λ|Ψ(Rd) the Ψ-mass norm of Λ. In particular, one can see that µΛ

coincides with the measure |Λ|`1 , which from now on will be denoted as |Λ|1, and any

rank one measure Λ may be written as Λ = τ⊗g · |Λ|1 so that |Λ|Ψ = Ψ(g)|Λ|1. Along the

lines of [70] we will rephrase the Steiner and Gilbert–Steiner problem as the optimization

of a suitable Ψ-mass norm over a given class of rank one tensor valued measures.

Let A = {P1, . . . , PN} ⊂ Rd, d ≥ 2, be a given set of N distinct points, with N > 2.

We define the class G(A) as the set of acyclic graphs L connecting the endpoints set A

such that L can be described as the union L = ∪N−1
i=1 λi, where λi are simple rectifiable

curves with finite length having Pi as initial point and PN as final point, oriented by

H1-measurable unit vector fields τi satisfying τi(x) = τj(x) for H1-a.e. x ∈ λi ∩ λj (i.e.,

the orientation of λi is coherent with that of λj on their intersection).

For L ∈ G(A), if we identify the curves λi with the vector measures Λi = τi · H1 λi,

all the information concerning this acyclic graph L is encoded in the rank one tensor

valued measure Λ = τ ⊗ g ·H1 L, where the H1-measurable vector field τ ∈ Rd carrying

the orientation of the graph L satisfies spt τ = L, |τ | = 1, τ = τi H1-a.e. on λi, and

the H1-measurable vector map g : Rd → RN−1 has components gi satisfying gi · H1 L =

H1 λi = |Λi|, with |Λi| the total variation measure of the vector measure Λi = τ ·H1 λi.

Observe that gi ∈ {0, 1} a.e. for any 1 ≤ i ≤ N − 1 and, moreover, that each Λi verifies

the property

div Λi = δPi − δPN . (1.2.2)

Definition 1.2.1. Given any graph L ∈ G(A), we call the above constructed ΛL ≡ Λ =

τ ⊗ g · H1 L the canonical rank one tensor valued measure representation of the acyclic

graph L.
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To any compact connected set K ⊃ A with H1(K) < +∞, i.e., to any candidate

minimizer for (STP), we may associate in a canonical way an acyclic graph L ∈ G(A)

connecting {P1, . . . , PN} such that H1(L) ≤ H1(K) (see, e.g., Lemma 2.1 in [70]). Given

such a graph L ∈ G(A) canonically represented by the tensor valued measure Λ, the

measure H1 L corresponds to the smallest positive measure dominating H1 λi for 1 ≤
i ≤ N − 1. It is thus given by H1 L = supiH1 λi = supi |Λi|, the supremum of the

total variation measures |Λi|. We recall that, for any nonnegative ψ ∈ C0
c (Rd), we have

∫
Rd
ψ d

(
sup
i
|Λi|
)

= sup

{
N−1∑
i=1

∫
Rd
ϕi d|Λi| , ϕi ∈ C0

c (Rd),
N−1∑
i=1

ϕi(x) ≤ ψ(x)

}
.

Remark 1.2.2 (graphs as G-currents). In [70], the rank one tensor measure Λ = τ ⊗ g ·
H1 L identifying a graph in Rd is defined as a current with coefficients in the group

ZN−1 ⊂ RN−1. For ω ∈ D1(Rd) a smooth compactly supported differential 1-form and

~ϕ = (ϕ1, ..., ϕN−1) ∈ [D(Rd)]N−1 a smooth test (vector) function, one sets

〈Λ, ω ⊗ ~ϕ〉 :=

∫
Rd
〈ω ⊗ ~ϕ, τ ⊗ g〉 dH1 L =

N−1∑
i=1

∫
Rd
〈ω, τ〉ϕigi dH1 L

=
N−1∑
i=1

∫
Rd
〈ω, τ〉ϕi d|Λi| .

Moreover, fixing a norm Ψ on RN−1, one may define the Ψ-mass of the current Λ as it is

done in (1.2.1). In [70] the authors show that classical integral currents, i.e., G = Z, are

not suited to describe (STP) as a mass minimization problem: for example, minimizers

are not ensured to have connected support.

1.2.2 Irrigation-type functionals

In this section we consider functionals defined on acyclic graphs connecting a fixed set

A = {P1, . . . , PN} ⊂ Rd, d ≥ 2, by using their canonical representation as rank one tensor

valued measures, in order to identify the graph with an irrigation plan from the point

sources {P1, . . . , PN−1} to the target point PN . We focus here on suitable energies in order

to describe the irrigation problem and the Steiner tree problem in a common framework

as in [70, 69]. We observe, moreover, that the irrigation problem with one point source

(Iα) introduced by Xia [112], in the equivalent formulation of [69], approximates the

Steiner tree problem as α→ 0 in the sense of Γ-convergence (see Proposition 1.2.4).

Consider on RN−1 the norms Ψα = | · |`1/α (for 0 < α ≤ 1) and Ψ0 = | · |`∞ . Let

Λ = τ ⊗ g · H1 L be the canonical representation of an acyclic graph L ∈ G(A), so that

we have |τ | = 1, gi ∈ {0, 1} for 1 ≤ i ≤ N − 1 and hence |g|∞ = 1 H1-a.e. on L. Let us

define for such Λ and any α ∈ [0, 1] the functional

Fα(Λ) := ||Λ||Ψα = |Λ|Ψα(Rd).
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Observe that, by (1.2.1),

F0(Λ) =

∫
Rd
|τ ||g|∞ dH1 L = H1(L)

and

Fα(Λ) =

∫
Rd
|τ ||g|1/α dH1 L =

∫
L
|θ|αdH1 , (1.2.3)

where θ(x) =
∑

i gi(x)1/α =
∑

i gi(x) ∈ Z, and 0 ≤ θ(x) ≤ N −1. We thus recognize that

minimizing the functional Fα among graphs L connecting P1, . . . , PN−1 to PN solves the

irrigation problem (Iα) with unit mass sources P1, . . . , PN−1 and target PN (see [69]),

while minimizing F0 among graphs L with endpoints set {P1, . . . , PN} solves (STP) in

Rd.
Since both Fα and F0 are mass-type functionals, minimizers do exist in the class of

rank one tensor valued measures. The fact that the minimization problem within the

class of canonical tensor valued measures representing acyclic graphs has a solution in

that class is a consequence of compactness properties of Lipschitz maps (more generally by

compactness theorem for G-currents [70]; in R2 it follows alternatively by the compactness

theorem in the SBV class [12]). Actually, existence of minimizers in the canonically

oriented graph class in R2 can be deduced as a byproduct of our convergence result (see

Proposition 1.3.11 and Theorem 1.3.12) and in Rd, for d > 2, by the parallel Γ-convergence

analysis of Chapter 2.

Remark 1.2.3. A minimizer of F0 (resp., Fα) among tensor valued measures Λ repre-

senting admissible graphs corresponds necessarily to the canonical representation of a

minimal graph, i.e., gi ∈ {0, 1} ∀ 1 ≤ i ≤ N − 1. Indeed since gi ∈ Z, if gi 6= 0, we have

|gi| ≥ 1, hence gi ∈ {−1, 0, 1} for minimizers. Moreover, if gi = −gj on a connected arc in

λi∩λj , with λi going from Pi to PN and λj going from Pj to PN , this implies that λi∪λj
contains a cycle and Λ cannot be a minimizer. Hence, up to reversing the orientation of

the graph, gi ∈ {0, 1} for all 1 ≤ i ≤ N − 1.

We conclude this section by observing in the following proposition that the Steiner

tree problem can be seen as the limit of irrigation problems.

Proposition 1.2.4. The functional F0 is the Γ-limit, as α → 0, of the functionals Fα
with respect to the convergence of measures.

Proof. Let Λ = τ⊗g·H1 L be the canonical representation of an acyclic graph L ∈ G(A),

so that |τ | = 1 and gi ∈ {0, 1} for all i = 1, . . . , N − 1. The functionals Fα(Λ) =∫
Rd |g|1/αdH

1 L generates a monotonic decreasing sequence as α→ 0, because |g|p ≤ |g|q
for any 1 ≤ q < p ≤ +∞, and, moreover, Fα(Λ) → F0(Λ) because |g|q → |g|∞ as

q → +∞. Then, by elementary properties of Γ-convergence (see, for instance, Remark

1.40 of [33]) we have Fα Γ−→ F0 .

�
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1.2.3 Acyclic graphs and partitions of R2

This section is dedicated to the two-dimensional case. The aim is to provide an equiv-

alent formulation of (STP) and (Iα) in term of an optimal partition type problem. The

equivalence of (STP) with an optimal partition problem has been already studied in the

case P1, . . . , PN lie on the boundary of a convex set, see, for instance, [10, 11] and Remark

1.2.10.

To begin we state a result saying that two acyclic graphs having the same endpoints set

give rise to a partition of R2, in the sense that their oriented difference corresponds to the

orthogonal distributional gradient of a piecewise integer valued function having bounded

total variation, which in turn determines the partition (see [12]). This is actually an

instance of the constancy theorem for currents or the Poincaré’s lemma for distributions

(see [56]).

Lemma 1.2.5. Let {P,R} ⊂ R2 and let λ, γ be simple rectifiable curves from P to R

oriented by H1-measurable unit vector fields τ ′, τ ′′. Define as above Λ = τ ′ · H1 λ and

Γ = τ ′′ · H1 γ.

Then there exists a function u ∈ SBV (R2;Z) such that, denoting Du and Du⊥ re-

spectively the measures representing the gradient and the orthogonal gradient of u, we

have Du⊥ = Γ− Λ.

Proof. Consider simple oriented polygonal curves λk and γk connecting P to R such that

the Hausdorff distance to, respectively, λ and γ is less than 1
k and the length of λk (resp.,

γk) converges to the length of λ (resp., γ). We can also assume without loss of generality

that λk and γk intersect only transversally in a finite number of points mk ≥ 2. Let

τ ′k, τ
′′
k be the H1-measurable unit vector fields orienting λk, γk and define the measures

Λk = τ ′k · H1 λk and Γk = τ ′′k · H1 γk.

For a given k ∈ N consider the closed polyhedral curve σk = λk ∪ γk oriented by

τk = τ ′k − τ ′′k (i.e., we reverse the orientation of γk). For every x ∈ R2 \ σk let us consider

the index of x with respect to σk (or winding number) and denote it as

uk(x) = Indσk(x) =
1

2πi

∮
σk

dz

z − x
.

By Theorem 10.10 in [95], the function uk is integer valued and constant in each connected

component of R2 \ σk and vanishes in the unbounded one. Furthermore, for a.e. x ∈ σk
we have

lim
ε→0+

uk(x+ ετk(x)⊥)− lim
ε→0−

uk(x+ ετk(x)⊥) = 1,

i.e., uk has a jump of +1 whenever crossing σk from “right” to “left” (cf [91], Lemma

3.3.2). This means that

Du⊥k = −τk · H1 σk = Γk − Λk.

Thus, |Duk|(R2) = H1(σk) and ‖uk‖L1(R2) ≤ C|Duk|(R2) by Poincaré’s inequality in BV .

Hence uk ∈ SBV (R2;Z) is an equibounded sequence in norm, and by Rellich compact-

ness theorem there exists a subsequence still denoted uk converging in L1(R2) to a u ∈
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SBV (R2;Z). Taking into account that we have Du⊥k = Γk−Λk, we deduce, in particular,

thatDu⊥ = Γ−Λ as desired. �

Remark 1.2.6. Let A ⊂ R2 as above. For i = 1, ..., N − 1 let γi be the segment joining

Pi to PN , denote τi = PN−Pi
|PN−Pi| its orientation, and identify γi with the vector measure

Γi = τi · H1 γi. Then G = ∪N−1
i=1 γi is an acyclic graph connecting the endpoints set A

and H1(G) = (supi |Γi|)(R2).

Given the set of terminal points A = {P1, . . . , PN} ⊂ R2 let us fix some G ∈ G(A)

(for example, the one constructed in Remark 1.2.6). For any acyclic graph L ∈ G(A),

denoting Γ (resp., Λ) the canonical tensor valued representation of G (resp., L), by means

of Lemma 1.2.5 we have

H1(L) =

∫
R2

sup
i
|Λi| =

∫
R2

sup
i
|Du⊥i − Γi| (1.2.4)

for suitable ui ∈ SBV (R2;Z), 1 ≤ i ≤ N − 1. Thus, using the family of measures

Γ = (Γ1, . . . ,ΓN−1) of Remark 1.2.6, we are led to consider the minimization problem for

U ∈ SBV (R2;ZN−1) for the functional

F 0(U) = |DU⊥ − Γ|Ψ0(R2) =

∫
R2

sup
i
|Du⊥i − Γi|. (1.2.5)

Proposition 1.2.7. There exists U ∈ SBV (R2;ZN−1) such that

F 0(U) = inf
V ∈SBV (R2;ZN−1)

F 0(V ).

Moreover, sptU ⊂ Ω = {x ∈ R2 : |x| < 10 maxi |Pi|}.

Proof. Observe first that for any U ∈ SBV (R2;ZN−1) with F 0(U) < ∞, we can find Ũ

s.t. F 0(Ũ) ≤ F 0(U) and spt Ũ ⊂ Ω. Indeed, consider r = 8 maxi |Pi|, χ = 1Br(0) and

Ũ = (χu1, . . . , χuN−1). One has, for 1 ≤ i ≤ N − 1,∫
R2\Br(0)

|Dũi| =
∫
∂Br(0)

|u+
i |

where u+
i is the trace on ∂Br(0) of ui restricted to Br(0), and∫

R2

|Dũ⊥i − Γi| =
∫
Br(0)

|Du⊥i − Γi|+
∫
∂Br(0)

|u+
i |

≤
∫
Br(0)

|Du⊥i − Γi|+
∫
R2\Br(0)

|Dui| =
∫
R2

|Du⊥i − Γi|

for any i = 1, . . . , N − 1, i.e., F 0(Ũ) ≤ F 0(U).

Now consider a minimizing sequence Uk ∈ SBV (R2;ZN−1) of F 0. We may suppose

w.l.o.g. spt(Uk) ⊂ Ω, so that, for any 1 ≤ i ≤ N − 1,

|Duki |(Ω) ≤ |Duki − Γi|(Ω) +H1(G) ≤ F 0(Uk) +H1(G) ≤ 3H1(G)
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for k sufficiently large. Hence Uk is uniformly bounded in BV by Poincaré inequality on

Ω, so that it is compact in L1(Ω;RN−1) and, up to a subsequence, Uk → U a.e., whence

U ∈ SBV (Ω;ZN−1), sptU ⊂ Ω and U minimizes F 0 by lower semicontinuity of the norm.

�

We have already seen that to each acyclic graph L ∈ G(A) we can associate a function

U ∈ SBV (R2;ZN−1) such that H1(L) = F 0(U). On the other hand, for minimizers of

F 0, we have the following

Proposition 1.2.8. Let U ∈ SBV (R2;ZN−1) be a minimizer of F 0, then there exists

an acyclic graph L ∈ G(A) connecting the terminal points P1, . . . , PN and such that

F 0(U) = H1(L).

Proof. Let U = (u1, . . . , uN−1) be a minimizer of F 0 in SBV (R2;ZN−1), and denote

Λi = Γi −Du⊥i . Observe that each Dui has no absolutely continuous part with respect

to the Lebesgue measure (indeed ui is piecewise constant being integer valued) and so

Λi = τi · H1 λi for some 1-rectifiable set λi and H1-measurable vector field τi. Since we

have div Λi = δPi − δPN , λi necessarily contains a simple rectifiable curve λ′i connecting

Pi to PN (use, for instance, the decomposition theorem for rectifiable 1-currents in cyclic

and acyclic part, as it is done in [69], or the Smirnov decomposition of solenoidal vector

fields [106]).

Now consider the canonical rank one tensor measure Λ′ associated to the acyclic sub-

graph L′ = λ′1 ∪ · · · ∪ λ′N−1 connecting P1, . . . , PN−1 to PN . Then by Lemma 1.2.5, there

exists U ′ = (u′1, . . . , u
′
N−1) ∈ SBV (R2;ZN−1) such that Du′i

⊥ = Γi − Λ′i and in partic-

ular F 0(U ′) = H1(L′) ≤ H1(L) ≤ F 0(U). We deduce H1(L′) = H1(L), hence L′ = L, L is

acyclic andH1(L) = F 0(U). �

Remark 1.2.9. We have shown the relationship between (STP) and the minimization of

F 0 over functions in SBV (R2;ZN−1), namely

inf{F 0(U) : U ∈ SBV (R2;ZN−1)} = inf{F0(ΛL) : L ∈ G({P1, . . . , PN})}.

A similar connection can be made between the α-irrigation problem (Iα) and minimization

over SBV (R2;ZN−1) of

Fα(U) = |DU⊥ − Γ|Ψα(R2), (1.2.6)

namely we have

inf{Fα(U) : U ∈ SBV (R2;ZN−1)} = inf{Fα(ΛL) : L ∈ G({P1, . . . , PN})},

where Fα is defined in equation (1.2.3). Indeed, given a norm Ψ on RN−1 and FΨ(U) =

|DU⊥ − Γ|Ψ(R2) for U ∈ SBV (R2;ZN−1), the proofs of Propositions 1.2.7 and 1.2.8

carry over to this general context: there exists U ∈ SBV (R2;ZN−1) realizing inf FΨ,

with sptU ⊂ Ω and DU⊥−Γ = ΛL with ΛL = τ ⊗g ·H1 L the canonical representation

of an acyclic graph L ∈ G({P1, . . . , PN}).
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Remark 1.2.10. In the case P1, . . . , PN ∈ ∂Ω with Ω ⊂ R2 a convex set, we may choose

G = ∪N−1
i=1 γi with γi connecting Pi to PN and spt γi ⊂ ∂Ω. We deduce by (1.2.4) that for

any acyclic graph L ∈ G(A)

H1(L) =

∫
Ω

sup
i
|Du⊥i |

for suitable ui ∈ SBV (Ω;Z) such that (in the trace sense) ui = 1 on γi ⊂ ∂Ω and ui = 0

elsewhere in ∂Ω, 1 ≤ i ≤ N−1. We recover here an alternative formulation of the optimal

partition problem in a convex planar set Ω as studied, for instance, in [10] and [11].

The aim of the next section is then to provide an approximation of minimizers of the

functionals Fα (and more generally FΨ) through minimizers of more regular energies of

Modica–Mortola type.

1.3 Variational approximation of F α

In this section we state and prove our main results, namely Proposition 1.3.11 and The-

orem 1.3.12, concerning the approximation of minimizers of Fα through minimizers of

Modica–Mortola type functionals, in the spirit of Γ-convergence.

1.3.1 Modica–Mortola functionals for functions with prescribed jump

In this section we consider Modica–Mortola functionals for functions having a prescribed

jump part along a fixed segment in R2 and we prove compactness and lower-bounds

for sequences having a uniform energy bound. Let P,Q ∈ R2 and let s be the segment

connecting P toQ. We denote by τs = Q−P
|Q−P | its orientation and define Σs = τs·H1 s. Up

to rescaling, suppose max(|P |, |Q|) = 1 and let Ω = B10(0) and Ωδ = Ω\ (Bδ(P )∪Bδ(Q))

for 0 < δ � |Q− P |. We consider the Modica–Mortola type functionals

Fε(u,Ωδ) =

∫
Ωδ

eε(u) dx =

∫
Ωδ

ε|Du⊥ − Σs|2 +
1

ε
W (u) dx, (1.3.1)

defined for u ∈ Hs = {u ∈ W 1,2(Ωδ \ s) ∩ SBV (Ωδ) : u|∂Ω = 0}, where W is a smooth

non negative 1-periodic potential vanishing on Z (e.g., W (u) = sin2(πu)). Define H(t) =

2
∫ t

0

√
W (τ) dτ and c0 = H(1).

Remark 1.3.1. Notice that any function u ∈ Hs with Fε(u,Ωδ) < ∞ has necessarily a

prescribed jump u+ − u− = +1 across s Ωδ in the direction νs = −τ⊥s in order to erase

the contribution of the measure term Σs in the energy. We thus have the decomposition

Du⊥ = ∇u⊥L2 + Ju⊥ = ∇u⊥L2 + Σs Ωδ,

where ∇u ∈ L2(Ωδ) is the absolutely continuous part of Du with respect to the Lebesgue

measure L2, and Ju = (u+ − u−)νs · H1 s = νs · H1 s.
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Remark 1.3.2. Notice that we cannot work directly in Ω with Fε due to summability

issues around the points P and Q for the absolutely continuous part of the gradient,

indeed there are no functions u ∈ W 1,2(Ω \ s) such that u+ − u− = 1 on s. To avoid

this issue one could consider variants of the functionals Fε(·,Ω) by relying on suitable

smoothings Σs,ε = Σs ∗ ηε of the measure Σs, with ηε a symmetric mollifier.

Proposition 1.3.3 (Compactness). For any sequence {uε}ε ⊂ Hs such that Fε(uε,Ωδ) ≤
C, there exists u ∈ SBV (Ωδ;Z) such that (up to a subsequence) uε → u in L1(Ωδ).

Proof. By Remark 1.3.1 we haveDu⊥ε = ∇u⊥ε L2+Σs Ωδ, and using the classical Modica–

Mortola trick one has

C ≥
∫

Ωδ

ε|Du⊥ε − Σs|2 +
1

ε
W (uε) dx

=

∫
Ωδ

ε|∇u⊥ε |2 +
1

ε
W (uε) dx ≥ 2

∫
Ωδ

√
W (uε)|∇uε| dx.

Recall that H(t) = 2
∫ t

0

√
W (τ) dτ and c0 = H(1). By the chain rule, we have

|D(H ◦ uε)|(Ωδ) = 2

∫
Ωδ

√
W (uε)|∇uε| dx+

∫
s

(
H(u+

ε )−H(u−ε )
)
dH1(x)

≤ C + c0H1(s).

We also have (H ◦uε)|∂Ω = 0 since uε vanishes on ∂Ω, so that, by the Poincaré inequality,

{H ◦uε}ε is an equibounded sequence in BV (Ωδ), thus compact in L1(Ωδ). In particular,

there exists v ∈ L1(Ωδ) such that, up to a subsequence, H◦uε → v in L1(Ωδ) and pointwise

a.e. Since H is a strictly increasing continuous function with c0(t− 1) ≤ H(t) ≤ c0(t+ 1)

for any t ∈ R, then H−1 is uniformly continuous and |H−1(t)| ≤ c−1
0 (|t|+ 1) for all t ∈ R.

Hence, up to a subsequence, the family {uε}ε ⊂ L1(Ωδ) is pointwise convergent a.e. to

u = H−1(v) ∈ L1(Ωδ). By Egoroff’s Theorem, for any σ > 0 there exists a measurable

Eσ ⊂ Ωδ, with |Eσ| < σ, such that uε → u uniformly in Ωδ \ Eσ. Then, taking into

account that |t| ≤ c−1
0 (|H(t)|+ 1) for all t ∈ R, we have

||uε − u||L1(Ωδ) ≤ ||uε − u||L1(Ωδ\Eσ) +

∫
Eσ

(|uε|+ |u|) dx

≤ |Ω| ||uε − u||L∞(Ωδ\Eσ) + 2c−1
0 |Eσ|+ c−1

0

∫
Eσ

(|H ◦ uε|+ |v|) dx

and for ε, σ small enough the right hand side can be made arbitrarily small thanks to the

uniform integrability of the sequence {H ◦ uε}ε. Hence uε → u in L1(Ωδ). Furthermore,

by Fatou’s lemma we have∫
Ωδ

W (u) dx ≤ lim inf
ε→0

∫
Ωδ

W (uε) dx ≤ lim inf
ε→0

εFε(uε,Ωδ) = 0,

whence u(x) ∈ Z for a.e. x ∈ Ωδ. Finally we have

c0|Du|(Ωδ) = |D(H ◦ u)|(Ωδ) ≤ lim inf
ε→0

|D(H ◦ uε)|(Ωδ) ≤ C + c0H1(s),
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i.e. u ∈ SBV (Ωδ;Z).

�

Proposition 1.3.4 (Lower-bound inequality). Let {uε}ε ⊂ Hs and u ∈ SBV (Ωδ;Z) such

that uε → u in L1(Ωδ). Then

lim inf
ε→0

Fε(uε,Ωδ) ≥ c0|Du⊥ − Σs|(Ωδ). (1.3.2)

Proof. Step 1. Let us prove first that for any open ball B ⊂ Ωδ we have

lim inf
ε→0

Fε(uε, B) ≥ c0|Du⊥ − Σs|(B). (1.3.3)

We distinguish two cases, according to whether B ∩ s = ∅ or not. In the first case we

have

Fε(uε, B) =

∫
B
ε|Du⊥ε |2 +

1

ε
W (uε) dx.

Reasoning as in the proof of Proposition 1.3.3,

c0|Du|(B) = |D(H ◦ u)|(B) ≤ lim inf
ε→0

|D(H ◦ uε)|(B) ≤ lim inf
ε→0

Fε(uε, B),

and (1.3.3) follows.

In the case B ∩ s 6= ∅ we follow the arguments of [15], and consider u0 = 1B+ , where

B+ = {z ∈ B \ s : (z − z0) · νs > 0}, for z0 ∈ B ∩ s and ν⊥s = τs, so that Du⊥0 = Σs B.

Letting vε = uε − u0 we have Dv⊥ε = Du⊥ε − Σs = ∇u⊥ε L2, with ∇uε ∈ L2(B) and

W (vε) = W (uε) on B by 1-periodicity of the potential W . Hence

Fε(uε, B) =

∫
B
ε|Dvε|2 +

1

ε
W (vε) dx.

Let v = u− u0, we have

c0|Du⊥ − Σs|(B) = c0|Dv|(B) ≤ lim inf
ε→0

∫
B
ε|Dvε|2 +

1

ε
W (vε) dx = lim inf

ε→0
Fε(uε, B)

and (1.3.3) follows.

Step 2. Since |Du⊥ − Σs| is a Radon measure, one has

|Du⊥ − Σs|(Ωδ) = sup

∑
j

|Du⊥ − Σs|(Bj)

 (1.3.4)

where the supremum is taken among all finite collections {Bj}j of pairwise disjoint open

balls such that ∪jBj ⊂ Ωδ. Applying (1.3.3) to each Bj and summing over j we have

c0

∑
j

|Du⊥−Σs|(Bj) ≤
∑
j

lim inf
ε→0

Fε(uε, Bj) ≤ lim inf
ε→0

∑
j

Fε(uε, Bj) ≤ lim inf
ε→0

Fε(uε,Ωδ)

which gives (1.3.2) thanks to (1.3.4). �
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Remark 1.3.5. The proof of Proposition 1.3.4 can be easily adapted to prove a weighted

version of (1.3.2): in the same hypothesis, for any non negative ϕ ∈ C∞c (Rd) we have

lim inf
ε→0

∫
Ωδ

ϕeε(uε) dx ≥ c0

∫
Ωδ

ϕd|Du⊥ − Σs|.

Remark 1.3.6. Proposition 1.3.4 holds true also in case the measure Σs are associated to

oriented simple polyhedral (or even rectifiable) finite length curves joining P to Q.

1.3.2 The approximating functionals FΨ
ε

We now consider Modica–Mortola approximations for Ψ-mass functionals such as Fα.

Let A = {P1, . . . , PN} be our set of terminal points and Ψ: RN−1 → [0,+∞) be a norm

on RN−1. For any i ∈ {1, . . . , N − 1} let Γi = τi · H1 γi be the measure defined in

Remark 1.2.6. Without loss of generality suppose maxi(|Pi|) = 1 and define Ω = B10(0)

and Ωδ = Ω \ ∪iBδ(Pi) for 0 < δ � minij |Pi − Pj |. Let

Hi = {u ∈W 1,2(Ω \ γi) ∩ SBV (Ω) : u|∂Ω = 0}, H = H1 × · · · ×HN−1, (1.3.5)

and for u ∈ Hi define

eiε(u) = ε|Du⊥ − Γi|2 +
1

ε
W (u). (1.3.6)

Denote ~eε(U) = (e1
ε(u1), . . . , eN−1

ε (uN−1)) and consider the functionals

FΨ
ε (U,Ωδ) = |~eε(U) dx|Ψ(Ωδ), (1.3.7)

or equivalently, thanks to (1.2.1),

FΨ
ε (U,Ωδ) = sup

ϕ∈C∞c (Ωδ;RN−1)

{
N−1∑
i=1

∫
Ωδ

ϕie
i
ε(ui) dx, Ψ∗(ϕ(x)) ≤ 1

}
. (1.3.8)

The previous compactness and lower-bound inequality for functionals with a single pre-

scribed jump extend to FΨ
ε as follows.

Proposition 1.3.7 (Compactness). Given {Uε}ε ⊂ H such that FΨ
ε (Uε,Ωδ) ≤ C, there

exists U ∈ SBV (Ωδ;ZN−1) such that (up to a subsequence) Uε → U in [L1(Ωδ)]
N−1.

Proof. For each i = 1, . . . , N − 1, by definition of FΨ
ε we have∫

Ωδ

eiε(uε,i) dx ≤ Ψ∗(ei)F
Ψ
ε (Uε,Ωδ) ≤ CΨ∗(ei)

and the result follows applying Proposition 1.3.3 componentwise. �

Proposition 1.3.8 (Lower-bound inequality). Let {Uε}ε ⊂ H and U ∈ SBV (Ωδ;ZN−1)

such that Uε → U in [L1(Ωδ)]
N−1. Then

lim inf
ε→0

FΨ
ε (Uε,Ωδ) ≥ c0|DU⊥ − Γ|Ψ(Ωδ). (1.3.9)
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Figure 1.1: Typical shape of the sets Vk (left) and general construction involved in the

definition of Rkε (right).

Proof. Fix ϕ ∈ C∞c (Ωδ;RN−1) with ϕi ≥ 0 for any i = 1, . . . , N − 1 and Ψ∗(ϕ(x)) ≤ 1

for all x ∈ Ωδ. By Remark 1.3.5 we have

c0

N−1∑
i=1

∫
Ωδ

ϕi d|Du⊥i − Γi| ≤
N−1∑
i=1

lim inf
ε→0

∫
Ωδ

ϕie
i
ε(uε,i) dx ≤ lim inf

ε→0

N−1∑
i=1

∫
Ωδ

ϕie
i
ε(uε,i) dx

≤ lim inf
ε→0

FΨ
ε (Uε,Ωδ),

and taking the supremum over ϕ we get (1.3.9).

�

We now state and prove a version of an upper-bound inequality for the functionals

FΨ
ε which will enable us to deduce the convergence of minimizers of FΨ

ε to minimizers of

FΨ(U,Ωδ) = c0|DU⊥ − Γ|Ψ(Ωδ), for U ∈ SBV (Ωδ;ZN−1).

Proposition 1.3.9 (Upper-bound inequality). Let Λ = τ ⊗ g · H1 L be a rank one

tensor valued measure canonically representing an acyclic graph L ∈ G(A), and let U =

(u1, . . . , uN−1) ∈ SBV (Ωδ;ZN−1) such that Du⊥i = Γi − Λi for any i = 1, . . . , N − 1.

Then there exists a sequence {Uε}ε ⊂ H such that Uε → U in [L1(Ωδ)]
N−1 and

lim sup
ε→0

FΨ
ε (Uε,Ωδ) ≤ c0|DU⊥ − Γ|Ψ(Ωδ). (1.3.10)

Proof. Step 1. We consider first the case Λi = τi · H1 λi with λi a polyhedral curve

transverse to γi for any 1 ≤ i < N . Then the support of the measure Λ is an acyclic

polyhedral graph (oriented by τ and with normal ν = τ⊥) with edges E0, . . . , EM and

vertices {S0, . . . , S`} * (∪iγi) ∩ Ωδ such that Ek = [Sk1 , Sk2 ] for suitable indices k1, k2 ∈
{0, . . . , `}. Denote also gk = g|Ek ∈ RN−1 and recall gki ∈ {0, 1} for all 1 ≤ i < N . By

14



finiteness there exist η > 0 and α ∈ (0, π/2) such that given any edge Ek of that graph

the sets

V k = {x ∈ R2, dist(x,Ek) < min{η, cos(α) · dist(x, Sk1), cos(α) · dist(x, Sk2)}}

are disjoint and their union forms an open neighbourhood of ∪iλi \ {S0, . . . , S`} (choose,

for instance, α such that 2α is smaller than the minimum angle realized by two edges

and then pick η satisfying 2η tanα < minj H1(Ej)).

For 0 < ε � δ, let Bm
ε =

{
x ∈ R2 : |x− Sm| < 3ε2/3

sinα

}
, Bε = ∪mBm

ε and define

Rkε ⊂ V k as

Rkε = {y + tν : y ∈ Ek, min{dist(y, Sk1), dist(y, Sk2)} > 3ε2/3 cot(α), 0 < t ≤ 3ε2/3}.

Let ϕ0 be the optimal profile for the 1-dimensional Modica–Mortola functional, which

solves ϕ′0 =
√
W (ϕ0) on R and satisfies limτ→−∞ ϕ0(τ) = 0, limτ→∞ ϕ0(τ) = 1 and

ϕ0(0) = 1/2. Let us define τε = ε−1/3, r+
ε = ϕ0(τε), r

−
ε = ϕ0(−τε), and

ϕ̃ε(τ) =



0 τ < −τε − r−ε
τ + τε + r−ε − τε − r−ε ≤ τ ≤ −τε
ϕ0(τ) |τ | ≤ τε
τ − τε + r+

ε τε ≤ τ ≤ τε + 1− r+
ε

1 τ > τε + 1− r+
ε

Observe that (1 − r+
ε ) and r−ε are o(1) as ε → 0. For x = y + tν ∈ Rkε let us define

ϕε(x) = ϕ̃ε
(
t
ε − τε − r

−
ε

)
, so that, as ε→ 0,

∫
Rkε∩Ωδ

ε|Dϕε|2 +
1

ε
W (ϕε) dx ≤ H1(Ek ∩ Ωδ)

∫ 2τε−r−ε

−τε−r−ε
|Dϕ̃ε(τ)|2 +W (ϕ̃ε(τ)) dτ + o(1)

≤ H1(Ek ∩ Ωδ)

∫ τε

−τε
2ϕ′0(τ)

√
W (ϕ0(τ)) dτ + o(1) ≤ c0H1(Ek ∩ Ωδ) + o(1).

Define, for x ∈ Ωδ \Bε,

uε,i(x) =

{
ui(x) + ϕε(x)− 1 if x ∈ (Rkε \Bε) ∩ Ωδ whenever Ek ⊂ λi
ui(x) elsewhere on Ωδ \Bε

and on Bε ∩ Ωδ define uε,i to be a Lipschitz extension of uε,i|∂(Bε∩Ωδ) with the same

Lipschitz constant, which is of order 1/ε. Remark that uε,i has the same prescribed jump

as ui across γi, and thus FΨ
ε (Uε,Ωδ) <∞. Moreover, uε,i → ui in L1(Ωδ).

Observe now that if Ek is contained in λi ∩ λj then by construction

eiε(uε,i) = ejε(uε,j) = ε|Dϕε|2 +
1

ε
W (ϕε)
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on R̃kε = (Rkε ∩Ωδ) \Bε. Let ϕ = (ϕ1, . . . , ϕN−1), with ϕi ≥ 0 and Ψ∗(ϕ) ≤ 1, we deduce∫
Ωδ

∑
i

ϕie
i
ε(uε,i) dx ≤

∑̀
k=1

∫
R̃kε

∑
i

ϕie
i
ε(uε,i) dx+

∫
Bε∩Ωδ

∑
i

ϕie
i
ε(uε,i) dx

≤
∑̀
k=1

∫
R̃kε

∑
i

ϕig
k
i

(
ε|Dϕε|2 +

1

ε
W (ϕε)

)
dx+

∫
Bε∩Ωδ

Ψ(~eε(Uε)) dx

≤
∑̀
k=1

∫
R̃kε

Ψ(gk)

(
ε|Dϕε|2 +

1

ε
W (ϕε)

)
dx+ Cε1/3

≤
∑̀
k=1

Ψ(gk)(c0H1(Ek ∩ Ωδ) + o(1)) + Cε1/3 ≤ c0|DU⊥ − Γ|Ψ(Ωδ) + o(1)

as ε→ 0. In view of (1.3.8) we have

FΨ
ε (Uε,Ωδ) ≤ c0|DU⊥ − Γ|Ψ(Ωδ) + o(1),

and conclusion (1.3.10) follows.

Step 2. Let us now consider the case ΛL ≡ Λ = τ ⊗g ·H1 L, L = ∪iλi and the λi are

not necessarily polyhedral. Let U ∈ SBV (Ωδ;ZN−1) such that DU⊥ = Γ− ΛL. We rely

on Lemma 1.3.10 below to secure a sequence of acyclic polyhedral graphs Ln = ∪iλni , λni
transverse to γi, and s.t. the Hausdorff distance dH(λni , λi) <

1
n for all i = 1, . . . , N − 1,

and |ΛLn |Ψ(Ωδ) ≤ |ΛL|Ψ(Ωδ)+
1
n . Let Un ∈ SBV (Ωδ;ZN−1) such that (DUn)⊥ = Γ−ΛLn .

In particular, Un → U in [L1(Ωδ)]
N−1 and by step 1 we may construct a sequence Unε

s.t. Unε → Un in [L1(Ωδ)]
N−1 and

lim sup
ε→0

FΨ
ε (Unε ,Ωδ) ≤ c0|(DUn)⊥ − Γ|Ψ(Ωδ) = c0|ΛLn |Ψ(Ωδ)

≤ c0|ΛL|Ψ(Ωδ) +
c0

n
= c0|DU⊥ − Γ|Ψ(Ωδ) +

c0

n
.

We deduce

lim sup
n→∞

FΨ
εn(Unεn ,Ωδ) ≤ c0|DU⊥ − Γ|Ψ(Ωδ)

for a subsequence εn → 0 as n→ +∞. Conclusion (1.3.10) follows.

�

Lemma 1.3.10. Let L ∈ G(A), L = ∪N−1
i=1 λi, be an acyclic graph connecting P1, . . . , PN .

Then for any η > 0 there exists L′ ∈ G(A), L′ = ∪N−1
i=1 λ

′
i, with λ′i a simple polyhedral

curve of finite length connecting Pi to PN and transverse to γi, such that the Hausdorff

distance dH(λi, λ
′
i) < η and |ΛL′ |Ψ(R2) ≤ |ΛL|Ψ(R2) + η, where ΛL and ΛL′ are the

canonical tensor valued representations of L and L′.

Proof. Since L ∈ G(A), we can write L = ∪Mm=1ζm, with ζm simple Lipschitz curves

such that, for mi 6= mj , ζmi ∩ ζmj is either empty or reduces to one common endpoint.
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Let ΛL = τ ⊗ g · H1 L be the rank one tensor valued measure canonically representing

L, and let dm = Ψ(g(x)) for x ∈ ζm. The dm are constants because by construction

g is constant over each ζm. Now consider a polyhedral approximation ζ̃m of ζm having

its same endpoints, with dH(ζ̃m, ζm) ≤ η, H1(ζ̃m) ≤ H1(ζm) + η/(CM) (C to be fixed

later) and, for mi 6= mj , ζ̃mi ∩ ζ̃mj is either empty or reduces to one common endpoint.

Observe that whenever ζm intersects some γi, such a ζ̃m can be constructed in order

to intersect γi transversally in a finite number of points. Define L′ = ∪Mm=1ζ̃m and let

ΛL′ = τ ′ ⊗ g′ · H L′ be its canonical tensor valued measure representation. Then, by

construction Ψ(g′(x)) = dm for any x ∈ ζ̃m, hence

|ΛL′ |Ψ(R2) =
M∑
m=1

dmH1(ζ̃m) ≤
M∑
m=1

dm

(
H1(ζm) +

η

CM

)
≤ |ΛL|Ψ(R2) + η,

provided C = max{Ψ(g) : g ∈ RN−1, gi ∈ {0, 1} for all i = 1, . . . , N−1}. Finally, remark

that dH(L,L′) < η by construction. �

Thanks to the previous propositions we are now able to prove the following

Proposition 1.3.11 (Convergence of minimizers). Let {Uε}ε ⊂ H be a sequence of

minimizers for FΨ
ε in H. Then (up to a subsequence) Uε → U in [L1(Ωδ)]

N−1, and U ∈
SBV (Ωδ;ZN−1) is a minimizer of FΨ(U,Ωδ) = c0|DU⊥ − Γ|Ψ(Ωδ) in SBV (Ωδ;ZN−1).

Proof. Let V ∈ SBV (Ωδ;ZN−1) such that DV ⊥ = Γ−Λ, where Λ canonically represents

an acyclic graph L ∈ G(A), and let Vε ∈ H such that lim supε→0 F
Ψ
ε (Vε,Ωδ) ≤ FΨ(V,Ωδ).

Since FΨ
ε (Uε,Ωδ) ≤ FΨ

ε (Vε,Ωδ), by Proposition 1.3.7 there exists U ∈ SBV (Ωδ;ZN−1)

s.t. Uε → U in [L1(Ωδ)]
N−1 and by Proposition 1.3.8 we have

FΨ(U,Ωδ) ≤ lim inf
ε→0

FΨ
ε (Uε,Ωδ) ≤ lim sup

ε→0
FΨ
ε (Vε,Ωδ) ≤ FΨ(V,Ωδ) .

Given a general V ∈ SBV (Ωδ;ZN−1) we can proceed like in Remark 1.2.9 and find V ′

such that DV ′⊥ = Γ−ΛL′ with L′ acyclic, and FΨ(V ′,Ωδ) ≤ FΨ(V,Ωδ). The conclusion

follows.

�

Let us focus on the case Ψ = Ψα, where Ψα(g) = |g|1/α for 0 < α ≤ 1 and Ψ0(g) =

|g|∞, and denote F 0
ε ≡ FΨ0

ε and Fαε ≡ FΨα
ε . For U = (u1, . . . , uN−1) ∈ H we have

F 0
ε (U,Ωδ) =

∫
Ωδ

sup
i
eiε(ui) dx, Fαε (U,Ωδ) =

∫
Ωδ

(
N−1∑
i=1

eiε(ui)
1/α

)α
dx, (1.3.11)

and

F 0(U,Ωδ) := c0|DU⊥ − Γ|Ψ0(Ωδ) and Fα(U,Ωδ) := c0|DU⊥ − Γ|Ψα(Ωδ), (1.3.12)

which are the localized versions of (1.2.5) and (1.2.6).
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Theorem 1.3.12. Let {P1, . . . , PN} ⊂ R2 such that maxi |Pi| = 1, 0 < δ � maxij |Pi −
Pj |, Ω = B10(0) and Ωδ = Ω \ (∪iBδ(Pi)). For 0 ≤ α ≤ 1 and 0 < ε� δ, denote Fα,δε ≡
Fαε (·,Ωδ) and Fα,δ ≡ Fα(·,Ωδ), with Fαε (·,Ωδ) (resp., Fα(·,Ωδ)) defined in (1.3.11) (resp.

(1.3.12)).

(i) Let {Uα,δε }ε be a sequence of minimizers for Fα,δε on H, with H defined in (1.3.5).

Then, up to subsequences, Uα,δε → Uα,δ in [L1(Ωδ)]
N−1 as ε → 0, with Uα,δ ∈

SBV (Ωδ;ZN−1) a minimizer of Fα,δ on SBV (Ωδ;ZN−1). Furthermore, Fα,δε (Uα,δε )→
Fα,δ(Uα,δ).

(ii) Let {Uα,δ}δ be a sequence of minimizers for Fα,δ on SBV (Ωδ;ZN−1). Up to subse-

quences we have Uα,δ → Uα|Ωη in [L1(Ωη)]
N−1 as δ → 0 for every fixed η sufficiently

small, with Uα ∈ SBV (Ω;ZN−1) a minimizer of Fα on SBV (Ω;ZN−1), and Fα

defined in (1.2.5), (1.2.6). Furthermore, Fα,δ(Uα,δ)→ Fα(Uα).

Proof. In view of Proposition 1.3.11 it remains to prove item (ii). The sequence {Uα,δ}δ
is equibounded in BV (Ωη) uniformly in η, hence Uα,δ → U in [L1(Ωη)]

N−1 for all η > 0

sufficiently small, with Uα ∈ SBV (Ω;ZN−1) and Fα,η(Uα) ≤ lim infδ→0 F
α,η(Uα,δ) by

lower semicontinuity of Fα,η. On the other hand, let Ūα be a minimizer of Fα on

SBV (Ω;ZN−1). We have Fα,η(Uα,δ) ≤ Fα,δ(Uα,δ) for any δ < η, and by minimality,

Fα,δ(Uα,δ) ≤ Fα,δ(Ūα) ≤ Fα(Ūα) ≤ Fα(Uα). This proves (ii). �

1.4 Convex relaxation

In this section we propose convex positively 1-homogeneous relaxations of the irrigation-

type functionals Fα for 0 ≤ α < 1 so as to include the Steiner tree problem corresponding

to α = 0 (notice that the case α = 1 corresponds to the well-known Monge-Kantorovich

optimal transportation problem with respect to the Monge cost c(x, y) = |x− y|).
More precisely, we consider relaxations of the functional defined by

Fα(Λ) = ‖Λ‖Ψα =

∫
Rd
|g|1/α dH1 L

if Λ is the canonical representation of an acyclic graph L with terminal points {P1, . . . , PN} ⊂
Rd, so that in particular, according to Definition 1.2.1, we can write Λ = τ ⊗ g · H1 L

with |τ | = 1, gi ∈ {0, 1}. For any other d× (N − 1)-matrix valued measure Λ on Rd we

set Fα(Λ) = +∞.

As a preliminary remark observe that, since we are looking for positively 1-homogeneous

extensions, any candidate extension Rα satisfies

Rα(cΛ) = |c|Fα(Λ)

for any c ∈ R and Λ of the form τ ⊗ g · H1 L as above. As a consequence we have that

Rα(−Λ) = Rα(Λ), where −Λ represents the same graph L as Λ but only with reversed

orientation.
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1.4.1 Extension to rank one tensor measures

First of all let us discuss the possible positively 1-homogeneous convex relaxations of Fα
on the class of rank one tensor valued Radon measures Λ = τ ⊗ g · |Λ|1, where |τ | = 1,

g ∈ RN−1 (cf. Section 1.2.1). For a generic rank one tensor valued measure Λ = τ⊗g ·|Λ|1
we can consider extensions of the form

Rα(Λ) =

∫
Rd

Ψα(g) d|Λ|1

for a convex positively 1-homogeneous Ψα on RN−1 (i.e., a norm) verifying

Ψα(g) = |g|1/α if gi ∈ {0, 1} for all i = 1, . . . , N − 1,

Ψα(g) ≥ |g|1/α for all g ∈ RN−1.
(1.4.1)

One possible choice is represented by Ψα(g) = |g|1/α for all g ∈ RN−1, while sharper

relaxations are given by, for α > 0,

Ψα
∗ (g) =

 ∑
1≤i≤N−1

|g+
i |

1/α

α

+

 ∑
1≤i≤N−1

|g−i |
1/α

α

, (1.4.2)

and for α = 0 by

Ψ0
∗(g) = sup

1≤i≤N−1
g+
i − inf

1≤i≤N−1
g−i , (1.4.3)

with g+
i = max{gi, 0} and g−i = min{gi, 0}. In particular, Ψα

∗ represents the maximal

choice within the class of extensions Ψα satisfying

Ψα(g) = |g|1/α if gi ≥ 0 for all i = 1, . . . , N − 1.

Indeed, for α > 0, g ∈ RN−1 and g± = (g±1 , . . . , g
±
N−1), we have

Ψα(g) ≤ Ψα(g+ + g−) = 2Ψα

(
1

2
g+ +

1

2
g−
)
≤ 2

(
1

2
Ψα(g+) +

1

2
Ψα(g−)

)
= Ψα(g+) + Ψα(g−) = |g+|1/α + |g−|1/α = Ψα

∗ (g).

The interest in optimal extensions Ψα on rank one tensor valued measures relies in the

so-called calibration method as a minimality criterion for Ψα-mass functionals, as it is

done, in particular, in [70] for (STP) using the (optimal) norm Ψ0
∗.

According to the convex extensions Ψα and Ψ0 considered, when it comes to finding

minimizers of, respectively, Rα and R0 in suitable classes of weighted graphs with pre-

scribed fluxes at their terminal points, or more generally in the class of rank one tensor

valued measures having divergence prescribed by (1.2.2), the minimizer is not necessarily

the canonical representation of an acyclic graph. Let us consider the following example,

where the minimizer contains a cycle.
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Example 1.4.1. Consider the Steiner tree problem for {P1, P2, P3} ⊂ R2. We claim that

a minimizer of R0(Λ) =
∫
R2 |g|∞ d|Λ|1 within the class of rank one tensor valued Radon

measures Λ = τ ⊗ g · |Λ|1 satisfying (1.2.2) is supported on the triangle L = [P1, P2] ∪
[P2, P3] ∪ [P1, P3], hence its support is not acyclic and such a minimizer is not related to

any optimal Steiner tree. Denoting τ the global orientation of L (i.e., from P1 to P2, P1

to P3 and P2 to P3) we actually have as minimizer

Λ = τ ⊗
([

1

2
,−1

2

]
· H1 [P1, P2] +

[
1

2
,
1

2

]
· H1 [P3, P2] +

[
1

2
,
1

2

]
· H1 [P3, P1]

)
.

(1.4.4)

The proof of the claim follows from Remark 1.4.2 and Lemma 1.4.3.

Remark 1.4.2 (Calibrations). A way to prove the minimality of Λ = τ ⊗ g ·H1 L within

the class of rank one tensor valued Radon measures satisfying (1.2.2) is to exhibit a

calibration for Λ, i.e., a matrix valued differential form ω = (ω1, . . . , ωN−1), with ωj =∑d
i=1 ωijdxi for measurable coefficients ωij , such that

• dωj = 0 for all j = 1, . . . , N − 1;

• ‖ω‖∗ ≤ 1, where ‖ · ‖∗ is the dual norm to ‖τ ⊗ g‖ = |τ | · |g|∞, defined as

‖ω‖∗ = sup{τ t ω g : |τ | = 1, |g|∞ ≤ 1};

• 〈ω,Λ〉 =
∑

i,j τiωijgj = |g|∞ pointwise, so that∫
R2

〈ω,Λ〉 = R0(Λ).

In this way for any competitor Σ = τ ′ ⊗ g′ · |Σ|1 we have 〈ω,Σ〉 ≤ |g′|∞, and, moreover,

Σ− Λ = DU⊥, for U ∈ BV (R2;RN−1), hence∫
R2

〈ω,Λ− Σ〉 =

∫
R2

〈ω,DU⊥〉 =

∫
R2

〈dω,U〉 = 0 .

It follows

R0(Σ) ≥
∫
R2

〈ω,Σ〉 =

∫
R2

〈ω,Λ〉 = R0(Λ) ,

i.e. Λ is a minimizer within the given class of competitors.

Let us construct a calibration ω = (ω1, ω2) for Λ in the general case P1 ≡ (x1, 0),

P2 ≡ (x2, 0) and P3 ≡ (0, x3), with x1 < 0, x1 < x2 and x3 > 0.

Lemma 1.4.3. Let P1, P2, P3 defined as above and Λ as in (1.4.4). Consider ω = (ω1, ω2)

defined as

ω1 =
1

2a
[(x1 + a)dx+ x3dy], ω2 =

1

2a
[(x1 − a)dx+ x3dy], for (x, y) ∈ BL

ω1 =
1

2b
[(x2 + b)dx+ x3dy], ω2 =

1

2b
[(x2 − b)dx+ x3dy], for (x, y) ∈ BR
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with BL the left half-plane w.r.t. the line containing the bisector of vertex P3, BR the

corresponding right half-plane and a =
√
x2

1 + x2
3, b =

√
x2

2 + x2
3. The matrix valued

differential form ω is a calibration for Λ.

Proof. For simplicity we consider here the particular case x1 = −1
2 , x2 = 1

2 and x3 =
√

3
2

(the general case is similar). For this choice of x1, x2, x3 we have

ω1 =
1

4
dx+

√
3

4
dy, ω2 = −3

4
dx+

√
3

4
dy, for (x, y) ∈ R2, x < 0,

ω1 =
3

4
dx+

√
3

4
dy, ω2 = −1

4
dx+

√
3

4
dy, for (x, y) ∈ R2, x > 0.

The piecewise constant 1-forms ωi for i = 1, 2 are globally closed in R2 (on the line {x = 0}
they have continuous tangential component), ‖ω‖∗ ≤ 1 (cf. Remark 1.4.2), and taking

their scalar product with, respectively, (1, 0)⊗ (1/2,−1/2), (−1/2,
√

3/2)⊗ (1/2, 1/2) for

x < 0 and (1/2,
√

3/2)⊗ (1/2, 1/2) for x > 0 we obtain in all cases 1/2, i.e., |g|∞, so that∫
R2

〈ω,Λ〉 = R0(Λ) .

Hence ω is a calibration for Λ.

�

Remark 1.4.4. A calibration always exists for minimizers in the class of rank one tensor

valued measures as a consequence of Hahn-Banach theorem (see, e.g., [70]), while it may

be not the case in general for graphs with integer or real weights. The classical minimal

configuration for (STP) with 3 endpoints P1, P2 and P3 admits a calibration with respect

to the norm Ψ0
∗ in RN−1 (see [70]) and hence it is a minimizer for the relaxed functional

R0(Λ) = ||Λ||Ψ0
∗

among all real weighted graphs (and all rank one tensor valued Radon

measures satisfying (1.2.2)). It is an open problem to show whether or not a minimizer

of the relaxed functional R0(Λ) = ||Λ||Ψ0
∗

has integer weights.

1.4.2 Extension to general matrix valued measures

Let us turn next to the convex relaxation of Fα for generic d× (N − 1) matrix valued

measures Λ = (Λ1, . . . ,ΛN−1), where Λi, for 1 ≤ i ≤ N − 1, are the vector measures

corresponding to the columns of Λ. As a first step observe that, due to the positively

1-homogeneous request on Rα, whenever Λ = p · H1 L = τ ⊗ g · H1 L, with |τ | = cte.

and gi ∈ {0, 1}, we must have

Rα(Λ) =

∫
Rd
|τ ||g|1/α dH1 L =

∫
Rd

Φα(p) dH1 L,

with Φα(p) = |τ ||g|1/α defined only for matrices p ∈ K0 (+∞ otherwise), where

K0 = {τ ⊗ g ∈ Rd×(N−1), gi ∈ {0, 1}, |τ | = cte.}.
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Following [43], we look for Φ∗∗α , the positively 1-homogeneous convex envelope on

Rd×(N−1) of Φα. Setting q = (q1, . . . , qN−1), with qi ∈ Rd its columns, we have that the

convex conjugate function Φ∗α(q) = sup{q · p− Φα(p), p ∈ K0} is given by

Φ∗α(q) = sup

{
τ t · q · g − |τ | · |g|1/α , |τ | = cte., g =

∑
i∈J

ei, J ⊂ {1, . . . , N − 1}

}

= sup

 c

τ t ·
∑
j∈J

qj

− |J |α
 , c ≥ 0, |τ | = 1, J ⊂ {1, . . . , N − 1}

 .

Hence Φ∗α is the indicator function of the convex set

Kα =

q ∈ Rd×(N−1),

∣∣∣∣∣∣
∑
j∈J

qj

∣∣∣∣∣∣ ≤ |J |α ∀ J ⊂ {1, . . . , N − 1}

 ,

and, in particular, for α = 0, it holds (cf. [43]) that

K0 =

q ∈ Rd×(N−1),

∣∣∣∣∣∣
∑
j∈J

qj

∣∣∣∣∣∣ ≤ 1 ∀ J ⊂ {1, . . . , N − 1}

 .

It follows that Φ∗∗α is the support function of Kα, i.e., for p ∈ Rd×(N−1),

Φ∗∗α (p) = sup
q∈Kα

p · q = sup

p · q ,
∣∣∣∣∣∣
∑
j∈J

qj

∣∣∣∣∣∣ ≤ |J |α , J ⊂ {1, . . . , N − 1}

 . (1.4.5)

We are then led to consider, for matrix valued test functions ϕ = (ϕ1, . . . , ϕN−1), the

relaxed functional

Rα(Λ) =

∫
Rd

Φ∗∗α (Λ) = sup

{
N−1∑
i=1

∫
Rd
ϕi dΛi, ϕ ∈ C∞c (Rd;Kα)

}
.

Observe that for Λ a rank one tensor valued measure and α = 0 the above expression

coincides with the one obtained in the previous section choosing Ψ0 = Ψ0
∗.

In the planar case d = 2, consider a 2 × (N − 1)-matrix valued measure Λ =

(Λ1, . . . ,ΛN−1) such that div Λi = δPi − δPN . Fix a measure Γ as, for instance, in

Remark 1.2.6. We have div(Λ − Γ) = 0 in R2 and by Poincaré’s lemma there exists

U ∈ BV (R2;RN−1) such that Λ = Γ−DU⊥. So the relaxed functional reads

Eα(U) = Rα(Λ) for Λ = Γ−DU⊥, U ∈ BV (R2;RN−1). (1.4.6)

The relaxed irrigation problem (Iα) ≡ minBV Eα(U) can thus be described in the

following equivalent way, according to (1.4.5): let q = ϕ be any matrix valued test

function (with columns qi = ϕi for 1 ≤ i ≤ N − 1), then we have

(Iα) ≡ min
U∈BV (R2;RN−1)

sup


∫
R2

N−1∑
i=1

(Du⊥i − Γi) · ϕi , ϕ ∈ C∞c (R2;Kα)

 .
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Notice that with respect to the similar formulation proposed in [43], there is here the

presence of an additional “drift” term; moreover, the constraints set Kα is somewhat

different.

We compare now the functional Eα(U) with the actual convex envelope (Fα)∗∗(U) in

the space BV (R2;RN−1), where we set Fα(U) = |DU⊥ − Γ|`1/α(R2) if Γ − DU⊥ = Λ

canonically represents an acyclic graph, and Fα(U) = +∞ elsewhere in BV (R2;RN−1).

In the spirit of [43] (Proposition 3.1), we have

Lemma 1.4.5. We have Eα(U) ≤ (Fα)∗∗(U) ≤ (N−1)1−αEα(U) for any U ∈ BV (R2;RN−1)

and any 0 ≤ α < 1.

Proof. Observe that Eα(U) ≤ (Fα)∗∗(U) by convexity of Eα(U). Moreover, whenever

Λ = Γ−DU⊥ canonically represents a graph connecting P1, . . . , PN , we have (Fα)∗∗(U) ≤
(F 1)∗∗(U) since Fα(U) ≤ F 1(U). For α > 0, denoting Λ = Γ−DU⊥, we deduce

(F 1)∗∗(U) ≤
N−1∑
i=1

|Λi|(Rd) ≤ (N − 1)1−α

(
N−1∑
i=1

|Λi|1/α
)α

(Rd) ≤ (N − 1)1−αEα(U),

and analogously we have (F 1)∗∗(U) ≤ (N−1)E0(U). �

1.5 Numerical identification of optimal structures

1.5.1 Local optimization by Γ-convergence

Figure 1.2: Rectilinear Steiner trees and associated vectorial drifts for five and seven

points

In this section, we plan to illustrate the use of Theorem 1.3.12 to identify numerically

local minima of the Steiner problem. We base our numerical approximation on a standard

discretization of (1.3.11). Let Ω = (0, 1)2 and assume {P1, . . . , PN} ⊂ Ω; thus, as a
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standard consequence, the associated Steiner tree is also contained in Ω. Consider a

Cartesian grid covering Ω of step size h = 1
S where S > 1 is a fixed integer. Dividing

every square cell of the grid into two triangles, we define a triangular mesh T associated

to Ω and replace each point Pi with the closest grid point.

Fix now Γi an oriented vectorial measure absolutely continuous with respect to H1

as in Remark 1.2.6. Assume for simplicity that Γi is supported on γi a union of vertical

and horizontal segments contained in Ω and covered by the grid associated to the discrete

points {(kh, lh), 0 ≤ k, l < S}. Notice that such a measure can be easily constructed by

considering, for instance, the oriented `1-spanning tree of the given points.

To mimic the construction in Section 1.3.2, we define the function space

Hh
i ≡ P1(T ,Ω \ γi) ∩BV (Ω)

to be the set of functions which are globally continuous on Ω \ γi and piecewise linear on

every triangle of T . Moreover, we require that every function of Hh
i has a jump through

γi of amplitude −1 in the orthogonal direction of the orientation of Γi. Observe that

Hh
i is a finite dimensional space of dimension S2: one element uhi can be described by

S2 + ni parameters and ni linear constraints describing the jump condition where ni is

the number of grid points covered by γi.

Then, we define

f ih(uhi ) = h|Duhi |2 +
1

h
W (uhi ), (1.5.1)

if u ∈ L1(Ω) is in Hh
i and extend f ih by letting f ih(u) = +∞ otherwise. Notice that

these discrete energy densities do not contain the drift terms Γi because the information

about the drift has been encoded within the discrete spaces Hh
i , leaving us to deal only

with the absolutely continuous part of the gradient (see Remark 1.3.1). Then, for Uh =

(uh1 , . . . , u
h
N−1) ∈ Hh

1 × · · · ×Hh
N−1 we define

G0
h(Uh) =

∫
Ω

sup
1≤i≤N−1

f ih(uhi ) and Gαh(Uh) =

∫
Ω

(
N−1∑
i=1

f ih(uhi )1/α

)α
.

By a similar strategy we used to prove Theorem 1.3.12, we still also have convergence

of minimizers of G0
h (resp., Gαh) to minimizers of c0F

0 (resp., c0F
α) with respect to

the strong topology of L1(R2;RN−1). Observe that an exact evaluation of the integrals

involved in (1.5.1) is required to obtain this convergence result (an approximation formula

can also be used but then a theoretical proof of convergence would require to study the

interaction of the order of approximation with the convergence of minimizers). We point

out that this constraint is not critical from a computational point of view since every

function uih of finite energy has a constant gradient on every triangle of the mesh. On the

other hand, the potential integral can be evaluated formally to obtain an exact estimate

of this term whith respect to the degrees of freedom which describe a function of Hh
i .

Based on these results we performed two different numerical experiments. We first

approximated the optimal Steiner trees associated to the vertices of a triangle, a regular

pentagon and a regular hexagon with its center. To obtain the results of figure 1.3 we
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Figure 1.3: Local minimizers obtained by the Γ-convergence approach applied to 3, 5 and

7 points

discretized the problem on a grid of size 200 × 200. In the case of the triangle we used

the associated spanning tree to define the measures (Γi)i=1,2. In the case of the pentagon

and of the hexagon we used the rectilinear Euclidean Steiner trees computed by the

Geosteiner’s library (see, for instance, [110]) to initiate the vectorial measures. We refer

to figure 1.2 for an illustration of both singular vector fields. We solved the resulting

finite dimensional problem using an interior point solver. Notice that in order to deal

with the nonsmooth cost function G0
h we had to introduce standard gap variables to get

a smooth nonconvex constrained optimization problem. Using [37], we have been able to

recover the locally optimal solutions depicted in figure 1.3 in less than five minutes on

a standard computer. Whereas the results obtained for the triangle and the pentagon

describe globally optimal Steiner trees, the one obtained for the hexagon and its center

is only a local minimizer.

In a second experiment we focus on simple irrigation problems to illustrate the ver-

satility of our approach. We applied exactly the same approach to the pentagon setting

minimizing the functional Gαh . We illustrate our results in figure 1.4 in which we recover

the solutions of Gilbert-Steiner problems for different values of α. Observe that for small

values of α, as expected by Proposition 1.2.4, we recover an irrigation network close to

an optimal Steiner tree.

1.5.2 Convex relaxation and multiple solutions

The convex relaxation of Steiner problem (I0) obtained following [43] reads in our discrete

setting as:

min
(uhi )1≤i<N

sup
(ϕhi )1≤i<N∈K0

h2

2

∑
t∈T

N−1∑
i=1

(∇uhi )t · (ϕhi )t (1.5.2)

where
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Figure 1.4: Gilbert–Steiner solutions associated to parameters α = 0.2, 0.4, 0.6, 0.8 and

1 (from left to right)

K0 =

(ϕhi )1≤i<N ∈ (R2T )N−1 |∀J ⊂ {1, . . . , N − 1},∀t ∈ T ,
∣∣∣∑
j∈J

(ϕhj )t

∣∣∣ ≤ 1

 (1.5.3)

and ∀1 ≤ i < N , uhi ∈ Hh
i . Applying conic duality (see, for instance, Lecture 2 of [19]),

we obtain that the optimal vector (uhi ) solves the following minimization problem

min
(uhi )1≤i<N∈L, (ψhJ )J⊂{1,...,N−1}∈(R2T )2N−1

h2

2

∑
t∈T

∑
J⊂{1,...,N−1}

|(ψhJ)t| (1.5.4)

where L is the set of discrete vectors (uhi )1≤i<N which satisfy ∀i = 1, . . . , N − 1, ∀t ∈ T :

(∇uhi )t =
∑

J⊂{1,...,N−1}, i∈J

(ψhJ)t. (1.5.5)

We solved this convex linearly constrained minimization problem using the conic solver

of the library Mosek [78] on a grid of dimension 300 × 300. Observe that this convex

formulation is also well adapted to the, now standard, large scale algorithms of proximal

type. We studied four different test cases: the vertices of an equilateral triangle, a square,

a pentagon and finally an hexagon and its center as in previous section. As illustrated in

the left picture of figure 1.5, the convex formulation is able to approximate the optimal

structure in the case of the triangle. Due to the symmetries of the problems, the three last

examples do not have unique solutions. Thus, the result of the optimization is expected

to be a convex combination of all solutions whenever the relaxation is sharp, as it can be

observed on the second and fourth case of figure 1.5. Notice that we do not expect this

behaviour to hold for any configuration of points. Indeed the numerical solution in the

third picture of figure 1.5 is not supported on a convex combination of global solutions

since the density in the middle point is not 0. Whereas the local Γ-convergence approach
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of previous section was only able to produce a local minimum in the case of the hexagon

and its center, the convexified formulation gives a relatively precise idea of the set of

optimal configurations (see the last picture of figure 1.5 where we can recognize within

the figure the two global solutions).

Figure 1.5: Results obtained by convex relaxation for 3, 4, 5 and 7 given points
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Chapter 2

Variational approximation of
functionals defined on
1-dimensional connected sets in Rd

In this chapter we consider the Euclidean Steiner tree problem and, more generally,

(single sink) Gilbert–Steiner problems as prototypical examples of variational problems

involving 1-dimensional connected sets in Rd. Following the the analysis for the planar

case presented in the previous chapter, we provide a variational approximation through

Ginzburg–Landau type energies proving a Γ-convergence result for d ≥ 3.

2.1 Introduction

The (single sink) Gilbert–Steiner problem, or α-irrigation problem [21, 112] consists of

finding a network L along which to flow unit masses located at the sources P1, . . . , PN−1

to the target point PN , and in choosing such a network in order to optimize a sublinear

(concave) function of the transported mass density. Geometrically speaking, the network

L can be viewed as L = ∪N−1
i=1 λi, with λi a path connecting Pi to PN , describing the

trajectory of the unit mass located at Pi. To favour branching, one considers a cost which

is a sublinear function of the mass density θ(x) =
∑N−1

i=1 1λi(x), so that, for 0 ≤ α ≤ 1,

we are led to study

(Iα) inf

∫
L
|θ(x)|αdH1(x).

In particular, (I0) reduces to the optimization of the total length of the graph L and

thus corresponds to the classical Euclidean Steiner Tree Problem (STP), i.e., finding

the shortest connected graph which contains the terminal points P1, . . . , PN . For any

α ∈ [0, 1] a solution to (Iα) is known to exist and any optimal network turns out to be a

tree [21].

As pointed out in the previous chapter, the Gilbert–Steiner problem represents the

basic example of problems defined on 1-dimensional connected sets, and it has recently
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received a renewed attention in the Calculus of Variations community. In the last years

available results focused on variational approximations of the problem mainly in the

planar case [30, 44, 82, 29], while higher dimensional approximations have been recently

proposed in [45, 28].

In this chapter we extend to the higher dimensional context the two dimensional

analysis developed in Chapter 1 and we propose a variational approximation for (Iα) in

the Euclidean space Rd, d ≥ 3. We prove a result in the spirit of Γ-convergence (see

Theorem 2.4.6 and Proposition 2.4.5) by considering integral functionals of Ginzburg–

Landau type [5, 6] (see also [97]). This approach builds upon the interpretation of (Iα) as

a mass minimization problem in a cobordism class of integral currents with multiplicities

in a suitable normed group (as studied in [70, 69]). Thus, the relevant energy turns

out to be a convex positively 1-homogeneous functional (a norm), for which one can use

calibration type arguments to prove minimality of certain given configurations [69, 74].

The proposed method is quite flexible and can be adapted to a variety of situations,

including manifold type ambients where a suitable formulation in vector bundles can be

used (this will be treated in a forthcoming work).

Eventually, we remark that another way to approach the problem is to investigate

possible convex relaxations of the limiting functional, as already pointed out in Section

1.4. In the next chapter we will further extend such an approach, so as to include more

general irrigation-type problems (with multiple sources/sinks) and even problems for 1-

dimensional structures on manifolds.

The plan of the chapter is as follows. In Section 2.2 we briefly review the main concepts

needed in the subsequent sections and in Section 2.3 we recall the variational setting for

(Iα) relying on the concept of Ψ-mass. We then provide in Section 2.4 a variational

approximation of the problem in any dimension d ≥ 3 by means of Ginzburg–Landau

type energies.

2.2 Preliminaries and notations

In this section we fix the notation used in the rest of the chapter and some basic facts.

We will follow closely [5, 6], to which we refer for a more detailed treatment.

For any d ≥ 2, we denote by {e1, . . . , ed} the standard basis of Rd, Bd
r is the open ball

in Rd with centre the origin and radius r, Sd−1 = ∂Bd
1 is the unit sphere in Rd, and

αd = |Bd
1 |, βd = (d− 1)d/2αd,

where | · | stands for the Lebesgue measure of the given set. For 0 ≤ k ≤ n we denote

by Hk the k-dimensional Hausdorff measure. Furthermore, we assume we are given N

distinct points P1, . . . , PN in Rd, for n ≥ 3 and N ≥ 2, and we denote A = {P1, . . . , PN}.
We also assume, without loss of generality, that A ⊂ Bd

1 .

Ginzburg–Landau functionals. We consider a continuous potential W : Rd−1 → R
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which vanishes only on Sd−2 and is strictly positive elsewhere, and we require

lim inf
|y|→1

W (y)

(1− |y|)2
> 0 and lim inf

|y|→∞

W (y)

|y|d−1
> 0.

Given ε > 0, Ω ⊂ Rd open and u ∈W 1,d−1(Ω;Rd−1), we set

Fε(u,Ω) :=

∫
Ω
eε(u) dx =

∫
Ω

1

d− 1
|Du|d−1 +

1

ε2
W (u) dx, (2.2.1)

where |Du| is the Euclidean norm of the matrix Du.

Currents. Given k = 0, . . . , n, let
∧k(Rd) be the space of k-covectors on Rd

and
∧
k(Rd) the space of k-vectors. The canonical basis of

∧1(Rd) will be denoted as

{dx1, . . . , dxd}. For a k-covector ω we define its comass as

||ω||∗ = sup{ω · v : v is a simple k-vector with |v| = 1}.

For Ω ⊂ Rd, a k-form on Ω is a map from Ω into the space of k-covectors and a k-

dimensional current is a distribution valued into the space of k-vectors. We denote as

Dk(Ω) the space of all smooth k-forms with compact support and as Dk(Ω) the space

of all k-currents. In particular, the space Dk(Ω) can be identified with the dual of the

space Dk(Ω) and equipped with the corresponding weak∗ topology. Furthermore, for

T ∈ Dk(Ω) and an open subset V ⊂ Ω, we define the mass of T in V as

||T ||V = sup{T (ω) : ω ∈ Dk(V ), ||ω(x)||∗ ≤ 1 for every x}

and we denote the mass of T as ||T || = ||T ||Ω. The boundary of a k-current T is the

(k − 1)-current characterized as ∂T (ω) = T (dω) for every ω ∈ Dk−1(Ω), where dω is

the exterior differential of the form ω. Let T ∈ Dk(Ω) be a current with locally finite

mass, then there exist a positive finite measure µT on Rd and a Borel measurable map

τ : Ω→
∧
k(Rd) with ||τ || ≤ 1 µT -a.e., such that

T (ω) =

∫
Rd
ω(x) · τ(x) dµT (x) for every ω ∈ Dk(Ω). (2.2.2)

We denote |T | = |µT | the variation of the measure µT , so that, given V ⊂ Ω, one has

||T ||V := |T |(V ). A k-current T is said to be normal whenever both T and ∂T have finite

mass, and we denote as Nk(Ω) such space.

Given a k-rectifiable set Σ oriented by τ and a real-valued function θ ∈ L1
loc(Hk Σ),

we define the current T = [[Σ, τ, θ]] as

T (ω) =

∫
Σ
θ(x)ω(x) · τ(x) dHk(x),

and we refer to θ as the multiplicity of the current. A k-current T is called rectifiable

if it can be represented as T = [[Σ, τ, θ]] for a k-rectifiable set Σ and an integer valued

multiplicity θ. If both T and ∂T are rectifiable, we say T is an integral current and

31



denote as Ik(Ω) the corresponding group. A polyhedral current in Rd is a finite sum of

k-dimensional oriented simplexes Si endowed with some constant integer multiplicities σi,

and we generally assume that Si ∩ Sj is either empty of consists of a common face of Si
and Sj . As it is done in [6], we introduce the following flat norm of a current T ∈ Dk(Ω):

FΩ(T ) := inf{||S||Ω : S ∈ Dk+1(Ω) and T = ∂S}, (2.2.3)

and the infimum is taken to be +∞ if T is not a boundary.

Jacobians of Sobolev maps and boundaries. Given Ω ⊂ Rd open and u ∈
W 1,d−2

loc (Ω;Rd−1) ∩ L∞loc(Ω;Rd−1), following [63], we define the (d− 2)-form

j(u) =
d−1∑
i=1

(−1)i−1ui ·
∧
j 6=i

duj

and we set the Jacobian of u to be

Ju :=
1

d− 1
d[j(u)]

in the sense of distributions. This means that for any ω ∈ Dd−1(Ω)

Ju · ω =
1

d− 1

∫
Rd
d∗ω · j(u) dx,

where d∗ is the formal adjoint of d. By means of the ? operator we can identify such a

form with a 1-current ?Ju. In our specific context, the ? operator can be defined, at the

level of vectors/covectors, as follows: given a (d− 1)-covector w, the vector ?w is defined

by the identity

v · ?w = (v ∧ w)(e1 ∧ · · · ∧ ed) for all v ∈ ∧1(Rd).

Jacobians turn out to be the main tool in our analysis due to their relation with

boundaries. In order to highlight such a relation we need some additional notation: given

any segment S in Rd and given δ, γ > 0, let us define the set

U(S, δ, γ) =

{
x ∈ Rd : dist(x, S) < min

{
δ,

γ√
1 + γ2

dist(x, ∂S)

}}
.

If we identify the line spanned by S with R, we can write each point x ∈ U(S, δ, γ) as

x = (x′, x′′) ∈ R× Rd−1, so that

U(S, δ, γ) = {x′ ∈ S : |x′′| ≤ min(δ, γ · dist(x′, ∂S))}.

We can now recall the main result of [5] (rewritten in our specific context).
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Theorem 2.2.1 (Theorem 5.10, [5]). Let M = [[Σ, τ, 1]] be the (polyhedral) boundary of

a polyhedral current N of dimension 2 in Rd, and let F0 denote the union of the faces

of N of dimension 0. Then there exists u ∈ W 1,d−2(Rd;Sd−2) such that ?Ju = αd−1M ,

with u locally Lipschitz in the complement of Σ ∪ F0 and constant outside a bounded

neighbourhood of N , and Du belongs to Lp for every p < d − 1 and satisfies |Du(x)| =

O(1/dist(x,Σ ∪ F0)). Moreover, there exist δ, γ > 0 small enough such that, for each

1-simplex Sk ⊂ Σ, one has

u(x) =
x′′

|x′′|
for all x = (x′, x′′) ∈ U(Sk, δ, γ).

2.3 Gilbert–Steiner problems and currents

In this section we briefly review (this time in terms of currents) the approach used in

[25, 27], which is to say the framework introduced by Marchese and Massaccesi in [70, 69],

and describe Gilbert–Steiner problems in terms of a minimum mass problem for a given

family of rectifiable 1-currents in Rd.
The set of possible minimizers for (Iα) can be reduced to the set of (connected) acyclic

graphs L that are described as the superposition of N − 1 curves.

Definition 2.3.1. We define G(A) to be the set of acyclic graphs L of the form

L =
N−1⋃
i=1

λi,

where each λi is a simple rectifiable curve connecting Pi to PN and oriented by an H1-

measurable unit vector field τi, with τi(x) = τj(x) for H1-a.e. x ∈ λi ∩ λj, and we denote

by τ the corresponding global orientation, i.e., τ(x) = τi(x) for H1-a.e. x ∈ λi.

It can be shown (see, e.g., [70, Lemma 2.1]), that (Iα) is equivalent to

min

{∫
L
|θ(x)|αdH1, L ∈ G(A), θ(x) =

N−1∑
i=1

1λi(x)

}
. (2.3.1)

Given now L ∈ G(A), we identify each component λi with the corresponding 1-current

Λi = [[λi, τi, 1]] and we consider Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rd)]N−1.

Definition 2.3.2. We define L(A) to be the set Λ ∈ [I1(Rd)]N−1 such that each compo-

nent is of the form Λi = [[λi, τi, 1]] for some L ∈ G(A), and write Λ ≡ ΛL to highlight the

supporting graph.

Given Λ = (Λ1, . . . ,ΛN−1) ∈ [N1(Rd)]N−1 and a function ϕ ∈ C∞c (Rd;Rd×N−1), with

ϕ = (ϕ1, . . . , ϕN−1), one sets

〈Λ, ϕ〉 =

N−1∑
i=1

〈Λi, ϕi〉
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and for a norm Ψ on RN−1, we define the Ψ-mass measure of Λ as

|Λ|Ψ(Ω) := sup
ω∈C∞c (Ω;Rd)

h∈C∞c (Ω;RN−1)

{〈Λ, ω ⊗ h〉 , |ω(x)| ≤ 1 , Ψ∗(h(x)) ≤ 1} , (2.3.2)

for Ω ⊂ Rd open, where Ψ∗(y) = supx∈RN−1〈y, x〉−Ψ(x) is the dual norm to Ψ w.r.t. the

scalar product on RN−1, and we let the Ψ-mass norm of Λ to be

||Λ||Ψ = |Λ|Ψ(Rd). (2.3.3)

As described in [70, 25, 27], the problem defined in (2.3.1) is equivalent to

inf{||Λ||Ψα : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rd)]N−1, ∂Λi = δPN − δPi}, (2.3.4)

where Ψα is the `1/α norm on RN−1 for 0 < α ≤ 1, and the `∞ norm for α = 0. This

means that any minimizer Λ̄ of (2.3.4) is of the form Λ̄ = ΛL̄ for a minimizer L̄ of (2.3.1),

and given any minimizer L̄ of (2.3.1) then the corresponding ΛL̄ minimizes (2.3.4).

Remark 2.3.3. In [70, 69] problem (2.3.4) is introduced in the context of a mass mini-

mization problem for integral currents with coefficients in a suitable normed group. In

that case, the Ψ-mass defined above is simply the mass of the current deriving from the

particular choice of the norm for the coefficients group.

Calibrations. One of the main advantages of formulation (2.3.4) is the possibility to

introduce calibration-type arguments for proving minimality of a given candidate. For a

fixed Λ̄ ∈ [N1(Rd)]N−1, a (generalized) calibration associated to Λ̄ is a linear and bounded

functional ϕ : [N1(Rd)]N−1 → R such that

(i) ϕ(Λ̄) = ||Λ̄||Ψ,

(ii) ϕ(∂R) = 0 for any R ∈ [N2(Rd)]N−1,

(iii) ϕ(Λ) ≤ ||Λ||Ψ for any Λ ∈ [N1(Rd)]N−1.

The existence of a calibration is a sufficient condition to prove minimality in (2.3.4).

Indeed, let Λ̄ be a competitor in (2.3.4) and ϕ be a calibration for Λ̄. Consider any

Λ ∈ [N1(Rd)]N−1, with ∂Λi = δPN − δPi . By assumption, for each i = 1, . . . , N − 1, one

has ∂(Λ̄i − Λi) = 0, so that there exists a 2-current Ri such that Λ̄i = Λi + ∂Ri. Hence,

||Λ̄||Ψ
(i)
= ϕ(Λ̄) = ϕ(Λ + ∂R) = ϕ(Λ) + ϕ(∂R)

(iii), (ii)

≤ ||Λ||Ψ

which proves the minimality of Λ̄ in (2.3.4) (and, more generally, also minimality among

normal currents). We also remark that once a calibration exists it must calibrate all

minimizers.

A calibration-type argument. The general idea behind calibrations can be used

to tackle minimality in suitable subclasses of currents, as long as the previous derivation

can be proved to still hold true. Consider, as displayed in figure 2.1, the Steiner tree
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Figure 2.1: We consider the Steiner tree problem for 4 vertices obtained as “opposite”

couples of vertices of a rectangular cuboid.

problem for four points in R3 with P1 = (−3/2,−
√

3/2, 0), P2 = (−3/2,
√

3/2, 0), P3 =

(3/2, 0,
√

3/2) and P4 = (3/2, 0,−
√

3/2). Let us identify the two points S1 = (−1, 0, 0)

and S2 = (1, 0, 0), and fix as norm Ψ the `∞ norm on the coefficients space R3. Given

a list of points Q1, . . . , Qk, we write as [Q1, . . . , Qk] the polyhedral current connecting

them and oriented from Q1 to Qk. Our aim is to prove that

Λ̄ = ([P1, S1, S2, P4], [P2, S1, S2, P4], [P3, S2, P4])

is a minimizer of the Ψ-mass || · ||∞ ≡ || · ||`∞ among all currents Λ ∈ B, where B ⊂
[N1(R3)]3 is the family of currents Λ satisfying the given boundary conditions ∂Λi =

δP4 − δPi , and such that there exist a positive finite measure µΛ on R3, a unit vector

field τΛ and a function gΛ : R3 → {e1, e2, e3, e1 + e2, e1 + e2 + e3} such that Λi(ω) =∫
R3 g

Λ
i (x)ω · τΛ dµΛ. Let us formally identify any such object as Λ = (τΛ⊗ gΛ)µΛ (loosely

speaking, we consider only the family of normal rank one currents with a prescribed

superposition pattern for different flows). It can be easily seen that Λ̄ ∈ B and for any

Λ ∈ B we have ||Λ||∞ =
∫
R3 ||gΛ(x)||∞ dµΛ(x). For proving minimality of Λ̄ for the

`∞-mass among all competitors in B we can use a calibration argument: let us consider

ϕ : [N(R3)]3 → R defined as

ϕ(Λ) =
3∑
i=1

〈Λi, ωi〉

where ωi are fixed to be

ω1 =
1

2
dx1 +

√
3

2
dx2, ω2 =

1

2
dx1 −

√
3

2
dx2, ω3 = −1

2
dx1 −

√
3

2
dx3.

One can show by direct computations that ϕ(Λ̄) = ||Λ̄||∞, so that given any other Λ ∈ B
and R ∈ [N2(R3)]3 such that Λ̄ = Λ + ∂R, we have ||Λ̄||∞ = ϕ(Λ̄) = ϕ(Λ) + ϕ(∂R), for
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which

ϕ(Λ) =

3∑
i=1

∫
R3

gΛ
i (x)ωi · τΛ dµΛ ≤

∫
R3

||gΛ||∞ dµΛ = ||Λ||∞

because gΛ ∈ {e1, e2, e3, e1 + e2, e1 + e2 + e3} for µΛ-a.e. x, and

ϕ(∂R) =
3∑
i=1

〈Ri, dωi〉 = 0.

Hence, ||Λ̄||∞ ≤ ||Λ||∞ for any Λ ∈ B. Up to permutations, the class B represents every

possible acyclic graph L ∈ G({P1, P2, P3, P4}) with 2 additional Steiner points and thus

the support of Λ̄ is an optimal Steiner tree within that family of graphs. Remark that

any minimal configuration cannot have 0 or 1 Steiner points because these configurations

violate the 120◦ angle condition, so that we can conclude that the support of Λ̄ is indeed

an optimal Steiner tree. This extends for the first time to an higher dimensional context

calibration-type arguments which up to now have been extensively used almost exclusively

in the planar case (e.g., in [70, 69]).

In chapter 1, we investigate a variational approximation of (2.3.4) in the two dimen-

sional case, relying on a further reformulation of the problem within a suitable family of

SBV functions and then providing a variational approximation based on Modica–Mortola

type energies. Here, instead, we work in dimension three and higher and address (2.3.4)

directly by means of Ginzburg–Landau type energies.

2.4 Variational approximation of Ψ-masses

In this section we state and prove our main results, namely Proposition 2.4.5 and Theo-

rem 2.4.6, concerning the approximation of minimizers of Ψ-masses functionals through

Jacobians of minimizers of Ginzburg–Landau type functionals, much in the spirit of [6].

2.4.1 Ginzburg–Landau functionals with prescribed boundary data

In this section, following closely [6], we consider Ginzburg–Landau functionals for func-

tions having a prescribed trace v on the boundary of a given open Lipschitz domain.

Domain and boundary datum. Fix two points P,Q ∈ Rd, with max(|P |, |Q|) ≤ 1,

and let Σ be a simple acyclic polyhedral curve joining P and Q, and oriented from Q to

P . Let S1, . . . , SK be the K segments composing Σ and, for δ, γ > 0 small enough define

U =

K⋃
k=1

U(Sk, δ, γ), and Ωδ,γ = Bd
10 \ Ū . (2.4.1)

Consider the boundary datum v ∈W 1−1/(d−1),d−1(∂Ωδ,γ ; Sd−2) defined as

v(x) =


x′′

|x′′|
for x = (x′, x′′) ∈ ∂U

ed−1 for x ∈ ∂Bd
10

(2.4.2)
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By construction one has

?Jv = αd−1(δQ − δP ).

In this context, for only two points, the Ψ-mass reduces (up to a constant) to the usual

mass, and thus we can directly rely on Corollary 1.2 of [6], which yields the following.

Theorem 2.4.1. For δ, γ > 0 small enough, consider the Lipschitz domain Ωδ,γ defined

in (2.4.1) and let v be the boundary datum defined in (2.4.2).

(i) Consider a (countable) sequence {uε}ε ⊂ W 1,d−1(Ωδ,γ ;Rd−1) with trace v on ∂Ωδ,γ

such that Fε(uε,Ω
δ,γ) = O(| log ε|). Then, up to subsequences, there exists a recti-

fiable 1-current M supported in Ω̄δ,γ, with ∂M = δQ − δP , such that the Jacobians

?Juε converge in the flat norm FRd to αd−1M and

lim inf
ε→0

Fε(uε,Ω
δ,γ)

| log ε|
≥ βd−1||M || (2.4.3)

(ii) Given a rectifiable 1-current M supported in Ω̄δ,γ such that ∂M = δQ−δP , for every

ε > 0 we can find uε such that uε = v on ∂Ωδ,γ, FRd(?Juε − αd−1M)→ 0 and

lim
ε→0

Fε(uε,Ω
δ,γ)

| log ε|
= βd−1||M ||

In particular, given {uε}ε a sequence of minimizers of Fε(·,Ωδ,γ) with trace v on ∂Ωδ,γ,

then Fε(uε,Ω
δ,γ) = O(| log ε|) and, possibly passing to a subsequence, the Jacobians ?Juε

converge in the flat norm FRd to αd−1M , where M minimizes the mass among all recti-

fiable 1-currents supported on Ω̄δ,γ with boundary δQ − δP .

Point (i) of the previous theorem corresponds to the derivation of Section 1.3.1, where

we consider Modica–Mortola functionals for maps with prescribed jump, and here the

prescribed jump is somehow replaced by the prescribed boundary datum “around” the

drift Σ. As before, the idea is now to extend the previous (single-component) result to

problems involving Ψ-masses for N ≥ 3.

2.4.2 The approximating functionals FΨ
ε

We now consider Ginzburg–Landau approximations for Ψ-masses whenever we are given

N ≥ 3 points. Fix then a norm Ψ: RN−1 → [0,+∞) on RN−1, and consider the Ψ-mass

defined in (2.3.3).

Construction of the domain. Fix a family of N − 1 simple polyhedral curves

γi each one connecting Pi to PN and denote by Γi = [[γi, τi, 1]] the associated 1-current

(oriented from PN to Pi). Suppose, without loss of generality, that γi ∩ γj = {PN} for

any i 6= j, i.e., any two curves do not intersect each other. Every γi can then be viewed as

the concatenation of mi (oriented) segments Si,1, . . . , Si,mi , for each of which we consider

the neighbourhood

U δ,γi,j = U(Si,j , δ, γ)
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for δ, γ > 0. Define now V δ,γ
i = ∪jU δ,σi,j and observe that, by finiteness, we can fix δ, γ

sufficiently small such that V̄ δ,γ
i ∩ V̄ δ,γ

j = {PN} for any i 6= j. The domain we are going

to work with is

Ωδ,γ = Bd
10 \

(
∪iV̄ δ,γ

i

)
(2.4.4)

Boundary datum and approximating functionals. Following the same idea used

in the previous section, fix N − 1 functions vi ∈W 1−1/(d−1),d−1(∂Ωδ,γ ;Sd−2) such that

vi(x) =


x′′

|x′′|
for x = (x′, x′′) ∈ ∂U δ,γi,j

ed−1 for x ∈ ∂Ωδ,γ \ ∂V δ,γ
i

By construction vi “winds around” γi and is constant on the rest of the given boundary.

As such, one sees that ?Jvi = αd−1(δPN − δPi). As our functional space we consider

Hδ,γ
i = {u ∈W 1,d−1(Ωδ,γ ;Rd−1) : u|∂Ωδ,γ = vi}, Hδ,γ = Hδ,γ

1 × · · · ×Hδ,γ
N−1, (2.4.5)

and for U = (u1, . . . , uN−1) ∈ Hδ,γ and ~eε(U) = (eε(u1), . . . , eε(uN−1)), we define the

approximating functionals

FΨ
ε (U,Ωδ,γ) = |~eε(U) dx|Ψ(Ωδ,γ), (2.4.6)

or equivalently, thanks to (2.3.2),

FΨ
ε (U,Ωδ,γ) = sup

ϕ∈C∞c (Ωδ,γ ;RN−1)

{
N−1∑
i=1

∫
Ωδ,γ

ϕieε(ui) dx, Ψ∗(ϕ(x)) ≤ 1

}
. (2.4.7)

Lower-bound inequality Results on “compactness” and lower-bound inequality

presented in the previous section extends to FΨ
ε as follows.

Proposition 2.4.2. Consider a (countable) sequence {Uε}ε ⊂ Hδ,γ such that FΨ
ε (Uε,Ω

δ,γ) =

O(| log ε|). Then, up to subsequences, there exists a family M = (M1, . . . ,MN−1) of recti-

fiable 1-currents supported in Ω̄δ,γ, with ∂Mi = δPN − δPi, such that the Jacobians ?Juε,i
converge in the flat norm FRd to αd−1Mi and

lim inf
ε→0

FΨ
ε (Uε,Ω

δ,γ)

| log ε|
≥ βd−1||M ||Ψ. (2.4.8)

Proof. For each i = 1, . . . , N − 1, by definition of FΨ
ε we have∫

Ωδ,γ
eε(uε,i) dx ≤ Ψ∗(ei)F

Ψ
ε (Uε,Ω

δ,γ) = O(| log ε|)

and the first part of the statement follows applying Proposition 2.4.1 componentwise. Fix

now ϕ ∈ C∞c (Rd;RN−1) with ϕi ≥ 0 for any i = 1, . . . , N − 1 and Ψ∗(ϕ(x)) ≤ 1 for all x.
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Then, thanks to (2.4.3), we have

βd−1

N−1∑
i=1

〈Mi, ϕi〉 ≤
1

| log ε|

N−1∑
i=1

lim inf
ε→0

∫
Ωδ,γ

ϕieε(uε,i) dx

≤ 1

| log ε|
lim inf
ε→0

N−1∑
i=1

∫
Ωδ,γ

ϕieε(uε,i) dx ≤ lim inf
ε→0

FΨ
ε (Uε,Ω

δ,γ)

| log ε|
,

which yields (2.4.8) taking the supremum over ϕ.

�

Upper-bound inequality and behaviour of minimizers. We now state and

prove a version of an upper-bound inequality for the functionals FΨ
ε which is tailored to

investigate the behaviour of Jacobians of minimizers of FΨ
ε .

Proposition 2.4.3 (Upper-bound inequality). Let Λ = ΛL ∈ L(A), with L ∈ G(A) an

acyclic graph supported in Ω̄δ,γ. Then there exists a sequence {Uε}ε ⊂ Hδ,γ such that

FRd(?Juε,i − αd−1Λi)→ 0, and

lim sup
ε→0

FΨ
ε (Uε,Ω

δ,γ)

| log ε|
≤ βd−1||Λ||Ψ. (2.4.9)

Proof. Step 1. We assume that L = ∪iλi ∈ G(A) is an acyclic polyhedral graph fully

contained in Ωδ,γ , which is to say λi∩∂Ωδ,γ = {Pi, PN}, and let τ be its global orientation.

Such a graph L can then be decomposed into a family of K oriented segments S1, . . . , SK ,

with orientation given by τ . For each segment Sk consider the set U
′
k = U(Sk, δ

′, γ′), for

parameters 0 < δ′ < δ and 0 < γ′ < γ, and choose δ′, γ′ small enough so that sets U ′k are

pairwise disjoint. Define as V
′
i the union of the U

′
k covering λi, and let V ′ = ∪iV ′i = ∪kU ′k.

Eventually, define vectors gk ∈ RN−1 as gki = 1 if Sk ⊂ λi and gki = 0 otherwise. Collect

these vectors in a function g : V ′ → RN−1 defined as g(x) = gk for x ∈ U ′k.
For the construction of the approximating sequence we relay on the following fact,

which is a direct consequence of Theorem 2.2.1: for each i = 1, . . . , N − 1 there exists

ui ∈W 1,d−2(Ωδ,γ ; Sd−2) and a finite set of points F i0 such that:

(i) ui|∂Ωδ,γ = vi, which is to say ui satisfies the given boundary conditions, and fur-

thermore ?Jui = αd−1Λi;

(ii) ui is locally Lipschitz in Ω̄δ,γ \ (λi ∪ F i0) and

|Dui(x)| = O(1/dist(x, γi ∪ λi ∪ F i0));

(iii) within the set V ′ every function behaves like

ui(x) =


x′′

|x′′|
for x = (x′, x′′) ∈ V ′i

ed−1 for x ∈ Ωδ,γ \ V ′i
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In particular, we observe that for any k ∈ {1, . . . ,M}, if Sk ⊂ λi and Sk ⊂ λj , then

ui = uj on U
′
k by (iii). Thus, we can define a “global” function u : V ′ → Sd−2 such that

u(x) = x′′/|x′′| for any x ∈ V ′ and, consequently, ui|V ′ = gi(x)u(x).

Starting form each ui we define our family of approximating maps: for any ε ∈ (0, δ′)

let Ωδ,γ
ε = Ωδ,γ \ ∪iB2ε(Pi), and let uε,i : Ωδ,γ

ε → Rd−1 be defined as

uε,i(x) = hε,i(x)ui(x) where hε,i(x) = min

(
1,

dist(x, λi ∪ F i0)

ε

)
. (2.4.10)

Complete these maps on B2ε(Pi)∩Ωδ,γ by means of a Lipschitz extension of the function

uε,i with Lipschitz constant of the order of 1/ε, using vi as boundary value on B2ε(Pi) ∩
∂Ωδ,γ . The resulting maps are locally Lipschitz in the complement of ∪k∂Sk, belong

to W 1,d−1(Ωδ,γ ;Rd−1) and by construction uε,i|∂Ωδ,γ = vi, i.e., uε,i ∈ Hδ,γ
i . Each uε,i

converges strongly to ui in W 1,d−2(Ωδ,γ ;Rd−1) and, in particular, the Jacobians ?Juε,i
converge to ?Jui = αd−1Λi in the flat norm FRd (see Remark 2.11 of [6]).

We now consider the energy behaviour, working locally on every U
′
k: for ε ∈ (0, δ′),

let us consider
U
′
k,ε,1 := {x ∈ U ′k : dist(x, Sk) ≤ ε} ∩ Ωδ,γ

ε

U
′
k,ε,2 := (U

′
k \ U

′
k,ε,1) ∩ Ωδ,γ

ε

Vout := Ωδ,γ
ε \ V

′

Let ϕ = (ϕ1, . . . , ϕN−1), with ϕi ≥ 0 and Ψ∗(ϕ) ≤ 1, we compute

∫
Ωδ,γ

N−1∑
i=1

ϕieε(uε,i) dx ≤
K∑
k=1

[∫
U ′k,ε,1

N−1∑
i=1

ϕieε(uε,i) dx+

∫
U ′k,ε,2

N−1∑
i=1

ϕieε(uε,i) dx

]
+

+
N∑
j=1

∫
B2ε(Pj)

N−1∑
i=1

ϕieε(uε,i) dx+

∫
Vout

N−1∑
i=1

ϕieε(uε,i) dx.

Fix 1 ≤ k ≤ K and consider the sets of indices Ik = {i : Sk ⊂ γi} and Ick = {1, . . . , N −
1} \ Ik. Let us analyse separately the four kinds of integrals appearing in the above

expression.

• The first family of integrals on each U ′k,ε,1 splits as

∫
U ′k,ε,1

N−1∑
i=1

ϕieε(uε,i) dx =

∫
U ′k,ε,1

∑
i∈Ik

ϕieε(uε,i) dx+

∫
U ′k,ε,1

∑
i∈Ick

ϕieε(uε,i) dx.

We distinguish between two case.

Case i ∈ Ik: we have |Dui(x)| ≤ C/dist(x, Sk) thanks to (iii), and therefore

|Duε,i(x)| ≤ hε,i(x)|Dui(x)|+ |Dhε,i(x)||ui(x)| ≤ C

ε
.
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Using that W (uε,i) ≤ C and |U ′k,ε,1| ≤ Cεd−1, we obtain

Fε(uε,i, U
′
k,ε,1) ≤ C for all k, i such that Sk ⊂ λi. (2.4.11)

Case i ∈ Ick: in this situation we have uε,i = ui on U ′k,ε,1 and dist(x, F i0) ≤
Cdist(x, γi ∪ λi). In particular, combining (ii) and (2.4.10), we have

|Duε,i(x)| ≤ C/dist(x, F i0).

Using the fact that W (uε,i) = 0 in the complement of an ε-neighbourhood (λi∪F i0)ε
of λi ∪ F i0, we get

Fε(uε,i, U
′
k,ε,1) ≤ C

∫
U ′k,ε,1

dx

dist(x, F i0)d−1
+
C

ε2
|(λi ∪ F i0)ε|

≤ C for all k, i such that Sk * λi.

(2.4.12)

Combining (2.4.11) and (2.4.12) we obtain∫
U ′k,ε,1

N−1∑
i=1

ϕieε(uε,i) dx ≤ C for all 1 ≤ k ≤ K, 1 ≤ i ≤ N − 1. (2.4.13)

• The second family of integrals on each U ′k,ε,2 splits analogously into

∫
U ′k,ε,2

N−1∑
i=1

ϕieε(uε,i) dx =

∫
U ′k,ε,2

∑
i∈Ik

ϕieε(uε,i) dx+

∫
U ′k,ε,2

∑
i∈Ick

ϕieε(uε,i) dx.

Let us distinguish the same two cases as above.

Case i ∈ Ik: here we have uε,i = ui within U ′k,ε,2 and so uε,i takes values in Sd−2,

reducing this way eε(uε,i) to 1
d−1 |Dui|

d−1. For every x ∈ U ′k one has

|Dui(x)| =
∣∣∣∣D x′′

|x′′|

∣∣∣∣ =
(d− 2)1/2

|x′′|
.

Hence,

Fε(uε,i, U
′
k,ε,2) ≤ H1(Sk)

(d− 2)(d−1)/2

d− 1

∫
Bd−1
δ′ \B

d−1
ε

dx′′

|x′′|d−1

≤ H1(Sk)
(d− 2)(d−1)/2

d− 1

∫ 1

ε

(d− 1)αd−1ρ
d−2

ρd−1
dρ

≤ βd−1| log ε| · H1(Sk) for all k, i such that Sk ⊂ λi.

(2.4.14)

Case i ∈ Ick: the same derivation done for obtaining (2.4.12) applies, so that

Fε(uε,i, U
′
k,ε,2) ≤ C for all k, i such that Sk * λi. (2.4.15)
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Taking into account (2.4.14), (2.4.15), and that
∑

i∈Ik ϕi(x) =
∑N−1

i=1 gki ϕi(x) ≤
Ψ(gk), we have∫

U ′k,ε,2

N−1∑
i=1

ϕieε(uε,i) dx ≤ C + Ψ(gk)βd−1| log ε| · H1(Sk) (2.4.16)

for all 1 ≤ k ≤ K, 1 ≤ i ≤ N − 1.

• For any given j = 1, . . . , N the contribution on B2ε(Pj) is of order ε, so that in

particular ∫
B2ε(Pj)

N−1∑
i=1

ϕieε(uε,i) dx ≤ C. (2.4.17)

• The last integral on Vout can be treated as in the derivation of (2.4.12) and (2.4.15),

so that we have∫
Vout

N−1∑
i=1

ϕieε(uε,i) dx ≤ C for all 1 ≤ k ≤ K, 1 ≤ i ≤ N − 1. (2.4.18)

If we combine (2.4.13), (2.4.16), (2.4.17), (2.4.18), divide by | log ε|, take ε → 0 and

consider the supremum over ϕ in view of (2.4.7), we have

lim sup
ε→0

FΨ
ε (Uε,Ω

δ,γ)

| log ε|
≤ βd−1|Λ|Ψ(Ωδ,γ) = βd−1||Λ||Ψ,

which is the sought for conclusion.

Step 2. Let us now consider the case ΛL ≡ Λ = (Λ1, . . . ,ΛN−1), L = ∪iλi and the

λi are not necessarily polyhedral and possibly lying on the boundary of Ωδ,γ . We rely on

Lemma 2.4.4 below to construct a sequence of acyclic polyhedral graphs Lm = ∪iλmi , λmi
contained in Ωδ,γ , and s.t. the Hausdorff distance dH(λmi , λi) <

1
m for all i = 1, . . . , N−1,

and ||ΛLm ||Ψ ≤ ||ΛL||Ψ + 1
m . For ΛLm = (Λm1 , . . . ,Λ

m
N−1), by step 1 we may construct

a sequences {Umε }ε such that FRd(?Ju
m
ε,i − αd−1Λmi ) → 0 as ε → 0 for each m and, in

particular,

lim sup
ε→0

FΨ
ε (Umε ,Ω

δ,γ)

| log ε|
≤ βd−1||ΛLm ||Ψ ≤ βd−1||Λ||Ψ +

C

m
.

We deduce that FRd(?Ju
m
εm,i
− αd−1Λi)→ 0 and

lim sup
m→∞

FΨ
εm(Umεm ,Ω

δ,γ)

| log εm|
≤ βd−1||Λ||Ψ

for a subsequence εm → 0 asm→ +∞. Conclusion (2.4.9) follows. �

We recall Lemma 1.3.10, which provides the relevant approximation used above, where

polyhedral approximations are here supposed to live within the set Ωδ,γ (i.e., with no

relevant part on the boundary).
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Lemma 2.4.4. Let L ∈ G(A), L = ∪N−1
i=1 λi, be an acyclic graph connecting P1, . . . , PN

with λi ⊂ Ω̄δ,γ. Then for any η > 0 there exists L′ ∈ G(A), L′ = ∪N−1
i=1 λ

′
i, with λ′i ⊂

Ωδ,γ ∪ {Pi, PN} a simple polyhedral curve of finite length connecting Pi to PN , such that

the Hausdorff distance dH(λi, λ
′
i) < η and ||ΛL′ ||Ψ ≤ ||ΛL||Ψ + η.

Thanks to the previous propositions we are now able to prove our main result on the

behaviour of the Jacobians of the minimizers.

Proposition 2.4.5 (Behaviour of minimizers). Let {Uε}ε ⊂ Hδ,γ be a sequence of mini-

mizers for FΨ
ε in Hδ,γ. Then (up to a subsequence) the Jacobians ?Juε,i converge in the

flat norm FRd to αd−1Mi, with M = (M1, . . . ,MN−1) a minimizer of

inf{||Λ||Ψ : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rd)]N−1, spt Λi ⊂ Ω̄δ,γ , ∂Λi = δPN − δPi}.
(2.4.19)

Proof. Let Λ = ΛL canonically representing an acyclic graph L ⊂ Ω̄δ,γ , and let {Vε}ε ⊂
Hδ,γ such that lim supε→0

FΨ
ε (Vε,Ωδ,γ)
| log ε| ≤ ||Λ||Ψ and FRd(?Jvε,i − αd−1Λi) → 0. Since

FΨ
ε (Uε,Ω

δ,γ) ≤ FΨ
ε (Vε,Ω

δ,γ), by Proposition 2.4.2 there exists a familyM = (M1, . . . ,MN−1)

of rectifiable 1-currents supported in Ω̄δ,γ , with ∂Mi = δPN −δPi , such that the Jacobians

?Juε,i converge in the flat norm FRd to αd−1Mi. Then, by (2.4.8), we have

βd−1||M ||Ψ ≤ lim inf
ε→0

FΨ
ε (Uε,Ω

δ,γ)

| log ε|
≤ lim sup

ε→0

FΨ
ε (Vε,Ω

δ,γ)

| log ε|
≤ βd−1||Λ||Ψ.

Given any other generic Λ ∈ [I1(Rd)]N−1 with spt Λi ⊂ Ω̄δ,γ and ∂Λi = δPN − δPi , as one

does in the derivation of (2.3.1) (see, e.g., Lemma 2.1 in [70]), we can always find L̄ ∈ G(A)

supported in Ω̄δ,γ such that ||ΛL̄||Ψ ≤ ||Λ||Ψ, and thus M minimizes (2.4.19) as desired.

�

Finally, let us highlight the case Ψ = Ψα, where Ψα(g) = |g|1/α for 0 < α ≤ 1 and

Ψ0(g) = |g|∞, and denote F 0
ε ≡ FΨ0

ε and Fαε ≡ FΨα
ε . For U = (u1, . . . , uN−1) ∈ Hδ,γ we

have

F 0
ε (U,Ωδ,γ) =

∫
Ωδ,γ

sup
i
eε(ui) dx, Fαε (U,Ωδ,γ) =

∫
Ωδ,γ

(
N−1∑
i=1

eε(ui)
1/α

)α
dx.

(2.4.20)

Theorem 2.4.6. Let {P1, . . . , PN} ⊂ Rd such that maxi |Pi| = 1, and let Ωδ,γ be defined

as in (2.4.4) for δ, γ small enough, with γ = c̄δ. For 0 ≤ α ≤ 1 and 0 < ε � δ, denote

Fα,δε ≡ Fαε (·,Ωδ,γ), with Fαε (·,Ωδ,γ) defined in (2.4.20).

(i) Let {Uα,δε }ε be a sequence of minimizers for Fα,δε in Hδ,γ, with Hδ,γ defined in

(2.4.5). Then, up to subsequences, the Jacobians ?Juα,δε,i converge in the flat norm

FRd to αd−1M
α,δ
i , where Mα,δ = (Mα,δ

1 , . . . ,Mα,δ
N−1) minimizes (2.4.19).
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(ii) Let Mα,δ = (Mα,δ
1 , . . . ,Mα,δ

N−1) be a sequence of minimizers for (2.4.19). Then, up

to subsequences, we have FRd(M
α,δ
i −Mα

i )→ 0 as δ → 0 for every i = 1, . . . , N −1,

with Mα = (Mα
1 , . . . ,M

α
N−1) a minimizer of

inf{||Λ||Ψα : Λ = (Λ1, . . . ,ΛN−1) ∈ [I1(Rd)]N−1, ∂Λi = δPN − δPi} (2.4.21)

and, in turn, Mα = ΛLα for an optimizer Lα of the α-irrigation problem (Iα) with

terminals P1, . . . , PN .

Proof. In view of Proposition 2.4.5 it remains to prove item (ii). For each i = 1, . . . , N−1,

the sequence {Mα,δ
i }δ is equibounded in mass, hence there exists a rectifiable 1-current

Mα
i , with ∂Mα

i = δPN − δPi , such that Mα,δ
i → Mα

i in the flat norm. Let us call

Mα = (Mα
1 , . . . ,M

α
N−1) the limiting family and let M̄α = (M̄α

1 , . . . , M̄
α
N−1) be a mini-

mizer of (2.4.21). In the same spirit of Lemma 2.4.4, starting with our minimizer M̄α,

we can construct a new family M̃α,δ = (M̃α,δ
1 , . . . , M̃α,δ

N−1) supported in Ω̄δ,γ such that

||M̃α,δ||Ψα ≤ ||M̄α,δ||Ψα + Cδ. Hence,

||M̄α||Ψα ≤ ||Mα||Ψα ≤ lim inf
δ→0

||Mα,δ||Ψα ≤ lim inf
δ→0

||M̃α,δ||Ψα

≤ lim inf
δ→0

||M̄α,δ||Ψα + Cδ = ||M̄α||Ψα ,

and so Mα has to be a minimizer of (2.4.21). The correspondence of minimizers of

(2.4.21), which is to say of (2.3.4), with minimizers of (Iα) follows by the discussion of

Section 2.3.

�
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Chapter 3

A convex approach to the
Gilbert–Steiner problem

We describe a convex relaxation for the Gilbert–Steiner problem both in Rd and on

manifolds, extending the framework proposed in Chapter 1, and we discuss its sharpness

by means of calibration type arguments. The minimization of the resulting problem is

then tackled numerically and we present results for an extensive set of examples. In

particular we are able to address the Steiner tree problem on surfaces.

3.1 Introduction

In the Steiner tree problem, at least in its classical Euclidean version, we are given

N distinct points P1, . . . , PN in Rd and we have to find the shortest connected graph

containing the points Pi. From an abstract point of view this amounts to find a graph

solving the variational problem

(STP) inf{H1(L), L connected, L ⊃ {P1, . . . , PN}},

whereH1 denotes the 1-dimensional Hausdorff measure in Rd. An optimal (not necessarily

unique) graph L always exists and, by minimality, L is indeed a tree. Every optimal tree

can be described as a union of segments connecting the endpoints and possibly meeting

at 120◦ in at most N − 2 further branch points, called Steiner points.

On the other hand, the (single sink) Gilbert–Steiner problem [59] consists of finding

a network L along which to flow unit masses located at the sources P1, . . . , PN−1 to the

unique target point PN . Such a network L can be viewed as L = ∪N−1
i=1 λi, with λi a path

connecting Pi to PN , corresponding to the trajectory of the particle located at Pi. To

favour branching, one is led to optimize a cost which is a sublinear (concave) function of

the mass density θ(x) =
∑N−1

i=1 1λi(x): i.e., for 0 ≤ α ≤ 1, find

(Iα) inf

{
Eα(L) =

∫
L
|θ(x)|αdH1(x)

}
.

45



Problem (Iα) can be seen as a particular instance of an α-irrigation problem [21, 112]

involving the irrigation of the atomic measures
∑N−1

i=1 δPi and (N − 1)δPN , and we notice

that (I1) corresponds to the Monge optimal transport problem, while (I0) corresponds to

(STP) (the energy to be optimized reduces to the length of L). As for (STP) a solution

to (Iα) is known to exist and any optimal network L turns out to be a tree [21].

The Steiner tree problem is known to be computationally hard (even NP complete in

certain cases [65]), nonetheless in R2 and R3 we have efficient algorithms which allow us

to obtain explicit solutions (see, for instance, [110, 54]), while a comprehensive survey on

PTAS algorithms for (STP) can be found in [13, 14]. However, the general applicability

of these schemes restricts somehow to the Steiner tree case. For this reason we stick here

with a more abstract variational point of view, which allows us to treat in a unified way

the Steiner and Gilbert–Steiner problems.

Many different variational approximations for (STP) and/or (Iα) have been proposed,

starting form the simple situation where the points Pi lie on the boundary of a convex

set: in this case (STP) is known to be an instance of an optimal partition problem

[10, 11]. More recently several authors treated these problems within the framework

of minimal networks on covering spaces [8, 41, 42] and in the spirit of Γ-convergence

using approximating functionals modelled on Modica–Mortola or Ambrosio–Tortorelli

type energies, initially focusing mainly on the two dimensional case [82, 30, 44], lately

extending the same ideas also to higher dimensions [45, 28].

Within this sole we introduced in Chapter 1 a Γ-convergence type result in the planar

case and at the same time we propose a convex framework for the Steiner and Gilbert–

Steiner problem. The approach moves from the work of Marchese and Massaccesi [70]

and considers ideas from [43] in order to obtain a convex relaxation of the energy we

are dealing with. The aim of this chapter is then to provide an extensive numerical

investigation of the relaxation proposed in Section 1.4.2, adapting it to the treatment

of more general Gilbert–Steiner problems (with multiple sources/sinks) and addressing

its validity and applicability to problems defined on manifolds. In contrast to classical

Γ-convergence type approaches, which may numerically end up in local minima (unless

carefully taking initial guesses), this convex formulation is able to identify (in many cases)

convex combinations of optimal networks, allowing us to have an idea of their structure.

Furthermore, up to our knowledge, this is the very first formulation leading to a numerical

approximation of the Steiner tree problem on manifolds.

The chapter is organized as follows. In Section 3.2 we review the convex framework

presented in Chapter 1 for the α-irrigation problem (Iα) and extend it to the treatment

of more general situations with multiple sources/sinks, both in Rd and on manifolds. In

Section 3.3 we see how the formulation simplifies for a network (STP) on graphs, with the

relevant energy reducing to the norm introduced in [70]. We then proceed in Section 3.4

to describe our algorithmic scheme for the minimization of the proposed energy functional

in the Euclidean setting and we present in Section 3.6 various results for (STP) and α-

irrigation problems in two and three dimensions. In Section 3.7 we eventually detail our

algorithmic approach on surfaces and present some results obtained on spheres, tori and

other surfaces with boundaries.
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3.2 Convex relaxation for irrigation type problems

In this section we first review the convex framework introduced in Section 1.4.2 for the

α-irrigation problem (Iα) and then discuss how this same formulation can be extended

to address more general Gilbert–Steiner problems with multiple sources/sinks in Rd or

even on manifolds.

3.2.1 The Euclidean Gilbert–Steiner problem

Fix a set of N distinct points A = {P1, . . . , PN} ⊂ Rd, d ≥ 2. A candidate minimizer

for (Iα) is given as a family of simple rectifiable curves (γi)
N−1
i=1 , each one connecting Pi

to PN . For optimality reasons we can choose these curves so that the resulting network

L = ∪iλi contains no cycles (see Lemma 2.1 in [70]), restricting this way the set of possible

minimizers to the set of (connected) acyclic graphs L that can be described as

L =

N−1⋃
i=1

λi, s.t.

· λi is a simple rectifiable curve connecting Pi to PN ,

· each λi is oriented by an H1-measurable unit vector field τi,

· τi(x) = τj(x) for H1-a.e. x ∈ λi ∩ λj ,

where the last condition requires the N − 1 pieces composing L to share the same ori-

entation on intersections. Let us call G(A) the set of acyclic graphs L having such a

representation. Hence, we can reduce ourself to consider

inf

{∫
L
|θ(x)|αdH1, L ∈ G(A), θ(x) =

N−1∑
i=1

1λi(x)

}
.

To each L ∈ G(A) we now associate a measure taking values in Rd×(N−1) as follows:

identify the curves λi with the vector measures Λi = τi ·H1 λi, and consider the rank one

tensor valued measure Λ = (Λ1, . . . ,ΛN−1), which can be written as Λ = τ ⊗ g · H1 L,

with

• τ : Rd → Rd a unit vector field providing a global orientation for L, satisfying

spt τ = L and τ = τi H1-a.e. on λi,

• g : Rd → RN−1 a multiplicity function whose entries satisfy gi · H1 L = H1 λi.

Observe that gi ∈ {0, 1} a.e. for any 1 ≤ i ≤ N − 1 (in particular, gi(x) = 1 if x ∈ λi),
and by construction the measures Λi verify

div Λi = δPi − δPN . (3.2.1)

Definition 3.2.1. Given any graph L ∈ G(A), we call the above constructed measure

Λ = τ ⊗ g · H1 L the canonical (rank one) tensor valued measure representation of the

acyclic graph L and denote the set of such measures as L(A).
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Let us define on the space of matrix valued Radon measures M(Rd;Rd×(N−1)) the

functional

Fα(Λ) =


∫
Rd
||g||1/α dH1 L if Λ = τ ⊗ g · H1 L ∈ L(A)

+∞ otherwise

where we assume 1/0 = ∞. When Λ = τ ⊗ g · H1 L ∈ L(A), since by construction

gi ∈ {0, 1} on L and gi(x) = 1 whenever x ∈ λi, one immediately gets

Fα(Λ) =

∫
L

(
N−1∑
i=1

gi(x)1/α

)α
dH1 =

∫
L

(
N−1∑
i=1

gi(x)

)α
dH1 =

∫
L

(
N−1∑
i=1

1λi(x)

)α
dH1,

which is exactly the cost Eα associated to L in (Iα). We recognize that minimizing Fα
among measures Λ ∈ L(A) corresponds to minimize Eα among graphs L ∈ G(A), and

thus solves (Iα) in Rd.
This reformulation of (Iα) involves the minimization of a convex energy, namely Fα,

but the problem is still nonconvex due to the non convexity of L(A) (the domain of

definition of Fα). In view of a convex formulation the optimal choice would be to consider

the convex envelope (Fα)∗∗ of the energy, but such an object (up to our knowledge) has

no explicit representation. Hence, following [43], we instead look for a “local” convex

envelope of the form

Rα(Λ) =

∫
Rd

Ψα(Λ) (3.2.2)

with Ψα : Rd×(N−1) → [0,+∞) a 1-homogeneous, convex, continuous function such that

Rα(Λ) = Fα(Λ) whenever Λ ∈ L(A). The integral in (3.2.2), as outlined in [32], can be

defined as∫
Rd

Ψα(Λ) =

∫
Rd

Ψα

(
dΛa
dLd

)
dx+

∫
Rd

Ψα

(
dΛs
d|Λs|

)
d|Λs|

= sup
ϕ∈C∞c (Rd;Rd×(N−1))

{
N−1∑
i=1

∫
Rd
ϕi dΛi −

∫
Rd

Ψ∗α(ϕ) dx, Ψ∗α(ϕ) ∈ L1(Rd)

} (3.2.3)

where Λ = Λa+Λs is the Lebesgue decomposition of Λ w.r.t. the d-dimensional Lebesgue

measure Ld, |Λs| is the total variation of Λs, ϕi are the columns of the function ϕ(x) =

(ϕ1(x), . . . , ϕN−1(x)) and Ψ∗α is the Legendre-Fenchel conjugate of Ψα on Rd×(N−1): for

p = (p1, . . . , pN−1) ∈ Rd×(N−1) and q = (q1, . . . , qN−1) ∈ Rd×(N−1) we have

Ψ∗α(q) = sup
p

[〈q, p〉 −Ψα(p)] = sup
p

[
N−1∑
i=1

qi · pi −Ψα(p)

]
.

We immediately see that the evaluation of Rα on any Λ ∈ L(A), i.e., Λ = τ ⊗ g · H1 L

with ||τ ||2 = 1 and gi ∈ {0, 1}, only involves the singular part of the decomposition, so

that

Rα(Λ) =

∫
Rd

Ψα(τ ⊗ g)dH1 L.
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Since we require Rα(Λ) = Fα(Λ) on these measures, we then look for a 1-homogeneous,

convex, continuous function Ψα such that

Ψα(p) = ||g||1/α whenever p ∈ Kα = {τ ⊗ g, ||τ ||2 = 1, gi ∈ {0, 1}}.

The maximal function satisfying this condition can be computed as the 1-homogeneous

convex envelope of the function

Φα(p) =

{
||g||1/α if p ∈ Kα

+∞ otherwise

and, as show in Section 1.4.2, it turns out to be Φ∗∗α (p) = supq∈Kα〈p, q〉, which is to say

the support function of the set

Kα =

p ∈ Rd×(N−1),

∥∥∥∥∥∥
∑
j∈J

pj

∥∥∥∥∥∥
2

≤ |J |α ∀ J ⊂ {1, ..., N − 1}

 ,

with |J | the cardinality of the set J . Thanks to (3.2.3), setting Ψα = Φ∗∗α , we can finally

define

Rα(Λ) = sup

{
N−1∑
i=1

∫
Rd
ϕi dΛi, ϕ ∈ C∞c (Rd;Kα)

}
,

and consider the relaxed problem

inf {Rα(Λ), div Λi = δPi − δPN for all i = 1, . . . , N − 1} . (3.2.4)

This formulation provides the convex framework we were looking for: the problem is now

defined on the whole space of matrix valued Radon measures and the energy is convex as

it is a supremum of linear functionals.

However the functional Rα is obtained only as a “local” convex envelope of Fα and

as such it is not expected to always coincide with the true convex envelope, as we will see

in Example 3.2.2. Thus, given a minimizer Λ̄ of (3.2.4) we can end up in three different

situations:

1. Λ̄ ∈ L(A), then Λ̄ is also a minimizer of Fα and we have solved our original problem;

2. Rα(Λ̄) = infΛFα(Λ), then Λ̄ is a convex combination of minimizers of Fα;

3. Rα(Λ̄) < infΛFα(Λ), which means that the relaxation is not tight and generally

speaking minima of Rα have no relation with minima of Fα.

For a given set of terminal points A = {P1, . . . , PN} we will then call the relaxation (3.2.4)

to be tight (or sharp) whenever one of its minimizers satisfies 1. or 2., i.e., whenever its

minimizers are related to the actual minimizers of Fα as it is the case with real convex

envelopes. Unfortunately, as the following counterexample shows, the relaxation is not

always sharp.
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Figure 3.1: Left: an optimal Steiner tree viewed as its corresponding measure Λ. Right:

a rank one tenor valued measure Σ = τ ⊗ g · H1 L, with L the graph itself, τ and g as

displayed.

Example 3.2.2. [Non sharpness for pentagon configurations] Consider as terminal points

the five vertices of a regular pentagon of side ` > 0 and let β = 3
10π. In this situation

(STP) has 5 minimizers which are the one in the left picture of figure 3.1 and its 4

rotations. The energy R0 of a Steiner tree, which corresponds by construction to its

length, is equal to ` tanβ (1 + sinβ+
√

3 cosβ) ≈ 3.8911 · `. However none of the optimal

Steiner trees is a minimizer for (3.2.4). Indeed we can exhibit an admissible tensor valued

measure Σ with an energy strictly less than the energy of a Steiner tree: consider for

example the rank one tensor valued measure Σ constructed in the right picture of figure

3.1. Such a measure satisfies the divergence constraints and its energy, which amounts to

1/2 the length of its support, is equal to 5
4`(
√

3 + tanβ) ≈ 3.8855 · `. Hence we are in the

third case of the previous list: the relaxation is not tight and as we already said there is

in general no way of reconstructing an optimum for (STP) staring from a minimizer of

R0 (in this case our numerical results suggest Σ as the actual minimizer of R0). Another

example of non-sharpness can be obtained considering as terminal points the vertices of

the pentagon plus the center: also in this case Σ has less energy than any optimal Steiner

tree.

Despite the previous example, the proposed relaxation can be proved to be sharp in

many situations. Indeed, thanks to the duality nature of Rα, we can prove minimality

of certain given measures by means of calibration type arguments. This implies that

whenever we are able to find a calibration for a given Λ̄ ∈ arg minΛFα(Λ) then the

relaxation is sharp because Λ̄ will also be a minimizer for Rα. A calibration, at least in

the simple case of R2, can be defined as follows

Definition 3.2.3. Fix a matrix valued Radon measure Λ = (Λ1, . . . ,ΛN−1) and ϕ ∈
C∞c (R2;Kα). We say that ϕ is a calibration for Λ if ∇×ϕi = 0 for all i = 1, . . . , N − 1,
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and ϕ realizes the supremum in the definition of Rα, i.e.,

N−1∑
i=1

∫
R2

ϕi dΛi = Rα(Λ).

The only existence of such an object certifies the optimality of Λ in (3.2.4). Indeed,

let Σ = (Σ1, . . . ,ΣN−1) be another competitor, with Rα(Σ) <∞ and div Σi = δPi − δPN
for each i = 1, . . . , N − 1. Hence div(Λi − Σi) = 0 and we have1∫

R2

ϕi d(Λi − Σi) = 0, (3.2.5)

so that

Rα(Λ) =

N−1∑
i=1

∫
R2

ϕi dΛi =

N−1∑
i=1

(∫
R2

ϕi d(Λi − Σi) +

∫
R2

ϕi dΣi

)
≤ 0 +Rα(Σ) = Rα(Σ).

In Rd with d > 2, the definition of a calibration extends as it is, where now ∇×ϕi stands

for the exterior derivative of the 1-form associated to the vector field ϕi. Also (3.2.5)

generalizes and the proof carries over directly.

For the case α = 0, which corresponds to (STP), we can take advantage of calibration

arguments of [70] to justify sharpness of (3.2.4) for some classical choices of {P1, . . . , PN}.
Indeed, as we will see in the next section, whenever Λ is a rank one tensor valued measure,

for instance whenever it concentrates on a graph and has real-valued weights,Rα coincides

with the norm introduced in [70] to study (STP) as a mass-minimization problem for 1-

dimensional currents with coefficients in a suitable normed group. Thus, every calibrated

example in that context turns out to be a calibrated configuration in our framework, i.e.,

a situation where R0 is sharp (see [70, 74]).

3.2.2 Extensions: generic Gilbert–Steiner problems and manifolds

The same ideas developed in the previous paragraph can be extended beyond the (single

sink) Gilbert–Steiner problem (Iα) in order to address problems with possibly multiple

sources/sinks in an Euclidean setting or even problems formulated within manifolds.

Following the strategy introduced in [69] the energy Fα can also be used to address the

general (oriented version of) “who goes where” problem. In this context we do not have

to move all the mass to a single sink but instead we are given a family of source/sink

couples and we have to move a unit mass from each source to each given destination.

Thus, letting {S1, . . . , Sm} ⊂ Rd be the set of (unit) sources and {T1, . . . , Tm} ⊂ Rd
the corresponding set of (unit) sinks, we optimize the same energy Eα involved in the

definition of (Iα) but this time among oriented networks of the form L = ∪mi=1λi, with λi

1This generalizes the “smooth” case: thinking to Λi and Σi as “regular” vector fields we have that
Λi − Σi is a gradient, whence integrating by parts and using that ϕi is curl-free we get zero.
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a simple rectifiable curve connecting Si to Ti. The same derivation as above can then be

repeated, leading us to the relaxed formulation

inf{Rα(Λ), Λ = (Λ1, . . . ,Λm) ,div Λi = δSi − δTi for all i = 1, . . . ,m}. (3.2.6)

We remark that in the previous who goes where problem, differently to what happens in

[21], we do not allow two paths λi, λj to have opposite orientation on intersections, i.e.,

particles have to go the same way when flowing in the same region.

The previous approach to the “who goes where” problem can now be used within

the formulation of more general branched transportation problems, where we are just

required to move mass from a set of (unit) sources {S1, . . . , Sm} ⊂ Rd to a set of (unit)

sinks {T1, . . . , Tm} ⊂ Rd, without prescribing the final destination of each particle. In

this context the problem can be tackled as follows: for every possible coupling between

sources and sinks, i.e., among all permutations σ ∈ Sm, solve the corresponding “who

goes where” problem with pairs (Si, Tσ(i))
m
i=1, and then take the coupling realizing the

minimal energy. Each “who goes where” can be relaxed as done in (3.2.6), providing this

way a relaxed formulation also for the case of generic multiple sources/sinks.

We point out how the extension of the previous discussion to a manifold framework

is direct: the derivation that led us to the energy Rα, together with problems (3.2.4)

and (3.2.6), is still valid on surfaces embedded in the three dimensional space, with the

only difference that divergence constraints have to be intended as involving the tangential

divergence operator on the given surface.

3.3 A first simple approximation on graphs

In this section we first see how the previous formulation simplifies when we consider the

Steiner tree problem in the context of graphs, in which case the energy reduces to the

norm introduced in [70]. Then, once we are able to address (STP) on networks, we try

to approximate the Euclidean (STP) by means of a discretization of the domain through

an augmented graph.

3.3.1 The Steiner tree problem on graphs

Consider a connected graph G = (V,E) in Rd, where V = {v1, . . . , vn} ⊂ Rd and E =

{e1, . . . , em} is a set of m segments. Each ej = [v1
j , v

2
j ] connects two vertices v1

j , v
2
j , has

length `(ej) = ||v2
j − v1

j ||2 and is oriented by τej = (v2
j − v1

j )/|v2
j − v1

j |. Furthermore,

we can assume without loss of generality that edges intersect each other in at most 1

point. The Steiner Tree Problem within G can be formulated in the same fashion as its

Euclidean counterpart: given a set of terminal points A = {P1, . . . , PN} ⊂ V find the

shortest connected sub-graph spanning A. As in the Euclidean case a solution always

exists and optimal sub-graphs are indeed sub-trees (they contain no cycles).

Following what we did above in the Euclidean case, we can decompose any candidate

sub-graph L ⊂ G into the superposition of N − 1 paths λi within the graph, each one

connecting Pi to PN . Each path is identified as the support of a flow Vi : E → {−1, 0, 1}
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flowing a unit mass from Pi to PN : we set Vi(e) = 1 if edge e is travelled in its own

direction within path λi, −1 if it is travelled in the opposite way and 0 otherwise. By

construction we satisfy the discrete version of (3.2.1), i.e., the classical Kirchhoff condi-

tions: for all “interior” vertices v ∈ V \ {Pi, PN} we have∑
e∈δ+(v)

Vi(e)−
∑

e∈δ−(v)

Vi(e) = 0, (3.3.1a)

with δ±(v) the set of outgoing/incoming edges at vertex v, and (Pi, PN ) is the source/sink

couple, meaning∑
e∈δ+(Pi)

Vi(e)−
∑

e∈δ−(Pi)

Vi(e) = 1,
∑

e∈δ+(PN )

Vi(e)−
∑

e∈δ−(PN )

Vi(e) = −1. (3.3.1b)

Setting V = (V1, . . . , VN−1) and L = suppV = ∪{e ∈ E : V (e) 6= 0}, we have

H1(L) =
∑
e∈E

`(e) · ||V (e)||∞ =: F(V ),

and as before a solution to the network (STP) can be found minimizing F among vector

valued flows V : E → {−1, 0, 1}N−1 satisfying the above flux conditions (3.3.1). Let us

identify each family V with a tensor valued measure Λ = (Λ1, . . . ,ΛN−1) defined on the

whole Rd by setting

Λi =
∑
e∈E

Vi(e) τe · H1 e, i.e., Λ =
∑
e∈E

τe ⊗ V (e) · H1 e. (3.3.2)

The idea is now to drop the integer constraint {−1, 0, 1} on each Vi and optimize the

previously defined energy R0 among tensor valued measures of the form (3.3.2), obtaining

the relaxed energy

R(V ) = R0(Λ) = sup
ϕ∈C∞c (Rd;K0)

N−1∑
i=1

∫
Rd
ϕi dΛi = sup

ϕ∈C∞c (Rd;K0)

N−1∑
i=1

∑
e∈E

(
Vi(e)

∫
e
ϕi ds

)
.

Since edges intersect in at most 1 point it is possible to interpret the last supremum

as a supremum over test functions entirely supported on the graph and of the form

ϕ =
∑

e τe ⊗W (e) with W : E → RN−1. By assumption, for almost every point x on

the graph (except at intersections) there exists only one edge e containing x; hence, the

pointwise constraint ϕ(x) ∈ K0 translates into ϕ e ∈ K0 for all edges e ∈ E, i.e.,∥∥∥∥∥∥
∑
j∈J

Wj(e)τe

∥∥∥∥∥∥
2

=

∣∣∣∣∣∣
∑
j∈J

Wj(e)

∣∣∣∣∣∣ ≤ 1 ∀ J ⊂ {1, ..., N − 1}.

These new constraints involve only vectors W (e) and are equivalent to the unique con-

straint

||W (e)||∗ =

N−1∑
j=1

(Wj(e) ∨ 0)

 ∨
−N−1∑

j=1

(Wj(e) ∧ 0)

 ≤ 1,
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Figure 3.2: Approximations of (STP) for 3, 4 and 13 terminal points (red) using the

augmented graph idea, K = 1681, M = 30. Edges carrying a non-zero flux are displayed.

which amounts to require that the maximum between the `1 norm of the positive part

and the `1 norm of the negative part of W (e) has to be less or equal to 1. The energy

can be finally rewritten as

R(V ) = sup

{∑
e∈E

`(e)V (e) ·W (e), ||W (e)||∗ ≤ 1 ∀e ∈ E

}

=
∑
e∈E

`(e)

(
sup
i

[Vi(e) ∨ 0]− inf
i

[Vi(e) ∧ 0]

)
=
∑
e∈E

`(e)||V (e)||.

The norm || · || is exactly the norm used in [70] to study (STP) using currents with

coefficients in normed groups and hence we can take advantage of calibration arguments

of [70] to justify the sharpness of the relaxation for calibrated configurations of terminal

points. Of course the counterexample 3.2.2 still applies to this discrete version of the

problem using as graph G the union of the two graphs of picture 3.1: the minimizer

concentrates on the star and not on the Steiner structure.

Optimization of R under the (linear) flux constraints (3.3.1) can then be performed

solving a linear program: in order to linearize the objective we introduce two sets of

variables {se}e∈E , {ie}e∈E , and for each e ∈ E we require ie ≤ 0, se ≥ 0 and

ie ≤ Vi(e) ≤ se for all i = 1, . . . , N − 1,

so that the objective reduces to
∑

e `(e)(se− ie). Whenever the size of the resulting linear

program is too big to be treated by standard interior point solvers we can alternatively

apply the cheaper first order scheme proposed in [88] (see Section 3.4 for details).

3.3.2 Graphs and the Euclidean (STP)

Once we have a method to approximate (STP) on networks we can try to address the

Euclidean (STP) through the use of an augmented graph. The core idea is the following:

let {x1, . . . , xK}, K ∈ N, be a set of scattered points that uniformly covers an open convex
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domain Ω such that {P1, . . . , PN} ⊂ Ω and let V = {x1, . . . , xK}∪{P1, . . . , PN}. Fix M ∈
N and construct the graph G = (V,E) where each v ∈ V is connected through segments

to its M closest neighbours. For M sufficiently large the network G is connected and

solving (STP) within G provides an approximation of the underlying Euclidean Steiner

tree.

We see in figure 3.2 two examples with K = 1681 and M = 30. In both cases re-

sults are very close to the optimal Steiner tree and for obtaining them we simply solve

a medium scale linear program. However the use of a fixed underlying graph has some

drawbacks. For example, we cannot expect edges meeting at triple points to satisfy the

120◦ condition and what should be a straight piece in the optimal tree is only approxi-

mated by a sequence of (non-aligned) edges. A possible remedy for obtaining “straighter”

solutions is to increase M , allowing this way longer edges, but this would increase the

size of the problem. Furthermore obtaining convex combinations of minimizers is almost

impossible because the underlying graph is not regular and having two sub-graphs with

the exact same energy is very rare. On the other hand taking regularly distributed points

generates many equivalent solutions even when there should be only one.

We also observe that this simplified framework is specific to the Euclidean Steiner tree

case: the corresponding graph framework for (Iα) does not end up in a linear program

and no direct extension to the manifold case is possible. This lack of generality, together

with the intrinsic low precision of the approach as a consequence of working on a graph,

leads us to switch our focus on the direct minimization of Rα on the whole of R2/R3.

3.4 Generic Euclidean setting, the algorithmic approach

Motivated by the shortcomings of the previous simplified framework, we present in this

section our approach for solving (3.2.4) in R2 (the same ideas extends to the three di-

mensional setting). Our resolution is based on a staggered grid for the discretization of

the unknowns coupled with a conic solver (or a primal-dual scheme) for the optimization

of the resulting finite dimensional problem.

3.4.1 Spatial discretization

Assume without loss of generality that P1, . . . , PN are contained in the interior of Ω =

[0, 1]×[0, 1], which will be our computational domain. From a discrete standpoint we view

the unknown vector measures (Λ1, . . . ,ΛN−1) in (3.2.4) as a family V = (V1, . . . , VN−1)

of vector fields in Ω and, due to the divergence constraints that we need to satisfy, we

discretize these unknown fields on a staggered grid (this way our degrees of freedom are

directly related to the flux of each vector field through the given grid interface). Fix then

a regular Cartesian grid of size M ×M over Ω and let h = 1/M . The first component

Vi,1 of each vector field is placed on the midpoints of the vertical cells interfaces whereas
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the second components Vi,2 on the horizontal ones, so that to have on each element (k, `)

Vi|(k,`) =

(
(V k+1,`
i,1 − V k,`

i,1 )(x− (k − 1)h)/h+ V k,`
i,1

(V k,`+1
i,2 − V k,`

i,2 )(y − (`− 1)h)/h+ V k,`
i,2

)
.

The component Vi,1 is described by (M + 1)×M unknowns whereas Vi,2 is described by

M × (M + 1) parameters. Regarding the test functions ϕ = (ϕ1, . . . , ϕN−1) we define

them to be piecewise constant on each element of the grid, i.e., for any cell (k, `) we have

ϕk,`i = (ϕk,`i,1 , ϕ
k,`
i,2 ) ∈ R2.

Within this setting the optimization of the energy Rα translates into

min
(V k,`i,d )

sup
(ϕk,`i,d )∈Kα

∑
k,`

N−1∑
i=1

h2

[
V k,`
i,1 + V k+1,`

i,1

2
ϕk,`i,1 +

V k,`
i,2 + V k,`+1

i,2

2
ϕk,`i,2

]
(3.4.1)

under the condition div Vi = δPi − δPN for all i = 1, . . . , N − 1. Since the flux of each Vi
over the generic cell (k, `) is given by

F k,`i = h(V k+1,`
i,1 − V k,`

i,1 ) + h(V k,`+1
i,2 − V k,`

i,2 ),

the divergence constraints translate, at a discrete level, into
F k,`i = 0 whenever cell (k, `) does not contain Pi or PN ,

F k,`i = 1 if cell (k, `) contains Pi,

F k,`i = −1 if cell (k, `) contains PN ,

(3.4.2)

complemented with a “zero flux” condition at the boundary, i.e., we set V k,`
i,d = 0 whenever

it refers to a boundary interface. We finally observe that, by construction, ϕ ∈ Kα if for

each cell (k, `) in the grid the matrix ϕk,` = (ϕk,`1 , . . . , ϕk,`N−1) satisfies∥∥∥∥∥∥
∑
j∈J

ϕk,`j

∥∥∥∥∥∥
2

≤ |J |α for all J ⊂ {1, . . . , N − 1}.

For the resolution of this finite dimensional optimization problem we then propose two

different and somehow complementary approaches.

3.4.2 Optimization via conic duality

The inf-sup problem (3.4.1) can be written, thanks to conic duality (see, e.g., Lecture 2

of [19]), as a pure minimization problem involving the degrees of freedom (V k,`
i,d ) and a

set of dual variables (ψk,`J,d) indexed over subsets J ⊂ {1, . . . , N − 1}. Indeed, for fixed

1 ≤ k, ` ≤M and J ⊂ {1, . . . , N − 1}, one has

inf
ψk,`J ∈R2

|J |α||ψk,`J ||2 − 〈ψk,`J ,
∑
j∈J

ϕk,`j 〉

 =


0 if

∥∥∥∥∥∥
∑
j∈J

ϕk,`j

∥∥∥∥∥∥
2

≤ |J |α

−∞ otherwise,
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so that, if we denote Ṽ k,`
i = ((V k,`

i,1 + V k+1,`
i,1 )/2, (V k,`

i,2 + V k,`+1
i,2 )/2) ∈ R2, (3.4.1) is equiv-

alent to

min
(V k,`i,d )

sup
(ϕk,`i,d )

∑
k,`

N−1∑
i=1

h2〈Ṽ k,`
i , ϕk,`i 〉+ inf

(ψk,`J,d)

∑
k,`

∑
J

h2

|J |α||ψk,`J ||2 − 〈ψk,`J ,
∑
j∈J

ϕk,`j 〉

 .
Switching the sup over (ϕk,`i,d ) and the inf over (ψk,`J,d) we obtain

min
(V k,`i,d )

inf
(ψk,`J,d)

∑
k,`

∑
J

h2|J |α||ψk,`J ||2 + h2 sup
(ϕk,`i,d )

∑
k,`

N−1∑
i=1

〈Ṽ k,`
i , ϕk,`i 〉 − 〈ψ

k,`
J ,
∑
j∈J

ϕk,`j 〉

 .
Since the inner sup is either 0 if Ṽ k,`

i =
∑

J3i ψ
k,`
J for all 1 ≤ k, ` ≤M and 1 ≤ i ≤ N − 1

or +∞ otherwise, the previous problem eventually leads to

min
(V k,`i,d ),(ψk,`J,d)

∑
k,`

∑
J

h2|J |α ‖ψk,`J ‖2 (3.4.3)

where each Vi satisfies the same flux constraints (3.4.2) and for all cells (k, `) and all

i = 1, . . . , N − 1 we must satisfy

V k,`
i,1 + V k+1,`

i,1

2
=
∑
J3i

ψk,`J,1 and
V k,`
i,2 + V k,`+1

i,2

2
=
∑
J3i

ψk,`J,2. (3.4.4)

Problem (3.4.3) under the set of linear constraints (3.4.2) and (3.4.4) can now be solved

invoking the conic solver of the library MOSEK [78] within the framework provided by

[52].

3.4.3 Optimization via primal-dual schemes

Collect all the (V k,`
i,d ) into a vector v ∈ Rnv , nv = (N − 1)(2M2 + 2M), and all the (ϕk,`i,d )

into ϕ ∈ Rnϕ , nϕ = (N − 1)2M2. Moving the constraints on ϕ into the objective via the

convex indicator function, the discrete energy (3.4.1) can be written down as

min
v

max
ϕ
〈ϕ , Bv〉 − χKα(ϕ)

for a suitable (sparse) matrix B of size nϕ × nv, while the divergence constraints reduce

to Av = b for a suitable (sparse) matrix A of size nλ × nv and a vector b ∈ Rnλ . To the

set of liner constraints Av− b = 0 we can now associate a dual variable λ ∈ Rnλ so that

they can be incorporated into the objective as

min
v

max
ϕ,λ
〈ϕ , Bv〉 − χKα(ϕ) + 〈λ , Av − b〉.

The problem, written this way, turns into an instance of a general inf-sup problem of

the form

min
x∈Rn

max
y∈Rm

〈y ,Kx〉+G(x)− F ∗(y) (3.4.5)
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with K an m×n matrix and G : Rn → R∪{∞}, F ∗ : Rm → R∪{∞} convex lsc functions.

Among the possible numerical schemes which have been developed in the literature for

the resolution of (3.4.5) we choose here the preconditioned primal-dual scheme presented

in [88]. The scheme can be summarized as follows: let γ ∈ [0, 2], T = diag(τ1, . . . , τn) and

Σ = diag(σ1, . . . , σm), with

τj =
1∑m

i=1 |Kij |2−γ
and σi =

1∑n
j=1 |Kij |γ

,

fix x0 ∈ Rn, y0 ∈ Rm, and iterate for any k > 0{
xk+1 = (I + T∂G)−1(xk − TKT yk)

yk+1 = (I + Σ∂F ∗)−1(yk + ΣK(2xk+1 − xk))
(3.4.6)

In this context the proximal mappings are defined as

(I + T∂G)−1(x̂) = arg min
x

[
G(x) +

1

2
〈T−1(x− x̂), x− x̂〉

]
and represent the extension of the classical definition with constant step size to this

situation with “variable dependent” step sizes.

In our specific use case the scheme takes the following form: define T = diag(τ1, . . . , τnv),

Σ = diag(σ1, . . . , σnϕ) and Σ̃ = diag(σ̃1, . . . , σ̃nλ), with

τj =
1∑nϕ

i=1 |Bij |2−γ +
∑nλ

i=1 |Aij |2−γ
, σi =

1∑nv
j=1 |Bij |γ

, σ̃i =
1∑nv

j=1 |Aij |γ
,

given v0,ϕ0,λ0 iterate for k > 0
vk+1 = vk − T (BTϕk +ATλk)

ϕk+1 = proj(ϕk + ΣB(2vk+1 − vk) | Kα)

λk+1 = λk + Σ̃(A(2vk+1 − vk)− b)

(3.4.7)

The computational bottleneck for this simple iterative procedure resides in the projection

of a given vector ϕ̄ ∈ Rnϕ onto the convex set Kα. By definition this operation reduces

to the cell-wise projection on Kα of the matrices ϕk,`, and so we fix a d× (N − 1) matrix

q = (q1, . . . , qN−1) and split the discussion into two sub-steps.

Projection on individual sets: for each fixed subset J ⊂ {1, . . . , N − 1} we define

the convex set

Kα
J =

p ∈ Rd×(N−1),

∥∥∥∥∥∥
∑
j∈J

pj

∥∥∥∥∥∥
2

≤ |J |α
 .

The projection of q over Kα
J can be computed explicitly: define vJ =

∑
j∈J qj , then the

projection p = proj(q | Kα
J ) = (p1, . . . , pN−1) has columns defined as pj = qj if j /∈ J and

pj = qj − 1/|J | (‖v‖2 − |J |
α)+ v

‖v‖2
if j ∈ J .
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Projection on the intersection: observe that Kα = ∩JKα
J , i.e., Kα is the inter-

section of a family of convex sets. In order to get an approximation of proj(q | Kα) we

can apply the Dykstra’s projection algorithm (see [53]). The scheme in our setting is the

following: let J1, . . . , J2N−1 be all the subsets of {1, . . . , N −1}, let {y0
j }2

N−1

j=1 be 2N−1 null

matrices of size d× (N − 1), p0 = q, then for any k ≥ 1 iterate

pk0 = pk−1

for j = 1, . . . , 2N−1

pkj = proj(pkj−1 + yk−1
j | Kα

Jj )

ykj = yk−1
j + pkj−1 − pkj

end for

pk = pk2N−1

We then have pk → proj(q | Kα) as k → +∞.

Remark 3.4.1. Each step of the previous iterative projection procedure requires 2N−1

sub-projections and thus the scheme is intrinsically time-consuming. Up to our knowl-

edge there seems to be no immediate simplifications to avoid some of the 2N−1 inner

projections: for example, the restriction of the inner loop over sets Kα
Jj

such that q /∈ Kα
Jj

is not going to work in general. At the same time we observe that established convergence

rates for (3.4.6) do not apply in this case because our projection, which represents one of

the two proximal mappings, is only approximated and not exact, making us falling back

in a context like [102].

3.5 Numerical details

The two resolution paths presented above allow us to overcome some shortcomings of the

simplified framework of Section 3.3 but introduces at the same time an higher computa-

tional cost, mainly depending on the combinatorial nature of the set Kα, which reflects

in the high number of variables involved in (3.4.3) and in the complicated projection in

(3.4.7).

Generally speaking the primal-dual scheme is the cheapest of the two in terms of

computational resources: it can be implemented so that every operation is done in-place,

reducing to almost zero any further memory requirement apart from initialization, while

the interior point approach used by a conic solver is extremely demanding in terms of

memory due to the 2N−1 additional variables needed to define (3.4.3). However, since we

are looking for 1-dimensional structures, our solver also needs to be able to provide very

localized optima, and with this regards the primal-dual approach is not very satisfactory.

As we can see in figure 3.3, where we use the two schemes for the same regular 201× 201

grid over [0, 1]2, the solution provided by the primal-dual scheme is more diffused than

the one obtained using the conic approach. For this reason we would like to use for our

experiments the conic formulation (3.4.3) and to do so, in order to be able to treat medium
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Figure 3.3: Energy concentration for the minimizer of R0 for P1 = (1/4, 1/3), P2 =

(3/4, 2/3). Left: solution obtained via a conic solver, final energy ≈ 0.606307. Right:

solution obtained after 200000 iterations of the primal-dual scheme, γ = 0.6, final energy

≈ 0.606765.

scale problems, we need to find a way to reduce a-priori the huge number of additional

variables that are introduced: this can be done both via a classical grid refinement and

via a variables “selection”.

3.5.1 Grid refinement

The numerical solution is expected to concentrate on a 1-dimensional structure, and so

the grid needs to be fine only on a relatively small region of the domain. This suggests the

implementation of a refinement strategy able to localize in an automatic way the region

of interest. For doing so we use non-conformal quadtree type meshes (see, e.g., [96, 17]),

which are a particular class of grids where the domain is partitioned using M square cells

as Ω = ∪mSm and each square cell Sm can be obtained by recursive subdivision of the box

[0, 1]2 (see figure 3.4 for examples of such grids). As in the case of uniform regular meshes

we employ for the discretization a staggered approach: we set the degrees of freedom of

vector fields on faces of each element, with the additional requirement that whenever a

face is also a subsegment of another face then the two associated degrees of freedom are

equal (this is to maintain continuity of the normal components of the discrete fields across

edges and guarantees that fluxes are globally well behaved). The matrix valued function

ϕ is again defined to be constant on each element of the grid so that the nature of the

discrete problem we need to solve remains the same.

Figure 3.4: Refinement example for 3 points. At each iterate we plot the grid and the

two fields V1, V2, which are then used to build the next grid.
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Figure 3.5: Expected behaviour of the variables {ψJ}J . We can see how each Vi can be

reconstructed as the union of the ψJ such that i ∈ J and that only a subset of the ψJ is

used.

A refinement procedure can then be described as follows: fix a coarse quadtree grid

T , for example a regular 8× 8 one, and then

• solve the problem on the given grid T ;

• identify elements of the grid where the solution concentrates the most and label

them as “used”, identify elements of the grid where the solution is almost zero and

label them as “unused”;

• refine the grid subdividing each “used” element into 4 equal sub-elements and try to

merge “unused” elements into bigger ones (the merging will occur if four elements

labelled as “unused” have the same father in the quadtree structure);

• repeat.

As we can see in figure 3.4 this procedure allows us to localize computations in a neigh-

bourhood of the optimal structure we are looking for. This way we can attain a good

level of fineness around the solution without being forced to employ a full grid which

would require the introduction of a lot of useless degrees of freedom.

3.5.2 Variables selection

Generally speaking, in an optimum for (3.4.3) most of the variables ψJ will turn out to be

identically 0 while the ones that are not 0 everywhere will be concentrated on small regions

of the domain. Indeed each ψJ can be seen as a possible building block of the final solution

because, due to formula (3.4.4), the vector field ψ{j1,...,jk}, {j1, . . . , jk} ⊂ {1, . . . , N − 1},
represents the portion of the graph where the fields Vj1 , . . . , Vjk coincide (see, for example,

figure 3.5 for a visual depiction in two cases). This means that we expect only a few

ψJ to be non zero on each element of the grid. With this in mind we can add the

following selection procedure to the previous refinement scheme: given an approximate
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solution on a grid T , we identify for each square element Sm which are the non zero

variables ψJm1 , . . . , ψJmkm
on that element and then, at the next step, we introduce only

these variables in that particular region (in case the element Sm is one of those labelled

as “used” this means that in the next optimization we will use only ψJm1 , . . . , ψJmkm
within

its 4 children).

The main advantage of this procedure is clear: once we are able to identify the regions

where each variable ψJ concentrates (if any) we can dramatically reduce the number of

unknowns we need to introduce, passing from 2N−1 vector fields to be defined on each

element to only a few of them. Thanks to these two refinement procedures we are now

in a position to efficiently tackle the optimization of Rα using accurate conic solvers.

3.6 Results in flat cases

We present in this section different results obtained using the outlined scheme integrated

with the two refinement procedures described above.

Figure 3.6: Optima of R0 in R2 for 3, 4, 5, 6 terminal points on the vertices of regular

polygons.

In figure 3.6 we compute minimizers of the relaxed energyR0 for regular configurations

of terminal points placed on the vertices of a triangle, a square, a pentagon and an

hexagon. In all cases we start with a regular 32× 32 mesh and then apply the previous

refinement procedures 5 times, ending up with a grid size of 1/1024 around the optimal

structure. In the first example we are able to retrieve the unique minimizer while in the

second example we obtain a convex combination of the two possible minimizers for (STP).

In the latter case this behaviour is expected because for this particular configuration of

points the relaxation is sharp due to the calibration argument presented in [70]. In the

third experiment we recover the star-shaped counterexample of figure 3.1 which seems to

be the actual minimizer of the relaxed problem and in the last picture we get a convex

combination of the six possible minimizers. We remark that the hexagon case is not a

calibrated example in the work of Marchese–Massaccesi but our numerical result suggests

the existence of a calibration because the relaxation seems to be sharp.

In figure 3.7 we first compute a minimizer for a 7 points configuration (6 vertices of the

hexagon plus the center) and observe how we are able to obtain a convex combination

of the two Steiner trees (again this was expected due to a calibration argument). We
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Figure 3.7: Optima of R0 in R2 for 7, 9 and 13 terminal points.

observe that in this example the points do not lie on the boundary of a convex set,

meaning that the problem cannot be simplified into an optimal partition problem as it

is done, for example, in [43]. We then move to some non symmetric distributions of

terminal points: in the second picture we see the result for 9 randomly selected points

while in the third one we increase the number of terminals up to 13. In this last case an

ad-hoc approach is necessary. Due to the high number of variables introduced in (3.4.1)

a direct minimization using a conic solver is unfeasible even for very coarse grids (the

amount of memory required to just set up the interior point solver is too much). To

circumvent this problem we first compute a rough solution either optimizing R0 on a

coarse grid using the primal-dual minimization scheme or applying the augmented graph

idea presented in section 3.3 (see picture 3.2), and then we use this approximation for

deducing which are the variables ψJ active at a given point: for every cell (k, `) of a

uniform grid we introduce ψ{j1,...,jk} on that cell only if in the approximate solution every

field Vj1 , . . . , Vjk is not identically zero in a suitable neighbourhood of the cell. This way

we rule out a huge amount of the ψJ obtaining a problem which is now tractable through

interior point schemes.

Figure 3.8: Irrigation networks minimizing Rα and moving 4 masses to a unique sink,

α = 0.6, 0.8, 0.95, 1.

In figure 3.8 we test the relaxation Rα for a simple irrigation problem where we

approximate the shape of the optimal network moving 4 unit masses located at S1 =

(0.4, 0.9), S2 = (0.3, 0.65), S3 = (0.2, 0.4), S4 = (0.1, 0.15), to the unique sink T =

(0.9, 0.27). We can see how for small α the optimal shape is close to the optimal Steiner

tree while for higher values of α the network approaches more and more the configuration
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for an optimal Monge–Kantorovitch transport attaining it for α = 1 as expected.

Figure 3.9: Optima of Rα for moving 4 masses from left to right, α = 0.65, 0.7, 0.75. The

pairings realizing the first infimum and the third one are different.

We turn next in figure 3.9 to an example where 4 unit masses located at 4 sources on

the left (S1 = (0.1, 0.55), S2 = (0.1, 0.4), S3 = (0.1, 0.25), S4 = (0.1, 0.1)) has to be moved

to 2 sinks of magnitude 2 on the right (T1 = (0.9, 0.2), T2 = (0.9, 0.45)). Since for each

mass we have two possible destinations we need to loop over all feasible combinations of

source/sink couples, solve the corresponding “who goes where” problem and then choose

the one giving the optimizer with less energy. In the examples the optimal couplings are

{(S1, T1), (S2, T1), (S3, T2), (S4, T2)} for α = 0.65 and {(S1, T2), (S2, T2), (S3, T1), (S4, T1)}
for α = 0.75. In the case α = 0.7 we are at the switching point between a connected and

a disconnected optimal structure and our relaxed optimum concentrates on both.

Figure 3.10: Optima of R0 for 4, 5 and 7 points in R3.

The numerical scheme we have described for the two dimensional case can be extended

directly to the three dimensional context for addressing the optimization of Rα in R3.

Non-conformal quadtree type grids are replaced by non-conformal octree type grids (see

[96]) and a staggered approach is employed placing the degrees of freedom on faces of each

cubic element composing the grid. The underlying structure of the discrete optimization

we end up with remains the same and the two refinement procedures can be extended as

they are, without any major change. We see in figure 3.10 the results for 4, 5 and 7 points

configurations. All the examples are purely 3-dimensional and in the first two cases we

have a maximum number of Steiner points (respectively, 2 and 3), while in the last case

the optimal structure consists of two “disjoint” optimal sub-trees connected through a

central terminal point.
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3.7 Extension to surfaces

As already observed in Section 3.2 the proposed relaxation can also be used to address

(STP) and α-irrigation problems on surfaces. Up to our knowledge, even in the Steiner

tree case, this is the first numerical approximation of these problems covering the manifold

framework. Theoretically speaking what we need to do is to solve problem (3.2.4) on a

manifold S embedded in R3, where now a candidate minimizer Λ is a matrix valued

measure defined on the manifold and divergence constraints translate accordingly. From

a numerical point of view our unknowns are again vector fields (V1, . . . , VN−1) living on

the surface and the domain will be approximated by means of a triangulated surface Th.

We first discuss the direct extension of the staggered grid idea to Th and then present a

more accurate discretization, eventually used in our experiments.

3.7.1 Raviart–Thomas approach

The staggered approach presented for quadrilateral grids can be extended to triangular

meshes considering a discretization based on the so-called Raviart–Thomas basis func-

tions, which are vector valued functions whose degrees of freedom are related to the flux

of the given basis function across edges (see [36]).

Let Th be a regular triangulation of S, with n vertices and m edges, and consider the

lowest order Raviart–Thomas basis functions over Th: for each edge e in the triangulation

we call K− the “left” triangle adjacent to e and K+ the “right” triangle adjacent to e

(according to a given fixed orientation) and define the vector function

Φe(x) =



`e

2A+
e

(x− p+) if x ∈ K+

− `e

2A−e
(x− p−) if x ∈ K−

(0, 0, 0) otherwise

where `e is the length of the edge, A±e = |K±| are the areas of the triangles and p+, p−
are the opposite corners (with the obvious modification for boundary edges). We then

approximate each Vi, i = 1, . . . , N − 1, as

Vi(x) =
m∑
e=1

V e
i Φe(x)

and as before matrix valued variables ϕ = (ϕ1, . . . , ϕN−1) are considered to be piecewise

constant over each element of the triangulation, i.e., ϕi|K = ϕKi = (ϕKi,1, ϕ
K
i,2, ϕ

K
i,3) ∈ R3

for all K ∈ Th, i = 1, . . . , N − 1. The unknowns are then the family of parameters (V e
i )

and (ϕKi,d). Looking at Rα the integral we need to compute becomes

∑
K∈Th

N−1∑
i=1

∫
K

(
m∑
e=1

V e
i Φe(x)

)
· ϕKi dx, (3.7.1)
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and can be made explicit as follows: let eKj be the edge of triangle K opposite to point

PKj (jth point of triangle K) and sK,e
K
j = ±1 the position of that triangle with respect

to the edge eKj , then (3.7.1) yields

1

6

∑
K∈Th

N−1∑
i=1

[
sK,e

K
1 `eK1

V
eK1
i (PK2 + PK3 − 2PK1 )ϕKi,1 + sK,e

K
2 `eK2

V
eK2
i (PK1 + PK3 − 2PK2 )ϕKi,2

+ sK,e
K
3 `eK3

V
eK3
i (PK1 + PK2 − 2PK3 )ϕKi,3

]
.

The structure of the discrete energy is the same as the one obtained in the Euclidean set-

ting (the conditions on ϕ translates again in the element-wise constraint ϕK ∈ Kα for all

K ∈ Th). Furthermore within this Raviart–Thomas framework we have two advantages:

fields Vi are by construction surface vector fields (i.e., they live in the tangent space to

the surface) and divergence constraints translate into simple flux conditions of the form

sK,e
K
1 `eK1

V
eK1
i + sK,e

K
2 `eK2

V
eK2
i + sK,e

K
3 `eK3

V
eK3
i = 0 or ± 1

depending on K containing Pi, PN or none of them, and V e
i = 0 whenever e is a boundary

edge. The price to pay for such simplicity resides in the fact that this Raviart–Thomas

approximation is a low-order scheme. The objects we would like to approximate are

singular vector fields concentrated on 1-dimensional structures but with this approach we

generally obtain solutions that are quite diffused and can only give us an approximate

idea of the underlying optimal set. At the same time this diffusivity prevents a good

refinement because the refined region turns out to be too large. For this reason a better

approximation space is needed, even if we will end up with a more complex discrete

problem.

3.7.2 P2-based approach

Let Th be a regular triangulation of S. We consider the standard discrete space

X2
h = {vh ∈ C0(Th) : vh|K ∈ P2(K), for all K ∈ Th}

and take vector fields Vi ∈ (X2
h)3 for all i = 1, . . . , N − 1. As in the staggered case

matrix valued variables ϕ = (ϕ1, . . . , ϕN−1) are defined to be piecewise constant over

each element of the triangulation, i.e., ϕi|K = ϕKi = (ϕKi,1, ϕ
K
i,2, ϕ

K
i,3) for all K ∈ Th,

i = 1, . . . , N − 1. The energy Rα is then

sup

∑
K∈Th

N−1∑
i=1

∫
K
Vi · ϕKi dx, ϕK ∈ Kα for all K ∈ Th


and the integral over each triangle K can be computed explicitly in terms of the degrees of

freedom associated to Vi and ϕi, i = 1, . . . , N − 1 (the integrand reduces to a polynomial
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of degree 2). We are left with the specification of how we impose divergence and tangency

constraints on each Vi, i = 1, . . . , N − 1.

Divergence constraints: for each vector field Vi we have to impose div Vi = δPi −
δPN , where this time the divergence has to be interpreted as the tangential divergence

operator on surfaces (see, for instance, [92]). We observe that div Vi is piecewise linear

over each element of the triangulation and thus, for K ∈ Th not containing Pi or PN
we impose (div Vi)|K = 0 requiring it to be 0 at the three vertices of K. On the other

hand, if K ∈ Th contains Pi (or PN ) we require the flux of Vi over ∂K to be +1 (or

−1). Eventually, for each boundary edge eb of the triangulation we request the flux of Vi
through eb to be 0.

Tangency constraints: while for the Raviart–Thomas approach the approximate

fields are surface vector fields by construction, for this P2 approach we need to impose

this constraint as an additional condition. For doing so we require tangency of Vi at each

node of the triangulation and at the mid-point of each edge. Normals at these points are

approximated as a weighted average of normals of surrounding elements.

The above constraints, as it happens in the staggered case, translate into linear con-

straints over the degrees of freedom of V1, . . . , VN−1, and the discrete problem we end

up with can be solved using the same strategies presented in Section 3.4. Eventually we

observe that we can extend the refinement procedures of Section 3.5 also on triangulated

surfaces taking advantage of the re-meshing functionalities of the Mmg Platform [1]: at

each step we identify the region where the solution concentrates the most and then remesh

the surface requiring the new mesh to be finer in that region and coarser elsewhere.

3.7.3 Results

In figure 3.11 we see the results obtained through the P2-based approach for 3 instances

of (STP) on the sphere. In the first case (upper-left) we approximate the Steiner tree

associated to the terminal points (1, 0, 0), (0, 1, 0), (0, 0, 1), and observe how we get a

classical triple junction. In the second example (upper-middle and upper-right) we add

a fourth point, (0,−1, 0), and obtain a convex combination of minimizers: in this case a

possible minimizer can be constructed using the structure of the first picture completed

with an geodesic arc connecting (0, 0, 1) to (0,−1, 0). We also observe that due to the

refinement steps energy concentrates only on two of the possible four minimizers, the two

around which the mesh gets refined. In the third example (second row) we add a fifth

point, (−1, 0, 0), and obtain a convex combination of the two minimizers.

As we change the topological nature of the surface results become more interesting.

We approximate in figure 3.12 minimizers of R0 for some points configurations on the

torus. In the first example (upper-left) we fix two terminal points opposite to each

other on the largest equator and observe an energy concentration on four different paths

(each one a geodesic connecting the two points). For certain 3 points configurations

we obtain a unique structure with a triple junction (upper-right), while for 3 points in a

symmetric disposition on the largest equator we observe as solution a convex combination
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Figure 3.11: Optima of R0 for 3, 4, 5 points on a sphere, single view for 3 terminals and

different view angles for 4, 5 terminals.

of the 6 possible minimizers (bottom-left). In the last example (bottom-right) we increase

the number of holes of our torus and obtain for a symmetrical 3 points configuration a

minimizer which cannot be seen as a convex combination of Steiner trees (i.e., another

non sharpness example).

Finally, in figure 3.13, we test our relaxation on some surfaces with boundary. In the

first example we connect three given points on the graph of a function while in the last

two we use flat surfaces with holes, which can be seen as the flat version of the previous

tori. In this case solutions can adhere to the interior boundary of the domain as long as

this is energetically favourable. Observe that, similarly to counter example of figure 3.1,

we obtain a profile which is not a convex combination of optimal trees. As in figure 3.1,

we suspect this solution to illustrate the fact that our convexification may be not sharp

in specific situations.
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Figure 3.12: Optima of R0 for 2, 3 points on different tori (front/back views).

Figure 3.13: Optima of R0 for 3 points on the graph of a function and on some punctured

domains in R2.
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Chapter 4

A variational scheme for
hyperbolic obstacle problems

We consider an obstacle problem for (possibly non-local) wave equations, and we prove

existence of weak solutions through a convex minimization approach based on a time

discrete approximation scheme. We provide the corresponding numerical implementation

and raise some open questions.

4.1 Introduction

Obstacle type problems are nowadays a well established subject with many dedicated

contributions in the recent literature. Obstacle problems for the minimizers of classical

energies and regularity of the arising free boundary have been extensively studied, both

for local operators (see, e.g., [38, 93] and references therein) and non-local fractional type

operators (see, e.g. [105] and the review [93]). The corresponding evolutive equations

have also been considered, mainly in the parabolic context [40, 39, 79, 16]. What seems

to be missing in the picture is the hyperbolic scenario which, despite being in some cases

as natural as the previous ones, has received little attention so far.

Among the available results for hyperbolic obstacle problems there is a series of works

by Schatzman and collaborators [99, 100, 101, 84], where the existence of a solution is

proved via penalty methods and, furthermore, existence of energy preserving solutions

are proved in dimension 1 whenever the obstacle is concave [100]. The problem is also

considered in [72], where the author proves the existence of a (possibly dissipative) so-

lution within a more general framework but under technical hypotheses. More recently

the 1d situation has been investigated in [66] through a minimization approach based on

time discretization, see also [60, 81, 108, 48] for contributions on related problems using

the same point of view. Another variational approach to hyperbolic problems, through

an elliptic regularization suggested by De Giorgi, is given in [103] and subsequent papers

(see, for instance, [47] for time dependent domains).

In this chapter we use a convex minimization approach, relying on a semi-discrete
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approximation scheme (as in [66, 60, 48]), to deal with more general situations so as

to include also non-local hyperbolic problems in the presence of obstacles, in arbitrary

dimension. As main results we prove existence of a suitably defined weak solution to the

wave equation involving the fractional Laplacian with or without an obstacle, together

with the corresponding energy estimates. Those results are summarized in Theorem

4.3.2 and Theorem 4.4.2 (see Section 4.3 and 4.4). The approximating scheme allows to

perform numerical simulations which give quite precise evidence of dynamical effects. In

particular, based on our numerical experiments for the obstacle problem, we conjecture

that this method is able to select, in cases of nonuniqueness, the most dissipative solution,

that is to say the one losing the maximum amount of energy at contact times.

Eventually, we remark that this approach is quite robust and can be extended for

instance to the case of adhesive phenomena: in these situations an elastic string interacts

with a rigid substrate through an adhesive layer [46] and the potential energy governing

the interaction can be easily incorporated in our variational scheme.

The chapter is organized as follows. We first recall the main properties of the frac-

tional Laplace operator and fractional Sobolev spaces in Section 4.2 and then, in Section

4.3, we introduce the time-disretized variational scheme and apply it to the non-local

wave equation (with the fractional Laplacian), proving Theorem 4.3.2. In Section 4.4

we adapt the scheme so as to include the obstacle problem, proving existence of weak

solutions in Theorem 4.4.2. In the last section we describe the corresponding numerical

implementation providing some examples and we conclude with some remarks and open

questions.

4.2 Fractional Sobolev spaces and the fractional Laplacian

operator

In this section we briefly review the main definitions and properties of the fractional

setting and we fix the notation used in the rest of the chapter. For a more complete

introduction to fractional Sobolev spaces we point to [51, 75] and references therein.

Fractional Sobolev spaces. Let Ω ⊂ Rd be an open set. For s ∈ R, we define the

Sobolev spaces Hs(Ω) as follows:

• for s ∈ (0, 1) and u ∈ L2(Ω), define the Gagliardo semi-norm of u as

[u]Hs(Ω) =

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|d+2s
dxdy

) 1
2

.

The fractional Sobolev space Hs(Ω) is then defined as

Hs(Ω) =
{
u ∈ L2(Ω) : [u]Hs(Ω) <∞

}
,

with norm ||u||Hs(Ω) = (||u||2L2(Ω) + [u]2Hs(Ω))
1/2;
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• for s ≥ 1 let us write s = [s] + {s}, with [s] integer and 0 ≤ {s} < 1. The space

Hs(Ω) is then defined as

Hs(Ω) = {u ∈ H [s](Ω) : Dαu ∈ H{s}(Ω) for any α s.t. |α| = [s]},

with norm ||u||Hs(Ω) = (||u||2
H[s](Ω)

+
∑
|α|=[s] ||Dαu||2

H{s}(Ω)
)1/2;

• for s < 0 we define Hs(Ω) = (H−s0 (Ω))∗, where as usual the space Hs
0(Ω) is obtained

as the closure of C∞c (Ω) in the || · ||Hs(Ω) norm.

Fractional Laplacian. For any s > 0, denote by (−∆)s the fractional Laplace

operator, which (up to normalization factors) can be defined as follows:

• for s ∈ (0, 1), we set

−(−∆)su(x) =

∫
Rd

u(x+ y)− 2u(x) + u(x− y)

|y|d+2s
dy, x ∈ Rd;

• for s ≥ 1, s = [s] + {s}, we set (−∆)s = (−∆){s} ◦ (−∆)[s].

Let us define, for any u, v ∈ Hs(Rd), the bilinear form

[u, v]s =

∫
Rd

(−∆)s/2u(x) · (−∆)s/2v(x) dx

and the corresponding semi-norm [u]s =
√

[u, u]s = ||(−∆)s/2u||L2(Rd). Define on Hs(Rd)
the norm ||u||s = (||u||2

L2(Rd)
+[u]2s)

1/2, which in turn is equivalent to the norm || · ||Hs(Rd).

The spaces H̃s(Ω). Let s > 0 and fix Ω to be an open bounded set with Lipschitz

boundary. The space we are going to work with throughout this chapter is

H̃s(Ω) = {u ∈ Hs(Rd) : u = 0 a.e. in Rd \ Ω},

endowed with the || · ||s norm. This space corresponds to the closure of C∞c (Ω) with

respect to the || · ||s norm. We have also (H̃s(Ω))∗ = H−s(Ω), see [75, Theorem 3.30].

We finally recall the following embedding results (see [51]).

Theorem 4.2.1. Let s > 0. The following holds:

• if 2s < d, then H̃s(Ω) embeds in Lq(Ω) continuously for any q ∈ [1, 2∗] and com-

pactly for any q ∈ [1, 2∗), with 2∗ = 2d/(d− 2s);

• if 2s = d, then H̃s(Ω) embeds in Lq(Ω) continuously for any q ∈ [1,∞) and com-

pactly for any q ∈ [1, 2];

• if 2s > d, then H̃s(Ω) embeds continuously in C0,α(Ω) with α = (2s− d)/2.
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4.3 A variational scheme for the fractional wave equation

In this section, as a first step towards obstacle problems, we extend to the fractional wave

equation a time-disretized variational scheme which traces back to Rothe [94] and since

then has been extensively applied to many different hyperbolic type problems, see, e.g.,

[108, 80, 109, 48].

Let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary. Given u0 ∈ H̃s(Ω)

and v0 ∈ L2(Ω), the problem we are interested in is the following: find u = u(t, x) such

that 
utt + (−∆)su = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(4.3.1)

where the “boundary” condition is imposed on the complement of Ω due to the non-local

nature of the fractional operator. In particular, we look for weak type solutions of (4.3.1).

Definition 4.3.1. We say a function

u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)), utt ∈ L∞(0, T ;H−s(Ω)),

is a weak solution of (4.3.1) if

∫ T

0

∫
Ω
utt(t)ϕ(t) dxdt+

∫ T

0
[u(t), ϕ(t)]s dt = 0 (4.3.2)

for all ϕ ∈ L1(0, T ; H̃s(Ω)) and the initial conditions are satisfied in the following sense:

lim
h→0+

1

h

∫ h

0

(
||u(t)− u0||2L2(Ω) + [u(t)− u0]2s

)
dt = 0 (4.3.3)

and

lim
h→0+

1

h

∫ h

0
||ut(t)− v0||2L2(Ω) dt = 0. (4.3.4)

The aim of this section is then to prove the next theorem.

Theorem 4.3.2. There exists a weak solution of the fractional wave equation (4.3.1).

The existence of a such a weak solution will be proved by means of an implicit vari-

ational scheme based on the idea of minimizing movements [9] introduced by De Giorgi,

elsewhere known also as the discrete Morse semiflow approach or Rothe’s scheme [94].
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4.3.1 Approximating scheme

For any n > 0 let τn = T/n, un−1 = u0 − τnv0, and un0 = u0 (conventionally we intend

v0(x) = 0 for x ∈ Rd \ Ω). For any 0 < i ≤ n, given uni−2 and uni−1, define

uni = arg min
u∈H̃s(Ω)

Jni (u) = arg min
u∈H̃s(Ω)

[∫
Ω

|u− 2uni−1 + uni−2|
2

2τ2
n

dx+
1

2
[u]2s

]
. (4.3.5)

Each uin is well defined: indeed, existence of a minimizer can be obtained via the direct

method of the calculus of variations while uniqueness follows from the strict convexity of

the functional Jni . Each minimizer uni can be characterize in the following way: take any

test function ϕ ∈ H̃s(Ω), then, by minimality of uni in H̃s(Ω), one has

d

dε
Jni (uni + εϕ)|ε=0 = 0,

which rewrites as∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+ [uni , ϕ]s = 0 for all ϕ ∈ H̃s(Ω). (4.3.6)

We define the piecewise constant and piecewise linear interpolation in time of the sequence

{uni }i over [−τn, T ] as follows: let tni = iτn, then the piecewise constant interpolant is

given by

ūn(t, x) =

{
un−1(x) t = −τn
uni (x) t ∈ (tni−1, t

n
i ],

(4.3.7)

and the piecewise linear one by

un(t, x) =


un−1(x) t = −τn
t− tni−1

τn
uni (x) +

tni − t
τn

uni−1(x) t ∈ (tni−1, t
n
i ].

(4.3.8)

Define vni = (uni − uni−1)/τn, 0 ≤ i ≤ n, and let vn be the piecewise linear interpolation

over [0, T ] of the family {vni }ni=0, defined similarly to (4.3.8). Taking the variational

characterization (4.3.6) and integrating over [0, T ] we obtain∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt = 0

for all ϕ ∈ L1(0, T ; H̃s(Ω)), or equivalently∫ T

0

∫
Ω
vnt (t)ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt = 0. (4.3.9)

The idea is now to pass to the limit n → ∞ and prove, using (4.3.9), that the approxi-

mations un and ūn converge to a weak solution u of (4.3.1). For doing so the main tool

is the following estimate.
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Proposition 4.3.3 (Key estimate). The approximate solutions ūn and un satisfy

‖unt (t)‖2L2(Ω) + [ūn(t)]2s ≤ C(u0, v0)

for all t ∈ [0, T ], with C(u0, v0) a constant independent of n.

Proof. For each fixed i ∈ {1, . . . , n} consider equation (4.3.6) with ϕ = uni−1−uni , so that

we have

0 =

∫
Ω

(uni − 2uni−1 + uni−2)(uni−1 − uni )

τ2
n

dx+ [uni , u
n
i−1 − uni ]s

≤ 1

2τ2
n

∫
Ω

(uni−1 − uni−2)2 − (uni − uni−1)2 dx+
1

2
([uni−1]2s − [uni ]2s),

where we use the fact that b(a−b) ≤ 1
2(a2−b2). Summing for i = 1, . . . , k, with 1 ≤ k ≤ n,

we get ∥∥∥∥unk − unk−1

τn

∥∥∥∥2

L2(Ω)

+ [unk ]2s ≤
1

τ2
n

‖u0 − un−1‖
2
L2(Ω) + [u0]2s

= ||v0||2L2(Ω) + [u0]2s.

The result follows by the very definition of un and ūn. �

Remark 4.3.4. Given a weak solution u of (4.3.1) we can speak of the energy quantity

E(t) = ||ut(t)||2L2(Ω) + [u(t)]2s.

One can easily see by an approximation argument that E is conserved throughout the

evolution and, as a by-product of the last proof, we see that also the energy of our

approximations is at least non-increasing, i.e., Eni ≤ Eni−1, where Eni = E(un(tni )) =

||vni ||2L2(Ω) + [uni ]2s. Furthermore we also remark that we cannot improve this estimate,

meaning that generally speaking the given approximations un are not energy preserving.

Thanks to Proposition 4.3.3, we can now prove convergence of the un.

Proposition 4.3.5 (Convergence of un). There exists a subsequence of steps τn → 0 and

a function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)), with utt ∈ L∞(0, T ;H−s(Ω)), such

that
un → u in C0([0, T ];L2(Ω))

unt ⇀
∗ ut in L∞(0, T ;L2(Ω))

un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ].

Proof. From Proposition 4.3.3 it follows that

unt (t) and vn(t) are bounded in L2(Ω) uniformly in t and n, (4.3.10)

un(t) is bounded in the [·]s semi-norm uniformly in t and n. (4.3.11)
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Observe now that un(·, x) is absolutely continuous on [0, T ]; thus, for all t1, t2 ∈ [0, T ]

with t1 < t2, we have

||un(t2, ·)− un(t1, ·)||L2(Ω) =

(∫
Ω

(∫ t2

t1

unt (t, x) dt

)2

dx

) 1
2

≤
(∫ t2

t1

||unt (t, ·)||2L2(Ω) dt

) 1
2

(t2 − t1)
1
2 ≤ C(t2 − t1)

1
2 ,

where we made use of the Hölder’s inequality and of Fubini’s Theorem. This estimate

yields

un(t) is bounded in L2(Ω) uniformly in t and n, (4.3.12)

un is equicontinuous in C0([0, T ];L2(Ω)). (4.3.13)

From (4.3.9), using (4.3.12) and (4.3.11), we can also deduce that vnt (t) is bounded in

H−s(Ω) uniformly in t and n. All together we have

un is bounded in W 1,∞(0, T ;L2(Ω)) and in L∞(0, T ; H̃s(Ω)), (4.3.14)

vn is bounded in L∞(0, T ;L2(Ω)) and in W 1,∞(0, T ;H−s(Ω)). (4.3.15)

Thanks to (4.3.13), (4.3.14) and (4.3.15) there exists a function u ∈ L∞(0, T ; H̃s(Ω)) ∩
W 1,∞(0, T ;L2(Ω)) ∩ C0([0, T ];L2(Ω)) such that

un → u in C0([0, T ];L2(Ω))

unt ⇀
∗ ut in L∞(0, T ;L2(Ω))

un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ]

and there exists v ∈W 1,∞(0, T ;H−s(Ω)) such that

vn ⇀∗ v in L∞(0, T ;L2(Ω)) and vn ⇀∗ v in W 1,∞(0, T ;H−s(Ω)).

As one would expect v(t) = ut(t) as elements of L2(Ω) for a.e. t ∈ [0, T ]: indeed, for

t ∈ (tni−1, t
n
i ] and ϕ ∈ H̃s(Ω), we have by construction unt (t) = vn(tni ), and so∫

Ω
(unt (t)− vn(t))ϕdx =

∫
Ω

(vn(tni )− vn(t))ϕdx =

∫
Ω

(∫ tni

t
vnt (s) ds

)
ϕdx

≤ τn||vnt ||L∞(0,T ;H−s(Ω))||ϕ||Hs(Rd)

which implies, for any ψ(t, x) = ϕ(x)η(t) with ϕ ∈ H̃s(Ω) and η ∈ C1
0 ([0, T ]), that∫ T

0

[∫
Ω

(ut(t)− v(t))ϕdx

]
η(t) dt =

∫ T

0

∫
Ω

(ut(t)− v(t))ψ dxdt

= lim
n→∞

∫ T

0

∫
Ω

(unt (t)− vn(t))ψ dxdt = lim
n→∞

∫ T

0

[∫
Ω

(unt (t)− vn(t))ϕdx

]
η(t) dt

≤ lim
n→∞

τnT ||vnt ||L∞(0,T ;H−s(Ω))||ϕ||Hs(Rd)||η||∞ = 0.
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Hence we have∫
Ω

(ut(t)− v(t))ϕdx = 0 for all ϕ ∈ H̃s(Ω) and a.e. t ∈ [0, T ],

which yields the sought for conclusion. Thus, vt = utt and utt ∈ L∞(0, T ;H−s(Ω)).

�

Proposition 4.3.6 (Convergence of ūn). Let u be the limit function obtained in Propo-

sition 4.3.5, then

ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)).

Proof. By definition we have

sup
t∈[0,T ]

∫
Ω
|un(t, x)− ūn(t, x)|2 dx =

n∑
i=1

sup
t∈[tni−1,t

n
i ]

(t− tni )2

∫
Ω

(vni )2 dx

≤ τ2
n

n∑
i=1

||vni ||2L2(Ω) ≤ Cτn

which implies ūn → u in L∞(0, T ;L2(Ω)). Furthermore, taking into account Proposition

4.3.3, ūn(t) is bounded in H̃s(Ω) uniformly in t and n, so that we have ūn ⇀∗ u in

L∞(0, T ; H̃s(Ω)) and, as it happens for un, ūn(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ].

�

We can now pass to the limit in (4.3.9) to prove u to be a weak solution, thus proving

Theorem 4.3.2.

Proof of Theorem 4.3.2. The limit function u obtained in Proposition 4.3.5 is a weak

solution of (4.3.1). Indeed, for each n > 0, by (4.3.9) one has∫ T

0

∫
Ω
vnt (t)ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt = 0

for any ϕ ∈ L1(0, T ; H̃s(Ω)). Passing to the limit as n → ∞, using Propositions 4.3.5

and 4.3.6, we immediately get∫ T

0

∫
Ω
utt(t)ϕ(t) dxdt+

∫ T

0
[u(t), ϕ(t)]s dt = 0.

Regarding the initial conditions (4.3.3) and (4.3.4) it suffices to prove that, if tk → 0 are

Lebesgue points for both t 7→ ||ut(t)||2L2(Ω) and t 7→ [u(t)]2s, then

[u(tk)]
2
s → [u0]2s and ||ut(tk)||2L2(Ω) → ||v0||2L2(Ω). (4.3.16)

From the fact that ut ∈ W 1,∞(0, T ;H−s(Ω)) we have ut(tk) → v0 in H−s(Ω) and, since

ut(tk) is bounded in L2(Ω) and H̃s(Ω) ⊂ L2(Ω) is dense, we also have ut(tk) ⇀ v0
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in L2(Ω). On the other hand u(tk) → u(0) = u0 strongly in L2(Ω) because u ∈
C0([0, T ];L2(Ω)) and, being u(tk) bounded in H̃s(Ω), u(tk) ⇀ u(0) in H̃s(Ω) and [u0]s ≤
lim infk[u(tk)]s. To prove (4.3.16) it suffices to observe that

lim sup
k→∞

(
[u(tk)]

2
s + ||ut(tk)||2L2(Ω)

)
≤ [u0]2s + ||v0||2L2(Ω)

by energy conservation.

�

4.4 The obstacle problem

In this section we switch our focus to hyperbolic obstacle problems for the fractional

Laplacian. We will see how a weak solution can be obtained by means of a slight mod-

ification of the previously presented scheme, whose core idea has already been used in

other obstacle type problems (for example, in [66, 79]).

As above, let Ω ⊂ Rd be an open bounded domain with Lipschitz boundary and

consider g : Ω→ R, with

g ∈ C0(Ω̄), g < 0 on ∂Ω.

We are still interested in a non-local wave type dynamic like the one of equation (4.3.1),

where now we require the solution u to lay above g: this way g can be interpreted as a

physical obstacle that our solution cannot go below. Consider then an initial datum

u0 ∈ H̃s(Ω), u0 ≥ g a.e. in Ω,

and v0 ∈ L2(Ω). Equation (4.3.1), with the addition of the obstacle g, reads as follows:

find a function u = u(t, x) such that

utt + (−∆)su ≥ 0 in (0, T )× Ω

u(t, ·) ≥ g in [0, T ]× Ω

(utt + (−∆)su)(u− g) = 0 in (0, T )× Ω

u(t, x) = 0 in [0, T ]× (Rd \ Ω)

u(0, x) = u0(x) in Ω

ut(0, x) = v0(x) in Ω

(4.4.1)

In this system the function u is required to be an obstacle-free solution whenever away

from the obstacle, where u − g > 0, while we only require a variational inequality (first

line) when u touches g. The main difficulty in (4.4.1) is the treatment of contact times:

the previous system does not specify what kind of behaviour arises at contact times,

leaving us free to choose between “bouncing” solutions, the profile hits the obstacle and

bounces back with a fraction of the previous velocity (see, e.g., [84]), and an “adherent”

solution, the profile hits the obstacle and stops (this way we dissipate energy). The

definition of weak solution we are going to consider includes both of these cases.
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Definition 4.4.1. We say a function u = u(t, x) is a weak solution of (4.4.1) if

1. u ∈ L∞(0, T ; H̃s(Ω)) ∩ W 1,∞(0, T ;L2(Ω)) and u(t, x) ≥ g(x) for a.e. (t, x) ∈
(0, T )× Ω;

2. there exist weak left and right derivatives u±t on [0, T ] (with appropriate modifica-

tions at endpoints);

3. for all ϕ ∈W 1,∞(0, T ;L2(Ω))∩L1(0, T ; H̃s(Ω)) with ϕ ≥ 0, sptϕ ⊂ [0, T ), we have

−
∫ T

0

∫
Ω
utϕt dxdt+

∫ T

0
[u, ϕ]s dt−

∫
Ω
v0 ϕ(0) dx ≥ 0

4. the initial conditions are satisfied in the following sense

u(0, ·) = u0,

∫
Ω

(u+
t (0)− v0)(ϕ− u0) dx ≥ 0 ∀ϕ ∈ H̃s(Ω), ϕ ≥ g.

Within this framework we can partially extend the construction presented in the previous

section so as to prove existence of a weak solution.

Theorem 4.4.2. There exists a weak solution u of the hyperbolic obstacle problem (4.4.1),

and u satisfies the energy inequality

||u±t (t)||2L2(Ω) + [u(t)]2s ≤ ||v0||2L2(Ω) + [u0]2s for a.e. t ∈ [0, T ]. (4.4.2)

We remark here that this definition of weak solution is weaker than the one proposed

in [72, 55], in which the authors construct a solution to (4.4.1) as a limit of (energy

preserving) solutions un of regularized systems, where the constraint un ≥ g is turned

into a penalization term in the equation. Furthermore, up to our knowledge, the problem

of the existence of an energy preserving weak solution to (4.4.1) is still open: one would

expect the limit function in [72, 55] to be the best known candidate, while a partial result

for concave obstacles in 1d was provided by Schatzman in [100].

4.4.1 Approximating scheme

The idea is to replicate the scheme presented in Section 4.3 for the obstacle-free dynamic:

define

Kg = {u ∈ H̃s(Ω) |u ≥ g a.e. in Ω}

and, for any n > 0, let τn = T/n. Define un−1 = u0 − τnv0 and un0 = u0, and construct

recursively the family of functions {uni }ni=1 ⊂ H̃s(Ω) as

uni = arg min
u∈Kg

Jni (u),

with Jni defined as in (4.3.5). Notice how the minimization is now over functions u ≥
g in Ω so that to respect the additional constraint introduced by the obstacle. Since
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Kg ⊂ H̃s(Ω) is convex, existence and uniqueness of each uni can be proved by means of

standard arguments. Regarding the variational characterization of each minimizer uni , we

cannot take arbitrary variations ϕ ∈ H̃s(Ω) (we may end up exiting the feasible set Kg),

and so we need to be more careful: we take any test ϕ ∈ Kg and consider the function

(1− ε)uni + εϕ, which belongs to Kg for any sufficiently small positive ε. Thus, since uni
minimizes Jni , we have the following inequality

d

dε
Jni (uni + ε(ϕ− uni ))|ε=0 ≥ 0,

which rewrites as∫
Ω

uni − 2uni−1 + uni−2

τ2
n

(ϕ− uni ) dx+ [uni , ϕ− uni ]s ≥ 0 for all ϕ ∈ Kg. (4.4.3)

In particular, since every ϕ ≥ uni is an admissible test function, we also have∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+ [uni , ϕ]s ≥ 0 for all ϕ ∈ H̃s(Ω), ϕ ≥ 0. (4.4.4)

We define ūn and un as, respectively, the piecewise constant and the piecewise linear

interpolation in time of {uni }i (as in (4.3.8), (4.3.7)), and vn as the piecewise linear

interpolant of velocities vni = (uni − uni−1)/τn, 0 ≤ i ≤ n. Using (4.4.4), the analogue of

(4.3.6) takes the following form∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt ≥ 0

for all ϕ ∈ L1(0, T ; H̃s(Ω)), ϕ(t, x) ≥ 0 for a.e. (t, x) ∈ (0, T )× Ω.

In view of a convergence result, we observe that the same energy estimate of Propo-

sition 4.3.3 extends to this new context: for any n > 0, we have

‖unt (t)‖2L2(Ω) + [ūn(t)]2s ≤ C(u0, v0)

for all t ∈ [0, T ], with C(u0, v0) a constant independent of n. The exact same proof of

Proposition 4.3.3 applies: just observe that, taking ϕ = uni−1 in (4.4.3), one gets

0 ≤
∫

Ω

(uni − 2uni−1 + uni−2)(uni−1 − uni )

τ2
n

dx+ [uni , u
n
i−1 − uni ]s

and then the rest follows. Convergence of the interpolants is then a direct consequence.

Proposition 4.4.3 (Convergence of un and ūn, obstacle case). There exists a subsequence

of steps τn → 0 and a function u ∈ L∞(0, T ; H̃s(Ω)) ∩W 1,∞(0, T ;L2(Ω)) such that

un → u in C0([0, T ];L2(Ω)), ūn ⇀∗ u in L∞(0, T ; H̃s(Ω)),

unt ⇀
∗ ut in L∞(0, T ;L2(Ω)), un(t) ⇀ u(t) in H̃s(Ω) for any t ∈ [0, T ],

and furthermore u(t, x) ≥ g(x) for a.e. (t, x) ∈ [0, T ]× Ω.
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Proof. To obtain the existence of u and all the convergences we can repeat the first

half of the proof of Proposition 4.3.5 and the proof of Proposition 4.3.6. The fact that

u(t, x) ≥ g(x) for a.e. (t, x) ∈ [0, T ]× Ω is a direct consequence of the fact that uni ∈ Kg

for all n and 0 ≤ i ≤ n.

�

The missing step with respect to the obstacle-free dynamic is that generally speaking

utt /∈ L∞(0, T ;H−s(Ω)). The cause of such a behaviour is clear already in 1d: suppose the

obstacle to be g = 0 and imagine a flat region of u moving downwards at a constant speed;

when this region reaches the obstacle the motion cannot continue its way down (we need

to stay above g) and so the velocity must display an instantaneous and sudden change in

a region of non-zero measure (within our scheme the motion stops on the obstacle and

velocity drops to 0 on the whole contact region). Due to this possible behaviour of ut, we

cannot expect utt to posses the same regularity as in the obstacle-free case. Nevertheless,

such discontinuities in time of ut are somehow controllable and we can still provide some

sort of regularity results, which are collected in the following propositions.

Proposition 4.4.4. Let u be the weak limit obtained in Proposition 4.4.3 and, for any

fixed 0 ≤ ϕ ∈ H̃s(Ω), let F : [0, T ]→ R be defined as

F (t) =

∫
Ω
ut(t)ϕdx. (4.4.5)

Then F ∈ BV (0, T ) and, in particular, unt (t) ⇀ ut(t) in L2(Ω) for a.e. t ∈ [0, T ].

Proof. Let us fix ϕ ∈ H̃s(Ω) with ϕ ≥ 0, and consider the functions Fn : [0, T ] → R
defined as

Fn(t) =

∫
Ω
unt (t)ϕdx. (4.4.6)

Observe that ||Fn||L1(0,T ) is uniformly bounded because unt is bounded in L2(Ω) uniformly

in n and t. Furthermore, for every fixed n > 0 and 0 ≤ i ≤ n, we deduce from (4.4.4)

that ∣∣∣∣∣
∫

Ω
(vni − vni−1)ϕdx

∣∣∣∣∣−
∫

Ω
(vni − vni−1)ϕdx ≤ τn|[uni , ϕ]s| − τn[uni , ϕ]s. (4.4.7)

Summing over i = 1, . . . , n and using Proposition 4.3.3, we get

n∑
i=1

∣∣∣∣∣
∫

Ω
(vni − vni−1)ϕdx

∣∣∣∣∣ ≤
∫

Ω
vnnϕdx−

∫
Ω
v0ϕdx+

n∑
i=1

τn|[uni , ϕ]s| −
n∑
i=1

τn[uni , ϕ]s

≤ ||vnn||L2(Ω)||ϕ||L2(Ω) + ||v0||L2(Ω)||ϕ||L2(Ω) + 2τn

n∑
i=1

|[uni , ϕ]s|

≤ ||vnn||L2(Ω)||ϕ||L2(Ω) + ||v0||L2(Ω)||ϕ||L2(Ω) + 2τn

n∑
i=1

[uni ]s[ϕ]s

≤ C||ϕ||Hs(Rd)
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with C independent of n. Thus, {Fn}n is uniformly bounded in BV (0, T ) and by Helly’s

selection theorem there exists a function F̄ of bounded variation such that Fn(t)→ F̄ (t)

for every t ∈ (0, T ).

Take now ψ(t, x) = ϕ(x)η(t) for η ∈ C∞c (0, T ), using that unt ⇀
∗ ut in L∞(0, T ;L2(Ω)),

one has∫ T

0

∫
Ω
ut(t)ψ dxdt = lim

n→∞

∫ T

0

∫
Ω
unt (t)ψ dxdt = lim

n→∞

∫ T

0

∫
Ω
unt (t)ϕdx η(t)dt

=

∫ T

0
lim
n→∞

∫
Ω
unt (t)ϕdx η(t) dt =

∫ T

0
F̄ (t)η(t) dt

where the passage to the limit under the sign of integral is possible due to the pointwise

convergence of Fn to F̄ combined with the dominated convergence theorem. We conclude∫ T

0

(∫
Ω
ut(t)ϕdx− F̄ (t)

)
η(t) dt = 0

and, by the arbitrariness of η, we have F = F̄ for a.e. t ∈ (0, T ), which is to say

F ∈ BV (0, T ). In particular,∫
Ω
ut(t)ϕdx = F (t) = lim

n→∞

∫
Ω
unt (t)ϕdx for a.e. t ∈ (0, T ),

meaning unt (t) ⇀ ut(t) in L2(Ω) for almost every t ∈ (0, T ): indeed the last equality

can first be extended to every ϕ ∈ H̃s(Ω) (just decomposing ϕ = ϕ+ − ϕ− in its pos-

itive and negative parts) and then to every ϕ ∈ L2(Ω) being H̃s(Ω) ⊂ L2(Ω) dense.

�

Remark 4.4.5. In the rest of this section we choose to use the “precise representative” of

ut given by ut(t) = weak-L2 limit of unt (t), which is then defined for all t ∈ [0, T ].

Proposition 4.4.6. Fix 0 ≤ ϕ ∈ H̃s(Ω) and let F de defined as in (4.4.5). Then, for

any t ∈ (0, T ), we have

lim
r→t−

F (r) ≤ lim
s→t+

F (s).

Proof. First of all we observe that the limits we are interested in exist because F ∈
BV (0, T ). Fix then t ∈ (0, T ) and let 0 < r < t < s < T . For each n define rn and sn
such that r ∈ (tnrn−1, t

n
rn ] and s ∈ (tnsn−1, t

n
sn ]. If we consider the functions Fn defined in

(4.4.6) and take into account (4.4.7), one can see that

Fn(s)− Fn(r) =

∫
Ω

(unt (s)− unt (r))ϕdx =

∫
Ω

(vnsn − v
n
rn)ϕdx

=

sn∑
i=rn+1

∫
Ω

(vni − vni−1)ϕdx ≥ τn
sn∑

i=rn+1

([uni , ϕ]s − |[uni , ϕ]s|)

≥ −2Cτn(sn − rn)||ϕ||Hs(Rd)
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for some positive constant C independent of n. Since |s−r| ≥ |tnsn−1−tnrn | = τn(sn−1−rn)

we can conclude

Fn(s)− Fn(r) ≥ −2C|s− r| · ||ϕ||Hs(Rd) − 2Cτn||ϕ||Hs(Rd).

Passing to the limit n→∞ we get F (s)−F (r) ≥ −2C|s−r|·||ϕ||Hs(Rd), which in turn im-

plies the conclusion. �

The last result tells us that the velocity ut does not present sudden changes in regions

where it is positive, accordingly with the fact that whenever we move upwards there are

no obstacles to the dynamic and ut is expected to have, at least locally in time and space,

the same regularity it has in the obstacle-free case.

We eventually switch prove conditions 2, 3 and 4 of our definition of weak solution,

thus proving Theorem 4.4.2.

Proof of Theorem 4.4.2. Let u be the limit function obtained in Proposition 4.4.3. We

verify one by one the four conditions required in Definition 4.4.1.

(1.) The first condition is verified thanks to Proposition 4.4.3.

(2.) Existence of weak left and right derivatives u±t on [0, T ] follows from Proposition

4.4.4: just observe that, for any fixed ϕ ∈ H̃s(Ω), the function

F (t) =

∫
Ω
ut(t)ϕdx

is BV (0, T ) and thus left and right limits of F are well defined for any t ∈ [0, T ]. This,

in turn, implies condition 2. in our definition of weak solution.

(3.) For n > 0 and any test function ϕ ∈ W 1,∞(0, T ;L2(Ω)) ∩ L1(0, T ; H̃s(Ω)), with

ϕ ≥ 0, sptϕ ⊂ [0, T ), we recall that∫ T

0

∫
Ω

(
unt (t)− unt (t− τn)

τn

)
ϕ(t) dxdt+

∫ T

0
[ūn(t), ϕ(t)]s dt ≥ 0.

Thanks to Proposition 4.4.3, we have∫ T

0
[ūn(t), ϕ(t)]s dt→

∫ T

0
[u(t), ϕ(t)]s dt as n→∞

while, on the other hand, we also have∫ T

0

∫
Ω

unt (t)− unt (t− τn)

τn
ϕ(t) dxdt =

∫ T−τn

0

∫
Ω
unt (t)

(
ϕ(t)− ϕ(t+ τn)

τn

)
dxdt

−
∫ τn

0

∫
Ω

v0

τn
ϕ(t) dxdt+

∫ T

T−τn

∫
Ω

unt (t)

τn
ϕ(t) dxdt

→
∫ T

0

∫
Ω
ut(t)(−ϕt(t)) dxdt−

∫
Ω
v0 ϕ(0) dx+ 0 as n→∞.

This proves condition 3. for weak solutions.
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(4.) The fact that u(0) = u0 is a direct consequence of un(0) = u0 and of the

convergence of un to u in C0([0, T ];L2(Ω)). We are left to check the initial condition

on velocity. Suppose, without loss of generality, that the sequence un is constructed by

taking n ∈ {2m : m > 0} (each successive time grid is obtained dividing the previous

one). Fix then n and ϕ ∈ Kg, let T ∗ = mτn for 0 ≤ m ≤ n (i.e., T ∗ is a “grid point”).

Let us evaluate∫ T ∗

0

∫
Ω

unt (t)− unt (t− τn)

τn
(ϕ− ūn(t)) =

m∑
i=1

∫ tni

tni−1

∫
Ω

uni − 2uni−1 + uni−2

τ2
n

(ϕ− uni )

=

∫
Ω

m∑
i=1

uni − 2uni−1 + uni−2

τn
(ϕ− uni ) =

∫
Ω

m∑
i=1

(vni − vni−1)(ϕ− uni )

= −
∫

Ω
vn0 (ϕ− un1 ) dx+

∫
Ω
vnm(ϕ− unm) dx+ τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx

= −
∫

Ω
v0(ϕ− un(τn)) dx+

∫
Ω
unt (T ∗)(ϕ− un(T ∗)) dx+ τn

m−1∑
i=1

∫
Ω
vni v

n
i−1 dx.

Using (4.4.3) we observe that∫ T ∗

0

∫
Ω

unt (t)− unt (t− τn)

τn
(ϕ− ūn(t)) dxdt+

∫ T ∗

0
[ūn(t), ϕ− ūn(t)]s dt ≥ 0,

which combined with the above expression and previous estimates on uni and vni leads to

−
∫

Ω
v0(ϕ− un(τn)) dx+

∫
Ω
unt (T ∗)(ϕ− un(T ∗)) dx ≥

− τn
m−1∑
i=1

∫
Ω
vni v

n
i−1 dx− τn

m∑
i=1

[uni , ϕ− uni ]s ≥ −CT ∗ − CT ∗||ϕ||Hs(Rd).

Passing to the limit as n → ∞, using un(τn) → u(0) and unt (T ∗) ⇀ ut(T
∗) (due to the

use of the precise representative), we get

−
∫

Ω
v0(ϕ− u(0)) dx+

∫
Ω
ut(T

∗)(ϕ− u(T ∗)) dx ≥ −CT ∗ − C||ϕ||Hs(Rd)T
∗.

Taking now T ∗ → 0 along a sequence of “grid points” we have∫
Ω

(u+
t (0)− v0)(ϕ− u(0)) dx ≥ 0.

And this completes the first part of the proof. We are left to prove the energy inequality

(4.4.2). For this, recall that from Remark 4.3.4 it follows that, for all n > 0,

||vn(t)||2L2(Ω) + [un(t)]2s ≤ ||v0||2L2(Ω) + [u0]2s for all t ∈ [0, T ].

Passing to the limit as n→∞ we immediately get (4.4.2). �
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We conclude this section with some remarks and observations about the solution u

obtained through the proposed semi-discrete convex minimization scheme in the scenario

s = 1. First of all we identify the weak solution u obtained above to be a more regular

solution whenever approximations un stay strictly above g.

Proposition 4.4.7 (Regions without contact). Let s = 1 and, for δ > 0, suppose there

exists an open set Aδ ⊂ Ω such that un(t, x) > g(x) + δ for a.e. (t, x) ∈ (0, T ) × Ω

and for all n > 0. Then utt ∈ L∞(0, T ;H−1(Aδ)) and u satisfies (4.3.2) for all ϕ ∈
L1(0, T ;H1

0 (Aδ)).

Proof. Take ϕ ∈ H1
0 (Ω) with sptϕ ⊂ Aδ. Then, for every n and 0 ≤ i ≤ n, the

function uni + εϕ belongs to Kg for ε sufficiently small: indeed, for x ∈ Aδ, we have

uni (x) + εϕ(x) ≥ g(x) + δ + εϕ(x) ≥ g(x) for small ε, regardless of the sign of ϕ(x). In

particular, equation (4.4.4) can be written as∫
Ω

uni − 2uni−1 + uni−2

τ2
n

ϕdx+

∫
Ω
∇uni · ∇ϕdx = 0 for all ϕ ∈ H1

0 (Ω), sptϕ ⊂ Aδ.

This equality allows us to carry out the second part of the proof of Proposition 4.3.5, so

that, in the same notation, we can prove vnt (t) to be bounded in H−1(Aδ) uniformly in t

and n. Thus, v ∈W 1,∞(0, T ;H−1(Aδ)) and

vn ⇀∗ v in L∞(0, T ;L2(Aδ)) and vn ⇀∗ v in W 1,∞(0, T ;H−1(Aδ)).

Localizing everything on Aδ, we can prove vt = utt in Aδ so that

utt ∈ L∞(0, T ;H−1(Aδ)),

and equation (4.3.2) follows by passing to the limit as done in the proof of Theorem 4.3.2

(cf. [109, 48]).

�

Remark 4.4.8 (One dimensional case with s = 1). In the one dimensional case and for s =

1 the analysis boils down to the problem considered by Kikuchi in [66]. In this particular

situation a stronger version of Proposition 4.4.7 holds: suppose that Ω = [0, 1], then for

any ϕ ∈ C0
0 ([0, T ), L2(0, 1)) ∩W 1,2

0 ((0, T )× (0, 1)) with sptϕ ⊂ {(t, x) : u(t, x) > 0},

−
∫ T

0

∫ 1

0
utϕt dxdt+

∫ T

0

∫ 1

0
uxϕx dxdt−

∫ 1

0
v0 ϕ(0) dx = 0.

4.5 Numerical implementation and open questions

The constructive scheme presented in the previous sections can be easily used to provide

a numerical simulation of the relevant dynamic, at least in the case s = 1 where we can

employ a classical finite element discretization. However, we observe that a similar finite

element approach can be extended to the fractional setting s < 1 following for example

the pipeline described in [4, 3].
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Minimization of energies Jni can be carried out by means of a piecewise linear finite

element approximation in space: given a triangulation Th of the domain Ω we introduce

the classical space

X1
h = {uh ∈ C0(Ω̄) : uh|K ∈ P1(K), for all K ∈ Th}.

For n > 1, 0 < i ≤ n, and given uni−1, u
n
i−2 ∈ X1

h, we optimize Jni among functions in X1
h

respecting the prescribed Dirichlet boundary conditions (which are local because s = 1).

We get this way a finite dimensional optimization problem for the degrees of freedom of

uni and we solve it by a gradient descend method combined with a dynamic adaptation

of the descend step size.

Figure 4.1: Time evolution of the solution till t = 1.5 (left) and space-time depiction of

the same evolution till T = 10 (right).

In the simulation in figure 4.1 we take Ω = (0, 2π) and u0(x) = sin(x) + 1.2, with a

constant initial velocity of −2 which pushes the string towards the obstacle g = 0. The

boundary conditions are set to be u(t, 0) = u(t, 2π) = 1.2 and the simulation is performed

up to T = 10 using a uniform grid with h = 2π/200 and a time step τ = 1/100. We can

see how the profile stops on the obstacle after impact (blue region in the right picture of

figure 4.1) and how the impact causes the velocity to drop to 0 and thus a loss of energy

(as displayed in figure 4.2). As soon as the profile leaves the obstacle the dynamic goes

back to a classical wave dynamic and energy somehow stabilizes even if, as expected, it

is not fully conserved from a discrete point of view. Due to energy dissipation at impact

times, in the long run we expect the solution to never hit the obstacle again because

the residual energy will only allow the profile to meet again the obstacle at 0 speed, i.e.,

without any loss of energy. Thus, also in higher dimension, we expect the solution u

obtained through the proposed scheme to become an obstacle-free solution of the wave

equation as soon as the energy of the system drops below a certain value, preventing this

way future collisions. This can be roughly summarized in the following conjecture.

Conjecture 1 (Long time behaviour). Let s = 1 and, given an obstacle problem in the

form of equation (4.4.1), let u be the weak solution obtained through the convex minimiza-
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Figure 4.2: Time evolution of the velocity up to t = 2 (left) and energy (right).

tion approach of Section 4.4.1. Then, at least for sufficiently regular obstacles g, there

exists t̄ > 0 such that E(u(t)) is constant for any t > t̄.

Alongside the previous conjecture, we observe that the solution u obtained here seems

to be, among all possible weak solutions, the one dissipating its kinetic energy at highest

rate, when colliding with the obstacle g, and so the one realizing the “adherent” behaviour

we mentioned before. At the same time, from the complete opposite perspective, one could

ask if it is possible to revise the scheme so that to obtain energy preserving approximations

un, and try to use these approximations to provide an energy preserving weak solution

(maybe under suitable additional hypothesis on the obstacle).

As already observed in the introduction, the proposed method can be extended to the

case of semi-linear wave equations of the type

utt + (−∆)su+ f(u) = 0

with f a suitable function, possibly non-smooth. For example, one can consider f to

be the (scaled) derivative of a balanced, double-well potential, e.g., f(u) = 1
ε2

(u3 − u)

for ε > 0: certain solutions of that equation are intimately related to timelike minimal

hypersurfaces, i.e., with vanishing mean curvature with respect to Minkowski space-time

metric [50, 62, 18]. On the other hand, as we said in the introduction, one could also

manage adhesive type dynamics assuming f to be the (non-smooth) derivative of a smooth

potential Φ, as it is done in [46].

We eventually observe that the proposed approximations un can be constructed, the-

oretically and numerically, also for a double obstacle problem, i.e., g(x) ≤ u(t, x) ≤ f(x)

for a suitable lower obstacle g and upper obstacle f . However, in this new context, the

previous convergence analysis cannot be replicated because even the basic variational

characterization (4.4.4) is generally false and a more localized analysis would be neces-

sary. Anyhow, also in this situation one would expect the solution to behave like an

obstacle-free solution after some time, as suggested in Conjecture 1.
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